
A COMPREHENSIVE STUDY ON ONE-WAY BACKSCATTER
TRAFFIC ANALYSIS

by

Eray Balkanli

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2015

c© Copyright by Eray Balkanli, 2015

I dedicate this thesis to my loving parents, Gulay and A. Erdal

Balkanli, who have encouraged me to study Master of Computer

Science and supported me throughout the process. I also dedicate this

study to the most special person in my life, Emel Uras, who have kept

me motivated for all the time and never left my side.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . vii

List of Abbreviations and Symbols Used viii

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 5

Chapter 3 Methodology . 9

3.1 The Characteristics of Employed Datasets 9

3.2 Systems Employed . 11
3.2.1 Wireshark and Tshark . 11
3.2.2 Snort . 13
3.2.3 Bro . 14
3.2.4 Iatmon . 15
3.2.5 Corsaro . 17
3.2.6 Cisco ASA 5515-X . 17

3.3 Machine Learning Approaches Employed 19
3.3.1 C4.5 Decision Tree . 20
3.3.2 Naive Bayes . 21
3.3.3 AdaBoost . 21

3.4 Feature Selection . 23
3.4.1 Chi-square Measurement . 24
3.4.2 Symmetrical Uncertainty Ranked Method 25
3.4.3 Features Based on the Experiments 27

3.5 Performance Metrics . 28

Chapter 4 Experiments and Results 30

4.1 Revealing the Characteristics of Backscatter Traffic and Changing Trends
in Time . 30

iii

4.1.1 Data Classification . 30
4.1.2 Measurements on Transport and Network Layer Protocols . . 33
4.1.3 Measurements on Application Layer Protocols 34
4.1.4 Measurements on Secure Traffic 36
4.1.5 Measurements on Peer-to-peer (P2P) Traffic 38
4.1.6 Geolocation Analysis . 39

4.2 Measurements on the Network Traffic Monitoring Tools 40
4.2.1 Snort v2.9.1 and Snort v2.9.6.0 41
4.2.2 Bro v2.2 . 44
4.2.3 Iatmon v2.1.2 . 46
4.2.4 Corsaro v2.0.0 . 50
4.2.5 Cisco ASA 5515-X . 51

4.3 Building Machine Learning Classifiers 51
4.3.1 Experimens on Training Sets via C4.5 and Naive Bayes 52
4.3.2 Comparing the Employed Machine Learning Techniques 54
4.3.3 Detecting Recent Attack Traffic by C4.5 Decision Tree Trained

by Old Traces . 55

Chapter 5 Conclusion . 60

Bibliography . 63

iv

List of Tables

3.1 Employed Datasets . 9

3.2 Combined datasets . 11

3.3 Summary of Employed Machine Learning Approaches 24

3.4 All available features in the Employed Datasets 25

3.5 Experiment-based Selected Features 27

4.1 Types of Traffic Observed in Each Dataset 32

4.2 TCP Traffic Distributions of Backscatter Datasets Employed . 33

4.3 Protocol Measurements . 34

4.4 Protocol Measurements . 41

4.5 Analysis on Snort rules . 42

4.6 Snort Performance Analysis . 43

4.8 Bro v2.2 Performance Analysis 46

4.7 Snort - Triggered Rules/ # of Triggered Times 47

4.9 Iatmon packet categorization 48

4.10 Iatmon source address categorization 49

4.11 Overview of Employed Tools 52

4.12 Machine Learning with Different Features and Training Sets . . 53

4.13 Evaluation of Machine Learning Models 55

4.14 Selected Features . 56

4.15 The Results of the Experiments on C4.5 58

v

List of Figures

3.1 Wireshark presentation . 12

3.2 Tshark presentation . 12

3.3 Snort Rule sample . 12

3.4 Example of an event in Bro v2.2. 14

3.5 Structure of Bro IDS from [52] 15

3.6 Defined subsets in Iatmon . 16

3.7 Example of 8-tuple structure in Corsaro 17

3.8 Data processing in Corsaro . 17

3.9 Configuration of the Cisco ASA 5515-X Router. 19

4.1 Hour-based distribution of the backscatter traffic 31

4.2 Three-way handshaking for TCP connections 32

4.3 Application Layer Protocol Usage for the datasets 2006 and 2008. 36

4.4 Backscatter traffic on secure ports 38

4.5 Peer-to-peer Traffic Measurements 39

4.6 Geolocation Measurements . 40

4.7 Example of the log representation in Bro 45

4.8 Decision Tree built by D4 with my proposed set of features . . 59

vi

Abstract

Since the occurrence and variety of Distributed Denial of Service (DDoS) has dra-

matically increased, the discovery of DDoS signatures (rules) become very difficult

for current intrusion detection mechanisms. Darknets, which refer to unallocated In-

ternet Protocol (IP) addresses in a network, are used to collect attack traffic to reveal

the potential signatures. Backscatter, a behaviour observed in darknets, is a side ef-

fect of DDoS attacks generated by victim responds to the spoofed IP addresses. This

thesis explores general backscatter patterns mostly based on the major transport,

network and application layer protocols and ports. A detailed evaluation expressing

the performances of five different signature-based network traffic monitoring systems,

namely Snort, Bro, Iatmon, Corsaro and Cisco’s Adaptive Security Appliance (ASA)

5515-X, over backscatter traffic is also presented. Moreover, this thesis analyzes the

performances of three machine learning techniques, namely C4.5 Decision Tree, Naive

Bayes and AdaBoost.M1, in terms of the detection rate, false alarm rate, computa-

tional cost and ease of use of these techniques. Additionally, different training sets

with different sizes and different feature sets are used to study the effects of training

datasets and data pre-processing, respectively. Five different feature sets depending

on the two well-known feature selection approaches, namely Chi-Square and Symmet-

rical Uncertainty, as well as the most commonly used features in the literature are

included in these studies. All of the evaluations are performed on six different pub-

licly available one-way darknet datasets collected between 2004 and 2012 by CAIDA.

The results show that the attack trends in the employed datasets are important to

understand the nature of DDoS traffic. Furthermore, the signatures generated by a

machine learning system are robust in detecting DDoS traffic even when the training

set is small and the attack trends are changing over time.

vii

List of Abbreviations and Symbols Used

ASA Adaptive Security Appliance.

ASDM Adaptive Security Device Manager.

DDoS Distributed Denial of Service.

DNS Domain Name Server.

FN False Negative.

FNR False Negative Rate.

FP False Positive.

FPR False Positive Rate.

FTP File Transfer Protocol.

HTTP HyperText Transfer Protocol.

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol.

IDS Intrusion Detection System.

IMAP4 Internet Mail Access Protocol v4.

IP Internet Protocol.

IPsec Internet Protocol security.

IRC Internet Relay Chat.

L2TP Layer Two Tunneling Protocol.

LDAP Lightweight Directory Access Protocol.

viii

MIB Management Information Base.

MMS Multimedia Messaging Service.

NNTP Network News Transfer Protocol.

P2P Peer-to-peer.

POP Post Office Protocol.

PPTP Point-to-Point Tunneling Protocol.

RPC Remote Procedure Call.

SMB Server Message Block.

SMTP Simple Mail Transfer Protocol.

SNMP Simple network management protocol.

SSH Secure SHell.

SSL Secure Sockets Layer.

SSP Secure Server Protocol.

TCP Transmission Control Protocol.

TN True Negative.

TP True Positive.

TTL Time-to-Live.

UDP User Datagram Protocol.

ix

Acknowledgements

First of all, I would like to thank my supervisor, A. Nur Zincir-Heywood, for her

infinitive support, guidance and encouragement. Every single comment she made

and advice she gave at our progress meetings has a profound effect on this research.

Moreover, there are no words to express how grateful I am to my family and

fiancee, Emel Uras, for always supporting, helping and motivating me to study hard

and finalize this research.

Also, I would like to show my gratitude to my friends, Vahid Foroushani and

Fariba Haddadi, for always helping me when I got stuck in any technical issues.

In addition, I appreciate my friends, Baran Tatar and Ozkan Anil Toral, who were

always there to provide me their endless support and motivation.

Finally, this research is supported by the Canadian Safety and Security Pro-

gram(CSSP) E-Security grant. The CSSP is led by the Defense Research and De-

velopment Canada, Centre for Security Science (CSS) on behalf of the Government

of Canada and its partners across all levels of government, response and emergency

management organizations, nongovernmental agencies, industry and academia. This

research is conducted as a part of the Dalhousie NIMS Lab.

x

Chapter 1

Introduction

Distributed Denial of Service (DDoS) is a well-known network attack aiming to pre-

vent legitimate user access to a network system by overwhelming the related server(s)

with a huge volume of traffic. The increase in DDoS traffic has turned out a consid-

erable problem since DDoS attempts have drastically increased and the attack trends

become elusive. According to the report by NSFOCUS, 168,459 DDoS attacks were

observed in the only first half of 2013 [43]. More recently, Sony Playstation and Xbox

live gaming networks were exposed to a DDoS attack by the hacktivist group ”Lizard

Squad” in January, 2014 [31]. It is interesting that this group also offers to generate

unlimited DDoS attacks to any service on behalf of their customers who pay 500$

for a month [26]. This indicates how easy it has become to play a role in a network

attack today, even as an attacker or a victim.

Given the malicious activities such as the ones above, availability, confidentiality

and integrity of network systems become significant issues. To this end, network traffic

monitoring tools including integrated intrusion detection systems (IDS) are used to

inspect the transmitting network packets passively to reveal the potential threats.

The main purpose of an IDS is to assist a network/security analyst to obtain any

suspicious packets over the network. Those tools generally use pre-defined signatures

(rules) or events to identify suspicious any suspicious activity. If the pattern of an

inspected packet matches with a pre-defined signature, this packet causes an alarm

and the IDS alerts the human expert. Therefore, the rule sets such systems include

are very critical for detecting malicious traffic while monitoring a real-time traffic. At

this point, network telescopes (darknets) are used to collect malicious data to reveal

the potential attack patterns.

A darknet refers to such networks consisting of valid but unused IP addresses

where there is no device configured. Since no legitimate network traffic is supposed

to send to these IP addresses, all the packets routed to darknets are considered as

1

2

hostile. Even though misconfiguration-based packets may be observed, malicious

activities such as scans to look for vulnerable devices or DDoS packets to block a

system constitute the majority of attacks in a darknet. The main goal of darknets is

to enable one to explore the general attack trends by analyzing the collected malicious

traffic. The revealed trends are used in developing IDSs to provide reduced occurrence

of false positives while identifying suspicious network packets. Note that the number

of IP addresses separated for a darknet is very important since the resolution of a

darknet depends on the size of its darkspace. For instance, a darknet monitoring a

/8 network (16,277,216 addresses) is likely to collect more malicious traffic than a

darknet monitoring a /16 network (65,536 addresses).

A darknet can work passively or actively based on its configuration. While a pas-

sive darknet only stores all the packets routed to one of the unallocated IP addresses

in the range of the darknet, active darknets also respond to these packets. There-

fore, active darknets are likely to reach the real attack packets including viruses or

malwares since the one who generated scans would think that a vulnerable host is

found. Thus, more information about the attacker who scans for vulnerable hosts

before attacking can be gathered and the attacking technique can be found out by

using active darknets.

Backscatter, a side of DDoS attack, is one of the potential behaviours observed in

passive darknets. In such attacks, the source address of the network packets targeted

to the victim are spoofed. Thus, the victim responds to these packets coming from

a spoofed IP addresses as if they are normal packets. Such traffic generated by these

responses is called as the backscatter traffic. Since normal packets sent to spoofed IP

addresses produce backscatter traffic, which means scanning traffic are not required

to be generated before generating backscatter traffic, passive darknets are able to

gather backscatter packets.

In this thesis, three publicly available backscatter datasets collected in 2004, 2006

and 2008, have been employed to reveal the common attack patterns of the backscatter

traffic. Moreover, two more publicly available darknet datasets from 2008 and 2012,

where one of them includes mostly backscatter traffic and the other one includes both

scanning and backscatter traffic, have been employed to evaluate the performances

of four well-known open source and one commercial network traffic monitoring tools,

3

namely Snort, Bro, Iatmon, Corsaro and Cisco ASA 5515-X. In doing so, it is aimed

to study the capability of these systems in detecting attack behaviours in these real

life datasets, and reveal their drawbacks. Moreover, one DDoS-based darknet traffic

from 2007 and two normal anonymous network traffic traces from 2008 and 2014 in

addition to the aforementioned five darknet datasets have been employed in train-

ing/testing three machine learning classifiers. These classifiers include: C4.5 Decision

Tree, Naive Bayes and AdaBoost. They are used to measure their capabilities in de-

tecting backscatter traffic and to observe if they are able to overcome the challenges

faced by the network traffic monitoring tools employed. Finally, different sizes of

training sets and five different feature sets are used to observe how the properties of

a training set affect (if at all) the performance of a machine learning based classifier.

To this end, I have employed the following five different features sets: (i) includ-

ing all available 25 features, (ii) one generated by the feature extraction technique

called Chi-Square [60], (iii) one generated by the feature extraction technique called

Symmetrical Uncertainty [17]; (iv) one feature set based on features reported in the

literature [48][30][45][33][38]; and (v) one on the patterns of the backscatter traffic

identified by myself.

In short, the main contributions of this thesis include:

• What are the main characteristics of backscatter traffic and do they change over

years?

• What are the performances of the current network traffic monitoring tools in

analyzing network traffic against potential threats? What type of signatures

(rules) they use to define suspicious packets? What are the main challenges of

such tools in detecting malicious activity?

• What are the performances of the supervised machine learning approaches in

detecting malicious network traffic? What is the importance of the employed

training set size and the instances it includes, and the selected features while

building a machine learning based classifier? How does a machine learning based

classifier deal with the drawbacks of the current network traffic monitoring

tools? How robust the auto-generated rules by such tools are against time-

based changed attack patterns? Is this possible to detect recent attack traces

4

by building a machine learning based system trained by old attack traces?

Note that all the darknet traffic employed in this thesis was captured by UCSD

Network Telescope [25], which is known as a passive darknet configured by CAIDA.

Moreover, to the best of my knowledge these datasets are the only and the most up

to date datasets available that include darknet traffic. It should also be noted here

that all the performance measurements are based on the detection rates, false alarm

rates, computational costs and ease of usages.

The remainder of this thesis is organized as follows. Chapter 2 presents the ex-

isting works in the literature. Chapter 3 discusses the main characteristics of the

employed datasets, descriptions of the used network traffic monitoring tools and ma-

chine learning approaches as well as the selected features and the used performance

metrics in detail. Chapter 4 explains my evaluations and experiences with these tools

and techniques on the employed datasets. Finally, Chapter 5 draws conclusions and

discusses the future work.

Chapter 2

Literature Review

There are many researches explored darknet traffic analysis. These researches can be

classified into two main categories. The first category aims to monitor and analyze

the darknet data using open source, in house or commercial tools to discover the

major attack patterns. The second category focuses on employing machine learning

classifiers to analyze the darknet data to detect attack patterns.

For the first category, Bailey et al. studied on configuring passive and active dark-

nets and clustering a large darknet dataset collected by Internet Monitor Sensor based

on unique source IP addresses [19]. Eto et al. monitored various sizes of darknets,

such as /8, /16 and /24, to develop a network analysis center for tactical emergency

response [37]. They also observed the correlation between the attack packets seen

in the monitored darknets to explore which of them fluctuate together. Wang et al.

measured host infection times and reconstruct worm infection sequences by employ-

ing well-known statistical techniques on a worm dataset provided by CAIDA via /8

network telescopes [56]. Fachkha et al. focused on studying the characteristics of the

darknet traffic collected via /8 network blocks over 9 months by analyzing the used

transport, network and application layer protocols [38]. They also presented 30 types

of threats seen in these network blocks by using association approaches to reveal the

patterns of such darknet data to help building highly accurate classification models.

Pang et al. focused on analyzing the nature of darknet data collected by /8 and /19

iSinks [59] in 2004 by measuring the major application-level responders and filtering

the traffic by source-connection, source-destination, source-port and source-payload

based features [51]. Wustrow et al. reengineered Pang et al.s research [51] by using

more recent darknet datasets to analyze how the nature of darknet traffic changed in

time [58]. They analyzed protocol/port selections, traffic types, sizes etc. of recent

traffic over unused /8 blocks and explored critical changes in misconfiguration traffic

rate and source locations. Moore et al. analyzed different darknet traces collected over

5

6

3 years, between 2001 and 2004, to classify DDoS attacks without using the packets

while performing their experiments [48]: transmitting over User Datagram Protocol

(UDP), transmitting over Transmission Control Protocol (TCP) with an active RST

flag, and response packets. Their approach was based on observing the successive

packets generated by the same source IP addresses. They used the features ”packet

threshold”, ”attack duration” and ”packet rate” during classification. Fachkha et al.

extended Moore et al.’s research [48] classifying Domain Name Server (DNS) based

internet-scale DDoS attacks by employing 720 GB of real darknet data collected over

3 months based on the number of packets and scanned hosts, DNS query types and

requested domains [30]. Finally, Dainotti et al. focused on identifying the sources

of IP-spoofed internet attacks by using source/destination IP addresses, protocols,

Time-To-Live (TTL) values and the least significant bytes of source IP addresses as

the most informative features [33].

For the second category, Cui-Mei presented a comprehensive system to detect

DDoS attacks via Support Vector Machine technique by employing Management In-

formation Base (MIB) statistical data collected over ten days via Simple Network

Management Protocol (SNMP) agents [20]. He used the features ”IPReceives”,

”IPDelivers” and ”IPOutRequests” and reached up to 99% detection rate with an

SVM model trained by 30% of the traffic and tested the unseen 70% of the remaining

traffic. Noh et al. studied on filtering network traffic based on TCP flags within

the TCP header of the packets to detect DDoS attacks [50]. They built three ma-

chine learning models, namely Decision Tree, Naive Bayes and CN2, by employing

such data collected via web servers, and achieved 99% detection rate with their Naive

Bayes model. Saad et al. achieved 97% detection rate by classifying peer-to-peer

(P2P) botnet traffic via Linear Support Vector Machine technique [35]. Even thought

this ratio is high, the processing time of this model is approximately 20 times slower

than the other approaches in this field. Livadas et al. employed real botnet packets

and chat traffic collected over Dartmouth′s wireless campus network over four months

to train Decision Tree, Naive Bayes and Bayesian Network models to detect Inter-

net Relay Chat (IRC) based attacks [34]. According to their study, the Naive Bayes

achieved the highest detection rate for IRC-based attacks. Fachkha et al. used TCP

flags (RST, ACK, SYN+ACK and RST+ACK) to classify DDoS traffic and session

7

flows to categorize scanning activities to highlight their patterns and impact features.

Then, they employed Moving Average, Weighted Moving Average, Exponentional

Smoothing and Linear Regression models to build a model to detect DDoS traffic

over a network [29]. Lee et al. explored the drawbacks of network IDSs by employing

malicious sendmail system call data, then proposed a data mining based framework

that uses association techniques and audit data logs to build machine learning clas-

sifiers [57]. Their study demonstrates that the rules generated by RIPPER method

achieve to detect 99% of the malicious traffic. Finally, Farid et al. targeted to decrease

false positives of network IDSs by developing a preliminary system by combining De-

cision Tree and Naive Bayes techniques to overcome the challenges of network IDSs

[44]. They employed KDD’99 dataset, which includes various attacks simulated in a

military network environment, and reached up to 99.7% accuracy by using 19 features.

One of the most important drawbacks current network IDSs have is the high pos-

sibility of incorrectly categorizing legitimate traffic as attack traffic. Aforementioned

researches focus on decreasing the false alarm rate of network IDSs by analyzing

darknet traffic to discover its main characteristics, mostly depending on packet fea-

tures, such as IP addresses, ports and protocols, in order to generate signatures for

these IDSs to detect malicious traffic. These studies also focus on developing machine

learning based models that automatically generate signatures (rules) to detect such

traffic. The challenges that are faced by these studies can be summarized as the

following:

• The employed datasets mostly include two-way traffic with payload.

• Commonly transport, network and application layer protocol usages were stud-

ied to discover the attack patterns.

• For the researches related to building machine learning classifiers to detect ma-

licious traffic, the robustness and generalization of such classifiers were not

evaluated by employing such data collected in different time periods.

This thesis is complementary to these researches in the aspects of analyzing dark-

net traffic using well-known open source and commercial tools and studying machine

learning classifiers to understand if they can be used to overcome the aforementioned

8

challenges (if at all). The main differences between the previous researches and this

thesis are:

• This research focuses on analyzing publicly available backscatter data sets in-

cluding no payload information. In doing so, it is aimed to explore common

attack patterns seen in such traffic. Thus, the attack signatures revealed by

previous researches focusing on two-way malicious traffic are extended by those

patterns belonging to one-way malicious traffic.

• Besides studying the usage of the transport, network and application proto-

cols, packet-based features including packet length, TTL, source location etc.

(explained in detail in the Chapter 3.4) are also employed to find out general at-

tack patterns. In doing so, it is aimed to observe if using packet-based features

in addition to the features related to the transport, network and application

layers, commonly employed by the previous researches, are sufficient to detect

malicious activity.

• The robustness and generalization abilities of a C4.5 classifier trained by old

darknet datasets are analyzed by running this classifier on recent datasets, which

potentially include different attack patterns. The main purpose by doing so is

to observe how much the auto-generated rules by the C4.5 classifier successful

to detect such attack packets having different trends.

Chapter 3

Methodology

This chapter presents the main characteristics of the employed traffic traces, the de-

scription of the network traffic monitoring systems and the focused supervised learn-

ing systems used as well as the feature selection methods and performance metrics

employed in this thesis.

3.1 The Characteristics of Employed Datasets

Six publicly available darknet traffic traces (datasets) from CAIDA’s archives are em-

ployed in this thesis. These traces are captured by UCSD Network Telescope [25],

which is located in San Diego, consisting of a globally routed /8 network that rarely

carries legitimate traffic. Since this network telescope is a type of a passive darknet,

the traffic captured by this telescope include only one-way traffic, i.e. the response

traffic from the attack victim to other IP addresses. According to CAIDA’s explana-

tions [6][5][4][1], all the employed darknet datasets except ”April-2012” include mostly

backscatter attacks, whereas ”April-2012” [7] may involve scanning data in addition

to backscatter data. Note that the destination IP addresses and payload information

are hidden in these datasets for the sake of privacy.

Table 3.1: Employed Datasets

May-28
2004

Feb-23
2006

Feb-22
2008

Nov
2008

Apr
2012

DDoS
2007

Norm
2008

Norm
2014

Size
(GB)

4.4 7.5 6.9 102.7 11.2 0.1 0.15 5

of
packets

57,641,141 85,547,065 81,606,489 1,317,888,867 15,817,479 1,000,000 1,000,000 50,000,000

DDoS
Pattern
Analysis

X X X × × × × ×

Snort X X X × × × × ×

Bro IDS X X X X × × × ×

Iatmon × × × X × × × ×

Corsaro × × × X X × × ×

Cisco
ASA

× × × X X × × ×

Machine
Learning

Classifiers
× × × X X X X X

Table 3.1 shows all the employed datasets in this thesis. These datasets contain

9

10

a large number of instances. It should also be noted here that TCP and Port 80 are

the major protocol and the major port used in these datasets, respectively.

The earliest days from the captured 2004, 2006 and 2008 backscatter datasets

provided by CAIDA were selected as one-day datasets to employ to study both the

different backscatter behaviours over these years (2004 - 2008) and the performance

of the tools Snort and Bro IDS. Also, November-2008 (the latest available backscat-

ter dataset from year 2008) and April-2012 (the latest available darknet dataset)

datasets were employed to evaluate the performances of Bro, Corsaro and Cisco ASA

5515-X systems as well as the machine learning classifiers. Note that two additional

datasets including normal network traffic from CAIDA’s archives collected in 2008

[2] and 2014 [3] via CAIDA’s ”equinix-chicago” and ”equinix-sanjose” monitors on

OC-192 Internet backbone links and one more darknet dataset including only DDoS

traffic captured in 2007 via UCSD Network Telescope were also employed in order

to study the best practices to form training datasets for the machine learning classi-

fiers. In doing so, it is aimed to have more consistent training sets containing both

labelled attack and normal traffic with different patterns to build a discriminative

classifier. Table 3.2 summarizes my efforts to form different training data sets using

the aforementioned normal and attack datasets, where:

• D1 includes 1,000,000 records from the dataset November-2008.

• D2 is a combination of the November-2008 and DDoS-2007 datasets including

1,000,000 records from each of them.

• D3 is a combination of the November-2008 and Normal-2008 datasets including

1,000,000 records from each of them.

• D4 is a combination of the November-2008, DDoS-2007 and Normal-2008 data

sets including 1,000,000 records from each of them.

• D5 is a combination of the April-2012 and Normal-2014 datasets including

50,000,000 records from each of them.

Note that while the datasets D1, D2, D3 and D4 are used in the training phases, D5

is used in only testing phases. The reason behind this is to explore if it is possible

to detect recent attack traffic via a machine learning based classifier trained in the

11

past. To the best of my knowledge, this is the first research which focuses on building

a robust classifier by employing such combinations of backscatter and normal traffic

from the past to analyze today’s attack traffic.

Table 3.2: Formation of Training Datasets

Datasets for Training
(1,000,000 records
from each ”1”)

Dataset for Testing
(50,000,000 records

from each ”1”)
Dataset

D1 D2 D3 D4 D5
November-2008 X X X X ×

DDoS-2007 × X × X ×
Normal-2008 × × X X ×

April-2012 × × × × X

Normal-2014 × × × × X

3.2 Systems Employed

This section describes the network traffic monitoring systems employed in this thesis

to explore their performances against backscatter traffic.

3.2.1 Wireshark and Tshark

Wireshark [16] and Tshark [14] are publicly available network traffic analyzers capable

of capturing network packets and displaying them as detailed as possible. These tools

mostly help one to troubleshoot network problems and handle security problems.

While Wireshark has a graphical front-end, Tshark can only be used in Terminal

since it does not have a user interface. Figure 3.1 and 3.2 represent an example

display from November-2008 dataset in Wireshark and Tshark, respectively. Note

that while Wireshark v1.10.6 was used for visualizing and examining the packets,

Tshark v1.10.6 was used to extract the information under specific features (explained

in the section 3.4) of the packets in the datasets employed. Since both of the tools

do not have any system for intrusion detection, these tools only monitor the traffic

over a network and enable one to analyze the traffic.

12

Figure 3.1: Wireshark presentation

Figure 3.2: Tshark presentation

Figure 3.3: Snort Rule sample

13

3.2.2 Snort

Snort is a well-known rule-based open-source network IDS which is capable of moni-

toring real time network traffic and logging the transmitting packets on IP networks.

This system is developed to perform protocol analysis, content searching, and to pre-

vent a network against many type of attacks and probes such as buffer overflows,

port scans and Server Message Block (SMB) probes. Each rule in Snort consists of

a header and a tail part. The header part includes the information about the rule’s

action, protocol, source and destination IP addresses, netmasks and port numbers,

whereas the tail part contains the content of the packets supposed to be inspected by

the rules and the warning message to be logged. Figure 3.3 represents a sample rule

of Snort and shows its partitions.

The versions 2.9.1 and 2.9.6.0, released in 2011 and 2014 respectively, were em-

ployed to perform the experiments on Snort in this thesis. The version 2.9.1 has 3,111

rules in total and they are classified into the following 8 main categories to detect

malicious traffic activity:

• Indicator - includes the rule sets used for detecting compromised systems, en-

crypted contents, shell-script based attacks.

• Malware - includes the rule sets used for detecting botnets, harmful softwares

and tools, and backdoors.

• Policy - includes the rule sets used for detecting spams and potential violations

of social media and multimedia.

• Protocol - includes the rule sets used for detecting threats and vulnerabilities

over network layer protocols.

• PuA - includes the rule sets used for detecting ”Potentially Unwanted Applica-

tions” such as adwares and spywares.

• Server - includes the rule sets used for detecting vulnerabilities or attacks on a

server, i.e. mail server.

• Web - includes the rule sets used for detecting web-based attacks.

14

• Other - includes the rule sets used for detecting attacks for other situations.

However, the newer version, v2.9.6.0, includes 21,838 rules under 11 main categories,

the following three categories in addition to aforementioned ones:

• Browser - includes the rule sets used for detecting the vulnerabilities present in

web browsers such as Chrome, Firefox etc.

• File - includes the rule sets used for detecting the vulnerabilities in executable,

image, flash, multimedia and text files.

• Operating System - includes the rule sets used for detecting operating system

based malicious activities.

The increase in the rules is expected to increase the performance of Snort since there

is more chance for an attack packet to trigger a rule and to be detected. To find

out which of those rules are effective in detecting backscatter packets, each of the

rules and the categories were analyzed in this research and explained in detail in the

Chapter 4.2.1.

3.2.3 Bro

Bro is an open-source network traffic analyzer that can be used to detect malicious

activity, anomaly detection and semantic misuse on a network system passively based

on pre-defined rules and events, or to increase its performance [52]. This tool records

all the activities on a network in detail by using well-structured logging system to

reveal the vulnerabilities of the network clearly. Figure 3.4 presents an example of a

pre-defined event in Bro. This event is used for detecting client-side softwares using

File Transfer Protocol (FTP) server.

Figure 3.4: Example of an event in Bro v2.2.

Bro has a layered structure mainly consisting of two different parts: event engine

and interpreter. Event engine is used to reform the IP fragments of the packets

15

whose IP headers could not be verified by this layer, to run over the complete IP

datagrams and to decrease the number of filtered events by eliminating lower-level

network events. On the other hand, interpreter layer is used to provide real-time

notifications and logging. Figure 3.5 reflects the structure of Bro IDS with its main

components. The main purpose of this structure is to enable Bro to handle large

volumes of traffic without dropping packets. Note that using libpcap formatted files

to perform an offline analysis aids the tool to decrease its processing time in analyzing

the traffic since such files do not contain any details regarding the Data Link Layer

technology used. Moreover, if the operating system of the device that the libpcap

files have been captured has a powerful kernel packet filter, these files provide special

filters to decrease the traffic on the kernel, which allows Bro to deal with less amount

of network traffic.

Figure 3.5: Structure of Bro IDS from [52]

3.2.4 Iatmon

Inter-Arrival Time Monitor (Iatmon) is an open source network traffic analyzer de-

signed to monitor only one-way traffic by categorizing the traffic based on the source

types, characteristics and inter-arrival time [24]. The main purpose of Iatmon to help

one to explore unsolicited traffic on a network, such as the traffic destined to any

unused address.

16

Figure 3.6: Defined subsets in Iatmon

Iatmon generates log files based on 14x10 matrices consisting of 14 types and 10

groups which indicates 140 subsets to categorize the network traffic and source hosts

as shown in Figure 3.6. In this figure, the rows represent the types and the column

represent the groups. To decide on type of packet, the information extracted from

the packet, such as the protocol and the port number, is used. In this case, the

extracted information includes: the packet size, the lifetime, the rate and the time

interval between the consecutive packets. In the output matrix, the parts highlighted

in yellow, Figure 3.6, represent the TCP packets, whereas the parts highlighted in

green represent the UDP packets and the parts that are highlighted in red represent

the other packets. On the other hand, the columns highlighted in purple represent the

long-lived packets, the blue part represents 3-second packets (these are generated by

such hosts that procures a new packet in every 3 seconds) and the red part represents

the other packets for the columns. Note that while deciding the types and groups

for source addresses, the packets generated by those addresses are considered as the

same way explained above. It is also important to underline that the packets coming

from such sources that have been idle for at least 120 seconds or have not sent more

that two packets are not considered as suspicious by Iatmon.

17

Figure 3.7: Example of 8-tuple structure in Corsaro

Figure 3.8: Data processing in Corsaro

3.2.5 Corsaro

Corsaro is a network monitoring tool specifically designed for I/O threads to provide

significant functions such as high compression rate and faster packet inspection for

offline analysis of large network traffic to increase the processing speed and efficiency

[41]. The major advantage of Corsaro is that it enables network administrators to

define time intervals between the inspected packets. In this way, one can gain infor-

mation about the packets transmitting in a specific period of daytime.

Corsaro supports FlowTuple representation for logging the network traffic. These

include the following 8 features for each packet: source IP, destination IP, source

port, destination port, protocol, TTL, TCP flags and IP length. Figure 3.7 shows

an example of a packet stored in 8-tuple format by Corsaro. Note that converting

this format into human-readable ASCII format is necessary to display the log data

to users. Figure 3.8 presents the data processing steps performed by Corsaro.

3.2.6 Cisco ASA 5515-X

It is required to ensure the security of a network system by inspecting all the in-

coming packets to the system and deciding the suspicious ones. A firewall is such a

system used to decide whether to accept or drop packets based on the organization’s

security policy. The devices using Cisco’s Adaptive Security Appliance (ASA) as an

18

operating system includes additional firewall capabilities such as integrated antivirus

applications and intrusion detection systems to increase the security and performance

of a network system [8].

These additional capabilities mentioned above change based on the version of the

used ASA model. In this thesis, the model 5515-X [9] has been employed, which has

the following additional capabilities:

• Integrated Intrusion Prevention System (I-IPS) is used to prevent network at-

tacks to infect a network system. There are two options to configure this module.

Inline mode is one of these options. This mode enables the ASA to send the

original packets to the I-IPS module for inspection, whereas the promiscuous

mode allows to copy the traffic for the I-IPS module. Therefore, while all the

suspicious traffic is prevented to reach its destination in inline mode, the ASA

keeps handling their routes until it gets a warning from the I-IPS module in the

promiscious mode.

• Web Security Essentials (WSE) Service is used to ensure the reliability of spec-

ified web-based applications.

• Cisco Cloud Web Security (CCWS) is used to increase web security for cloud-

based organizations.

• Application Visibility and Control (AVC) Service is used to monitor the traffic

on specified applications.

Note that the I-IPS function is used in inline mode for this thesis since stream normal-

ization techniques are only applied in inline mode by eliminating or reducing many of

the network evasion capabilities to increase the speed of the I-IPS [27]. This module

can drop a network packet when:

• The packet has a bad format,

• Suspicious Internet Control Message Protocol (ICMP) or scanning packet is

detected,

• Connection limit is exceeded,

19

Figure 3.9: Configuration of the Cisco ASA 5515-X Router.

• Interface is overloaded,

• Generated by such hosts listed in user-specified black list,

• Packet is failed from firewall check or I-IPS inspection,

• Session is incompleted,

• Packets failed application inspection,

Three different computers are used to configure the Cisco ASA device, a sender, a

receiver and a monitor are used as shown in Figure 3.9. A Unix-based tool, Tcpreplay

v3.4.4, that enables to replay libpcap formatted network traffic files has been used

to replay the employed traffic from the sender computer to the receiver one. The

interface ”Cisco Adaptive Security Device Manager (ASDM) v6.6”, released in 2012,

is used on the Cisco ASA 5515-X device.

3.3 Machine Learning Approaches Employed

Supervised learning is a popular machine learning technique used to create a model by

analyzing training data which is labelled based on its ground-truth to classify any new

instances. Decision Tree, Naive Bayes and AdaBoost are three well-known supervised

machine learning classifiers employed for the machine learning based experiments.

Note that Weka v3.6.10 [39] is used to perform these experiments using the default

parameters.

20

3.3.1 C4.5 Decision Tree

Decision Tree classifier generates a tree model to show the relation between the fea-

tures and to sort them from the most informative one to the least. To this end, it starts

with using the entire training set as a root node. Then, the dataset is divided into

child nodes after measuring all the possible split alternatives and their performances

based on information gain ratio of each alternative. Thus, the tree representation

helps to reveal the most informative features via displaying the parent-child relations

between them based on its algorithm. Therefore, this approach is beneficial to explore

a set of rules from a large amount of training data [36].

J48 algorithm has been employed to design C4.5 Decision Tree model to perform

the related measurements in this thesis. This approach marks the features based on

information gain ratio to choose the parent nodes which represent the most informa-

tive ones. To this end, it calculates Entropy value by employing the entire training

set to find the root (top informative) node as shown in Eq. 3.1.

Entropy(S) = −
u

∑

i=1

pilog2(pi) (3.1)

where u refers to the total number of different labels and pi refers to the rate of the

occurrence for the current label over the entire data set. After that, the algorithm

measures the entropy for the each split of S as described in Eq. 3.2:

EntropyF (S) = −
m
∑

i=1

p(Di)Entropy(Di) (3.2)

where F represents a feature and m refers to the total number of the different values

F has. Then, the information gain value for the feature F is calculated by using the

formula defined in Eq. 3.3:

GainRatio(F) =
Entropy(S)− EntropyF (S)

SplitInfoF (D)
(3.3)

where SplitInfoF (D) is the value due to the split of D depending on the value of the

feature F (Eq. 3.4).

SplitInfoF (D) = −
n

∑

i=1

p(Di)log2(p(Di)) (3.4)

21

After the root node is specified, all the different values for the root node are shown

as branches. This algoritm keeps generating sub-nodes and branches by following the

formulas above until it manages to complete a tree representation that includes all

the necessary rules to categorize new instances based on the training set.

3.3.2 Naive Bayes

Naive Bayes is one of the simplest linear classifiers in the literature. In this case, each

feature in the training set affects the final decision equally and independently since it

does not include an integrated feature selection algorithm, unlike C4.5 Decision Tree.

Although this presents an increased computational efficiency since it provides fast

data analysis and decision making, it makes a Naive Bayes model incapable of using

multiple features simultaneously while building the model, which may cause missing

some important information for the classification process [32].

”NaiveBayes” algorithm, which calculates posterior probabilities of a class value

based on the Bayesian Theorem shown in Eq. 3.5 has been employed to build Naive

Bayes model to perform the related measurements in this thesis.

P (f |c) = P (c|f)P (f)

P (c)
(3.5)

where P (f |c) refers to the posterior probability of a feature value f for the given c,

P (c|f) shows the likelihood of the feature value f , P (f) represents the prior prob-

ability of the f and P (c) presents the probability of c in the training set. Also, for

such features that include continuous information, Gaussian distribution is used to

calculate the probabilities as shown in Eq. 3.6.

F (x) =
1√
2πσ

e
−(x−µ)2

2σ2 (3.6)

where σ represents standard deviation and µ refers to the arithmetic mean of the

values.

3.3.3 AdaBoost

AdaBoost is a machine learning technique that recursively calculates the weights of

the classifiers by using a weak learning algorithm and iteratively combines the weak

22

learners to generate a strong learner (classifier). On each cycle, the algorithm employs

a different sample from the training data. In the end, it presents a strong classifier by

adding the weak classifiers that have performed higher accuracy in each cycle. Note

that this approach is sensitive to outliers and noisy data [61].

AdaBoost.M1 algorithm has been employed to perform the related experiments

in this thesis. This approach starts with initializing the weights of training samples

as shown in Eq. 3.7.

w(c) =
c

m
(3.7)

where c = 1, 2, . . . ,m and m refers to the number of cycles. Then, a weak classifier,

Fc(s) is computed for each cycle as described in Eq. 3.8.

Fc(s) =
n

∑

c=1

fc(s) (3.8)

where fc denotes the current weak learner for the cycle c and s refers to the current

cycle and input sample, respectively. After that, the error rate of the weak classifiers

is measured as defined in Eq. 3.9.

Ec =
n

∑

i

E[Fc(si) + fc(si)] (3.9)

where E(Fc(si)) shows the current error of the weak classifier Fc generated via current

weak learner fc for the current sample input si. It should be marked here that even

if there is a single situation where Ec, the total error rates, is more than 50% for

a weak classifier, AdaBoost.M1 fails and aborts the recursive loop. Then, βc values

are calculated for each cycle and the weights of the training samples are updated as

defined in Eq. 3.10 and Eq. 3.11, respectively.

βc =
Ec

1− Ec

(3.10)

Wc+1(si) =
wc(si)

Cc







βc Fc(si) = yi ∈ {1, k}

1 Otherwise
(3.11)

where Cc is a constant to normalize the weight of the training sample si, yi rep-

resents the value of the weak classifier for the current training sample, Fc(si), and k

23

is the finite cardinality. Finally, the final classifier is generated by the combination of

linear weak classifiers as described in Eq. 3.12.

Ffin(X) = arg max
y∈{1,k}

∑

Fc(x)=y

log
1

βc

(3.12)

In summary, Table 3.3 summarizes the employed machine learning techniques. As

to be seen, each of them has its own advantages and disadvantages:

• C4.5 has the advantage of using information gain ratio as an integrated feature

selection technique, which enables it to select the most informative features

without user specification, and the disadvantage of learning slowly from the

training data.

• Naive Bayes has the advantage of being fast while learning from the training

data, which makes it easier to adapt new records and updating the model, and

the disadvantage of considering all the features independently.

• AdaBoost.M1 has the advantage of allowing to select or modify the weak learner

algorithm it uses, which makes it flexible to be employed for different areas, and

has the disadvantage of being tough while modification is required since it learns

from the training data even slower than C4.5 model. Moreover, if the error rate

of a weak learner for even one iteration is more than 50%, the algorithm stops

running. It should be also noted here that AdaBoost is the most sensitive one

to noisy data and outliers.

• All the employed models have the advantage of being used for multi-class clas-

sification on such data that include continuous or discrete features, or both.

• All the employed models may have ”overfitting” problems occurring in case of

biased (in some way) training datasets.

3.4 Feature Selection

Feature selection is a data preprocessing technique aiming to employ the most in-

formative features to construct a machine learning classifier. It helps increasing the

24

Table 3.3: Summary of Employed Machine Learning Approaches

C4.5
Decision Tree

Naive
Bayes

AdaBoost

Handling both
continuous
and discrete
attributes

Handling both
continuous
and discrete
attributes

Handling both
continuous
and discrete
attributes

Non-linear Linear Non-linear
Hard to update
a model
(Slow learning)

Easy to update
a model
(Fast learning)

Hard to update
a model
(Slow learning)

Integrated feature
selection
to reduce
dimentionality

All features are
considered
independently

Fails if there is
a weak learner
with an error rate
greater than 50%

Can overfit Can overfit Can overfit

prediction accuracy of a machine learning classifier as well as decreasing its computa-

tional cost and memory usage by eliminating irrelevant and redundant features used

in a training set. Selecting the most informative features is one of the main challenges

since it is hard to obtain them. Note that the selected features as well as the training

instances are significant factors that can affect the performance of the classifiers. To

this end, common attack patterns of malicious network traffic are explored in Chapter

4.1 to understand the informative features. Also, two well-known statistical measure-

ment methods, namely chi-square and symmetrical uncertainty, have been used as

evaluation criteria for Ranker Search, which returns a sorted list of features based

on the defined evaluation criteria, to specify the top informative features. Table 3.4

shows all the informative features available in the employed datasets.

3.4.1 Chi-square Measurement

Chi-squre (X2) is a statistical measurement technique used to individually evalu-

ate features by computing the independence level between the co-occurrence of two

different values, v and c, with respect to their classes via Eq. 3.13 [60].

X2(v, c) =
N((vc)(v′c′)− (vc′)(v′c))2

((vc) + (v′c))((vc′) + (v′c′))((vc) + (vc′))((v′c) + (v′c′))
(3.13)

25

Table 3.4: All available features in the Employed Datasets

Feature Description
ip.src IP address where a packet is sent from
ip.srccountry Defines the country where a packet is sent from
port.src Port number where a packet is sent from
port.dst Port number where a packet is sent to
deltatime Time interval between two consecutive packets
frame.len Length
frame.caplen Length stored into the capture file
offset Fragment offset
ip.ttl Time-to-live value of a packet
ip.proto Protocol information of a packet
ip.checksum good Good checksum
ip.checksum bad Bad checksum
tcp.stream Stream index
tcp.seq Sequence number
ns flag Nonce-sum flag
ecn flag Explicit congestion notification flag
ack flag Acknowledgment flag
psh flag Push flag
res flag Reset flag
syn flag Synchronization flag
fin flag Finish flag
icmp.type Icmp type of a packet
icmp.code Icmp code of a packet
icmp.checksum bad Bad checksum for an ICMP packet
alert ”yes” for backscatter packets, ”no” for

scanning and misconfiguration packets

where (vc) refers to the number of the times v and c co-occurred, (v′c) represents

the number of the times c occurred without v, (vc′) shows the number of the times v

occurred without c and (v′c′) denotes the number of the times that neither v nor c oc-

curred at the same time. Note that the value of X2 decreases when the independence

level between the values increases.

3.4.2 Symmetrical Uncertainty Ranked Method

Symmetry is an important and desired factor while measuring the correlations be-

tween the features. Information Gain, which is also employed while building C4.5

Decision Tree models, is a symmetrical approach which gains the same amount of

26

information about feature F1 after analyzing feature F2 and vice versa. Symmetri-

cal Uncertainty (SU) is a information gain based correlation measurement technique

which calculates the mean of two uncertainty coefficients by normalizing information

gain results to between 0 and 1 as shown in Eq. 3.14; where 0 shows the features are

independent and 1 indicates that the features are dependent [17].

SU(F1, F2) = 2 ∗ IG(F1|F2)

Entropy(F1)Entropy(F2)
(3.14)

Algorithm 1 presents how ranker search approach works with SU. For a given

training data T , it begins with measuring the correlation value between the feature

f and the class c for each feature {f1, f2, ..., ft} and places the features in an order

based on their correlation values, starting from the highest to the lowest. Then, it

compares the features from the first element to the last based on their correlations to

select the predominant ones and eliminate the redundant ones. This process is kept

until there is no redundant feature to be removed.

Algorithm 1 How Symmetrical Uncertainty Works

Data: Training data T with t features

Result: Optimal feature set

foreach f in the training set do
Calculate SUc,f for the class c and feature f .

end

Place the features on a list in descending order based on the SU values.

Assign the first feature as fcurrent.

while available fnext do

if SUfcurrent,fnext
>= SUfnext,class then

remove fnext

else
fcurrent ← fnext

continue;

end

end

return ordered feature list

27

3.4.3 Features Based on the Experiments

The following 12 features (from Table 3.4) have been selected as the most informative

ones based on the literature and the observations from data classification experiments

explained in the Chapter 4.1: ip.src, ip.srcountry, port.src, port.dst, ip.proto, syn flag,

res flag, ack flag, ip.ttl, frame.len, deltatime and alert. Note that while obtaining the

geo-locations of the attack sources, GeoLite Country [10] database has been employed.

It should be also noted here that ”deltatime” has been selected since the researchers

manage to reach promising results by using packet rate to detect DDoS attacks in

[48][30][45]. Finally, Jin et al. emphasized that checking TTL values of the network

packets is important to detect DDoS attacks in [28], so this included in this research,

too.

After extracting those features, two different feature sets were specified. While

Feature set-1 includes all the features above, Feature set-2 includes all the features

except the IP addresses and port numbers. The reason behind creating these feature

sets is to understand if it is possible to detect backscatter traffic without checking the

IP addresses and port numbers, which are the most common features used to detect

malicious traffic in the literature since they can be easily spoofed. Note that since

destination IP addresses are hidden by CAIDA, this feature could not be selected at

all.

Table 3.5: Experiment-based Selected Features

Feature set-1 Feature set-2
ip.src

ip.srccountry
port.src
port.dst

ip.ttl
frame.len
deltatime
ip.proto
res flag
syn flag
ack flag

alert

ip.srccountry
ip.proto
res flag
ack flag
syn flag

frame.len
deltatime

ip.ttl

28

3.5 Performance Metrics

The values procured by contingency table (or confusion matrix), helps analyzers to

measure the performance of a machine learning based classifier by providing the ac-

tual and predicted classes via true positive (TP), true negative (TN), false positive

(FP) and false positive (FN) parameters. In this thesis, TP refers to the correctly

categorized attack instances, TN indicates the correctly categorized non-attack in-

stances, FN represents the incorrectly categorized actual attack instances and FP

shows the incorrectly categorized actual non-attack instances. Assume that X is

an attack packet and Y is a non-attack packet (i.e. misconfiguration). Then, the

following examples present what the aforementioned parameters represent:

• TP - X is classified as an attack packet.

• TN - Y is classified as an non-attack packet.

• FP - Y is classified as an attack packet.

• FN - X is classified as an non-attack packet.

Accuracy, precision, recall (sensitivity), specificity and F-score values are mea-

sured via the aforementioned parameters from the contingency tables provided by

the trained classifiers by using the Eq. 3.15, 3.16, 3.17, 3.18 and 3.19, respectively:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.15)

Precision =
TP

TP + FP
(3.16)

Recall =
TP

TP + FN
(3.17)

Specificity =
TN

TN + FP
(3.18)

F −measure = 2

(

(Precision)(Recall)

Precision+Recall

)

(3.19)

29

Accuracy refers to the fraction of the correct predictions, including both correctly

classified attack and non-attack packets, over all the predictions. Precision represents

the fraction of correctly predicted attack packets over all the predictions. Recall

denotes to the fraction of the correctly predicted attack packets over the actual attack

packets. Specificity shows the incorrectly predicted non-attack packets over the actual

attack packets. Finally, F-measure is the harmonic mean of precision and recall values.

Note that Precision and Recall are commonly used in information retrieval and data

mining areas since they help to decrease FP and FN values. Therefore, it is aimed to

maximize the precision and recall values to construct a discriminative classifier [55].

For all the parameters above, 1 (100%) is always the most expected result where 0

(0%) is the result for the worst cases.

One of the main goals of this thesis is to build an accurate machine learning based

classifier with high precision, recall and specificity and low false negative rate (FNR)

and false positive rate (FPR) values. FNR and FPR scores are calculated as shown

in Eq. 3.20 and 3.21, respectively.

FNR = 1− recall (3.20)

FPR = 1− specificity (3.21)

To the best of my knowledge, this is the first reseach aiming to analyze the per-

formance of the aforementioned classifiers with different sizes of training sets and

different feature sets and compare them with the network traffic monitoring tools on

backscatter (darknet) datasets. This research follows the performance metrics given

above to evaluate the performances of different systems to compare their capabili-

ties and complexities. Different sizes of training sets and different feature sets are

employed to emphasize how data pre-processing step is crucial to build a machine

learning classifier.

Chapter 4

Experiments and Results

This chapter focuses on the analysis, experiments and evaluations that were carried

out during the research. At a glance, multiple discussions are brought up about

the nature of the backscatter traffic and how successful the employed network traffic

monitoring tools are in detecting such traffic. Additionally, measurements on the

employed supervised machine learning techniques are presented.

4.1 Revealing the Characteristics of Backscatter Traffic and Changing

Trends in Time

My aim in this section is to find appropriate answers for the following questions:

1. What is the nature of backscatter attacks?

2. What are the roles of well known secure ports or P2P (Peer-to-Peer) applications

in this traffic (if any)?

3. What are the major countries producing backscatter traffic?

To this end, I focus on three different backscatter datasets over a 4-year period

to discover the nature of backscatter traffic and changed patterns in that time. The

earliest days, May 28 from 2004, Feb 23 from 2006 and Feb 22 from 2008, from

the entire datasets are selected for this experiment to find out how the behaviour of

backscatter attacks differ (if at all) over the two-year intervals.This analysis also gives

an insight into the features that are more informative to use for building a machine

learning based classification approach.

4.1.1 Data Classification

In general, there are three main categories used to classify darknet datasets: Scanning,

backscatter and misconfiguration. Scanning data is generated by attackers to find out

30

31

Figure 4.1: Hour-based distribution of the backscatter traffic

the potential vulnerable targets. Backscatter data represents the traffic generated by

DDoS victims to many spoofed IP addresses. Finally, misconfiguration data refers to

such traffic generated by any software, hardware and user based faults [19].

The packets in the employed traffic are classified into the aforementioned cate-

gories by using their TCP flags based on the technique explained in [48] and [58].

According to these researches, the SYN packets represent the scanning traffic, where

RST, ACK, RST|ACK and SYN|ACK packets refer to the backscatter traffic and

the remaining packets belong to misconfiguration traffic. Table 4.1 presents the dis-

tribution of the traffic under these categories for each selected dataset. This table

demonstrates that the datasets collected in 2008 and before mostly include backscatter

traffic where the darknet dataset collected in 2012 has a more balanced distribution.

Since the older datasets mostly include backscatter traffic according to Table 4.1,

the daily hour-based distribution of such traffic is analyzed and represented in Fig-

ure 4.1 to explore at what times backscatter attacks are more likely to be generated.

Interestingly, the increase of the observed backscatter traffic between 9 a.m to 12 p.m

indicates that the attack packets is likely to reach an high intense in working hours

since employees may cause backscatter traffic unintentionally via some business tools.

Only the backscatter packets in the traffic are also categorized based on their

TCP flags to observe the overall measurement of the TCP flags used and to study

the nature of the backscatter traffic in depth, Table 4.2. Clearly, although the num-

ber of RST and RST|ACK packets are more in 2004, it decreases for the years 2006

and 2008, in opposed to the increase of SYN|ACK packets. Note that the SYN,

32

Table 4.1: Types of Traffic Observed in Each Dataset

Category
Dataset

May 28,
2004

Feb 23,
2006

Feb 22,
2008

Nov
2008

April
2012

Scanning 0.01% 0.2% 0.1% 0.5% 41.6%
Backscatter 90.54% 78.1% 88% 96.2% 32.8%

Misconfiguration 9.45% 21.7% 11.9% 3.3% 25.6%

Figure 4.2: Three-way handshaking for TCP connections

SYN|ACK and ACK packets are used for providing three-way handshaking mecha-

nism in TCP connections where the RST packets are potentially used for making a

reconnection between the sender and receiver hosts when the sender one does not

receive any SYN|ACK packets over a long period of time for any SYN packet it has

sent, Figure 4.2. Needless to say, the high percentage in the number of SYN|ACK
packets and the low percentage in the number of ACK packets also indicate the total

number of incomplete three-way handshaking attempts in TCP connections, which

causes an increase in the occurrence of backscatter attacks. As mentioned before in

Chapter 3.1, many online gaming web sites [49] were exposed to DDoS attacks in

February, 2008. Also, many outstanding blog sites [46] and payment gateways [47]

were targeted by DDoS attacks in February 2006. These examples demonstrate that

the selected darknet datasets include real DDoS attack traffic. On the other hand,

there are less DDoS attacks observed in May 2004 compared to the other years in

33

this experiment.

Table 4.2: TCP Traffic Distributions of Backscatter Datasets Employed

TCP Flag
Type

Dataset
May 28,
2004

Feb 23,
2006

Feb 22,
2008

ACK 0.02% 0% 0%
SYN|ACK 21.48% 82.5% 77.1%

RST 35.8% 2.4% 6.1%
RST|ACK 42.7% 15.1% 16.8%

4.1.2 Measurements on Transport and Network Layer Protocols

Transport Layer is a layer that provides reliability and quality in managing end-

to-end communications by supporting flow control and error checking mechanisms,

whereas network layer provides data routing. The most well-known transport layer

protocols are TCP and UDP, which are respectively used for connection-oriented and

connectionless transmissions. For network layer, IP is the most popular protocol,

and ICMP is an extension of IP that is mostly used for sending error and control

messages.

The distribution of TCP, UDP and ICMP traffic are measured and presented

in Table 4.3 to clarify the importance of the transport and network layer protocols

commonly used in the datasets employed. As to be seen, TCP is the major used

protocol in these backscatter datasets since almost 98.5% of the traffic from 2004 is

classified as TCP traffic where the other datasets also include almost 90%. The main

reason behind that is the use of three-way handshaking mechanism TCP provides. In

a way, this provides a useful infrastructure for the well-known techniques to generate

backscatter attacks. Note that the researches in [51] reported many network attacks

using or targeting TCP ports as well. Also, there is some usage of ICMP but no

usage of UDP packets in the datasets employed. It is also seen that when TCP traffic

decreases, backscatter traffic also decreases as opposed to the misconfiguration traffic,

Table 4.1.

It is important to note here that even though there is no UDP packets seen in

these datasets, type-11 ICMP packets, which refer to those packets whose TTL value

34

is equal to 0, are observed. In this case, the first 64 bits of the packets are kept, which

enables one to have the transport layer information of the previous packet. Therefore,

through type-11 ICMP packets, it becomes possible to observe the UDP packets in

these datasets. Table 4.3 also presents the intensity of these type-11 ICMP packets. It

is observed that the dataset from 2006 has the highest ratio of type-11 ICMP packets,

17.2%, whereas the dataset from 2004 has the lowest, 1.4%. The dataset from 2008

has 12% of such packets, half of them has UDP as the transport layer protocol and

the remaining has TCP, and comes right after the one from 2006; however, the type-

11 ICMP packets this dataset includes have different characteristics than the ones in

2006. Note that the transport layer protocol of the 88% of the type-11 ICMP packets

in 2006 is UDP. It is also important to emphasize that according to Table 4.3, the

number of such UDP packet packets is maximum in 2006 followed by 2008 and 2004,

whereas 2006 dataset includes the least number of backscatter packets following by

2008 and 2004 according to Table 4.1. Therefore, it is seen that the intensity of

backscatter traffic decreases when the ratio of these UDP packets increases. Finally,

the total ratio of the packets under ”other” category is less than 0.1% for each dataset

analyzed.

Table 4.3: Protocol Measurements

Protocol
Dataset

May 28,
2004

Feb 23,
2006

Feb 22,
2008

TCP 98.4% 88.22% 87.2%

ICMP
Type-11

TCP 1.1% 2.2% 6%
UDP 0.3% 15% 6%

Other
Only

ICMP
0.12% 0.63% 0%

Other 0.08% 0.05% 0.01%

4.1.3 Measurements on Application Layer Protocols

Application layer is the layer that manages the communication between the applica-

tions by providing interfaces. There are many different application layer protocols

used between the source and the destination hosts.

35

The port numbers of the packets are analyzed to explore the top used applica-

tion layer protocols in these one-day datasets since there is no payload information

available in the traffic. Figure 4.3 shows the distribution of the application ports. It

seems like most of the packets are sent over the HyperText Transfer Protocol (HTTP)

protocol since more than 50% of the packets are routed over port 80. Also, although

the application layer protocols used in the datasets from 2006 and 2008 show different

trends, there is no other major application layer protocol used in the dataset from

2004. Note that besides the HTTP protocol, the following application layer protocols

are seen in the datasets 2006 and 2008:

• Nterm: It is a terminal-based application running on port 1026 used for making

the use of different applications, directories, documents and URL easier [11].

• Csd-monitor: It is a specific channel running on port 3072 and used by DDoS

attackers [42]. Therefore, this port is generally blocked to avoid from being a

vulnerable target.

• Dcerpc: This protocol enables one to run a software application on a remote

server over the port 135. It should be noted here that W32.Blaster worm, which

was used for blocking the Remote Procedure Call (RPC) service in August 2003,

uses this protocol, which explains why we see this port a lot in the datasets

employed [23].

• SMB: This protocol which uses port 445 to run on Microsoft Active Directory is

used to manage shared accesses and file transmission on multiple threads over

a network.

• NetBios: This protocol running on the ports 137, 138 and 139 enables to execute

applications on different hosts over a LAN [23].

• Telnet: It is a well-known command-based protocol to handle remote connec-

tions over port 23.

• IRC: This protocol is used for chatting over the ports 194 or 667.

• FTP: This protocol runs on the ports 20 and 21 and enables file transmission

between computers over a network.

36

Figure 4.3: Application Layer Protocol Usage for the datasets 2006 and 2008.

• Simple Mail Transfer Protocol (SMTP): This is a very well-known protocol used

for e-mail transmission between IP networks on port 25.

• DNS: This protocol runs on port 53 and is used to convert IP addresses into

domain names (and vice versa).

Note that all the port numbers above are the default port numbers that these appli-

cations use.

4.1.4 Measurements on Secure Traffic

It is not desired for a person listening to a data transmission illegally to understand

the meaning of transferred data. Secure protocols are used to provide that reliability

during data transmission by encrypting the payload information.

Although it is not possible to be absolutely sure how much of the traffic is en-

crypted in these datasets since they do not contain any payload information, the

usage of the following 38 ports from [13] are measured for in these datasets:

• 22 - Secure Shell (SSH) [12]

• 443 - Secure Sockets Layer (SSL)

• 465 - SMTP over SSL

• 563 - Network News Transfer Protocol (NNTP) over SSL

• 585 - Internet Mail Access Protocol v4 (IMAP4) over SSL

37

• 614 - SSLshell

• 636 - Lightweight Directory Access Protocol (LDAP) over SSL

• 695 - Multimedia Messaging Service (MMS) over SSL

• 989/990 - FTP over SSL

• 992 - Telnet over SSL

• 993 - IMAPS over SSL

• 994 - IRC over SSL

• 995 - Post Office Protocol (POP) over SSL

• 1701 - Layer Two Tunneling Protocol (L2TP) over Internet Protocol security

(IPsec) [22]

• 1723 - Point-to-Point Tunneling Protoco (PPTP)

• 7800 - Apple Software Restore

• 7801 - Secure Server Protocol (SSP) Client

• 7900 to 7913: These are rarely used secure ports.

• 7914 to 7920 - Even though these ports are unassigned by Internet Assigned

Numbers Authority (IANA), Snort v2.9.6.0 accepts them as secure ports.

It is challenging to identify all the secure traffic in such datasets since encrypted traffic

data can be transferred by using other ports like port 80 (e.g. Skype), too [18].

According to the measurement about the overall usage of these secure ports shown

by Figure 4.4, the backscatter dataset from 2008 has the most amount of secure traffic,

although the total percentage of the potential secure traffic is less than half a percent

for each dataset. Within this small portion, it is seen that SSH and SSL are the

top secure ports used in these datasets. SSH is mostly used in 2006 and SSL in

2004. These results seem to indicate that secure ports are rarely used in generating

backscatter attacks.

38

Figure 4.4: Backscatter traffic on secure ports

4.1.5 Measurements on Peer-to-peer (P2P) Traffic

Peer-to-peer (P2P) network is a communication model in which none of the hosts is

controlled by a centralized server and each host has the same capabilities. This model

allows each host to behave like both a client and a server, which means that any node

can start a communication session.

The usage of P2P applications, especially the ones providing file sharing, have

considerably grown for the last several years. Even though the port numbers such

applications use are modifiable, the usage of the default ports for the 10 following

well-known P2P applications is investigated to reveal the P2P activities in backscat-

ter attack traffic: Edonkey[53], Gnutella (bearshare and limewire)[53], KaZaA[53],

DirectConnect[53], BitTorrent[53], WinMx[40], Ares[40], Soulseek[40] and Waste[15].

According to the measurements, the total usage of the P2P traffic is less than

0.05% for each dataset. However, SoulSeek, BitTorrent and Edonkey are the top

used P2P applications by DDoS attackers in 2004, 2006 and 2008 within this traffic,

respectively, shown in Figure 4.5. On the other hand, the usage of KaZaA, Waste and

Soulseek drastically decreases in years. It is interesting to note that the researchers in

[54] stated that there were 40 different viruses observed between February and May

2006 in more than 15% of tha data KaZaA includes. So, even though KaZaA was

a popular file sharing application until 2006, the popularity of KaZaA dramatically

decreased since many of its clients were infected because of the vary of viruses KaZaA

39

Figure 4.5: Peer-to-peer Traffic Measurements

includes. This explains why the highest usage of KaZaA is observed in the dataset

from 2004. and why the usage decreases in the following years. Moreover, Bearshare

was also very popular when it was first released in 2006; however, it lost its popularity

quickly. This is the reason why the usage of Bearshare is more in the dataset from

2006 than the other ones.

4.1.6 Geolocation Analysis

Geolocation information which can be found by checking the IP addresses has become

an important part of monitoring the movement of network data. Analyzing the

movements enables one to determine if the incoming traffic is suspicious or not.

The geologic distribution of the backscatter traffic in the datasets employed is

measured based on the source IP addresses of the packets generated by backscatter

victims to the spoofed IP addresses by using publicly available GeoLite database [10].

Figure 4.6 presents the major source countries seen in these datasets with ratio of

how much attack traffic they produce. As observed, China plays the major role for

each dataset. Moreover, even though more than 10% of such traffic was generated

from Pakistan in 2004, the role of Pakistan has dramatically decreased in the other

years. It seems like USA and Taiwan are the only countries where there is an increase

in the ratio of the backscatter traffic they generated from 2004 to 2008. However,

such attacks were likely to be more distributed since the ”other” countries contribute

to almost 13% and 14% of the datasets from 2004 and 2006, respectively whereas this

number drops to 2% in 2008.

40

Figure 4.6: Geolocation Measurements

In summary, three different backscatter datasets profiling a general overview of the

backscatter patterns from 2004, 2006 and 2008 are analyzed to reveal those patterns

and how they change (if at all) over time. According to our results, the patterns of

backscatter traffic show changes over that time. However, it seems that TCP is the

major transport layer protocol and HTTP (port 80) is the top used application layer

protocol used by such traffic for each year. Moreover, while port 22 (SSH) is the most

used secure port in 2006, port 443 (SSL) is the most popular secure port for the years

2004 and 2008. Also, Soulseek, BitTorrent and eDonkey are the top used peer-to-peer

applications in 2004, 2006 and 2008, respectively. It should be noted here that both

secure traffic and peer-to-peer traffic have a very small portion of role in such traffic.

Finally, China and USA are the major countries generating backscatter attacks in

these datasets.

4.2 Measurements on the Network Traffic Monitoring Tools

In this section, the performances of 5 well-known network traffic monitoring tools are

evaluated in terms of their success on detecting one-way attack traffic, and compu-

tational time on specific darknet data. Moreover, the signatures, events and features

used by these tools are also analyzed. Thus, I aim to explore the main challenges of

these tools affecting their performances in terms of both detection rate (false alarm

rate) and processing time.

41

I begin with comparing the performances of Snort and Bro on the one-day darknet

datasets from May 28, 2004, Feb 23, 2006 and Feb 22, 2008. Then, I measure the

performances of the tools Bro, Iatmon, Corsaro and Cisco ASA 5515-X on the largest

backscatter dataset, November-2008. Finally, I analyze the behaviours of Corsaro

and Cisco ASA 5515-X on the one-way traffic dataset that includes different types of

network attacks instead of only backscatter attacks, April-2012. Note that the tool

that has the highest performance has been selected after each step. The reason behind

following such a ”compare and select the best” strategy is to find out the network

analyzer that gives the best results on the one-way darknet datasets. Table 4.4

explains which of these tools are run over which darknet datasets. This experiments

would shed light into understanding how much of the attack behaviours seen in real-

life datasets can be detected via such tools. All the experiments related to network

traffic monitoring tools were performed by using a computer with 32 GB RAM, Intel

i5 3.10 GHz CPU and Ubuntu 13.10 operating system.

Table 4.4: Overview of the Employed Tools and Darknet Datasets

Dataset
Tool

Snort Bro Iatmon Corsaro Cisco ASA

May 28, 2004 Yes Yes No No No
Feb 23, 2006 Yes Yes No No No
Feb 22, 2008 Yes Yes No No No

November, 2008 No Yes Yes Yes Yes
April, 2012 No No No Yes Yes

4.2.1 Snort v2.9.1 and Snort v2.9.6.0

As explained before in Chapter 3.2.2, Snort is a rule-based network intrusion detection

system that uses special filters on each incoming network packet to decide if the

packet is suspicious or not. Table 4.5 presents the number of categories, rule sets for

each category and the triggered rules by the employed network packets. The column

”# of sub categories” represents the number of the different rule sets under each

category. For instance, ”dns.rules” and ”telnet.rules” are such rule sets under the

protocol category. The column ”# of rules” shows the total number of the rules for

each category. For example, the category ”Malware” has 82 different rules defined in

42

Snort 2.9.1. Finally, the column ”# of triggered rules” refers to the number of the

rules match with the attack pattern of at least ten packets in the datasets employed.

In these experiments, there has to be at least one triggered rule if a packet is defined as

suspicious. Therefore, each rule that has caused a packet to be assigned as suspicious

for at least once is counted as a triggered rule.

Table 4.5: Analysis on Snort rules

v2.9.1 v2.9.6.0

#of sub
categories

#of
rules

#of
triggered

rules

#of sub
categories

#of
rules

#of
triggered

rules
Server 3 582 0 10 3779 0

Malware 1 82 0 4 3835 0
Indicator 8 294 4 6 2814 0
Protocol 13 529 20 15 1136 13

PuA 1 18 0 4 876 0
Policy 2 30 0 4 404 0
Web 7 1070 0 0 0 0

Op.Sys. 0 0 0 5 722 0
File 0 0 0 9 4624 0

Browser 0 0 0 6 2875 0
Other 9 506 7 6 1173 7
Total 44 3111 31 69 21238 20

As observed, Snort v2.9.6.0 includes more than 20.000 rules, which is approxi-

mately seven times more than the rules in v2.9.1. Although the browser, file and

operating system categories are not included by Snort v2.9.1, there are 8221 rules

generated for those categories in Snort v2.9.6.0. In fact, the ”file” category becomes

the largest category with 4624 different rules for v2.9.6.0. Also, the ”web” category

from v2.9.1 has been removed with all its rules in v2.9.6.0. However, even though the

number of total rules increases in the newer version, v2.9.6.0, the number of triggered

rules decreases by 11 for the employed darknet data, which drops its detection rate.

I speculate that the reason behind the removal of those rules (by the Snort orga-

nization) is that those might cause false alarms since the trends of current network

attacks are much different than the time Snort v2.9.1 was released.

Here, I also focus on analyzing every single rule included in the both versions to

reveal the triggered ones on the employed one-way darknet datasets (see Table 4.4)

43

Table 4.6: Snort Performance Analysis

Snort
Version

May 28, 2004 Feb 23, 2006 Feb 22, 2008
All

Traffic
O.B.T.

All
Traffic

O.B.T.
All

Traffic
O.B.T.

Snort v2.9.1 2% 0.01% 15.8% 0.01% 10.6% 0.05%
Snort v2.9.6.0 1.2% 0.04% 17.2% 0.01% 11.6% 0.01%

1O.B.T. = Only Backscatter Traffic (based on TCP flags explained in [48] and [58].)

since the number of triggered rules and their content give important indications re-

garding the type of attack patterns Snort is sensitive to. Table 4.7 presents all the

triggered rules by Snort v2.9.6.0 including both the deleted and the newly added

ones. It is clear that the rules under the protocol-icmp rule set, especially the ones

”Destination & Port Unreachable” and ”TTL Exceeded in Transit”, have reached

the highest detection rates while monitoring a network against backscatter traffic.

Also, the rule ”Hi Client Unknown Method” seems to be the only added new rule

in the version 2.9.6.0 that seems to be useful for identifying these attack behaviours.

Finally, one of the triggered rules, namely ”Destination Unreachable Communication

With Destination Host is Administratively Prohibited”, which has managed to iden-

tify some malicious traffic in my experiments has been removed in Snort v2.9.6.0.

After completing the analysis on Snort rules, I run those rules on just the backscat-

ter traffic of my datasets (classified by the rules in [48] and [58]) to evaluate the per-

formance of Snort and its two different versions, Table 4.6. It should be noted here

that Snort does not inspect the packets being trasmitted over a secure port, which

causes it to miss such attack packets. It is interesting to observe from Table 4.6,

Snort v2.9.1 gives a better performance in detecting backscatter traffic although the

number of rules in the version 2.9.6.0 has drastically increased. However, when the

rule set ”deleted.rules”, which includes all the removed rules of Snort until the release

of the version 2.9.6.0, is used, the detection rate becomes closer to the detection rate

of version 2.9.1. This indicates that even though the detection rate in Snort v2.9.1

is higher than the version 2.9.6.0, the older version causes false alarms by assigning

misconfiguration packets as backscatter since most of the deleted rules are not actu-

ally attacks symptoms. Moreover, all the experiments on both Snort versions have

taken 30 minutes in total. Finally, Snort does not achieve any high detection rates

44

(17.2% at most) on any of these datasets.

4.2.2 Bro v2.2

The performance of Bro has been measured by employing one-day datasets as well

as the November-2008 dataset in terms of processing time and detecting malicious

traffic on various backscatter attack patterns included by those traffic data. It is

important to clarify that since there is not a default script Bro v2.2 includes to detect

backscatter traffic, the script called ”scan.bro”, which warns the network administra-

tors in case of the events shown in algorithm 2, has been employed to perform the

related experiments. According to that algorithm, Bro basically counts each failed

connection attempt and gives alerts when the total number of them reaches a specific

threshold. The reason behind those events is that the scanning activity causes a high

number of unsuccessful connections since it uses incomplete three-way handshaking

attempts [21].

Algorithm 2 How scan.bro Detects Backscatter Traffic

Data: one-way darknet dataset

foreach packet p in the given dataset do
read p;

if (failed connection attempt || aborted TCP connection || rejected TCP connection

|| interrupted connection) then
classify p under ”backscatter” category

else
classify p under ”other” category

end

end

Table 4.8 presents the detection rates Bro has managed to reach on such backscat-

ter datasets. As to be seen, 15% of the 2006 dataset has matched with the rules

defined in ”scan.bro” as maximum. Non-existence of any default script for detecting

backscatter traffic is the main reason why the detection rates are low. Also, it is seen

that misconfiguration traffic has a low influence on the performance of Bro IDS, 3.4%

as maximum. Since it is demonstrated on one-day datasets that Bro IDS generates

less false positives, it is also run over all the traffic for the November-2008 dataset

45

Figure 4.7: Example of the log representation in Bro

and observed that it classified 13.5% of the traffic as suspicious. Moreover, complet-

ing all the experiments on Bro has taken approximately 3 days. The major reason

behind the high processing time of Bro is that Bro generates very detailed log files.

For example, even though the November-2008 dataset includes 102.7 GB of data, the

size of the log files generated by Bro after running on this dataset is 145 GB. Note

that the log file generated by Bro, namely ”conn.log”, includes all the packets in the

traffic. Figure 4.7 shows a sample screenshot belonging to the conn.log file generated

after running Bro on the November-2008 dataset.

According to the results from the experiments on Snort and Bro, it seems like Bro

has a higher performance than Snort in detecting backscatter traffic. It has reached

up to 11.2% true positive ratio as maximum whereas Snort has reached only to 0.05%.

Also, the ratio of false positives is 22.6% in Bro, while more than 99% of the alerts

generated by Snort are false alarms. Therefore, Bro v2.2 has been selected over Snort

to run on the November-2008 dataset, Table 4.8. These results also indicate that even

though Snort and Bro are effective and widely-used tools to perform network traffic

monitoring in general, they are not sufficient to use in detecting backscatter traffic

that does not include payload information.

46

Table 4.8: Bro v2.2 Performance Analysis

Dataset
Bro v2.2

Detection Rate

May 28, 2004
All Traffic 2.1%

O.B.T 0.23%

Feb 23, 2006
All Traffic 15%

O.B.T 11.6%

Feb 22, 2008
All Traffic 5.5%

O.B.T 5.2%
November-2008 All Traffic 13.5%

2O.B.T. = Only Backscatter Traffic (based on TCP flags explained in [48] and [58].)

4.2.3 Iatmon v2.1.2

Iatmon has only been applied to the traffic captured in November-2008. Table 4.9

presents the measurements on the packets in that traffic while Table 4.10 shows the

measurements on the source addresses generate those packets. According to the

results obtained from these tables, Iatmon detects 3.3% of the packets as backscatter

traffic as well as 4.1% of all the source IP addresses as suspicious. The main reason

behind these low results is that Iatmon ignores all the packets transmitting over

a source that has been idle for at least 120 seconds or has not sent more than two

packets at all. Also, Iatmon uses only a few features to detect backscatter traffic: only

the ACK and RST flags, and also the TTL value of that packet. Using this system,

it is observed that 83% of the employed traffic includes stealth packets generated

by 41,318 different hosts that has stayed active for at least 30 minutes. On the

other hand, it seems like 14% of the packets, generated by 6,811 different hosts, are

categorized as 3-second traffic, which indicates that those packets are generated by

hosts that continuously produce packets in 3 seconds intervals. According to those

results, although Iatmon does not reach high rates in detecting backscatter traffic

and suspicious source addresses, it provides a new perspective on the network traffic

to understand the different behaviours as the ones discussed above.

47

Table 4.7: Snort - Triggered Rules/# of Triggered Times

Dataset

Rule May 28,

2004

Feb 23,

2006

Feb 22,

2008

protocol-icmp.rules

TTL exceed in Transit 257,892 2,719,675 4,968,767

Destination Unreachable Host Unreachable 54,269 1,336,068 420,929

Echo Reply 28,649 29,386 44,677

DestinationUnreachable Port Unreachable 5,141 9,343,279 3,146,756

Destination Unreachable Network Unreachable 2,684 39,800 13,835

Destination Unreachable Protocol Unreachable 793 1,225 2,987

Fragment Reassembly Time Exceeded 217 2,681 867

Destination Unreachable
Fragmentation Needed and DF bit was set

82 6,794 818

protocol-snmp.rules

Request TCP 473 692 3,334

AgentX/TCP request 26 476 425

Trap TCP 86 364 1,275

preprocessor.rules

Hi Client Unknown Method
(Added by v2.9.6.0)

804,825 1,306 11,406

Short Fragmentation 576 6,763 0

Anomaly Overlap 452 956 144

Bad Reset 254 88 21

Teardrop 232 71 361

Excessive Overlap 137 698 139

Tiny Fragment 42 288 0

Anomaly Oversize 12 11 0

Hi Server No Contlen 4 76 1

deleted.rules

Destination Unreachable Communication
Administratively Prohibited

217,046 1,027,602 703,227

Destination Unreachable
Communication with Destination Network is

Administratively Prohibited
51,186 8,682 938

Redirect Host 23,375 169,817 102,122

Source Quench 8,319 1,940 1,660

TCP Port 0 Traffic 6,572 2,874 3,188

Same SRC/DST 2,734 1,321 631

IP Reserved Bit Set 1,200 337 23

Redirect Net 426 10,135 2,344

Bad Frag Bits 207 81 0

Large ICMP Packet 0 3,663 0

48

Table 4.9: Iatmon packet categorization

Stealth
&
3S

Stealth
&

Spikes

Stealth
Other

Left
Skew

Even
Right
Skew

Short
-lived

High
-rate

Dos Ungrouped

Probe 908 81 163920 86058 0 0 0 27 544 293
Vert.
Scan

176679 37144 2298 17728 0 0 0 815 133991 94699

Horz.
Scan

25491 11314 2044 34445 0 0 953 2047 11174 23764

Other 8337401 13983 565515 5370542 1082 0 6508 203 15448 18835
Probe 1272652 56934 42928639 10476885 0 10653 80860 4433 347228 590323
Vert.
Scan

0 0 0 0 0 0 0 0 0 0

Horz.
Scan

0 0 0 0 0 0 0 0 0 0

Other 0 0 0 0 0 0 0 0 0 0
ICMP
only

0 0 0 0 0 0 0 0 0 0

Back-
scatter

4167493 42659 6820839 31942257 535978 788808 79769 2243 79396 36767

TCP
&UDP

775684 424910 1065866544 147252880 5072 938 48618 7316 293025 215190

uTorrent 0 0 0 0 0 0 0 0 0 0
Con-

flicker
0 0 0 0 0 0 0 0 0 0

Untyped 0 6 4290981 0 0 0 0 0 11 113

49

Table 4.10: Iatmon source address categorization

Stealth
&
3S

Stealth
&

Spikes

Stealth
Other

Left
Skew

Even
Right
Skew

Short
-lived

High
-rate

Dos Ungrouped

Probe 5 2 1 3 0 0 0 2 76 5
Vert.
Scan

423 7471 2 33 0 0 0 55 12389 3751

Horz.
Scan

78 713 1 35 0 0 4 55 727 692

Other 2051 637 7 733 1 0 10 11 1286 535
Probe 3002 6541 184 943 0 3 14 180 32342 15000
Vert.
Scan

0 0 0 0 0 0 0 0 0 0

Horz.
Scan

0 0 0 0 0 0 0 0 0 0

Other 0 0 0 0 0 0 0 0 0 0
ICMP
only

0 0 0 0 0 0 0 0 0 0

Back-
scatter

634 1704 176 958 27 26 24 53 10905 827

TCP
&UDP

1321 11465 4900 4037 10 2 41 253 26179 5905

uTorrent 0 0 0 0 0 0 0 0 0 0
Con-

flicker
0 0 0 0 0 0 0 0 0 0

Untyped 0 2 1 0 0 0 0 0 2 2

50

4.2.4 Corsaro v2.0.0

The November-2008 and April-2012 darknet datasets have been employed to measure

the performance of Corsaro in detecting one-way malicious network traffic. This tool

uses the TCP flags as well as the ICMP types to identify the attack packets, Algorithm

3.

Algorithm 3 How Corsaro Detects Backscatter Traffic

Data: Darknet dataset

foreach packet p in the given dataset do
read p;

if p.protocol = TCP then

if ((p.SYN = 1 & & p.ACK = 1) || p.RST = 1) then
categorize p under backscatter class

else
categorize p under other class

end

else if p.protocol = ICMP then

if (p.IcmpType ǫ {0, 3, 4, 5, 11, 12, 14, 16, 18}) then
categorize p under backscatter class

else
categorize p under icmpReq class

end

else
categorize p under other class

end

end

Corsaro has managed to detect almost 99% of the backscatter traffic in the

November-2008 dataset and 23% of the backscatter traffic in the April-2012 dataset

in approximately 2 hours. Those results demonstrate that Corsaro reaches high de-

tection rates against backscatter traffic. Note that Corsaro has provided the best

performance in detecting such traffic as an open-source tool for the experiments com-

pleted until this point.

51

4.2.5 Cisco ASA 5515-X

The performance of the Cisco ASA 5515-X device has been evaluated on the November

2008 and April 2012 darknet datasets. According to the measurements, 55% of the

traffic from the November 2008 and 22% of the traffic from the April-2012 have been

classified as suspicious data and the related packets have been immediately dropped.

These results are lower than the Corsaro’s performance on the same data sets. This

was surprising for me. However, this low performance of such a well known commercial

tool might be because of the fact that this is a one-way traffic with no payload.

In summary, it is interesting to observe that the employed signature/event based

network traffic monitoring systems seem to be insufficient to detect one-way DDoS-

based activity on a network. Note that identifying DDoS-based activity is also very

challenging by such systems since the IP addresses and port numbers are generally

spoofed and the attack patterns seem to change over time. Table 4.11 presents the

summary of the performance results of the tools employed in this thesis. According

to these results, Corsaro v2.0.0 reaches the highest detection rate, 99%, when it is

run over the November-2008 dataset.

4.3 Building Machine Learning Classifiers

In this section, my main objective is to build supervised learning based models by

using C4.5 Decision Tree, Naive Bayes and AdaBoost.M1 techniques to analyze one-

way network traffic traces. Additionally, I intend to study whether different feature

sets affect the performance of such models as well as to study how small a training

dataset could achieve high performances in detecting malicious behaviours in such

datasets. I think this is an important question since obtaining a training dataset

comes with the cost (challenge) of ”labelling” (groundtruth) the dataset. The effect

of training set size and its features are analyzed in section 4.3.1, the performances of

the employed machine learning classifiers built by small training sets are discussed

in section 4.3.2, and the robustness of the rules generated by C4.5 classifier trained

by old data against new attack trends is presented in section 4.3.3. It should be

noted here that all the experiments related to the machine learning classifiers were

performed by using a computer with 32 GB RAM, Intel i5 3.10 GHz CPU and Ubuntu

52

Table 4.11: Overview of Employed Tools

Snort

v2.9.6.0

Bro IDS

v2.2

Iatmon

v2.1.2

Corsaro

v2.0.0

Cisco

ASA

5515-X

Released

year
2014 2013 2012 2013 2012

Highest

detection

rate

reached

17.2% 13.5% 3.3% 99% 55%

Major

advantage

Easy to
add, update
or remove
a rule

Supports
script
based

detection

Various
categories
for both
packets
and

source IP
addresses

Reaches
high

detection
rates in a
reasonable

time

Supports
visual

represen-
tations

Major

dis-

advantage

False
alarms
may
occur

Slow
because
of storing
large log

files

Ignores
packets

coming from
2-minutes
idle hosts

High
performance
against only
DDoS activity

Low
perfor-
mance
against
one-way
traffic

14.04 operating system.

4.3.1 Experimens on Training Sets via C4.5 and Naive Bayes

At this point, two machine learning approaches, namely C4.5 and Naive Bayes, are

employed with my proposed set of features, shown in Table 3.5, to observe the overall

performance of the approaches on the November-200 backscatter dataset as well as to

find out the importance of training set size and using IP addresses and port numbers

of the attack packets in the training set. Table 4.12 shows the evaluation of these

machine learning models built by different feature sets and different sizes of training

sets. As observed, C4.5 reaches higher accuracy, precision, recall, specificity and

F-score values than Naive Bayes in each case. The changes on the values of those

parameters depending on the used features, as to be seen in Table 4.12, indicates

that the performance of a machine learning classifier is based on the selected features.

Furthermore, employing a small portion of data in the training phase and keeping

the remaining for the testing phase provides consistent predictions with reasonable

53

ratios, which seems to indicate that having a large training set is not required to build

a strong classifier. This is an important indication for human experts since it may

help them to overcome the labelling challenge with a lower cost.

Table 4.12 also presents the approximate processing time of the employed models.

It is clearly seen that even though it is faster to build a Naive Bayes classifier than a

C4.5 classifier, the run time of C4.5 is approximately a hundred times less than Naive

Bayes’s. Also, it seems that IP addresses and port numbers are not required to be

used as features to reach high accuracies in detecting malicious network traffic. It

should be noted here that ”ip.proto”, ”ack flag”, ”res flag”, ”frame.len” and ”ip.ttl”

are the major features employed by C4.5 classifier in generalizing the tree models.

Table 4.12: Machine Learning with Different Features and Training Sets

80% train
20% test

20% train
80% test

C4.5
Naive
Bayes

C4.5
Naive
Bayes

Accuracy 0.99 0.97 0.99 0.98
Precision 0.99 0.74 0.96 0.74

Recall 0.99 0.85 1 0.93
F-measure 0.99 0.79 0.98 0.82
Specificity 0.99 0.98 0.99 0.98

FNR 0.01 0.15 0 0.07
FPR 0.01 0.02 0.01 0.02

Building
time (mins)

360 150 150 90

Feature
set-1

Running
time (mins)

20 900 40 5400

Accuracy 0.98 0.97 0.99 0.98
Precision 0.77 0.79 0.96 0.82

Recall 0.98 0.83 1 0.88
F-measure 0.87 0.81 0.98 0.84
Specificity 0.99 0.99 0.99 0.99

FNR 0.02 0.17 0 0.12
FPR 0.01 0.01 0.01 0.01

Building
time (mins)

330 90 90 55

Feature
set-2

Running
time (mins)

10 1500 30 6300

The experiments in this section demonstrate that the size of a training set and

54

the selected features affect the performance of a machine learning based classifier.

Moreover, the higher performance achieved when Feature set-2 was used indicate

that it is not required to use source and destination IP addresses as well as port

numbers to detect one-way attack traffic. Since training such a classifier by using

20% of the records with Feature set-2 resulted in higher performance, smaller amount

of instances and Feature set-2 (over Feature set-1) are used for the next experiments

in the training phase.

4.3.2 Comparing the Employed Machine Learning Techniques

Here, six different machine learning models are constructed by employing 10% of the

November-2008 and April-2012 darknet datasets with Feature set-2, since Feature

set-2 has showed the most optimal performance in the previous experiments, as on

the below:

• C4.5 Decision Tree with 10% of November-2008 dataset

• C4.5 Decision Tree with 10% of April-2012 dataset

• Naive Bayes with 10% of November-2008 dataset

• Naive Bayes with 10% of April-2012 dataset

• AdaBoost with 10% of November-2008 dataset

• AdaBoost with 10% of April-2012 dataset

Once each trained model is generated, the remaining data (90% unseen) of the same

dataset that has been used to train the model is used to evaluate the performance

of the models in terms of detection rate and processing time. The main purpose of

this experiment is to select the most successful supervised learning approach to build

a comprehensive model with those datasets collected in 2008 or before to run on the

ones collected in 2012 or after to observe how much they are successful in classifying

such data that has different attack patterns from the data used to train the models.

Table 4.13 shows the evaluation of the designed machine learning models. As to be

observed, C4.5 models achieve almost 99% accuracy with 99% recall and 99% for each

experiment. Furthermore, it seems that the online processing times (testing time) of

55

the C4.5 models are also much lower than the other models. It should be noted here

that the C4.5 model built by November-2008 dataset includes 25 rules, while the

other C4.5 model built by April-2012 dataset includes 164 rules. These results are

promising since they show auto-generated rules by a machine learning approach can

enable one to categorize malicious traffic with a high accuracy in a reasonable time.

Note that the values for training and testing time parameters shown in the Table 4.13

are approximate values.

Table 4.13: Evaluation of Machine Learning Models

Train: 10% of Nov-2008
Test: 90% of Nov-2008

Train: 10% of April-2012
Test: 90% of April-2012

Parameter
C4.5

Naive
Bayes

AdaBoost C4.5
Naive
Bayes

AdaBoost

Accuracy 0.999 0.990 0.997 0.998 0.994 0.992
Precision 0.999 0.965 0.998 0.998 0.995 0.994

Recall 0.999 0.998 0.997 0.999 0.995 0.993
Specificity 0.999 0.999 1 0.999 0.986 0.99
F-measure 0.999 0.982 0.998 0.999 0.995 0.994

FPR 0.001 0.001 0 0.001 0.014 0.01
FNR 0.001 0.002 0.003 0.001 0.005 0.006

Training
time

30 mins 8 mins 100 mins 10 mins 2 mins 35 mins

Testing
time

40 mins 340 mins 60 mins 10 mins 45 mins 20 mins

The experiments in this section demonstrate that C4.5 classifiers present higher

performance than Naive Bayes and AdaBoost.M1 classifiers in detecting one-way ma-

licious traffic with a lower processing time. Therefore, C4.5 Decision Tree approach

is used to build a classifier which is robust against changing attack patterns by em-

ploying the combined datasets shown in Table 3.2.

4.3.3 Detecting Recent Attack Traffic by C4.5 Decision Tree Trained by

Old Traces

In this section of my experiments, new data combinations are created to represent

older and more recent network traffic to observe how much of such attack traffic

including changed patterns can be detected by using a machine learning based model.

56

Moreover, to find out the importance of feature selection for data preprocessing,

four different feature sets for each newly created training set are generated as shown

in Table 4.14. Note that the features generated by Chi-Square and Symmetrical Un-

certainty algorithms are extracted from all available features. It should also be noted

that only the top-5 most informative features generated by these algorithms are used,

otherwise the integrated feature selection algorithm of C4.5 classifier (information

gain ratio) would select similar features to construct the tree model.

Table 4.14: Selected Features

Dataset
D1 D2 D3 D4

Chi-Squared
Features

ip.proto
frame.len

frame.caplen
tcp.stream

ip.TTL

frame.caplen
frame.len

ip.ttl
ip.checksum

ip.proto

frame.caplen
frame.len
deltatime

ip.ttl
tcp.stream

frame.len
ip.ttl

deltatime
ip.proto
ack flag

Symmetrical
Uncertainty

based Features

ip.proto
ip.checksum bad
ip.checksum good

ecn flag
ack flag

ip.proto
icmp.type

ns flag
icmp.code

ecn flag

ip.proto
icmp.type

ns flag
icmp.code

ecn flag

frame.len
ip.ttl

ip.proto
deltatime
ack flag

My Proposed
set of Features

see Feature set-2 in Table 3.5

All available
features

see Table 3.4

Since the C4.5 models have provided better performances than the others in the

experiments explained in the previous sections, the robustness and the rule general-

ization abilities of the C4.5 classifier are analyzed by building sixteen different C4.5

models, trained on four different datasets, D1, D2, D3 and D4, with four different fea-

ture sets, to run them on D5 to explore how powerful this classifier is against changing

attack patterns. These experiments enable me to observe the performance and the

robustness of the auto-generated rules by the C4.5 models on one-way darknet data

(traffic traces).

Table 4.15 presents the performances of the aforementioned C4.5 classifiers on the

D5 dataset which is the combination of April-2012 and Normal-2014 datasets. As to

57

be observed, the C4.5 classifier trained by the combination of backscatter-2008, DDoS-

2007 and normal-2008 (D4) provides the highest accuracy with the highest F-measure

value for each experiment. While the C4.5 classifier trained by the combination of

backscatter-2008 and DDoS-2007 (D2) offers decreased accuracy and precision, it

also offers high recall values, which means that while it provides a high detection

rate, it also causes false alarms. On the other hand, the C4.5 classifier trained by

the combination of backscatter-2008 and Normal-2008 (D3) offers high precision but

low accuracy and recall values, which means it provides low detection rate with low

false alarms. However, when the features obtained by Chi-square and Symmetrical

Uncertainty algorithms are selected, this classifier offers high accuracy with higher

recall and precision values but many rules, which might cause overfitting problems.

These results are promising since they demonstrate that it is possible to reach high

accuracies in detecting one-way malicious network traffic over a time period of seven

years where the attack patterns change with time. Figure 4.8 shows the decision

tree generated by the C4.5 classifier trained by D4 dataset with my proposed set of

features.

58

Table 4.15: The Results of the Experiments on C4.5

Train
set

Accurary
(%)

Recall
(%)

Precision
(%)

F-msr
(%)

#of
Leaves

Used
Features
by C4.5

D1 60.6 88.3 56.8 69.1 5
ip.checksum bad

ip.proto
push flag

D2 49.5 99.0 50.0 66.2 8
ip.checksum bad
frame.caplen
push flag

D3 65.1 30.2 100 46.5 1800

frame.caplen
ip.proto
push flag
frame.len

All
Features

D4 81.1 81.9 61.8 70.4 29

frame.caplen
ip.ttl

frame.len
frame.deltatime

D1 24.2 29.3 26.6 28.0 5
ip.proto
frame.len
ack flag

D2 50.0 60.0 50.0 54.5 25

ip.ttl
ip.proto
frame.len

frame.deltatime
ack flag

D3 60.0 23.0 99.0 37.3 390

frame.len
ip.ttl

syn flag
res flag

My
Proposed

Set of Features

D4 88.2 80.0 95.7 87.2 97

frame.len
ip.ttl

frame.deltatime
syn flag
ip.proto
ack flag
rst flag

D1 72.0 88.1 66.8 76.0 5
ip.proto
frame.len

D2 49.0 90.0 47.7 62.4 14

ip.checksum bad
frame.caplen

ip.ttl
ip.proto

D3 86.7 78.5 95.3 86.1 164
frame.caplen
frame.len
ip.ttl

Chi-Squared
Features

D4 87.9 79.9 95.9 87.1 89

frame.len
ip.ttl

frame.deltatime
ack flag
ip.proto

D1 48.8 76.0 46.4 60.6 4
ip.checksum bad

ecn flag

D2 50.1 80.2 51.5 62.8 9
ip.proto
icmp.type
ns flag

D3 86.7 78.5 95.3 86.1 164
frame.caplen
frame.len
ip.ttl

Symmetrical
Uncertainty

based
Features

D4 87.9 79.9 95.9 87.1 89

frame.len
ip.ttl

frame.deltatime
ack flag
ip.proto

59

Figure 4.8: Decision Tree built by D4 with my proposed set of features

Chapter 5

Conclusion

In this thesis, the performances of five network traffic monitoring systems, namely

Snort, Bro, Iatmon, Corsaro and Cisco ASA 5515-X, as well as three machine learning

models, namely C4.5 Decision Tree, Naive Bayes and AdaBoost.M1, are evaluated in

terms of analyzing one-way darknet traffic, processing time and robustness against

malicious behaviours changing over time. To achieve this, six darknet datasets col-

lected in different years (from 2004 to 2012) via a passive darknet in addition to two

datasets including normal traces collected in 2008 and 2014 are employed to perform

the experiments on the aforementioned systems and techniques. The nature of the

aforementioned traffic is also explored to discover the general darknet (backscatter)

trends and how they change over time. All the datasets employed are collected by

CAIDA and they are all publicly available, which ensures that this thesis can be easily

validated and compared against other researches in the field.

Furthermore, the importance of the properties of a training dataset, such as size

and selected features, are studied to understand how they affect the quality of a ma-

chine learning classifier. To this end, different feature sets are generated depending

on the patterns revealed after analyzing the nature of the backscatter traffic. Further-

more, two well-known feature selection methods, namely Chi-Square and Symmetrical

Uncertainty, are used while constructing a C4.5 classifier with different sizes of train-

ing sets. All the experiments on machine learning classifiers are performed by using

Weka on a machine having 32 GB RAM, Intel i5 3.10 GHz CPU and Ubuntu 14.04

operating system.

The results show that the auto-generated rules by C4.5 Decision Tree classifier

presents 99% detection rate while analyzing such datasets having the similar patterns

to the one used in training phase, whereas it presents almost 90% detection rate while

analyzing such traffic including different patterns. The following list summarizes the

results of the experiments performed in this thesis:

60

61

• TCP is the top used transport layer protocol while HTTP is the top used

application layer protocol in generating backscatter attack. Moreover, secure

ports and peer-to-peer applications are not preferred to generate backscatter

traffic. Also, it seems that source addresses from China and USA play the

major role of generating such attacks in the datasets employed in this thesis.

• The patterns of backscatter traffic show changes over time. Therefore, pre-

defined rules/signatures become ineffective to analyze backscatter traffic from

one year to the other.

• The network traffic monitoring tools employed mostly benefit from TCP and

ICMP based rules to define suspicious packets. The main challenge of these

tools is that they may not be able to detect malicious activity having such

patterns that do not match with any of the pre-defined rules. In other words,

these tools are not robust against changing attack patterns.

• Corsaro has a higher detection rate with a lower processing time than the other

network traffic monitoring tools that are employed in this thesis. However, it

should be noted that the detection rate of Corsaro decreased to 23% from 99%

when a more recent darknet dataset (April-2012) was used instead of an older

one (November-2008). It is worth bearing in mind that one-way darknet traffic

traces without any payload information are used in this thesis.

• C4.5 Decision Tree classifier achieves higher performance than the other classi-

fiers in terms of both the detection rate and the processing time. Although the

general attack patterns change over time, C4.5 classifiers help exploring the re-

semblances between the changing attack patterns in the analyzed datasets. This

enables one to detect such recent attack patterns via a C4.5 classifier trained

on older traffic patterns. This demonstrates that an intrusion detection system

using a machine learning technique to automatically generate or update its rules

can overcome the challenge of generalizing to changing attack patterns.

• The C4.5 classifiers where the features ”frame.len”, ”ip.proto” and ”ip.ttl” are

used in the training phase show the highest accuracies, whereas TCP flags are

commonly used in filtering backscatter traffic both in the literature and by the

62

employed network traffic monitoring systems. Also, it is demonstrated that

using source or destination IP addresses and port numbers are not required to

reach high accuracies in detecting backscatter traffic.

• It is possible to build an efficient C4.5 classifier by using a small amount of

well-represented training set. This enables machine learning techniques to be

used in practice since it is easier to label smaller datasets for a human expert.

Future work will explore the performances of other network traffic analysis tools

and machine learning models on larger and more recent darknet datasets in detail.

Moreover, dynamic adjustment of composite features and generalization and robust-

ness capabilities of other classification systems will be studied. Finally, clustering

approaches while employing a training set will be applied to increase its consistency.

Bibliography

[1] The CAIDA UCSD - DDoS Attack 2007 Dataset.
http://www.caida.org/data/passive/ddos-20070804 dataset.xml.

[2] The CAIDA UCSD Anonymized Internet Traces 2008.
http://www.caida.org/data/passive/passive 2008 dataset.xml.

[3] The CAIDA UCSD Anonymized Internet Traces 2014.
http://www.caida.org/data/passive/passive 2014 dataset.xml.

[4] The CAIDA UCSD Backscatter-2004-2005 Dataset - 28 May 2004.
http://www.caida.org/data/passive/backscatter 2004 2005 dataset.xml.

[5] The CAIDA UCSD Backscatter-2006 Dataset - February 2006.
http://www.caida.org/data/passive/backscatter 2006 dataset.xml.

[6] The CAIDA UCSD Backscatter-2008 Dataset Nov, 2008.
http://www.caida.org/data/passive/backscatter 2008 dataset.xml.

[7] The CAIDA UCSD Network Telescope Educational Dataset.
http://www.caida.org/data/passive/telescope-educational dataset.xml.

[8] Cisco Adaptive Security Appliance (ASA) Software.
http://www.cisco.com/c/en/us/products/security/
adaptive-security-appliance-asa-software/index.html.

[9] Cisco ASA 5500-X Series Adaptive Security Appliances.
http://www.cisco.com/web/TH/solutions/smb/velocity/Security/
ASA 5500 X Series.html.

[10] Geolite. http://dev.maxmind.com/geoip/legacy/geolite/.

[11] Port 1026. http://kb.prismmicrosys.com/evtpass/evtpages/
PortNo 1026 nterm 55033.asp.

[12] SecureShell. http://www.rfc-archive.org/getrfc.php?rfc=4251.

[13] Snort. http://www.snort.org/.

[14] Tshark. http://www.wireshark.org/docs/man-pages/tshark.html.

[15] Waste. http://waste.sourceforge.net/.

[16] Wireshark. http://www.wireshark.org/.

63

64

[17] Hall Mark A. Correlation-based feature selection for machine learning. The
University of Waikato, Diss, 1999.

[18] Riyad Alshammari and A. Nur Zincir-Heywood. Can encrypted traffic be iden-
tified without port numbers, IP addresses and payload inspection? Computer
networks 55.6: 1326-1350, 2011.

[19] Michael Bailey, Evan Cooke, Farnam Jahanian, Andrew Myrick, and Sushant
Sinha. Practical darknet measurement. Information Sciences and Systems, 40th
Annual Conference on pp. 1496-1501, IEEE, 2006.

[20] Cui-Mei Bao. Intrusion detection based on one-class svm and snmp mib data.
Information Assurance and Security, Fifth International Conference on. Vol. 2,
2009.

[21] Irwin Barry and J-P. van Riel. Using inetvis to evaluate snort and bro scan
detection on a network telescope. VizSEC 2007. Springer Berlin Heidelberg:255-
273, 2008.

[22] Thomas Berger. Analysis of current VPN technologies. In Availability, Reliability
and Security, pp. 8. IEEE, 2006.

[23] Hal Berghel. Malware month. Communications of the ACM, 46.12: 15-19, 2003.

[24] Nevil Brownlee. One-way traffic monitoring with iatmon. Passive and Active
Measurement. Springer Berlin Heidelberg, 2012.

[25] CAIDA. The UCSD Network Telescope. http://www.caida.org/projects/
network telescope/.

[26] Ashley Carman. Lizard Squad begins selling DDoS tool for commercial use.
http://www.scmagazine.com/lizard-stresser-tool-sold-online/article/390558/,
2015.

[27] Paquet Catherine. Implementing Cisco IOS Network Security (IINS). Cisco
Press, 2009.

[28] Jin Cheng, Haining Wang, and Kang G. Shin. Hop-count filtering: an effective
defense against spoofed DDoS traffic. Proceedings of the 10th ACM conference
on computer and communications security, 2003.

[29] Fachkha Claude, Elias Bou-Harb, and Mourad Debbabi. Towards a Forecast-
ing Model for Distributed Denial of Service Activities. 12th IEEE International
Network Computing and Applications, 2013.

[30] Fachkha Claude, Elias Bou-Harb, and Mourad Debbabi. Fingerprinting Internet
DNS Amplification DDoS Activities. New Technologies, Mobility and Security
(NTMS), 2014 6th International Conference on. IEEE, 2014.

65

[31] Marcos Colon. Tidal waves of spoofed traffic: DDoS at-
tack. http://www.scmagazine.com/tidal-waves-of-spoofed-traffic-ddos-
attacks/article/393059/, 2015.

[32] Frank Eibe, Mark Hall, and Bernhard Pfahringer. Locally weighted naive bayes.
Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann Publishers Inc, 2002.

[33] Dainotti Alberto et al. Estimating internet address space usage through passive
measurements. ACM SIGCOMM Computer Communication Review 44.1: 42-
49., 2013.

[34] Livadas Carl et al. Using machine learning technliques to identify botnet traffic.
31st IEEE Local Computer Networks, 2006.

[35] Saad Sherif et al. Detecting P2P botnets through network behavior analysis and
machine learning. Ninth Privacy, Security and Trust (PST) Annual International
Conference on. IEEE, 2011.

[36] Xia Fen et al. Ranking with decision tree. Knowledge and information systems
17.3:381-395, 2008.

[37] Masashi Eto, Daisuke Inoue, Jungsuk Song, Junji Nakazato, Kazuhiro Ohtaka,
and Koji Nakao. nicter: a large-scale network incident analysis system: case
studies for understanding threat landscape. In Proceedings of the First ACM
Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (pp. 37-45), 2011.

[38] C. Fachkha, E. Bou-Harb, A. Boukhtouta, S. Dinh, F. Iqbal, and M. Debbabi.
Investigating the dark cyberspace: Profiling, threat-based analysis and correlation.
IEEE Risk and Security of Internet and Systems (CRiSIS), 7th International
Conference on (pp. 1-8)., 2012.

[39] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA Data Mining Software: An Update.
hIGKDD Explorations, Volume 11, Issue 1, 2009.

[40] Thomas Karagiannis, Andre Broido, , and Michalis Faloutsos. Transport layer
identification of P2P traffic. In Proceedings of the 4th ACM SIGCOMM confer-
ence on Internet measurement, pp. 121-134. ACM, 2004.

[41] Alistair King and Alberto Dainotti. Corsaro.
www.caida.org/tools/measurement/corsaro, 2012.

[42] John Kristoff. Ops: TCP port 1024 and 3072 traffic.
http://www.cymru.com/jtk/blog/2011/03/04/.

[43] NSFOCUS Ltd. Mid-Year DDoS Threat Report 2013.
http://www.nsfocus.com/SecurityReport/, 2013.

66

[44] Farid Dewan Md, Nouria Harbi, and Mohammad Zahidur Rahman. Combin-
ing naive bayes and decision tree for adaptive intrusion detection. CoRR, vol.
abs/1005.4496, 2010.

[45] Khamruddin Md and Ch Rupa. A rule based DDoS detection and mitigation
technique. Nirma University International Conference on. IEEE, 2012.

[46] Rich Miller. DoS attacks on blogs. http://news.netcraft.com/archives/2006/02/28/,
2006.

[47] Rich Miller. DoS attacks on payment gateways.
http://news.netcraft.com/archives/2006/02/10/, 2006.

[48] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Ste-
fan Savage. Inferring internet denial-of-service activity. Transactions on Com-
puter Systems (TOCS) 24.2: 115-139, ACM, 2006.

[49] Jose Nazario. DDoS Events of Note: WordPress, Gambling Sites.
http://www.arbornetworks.com/asert/2008
/02/ddos-events-of-note-wordpress-gambling-sites/, 2008.

[50] C. Lee Noh, K. Choi, and G. Jung. Detecting distributed denial of service (DDoS)
attacks through inductive learning. Lecture Notes in Computer Science, vol. 2690,
pp. 286295, 2003.

[51] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteris-
tics of internet background radiation. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, 2004.

[52] Vern Paxson. Bro: a system for detecting network intruders in real-time. Com-
puter networks 31, no. 23: 2435-2463, 1999.

[53] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate, scalable in-
network identification of p2p traffic using application signatures. In Proceedings
of the 13th international conference on World Wide Web, pp. 512-521. ACM,
2004.

[54] Seungwon Shin, Jaeyeon Jung, and Hari Balakrishnan. Malware prevalence in the
KaZaA file-sharing network. Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, 2006.

[55] Fawcett Tom. An introduction to ROC analysis. Pattern recognition letters 27.8:
861-874, 2006.

[56] Qian Wang, Zesheng Chen, and Chao Chen. Darknet-based inference of Inter-
net worm temporal characteristics. Information Forensics and Security, IEEE
Transactions on 6.4: 1382-1393, 2011.

67

[57] Lee Wenke, Salvatore J. Stolfo, and Kui W. Mok. Adaptive intrusion detection:
A data mining approach. Artificial Intelligence Review 14.6: 533-567, 2000.

[58] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston. Internet back-
ground radiation revisited. In Proceedings of the 10th ACM SIGCOMM confer-
ence on Internet measurement, pp. 62-74, 2010.

[59] Vinod Yegneswaran, Paul Barford, and Dave Plonka. On the design and use
of Internet sinks for network abuse monitoring. Recent Advances in Intrusion
Detection. Springer., 2004.

[60] Yang Yiming and Jan O. Pedersen. A comparative study on feature selection in
text categorization. ICML. Vol. 97, 1997.

[61] Freund Yoav and Robert E. Schapire. Experiments with a new boosting algorithm.
ICML. Vol. 96, 1996.

