
MODELLING THE SPATIAL EFFECTS OF THE SIGNAL

TRANSDUCTION PROCESS

by

Chris Levy

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

April 2015

© Copyright by Chris Levy, 2015

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations and Symbols Used viii

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Signal Transduction Pathways and ODE Models 1

1.2 Spatiotemporal Signalling Dynamics and PDE Models 14

1.3 Models with Delay and Numerical Challenges 27

1.4 Outline of Thesis . 31

Chapter 2 A Model with Localized Enzyme Activation 33

2.1 Model . 33

2.2 Steady State Solution . 40

2.3 Stability Analysis . 46

2.4 Time Dependent Approximations of the PDE Model 50
2.4.1 ODE system for different scaling of αv 54

2.5 Examples . 57
2.5.1 Bistability . 59
2.5.2 Robust Switching Model with Delayed Bifurcation 63
2.5.3 Hopf Bifurcation . 67
2.5.4 Comparison of (2.47) with other ODE Models 72

Chapter 3 A Model with Delayed Enzyme Activation 77

3.1 Model . 77

3.2 Stability Analysis . 80

3.3 Time Dependent Approximations of the PDE Model 89

ii

3.4 Numerical solutions of PDEs and DDAEs 94
3.4.1 Method of Steps in Comsol 94
3.4.2 Transient Method of Lines (Reverse Method of Lines) 97
3.4.3 Numerical Solution of DDAEs 101

3.5 Examples . 104
3.5.1 Bistability . 105
3.5.2 Hopf Bifurcation . 108

3.6 Poincaré-Lindstedt Method for the PDE Model with Delay 112
3.6.1 Computing the Kernel of L∗ 118
3.6.2 Revisiting the Hopf Bifurcation in §3.5.2 124
3.6.3 Revisiting the Hopf Bifurcation in §2.5.3 127

Chapter 4 A Model with Cell Surface Receptors 131

4.1 Cell Surface Receptors . 131

4.2 A Model with Cell Surface Receptors 136

4.3 Example of Receptor Models with Strong and Weak Decay 143

4.4 Hopf bifurcation in a Model with Patches and Compartments 151

Chapter 5 Discussion . 157

Bibliography . 164

Appendix A Comsol and Matlab Code 172

A.1 Standard DDE Solvers . 172

A.2 Solving the PDE Model in (2.3) Without Delay 175

A.3 Comsol Method of Steps Code . 177

A.4 Solving Delay PDE in (3.2) with Reverse Method of Lines 182

A.5 Calculating ω2 as described in §3.6 186
A.5.1 Script to Calculate ω2 . 186
A.5.2 Script to Solve Leading Order DDAEs in (3.34) 188
A.5.3 Script to Solve the DDAEs in (3.42) and (3.47) 189
A.5.4 Finding Period of the Periodic Solutions from (3.46) 191
A.5.5 Discretization of the Adjoint Operator 192
A.5.6 Finding the Kernel of the Discretized Operator 193

A.6 Comsol Code for Receptor Model in Chapter 4 194

iii

List of Tables

1.1 Steady state solution with αu = O(1) and αv = O(1). 22

1.2 Steady state solution for αu = α1

√
ε and αv = O(1). 23

1.3 Steady state solution with αu = α1

√
ε and αv = α2

√
ε. 24

2.1 Comparing eigenvalues from asymptotics and numerics. 61

3.1 Calculating ω2 for different n. 126

iv

List of Figures

1.1 Signal transduction pathway. 3

1.2 Protein modification cycle. 4

1.3 Cascade of single phosphorylated cycles. 5

1.4 Cascade of double phosphorylated cycles. 6

1.5 Sigmoidal and hyperbolic curves. 8

1.6 MAPK signalling cascade. 10

1.7 MAPK signalling cascade with a negative feedback loop. . . . 13

1.8 Spatial separation of activating and deactivating enzymes. . . 16

1.9 Diagram of cell domain with two internal compartments. . . . 21

1.10 Comparison of the asymptotic solutions from Table 1.1. 23

1.11 Comparison of the asymptotic solutions from Table 1.2. 24

1.12 Comparison of the asymptotic solutions from Table 1.3. 25

1.13 Simple DDE example. 29

2.1 Cell geometry diagram. 36

2.2 Comsol domain. 37

2.3 u0 as a function of S . 60

2.4 Bistable dynamics. 62

2.5 Outer region solutions. 65

2.6 Outer region solutions. 67

2.7 u0 as a function of S . 69

2.8 Comparing BVP with ODE 70

2.9 Solution profile in space. 71

2.10 Time series evolution of Hopf bifurcation example. 72

3.1 u and v inner with T = 3 . 107

v

3.2 u and v along x-axis with T = 3 108

3.3 u and v inner with relative error. 110

3.4 Hopf in general system. 111

3.5 Hopf in general system with correction terms blowing up. . . . 112

3.6 Interpolating mesh points diagram. 121

3.7 Periodic solution of (3.46) . 125

3.8 Adjoint solution. 126

3.9 u without blowup . 127

3.10 Secular growth in Hopf bifurcation example with no delay. . . 128

3.11 Eliminating secular growth in Hopf bifurcation with no delay. 130

4.1 Efficient signalling pathway with receptor. 134

4.2 Sphere with patches. 136

4.3 Thomson’s problem and cluster locations. 139

4.4 Creating a patch in the Comsol GUI. 140

4.5 The Thomson problem with symmetry. 143

4.6 Plotting the concentration along the z-axis. 144

4.7 Contour plots for different N 145

4.8 Plotting u on surface of radius r = 0.7 with strong decay. . . . 147

4.9 Reaching equilibrium with strong decay. 148

4.10 Plotting u on surface of radius r = 0.7 with weak decay. 150

4.11 Reaching equilibrium with weak decay. 151

4.12 12 Patches and 3 compartments. 153

4.13 Model with patches and compartments. 154

4.14 Model with patches and compartments using symmetry. 155

vi

Abstract

In this thesis we construct and analyze a cell signal transduction model for a biolog-

ical cell which takes into account three dimensional geometry, diffusion, and spatial

separation and localization of activating and deactivating enzymes. The deactiva-

tion of signalling proteins occurs throughout the cytosol and activation is localized

to specific sites in the cell. The model consists of a system of linear reaction diffu-

sion equations (PDEs) and nonlinear boundary conditions defined over a spherical

domain with spherical compartments within its interior. Using asymptotic methods

we obtain steady state solutions and determine their stability. We also find asymp-

totic time dependent solutions to the PDE model. We do this analysis for a model

with and without delay. The delay is used to model the time lapse during enzyme

reactions and also the recovery times associated with conformational changes during

the phosphorylation process. For the model without delay, the full PDE system is

approximated by a system of differential algebraic equations. The full model with

delay is approximated by a system of delay differential algebraic equations. From our

results we can detect complex signalling behavior such as bistability, robust switches,

and sustained oscillations which all come about from different bifurcations. The sim-

ulations of the full three dimensional systems correspond well with simulations of the

approximating differential algebraic systems. In this thesis we also introduce a model

with cell surface receptors. We model the clustering of these receptors by introducing

circular patches on the surface of the sphere. We then investigate the effect that the

number of clusters has on the signalling pathway.

vii

List of Abbreviations and Symbols Used

ODE ordinary differential equation

BVP boundary value problem

PDE partial differential equation

DDE delay differential equation

DAE differential algebraic equation

DDAE delay differential algebraic equation

GK Goldbeter–Koshland

MAPK mitogen-activated protein kinase

ε radius of signalling compartment

O(ε) Landau notation

Du diffusion coefficient

ku decay rate

R radius of the cell

λ eigenvalue

αu αu =
√
ku/Du, measures diffusion length in terms of cell radius

Ω1 sphere of radius 1 centered at the origin

Ωε1 sphere of radius ε centered at x1

Ωε union of two interior signalling compartments

Ω1/Ωε cell region minus the two compartments

n̂ the normal vector

viii

Δx laplace operator in 3D cartesian coordinates

∂nx n̂ · ∇x, the outward normal derivative

θ azimuth coordinate in spherical coordinates

φ zenith coordinate in spherical coordinates

ρ |y| , the inner radial coordinate in spherical coordinates

Δy ∂2
ρ + (2/ρ)∂ρ, spherically symmetric laplacian

ix

Acknowledgements

First I would like to thank David Iron for being my supervisor. He was a great

support and I would like to thank him for coming up with such a good problem

to work on. I would also like to thank Paul Muir and Theodore Kolokolnikov for

being on my supervisory committee and for reading my thesis. I am also grateful for

the faculty and staff within the Mathematics and Statistics department who either

taught me or helped me out with numerous things over the past several years. I

would like to especially thank Sara Faridi for encouraging me to apply for a Killam

graduate scholarship which funded the last two years of my research. I am also very

thankful for NSERC which funded the first three years of my PhD. I also would like

to say a special thank you to Balagopal Pillai. He was especially helpful in getting

me connected to the cluster and keeping me updated on different versions of Comsol

and Matlab which played a huge role in my research. Finally I would like to thank

my wife Joanna for her support and for taking care of things at home with our kids.

x

Chapter 1

Introduction

Some of the descriptions and contents in this chapter have been published among

two papers [61, 62] written by us. The results from [61], which motivate the work

done in this thesis, are summarized in §1.2. The majority of Chapter 2 is published

in [62]. The papers [61, 62] are published in the Journal of Math Biology and the

final publications are available at http://link.springer.com. The material in Chapter

3 has been submitted to the Journal of Nonlinearity [63].

1.1 Signal Transduction Pathways and ODE Models

Biological cells in living organisms have the ability to respond to many different

chemical stimuli within their environment. Cells receive signals and then carry out a

response. Signal transduction pathways are the tools which cells use to receive and

process stimuli. They are like molecular circuits which detect, amplify, and integrate

external signals. The end result of signal transduction is a cellular response or

decision. Examples of these responses are cytoskeletal reorganization, proliferation,

differentiation, motility, cell survival, and cell death.

The malfunctioning of signalling pathways is a leading cause of human diseases

such as cancer, chronic inflammatory syndromes and diabetes [49]. Qualitative and

quantitative analysis of mathematical models helps in understanding the mechanisms

that underlie the functions of signalling networks and therefore can supplement re-

search on pharmacological interventions in the treatment of human diseases.

The signal transduction process begins when an extracellular signalling molecule

binds to a cell surface receptor. In general, extracellular signalling molecules are

quite large and do not diffuse across the cell membrane. Once the extracellular

signalling molecule is bound to the cell surface receptor, the receptor performs the

function of transferring the signal across the membrane and into the cell interior.

The binding of the molecule with the receptor actually initiates a series of chemical

1

2

reactions inside the cell. These reactions carry the signal from the receptor bound

signalling molecule, across the cell membrane, and through the cell interior. This

then leads to a cellular response. Signal transduction is this process in which the

signal travels from the cell surface bound receptor, across the cell membrane, and

through the cell’s cytoplasm (i.e. interior of the cell). This signalling pathway is

often referred to as a signal transduction pathway (see Figure 1.1).

Cell surface receptors have both an intracellular and extracellular domain. The

binding site on the extracellular portion of the receptor can recognize extracellular

signalling molecules which are often called ligands. The binding of the ligand to a

receptor changes the shape of the receptor. These changes are called conformational

changes. Conformational changes alone are not enough to cause cellular responses.

The ligand is often called the primary messenger because it interacts with the receptor

to first send the signal across the cell membrane. We will discuss cell surface receptor

dynamics and the binding of ligands to receptors further in Chapter 4. For most of

this thesis we will focus on the intracellular part of the signal transduction pathway.

The cell surface receptor and bound ligand act as an external stimulus which

triggers events inside the cell. Inside the cell, intracellular signalling pathways are

responsible for carrying signals through the interior of the cell to some destination.

The destination, which is often the cell nucleus or target proteins, receives the signal

and then carries out a cellular response. These responses regulate different cellular

functions. The basic parts of a signal transduction pathway are shown in Figure 1.1.

3

extracellular signalling molecule

receptor protein

cell surface

intracellular signalling pathway

target proteins

Figure 1.1: A simple signal transduction pathway. The signal transduction pathway
is initiated at the cell surface when an extracellular signalling molecule attaches to
a cell surface receptor. This acts as a stimulus which activates second messengers
within the cell. The different shapes within the intracellular signalling pathway
represent different types of signalling proteins and molecules which carry the signal
through the interior of the cell. The signal is carried through the interior of the cell
through a series of chemical reactions involving enzymes and signalling proteins. The
final destination is the cell nucleus or target proteins. When the signal reaches its
destination, a cellular decision is made.

Some important components of intracellular signalling pathways are signalling

proteins and molecules, and enzymes. Many of these substances are called second

messengers. Second messengers carry the signal from the cell surface through the

cytoplasm of the cell. Intracellular signalling molecules/proteins can be phosphory-

lated (activated) or unphosphorylated (deactivated). Kinase enzymes catalyze the

reactions which activate signalling proteins and phosphatase enzymes catalyze the

reactions which deactivate signalling proteins (see Figure 1.2).

The main part of many intracellular signalling pathways are cascades of protein

modification cycles. These cycles propagate external signals from the cell membrane

to different targets in the cytoplasm. A protein modification cycle is a system in

4

which a protein is reversibly modified between two or more states by converter en-

zymes. For example, a signalling protein can be in an active or inactive state. This

protein modification cycle is regulated by the converting kinase and phosphatase

enzymes. A protein modification cycle (or cycle for short) is illustrated in Figure

1.2.

phosphatase enzyme

kinase enzyme

phosphorylated unphosphorylated

Figure 1.2: A protein modification cycle in which two converter enzymes, a kinase
and phosphatase, convert a protein between an active (phosphorylated) and inactive
(unphosphorylated) form.

The intracellular portion of a signalling pathway is made of up cycles like those

shown in Figure 1.2. Within a cycle, a signalling protein can become phosphory-

lated and then initiate a similar reaction in the next adjacent protein modification

cycle. Another signalling protein becomes phosphorylated in that cycle and then the

activation process continues. This process continues through a series of cascading

protein modification cycles. These cycles form a cascade–like pathway carrying the

signal from the receptor-ligand complex through the interior of the cell to target

proteins. The signal can be amplified as it travels down the cascade.

However, the signal is not amplified indefinitely and is eventually terminated.

Phosphatase enzymes are one way in which a signalling pathway can be terminated.

After the signal is initiated and the information is passed onto its destination, the

signalling processes must be terminated. If the signal is not terminated then the cell

loses its responsiveness to new signals.

Many signal transduction pathways are mathematically modelled as a series of

cascade reactions. A simple pathway without feedback and only feed forward acti-

vation is depicted in Figure 1.3. The pathway is made up of protein modification

5

cycles. At each cycle a reaction converts a signalling protein between its two states,

unphosphorylated and phosphorylated. Following stimulation from a cell surface re-

ceptor, the protein x is phosphorylated into its active form xp through a reaction

catalyzed by a kinase. Similarly xp is converted into x through a reaction catalyzed

by a phosphatase. The active form of the signalling protein, xp, then activates the

next cycle where y is converted into yp. This process is continued with yp activating

the next cycle and so on. The signal travels through the cycles in the cascade and

results in a cellular response.

Protein modification cycles can also be more complicated. An example of such a

cycle is a protein which can be converted between an unphosphorylated form, a phos-

phorylated form, and a double phosphorylated form. A linear cascade model with

forward activation that uses double phosphorylation cycles (or double modification

cycles) is shown in Figure 1.4.

Stimulus

x xp

y yp

z zp

cellular response

Figure 1.3: A signalling cascade with forward activation and no feedback. The
kinase enzymes catalyze the reactions which convert the unphosphorylated forms
into the phosphorylated forms. The proteins x, y and z are converted into their
phosphorylated forms xp, yp, and zp respectively. The phosphorylated form of each
protein activates the next cycle in the cascade. These cascades can be of any length
but we have used three cycles for diagram simplicity.

6

Stimulus

x xp x2p

y yp y2p

Figure 1.4: A signalling cascade with double phosphorylation cycles. Here the sig-
nalling proteins can be in an unphosphorylated form (x), a phosphorylated form
(xp), and a double phosphorylated form (x2p).

We now discuss some mathematical models of signal transduction pathways.

Many of these models involve cascades of protein modification cycles. Mathematical

models with ordinary differential equations (ODEs) [69, 104, 39, 20, 83] and par-

tial differential equations (PDEs) [9, 73, 77, 13, 93, 51, 94, 30] have been used to

study many signal transduction pathways and other cellular signalling phenomenon.

These models incorporate important cell signalling behavior such as ultrasensitivity

[43, 109], sustained oscillations [47], and bistability (hysteresis) [80, 100, 4].

The majority of signalling models have used ODEs where the cell is viewed as

a mixed bag of enzymes and everything in the medium is well mixed [32, 69, 104,

39, 20, 83, 107, 82, 80, 10, 85, 7, 55, 84, 72, 52]. There are hundreds of ODE

models of signal transduction. The use of ODEs simplifies the analysis and numerical

computations. ODE models have been successful in displaying the complex signalling

behavior mentioned above.

We will begin by highlighting some popular ODE models and discuss some of the

main cell signalling behaviour observed. One of the first pioneering models using

linear cascades, like the one depicted in Figure 1.3, was analyzed in [32]. It is known

as the Goldbeter–Koshland (GK) model and is named after the researchers who

proposed the model. The GK model consists of a cascade of phosphorylation and

dephosphorylation modification cycles. In these cycles a protein is modified between

7

its phosphorylated and unphosphorylated form. The authors considered pathways

with a single cycle as well as pathways with multiple cycles.

We now briefly describe this model. For a single cycle, let the concentration of

the phosphorylated form of the protein be denoted as Rp and the concentration of

the unphosphorylated form of the protein be denoted as R. The total concentration

of the signalling protein is defined as Rt = R + Rp which is constant in time. The

reaction can be shown schematically as

R
↓S−−⇀↽−−
↑A

Rp

where the kinase concentration is denoted as S and the phosphatase concentration

is denoted as A. Using Michaelis-Menten enzyme kinetics [32], the evolution of Rp

is governed by
dRp

dt
=

k1S(Rt − Rp)

Km1 +Rt −Rp
− k2ARp

Km2 +Rp
.

Note that R = Rt − Rp has been substituted into the ODE. Therefore only one

ODE remains for Rp. Here, Km1 and Km2 are the Michaelis-Menten constants and

k1 and k2 are maximum rate constants. By studying the above differential equation

for a single cycle as well as other more complicated models with multiple cycles, the

authors were able to find conditions for ultrasensitivity in the signalling pathway. Ul-

trasensitivity describes an output response that is more sensitive to stimulus change

than the usual Michaelis-Menten response. One of the conditions for ultrasensitivity

is that the enzyme concentrations be saturated by the substrates R and Rp. This

means that S and A are much smaller than the total concentration Rt. Ultrasensi-

tive behavior is typically represented by a sigmoidal curve as shown in Figure 1.5.

The system thus behaves like a switch in response to external signals. The idea of

biological switches in signal transduction pathways is important. It is a way in which

constant or time dependent stimuli can be converted into an on–off switch.

8

Figure 1.5: Ultrasensitivity is typically represented by a sigmoidal curve (blue). This
can be contrasted with a typical Michaelis-Menten response (red).

Similar models to that of [32] by Goldbeter and Koshland have been studied in

[59, 33, 34, 68, 108, 11]. These papers focus on the ultrasensitivity of signalling path-

ways as well as robust switching mechanisms which are a result of the ultrasensitive

behaviour possessed by the models.

One specific signal transduction pathway which has received considerable at-

tention is the mitogen-activated protein kinase (MAPK) cascade. MAPK cascades

appear in many eukaryotic signal transduction pathways and are found in cells from

yeast to mammals [64, 106]. A eukaryotic any organism whose cells contain a nucleus

and other organelles enclosed within membranes.

The MAPK cascade is a signalling pathway made up of three levels where an acti-

vated kinase at each level phosphorylates the kinase at the next level down through

the cascade. The cascade consists of three different types of enzymes. They are

MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and MAPK. MAP-

KKKs activate MAPKKs by phosphorylation and MAPKKs activate MAPKs by

phosphorylation. A MAPK cascade is made up of one single and two double phospho-

rylation modification cycles [47, 107, 43]. The MAPK cascade has been extensively

studied through the use of ODE models [43, 47, 82].

First we will let x1 correspond to the concentration of MAPKKK-P (phosphory-

lated MAPK kinase kinase), x2 correspond to MAPKK-P (phosphorylated MAPK

9

kinase), x2 correspond to MAPKK-PP (double phosphorylated MAPK kinase), x3

correspond to MAPK-P (phosphorylated MAPK), and x3 correspond to MAPK-PP

(double phosphorylated MAPK). The dephosphorylated forms are denoted with a

tilde. The MAPK cascade is shown schematically in Figure 1.6.

The ODEs for the concentrations of the different enzymes represented in Figure

1.6 have the form

dx̃1

dt
= v2 − v1,

dx1

dt
= v1 − v2,

dx̃2

dt
= v6 − v3,

dx2

dt
= v3 − v6 + v5 − v4,

dx2

dt
= v4 − v5,

dx̃3

dt
= v10 − v7,

dx3

dt
= v7 − v10 + v9 − v8,

dx3

dt
= v8 − v9 .

(1.1)

The functions vi model the phosphorylation and dephosphorylation kinetics for

the pathway in Figure 1.1. Often Michaelis-Menten kinetics are used. For example,

the functions v1 and v2 could have the form

v1 =
V1x̃1

K1 + x̃1

v2 =
V2x1

K2 + x1

,

and so on. Here K1 and K2 are the Michaelis-Menten constants and V1 and V2 are the

maximum rate constants. Along with the ODEs, we have the following conservation

laws for the total concentrations,

x1total = x̃1 + x1,

x2total = x̃2 + x2 + x2,

x3total = x̃3 + x3 + x3.

Amathematical model of the MAPK pathway, similar to (1.1), was first developed

and studied by Huang and Ferrell in [43]. Based on numerical simulations with

10

Stimulus

1

2

3 4

56

7 8

910

x̃1 x1

x̃2 x2 x2

x̃3 x3 x3

Figure 1.6: The MAPK cascade consists of a single modification cycle as well as two
double modification cycles. The labels i = 1, 2, . . . , 9 correspond to the functions vi
appearing in the ODE system (1.1). For example, the function v1 would be used for
the reaction for x̃1 into x1.

11

hundreds of randomly generated parameter choices, they found that the model could

be ultrasensitive. The degree of ultrasensitivity increases as the cascade is descended.

This showed that the MAPK cascade can convert different types of stimuli input into

a switch like output. This prediction was also verified by biochemical experiments in

Xenopus oocyte extracts in the same paper [43]. The stimulus response curves were

similar in shape to those given by the Hill equation for n > 1. Hill equations have

the form

y =
xn

1 + xn
.

As n increases the shape of this curve becomes sigmoidal and behaves like a

switch. Ultrasensitivity is important for the proper functioning of the MAPK cascade

because the cascade can then filter out noise, respond more robustly to smaller

stimuli, and flip from off to on over a narrow range of stimuli. Switch like behaviour

is important in signalling pathways that govern cellular functions such as mitogenesis,

cell fate decisions, differentiation, and cell cycle progression.

In later work [27, 28, 110], Ferrell and collaborators showed that ultrasensitiv-

ity can lead to bistability in signalling pathways where activated MAPK positively

regulates the input to the cascade. Bistability means the system has both a sta-

ble off state and a stable on state separated by an unstable state which acts as a

threshold. Their results were based on experiments with Xenopus Oocytes as well

as some simple quantitative modelling and graphical techniques. They found that a

positive feedback loop coupled with a Michaelis-Menten response led to a stable on

state and an unstable off state. A positive feedback loop is one in which the output

of the signalling pathway first increases the input of the pathway which then also

again increases the output. Saying it another way, the input produces more of the

output which in turn produces more of the input etc. A negative feedback is the

exact opposite. The output produces less of the input which then produces less of

the output. Any nonzero level of MAPK activity would trigger the feedback loop and

force the system into its on state. On the other hand, they showed that the positive

feedback loop coupled with an ultrasensitive response led to bistability. This ensures

that the oocyte cannot rest in a state with intermediate MAPK phosphorylation.

In summary, the authors found that the MAPK cascades intrinsic ultrasensitivity

12

coupled with a positive feedback loop resulted in bistability and therefore a robust

on-off switch for the pathway.

Switch like behaviour can be either ultrasensitive or an actual true switch between

alternate states of a bistable system. It was long thought that positive feedback loops

and ultrasensitivity were required in order to have bistability in signalling cascades.

Since bistability is responsible for cell differentiation, cell cycle progression, and a

type of biochemical memory [60], the question arose as to whether bistability can be

generated by mechanisms other than those already found in the literature.

In [72] Kholodenko and co-workers showed that bistability can be generated by

double modification cycles, in which the two phosphorylation steps are catalyzed by

the same enzyme. However, an analytic study of the conditions and the parameters

required for this behaviour was not considered in this paper. In [80], Kholodenko and

others analytically demonstrated that double modification of a protein can generate

bistability. It should be emphasized that the bistability was found in a single dual

phosphorylation–dephosphorylation cycle of MAPK.

Such double modification cycles are illustrated in Figure 1.6. Assuming that the

single double modification cycle was the one involving x2 in Figure 1.6, then the

model studied in in [80] consisted of the ODES in (1.1) for x̃2, x2, and x2. For the

specific Michaelis-Menten enzyme functions used for vi, refer to [80]. This analysis

was done in the absence of a cascade of double modification cycles as well as any

imposed feedback regulation. After finding bistability in a single double modification

cycle, multistability was then analyzed in cascades of double modification cycles. The

necessary kinetic conditions to ensure that bistable behavior was generated were

found as well. Multistability occurs in systems that are neither stable nor totally

instable. These systems alternate between two or more mutually exclusive states

over time.

So far we have highlighted some important papers analyzing ODE models of sig-

nal transduction pathways. One of these pathways, the MAPK pathway, has the

ability to exhibit ultrasensitive behaviour. This is a characteristic of many signalling

cascades in general. We have also pointed out that another intrinsic property of

the signalling MAPK cascade is bistability. Double modification cycles alone, cou-

pled with the appropriate enzyme kinetics [80], can lead to bistability in signalling

13

cascades.

Another important signalling behaviour is sustained oscillations. MAPK cascades

often have long feedback loops which can be positive or negative. Whether the loop

is positive or negative depends on whether the final kinase in the cascade stimulates

or inhibits the activation of the stimulus at the initial level. In [47], Kholodenko

showed that a negative feedback loop combined with the ultrasensitive behaviour

of the MAPK cascade can lead to sustained oscillations in MAPK phosphorylation.

Data was used to predict that the period of oscillations could be anywhere from

minutes to hours. A MAPK cascade with a negative feedback loop is shown in

Figure 1.7.

Stimulus

1

2

3 4

56

7 8

910

x̃1 x1

x̃2 x2 x2

x̃3 x3 x3

negative feedback loop

Figure 1.7: The MAPK cascade with a negative feedback loop. The double phospho-
rylated form of MAPK, with concentration x3, inhibits the activation of the stimulus
at the initial level.

The model solved in [47], which considers the pathway in Figure 1.7, involves the

ODES in (1.1). In the absence of feedback (see Figure 1.6), the function v1 would

have the form

v1 =
V1x̃1

K1 + x̃1
.

14

Again, K1 and K2 are the Michaelis-Menten constants and V1 and V2 are the maxi-

mum rate constants. To model the negative feedback as shown in Figure 1.7, Kholo-

denko chose v1 to be of the form [47]

v1 =
V1x̃1

K1 + x̃1
· 1

1 +
(

x3

K1

)n .
The exponent n measures the strength of the feedback. The other forms for vi can

be found in [47].

A strong negative feedback can be used to turn off the activation of a cascade.

The dynamics in this scenario are associated with a transient response. On the

other hand a strong negative feedback may have other effects. In some situations,

increasing the level of negative feedback can cause the steady state to lose its stability

through a Hopf bifurcation [35]. With this loss of stability, the phosphorylation levels

of the cascade kinases begin to oscillate in a sustained way. Kholodenko showed that

a negative feedback loop combined with the ultrasensitivity of the MAPK cascade

could lead to sustained oscillations in the concentration of the enzymes in the cascade.

Later it was shown in [82] that sustained oscillations could be present in an MAPK

cascade in the absence of explicit negative feedback. The model considered in that

paper was the original Huang-Ferrell model for the MAPK cascade given in [43].

1.2 Spatiotemporal Signalling Dynamics and PDE Models

ODE models have provided numerous insights into the temporal dynamics of signal

transduction but there are still many questions about the spatial aspects of signal

transduction. Signalling pathways are spatially organized and models with spa-

tiotemporal dynamics can determine how time and space affect signalling pathways

and cell fate decisions [50].

To study how the behaviour of a signalling system changes in time and space,

PDE models are often used. Reaction diffusion equations are a special class of PDEs

and have the form
∂

dt
U = DΔxU +R(U).

Each component of the vector U(x, t) represents the concentration of one substance.

The diagonal matrix D contains the diffusion coefficients and R accounts for all the

15

different reactions. Reaction diffusion equations in signal transduction models can

explain the changes in concentrations of signalling proteins and enzymes that are a

result of temporal and spatial dynamics.

For example, in many signalling cascades the initiating signals are generated on

the cell membrane at cell surface receptors. Then second messengers diffuse through

the cytoplasm through a series of cascading reactions. That is, signalling proteins

become activated and diffuse to other regions in the cell. The activated proteins then

catalyze other reactions among different signalling proteins. These proteins become

activated too and then diffuse to other regions in the cell. The components of these

pathway are organized in space. ODE models, where everything is assumed to be

well mixed, can not account for these spatial features of the signalling pathways or

the diffusive transport that is required. Reaction diffusion equations can account for

this as well as use geometry which takes into account the importance of cell shape

in signal transduction [74, 54, 79].

We now highlight some key concepts which can be incorporated into a cell sig-

nalling model consisting of PDEs specified over a spatial domain. The first is the

role of scaffolding proteins in signalling cascades. Scaffolding proteins interact with

and bind multiple signalling proteins within a signalling cascade, forming them into

complexes. Scaffolds can localize the reactions of a signalling pathway to specific

regions within the cell (see Figure 1.8). For example, scaffolds can cause phospho-

rylation of signalling proteins to occur on the surface of compartments within the

cell which then further activate downstream pathways [18]. Scaffolds in signalling

systems, such as the MAPK pathway, have been reviewed in [58, 91].

16

kinase

phosphatase

Figure 1.8: In cell signal transduction pathways, activating enzymes (kinase enzymes)
and deactivating enzymes (phosphatase enzymes) can separate into different regions
and cause spatial gradients of signalling proteins and molecules. Kinase enzymes can
localize to subcellular structures while phosphatase enzymes can be spread uniformly
throughout the cytosol.

PDE models can incorporate the diffusive transport of signalling proteins and

molecules as well as the spatial separation of opposing (activating and deactivating)

enzymes within a signalling pathway. Signal transduction pathways make use of cas-

cades of protein modification cycles. The kinase and phosphatase enzymes, which

catalyze the activation and deactivation of signalling proteins, can be anchored to

specific spatial regions within the cell such as membranes and intracellular compart-

ments (see Figure 1.8). The opposing activator and deactivator enzymes are often

spatially separated which can lead to complex signalling gradients within the cell.

For example, signalling proteins can be phosphorylated at the cell membrane due

to a membrane bound kinase. The signalling proteins then diffuse through the cy-

tosol away from the membrane where they are deactivated by phosphatase enzymes.

Because of this spatial separation of opposing enzymes in space, spatial gradients of

phosphorylated signalling proteins occur. Concentrations of the activated proteins

are higher near the membrane and lower in the cell interior. The decay rate of these

gradients depends on the diffusion rates, decay rates, and the enzyme kinetics.

Signalling spatial gradients of this type have been discovered experimentally in

different signalling pathways [45, 111, 29, 76]. Spatial gradients of signalling proteins

can coordinate signalling around localized subcellular structures such as scaffolds.

Signalling gradients also provide spatial information for key cellular processes such

17

as cell division. For a thorough discussion on scaffolding proteins, separation and

localization of enzymes, and the importance of spatiotemporal dynamics in signal

transduction, see the reviews [53, 50, 49].

We will now discuss some PDE models of signal transduction and motivate the

PDE model that is studied in the majority of this thesis. The first analysis of intra-

cellular signalling gradients, arising from the spatial separation of opposing enzymes,

was under taken by Kholodenko and Brown[13]. This very simple model considers a

kinase localized to a spherical subcellular membrane and a phosphatase distributed

uniformly throughout the cytoplasm. The authors estimated the relative steady state

gradient for a protein that is phosphorylated by the localized kinase and dephospho-

rylated by the uniformly spread phosphatase. It was assumed that the phosphatase

was not saturated by the signalling protein. Along with assuming spherical symme-

try, the following 1D PDE for a spherical cell which models diffusion and decay was

used,

dp

dt
=

D

r2
∂

∂r

(
r2
∂p

∂r

)
− kpp.

The diffusion coefficient D is assumed to be constant and the same for the active

and inactive forms of the signalling protein. The dephosphorylation rate is kp. The

dependent variable p(r, t) is the concentration of the phosphorylated form of the

protein in time and some distance r from the centre of the cell. The steady state

solution to this equation is

p(r, t) =
C

r
(eαr − e−αr), α =

√
kp/D,

where C is a constant of integration. This is assuming there is no diffusive flux at

the centre of the cell which implies that ∂p/∂r = 0. The relative difference in the

steady state concentration of the phosphorylated form between the cell membrane

and the centre of the cell is given by

p(L)− p(0)

p(0)
=

eαL − e−αL

2αL
− 1,

where L is the radius of the sphere. Therefore, to estimate the relative gradient, only

the cell radius, diffusion rate, and dephosphorylation rate are needed. The authors

then estimated the potential size of such gradients using experimentally measured

18

values for these parameters. Similar models were also used by Kholodenko and others

[51].

Kholodenko and Stelling [93] studied 1D models using cascades and the spatial

separation of enzymes. This 1D geometry corresponds to a cylindrical cell of length

H . One of the models in the paper assumed different diffusivities for a signalling

protein for its active and inactive forms. It was assumed that a kinase was localized to

one pole of the cell (at the coordinate x = 0), and the phosphatase was distributed

uniformly throughout the cytosol. The kinase activation rate va was defined as a

boundary condition at x = 0 where the activation of the signalling protein occurs.

The phosphorylated protein, with concentration c(x, t), diffused through the cell

where it was dephosphorylated at a rate vi. Because the diffusion coefficients for

the inactive form, with concentration ci, and the active form, with concentration c,

are different, two PDEs were considered. This is because the total concentration

ctotal = ci(x) + c(x) is not constant in space. The model consisted of the following

reaction diffusion equations and boundary conditions,

∂c

∂t
= D

∂2c

∂x2
− vi(c)

∂ci
∂t

= Di
∂2ci
∂x2

+ vi(c)

−D
∂c

∂x

∣∣
x=0

= Di
∂ci
∂x

∣∣
x=0

= vA;
∂c

∂x

∣∣
x=H

=
∂ci
∂x

∣∣
x=H

= 0.

Here, va corresponds to an activation rate and vi corresponds to a deactivation rate.

More complicated models involving multiple cycles in a cascade, using extensions

of the above model, were also developed. Analysis and simulations were carried out

to solve for the steady state solutions. One of the main results was that different

diffusivities of the active and inactive forms of the signalling protein could lead to

large spatial gradients in the cytoplasm.

Kholodenko and others [73] developed a spatiotemporal model for the MAPK

cascade. ODEs were used to describe the evolution of the first single phosphorylated

cascade whereas reaction diffusion equations were used to describe the dynamics

of the two double modification cycles (see Figure 1.4). The geometry used was a

sphere and spherical symmetry was assumed for the diffusion operator. Computer

simulations revealed that positive feedback and bistability in the MAPK pathway

19

could generate a type of travelling wave from the surface deep into the cell interior.

This travelling wave of phosphorylated proteins could be a mechanism of carrying a

signal over large distances when diffusive transport alone is not enough.

We should say at this point that in this thesis we will not be concerned with

how exactly the signal is transferred through the cell. It can happen through the

diffusive transport of signalling molecules or it can happen through other mechanisms

just mentioned in [73]. In this thesis we will only be considering the changes in

concentrations of the signalling proteins. More specifically, we will consider models

where the signalling molecules are diffusing through the cell which means they are

moving and carrying the signal elsewhere. Therefore, an increase in concentration

could be interpreted as an increase in the strength of the signal.

In [9], a 2-state reaction-diffusion system in one dimension (1D) was analyzed and

expressions for the steady state concentration profiles were obtained analytically. For

related signal transduction models which use PDEs in 1D or use the geometry of a

sphere, see [77, 101, 86, 37]. These PDE models and the ones mentioned so far

have been in either 1D or used the geometry of a sphere where spherical symmetry

is assumed. In some of these papers, the models were simple enough so that the

steady state equations could be solved analytically. Others mostly relied on numerical

simulations.

Much larger and more complicated models in 2D and 3D have been numerically

investigated in [97, 95, 36]. These models are for specific signalling pathways such

as the p53–mdm2 oscillatory system, the Hes1 and p53–Mdm2 pathways, and the

NF-κB pathways. The finite element package Comsol [1] is used extensively in all

these papers to carry out the numerical simulations. Analysis is just not possible on

models of this magnitude because of the large number of equations and parameters.

The aim of these papers is to investigate numerically the spatiotemporal dynamics

of signalling pathways and how factors such as diffusion and cell geometry impact

cell signalling dynamics.

Now that we have highlighted some PDE models of signal transduction we will

discuss the main works which have motivated this thesis. The first such paper was

by Ward and and Straube [94]. In this paper a PDE model with a domain consist-

ing of a sphere with small spherical compartments in its interior was investigated.

20

This model is relevant because diffusion is in 3D and more importantly the model

takes into account the spatial separation and localization of opposing enzymes. The

kinase enzymes are localized around the small interior compartments, whereas the

phosphatase enzymes are uniformly spread throughout the cytosol. After activation

at the compartments, signalling proteins diffuse away from the compartments into

the cytosol where they are deactivated. The method of matched asymptotic ex-

pansions is used to derive approximate solutions for the steady state concentration

profile of the signalling proteins. It was shown that the concentration profiles either

decayed algebraically or exponentially, depending on the diffusion rates and dephos-

phorylation rates. This model consisted of only one type of signalling molecule which

could be in an active or deactivated state.

The methods and model from [94] were extended in [61]. In this paper a model of

two different signalling proteins, which formed a simple cycle within a cascade, was

considered. The system consisted of feed forward activation from the first subcel-

lular compartment to the second as well as negative feedback from the second back

to the first. For one specific choice of enzyme kinetic functions, the steady state

concentration profiles were found analytically for different parameter scalings.

The model that was used in [61] is the following boundary value problem,

ut = Δxu− α2
uu, x ∈ Ω1/Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu =
u

v + 1
, x ∈ ∂Ωε1

vt = Δxv − α2
vv, x ∈ Ω1/Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = u2, x ∈ ∂Ωε2 .

(1.2)

A more general model of (1.2) is studied in Chapter 2. The PDEs and boundary

conditions in (1.2) are defined on a 3D geometry. This geometry consists of a sphere

with two small spherical compartments in its domain. The domain is depicted in

Figure 1.9.

21

v

u

ON OFF

ε

Ω1

n̂

n̂

Ωε1

Ωε2 phos

kin

Ω1\Ωε

x1x2

ON

OFF

Figure 1.9: Diagram of cell domain with two internal compartments. The normal
vector n̂ points outward to the cytosolic region, i.e. inward to the interior compart-
ments. The centers of the compartments are the position vectors x1 and x2. The
activating enzymes (kin) are localized to the surfaces of the two compartments while
the deactivating enzymes (phos) are uniformly distributed through the cytosol.

The equations in (1.2) model the interactions between two different types of

signalling molecules with concentrations u(x, t) and v(x, t). The signalling molecules

with concentration u(x, t) are activated at the first compartment which is centred

at x1. The signalling proteins then diffuse from the first compartment to the second

compartment, and activate the second type of signalling molecules with concentration

v(x, t). The second type of molecules are activated at the second compartment and

then diffuse through the cytosol to the first compartment. Upon reaching the first

compartment, the second type of signalling molecules shut off the activation of the

first signalling molecules. These dynamics are modelled through the specific choice of

enzyme kinetic functions, u/(v+1) and u2, which appear in the boundary conditions

on the subcellular compartments in (1.2). Kinase enzymes are localized to the two

subcellular compartments which activate the signalling molecules. During this simple

signalling cycle, the signalling molecules are being deactivated throughout the cytosol

by phosphatase enzymes which are spread uniformly throughout the domain.

Since the compartments each have a radius of ε � 1, asymptotic methods can

be used to analyze (1.2). In [61] the method of matched asymptotic expansions was

used to find the steady state solutions of (1.2) for different scalings of the decay

22

parameters αu and αv. It was first shown in [94], for a similar model, that if these

decay parameters are O(1) then the concentration profiles decay exponentially from

the compartments through the cytosol. It was also shown that if these parameters

are O(
√
ε) then the concentration profiles decay algebraically and the solutions are

approximately constant in space away from the compartments. This is the same for

the model (1.2).

The steady state solutions of (1.2) can be written in terms of two different Green’s

functions. These functions are the modified Helmholtz Green’s function, Gh(x; x0),

and the Neumann Green’s function, Gn(x; x0). These functions, as well as their

regular parts, GR and Rn, will be completely defined in Chapter 2. For now we will

write them as,

Gh(x; x0;α) =
e−α|x−x0|

4π|x− x0| +GR(x; x0;α)

Gn(x; x0) =
1

4π|x− x0| +Rn(x; x0).

When a decay parameter, αu or αv from (1.2), is O(1), the associated steady state

is written in terms of the modified Helmholtz Green’s function Gh which decays

exponentially. When a decay parameter is O(
√
ε), the associated steady state is

written in terms of the Neumann Green’s function Gn (with regular part RN) which

decays algebraically. The steady state solutions of (1.2) are summarized in Tables

1.1, 1.2, 1.3 and Figures 1.10, 1.11, 1.12, adapted from [61]. Constants such as c1,

χ1, χ2, u0, and v0 are defined at the end of the tables.

Table 1.1: Steady state solution of (1.2) with αu = O(1) and αv = O(1). The result
is plotted in Figure 1.10.

u(x) = 4πc1Gh(x; x1) +O(ε)

v(x) = 64π3c21Gh(x2; x1)
2Gh(x; x2)ε+O(ε2)

c1 =

√
4πGR(x1; x1)− αu

64π3Gh(x1; x2)Gh(x2; x1)2

23

−1 −0.5 0 0.5 1
0

10

20

30

40

u

x

(a) αu = 1, αv = 1

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

v

x

(b) αu = 1, αv = 1

−1 −0.5 0 0.5 1
0

20

40

60

80

100

u

x

(c) αu = 1, αv = 2

−1 −0.5 0 0.5 1
0

1

2

3

4

v

x

(d) αu = 1, αv = 2

Figure 1.10: Comparison of the asymptotic solutions (star) from Table 1.1 with those
from numerical simulations (solid line). Radius of compartments, location of Ωε1 ,
and location of Ωε2 are ε = 0.01, (0.5, 0, 0), and (−0.5, 0, 0), respectively. Here all
the solutions exhibit exponential decay.

Table 1.2: Steady state solution of (1.2) with αu = α1

√
ε and αv = O(1) where α1 is

O(1). The result is plotted in Figure 1.11.

u(x) = 1√
ε
u0 +

√
ε(4πc1Gn(x; x1) + χ1) +O(ε3/2)

v(x) = 4πu2
0Gh(x; x2) + ε8πu0(4πc1Gn(x2; x1) + χ1)Gh(x; x2) +O(ε2)

u0 =

√
3

4πα2
1Gh(x1; x2)

χ1 =
Rn(x1; x1)

2u0Gh(x1; x2)
− 4

3
πu0α

2
1Gn(x2; x1)

c1 =
α1

√
3

6
√

πGh(x1; x2)

24

−1 −0.5 0 0.5 1
11

12

13

14

15

16

u

x

(a) α1 = 1, αv = 1

−1 −0.5 0 0.5 1
0

50

100

150

v

x

(b) α1 = 1, αv = 1

−1 −0.5 0 0.5 1

5

10

15

20

u

x

(c) α1 = 5, αv = 1

−1 −0.5 0 0.5 1
0

1

2

3

4

5

v

x

(d) α1 = 5, αv = 1

Figure 1.11: Comparison of the asymptotic solutions (star) from Table 1.2 with those
from numerical simulations (solid line). The geometry is the same as in Figure 1.10.
Here the solution for u decays algebraically and v decays exponentially.

Table 1.3: Steady state solution of (1.2) with αu = α1

√
ε and αv = α2

√
ε where α1

and α2 are O(1). The result is plotted in Figure 1.12.

u(x) = u0 + ε(4πc1Gn(x; x1) + χ1) +O(ε2)

v(x) = v0 + ε(4πu2
0Gn(x; x2) + χ2) +O(ε2)

v0 =
3
α2
1

u0 =
α2

α1
c1 =

u0

v0

χ2 = 4π(Rn(x1; x1)− u2
0Gn(x1; x2))

χ1 =
α2
2χ2

6u0
− 4πc1Gn(x2; x1)

25

−1 −0.5 0 0.5 1
0.9

1

1.1

1.2

1.3

1.4

u

x

(a) α1 = 1, α2 = 1

−1 −0.5 0 0.5 1
2.8

3

3.2

3.4

3.6

3.8

4

v

x

(b) α1 = 1, α2 = 1

−1 −0.5 0 0.5 1
5

5.5

6

6.5

7

u

x

(c) α1 = 5, α2 = 1

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

v

x

(d) α1 = 5, α2 = 1

Figure 1.12: Comparison of the asymptotic solutions (star) from Table 1.3 with those
from numerical simulations (solid line). The geometry is the same as Figure in 1.10.
Here both the solutions for u and v decay algebraically.

If both αu = O(
√
ε) and αv = O(

√
ε) then the steady state solutions u and v of

(1.2) have asymptotic expansions of the form,

u(x) = u0 + εu1(x) + ε2u2(x) + . . . ,

v(x) = v0 + εv1(x) + ε2v2(x) +

where u0 and v0 are constants. This can be seen from Table 1.3. Not only do

u and v have O(1) expansions for the particular choice of enzyme kinetic functions

u/(v+1) and u2, but these expansions have the same form for any arbitrary functions

F (u, v) and G(u, v). This is contrasted with the case when at least one of the decay

parameters is O(1). For example, if αu = O(1) and αv = O(1) then the expansions

for the steady states of u and v in (1.2) have the form (see Table 1.1),

u(x) = u0(x) + εu1(x) + ε2u2(x) + . . . ,

v(x) = εv1(x) + ε2v2(x) + ε3v3(x) +

26

Moreover, as we will discuss in more detail in Chapter 2, there are also inner expan-

sions which in this case have the form,

u(i)(y) =
1

ε
u
(i)
−1(y) + u

(i)
0 (y) + εu

(i)
1 (y) + . . . ,

v(i)(y) = v
(i)
0 (y) + εv

(i)
1 (y) + ε2v

(i)
2 (y) +

In the case that αu = O(
√
ε) and αv = O(1) (see Table 1.2) the steady state

solutions u and v have the form,

u(x) =
1√
ε
u0 +

√
εu1(x) + ε3/2u2(x) + . . . ,

v(x) = v0(x) + εv1(x) + ε2v2(x) + . . . ,

u(i)(y) =
1√
ε
u
(i)
0 (y) +

√
εu

(i)
1 (y) + ε3/2u

(i)
2 (y) + . . . ,

v(i)(y) =
1

ε
v
(i)
0 (y) + v

(i)
1 (y) + εv

(i)
2 (y) +

The point is, in the case where one of the decay parameters is O(1), the scaling of

the asymptotic expansions depends on the particular choice of boundary conditions

defined on the compartments.

One of the goals of this thesis is to analyze models of the form (1.2) where the

boundary condition functions u/(v + 1) and u2 are replaced by arbitrary functions

F (u, v) and G(u, v) respectively. To do the analysis for arbitrary functions F and

G, we require that the decay parameters αu and αv are both O(
√
ε). This is because

the asymptotic expansions for u and v will all have O(1) expansions whose scaling

is independent of the choice of F and G. In Chapter 2 and Chapter 3 it is assumed

that the decay parameters αu and αv are both O(
√
ε). In Chapter 4 we drop this

assumption and consider only numerical simulations.

When αu and αv are both O(
√
ε) the signalling gradients for u and v will not

decay exponentially away from the cellular compartments where activation occurs.

It is not difficult for the signal to propagate from one compartment to another or

to other regions within the cell because of the weak dephosphorylation rate. This

may not be biologically relevant because often these signalling gradients decay expo-

nentially. Often diffusive transport is not enough and there must be other signalling

mechanisms which allow the signal to travel over larger distances when the inactiva-

tion rate is strong [48]. In this thesis though, we are assuming a weak inactivation

rate so that we can carry out the analysis in general.

27

The models in this thesis are motivated by cell signal transduction pathways in

general. We make no attempt though to reproduce experimental quantitative data.

Our model is quite small in terms of the number of variables and parameters we use.

We usually consider two or three signalling proteins. We could extend our results

to larger pathways, such as the MAPK pathway, but that is not the intent of this

work. The focus of this thesis is on the mathematical methods and techniques used

to analyze such models.

1.3 Models with Delay and Numerical Challenges

An important goal of this thesis will be to consider general models of (1.2) which

we do in Chapter 2. Another goal is to study a model which involves adding a time

delay to the model studied in Chapter 2. This PDE model with delay will be studied

in Chapter 3. The delay is used to model the time lapse during enzyme reactions

and also the recovery times associated with conformational changes (changes in the

shape of the cell) during the phosphorylation process [92, 40].

It is well known that time delays in differential equations often lead to oscillations.

Sustained oscillations are an important feature of some signalling pathways and are

often a result of negative feedback loops [47]. Time delay, in addition to negative

feedback, is another explanation for observing oscillations in signalling systems. We

also note that ODE signalling models which result in sustained oscillations often

have many variables and parameters. Using ordinary and partial delay differential

equations, sustained oscillations can be observed in much simpler systems.

PDEs with delay are more complicated and less studied than ODEs with delay.

The analysis and numerical simulations of delay PDEs in higher dimensions is also

challenging. Signalling models incorporating both PDEs and delay are also not well

studied. A PDE model in two dimensions with distributed delay of the p53–mdm2

oscillatory system was studied in [36]. In that study, the distributed delay term in

the PDE could conveniently be replaced by an additional ODE. Therefore no spatial

model with an explicit delay had to be solved numerically. Although there are finite

element method (FEM) solvers for PDEs, such as Comsol, they do not have the

option to treat problems with delays.

For standard ODEs the derivative of the solution depends only on the solution

28

at the current time. For delay differential equations (DDEs) the derivative of the

solution also depends on the solution at past times. Consider the following example.

The ODE
dy

dt
= ay, y(0) = 1,

has the exponential solution

y(t) = eat.

Now consider the same differential equation but with a constant delay term in the

argument of y. This turns the ODE into a DDE,

dy

dt
= ay(t− T), y(t) = 1 for t ∈ [−T, 0]. (1.3)

The derivative now depends on the solution in the past. Specifically, it depends on

the solution T units back in time. For the initial interval t ∈ [0, T] we need the values

of y(t) for t ∈ [−T, 0]. In contrast to initial value problems (IVPs) for ODEs, IVPs

for DDEs require initial data on an interval preceding t = 0. We have thus stated in

(1.3) that y(t) = 1 on the interval [−T, 0]. We refer to y(t) on [−T, 0] as the history

data. The constant T is called the delay or lag.

The solutions of the above ODE and DDE can be quite different. The above

ODE has exponential solutions but if we let T = 1 and a = −π/2 then it is easy to

verify by direct substitution that y(t) = cos π
2
t is a particular solution of the DDE.

The addition of delay often leads to some type of oscillation.

One of the techniques to treat DDEs with constant delay is the method of steps

[8]. The method of steps turns a DDE into a series of IVPs for ODEs. It can be used

to treat DDEs analytically and numerically. Here we will use the method of steps

to solve (1.3) analytically with a = 1 and T = 1. On the interval [0, 1] the function

y(t − 1) is accessing history data defined on [−1, 0]. Since y(t) = 1 for t ∈ [−1, 0],

the DDE on [0, 1] becomes y′(t) = 1 with the initial condition y(0) = 1. The solution

is y(t) = t + 1 for t ∈ [0, 1]. We can then solve (1.3) on [1, 2] because we know the

required delayed solution on [0, 1]. For t ∈ [1, 2] we have y′(t) = (t− 1)+1 = t along

with y(1) = 2. The solution is y(t) = 1
2
t2 + 3

2
. On the next interval [2, 3] we have

y′(t) = 1
2
(t−1)2+ 3

2
and y(2) = 7/2. Then y(t) = 1

6
(t−1)3+ 3

2
t+ 1

3
for t ∈ [2, 3]. The

solution y(t) as well as its first derivative is plotted in Figure 1.13 for t ∈ [−1, 3].

29

−1 0 1 2 3
0

1

2

3

4

5

6

7

y
an

d
y
′

t

Figure 1.13: The black curve is the solution y(t) and the red curve is the first
derivative y′(t). There is a jump discontinuity in the first derivative at t = 0 which
is propagated as a discontinuity in the second derivative at t = 1 and so on. Thus
there is a smoothing effect as time evolves forward.

An important remark is that the solution has a jump discontinuity in its first

derivative at t = 0. Note that y′(0−) = 0 and y′(0+) = 1. From differentiating

(1.3) we have y′′(t) = ay′(t − T) and in particular y′′(T) = ay′(0). Therefore the

discontinuity in the first derivative at t = 0 is propagated to a discontinuity in the

second derivative at t = T . Similarly, the discontinuity in the second derivative

at t = T is propagated to a discontinuity in the third derivative at t = 2T and

so on. A general property of DDEs is that derivative discontinuities (from now on

referred to as simply discontinuities) propagate in time. In contrast, discontinuities

can appear in the solution of higher derivatives of an IVP for an ODE, while they

are less common.

There are different types of DDEs and each has different properties with regards

to discontinuity propagation and smoothing. The most common case in modelling

literature is when the delay terms (also called lag functions) are constants [89, 90].

However there is interest in systems of DDEs where the lag functions are time depen-

dent and or state dependent. There are also DDEs which have delayed arguments

appearing in the derivative terms. These are called neutral DDEs. They can have

very different behavior and pose further theoretical and numerical difficulties. For

example, the solutions to neutral DDEs may not get smoother as the integration

proceeds [5].

30

In most cases, numerical methods are used to solve DDEs. The numerical meth-

ods used for DDEs are based on the standard methods for ODEs with some additional

features. In the appendix of this thesis, in §A.1, we discuss some important ideas

which are involved in creating efficient numerical solvers for DDEs. In that section

we also mention several specific solvers which are commonly used to solve standard

DDEs numerically.

Despite all the advances in numerical solvers for DDEs, solving PDEs with delay

is still largely unexplored. Less work has been done on numerical solvers for delay

PDEs in 1D and 2D than with numerical solvers for ordinary DDEs. We are not

aware of any numerical solvers documented in the literature which can handle delay

PDEs in 3D. Also, in higher dimensions, numerical simulations of PDEs with delay

are usually carried out using simple geometries such as disks and squares.

Much of the work on delay PDEs focuses on 1D reaction diffusion equations with

constant delay [65, 67, 66, 112, 38]. In [44, 102], parabolic PDEs with delay in 1D are

considered. In [14] predator prey models in 2D (involving regions that are disks and

squares) with delay are studied. In [113], a class of 2D nonlinear delay hyperbolic

PDEs is investigated. In the appendix of [113], the authors discuss extending their

results to 3D but no simulations are carried out. In all of these papers, numerical

schemes for PDEs with delay are developed. A major topic of these papers is on

the solvability, stability and convergence of the methods. Numerical simulations are

usually carried out at the end of the papers to validate the methods developed.

In Chapter 3 we study a PDE with delay defined over the geometry depicted in

Figure 1.9. Because the geometry is complicated, we use the FEM solver Comsol.

This software does not allow for delay to be added to the equations. As we will explain

in Chapter 3, the delay in our model is only added to the boundary conditions which

model the enzyme kinetics on the compartments inside the domain. Since these

compartments are small, the solutions are spherically symmetric on and around

them. We are able to use Comsol along with the method of steps to solve the PDE

model with the delay in the compartment boundary conditions. When storing history

data for the solution, we only need to store solution values at singles points within

the domain. Then an interpolation function can be used to turn this discrete data

into a continuous extension.

31

Although we can repeat the analysis from Chapter 3 for the case of having the

delay in the actual PDE itself, the numerical analysis in this case becomes much

more difficult. Now history data needs to be stored and saved over an entire 3D

domain. Then an interpolating function in 3D space and time needs to be fitted to

that data. We have not considered this case of solving a general 3D PDE with delay

over a complicated geometry, and to our knowledge, this has not been considered in

the literature.

1.4 Outline of Thesis

An outline of this thesis is as follows. In §2.1 we begin by introducing a generalized

model of (1.2). The boundary condition functions u/(v + 1) and u2 are replaced by

F (u, v) and G(u, v) respectively. We also assume that αu = O(
√
ε) and αv = O(

√
ε)

for the majority of Chapter 2 (and Chapter 3). Next, in §2.2 we use the method of

matched asymptotics to find approximate expressions for the steady state solutions of

the model. In §2.3 we carry out a linear stability analysis to derive a linear eigenvalue

problem which allows us to determine the stability of the steady state solutions. In

§2.4 we introduce a slow time variable which allows us to approximate the system of

PDEs with a system of differential algebraic equations (DAEs). This system of DAEs

can be converted into a system of ODEs for the examples we consider. The solutions

to these systems are used in the asymptotic formulas for the time dependent solution

to the PDE model. These solutions are valid when the solution is not changing too

quickly. In all the examples considered, we find that the solutions of the DAE systems

agree well with the solutions of the PDE model. In §2.5 we apply the results from

§2.2 and §2.3 to some specific examples. In these examples we use the results from

previous sections to find complex signalling behaviour in the simpler ODE systems

such as robust switches, bistability, and sustained oscillations. This behaviour is

then confirmed in PDE simulations carried out in Comsol.

In Chapter 3 we repeat the analysis in Chapter 2, but with a time delay added

to the model. In §3.1 we rewrite the model from Chapter 2 and then add time delay

to get the model which will be analyzed. In §3.2 we derive a nonlinear eigenvalue

problem which determines the stability of the equilibrium solutions. In §3.3 we find

approximate time dependent solutions of the model. Also in §3.3, the system of PDEs

32

is approximated by a system of delayed differential algebraic equations (DDAEs).

In §3.4 we discuss the numerical method we have implemented, the method of steps

combined with Comsol, to solve the 3D PDE model with delay. We discuss a method

that we tried to implement which is in its very early stages as well. We also discuss the

numerical techniques we have used to solve the DDAEs. In §3.6 we use the Poincaré-

Lindstedt method [23] to improve the analysis in the case of a Hopf bifurcation. We

also compare numerical results with asymptotic results in §3.5 and §3.6.

In Chapter 4 we introduce a model which includes cell surface receptors. In

§4.1 we discuss the dynamics of cell surface receptors and how they tend to cluster

together. Then in §4.2 we introduce a model with clusters of receptors on the surface

of the cell. These clusters are assumed to be in a stationary state. The geometry

used for the model consists of a sphere with N circular patches on its surface. Only

numerical simulations are carried out in this chapter with the use of Comsol. We

describe how we build this geometry in Comsol too. A flux boundary condition is

defined on these patches to model the initiation of the signal transduction pathway.

In §4.3 we consider a specific example to examine some of the effects that the number

of clusters has on the signalling pathway. In §4.4 we consider an example that brings

together the model from Chapter 2 with the cell surface receptors introduced in

Chapter 4. In this example the model consists of both cell surface receptors and

intracellular compartments with the localized kinase enzymes. Through numerical

simulations we show that the number of patches can have a drastic effect on the

output of the signalling pathway. Sustained oscillations are sometimes observed

depending on the number of clusters.

In Chapter 5 we discuss the results of this thesis and some potential future work.

In the appendix we provide all the Matlab and Comsol code we have written to

carry out the numerical simulations discussed in this thesis. A short description is

provided with each section of code and references it back to the relevant section in

the thesis.

Chapter 2

A Model with Localized Enzyme Activation

In this chapter we further extend the results from [94] and [61] by using a similar

model and the same geometry. We consider a signalling pathway much like the

cascade pathways seen in the ODE models cited earlier. In this chapter full 3D

diffusion, enzyme separation and localization, as well as spatiotemporal dynamics

are all accounted for. We use the same techniques as in [61], but applied to a more

general model. Only one specific choice of enzyme kinetic functions was used in

[61], but here we carry out the analysis for any arbitrary choice of functions. We

find the steady state solutions analytically and determine their stability which was

not considered in [61]. We also approximate the model of PDEs with a system of

ODEs which describe the approximate dynamics of the full PDE system. Since the

analysis is applied to arbitrary enzyme kinetic functions, we can find conditions for

which complex signalling behavior can be observed, such as sustained oscillations,

bistability, and robust switching mechanisms.

In §2.1 we begin by describing the model. Next in §2.2 we solve for the steady

state solutions for a specific scaling of parameters. Then in §2.3 we do a linear

stability analysis to derive an eigenvalue problem which allows us to determine the

stability of the steady state solutions. In §2.4 we introduce a slow time variable in

to the model which allows us to approximate the system of PDEs with a system of

ODEs. Then in §2.5 we apply the analysis from the previous sections to some specific

examples.

2.1 Model

The system we derive here can model pathways such as the one seen in Figure 1.3 but

with some major differences. We assume that inside the cell there are small subcellu-

lar sites where the kinase enzymes are localized. We further assume the phosphatase

enzymes are homogenously spread throughout the cytosol. Therefore our model

33

34

takes into account the spatial separation of the opposing kinase and phosphatase

enzymes. Moreover, our model makes use of scaffolding proteins since all activating

reactions caused by the kinase enzymes our localized to subcellular sites. Unlike

the ODE models, the signalling proteins in our model will use diffusive transport in

3D to reach other cellular locations. For example, signalling proteins will diffuse to

other subcellular compartments and activate the reactions among other signalling

proteins. Finally, because the kinase and phosphatase enzymes are separated there

will be concentration gradients throughout the cytosol.

In this thesis we are not concerned with the exact mechanisms by which the signal

travels through the cell. For example, one way in which the signal travels is by the

diffusive transport of the signalling molecules. When the signalling molecules are

activated they diffuse to other parts of the cell. This carries the signal to different

regions within the cell. The physical movement of individual molecules can carry

the signal. There are other ways in which the signal is carried as well. We are only

interested in the actual concentrations of the signalling molecules though.

For simplicity we derive the model for a pathway with only two cycles and two

signalling proteins. All of the analysis in later sections is done in this context, but

it can be easily extended to cascades of any length as seen in the examples in §2.5.

We derive a model for proteins which can each be in two different states (active and

inactive). Although our model can be applied to cascades where the proteins can be

in any number of states.

We choose to model the cell as a sphere of radius R, denoted as ΩR. Inside the cell

there are two spherical compartments, one for each signalling protein. The radii of

both compartments are the same and are much smaller than the cell radius. Specifi-

cally, the two compartments each have radius εR where ε � 1. The kinase enzymes

our localized to the surface of the two compartments. The two compartments are

denoted as Ωε1R and Ωε2R and are centred at points x̄1 and x̄2 respectively. We also

make the assumption that the distances between the centres of the two compart-

ments as well as to the cell boundary are O(1) compared to the O(ε) radius of the

compartments. We denote the region formed by the union of the two compartments

as Ωε (see Figure 2.1).

We will use u and v in general to denote the concentrations of the two different

35

signalling proteins. The total concentration of the first signalling protein is denoted

as uT and the second as vT . We will denote the concentration of the two states

for each as ua, va (phosphorylated/activated) and ud, vd (unphosphorylated/deac-

tivated). When the diffusivities are equal for the active and inactive forms then

uT=ua+ud and vT=va+vd, where uT and vT are constants provided that uT and

vT are initially constant in space [49, 93, 51, 94]. Because of the two relationships,

uT=ua+ud and vT=va+vd, it is sufficient to consider the dynamics of the two acti-

vated forms, ua and va, alone. If the diffusivities of the phosphorylated and unphos-

phorylated forms are unequal then uT and vT will depend on location. In this case

we would have to consider the PDEs governing both the active and inactive forms as

considered in [93]. For a given signalling protein, we will assume that the diffusivities

of the phosphorylated and unphosphorylated forms are equal.

The activation of the first protein occurs on the surface of Ωε1R and the reaction of

the second occurs on the surface of Ωε2R. The kinase enzymes are the enzymes which

catalyze these reactions on the compartments within the cell interior. These reactions

on the surface of each compartment will be modelled by different Neumann boundary

conditions. The opposing reactions which convert deactivate the signalling proteins

occur everywhere throughout the cytosol due to the presence of the phosphatases.

We also impose a reflecting boundary condition at the surface of the cell. The normal

vector is denoted as n̂ and it points outward to the cytosolic region. Therefore n̂

points inward to the subcellular compartments (see Figure 2.1).

36

εR

ΩR

n̂

n̂

Ωε1R

Ωε2R

phos

phos

kin

kin

ua

ua ud

ud

ΩR\Ωε

x̄1

x̄2

Figure 2.1: The domain is made up of the sphere ΩR minus the interior of the two
smaller compartments Ωε1R and Ωε2R. The kinase (kin) enzymes are localized to the
surface of the smaller compartments and the opposing phosphatase (phos) enzymes
are spread uniformly throughout the cytosol. The conversion of ud → ua occurs on
the boundary of Ωε1R and the conversion of vd → va occurs on the boundary of Ωε2R.
The opposite reactions take place everywhere in the cytosol. The normal vector n̂
points outward to the cytosolic region, i.e. inward to the signalling compartments as
drawn above. The centres of the compartments are the position vectors x̄1 and x̄2.

37

Figure 2.2: Here a typical finite element mesh is represented, which is used in the
software package Comsol for the numerical simulations of (2.3). The mesh gener-
ator discretizes the domain into tetrahedral, hexahedral, prism, or pyramid mesh
elements. The boundaries in the geometry are discretized into triangular or quadri-
lateral boundary elements. The domain is the unit sphere minus the two small com-
partments which each have a radius of ε. The interior of the two small compartments
is not part of the actual domain for which the PDEs are defined on.

The activated form of the signalling proteins diffuse away from the compartments

and the corresponding concentrations decay due to the deactivating phosphatase en-

zymes. The diffusion coefficients of the two activated proteins, with concentration ua

and va, will be denoted as Du and Dv respectively. We denote the three dimensional

Laplace operator as Δx̄ and ∂nx̄ ≡ n̂·∇x̄ will denote the outward normal derivative to

the domain Ω1\Ωε. We choose linear decay rates, ku and kv, to simplify the analysis.

The evolution for the concentration of the two activated proteins is given by the

38

following boundary value problem (BVP),

∂ua

∂t
= DuΔx̄ua − kuua, x̄ ∈ ΩR\ΩεR

∂nx̄ua = 0, x̄ ∈ ∂ΩR

εDu∂nx̄ua =
R

3
f(ud, va), x̄ ∈ ∂Ωε1R

∂va
∂t

= DvΔx̄va − kvva, x̄ ∈ ΩR\ΩεR

∂nx̄va = 0, x̄ ∈ ∂ΩR

εDv∂nx̄va =
R

3
g(vd, ua), x̄ ∈ ∂Ωε2R.

(2.1)

The two functions f and g model the enzyme kinetics and in this chapter we do the

analysis for arbitrary f and g. Here, Ωε is defined as the union of the two internal

compartments i.e Ωε = Ωε1∪Ωε2. In [94] there is a detailed explanation of why the ε

and R/3 factors are in the above boundary conditions. In this current derivation we

are trying to be consistent with what was done in ([94]). It turns out though that

the R/3 factor in (2.1) is not so important for the purposes of this thesis. For this

thesis we will only be considering models of the form (2.3). The ε scaling appearing

in the compartment boundary conditions in (2.1) is important. It results in the flux

being strong enough to have an effect globally away from the compartments.

We now introduce the dimensionless variables u = ua/uT and v = va/vT into

(2.1) as well as x = x̄/R. Moreover we define the diffusion times as τu = R2/Du and

τv = R2/Dv as well as the parameters αu =
√

ku/DuR and αv =
√

kv/DvR which

measure the diffusion length in terms of the cell radius. Then (2.1) becomes

τu
∂u

∂t
= Δxu− α2

uu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = βuf(uT (1− u), vTv), x ∈ ∂Ωε1

τv
∂v

∂t
= Δxv − α2

vv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = βvg(vT (1− v), uTu), x ∈ ∂Ωε2 ,

(2.2)

39

where βu = τu
3uT

and βv =
τv
3vT

.

Depending on the scaling of α2
u and α2

v it was shown in [94] that the concentration

profiles either decayed exponentially or algebraically, where the mode of decay is

described by an associated Green’s function. For the majority of this chapter, as

well as this thesis, we will consider the case α2
u = O(ε) and α2

v = O(ε). In this

case the concentration gradients decay algebraically and therefore this leads to long

distance signalling gradients. This corresponds to a stronger signal which can travel

between the compartments. As well, when we use the method of matched asymptotic

expansions in later sections all the solutions will have O(1) expansions regardless of

the flux boundary conditions in (2.2). This allows us to do the analysis for any

arbitrary choice of f and g.

Since we assume α2
u = O(ε) and α2

v = O(ε) will write α2
u = α2

1ε and α2
v = α2

2ε

where α1 and α2 are both O(1). For simplicity we will replace the flux boundary

conditions in (2.2) with more general functions F (u, v) and G(u, v). Therefore we

can rewrite (2.2) as

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u, v), x ∈ ∂Ωε1

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u, v), x ∈ ∂Ωε2 .

(2.3)

For the remainder of this thesis we consider models of the form (2.3). We want

to study (2.3) both analytically and numerically. We are not concerned with finding

solutions of (2.3) and then switching back to (2.2) or (2.1). Therefore, in examples

that we consider, we will start with choosing specific functions for F and G. In

most of the examples we will ignore the scaling on u and v and also ignore the

concentrations of the activated and inactivated forms of the signalling molecules (

ua, ud, va, vd).

In summary, we will be primarily concerned in finding the steady state solutions

of (2.3) and determining their stability, finding time dependent solutions of (2.3),

40

and finding numerical solutions of (2.3). In Chapter 3 we will introduce a constant

time delay into (2.3) and repeat these objectives. With the scaling we have chosen,

α2
u = O(ε) and α2

v = O(ε), the dynamics of (2.3) occur over a long time scale. This

time scale turns out to be of magnitude O(1/ε). We could of rescaled time in (2.3)

to make this O(1) but we decided to leave it the way it is for notational convenience.

2.2 Steady State Solution

In this section we find asymptotic approximations for the steady state solutions of

(2.3). Therefore in this section we are setting ∂u
∂t

= 0 and ∂v
∂t

= 0 in (2.3). The PDEs

in (2.3) are linear but the BVP is complicated by the two holes inside the domain.

The key to solving (2.3) is that the holes are of radius ε � 1. If we consider (2.3) in

the limit as ε → 0 then we can use methods from asymptotic analysis. In the limit

as ε → 0 the two compartments will reduce to the points at which they are centred,

x1 and x2. The point x1 will act as a point source for the solution u and x2 will act

as a point source for v. Near the point x1, the solution for u will have a singularity

and v will have a singularity at x2. The specific type and strength of the singularities

are determined by asymptotically matching an appropriate inner solution together

with an outer solution.

When using the method of matched asymptotics there is an outer region and inner

region and a corresponding outer and inner solution. Matching is used to match the

behavior of the outer and inner solutions. The outer regions are |x − x1| 	 ε

and |x − x2| 	 ε for u and v, respectively. The inner regions in the domain are

|x − x1| ∼ O(ε) and |x − x2| ∼ O(ε) for u and v, respectively. We first expand the

outer and inner solutions in ε where u(i) means the inner solution for u and so on.

u(x) = u0(x) + εu1(x) + ε2u2(x) + . . .

u(i)(y) = u
(i)
0 (y) + εu

(i)
1 (y) + ε2u

(i)
2 (y) + . . .

v(x) = v0(x) + εv1(x) + ε2v2(x) + . . .

v(i)(y) = v
(i)
0 (y) + εv

(i)
1 (y) + ε2v

(i)
2 (y) +

(2.4)

In (2.4) the inner solutions are written in terms of an inner variable, y, defined as

y =
x−xj

ε
where j = 1 in the context of u and j = 2 in the context of v. The outer

problems for u and v come from substituting the outer expansions from (2.4) into

41

(2.3) and collecting powers in ε which gives

0 = Δxu0, x ∈ Ω1\{x1}, ∂nxu0 = 0, x ∈ ∂Ω1 (2.5a)

0 = Δxu1 − α2
1u0, x ∈ Ω1\{x1}, ∂nxu1 = 0, x ∈ ∂Ω1 (2.5b)

0 = Δxu2 − α2
1u1, x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1 (2.5c)

0 = Δxv0, x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1 (2.5d)

0 = Δxv1 − α2
2v0, x ∈ Ω1\{x2}, ∂nxv1 = 0, x ∈ ∂Ω1 (2.5e)

0 = Δxv2 − α2
2v1, x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1. (2.5f)

For the inner problems for u and v we first use the change of variables y =

(x − xj)/ε in (2.3). We then substitute the inner expansions from (2.4) into the

rescaled version of (2.3) and collect powers of ε again to obtain,

0 = Δyu
(i)
0 , ρ > 1 (2.6a)

−∂ρu
(i)
0 = F (u

(i)
0 , v0), ρ = 1 (2.6b)

0 = Δyu
(i)
1 , ρ > 1 (2.6c)

−∂ρu
(i)
1 = Fu(u

(i)
0 , v0)u

(i)
1 + Fv(u

(i)
0 , v0)v1, ρ = 1 (2.6d)

0 = Δyv
(i)
0 , ρ > 1 (2.6e)

−∂ρv
(i)
0 = G(u0, v

(i)
0), ρ = 1 (2.6f)

0 = Δyv
(i)
1 , ρ > 1 (2.6g)

−∂ρv
(i)
1 = Gu(u0, v

(i)
0)u1 +Gv(u0, v

(i)
0)v

(i)
1 , ρ = 1. (2.6h)

In the inner region near the compartments we assume radial symmetry so that Δy ≡
∂2
ρ +(2/ρ)∂ρ, which is the radially symmetric Laplacian. Here ρ is the radial variable

defined as ρ = |y|. Note that n̂ · ∇y = ∂ny ≡ −∂ρ because the normal vector, n̂,

points inward to the spherical compartments (see Figure 2.1).

As already said, in the limit as ε → 0 the two holes in the domain shrink to the

single points x1 and x2. These points are excluded from the domain and the behavior

of the solution near these points is unknown. The matching condition, known more

formally as the Van Dyke matching condition [103], is used to match the outer and

inner asymptotic solutions. In the context of u, the matching condition states the

behavior of the outer solution u(x) in the limit as x → x1 must agree with the far-

field behavior (ρ → ∞) of the inner solution, u(i)(y), near the hole centred at x1.

42

There is a similar matching condition for v. The following matching conditions must

hold to all orders in ε,

u0 + εu1 + ε2u2 + . . . = u
(i)
0 + εu

(i)
1 + ε2u

(i)
2 + . . .

v0 + εv1 + ε2v2 + . . . = v
(i)
0 + εv

(i)
1 + ε2v

(i)
2 +

(2.7)

From the matching condition in (2.7) we see that u
(i)
0 → u0 and v

(i)
0 → v0 as ρ → ∞.

From (2.5a) and (2.5d) we have that u0 and v0 are constants and from (2.6a) and

(2.6e), along with their associated boundary conditions in (2.6b) and (2.6f), we have

u
(i)
0 = u0 +

c1
ρ
, c1 = F (u0 + c1, v0) (2.8a)

v
(i)
0 = v0 +

c2
ρ
, c2 = G(u0, v0 + c2). (2.8b)

The implicit relationships c1 = F (u0+c1, v0) and c2 = G(u0, v0+c2) will appear over

and over throughout this thesis.

Next we match the outer and inner solutions using (2.7),

u0 + εu1(x) + . . . = u0 +
c1

|x− x1|ε+ . . .

v0 + εv1(x) + . . . = v0 +
c2

|x− x2|ε+ . . . ,

which gives

u1(x) ∼ c1
|x− x1| , x → x1

v1(x) ∼ c2
|x− x2| , x → x2.

(2.9)

From (2.9) we see that both u1 and v1 are proportional to the free-space Green’s

function GF (x) =
1

4π|x−x1| of the Laplace equation, which satisfies ΔGF = −δ(x−x1).

Here δ(x) is the Dirac delta function. Therefore we add in a δ-term of strength 4πc1

at the point x1 and a δ-term of strength 4πc2 at x2 which extends the domain of the

outer BVPs for u1 in (2.5b) and v1 in (2.5e) to all of Ω1. Therefore u1 and v1 are

determined by the following BVPs,

Δxu1 − α2
1u0 = −4πc1δ(x− x1), x ∈ Ω1, ∂nxu1 = 0, x ∈ ∂Ω1 (2.10a)

Δxv1 − α2
2v0 = −4πc2δ(x− x2), x ∈ Ω1, ∂nxv1 = 0, x ∈ ∂Ω1. (2.10b)

43

First we integrate (2.10a) and (2.10b) over Ω1 and apply the Divergence theorem to

obtain the following solvability conditions,

c1 =
α2
1u0

3
(2.11a)

c2 =
α2
2v0
3

. (2.11b)

Then we combine (2.8a) with (2.11a) as well as (2.8b) with (2.11b) to obtain the

following system of equations which determine the unknown constants u0 and v0,

α2
1

3
u0 = F (δ1u0, v0)

α2
2

3
v0 = G(u0, δ2v0).

(2.12)

Here we have defined

δj = 1 + α2
j/3, j = 1, 2. (2.13)

Note that having multiple solutions to (2.12) is not an issue. It just means there

are going to be multiple equilibria whose stability is determined in §2.3. If there are

complex solutions to (2.12) then they are ignored because they are not physically

relevant.

Continuing, we now solve (2.10a) and (2.10b) for u1 and v1 to obtain

u1(x) = 4πc1Gn(x; x1) + χ1

v1(x) = 4πc2Gn(x; x2) + χ2,
(2.14)

where χ1 and χ2 are constants to to be determined. The solutions in (2.14) are

written in terms of the Neumann Green’s function Gn(x; x0), which satisfies

ΔxGn(x; x0) = 1/|Ω1| − δ(x− x0), x ∈ Ω1 (2.15a)

∂nxGn(x; x0) = 0, x ∈ ∂Ω1 (2.15b)∫
Ω1

Gn(x; x0) dV = 0, (2.15c)

where |Ω1| = 4π
3
, the volume of the unit sphere. For a sphere with radius R we can

write Gn(x; x0) explicitly [6] as

Gn(x; x0) =
1

4π|x− x0| +Rn(x; x0), (2.16)

44

where Rn(x; x0) is the regular part of this Green’s function given by

Rn(x; x0) =
R

4π

1

r
∣∣R2

r2
x− x0

∣∣ + 1

8πR3
(r2 + r20)−

7

10πR
(2.17)

+
1

4πR
log

(
2R2

R2 − rr0 cos γ + r
∣∣R2

r2
x− x0

∣∣
)
.

In (2.17) cos γ = cos θ cos θ0 + sin θ sin θ0 cos (φ− φ0) and (r0, θ0, φ0) denotes the

spherical coordinates of x0.

Now we consider the inner problems for u
(i)
1 (y) and v

(i)
1 (y) from (2.6c) and (2.6g).

We begin by using (2.7) to match and determine the behavior of both u
(i)
1 (y) and

v
(i)
1 (y) as ρ → ∞,

u0 + ε

(
c1

|x− x1| + 4πc1Rn(x1; x1) + χ1

)
+ ε2u2 + . . . = u0 +

c1
ρ
+ εu

(i)
1

v0 + ε

(
c2

|x− x2| + 4πc2Rn(x2; x2) + χ2

)
+ ε2v2 + . . . = v0 +

c2
ρ
+ εv

(i)
1 .

(2.18)

From (2.18) we obtain

u
(i)
1 → 4πc1Rn(x1; x1) + χ1, ρ → ∞

v
(i)
1 → 4πc2Rn(x2; x2) + χ2, ρ → ∞.

(2.19)

We then solve (2.6c) and (2.6g) to obtain

u
(i)
1 = 4πc1Rn(x1; x1) + χ1 +

A1

ρ

v
(i)
1 = 4πc2Rn(x2; x2) + χ2 +

A2

ρ
,

(2.20)

where the constants A1 and A2 are determined by the associated boundary conditions

in (2.6d) and (2.6h),

A1 = Fu(δ1u0, v0)(4πc1Rn(x1; x1) + χ1 + A1) + Fv(δ1u0, v0)v1(x1) (2.21a)

A2 = Gu(u0, δ2v0)u1(x2) +Gv(u0, δ2v0)(4πc2Rn(x2; x2) + χ2 + A2). (2.21b)

We will use (2.21a) and (2.21b) shortly.

At the next order we have two BVPs for u2 and v2 from (2.5c) and (2.5f), re-

spectively. The matching conditions from (2.7) were rewritten in (2.18) and if we

substitute u
(i)
1 and v

(i)
1 from (2.19) into (2.18) we obtain the following after matching,

u2 ∼ A1

|x− x1| , x → x1

v2 ∼ A2

|x− x2| , x → x2.

45

Similarly to what was done in (2.10), we extend the BVPs in (2.5c) and (2.5f) to all

of Ω1,

Δxu2 − α2
1u1 = −4πA1δ(x− x1), x ∈ Ω1, ∂nxu2 = 0, x ∈ ∂Ω1 (2.22a)

Δxv2 − α2
2v1 = −4πA2δ(x− x2), x ∈ Ω1, ∂nxv2 = 0, x ∈ ∂Ω1. (2.22b)

We do not solve (2.22), but if we integrate (2.22a) and (2.22b) over Ω1 and use the

Divergence theorem, and the integral condition from (2.15c) we get

A1 =
α2
1χ1

3
(2.23a)

A2 =
α2
2χ2

3
. (2.23b)

Combining (2.21a) with (2.23a) and (2.21b) with (2.23b) we obtain

α2
1

3
χ1 = Fu(δ1u0, v0)(4πc1Rn(x1; x1) + δ1χ1) + Fv(δ1u0, v0)v1(x1)

α2
2

3
χ2 = Gu(u0, δ2v0)u1(x2) +Gv(u0, δ2v0)(4πc2Rn(x2; x2) + δ2χ2),

(2.24)

where we have used the definition of δj from (2.13). Note we are using the notation

v(x1)and u(x2) to mean v1(x1) ≡ v1
∣∣
|x−x1|=ε

and u1(x2) ≡ u1

∣∣
|x−x2|=ε

. We now

simplify the system of linear equations in (2.24) for χ1 and χ2. In doing so we will

write F instead of F (δ1u0, v0) and G instead of G (u0, δ2v0).

Using the results from (2.11), (2.14), as well as (2.16) we can rewrite the system

in (2.24) as

M

(
χ1

χ2

)
= M1

(
c1

c2

)
, (2.25)

where

M =

(
α2
1

3
− δ1Fu −Fv

−Gu
α2
2

3
− δ2Gv

)
(2.26a)

M1 =

⎛⎝ 4πFuRn(x1; x1) Fv

(
1

|x1−x2| + 4πRn(x1; x2)
)

Gu

(
1

|x2−x1| + 4πRn(x2; x1)
)

4πGvRn(x2; x2)

⎞⎠ . (2.26b)

In all we have obtained the following asymptotic expansions for the solution of

the steady state of (2.3),

u(x) = u0 + ε

(
c1

|x− x1| + 4πc1Rn(x; x1) + χ1

)
+O(ε2)

v(x) = v0 + ε

(
c2

|x− x2| + 4πc2Rn(x; x2) + χ2

)
+O(ε2).

(2.27)

46

The constants u0 and v0 are determined from solving (2.12) and χ1 and χ2 are

determined from solving (2.25). The constants c1 and c2 are defined in (2.11).

2.3 Stability Analysis

In §2.2 we found asymptotic approximations to the steady state solution of (2.3) in

the limit as ε → 0. In this section we determine the stability of these steady state

approximations. In this section we assume that τu = O(1), τv = O(1), ku = O(ε),

and kv = O(ε). Since α2
u = kuτu and α2

v = kvτv then we again have that α2
u = O(ε)

and α2
v = O(ε). We will denote the steady state solutions from (2.27) as uE ≡ u(x)

and vE ≡ v(x).

We begin the linear stability analysis by introducing small perturbations off of

the steady states,

u = uE + φ(x)eλt, φ � uE

v = vE + ψ(x)eλt, ψ � vE .

We substitute these into (2.3) and linearize to obtain

τuλφ = Δxφ− α2
1εφ, x ∈ Ω1\Ωε

∂nxφ = 0, x ∈ ∂Ω1

ε∂nxφ = Fu(uE, vE)φ+ Fv(uE, vE)ψ, x ∈ ∂Ωε1

τvλψ = Δxψ − α2
2εψ, x ∈ Ω1\Ωε

∂nxψ = 0, x ∈ ∂Ω1

ε∂nxψ = Gu(uE, vE)φ+Gv(uE, vE)ψ, x ∈ ∂Ωε2 ,

(2.28)

We again use the method of matched asymptotics to analyze (2.28). Here the

inner boundary conditions are linear. Just as in §2.2 the outer and inner solutions for

φ and ψ will be O(1). On the other hand λ = O(ε). The expansions are as follows,

φ(x) = φ0(x) + εφ1(x) + ε2φ2(x) + . . .

φ(i)(y) = φ
(i)
0 (y) + εφ

(i)
1 (y) + ε2φ

(i)
2 (y) + . . .

ψ(x) = ψ0(x) + εψ1(x) + ε2ψ2(x) + . . .

ψ(i)(y) = ψ
(i)
0 (y) + εψ

(i)
1 (y) + ε2ψ

(i)
2 (y) + . . .

λ = λ1ε+ λ2ε
2 + . . .

(2.29)

47

The form of the asymptotic expansions in (2.29) are chosen to provide a consistent

matching between the inner and outer regions. More specifically, integrating the first

PDE in (2.28) over the entire domain and applying the divergence theorem yields∫
Ω1\Ωε

(τuλφ+ α2
1εφ) dx = 4πε(Fu(uE , vE)φ+ Fv(uE, vE)ψ)

∣∣∣
|x−x1|=ε

For both sides of the above equation to have the same order of magnitude, it must

be that λ = O(ε). We could use the same technique with the second PDE in (2.28)

two get a second equation. The two equations coupled together give insight into

what the orders of the asymptotic expansions should be. For more details refer to

the analysis in [94, 61].

Since the following analysis will be similar to that of §2.2 we will not go through

as much of the details. The outer problems are

0 = Δxφ0, x ∈ Ω1\{x1}, ∂nxφ0 = 0, x ∈ ∂Ω1

0 = Δxφ1 − (α2
1 + τuλ1)φ0, x ∈ Ω1\{x1}, ∂nxφ1 = 0, x ∈ ∂Ω1

0 = Δxφ2 − (α2
1 + τuλ1)φ1 − τuλ2φ0, x ∈ Ω1\{x1}, ∂nxφ2 = 0, x ∈ ∂Ω1

0 = Δxψ0, x ∈ Ω1\{x2}, ∂nxψ0 = 0, x ∈ ∂Ω1

0 = Δxψ1 − (α2
2 + τvλ1)ψ0, x ∈ Ω1\{x2}, ∂nxψ1 = 0, x ∈ ∂Ω1

0 = Δxψ2 − (α2
2 + τvλ1)ψ1 − τvλ2ψ0, x ∈ Ω1\{x2}, ∂nxψ2 = 0, x ∈ ∂Ω1,

while the inner problems are

0 = Δyφ
(i)
0 , ρ > 1 (2.30a)

−∂ρφ
(i)
0 = Fuφ

(i)
0 + Fvψ0, ρ = 1 (2.30b)

0 = Δyφ
(i)
1 , ρ > 1 (2.30c)

−∂ρφ
(i)
1 = Fuφ

(i)
1 + Fvψ1 + φ

(i)
0 (Fuuu

(i)
1 + Fuvv1) + ψ0(Fuvu

(i)
1 + Fvvv1), ρ = 1

(2.30d)

0 = Δyψ
(i)
0 , ρ > 1 (2.30e)

−∂ρψ
(i)
0 = Guφ0 +Gvψ

(i)
0 , ρ = 1 (2.30f)

0 = Δyψ
(i)
1 , ρ > 1 (2.30g)

−∂ρψ
(i)
1 = Guφ1 +Gvψ

(i)
1 + φ0(Guuu1 +Guvv

(i)
1) + ψ

(i)
0 (Guvu1 +Gvvv

(i)
1), ρ = 1.

(2.30h)

48

Recall that F = F (u
(i)
0 , v0), G = G (u0, v

(i)
0) and that u

(i)
0 = δ1u0 and v

(i)
0 = δ2v0

when ρ = 1.

Just as in §2.2 the form of the solutions for φ(x) and ψ(x) will be

φ = φ0 + εφ1 + . . . , φ1 =
e1

|x− x1| + 4πe1Rn(x; x1) + χ3

ψ = ψ0 + εψ1 + . . . , ψ1 =
e2

|x− x2| + 4πe2Rn(x; x2) + χ4,
(2.31)

where φ0 and ψ0 are constants. We solve (2.30a) and (2.30e) and use their associated

boundary conditions in (2.30b) and (2.30f) to get

e1 = Fu(δ1u0, v0)(φ0 + e1) + Fv(δ1u0, v0)ψ0

e2 = Gu(u0, δ2v0)φ0 +Gv(u0, δ2v0)(ψ0 + e2).
(2.32)

Then from matching φ with φ(i) and ψ with ψ(i) we can extend the BVP for φ1 and

ψ1,

Δxφ1 − (α2
1 + τuλ1)φ0 = −4πe1δ(x− x1), x ∈ Ω1

Δxψ1 − (α2
2 + τvλ1)ψ0 = −4πe2δ(x− x2), x ∈ Ω1.

(2.33)

Integrating the equations in (2.33) yields the following solvability condition,

e1 =

(
α2
1 + τuλ1

3

)
φ0

e2 =

(
α2
2 + τvλ1

3

)
ψ0.

(2.34)

Combining (2.32) and (2.34) we obtain⎛⎝ 3
τu(Fu−1)

0

0 3
τv(Gv−1)

⎞⎠(α2
1

3
− δ1Fu −Fv

−Gu
α2
2

3
− δ2Gv

)(
φ0

ψ0

)
= λ1

(
φ0

ψ0

)
.

This can be rewritten using the matrix M defined in (2.26a) as

TM

(
φ0

ψ0

)
= λ1

(
φ0

ψ0

)
, (2.35)

where

T =

⎛⎝ 3
τu(Fu−1)

0

0 3
τv(Gv−1)

⎞⎠ .

49

The eigenvalue problem in (2.35) determines the leading order term of the eigenvalue

λ = λ1ε + λ2ε
2. It is the eigenvalues of TM that determine the stability of the

equilibrium solutions found in §2.2.

At the next order we need to solve (2.30c) and (2.30g). From these BVP’s and

matching we obtain

φ
(i)
1 = 4πe1Rn(x1; x1) + χ3 +

A3

ρ

ψ
(i)
1 = 4πe2Rn(x2; x2) + χ4 +

A4

ρ
.

(2.36)

Before we determine A3 and A4 we will first match and extend the domain for the

BVPs for φ2 and ψ2,

Δxφ2 = (α2
1 + τuλ1)φ1 + τuλ2φ0 − 4πA3δ(x− x1), x ∈ Ω1, ∂nxφ2 = 0, x ∈ ∂Ω1

Δxψ2 = (α2
2 + τvλ1)ψ1 + τvλ2ψ0 − 4πA4δ(x− x2), x ∈ Ω1, ∂nxψ2 = 0, x ∈ ∂Ω1.

Integrating the above BVP, applying the Divergence theorem, and the integral con-

dition in (2.15c) gives

A3 =
(α2

1 + τuλ1)χ3 + τuλ2φ0

3

A4 =
(α2

2 + τvλ1)χ4 + τvλ2ψ0

3
.

(2.37)

The boundary conditions to determine A3 and A4 are (2.30d) and (2.30h). Using

these as well as (2.31), (2.36), and (2.37) we obtain after simplifying

(TM− λ1I)

(
χ3

χ4

)
−λ2

(
φ0

ψ0

)
= TM1

(
e1

e2

)
+

T

(
δ1 +

τuλ1

3
0

0 δ2 +
τvλ1

3

)(
φ0 0

0 ψ0

)(
M2

(
c1

c2

)
+M2δ

(
χ1

χ2

))

+T

(
ψ0 0

0 φ0

)(
M3

(
c1

c2

)
+M3δ

(
χ1

χ2

))
. (2.38)

50

The matrices that have not been defined previously are

M2 =

⎛⎝ 4πRn(x1; x1)Fuu Fuv

(
1

|x1−x2| + 4πRn(x1; x2)
)

Guv

(
1

|x2−x1| + 4πRn(x2; x1)
)

4πRn(x2; x2)Gvv

⎞⎠
M2δ =

(
δ1Fuu Fuv

Guv δ2Gvv

)

M3 =

⎛⎝ 4πRn(x1; x1)Fuv Fvv

(
1

|x1−x2| + 4πRn(x1; x2)
)

Guu

(
1

|x2−x1| + 4πRn(x2; x1)
)

4πRn(x2; x2)Guv

⎞⎠
M3δ =

(
δ1Fuv Fvv

Guu δ2Guv

)
.

For simplicity we rewrite (2.38) as

(TM− λ1I)

(
χ3

χ4

)
= N+ λ2

(
φ0

ψ0

)
, (2.39)

where N is the right hand side of (2.38).

A consequence of the Fredholm alternative is that (2.39) has a solution if and

only if N+ λ2

(
φ0

ψ0

)
is orthogonal to ker((TM− λ1I)

∗). Therefore we can solve

0 =

〈
N+ λ2

(
φ0

ψ0

)
,Y

〉
,

for λ2 where the vector Y satisfies (TM− λ1I)
∗ Y = 0. Here A∗ denotes the Her-

mitian/conjugate transpose of A and 〈. , .〉 is the standard complex inner product.

Although calculating λ2 makes the approximation to the eigenvalue more accurate,

for the majority of this chapter we will consider the more simple matrix TM which

gives the leading order term of the eigenvalue. The eigenvalue problem in (2.35) is

the main result of this section.

2.4 Time Dependent Approximations of the PDE Model

Thus far we have found asymptotic approximations for the steady state solutions of

(2.3) and derived a linear matrix eigenvalue problem do determine their stability.

In this section we find an approximate time dependent solution to (2.3) which is

51

valid for times when the solution is not changing too quickly or when the solution is

near equilibrium. The solutions will have the same form as in (2.27) except that the

constants in (2.27), which were determined by systems of algebraic equations, will

now be functions of time and will be determined by systems of ODEs. Actually, these

systems are differential algebraic equations (DAEs) but they can be transformed into

ODEs if the algebraic equations can be solved.

First we introduce the rescaled slow time variable τ = εt into (2.3) to obtain

ετu
∂u

∂τ
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u, v), x ∈ ∂Ωε1

ετv
∂v

∂τ
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u, v), x ∈ ∂Ωε2 .

We will find an asymptotic solution to the time dependent problem in (2.40) using

the method of matched asymptotic expansions.

We expand the outer and inner solutions in terms of ε

u(τ, x) = u0(x, τ) + εu1(x, τ) + . . .

v(τ, x) = v0(x, τ) + εv1(x, τ) + . . .

u(i)(τ, y) = u
(i)
0 (y, τ) + εu

(i)
1 (y, τ) + . . .

v(i)(τ, y) = v
(i)
0 (y, τ) + εv

(i)
1 (y, τ) + . . .

and substitute into (2.40) and equate powers of ε to obtain the following outer

52

problems

Δxu0 = 0, x ∈ Ω1\{x1}, ∂nxu0 = 0, x ∈ ∂Ω1 (2.40)

τu
∂u0

∂τ
= Δxu1 − α2

1 u0, x ∈ Ω1\{x1}, ∂nxu1 = 0, x ∈ ∂Ω1 (2.41)

τu
∂u1

∂τ
= Δxu2 − α2

1u1, x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1 (2.42)

Δxv0 = 0, x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1 (2.43)

τv
∂v0
∂τ

= Δxv1 − α2
2 v0, x ∈ Ω1\{x2}, ∂nxv1 = 0, x ∈ ∂Ω1 (2.44)

τv
∂v1
∂τ

= Δxv2 − α2
2v1, x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1. (2.45)

The inner problems appear the exact same as those from (2.6) except that the inner

and outer solutions are functions of τ as well.

From (2.40) and (2.43) we have u0 and v0 are functions of τ and not space. For

the leading order inner solutions we have

u
(i)
0 (y, τ) = u0(τ) +

c1(τ)

ρ
, c1 = F (u0 + c1, v0)

v
(i)
0 (y, τ) = v0(τ) +

c2(τ)

ρ
, c2 = G(u0, v0 + c2) .

Then after matching we get that u1 and v1 satisfy

τu
∂u0

∂τ
= Δxu1 − α2

1u0 + 4πc1δ(x− x1), x ∈ Ω1, ∂nxu1 = 0, x ∈ ∂Ω1

τv
∂v0
∂τ

= Δxv1 − α2
2v0 + 4πc2δ(x− x2), x ∈ Ω1, ∂nxv1 = 0, x ∈ ∂Ω1.

(2.46)

Integrating the above leads to the following solvability condition for u0(τ) and v0(τ),

τu
∂u0

∂τ
= −α2

1u0 + 3c1, c1 = F (u0 + c1, v0)

τv
∂v0
∂τ

= −α2
2v0 + 3c2, c2 = G(u0, v0 + c2).

(2.47)

The system defined in (2.47) is system of DAEs. If we solve the algebraic equations

for c1 and c2 in terms of u0 and v0 then we get a system of two ODEs for u0 and v0.

One important remark is that there may be multiple solutions for c1(u0(τ), v0(τ)) and

c2(u0(τ), v0(τ)) from solving the algebraic equations defined in (2.47). For each F and

G we must carefully consider all the solution branches for both c1 and c2 depending

53

on the nonlinearity of F and G. In the cases we have studied with multiple solution

branches, there is always a unique pair of branches (one for c1 and one for c2) which

are defined in the region of interest and give the expected dynamical behavior. That

is, after selecting the unique pair of branches for c1 and c2, the resulting dynamics

of the ODEs in (2.47) agree with the analysis from §2.2 and §2.3. In §6.2 we provide

the detailed analysis including the selection of solution branches for a specific choice

of F and G.

We can write the solution in (2.46) using the Green’s function defined in (2.15),

u1(x, τ) = 4πc1(τ)Gn(x; x1) + χ1(τ)

v1(x, τ) = 4πc2(τ)Gn(x; x2) + χ2(τ),

where χ1(τ) and χ2(τ) are solved through a solvability condition at the next order.

At the next order in the inner solution, u
(i)
1 (y, τ) and v

(i)
1 (y, τ) will have the exact

same form as in (2.20). The functions A1(τ) and A2(τ) are found from boundary

conditions which are identical to the ones in (2.6d) and (2.6h),

A1 = Fu(u0 + c1, v0)(4πc1Rn(x1; x1) + χ1 + A1) + Fv(u0 + c1, v0)v1(x1, τ)

A2 = Gu(u0, v0 + c2)u1(x2, τ) +Gv(u0, v0 + c2)(4πc2Rn(x2; x2) + χ2 + A2).
(2.48)

Next, we match and extend the BVPs in (2.42) and (2.45),

τu
∂u1

∂τ
= Δxu2 − α2

1u1 + 4πA1δ(x− x1), x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1

τv
∂v1
∂τ

= Δxv2 − α2
2v1 + 4πA2δ(x− x2), x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1.

Integrating the above we get the following solvability condition for χ1(τ) and χ2(τ),

τu
∂χ1

∂τ
= −α2

1χ1 + 3A1

τv
∂χ2

∂τ
= −α2

2χ2 + 3A2.

(2.49)

The algebraic equations from (2.48) taken together with the differential equations

defined in (2.49) lead to a system of DAEs. Since the equations for A1 and A2 are

linear we can solve them. Combining (2.48) and (2.49) leads to the following system

of ODEs to determine χ1(τ) and χ2(τ),

∂

∂τ

(
χ1

χ2

)
= TM

(
χ1

χ2

)
−TM1

(
c1

c2

)
. (2.50)

54

The main results from this section are the following. In the outer region away

from the compartments, the solutions u(x, τ) and v(x, τ) are constants in space,

u0(τ) and v0(τ) respectively. Their evolution, as well as c1(τ) and c2(τ), is governed

by the system of DAEs in (2.47). Spatial terms do not show up in this leading order

system. At the next order there is a system of ODEs for χ1(τ) and χ2(τ) in (2.50)

and this is where the spatial terms appear. Solving both (2.47) and (2.50) allows the

solutions for u(x, τ) and v(x, τ) to be written as

u(x, τ) = u0(τ) + ε

(
c1(τ)

|x− x1| + 4πc1(τ)Rn(x; x1) + χ1(τ)

)
v(x, τ) = v0(τ) + ε

(
c2(τ)

|x− x2| + 4πc2(τ)Rn(x; x2) + χ2(τ)

)
.

(2.51)

For most choices of F and G it will not be possible to solve the ODEs in (2.47)

and (2.50) analytically. They can be solved numerically though, and much faster

than the PDE system in (2.3). In §2.5 we compare the numerical solutions from the

ODE systems in this section with the full 3D numerics from (2.3) and there is very

good agreement.

2.4.1 ODE system for different scaling of αv

This is the only part of the thesis were we take a small detour and consider a different

scaling for the decay rates in (2.3). In this section we consider the BVP in (2.3) but

instead of assuming both α2
u = O(ε) and α2

v = O(ε) we will now let α2
v = O(1). This

problem was studied in [61] and the steady state solution was found for a specific

choice of F (u, v) and G(u, v) which we again use here. We want to show that the

same analysis in §2.4 when done with this different scaling of αv leads to something

different than the leading order system of DAEs in (2.47). More specifically, the

distance between the compartments comes into the leading order ODE where as

it did not in (2.47). With τu = τv = 1, ku = k1ε, kv = k2, where k1 = O(1) and

k2 = O(1), and the particular choice of F = u/(v+1) and G = u2 then (2.3) becomes

55

ε
∂u

∂τ
= Δxu− k1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu =
u

v + 1
, x ∈ ∂Ωε1

ε
∂v

∂τ
= Δxv − k2v, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = u2, x ∈ ∂Ωε2 .

We have already rescaled time with τ = εt.

As said in §2.1 when both α2
u and α2

v are O(ε) then the outer and inner solutions

all have O(1) expansions. Since this is not the case here, the scaling of the inner and

outer solutions depend on the particular choice of F and G. We expand the outer

and inner solutions as in [61]

u(x, τ) =
1√
ε
u0(x, τ) +

√
εu1(x, τ) + . . .

u(i)(y, τ) =
1√
ε
u
(i)
0 (y, τ) +

√
εu

(i)
1 (y, τ) + . . .

v(x, τ) = v0(x, τ) + εv1(x, τ) + . . .

v(i)(y, τ) =
1

ε
v
(i)
0 (y, τ) + v

(i)
1 (y, τ) +

The analysis for u is the same as in §2.4 so that the ODE for u0(τ) in (2.47) now

becomes

∂u0

∂τ
= −k1u0 + 3

u0(τ)

v0(x1, τ)
.

The major difference here is that v0 is not only a function of τ but also of x. This is

because the outer problems for v are

Δxv0 − k2v0 = 0, x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1 (2.52a)

∂τv0 = Δxv1 − k2v1, x ∈ Ω1\{x2}, ∂nxv1 = 0, x ∈ ∂Ω1. (2.52b)

The inner problem for v0 is

Δyv
(i)
0 = 0, ρ > 1, ∂ρv

(i)
0 = −u2

0, ρ = 1.

56

From matching we determine that v0 → 0 as ρ → ∞. From this as well as (2.4.1)

we obtain

v
(i)
0 =

u2
0

ρ
.

Then we match and add in a delta function to (2.52a) to obtain,

Δxv0 − k2v0 = −4πu2
0δ(x− x2), x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1. (2.53)

The solution to (2.53) is

v0(x, τ) = 4πu2
0Gh(x; x2;

√
k2). (2.54)

Here Gh(x; x0;α) is the Modified Helmholtz Green’s function which satisfies

ΔxGh − α2Gh = −δ(x− x0), x ∈ Ω1

∂nxGh = 0, x ∈ ∂Ω1 .

The Green’s function Gh can be written explicitly using standard methods (see [6])

and has the form

Gh(x; x0;α) =
e−α|x−x0|

4π|x− x0| +GR(x; x0;α),

where the regular part GR is defined as

GR(x; x0;α) =

∞∑
n=0

2n+ 1

4π
√
rr0

Pn(cos γ)
a1,n
a2,n

In+1/2(αr)In+1/2(αr0)

a1,n
a2,n

=
(αR)Kn+3/2(αR)− nKn+1/2(αR)

(αR)In+3/2(αR) + nIn+1/2(αR)
.

(2.55)

Above, Iν(x) and Kν(x) are the modified Bessel functions of order ν of the first and

second kind respectively. The Legendre polynomial is denoted Pn, and its argument

is defined as cos γ = cos θ cos θ0+ sin θ sin θ0 cos (φ− φ0). Finally, (r0, θ0, φ0) denotes

the spherical coordinates of x0.

In summary we have

∂τu0 = −k1u0 + 3
u0(τ)

v0(x1, τ)

v0(x, τ) = 4πu2
0Gh(x; x2;

√
k2).

(2.56)

57

This can be simplified to

∂τu0 = −k1u0 +
3

4πu0Gh(x1; x2;
√
k2)

,

which has the solution

u0 =

√
Ce−2k1τ +

3

4πk1Gh(x1; x2;
√
k2)

,

where, C is a constant determined by an initial condition.

Therefore spatial terms are seen explicitly in the ODE for u0(τ) in (2.56). This

is in contrast to the system in (2.47) where the spatial terms are not present.

In some signalling systems the concentration gradients do decay exponentially and

therefore our mathematical model would need to use O(1) decay rates. As already

mentioned, when the decay rates are O(1), the analysis is more difficult. This is

because the scaling of the outer and inner solutions are dependent on the choice of

F and G functions. For some cases it is not clear what the scaling should even be

[61]. Also, the solutions to the Modified Helmholtz equation depend on the Modified

Helmholtz Green’s function. The regular part of this Green’s function, defined in

(2.55) is more difficult to work with compared to the regular part of the Neumann

Green’s function defined in (2.17).

2.5 Examples

In this section we look at several examples of simple signalling pathways to show how

the results from previous sections can be used and to compare them to numerical

computations. The analysis in previous sections was done for signalling pathways

with only two signalling proteins. We look at some examples in this section where

there are more than two proteins and in these cases we can easily extend the results.

For example, for a pathway with three proteins, we may say we are using the results

from (2.47) which only has two equations. What we mean is we are using the obvious

extension of (2.47) to a larger system.

In most of the examples in this section we compare asymptotic solutions with

numerical solutions. We solve the PDE BVPs numerically using the software package

Comsol [1]. The corresponding Comsol code, which was is used for the example in

58

§2.5.3, can be found in the Appendix in §A.2. When solving a system of ODEs we

use the standard ODE solver package in Maple [2].

Comsol is a FEM package for solving PDEs defined over complicated geometries

in one, two, and three dimensions. We use the time dependent solvers in Comsol

to solve (2.3). Comsol has adaptive time stepping algorithms and there are many

different ones to choose from. We use the default choice which is a family of backward

differentiation formulas (BDF). A BDF formula is a multistep formula based on

numerical differentiation for solutions to ODEs. A BDF method of order n computes

the solution using an nth-grade polynomial in terms of backward differences. We also

can choose relative and absolute tolerances in Comsol to control the accuracy of the

solutions. For solving the models without delay we used 1e-6 for both the absolute

and relative tolerances.

One other thing to mention is that Comsol does not have adaptivity in the spatial

dimension. This means that the mesh is constant over the entire computation of the

solution. The global mesh properties such as the number of elements and their sizes

is determined by the geometry. The mesh is not adaptive. Although a user can go

in and tweak the mesh properties within Comsol, we use the default mesh properties

for our simulations.

In this chapter we use the standard ODE solvers in Maple to solve the ODE

systems which approximate the PDE solutions. In Chapter 3 we use Matlab instead

of Maple. In Maple we use the default initial value problem (IVP) solver. The default

method for IVPs in Maple is a Runge-Kutta Fehlberg method that produces a fifth

order accurate solution. This fourth-fifth order Runge-Kutta method is commonly

abbreviated as rk45 [15]. We use the default tolerances in Maple which are specific

to the method used. The default values for rkf45 are an absolute tolerance of 1e-7

and a relative tolerance of 1e-6. The value for the initial time step is determined by

the method and takes into account the local behavior of the ODE system.

We did not encounter any major difficulties doing the numerical computations

here because the ODEs and PDEs are quite standard. This is contrasted with the

numerical simulations in Chapter 3 where delay is introduced. In that chapter the in-

clusion of delay complicates the numerical solutions and some innovation is required.

Therefore we go into a lot more detail when discussing the numerical simulations in

59

Chapter 3.

2.5.1 Bistability

Positive feedback within a signalling pathway can lead to bistability but it is not a

prerequisite for it [80]. It has been speculated that bistability plays a role in cell

responses such as differentiation. Bistability can form switch like responses and can

be viewed as producing a type of biochemical memory.

Here we consider a simplified cascade model where the boundary conditions in

(2.3) are chosen to be Hill functions as used in the ODE model in [83]. The model is

simplified because it neglects the active and inactive forms of the signalling proteins.

We use a cascade with two cycles for simplicity although similar results could be

obtained with a cascade of arbitrary length. This system has forward activation as

well as positive feedback. Here S represents the stimulus from a cell surface receptor.

We consider it to be a constant in the first part of this example. The model from

(2.3) becomes

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu =
(S + ηv)β

αβ + (S + ηv)β
, x ∈ ∂Ωε1

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv =
uβ

αβ + uβ
, x ∈ ∂Ωε2 .

(2.57)

We choose the Hill coefficient β = 2 and all other parameter values as α =
√
12, η =

10/4, R = 1, k1 = 3, Du = 4, k2 = 3, Dv = 4, x1 = (1/2, 0, 0), x2 = (−1/2, 0, 0), ε =

0.01 and treat S as a bifurcation parameter. To solve for the steady state of (2.57)

we need to use the results from §2.2. We will only use the leading order results

here because that is all that is needed to observe the bistability. The equilibrium

solutions are constant to leading order and are determined by the system in (2.12).

60

The system of equations in (2.12) becomes

u0 =
4(S + 5

2
v0)

2

12 + (S + 5
2
v0)2

v0 =
4u2

0

12 + u2
0

.

(2.58)

For different values of S we can solve (2.58) numerically to produce the following

bifurcation diagram for u0. There is a similar bifurcation diagram for v0.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

S

u
0

Figure 2.3: The steady state solution u(x) is the constant u0 to leading order. Here
we plot u0 as a function of S to show how bistability can arise for specific values of
S. The dotted line is the unstable branch of equilibria and the solid line is the stable
branch.

We now calculate the eigenvalues for the steady state solutions of (2.57) using

the results from §2.3. We will do this for S = 1.1 because there is three steady

state solutions in this case. We also compare the asymptotic eigenvalues with those

obtained numerically in Comsol. The results are summarized in Table 2.1.

61

Table 2.1: Comparison of the numerical calculation of the first two principle eigen-
values (λi,ii) from Comsol with the asymptotic eigenvalues (including the correction
term) from §2.3. The eigenvalue problem in (2.28) was solved numerically in Comsol
to obtain the numerical approximations.

Leading Order Steady States and Corresponding Eigenvalues

Steady State (u0, v0) Numerical Asymptotic

(1.5127, 0.6406) λi,ii = −0.06333, 0.00315 λi,ii = −0.06343, 0.00328

(0.4926, 0.0793) λi,ii = −0.05168,−0.00840 λi,ii = −0.05170,−0.00836

(2.5781, 1.4258) λi,ii = −0.05503,−0.00507 λi,ii = −0.05543,−0.00466

Now we let the parameter S be a slowly varying function of time. In Figure

2.3, as S increases and crosses approximately S = 0.95 there is a change from the

existence of a single stable equilibrium to the existence of two stable equilibrium and

one unstable one. Then as S crosses approximately S = 1.2 the system has only one

stable equilibrium again. We will choose S to be a piecewise function that increases

slowly in time from zero to two, stays at two for a period of time, and then decreases

slowly back to zero. We solve the BVP in (2.57) numerically (see Figure 2.4) with

this choice of S(t) to observe the switching mechanism caused by the bifurcations

illustrated in Figure 2.3.

The solution for u(x, t) is basically constant in space away from its point source

x1 (outer region). This was shown in §2.4. The approximation of u and v in their

corresponding outer regions is governed by the ODEs in (2.47),

τu
∂u0

∂τ
= −α2

1u0 + 3
(S + ηv0)

β

αβ + (S + ηv0)β

τv
∂v0
∂τ

= −α2
2v0 + 3

uβ
0

αβ + uβ
0

(2.59)

Note that the ODE system reduction of (2.57) is just a rescaling of the equations

used in [83]. In this case the inclusion of spatial effects does not effect the leading

order dynamics. This is because c1 = F (v) and c2 = G(u) are both defined explicitly

62

in (2.47). This will always occur when the production functions contain no self

regulation (i.e. Fu = 0 and Gv = 0).

We can compare the numerical computations of the PDE system in (2.57) with

the ODE system in (2.47). The results are in Figure 2.4.

0 0.5 1 1.5 2 2.5 3
x 104

0

0.5

1

1.5

2

2.5

3

t

u
0

Figure 2.4: Here we plot the numerical solution of u(x, t) (dotted curve) from (2.57)
at the single point (0.99, 0, 0). The solution at this point represents the value of
u in the outer region away from the first compartment centred at x1 = (0.5, 0, 0).
The solid curve is the asymptotic solution u0(τ), which is an approximation to the
solution u(x, t) of (2.57) in the outer region. The leading order approximation,
u0(τ), was obtained by solving the ODE system in (2.47) numerically. There is
good agreement between the simpler ODE model in (2.47) and the full 3D BVP
simulations of (2.57). The dashed line is S(t) and the two horizontal solid lines are
the approximate bifurcation values S = 0.95, S = 1.2 from the bifurcation diagram
in Figure 2.3.

As S(t) crosses the bifurcation point S = 1.2, the solution jumps away from

the now unstable equilibrium toward the stable one. This represents the signalling

switch being turned on. Then as S decreases and crosses S = .95, the solution jumps

back down to the only stable equilibrium and the switch is turned off.

63

2.5.2 Robust Switching Model with Delayed Bifurcation

Here we choose enzyme kinetic functions which may not be as biologically relevant as

Hill or Michaelis Menten functions but they provide dynamics with a robust switch.

We could use the more realistic functions in the same family as those considered in

the previous section and get the same dynamic behavior. However if we adapted

those production functions to a signalling cascade similar to the ones considered in

this section (F and G both dependent on u and v) the analysis would not be straight

forward and all unknowns would have to be calculated numerically. In particular,

the leading order equilibria would be solutions to high degree polynomials, the eigen-

values would not be solved for explicitly, and it would be more difficult to obtain

explicit expressions for the system of ODEs coming from (2.47). We have chosen

these enzyme kinetic functions to resolve these issues and to show the construction

of the system of ODEs governing the dynamics of the system. More importantly,

with these simpler functions, we can demonstrate how multiple solutions for c1 and

c2 in (2.47) are handled.

We first do the analysis for a pathway with two signalling proteins to show why

there is a switch and then show numerical computations for a pathway with four

proteins. The model from (2.3) becomes

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε (2.60a)

∂nxu = 0, x ∈ ∂Ω1 (2.60b)

ε∂nxu = k1/3, x ∈ ∂Ωε1 (2.60c)

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε (2.60d)

∂nxv = 0, x ∈ ∂Ω1 (2.60e)

ε∂nxv = −v(v − 11/6)(u− 1/2), x ∈ ∂Ωε2 , (2.60f)

with parameter values R = 1, Du = 1, Dv = 1, k1 = 1, k2 = 1. The reason for

the particular choice of functions in (2.60c) and (2.60f) is so the equilibrium values

work out nicely as well as to give the desired switch behavior. We will assume that

u(x, 0) = 0 and v(x, 0) = 0 and we will determine the evolution of u and v to leading

order.

64

We first use the result from (2.12) to find the leading order equilibrium solutions.

In this example (2.12) becomes

u0 = 1,

v0 = −4v0((4/3)v0 − 11/6)(u0 − 1/2).

The two leading order steady state solutions are the constant solutions (u0, v0) =

(1, 0) and (u0, v0) = (1, 1). To determine the stability of the two equilibriums we

must solve the eigenvalue problem in (2.35). For the equilibrium (u0, v0) = (1, 0)

the eigenvalues are λi,ii = 32,−1 so the equilibrium is unstable. For (u0, v0) = (1, 1)

they are λi,ii = −1,−32/17 so the equilibrium is stable. From this we know u0 → 1

and v0 → 1 as t → ∞. We now comment on how the leading order solutions, u0(τ)

and v0(τ), evolve before reaching equilibrium.

Since the boundary condition in (2.60c) does not depend on v we can analyze the

BVP for u independently of v. Therefore we can treat u0 as a bifurcation parameter.

Although u0 is a function of time we will first consider the static case where u0 is a

constant. If u0 is constant then the leading order equilibrium solutions are v0 = 0 and

v0 = −7+11u0

8u0−4
, with corresponding eigenvalues λ = −8(−7+11u0)

22u0−23
and λ = −8(−7+11u0)

22u0−5

respectively. For u0 < 7/11, v0 = 0 is stable while the other equilibrium is unstable.

This is reversed for u0 > 7/11. Therefore, for values of u0 < 7/11 the solution v0(τ)

is attracted to v0 = 0 and for values of u0 > 7/11 the solution v0(τ) is attracted to

the other equilibrium v0 =
−7+11u0

8u0−4
. This same qualitative behavior is observed even

when u0 is a function of τ but with one main difference to be explained shortly.

From the ODE for u0(τ) in (2.47) along with the zero initial condition already

assumed, we have that u0(τ) = 1 − e−τ . We can treat u0(τ) as a time dependent

bifurcation parameter. The solution for v0(τ) is initially attracted to v0 = 0 as

described above in the static case. Then we expect it to be repelled from v0 = 0 as

u0(τ) crosses through the critical value u0 = 7/11. What actually happens is that

v0(τ) remains attracted to v0 = 0 for a period of time after u0(τ) crosses through the

critical point, before being repelled away from v0 = 0 and attracted to v0 = 1. This

phenomenon where the change of stability expected at a bifurcation is delayed due to

the time dependence of a bifurcation parameter, is known as a delayed bifurcation.

It is usually the result of the bifurcation parameter slowly evolving in time [71].

65

The switching behavior in the solution for v0(τ) from v0 = 0 to v0 = 1, along with

the delayed bifurcation, can be seen in Figure 2.5. Here we solve the ODE system

in (2.47) numerically applied to the current example.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

so
lu
ti
on

s u0(τ) v0(τ)

Figure 2.5: Here we plot the numerical solution to the ODE system in (2.47) for the
particular choice of F and G from the BVP in (2.60). The solutions u0(τ) and v0(τ)
represent how the solutions to (2.60) change in their corresponding outer regions. As
u0 crosses u0 = 7/11 (shown as horizontal solid line) the equilibrium v0 = 0 becomes
unstable and v0(τ) is attracted to the stable equilibrium v(τ) = 1. The jump in the
solution for v0 from v0 = 0 to v0 = 1 does not occur immediately as u0 crosses the
bifurcation point. This is because there is a delayed bifurcation.

For this example, we will construct (2.47) explicitly. We only need to find the

ODE for v0(τ), since the ODE for u0(τ) is already known. We first find the solution

to c2(τ) = G(u0(τ), v0(τ) + c2(τ)) from (2.47). This results in a quadratic equation

for c2(τ) with roots

c±2 =
−23− 24v0(τ)u0(τ) + 12v0(τ) + 22u0(τ)

12(2u0(τ)− 1)

±
√

529 + 576v0(τ)u0(τ)− 288v0(τ)− 1012u0(τ) + 484u0(τ)2

12(2u0(τ)− 1)
.

We choose the c+2 branch in defining the ODE for v0(τ) because it results in the same

leading order equilibrium points, (u0, v0) = (1, 0) and (u0, v0) = (1, 1), found earlier

in this section for the full PDE system. Another remark is that the two branches,

66

c±2 do not intersect in the region of interest 0 ≤ u0, v0 ≤ 1. The ODE for v0(τ) is

∂v0(τ)

∂τ
= −v0(τ) + 3c+2 .

We can extend the model in (2.60) by adding in two more variables w and z.

We use the same parameter values for the cell radius, decay rates, and diffusion

coefficients as above. We use the same form of boundary condition in (2.60f) but for

w it becomes −w(w − 11/6)(v − 1/2) while for z it is −z(z − 11/6)(w − 1/2). The

compartment locations for u, v, w, and z are now (0.75, 0, 0), (0.25, 0, 0), (−0.25, 0, 0),

and (−0.75, 0, 0) respectively. The initial conditions are u(x, 0) = 0, v(x, 0) = 0.05,

w(x, 0) = 0.05, and z(x, 0) = 0.05. As in the system with two variables, we must

choose the correct branches for each ci. For example, associated with the ODE for

w0(τ) there will be a c±3 which will have the same expression as c±2 but with v0(τ)

replaced by w0(τ) and u0(τ) replaced by v0(τ). We choose the c+2 branch again for

the same reason as before. The same scenario holds for z0(τ) and c±4 .

We solved the leading order ODE system for the two variable example in Figure

2.5. We now solve the full PDE model in (2.60) (as well as the ODE reduction (2.47))

but extended to a system of four variables. For each solution of the PDE system

we plot it at a single point in its corresponding outer region as seen in Figure 2.6.

We have chosen ε = 0.05 so the agreement between the full PDE and approximating

asymptotic ODE model will not be as good when ε = 0.01. Also, our asymptotic

solutions are valid when the solutions of the PDE model are not changing too quickly.

In the current example the solutions are changing quickly from one equilibrium to

another.

67

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

so
lu
ti
on

s

Figure 2.6: The four curves (dotted) from left to right are u , v, w , and z plotted
in their respective outer regions. These solutions are found from solving the four
variable extension of (2.60) numerically. The solutions for u and v were plotted at
the point (-0.99,0,0) and w and z were plotted at (0.99,0,0). Each solution besides
u is initially attracted toward zero but then jumps away to the other equilibrium
because of a change in stability. The solid lines are the corresponding asymptotic
solutions from solving the four variable extension of (2.47).

2.5.3 Hopf Bifurcation

In this section we look at a pathway with three signalling proteins each of which

can be in an active and inactive form. We assume that the total concentrations are

uT = vT = wT = 1. We use Hill functions as in [83] but we also add in the deactivated

form of the signalling proteins as a linear multiplier (see equations (2.61c), (2.61f),

68

(2.61i)). The model in (2.3) for three variables then becomes

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε (2.61a)

∂nxu = 0, x ∈ ∂Ω1 (2.61b)

ε∂nxu =
S3

S3 + (α + ηw)3
(1− u), x ∈ ∂Ωε1 (2.61c)

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε (2.61d)

∂nxv = 0, x ∈ ∂Ω1 (2.61e)

ε∂nxv =
u3

α3 + u3
(1− v), x ∈ ∂Ωε2 (2.61f)

τw
∂w

∂t
= Δxw − α2

3εw, x ∈ Ω1\Ωε (2.61g)

∂nxw = 0, x ∈ ∂Ω1 (2.61h)

ε∂nxw =
v3

α3 + v3
(1− w), x ∈ ∂Ωε3 , (2.61i)

where we choose Du = 1/3, Dv = 1/3, Dw = 1/3, R = 1, k1 = 1/2, k2 = 1, k3 =

1/4, α = 0.2, η = 50, x1 = (1/2, 0, 0), x2 = (0, 0, 0), x3 = (−1/2, 0, 0), ε = 0.01, and

treat the stimulus S as a bifurcation parameter.

We use the extended version of the system of differential equations derived in

(2.47) to get an approximation for how the solutions away from the compartments

evolve in time. Recall that the solutions away from the compartments are basically

constant with respect to space. The system of ODEs from (2.47) applied to three

variables becomes

∂u0

∂τ
= −1

2
u0 +

S3

2S3 + (α + ηw0)3
(1− u0)

∂v0
∂τ

= −v0 +
u3
0

α3 + 2u3
0

(1− v0)

∂w0

∂τ
= −1

4
w0 +

v30
α3 + v30

(1− w0).

(2.62)

The three equations which determined c1, c2, and c3 from the three variable extension

of (2.47) were linear in c1, c2, and c3 respectively. Therefore we did not have to

consider multiple solution branches as in §2.5.2.

69

From solving (2.62) numerically we observe that there is a Hopf bifurcation and as

a result there are values of S which lead to sustained oscillations in the concentration

of the signalling proteins. For different values of S we can make the following Hopf

bifurcation diagram for u0. There are similar diagrams for v0 and w0.

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

S

u
0

Figure 2.7: The steady state solution u(x) is the constant u0 to leading order. Here
we plot u0 as a function of S as well as the max and min (open circles) of sustained
oscillations near the Hopf Bifurcation points. The solid circles represent the stable
equilibrium points which then become unstable (dotted line) as S crosses the first
bifurcation point. As a result there are sustained oscillations about the unstable
equilibrium. There is then another Hopf bifurcation where the unstable equilibrium
become stable again.

The above diagram was made by solving the simpler ODE system in (2.62) nu-

merically. This system has come out of the analysis from §2.4 and approximates the

dynamics of the leading order solutions from the more complicated BVP model in

(2.61). To see how well the ODE model approximates the PDE model we can solve

both numerically and compare them. We will plot the solution from (2.61) at one

point in space in the outer region for u0. The result is in Figure 2.8 and there is

good agreement between the two models. It is important to point out that the Hopf

bifurcation was found first in the ODE model (2.62) which can be solved numerous

times very quickly compared to the PDE model. Then the full PDE model is solved

numerically and verifies that the Hopf bifurcation occurs in that system as well.

70

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

t

u
0

Figure 2.8: The dotted line is obtained from plotting the solution u(x, t) from the
full BVP model in (2.61) at the single point (−0.99, 0, 0). It represents how u(x, t)
evolves in the outer region away from the compartment Ωε1 which is centred at
x1 = (1/2, 0, 0). The solid line represents the solution u0(τ), where τ = εt, which is
found from solving the ODE model in (2.62). Here S = 2.

Thus far when we have used the results from §2.4 we have only used the leading

order ODE system in (2.47). We now take into account the second order calculations

which derived the system of ODEs in (2.50). Solving the system in both (2.47) and

(2.50) numerically allows us to find the time and space dependent solutions in (2.51).

We compare the solutions from (2.51) with the full BVP model (2.61) in Figure 2.9.

71

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

u

t = 100

t = 1240

t = 800

(a) u(x, t)

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

v

t = 100
t = 1240

t = 800

(b) v(x, t)

−1 −0.5 0 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

x

w

t = 100

t = 1240

t = 800

(c) w(x, t)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

w

t

(d) w(t) plotted as function of t at the
point (0.99,0,0) and then at (-0.51,0,0).

Figure 2.9: In 2.9(a), 2.9(b), and 2.9(c) we plot the numerical solutions u, v, and w
(dots) from BVP (2.61) along with their asymptotic solutions (solid line) from (2.51)
for different time values. Each asymptotic solution from (2.51) depends on two
functions which are each determined by different systems of ODEs. The functions
u0(τ), v0(τ), and w0(τ) were found from solving (2.47) numerically and the functions
χ1(τ), χ2(τ), and χ3(τ) were found from solving (2.50) numerically. In 2.9(d) we plot
the numerical solution for w(x, t) from (2.61) at a point in its outer region, (.99,0,0),
as well as a point in its inner region, (-0.51,0,0). The one with the higher amplitude
is the one in the inner region. We then plot the asymptotic solutions from (2.51) at
these same points. Note that for certain time values the height of the outer and inner
region solutions are the same. This is why the solution for w in 2.9(c) at t = 800
appears flat across the domain. We are using S = 2 so there is sustained oscillations
occurring in all these figures.

We end this Hopf bifurcation example with a time series evolution of the three

variables. We use cross section plots here which are different from all the plots seen

thus far. The sustained oscillations can be observed but more importantly we include

these plots because they show more of the 3D structure of the solutions. The solution

values are the numerical solutions from the PDE system (2.61).

72

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(a) u1: time = 325

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(b) u2: time = 325

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.15

0.2

0.25

(c) u3: time = 325

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(d) u1: time = 333

x

y
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(e) u2: time = 333

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.15

0.2

0.25

(f) u3: time = 333

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(g) u1: time = 380

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(h) u2: time = 380

x
y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.15

0.2

0.25

(i) u3: time = 380

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(j) u1: time = 1.2

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(k) u2: time = 392

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.15

0.2

0.25

(l) u3: time = 393

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(m) u1: time = 402

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.05

0.1

0.15

0.2

(n) u2: time = 402

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.15

0.2

0.25

(o) u3: time = 402

Figure 2.10: Time series evolution of (2.61) where the solutions are plotted as cross
sections through the x-y plane. Here we use ε = 0.1 and S = 2 and all other
parameters values as in this section.

2.5.4 Comparison of (2.47) with other ODE Models

In this example we highlight the differences between the approximating ODE model

in (2.47) with other ODE systems that are well mixed and which neglect spatial

73

effects. Throughout this chapter we have assumed linear deactivation everywhere in

the cell and localized activation (modelled by the functions F and G) at subcellular

compartments for the enzyme kinetics. A typical ODE model with the same enzyme

kinetics but where activation occurs everywhere in the cell can be expressed as

∂u

∂τ
= −u+ F (u, v)

∂v

∂τ
= −v +G(u, v).

(2.63)

For simplicity, throughout this example we are assuming τu = 3, τv = 3, k1 = k2 =

1,and uT = vT = 1.

The signalling model considered in this chapter takes into account spatial effects,

diffusion, and enzyme localization to subcellular sites. The system was modelled by

the PDEs in (2.3). The leading order dynamics of (2.3) are governed by the DAEs

in (2.47) which becomes

∂u0

∂τ
= −u0 + c1(u0, v0), c1 = F (u0 + c1, v0)

∂v0
∂τ

= −v0 + c2(u0, v0), c2 = G(u0, v0 + c2).

(2.64)

This system of DAEs can be converted to a system of two ODEs as long as the

nonlinear equations can be solved for c1 and c2 in terms of u0 and v0.

The difference between (2.63) and (2.64) is how the activation functions F and G

appear on the right hand side of the ODEs. When activation occurs everywhere, F

and G appear in the ODEs explicitly as in (2.63). When spatial effects are considered

and activation is localized, the activation functions F and G appear in the implicitly

defined relationships c1 = F (u0 + c1, v0) and c2 = G(u0, v0 + c2). This results in a

different form of nonlinearity.

For example, consider the following choice of F and G which have the same form

as those used in [47],

F (u, v) =
1− u

(1− u+ α)(1 + ηv)

G(u, v) =
(1− v)u

1− v + α
.

For this choice of F and G, c1 and c2 are the solutions to the following quadratics

(1 + ηv0)c
2
1 − ((1 + ηv0)(α + 1− u0) + 1)c1 + 1− u0 = 0

c22 − (α + 1− v0 + u0)c2 + u0(1− v0) = 0.
(2.65)

74

Since the the equations in (2.65) are quadratic, c1 and c2 will both have radicals

in their expressions. This is a different type of nonlinearity than that of F and G

in (2.63). This is one way in which the ODEs in (2.64) differ from those in (2.63).

The systems will have the same number of equilibrium points, but the dynamical

behavior could be different. Secondly, since there are two possible solutions for c1

and two possible solutions for c2, which we will denote as c±1 and c±2 respectively, me

must go through all possible choices of solution branches. As already mentioned in

previous sections, we must choose the correct two solution branches (one for c1 and

one for c2) which are defined in the region of interest and give the correct dynamical

behavior. For this example, if we choose c−1 and c−2 then the solutions of (2.64) have

the same equilibrium points as the leading order equilibrium solutions of the full

PDE system in (2.3). Therefore these are the correct solution branches to choose.

No other pair of solution branches will give this same result.

Another difference between (2.64) and (2.63) is that the right hand side of (2.64)

may become complex. As a very simple example, consider a system with one sig-

nalling protein and F (u) = 1
4
u2 where we ignore the active and inactive forms as

in [83]. The steady state solutions to leading order of the PDE system (2.3) are

the constants u0 = 1 (unstable) and u0 = 0 (stable) which are found from solving

(2.12). For the asymptotic ODE reduction, c1(u0) satisfies 4c1 = (c1+u0)
2 and (2.64)

becomes
∂u0

∂τ
= 2− 2u0 − 2

√
1− u0. (2.66)

Note that we had two solution branches to choose from for c1 and we chose the

branch which results in (2.66) having the equilibrium solutions u0 = 0 and u0 = 1.

Since we are ignoring the active and inactive forms we do not have any relationship

which gives a restriction on the size of u0. So for any initial condition u0(0) > 1, the

right hand side of the ODE in (2.66) is complex. The right hand side of the ODE in

(2.63) is defined for any initial condition in this example as it becomes

∂u

∂τ
= −u+

1

4
u2. (2.67)

The equilibrium solutions of (2.67) are u = 0 (stable) and u = 4 (unstable). If an

initial condition u(0) > 4 is chosen for (2.67) then the solutions blow up in a finite

time.

75

An initial condition u0(0) > 1 leads to (2.66) being complex. Thus the asymptotic

ODE reduction is not defined for some choices of initial conditions. A reasonable

question is to ask what this corresponds to in the full PDE system in (2.3). For

this specific case of one variable u and F = u2/4 we attempted running numerical

simulations of (2.3) in Comsol for the initial condition u(x, 0) = 1.1. Since the

asymptotic model is not defined for u0 > 1 we wanted to see what behavior was

evident in the full PDE system. We found that Comsol failed to converge and after

reducing to a time step of O(10−18) stopped the calculation due to a singularity. We

believe the reason for this is that the solution is approaching infinity in a finite time

(i.e. finite time blow up just as in (2.67)). The simulations for 0 < u(x, 0) < 1

behaved as expected.

We have already mentioned briefly in §2.5.1, that the two systems (2.63) and

(2.64) can have very similar right hand sides when ∂
∂u
F (u, v) = 0 and ∂

∂v
G(u, v) = 0.

In this case the implicit relationships defined in (2.64) which determine c1 and c2,

reduce to c1 = F (v0) and c2 = G(u0) respectively. With the choice of parameters we

have chosen for this section, (2.63) and (2.64) are identical. In general, for arbitrary

parameters, when F is independent of u and G is independent of v then the systems

(2.47) and the ODE analog (without space) will agree up to scaling.

One final remark we would like to make is on the generality of (2.3). Since the

enzyme kinetic functions F andG were chosen in such an arbitrary manner it appears

we could construct any type of dynamical behavior (or any right hand side of (2.64))

that we want. Suppose we wanted the ODE reduction equations in (2.47), which

govern the leading order dynamics of (2.3), to be

∂u0

∂τ
= −u0 + f̄(u0, v0)

∂v0
∂τ

= −v0 + ḡ(u0, v0),

(2.68)

for a specific choice of f̄ and ḡ. This is easy in the well mixed systems (2.63) because

we just choose F = f̄ and G = ḡ. However, in order to turn (2.64)) into (2.68) we

must find an F and G such that

f̄(u0, v0) = F (u0 + f̄(u0, v0), v0)

ḡ(u0, v0) = G(u0, v0 + ḡ(u0, v0)).

76

In general it may not be possible to solve this functional relationship. Therefore,

because of the implicit relationships defined in (2.64), we can not construct (at least

easily) any type of dynamical behavior we want.

We leave the discussion of the results in this chapter to the last chapter in this

thesis, Chapter 5.

Chapter 3

A Model with Delayed Enzyme Activation

In this chapter we analyze a 3D model which incorporates time delay explicitly.

We use the Comsol and Matlab scripting languages along with the method of steps

[8] to find numerical solutions of the full 3D PDE model with delay. We also use

asymptotic analysis to find the stability of the equilibrium solutions. Asymptotic

expressions for the solutions of the full model in time and space are obtained as

well. Through this analysis the PDE model is approximated by a simpler system of

delayed differential algebraic equations (DDAEs). Finally, because of the delay, we

find that the systems under consideration may undergo Hopf bifurcations. In these

cases sustained oscillations are observed and we use the Poincaré-Lindstedt method

to improve upon the asymptotic approximations. This is an interesting application

of a standard asymptotic method to a non standard problem.

The main sections of this chapter are as follows. In §3.1 we rewrite the main model

from Chapter 2 and then add a constant time delay to get the model which will be

analyzed in this chapter. In §3.2 we do a stability analysis to derive a nonlinear

eigenvalue problem which determines the stability of the equilibrium solutions. In

§3.3 we find approximate time dependent solutions of the model. Also in §3.3, the

system of PDEs is approximated by a system of DDAEs. In §3.4 we discuss the

numerical methods we have implemented, as well as associated methods, to solve the

PDE model with delay as well as the DDAEs. In §3.6 we use the Poincaré-Lindstedt

method to improve the analysis in the case of a Hopf bifurcation. We also compare

numerical results with asymptotic results in §3.5 and §3.6.

3.1 Model

The following model was derived in Chapter 2 and can be found in equation (2.3),

77

78

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u, v), x ∈ ∂Ωε1

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u, v), x ∈ ∂Ωε2 .

(3.1)

We will now add a constant time delay to the model in (3.1). This is because

we want the delay to affect the enzyme kinetic reactions that are responsible for

activating the signalling molecules. These reactions take place on the boundaries

of the internal compartments within the cell. Therefore we add the delay to the

corresponding boundary conditions in (3.1). This means the enzyme kinetic functions

F and G will take the form F (u(x, t− s), v(x, t− s)) and G(u(x, t− s), v(x, t− s))

for some constant delay s.

With the delay term only present in the boundary conditions, it allows for a

simpler implementation for solving the PDE system with delay numerically (see §3.4

). There are other options for where to add the delay in (3.1). We could add the

delay to any of the terms in the PDE itself but this would lead to further numerical

difficulties (which we may consider in future work). Moving the delay to a different

term in (3.1) does not make the asymptotic analysis more complicated. However,

it greatly complicates the methods we could use to compute approximate numerical

solutions.

The model in (3.1) with a constant delay s now becomes,

79

τu
∂u

∂t
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u(x, t− s), v(x, t− s)), x ∈ ∂Ωε1

u(x, t) = uh(x, t), t ≤ 0

τv
∂v

∂t
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u(x, t− s), v(x, t− s)), x ∈ ∂Ωε2

v(x, t) = vh(x, t), t ≤ 0.

(3.2)

Notice that we have added initial history data. Initial history is needed over one

delay interval when one considers delay equations. This is contrasted with ODEs

which only require initial conditions at a single point in time. Although the history

functions uh and vh could be time and space dependent, for the examples later in

this chapter, we will assume the initial history is constant in time and space.

Asymptotic approximations for the steady state solutions of (3.1) were found in

Chapter 2 using the method of matched asymptotic expansions which will be used

here as well. The addition of delay does not affect the steady state solutions. We

rewrite them here for easy reference (see equations (2.27)),

uE(x) = u0 + ε

(
c1

|x− x1| + 4πc1Rn(x; x1) + χ1

)
+O(ε2)

vE(x) = v0 + ε

(
c2

|x− x2| + 4πc2Rn(x; x2) + χ2

)
+O(ε2).

The constants u0, v0, c1, and c2 are found by solving the system of equations

c1 = F (u0 + c1, v0)

c2 = G(u0, v0 + c2)

c1 =
α2
1u0

3

c2 =
α2
2v0
3

.

(3.3)

This system is likely nonlinear (due to the nonlinearities in F and G) and the number

of distinct solutions determines the number of equilibrium solutions of (3.2). There

80

is also a linear system which determines the constants χ1 and χ2 which can be found

in (2.25) but we do not need to reference it in this chapter. The function Rn(x, xj)

is the regular part of the Neumann Green’s function defined in (3.22).

3.2 Stability Analysis

In Chapter 2 the stability of the equilibrium solutions of (3.1) were determined by

a linear eigenvalue problem which can be found in (2.35). Because of the delay in

(3.2), the stability of the equilibrium solutions will now be determined by a nonlinear

eigenvalue problem. We will do a stability analysis and use matched asymptotics

to analyze the resulting nonlinear eigenvalue problem. The method of matched

asymptotic expansions will end up turning a complicated PDE eigenvalue problem,

defined over a perturbed domain, into a simpler matrix eigenvalue problem.

We begin by introducing small perturbations off of the steady states solutions,

u = uE + φ(x)eλt, φ � uE

v = vE + ψ(x)eλt, ψ � vE ,

and substitute these into (3.2). After linearizing we get

τuλφ = Δxφ− α2
1εφ, x ∈ Ω1\Ωε

∂nxφ = 0, x ∈ ∂Ω1

ε∂nxφ = e−λs (Fu(uE, vE)φ+ Fv(uE, vE)ψ) , x ∈ ∂Ωε1

τvλψ = Δxψ − α2
2εψ, x ∈ Ω1\Ωε

∂nxψ = 0, x ∈ ∂Ω1

ε∂nxψ = e−λs (Gu(uE, vE)φ+Gv(uE, vE)ψ) , x ∈ ∂Ωε2 .

(3.4)

The eigenvalue problem is nonlinear because of the e−λs terms in the boundary

conditions. We will use the method of matched asymptotic expansions to analyze

(3.4) and solve for λ.

It turns out that the delay has to be relatively large, s = O(1
ε
), for it to have

a significant affect on the dynamics of (3.2). We show this in §3.2. If the delay is

smaller, s = O(1) for example, then the qualitative behavior of (3.2) is similar to the

81

model without delay in (3.1). A delay of magnitude s = O(1/ε) is required because

of the O(ε) scaling chosen for the decay parameters in (3.2).

Stability Analysis for Large Delay

In this section we find asymptotic approximations of (3.4) when s = O(1/ε). The

main result of this stability analysis is a nonlinear matrix eigenvalue problem which

determines the stability of the steady state solutions of (3.2) to leading order.

We begin by expanding the eigenfunctions and λ in terms of ε. For the delay we

let s = T/ε where T = O(1). To determine the scaling of λ in terms of ε we integrate

the PDEs in (3.4) over the entire domain and apply the Divergence theorem,∫
Ω1\Ωε

(τuλφ+ α2
1εφ) dV = 4πεe−λs(Fu(uE, vE)φ+ Fv(uE, vE)ψ)

∣∣∣
|x−x1|=ε∫

Ω1\Ωε

(τvλψ + α2
2εψ) dV = 4πεe−λs(Gu(uE, vE)φ+Gv(uE, vE)ψ)

∣∣∣
|x−x2|=ε

.

(3.5)

These equations are useful in determining the correct order of the asymptotic expan-

sions. For the method of matched asymptotics, both sides of (3.5) must be the same

order of magnitude. This will work if λ is chosen to be O(ε) since both sides of (3.5)

would then be O(ε).

We expand the outer eigenfunctions and λ in terms of ε as follows,

φ(x) = φ0(x) + εφ1(x) + ε2φ2(x) + . . .

ψ(x) = ψ0(x) + εψ1(x) + ε2ψ2(x) + . . . ,
(3.6)

λ = λ1ε+ λ2ε
2 + (3.7)

Next, we substitute the expansions from (3.6) and (3.7) into (3.4). After collecting

like powers of ε we obtain the following outer problems,

0 = Δxφ0, x ∈ Ω1\{x1}, ∂nxφ0 = 0, x ∈ ∂Ω1

0 = Δxφ1 − (α2
1 + τuλ1)φ0, x ∈ Ω1\{x1}, ∂nxφ1 = 0, x ∈ ∂Ω1

0 = Δxφ2 − (α2
1 + τuλ1)φ1 − τuλ2φ0, x ∈ Ω1\{x1}, ∂nxφ2 = 0, x ∈ ∂Ω1

0 = Δxψ0, x ∈ Ω1\{x2}, ∂nxψ0 = 0, x ∈ ∂Ω1

0 = Δxψ1 − (α2
2 + τvλ1)ψ0, x ∈ Ω1\{x2}, ∂nxψ1 = 0, x ∈ ∂Ω1

0 = Δxψ2 − (α2
2 + τvλ1)ψ1 − τvλ2ψ0, x ∈ Ω1\{x2}, ∂nxψ2 = 0, x ∈ ∂Ω1.

(3.8)

82

To obtain the inner problems we introduce the rescaled inner variable y = (x −
xj)/ε into (3.4). With the PDE and boundary conditions for φ specified on the

compartment Ωε1 , we use j = 1. Similarly, with the PDE and boundary conditions

for ψ we use j = 2. After changing variables in (3.4) from x to y we obtain,

τuλφ
(i)ε2 = Δyφ

(i) − α2
1ε

3φ(i), ρ > 1

∂nyφ
(i) = e−λs

(
Fu(uE, vE)φ

(i) + Fv(uE, vE)ψ
)
, ρ = 1

τvλψ
(i)ε2 = Δyψ

(i) − α2
2ε

3ψ(i), ρ > 1

∂nyψ
(i) = e−λs

(
Gu(uE, vE)φ+Gv(uE, vE)ψ

(i)
)
, ρ = 1.

(3.9)

We expand the inner functions as

φ(i)(y) = φ
(i)
0 (y) + εφ

(i)
1 (y) + ε2φ

(i)
2 (y) + . . .

ψ(i)(y) = ψ
(i)
0 (y) + εψ

(i)
1 (y) + ε2ψ

(i)
2 (y) + . . . ,

(3.10)

and substitute these into (3.9). The exponential term in the inner boundary condi-

tions from (3.9) becomes

e−λs = e−(ελ1+ε2λ2+...)(T/ε) = e−λ1T (1− λ2Tε+O(ε2)).

After collecting powers of ε we get the following inner problems for φ(i) and ψ(i)

0 = Δyφ
(i)
0 , ρ > 1

−∂ρφ
(i)
0 = e−λ1T

(
Fuφ

(i)
0 + Fvψ0

)
, ρ = 1

0 = Δyφ
(i)
1 , ρ > 1

−∂ρφ
(i)
1 = e−λ1T

(
Fuφ

(i)
1 + Fvψ1 + φ

(i)
0 (Fuuu

(i)
1 + Fuvv1) + ψ0(Fuvu

(i)
1 + Fvvv1)

)
− λ2Te

−λ1T
(
Fuφ

(i)
0 + Fvψ0

)
, ρ = 1

0 = Δyψ
(i)
0 , ρ > 1

−∂ρψ
(i)
0 = e−λ1T

(
Guφ0 +Gvψ

(i)
0

)
, ρ = 1

0 = Δyψ
(i)
1 , ρ > 1

−∂ρψ
(i)
1 = e−λ1T

(
Guφ1 +Gvψ

(i)
1 + φ0(Guuu1 +Guvv

(i)
1) + ψ

(i)
0 (Guvu1 +Gvvv

(i)
1)
)

− λ2Te
−λ1T

(
Guφ0 +Gvψ

(i)
0

)
, ρ = 1.

(3.11)

83

In the inner region near the compartments we assume radial symmetry so that

Δy ≡ ∂2
ρ+(2/ρ)∂ρ, which is the spherically symmetric Laplacian. Here ρ is the radial

variable defined as ρ = |y|. Note that n̂ ·∇y = ∂ny ≡ −∂ρ because the normal vector,

n̂, points inward to the spherical compartments.

Throughout this section, the partial derivatives of the functions F and G are

evaluated at the leading order steady state solutions. The leading order steady

solution for u(x, t) is u0 in its outer region and u0+c1/ρ in its inner region, |x−x1| ∼ ε.

The leading order steady solution for v(x, t) is v0 in its outer region and v0 + c2/ρ in

its inner region, |x− x2| ∼ ε. On the boundaries of the compartments we have that

ρ = 1. We use the following notation for the partial derivatives of the functions F

and G when being evaluated at the leading order steady state solutions. We write Fu

for Fu(u0+c1, v0) and Fv for Fv(u0+c1, v0). Similarly we write Gu for Gu(u0, v0+c2)

and Gv for Gv(u0, v0 + c2). Recall that u0, v0, c1, and c2 are determined from the

equations in (3.3).

Throughout the analysis in this section we will be using the method of matched

asymptotic expansions as we did in Chapter 2. The following matching conditions

must hold to all orders in ε,

φ0 + εφ1 + ε2φ2 + . . . = φ
(i)
0 + εφ

(i)
1 + ε2φ

(i)
2 + . . .

ψ0 + εψ1 + ε2ψ2 + . . . = ψ
(i)
0 + εψ

(i)
1 + ε2ψ

(i)
2 +

(3.12)

From the equations for φ0 and ψ0 in (3.8) we have that φ0 and ψ0 are constants.

For the inner solutions we solve the equations for φ
(i)
0 and ψ

(i)
0 from (3.11). The inner

functions φ
(i)
0 and ψ

(i)
0 are spherically symmetric. From the matching condition we

have that φ
(i)
0 → φ0 and ψ

(i)
0 → ψ0 as ρ → ∞.

φ
(i)
0 = φ0 +

e1
ρ
,

ψ
(i)
0 = ψ0 +

e2
ρ
.

(3.13)

The boundary conditions for φ
(i)
0 and ψ

(i)
0 give

e1 = e−λ1T (Fu(φ0 + e1) + Fvψ0)

e2 = e−λ1T (Guφ0 +Gv(ψ0 + e2)) .
(3.14)

84

Next we match the outer and inner solutions using (3.12)

φ0 + εφ1 + . . . = φ0 +
e1ε

|x− x1| + . . .

ψ0 + εψ1 + . . . = ψ0 +
e2ε

|x− x2| + . . . ,

which gives

φ1(x) ∼ e1
|x− x1| , x → x1

ψ1(x) ∼ e2
|x− x2| , x → x2.

(3.15)

From (3.15) we see that both φ1 and ψ1 are proportional to the free-space Green’s

function GF (x) =
1

4π|x−x1| of the Laplace equation, which satisfies ΔGF = −δ(x−x1).

Therefore we add in a δ-term of strength 4πe1 at the point x1 and a δ-term of strength

4πe2 at x2. This extends the domain of the outer BVPs for φ1 and ψ1 in (3.8) to all

of Ω1. Therefore φ1 and ψ1 are now determined by the following BVPs,

Δxφ1 − (α2
1 + τuλ1)φ0 = −4πe1δ(x− x1), x ∈ Ω1

Δxψ1 − (α2
2 + τvλ1)ψ0 = −4πe2δ(x− x2), x ∈ Ω1.

(3.16)

Integrating the equations in (3.16) over the domain Ω1 and applying the Diver-

gence theorem yields the following solvability condition,

e1 =

(
α2
1 + τuλ1

3

)
φ0

e2 =

(
α2
2 + τvλ1

3

)
ψ0.

(3.17)

Combining (3.14) and (3.17) we obtain(
(eλ1T − Fu)(α

2
1 + τuλ1)− 3Fu −3Fv

−3Gu (eλ1T −Gv)(α
2
2 + τvλ1)− 3Gv

)(
φ0

ψ0

)
=

(
0

0

)
.

(3.18)

The eigenvalue problem in (3.18) is a nonlinear eigenvalue problem. This is

because of the exponential term eλ1T . Setting T = 0 leads to the leading order

eigenvalue problem derived in (2.35) for the model without delay. We will use the

matrix eigenvalue problem in (3.18) more later. It is the main result of this section.

Now we derive equations which can be solved to determine the correction term

λ2. Solving for φ1 and ψ1 in (3.16) leads to

φ1(x) = 4πe1Gn(x; x1) + χ3

ψ1(x) = 4πe2Gn(x; x2) + χ4,
(3.19)

85

where χ3 and χ4 are constants to to be determined. The solutions in (3.19) are

written in terms of the Neumann Green’s function. This was defined in Chapter 2

but we rewrite it here for easier reference. The Neumann Green’s function Gn(x; x0)

satisfies
ΔxGn(x; x0) = 1/|Ω1| − δ(x− x0), x ∈ Ω1

∂nxGn(x; x0) = 0, x ∈ ∂Ω1∫
Ω1

Gn(x; x0) dV = 0,

(3.20)

where |Ω1| = 4π
3
, the volume of the unit sphere. For a sphere with radius R we can

write Gn(x; x0) explicitly [6] as

Gn(x; x0) =
1

4π|x− x0| +Rn(x; x0), (3.21)

where Rn(x; x0) is the regular part of this Green’s function given by

Rn(x; x0) =
R

4π

1

r
∣∣R2

r2
x− x0

∣∣ + 1

8πR3
(r2 + r20)−

7

10πR

+
1

4πR
log

(
2R2

R2 − rr0 cos γ + r
∣∣R2

r2
x− x0

∣∣
)
.

(3.22)

In (3.22), cos γ = cos θ cos θ0 + sin θ sin θ0 cos (φ− φ0) and (r0, θ0, φ0) denotes the

spherical coordinates of x0.

Now we consider the inner problems for φ
(i)
1 and ψ

(i)
1 from (3.11). We begin by

using (3.12) to determine the behavior of both these functions as ρ → ∞,

φ0 + ε

(
e1
ερ

+ 4πe1Rn(x1; x1) + χ3

)
+ ε2φ2 + . . . = φ0 +

e1
ρ
+ εφ

(i)
1

ψ0 + ε

(
e2
ερ

+ 4πe2Rn(x2; x2) + χ4

)
+ ε2ψ2 + . . . = ψ0 +

e2
ρ

+ εψ
(i)
1 .

(3.23)

The matching condition in (3.23) gives

φ
(i)
1 → 4πe1Rn(x1; x1) + χ3, ρ → ∞

ψ
(i)
1 → 4πe2Rn(x2; x2) + χ4, ρ → ∞.

Using this condition as well as the fact that both φ
(i)
1 and ψ

(i)
1 satisfy the spherically

symmetric Laplace equation in (3.11), we can solve for φ
(i)
1 and ψ

(i)
1 to obtain

φ
(i)
1 = 4πe1Rn(x1; x1) + χ3 +

A3

ρ

ψ
(i)
1 = 4πe2Rn(x2; x2) + χ4 +

A4

ρ
.

(3.24)

86

We will determine A3 and A4 from the boundary conditions for φ
(i)
1 and ψ

(i)
1 in (3.11)

shortly. First we use the matching condition to determine the behavior of φ2 and ψ2

near their respective compartments. We then use this to extend the domain for the

BVPs for φ2 and ψ2. The matching condition from (3.12) was rewritten in (3.23).

If we substitute φ
(i)
1 and ψ

(i)
1 from (3.24) into (3.23) we obtain the following result

after matching,

φ2 ∼ A3

|x− x1| , x → x1

ψ2 ∼ A4

|x− x2| , x → x2.

Therefore we can consider the two points x1 and x2 as point sources and add in delta

functions at x1 and x2. This extend the domain of the BVPs for φ2 and ψ2 from

(3.8) to all of Ω1. The new BVPs are

Δxφ2 = (α2
1 + τuλ1)φ1 + τuλ2φ0 − 4πA3δ(x− x1), x ∈ Ω1, ∂nxφ2 = 0, x ∈ ∂Ω1

Δxψ2 = (α2
2 + τvλ1)ψ1 + τvλ2ψ0 − 4πA4δ(x− x2), x ∈ Ω1, ∂nxψ2 = 0, x ∈ ∂Ω1.

(3.25)

Integrating these BVPs over Ω1, applying the Divergence theorem, and using the

integral condition from (3.20) leads to

A3 =
(α2

1 + τuλ1)χ3 + τuλ2φ0

3

A4 =
(α2

2 + τvλ1)χ4 + τvλ2ψ0

3
.

(3.26)

The boundary conditions for φ
(i)
1 and ψ

(i)
1 from (3.11) give us two other equations

for A3 and A4. Equating these equations for A3 and A4 with the equations for A3

and A4 from (3.26) yields the following after rearranging,(
(eλ1T − Fu)(α

2
1 + τuλ1)− 3Fu −3Fv

−3Gu (eλ1T −Gv)(α
2
2 + τvλ1)− 3Gv

)(
χ3

χ4

)
+

(
eλ1T − Fu 0

0 eλ1T −Gv

)(
τuλ2φ0

τvλ2ψ0

)
=

(
3Fu4πRn(x1; x1) 3Fv4πGn(x1; x2)

3Gu4πGn(x2; x1) 3Gv4πRn(x2; x2)

)(
e1

e2

)

+

⎛⎝ 3φ
(i)
0 (Fuuu

(i)
1 + Fuvv1) + 3ψ0(Fuvu

(i)
1 + Fvvv1)− 3λ2T

(
Fuφ

(i)
0 + Fvψ0

)
3φ0(Guuu1 +Guvv

(i)
1) + 3ψ

(i)
0 (Guvu1 +Gvvv

(i)
1)− 3λ2T

(
Guφ0 +Gvψ

(i)
0

)⎞⎠
(3.27)

87

The first equation in (3.27) is evaluated on the boundary of the first compartment

located at x1. Therefore ρ = 1 which implies |x− x1| = ε. For the second equation

the terms are evaluated on the boundary of the second compartment located at x2.

Therefore ρ = 1 so that |x − x2| = ε. For example, the term φ
(i)
0 = φ0 + e1/ρ is

simplified to φ0 + e1.

The system in (3.27) can be written in the form

A

(
χ3

χ4

)
= Nλ2,

where A is the matrix multiplying the vector (χ1, χ2)
� and Nλ2 is the vector con-

taining all the other terms from (3.27). Note that det (A) = 0 because λ1 is an

eigenvalue of A. To solve the above system for λ2 we use a solvability condition

which is basically just an application of the Fredholm alternative. If we denote A∗

as the Hermitian/conjugate transpose of A and let Y be a non zero vector such that

A∗Y = 0 then it follows that〈
A

(
χ3

χ4

)
,Y

〉
= 〈Nλ2 ,Y 〉

〈(
χ3

χ4

)
,A∗Y

〉
= 〈Nλ2 ,Y 〉

0 = 〈Nλ2,Y 〉 .

The angled brackets 〈. , .〉 denote the standard complex inner product. Provided

that we can find a nontrivial vector Y in the kernel of A∗, then we can solve the last

equation above for λ2. Knowing the value of λ2 makes the approximation to λ more

accurate.

The reason for going to a higher order in ε to find λ2 in this section is to show

how the method of matched asymptotics works when applied to the model with delay

in (3.2). It also shows how the analysis is identical to the stability analysis in §2.3.

Setting the delay T = 0 results in the same results from §2.3. In other sections of this

chapter we will do similar calculations without showing as many details. Although

we have obtained the correction term λ2, we do not use its value in this chapter. In

Chapter 2, when there was no delay, we could approximate the eigenvalues of the

PDE eigenvalue problem (2.28) numerically in Comsol. Since there was no delay the

88

PDE eigenvalue problem was linear. We could then compare the numerical solution

of λ with the asymptotic result λ1ε + λ2ε
2 as we did in Table 2.1. In this chapter

the delay leads to the nonlinear eigenvalue problem in (3.4). We have tried using

Comsol to solve (3.4) for λ but have not had any success getting consistent values.

We are more concerned with the dynamics of (3.2) and the leading order part of

the eigenvalue λ1 is more useful in this regard. In the examples later in this chapter

we use the eigenvalue problem in (3.18) to solve for λ1. To leading order, the Re(λ1)

determines the stability of the steady state solutions. Knowing this helps determine

the type of dynamics that can occur for the model with large delay. For instance, we

can find cases for which λ1 = ±ωi and show that a Hopf bifurcation occurs. Using

(3.18) we can find critical delay values which result in the solutions of (3.2) having

sustained oscillations. An example of this will be shown later in §3.5.2.

Although we will not be using them explicitly, for completeness we note that the

the eigenfunctions of (3.4) have the form

φ = φ0 + εφ1 + . . . , φ1 =
e1

|x− x1| + 4πe1Rn(x; x1) + χ3

ψ = ψ0 + εψ1 + . . . , ψ1 =
e2

|x− x2| + 4πe2Rn(x; x2) + χ4,

Smaller Delay, s = O(1)

Here we assume that the delay is O(1). We let s = T where T = O(1). The

eigenvalue λ is still O(ε). The exponential term in the inner boundary conditions

from (3.4) becomes

e−λT = e−(ελ1+ε2λ2)T = 1− ελ1T +O(ε2).

Therefore the delay term T does not show up in the leading order eigenvalue problem.

The leading order term of the eigenvalue, λ1, is determined by the eigenvalue problem

in (2.35) with no delay. Therefore we expect to see similar qualitative dynamics

between the model without delay and the model with an O(1) delay. This is a result

of the chosen scaling of the decay parameters in (3.2). We note that in this case we

can continue the analysis and solve for λ2 but it does not provide anything interesting.

One may think it is possible to get some interesting behavior if λ1 = 0 and λ2 = ±ωi.

This is not possible and can be seen if the analysis is continued. Therefore it is not

89

possible to get a Hopf bifurcation using the delay as the bifurcation parameter when

s = O(1).

3.3 Time Dependent Approximations of the PDE Model

In this section we find an approximate time dependent solution to (3.2) when s =

O(1/ε). The main result of this section is the reduction of (3.2) to a system of

DDAEs. The time dependent asymptotic approximation derived in this section is

valid for times when the solution is not changing too quickly or when the solution

is near equilibrium. It turns out that the approximation is fairly good for all time

except for any initial transients where the solution changes rapidly. We did the exact

same calculation in §2.4 when there was no delay. The difference in this section is

that we obtain a system of DDAEs as opposed to a system of DAEs. Moreover,

the DAEs in §2.4 could be converted to a system of ODEs after solving the implicit

algebraic equations for c1 and c2. This is not the case in this section because the

addition of delay complicates the implicit relationships and they can not be solved

in general. In general, the DDAEs derived here have more complicated dynamics

and also present more challenges when finding numerical approximations to their

solutions.

From the stability analysis in §3.2 we know that the delay s has to be of O(1/ε)

to have a significant affect on the dynamics of the model (3.2). Therefore we assume

here that s = T/ε where T = O(1). We begin by introducing the slow time variable

τ = εt into (3.2). Therefore we let u(t) = u(1
ε
τ) ≡ ũ(τ). For notational convenience

we will drop the ∼ and just write u(τ). The system in (3.2) becomes

ετu
∂u

∂τ
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u(x, τ − T), v(x, τ − T)), x ∈ ∂Ωε1

ετv
∂v

∂τ
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u(x, τ − T), v(x, τ − T)), x ∈ ∂Ωε2 .

(3.28)

90

We will ignore the history functions uh and vh for now and discuss them later. We

will find an asymptotic approximation to the time dependent problem in (3.28) using

the method of matched asymptotics. The analysis is identical to §2.4 so we will omit

some of the details.

First we expand the outer and inner solutions in terms of ε

u(x, τ) = u0(x, τ) + εu1(x, τ) + . . .

v(x, τ) = v0(x, τ) + εv1(x, τ) + . . .

u(i)(y, τ) = u
(i)
0 (y, τ) + εu

(i)
1 (y, τ) + . . .

v(i)(y, τ) = v
(i)
0 (y, τ) + εv

(i)
1 (y, τ) + . . . ,

(3.29)

and substitute these into (3.28). Equating powers of ε we obtain the following outer

problems

Δxu0 = 0, x ∈ Ω1\{x1}, ∂nxu0 = 0, x ∈ ∂Ω1

τu
∂u0

∂τ
= Δxu1 − α2

1 u0, x ∈ Ω1\{x1}, ∂nxu1 = 0, x ∈ ∂Ω1

τu
∂u1

∂τ
= Δxu2 − α2

1u1, x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1

Δxv0 = 0, x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1

τv
∂v0
∂τ

= Δxv1 − α2
2 v0, x ∈ Ω1\{x2}, ∂nxv1 = 0, x ∈ ∂Ω1

τv
∂v1
∂τ

= Δxv2 − α2
2v1, x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1.

(3.30)

Near the compartments, in the inner regions, we rescale space using ρ = |y| = |x−xj|
ε

in (3.28) to obtain the following inner problems

0 = Δyu
(i)
0 , ρ > 1

−∂ρu
(i)
0 = F (u

(i)
0T
, v0T), ρ = 1

0 = Δyu
(i)
1 , ρ > 1

−∂ρu
(i)
1 = Fu(u

(i)
0T
, v0T)u

(i)
1T

+ Fv(u
(i)
0T
, v0T)v1T , ρ = 1

0 = Δyv
(i)
0 , ρ > 1

−∂ρv
(i)
0 = G(u0T , v

(i)
0T
), ρ = 1

0 = Δyv
(i)
1 , ρ > 1

−∂ρv
(i)
1 = Gu(u0T , v

(i)
0T
)u1T +Gv(u0T , v

(i)
0T
)v

(i)
1T
, ρ = 1.

(3.31)

91

We will use the notation u0T to mean u0(τ − T) and so on, throughout this section.

The matching condition for the outer and inner problems works the same as it

did before in §2.4.

u0(τ) + εu1(x, τ) + ε2u2(x, τ) + . . . = u
(i)
0 (ρ, τ) + εu

(i)
1 (ρ, τ) + ε2u

(i)
2 (ρ, τ) + . . .

v0(τ) + εv1(x, τ) + ε2v2(x, τ) + . . . = v
(i)
0 (ρ, τ) + εv

(i)
1 (ρ, τ) + ε2v

(i)
2 (ρ, τ) +

(3.32)

From the outer problems for u0 and v0 in (3.30) we have u0 and v0 are functions

of τ only. These functions are constant in space. The matching condition in (3.32)

implies that that u
(i)
0 → u0(τ) and v

(i)
0 → v0(τ) as ρ → ∞. This along with the

BVPs for u
(i)
0 and v

(i)
0 in (3.31) yields

u
(i)
0 (y, τ) = u0(τ) +

c1(τ)

ρ
, c1(τ) = F (u0T + c1T , v0T)

v
(i)
0 (y, τ) = v0(τ) +

c2(τ)

ρ
, c2(τ) = G(u0T , v0T + c2T) .

Next, we use the matching condition in (3.32) to get the behavior for u1 as x → x1

and v1 as x → x2.

u1(x, τ) ∼ c1(τ)

|x− x1| , x → x1

v1(x, τ) ∼ c2(τ)

|x− x2| , x → x2.

As in §2.4, we can extend the domain from Ω1\{x1} and Ω1\{x2} to all of Ω1 by

including δ terms of appropriate strengths at the singularity points x1 and x2. Doing

this for the BVPs for u1 and v1 from (3.30) leads to

τu
∂u0

∂τ
= Δxu1 − α2

1u0 + 4πc1δ(x− x1), x ∈ Ω1, ∂nxu1 = 0, x ∈ ∂Ω1

τv
∂v0
∂τ

= Δxv1 − α2
2v0 + 4πc2δ(x− x2), x ∈ Ω1, ∂nxv1 = 0, x ∈ ∂Ω1.

(3.33)

Integrating the above equations over the domain Ω1 and using the Divergence theo-

rem leads to the following DDAEs for u0(τ), v0(τ), c1(τ), and c2(τ)⎛⎝ τu
3
u0

τv
3
v0

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
u0

v0

)
+

(
c1

c2

)
(
c1

c2

)
=

(
F (u0T + c1T , v0T)

G(u0T , v0T + c2T)

) (3.34)

92

In §2.4 this same analysis was done on (3.1) which resulted in a DAE system

for u0, v0, c1, and c2 which can be found in (2.47). This system from (2.47) can be

obtained by setting T = 0 in (3.34). For the examples of the model with no delay

considered in §2.5, the implicit relationships for c1 and c2 could be solved for in terms

of u0 and v0. This led to a system of two ODEs for u0 and v0.

The main challenge presented with (3.34) is that c1(τ) and c2(τ) are defined

implicitly in terms of their past history values. There is no way in general of solving

for c1 or c2 as functions of u0 and v0. Only in the case that Fu = Gv = 0 can this

be done. If Fu = Gv = 0 then solving (3.34) is relatively straight forward using a

regular DDE solver such as dde23 in Matlab. We will discuss how we have chosen

to solve (3.34) numerically in §3.4.

Continuing with the method of matched asymptotics, we write the solutions to

(3.33) using the Green’s function defined in (3.21),

u1(x, τ) = 4πc1(τ)Gn(x; x1) + χ1(τ)

v1(x, τ) = 4πc2(τ)Gn(x; x2) + χ2(τ).

The functions χ1(τ) and χ2(τ) are found by solving a system of DDAEs which we

derive shortly.

At the next order in the inner solution, we solve for u
(i)
1 (y, τ) and v

(i)
1 (y, τ). From

matching we can determine their behavior away from the compartments as ρ → ∞.

This along with the BVPs for u
(i)
1 (y, τ) and v

(i)
1 (y, τ) in (3.31) gives

u
(i)
1 = 4πc1(τ)Rn(x1; x1) + χ1(τ) +

A1(τ)

ρ

v
(i)
1 = 4πc2(τ)Rn(x2; x2) + χ2(τ) +

A2(τ)

ρ
.

(3.35)

Here the function Rn(x; x0) is the regular part of the Green’s function defined in

(3.22). The functions A1(τ) and A2(τ) are determined by the boundary conditions

for u
(i)
1 (y, τ) and v

(i)
1 (y, τ) in (3.31).

A1(τ) = FuT
(4πc1TRn(x1; x1) + χ1T + A1T) + FvT v1(x1, τ − T)

A2(τ) = GuT
u1(x2, τ − T) +GvT (4πc2TRn(x2; x2) + χ2T + A2T).

(3.36)

Every time dependent function on the right hand side of (3.36) is delayed. We

are using the notation v1(x1, τ) and u1(x2, τ) to mean v1(x1, τ) ≡ v1
∣∣
|x−x1|=ε

and

93

u1(x2, τ) ≡ u1

∣∣
|x−x2|=ε

. The partial derivatives are evaluated at the leading order

solutions. We write FuT
for Fu(u0T +c1T , v0T) and FvT for Fv(u0T +c1T , v0T). Similarly

we write GuT
for Gu(u0T , v0T + c2T) and GvT for Gv(u0T , v0T + c2T).

Next, we use the matching condition in (3.32) to determine the behavior of u2 as

x → x1 and v2 x → x2. As we have done several times now, we add in delta functions

to the BVPs for u2 and v2 from (3.30) and extend the domain of these BVPs to all

of Ω1,

τu
∂u1

∂τ
= Δxu2 − α2

1u1 + 4πA1δ(x− x1), x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1

τv
∂v1
∂τ

= Δxv2 − α2
2v1 + 4πA2δ(x− x2), x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1.

Integrating the above equations and using the Divergence Theorem leads to two

differential equations for χ1 and χ2. Combing these two equations with the algebraic

equations for A1 and A2 from (3.36) leads to the following DDAEs for χ1(τ), χ2(τ),

A1(τ), and A2(τ).⎛⎝ τu
3
χ1

τv
3
χ2

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
χ1

χ2

)
+

(
A1

A2

)
(
A1

A2

)
=

(
B1

B2

)
T

+

(
Fu Fv

Gu Gv

)
T

(
χ1

χ2

)
T

+

(
Fu 0

0 Gv

)
T

(
A1

A2

)
T

,

(3.37)

The functions B1 and B2 are defined as

B =

(
B1(τ)

B2(τ)

)
=

(
Fu4πc1Rn(x1; x1) + Fv4πc2Gn(x1; x2)

Gu4πc1Gn(x2; x1) +Gv4πc2Rn(x2; x2)

)
. (3.38)

The same ODEs for χ1 and χ2 were derived in (2.49). Similar looking equations

for A1 and A2 were also derived in (2.48). The main difference here is that everything

on the right hand side of the equations for A1 and A2 in (3.37) is delayed. The

equations for A1 and A2 in (2.48) had no delay and could be solved for in terms of

χ1 and χ2. This is not the case in (3.37) because of the delay.

In this section we have approximated the PDE system in (3.2) by the systems of

DDAEs found in (3.34) and (3.37). We will discuss how to approximate the solutions

of these two systems numerically in §3.4. Upon solving the system in (3.34) for u0,

v0, c1, and c2 and the system in (3.37) for χ1, χ2, A1, and A2, we obtain the time

94

dependent approximation of (3.28) as

u(x, τ) = u0(τ) + ε

(
c1(τ)

|x− x1| + 4πc1(τ)Rn(x; x1) + χ1(τ)

)
v(x, τ) = v0(τ) + ε

(
c2(τ)

|x− x2| + 4πc2(τ)Rn(x; x2) + χ2(τ)

)
.

(3.39)

Then by setting τ = εt we have approximate solutions to (3.2) for s = T/ε. In

§3.5 we compare these approximations with the numerical approximations of the full

system (3.2).

3.4 Numerical solutions of PDEs and DDAEs

In this section we discuss the numerical computations for solving the PDE system

(3.2). We emphasize that these numerical computations are very different from the

numerical computations for delayed ODEs since we are dealing with PDEs and delay

in 3D. Moreover, because of the complicated geometry we must use a FEM software

package. We have chosen to use Comsol. To our knowledge, we do not know of any

FEM software which solves delay PDEs defined over complicated geometries. We

will also discuss, in §3.4.3, the numerical solution of the DDAES defined in §3.3.

3.4.1 Method of Steps in Comsol

In this section we explain how we have used the Comsol and Matlab scripting lan-

guages to approximate solutions of (3.2) numerically using the method of steps [8].

The method of steps turns (3.2) into a series of time dependent problems without de-

lay. Our method relies on the fact that we only require the history of the solution on

the boundary of the compartments. The method we implement here could possibly

be generalized to solve other PDEs with constant delays defined over complicated

spatial domains.

First we consider (3.2) on the time interval [0, s]. On this interval, the functions

F (u(x, t−s), v(x, t−s)) and G(u(x, t−s), v(x, t−s)) become F (uh, vh) and G(uh, vh).

Since the functions uh and vh are the known history data, for t ∈ [0, s] the system

in (3.2) can be reduced to a problem without delay. We can use the standard time

dependent solvers in Comsol on the interval [0, s].

95

Next, we solve (3.2) for t ∈ [s, 2s]. The delayed arguments in the functions F and

G are now accessing solution data on the previous delay interval, [0, s]. We create

continuous extensions of the solution data on [0, s] using cubic spline interpolation.

Then on the interval [s, 2s] we can replace the delayed arguments with known inter-

polant evaluations. Then we can use Comsol to solve (3.2) on [s, 2s] again using its

standard solvers. In general we first obtain the solution on the interval [js, (j+1)s].

Then this is used as history to solve the PDEs on the next interval [(j+1)s, (j+2)s].

In each step we are solving a PDE whose boundary conditions are accessing time and

space dependent functions which were found on the previous delay interval. There-

fore we can use the standard time integrators in Comsol. We choose to use the same

BDF methods as used in Comsol for Chapter 2.

There are several remarks that need to be made when implementing the method

of steps in Comsol. First, the solutions of (3.2) will usually have discontinuities in

their first derivatives at t = 0 . This is because the history data will not in general

satisfy the PDEs. Because of the delay, the discontinuity in the first derivative at

t = 0 will propagate to a discontinuity in the second derivative at t = s which then

propagates to a discontinuity in the third derivative at t = 2s and so on. Care must

be taken when stepping through each of these discontinuities.

For example, if the discontinuities are ignored, the time stepper in Comsol will

try to step through the discontinuities using its error control algorithm. The time

stepping algorithm will choose the largest time step possible while still satisfying the

given error tolerance. Upon reaching a point where the solution has a derivative

discontinuity, the solver will take smaller and smaller time steps as to meet the

required error tolerance. The time steps become smaller to counter the effect of the

derivative discontinuity. The error estimate will be higher because of the derivative

discontinuity. This leads to a dramatic decrease in step size. This is not efficient.

We force Comsol to step to the point in time where the derivative discontinuity is.

These points are easily found because the discontinuities occur at integer multiples

of the delay. The default setting in Comsol is to give it a time interval on which

to compute the solution, [0, tout]. The solver will often take a time step past tout

and then interpolate back to output the solution at the point tout. In our method of

steps code the last time step tout will always be a multiple of the delay s. Therefore

96

there is a derivative discontinuity at tout. We want the solver to step exactly to the

discontinuity at t = tout and include it as a step point. We can force this in Comsol

by using the option for strict time stepping. When the strict time stepping option

is turned on, the solver will step exactly to tout. When using this option along with

the method of steps, all the points of discontinuity will be included as step points.

After stepping to each of these discontinuities in time we force Comsol to do a

cold restart. This means that the simulation is restarted and continued from the last

time step. A first order method is used and a small initial time step, determined

by the error estimate, is used too. As the time stepping progresses, the order of the

method and the size of the time steps increase until the next point in time is reached

which has a derivative discontinuity. We then stop the solver and do a cold restart.

This is done for each multiple of the delay.

To evaluate the delayed arguments in the boundary conditions on the interval

[(j + 1)s, (j + 2)s], we need to store the previous discrete solution data which was

obtained on the interval [js, (j+1)s]. Once the solution values are stored we need to

create a continuous extension of it. This is done using interpolation. Since the delay is

only in the boundary conditions, we only need to save history data on the boundaries

of the compartments within the spatial domain. In theory we need to select a set

of points on the surface of the compartments and save the solution values for u and

v at those points. Since the compartments are small and act as point sources, the

solutions are basically spherically symmetric near and on the compartments. If we

assume the solutions are constant on the compartment surfaces, then the solution

values are only needed at a single point on each compartment. Therefore we store

u(x, t) at one point on the surface of Ωε1 as well as one point on the surface of Ωε2

for every time step in [0, tout]. We also store v(x, t) at one point on the surface of

Ωε1 as well as one point on the surface of Ωε2 for every time step in [0, tout]. These

solution values can be stored in four different vectors. One vector contains u(t) at a

point on Ωε1 , another vector contains u(t) at a point on Ωε2, another vector contains

v(t) at a point on Ωε1 , and the fourth vector contains v(t) at a point on Ωε2 .

Then a continuous extension of this data, stored in the four vectors, is needed to

approximate u(x, t−s) and v(x, t−s) for t ∈ [(j+1)s, (j+2)s]. This is accomplished

by using a built in cubic spline interpolant function within Comsol. The interpolants

97

are only time dependent functions since the solution data are coming from single

points in the spatial domain, but at multiple times. These evaluations of interpolants

are passed to the delayed arguments of the functions F and G in the compartment

boundary conditions in (3.2).

After solving the BVP on the interval [js, (j + 1)s], we need to move to the next

interval [(j+1)s, (j+2)s]. When starting up the solver again for the next time step

we need to use the correct initial condition. The initial condition is the solution that

was output last on the previous interval at t = (j + 1)s. This solution is defined

on the entire 3D spatial domain. Comsol has an option to restart a time dependent

computation and use the last output solution as an initial condition. The last output

solution in this context is the one from the previous delay interval at t = (j + 1)s.

We use this option to start up the computation on the interval [(j + 1)s, (j + 2)s].

In summary we solve (3.2) on the first delay interval [0, s] and stop exactly at the

end of the interval so as not to step beyond the first derivative discontinuity at t = s.

The solution is then stored at all the step points on the interval which the solver

stepped through. We use the spherical symmetry to our advantage around the com-

partments and store the solution values at just a single point on each compartment.

These values are then interpolated to create a continuous extension of the numeri-

cal solutions on [0, s]. The resulting interpolants are then used on the next interval,

[s, 2s], to evaluate the functions F (u(x, t−s), v(x, t−s)) and G(u(x, t−s), v(x, t−s)).

When starting the computation on the the second delay interval, we start off using

the correct initial condition so that the solution itself is continuous at t = s. The

solver then stops exactly at t = 2s and the entire process is repeated. This imple-

mentation of the method of steps allows us to approximate the solutions of (3.2)

numerically. The code described here can be found in the Appendix in §A.3.

3.4.2 Transient Method of Lines (Reverse Method of Lines)

In this section we discuss another numerical technique we have considered to ap-

proximate the solution to (3.2) numerically. This was actually the first technique we

considered and spent months trying to implement it before realizing we could use

the method of steps in Comsol as explained in §3.4.1. The main advantage of this

method is that it may allow for error control in time and space. When solving a

98

time dependent PDE in Comsol there is an adaptive time stepping algorithm which

allows for error control in time. In contrast, there is no error control in space for

time dependent PDEs. The spatial mesh is chosen based on the geometry and the

mesh remains the same during the entire computation. There would need to be an

adaptive mesh algorithm to also have error control in space. Comsol does have an

adaptive spatial mesh algorithm but only for PDEs that are stationary (no time

dependance).

We have taken some initial steps in implementing the reverse method of lines

(discretization in time first) which results in a system of stationary PDEs. The

resulting system of stationary PDEs can be solved in Comsol. Moreover, we have

the option of spatial adaptivity in Comsol and therefore the option of error control

in space. We would need to write our own time stepping algorithm with error control

to get error control in time.

We begin by replacing the time derivatives in (3.2) with the implicit Euler finite

difference scheme, ∂u
∂t

=
uj−uj−1

hj
. Here hj = tj− tj−1 is the jth time step size while uj

and vj are the approximations to u(x, tj) and v(x, tj) respectively. After simplifying

we obtain

hjΔxuj = (τu + hjα
2
1ε)uj − τuuj−1, x ∈ Ω1\Ωε (3.40a)

∂nxuj = 0, x ∈ ∂Ω1 (3.40b)

ε∂nxuj = F (ujT , vjT), x ∈ ∂Ωε1 (3.40c)

uj = uC , t ≤ 0 (3.40d)

hjΔxvj = (τv + hjα
2
2ε)vj − τvvj−1, x ∈ Ω1\Ωε (3.40e)

∂nxvj = 0, x ∈ ∂Ω1 (3.40f)

ε∂nxvj = G(ujT , vjT), x ∈ ∂Ωε2 (3.40g)

vj = vC , t ≤ 0. (3.40h)

Here we have used the notation ujT ≡ u(x, tj −T) and so on. We assume the history

data for u and v are the constants uC and vC . For now we will assume that we take

uniform constant time steps hj = h. We also assume that the time step can never be

larger than the delay T . We will also assume that the step size h evenly divides into

99

T . This means that the delayed arguments, tj − T , will access past solution values

which were previous step points in time.

For each time step, we need to solve the BVP in (3.40). For t ∈ [0, T] the

boundary conditions (3.40c) and (3.40g) will be the constants F (uC , vC) andG(uc, vc)

respectively. After each time step we need to save the solution in order to evaluate

the delayed arguments later in time. For example, when we get to t = T + h the

delayed arguments will be accessing the solution at t = h which we will have saved.

We only need to save solution data back T units in time. As described in §3.4.1,

we only need to save the solution values for u and v at two points in the spatial

domain (one point on each compartment for both u and v). Therefore, after each

time step we save four constant solution values and store them in four vectors. These

four vectors are always of length T/h because we are always removing an entry and

adding an entry after each time step. Using this setup, the boundary conditions

(3.40c) and (3.40g) will be constant for every time step.

For each time step we need to have the entire solution from the previous step

stored. This is because the implicit Euler method is a one step method and uj

depends on uj−1, as seen in (3.40a). After solving for uj−1 in a given step, we then

evaluate uj−1 at numerous points in the domain and write the data to a text file. The

resulting file is very large file because it consists of x, y, z and uj−1(x, y, z) values

for thousands of points in the spatial domain. When solving for uj we need to have

uj−1 as a function for input into the right hand side of (3.40a). This is accomplished

by reading the text file and then interpolating the data with a built in sub routine

in Comsol. The result is a 3D function which gets passed to the right hand side of

(3.40a). We do the same process for vj−1 to compute vj . The process of saving the

current solution at points over the entire domain and creating an accurate interpolant

takes up a lot of time relative to the time needed to actually solve the stationary

PDEs at every time step. There is not an efficient method in Comsol in which to

store the solution from a stationary PDE computation and then use it for input into

another PDE computation. This is in contrast to the time dependent problems where

a current solution can be used as an initial condition to another computation quite

efficiently (see §3.4.1). This is one of the major draw backs of implementing this

method. For example, to advance through one time step it may take approximately

100

20 seconds. This is too long when using a constant step size. It only takes around

3-5 seconds to actually solve the PDE system. It is the storing and interpolation of

the 3D space dimensional function that takes up all the computational time.

In the above description we have used a constant step size. This does not allow

for any error control in time. To have error control in time we need some way of

estimating the error for every time step. One way this can be done is by redoing

the calculation with a higher order method such as BDF2. For each time step we

can use BDF1 (implicit Euler) to get a first approximation and then BDF2 to get a

second more accurate approximation. Then we can estimate the error at every step

and reduce the step size accordingly depending on the required accuracy.

The variable time step BDF2 method coupled with the BDF1 method would

allow for the possibility of adaptive error control in time. In order to do so we

would need a away of estimating the error. Comsol has built in routines which

can integrate expressions over the entire domain. These routines could be used to

estimate the error between the approximations obtained from BDF1 and BDF2. For

example, we could use some norm which involves an integral and the difference of

the two approximations. Once the error is estimated, we would need to decide on

an algorithm which changes the step size in some manner. This would give us error

control in time. Then we could get error control in space by using the adaptive mesh

refinement option in Comsol for solving the stationary PDEs at every time step.

There are several reasons why we have not pursued the reverse method of lines

with error control in time and space. One reason, which was previously discussed,

is that the method is currently very slow. Another reason is that we already have

a much easier implementation of the method of steps in Comsol. Finally, the last

reason is that we have had some numerical issues with using the reverse method

of lines when the time step is small compared to ε. For example, if the time step

is h = O(ε2) then there is a lot of error introduced into the approximation. We

believe the spatial error is dominating the temporal error for time steps that are

much smaller than ε. The error is even present when h = O(ε). We give one possible

explanation for this.

The diffusion coefficient in (3.40) is the time step h. Therefore a small time

step results in a small diffusion coefficient in (3.40). The spatial mesh in Comsol

101

is constructed based on the geometry and is not adaptive by default for stationary

problems. The size of ε will affect the mesh and the size of its elements. We think

that a very small time step (diffusion coefficient) will result in sharper gradients

and that the mesh element sizes, based on the size of ε, will not be small enough

to solve the stationary problems accurately enough. We believe the spatial error is

dominating the temporal error when the time step is O(ε). We tried to resolve this

issue by using the adaptive mesh refinement option which is available for solving

stationary problems, but we still got the same results. We have also tried adjusting

manually the mesh properties such as min/max element sizes, etc. We believe the

problem can be resolved with enough tweaking but it is not something that we have

pursued. The implicit Euler method code described here can be found in in the

Appendix in §A.4.

3.4.3 Numerical Solution of DDAEs

In §3.3 we derived the following asymptotic time dependent approximations of (3.2)

when s = T/ε,

u(x, τ) = u0(τ) + ε

(
c1(τ)

|x− x1| + 4πc1(τ)Rn(x; x1) + χ1(τ)

)
v(x, τ) = v0(τ) + ε

(
c2(τ)

|x− x2| + 4πc2(τ)Rn(x; x2) + χ2(τ)

)
.

(3.41)

The time dependent functions here are found by solving the following system of

DDAEs which are also found in §3.3. We write them here together for easy reference,⎛⎝ τu
3
u0

τv
3
v0

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
u0

v0

)
+

(
c1

c2

)
(
c1

c2

)
=

(
F (u0T + c1T , v0T)

G(u0T , v0T + c2T)

)
⎛⎝ τu

3
χ1

τv
3
χ2

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
χ1

χ2

)
+

(
A1

A2

)
(
A1

A2

)
=

(
B1

B2

)
T

+

(
Fu Fv

Gu Gv

)
T

(
χ1

χ2

)
T

+

(
Fu 0

0 Gv

)
T

(
A1

A2

)
T

.

(3.42)

102

The functions B1 and B2 are defined in (3.38). In this section we discuss how to

approximate the solutions of (3.42) numerically using Matlab.

In the simpler case where the partial derivatives Fu andGv are zero then the above

system can be written as a system of four DDEs. The implicit algebraic equations

become explicit and can be isolated for c1, c2, A1, and A2. These equations are then

substituted in to the differential equations. The result is a system of four DDEs for

u0, v0, χ1, and χ2. These solutions could be approximated numerically by a solver

such as dde23 in Matlab.

In the more general case that F = F (u, v) and G = G(u, v), we can not rewrite

the DDAEs in (3.42) as a system of DDEs for just the four variables u0, v0, χ1,

and χ2. This is because we can not isolate for c1, c2, A1, and A2 as functions

of just u0, v0, χ1, and χ2. In (3.42), when we substitute the algebraic equations

into the differential equations the result is four DDEs and 8 unknowns. To use a

DDE solver there needs to be an additional DDE for each of c1, c2, A1, and A2.

We could obtain these additional DDEs by differentiating the algebraic equations in

(3.42). The result though is a system of four neutral DDEs which are difficult to

approximate numerically. We have tried using the neutral delay solver ddensd in

Matlab to solve this system but it does not provide the results we need in all cases

considered, since in general the functions c1 and c2 are discontinuous at t = 0. We

will explain why this is shortly. ddensd approximates solutions of neutral DDEs

by solving an approximating DDE that is not neutral. The approximating equation

has a solution that is not only continuous, but the order of jumps decreases as the

integration proceeds. For this reason the solution returned by ddensd is continuous.

There is no way to get genuine jump discontinuities in the approximation produced

by ddensd [88].

One method we have implemented to solve the DDAEs is the method of steps

combined with a regular ODE solver in Matlab. First we substitute the four algebraic

equations from (3.42) into the differential equations in (3.42). This leads to a system

of 4 DDEs for u0, v0, χ1, and χ2. Although there are other functions in the DDEs,

c1, c2, A1, and A2, they are all delayed. Therefore, for any given time step the

solver only needs to access the history of these functions. If history is provided for

these functions, as well as the functions u0, v0, χ1, and χ2, then every time delayed

103

function is known on the right hand side of the DDEs. We first provide history for all

8 unknowns. Then we solve a system of ODEs for u0, v0, χ1, and χ2 on the interval

[0, T]. Once the solution on [0, T] is obtained then we save this solution data. On the

next interval, [T, 2T], a system of ODEs is solved again and the time delayed function

values are obtained by interpolating the stored solution on the previous interval. This

is the method of steps as described in §3.4.1. We take the same precautions here as in

§3.4.1 when stepping through the discontinuities. We include points of discontinuity

as mesh points and make sure that the solver does not step over the discontinuities.

After stepping to each discontinuity we restart the computation with a relatively

small time step and low order method.

Because of the constant restarting, the method of steps implemented numerically

is slower than a more advanced typical DDE solver such as dde23. Although slow,

the method of steps code we have implemented does provide accurate numerical

approximations to the system in (3.42). In §3.5 the numerical approximations of

(3.42) which are used in (3.41), are compared with the full numerical approximations

of the PDE system (3.2). The method of steps code described here can be found in

the Appendix in §A.5.

We will end this section by considering the history for the time dependent func-

tions in (3.42). Recall that u(x, τ) = uh and v(x, τ) = vh for τ ≤ 0. We will choose

uh and vh to be constant in time and space. From the expressions in (3.41), it there-

fore seems reasonable to assume that c1 = c2 = 0 for τ < 0. This is because these

functions multiply spatial terms. As well, we set χ1 = χ2 = 0 for τ ≤ 0. The history

for u0(τ) and v0(τ) is then uh and vh respectively. The functions A1 and A2 do not

appear in (3.41) but they are multiplied by spatial terms in the higher order inner

solutions in (3.35). Therefore we also require that A1 = A2 = 0 for τ ≤ 0.

Note that we have not defined the values for c1(0) and c2(0). These are determined

by substituting τ = 0 into the equations for c1 and c2 in (3.42). This gives c1(0) =

F (uh, vh) and c2(0) = G(uh, vh). Similarly, A1(0) and A2(0) can be determined from

(3.37) and it follows that A1(0) = A2(0) = 0. Depending on the choice of F and G, in

general c1 and c2 will have a jump discontinuity at τ = 0. It is usually the case that

solutions to DDEs have derivative discontinuities but here we mean a discontinuity

in the actual functions. The equations for c1 and c2 are actually

104

c1(τ) =

{
0 if τ < 0

F (u0T + c1T , v0T) if τ ≥ 0

c2(τ) =

{
0 if τ < 0

G(u0T , v0T + c2T) if τ ≥ 0

As a consequence, the correction terms (terms multiplied by ε) in the asymptotic

expansions in (3.41) are discontinuous at τ = 0. Furthermore, these discontinuities

propagate because of the delay. In contrast, the solutions of the PDEs in (3.2) are

continuous in time. This unusual discontinuity in the asymptotic solution is just a

result of using constant history for the PDEs. We chose constant history since it was

the easiest to implement numerically. The discontinuities smooth out as time evolves

and eventually become non existent after several delay intervals have passed. This

can be seen from the numerical simulations in Figure 3.3. As well, the discontinuities

in c1 and c2 actually capture the behavior that takes place for early time in the PDEs.

Since we have assumed uh and vh are constant in time and space there will be

locations in the domain where the solutions of (3.2) change rapidly for early time.

Immediately after t = 0 there are initial transients that occur where the solutions of

(3.2) change from having a constant spatial profile to that of a spatial profile similar

to a Green’s function. These transients occur quite rapidly and only occur near the

compartments. This is because the solutions of (3.2) are relatively constant in space

away from the compartments. For example, u(x, t) will have a sudden jump right

after t = 0 but only in its inner region, |x−x1| ≈ ε. A similar thing happens to v but

for |x − x2| ≈ ε. The way in which the asymptotic time dependent approximations

in (3.41) capture this behavior is through the functions c1(τ) and c2(τ) and their

respective jump discontinuities at τ = 0.

3.5 Examples

In §3.3, the system (3.2) was considered for the case of large delay, s = T/ε. The main

results were the leading order eigenvalue problem in (3.18) and the system of DDAEs

in (3.42). In this section we will use the eigenvalue problem to find bifurcations in

the DDAEs. We will show through numerical simulations that the same bifurcations

occur in the full PDE system (3.2). Simultaneously, we will compare the output

105

between the numerical simulations of the DDAEs and the full PDE system. This

is done by comparing the time dependent asymptotic approximations in (3.41) with

the numerical simulations of (3.2).

3.5.1 Bistability

In this example we will consider a simpler case when Fu = Gv = 0. The functions

we choose are

F (v) =
2

1 + v3

G(u) =
5/2

1 + u3
.

For the parameters we choose k1 = 3/4, k2 = 1, Du = Dv = 1/3, R = 1, x1 =

(0.5, 0, 0), x2 = (−0.5, 0, 0), ε = 0.01, and leave T as a parameter. We will use

different history values for different numerical simulations.

The leading order DDAE system in (3.34) becomes the following DDE system,

∂u0

∂τ
= −3

4
u0(τ) +

2

1 + v0(τ − T)3

∂v0
∂τ

= −v0(τ) +
5/2

1 + u0(τ − T)3
.

(3.43)

The equilibria of this DDE system are the leading order equilibrium solutions of the

full PDE system. They can be solved for numerically. The leading order equilibria

are (0.1623, 2.4893), (1.0534, 1.1527), and (2.6613, 0.12594). These are written in the

form (u0, v0). To determine the stability of these constant equilibrium solutions we

consider the nonlinear eigenvalue problem in (3.18). Recall that the partial deriva-

tives in (3.18) are evaluated at the leading order equilibrium points. For a given

equilibrium point and delay value T , we can solve for λ1 numerically. There are

multiples solutions for λ1 since the eigenvalue problem is nonlinear. We are only

interested in the eigenvalue which has the largest real part. The software package

Maple is used to solve (3.18) for λ1 with different values of T . In this discussion,

when we refer to λ1 we are referring to the eigenvalue with the largest real part.

By computing the real part of λ1 for multiple values of T , it can be concluded that

the two equilibrium points, (0.1623, 2.4893) and (2.6613, 0.12594), are both stable for

any choice of T . This is because the Re(λ1) is negative for all T . The equilibrium

point (1.0534, 1.1527) is unstable for all T and this is because the Re(λ1) is positive for

106

all T . For the equilibrium point (1.0534, 1.1527), when T < 1.839 all the eigenvalues

except for λ1 have a negative real part. When T crosses through T = 1.839, the next

eigenvalue with the second largest real part crosses through the imaginary axis. As T

is increased, more of the eigenvalues cross the imaginary axis in sequence. Therefore

as T increases more oscillations in the solutions of (3.43) can be observed. There

is not an actual Hopf Bifurcation though and oscillations are not sustained. The

solutions of (3.43) always tend to either one of the two constant stable equilibrium

points as time evolves. Which equilibrium point the solution tends to depends on

both the initial history as well as the value of T .

The behavior discussed above is apparent in the following numerical simulations.

We emphasize that the dynamics of the DDEs in (3.43) reflect the dynamics of the

more general PDE system (3.2). To solve the DDEs in (3.43) we will use the method

of steps as outlined in §3.4.3. Not only will we be solving (3.43), but also the complete

system of DDAEs in (3.42). To solve the PDEs in (3.2) we will also use the method

of steps as outlined in §3.4.1.

107

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
u

t

u outer

u inner

(a) u0 + εu1 and u(x, t)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

v

t

v inner

v outer

(b) v0 + εv1 and v(x, t)

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

u

t

u outer

u inner

(c) u0 + εu1 and u(x, t)

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

v

t

v inner

v outer

(d) v0 + εv1 and v(x, t)

Figure 3.1: These figures use the history uH = 0 and vH = 0. In each figure the
solid curve is an asymptotic solution from (3.41) obtained from solving (3.42). The
dotted curve is the numerical solution of (3.2) obtained from using the method of
steps described in §3.4.1. In Comsol a relative tolerance of 1e-9 and an absolute
tolerance of 1e-9 was used. In Matlab a relative tolerance of 1e-7 and an absolute
tolerance of 1e-7 was used. In each figure we plot u at the point (.51,0,0) which is in
its inner region on the surface of its compartment. We also plot u in its outer region
away from its compartment in each figure. We also repeat this for v except now we
use the point (-.51,0,0) in its inner region. In figures 3.1(a) and 3.1(b) we use a delay
value of T = 0.25. In figures 3.1(c) and 3.1(d) we use a delay value of T = 3.

108

−1 −0.5 0 0.5 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

x

u

(a) u0 + εu1 and u(x, t)

−1 −0.5 0 0.5 1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

x

v

(b) v0 + εv1 and v(x, t)

Figure 3.2: These two figures show u and v along the x-axis where we have set
y = z = 0. The solid curves are the asymptotic approximations from (3.41) and the
dotted lines are the numerical solutions of (3.2) with the same tolerances used in
Figure 3.1. The solutions here are plotted at t = 900 and the delay is T = 3. Note
that the solutions are basically constant in space away from the two compartments
which are located at (−.5, 0, 0) and (.5, 0, 0). This simulation is the same simulation
used in figures 3.1(c) and 3.1(d)

We can see from Figure 3.1 that increasing the delay leads to more oscillations

in the solutions. It is also interesting that although T does not affect the stability of

the equilibrium points, it can change which of the stable equilibria the solution ap-

proaches. In Figure 3.1 the same initial history was used for the two simulations but

a different delay value resulted in a different equilibrium solution being approached.

This is because the increase in oscillations made the solution jump to the other stable

equilibrium.

3.5.2 Hopf Bifurcation

In this example we will choose functions for F and G which give rise to a Hopf

bifurcation. The functions F (u, v) and G(u, v) are chosen to be

F (u, v) =
4u

(1/2 + u)(1 + v2)

G(u, v) =
2v

1/4 + v
u.

For the parameters we choose k1 = 1 = k2 = 1, Du = Dv = 1/3, R = 1, x1 =

(0.5, 0, 0), x2 = (−0.5, 0, 0), ε = 0.01, and leave T as the bifurcation parameter.

109

Again we are considering the case of large delay s = T/ε. For the history data we

will choose uh = .5 and vh = .8.

These type of enzyme kinetic functions were studied in [47]. With this choice of

F and G the model in (3.2) has both positive and negative feedback between the

two signalling compartments. In [47] similar enzyme functions were analyzed and a

Hopf-bifurcation was found which resulted in sustained oscillations. The system was

much larger than two signalling proteins though. Because of the delay present in the

model (3.2), sustained oscillations can be obtained in a much simpler system.

First we solve for the leading order equilibrium solutions of (3.2). These constants

u0 and v0 are found from solving (3.3). The leading order equilibrium solution is

(u0, v0) = (0.8662, 1.6074). For this equilibrium point and different values of T , we

can solve (3.18) numerically in Maple for λ1. Here we will again assume that λ1 is

the eigenvalue with largest real part. We can also solve for critical T values which

give rise to purely imaginary eigenvalues. For T < 1.02332 the real part of λ1 is

negative so the equilibrium solution is stable. This eigenvalue crosses the imaginary

axis when T = 1.02332. For T > 1.02332 the real part of λ1 is positive and therefore

the equilibrium solution is unstable.

When T < 1.02332 the solutions have decaying oscillations which approach the

stable equilibrium solution. For T > 1.02332, the equilibrium solution is unstable and

a stable periodic orbit is formed. This Hopf bifurcation can be observed numerically

in both (3.2) and (3.42). We again use the method of steps as described in §3.4.1

and §3.4.3.

For the first simulations we will use a delay value smaller than 1.02332.

110

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

3.5

u

t

(a) u0 + εu1 and u(x, t)

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

v

t

(b) v0 + εv1 and v(x, t)

−50 0 50 100 150 200
0.5

1

1.5

2

2.5

3

3.5

u

t

(c) u0 + εu1 and u(x, t)

−50 0 50 100 150 200

1

1.5

2

2.5

3

3.5

4

4.5

5

v

t

(d) v0 + εv1 and v(x, t)

Figure 3.3: All of these figures come from the same simulation in which uh = .5,
vh = .8, and T = 0.5. In Figure 3.3(a) we plot u at the point (.51,0,0) which is
in its inner region. The solid curve is the asymptotic solution (using the correction
term). The dotted curve is the Comsol solution with relative tolerance of 1e-8, and
an absolute tolerance of 1e-10. Figure 3.3(b) is v in its inner region at the point (-
.51,0,0). Figure 3.3(c) is the plot from Figure 3.3(a) but on a different time interval.
Figure 3.3(d) is the plot from Figure 3.3(b) but on a different time interval.

In §3.4.1 we discussed that constant initial history for (3.2) leads to c1 and c2

having jump discontinuities at t = 0. This is how the asymptotic DDAEs in (3.42)

are able to capture the rapid jumps for the solutions in the inner regions. For the

PDEs in (3.2), the solutions for u and v rapidly change from constant history at t = 0

to spatial profiles similar to Green’s function. This sudden jump, at one point in

space, is seen in figures 3.3(c) and 3.3(d). The jumps are propagated but eventually

smooth out.

Now we consider numerical simulations for T > 1.02332. Therefore we expect to

see sustained oscillations in the solutions of the PDEs and DDAEs. We reduce the

the tolerances in Comsol to a relative tolerance of 1e-5, and an absolute tolerance of

111

1e-3 so that we can solve over a large number of delay periods.

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

u

t

Figure 3.4: The solid curve is the asymptotic approximation (with correction) at the
point (-1,0,0). The dotted curve is the numerical solution of u(x, t) at the same point
obtained from the method of steps in Comsol. The delay is T = 2 so the equilibrium
solution is unstable and there is a stable periodic orbit.

On the time scale above, the agreement between the asymptotics and the PDE

system is very good. In Figure 3.5 though, we show how the terms χ1 and χ2 blow

up as t → ∞. Therefore this leads to the asymptotic approximations from (3.39)

blowing up. This growth is commonly referred to as secular growth. In general

it occurs when a straight forward application of perturbation theory is applied to

weakly nonlinearly problems with bounded oscillatory solutions. To get a better

asymptotic approximation without the secular growth a more advanced approach

is required. We will use the Poincaré-Lindstedt method in §3.6 to improve our

asymptotic approximation.

112

0 2 4 6 8 10
x 104

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

u

t

Figure 3.5: This is the same plot as in Figure 3.4 but on a longer time scale. It shows
how the asymptotic expansion (black) with the correction term is no longer valid as
t → ∞. The numerical solution of (3.2) (blue) does not increase without bound as
t → ∞ because the solution is periodic.

In the case of a Hopf bifurcation leading to sustained oscillations, the functions

χ1 and χ2 increase without bound as τ → ∞. We have observed this in every

Hopf bifurcation example we have considered. The solutions of (3.2) have sustained

oscillations that do not grow in time. Therefore the DDAEs in (3.42) are not valid

for later times in the case of a Hopf bifurcation leading to stable periodic orbits.

3.6 Poincaré-Lindstedt Method for the PDE Model with Delay

In §3.5.2 we showed an example with a Hopf bifurcation. For delay values greater

than a critical value, sustained oscillations were observed in the numerical solutions

of the PDE model as well as the approximating DDAEs. As time evolves, the oscil-

lations in the PDE model do not grow and the amplitude remains constant in time.

In the system (3.42), the functions χ1 and χ2 grow without bound as τ → ∞ and

therefore the asymptotic approximations of (3.41) are not uniformly valid in time.

In this section we use the Poincaré-Lindstedt method to derive a more accurate time

dependent approximation to (3.2) in the case of a large delay leading to a Hopf

113

bifurcation.

This is a nice application of the Poincaré-Lindstedt method to a non standard

problem (the PDE model in (3.2)). Although the analysis is relatively straight for-

ward, the numerical implementation is a lot more interesting. A linear differential

algebraic operator has to be constructed in the just the right way for everything to

work. One of the main goals is finding periodic solutions in the kernel of the adjoint

of this operator. We discretize the operator to turn it into a matrix and then use

an eigenvalue solver to find the kernel of this discrete operator. The kernel of the

discretized operator approximates the kernel of the continuous operator.

We begin by seeking periodic solutions of the system (3.2) near a Hopf bifurcation

when s = T/ε. The idea is to rescale time as τ = ωt where ω = ω0+ω1ε+ω2ε
2+

Since we already had success in §3.3 with the time scale τ = εt, we will choose

ω0 = 0. Without loss of generality we can choose ω1 = 1 since its value only affects

the period of the oscillations in the rescaled DDAEs.

First we define a new time variable

τ = ωt

ω = ε+ ω2ε
2,

(3.44)

and substitute this change of variables into (3.2). After rescaling, the PDE model

with delay in (3.2) becomes

τuω
∂u

∂τ
= Δxu− α2

1εu, x ∈ Ω1\Ωε

∂nxu = 0, x ∈ ∂Ω1

ε∂nxu = F (u(x, τ − ω
T

ε
), v(x, τ − ω

T

ε
)), x ∈ ∂Ωε1

τvω
∂v

∂τ
= Δxv − α2

2εv, x ∈ Ω1\Ωε

∂nxv = 0, x ∈ ∂Ω1

ε∂nxv = G(u(x, τ − ω
T

ε
), v(x, τ − ω

T

ε
)), x ∈ ∂Ωε2 ,

(3.45)

If ω2=0 then the following analysis is identical to §3.3. The analysis here is similar

to that of §3.3 so we omit most of the details.

114

First we expand the outer and inner solutions, as in (3.29), and obtain the fol-

lowing rescaled outer problems,

Δxu0 = 0, x ∈ Ω1\{x1}, ∂nxu0 = 0, x ∈ ∂Ω1

τu
∂u0

∂τ
= Δxu1 − α2

1u0, x ∈ Ω1\{x1}, ∂nxu1 = 0, x ∈ ∂Ω1

τu
∂u1

∂τ
+ τuω2

∂u0

∂τ
= Δxu2 − α2

1u1, x ∈ Ω1\{x1}, ∂nxu2 = 0, x ∈ ∂Ω1

Δxv0 = 0, x ∈ Ω1\{x2}, ∂nxv0 = 0, x ∈ ∂Ω1

τv
∂v0
∂τ

= Δxv1 − α2
2v0, x ∈ Ω1\{x2}, ∂nxv1 = 0, x ∈ ∂Ω1

τv
∂v1
∂τ

+ τvω2
∂v0
∂τ

= Δxv2 − α2
2v1, x ∈ Ω1\{x2}, ∂nxv2 = 0, x ∈ ∂Ω1.

The inner problems are

0 = Δyu
(i)
0 , ρ > 1

−∂ρu
(i)
0 = F (u

(i)
0T
, v0T), ρ = 1

0 = Δyu
(i)
1 , ρ > 1

−∂ρu
(i)
1 = Fu(u

(i)
0T
, v0T)u

(i)
1T

+ Fv(u
(i)
0T
, v0T)v1T

− Tω2

(
Fu(u

(i)
0T
, v0T)u

(i)
0T

′
+ Fv(u

(i)
0T
, v0T)v0T

′
)
, ρ = 1

0 = Δyv
(i)
0 , ρ > 1

−∂ρv
(i)
0 = G(u0T , v

(i)
0T
), ρ = 1

0 = Δyv
(i)
1 , ρ > 1

−∂ρv
(i)
1 = Gu(u0T , v

(i)
0T
)u1T +Gv(u0T , v

(i)
0T
)v

(i)
1T

− Tω2

(
Gu(u0T , v

(i)
0T
)u0T

′ +Gv(u0T , v
(i)
0T
)v

(i)
0T

′)
, ρ = 1,

where ′ denotes differentiation with respect to τ . The terms with a subscript T are

delayed throughout this section meaning that u0T ≡ u0(τ − T).

Similar to §3.3, we will derive two systems of DDAEs. A leading order system

and and a correction system. The leading order system here is the same as (3.34).

Just as in §3.3, we can write out the asymptotic time dependent solutions of (3.45)

as
u(x, τ) = u0(τ) + ε (4πc1(τ)Gn(x; x1) + χ1(τ)) +O(ε2)

v(x, τ) = v0(τ) + ε (4πc2(τ)Gn(x; x2) + χ2(τ)) +O(ε2).

115

Recall that the leading order DDAEs for u0, v0, c1 and c2 are⎛⎝ τu
3
u0

τv
3
v0

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
u0

v0

)
+

(
c1

c2

)
(
c1

c2

)
=

(
F (u0T + c1T , v0T)

G(u0T , v0T + c2T)

)
.

(3.46)

Here we are assuming there exists a critical value of T which leads to a Hopf

bifurcation. Furthermore, we assume there are stable periodic solutions to the leading

order system (3.46) for values of T greater than the critical delay value. Therefore(
u0

v0

)
and

(
c1

c2

)
are periodic. We will denote the period as P .

The parameter ω2 appears in the system of DDAEs for χ1, χ2, A1, and A2. This

correction system is⎛⎝ τu
3
χ1

τv
3
χ2

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
χ1

χ2

)
+

(
A1

A2

)
− ω2

(
τu
3
u0

τv
3
v0

)′

(
A1

A2

)
=

(
B1

B2

)
T

+

(
Fu Fv

Gu Gv

)
T

(
χ1

χ2

)
T

+

(
Fu 0

0 Gv

)
T

(
A1

A2

)
T

− Tω2

(
c1

c2

)′

.

(3.47)

Note that we have simplified the two terms in the equations for A1 and A2 which are

multiplied by Tω2,

c′1(τ) = FuT
(u′

0T
+ c′1T) + FvT v

′
0T

c′2(τ) = GuT
u′
0T

+GvT (v
′
0T

+ c′2T).

The functions B1 and B2 are defined as

B =

(
B1(τ)

B2(τ)

)
=

(
Fu4πc1Rn(x1; x1) + Fv4πc2Gn(x1; x2)

Gu4πc1Gn(x2; x1) +Gv4πc2Rn(x2; x2)

)
.

The DDAEs in (3.47) differ from the corresponding system in (3.37) because of

the now present ω2 term. The parameter ω2 is chosen to remove the secular growth.

The functions u′
0, v

′
0, c

′
1, and c′2 are each multiplied by ω2 in (3.47) and are referred

to as secular terms. When ω2 was zero, as in (3.37), it was not possible to find a

periodic solution for χ1 and χ2. The goal now is to formulate a solvability condition

for ω2 which will lead to the solutions of (3.47) being periodic.

116

With some rearranging we can rewrite (3.47) as⎛⎜⎜⎜⎜⎜⎝
τu
3

0 0 0

0 τv
3

0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
χ1

χ2

A1

A2

⎞⎟⎟⎟⎟⎟⎠
′

−

⎛⎜⎜⎜⎜⎜⎝
Fu Fv Fu 0

Gu Gv 0 Gv

Fu Fv Fu 0

Gu Gv 0 Gv

⎞⎟⎟⎟⎟⎟⎠
T

⎛⎜⎜⎜⎜⎜⎝
χ1

χ2

A1

A2

⎞⎟⎟⎟⎟⎟⎠
T

+

⎛⎜⎜⎜⎜⎜⎝
α2
1

3
0 0 0

0
α2
2

3
0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
χ1

χ2

A1

A2

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝
−ω2

(
τu
3
u′
0 + Tc′1

)
+B1T

−ω2

(
τv
3
v′0 + Tc′2

)
+B2T

B1T − Tω2c
′
1

B2T − Tω2c
′
2

⎞⎟⎟⎟⎟⎟⎠ .

Note that we have substituted the equations for A1 and A2 from (3.47) directly into

the differential equations for χ1 and χ2. The reason for this is discussed later in

Chapter 5.

From observing the left hand side of the above equation, we define the linear

operator L,
LY ≡ ΩY ′ − J2TYT +KY . (3.48)

Here, Y is a vector valued function of length four. The matrices in (3.48) are defined

as

Ω =

⎛⎜⎜⎜⎜⎜⎝
τu
3

0 0 0

0 τv
3

0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ ,J2 =

⎛⎜⎜⎜⎜⎜⎝
Fu Fv Fu 0

Gu Gv 0 Gv

Fu Fv Fu 0

Gu Gv 0 Gv

⎞⎟⎟⎟⎟⎟⎠ ,K =

⎛⎜⎜⎜⎜⎜⎝
α2
1

3
0 0 0

0
α2
2

3
0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

(3.49)

If we define the vector valued function X = (χ1, χ2, A1, A2)
� then we can write the

system for χ1, χ2, A1, and A2 as

LX =

⎛⎜⎜⎜⎜⎜⎝
−ω2

(
τu
3
u′
0 + Tc′1

)
+B1T

−ω2

(
τv
3
v′0 + Tc′2

)
+B2T

B1T − Tω2c
′
1

B2T − Tω2c
′
2

⎞⎟⎟⎟⎟⎟⎠ . (3.50)

We first note that the derivative of the leading order solution vector,(
u′
0, v

′
0, c

′
1, c

′
2

)�
,

117

is in the kernel of the operator L. These terms show up on the right hand side of

(3.50) and are the reason for the secular growth. To find a periodic solution of (3.50),

without secular growth, we require the right hand side of (3.50) to be orthogonal to

the kernel of the adjoint of L. This is an application of the Fredholm Alternative.

The next step is to find the adjoint operator L∗.

First we define the standard inner product used on the space of real vector valued

functions with period P ,

〈Y ,Z〉 =
∫ P

0

Y �Z dτ. (3.51)

Here we use � to denote the transpose operator and assume that Y and Z are both

periodic with period P . Then we have

〈LY ,Z〉 =
∫ P

0

(ΩY ′ − J2TYT +KY)�Z dτ, Definition of L and 〈, 〉 .

=

∫ P

0

Y ′�ΩZ − Y �
T J2

�
TZ + Y �KZ dτ, Properties of transpose.

=

∫ P

0

−Y �ΩZ′ − Y �
T J2

�
TZ + Y �KZ dτ, Integration by parts and periodicity.

=

∫ P

0

−Y �ΩZ′ − Y �J2

�Z+ + Y �KZ dτ, Periodicity.

=

∫ P

0

Y � (−ΩZ′ − J2

�Z+ +KZ
)
dτ,

= 〈Y ,L∗Z〉 .
Thus we have found the adjoint operator L∗. It is defined as

L∗Z ≡ −ΩZ′ − J2

�Z+ +KZ. (3.52)

Here we use + as a subscript to mean Z+ ≡ Z(τ + T). It does the opposite of the

delay, ZT ≡ Z(τ − T). In general we will refer to the + in Z+ as the advancement

operator.

Next we find the solvability condition for ω2. We first let Y be an arbitrary

vector valued function in the kernel of L∗. Then the inner product of each side of

(3.50) is

〈⎛⎜⎜⎜⎜⎜⎝
−ω2

(
τu
3
u′
0 + Tc′1

)
+B1T

−ω2

(
τv
3
v′0 + Tc′2

)
+B2T

B1T − Tω2c
′
1

B2T − Tω2c
′
2

⎞⎟⎟⎟⎟⎟⎠ ,Y

〉
= 0.

118

Letting Y =

⎛⎜⎜⎜⎜⎜⎝
y1

y2

y3

y4

⎞⎟⎟⎟⎟⎟⎠, we can solve the above equation for ω2 to get

ω2 =

∫ P

0
B1T (y1 + y3) +B2T (y2 + y4) dτ∫ P

0
τu
3
u′
0y1 +

τv
3
v′0y2 + Tc′1(y1 + y3) + Tc′2(y2 + y4) dτ

. (3.53)

The equation in (3.53) can be solved numerically for ω2. After solving for ω2,

this value is used in the system (3.50). With this value for ω2 the solutions of (3.42)

will be periodic. The most challenging part of using the formula in (3.53) is finding

a non trivial periodic solution Y such that L∗Y = 0. This is the topic of the next

section.

3.6.1 Computing the Kernel of L∗

In this section we will describe the method we use to solve L∗(Y) = 0 where L∗ is

defined in (3.52). We seek a non trivial periodic solution, Y , which is in the kernel of

the adjoint operator. Any vector valued function in the kernel of the adjoint satisfies

−ΩY ′ − J2

�Y+ +KY = 0

Y (0) = Y (P).
(3.54)

The system in (3.54) consists of two differential equations, two algebraic equations

with delay, and periodic boundary conditions. There is not a well known solver that

we know of that can handle DDAEs with boundary conditions in general. Since we

are looking for periodic solutions of (3.54) it is more convenient to use a boundary

value problem solver as opposed to an initial value problem solver. Since L∗ is linear

we can use discretization in time to turn the the differential operator L∗ into a matrix

operator. We can then approximate the kernel of the continuous operator L∗ with

the kernel of the matrix.

The operator L∗ acts on a vector valued function Y (τ) of the form Y (τ) =

(y1(τ), y2(τ), y3(τ), y4(τ))
�. We begin by discretizing the time interval [0, P) into

n + 1 points τ0 < τ1 < τ2 < . . . < τn where τi = nh for i = 0, 1, . . . n. We choose the

step size h so that (n + 1)h = P . We do not include τ = P as a mesh point in the

119

discretized interval because Y (P) = Y (0) is already represented when n = 0. We

discretize Y on this mesh by defining the vector

Y = (y1(0), y1(h), . . . , y1(nh), y2(0), y2(h), . . . , y2(nh),

y3(0), y3(h), . . . , y3(nh), y4(0), y4(h), . . . , y4(nh))
�.

(3.55)

The periodic boundary conditions imply that yj(0) = yj((n+ 1)h) for j = 1, 2, 3, 4.

For notational convenience we define yji ≡ yj(ih) where j = 1, 2, 3, 4 and

i=0, 1, 2, . . . , n. The discretized vector, Y , is a vector of length 4(n + 1). We also

need to discretize the derivative operator, the advancement operator, and the other

matrices in (3.54). The discretization process turns the continuous operator L∗ into

a 4(n+1) by 4(n+1) matrix which we will refer to as L. As n increases in size, the

kernel of L will converge to the kernel of L∗.

To solve for the kernel of L we will use an eigenvalue solver to find the zero

eigenvalue whose corresponding eigenvector will be in the kernel. We use the eigs

command in Matlab which allows to compute the smallest eigenvalues and corre-

sponding eigenvectors. Since the matrix L is of size 4(n+1) by 4(n+1) it is possible

to run into many numerical issues in finding the eigenvalues for large n. In order to

keep the size of the matrix as small as possible, without sacrificing accuracy, we use

higher order methods to discretize the derivative and advancement operators. It may

seem unnecessary but we end up getting faster convergence of the eigenvectors and

therefore better convergence in computing ω2. We also do not have to be concerned

with finding the eigenvalues of relatively large matrices.

To discretize the derivative operator, d
dτ
, we use the following O(h4) derivative

approximation for y′(τ),

y′(τ) ≈ y(τ − 2h)− 8y(τ − h) + 8y(τ + h)− y(τ + 2h)

12h
.

We can use this derivative approximation to approximate Y ′ in (3.54). To begin

with we will only consider the function y1(τ) which is the first component of Y . For

example, y′1(0) ≈ y1(−2)−8y1(−1)+8y11−y12
12h

=
y1(n−1)−8y1n+8y11−y12

12h
. Note that we have used

the fact that y1(τ) is periodic. For the function y1(τ), which we discretized as the

120

vector (y10, y11, . . . , y1n)
�, we have that

d

dτ
y1(τ) ∼ 1

12h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(n−1) − 8y1n + 8y11 − y12

y1n − 8y10 + 8y12 − y13
...

y1(n−3) − 8y1(n−2) + 8y1n − y10

y1(n−2) − 8y1(n−1) + 8y10 − y11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This can be rewritten as

d

dτ
y1(τ) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 8 −1 0 0 0 . . . 0 1 −8
−8 0 8 −1 0 0 0 . . . 0 1

1 −8 0 8 −1 0 0 0 . . . 0

0 1 −8 0 8 −1 0 0 . . . 0

0 0
. . .

. . .
. . .

. . .
. . . 0 . . . 0

...
...

...
...

0 0 . . . 0 1 −8 0 8 −1 0

0 0 0 . . . 0 1 −8 0 8 −1
−1 0 0 0 . . . 0 1 −8 0 8

8 −1 0 0 0 . . . 0 1 −8 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y10

y11

y12

y13
...

y1(n−3)

y1(n−2)

y1(n−1)

y1n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will let Ddτ be the (n+ 1) by (n+ 1) matrix above . Then we can approximate

the derivative of Y (τ) with DdτY where Ddτ is the following block diagonal matrix,

Ddτ =

⎛⎜⎜⎜⎜⎜⎝
Ddτ 0 0 0

0 Ddτ 0 0

0 0 Ddτ 0

0 0 0 Ddτ

⎞⎟⎟⎟⎟⎟⎠ . (3.56)

In summary, we have just discretized the derivative operator and now have that

Y ′ ∼ DdτY .

Next we will discretize the advancement operator + which is used in (3.54).

Recall that Y+(τ) = Y (τ + T). We will discretize the advancement operator so

that Y+ can be approximated by some matrix multiplied by Y . We will now find

a suitable matrix. We will first do the discretization of the advancement operator

applied to just the function y1(τ). Then we can extend the results to the case of the

121

advancement operator applied to Y (τ) using a block diagonal matrix just as we did

for the derivative operator in (3.56).

The problem is the following. We have a periodic function y1(τ) defined on [0, P).

The continuous function y1 is approximated by the discretized vector (y10, y11, . . . , y1n)
�.

We would like to approximate y1(τ + T) with one of the discretized value y1i where

i = 0, 1, . . . , n. First, it may be that τ +T ≥ P . This is easily resolved because y1(τ)

is periodic with period P . If y1 is required outside the range [0, P) we can always

find an equivalent value of y1 evaluated at some other time in the range [0, P).

Now suppose we want to evaluate y1(τ+T) where τ = kh for some k ∈ {0, 1, 2, . . . , n}.
Since y1 is periodic we will assume that we have shifted time so that τ + T < P .

The issue is that kh+T may not have a corresponding mesh point in {0, h, . . . , nh}.
This is most likely the case since T/h probably will not be a whole number. This

means that that y1(kh+ T) can not be simply approximated by one of the values in

the set {y0, y1, . . . , yn}. Therefore the problem becomes one of expressing the quan-

tity y1(kh + T) as a linear combination of some of the known values within the set

{y0, y1, . . . , yn}.
We assume that y1(kh + T) = y1((j + μ)h) for some j ∈ {0, 1, 2, . . . , n}. Here μ

satisfies 0 ≤ μ ≤ 1 and is the fraction of the distance between between j and j + 1.

We can find the value of μ by evaluating μ = T
h
− �T

h
�. Here we have used the floor

function defined as �x� = max{m ∈ Z|m < x}.
As a first approximation to y1((j + μ)h) we could use y1j. To get a better ap-

proximation we could use a weighted average with y1j and y1(j+1) which would lead

to y1((j + μ)h) ≈ y1j + μ(y1(j+1) − y1j). As discussed previously we would like a

higher order approximation. We will construct an interpolating polynomial through

five mesh points to approximate y1((j+μ)h). The problem is depicted in Figure 3.6.

y1(j−2) y1(j−1) y1j y1(j+1) y1(j+2)y1k ↑

y1(kh+ T) = y1((j + μ)h)

Figure 3.6: To approximate y1(kh + T) = y1((j + μ)h) we use interpolation to
express the approximation of y1((j + μ)h) as a linear combination of known mesh
points around it.

122

We use an interpolating polynomial defined as follows

P (x) = p0 + p1x+ p2x
2 + p3x

3 + p4x
4

P (−2) = y1(j−2), P (−1) = y1(j−1), P (0) = y1(j),

P (1) = y1(j+1), P (2) = y1(j+2).

Solving for the coefficients of P (x) leads to

p0 = y1j

p1 = −2

3
y1(j−1) +

1

12
y1(j−2) +

2

3
y1(j+1) − 1

12
y1(j+2)

p2 = −5

4
y1j +

2

3
y1(j−1) − 1

24
y1(j−2) +

2

3
y1(j+1) − 1

24
y1(j+2)

p3 =
1

6
y1(j−1) − 1

12
y1(j−2) − 1

6
y1(j+1) +

1

12
y1(j+2)

p4 =
1

4
y1j − 1

6
y1(j−1) +

1

24
y1(j−2) − 1

6
y1(j+1) +

1

24
y1(j+2).

Therefore we can approximate y1((j + μ)h) with P (μ).

Next we need to approximate y1(τ + T) by approximating y1(kh + T) for all k

in {0, 1, 2, . . . , n}. We can do this by multiplying the vector (y10, y11, . . . , y1n)
� by a

matrix of the form

P = p0 + p1μ+ p2μ
2 + p3μ

3 + p4μ
4, (3.57)

where μ is still defined as μ = T
h
− �T

h
�. The coefficients are now the matrices

p0 = RN

p1 = −2

3
RN−1 +

1

12
RN−2 +

2

3
RN+1 − 1

12
RN+2

p2 = −5

4
RN +

2

3
RN−1 − 1

24
RN−2 +

2

3
RN+1 − 1

24
RN+2

p3 =
1

6
RN−1 − 1

12
RN−2 − 1

6
RN+1 +

1

12
RN+2

p4 =
1

4
RN − 1

6
RN−1 +

1

24
RN−2 − 1

6
RN+1 +

1

24
RN+2.

(3.58)

Here, the number N is defined as N = �T
h
�. The matrix RM is a permutation matrix

of size (n + 1) × (n + 1), which when multiplied by the vector (y10, y11, . . . , y1n)
�,

shifts every element in that vector back M spaces. For example,

R2 · (y10, y11, y12, . . . , y1(n−2), y1(n−1), y1n)
� = (y12, y13, y14, . . . , y1n, y10, y11)

�.

123

Note again that we are using periodicity and this is the reason we can use permutation

matrices in the first place. The matrix RM has the form

RM =

(
0 In+1−M

IM 0

)
, (3.59)

where IM is an identity matrix of size M ×M and so on.

Now that we have established y1(τ + T) ∼ P (y10, y11, . . . , y1n)
�, all that is left is

to approximate Y+(τ). To approximate Y+(τ) we multiply Y by the block diagonal

matrix

P =

⎛⎜⎜⎜⎜⎜⎝
P 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

⎞⎟⎟⎟⎟⎟⎠ , (3.60)

where P is the (n+1)× (n+1) matrix defined by (3.57), (3.58), and (3.59). Finally,

we now have Y+ ∼ PY .

The last terms to discretize in (3.54) are Ω, J2, and K. Before we look at a 4×4

time dependent matrix we consider a single function. For example, the function Fu(t)

in the expression Fu(t)y1(t) could be discretized as

Fu(t)y1(t) ∼

⎛⎜⎜⎜⎜⎜⎝
fu(0) 0 . . . 0

0 fu(h) . . . 0
...

...
. . .

...

0 0 . . . fu(nh)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
y10

y11
...

y1n

⎞⎟⎟⎟⎟⎟⎠ .

For an arbitrary 4× 4 time dependent matrix,

A(t) =

⎛⎜⎜⎜⎜⎜⎝
a11(t) a12(t) a13(t) a14(t)

a21(t) a22(t) a23(t) a24(t)

a31(t) a32(t) a33(t) a34(t)

a41(t) a42(t) a43(t) a44(t)

⎞⎟⎟⎟⎟⎟⎠ ,

we can discretize A(t) with the matrix A.

Here, A is the 4(n+ 1)× 4(n+ 1) matrix obtained from replacing each function

aij in A(t), where i = 1, 2, 3, 4 and j = 1, 2, 3, 4 , with the (n+1)× (n+1) diagonal

124

matrix ⎛⎜⎜⎜⎜⎜⎝
aij(0) 0 . . . 0

0 aij(h) . . . 0
...

...
. . .

...

0 0 . . . aij(nh)

⎞⎟⎟⎟⎟⎟⎠ .

This is the process we use to discretize J2, Ω, and K to get J2, Ω, and K.

Now we have everything in place to completely discretize the operator L∗. We can

approximate the continuos adjoint operator L∗ in (3.54) with its discretized version

L ≡ −ΩDdτ − J2

�P +K. (3.61)

The kernel of the matrix L converges to the kernel of L∗ in the limit as n → ∞.

Also note that kernel of L� should converge to the kernel of L. A good way to check

if the numerical construction of L is correct is to see if the kernel of L� converges

to
(
u′
0, v

′
0, c

′
1, c

′
2

)�
which we know is in the kernel of L. The code which creates the

matrix L can be found in the Appendix in §A.5.

3.6.2 Revisiting the Hopf Bifurcation in §3.5.2

In this section we evaluate ω2 for the Hopf bifurcation example in §3.5.2. It was this

example that showed the secular growth in the asymptotic approximations of (3.2).

We use the same functions F and G as well as the same parameters that were used

in §3.5.2. The delay is T = 2 and therefore there is a stable periodic orbit.

We first use the method of steps described in §3.4.3 to solve (3.46) and find

periodic functions u0, v0, c1, and c2. We first choose constant history for (3.46).

Initially the solutions will not be periodic but as time evolves the solutions converge

to a stable periodic solution. Once a periodic solution is reached we spline the

solution on the last delay interval and then use this as history in another simulation

of (3.46). In this second simulation there is no initial transient in the solution and

the numerical solution is periodic for all time.

The next step is to compute the period of the solution just found. In this example

the period of the solutions to (3.46) is found to be P = 13.4711. Once the period

is obtained the solutions u0, v0, c1, and c2 are stored for one period, τ ∈ [0, P].

These solutions are required in creating the matrix J2. They are also needed in

125

the solvability condition for ω2 in (3.53). The history as well as one period of the

solutions to (3.46) is plotted in Figure 3.7.

−2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

u0c1

c2

v0

τ

so
lu
ti
on

of
(3
.4
6)

Figure 3.7: The plot of the numerical solutions (solid line) of (3.46) for one period,
τ ∈ [0, 13.4711]. The history (dotted line) is chosen so that there is no initial transient
and the solution is periodic for all time. The method of steps, as described in §3.4.1
was used with an absolute and relative tolerance of 1e-9.

In §3.6.1 we formed the matrix L. We create the matrix L in Matlab and

then use the eigs command to find the zero eigenvalue and its eigenvector. This

eigenvector is the vector defined in (3.55). It is split up into four parts. The four

parts are the discretized versions of the functions y1, y2, y3, and y4, which satisfy

L∗(y1, y2, y3, y4)� = 0. The discrete vectors can be turned into continuous functions

by using the spline command in Matlab. The functions y1, y2 ,y3, and y4 are plotted

in Figure 3.8.

126

0 2 4 6 8 10 12
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02 y1

y2

y3

y4

τ

so
lu
ti
on

of
(3
.5
4)

Figure 3.8: A plot of the numerical solutions of (3.54). The vector Y defined in
(3.54) is Y = (y1, y2, y3, y4)

� and satisfies L∗Y = 0. The discretized version of Y is
Y and it is the values of Y which are used to make this plot. The vector Y is an
eigenvector of the matrix L defined in (3.61). The functions y1, y2, y3, and y4 are
found by splining their discrete counterparts and are used in the solvability condition
for ω2 in (3.53).

Once the functions y1, y2 ,y3, and y4 are obtained, they are substituted into

the solvability condition (3.53). We solve the integrals in (3.53) by using the quad

command in Matlab. Here is a table of ω2 versus n showing the convergence.

Table 3.1: Comparison of ω2 for different values of n. To solve for ω2 the formula in
(3.53) is used. This was done for the parameter values and functions F and G used
in §3.5.2.

n 20 40 60 80 100

ω2 -0.1855457 -0.1867475 -0.1867995 -0.1868093 -0.1868120

n 120 140 160 180 200

ω2 -0.1868128 -0.1868134 -0.1868136 -0.1868137 -0.1868138

Now that ω2 has been calculated, it can be used in the system (3.50). We can

use the method of steps to solve (3.50). The numerical output from solving (3.50) is

then used in (3.41), which is an asymptotic approximation to the solution of (3.2).

127

With the correct value of ω2, the functions χ1, χ2, A1, and A2 will be periodic. The

result is shown in Figure 3.9.

0 1 2 3 4
x 104

0

0.5

1

1.5

2

2.5

3
u

t

Figure 3.9: This is the plot of u = u0 + εu1 from (3.41). To solve for the terms
χ1 and χ2 we used the system (3.50) with ω2 = −0.18681. In this plot there is no
secular growth. This is contrasted with the plot in Figure 3.5 where ω2 = 0. Now
the asymptotic solution agrees with the numerical solution of (3.2).

All the Matlab code used here such as the construction of L, solving the DDAEs,

calculating the period, and computing the kernel of L can be found in the Appendix

in §A.5.

3.6.3 Revisiting the Hopf Bifurcation in §2.5.3

In the previous sections we used the Poincaré-Lindstedt method to eliminate secular

growth in the DDAEs in (3.47) in the case of a Hopf bifurcation. We first noticed this

secular growth in the delay model. This growth actually occurs in the ODE systems

for χ1 ,χ2 , and χ3 from Chapter 2 without delay too. Recall that we did the analysis

for a system of two variables but needed a system of three variables to observe a Hopf

bifurcation. We did not notice the secular growth in the Hopf bifurcation example

in §2.5.3 because we did not solve out far enough in time. Recall that the secular

128

growth does not occur in the PDE model but only in the ODEs found in (2.50)

(extended to a system of three ODEs).

In §2.5.3 we only solved out to time t = 6000 and therefore did not observe the

secular growth. The asymptotic approximation of u(x, t) from the example in §2.5.3

is plotted in Figure 3.10 further out in time. The secular growth is evident.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t

u

Figure 3.10: This is the plot of u from (2.51) which includes the secular growth
coming from the term χ1. The function χ1 is determined by the ODEs in (2.50)
(extended to a system of three ODEs).

We can repeat the Poincaré-Lindstedt analysis on the PDE model with out delay

in (2.3). We will do it here for two variables but it can easily be extended to three

variables. We begin by setting the delay to zero in (3.47). Notice that we can isolate

for A1 and A2 in terms of χ1 and χ2 by solving the linear equations in (3.47). This

is because T = 0 now. This leads to the following system.⎛⎝ τu
3
χ1

τv
3
χ2

⎞⎠′

= −
(

α2
1

3
0

0
α2
2

3

)(
χ1

χ2

)
+

(
A1

A2

)
− ω2

(
τu
3
u0

τv
3
v0

)′

(
A1

A2

)
=

(
B1

1−Fu

B2

1−Gv

)
+

(
Fu

1−Fu

Fv

1−Fu

Gu

1−Gv

Gv

1−Gv

)(
χ1

χ2

)
.

Substituting the expressions for A1 and A2 into the ODEs for χ1 and χ2 results in

129

⎛⎝ τu
3
χ1

τv
3
χ2

⎞⎠′

+

(
α2
1

3
− Fu

1−Fu

Fv

1−Fu

Gu

1−Gv

α2
2

3
− Gv

1−Gv

)(
χ1

χ2

)
=

(
B1

1−Fu

B2

1−Gv

)
− ω2

(
τu
3
u0

τv
3
v0

)′

(3.62)

From the above equation we choose to define the differential operator L as

LY ≡ ΩY ′ +AY .

where the matrices Ω and A are defined as

Ω =

(
τu
3

0

0 τv
3

)
, A =

(
α2
1

3
− Fu

1−Fu

Fv

1−Fu

Gu

1−Gv

α2
2

3
− Gv

1−Gv

)
.

Therefore we can write the ODE system for χ1 and χ2 as

L
(
χ1

χ2

)
=

(
B1

1−Fu

B2

1−Gv

)
− ω2

(
τu
3
u0

τv
3
v0

)′

To find the adjoint operator we repeat the procedure used in §3.6 to obtain

L∗(Z) = −ΩZ ′ +A�Z.

The solvability condition for ω2 is found the same way as in §3.6. We start with

letting

(
y1

y2

)
be in the kernel of L∗. To eliminate the secular growth in (3.62) we

require that 〈(
B1

1−Fu
− ω2

τu
3
u′
0

B2

1−Gv
− ω2

τv
3
v′0

)
,

(
y1

y2

)〉
= 0.

Solving for ω2 yields

ω2 =

∫ P

0
B1

1−Fu
y1 +

B2

1−Gv
y2 dτ∫ P

0
τu
3
u′
0y1 +

τv
3
v′0y2 dτ

.

We can solve the above equation as well as for y1 and y2 using the same techniques

described in §3.6.1 and §3.6.2. It is a lot easier to discretize the operator L∗ because

it has a simpler form when the delay is zero. Using these techniques on the Hopf

bifurcation example in §2.5.3 leads to an ω2 value of ω2 = −0.392276. This value

of ω2 eliminates the secular growth in the functions χ1, χ2, and χ3. Here we plot

130

the same function u(x, t) that was plotted in Figure 3.10 but now there is no secular

growth.

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

0

0.05

0.1

0.15

0.2

0.25

t

u

Figure 3.11: This is the plot of u from (2.51). Now the function χ1 is determined by
the ODE system (3.62) (extended to a system of three ODEs) with ω2 = −0.392276.
There is no secular growth.

We leave the discussion of the results in this chapter to the last chapter in this

thesis, Chapter 5.

Chapter 4

A Model with Cell Surface Receptors

4.1 Cell Surface Receptors

In the models from previous chapters we only considered the intracellular signalling

pathways within the cell. In those models we ignored any initial processes involving

the cell surface receptors. In this chapter we begin to look at a simple extension of

the models considered previously to include signal initiation at the cell surface.

Cell surface receptors are membrane proteins and play a vital role in the commu-

nication between the cell and its exterior. Extracellular signalling molecules act as

ligands which bind to the cell surface receptors. The binding of a ligand to its recep-

tor causes a conformational change in the receptor which then initiates a sequence

of chemical reactions inside the cell.

Cell surface receptors can be in an active state or an inactive state. One of the

factors that affects the state of a receptor is whether it is ligand bound or not. The

state of the receptor is directly affected by the ligand bound molecule since ligand

bound molecules can cause the receptor to favour one of the two states over the

other. Ligand bound receptors are more likely to be active where as receptors that

are not ligand bound are more likely to be inactive.

The cell surface receptor proteins are able to diffuse around in the membrane

and the spatial arrangement of these receptors is important to cell signalling dy-

namics. One important feature is when extracellular signalling molecules bind to

the receptors which then causes the receptors to aggregate or cluster together [46].

The spatial clustering of cell surface receptors is often required to initiate signal

transduction pathways. Such clusterings of cell surface receptors have been observed

experimentally through the use of fluorescence microscopy [75].

Clusters of cell surface receptors have been observed in many transmembrane

signalling systems. These clusters can have hundreds or thousands of receptors which

come together. The clusters can form in specific locations on the cell surface and

131

132

this process can often be controlled by the cell. One main consequence of receptor

clustering is that the cluster can initiate the signal transduction pathway across the

membrane of the cell.

There are different ways in which clusters of membrane receptors form. One way

is simply through their protein-protein interactions. In this case, if the receptors

occupy the same region, they can cluster through protein-protein interactions such

as hydrogen bonds. Even though interactions alone between receptors can cause

them to cluster, the cell has no control over this process. Moreover, the size of the

clusters and whether or not they form is just a function of the number of receptors

[25].

Another way in which receptors can cluster is through adapter proteins within the

cytosol. The adapter proteins bind to the part of the cell surface receptors which are

in the cytosol. Once the adapter proteins attach to the receptors, it affects how the

receptors interact with other receptors. The coupling between two receptors which

are both bound by protein adapters can be stronger then it would be to if just one

of them or neither was bound. The adapter proteins are relatively large and it is the

interactions between the bound protein adapters that causes the clustering of the

receptors as opposed to the interactions between the receptors themselves. Since the

concentration of adaptor proteins within the cytosol can change rapidly, the ratio of

adaptor proteins to isolated receptors acts as a parameter which controls whether or

not the receptors cluster together. When the ratio of adapter proteins to receptors

increases past a threshold value, more receptors cluster together. The cell can thus

control the degree of clustering and can cause clusters to form in specific regions on

the cell surface.

Not only can clusters form because of internal stimuli within the cell, such as

adapter proteins, they can also form because of external stimuli. An example of

this is ligand induced clustering. Ligand molecules are usually small and can bind

to the extracellular part of the cell surface receptor. Ligand molecules which are

bound to extracellular parts of receptors usually do not interact with each other

directly. However, the ligand molecules can affect whether or not receptors cluster

by the effect that the ligands have on individual receptors. Often receptors can be

in two different conformational states, active or inactive. When a ligand is bound to

133

a receptor it can affect which state the receptor is in.

When several receptors occupy the same region, the interactions between them

depend on their respective states and conformation. Certain energy states will cause

the receptors to cluster together. Ligand induced clustering is when the ligand bound

receptors change states and begin to cluster with neighbouring receptors. In a cluster

of receptors, some receptors will be ligand bound and others will not. Moreover, the

conformational sate of a receptor is not only affected by whether it is ligand bound,

but also by the state of adjacent receptors within its cluster. Therefore the binding of

a ligand with a receptor can affect the activity of other receptors in the corresponding

cluster which are not ligand bound [25]. This is known as conformational spread, in

which the activity of receptors is spread across the cluster [12].

Since the cell surface receptors can diffuse freely and interact with other recep-

tors, the clusters can form dynamically in time. Once formed, the clusters can also

diffuse and sometimes do more slowly after grouping [25]. Through conformational

spread, the dynamic clustering of receptors can actually increase the sensitivity and

responsiveness of the signalling pathway. Conformational spread is an example of

how the forming of clusters of cell surface receptors can enhance signalling responses.

The initiation of the signal transduction pathway occurs at locations where recep-

tors cluster together. Upon entering the cell, the signal travels downstream through

cascading reactions between intracellular signalling proteins. The cascading reac-

tions, which involve positive and negative feedback loops, are often localized in space

at cellular compartments. An example of a simple efficient signalling pathway would

be one with a large cluster followed by a signalling compartment close by. Therefore

the signalling molecules could enter the cell and diffuse to the first nearby cellular site

and then on to subsequent sites. In this simple pathway everything is well organized

and arranged in an optimal sequence. Such a pathway is illustrated in Figure 4.1.

Cellular signalling pathways are very complex. It is unlikely that cellular sites

within a signalling pathway are organized along a direct line between the membrane

and the final destination of the signal, as depicted in Figure 4.1. Also, the signalling

compartments may not be in close approximation with one another. Over longer

distances, diffusion is sometimes not enough to transport the signal across the cell

interior, especially in the presence of deactivating enzymes [48]. The cell interior also

134

has a high level of molecular crowding and this can be a hinderance to intracellular

signalling molecules which transport via diffusion.

(a) Efficient signalling pathway

Figure 4.1: An efficient signalling pathway consisting of a large cluster of receptors
followed by a chain of intracellular signalling compartments. The first intracellular
signalling compartment is close to the cluster where the signal crosses the membrane.
The compartments which follow are close together as well, shortening the distance
the molecules diffuse over.

One advantage of receptor clustering is that it provides fast spatial confinement

of receptors. Since cell surface receptors can cluster in a multiple regions on the cell

surface, it can lead to shorter diffusion distances for signalling molecules [19]. For

example, if a signal had to travel from one cluster at the pole of a cell to reach an

intermediate messenger at the other pole of the cell, the diffusion distance would

be long. If there were two clusters though, then it would be possible to have a

second cluster closer to the intermediate messenger which the signal could travel from.

This would decrease the diffusion distance. Other benefits of receptor clustering are

heightened sensitivity, broader dynamic range, and enhanced specificity [24].

Many mathematical and computational models of cell surface receptor dynamics

and ligand binding have been considered [57, 17, 24, 105, 96, 16]. Many of these

models involve ODEs, PDEs, and Monte-Carlo simulations. In [16], the authors

investigated the effects of receptor clustering on cellular receptor ligand binding.

135

Monte-Carlo algorithms were used to simulate ligand diffusion and binding. Three

different spatial configurations for the cell surface receptors were considered. They

first considered a model with receptors homogeneously spread out over the cell sur-

face. Next they considered a model with clustering with “over stacked receptors”.

Here the receptors are very tightly packed together. The third model involved a

particle simulation framework where receptors were clustered but not as compactly

as the second model. In this case, receptors within a cluster are still close to each

other but the presence of a ligand in the vicinity of one receptor does not influence

the binding of a ligand with another receptor in the cluster. It was found that the

probability of a ligand and receptor encounter decreased as the amount of cluster-

ing increased. This is because the membrane has larger zones with no receptors

over which the ligand has to diffuse. However, they found that receptor clustering

increases the rebinding probability.

Another interesting situation is approximating the time it takes for a ligand to

reach a receptor using diffusion. As mentioned above, if receptors are clustered, it

may take longer for the ligand to reach its binding destination. In [41] the motion of

a receptor on a domain with occasional trappings in and escapes from confinement

regions was considered. The motion of the receptor was modelled with free diffusion.

One main calculation in the paper was estimating the confinement time for a brow-

nian particle in a bounded planar domain, whose boundary is reflecting, except for

a small absorbing arc. There was also a calculation done for scenarios with anchors

in the domain which could terminate the motion of the particle. In this case the

probability of reaching a small absorbing arc was also estimated. Other calculations

with traps and patches on 2D and 3D domains were carried out in [42, 21, 81]. In

these papers asymptotic results are obtained for the mean field passage time.

In [30] a computational study of 2D and 3D dynamics of receptor ligand interac-

tions was carried out. PDEs were used to develop spatiotemporal models that showed

trafficking dynamics of ligands, cell surface components, and intracellular signalling

molecules. The model consisted of two bulk domains (the extracellular volume and

the inside of the cell) separated by a common 2D interface (the cell surface). On

the cell surface information is exchanged between the exterior and interior of the

cell through ligand receptor interactions. The model is very complex, involves many

136

PDEs, and uses realistic parameter values. The authors used Comsol to carry out

different numerical simulations and changed individual parameters to see the effect

on the model.

4.2 A Model with Cell Surface Receptors

For the model in this chapter we will assume that the receptors have already clustered

together and have reached an equilibrium state. Therefore the clusters are at fixed

locations in space during the time dependent simulations. To be consistent with the

theme of this thesis, we will use the same kind of geometry, PDEs, and boundary

conditions as used in Chapters 2 and 3.

We will use the unit sphere to represent the cell. The main difference now is

that we will also include a number of circular patches on the surface of the sphere.

These patches are regions on the cell surface which represent clusters of cell surface

receptors. On these patches we define flux boundary conditions which model the

signal travelling across the cell membrane. In this regard, the signal can now be

activated at the surface, but only in specific regions where the patches are located.

An example of a sphere with several patches all of the same size is shown in Figure

4.2.

Figure 4.2: A sphere with several circular patches on its surface.

We will start by considering a model where signalling molecules, with concentra-

tion u(x, t), are activated at patch locations on the cell surface. Upon activation,

these signalling molecules diffuse through the cell interior where they are deactivated.

137

We use a zero flux boundary condition over the entire sphere surface except on the

patch surfaces. A flux boundary condition on the patches models the activation.

The model is similar to the models in the previous chapters. Here, instead of hav-

ing activation at cellular compartments, the activation occurs at the patch locations

on the sphere surface. Following the framework of previous chapters, we have the

following model for the concentration of the signalling molecules,

τuut = Δu− α2
uu, x ∈ Ω1

∂nxu = H(u), x ∈ ∂Ωp

∂nxu = 0, x ∈ ∂Ω1\∂Ωp.

The surface of each patch is denoted as ∂Ωrj , for j = 1, 2, . . .N , and we define the

union of them as ∂Ωp = ∪N
j=1Ωrj . Note that we are not necessarily assuming a small

decay as we did in the previous chapters.

The geometry for this model consists of the unit sphere with N circular patches

on its surface. These patches are just circles projected onto the unit sphere. We will

run different simulations while varying the number of patches. For each simulation

the patches will collectively cover the same fixed surface area of the sphere. This is

because we want to keep the flux or amount of signal entering the cell the same for

each simulation. The proportion is P where 0 < P < 1. Therefore the surface area

of each patch is 4πP
N

. Now that we have determined the size of the patches we need

to choose their locations. To keep consistency between simulations with different

numbers of patches, we will use a specific distribution for selecting the centres of the

patches. We will use Thomson’s problem to do this. Thomson’s problem has to do

with picking N points on a sphere that are uniformly distributed.

In Thomson’s problem [99, 56] the N points are considered as electrons which

repel one another by some sort of force law, such as an inverse square force law. The

objective is to arrange the N points on the sphere surface so that a stable equilibrium

configuration is reached. Saying it another way, the goal of Thomson’s problem

is to find the minimum energy configuration of N charged electrons constrained

to the surface of the unit sphere. J.J. Thomson studied such configurations when

considering different models of the atom.

If the sphere is normalized to a radius of 1, and the force is of the inverse-square

138

type, then there are N(N − 1)/2 separations si,j between the N particles. The

position of each particle is chosen to minimize the energy

E =

N−1∑
i=1

N∑
j=i+1

1

si,j
.

For example, if N = 0 then this leaves the sphere with no particles. If N = 1 then

one particle can be placed anywhere on the sphere such as the north pole. If N = 2

then one particle is placed at the north pole and the other at the south pole. If N = 3

the three particles are points on a great circle and form an equilateral triangle. For

N = 4, the four points are vertices of a tetrahedron. Figure 4.3 shows the geometry

that we are using in our model for different values of N . These were created in

Comsol and show the geometry which is used for the different simulations. In these

figures, the patches are covering 10% of the surface area of the unit sphere.

Now we will describe how we create the geometry in the FEM package Comsol.

For the simulations in this chapter we used Comsol version 4.4 [3]. First the unit

sphere is created, which is a simple operation, and then patches are created on the

surface of the sphere. Creating the patches is a little more challenging using the

drawing package within Comsol. We wanted to create the patches in a way where

it would be easy to define the centre of the patch locations in spherical coordinates.

Since the patches are on the surface of the unit sphere we just need to use an azimuth

angle θ and a zenith angle φ. The angle θ is in the xy plane and is measured from

the x-axis with 0 ≤ θ ≤ 2π. The angle φ is measured from the positive z-axis with

0 ≤ φ ≤ π.

First we create a patch in the Comsol graphical user interface (GUI). Then this file

can be turned into a script using the LiveLink for MATLAB scripting language. Using

the scripting environment, we can edit the code so that we can easily generate any

number of patches at specified locations. We have written a script which automates

the process of creating the patches. Only the positions and sizes need to be entered

in a text file and then the patches are created automatically.

This is the process of creating one patch in the Comsol GUI. First we create an

xz work plane. Within that work plane we create a parametric curve of the form

x = cos t and z = sin t where π
2
− β ≤ t ≤ π

2
and 0 < β < π. Next, the parametric

curve defined in the xz plane is revolved by 360◦ around the z−axis. The final result

139

(a) 1 patch (b) 2 patches (c) 3 patches (d) 4 patches

(e) 5 patches (f) 6 patches (g) 7 patches (h) 8 patches

(i) 9 patches (j) 10 patches (k) 11 patches (l) 12 patches

Figure 4.3: The locations for the receptor clusters are chosen to be the points which
are solutions to the Thomson problem.

is a patch centred at the point (0, 0, 1). Once this patch is created at the north pole

of the sphere it can be rotated about the y−axis by an angle φ and then rotated

about the z−axis by an angle θ. The final result is a circular patch centred at the

point (1, θ, φ), in spherical coordinates. The process of creating a patch at the north

pole of the sphere is illustrated in Figure 4.4.

The area of the patch can be calculated by a standard surface area of revolution

formula using the parametric curves defined in the xz plane. The parametric curve

defined above was revolved around the z-axis. Therefore the area of the patch is

140

(a) The xz work plane. (b) Parametric curve in the xz work plane.

(c) Revolving the parametric curve. (d) Patch centred at the north pole.

Figure 4.4: The steps used in Comsol to create one patch centred at the north pole.

141

given by the formula

Patch Area =

∫ π
2

π
2
−β

2πx

√(
dx

dt

)2

+

(
dz

dt

)2

dt

=

∫ π
2

π
2
−β

2π cos (t) dt

=2π (1− cos β) .

To cover a proportion P of the unit spheres surface with N patches of equal size

then β must satisfy

2π (1− cos β) =
4πP

N
.

Therefore, β is chosen to be

β = cos−1

(
N − 2P

N

)
.

There is one major complication when finalizing the geometry in Comsol with

our model. We have described how we have a system where any number of patches

can be created quickly using the Comsol scripting environment. The final step in the

geometry building process is to union all the patches with the unit sphere to create

one physical object, a sphere with N patches on its surface. This is done through a

finalize union command in Comsol.

In Comsol, a sphere needs to be divided into surfaces and edges in order to be well

defined and work in the geometry environment. Actually, many geometric objects

within Comsol need to be divided up into pieces like this. A sphere containing just

one continuous surface and one, if any, vertex will not be well defined, nor possible

to use in a reasonable way. In Comsol, the sphere is divided into 8 quadrants which

are separated by edges. The patches are separated into 4 quadrants which are also

separated by edges.

The problem is the following. The final union command will not work, meaning

that no simulations can be carried out, if one of the following holds true:

• The edges of the patches are not aligned perfectly with the edges of the sphere.

• The edges of the patches intersect with edges of the sphere.

142

The reason for this is that the default version of Comsol uses something called a

Comsol CAD kernel. While the geometry representation of the patches and sphere

can be done within the default version of Comsol, the Comsol CAD kernel can not

finalize the geometry. A parasolid kernel is required for the geometry in our model

because the geometry is complex. This parasolid kernel is only available through the

purchase of the CAD Import Module kernel, which is rather expensive.

In summary, if nothing is done with the geometry, we can only do simulations

for specific cases. For example, if N is 1, or 2, or 3 then it can be seen from Figure

4.3 that the patch edges align perfectly with the edges of the unit sphere. In these

cases we can finalize the geometry. Then the PDEs can be defined and solved using

the geometry. If N = 4 though, one can see from Figure 4.3 that at least one patch

edge intersects with one of the spheres edges. If the geometry is left like that, then

no simulations can be carried out. The same goes for almost any other simulation

having N ≥ 4.

The work around to this annoyance was to look at each individual case and

manually rotate the sphere through multiple axis so that no patch edges ended up

intersecting with any sphere edges. This does not change the energy configuration

of course. We went through this process for N ≤ 12 with the patches covering 5% of

the spheres surface. In some cases it was very difficult to find the angles in which to

rotate the sphere so that no patch edges would intersect with sphere edges. In those

cases (N=9, 10, and 11) we had to physically move 1–3 patches slightly from their

desired positions as well as rotate the sphere through several axis. This complication

prevented us from running simulations with large values of N and also with larger

patch sizes.

One other work around we found was to use a different energy configuration from

that of the original Thomson problem. In this variant problem, an additional symme-

try constraint is imposed. The goal is to minimize the energy but also have the points

symmetric about the xy plane. This problem was treated in [56] and the author gave

us the (x, y, z) locations for the patches in this case. For even values of N , if we

impose the symmetry in the xy plane it leads to far less complications. For example,

we can cover 5% of the sphere surface with patches for N ∈ {2, 4, 6, 8, 10, 12, 14, 16}.
Only in one of these cases, N = 12, did we have to manually rotate the sphere so

143

that no edges would intersect. In Figure 4.5 we show the patch locations for some

even values of N where the points are symmetric about the xy plane.

(a) 2 patches (b) 4 patches (c) 6 patches

(d) 8 patches (e) 10 patches (f) 12 patches

(g) 14 patches (h) 16 patches

Figure 4.5: The location of the patches using the Thomson’s problem with an addi-
tion symmetry constraint in the xy plane. Here the patches cover 5% of the spheres
surface and only in the case of N = 12 did the sphere have to be rotated.

4.3 Example of Receptor Models with Strong and Weak Decay

In this first example we will solve the following model numerically for different values

of N ,

144

ut = Δu− 6u, x ∈ Ω1

∂nxu = 10, x ∈ ∂Ωp

∂nxu = 0, x ∈ ∂Ω1\∂Ωp.

We will be using the patch locations shown in Figure 4.3 and the patches will cover

5% of the spheres surface. In this example the decay is chosen so that with just

one patch at the north pole, the concentration at the opposing pole is relatively

small. In Figure 4.6(a) we plot u at equilibrium along the z-axis with N = 1. The

concentration is higher near the top of the z-axis where the patch is located. The

concentration decays everywhere in the cell and is very low at the opposite side of

the cell. If N = 2, with one patch at the north pole and one at the south pole, then

the concentration profile along the z-axis is higher at both ends of the axis. This is

seen in Figure 4.6(b).

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

u

z-axis

(a) N = 1

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

u

z-axis

(b) N = 2

Figure 4.6: These plots show the concentration profiles of u along the z-axis for
N = 1 and N = 2.

The concentration u(x, t) is higher in regions which are closer to the patches. In

general, as the number of patches is increased, the concentration spreads more evenly

across the domain. The maximum concentrations at the patches will be lower for

larger N , but the concentrations furthest from the patches will be higher.

In the next series of figures we plot u at equilibrium at numerous points on the

surface of a sphere of radius r = 0.7. That is we plot u at points of the form

(θ, φ, .7) in spherical coordinates where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. The plots are

displayed as contour plots in the θ-φ plane (see Figure 4.7). It is clear that a N

145

increases the maximum concentration decreases. As well, the concentration is more

uniformly spread out in the sense that the difference between the lowest and highest

concentrations decreases as N increases.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

θ

φ

(a) N = 1

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.2

0.3

0.4

0.5

0.6

0.7

θ
φ

(b) N = 2

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

θ

φ

(c) N = 3

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.15

0.2

0.25

0.3

0.35

0.4

0.45

θ

φ

(d) N = 4

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.15

0.2

0.25

0.3

0.35

0.4

θ

φ

(e) N = 5

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

θ
φ

(f) N = 6

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

θ

φ

(g) N = 7

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

θ

φ

(h) N = 8

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.18

0.2

0.22

0.24

0.26

0.28

0.3

θ

φ

(i) N = 9

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

θ

φ

(j) N = 10

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

θ

φ

(k) N = 11

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0.21

0.22

0.23

0.24

0.25

0.26

0.27

θ

φ

(l) N = 12

Figure 4.7: These contour plots display the equilibrium value of u at different points
in the domain Ω1. All the points are taken off of a sphere of radius 0.7. The x-axis
of each figure is θ and the y-axis of each figure is φ.

Thus far we have only looked at the concentration u(x, t) at equilibrium. Now

we will consider how the concentration changes in time as the number of patches is

146

increased. In these next series of figures we plot u as a function of time at numerous

points on the surface of a sphere of with radius r = 0.7.

From Figure 4.8 we can again see that as N is increased, the concentration be-

comes more uniform. The difference between the maximum and minimum concen-

trations is lowered as N increases. As N increases, the concentration decreases at the

points which are closer to the patches whereas the concentration at points further

from the patches increases. We note that the concentration at the the point (0,0,0)

is more or less unaffected as N increases. This makes sense since it is always the

same distance from all the patches.

In Figure 4.9, we show the time it takes for u(x, t) to reach 80% of equilibrium for

different values of N . There is nothing special about using 80% and it is just a value

we chose. This calculation depends on the spatial points chosen in the domain. First

we choose a single point in the domain and get u as a function of time at that specific

point. We then take that function and subtract 80% of the equilibrium value which

is attained at that point. We use the fsolve command in MATLAB to calculate the

zero crossing of this new function and the solution gives us the time that u takes to

reach 80% of equilibrium. We do these calculations for collections of points which

are all on a spheres surface of some radius.

147

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(a) N = 1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(b) N = 2

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(c) N = 3

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(d) N = 4

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(e) N = 5

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(f) N = 6

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(g) N = 7

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(h) N = 8

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(i) N = 9

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(j) N = 10

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(k) N = 11

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

u

t

(l) N = 12

Figure 4.8: Each of these plots displays u as a function of time at numerous points
in the domain. The spatial points chosen in each figure are the same and are of the
form (θ, φ, 0.7) in spherical coordinates.

148

2 4 6 8 10 12
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

N

t

(a) r = .1

2 4 6 8 10 12

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

N

t

(b) r = .2

2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

N

t

(c) r = .3

2 4 6 8 10 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

t

(d) r = .4

2 4 6 8 10 12

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

t

(e) r = .5

2 4 6 8 10 12

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

N

t

(f) r = .6

2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

N

t

(g) r = .7

2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

N

t

(h) r = .8

2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

N

t

(i) r = .9

Figure 4.9: These plots show the time it takes for u(x, t) to reach 80% of equilibrium
at different points in the domain. Each figure is for a collection of points off the
surface of a sphere of radius r.

From the figures in Figure 4.9 we can see that as N increases, the time it takes

for u to reach 80% of equilibrium decreases. This effect is more dramatic at points

which are further from the cell surface patches. Different points in space reach 80% of

equilibrium faster than other points in space. This effect is more dramatic for smaller

N . As N increases, the solution is becoming more uniform across the domain. The

time at which different points reach 80% of equilibrium becomes more consistent.

Now we repeat these simulations but for the following model where we have

changed the decay value to something smaller.

ut = Δu− .06u, x ∈ Ω1

∂nxu = 10, x ∈ ∂Ωp

∂nxu = 0, x ∈ ∂Ω1\∂Ωp

149

We can see from Figure 4.10 that changing the number of clusters does not have

a large effect on the the concentration u(x, t) when the decay is small. Since the

decay is small the signalling molecules can diffuse through the domain without being

deactivated quickly. For N > 3 the concentration of the signalling molecules is

basically the same across the domain regardless of the number of clusters. It may

be that changing the number of clusters does not have much effect on the signalling

pathway when the decay is relatively weak. For completeness, in Figure 4.11, we also

include the time it takes for u(x, t) to reach 80% of equilibrium for different values

of N in this case of the weak decay.

150

0 50 100 150
0

5

10

15

20

25

u

t

(a) N = 1

0 50 100 150
0

5

10

15

20

25

u

t

(b) N = 2

0 50 100 150
0

5

10

15

20

25

u

t

(c) N = 3

0 50 100 150
0

5

10

15

20

25

u

t

(d) N = 4

0 50 100 150
0

5

10

15

20

25

u

t

(e) N = 5

0 50 100 150
0

5

10

15

20

25

u

t

(f) N = 6

0 50 100 150
0

5

10

15

20

25

u

t

(g) N = 7

0 50 100 150
0

5

10

15

20

25

u

t

(h) N = 8

0 50 100 150
0

5

10

15

20

25

u

t

(i) N = 9

0 50 100 150
0

5

10

15

20

25

u

t

(j) N = 10

0 50 100 150
0

5

10

15

20

25

u

t

(k) N = 11

0 50 100 150
0

5

10

15

20

25

u

t

(l) N = 12

Figure 4.10: Each of these plots displays u as a function of time at numerous points
in the domain. The spatial points chosen in each figure are the same and are of the
form (θ, φ, 0.7) in spherical coordinates.

151

2 4 6 8 10 12
26.8

26.85

26.9

26.95

27

N

t

(a) r = .1

2 4 6 8 10 12
26.65

26.7

26.75

26.8

26.85

26.9

26.95

27

27.05

N

t

(b) r = .2

2 4 6 8 10 12
26.5

26.6

26.7

26.8

26.9

27

27.1

N

t

(c) r = .3

2 4 6 8 10 12
26.3

26.4

26.5

26.6

26.7

26.8

26.9

27

27.1

N

t

(d) r = .4

2 4 6 8 10 12
26

26.2

26.4

26.6

26.8

27

27.2

N

t

(e) r = .5

2 4 6 8 10 12
25.8

26

26.2

26.4

26.6

26.8

27

27.2

27.4

N

t

(f) r = .6

2 4 6 8 10 12
25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

27.2

N

t

(g) r = .7

2 4 6 8 10 12
25

25.5

26

26.5

27

N

t

(h) r = .8

2 4 6 8 10 12
24.5

25

25.5

26

26.5

27

N

t

(i) r = .9

Figure 4.11: These plots show the time it takes u(x, t) to reach 80% of equilibrium
at different points in the domain. Each figure is for a collection of points off the
surface of a sphere of radius r.

4.4 Hopf bifurcation in a Model with Patches and Compartments

In this example we consider a signalling model with cellular compartments from

Chapter 2 combined with the cell surface receptors introduced in this chapter. The

signal transduction pathway can be initiated at the cell surface where the recep-

tors cluster and then travel to the cellular compartments and activate intermediate

messengers. The model we consider in this example is

152

∂u1

∂t
= Δxu1 − 6u1, x ∈ Ω1\Ωε

∂nxu1 =

(
1 +

125u1

u1 + 1

)
1

u3
4 + 1

, x ∈ ∂Ωp

∂nxu1 = 0, x ∈ ∂Ω1\∂Ωp

∂u2

∂t
= Δxu2 − u2, x ∈ Ω1\Ωε

∂nxu2 = 0, x ∈ ∂Ω1

ε∂nxu2 =
100u2

1

u2
1 + 1

, x ∈ ∂Ωε1

∂u3

∂t
= Δxu3 − u3, x ∈ Ω1\Ωε

∂nxu3 = 0, x ∈ ∂Ω1

ε∂nxu3 =
100u2

2

u2
2 + 1

, x ∈ ∂Ωε2

∂u4

∂t
= Δxu4 − u4, x ∈ Ω1\Ωε

∂nxu4 = 0, x ∈ ∂Ω1

ε∂nxu4 =
100u2

3

u2
3 + 1

, x ∈ ∂Ωε3 .

(4.1)

The first set of equations for u1 govern the evolution of the concentration of

signalling molecules that are activated at the cell surface receptors. The following

equations for u2, u3, and u4 govern the concentrations for the signalling proteins that

are activated inside the cell on the surface of subcellular compartments. The location

for the three compartments Ωε1 , Ωε2 , and Ωε3 are chosen to be (−0.5,−0.5,−0.5),

(0.6, 0.3, 0.4) and (−0.5, 0, 0.7) respectively. There is nothing significant about this

particular arrangement. The radius of each compartment is ε = 0.1. The geometry

is depicted in Figure 4.12 using 12 patches. Here, Ωε is defined to be the union of

the three internal compartments.

153

Figure 4.12: For this section we use this geometry with three compartments, Ωε1 ,
Ωε2 , and Ωε3 , which are located at (−0.5,−0.5,−0.5), (0.6, 0.3, 0.4) and (−0.5, 0, 0.7).
The radius of each compartment is ε = 0.1. We will change the number of patches
on the surface for different simulations. The patch locations for different values of
N are the same as those displayed in Figure 4.3.

Originally we had all the initial conditions set to 0 for all four variables. For

some cases the time stepping algorithm had trouble converging. We tried different

absolute and relative tolerances but this did not fix the issue in all cases. We believe

the issue could be fixed with more tweaking. For simplicity we decided to set non

zero constant initial conditions as [u1(x, 0), u2(x, 0), u3(x, 0), u4(x, 0)] = [1, 3, 2.5, 4].

154

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(a) N = 1

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(b) N = 2

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(c) N = 3

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(d) N = 4

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(e) N = 5

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(f) N = 6

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(g) N = 7

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(h) N = 8

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(i) N = 9

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(j) N = 10

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(k) N = 11

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(l) N = 12

Figure 4.13: In these figures we plot u1 (black) , u2 (red), u3 (blue), and u4 (green)
at specific points in the domain. The model being solved is (4.1). The function u1

is plotted at the origin and the other functions are plotted at a point on the surface
of their respective compartments. Here we see that changing the number of patches
can have a dramatic effect on the solution.

It is interesting that sustained oscillations are observed as the number of clusters

is increased. Here the bifurcation parameter is the source concentration u1 coming

from the cell surface. The controlling factor for the magnitude of u1 is the number

of clusters. It is also interesting that the sustained oscillations are not present when

N = 8 (and maybe even for N = 9). The problem may be a bit sensitive in this

regime. It also may have something to do with the pattern being disrupted when we

155

had to manually move a few of the compartments in the cases N = 9, 10, 11.

Next we will solve the model in (4.1) using the patch geometry from Figure 4.5.

In this case the cluster locations, for even values of N , are symmetric about the xy

plane. Everything else is the same as the simulations in Figure 4.13. As we said

earlier, in the case of xy plane symmetry, we did not have to change the locations for

any of the clusters for different values of N . This leads to more consistency between

the simulations as N is varied.

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(a) N = 2

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(b) N = 4

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(c) N = 6

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(d) N = 8

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(e) N = 10

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(f) N = 12

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(g) N = 14

0 20 40 60 80 100
0

5

10

u
1
,
u
2
,
u
3
,
u
4

t

(h) N = 16

Figure 4.14: In these figures we plot u1 (black) , u2 (red), u3 (blue), and u4 (green)
at specific points in the domain. Everything is the same as in Figure 4.13 except
that now the geometry for the cluster locations is that depicted in Figure 4.5. The
cluster locations are symmetric about the xy plane.

In Figure 4.14 we see that changing the number of clusters can have a dramatic

effect on the solutions of (4.1). Clearly the placement and size of the clusters is

156

important. The placement of the subcellular compartments is also important too

because we have chosen larger decay rates than in Chapters 2 and 3. We saw in

Chapters 2 and 3, that if an O(ε) decay rate was assumed, the distance between

the compartments would not have an effect on the solution to leading order. When

the decay is larger this is not the case, as observed in §2.4.1. There could be many

relationships between the clusters and compartments that could be further studied

if some more analysis was done for the model with cell surface receptors.

We leave the discussion of the results in this chapter to the last chapter in this

thesis, Chapter 5.

Chapter 5

Discussion

In this thesis we have constructed and analyzed a signal transduction model which

takes into account 3D geometry, 3D diffusion, and spatial separation and localization

of opposing enzymes. Using asymptotic methods we obtained steady state solutions

and determined their stability. We also obtained asymptotic time dependent solu-

tions. With the assumption that α2
u = O(ε) and α2

v = O(ε), the model in this thesis

was analyzed while leaving F (u, v) and G(u, v) as arbitrary functions. In this sce-

nario the concentration levels decay algebraically away from the compartments. In

this case the dynamics happen on a slower time scale. It takes longer for concen-

trations to reach an equilibrium state which is often the final state of the system.

Moreover, the solutions to the model are relatively constant in space away from the

compartments. Therefore, when doing the method of matched asymptotics, all the

asymptotic expansions are O(1) to leading order. This is independent of the choice of

functions for F and G. This is the reason the scaling, αu = O(
√
ε) and αv = O(

√
ε),

was pursued in this thesis.

Another case to consider is when both αu = O(1) and αv = O(1). In this scenario

the dynamics happen on a faster time scale. Although the analysis in this thesis can

be applied to specific instances in this case, it can not be used in general while leaving

the enzyme kinetic functions F and G arbitrary. This is because the scaling of the

asymptotic solutions are dependent on the particular choice of functions F and G

(see [94, 61]). As an example, in the case that F = u/(v + 1) and G = u2 with

αu = O(1) and αv = O(1), the scaling of u is O(1) and the scaling of v is O(ε). If

the functions F and G were changed then the scaling for u and v could very well

change. This difficulty prevents us from doing the asymptotic analysis with and

without delay, for arbitrary functions F and G when αu = O(1) and αv = O(1).

In summary, for this paper we assumed that αu = α1

√
ε and αv = α2

√
ε where

both α1 and α2 are O(1) constants. This leads to long–range signalling gradients and

157

158

also dynamics which occur on a longer time scale. This time scale is of magnitude

O(1/ε). Here we are assuming that diffusion is sufficiently fast or the cytosolic

deactivation rate is very weak. This leads to concentration gradients which are

basically constant throughout the cytosol away from the compartments.

In §2.4 we showed how the full BVP model in (2.3) can be approximated by a

system of DAEs. It is interesting to see how the flux boundary condition terms from

(2.3) appear in the system of DAEs found in (2.47). They do not show up as the

production functions F (u0, v0) and G(u0, v0) but rather as c1(u0, v0) and c2(u0, v0)

where c1 and c2 are implicitly defined by c1 = F (u0 + c1, v0) and c2 = G(u0, v0 + c2).

These relationships can be solved to turn the DAEs into ODEs. The resulting system

of ODEs from (2.47), which approximates the dynamics of (2.3) in the outer region,

can look very different from other ODE models modelling the same kinetics (see

§2.5.4). The approximating DAE model from (2.47) comes about from the full PDE

model with boundary conditions in (2.3). Spatial terms do not appear in (2.47)

explicitly, but it is space, diffusion, and spatial separation of enzymes which give the

DAEs their specific form as determined through asymptotic matching.

Also in §2.4 we obtained a second system of ODEs in (2.50) where the spatial

terms do show up explicitly. Using the solutions from this system we obtained

asymptotic expressions for the approximate time dependent solutions of (2.3) over

the entire domain. These time dependent solutions, found in (2.51), are valid when

the solution is evolving slowly or is close to reaching equilibrium.

There are several things to consider for future work with regards to the model in

Chapter 2. One is the further effects of cell shape and geometry. In 3D, a spherical

domain is the obvious choice because it simplifies the analysis. It would be interesting

to investigate similar models to the one in this chapter for irregular shaped 3D

geometries. If Green’s functions were to be used then they would need to be found

numerically. It may also be interesting to consider models where both the kinase

and phosphatase enzymes are localized to different subcellular structures instead of

having the phosphatase enzymes uniformly throughout the cytosol. Nonlinear PDEs,

which could incorporate more general deactivation rates, would also be interesting

to take a look at.

159

In [61], [94], and in Chapter 2, spatial clustering of compartments was not con-

sidered. It is assumed that the compartments are all an O(1) distance apart. If the

distance between compartments is O(ε) then this will change the dynamics. The

signalling proteins activated at cellular compartments would be affected by the near

field behavior of other signalling proteins activated at nearby compartments. As a

result the two algebraic equations in (2.47) would now become c1 = F (u0+c1, v0+c2)

and c2 = G(u0+ c1, v0+ c2). This would allow for more complex signalling dynamics

because there is now a coupled system of equations that determine the functions

c1(u0, v0) and c2(u0, v0).

Another project we would like to consider is cell signalling models which use a dif-

ferent type of diffusion process. In the models in this thesis, the signalling molecules

move around the cell using regular diffusion. Sub-diffusion has been observed in

biological systems where the diffusion is often hindered due to the complex structure

of the cell. There is evidence that sub-diffusion may be more accurate in modelling

cell signal transduction pathways [70]. Incorporating sub-diffusion involves the use

of fractional calculus. The fractional derivative is a generalization of the usual inte-

ger derivative to an arbitrary order. Using this framework the usual time derivative

operator, ∂u
∂t
, would be replaced by

dα

dt
u(x, t) =

1

Γ(1− α)

d

dt

∫ t

0

u(x, s)

(t− s)α
ds.

There is certainly no software available to solve 3D PDEs with this type of diffu-

sion operator. Therefore numerical analysis combined with computer programming

would be a large part of this work. It is unclear what analytic techniques would be

appropriate at this point.

In Chapter 3 a 3D model of signal transduction with delay was analyzed. The

model consisted of the model in Chapter 2 with an added constant time delay. On the

boundaries of the cellular compartments, the enzyme kinetic reactions were modelled

with time delayed functions. This model stands out from other signalling models

because it incorporates PDEs and delay in 3D. To the best of our knowledge, there

are no other mathematical models which incorporate PDEs, 3D geometry, and delay

simultaneously. With regard to signal transduction models, little work has been done

on models with delay. When delay is used with PDEs in mathematical models in

160

general, it is often in lower spatial dimensions. In our model, since the delay only

appears in boundary conditions, numerical simulations of the entire 3D model with

delay are more practicable.

For the model with delay, the stability of the equilibrium solutions were deter-

mined by a nonlinear eigenvalue problem with PDEs. Using matched asymptotics

this eigenvalue problem was approximated by the nonlinear matrix eigenvalue prob-

lem in (3.18). By analyzing this matrix and its eigenvalues, complex signalling

dynamics were found and observed such as sustained oscillations. Whether or not

sustained oscillations occur depends on the value of the delay. We also saw that the

delay term could change the basin of attraction for a bistable model, as in §3.5.1.

In our analysis we approximated the dynamics of the delay PDE model by the

dynamics of a system of DDAEs in (3.42). Therefore, instead of doing finite element

calculations in Comsol, alternative calculations using only the ODE solvers in Matlab

could be done. This saves time when doing the numerical simulations since our

method of steps code in Comsol takes a long time to run. The numerical simulations

of the DDAEs are much quicker because no spatial configuration is required. Our

implementation of the DDAE solver is still much slower than state of the art DDE

code. The DDAEs are also useful for determining parameter choices for different

bifurcations. For example, it is quicker to find or verify a Hopf-bifurcation using the

DDAEs. The bifurcation can then be further verified by showing it also occurs in

simulations of the 3D model.

The analysis in §3.6 is an interesting use of the Poincaré-Lindstedt method. Often

the Poincaré-Lindstedt method is applied to ODEs. In this chapter the method is

applied to PDEs in 3D with delay. After rescaling time we also had to use the

method of matched asymptotics to arrive at a solvability condition for ω2 in 3.53.

The solvability condition for ω2 in (3.53) relies heavily on the construction of the

operator L defined in (3.48). Most of the functions in the solvability condition either

are in the kernel of L or the kernel of its adjoint, L∗, which is defined in (3.52).

We note that there are different ways of constructing the operator L. Initially we

differentiated the expressions for A1 and A2 from (3.47) so that the operator L would

consist of four differential equations, two of them now being neutral delay ones. This

increases the dimension of the kernel by two though since the vectors (0, 0, 1, 0)�

161

and (0, 0, 0, 1)� are now both in the kernel of L∗. Although these solutions are non

trivial and periodic, they do not contribute anything useful to the corresponding

solvability condition. Although this approach should work in theory, the numerical

methods described in §3.6.1 were unsuccessful in finding accurate approximations

to the kernel of L∗. The resulting eigenvalue problem is ill conditioned because the

kernel now has dimension three. We spent a lot of time trying this operator as

opposed to the operator defined in (3.48). We thought that the operator needed to

be a system of neutral DDEs. It was not until much later that we considered using

the DDAE operator in (3.48).

The operator L defined in (3.48) came from the equations in (3.47). The next

step in constructing L was to leave the equations for A1 and A2 just as they were and

define the operator as a system of DDAEs. It turns out that if the expressions for A1

and A2 are not substituted directly into the differential equations for χ1 and χ2 in

(3.47), then the techniques from §3.6.1 do not work. In this case the operator L and

its discretized matrix L have simpler forms which is a nice feature. However, solving

for the kernel of L is difficult since the eigenvalue problem is ill conditioned when

this matrix is used. We are not sure why this is but we had no success in finding

the kernel of L∗ in this case. Matlab did return a warning saying that the solver

could not converge because the matrix was ill conditioned. Finally, we substituted

the expressions for A1 and A2 into the differential equations for χ1 and χ2 to lead to

the operator L defined in (3.48). In this case everything worked out nicely.

For future work we would like to add the delay to other places while still leaving

it in the boundary conditions. For example, we could add the delay to the decay

terms in the PDEs. The matched asymptotic analysis is straight forward in this case.

The stability matrix changes slightly and the DDAEs will have delay in the decay

terms. The main complication of adding delay to the PDE is in doing the numerical

simulations of the full system. Now history data needs to be saved in time but also

at spatial points across the domain. Interpolation is then needed for a function of

three spatial variables and one time variable. The addition of delay to the PDEs will

lead to richer dynamics as well as more potential biological applications.

We are also interested in studying the model in this chapter with multiple delays.

For example, we could use four different delays in the boundary conditions. The

162

enzyme kinetic functions would then be F (u(t− s1), v(t− s2)) and G(u(t− s3), v(t−
s4)). With multiple delays the analysis in this chapter can still be carried out but

the numerical simulations also become more challenging. In the case of multiple

delays it would be interesting to find more complex dynamics such as double Hopf-

bifurcations.

In Chapter 4 we considered an extension of the model from Chapter 2 by adding in

cell surface receptors. In this model the signal transduction pathway can be initiated

at the cell surface. The most difficult part of this chapter was actually getting the

Comsol simulations to work because it did not allow for the receptors to intersect

specific lines on the sphere. Apparently the geometry used in this chapter is too

complicated for the default Comsol CAD kernel.

The work in Chapter 4 was more preliminary and no actual analysis was done.

From some of our numerical simulations we can see the effects of changing the number

of receptors on the model. From §4.3 we observed that increasing the number of

receptor clusters led to a more uniform signal across the cellular domain. This effect

was more evident when the decay rate, due to the phosphatase enzymes, was stronger.

In §4.4, we considered a model that had oscillations. The oscillations either decayed

or continued indefinitely, depending on the number of clusters. It is apparent that

the size, location, and number of clusters can have a dramatic effect on the dynamics

of signal transduction pathways.

The next step for the models presented in Chapter 4 would be to do some actual

analysis like that done in Chapter 2. If we considered a model with N patches where

the radius of each patch was sufficiently small then we could employ some asymptotic

methods. The method of matched asymptotics could be used and we would require

different Green’s functions such as the ones used in [21, 81]. We could most likely

find the steady state solutions, do the stability analysis, and also do the same type

of reduction from the PDE models to some type of ODE models. It would also be

interesting to consider the analysis if the patches were larger.

More complicated models where the clusters are not assumed to be in a sta-

tionary state would also be interesting. Models where the receptors are allowed to

move around dynamically in time and cluster, combined along with the 3D geometry

and internal compartments, would be very nice. Numerical simulations of this type

163

though would require some sort of complicated moving mesh mechanism in 3D. This

sounds like a very interesting but difficult problem both analytically and especially

numerically.

Bibliography

[1] COMSOL Multiphysics (v3.5a), COMSOL AB, Stockholm, 2007.

[2] Maple v(13), Maplesoft, Waterloo, 2009.

[3] COMSOL Multiphysics (v4.4), COMSOL AB, Stockholm, 2013.

[4] D. Angeli, J. Ferrell, and E. Sontag. Detection of multistability, bifurcations,
and hysteresis in a large class of biological positive-feedback systems. Proc.
Natl. Acad. Sci., 101:1822–1827, 2004.

[5] C. Baker and C. Paul. Discontinuous solutions of neutral delay differential
equations. Appl. Numer. Math., 56:284–304, 2006.

[6] G. Barton. Elements of Green’s Functions and Propagation. Oxford Science
Publications. 1989.

[7] M. Behar, N. Hao, H Dohlman, and T. Elston. Mathematical and compu-
tational analysis of adaptation via feedback inhibition in signal transduction
pathways. Biophys. J, 93:806–821, 2007.

[8] A. Bellen and M. Zennaro. Numerical Methods for Delay Differential Equa-
tions. Oxford University Press, 2013.

[9] A. Berezhkovskii, M. Coppey, and S. Shvartsman. Signaling gradients in cas-
cades of two-state reaction-diffusion systems. Proc. Natl. Acad. Sci., 106:1087–
1092, 2009.

[10] B. Binder and R. Heinrich. Interrelations between dynamical properties and
structural characteristics of signal transduction networks. Genome. Inform. S.,
15:13–23, 2004.

[11] N. Blüthgen and H. Herzel. How robust are switches in intracellular signaling
cascades? J. Theor. Biol., 225:293–300, 2003.

[12] D. Bray and T. Duke. Conformational spread: The propagation of allosteric
states in large multiprotein complexes. Annu. Rev. Bioph. Biom., 33:53–73,
2004.

[13] G. Brown and B. Kholodenko. Spatial gradients of cellular phospho-proteins.
FEBS Lett., 457:452 – 454, 1999.

[14] R. Bürger, R. Ruiz-Baier, and C. Tian. Stability analysis and finite volume ele-
ment discretization for delay-driven spatial patterns in a predator-prey model.
J. Math. Anal. Appl. submitted, 2013.

164

165

[15] J. Butcher. The numerical analysis of ordinary differential equations: Runge-
Kutta and general linear methods. Wiley-Interscience, 1987.

[16] B. Care and H. Soula. Impact of receptor clustering on ligand binding. BMC
Syst. Biol., 5:48, 2011.

[17] B. Caré and H. Soula. Receptor clustering affects signal transduction at the
membrane level in the reaction-limited regime. Phys. Rev. E, 87:012720, 2013.

[18] B. Casar and et al. Ras subcellular localization defines extracellular signal-
regulated kinase 1 and 2 substrate specificity through distinct utilization of
scaffold proteins. Mol. Cell Biol., 29:1338–1353, 2009.

[19] M. Cebecauer, M. Spitaler, A. Serg, and A. Magee. Signalling complexes
and clusters: functional advantages and methodological hurdles. J. Cell Sci.,
123:309–320, 2010.

[20] M. Chaves, E. Sontag, and R. Dinerstein. Optimal length and signal ampli-
fication in weakly activated signal transduction cascades. J. Phys. Chem. B,
108:15311–15320, 2004.

[21] A. Cheviakov, M. Ward, and R. Straube. An asymptotic analysis of the mean
first passage time for narrow escape problems: Part ii: The sphere. Multiscale
Model. Sim., 8:836–870, 2010.

[22] S. Corwin, D. Sarafyan, and S. Thompson. Dklag6: a code based on con-
tinuously imbedded sixth-order runge-kutta methods for the solution of state-
dependent functional differential equations. Appl. Numer. Math., 24:319–330,
1997.

[23] E. de Jager and J. Furu. The theory of singular perturbations. Elsevier, 1996.

[24] T. Duke and D. Bray. Heightened sensitivity of a lattice of membrane receptors.
P. Natl. Acad. Sc., 96:10104–10108, 1999.

[25] T. Duke and I. Graham. Equilibrium mechanisms of receptor clustering. Prog
Biophys. Mol. Bio., 100:18 – 24, 2009.

[26] W. Enright and H. Hayashi. A delay differential equation solver based on
a continuous runge–kutta method with defect control. Numer. Algorithms,
16:349–364, 1997.

[27] J. Ferrell and E. Machleder. The biochemical basis of an all-or-none cell fate
switch in xenopus oocytes. Science, 280:895–898, 1998.

[28] J. Ferrell and W. Xiong. Bistability in cell signaling: How to make continuous
processes discontinuous, and reversible processes irreversible. Chaos: An Inter.
J. of Non. Sci., 11:227–236, 2001.

166

[29] B. Fuller, M. Lampson, E. Foley, S. Rosasco-Nitcher, K. Le, P. Tobelmann,
D. Brautigan, P. Stukenberg, and T. Kapoor. Midzone activation of aurora
b in anaphase produces an intracellular phosphorylation gradient. Nature,
453:1132–1136, 2008.

[30] P. Garca-Pearrubia and J. Glvez. Mathematical modelling and computational
study of two-dimensional and three-dimensional dynamics of receptor–ligand
interactions in signalling response mechanisms. J. Math. Biol., 69:1–30, 2013.

[31] C. Gear and O. Osterby. Solving ordinary differential equations with disconti-
nuities. ACM Trans. on Mat. Soft., 10:23–44, 1984.

[32] A. Goldbeter and D. Koshland. An amplified sensitivity arising from covalent
modification in biological systems. P. Natl. Acad. Sc., 78:6840–6844, 1981.

[33] A. Goldbeter and D. Koshland. Sensitivity amplification in biochemical sys-
tems. Q. Rev. Biophys., 15:555–591, 1982.

[34] A. Goldbeter and D. Koshland. Ultrasensitivity in biochemical systems con-
trolled by covalent modification. interplay between zero-order and multistep
effects. J. of Biol. Chem., 259:14441–14447, 1984.

[35] M. Golubitsky, D. Schaeffer, and I. Stewart. Singularities and groups in bifur-
cation theory. Springer New York, 1988.

[36] K Gordon, I Van Leeuwen, S. Lain, and M. Chaplain. Spatio-temporal mod-
elling of the p53–mdm2 oscillatory system. Math. Model. of Nat. Phen., 4:97–
116, 2009.

[37] C. Govern and A. Chakraborty. Signaling cascades modulate the speed of
signal propagation through space. PloS one, 4:e4639, 2009.

[38] W. Gu and P. Wang. A crank-nicolson difference scheme for solving a type of
variable coefficient delay partial differential equations. J. Appl. Math., 2014,
2014.

[39] R. Heinrich, B. Neel, and T. Rapoport. Mathematical models of protein kinase
signal transduction. Molecular Cell, 9:957–970, 2002.

[40] R. Hinch and S. Schnell. Mechanism equivalence in enzyme–substrate reactions:
Distributed differential delay in enzyme kinetics. J. Math Chem, 35:253–264,
2004.

[41] D. Holcman and Z. Schuss. Escape through a small opening: Receptor traf-
ficking in a synaptic membrane. J. Stat. Phys, 117:975–1014, 2004.

[42] D. Holcman and Z. Schuss. Diffusion escape through a cluster of small absorb-
ing windows. J. Phys A-Math Theor., 41:155001, 2008.

167

[43] C. Huang and J. Ferrell. Ultrasensitivity in the mitogen-activated protein
kinase cascade. Proc. Natl. Acad. Sci., 93:10078–10083, 1996.

[44] C. Huang and S. Vandewalle. Unconditionally stable difference methods for
delay partial differential equations. Numer. Math., 122:579–601, 2012.

[45] P. Kalab, K. Weis, and R. Heald. Visualization of a ran-gtp gradient in inter-
phase and mitotic xenopus egg extracts. Science, 295:2452–2456, 2002.

[46] U. Kent, S. Mao, C. Wofsy, B. Goldstein, S. Ross, and H. Metzger. Dynamics
of signal transduction after aggregation of cell-surface receptors: Studies on
the type i receptor for IgE. P. Natl. Acad. Sc., 91:3087–3091, 1994.

[47] B. Kholodenko. Negative feedback and ultrasensitivity can bring about oscil-
lations in the mitogen-activated protein kinase cascades. Eur. J. Biochem.,
267:1583–1588, 2000.

[48] B. Kholodenko. Map kinase cascade signaling and endocytic trafficking: a
marriage of convenience? Trends in Cell Biol., 12:173–177, 2002.

[49] B. Kholodenko. Cell-signalling dynamics in time and space. Nat. Rev. Mol.
Cell. Biol., 11:165–176, 2006.

[50] B. Kholodenko. Spatially distributed cell signalling. FEBS Lett., 583:4006–
4012, 2009.

[51] B. Kholodenko, G. Brown, and Hoek J. Diffusion control of protein phospho-
rylation in signal transduction pathways. Biochem. J, 350:901–907, 2000.

[52] B. Kholodenko, O. Demin, G. Moehren, and J. Hoek. Quantification of short
term signaling by the epidermal growth factor receptor. J. of Biol. Chem.,
274:30169–30181, 1999.

[53] B. Kholodenko, J. Hancock, and W. Kolch. Signalling ballet in space and time.
Nat. Rev. Mol. Cell. Biol., 11:414–426, 2010.

[54] B. Kholodenko and W. Kolch. Giving space to cell signaling. Cell, 133:566–567,
2008.

[55] E. Klipp and W. Liebermeister. Mathematical modeling of intracellular sig-
naling pathways. BMC Neurosci., 7:S10, 2006.

[56] C. Koay. Distributing points uniformly on the unit sphere under a mirror
reflection symmetry constraint. J. of Comput. Sci., 5:696 – 700, 2014.

[57] H. Kobayashi, R. Azuma, and A. Konagaya. Clustering of membrane proteins
in the pre-stimulation stage is required for signal transduction: A computer
analysis. Signal Transduction, 7:329–339, 2007.

168

[58] W. Kolch. Coordinating erk/mapk signalling through scaffolds and inhibitors.
Nat. Rev. Mol. Cell. Biol., 6:827–837, 2005.

[59] D. Koshland, A. Goldbeter, and J. Stock. Amplification and adaptation in
regulatory and sensory systems. Science, 217:220–225, 1982.

[60] M. Laurent and N. Kellershohn. Multistability: a major means of differenti-
ation and evolution in biological systems. Trends Biocem. Sci., 24:418–422,
1999.

[61] C. Levy and D. Iron. Model of cell signal transduction in a three-dimensional
domain. J. Math. Biol., 63:831–854, 2011.

[62] C. Levy and D. Iron. Dynamics and stability of a three-dimensional model of
cell signal transduction. J. Math. Biol., 67:1691–1728, 2013.

[63] C. Levy and D. Iron. Dynamics and stability of a three-dimensional model of
cell signal transduction with delay. Nonlinearity. submitted, 2014.

[64] T. Lewis, P. Shapiro, and N. Ahn. Signal transduction through map kinase
cascades. Adv. Cancer Res., 74:49–139, 1998.

[65] D. Li and C. Zhang. On the long time simulation of reaction-diffusion equations
with delay. Sci. World J., 2014, 2014.

[66] D. Li, C. Zhang, and H. Qin. Ldg method for reaction–diffusion dynamical
systems with time delay. Appl. Math. Comput., 217:9173–9181, 2011.

[67] D. Li, C. Zhang, and J. Wen. A note on compact finite difference method for
reaction–diffusion equations with delay. Appl. Math. Model., 2014.

[68] Y. Li and J. Srividhya. Goldbeter–Koshland model for open signaling cascades:
a mathematical study. J. Math. Biol., 61:781–803, 2010.

[69] Y. Li and J. Srividhya. Goldbeter-Koshland model for open signaling cascades:
a mathematical study. J. Math. Biol., 61:781–803, 2010.

[70] Weissm M., M. Elsner, F. Kartberg, and T. Nilsson. Anomalous subdiffusion is
a measure for cytoplasmic crowding in living cells. Biophys. J., 87:3518–3524,
2004.

[71] P. Mandel and T. Erneux. The slow passage through a steady bifurcation:
Delay and memory effects. J. Statist. Phys., 48:1059–1070, 1987.

[72] N. I Markevich, J. Hoek, and B. Kholodenko. Signaling switches and bistability
arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol.,
164:353–359, 2004.

169

[73] Nick. Markevich, M. Tsyganov, J. Hoek, and Boris. Kholodenko. Long-range
signaling by phosphoprotein waves arising from bistability in protein kinase
cascades. Mol. Syst. Biol., 2:61, 2006.

[74] J. Meyers, J. Craig, and D. Odde. Potential for control of signaling pathways
via cell size and shape. Curr. Biol., 16(17):1685–1693, 2006.

[75] I. Morrison, C. M Anderson, G. Georgiou, G. Stevenson, and R. Cherry. Anal-
ysis of receptor clustering on cell surfaces by imaging fluorescent particles.
Biophys. J, 67:1280 – 1290, 1994.

[76] J. Moseley, A. Mayeux, A. Paoletti, and P. Nurse. A spatial gradient coordi-
nates cell size and mitotic entry in fission yeast. Nature, 459:857–860, 2009.

[77] T. Naka, M. Hatakeyama, N. Sakamoto, and A. Konagaya. Compensation ef-
fect of the MAPK cascade on formation of phospho-protein gradients. Biosys-
tems, 83:167 – 177, 2006.

[78] K. Neves. Automatic integration of functional differential equations: An ap-
proach. ACM Trans. on Mat. Soft., 1:357–368, 1975.

[79] S. Neves and R. Iyengar. Models of spatially restricted biochemical reaction
systems. J. Biol. Chem., 284:5445–5449, 2009.

[80] F. Ortega, J. Garcs, F. Mas, B. Kholodenko, and M. Cascante. Bistability
from double phosphorylation in signal transduction. FEBS J., 273:3915–3926,
2006.

[81] S. Pillay, M. Ward, A. Peirce, and T. Kolokolnikov. An asymptotic analysis
of the mean first passage time for narrow escape problems: Part i: Two-
dimensional domains. Multiscale Model. Sim., 8:803–835, 2010.

[82] L. Qiao, R. Nachbar, I. Kevrekidis, and S. Shvartsman. Bistability and os-
cillations in the huang-ferrell model of mapk signaling. PLoS Comput. Biol.,
3:e184, 2007.

[83] Z. Qu and T. Vondriska. The effects of cascade length, kinetics and feedback
loops on biological signal transduction dynamics in a simplified cascade model.
Phys. Biol., 6:016007, 2009.

[84] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock, and
E. Gilles. Modular analysis of signal transduction networks. Control Syst.,
IEEE, 24:35–52, 2004.

[85] C. Salazar and R. Höfer. Kinetic models of phosphorylation cycles: A system-
atic approach using the rapid-equilibrium approximation for protein–protein
interactions. Biosyst., 83:195–206, 2006.

170

[86] R. Sear and M. Howard. Modeling dual pathways for the metazoan spindle
assembly checkpoint. P. Natl. Acad. Sc., 103:16758–16763, 2006.

[87] L. Shampine. Solving odes and ddes with residual control. Appl. Numer. Math.,
52:113–127, 2005.

[88] L. Shampine. Dissipative approximations to neutral ddes. Appl. Math. Com-
put., 203:641–648, 2008.

[89] L. Shampine, I. Gladwell, and S. Thompson. Solving ODEs with MATLAB.
Cambridge University Press, 2003.

[90] L. Shampine and S. Thompson. Solving ddes in matlab. Appl. Numer. Math.,
37:441–458, 2001.

[91] A. Shaw and E. Filbert. Scaffold proteins and immune-cell signalling. Nat.
Rev. Immunol., 9:47–56, 2009.

[92] J. Srividhya, M.S. Gopinathan, and S. Schnell. The effects of time delays in a
phosphorylation–dephosphorylation pathway. Biophys. Chem., 125:286 – 297,
2007.

[93] J. Stelling and B. Kholodenko. Signaling cascades as cellular devices for spatial
computations. J. Math Biol., 58:35–55, 2009.

[94] R. Straube and M. Ward. An asymptotic analysis of intracellular signaling
gradients arising from multiple small compartments. SIAM J. Appl. Math.,
70:248–269, 2008.

[95] M. Sturrock, A. Terry, D. Xirodimas, A. Thompson, and M. Chaplain. Spatio-
temporal modelling of the hes1 and p53-mdm2 intracellular signalling path-
ways. J. Theor. Biol., 273:15–31, 2011.

[96] B. Sulzer and A. Perelson. Equilibrium binding of multivalent ligands to cells:
Effects of cell and receptor density. Math. Bioscience., 135:147 – 185, 1996.

[97] A. Terry and M. Chaplain. Spatio-temporal modelling of the nf-κb intracellular
signalling pathway: the roles of diffusion, active transport, and cell geometry.
J. Theor. Biol., 290:7–26, 2011.

[98] S. Thompson and L. Shampine. A friendly fortran dde solver. Appl. Numer.
Math., 56:503–516, 2006.

[99] J Thomson. Xxiv. on the structure of the atom: an investigation of the stability
and periods of oscillation of a number of corpuscles arranged at equal intervals
around the circumference of a circle; with application of the results to the
theory of atomic structure. Philos. Mag. Series 6, 7:237–265, 1904.

171

[100] J. Tyson, K. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers:
Dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell
Biol., 15:221–231, 2003.

[101] S. Van Albada and P. ten Wolde. Enzyme localization can drastically affect
signal amplification in signal transduction pathways. PLoS Comput. Biol.,
3:e195, 2007.

[102] P. Van der Houwen, B. Sommeijer, and C. Baker. On the stability of predictor-
corrector methods for parabolic equations with delay. IMA J. of Numer. Anal.,
6:1–23, 1986.

[103] M. Van Dyke. Perturbation Methods in Fluid Mechanics. Applied Mathematics
and Mechanics, Vol. 8. 1964.

[104] A. Ventura, J. Sepulchre, and S. Merajver. A hidden feedback in signaling
cascades is revealed. PLoS Comput. Biol., 4:e1000041, 2008.

[105] S. Wanant and M. Quon. Insulin receptor binding kinetics: Modeling and
simulation studies. J. of Theor. Biol., 205:355 – 364, 2000.

[106] C. Widmann, S. Gibson, M. Jarpe, and G. Johnson. Mitogen-activated protein
kinase: conservation of a three-kinase module from yeast to human. Phys. Rev.,
79:143–180, 1999.

[107] O. Wolkenhauer, S. Sreenath, P. Wellstead, M. Ullah, and K. Cho. A systems-
and signal-oriented approach to intracellular dynamics. Biochem. Soc. T.,
33:507–515, 2005.

[108] J. Xing and J. Chen. The Goldbeter–Koshland switch in the first-order region
and its response to dynamic disorder. PloS one, 3:e2140, 2008.

[109] J. Xing and J. Chen. The Goldbeter-Koshland switch in the first-order region
and its response to dynamic disorder. PLoS One, page e2140, 2008.

[110] W. Xiong and J. Ferrell. A positive-feedback-based bistable ?memory mod-
ule?that governs a cell fate decision. Nature, 426:460–465, 2003.

[111] I. Yudushkin, A. Schleifenbaum, A. Kinkhabwala, B. Neel, C. Schultz, and
P. Bastiaens. Live-cell imaging of enzyme-substrate interaction reveals spatial
regulation of ptp1b. Science, 315:115–119, 2007.

[112] Q. Zhang and C. Zhang. A new linearized compact multisplitting scheme for
the nonlinear convection–reaction–diffusion equations with delay. Commun.
Nonlinear. Sci., 18:3278–3288, 2013.

[113] Q. Zhang, C. Zhang, and D. Deng. Compact alternating direction implicit
method to solve two-dimensional nonlinear delay hyperbolic differential equa-
tions. Int. J. Comput. Math., 91:1–19, 2013.

Appendix A

Comsol and Matlab Code

A.1 Standard DDE Solvers

Here we discuss some important ideas which are involved in creating efficient numer-

ical solvers for DDEs. We also mention several specific solvers which are commonly

used to solve standard DDEs numerically. There are different types of DDEs and each

have different properties with regards to discontinuity propagation and smoothing.

A very large class of DDEs can be written in the form

y′(t) = f(t, y(t), y(t− T1), y(t− T2), . . . , y(t− Tk)). (A.1)

For DDEs of the form (A.1) with multiple delays, a discontinuity of order k at time

t = t∗ is propagated to a discontinuity of at least order k + 1 at times

t∗ + T1, t
∗ + T2, . . . , t

∗ + Tk.

The most common case in modelling literature are when the delay terms Tj (also

called lag functions) are constants [89, 90]. However there is interest in systems of

DDEs where the lag functions are time dependent and or state dependent. This

means that the lag functions would have the form Tj(t, y(t)). There are also DDEs

which have delayed arguments appearing in the derivative terms. These are called

neutral DDEs. They can have very different behavior and pose further theoretical

and numerical difficulties. For example, the solutions to neutral DDEs may not get

smoother as the integration proceeds [5].

There are some main features that any robust numerical DDE solver should have.

One is the ability to deal with the derivative discontinuities. When discontinuities

are present much care must be taken in writing efficient and accurate numerical

algorithms. Discontinuities can affect the local truncation error analysis. The local

truncation error, which depends on higher derivatives within a Taylor expansion, will

be bounded provided that the solution is smooth. If there are discontinuities, the

172

173

higher derivatives are not bounded, and hence the local truncation error analysis is

no longer valid. This has a direct impact on the convergence of a method since the

order of convergence can be lowered in the presence of discontinuities. This is known

as order reduction.

One method for dealing with discontinuities is to ignore them and assume that

the local error estimator along with the adaptive time stepping algorithm will choose

a small enough step size near the discontinuity. For larger discontinuities a smaller

step size is needed. A discretization in time which ignores discontinuities can be

inefficient. The adaptive time stepping algorithm will continue to force a very small

time step until it can eventually step over the discontinuity with a small enough time

step that satisfies the error tolerance [31].

Another method is to locate discontinuities in time and include them as step

points. It is trivial to locate discontinuities in the case where the lag functions are

constants. In this case all the points of discontinuity are known in advance and can

be included as step points through the adaptive time stepping algorithm. It is clearly

much harder when the lag functions are state dependent because y(t) is unknown

and therefore must be approximated. If there is a discontinuity at t = t∗ in (A.1)

then this discontinuity will in general propagate if the delayed arguments satisfy

t−Tj(t, y(t)) = t∗. The propagated discontinuities can be located in time by solving

equations of the form

t− Tj(t, y(t))− t∗ = 0, (A.2)

for t. The zeros of (A.2) can be approximated numerically.

Since the solution of a system of DDEs becomes smoother as the integration

advances, there will be a point in time when the tracking of discontinuities can stop.

This is when the discontinuities have reached a high enough order as not to interfere

with the local truncation error and hence the order of convergence of the method.

Only discontinuities in lower order derivatives need to be kept track of because they

affect the local truncation error analysis.

Another main feature of any robust DDE code is the ability to evaluate the

delayed arguments efficiently and accurately. DDE codes should have continuous

output due to the delayed arguments which access previous solution values. This

is done through some form of interpolation. It is important that the interpolation

174

method preserves the order of accuracy of the integration method.

The first code written for DDEs was called DMRODE [78] and was written

in Fortran 77. The solver consists of a basic ODE solver routine and relied on

the automatic step change algorithm to step through discontinuities. This is a very

inefficient process. All the computed solution values at step points are saved. Hermite

interpolation is used to calculate the delayed arguments. The code does not allow

for systems with multiple delays to be directly entered.

A code based on DMRODE was DKLAG5 which was eventually followed by

DKLAG6 [22]. DKLAG6 was written in Fortran 77. DKLAG6 can handle

DDEs with state dependent delays as well as neutral differential equations. It can

also solve DDEs with vanishing or near vanishing lag functions. The code uses a

continuously embedded sixth order Rung-Kutta (RK) method. The code DKLAG6

locates derivative discontinuities in time by using a root finder along with the poly-

nomial approximants. All points of discontinuity are included as step points.

Although DKLAG6 can solve a large class of problems, many users find it hard

to use because it is written in Fortran. The code DDE SOLVER was written to

address the complexity of using DKLAG6. It was written in Fortran 90/95 and

is essentially the same as DKLAG6 except there is a more friendly user interface.

The improvements of DDE SOLVER over DKLAG6 can be found in [98].

The code DDVERK [26] is a DDE code which was specifically designed to solve

neutral DDEs. It uses continuous RK methods and uses a discontinuity detection

algorithm based on defect control to locate discontinuities. The defect of the contin-

uous approximation is a measure of the amount by which the approximate solution

fails to satisfy the differential equation. By monitoring the defect at every step, it is

possible to locate points of discontinuity and include them as step points.

Another code to solve neutral DDEs is ddeNsd [88]. It is written in Matlab and is

therefore relatively easy to use because of its simple interface. The code approximates

neutral DDEs with standard (non neutral) DDEs, which have smoother solutions and

therefore are easier to solve. The code is based on the two Matlab codes dde23 (see

below) and ddesd [87] which solve DDEs with constant delays and DDEs with state

dependent delays respectively. This code ddeNsd can only solve neutral DDEs with

modest accuracy. We have experimented with ddeNsd and discuss this in §3.4.3.

175

The final DDE code we mention here is dde23 [90]. This is a very popular code

because it is written in Matlab and is easy to use. The goal of the code is to make

it straight forward to solve DDE systems of the form

y′(t) = f(t, y(t), y(t− T1), t(t− T2), . . . , y(t− Tk)), (A.3)

where the lag functions are positive constants. The authors of dde23, L.F. Shampine

and S. Thompson, are well aware of other types of lag functions and in fact have

developed some of the more general codes mentioned above. They note that constant

delays are the most frequently encountered lag functions in modelling. Restricting

the software to just DDEs of the form (A.3) allows for a much simpler user interface

as well as a more robust software.

A.2 Solving the PDE Model in (2.3) Without Delay

This code can solve problems of the form (2.3). The code here is for a signalling

pathway with three variables and three compartments. Therefore it’s an extension

of (2.3) to a system of 3 PDEs. The code here was used to solve the Hopf bifurcation

example in §2.5.3.

1 % COMSOL Multiphysics Model M-file

2 % Generated by COMSOL 3.5a (COMSOL 3.5.0.608, $Date: 2009/05/11 07:38:49 $)

3 flclear fem

4 % COMSOL version

5 clear vrsn

6 vrsn.name = 'COMSOL 3.5';

7 vrsn.ext = 'a';

8 vrsn.major = 0;

9 vrsn.build = 608;

10 vrsn.rcs = '$Name: v35ap $';

11 vrsn.date = '$Date: 2009/05/11 07:38:49 $';

12 fem.version = vrsn;

13 %%%%

14 fu1='(8*(1-u1))/(8+(.2+50*u3)ˆ3)';

15 fu2='u1ˆ3*(1-u2)/(0.8e-2+u1ˆ3)';

16 fu3='u2ˆ3*(1-u3)/(0.8e-2+u2ˆ3)';

17 u1int=0;

18 u2int=0;

19 u3int=0;

20 epsilon=0.01;

21 x1=0.5;

22 x2=0;

23 x3=-0.5;

24 % Constants

25 fem.const = {'R','1', 'k1','1/2', 'k2','1', k3','1/4', 'Du1','1/3', 'Du2','1/3', 'Du3','1/3', ...

26 'epsilon',num2str(epsilon), ...

27 'u1int',num2str(u1int), ...

28 'u2int',num2str(u2int), ...

176

29 'u3int',num2str(u3int), ...

30 'ku1','k1*epsilon', ... %Do not edit below this

31 'ku2','k2*epsilon', ...

32 'ku3','k3*epsilon', ...

33 'tauu1','Rˆ2/Du1', ...

34 'tauu2','Rˆ2/Du2', ...

35 'tauu3','Rˆ2/Du3', ...

36 'alphau1','sqrt(ku1/Du1)*R', ...

37 'alphau2','sqrt(ku2/Du2)*R', ...

38 'alphau3','sqrt(ku3/Du3)*R', ...

39 'alphau4','sqrt(ku4/Du4)*R'};

40 % Geometry

41 g1=sphere3('1','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0');

42 g2=sphere3(num2str(epsilon),'pos',{num2str(x3),'0','0'}, 'axis',{'0','0','1'},'rot','0');

43 g3=sphere3(num2str(epsilon),'pos',{num2str(x2),'0','0'},'axis',{'0','0','1'},'rot','0');

44 g4=sphere3(num2str(epsilon),'pos',{num2str(x1),'0','0'}, 'axis',{'0','0','1'},'rot','0');

45 g5=geomcomp({g1,g2,g3,g4},'ns',{'g1','g2','g3','g4'},'sf', 'g1-g2-g3-g4','face','none','edge','all');

46 % Geometry

47 % Analyzed geometry

48 clear s

49 s.objs={g5};

50 s.name={'CO1'};

51 s.tags={'g5'};

52 fem.draw=struct('s',s);

53 fem.geom=geomcsg(fem);

54 % Initialize mesh

55 fem.mesh=meshinit(fem, 'hauto',5);

56 % (Default values are not included)

57 % Application mode 1

58 clear appl

59 appl.mode.class = 'FlPDEC';

60 appl.dim = {'u1','u2','u3','u1 t','u2 t','u3 t'};

61 appl.gporder = 4;

62 appl.cporder = 2;

63 appl.sshape = 2;

64 appl.assignsuffix = ' c';

65 clear bnd

66 bnd.g = {0,{['1/epsilon*' fu1];0;0},{0;['1/epsilon*' fu2];0},{0; 0;['1/epsilon*' fu3]}};

67 bnd.name = {'outer','u1','u2','u3'};

68 bnd.type = 'neu';

69 bnd.ind = [1,1,1,1,4,4,4,4,4,4,4,4,3,3,3,3,1,1,3,3,1,3,3,1,2,2,2,2,2,2, 2,2];

70 appl.bnd = bnd;

71 clear equ

72 equ.f = 0;

73 equ.da = {{'tauu1';'tauu2';'tauu3'}};

74 equ.c = {{'1';'1';'1'}};

75 equ.a = {{'alphau1ˆ2';'alphau2ˆ2';'alphau3ˆ2'}};

76 equ.init = {{'u1int';'u2int';'u3int';0;0;0}};

77 equ.ind = [1];

78 appl.equ = equ;

79 fem.appl{1} = appl;

80 fem.frame = {'ref'};

81 fem.border = 1;

82 clear units;

83 units.basesystem = 'SI';

84 fem.units = units;

85 % ODE Settings

86 clear ode

87 clear units;

88 units.basesystem = 'SI';

89 ode.units = units;

90 fem.ode=ode;

91 % Multiphysics

92 fem=multiphysics(fem);

93 % Extend mesh

94 fem.xmesh=meshextend(fem);

177

95 % Solve problem

96 fem.sol=femtime(fem, ...

97 'solcomp',{'u2','u1','u3'}, ...

98 'outcomp',{'u2','u1','u3'}, ...

99 'blocksize','auto', ...

100 'tlist',[colon(0,1,15000)], ...

101 'rtol',1e-6, ...

102 'tout','tlist', ...

103 'atol',{'1e-6'}, ...

104 'linsolver','gmres', ...

105 'prepar',{'droptol',1E-5});

106 %Post Processing

107 t=fem.sol.tlist;

108 u=postinterp(fem,'u1',[-1;0;0],'solnum',1:length(t));

109 uin=postinterp(fem,'u1',[.5+epsilon;0;0],'solnum',1:length(t));

110 v=postinterp(fem,'u2',[-1;0;0],'solnum',1:length(t));

111 vin=postinterp(fem,'u2',[epsilon;0;0],'solnum',1:length(t));

112 w=postinterp(fem,'u3',[1;0;0],'solnum',1:length(t));

113 win=postinterp(fem,'u3',[-.5-epsilon;0;0], 'solnum',1:length(t));

114 save comsolsim u v w uin vin win t

A.3 Comsol Method of Steps Code

This code solves the PDE model with delay found in (3.2). The method of steps is

used along with Comsol as explained in §3.4.1. The code here was used to solve the

Hopf bifurcation example in §(3.5.2).

1 % COMSOL Multiphysics Model M-file

2 % Generated by COMSOL 3.5a (COMSOL 3.5.0.608, $Date: 2009/05/11 07:38:49 $)

3 % %load coordvectors01.mat;

4 flclear fem;

5 flclear fem0;

6 % COMSOL version

7 clear vrsn

8 vrsn.name = 'COMSOL 3.5';

9 vrsn.ext = 'a';

10 vrsn.major = 0;

11 vrsn.build = 608;

12 vrsn.rcs = '$Name: v35ap $';

13 vrsn.date = '$Date: 2009/05/11 07:38:49 $';

14 fem.version = vrsn;

15 %This code is set up for having x1 and x2 located at (0.5,0,0) and (-.5,0,0)

16 %These numbers can be changed by editing certain numbers through out code.

17 epsilon=0.1;

18 delay=2/epsilon;

19 k1=1;

20 k2=1;

21 Du=1/3;

22 Dv=1/3;

23 uint=.5;

24 vint=0.8;

25 rtol=1e-4; %rel tol

26 atol=1e-4; %abs tol

27 droptol=1e-2; %drop tol

28 initialstep=1e-6; %initial step (probably ignored because of tolerance)

29 N=29; %Number of delay intervals to solve on

30 % Constants

31 fem.const = {'R','1', ...

178

32 'k1',num2str(k1), ...

33 'k2',num2str(k2), ...

34 'Du',num2str(Du), ...

35 'Dv',num2str(Dv), ...

36 'epsilon',num2str(epsilon), ...

37 'uint',num2str(uint), ... % initial conditions

38 'vint',num2str(vint), ...

39 'ku','k1*epsilon', ...

40 'kv','k2*epsilon', ...

41 'tauu','Rˆ2/Du', ...

42 'tauv','Rˆ2/Dv', ...

43 'alphau','sqrt(ku/Du)*R', ...

44 'alphav','sqrt(kv/Dv)*R'};

45 %%%%%

46 Fuv='4*uint/((1/2+uint)*(1+vintˆ2))';%These are used outside the loop when solving on first

47 % delay interval and using constant history data.

48 Guv='2*vint*uint/(1/4+vint)';

49 Fuvloop='4*Fin(t)/((1/2+Fin(t))*(1+G(t)ˆ2))'; %These are the functions which show up in Loop

50 Guvloop='2*Gin(t)*F(t)/(1/4+Gin(t))';

51 % Geometry

52 g1=sphere3('1','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

53 g2=sphere3('epsilon','pos',{'-0.5','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

54 g3=sphere3('epsilon','pos',{'0.5','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

55 g4=geomcomp({g1,g2,g3},'ns',{'g1','g2','g3'},'sf','g1-g2-g3','face','none','edge','all');

56 % Analyzed geometry

57 clear s

58 s.objs={g4};

59 s.name={'CO1'};

60 s.tags={'g4'};

61 fem.draw=struct('s',s);

62 fem.geom=geomcsg(fem);

63 % Initialize mesh

64 fem.mesh=meshinit(fem, ...

65 'hauto',5);

66

67 % (Default values are not included)

68 % Application mode 1

69 clear appl

70 appl.mode.class = 'FlPDEC';

71 appl.dim = {'u','v','u t','v t'};

72 appl.gporder = 4;

73 appl.cporder = 2;

74 appl.sshape = 2;

75 appl.assignsuffix = ' c';

76 clear bnd

77 bnd.g = {0,{['1/epsilon*' Fuv];0},{0;['1/epsilon*' Guv]}};

78 bnd.name = {'outer','uin','vin'};

79 bnd.type = 'neu';

80 bnd.ind = [1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,1,2,2,2,2,2,2,2,2];

81 appl.bnd = bnd;

82 clear equ

83 equ.f = 0;

84 equ.da = {{'tauu';'tauv'}};

85 equ.c = {{'1';'1'}};

86 equ.a = {{'alphauˆ2';'alphavˆ2'}};

87 equ.init = {{'uint';'vint';0;0}};

88 equ.ind = [1];

89 appl.equ = equ;

90 fem.appl{1} = appl;

91 fem.frame = {'ref'};

92 fem.border = 1;

93 clear units;

94 units.basesystem = 'SI';

95 fem.units = units;

96 % ODE Settings

97 clear ode

179

98 clear units;

99 units.basesystem = 'SI';

100 ode.units = units;

101 fem.ode=ode;

102 % Multiphysics

103 fem=multiphysics(fem);

104 % Extend mesh

105 fem.xmesh=meshextend(fem);

106 % Solve problem

107 fem.sol=femtime(fem, ...

108 'solcomp',{'v','u'}, ...

109 'outcomp',{'v','u'}, ...

110 'blocksize','auto', ...

111 'tlist',[colon(0,delay,delay)], ...

112 'rtol',num2str(rtol), ...

113 'tout','tsteps', ... %Output solution at points used for time integrator

114 'tsteps','strict', ... %Set to strict means it will have to step through each point in tout.

115 'maxorder',3, ... %Maximum used BDF order. Default Minimum is one which it starts with.

116 'atol',{num2str(atol)}, ...

117 'linsolver','gmres',...

118 'initialstep',initialstep, ...

119 'prepar',{'droptol',droptol});

120 %%%%%%%

121 fem0=fem;

122 flclear fem;

123 %%%%%%%

124 t=fem0.sol.tlist;

125 u=postinterp(fem0,'u',[-.5-epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

126 v=postinterp(fem0,'v',[.5+epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

127 uin=postinterp(fem0,'u',[.5+epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

128 vin=postinterp(fem0,'v',[-.5-epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

129 %%Create text files which stores uin and vin (values on their respective compartments)

130 fid = fopen('uin.txt', 'wt');

131 fprintf(fid,'%.20f %.20f \n',[t;uin']);

132 fclose(fid);

133 fid = fopen('vin.txt', 'wt');

134 fprintf(fid,'%.20f %.20f \n',[t;vin']);

135 fclose(fid);

136 %%Create text files which stores u and v on their opposite compartments.

137 fid = fopen('u.txt', 'wt');

138 fprintf(fid,'%.20f %.20f \n',[t;u']);

139 fclose(fid);

140 fid = fopen('v.txt', 'wt');

141 fprintf(fid,'%.20f %.20f \n',[t;v']);

142 fclose(fid);

143 %Post Processing

144 time=t;

145 usol=postinterp(fem0,'u',[-1;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

146 vsol=postinterp(fem0,'v',[1;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

147 usolin=uin;

148 vsolin=vin;

149 %%% LOOP

150 for j=1:1:N

151 tic

152 % Constants

153 fem.const = {'R','1', ...

154 'k1',num2str(k1), ...

155 'k2',num2str(k2), ...

156 'Du',num2str(Du), ...

157 'Dv',num2str(Dv), ...

158 'epsilon',num2str(epsilon), ...

159 'ku','k1*epsilon', ...

160 'kv','k2*epsilon', ...

161 'tauu','Rˆ2/Du', ...

162 'tauv','Rˆ2/Dv', ...

163 'alphau','sqrt(ku/Du)*R', ...

180

164 'alphav','sqrt(kv/Dv)*R'};

165 % Geometry

166 g1=sphere3('1','pos',{'0','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

167 g2=sphere3('epsilon','pos',{'-0.5','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

168 g3=sphere3('epsilon','pos',{'0.5','0','0'},'axis',{'0','0','1'},'rot','0','const',fem.const);

169 g4=geomcomp({g1,g2,g3},'ns',{'g1','g2','g3'},'sf','g1-g2-g3','face','none','edge','all');

170 % Analyzed geometry

171 clear s

172 s.objs={g4};

173 s.name={'CO1'};

174 s.tags={'g4'};

175 fem.draw=struct('s',s);

176 fem.geom=geomcsg(fem);

177 % Initialize mesh

178 fem.mesh=meshinit(fem, ...

179 'hauto',5);

180 % (Default values are not included)

181 % Functions

182 clear fcns

183 fcns{1}.type='interp';

184 fcns{1}.name='F';

185 fcns{1}.filename=[pwd '/u.txt'];

186 fcns{1}.fileindex='1';

187 fcns{1}.method='cubicspline';

188 fcns{1}.extmethod='interior';

189 fcns{2}.type='interp';

190 fcns{2}.name='G';

191 fcns{2}.filename=[pwd '/v.txt'];

192 fcns{2}.fileindex='1';

193 fcns{2}.method='cubicspline';

194 fcns{2}.extmethod='interior';

195 fcns{3}.type='interp';

196 fcns{3}.name='Fin';

197 fcns{3}.filename=[pwd '/uin.txt'];

198 fcns{3}.fileindex='1';

199 fcns{3}.method='cubicspline';

200 fcns{3}.extmethod='interior';

201 fcns{4}.type='interp';

202 fcns{4}.name='Gin';

203 fcns{4}.filename=[pwd '/vin.txt'];

204 fcns{4}.fileindex='1';

205 fcns{4}.method='cubicspline';

206 fcns{4}.extmethod='interior';

207 fem.functions = fcns;

208 % Application mode 1

209 clear appl

210 appl.mode.class = 'FlPDEC';

211 appl.dim = {'u','v','u t','v t'};

212 appl.gporder = 4;

213 appl.cporder = 2;

214 appl.sshape = 2;

215 appl.assignsuffix = ' c';

216 clear bnd

217 bnd.g = {0,{['1/epsilon*' Fuvloop];0},{0;['1/epsilon*' Guvloop]}};

218 bnd.name = {'outer','uin','vin'};

219 bnd.type = 'neu';

220 bnd.ind = [1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,1,2,2,2,2,2,2,2,2];

221 appl.bnd = bnd;

222 clear equ

223 equ.f = 0;

224 equ.da = {{'tauu';'tauv'}};

225 equ.c = {{'1';'1'}};

226 equ.a = {{'alphauˆ2';'alphavˆ2'}};

227 equ.init = {{'uinitial(x,y,z)';'vinitial(x,y,z)';0;0}};

228 equ.ind = [1];

229 appl.equ = equ;

181

230 fem.appl{1} = appl;

231 fem.frame = {'ref'};

232 fem.border = 1;

233 clear units;

234 units.basesystem = 'SI';

235 fem.units = units;

236 % ODE Settings

237 clear ode

238 clear units;

239 units.basesystem = 'SI';

240 ode.units = units;

241 fem.ode=ode;

242 % Multiphysics

243 fem=multiphysics(fem);

244 % Extend mesh

245 fem.xmesh=meshextend(fem);

246 % Solve problem

247 fem.sol=femtime(fem, ...

248 'init',fem0.sol, ...

249 'solcomp',{'v','u'}, ...

250 'outcomp',{'v','u'}, ...

251 'blocksize','auto', ...

252 'tlist',[colon(0,delay,delay)], ...

253 'rtol',num2str(rtol), ...

254 'tout','tsteps', ... %Output solution at points used for time integrator

255 'tsteps','strict', ... %Set to strict means it will have to step through each point in tout.

256 'maxorder',3, ... %Maximum used BDF order

257 'atol',{num2str(atol)}, ...

258 'linsolver','gmres',...

259 'initialstep',initialstep, ...

260 'prepar',{'droptol',droptol});

261

262 flclear fem0;

263 fem0=fem;

264 flclear fem;

265 clear t u v uin vin;

266 t=fem0.sol.tlist;

267 u=postinterp(fem0,'u',[-.5-epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

268 v=postinterp(fem0,'v',[0.5+epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

269 uin=postinterp(fem0,'u',[.5+epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

270 vin=postinterp(fem0,'v',[-.5-epsilon;0;0],'solnum',linspace(1,length(fem0.sol.tlist),length(fem0.sol.tlist)));

271 %%Create text files which stores uin and vin (values on compartments)

272 fid = fopen('uin.txt', 'wt');

273 fprintf(fid,'%.20f %.20f \n',[t;uin']);

274 fclose(fid);

275 fid = fopen('vin.txt', 'wt');

276 fprintf(fid,'%.20f %.20f \n',[t;vin']);

277 fclose(fid);

278 %%Create text files which stores u and v on opposing compartments

279 fid = fopen('u.txt', 'wt');

280 fprintf(fid,'%.20f %.20f \n',[t;u']);

281 fclose(fid);

282 fid = fopen('v.txt', 'wt');

283 fprintf(fid,'%.20f %.20f \n',[t;v']);

284 fclose(fid);

285 timenew=t(2:end)+j*delay;

286 usolnew=postinterp(fem0,'u',[-1;0;0],'solnum',linspace(2,length(fem0.sol.tlist),length(fem0.sol.tlist)-1));

287 vsolnew=postinterp(fem0,'v',[1;0;0],'solnum',linspace(2,length(fem0.sol.tlist),length(fem0.sol.tlist)-1));

288 usolinnew=postinterp(fem0,'u',[.5+epsilon;0;0],'solnum',linspace(2,length(fem0.sol.tlist),length(fem0.sol.tlist)-1));

289 vsolinnew=postinterp(fem0,'v',[-.5-epsilon;0;0],'solnum',linspace(2,length(fem0.sol.tlist),length(fem0.sol.tlist)-1));

290 %Post Processing

291 time=[time timenew];

292 usol=[usol; usolnew];

293 %vsol1=[vsol1; postinterp(fem0,'v',[-1;0;0],'solnum',linspace(2,length(fem0.sol.tlist),length(fem0.sol.tlist)-1))];

294 vsol=[vsol; vsolnew];

295 usolin=[usolin; usolinnew];

182

296 vsolin=[vsolin; vsolinnew];

297 %%Create text files with time,usol,vsol,usolin,vsolin

298 fid = fopen('usolin.txt', 'wt');

299 fprintf(fid,'%.20f %.20f \n',[time;usolin']);

300 fclose(fid);

301 fid = fopen('vsolin.txt', 'wt');

302 fprintf(fid,'%.20f %.20f \n',[time;vsolin']);

303 fclose(fid);

304 fid = fopen('usol.txt', 'wt');

305 fprintf(fid,'%.20f %.20f \n',[time;usol']);

306 fclose(fid);

307 fid = fopen('vsol.txt', 'wt');

308 fprintf(fid,'%.20f %.20f \n',[time;vsol']);

309 fclose(fid);

310 toc

311 end

A.4 Solving Delay PDE in (3.2) with Reverse Method of Lines

This is the code described in §3.4.2. It is not finished and is in a preliminary state.

It only accepts a constant step size and this step size can not be taken too small. We

also have code like this which uses the BDF2 method with a constant step size and

the BDF2 method with a variable step size. They are also very preliminary states.

1 % COMSOL Multiphysics Model M-file

2 % Generated by COMSOL 3.5a (COMSOL 3.5.0.608, $Date: 2009/05/11 07:38:49 $)

3 tic

4 load coordvectors001.mat %This file contains a bunch of (x,y,z) points in a

5 %sphere of radius 1.Stored in a structure called pd. The x,y,z data

6 %came from COMSOL GUI and does not include points

7 %inside the compartments because they are not in domain.

8 %This struct is very large and the line below this can

9 %be used several times to use less points in the domain

10 %for the interpolation.

11 % pd.x(2:2:end)=[]; pd.y(2:2:end)=[]; pd.z(2:2:end)=[];

12 flclear fem; clear fem;

13 flclear fem0; clear fem0;

14 % COMSOL version

15 clear vrsn

16 vrsn.name = 'COMSOL 3.5';

17 vrsn.ext = 'a';

18 vrsn.major = 0;

19 vrsn.build = 608;

20 vrsn.rcs = '$Name: v35ap $';

21 vrsn.date = '$Date: 2009/05/11 07:38:49 $';

22 fem.version = vrsn;

23 initu=1; %This is the value used for the constant history

24 %data for u defined for -delay<=t<0

25 initv=1; %This is the value used for the constant

26 %history data for u defined for -delay<=t<0

27 epsilon=0.01;

28 delay=1.5/epsilon;

29 ts=2; %time step

30 timesteps=2350;

31 delaysuout=zeros(delay/ts,1); %History Data: Holds

32 %solution of u on

33 %compartment which is assumed to be constant.

183

34 delaysuin=zeros(delay/ts,1);

35 delaysvout=zeros(delay/ts,1);

36 delaysvin=zeros(delay/ts,1);

37 delaysuout(1:delay/ts)=initu;

38 delaysuin(1:delay/ts)=initu;

39 delaysvout(1:delay/ts)=initv;

40 delaysvin(1:delay/ts)=initv;

41 uxsolout=zeros(1,timesteps+1); %number of rows is the number of

42 %points to plot solution on x-axis

43 %between -1 and 1

44 usolin=zeros(1,timesteps+1);

45 vsolin=zeros(1,timesteps+1);

46 vxsolout=zeros(1,timesteps+1);

47 %Know solution at t=0

48 uxsolout(1)=delaysuout(1);

49 vxsolout(1)=delaysvout(1);

50 usolin(1)=delaysuout(1);

51 vsolin(1)=delaysvout(1);

52 %Create Fem struct and solve the first

53 %iteration which gives solution at time t=ts

54 % Constants

55 fem.const = {'R','1', ...

56 'ts',num2str(ts), ... %time step

57 'k1','1/2', ...

58 'k2','1', ...

59 'Du','1/3', ...

60 'Dv','1/3', ...

61 'epsilon',num2str(epsilon), ...

62 'ku','k1*epsilon', ...

63 'kv','k2*epsilon', ...

64 'tauu','Rˆ2/Du', ...

65 'tauv','Rˆ2/Dv', ...

66 'alphau','sqrt(ku/Du)*R', ...

67 'alphav','sqrt(kv/Dv)*R'};

68 % Geometry

69 g1=sphere3('1','pos',{'0','0','0'},'axis', {'0','0','1'},'rot','0');

70 g2=sphere3(epsilon,'pos',{'1/2','0','0'}, 'axis',{'0','0','1'},'rot','0');

71 g3=sphere3(epsilon,'pos',{'-1/2','0','0'}, 'axis',{'0','0','1'},'rot','0');

72 g4=geomcomp({g1,g2,g3},'ns',{'g1','g2','g3'},'sf','g1-g2-g3','face','none','edge','all');

73 % Analyzed geometry

74 clear s

75 s.objs={g4};

76 s.name={'CO1'};

77 s.tags={'g4'};

78 fem.draw=struct('s',s);

79 fem.geom=geomcsg(fem);

80 % Initialize mesh

81 fem.mesh=meshinit(fem, 'hauto',5);

82 % % Refine mesh

83 % fem.mesh=meshrefine(fem, 'mcase',0, 'rmethod','longest');

84 % Application mode 1

85 clear appl

86 appl.mode.class = 'FlPDEC';

87 appl.dim = {'u','v','u t','v t'};

88 appl.gporder = 4;

89 appl.cporder = 2;

90 appl.sshape = 2;

91 appl.assignsuffix = ' c';

92 clear bnd

93 bnd.g = {0,{1/epsilon*ts*fbc(delaysuin(delay/ts),delaysvout(delay/ts));0},{0;1/epsilon*ts*gbc(delaysuout(delay/ts),...

94 delaysvin(delay/ts))}};

95 bnd.name = {'out','uin','vin'};

96 bnd.type = 'neu';

97 bnd.ind = [1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,1,2,2,2,2,2,2,2,2];

98 appl.bnd = bnd;

99 clear equ

184

100 equ.f = {{['tauu*' num2str(delaysuout(1))];['tauv*'num2str(delaysvout(1))];}};

101 equ.da = {{1;1}};

102 equ.c = {{'ts';'ts'}};

103 equ.a = {{'alphauˆ2*ts+tauu';'alphavˆ2*ts+tauv'}};

104 equ.init = {{delaysuout(1);delaysvout(1);0;0}};

105 equ.ind = [1];

106 appl.equ = equ;

107 fem.appl{1} = appl;

108 fem.frame = {'ref'};

109 fem.border = 1;

110 clear units;

111 units.basesystem = 'SI';

112 fem.units = units;

113 % ODE Settings

114 clear ode

115 clear units;

116 units.basesystem = 'SI';

117 ode.units = units;

118 fem.ode=ode;

119 % Multiphysics

120 fem=multiphysics(fem);

121 % Extend mesh

122 fem.xmesh=meshextend(fem);

123 %Solve problem with fixed spacial mesh

124 fem.sol=femstatic(fem, ...

125 'solcomp',{'v','u'}, ...

126 'outcomp',{'v','u'}, ...

127 'blocksize','auto', ...

128 'ntol',1.0E-6, ...

129 'maxiter',25, ...

130 'linsolver','gmres', ...

131 'prepar',{'droptol',0.01});

132 delaysuout=delaysuout([end 1:end-1]);

133 delaysuin=delaysuin([end 1:end-1]);

134 delaysvout=delaysvout([end 1:end-1]);

135 delaysvin=delaysvin([end 1:end-1]);

136 delaysuout(1)=postinterp(fem,'u',[-.5-epsilon;0;0]);

137 delaysvout(1)=postinterp(fem,'v',[0.5+epsilon;0;0]);

138 delaysuin(1)=postinterp(fem,'u',[1/2+epsilon;0;0]);

139 delaysvin(1)=postinterp(fem,'v',[-1/2-epsilon;0;0]);

140 uxsolout(2)=postinterp(fem,'u',[-1;0;0])';

141 usolin(2)=postinterp(fem,'u',[.5+epsilon;0;0])';

142 vsolin(2)=postinterp(fem,'v',[-.5-epsilon;0;0])';

143 vxsolout(2)=postinterp(fem,'v',[1;0;0])';

144 fem0=fem; %Store the Fem from first iteration (time=ts) in fem0.

145 for jj = 2:timesteps

146 toc

147 tic

148 % Constants

149 fem.const = {'R','1', ...

150 'ts',num2str(ts), ... %time step

151 'k1','1/2', ...

152 'k2','1', ...

153 'Du','1/3', ...

154 'Dv','1/3', ...

155 'epsilon',num2str(epsilon), ...

156 'ku','k1*epsilon', ...

157 'kv','k2*epsilon', ...

158 'tauu','Rˆ2/Du', ...

159 'tauv','Rˆ2/Dv', ...

160 'alphau','sqrt(ku/Du)*R', ...

161 'alphav','sqrt(kv/Dv)*R'};

162 % Geometry

163 g1=sphere3('1','pos',{'0','0','0'},'axis', {'0','0','1'},'rot','0');

164 g2=sphere3(epsilon,'pos',{'1/2','0','0'}, 'axis',{'0','0','1'},'rot','0');

165 g3=sphere3(epsilon,'pos',{'-1/2','0','0'}, 'axis',{'0','0','1'},'rot','0');

185

166 g4=geomcomp({g1,g2,g3},'ns',{'g1','g2','g3'}, 'sf','g1-g2-g3','face','none','edge','all');

167

168 % Analyzed geometry

169 clear s

170 s.objs={g4};

171 s.name={'CO1'};

172 s.tags={'g4'};

173

174 fem.draw=struct('s',s);

175 fem.geom=geomcsg(fem);

176

177 % Initialize mesh

178 fem.mesh=meshinit(fem, 'hauto',5);

179 %Create Interpolation text file which is used to compute interpolation

180 %function

181 clear datauu datavv;

182 [datauu] = postinterp(fem0,'u',[pd.x;pd.y;pd.z]);

183 fid = fopen('datau.txt', 'wt');

184 fprintf(fid,'%13f %13f %13f %13f \n',[pd.x;pd.y;pd.z;datauu]);

185 fclose(fid);

186 %Create Interpolation text file which is used to compute interpolation

187 %function

188 [datavv] = postinterp(fem0,'v',[pd.x;pd.y;pd.z]);

189 fid = fopen('datav.txt', 'wt');

190 fprintf(fid,'%13f %13f %13f %13f \n',[pd.x;pd.y;pd.z;datavv]);

191 fclose(fid);

192 clear fcns

193 fcns{1}.type='interp';

194 fcns{1}.name='datau';

195 fcns{1}.filename='/home/clevy/phd/Model With Delay/implicit euler/datau.txt';

196 fcns{1}.fileindex='1';

197 fcns{1}.method='linear';

198 fcns{1}.extmethod='const';

199 fcns{1}.defvars='true';

200 fcns{2}.type='interp';

201 fcns{2}.name='datav';

202 fcns{2}.filename='/home/clevy/phd/Model With Delay/implicit euler/datav.txt';

203 fcns{2}.fileindex='1';

204 fcns{2}.method='linear';

205 fcns{2}.extmethod='const';

206 fcns{2}.defvars='true';

207 fem.functions = fcns;

208 % Application mode 1

209 clear appl

210 appl.mode.class = 'FlPDEC';

211 appl.dim = {'u','v','u t','v t'};

212 appl.gporder = 4;

213 appl.cporder = 2;

214 appl.sshape = 2;

215 appl.assignsuffix = ' c';

216 clear bnd

217 bnd.g = {0,{1/epsilon*ts*fbc(delaysuin(delay/ts),delaysvout(delay/ts));0}, {0;1/epsilon*ts*gbc(delaysuout(delay/ts),...

218 delaysvin(delay/ts))}};

219 bnd.name = {'out','uin','vin'};

220 bnd.type = 'neu';

221 bnd.ind = [1,1,1,1,3,3,3,3,3,3,3,3,1,1,1,1,2,2,2,2,2,2,2,2];

222 appl.bnd = bnd;

223 clear equ

224 equ.f = {{'tauu*datau(x,y,z)';'tauv*datav(x,y,z)'}};

225 equ.da = {{1;1}};

226 equ.c = {{ts;ts}};

227 equ.a = {{'alphauˆ2*ts+tauu';'alphavˆ2*ts+tauv'}};

228 equ.init = {{'datau(x,y,z)';'datav(x,y,z)';0;0}}; %Initial Guess

229 equ.ind = [1];

230 appl.equ = equ;

231 fem.appl{1} = appl;

186

232 fem.frame = {'ref'};

233 fem.border = 1;

234 clear units;

235 units.basesystem = 'SI';

236 fem.units = units;

237 % ODE Settings

238 clear ode

239 clear units;

240 units.basesystem = 'SI';

241 ode.units = units;

242 fem.ode=ode;

243 % Multiphysics

244 fem=multiphysics(fem);

245 % Extend mesh

246 fem.xmesh=meshextend(fem);

247 % Solve problem with fixed spacial mesh

248 fem.sol=femstatic(fem, ...

249 'solcomp',{'v','u'}, ...

250 'outcomp',{'v','u'}, ...

251 'blocksize','auto', ...

252 'ntol',1.0E-6, ...

253 'maxiter',25, ...

254 'linsolver','gmres', ...

255 'prepar',{'droptol',0.01});

256 delaysuout=delaysuout([end 1:end-1]);

257 delaysvout=delaysvout([end 1:end-1]);

258 delaysuout(1)=postinterp(fem,'u',[-.5-epsilon;0;0]);

259 delaysvout(1)=postinterp(fem,'v',[.5+epsilon;0;0]);

260 delaysuin=delaysuin([end 1:end-1]);

261 delaysvin=delaysvin([end 1:end-1]);

262 delaysuin(1)=postinterp(fem,'u',[1/2+epsilon;0;0]);

263 delaysvin(1)=postinterp(fem,'v',[-1/2-epsilon;0;0]);

264 uxsolout(jj+1)=postinterp(fem,'u',[-1;0;0])';

265 vxsolout(jj+1)=postinterp(fem,'v',[1;0;0])';

266 usolin(jj+1)=postinterp(fem,'u',[.5+epsilon;0;0]);

267 vsolin(jj+1)=postinterp(fem,'v',[-.5-epsilon;0;0]);

268 % %With this you can look at the accuracy of the interpolation function. If

269 % %these two plots are on top of eachother than that is good.

270 % close

271 % figure flclear fem0; clear fem0;

272 fem0=fem;

273 delete('datau.txt');

274 delete('datav.txt');

275 jj

276 end

A.5 Calculating ω2 as described in §3.6

A.5.1 Script to Calculate ω2

This script calculates ω2 as defined in (3.53). It relies on all the other scripts and

functions that are found in the following subsections. The code here in §A.5 was

used for the example in §3.6.2.

1 %This code works for Du=1/3 and Dv=1/3 and R=1

2 %This code calculates omega2 for the Hopf in the Delay Model to get rid of

3 %secular growth.

187

4 clear all; close all; clc;

5 delay=2;

6 k1=1;

7 k2=1;

8 omega1=1; %This is always set equal to one for this code.

9 %Decided not to rescale the period to 2*pi

10 R11=-0.8553180758e-1; %These 4 values here are the Green's function values. If the coordinates of x1 and %x2 are

11 %(0.5,0,0) and (-0.5,0,0)then they can stay like this.

12 R22=-0.8553180758e-1;

13 GN21=-0.6817258485e-1;

14 GN12=-0.6817258485e-1;

15 uhist=linspace(.5,.5,1000); %These 8 vectors set the history for these functions

16 vhist=linspace(.8,.8,1000);

17 c1hist=linspace(0,0,1000);

18 c2hist=linspace(0,0,1000);

19 chi1hist=linspace(0,0,1000);

20 chi2hist=linspace(0,0,1000);

21 A1hist=linspace(0,0,1000);

22 A2hist=linspace(0,0,1000);

23 thist=linspace(-delay,0,length(uhist));

24 save methstepshistory.mat delay k1 k2 omega1 R11 R22 GN21 GN12 thist uhist vhist c1hist c2hist A1hist A2hist ...

25 chi1hist chi2hist

26 clear

27 %Run Method Steps to get periodic orbit at end

28 N=60; %Number of delay intervals to solve on.

29 %Make this large enough to get rid of transient

30 %and get periodic solution

31 run method steps leading order

32 %Get the new history for the next calculation. This will get rid of

33 %transient.

34 uhist=spline(t,u,linspace(t(end)-delay,t(end),1000));

35 vhist=spline(t,v,linspace(t(end)-delay,t(end),1000));

36 c1hist=spline(t,c1,linspace(t(end)-delay,t(end),1000));

37 c2hist=spline(t,c2,linspace(t(end)-delay,t(end),1000));

38 save methstepshistory.mat delay k1 k2 omega1 R11 R22 GN21 GN12 thist uhist vhist c1hist c2hist A1hist A2hist ...

39 chi1hist chi2hist

40 clear

41

42 %Run Method of Steps to get atleast one period no transient

43 N=30;%Number of delay intervals to solve on.

44 %Make this large enough to get a few periods

45 run method steps leading order

46 uasym=u;

47 %get the period with get periods better

48 get periods better %this calculates period

49 ttp=linspace(0,period,1000);

50 u=spline(t,u,ttp);

51 v=spline(t,v,ttp);

52 c1=spline(t,c1,ttp);

53 c2=spline(t,c2,ttp);

54 save lead order system.mat u v c1 c2 ttp

55 clearvars -except period

56 load methstepshistory.mat

57 save methstepshistory.mat

58 clear

59 %Now do the runeigsc.m and make sure the omega 2 converges.

60 %Do this by checking the Omega2s array

61 count=1;

62 for n=100:100:400 %h=period/(n+1) is the time step in the discretization.

63 runeigsc %Increase n for more accuracy. It leads to finding the eigenvalues of a larger matrix

64 Omega2s(count)=omega2;

65 H(count)=h;

66 N(count)=n;

67 count=count+1;

68 clearvars -except n Omega2s H count N

69 end

188

70 %Check Omega2s for convergence in omega2

71

72 omega2=Omega2s(end);

73 clearvars -except omega2

74 load methstepshistory.mat

75 save methstepshistory.mat

76 %Then you can run method of steps the whole system When running the method of steps with the correct

77 %omeaga2 you may want to change the history back to constants for u,v,c1,c2

78 uhist=linspace(.5,.5,1000); %These 8 vectors

79 %set the history for these functions

80 vhist=linspace(.8,.8,1000);

81 c1hist=linspace(0,0,1000);

82 c2hist=linspace(0,0,1000);

83 chi1hist=linspace(0,0,1000);

84 chi2hist=linspace(0,0,1000);

85 A1hist=linspace(0,0,1000);

86 A2hist=linspace(0,0,1000);

87 thist=linspace(-delay,0,length(uhist));

88 save methstepshistory.mat

89 clear

90 %Now run method of steps to solve the two DDAE systems for

91 %u,v,c1,c1,chi1,chi2,A1,A2

92 load methstepshistory.mat;

93 N=100;

94 run method steps

A.5.2 Script to Solve Leading Order DDAEs in (3.34)

This code solves the leading order DDAEs found in (3.34).

1 %This assumes tauu=tauv=3 which is brought about by setting R=1,Du=1/3=Dv

2 load methstepshistory.mat %This loads thist,uhist,vhist,c1hist,c2hist,chi1hist,chi2hist,A1hist,A2hist

3 %It also loads among other things. See the file if interested.

4 m=100; %delay/m is the step size in tt

5 %Options for ODE solver

6 options=odeset('stats','off','RelTol', 1e-9,'AbsTol',1e-9,'InitialStep',1e-9,'Events',@(t,y) ...

7 event function(t,y,delay));

8

9 %These history vectors are always defined on [-delay,0] throughout this code. We solve each

10 %step using ode45 on [0,delay] which uses the history from [-delay,0].

11 %Define the history for the system on [0,delay]

12 %Note that thist=[-delay,0] and so does th

13 th=linspace(-delay,0,m+1); t=th;

14 c1h=spline(thist,c1hist,th); c1=c1h;

15 c2h=spline(thist,c2hist,th); c2=c2h;

16 uh=spline(thist,uhist,th); u=uh;

17 vh=spline(thist,vhist,th); v=vh;

18 %Solve the system on [0,delay]

19 sol=ode45(@(t,y) odesys leading order(t,y,th,uh,vh,c1h,c2h,omega1,delay,k1,k2),[0 delay],[uh(end) vh(end)],options);

20 yn=deval(sol,th+delay);

21 for j=1:N

22 %History for the system on [j*delay,(j+1)delay]

23 th=linspace(-delay,0,m+1); t=[t(1:end-1) th+j*delay];

24 c1h=f(uh+c1h,vh); c1=[c1(1:end-1) c1h];

25 c2h=g(uh,vh+c2h); c2=[c2(1:end-1) c2h];

26 uh=yn(1,:); u=[u(1:end-1) uh];

27 vh=yn(2,:); v=[v(1:end-1) vh];

28 %Solve the system on [j*delay,(j+1)*delay]

29 %if j==10

30 % options=odeset('stats','off','RelTol',

31 %1e-3,'AbsTol',1e-3,'InitialStep',1e-1,'Events',@(t,y)

189

32 %event function(t,y,delay));

33 %end

34 sol=ode45(@(t,y) odesys leading order(t,y,th,uh,vh,c1h,c2h,omega1,delay,k1,k2),[0 delay],[uh(end) vh(end)],options);

35 yn=deval(sol,th+delay);

36 j

37 end

This code defines the leading order DDAE system in (3.34).

1 function dydt = odesys leading order(t,y,th,uh,vh,c1h,c2h,omega1,delay,k1,k2)

2 %This assumes tauu=tauv=3 which is brought about by setting R=1,

3 %Du=1/3=Dv=1/3

4 %reason for t-delay is that th is on [-delay,0] and t is on [0,delay]

5 F=spline(th,f(uh+c1h,vh),t-delay);

6 G=spline(th,g(uh,vh+c2h),t-delay);

7 dydt =1/omega1*[-k1*y(1)+F

8 -k2*y(2)+G];

A.5.3 Script to Solve the DDAEs in (3.42) and (3.47)

This script can be used to solve the DDAEs defined by (3.46) and (3.47). If we set

ω2 = 0 in this code then it also can solve the DDAEs in (3.42).

1 %This assumes tauu=tauv=3 which is brought about by setting R=1,

2 %Du=1/3=Dv

3

4 tic

5 m=100; %delay/m is the step size in tt (just post processing)

6 %Options for ODE solver

7 options=odeset('stats','off','RelTol', 1e-7,'AbsTol',1e-7,...

8 'InitialStep',1e-7,'Events',@(t,y) event function(t,y,delay));

9 %These history vectors are always defined on [-delay,0] throughout this

10 %code. We solve each step using ode45 on [0,delay] which uses the history

11 %from [-delay,0].

12 %Define the history for the system on [0,delay]

13 %Note that thist=[-delay,0] and so does th

14 %The variables defined on the right (or secondly) are for post processing

15 %only.

16 th=linspace(-delay,0,m+1); t=th;

17 A1h=spline(thist,A1hist,th); A1=A1h;

18 A2h=spline(thist,A2hist,th); A2=A2h;

19 c1h=spline(thist,c1hist,th); c1=c1h;

20 c2h=spline(thist,c2hist,th); c2=c2h;

21 chi1h=spline(thist,chi1hist,th); chi1=chi1h;

22 chi2h=spline(thist,chi2hist,th); chi2=chi2h;

23 uh=spline(thist,uhist,th); u=uh;

24 vh=spline(thist,vhist,th); v=vh;

25 uph=ppval(fnder(spline(th,uh)),th);

26 vph=ppval(fnder(spline(th,vh)),th);

27 c1ph=ppval(fnder(spline(th,c1h)),th);

28 c2ph=ppval(fnder(spline(th,c2h)),th);

29 %Solve the system on [0,delay]

30 sol=ode45(@(t,y) odesys(t,y,omega2,th,uh,vh,c1h,c2h,chi1h,chi2h,A1h,A2h,omega1,delay,k1,k2,R11,R22,GN21,GN12),...

31 [0 delay],[uh(end) vh(end) chi1h(end) chi2h(end)],options);

32 yn=deval(sol,th+delay);

33 for j=1:N

34 %History for the system on [j*delay,(j+1)delay]

190

35 th=linspace(-delay,0,m+1); t=[t(1:end-1) th+j*delay];

36 A1h=fu(uh+c1h,vh).*(4*pi*c1h*R11+chi1h+A1h)+fv(uh+c1h,vh).*(4*pi*c2h*GN12+chi2h)-delay/omega1*omega2*...

37 (fu(uh+c1h,vh).*(uph+c1ph)+fv(uh+c1h,vh).*vph); A1=[A1(1:end-1) A1h];

38 A2h=gv(uh,vh+c2h).*(4*pi*c2h*R22+chi2h+A2h)+gu(uh,vh+c2h).*(4*pi*c1h*GN21+chi1h)-delay/omega1*omega2*...

39 (gv(uh,vh+c2h).*(vph+c2ph)+gu(uh,vh+c2h).*uph); A2=[A2(1:end-1) A2h];

40 c1h=f(uh+c1h,vh); c1=[c1(1:end-1) c1h];

41 c2h=g(uh,vh+c2h); c2=[c2(1:end-1) c2h];

42 chi1h=yn(3,:); chi1=[chi1(1:end-1) chi1h];

43 chi2h=yn(4,:); chi2=[chi2(1:end-1) chi2h];

44 uh=yn(1,:); u=[u(1:end-1) uh];

45 vh=yn(2,:); v=[v(1:end-1) vh];

46 uph=ppval(fnder(spline(th,uh)),th);

47 vph=ppval(fnder(spline(th,vh)),th);

48 c1ph=ppval(fnder(spline(th,c1h)),th);

49 c2ph=ppval(fnder(spline(th,c2h)),th);

50 %Solve the system on [j*delay,(j+1)*delay]

51 %if j==10

52 % options=odeset('stats','off','RelTol', 1e-3,'AbsTol',1e-3,

53 %'InitialStep',1e-1,'Events',@(t,y) event function(t,y,delay));

54 %end

55 sol=ode45(@(t,y) odesys(t,y,omega2,th,uh,vh,c1h,c2h,chi1h,chi2h, A1h,A2h,omega1,delay,k1,k2,R11,R22,GN21,...

56 GN12),[0 delay],[uh(end) vh(end) chi1h(end) chi2h(end)],options);

57 yn=deval(sol,th+delay);

58 j

59 end

60 toc

This code defines the DDAE system by (3.46) and (3.47). Setting

ω2 = 0, it also defines the DDAE system in (3.42).

1 function dydt = odesys(t,y,omega2,th,uh,vh,c1h,c2h,chi1h,...

2 chi2h,A1h,A2h,omega1,delay,k1,k2,R11,R22,GN21,GN12)

3 %This assumes tauu=tauv=3 which is brought about by setting R=1,

4 %Du=1/3=Dv=1/3

5 %reason for t-delay is that th is on [-delay,0] and t is on [0,delay]

6 F=spline(th,f(uh+c1h,vh),t-delay);

7 FU=spline(th,fu(uh+c1h,vh),t-delay);

8 FV=spline(th,fv(uh+c1h,vh),t-delay);

9 G=spline(th,g(uh,vh+c2h),t-delay);

10 GU=spline(th,gu(uh,vh+c2h),t-delay);

11 GV=spline(th,gv(uh,vh+c2h),t-delay);

12 A1=spline(th,A1h,t-delay);

13 A2=spline(th,A2h,t-delay);

14 c1=spline(th,c1h,t-delay);

15 c2=spline(th,c2h,t-delay);

16 chi1=spline(th,chi1h,t-delay);

17 chi2=spline(th,chi2h,t-delay);

18 up=ppval(fnder(spline(th,uh)),t-delay);

19 vp=ppval(fnder(spline(th,vh)),t-delay);

20 c1p=ppval(fnder(spline(th,c1h)),t-delay);

21 c2p=ppval(fnder(spline(th,c2h)),t-delay);

22 dydt =1/omega1*[-k1*y(1)+F

23 -k2*y(2)+G

24 -k1*y(3)-omega2/omega1*(-k1*y(1)+F)+FU*(4*pi*c1*R11+chi1+A1)+FV*(4*pi*c2*GN12+chi2)-delay/omega1*omega2*...

25 (FU*(up+c1p)+FV*vp)

26 -k2*y(4)-omega2/omega1*(-k2*y(2)+G)+GV*(4*pi*c2*R22+chi2+A2)+GU*(4*pi*c1*GN21+chi1)-delay/omega1*omega2*...

27 (GV*(vp+c2p)+GU*up)];

These functions define F (u, v) and G(u, v) and their partial derivatives.

191

1 function s = f(u,v)

2 s=4*u./((1/2+u).*(1+v.ˆ2));

3 function s = fu(u,v)

4 s=8./((1+2*u).ˆ2.*(1+v.ˆ2));

5 function s = fv(u,v)

6 s=-16*u.*v./((1+2*u).*(1+v.ˆ2).ˆ2);

7 function s = g(u,v)

8 s=2*v.*u./(1/4+v);

9 function s = gu(u,v)

10 s=8*v./(4*v+1);

11 function s = gv(u,v)

12 s=8*u./(1+4*v).ˆ2;

This event function is used in the ODE solvers that are used in the

method steps to solve the DDAE systems. This event function prevents

the solver from stepping through a discontinuity and then interpolating

back over it.

1 function [value,isterminal,direction] = event function(t,y,delaypoints)

2 % when value is equal to zero, an event is triggered.

3 % set isterminal to 1 to stop the solver at the first event, or 0 to

4 % get all the events.

5 % direction=0 if all zeros are to be computed (the default), +1 if

6 % only zeros where the event function is increasing, and -1 if only

7 % zeros where the event function is decreasing.

8 value = t-delaypoints; % when value = 0, an event is triggered

9 %value = t-t; % when value = 0, an event is triggered

10 isterminal = 1; % terminate after the first event

11 direction = 0; % get all the zeros

A.5.4 Finding Period of the Periodic Solutions from (3.46)

This function finds the period of the solutions which satisfy (3.46) in the case of a

Hopf bifurcation.

1 %This finds the period of the function whose independent variable is t and whose dependent variable is uasym

2 % The function is defined by basically spline(t,uasym) The polyfit was illconditioned for these functions

3 %so we had to a change of variables.A qudratic is fit between two adjacent peaks and then

4 %period is the difference between the peaks

5 [pks,locs]=findpeaks(uasym);

6 lp1=locs(1)-1;

7 rp1=locs(1)+1;

8 lp2=locs(2)-1;

9 rp2=locs(2)+1;

10 V=uasym;

11 [Y1,I1]=max(V(lp1:rp1));

12 t1=t(lp1+I1-2); x1=uasym(lp1+I1-2);

13 t2=t(lp1+I1-1); x2=uasym(lp1+I1-1);

14 t3=t(lp1+I1); x3=uasym(lp1+I1);

15 tlist=[t1 t2 t3];

16 tnew = (tlist-mean(tlist))/std(tlist);

17 [p,S,mu] = polyfit(tlist,[x1 x2 x3],2);

18 Anew = p(1); Bnew = p(2); Cnew = p(3); mu1 = mu(1); mu2 = mu(2);

19 C=(Anew*(mu1)ˆ2/(mu2)ˆ2)-(Bnew*(mu1/mu2))+Cnew;

192

20 B = (Bnew*mu2 -2*Anew*mu1)/(mu2)ˆ2;

21 A = Anew/(mu2)ˆ2;

22 t1max=-B/(2*A);

23 [Y1,I1]=max(V(lp2:rp2));

24 t1=t(lp2+I1-2); x1=uasym(lp2+I1-2);

25 t2=t(lp2+I1-1); x2=uasym(lp2+I1-1);

26 t3=t(lp2+I1); x3=uasym(lp2+I1);

27 tlist=[t1 t2 t3];

28 tnew = (tlist-mean(tlist))/std(tlist);

29 [p,S,mu] = polyfit(tlist,[x1 x2 x3],2);

30 Anew = p(1); Bnew = p(2); Cnew = p(3); mu1 = mu(1); mu2 = mu(2);

31 C=(Anew*(mu1)ˆ2/(mu2)ˆ2)-(Bnew*(mu1/mu2))+Cnew;

32 B = (Bnew*mu2 -2*Anew*mu1)/(mu2)ˆ2;

33 A = Anew/(mu2)ˆ2;

34 t2max=-B/(2*A);

35 period=t2max-t1max;

A.5.5 Discretization of the Adjoint Operator

This code creates the discretized operator (matrix), L, defined in (3.61).

1 function L=eigsc(n,period,delay,k1,k2)

2 %Y is the vector [Y1, Y2, Y3, Y4] where wach Yj has the form [y0,y1,y2,...yn] where y0=y {n+1} is the periodic b.c.

3 %We use finite difference to turn the linear neutral delay operator in to a matrix eigenvalue problem.

4 % Looking for zero eigenvalues with periodic solutions to use in solvability condition to calculate omega2.

5 h=period/(n+1);

6 %This derivative is O(hˆ4) and is y'~(y (n-2)-8y (n-1)+8y (n+1)-y (n+2))/(12*h)

7 %First create one block

8 dt=zeros(n+1);

9 dt(1,2)=8; dt(1,3)=-1; dt(1,n)=1; dt(1,n+1)=-8; %first row

10 dt(2,1)=-8; dt(2,3)=8; dt(2,4)=-1; dt(2,n+1)=1; %second row

11 dt(n,1)=-1; dt(n,n-2)=1; dt(n,n-1)=-8; dt(n,n+1)=8; %second last row

12 dt(n+1,1)=8; dt(n+1,2)=-1; dt(n+1,n-1)=1; dt(n+1,n)=-8; %last row

13 for j=3:n-1 %all other rows in between

14 dt(j,j-2)=1; dt(j,j-1)=-8; dt(j,j+1)=8; dt(j,j+2)=-1;

15 end

16 %Make the Block diagonal derivative matrix

17 dt=blkdiag(dt,dt,dt,dt);

18 dt=1/(12*h)*dt;

19 %Create Omega matrix which is just diag(omega1,omega1,...,1,1,....1)

20 Omega=diag([linspace(1,1,2*n+2) linspace(0,0,2*n+2)]);

21 K=diag([linspace(k1,k1,n+1) linspace(k2,k2,n+1) linspace(1,1,2*n+2)]);

22 %Advancement Matrix

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 frac=delay/h-floor(delay/h); %the \mu in paper

25 N=floor(delay/h);

26 %Advancement Matrix

27 %Define the R N matrix in delay paper. Multiplying a vector by this matrix

28 %shifts every element back N spaces. It brings every point in the

29 %discretized vector, y k, to the corresponding y j in the figure in delay

30 %paper. See figure/diagram from paper.

31 rotj=zeros(n+1);

32 rotj(1:n+1-N,N+1:n+1)=eye(n+1-N); rotj(n+2-N:n+1,1:N)=eye(N);

33 %R (N+1)

34 N=floor(delay/h)+1;

35 rotj1=zeros(n+1);

36 rotj1(1:n+1-N,N+1:n+1)=eye(n+1-N); rotj1(n+2-N:n+1,1:N)=eye(N);

37 %R (N+2)

38 N=floor(delay/h)+2;

39 rotj2=zeros(n+1);

40 rotj2(1:n+1-N,N+1:n+1)=eye(n+1-N); rotj2(n+2-N:n+1,1:N)=eye(N);

193

41 %R (N-1)

42 N=floor(delay/h)-1;

43 rotjm1=zeros(n+1);

44 rotjm1(1:n+1-N,N+1:n+1)=eye(n+1-N); rotjm1(n+2-N:n+1,1:N)=eye(N);

45 %R (N-2)

46 N=floor(delay/h)-2;

47 rotjm2=zeros(n+1);

48 rotjm2(1:n+1-N,N+1:n+1)=eye(n+1-N); rotjm2(n+2-N:n+1,1:N)=eye(N);

49 %%%%%%%%%%%%%%%%

50 % %Quartic Approximation

51 rot=((1/4)*rotj+(1/24)*rotj2-(1/6)*rotjm1+(1/24)*rotjm2 -(1/6)*rotj1)*fracˆ4+((1/12)*rotj2+(1/6)*rotjm1-...

52 (1/12)*rotjm2-(1/6)*rotj1)*fracˆ3+(-(5/4)*rotj-(1/24)*rotj2+(2/3)*rotjm1- (1/24)*rotjm2+(2/3)*rotj1)*fracˆ2...

53 +(-(1/12)*rotj2-(2/3)*rotjm1+ (1/12)*rotjm2+(2/3)*rotj1)*frac+rotj;

54 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 rot=blkdiag(rot,rot,rot,rot);

56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

57 %Load in the Leading order Solution: It loads

58 %periodic solutions u,v,c1,c2

59 load lead order system.mat;

60 %Loads ttp,u,v,c1,c2 on [0,period]

61 %Create the matrix that does the operation F(t)*Y(t) where F(t) is a time depen. matrix.

62 %F(t) is a 4 by 4 matrix with 16 elements. Each element is a function of

63 %the form f {ij}(t) where i=1..4, j=1..4. There will be 16 blocks in the

64 %correspinding operator Matrix each of size n+1 by n+1

65 f1=@(T) spline(ttp,fu(u+c1,v),T); f2=@(T) spline(ttp,fv(u+c1,v),T); f3=@(T) f1(T); f4=@(T) 0;

66 f5=@(T) spline(ttp,gu(u,c2+v),T); f6=@(T) spline(ttp,gv(u,c2+v),T); f7=@(T) 0; f8=@(T) spline(ttp,gv(u,c2+v),T);

67 f9=@(T) spline(ttp,fu(u+c1,v),T); f10=@(T) spline(ttp,fv(u+c1,v),T); f11=@(T) f9(T); f12=@(T) 0;

68 f13=@(T) spline(ttp,gu(u,c2+v),T); f14=@(T) spline(ttp,gv(u,c2+v),T); f15=@(T) 0; f16=@(T) f14(T);

69 F=zeros(size(rot));

70 for i=1:n+1

71 F(i,i)=f1((i-1)*h); F(i,i+n+1)=f2((i-1)*h); F(i,i+2*n+2)=f3((i-1)*h); F(i,i+3*n+3)=f4((i-1)*h);

72 F(i+n+1,i)=f5((i-1)*h); F(i+n+1,i+n+1)=f6((i-1)*h); F(i+n+1,i+2*n+2)=f7((i-1)*h);F(i+n+1,i+3*n+3)=f8((i-1)*h);

73 F(i+2*n+2,i)=f9((i-1)*h); F(i+2*n+2,i+n+1)=f10((i-1)*h); F(i+2*n+2,i+2*n+2)=f11((i-1)*h);

74 F(i+2*n+2,i+3*n+3)=f12((i-1)*h);F(i+3*n+3,i)=f13((i-1)*h); F(i+3*n+3,i+n+1)=f14((i-1)*h);

75 F(i+3*n+3,i+2*n+2)=f15((i-1)*h); F(i+3*n+3,i+3*n+3)=f16((i-1)*h);

76 end

77 J2=F;

78 L=-Omega*dt-J2'*rot+K;

A.5.6 Finding the Kernel of the Discretized Operator

This code finds the kernel of L which is defined in (3.61). This kernel approximates

the kernel of the operator L∗ defined in (3.52). This code also calculates ω2 from the

solvability condition in (3.53).

1 %this caluclates omega2 by finding the kernel of the adjoint. uses eigs to find kernel of the

2 %discretized operator (a matrix)

3 load methstepshistory.mat

4 h=period/(n+1);

5 L=eigsc(n,period,delay,k1,k2);

6 [v,e]=eigs(L,1,.00000001);

7 e=diag(e);

8 w1=v(:,1);

9 t=linspace(0,period-h,n+1);

10 x1=w1(1:n+1,1);

11 x2=w1(n+2:2*n+2,1);

12 x3=w1(2*n+3:3*n+3,1);

13 x4=w1(3*n+4:4*n+4,1);

14 %Add in the last point t {n+1}=Period

194

15 t(end+1)=t(end)+h;

16 x1(end+1)=x1(1);

17 x2(end+1)=x2(1);

18 x3(end+1)=x3(1);

19 x4(end+1)=x4(1);

20 timeadj=t;

21 save adjointsol x1 x2 x3 x4 timeadj

22 load lead order system.mat %loads ttp,u,v,c1,c2

23 load adjointsol.mat %loads

24 x1=spline(timeadj,x1,ttp);

25 x2=spline(timeadj,x2,ttp);

26 x3=spline(timeadj,x3,ttp);

27 x4=spline(timeadj,x4,ttp);

28 up=ppval(fnder(spline(ttp,u),1),ttp);

29 vp=ppval(fnder(spline(ttp,v),1),ttp);

30 c1p=ppval(fnder(spline(ttp,c1),1),ttp);

31 c2p=ppval(fnder(spline(ttp,c2),1),ttp);

32 c1pp=ppval(fnder(spline(ttp,c1),2),ttp);

33 c2pp=ppval(fnder(spline(ttp,c2),2),ttp);

34 B1=4*pi*R11*fu(u+c1,v).*c1+4*pi*GN12*fv(u+c1,v).*c2;

35 B1p=ppval(fnder(spline(ttp,B1),1),ttp);

36 B2=4*pi*R22*gv(u,v+c2).*c2+4*pi*GN21*gu(u,v+c2).*c1;

37 B2p=ppval(fnder(spline(ttp,B2),1),ttp);

38 uf=@(T) spline(ttp,u,mod(T,period));

39 upf=@(T) spline(ttp,up,mod(T,period));

40 vf=@(T) spline(ttp,v,mod(T,period));

41 vpf=@(T) spline(ttp,vp,mod(T,period));

42 c1f=@(T) spline(ttp,c1,mod(T,period));

43 c1pf=@(T) spline(ttp,c1p,mod(T,period));

44 c1ppf=@(T) spline(ttp,c1pp,mod(T,period));

45 c2f=@(T) spline(ttp,c2,mod(T,period));

46 c2pf=@(T) spline(ttp,c2p,mod(T,period));

47 c2ppf=@(T) spline(ttp,c2pp,mod(T,period));

48 B1f=@(T) spline(ttp,B1,mod(T,period));

49 B2f=@(T) spline(ttp,B2,mod(T,period));

50 B1pf=@(T) spline(ttp,B1p,mod(T,period));

51 B2pf=@(T) spline(ttp,B2p,mod(T,period));

52 x1f=@(T) spline(ttp,x1,mod(T,period));

53 x2f=@(T) spline(ttp,x2,mod(T,period));

54 x3f=@(T) spline(ttp,x3,mod(T,period));

55 x4f=@(T) spline(ttp,x4,mod(T,period));

56 top=@(T) B1f(T-delay).*(x1f(T)+x3f(T))+B2f(T-delay).*(x2f(T)+x4f(T));

57 bottom=@(T) upf(T).*x1f(T)+vpf(T).*x2f(T)+delay/omega1*(c1pf(T).*(x1f(T)+x3f(T))+c2pf(T).*(x2f(T)+x4f(T)));

58 omega2=quad(top,0,period)/quad(bottom,0,period);

A.6 Comsol Code for Receptor Model in Chapter 4

This code can solve models that involve the patches on the surface of the sphere as

well as the sub cellular compartments. This code was used to solve the model in

§4.4. Simpler variants of it were used to solve the other models in Chapter 4.

1 function out = model(patchnumb,kk,tout)

2

3 import com.comsol.model.*

4 import com.comsol.model.util.*

5 model = ModelUtil.create('Model');

6 model.modelPath('/misc/temp-1/clevy/phd from home directory/Comsol4Cell');

7 model.modelNode.create('comp1');

195

8 model.geom.create('geom1', 3);

9 model.mesh.create('mesh1', 'geom1');

10 model.physics.create('c', 'CoefficientFormPDE', 'geom1', {'u1','u2','u3','u4'});

11 model.study.create('std1');

12 model.study('std1').feature.create('time', 'Transient');

13 model.study('std1').feature('time').activate('c', true);

14 %Patches Source Function

15 model.func.create('rect1', 'Rectangle');

16 model.func('rect1').model('comp1');

17 model.func('rect1').set('lower', '0');

18 model.func('rect1').set('upper', '40');

19 numstatevar=4; %The number of state variables (see above)

20 Npatches=patchnumb; %The number of patches

21 percent=.05; %100P is the percent of surface area of unit sphere that patches cover

22 %Load in the rotation angles for sphere

23 load(['/misc/temp-1/clevy/phd from home directory/Comsol4Cell/Finding RotAng/RotAng ' num2str(100*percent) ' percent']);

24 patchangle=acos((Npatches-2*percent)/Npatches); %The area of each patch is 2*pi*(1-cos(patchangle));

25 zaxisrot=rotationangles(Npatches,1); %Rotate the sphere through the z-axis by this angle.

26 xaxisrot=rotationangles(Npatches,2);

27 yaxisrot=rotationangles(Npatches,3);

28 trange=['range(0,1,' num2str(tout) ')'];

29 rtol=0.001;

30 patchflux='(1+(125*u1/(u1+1)))*1/(u4ˆ3+1)';

31 epsilon=0.1;

32 K=[6,1,1,1]*kk;

33 D=[1,1,1,1];

34 T=[1,1,1,1];

35 inits=[0,0,0,0];

36 %Radii and location of compartment/spheres

37 r=[.1,.1,.1];

38 x=[0,0,0];

39 y=[0,0,0];

40 z=[0.7,0,-0.7];

41 %Enzyme Kinetc Functions for internal compartments

42 %enzyfuncs={'1/epsilon*u1/(u1+1)', '1/epsilon*u2/(u2+1)', '1/epsilon*u3/(u3+1)'};

43 enzyfuncs={'100*u1ˆ2/(u1ˆ2+1)','100*u2ˆ2/(u2ˆ2+1)','100*u3ˆ2/(u3ˆ2+1)'};

44 %Location of patches are specified in spherical coordinates.

45 %theta is measured in the xy plane: counter clockwise from the positive

46 %x-axis. phi is measured from the positive z-axis down into the positive

47 %side of the xy plane. Get patches uniformly distributed (Thomsons Problem:)

48 %[V,Tri,~,Ue]=ParticleSampleSphere('N',Npatches);

49 %This loads in vector V with patch locations

50 load(['/misc/temp-1/clevy/phd from home directory/Comsol4Cell/Location of Patches/' num2str(Npatches) 'xyz.mat']);

51 %V holds the location of the patches in three columns xyz

52 %Convert to spherical

53 [theta,phi,junk] = cart2sph(V(:,1), V(:,2), V(:,3));

54 %Matlabs convention measures phi from xy plane toward positive z-axis.

55 %Therefore we have to tranform this: phi= Pi/2-phi

56 phi=pi/2-phi;

57 %Now convert to degrees which is what Comsol is using for patch location

58 theta = radtodeg(theta);

59 phi=radtodeg(phi);

60 %Move some of the patches slightly (only in some cases)

61 %so that the finial geometry will work.

62 if and(Npatches==9, percent==.05)

63 theta(2)=theta(2); phi(2)=phi(2)+2;

64 theta(5)=theta(5)+3; phi(5)=phi(5)-3;

65 end

66 if and(Npatches==10, percent==.05)

67 theta(2)=theta(2)+3; phi(2)=phi(2)+1.5;

68 end

69 if and(Npatches==11, percent==.05)

70 phi(2)=phi(2)+.5;

71 theta(4)=theta(4)+2.5;

72 theta(8)=theta(8)-.5;

73 theta(10)=theta(10)-4;

196

74 end

75 %Size of Patches: The Surface Area of each patch is of the form

76 %A=2*pi*(1-cos(angle)). If angle=pi then one patch covers the entire sphere

77 %See notes for what the angle is. 0<angle<pi.

78 %We will make all patches the same size

79 angles=linspace(patchangle,patchangle,length(theta));

80 %Set up the constants in this Model

81 model.variable.create('var1');

82 model.variable('var1').model('comp1');

83 model.variable('var1').set('epsilon', epsilon);

84 for i=1:length(D);

85 model.variable('var1').set(['k' num2str(i)], K(i));

86 model.variable('var1').set(['d' num2str(i)], D(i));

87 model.variable('var1').set(['t' num2str(i)], T(i));

88 model.variable('var1').set(['u' num2str(i) 'init'], inits(i));

89 end

90 %Create the Shpere/Cell

91 model.geom('geom1').feature.create('sph1', 'Sphere');

92 model.geom('geom1').feature('sph1').set('r', '1');

93 model.geom('geom1').feature('sph1').set('createselection', 'on');

94 model.geom('geom1').run('sph1');

95 %We may need to rotate the sphere so that its edges do not %intersect with the edges of the patches.

96 %This is an issue with Comsoland can only be solved if we purchase the import cad module. for now we

97 %will rotate the sphere. For now we will just stick with rotations through the z-axis, x-axis, y-axis.

98 %After this process the Unit Sphere is referred to as rotsph3 because it has gone through 3 rotations.

99 %Rotate through z axis

100 model.geom('geom1').feature.create('rotsph1', 'Rotate');

101 model.geom('geom1').feature('rotsph1').selection('input').set({'sph1'});

102 model.geom('geom1').feature('rotsph1').set('axistype', 'z');

103 model.geom('geom1').feature('rotsph1').set('createselection', 'on');

104 model.geom('geom1').feature('rotsph1').set('rot', zaxisrot);

105 model.geom('geom1').run('rotsph1');

106 %Rotate through x axis

107 model.geom('geom1').feature.create('rotsph2', 'Rotate');

108 model.geom('geom1').feature('rotsph2').selection('input').set({'rotsph1'});

109 model.geom('geom1').feature('rotsph2').set('axistype', 'x');

110 model.geom('geom1').feature('rotsph2').set('createselection', 'on');

111 model.geom('geom1').feature('rotsph2').set('rot', xaxisrot);

112 model.geom('geom1').run('rotsph2');

113 %Rotate through y axis

114 model.geom('geom1').feature.create('rotsph3', 'Rotate');

115 model.geom('geom1').feature('rotsph3').selection('input').set({'rotsph2'});

116 model.geom('geom1').feature('rotsph3').set('axistype', 'y');

117 model.geom('geom1').feature('rotsph3').set('createselection', 'on');

118 model.geom('geom1').feature('rotsph3').set('rot', yaxisrot);

119 model.geom('geom1').run('rotsph3');

120 %This Loop Creates Patches

121 for i=1:1:length(theta)

122 model.geom('geom1').feature.create(['wp' num2str(i)], 'WorkPlane');

123 model.geom('geom1').feature(['wp' num2str(i)]).set('unite', true);

124 model.geom('geom1').feature(['wp' num2str(i)]).set('quickplane', 'xz');

125 model.geom('geom1').feature(['wp' num2str(i)]).set('repairtol', '1.0E-6');

126 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature.create('pc1', 'ParametricCurve');

127 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').set('parmin', pi/2-angles(i));

128 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').set('parmax', pi/2);

129 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').setIndex('coord', 'cos(s)', 0);

130 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').setIndex('coord', 'sin(s)', 1);

131 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').set('rtol', '1.0E-6'); %Added this in to fix issue

132 model.geom('geom1').feature(['wp' num2str(i)]).geom.feature('pc1').set('maxknots', '1000'); %Added this in to fix issue

133 model.geom('geom1').feature(['wp' num2str(i)]).geom.run('pc1');

134 model.geom('geom1').run(['wp' num2str(i)]);

135 model.geom('geom1').feature.create(['rev' num2str(i)], 'Revolve');

136 model.geom('geom1').feature(['rev' num2str(i)]).set('axistype', '3d');

137 model.geom('geom1').feature(['rev' num2str(i)]).setIndex('axis3', '0', 1);

138 model.geom('geom1').feature(['rev' num2str(i)]).setIndex('axis3', '1', 2);

139 model.geom('geom1').feature(['rev' num2str(i)]).set('polres', '50');

197

140 model.geom('geom1').feature(['rev' num2str(i)]).set('createselection', 'on');

141 model.geom('geom1').run(['rev' num2str(i)]);

142 model.geom('geom1').feature.create(['rot' num2str(2*i-1)], 'Rotate');

143 model.geom('geom1').feature(['rot' num2str(2*i-1)]).selection('input').named(['rev' num2str(i)]);

144 model.geom('geom1').feature(['rot' num2str(2*i-1)]).set('rot', phi(i));

145 model.geom('geom1').feature(['rot' num2str(2*i-1)]).set('createselection', 'on');

146 model.geom('geom1').feature(['rot' num2str(2*i-1)]).set('axistype', 'y');

147 model.geom('geom1').run(['rot' num2str(2*i-1)]);

148 model.geom('geom1').feature.create(['rot' num2str(2*i)], 'Rotate');

149 model.geom('geom1').feature(['rot' num2str(2*i)]).selection('input').named(['rot' num2str(2*i-1)]);

150 model.geom('geom1').feature(['rot' num2str(2*i)]).set('rot', theta(i));

151 model.geom('geom1').feature(['rot' num2str(2*i)]).set('createselection', 'on');

152 model.geom('geom1').run(['rot' num2str(2*i)]);

153 end

154 %This loop creates sphere compartments inside domain

155 for i=1:length(r)

156 model.geom('geom1').feature.create(['sph' num2str(i+1)], 'Sphere');

157 model.geom('geom1').feature(['sph' num2str(i+1)]).set('r', r(i));

158 model.geom('geom1').feature(['sph' num2str(i+1)]).setIndex('pos', x(i), 0); % x location of sphere center

159 model.geom('geom1').feature(['sph' num2str(i+1)]).setIndex('pos', y(i), 1); % y location of sphere center

160 model.geom('geom1').feature(['sph' num2str(i+1)]).setIndex('pos', z(i), 2); % z location of sphere center

161 model.geom('geom1').feature(['sph' num2str(i+1)]).set('createselection', 'on');

162 model.geom('geom1').run(['sph' num2str(i+1)]);

163 end

164 %Create a cell array of strings corresponding to the patches on the sphere.

165 for i=1:length(theta)

166 patches{i}=['rot' num2str(2*i)];

167 end

168 %Create a cell array of strings by adding 'rotsph3' (the unit sphere) as

169 %the first entry followed by patches

170 %(defined above)

171 cellunionpatches=['rotsph3' patches];

172 %Create a cell array of strings corresponding to the interior

173 %compartments/spheres within the sphere.

174 for i=1:length(r)

175 compartments{i}=['sph' num2str(i+1)];

176 end

177 %Union the patches and create a selection. This is so we can use one flux

178 %boundary condition later defined on this selection (union of all patches)

179 model.geom('geom1').feature.create('uni1', 'Union');

180 model.geom('geom1').feature('uni1').selection('input').set(patches);

181 model.geom('geom1').feature('uni1').set('createselection', 'on');

182 model.geom('geom1').run('uni1');

183 %Union the Patches with the Cell/Sphere. This is used for the Difference

184 %operator that follows right below this

185 model.geom('geom1').feature.create('uni2', 'Union');

186 model.geom('geom1').feature('uni2').selection('input').set(cellunionpatches); %try 'uni1' for .set()

187 model.geom('geom1').feature('uni2').set('createselection', 'on');

188 model.geom('geom1').run('uni2');

189 if length(r) >= 1

190 %Take the difference of (Sphere + Patches) with (Interior Compartments)

191 model.geom('geom1').feature.create('dif1', 'Difference');

192 model.geom('geom1').feature('dif1').selection('input').set({'uni2'});

193 model.geom('geom1').feature('dif1').selection('input2').set(compartments);

194 model.geom('geom1').feature('dif1').set('createselection', 'on');

195 model.geom('geom1').run('dif1');

196 end

197 %mphgeom(model, 'geom1','Facealpha',.4,'build','off');

198 %Form union of geometry

199 model.geom('geom1').feature('fin').set('repairtol', '1.0E-6');

200 model.geom('geom1').run('fin');

201 %Create the Boundary Condition on the patches. The patches were formed

202 %into uni1 (union 1)

203 model.physics('c').feature.create('flux1', 'FluxBoundary', 2);

204 model.physics('c').feature('flux1').selection.named('geom1 uni1 bnd');

205 model.physics('c').feature('flux1').set('g', 1, patchflux);

198

206 %Boundary conditions using enzyme functions on compartments

207 for i=1:length(r)

208 model.physics('c').feature.create(['flux' num2str(i+1)], 'FluxBoundary', 2);

209 model.physics('c').feature(['flux' num2str(i+1)]).selection.named(['geom1 sph' num2str(i+1) ' bnd']);

210 model.physics('c').feature(['flux' num2str(i+1)]).set('g', i+1, enzyfuncs(i));

211 en

212 %Set up the PDEs and coefficients

213 for i=1:length(D);

214 %Turn off source term

215 model.physics('c').feature('cfeq1').set('f', i, '0');

216 %Set up Decay terms

217 model.physics('c').feature('cfeq1').set('a', (length(D)+1)*i-(length(D)), ['k' num2str(i)]);

218 %Set up Term in front of du/dt

219 model.physics('c').feature('cfeq1').set('da', (length(D)+1)*i-(length(D)), ['t' num2str(i)]);

220 %Set up initial conditions

221 model.physics('c').feature('init1').set(['u' num2str(i)], 1, ['u' num2str(i) 'init']);

222 % %Set up diffusion terms

223 model.physics('c').feature('cfeq1').set('c', (length(D)+1)*i-(length(D)), ...

224 {['d' num2str(i)] '0' '0' '0' ['d' num2str(i)] '0' '0' '0' ['d' num2str(i)]});

225 end

226 %This line turns on the progress log

227 ModelUtil.showProgress(true);

228 %This loop creates the probe plots so we can view the solutions while

229 %solving

230 for i=1:numstatevar

231 model.probe.create(['pdom' num2str(i)], 'DomainPoint');

232 model.probe(['pdom' num2str(i)]).model('comp1');

233 model.probe(['pdom' num2str(i)]).setIndex('coords3', -.35, 0, 0);

234 model.probe(['pdom' num2str(i)]).setIndex('coords3', -.65, 0, 1);

235 model.probe(['pdom' num2str(i)]).setIndex('coords3',-.65, 0, 2);

236 model.probe(['pdom' num2str(i)]).feature(['ppb' num2str(i)]).set('expr', ['u' num2str(i)]);

237 model.probe(['pdom' num2str(i)]).genResult([]);

238 model.result.numerical(['pev' num2str(i)]).set('table', 'tbl1');

239 model.result.numerical(['pev' num2str(i)]).set('innerinput', 'all');

240 model.result.numerical(['pev' num2str(i)]).set('outerinput', 'all');

241 end

242 %Create a cell array of strings corresponding to the

243 %different probe plots (created above)

244 %for each state variable.

245 for i=1:length(numstatevar)

246 probeplots{i}=['pdom' num2str(i)];

247 end

248 %Set up the Study/Solvers

249 model.study('std1').feature('time').set('tlist', trange);

250 model.study('std1').feature('time').set('rtolactive', 'on');

251 model.study('std1').feature('time').set('rtol', rtol);

252 model.study('std1').feature('time').set('plot', 'on');

253 model.study('std1').feature('time').set('plotfreq', 'tsteps');

254 model.result('pg1').set('window', 'window1');

255 model.result('pg1').feature('tblp1').set('legend', 'on');

256 model.result('pg1').run;

257 model.sol.create('sol1');

258 model.sol('sol1').study('std1');

259 model.sol('sol1').feature.create('st1', 'StudyStep');

260 model.sol('sol1').feature('st1').set('study', 'std1');

261 model.sol('sol1').feature('st1').set('studystep', 'time');

262 model.sol('sol1').feature.create('v1', 'Variables');

263 model.sol('sol1').feature('v1').set('control', 'time');

264 model.shape('shape1').feature('shfun1');

265 model.sol('sol1').feature.create('t1', 'Time');

266 model.sol('sol1').feature('t1').set('tlist', trange);

267 model.sol('sol1').feature('t1').set('plot', 'on');

268 model.sol('sol1').feature('t1').set('plotgroup', 'pg1');

269 model.sol('sol1').feature('t1').set('plotfreq', 'tsteps');

270 model.sol('sol1').feature('t1').set('probesel', 'all');

271 model.sol('sol1').feature('t1').set('probes', probeplots);

199

272 model.sol('sol1').feature('t1').set('probefreq', 'tsteps');

273 model.sol('sol1').feature('t1').set('control', 'time');

274 model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled');

275 model.sol('sol1').feature('t1').feature('fc1').set('linsolver', 'dDef');

276 model.sol('sol1').feature('t1').feature.remove('fcDef');

277 model.sol('sol1').attach('std1');

278 model.sol('sol1').runAll;

279 out = model;

