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Abstract 

The prevalence of obesity in Canada and other Western countries has increased 

dramatically over the last 30 years.  This project modelled future prevalence of weight 

status trends under a Markov framework by estimating transition probabilities between 

categorical weight states.  A microsimulation was developed to track individual weight 

status histories through discrete-time updates.  Model and simulation parameters were 

derived from a nationally representative longitudinal survey which followed 17,000 

participants over a 20 year period.  A series of weight prevention and intervention 

strategies were simulated to determine their potential impact on weight status trends and 

population health utility. 
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Chapter 1: Introduction 

Over the last decade overweight and obesity levels in Canada have grown to 

unprecedented levels, sparking debate on how government should intervene to help 

mitigate any further increase of its prevalence.  In Canada from 1970-2004, data from a 

representative survey revealed an increase in adult obesity prevalence from 10 to 23% of 

the population, or a relative increase of approximately 200% [1].  In 2009-2011 obesity 

reached 27% while overweight rose to 40% according to the Canadian Health Measures 

Survey [2].  The obesity trend is similarly concerning for children and young adults, who 

are increasingly diagnosed with obesity-related conditions formerly exclusive to adults 

[3].  These findings are particularly concerning for Nova Scotians, as our rate of 

overweight and obesity ranks among the highest in Canada [4]. 

 

Climbing obesity rates have translated into higher prevalence of chronic health conditions 

such as type II diabetes, high blood pressure, heart disease and some forms of cancer.  

More specifically, a 2004 article found that 39% of type II diabetes cases, 45% percent of 

hypertension and 23% of coronary artery disease could be attributed to obesity [1].  A 

study estimating cardiovascular disease risk (CVD) concluded obesity and diabetes were 

the only risk factors of CVD which will not decrease in the next two decades [5].  A 

wealth of research indicates obesity is closely related to many undesirable health 

conditions and has appropriately become a top priority of the Canadian health agenda.  A 

decade ago, obesity was cited as “rivaling smoking as the leading cause of premature 

death and illness” [6], and others suggest its health burden has indeed surpassed smoking 

in some respects [7][8]. 

 

Numerous analyses have estimated the overall cost of overweight and obesity to society.  

Janssen et al. [9] estimated the economic burden of Canadian obesity in 2001 to be $4.3 

billion (direct costs $1.6B, indirect $2.7B) annually.  In 2006 as obesity rates continued 

to climb, additional obesity-related comorbidities were identified and cost estimates 

increased to as high as 11 billion (direct costs $6B, indirect $5B) annually [10].  In a US 

study, Finkelstein et al. [11] reported that compared to normal weight individuals, those 

who are obese incur 27% more physician visits and outpatient costs, 46% more inpatient 
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costs, and spend 80% more on prescription medication.  Similarly an Ontario-based study 

concluded overall physician costs for obese adults were 18.2% higher compared to their 

normal weight counterparts [12].  The relationship was also determined to be age 

dependent, as obese adults over 60 were found to incur 28% higher physician costs than 

their normal weight counterparts.   

 

The increase in obesity-related illnesses and healthcare costs provide Canadian policy 

makers with an incentive to reduce overweight and obesity prevalence.  Poor nutrition 

and lack of physical activity are already established as major modifiable risk factors for 

overweight and obesity.  Therefore, healthy diets and active lifestyles are the key foci of 

primary prevention and intervention strategies.  Despite this apparent link, large-scale 

governmental weight management policies or programs have yet to be implemented due 

to uncertainty of their long term value and critiques of their cost-effectiveness [13].  

These critiques, however, may begin to diminish as the weight of evidence in favour of 

prevention and intervention initiatives are substantiated. 

 

Although adult intervention programs have come under scrutiny due to subsequent 

weight regain, Prince [14] argues a multilayered approach is needed rather than isolated 

weight loss, exercise or healthy eating interventions.  Children’s school prevention 

programs have shown more promising results [15], using the school environment to 

emulate a societal microcosm in which a broad range of policies, interventions and 

prevention programs can be tested.  One example demonstrating successful obesity 

prevention is the Alberta Project Promoting active Living and healthy Eating (APPLE) 

within 10 selected schools [16]. 

 

The value of prevention programs lies not only in knowing their effectiveness, but also in 

weighing the cost of such programs against the future obesity outlook without changing 

the status quo.  This thesis develops a simulation framework to forecast the trajectory of 

weight status prevalence in the coming decades. The proposed research is the first study 

to use Statistics Canada's longitudinal data sources to specifically model and simulate 

weight status trends in the Canadian population.  Results from this simulation will also be 
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extended to support the effective implementation of obesity management and prevention 

strategies.   
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Chapter 2:  Problem Statement 

Our health care system is structured to meet the immediate demands of those most ill, 

making it difficult to argue for investment in significant long-term obesity prevention or 

intervention programs.  Furthermore, there is data available for Canada as to how the 

obesity epidemic might progress into the future.  This gap leaves decision makers with a 

limited capacity to weigh potential future savings of obesity management programs 

against the future healthcare costs of the obesity epidemic. 

 

Throughout the last several years researchers have produced a wide range of estimates 

trying to forecast the prevalence of obesity into the future.  Wang et al. [17] extended 

current trends to predict 80% of American adults will be overweight or obese by 2022 

and eventually all adults will reach either state by 2048.  They used a simple linear 

regression model, based on prevalence data itself to forecast future trends.  As Levy et al. 

[18] notes, predictions based on past prevalence trends are usually validated over a 

limited number of years, so extrapolating too far into the future will likely result in an 

inaccurate prediction.  In contrast, others incorporated recent evidence that obesity rates 

were peaking and forecasted a stabilization of obesity prevalence in the coming years 

[19][20].  Other models range from a system dynamics caloric model to analyses of how 

social networks impact obesity, illuminating the complexity of the problem and 

heterogeneity of the modelling approaches.  

 

To improve predictive performance microsimulation is often proposed.  Guy Orcutt [21] 

is frequently credited for pioneering the field of tax policy microsimulation, a 

methodology that has since expanded to the healthcare field [22].  Microsimulation uses 

data gathered at the individual level to model and simulate individual’s life histories 

within an environment representing demographic and social characteristics [23].  In 

essence, microsimulation theory is not fundamentally different from discrete-event 

simulation, a well-developed field in the operations research community.  A simulated 

environment allows decision makers to apply hypothetical policy changes and analyze 

their impact on an individual or aggregated level.  Simulating individual histories is 

generally preceded by a mathematical model which describes how individuals are 
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expected to change based on their attributes.  For instance, when modelling future disease 

rates researchers often assume individuals can be described through a Markov process, 

and then simulate them using a Monte Carlo approach [24].  These models use random 

sampling for a set of likelihoods ("transition probabilities") to determine an individual's 

movement through stages of a disease.  Estimates for the transition probabilities are 

commonly obtained from longitudinal or cross sectional studies of the target population. 

 

An Australian research project developed a microsimulation called the Australian 

Population and Policy Simulation Model (APPSIM), which incorporated several societal 

processes such as healthcare, social security, labour, and demographic change among 

others [25].  Lymer and Brown [26] further developed the microsimulation’s health 

component to predict obesity prevalence and the resulting future health expenditures in 

Australia until 2050.  Similarly, UK researchers developed a microsimulation framework 

to study obesity and other chronic diseases [27], which has since been extended to other 

European countries [28].  Although we can learn from foreign obesity prediction studies 

and microsimulations, it is rarely practical or feasible to simply transfer these models for 

use in Canada due to unique modelling assumptions and data-specific programming 

requirements of estimating the transition probabilities. 

  

No Canadian study forecasts and explores the social or economic effects of the obesity 

epidemic through modelling individual’s weight status changes.  In 1994 Statistics 

Canada released the Population Health Model (POHEM) microsimulation, which 

included a body mass index (BMI) prediction module [29].  However, similar to Wang et 

al. [17], the module is based on linear projections of prevalence of BMI through time.  

Apart from a brief model description, no validation documents or report is available to 

further examine their obesity module.  POHEM has since been used to simulate 

osteoarthritis [30] and physical activity [31] with respect to the BMI predictions.  

Therefore, an opportunity exists to supplement the current literature by offering an 

alternative modelling approach to forecast Canadian obesity. 
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As obesity is considered a preventable disease there appears to be substantial incentive to 

advance our understanding of these trends and if obesity could be prevented.  The 

overarching goal of the proposed research is to forecast overweight and obesity 

prevalence in the Canadian population over the next several decades and assess the 

impact of existing and hypothetical weight management programs.  The first phase of the 

project employs mathematical modelling to determine the probabilities that the weight 

status of an individual will change in the future given their current weight status, age and 

gender.  Subsequently, these transition probabilities are input into a Monte Carlo 

simulation model to forecast the future development of overweight and obesity in 

Canada.  Finally, model inputs are altered to simulate potential prevention and 

intervention efforts. 
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Chapter 3:  Literature Review  

In this section the main data sources are outlined for population-based obesity research 

and surveillance in Canada, followed by a more detailed discussion of the National 

Population Health Survey (NPHS), the chosen data source for this project.   Subsequently 

the BMI indicator is discussed, followed by an overview of obesity modelling and 

microsimulation is given.  Finally, potential prevention and intervention strategies are 

briefly reviewed while exploring their potential application to the proposed modelling 

framework. 

 

There are several large Canadian surveys which have tracked and provided researchers 

with a means to model obesity trends.  These surveys are gathered by either cross-section 

or longitudinally.  Cross-sectional surveys generate a new sample of participants each 

collection cycle, whereas longitudinal surveys collect information on the same 

participants every cycle.  For example, a cross-sectional survey called the Canadian 

Community Health Survey has gathered information related to health status, health 

service utilization and health determinants since 2009.  The National Longitudinal Survey 

of Children and Youth monitored the development of individuals aged 0-25 over eight 

survey cycles from 1994 to 2008.  A third major Canadian survey and the focus of this 

research, is the NPHS.  It collected information longitudinally on 17,267 participants 

from 1994-2010. 

 

Throughout the NPHS survey there are two factors which prevent it from having the 

desired characteristics of being truly random and a representative sample of the Canadian 

population.  During the personal interview stage of the first cycle it was too costly to 

provide coverage for every geographic region.  This results in an unequal chance to be 

chosen for the survey and therefore an underrepresentation of some demographic groups.  

A post-stratification weighting procedure was applied by Statistics Canada after each 

survey cycle to account for this unequal probability of selection. Secondly, the total 

number of survey participants decrease each cycle from attrition due to death or non-

response.  By 2010/2011, only 46.2% of the original sample remained.  For a more 
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detailed discussion of complex survey design issues, the reader is directed to the NPHS 

user guide [32]. 

 

3.1 Body Mass Index 

The main measure of obesity is an individual’s BMI and is calculated as weight divided 

by height squared.  BMI was introduced in the early 20th century and has since become 

widely used in assessing weight-related mortality, morbidity and chronic illness.   

Depending on the modelling framework and available data, one may choose BMI as a 

continuous variable or separate it into discrete categories.  The World Health 

Organization (WHO) [33] classifies individuals into one of six weight statuses (Table 1) 

with obesity broken into severity levels due to poorer health outcomes associated with 

increasing BMI levels. 

 

Table 1 - WHO weight status classification 

 

 

 

 

 

 

Despite the widespread history of using BMI as a measure of health, it is an imperfect 

indicator.  For example someone with an above average muscle mass will have an 

elevated BMI and possibly be misclassified in a higher risk category for developing 

health conditions.  Katzmarzyk and Janssen [34] argue it would be more informative to 

measure BMI combined with waist circumference to more accurately measure an 

individual’s health risks.  However, measuring individuals’ waist circumferences is an 

uncommon practice for population wide surveys and the use of BMI is considered 

sufficient to estimate population health in large-scale epidemiological studies [35].  

  

Weight Status BMI (kg/m2) 

Underweight <18.5 

Normal weight 18.5 > 24.99 

Overweight 25-29.99 

Obese Class I 30-34.99 

Obese Class II 35-39.99 

Obese Class III >40 
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To ensure physical health data is unbiased and of high quality, participants are ideally 

measured by a physician.  However personnel and logistical efforts required to do this are 

very costly, particularly over several years of a longitudinal survey.  Instead, large 

surveys often collect data by relying on individuals to self-report information.  Survey 

participants tend to overestimate their height and underestimate their weight, which 

results in a self-reported BMI that is lower than their true BMI.  In a report by the 

Canadian Institute for Health Information and the Public Health Agency of Canada [36] 

found an approximately 8% difference in measured (25.4%) and self-reported (17.4%) 

obesity prevalence as of 2009.  Shields et al. [37] among others [38][39] have found 

using self-reported data for body mass index can lead to biased conclusions.  Shields 

accounted for this bias in the NPHS by fitting a series of regression equations to adjust 

for self-reported BMI. 

 

3.2 Simulation in Healthcare 

Simulation is a powerful analytical tool in healthcare applications that supports the 

delivery of more efficient services while maintaining treatment quality [40].  Discrete-

event simulation has been extensively applied to aid in operational healthcare decisions, 

such as waitlist management, surgery workload scheduling and patient flow research.  

For these operational simulations, the goal is to find a solution that meets a minimum 

level of service or quality standard with constrained resources.  Simulations aiding in 

health care decisions for population health are also discrete-event simulations, but are 

more commonly called microsimulations.  In microsimulations individual’s life histories 

are simulated within an environment representing demographic and social characteristics 

of the population of interest.  These models permit an examination of hypothetical 

scenarios in lieu of policy experiments which would be otherwise too costly or 

impractical to test [41].  Simulated individuals typically transition through a series of 

states according to observed or assumed economic and social behaviours.  In the context 

of obesity, deriving this behaviour is an ongoing field of research, as will be discussed in 

the following section. 
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3.3 Obesity Modelling 

This section is an overview of several past obesity forecasting studies and their research 

methods. The methodologies within the obesity modelling context are categorized in this 

thesis as: (1) Linear BMI modelling, (2) Transitional BMI modelling (3) Other 

approaches.  

3.3.1 Linear BMI Modelling 

Several studies have used regression to project the prevalence of continuous or 

categorical BMI in order to project trends into the future.  Perhaps the most provocative 

obesity forecast is provided by Wang et al. [17], who projected all Americans will be 

either overweight or obese by 2050.  Despite this unlikely outcome Wang’s model 

operates under the same simplifying assumption many health prediction models make 

when using real data - that current trends will hold linearly, into the future.  In this case 

the trend clearly cannot hold past 2050, but it nonetheless offers a concerning projection 

of American obesity. 

  

In 1994 Statistics Canada released POHEM, a discrete-event, continuous-time 

microsimulation framework designed to simulate how individuals may react to 

hypothetical policies.  Researchers at McGill University’s Surveillance Lab created an 

obesity module for the POHEM framework that models change in categorical BMI with a 

series of linear regressions [29].  Their data consisted of five cycles of the NPHS 

longitudinal survey from 1994-2004 and the variables gender, age group, previous weight 

status, income, education and region of residence.  The data was divided into 28 different 

groups conditioned on age group, gender, previous weight status, followed by 28 separate 

linear regressions.  Although a linear model is used, an advantage is that their model need 

not assume the behaviour of future covariate distributions since other modules of 

POHEM predict them. 

 

While linear regression modelling of BMI prevalence can provide policy makers with a 

“what-if” scenario of the future economic and health impacts of obesity, forecasts of a 

linear nature can be problematic if extrapolating over a longer horizon [18].  Von Ruesten 
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et al. [42] noted obesity prediction based on prevalence trends is quite sensitive to the a 

priori modelling assumption of either a linear or a non-linear functional form. 

 

3.3.2 Transitional BMI Modelling 

As previously mentioned, BMI can be discretized into weight statuses.  A transitional 

BMI model could estimate the likelihood, or transition probabilities, of individuals 

moving between these different weight statuses.  Upon estimating these transition 

probabilities, one can simulate a population and aggregate the individual life histories to 

obtain the weight status distribution across time. Several methods of calculating transition 

probabilities are discussed in this section. 

 

One means of calculating transition probabilities is through a Markov framework.  A first 

order Markov model predicts an individual’s next state conditional only on their current 

state, and is therefore considered “memoryless” [43].  The transition probabilities are 

typically estimated with one large set of transition observations; however longitudinal 

data is comprised of numerous individual trajectories over a relatively small number of 

observations.  Kalbfleisch and Lawless [44] showed that longitudinal data can be used so 

long as the individuals are mutually independent.  The authors developed a continuous-

time Markov model, which estimates an individual’s transitions through states as function 

of their current state and time spent in that state.  A continuous Markov framework is 

advantageous in some cases because it can estimate the duration between events as well 

as accommodate multiple event occurrences when the order of occurrence is important.  

Alternatively, a discrete-time Markov model requires equally spaced, non-missing 

observations to properly estimate transition probabilities.  Galler [45] showed that a 

discrete-time Markov model can be considered a special case of a continuous-time model 

if the longitudinal data structure has equally spaced observations and sufficiently short 

cycle durations.  When these two conditions are met, Galler recommends using a 

discrete-time Markov model to reduce theoretical and modelling complexities when 

building a microsimulation. 
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One caveat to the previously discussed Markov models is that transition probabilities are 

stationary across time.  Singer [46] developed a non-stationary Markov model for when 

this assumption does not hold.  Another caveat is that subgroups of the population behave 

differently and likely do not have homogenous transition probabilities across socio and 

demographic strata.  A US study by Basu [19] applied a Markov approach to predict 

individual weight status while incorporating several other variables such as age, gender 

and ethnicity.  Without sufficiently disaggregating the different behaviours of subgroups 

there is a risk of introducing overestimation or underestimation bias [47][48].  However, 

Andreassen [49] notes that adding explanatory variables to a Markov model quickly 

expands the number of transition probabilities one must estimate and thus the amount of 

possible disaggregation is limited by the available longitudinal survey data. 

 

Modelling individual categorized BMI is also possible through logistic regression where, 

for instance, normal and obese categories represent the binary states to be predicted.  

With longitudinal data the likelihood of moving between BMI weight statuses can be 

derived by pooling individual histories into a single dataset.  When modelling 

longitudinal data it is common to use a transitional logistic model structure [50], which 

includes a time lagged dependent variable, such as weight status.  Using the estimated 

model coefficients individual transition probabilities can be derived for use in a 

microsimulation model.  For instance, individuals in APPSIM [25] transition between 

normal and obese weight statuses derived from transitional logistic regression.   

 

Agresti [51] extended transitional logistic regression to transitional multinomial 

regression, for which three or more categories can be simultaneously modelled.  

Modelling health states with multinomial regression has been used in several health care 

contexts [52][53][54].  Xie and Zimmerman [55] have specifically addressed transitional 

multinomial regression for categorical data of longitudinal surveys. If longitudinal data is 

unavailable, it is possible to use cross-sectional data to derive transition probabilities.  

One such study uses a cross sectional survey and linear programming with a 

superadditive cost matrix to ensure individuals can only transition between neighbouring 

weight statuses [56].  As of 2010, Statistics Canada no longer maintains a longitudinal 
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population health survey, so transition modelling with cross-sectional data may gain 

popularity as a viable alternative. 

 

3.3.3 Other Approaches 

Several methodologies other than linear and transitional BMI modelling have been 

employed to predict future weight status prevalence.  This section describes several of 

these approaches. 

 

A British research project, called the Foresight Report [27] found weight status 

prevalence was approximately linear from 1993-2004, however acknowledged that 

applying a linear model would erroneously lead to some groups exceeding 100% obesity 

prevalence.  Instead, they used a monotonic non-linear function that is asymptotic to 0 

and 100% to predict the prevalence of each BMI category through time.  Results were 

then normalized to ensure prevalence at each time summed to 100%.  The authors then 

converted these cross-sectional predictions to a longitudinal individual behaviour model 

via an inverse cumulative function from the regression results. 

 

The Organization of Economic Co-operation and Development created a quantile 

regression model to project the continuous BMI distribution for several countries [57].  

The model used covariates that the authors found to be highly correlated with BMI such 

as gender, age, marital status, ethnicity, and education attainment.  The future BMI 

distribution was estimated by using population projections by age and gender, while other 

covariates were held at current levels.  The authors cautioned that these types of 

projection models are dependent on the covariate data distributions remaining stationary 

through time.  For Canada, they projected a further obesity rate increase of approximately 

5% across all age groups from 2010 to 2020. 

 

As Alimadad et al. [58] notes, obesity is a chronic disease that is often the result of long-

term poor health behaviours.  They argue a conventional memoryless first order Markov 

model may not be optimal for modelling obesity.  Instead they estimate an individual’s 

probability of transitioning between each weight status based on their maximum 
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historical weight status for up to eight previous periods.  For example, a person with a 

maximum weight of normal through only two survey periods has a 0.834, 0.159, and 

0.007 chance of being normal, overweight or obese, respectively in the next period.  

Whereas, if an individual has maintained a maximum weight of normal through all eight 

cycles the conditional probabilities are 0.893, 0.104, and 0.003.  The authors found as one 

maintains a normal maximum weight history through time their chance of remaining 

normal weight increases and their chance of transitioning to overweight or obesity 

decreases.  There are however two challenges in building a microsimulation based on 

their method.  Firstly, all individual’s maximum weight histories are not known prior to 

the start of the survey.  Lacking a technique to predict these histories the authors set each 

initial maximum weight history to the first survey response of each individual.  The 

second challenge is how to extend the model beyond the eight available survey cycles.  

Since transition probabilities for a maximum weight status history of greater than eight 

cycles are not defined, it would be necessary to extrapolate or predict how the 

probabilities change as more time is spent in each weight status. 

 

Thomas et al. [20] offered another approach of incorporating individual history that 

combines system dynamics and a disease modelling framework called SIR (“Susceptible, 

Infected, Recovered”).  A series of differential equations determine transition rates from a 

susceptible state (normal weight) to an exposed state in which individuals can become 

“infected” with overweight and obesity.  A recovered state represents individuals who 

were previously overweight or obese, but have since returned to normal weight.   These 

recovered individuals become more susceptible to re-entering overweight than their 

normal weight counterparts who have never been overweight.  Another interesting feature 

of Thomas’ research is the incoming population has a certain chance of being born into 

an ‘obesogenic’ environment in which they enter directly into the susceptible state.  This 

is considered a feedback effect since the probability of birth into an obesogenic 

environment is estimated by the percentage of reproductive age women categorized as 

overweight or obese.   
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Another approach is agent-based modelling.  These methods models each individual in 

terms of ‘rational actors’ who make decisions based on a complex set of rules depending 

on their characteristics and external environment.  For example, an obesity agent-based 

model, by Bourisly [59] assumes rational actors will make dietary and physical activity 

decisions based on food prices, exercise facility location and their current weight status.   

The disadvantage of this type of modelling is that having so many interactions between 

individuals and the environment can force models into incorporating unverifiable or 

simplified decision rules and parameterizing the model while lacking empirical data [60]. 

 

Other notable obesity modelling approaches include mapping the spread of obesity 

through social networks [61] and simulating an individual’s caloric imbalance [62].  

Research is currently underway to improve the existing POHEM-BMI module [63], 

however no upcoming publications are declared and a release date for the model is 

unknown.  Another project under development is the Canadian ACE-BMI model [64].  It 

is a Markov cohort model and borrows from the Australian-based Assessing Cost 

Effectiveness (ACE) obesity framework [65]. 

 

3.4 Microsimulation Characteristics 

Upon reviewing healthcare microsimulation literature, Okhmatovskaia et al. [66] 

observed that there is a need to be more consistent when defining a model’s technical 

terms.  This section will clarify the terms used within this microsimulation. 

 

The model and modelling parameters that describe each individual’s behaviour are 

usually defined as either deterministic or probabilistic.  Deterministic parameters are 

simply single point estimates of model parameters.  Probabilistic parameters add a 

distribution around the point estimate and are used when there is a significant amount of 

variance in the estimates.  For continuous and categorical regression techniques 

confidence intervals are readily available.  For a Markov approach resampling techniques 

(bootstrapping) can be used, as in Basu [19], who estimated probabilistic weight status 

transition probabilities. 
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Another important consideration is whether individual’s behaviour within a 

microsimulation is assumed to be static or dynamic.  A static microsimulation is 

distinguished by unchanging behaviour or transition rules through time [19][67].  

Dynamic microsimulations on the other hand, describe an individual’s behaviour as a 

function of time or a function of the change in explanatory variables over time [11][27].  

Although individual behaviour might be assumed static, this does not preclude other 

simulation elements from being dependent on time.  For example in a Norwegian 

microsimulation [49] transition probabilities are stationary through time, yet mortality 

rates are adjusted as time progresses.  Similarly, the obesity component of POHEM [29] 

is static through time, yet the explanatory variables that determine BMI are dynamically 

updated every simulation cycle.  Li and O’Donoghue [68] note that as data availability 

and computational power increase, dynamic models have become a more realistic option 

for long-term population prediction models.  However, they also caution that dynamic 

model development is usually considerably more time consuming than static models. 

 

Microsimulation models are further distinguished between cohort or population models, 

depending on what output information is desired.  A cohort microsimulation begins with 

an initial cohort born in the same year, or an initial sample of all ages.  A group of 

individuals can be simulated through multiple prevention or intervention scenarios, and 

then compared to the reference scenario simulation results.  Cohort simulations are 

terminated when either all participants have died or reach a specified age limit.  For 

example, Lightwood et al. [69] used a cohort aged 35-64 to project the economic costs of 

obesity until 2050 with a Markov model simulation.  Cohort models, however, do not 

account for the changing demographics over time due to the incoming and outgoing 

population.  A population microsimulation can investigate demographic effects such as 

age and gender by adding births, deaths and immigration into the model.  Although the 

Canadian age and gender demographic predictions are likely accurate for the decades 

ahead, the future distributions of other variables are estimated with less confidence or not 

at all.  As a result, these future distributions of interest either rely on external forecasts or 

are assumed to remain static throughout the simulation.   
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The final simulation characteristic discussed here is whether an initial population is 

generated synthetically or with cross-sectional data.  Sometimes an individual’s entire 

life history is a necessary consideration in predicting a future status or event.  However if 

a sample of individuals is captured during a relatively short survey timeframe there may 

be insufficient data to explore the historical significance of any variables.  In this case a 

synthetic population can be generated.  Calibration techniques can fill this information 

gap by retrospectively generating synthetic life histories for each individual using one or 

several external data sources [70].  If prior history is not necessary for a model, a cross-

sectional approach can instead use survey data to define the initial population, as in 

Lymer and Brown’s APPSIM research [26] and the Foresight Report [27]. 

 

According to these definitions of microsimulation characteristics, this project develops a 

simulation that has deterministic transition probabilities, is behaviourally static and 

begins with a cross-sectional initial population.  The simulation develops both a 

population and cohort analysis component.  For a further review of microsimulation 

characteristics and nomenclature, see Rutter et al. [70].  

 

3.5 Intervention and Prevention 

This section briefly describes various prevention and intervention research in Canada, 

and how this research can be adapted for this model.  According to Sacks and colleagues 

[71], there are three main streams of obesity prevention and intervention: 

1. Public policies which target a range of social and environmental factors related to 

obesity (i.e. subsidies on healthier foods, infrastructure promoting active 

lifestyles) 

2. Community-level prevention and intervention programs that influence individual 

behaviour (i.e. education, school-based programs, workplace programs) 

3. Individual health services and clinical interventions for those with high BMI and 

other comorbidities (i.e. weight loss programs, bariatric surgery) 
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The first stream is usually analyzed with agent based modelling or system dynamic 

techniques, which describe the relationships between an individual’s environment, social 

status, and individual economic preferences.  This research does not consider social or 

environmental policies decisions; however, I introduce a hypothetical nation-wide 

prevention policy which is assumed to alter the transition probabilities of moving 

between certain weight statuses. 

  

The second stream consists of community-level prevention and intervention projects.  For 

example, a national initiative called the PAN Canadian Health Living Strategies was 

created in 2005 [72].  It consists of a declaration by government on federal, provincial 

and territorial levels to prioritize the promotion of chronic disease prevention, such as 

obesity.  However Prince [14] argues the initiative places much of the onus on adults to 

eat right and exercise by providing only basic means of education such as the Canadian 

food guide and the nutrition labelling program.  Another community level obesity 

program was launched in British Columbia, called ActNow [73].  It is an initiative to 

support obesity prevention across all ages by targeting multiple risk factors.  Some of the 

projects include ‘Dial-A-Dietitian’ and ‘Health Check’ to encourage healthy diet choices, 

as well as the implementation of healthy lifestyle programs into work environments.  A 

third community level program, APPLE Schools, tracked and analyzed a prevention 

program within 10 selected schools [74].  Since the program’s inception in 2008, follow-

up research has confirmed its effectiveness [16] and simulated obesity-related costs 

savings of scaled-up versions of the program [75].  Results of APPLE Schools are 

incorporated into this research by assuming that the successful childhood obesity 

reductions will be maintained as they reach adulthood. 

 

At the individual level research encompasses adult dietary interventions [76], physical 

activity interventions [77] and a combination of both [78].  In more extreme cases, 

clinical options are available such as bariatric surgery [79], or prescription medication 

[80].  An intervention scenario will be introduced into this research where 10,000 obese 

individuals per year receive a bariatric procedure. 
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Chapter 4:  Project Methodology 

This thesis is partitioned into three primary objectives:  1) manipulating the NPHS survey 

into a useable dataset, 2) modelling how individuals transition between each weight 

status, and 3) simulating the Canadian population to forecast and assess potential 

prevention programs.  All of the analysis was performed in R, a programming language 

for statistical data analysis [81].  The first two objectives were completed within the 

Atlantic Research Data Centre (RDC) in Halifax N.S., where the NPHS is accessible to 

researchers.  The third objective was completed outside of the RDC.  The distinction 

between inside and outside the data centre is important because of strict rules governing 

which data can leave the data centre.  Generally speaking, any data point which is derived 

from less than 5 participants cannot be removed from the RDC. 

 

4.1 Data Preparation 

The NPHS was chosen for this research to provide data and for internal validation 

purposes.  The survey was conducted every two years between 1994 and 2010, and 

followed the participants for 18 years (or 9 cycles) making it a longitudinal survey. In 

total approximately 150 questions were asked each year of 17,276 Canadians.  

Information on the respondents was gathered through personal interviews initially and 

subsequent interviews were conducted on the telephone.  Northern Canada (Yukon, 

Nunavut, North West Territories) and people living in health institution (e.g. nursing 

homes) were gathered in a separate survey and are omitted from this research. 

 

4.1.1 Datasets 

The NPHS is voluntary, so not all participants took part in every survey cycle, resulting 

in a significant number of missing weight or height responses. This thesis defines three 

different datasets: 1) “no exclusions”, 2) “limited” and 3) “intermediate”, each with 

varying amounts of missingness. 
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The first dataset (“no exclusions”) contains all individuals regardless of how much of the 

survey they have completed in each cycle.  The second dataset (“limited”) contains those 

individuals who either participated in all survey cycles, or have died yet participated in 

all previous cycles before death.  Note that datasets “no exclusions” and “limited” are 

respectively equivalent to the “Square” and “Full” datasets described in NPHS user guide 

[32].  The labels have been changed herein to improve clarity. 

 

My research methodology does not require completely answered surveys (i.e. the 

“limited” dataset), but only that individuals have responded to any two consecutive 

survey cycles.  The third dataset (“intermediate”) is then a subset of the “no exclusions” 

dataset, created in two steps.  First, for each survey year in the “no exclusions” dataset, 

any instances where individuals are missing height or weight are removed since BMI 

cannot be calculated.  Secondly, each individual’s profile is checked for consecutively 

complete cycles.  All instances of consecutively complete survey data compose the 

“intermediate” dataset.  This approach of subsetting consecutive data is described in the 

NPHS user guide as the “Cycle Twinning Approach” [32, pp. 63].  It is important to note 

that this approach assumes that missingness of the data occurs uniformly across all 

individuals and is therefore is ‘ignorable’ [82]. 

 

The “no exclusions” dataset consists of 140,290 records while the “limited” consists of 

75,739 records.  The (“intermediate”) dataset consists of 126,671 by salvaging 50,932 

records from the “limited” dataset. 

 

4.1.2 Survey Coding 

The survey questions required to create the “no exclusions”, “limited” and “intermediate” 

datasets are listed below, along with the corresponding NPHS syntax.  
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Table 2 - Survey questions and corresponding NPHS codes 

Question Variable 

description 

NPHS Survey Code 

(Primary Key) 

What is your gender? (first cycle only) Gender SEX 

What is your date of birth (first cycle 

only) and what is your age (subsequent 

cycles) 

Age DHCn_AGE 

How much do you weigh? Was that in 

pounds or kilograms? 

Weight HWCnI3LB 

How tall are you without shoes on? Height HWCn_IHT 

It is important to know when analyzing 

health whether or not a person is 

pregnant.  Are you pregnant? 

Pregnancy Status PHCn_4B 

 Survey Status SP3n_STA 

“no exclusions” 

sampling weights 

WT64LS 

“limited survey” 

sampling weights 

WT6DLF 

 

The bold “n” found in some of the NPHS Survey Codes indicates the cycle. The survey 

cycles are indexed by n = {2,4,6,8,0,A,B,C,D} representing years 1994 to 2010 where 

n=2 is 1994, n=4 is 1996, etc. The answers to the height and weight questions are not 

recorded directly but rather using representative codes.  For example, a height of 47 

inches is recorded as “37”.  These conversions are available from Statistics Canada [83].  

Survey status indicates whether an individual has missed a cycle or has deceased.  

Sampling weights for the “no exclusions” and “limited” datasets are discussed in the 

following section. 

 

4.1.3 Survey Sampling Weights 

When selecting participants for the NPHS survey, Statistics Canada does not select 

people proportionally equal from all geographic regions.  This is done for practical 

reasons and to save costs.  To correct for this bias, Statistics Canada calculated sampling 

weights to increase or decrease the influence of each respondent in the analysis.  Further 

details on how these sampling weights are computed are available from the NPHS user 

guide [32, pp. 19]. 
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While sampling weights for the “no exclusions” and the “limited” datasets are provided 

by Statistics Canada, weights for the “intermediate” dataset were not recomputed for this 

research.  However, the NPHS user guide recommends using the sampling weights from 

the “no exclusions” dataset on all datasets derived with the Cycle Twinning Approach 

[32, pp. 69].  The “intermediate” dataset is derived with this approach and therefore its 

sampling weights can be approximated with the “no exclusion” weights.  Additionally, all 

weights are rounded to the nearest integer for this research. 

 

4.2 Data Filtering and Correction 

Despite collection efforts and procedures to minimize errors, some data entries are 

incorrect and may introduce bias.  During survey response collection there are two 

sources of error.  NPHS interview personnel may either enter data incorrectly or the 

individual being interviewed may misreport answers.  The subsequent sections describe 

how the “intermediate” dataset was further refined to account for errors specifically 

related to age, pregnancy, weight and height. 

 

4.2.1 Age Range 

Although data collection was planned to be performed in two year intervals, a 

discrepancy in age can occur if an individual is unable to be contacted on the scheduled 

collection date.  The surveyor will attempt to contact participants up to four months after 

the collection date.  If these participants are successfully contacted and have a birthday 

during the four month grace period, their age will be offset for that cycle.  To ensure age 

always increases in two year intervals, I assume their data was collected on time and 

adjust their age accordingly.  Furthermore the population of interest is only adults (18 and 

over), so participants under the age 18 were excluded. 
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4.2.2 Weight and Height 

Statistics Canada performed error detection for height and weight values, and then 

imputes them to more likely values.  Statistics Canada has corrected these errors for both 

the “limited” and “no exclusions” datasets. However, they acknowledge further outlier 

detection may be useful.  

 

Height corrections were applied to two age groups by Statistics Canada to ensure 

individuals have plausible height profiles.  Individuals from age 18-65 are assumed to be 

fully grown and their height should remain stable.  The height of those above 65 was 

allowed to decline in height 1-3 inches for the remainder of their survey.  Any heights 

violating these conditions have been imputed by Statistics Canada, the details of which 

can be found in the NPHS user guide [32, pp. 74]. 

 

For weight, errors are commonly caused by confusing measurement scales (kilograms vs 

pounds) or by transposing numbers (e.g. 160lbs is reported when the actual weight is 

106lbs).  In addition to error correction by Statistics Canada, two additional outlier 

procedures are used in this thesis to identify unlikely weight changes between survey 

cycles.  The first procedure identifies individuals who have transitioned from 

underweight to obese, obese to underweight or overweight to underweight between 

cycles.  The second procedure identifies individuals whose weight change exceeds 100lbs 

over a two year cycle.  The outlying observations for each of these individuals are then 

corrected using the same weight imputation method as Statistics Canada [32, pp. 77], 

whereby the imputed weight is the average of the two nearest non-missing observations 

surrounding the outlier. 

 

After applying the imputation methods, an individual’s Body Mass Index (BMI) is 

calculated using,   

𝐵𝑀𝐼 =  703 ∗
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡2
, 
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where weight is reported in pounds and height in inches.  Subsequently their continuous 

BMI is transformed to one of four discrete states consisting of underweight, normal 

weight, overweight and obese with the classification scheme in Table 3. 

 

Table 3 - Conversion table for BMI and weight status 

Weight Status BMI 

(kg/m2) 

Underweight <18.5 

Normal weight 18.5 > 24.99 

Overweight 25-29.99 

Obese >30 

 

4.2.3 BMI Correction 

As reviewed in Section 3.1, Shields et al. [37] identified a bias in self-reported height and 

weight data and proposes the following corrections which I apply to the NPHS data. 

𝐹𝑒𝑚𝑎𝑙𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐵𝑀𝐼 =  −1.08 + 1.08 ∗  𝐵𝑀𝐼 

𝑀𝑎𝑙𝑒 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐵𝑀𝐼 =  −0.12 + 1.05 ∗  𝐵𝑀𝐼 

 

4.2.4 Pregnancy 

The NPHS user guide requires any weight-related research to exclude a women’s cycle 

observation if they are between the ages 18 and 49 and answered “Yes”, “Don’t Know”, 

or “Refusal” to the pregnancy question.  Otherwise, their BMI for that cycle may be 

inflated which would result in an overestimation of the women’s weight.  Women older 

than 50 are assumed not to be pregnant.  Removing pregnant women from the data 

reduces population representativeness, so it is important to note that results of this 

research omit pregnant women. 

 

4.3 Modelling Transition Probabilities 

The probability of an individual transition from a given state i to a new state j is defined 

as a transition probability.  For simplicity and ease of understanding I start by describing 
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transition probabilities for a homogenous population while ignoring age and gender. The 

model is a first order discrete-time Markov model.  We can define a mutually exclusive 

finite set of states indexed by 𝑀𝑡 ∈ {1,2,3,4}, representing underweight, normal weight, 

overweight and obese weight status, respectively, at time t = {0,1,2,...,T}.  This provides 

a mathematical representation of how an individual’s weight status changes over two year 

periods.  For example the longitudinal survey data, {𝑀0, 𝑀1, 𝑀2, 𝑀3} could be realized as 

{2, 2, 2, 3}, where a person maintains their initial normal weight status until t = 2 at 

which time transition to overweight.      

 

The defining feature of a Markov chain is the Markovian property or the memoryless 

property, which describes how individuals transition from a current state 𝑖 = 𝑀𝑡, to a 

future state 𝑗 = 𝑀𝑡+1. This property says that the probability of transitioning to any future 

state is dependent only upon the current state.  Let pij be the probability that an individual 

in weight status i will transition to weight status j.  Let 𝑷𝑖𝑗 be a matrix of all 𝑝𝑖𝑗’s, as 

shown in Table 4.  Note that the transition probabilities within the matrix must be non-

negative and the sum across each row must equal one since an individual only exists and 

transitions within these four states. 

 

Table 4 - Transition matrix with only four weight states 

 

 

 

 

 

 

 

To account for a non-homogenous population gender and age are now incorporated into 

the formulation. The new state space at time t is defined as 𝑋𝑡 = {𝑀𝑡, 𝐴𝑡 , 𝐺𝑡} where, 

𝑖 = 𝑋𝑡 is the current state 

𝑗 = 𝑋𝑡+1 is the next state 

𝑀𝑡 ∈ {1,2,3,4} and indexes m weight statuses  

 

 

Future State (𝒋) 

1        2       3        4  

 

Current 

state (𝒊) 

1 

2 

3 

4 

𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34
𝑝41 𝑝42 𝑃43 𝑝44
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𝐴𝑡 ∈ {18,19,… ,80} and indexes a ages 

𝐺𝑡 ∈ {0,1}  and indexes g genders; male (g = 0) and female (g = 1)  

Due to data limitations, participants can only change states every other year leading to the 

following relationships between the state variables:  𝐴𝑡+2 = 𝐴𝑡 + 2 ∀ t and 𝐺𝑡+2 =

 𝐺𝑡 ∀ t.  𝑀𝑡+2 is a function of 𝑀𝑡 and 𝑷𝑖𝑗 and is computed with a random sampling 

procedure discussed in Section 4.4. 

 

This structure of the resulting transition probability matrix is summarized in Table 5.  

Note that all ages between 18 and 80 are accounted for in the state space, however 

transitions only occur on a two year time step, as per the available data.  As individuals 

age past 80 they are removed from the simulated population and are no longer tracked.  

The transition probability structure only shows the male gender (g = 0), however the 

structure is identical for females.   

 

Three methodologies are used to estimate transition probabilities of this matrix structure.  

The first computes the transitions probabilities empirically from the NPHS survey data. 

The second uses local weighted scatterplot smoothing, and the third uses multinomial 

logistic regression.  
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4.3.1 Empirically Derived Probabilities 

The empirically derived probabilities are computed directly from the NPHS data. Each 

𝑝𝑖𝑗 is computed by summing the number of individuals in state i who transition into state 

j and then dividing by the total number of individuals leaving state i.  Let 𝑛𝑖𝑗 be the 

number of individuals who transition from state i to j, weighted by the NPHS correction 

used to account for design effect and non-response (section 4.1.3).  It follows that, 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑘
4
𝑘=1

, ∀𝑖, 𝑗   

This approach and its use with longitudinal data are discussed in Kalbfleisch [44].  

 

For some combinations of age, gender and current weight status the NPHS data may not 

contain any observations of participants transitioning to the subsequent state.  In these 

cases no transitions probabilities are estimated, and an individual who enters as this state 

could not transition elsewhere.  For these missing transition probabilities their values are 

imputed to the transition probabilities from the previous state, or the first non-missing 

previous state. 

 

4.3.2 Locally Weighted Regression Smoothing 

If less than 5 individuals are recorded for any state transition, the data cannot be exported 

from the RDC due to the possibility of participant identification.  Smoothing of the 

transition probabilities prevents any chance of participant identification and is exportable 

from the RDC.  Additionally, smoothing removes some of the variability of the empirical 

transition probabilities caused by limited data.  Locally weighted scatterplot smoothing 

(LOWESS) is a non-parametric regression method which uses a series of linear or non-

linear regression models of the same scatterplot to predict the independent variable 

[84][85]. 

 

A single subset of transition probabilities is defined by gender, a current weight status, 

and a subsequent weight status.  For example, there is one subset for normal weight 
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males who are transitioning to normal weight males; another subset for normal weight 

males transitioning to overweight males, etc.  In total there are four different current 

weight statuses, four subsequent weight statuses and two genders accounting for 4 × 4 × 

2 = 32 subsets.  The LOWESS regression technique, summarized below, is applied to 

each of the 32 subsets and is based on [51]. 

 

In each subset we have a single transition probability for each age, say P(Z).  The 

LOWESS regression technique considers a set of weighted transition probabilities 

‘centered’ on a single age Z. The regression is computed on this set and a new smoothed 

transition probability is computed. This procedure is repeated for all ages. 

 

Formally, let h be the total number of data points considered for a local regression for a 

given age Z.  In this thesis, the value h=39 is chosen by solving h = *(80-18) [51] where 

= 2/3.  This is consistent with Agresti [51], who suggests choosing  values that are 

between [0.65-0.75] to ensure the fitted line is not too irregular but does not miss 

interesting patterns.  Let H be the set consisting of h data points ak, where k=1,2,…,h and, 

 

H = 

{
 
 

 
 [𝑎1 = 18, 𝑎2 = 19,… , 𝑎ℎ = 18 + ℎ ],                                        𝑤ℎ𝑒𝑛 𝑍 − ⌊

ℎ

2
⌋ < 18 

[𝑎1 = 80 − ℎ, 𝑎2 = 80 − ℎ + 1, … , 𝑎ℎ = 80],                       𝑤ℎ𝑒𝑛 𝑍 + ⌊
ℎ

2
⌋ > 80

[𝑎1 = 𝑍 − ⌊
ℎ

2
⌋ , 𝑎2 = 𝑍 − ⌊

ℎ

2
⌋ + 1,… , 𝑎ℎ =  𝑍 − ⌊

ℎ

2
⌋ ],                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

Let P(ak) be the empirical probability that a participant of age a transitions from the 

current to the subsequent weight status.  Finally, each probability P(ak) is then weighted 

to give a greater influence to those data points closest to the age Z.  Let the new 

probabilities at each age ak be 𝑃(𝑎𝑘)′ where,  

𝑃(𝑎𝑘)′ = 𝑃(𝑎𝑘) ∗ (1 − |
𝑍 − 𝑎𝑘
ℎ − 𝑍

|
3

)

3

 

 

For the given H, a quadratic regression is then performed on all 𝑃(𝑎𝑘)′s.  From this 

regression equation, the probability at age Z is then computed (called 𝑃(𝑍)′) which is our 
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smoothed transition probability at age Z.  For a formal account of this method, see 

Cleveland [84]. 

 

The LOWESS regression procedure is applied to each age in each of the 32 transition 

probability subsets.  The resulting smoothed transition probabilities can now repopulate 

the original transition probability matrix structure of 𝑷𝑖𝑗 (Table 5).  However, the 

new 𝑃(𝑍)′ values can be <0 or >1 since LOWESS does not require estimates to adhere to 

probability bounds.  In such cases the values are imputed to 0 and 1 respectively.  

Furthermore, the sum of the probabilities for any given age can exceed 1.  This is 

accounted for by normalizing the LOWESS predicted values across transition rows to 

ensure each row sums to 1. 

 

4.3.3 Multinomial Regression 

A multinomial regression is similar to logistic regression, but expanded for multiple 

categorical variables.  Diggle et al. [50] developed multinomial regression specifically 

for longitudinal data analysis.  The particular approach used is the ‘transitional 

multinomial regression’ [51], where the dependent variable is an individual’s next weight 

status while the independent variables are an individual’s current age, gender and weight 

status.  A transformation of the current age to age2 is also included as an independent 

variable to account for possible non-linear effects of age.   

 

As with the LOWESS methodology, modelling transition probabilities with multinomial 

regression ensures participant’s identities remain confidential.  Unlike the LOWESS, the 

data does not need to be disaggregated into 32 different subsets prior to the regression.  

Additionally, renormalization is not required since the procedure naturally ensures all 

transition rows of the Pij matrix sum to 1.  Imputing missing transition probabilities is 

also not required since the regression can handle a certain amount of sparsity in the data.  

Too much sparsity existed to perform the regression with the limited dataset, prompting 

the use of only the intermediate dataset for this research. 
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The multinomial model is fit using the intermediate subset in order to maximize the 

number of available observations for the regression procedure.  Additionally, the NPHS 

sampling weights are given to the multinomial function to account for unequal 

probability of selection.  Probabilities for the transition matrix (Table 5) are then 

calculated using the estimated coefficients from the multinomial regression, generated 

within the RDC. 

 

4.4 Microsimulation Model 

A simulation of the NPHS survey is performed from 1994 to 2030 using the intermediate 

dataset to derive all transition probabilities and initial parameters.  The microsimulation 

tracks participants and their weight statuses through time according to the following 

process: 

At cycle t=0, the model is initialized by populating it proportionally with individuals in 

every age, gender and weight status category.   

 

At cycle t+1, the following procedures are run: 

I. The model advances 2 years in time and each individual is aged by 2 

years.  Those who are over the maximum age limited are removed. 

II. A weight status is assigned to each individual based on their previous age, 

gender, and weight status.  This is modelled by a random sampling 

procedure based on the transition matrix and is described below. 

III. Each individual also has a probability of dying and is removed from the 

model following a random sampling procedure. 

IV. New participants aged 18 and 19 are brought into the model. 

 

Subsequent cycles: The steps described for cycle t+1 are then repeated for subsequent 

cycles until the simulation horizon is reached. 

 

Post metric processing: Output metrics are then computed. 
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This simulation uses cumulative uniform random sampling to determine how individuals 

transition through weight statuses.  For an individual’s current state, 𝑖, the transition row 

of the 𝑃𝑖𝑗 matrix is first transformed to its cumulative distribution.  For example, the 

transition row {0.2, 0.4, 0.3, 0.1} would be transformed to {0.2, 0.6, 0.9, 1}.  Next a 

uniform random number, U, is generated between [0,1] and the subsequent weight status 

is determined by, 

𝑀𝑡+1 = {

𝑈𝑛𝑑𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡    𝑓𝑜𝑟        0.0 ≤   𝑈 < 0.2
𝑁𝑜𝑟𝑚𝑎𝑙               𝑓𝑜𝑟         0.2 ≤  𝑈 < 0.6
𝑂𝑣𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡     𝑓𝑜𝑟         0.6 ≤   𝑈 < 0.9
𝑂𝑏𝑒𝑠𝑒                𝑓𝑜𝑟          0.9 ≤   𝑈 ≤  1.0

   

 

A similar procedure is used to remove individuals who have died.  Let 𝑃(𝐷𝑒𝑎𝑡ℎ), be the 

probability of dying.  When U’ (a uniform random number between [0,1]) is less than  

𝑃(𝐷𝑒𝑎𝑡ℎ), the person dies and is removed from the model.  

  

This model is applied to two different time periods.  The first simulation period from 

1994-2010 is used to validate the model by comparing the predicted weight status 

prevalence to the observed NPHS data.  The second period, from 2010-2030, is used for 

forecasting and is based on only transition probabilities derived from the LOWESS and 

multinomial regression data (which may leave the secure RDC). There are a number of 

subtle changes to the above model description for each period which are described in the 

following sections. 

 

4.4.1 Validation Period 

The model is validated over the 1994-2010 NPHS survey period using each of the 

transition probability methodologies.  The validation simulation begins in a populated 

state with all survey participants who were between the ages 18-80 in 1994.  Therefore, 

in 1994 there is no difference between the actual and simulated states. 

 

The incoming population consists of participants who were enrolled as children and 

turned either 18 or 19 in any survey year after 1994.  These ‘births’ are appropriately 



  33 
 

merged into the population each year before applying the simulation.  Rarely ‘births’ 

entering the simulation have missing weight status, in which case their initial observation 

is imputed to their next available weight status observation.   

  

Since the actual population is being simulated we know in which cycle each participant 

dies.  I account for this by setting 𝑃(𝐷𝑒𝑎𝑡ℎ) = 1 during the appropriate cycle. 

Furthermore, from the NPHS data we know when participants missed a cycle or were 

pregnant during the cycle.  To reflect this in the simulation output, I retroactively remove 

simulated data points which correspond to these absences in data.  Finally, the sampling 

weights for each individual are applied to each of their observations from 1994-2010 to 

account for regional sampling bias. 

 

To formally compare each transition probability methodology the mean percentage error 

(MPE) is calculated for each weight status prevalence through time.  The MPE can be 

used to compare forecasted versus observed time series data.  It is defined as follows: 

 

𝑀𝑃𝐸𝑚 =
100

𝑇
∑

𝑓𝑡,𝑚 − 𝑎𝑡,𝑚
𝑎𝑡,𝑚

𝑇

𝑡=1

  ∀ 𝑚 

 

Where, 

𝑡 ∈  1,2, . . . , 𝑇 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 

𝑓𝑡,𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑚 𝑓𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒 𝑡 

𝑎𝑡,𝑚 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑚 𝑓𝑜𝑟 𝑠𝑢𝑟𝑣𝑒𝑦 𝑐𝑦𝑐𝑙𝑒 𝑡 

 

For example, if predicted normal prevalence at time t was 0.4 and the observed 

prevalence was 0.8, the percent error would be -50%.  The MPE, as above, is the average 

of these percent errors across all t. 
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4.4.2 Forecasting Period 

The forecasting period represents our reference scenario from 2010-2030, starting with an 

initial sample of 500,000 participants to represent the Canadian population.  The age, 

gender and weight status for these participants is distributed according to the weighted 

2010 data from the validation period.  The initial distribution for ages 20-80 were 

simulated and could be removed from the RDC without restriction.  The initial 

distribution for the incoming 18 and 19 year olds consists of real NPHS data, requiring 

that their data be aggregated over both ages to avoid disclosure restrictions.  These two 

distributions are then combined outside of the RDC to form the initial forecasting 

distribution in 2010.  Unlike the validation simulation, each of the 500,000 participants is 

assigned an equal sampling weight of 1 when computing the output metrics. 

 

Births 

For each cycle the incoming number of 18 and 19 year olds must be estimated.  These 

simulation ‘births’ are estimated use the birth rate from 18 and 19 years prior to the 

current simulation year.  This data is available from the World Development Indicators 

[86].  However, we are simulating only a fraction of the Canadian population and the 

number of births in each cycle must be proportional to our simulated population.  This 

fraction is calculated by dividing the initial sample size (500,000) by the population 

(34,005,274) in 2010 [86], and is assumed to be constant through time.  For instance, the 

number of modelled births is 2012 is 1,121, since the birth rate in 1994 was 0.0131 

(births/person) and the population was 29,111,906, as shown below: 

𝐵𝑖𝑟𝑡ℎ𝑠2012 =
500,000

34,005,274
∗ 0.0131 ∗ 29,111,906 =  1,121  

 

After calculating the number of births for each simulation cycle, each individual is 

assigned an age, gender and weight status according to the distribution for ages 18 and 19 

(Table 6).  This ‘birth’ distribution is derived from the 2010 NPHS data, for which 18 and 

19 year olds are aggregated due to disclosure restrictions. 

 

http://refworks.scholarsportal.info/refworks2/default.aspx?r=references|MainLayout::init
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Table 6 - Incoming participant demographic distribution 

 

Gender 

 

Age 

Weight Status 

Underweight Normal Weight Overweight Obese 

Male 18 0.0132 0.1277 0.0677 0.0343 

Male 19 0.0132 0.1277 0.0677 0.0343 

Female 18 0.0100 0.1873 0.0407 0.0191 

Female 19 0.0100 0.1873 0.0407 0.0191 

 

Deaths 

For all simulation cycles the probability of death for each individual is based on their age, 

gender and weight status.  Two information sources are combined to calculate the 

probabilities of death for the Canadian population.  The first source is the 2010 age-

gender specific probabilities of death, 𝑃(𝐷𝑒𝑎𝑡ℎ | 𝑎, 𝑔),  from Statistics Canada [87].  The 

probability of death is assumed to remain at 2010 levels throughout the simulation.  To 

accommodate the 2 year time step in the model, I combine the two death probabilities as 

follows, 

 𝑃 (𝐷𝑒𝑎𝑡ℎ′ | 𝑎, 𝑔) = 1 − [1 − 𝑃 (𝐷𝑒𝑎𝑡ℎ | 𝑎, 𝑔)] ∗ [1 − 𝑃 (𝐷𝑒𝑎𝑡ℎ | 𝑎 − 1, 𝑔)] ∀ 𝑎, 𝑔 

The second source is from a study by Orpana et al. [88], which reports the relative risk 

(RRm) of death based on weight status where normal weight is the reference category 

(Table 7). 

   

Table 7 - Weight-related relative risks of death 

 

 

  

                                                           
1Weighted average of relative risks for obese classes I and II. 

Weight Status Relative risk of 

death (RRm) 

Underweight 1.73 

Normal weight 1.00 

Overweight 0.83 

Obese1 1.05 
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Using these two data sources the death probabilities are updated every simulation cycle, 

by taking into account the population’s weight status distribution in each cycle. We want 

to compute the death probabilities per age, gender and weight status 𝑃 (𝐷𝑒𝑎𝑡ℎ | 𝑚, 𝑎, 𝑔) 

that ensures both the age-gender specific probability of death, 𝑃(𝐷𝑒𝑎𝑡ℎ′ | 𝑎, 𝑔), and 

RRm’s scores are adhered too.  First, consider that 𝑃(𝐷𝑒𝑎𝑡ℎ′ | 𝑎, 𝑔) can be expressed 

using the following equation where 𝑃 (𝐷𝑒𝑎𝑡ℎ | 𝑚, 𝑎, 𝑔) is unknown: 

 

𝑃(𝐷𝑒𝑎𝑡ℎ′ | 𝑎, 𝑔) =
∑ (𝑤𝑚,𝑎,𝑔 ∗ 𝑃 (𝐷𝑒𝑎𝑡ℎ | 𝑚, 𝑎, 𝑔))𝑀

∑ 𝑤𝑚,𝑎,𝑔𝑀
   ∀ 𝑚, 𝑎, 𝑔 

 

where, 𝑤𝑀,𝐴,𝐺 represents the number of people in each age, gender and weight status 

stratum.  These values are known during each simulation cycle.  Rearranging, the 

probability of death for normal weight (which has a RRm = 1), can be computed as 

follows: 

 

𝑃(𝐷𝑒𝑎𝑡ℎ |2, 𝑎, 𝑔) =  
𝑃(𝐷𝑒𝑎𝑡ℎ′ | 𝑎, 𝑔) ∗ ∑ 𝑤𝑚,𝑎,𝑔𝑀

∑ 𝑅𝑅𝑚𝑀 𝑤𝑚,𝑎,𝑔
 ∀ 𝑚, 𝑎, 𝑔 

 

Using this as a reference point, the remaining unknown death probabilities can be 

computed as follows: 

 

𝑃(𝐷𝑒𝑎𝑡ℎ | 𝑚, 𝑎, 𝑔) =  𝑃(𝐷𝑒𝑎𝑡ℎ | 2, 𝑎, 𝑔) ∗  𝑅𝑅𝑚   ∀ 𝑚, 𝑎, 𝑔  

 

4.5 Simulation Metrics 

The primary metric is the weight status prevalence for each of the weight categories in 

each year of the simulation.  Weight status prevalence is the percentage of the population 

in a given weight status. 

 

The secondary metric is Quality Adjusted Life Years (QALYs), which are calculated by 

multiplying time spent in a health state and the utility of that health state.  Steensma et al. 
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[89] derived age, gender, weight status specific utilities using NPHS survey data. 

Individual utilities are determined from health related quality of life measures that 

assesses basic senses, mobility, dexterity, feelings, cognitive ability and pain among 

others.  Utility as determined from the Health Utility Index falls between [-0.36, 1.00] 

where 0 represents death, the lower limit represents a state worse than death and the 

upper limit is perfect health [32].  The health utilities used to calculate each individual’s 

QALYs are included in Appendix A. 

 

Individuals value current health more than future health [90], so the discounted present 

value of the QALYs for each gender is calculated as, 

   

𝐷𝑃𝑉(𝑄𝐴𝐿𝑌𝑠𝑔) =   ∑
𝑄𝐴𝐿𝑌𝑠𝑔,𝑡
(1 + 𝑟)𝑡

𝑇

𝑡=0

 ∀ 𝑔 

where, 

r is the discount rate 

t is the year 

g is the gender 

 

I assume the discount rate is 3.5%, as per [91].   

 

A common metric when deciding whether to implement a health care program is the 

incremental cost-effectiveness ratio (ICER) [92].  ICER weighs the incremental gain (or 

loss) in QALYs of a scenario against the costs required to achieve these benefits.  ICER 

is calculated by, 

   

𝐼𝐶𝐸𝑅 =   
𝐶1 − 𝐶2

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑄𝐴𝐿𝑌𝑠
 =  

𝐶1

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑄𝐴𝐿𝑌𝑠
 

 

 

 

where,  
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𝐶1 is the cost of a prevention or intervention scenario 

𝐶2 = 0 is the cost of the baseline (i. e. taking no action) 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑄𝐴𝐿𝑌𝑠 =  Intervention scenario QALYs – Reference scenario QALYs 

 

In our case C2 is 0 since no action is taken during the reference scenario forecast.  The 

costs of interventions are not precisely estimated for this research, so C1 is not known. 

From Laupacis [92], we know that an intervention is considered very effective when 

ICER is not more than $20,000 / QALY.  As such, for each proposed interventions I set 

ICER=$20,000 and compute C1.  This implies that if the intervention can be completed 

at a cost of C1 then it will be very effective.  Similarly, I repeated this calculation for 

interventions deemed “moderately effective” and “poorly effective” (see Table 7).  For 

the purposes of this research moderately effective is assumed to have an ICER of 

$60,000/QALY.  Finally, for each scenario the intervention cost per person is calculated 

by dividing C1 by the number of individuals taking part in the intervention. 

Table 8 - Incremental cost effectiveness ratio thresholds 

 

 

 

 

 

 

4.6 Prevention and Intervention Scenarios 

The simulation framework enables the analysis of potential interventions aimed at 

reducing overweight and obesity. These ‘what if’ scenarios are simulated by changing 

inputs.  The first scenario projects the results of an existing school-based intervention 

program.  The second scenario considers a bariatric surgery intervention option for a 

selected proportion of the population.  The third scenario alters the transition probabilities 

across the whole population to mimic the effects of a nation-wide prevention program. 

 

Intervention  ICER ($/QALY) 

Very effective <20,000 

Moderately effective 20,000-100,000 

Poorly effective >100,000 
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To determine the impact of each scenario the simulation metrics described in the previous 

section are computed and compared to the reference forecast.  The weight status 

prevalence is reported using only one replication since prevalence results are not 

significantly different across multiple runs.  The variation across replications for QALYs 

however, is considerably higher.  The QALY metric is calculated by using 30 scenario 

replications and creating a confidence interval of the difference between each 

replication’s QALYs and the reference scenario’s QALYs.  Assuming the 30 metric 

calculations are normally distributed, the student-t test is used to create confidence 

intervals as recommended by Rossetti [93]. 

 

4.6.1 School-based Intervention Scenario 

The first scenario draws from the results of the evaluation of a children’s school-based 

health promotion program [16].  The researchers found a 2.2 percentage point absolute 

obesity reduction in intervention schools compared to control schools.  The 2.2% 

reduction of childhood obesity is assumed to carry forward to 18 and 19 year olds for this 

intervention scenario.  Thus, the incoming birth distribution is adjusted so that the 

probability of entering as an obese 18 or 19 year old is reduced by 2.2 percentage points, 

while the probability of entering as a normal weight individual is increased by 2.2. 

 

This scenario is run as a cohort simulation (no births or deaths) where an initial sample of 

20,000 18 and 19 year olds is selected in 2010 and simulated until they reach age 80.  The 

reference forecast initial sample is determined from the original distribution, whereas the 

scenario forecast is sampled from the adjusted distribution.  To reduce the variation 

across each replication’s initial sample the number of males and females as well as the 

number of 18 and 19 year olds are forced to be equal to that of the reference scenario’s 

initial sample.   

 

4.6.2 Bariatric Surgery Intervention 

This scenario is modelled as a population simulation (includes births and deaths) with an 

initial sample size of 500,000 individuals.  An adult intervention program is implemented 
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where a number of obese individuals are selected for bariatric surgery each year.  Only 

obese individuals aged 18-65 are considered eligible for this surgery [94].  The Canadian 

healthcare system is assumed to be capable of performing 10,000 per year for the entire 

Canadian population.  This number of yearly surgeries is adjusted based on the 

proportion (0.01467) of Canadians being simulated in 2010 (see Section 4.4.2). 

 

According to Richardson and colleagues [95] approximately 70% of bariatric patients 

achieve significant weight loss during the first three years after surgery.  For this scenario 

70% of surgery patients each year are assumed to transition to normal weight and remain 

in normal weight status for the length of the simulation.  The other 30% are assumed to 

remain in the obese category and transition according to the original transition 

probabilities. 

 

The variation of the initial sample for each scenario replication is eliminated by using the 

same sample as the reference forecast.  The variation of incoming births is also 

eliminated for each replication by using the same sample of incoming births as the 

reference scenario.  When calculating the scenario cost per person the intervention 

population is slightly different for each replication.  To the simplify calculations the 

number of individuals chosen for surgery is taken to be the average number of individuals 

chosen across all replications. 

  

4.6.3 Primary Population-wide Prevention 

The final scenario modifies transition probabilities to assess the potential impact of a 

population-wide prevention program.  This primary prevention would hypothetically 

encourage individuals to remain in their current weight status rather than transitioning to 

a higher one.  The transition probabilities of remaining in normal and overweight 

categories ∀ 𝐴, 𝐺 is increased by 2 percentage points.  In addition, transition probabilities 

from normal to overweight, and overweight to obese are reduced by 2 percentage points 

of their estimated values ∀ 𝐴, 𝐺. 
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As with the previous scenario, the initial sample and incoming births are set to be 

identical to the reference forecast scenario.  The total population affected by the 

intervention is the sum of the initial sample (500,000) and the number of incoming births 

over the simulation horizon. 
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Chapter 5:  Model Verification 

Law and Kelton [96] recommend various simulation verification techniques.  This section 

describes how several verification techniques are utilized to ensure the simulation model 

is performing as intended. 

 

Technique 1 

Building a simulation model and coding in general should be written in small segments 

and tested continuously as more detail is added.  This helps reduce confusion while 

debugging and provides a meaningful structure for those who may review the code.  For 

this thesis, separate functions were written for the various steps of data manipulation, 

transition modelling and the simulation.  Law and Kelton also advise the modeller to 

build complexity into a model sequentially.  For instance, the forecasting simulation was 

built sequentially.  First, the initial population was simulated through weight statuses 

using only the transition probabilities.  After verifying results were being generating as 

anticipated, births and deaths were added to the model and again checked for consistency 

with expectations. 

 

Technique 2 

Law and Kelton also recommend running the model under simplifying assumptions for 

which its true characteristics are known.  While performing the validation simulation 

within the RDC I compared the number of individuals in the simulation to the observed 

NPHS data.  This led to the discovery of syntax errors as well as unexpected NPHS data 

anomalies.  For example a coding error in the age correction was identified, and 

unexpected missing weight statuses in the NPHS data were discovered.   

       

Technique 3 

Another verification technique suggested by Law and Kelton is ensuring that the 

simulation input distributions are consistent with the data from which they are derived.  

For the forecasting simulation a new cohort of 18 and 19 year olds enter the model each 

year.  The age, gender and weight status distribution of these incoming individuals is 

verified by performing a chi-square test to compare the sampled and expected counts in 
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each stratum (Appendix B).  The test only includes 18 year old males and females since 

the distribution across 18 and 19 year olds is identical.  The chi-square test results in a p-

value of 0.22, indicating that we cannot reject the null hypothesis that these two 

distributions are the same.  This confirms that our initial sample size is large enough to 

ensure incoming births are consistent with the NPHS data. 

 

Technique 4 

The final verification technique used in thesis is checking that simulation results are 

reasonable.  For this technique, I verified that the modelled transition probabilities adhere 

to the assumption that they are stationary through time.  Transition probabilities through 

time for each gender were recalculated (Appendix C) from the forecasting period 

simulation results.  Actual transition probabilities by year from the observed NPHS data 

could not be released from the RDC due to disclosure restrictions. 
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Chapter 6:  Results 

This section first provides the derived transition probabilities in graphical form for 

LOWESS and multinomial methodologies.  Next, results from the validation simulation 

period (1994-2010) are reported.  Finally, results of the forecast simulation and scenario 

analyses are reported. 

  

6.1 Descriptive Results 

Figures 1-4 depict the probability of transitioning from a current weight status to a future 

weight status, stratified by age, gender and current weight status.  The transition 

probabilities were derived from the LOWESS and multinomial methodologies, 

respectively (Section 4.3.2 - 4.3.3).  Empirical transition probabilities were not released 

due to disclosure restrictions.  When comparing the LOWESS and multinomial transition 

probabilities, it is important to note the scales on the x-axis are different.  The scale for 

the LOWESS ranges from ages 18 to 80 years, while the scale for multinomial covers 

ages 18 to 104 years. 
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Transition Probabilities for Males 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Transition probabilities by age for males, derived from the LOWESS method 

Figure 2 - Transition probabilities by age for males, derived from the multinomial 

method 
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Figure 4 - Transition probabilities by age for females, derived from the multinomial 

method 

Transition Probabilities for Females 

  

Figure 3 - Transition probabilities by age for females, derived from the LOWESS 

method 
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The most evident difference across all graphs is observed in the current underweight 

transition probability profiles.  Although the LOWESS and multinomial probabilities 

follow the same general pattern, they deviate by as much as 10%.  This is attributed to a 

lack of empirical data for estimating the underweight transition behaviour.  As age 

increases there is also less available data which contributes to large deviations in 

transition probabilities for those above 80.  For both males and females, the transition 

probabilities of the youngest ages are also notably different when comparing the two 

approaches.  The LOWESS overweight to overweight and obese to obese status transition 

probabilities are 3-4% higher than those of the multinomial procedure.  This difference 

diminishes in the late 20’s, except for female overweight to overweight status transitions 

which do not converge to similar values until approximately age 40. 

 

In both approaches older participants tend to transition to lower weight statuses.  For 

example, Figure 2 shows the declining transition probabilities for male obese to obese 

weight status.  In terms of gender differences, the probabilities of remaining in the same 

current weight status for normal, overweight and obese are higher in females than in 

males.  This indicates females are more resistant to weight change throughout the 

duration of adulthood than their male counterparts. 

 

In addition to creating weight status prevalence time series plots, the weight status 

prevalence by age was examined.  The weight status prevalence by age for the NPHS 

cannot be released from the RDC, so only simulated results are provided.  Nonetheless, 

the same general trends are present in the observed NPHS data.  Figures 5 and 6 are 

generated from the 1994-2010 validation period simulation using multinomial transition 

probabilities.  Results for the LOWESS method were sufficiently similar. 
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Figure 5 - Simulated weight status prevalence by age among males for the 1994-2010 

validation period 

Figure 6 - Simulated weight status prevalence by age among females for the  

1994-2010 validation period 
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For males aged 18-35 a sharp decrease in the prevalence of normal weight status is 

observed.  This corresponds to significant increases in the prevalence of overweight and 

obesity over the same age range.  Obesity in the male population peaks from ages 50-60 

and declines from ages 60-80.  For females, the prevalence of normal weight declines 

approximately linearly from age 18-50 while the prevalence of both overweight and 

obesity increase approximately linearly.  The prevalence of both overweight and obesity 

continue to rise until plateauing at approximately age 50 and 60 for males and females, 

respectively. 

 

The final descriptive data extracted from the RDC is the observed weight status 

prevalence by year.  Figures 7 and 8 illustrate the NPHS weight status trends by gender 

from 1994-2010. 

 

 

 

  

Figure 7 - Observed NPHS weight status prevalence by year among males from 

1994-2010 
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For both male and females the prevalence of normal weight has decreased over time 

while that of obesity has increased.  The prevalence of overweight in males has declined 

over time, while for females it has risen.  For males, the observed obesity prevalence in 

the NPHS surpassed the prevalence of normal weight in 2004.  For females the 

prevalence of normal weight, overweight and obesity appear to be converging, but at a 

slower rate. 

 

6.2 Validation Simulation 

The validation simulation for ages 18-80 was run using each the empirical, LOWESS and 

multinomial transition probabilities within the RDC.  The simulation output is the 

prevalence of each weight status stratified by age and gender.  The NPHS observed 

weight status prevalence (stratified by age and gender) is also overlaid on each figure for 

comparison.  Another simulation was run for the validation period with individuals up to 

age 104 since the range of both the observed NPHS data and the multinomial method can 

be extended (Appendix D). 

Figure 8 - Observed NPHS weight status prevalence by year among females from  

1994-2010 
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Empirical Method Validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 9 - Predicted versus observed weight status prevalence among males from  

1994-2010 using empirical transition probabilities 

Figure 10 - Predicted versus observed weight status prevalence among females from 

1994-2010 using empirical transition probabilities 
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 LOWESS Method Validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 - Predicted versus observed weight status prevalence among males from  

1994-2010 using LOWESS transition probabilities 

Figure 12 - Predicted versus observed weight status prevalence among females from 

1994-2010 using LOWESS transition probabilities 
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Multinomial Method Validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 - Predicted versus observed weight status prevalence among males from  

1994-2010 using multinomial transition probabilities 

Figure 14 - Predicted versus observed weight status prevalence among females from 

1994-2010 using multinomial transition probabilities 
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By visual inspection, all three methods appear to replicate the observed NPHS data 

closely. To compare this formally the mean percentage forecast error, as described in 

Section 4.4.1 is calculated for each transition probability method and each weight status 

prevalence forecast.  The following tables illustrate the MPE for males and females. 

 

Table 9 - Mean percentage forecast error for each transition probability method and 

weight status for males from 1994-2010 

Transition Probability  

Method 
Mean Percentage Forecast Error (%) 

Underweight Normal Overweight Obese 

Empirical -17.58 
 

-3.73 1.13 1.03 

LOWESS -32.22 0.46 0.13 -0.81 

Multinomial 4.45 
 

0.38 0.70 -2.60 

  

Table 10 - Mean percentage forecast error for each transition probability method and 

weight status for females from 1994-2010 

Transition Probability  

Method 

Mean Percentage Forecast Error (%) 

Underweight Normal Overweight Obese 

Empirical -5.34 
 

-0.42 0.96 -1.30 

LOWESS 1.92 4.57 -4.02 -3.59 

Multinomial -5.97 
 

0.16 -0.10 -0.60 

 

The MPE table for males reveals that the most evident discrepancy is the underweight 

prediction error.  The highest error is an under prediction (-32.22%) of underweight 

males when using the LOWESS transition probabilities.  In other words, the predicted 

underweight prevalence across all cycles was on average 32.22% less than the observed 

underweight prevalence.  This large discrepancy is to be expected with the underweight 

category since sample sizes for deriving underweight transition probabilities are much 

lower than the other weight statuses.  Other than the underweight prediction error, all 

three transition probability methods for the males predict the observed prevalence with a 

high degree of accuracy. 

 

For females, the empirical and multinomial transition probabilities predict weight 

prevalence with the highest accuracy.  A relatively larger error is observed for the 
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LOWESS procedure, which over predicts normal weight by 4.57% on average and under 

predicts overweight and obesity by 4.02% and 3.59% on average, respectively. 

 

6.3 Forecast Simulation 

The forecast simulation is a continuation of the validation simulation.  This simulation is 

run once with an initial population of 500,000.  Only one replication is reported because 

the yearly prevalence of each weight status was found to be practically identical across 

simulation runs (Appendix E).  The following figures combine the validation period 

simulation results (1994-2010) and the forecasted results from 2010-2030. 

 LOWESS Method Forecast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 - Validation simulation (1994-2010) and forecasting simulation (2010-2030) 

weight status prevalence among males using LOWESS transition probabilities 
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Multinomial Method Forecast 

 

  

Figure 17 - Validation simulation (1994-2010) and forecasting simulation (2010-2030) 

weight status prevalence among males using multinomial transition probabilities 

Figure 16 - Validation simulation (1994-2010) and forecasting simulation (2010-2030) 

weight status prevalence among females using LOWESS transition probabilities 
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Results from Figures 15-18 show that the obesity prevalence for both males and females 

will continue to increase for a number of years before stabilizing.  For males, the 

prevalence of overweight and obesity appear to stabilize after 2020.  For females the 

prevalence of overweight and obesity continues to converge and appears to stabilize after 

2026. 

 

An additional analysis was performed to explore how the plateauing of the prevalence of 

obesity may be related to the Canadian age demographic.  First, the following simulated 

data illustrates that the prevalence of obesity peaks between approximately ages 40 and 

60 in males and between 50 and 70 in females. Note that the following results (Figures 19 

and 20) represent only the simulation generated by the multinomial transition 

probabilities.  The simulation results using LOWESS transition probabilities were not 

noticeably different. 

 

Figure 18 - Validation simulation (1994-2010) and forecasting simulation (2010-2030) 

weight status prevalence among females using multinomial transition probabilities 
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Figure 19 - Predicted weight status prevalence by age among males for the 2010-2030 

forecasting period 

Figure 20 - Predicted weight status prevalence by age among females for the 2010-2030 

forecasting period 
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Subsequently, we can consider the simulated age demographic data from 2010-2030 in 

Figures 21 and 22. 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 21 - Predicted age demographic distribution by year among males over the 2010-

2030 forecasting period 

Figure 22 - Predicted age demographic distribution by year among females over the 

2010-2030 forecasting period 
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These figures reveal that the proportions of males and females aged 40-70, who have the 

highest obesity rates (Figures 19 and 20), decreased approximately 6% from 2010-2030.  

Furthermore the proportion of 70-80 year olds, who are more likely to transfer to lower 

weight statuses, is increasing (Figures 19 and 20). 

 

To further investigate the impact of the age demographic age-standardized prevalence for 

each weight status was calculated.  The prevalence from years 2012-2030 was 

standardized based on the initial 2010 sampled values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 - Predicted versus age-standardized weight status prevalence among males 

from 2010-2030  
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Each of the weight status prevalence time series plots from 2010-2030 are more level 

than their corresponding forecasted prevalence.  The largest adjustment between 

predicted and standardized graphs is that of the prevalence of normal weight, where the 

absolute difference is approximately 1% for males and 2% for females.  Although the age 

demographic changed considerably across age groups (Figures 21 and 22), the age-

standardized results (Figures 23 and 24) ultimately indicate this change does not 

contribute significantly to the observed stabilization of trends. 

 

6.4 Scenario Results 

This section presents the forecasted weight prevalence and the incremental QALYs for 

each of the proposed scenarios.  The forecasted weight status prevalence is reported using 

one replication.  The difference in QALYs between the reference simulation and 30 

Figure 24 - Predicted versus age-standardized weight status prevalence among females 

from 2010-2030 
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scenario replications are reported with 95% confidence intervals.  Computation times2 for 

each of the simulations and their results are summarized in the following table.  

Processing times for scenarios 1, 2 and 3 also include results generation. 

 

Table 11 - Simulation computation times for each scenario 

 Time (Minutes) Initial 

Population 

Replications 

Scenario 1 reference forecast  30 20,000 30 

Scenario 1 40 20,000 30 

Scenario  2 and 3 reference forecast 450 500,000 30 

Scenario 2 550 500,000 30 

Scenario 3 550 500,000 30 

 

6.4.1 School-based Intervention Scenario 

This scenario models a cohort of 18 and 19 year olds with a reduced chance of entering 

as obese, and compares the results to a reference cohort simulation which uses the 

original incoming weight status distribution.  The following figures overlay the weight 

prevalence results of the scenario and the reference forecast.  

 

                                                           
2Using an i-7 3520M processor (4 cores - R uses only one), 8GB RAM 
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Figure 25 - Reference versus scenario 1 forecasted weight status prevalence among 

males from 2010-2030 

Figure 26 - Reference versus scenario 1 forecasted weight status prevalence among 

females from 2010-2030 
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The cohort intervention simulation for both males and females closely resembles the 

reference scenario.  Although obesity prevalence was initially reduced for a number of 

years, this difference does not appear to endure throughout the simulation.  To 

substantiate how this change in weight status impacts the quality of life for individuals, 

the QALY metric is used.  The QALYs gained and the number of individuals affected by 

the intervention is presented in Table 12.  

 

Table 12 - Scenario 1 versus reference QALYs simulation results 

 Males Females 

Incremental QALYs 64.98 [60.93, 68.85] 113.19 [103.13, 123.25] 

Intervention Population 9,728 10,272 

 

According to Laupacis [92] a health improvement program is considered good value for 

money when one QALY can be gained for each $20,000 invested (Section 4.5).  

Applying this ratio to our case means that this school-based intervention is good value if 

it can be achieved at $133.40 [125.26, 141.55] per male and $220.39 [200.80, 239.98] per 

female.  Table 13 summarizes this result, and the scenario cost per person which would 

be considered a moderate (60,000$/QALYs) and poor (100,000$/QALYs) investment. 

 

Table 13 - Scenario 1 intervention cost per person 

 

 

 

 

For this scenario the incremental QALYs confidence intervals indicate that females 

benefit more from this intervention than males.  The cost per person for each 

effectiveness level also reveals that we would be willing to spend significantly more on 

females than males for the same school-based childhood intervention. 

 

 Male ($/Person) Female ($/Person) 

Good Value 133.40 [125.26, 141.55] 220.39 [200.80, 239.98] 

Moderate Value 400.21 [375.77, 424.64] 661.17 [602.40, 719.93] 

Poor Value 667.01 [626.29, 707.74] 1,101.94 [1,004, 1,199.88]  
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6.4.2 Bariatric Surgery Scenario 

The second scenario represents a bariatric surgery program.  Each year 10,000 obese 

Canadians are chosen to participate, of which 70% remain in normal weight status for the 

length of the simulation.  The remaining participant’s weight statuses are unaffected by 

the intervention and continue transition through each cycle normally.  As in the previous 

scenario the following figures overlay the weight status prevalence results from the 

reference forecast and Scenario 2. 

   

Figure 27 - Reference versus scenario 2 forecasted weight status prevalence among 

males from 2010-2030 
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These results indicate 10,000 bariatric surgeries would have a minimal effect on obesity 

prevalence for both males and females.  However the difference in QALYs for this 

scenario compared to the reference scenario is more pronounced, as shown in the 

following table. 

 

Table 14 - Scenario 2 versus reference QALYs simulation results 

 Male Female 

Incremental QALYs 727.17 [400.77, 1,053.58] 661.97 [400.34, 923.60] 

Intervention Population 1,609 1,332 

 

  

Figure 28 - Reference versus scenario 2 forecasted weight status prevalence among 

females from 2010-2030 

 



  67 
 

The acceptable scenario cost per person is calculated for each level of effectiveness: 

 

Table 15 - Scenario 2 intervention cost per person 

 

For this scenario the confidence intervals of cost indicate there is a difference between 

each level of intervention effectiveness since none of the intervals overlap.  However 

there is no significant difference between males and females in terms of incremental 

QALYs or the acceptable intervention cost per person. 

 

6.4.3 Primary Population-wide Prevention 

The final scenario represents a hypothetical prevention program that affects all 

Canadians.  It reduces the probability of transitioning from normal to overweight and 

from overweight to obese.  As in the two previous scenarios the following figures overlay 

the weight prevalence results from the reference forecast and Scenario 3. 

 

  

 Male ($/Person) Female ($/Person) 

Good Value 9,038.81 [4,981.58, 13,096.03]   9,939.49 [6,011.06, 13,867.92] 

Moderate Value 27,116.42 [14,944.74, 39,288.10]  29,818.47 [18,033.17, 41,603.77] 

Poor Value 45,194.04 [24.907.91, 65,480.17] 49,697.45 [30,055.28, 69,339.61] 
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Figure 29 - Reference versus scenario 3 forecasted weight status prevalence among 

males from 2010-2030 

 

Figure 30 - Reference versus scenario 3 forecasted weight status prevalence among 

females from 2010-2030 
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For males the prevalence of obesity immediately reverses its upward trend and remains in 

decline until 2030.  Normal weight continues to decline until 2020 and then returns to its 

2010 prevalence level by 2030.  The trend in the prevalence of overweight among males 

does not change, rising at a slightly faster rate than the reference scenario forecast. For 

females, the trend of obesity is also reversed and declines slightly over the course of the 

simulation period.  Normal weight remains stable until 2030 and the overweight trend 

follows the same path as the reference scenario.  Results of this scenario are summarized 

in the following tables: 

Table 56 - Scenario 3 versus reference QALYs simulation results 

 

 

Table 17 - Scenario 3 intervention cost per person 
 

 

 

 

 

For this scenario the incremental QALYs confidence intervals indicate that females 

would benefit more than males from a nation-wide prevention program.  

 

 

  

 Male Female 

Incremental  QALYs 2,676.33 [2,362.41, 2,990.25] 5,799.84 [5,499.02, 6,100.67] 

Intervention Population 300,115 305,824 

 Male ($/Person) Female ($/Person) 

Good Value 178.35 [157.43, 199.27] 379.29 [359.62, 398.97] 

Moderate Value 535.06 [472.3, 597.82] 1137.88 [1078.86, 1196.90] 

Poor Value 891.77 [787.17, 996.37] 1896.46 [1798.10, 1994.83] 
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Chapter 7:  Discussion  

This section is divided into several parts that discuss various aspects of this research.  

First the forecast and scenario results are further discussed.  Next, several limitations of 

the entire modelling process are reviewed.  Subsequently the choice of a Markov 

behaviour model is examined.  Finally, I describe the simulation’s capability to run under 

a range of different input parameters. 

 

Forecasting Simulation 

The trajectory of Canadian overweight and obesity prevalence trends and whether large-

scale action is necessary is an ongoing debate.  A report by Twells et al. [4] predicts 

increases in obesity prevalence for all provinces and advocates for a nation-wide 

prevention and intervention strategy.  In contrast, a report by Esmail and Basham [13] 

challenges the magnitude of the obesity problem and questions whether government can 

intervene effectively.  A recent report by Sassi and colleagues [97] indicates that the 

prevalence of obesity in Canada is still increasing, but at a slower rate than previous 

years.  My simulation results similarly indicate that the weight status prevalence 

distribution will stabilize through time.  However, while Esmail and Basham suggest this 

stabilization is imminent or perhaps has already occurred, the forecasted obesity growth 

rate in this research does not fully diminish until approximately 2020 for both males and 

females.  Regardless of the precise timing of weight prevalence stabilization, the 

proposed intervention and prevention programs have the potential to offer gains in quality 

of life for reasonable costs per person.  The calculated intervention costs per person may 

even be conservative since any cost savings associated with preventing weight-related 

illness are not considered. 

 

The first scenario follows a cohort of individuals aged 18 and 19 who have been assumed 

to participate in the APPLE Schools program in Alberta [74].  The weight status 

prevalence distribution appears to return to the same levels as those of the reference 

cohort who did not receive the intervention.  However, in terms of QALY cost-

effectiveness per child, the scenario results indicate that the APPLE school-based 
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program is good value if no more than $133.40 [125.26, 141.55] and $220.39 [200.80, 

239.98] is allocated to each male and female, respectively.  Compared to an approximate 

$190 per child for the APPLE Schools program [98], these findings predict a positive 

return on investment for females if we desire good value from the intervention.  For 

males, spending $190 per child is warranted if moderate intervention value is an 

acceptable outcome.  A limitation of the scenario is that adult transition probabilities of 

those who received the intervention and those who did not are identical.  In reality, a 

child who attends an APPLE School may have a reduced chance of weight gain 

throughout adulthood.  However, not enough data is yet available to assess the long-term 

impact on health behaviours of these students. 

 

The second scenario results reveal that performing bariatric surgery on 10,000 individuals 

per year will have a negligible effect on obesity prevalence.  This is expected since the 

number of surgeries each year is very small relative to the population size.  Assuming 

good value ($20,000/QALY) we would be willing to spend up to $9,038.81 and 

$9,939.46 per person for males and females, respectively.  Although 80% of surgeries 

patients are currently women [79], the amount we would be willing to spend on female 

bariatric surgery is not significantly different than males.  The cost of one bariatric 

surgery ranges from $12,000 to $24,000 [79].  According to the $/QALY effectiveness 

scale (Section 4.5) this intervention can be considered good to moderate value if a 

positive return on investment is desired.  An important limitation of this scenario is that 

little data exists to support the assumption that successful patients will remain in normal 

weight status for their entire life.  This optimistic estimate of long-term effectiveness may 

result in an overestimation of the QALYs gained. 

 

The final scenario simulates a hypothetical primary prevention program.  Once 

individuals reach overweight or obese weight status the probability of transitioning to a 

lower BMI category is small (Figures 1-4).  Therefore this hypothetical program focused 

on reducing the probability of transitioning to overweight or obesity status.  The 

prevention scenario had a considerably larger effect on the weight status prevalence than 

the previous two scenarios.  The results may also be an underestimate as a population-
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wide prevention program designed to maintain a healthy weight will likely also 

favourably influence the transition probabilities toward a healthier weight.  A limitation 

of this scenario is that the parameter choice of 2% is arbitrary, and unlike the previous 

two scenarios no cost benchmark exists to compare whether such a program would be 

economically sensible.  Nonetheless, this simulation reveals that up to 178.35 [157.43, 

199.27] per male and 379.29 [359.62, 398.97] per female can be spent to obtain good 

value from this intervention. 

 

Modelling Limitations 

Many elements of this microsimulation model operate under the assumption that current 

trends will hold into the future.  For example, transition probabilities were found to be 

relatively stable from 1994-2010 period their behaviour past 2010 is uncertain.  Likewise, 

mortality probabilities are based on data from 2009-2011 [87], however changing health 

behaviour and healthcare advancements are continually influencing Canadian’s mortality 

rates.  Similarly the age, gender and weight status specific Health Utility Index [89] is 

derived from 2000-2005 data and is assumed to remain unchanged through time.  

However, health utilities are also likely gradually changing as healthcare improvements 

offer better treatment of obesity-related diseases and conditions. 

 

Another important limitation of this research is the exclusion of the recommended NPHS 

variance estimation technique throughout the validation and forecasting simulations.  

Typically simulation model outputs are accompanied by confidence intervals, derived 

from multiple simulation replications.  However, confidence intervals derived from these 

standard methods are less reliable due to the NPHS’s complex survey design [32].  

Instead, Statistics Canada recommends the bootstrapping technique for correct variance 

estimation [99].  Briefly, bootstrapping consists of subsampling the initial 1994 NPHS 

data multiple times (with replacement) and recalculating the sampling weights for each 

new subsample.  Each of these new bootstrap subsamples would contribute a different set 

of initial conditions per simulated replication, resulting in more accurate confidence 

intervals.  This method of bootstrapping could also be used to derive probabilistic 

transition probabilities (as described Section 3.4).  Applying bootstrapping in a future 
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project would permit a more accurate internal validation and scenario analyses of the 

simulated weight status prevalence and QALYs. 

 

A demographic consideration not modelled in this research is the additional population 

gained from immigration and how weight behaviour varies between the various ethnic 

groups.  However, Goel et al. [100] and other found that the majority of immigrants from 

non-Western countries to Canada tend to adopt a lifestyle similar to that of the host 

country, and eventually develop a similar obesity prevalence and mortality risk as 

Canadian-born individuals. 

 

Due to the use of a utility scale to calculate QALYs, the inherent weaknesses of 

preference scales should also be noted.  Using QALYs to assess cumulative population 

health relies on two assumptions.  The first is that individual utility is additive across 

time.  In regards to health, this assumption may be violated if an individual with an 

adverse health condition perceives their condition differently through time.  For example 

someone may eventually adapt their perception positively to their condition, while others 

may perceive the condition’s impact on health as worsening through time [90].  The 

second assumption is that utility is additive across individuals.  A person with identical 

health conditions and characteristics may perceive health entirely differently.  With 

respect to this research, individuals within the same gender, age and weight status group 

may have differing perceptions of health.  However, the risk of misclassifying a person’s 

health utility may be reduced in our case because each group is an average health utility 

derived from NPHS data.  Although these assumptions simplify the complexity of 

individual health preference, Weinstein suggests QALYs are still a useful means of 

decision making in health care settings [90]. 

 

Markov Model 

The structure of this model aggregates the population into age, gender and weight status 

strata which serve as the explanatory variables for each individual.  Faissol et al. [47] 

found that when computing transition probabilities with aggregated data, bias increases 

with the amount of data aggregation.   For example, aggregating male and female data 



  74 
 

then calculating the transition probabilities would fail to describe any gender differences.  

Too much disaggregation of the data reduces samples sizes within each stratum.  This 

causes three problems: First small samples sizes fail to truly represent the population, and 

second, results from a small subsample may not be released from the RDC due to 

violation of Statistics Canada disclosure guidelines, and third, they may cause the 

Markov model state space to become too large and intractable (the "curse of 

dimensionality"). Thus, estimating transition probabilities with the NPHS survey must 

strike a balance between an aggregated but potentially biased model and a disaggregated 

model with data derived from smaller sample sizes. 

 

A more disaggregated model might separate obesity into class I, II and III obesity.  This 

would reduce the amount of aggregation bias in the transition probabilities and account 

for differences of health utility in the higher BMI levels.  An example of aggregating the 

variables is to collapse age into fewer categories.  Future work might include 

programming a more flexible version capable of running the model with differing levels 

of aggregation and comparing the predictive success and forecast simulation results.  

Predictive performance may also be improved by introducing more variables into the 

Markov model such as education or income.  This thesis introduces only age and gender 

for the microsimulation since Statistics Canada provides a reliable distribution of these 

variables into the future, while projections of other variable’s distributions are less 

certain.  Projecting these distributions is the study of more complex microsimulations 

such as Canada’s POHEM [29] or Australia’s APPSIM [25]. 

  

One could use a continuous-time Markov model which would remove the restriction that 

individual’s data points must be consecutive.  In such a model, transitions occur after an 

exponentially distribution time period.  Such time periods could be determined from the 

NPHS data sets and may not be hampered by data missing from a given cycle.  However, 

it would require that the time between weight status changes be exponentially distributed 

which may not be the case. This type of model could be built using the Multi-state Model 

package for R [101], which includes fitting and statistical analysis of a continuous-time 

model for longitudinal data.   
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For the LOWESS smoothing of the empirical probabilities, the smoothing parameter as 

well as the local regression span could be modified to explore if this would yield a closer 

simulated fit to the NPHS data.  Future analyses could also introduce an ordinal 

multinomial regression, in which the naturally ordering of weight status is built into the 

model.  However ordinal multinomial regression requires the proportional odds 

assumption to be met, which assumes each of weight status coefficients have identical 

slopes.  This would reduce the number of parameters to estimate (and perhaps increases 

the capacity to input more independent variables), however the proportional odds 

assumption might not be met for our data. 

 

Simulation Application 

Spielauer [22] notes that microsimulation models derived from confidential data are often 

considered ‘black boxes’ because they are difficult to validate and interpret 

independently.  This research also must be considered a ‘black box’ in terms of 

independent validation since it would require access to the RDC.  However interpretation 

of this microsimulation is possible outside of the RDC since it allows users to change 

input parameters and initial assumptions.  Such changes may include analyses of how 

using LOWESS versus multinomial model-based probabilities impacts the scenario 

results.  The prevention or intervention scenario parameters can also be modified for 

investigation into sensitivity analyses or optimization of the simulation metrics.  

Additionally the user can extend the simulation horizon past 2030 as well as change the 

discount rate for QALYs.  Finally, to quantify each scenario’s effect on the elderly the 

age range can be extended to 104.  However, low sample sizes of the elderly population 

may result in unstable estimates.  Analyses of the elderly population would ideally 

recalculate the transition probabilities using additional data from the health institutions 

(e.g. nursing homes) component of the NPHS survey. 

 

A future project could also further develop the code to implement multiple scenarios 

during the same forecast period.  For example, children who attend the APPLE Schools 

program schools currently are assumed to transition through adulthood with the initially 

http://ssc.sagepub.com/search?author1=Martin+Spielauer&sortspec=date&submit=Submit
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derived transition probabilities.  A new forecast simulation could consider a combination 

of the first and third scenario which assumes a lower incoming obesity prevalence and 

accounts for any prevention benefits of the program that extend into adulthood.  General 

usability of the simulation may also be improved by creating a web-based application for 

users [102]. 
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Chapter 8:  Conclusion 

This research used the NPHS to derive the weight status transition behaviour of 

individuals according to their age, gender and previous weight status.  A microsimulation 

model was created and validated from 1994-2010.  Subsequently, the simulation was 

used to forecast the weight status prevalence from 2010-2030.  

 

Results of the forecast simulation revealed a stabilization of weight status prevalence 

trends over the next 20 years.  However, despite a leveling of overweight and obesity 

prevalence this research finds weight reduction programs would have an important 

positive impact on the future health of Canadians.  In particular, the school-based 

(APPLE Schools) scenario simulation revealed that based on QALYs alone, the 

simulated intervention cost per child is approximately equal to the existing program cost.   

Incorporating healthcare cost savings into all scenarios would further increase the 

estimated amount we would be willing to spend on these intervention or prevention 

programs. 

 

The lack of wide-scale prevention and intervention programs thus far is not entirely 

surprising, due to the difficulty in assessing their long-term effectiveness and net benefits.  

As primary research determines the effectiveness of such programs there is also the need 

to develop simulations in parallel to understand their potential benefits. Microsimulations 

such as the one presented in this thesis are a particularly promising avenue of research 

due to their ability to flexibly simulate intervention and prevention scenarios under a 

range of different assumptions. 
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Appendix A 

A1 - Health utilities for each weight status stratified by age group and gender 

 

Age 

Males Females 

Under Normal Overweight Obese Under Normal Overweight Obese 

18-24 0.84 0.91 0.92 0.88 0.88 0.92 0.90 0.85 

25-29 0.82 0.92 0.92 0.90 0.92 0.92 0.90 0.89 

30-34 0.86 0.92 0.93 0.90 0.89 0.91 0.89 0.85 

35-39 0.81 0.90 0.91 0.90 0.92 0.91 0.91 0.85 

40-44 0.83 0.90 0.91 0.89 0.86 0.90 0.88 0.84 

45-49 0.70 0.89 0.90 0.89 0.85 0.89 0.86 0.82 

50-54 0.73 0.87 0.89 0.87 0.79 0.88 0.86 0.80 

55-59 0.72 0.89 0.87 0.84 0.82 0.88 0.87 0.78 

60-64 0.81 0.86 0.87 0.83 0.80 0.88 0.84 0.79 

65-69 0.74 0.88 0.86 0.81 0.84 0.87 0.86 0.77 

70-74 0.74 0.86 0.85 0.78 0.76 0.84 0.83 0.73 

75-79 0.73 0.80 0.79 0.80 0.75 0.79 0.78 0.66 

80-84 0.54 0.74 0.73 0.69 0.62 0.74 0.69 0.61 

>85 0.52 0.64 0.61 0.48 0.55 0.60 0.64 0.50 

 

Obesity class I and II health utility for each gender and age group are reduced to one 

obese category with a weighted average of health utility and weight status prevalence for 

each age category.  Additionally, 18 and 19 year olds in our research are assumed to 

share the same utility values as those in the 20-24 group. 

 

An individual may reside in the same health utility age group over two years, or they may 

transition from one health utility age group to another during same simulation cycle, t.  

Therefore, QALYs for each individual and each simulation cycle are calculated by: 

 

𝑄𝐴𝐿𝑌𝑠𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑡 = {
2 ∗ 𝑈𝑀,𝐴,𝐺                  𝑖𝑓𝑖𝑛 𝑠𝑎𝑚𝑒 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑣𝑒𝑟 2 𝑦𝑒𝑎𝑟𝑠

𝑈𝑀,𝐴,𝐺 + 𝑈𝑀,𝐴+1,𝐺             𝑖𝑓 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝𝑠
} ∀ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑡   
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Appendix B 

Simulation births of 18 year olds in 2012: 

B1 - Expected versus sampled counts of simulated 2012 18 year old births 
 

 

 

 

 

 

 

 

 

 

 

B2 - Pearson’s Chi-square test R output 
  

 Expected Counts Sampled Counts 

Male Underweight 157 166 

Male Normal 1523 1509 

Male Overweight 807 785 

Male Obese 409 407 

Female Underweight 120 119 

Female Normal 2234 2281 

Female Overweight 485 468 

Female Obese 227 233 
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Appendix C 

  

C1 - Transition probabilities by year for males calculated from the 2010-2030 forecast 

using the multinomial transition matrix  

C2 - Transition probabilities by year for females calculated from the 2010-2030 

forecast using the multinomial transition matrix 
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Appendix D 

  

D1 - Predicted versus observed weight status prevalence among males from 1994- 

2010 using empirically derived transition probabilities and a maximum age of 104 

D2 - Predicted versus observed weight status prevalence among females from 1994- 

2010 using empirically derived transition probabilities and a maximum age of 104 
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D3 - Simulated weight status prevalence by age among males for the 2010-2030 

forecasting period 

D4 - Simulated weight status prevalence by age among females for the 2010-2030 

forecasting period 
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Appendix E 
 

E1 - Confidence interval data for weight status prevalence among males from  

2012-2030 based on 30 replications 

 

  

Year Underweight Normal Weight Overweight Obese 

2012 0.0065 

[0.0065,0.0066] 

0.2506 

[0.2503, 0.2509] 

0.4575 

[0.4572, 0.4578] 

0.2854 

[0.2851, 0.2856] 

2014 0.007  

[0.0069, 0.007] 

0.2447 

[0.2444, 0.2450] 

0.4589 

[0.4585, 0.4592] 

0.2895 

[0.2891, 0.2898] 

2016 0.0068  

[0.0068, 0.0069] 

0.2401 

[0.2399, 0.2404] 

0.4602 

[0.4598, 0.4606] 

0.2928 

[0.2924, 0.2931] 

2018 0.0068 

[0.0067, 0.0068] 

0.2365 

[0.2362, 0.2368] 

0.4611 

[0.4607, 0.4615] 

0.2956 

[0.2952, 0.2959] 

2020 0.0068 

[0.0067, 0.0068] 

0.2341 

[0.2338, 0.2344] 

0.4615 

[0.4611, 0.4620] 

0.2976 

[0.2972, 0.2980] 

2022 0.0069 

[0.0069, 0.0070] 

0.2329 

[0.2326, 0.2333] 

0.4618 

[0.4612, 0.4623] 

0.2984 

[0.2979, 0.2988] 

2024 0.0071 

[0.0070, 0.0071] 

0.2320 

[0.2317, 0.2324] 

0.4619 

[0.4615, 0.4624] 

0.2990 

[0.2986, 0.2993] 

2026 0.0073 

[0.0072, 0.0074] 

0.2325 

[0.2322, 0.2329] 

0.461 

[0.4606, 0.4615] 

0.2991 

[0.2988, 0.2995] 

2028 0.0075 

[0.0074, 0.0076] 

0.2325 

[0.2322, 0.2329] 

0.4603 

[0.4599, 0.4607] 

0.2996 

[0.2992, 0.3000] 

2030 0.0077 

[0.0076, 0.0078] 

0.2332 

[0.2332, 0.2335] 

0.4597 

[0.4594, 0.4601] 

0.2994 

[0.2991, 0.2997] 
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E2 - Confidence interval data for weight status prevalence among females from  

2012-2030 based on 30 replications 

 

 

 

Year Underweight Normal Weight Overweight Obese 

2012 0.0106 

[0.0106, 0.0107] 

0.4125 

[0.4122, 0.4128] 

0.3261 

[0.3257, 0.3264] 

0.2508 

[0.2506, 0.2509] 

2014 0.0101 

[0.0101, 0.0102] 

0.4059 

[0.4056, 0.4062] 

0.3304 

[0.3300, 0.3308] 

0.2536 

[0.2534, 0.2538] 

2016 0.0100 

[0.0099, 0.0102] 

0.4000 

[0.3997, 0.4004] 

0.3327 

[0.3323. 0.3331] 

0.2573 

[0.2570, 0.2576] 

2018 0.0098 

[0.0097, 0.0099] 

0.3944 

[0.3941, 0.3948] 

0.3349 

[0.3345, 0.3352] 

0.2609 

[0.2606, 0.2612] 

2020 0.0096 

[0.0095, 0.0097] 

0.3899 

[0.3895, 0.3903] 

0.3369 

[0.3365, 0.3373] 

0.2636 

[0.2633, 0.2639] 

2022 0.0096 

[0.0096, 0.0097] 

0.3862 

[0.3858, 0.3866] 

0.3381 

[0.3377, 0.3385] 

0.2661 

[0.2658, 0.2664] 

2024 0.0097 

[0.0096, 0.0097] 

0.3836 

[0.3833, 0.3840] 

0.3391 

[0.3388, 0.3394] 

0.2676 

[0.2673, 0.2680] 

2026 0.0097 

[0.0096, 0.0098] 

0.3820 

[0.3817, 0.3824] 

0.3395 

[0.3392, 0.3399] 

0.2687 

[0.2684, 0.2691] 

2028 0.0098 

[0.0098, 0.0099] 

0.3815 

[0.3811, 0.3819] 

0.3395 

[0.3392, 0.3398] 

0.2691 

[0.2689, 0.2694] 

2030 0.0101 

[0.0100, 0.0102] 

0.3812 

[0.3809, 0.3815] 

0.3396 

[0.3393, 0.3399] 

0.2690 

[0.2687, 0.2694] 


