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Abstract 

 

A simple, efficient and reliable method for bandlimited signal extrapolation valid up to 

basically an arbitrarily high range of frequencies is proposed. The orthogonal properties 

of linear prolate functions (LPFs) are exploited to form an orthogonal basis set needed for 

synthesis. A significant step in the process is the higher order piecewise polynomial 

approximation of the overlap integral required for obtaining the expansion coefficients 

accurately with very high precision. Two sets of LPFs, one relatively with lower Slepian 

frequency and the other with higher Slepian frequency, are considered. Numerical results 

of extrapolation of some standard test signals using our algorithm for the two sets are 

discussed in detail. Further comparisons show that the proposed method performs 

optimally over other recent techniques used. The possibility of using our algorithm for 

extrapolating real experimental signals is also explored. Though it is not fully usable for 

extrapolating real signals as such, there were some interesting observations made during 

this study which could be of some help for the future works in this field. 
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Chapter 1 

Introduction 

 

A remarkable discovery was made about half a century ago by David Slepian, an 

American mathematician, and his colleagues on a special set of functions called prolate 

spheroidal wave functions (PSWFs). These functions, also known as Slepian prolate 

functions, were bandlimited and exhibited interesting orthogonality relations. They are 

normalized versions of the solutions to Helmholtz wave equation [1] in spheroidal 

coordinates. In his paper [2-5], Slepian proposed the idea of bandlimited signal 

extrapolation using PSWFs. Generating this set of functions practically seemed difficult 

because of the complexity involved and limited computational capabilities existed. 

Hence, there hasn’t been any significant interest in this field up until very recently. 

Signal extrapolation is an extension of a signal, , beyond the interval in which it is 

known to the observer. Symbolically, we can represent it as: 

  .                              (1.1) 

The region in which the signal is known is called the observation interval (here, 

 Bandlimited signals are bound in the frequency domain; their Fourier 

transform, , vanishes beyond a particular finite frequency interval. Thus if, 

,                                               (1.2) 
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where  is the angular frequency, then  is said to be -bandlimited. 

 

1.1 Recent Advancements in Signal Extrapolation 

With advanced numerical techniques and superior computational power, there has been 

noticeable activity in the field of signal extrapolation within the past decade [6,7,8,9,39]. 

In [10], Senay et al. proposed sampling and reconstruction of bandlimited as well as non-

bandlimited signals using Slepian functions. They discussed the idea of modifying the 

Whittaker-Shannon sampling theory by replacing the sinc basis by Slepian functions for 

reconstruction of signals. Further to this, in [11,12], they showed signal reconstruction 

using non-uniform sampling and level-crossing sampling with Slepian functions. 

Since the primary focus of this research is on bandlimited signal extrapolation and not 

just reconstruction or interpolation, we will concentrate more on the recent advancements 

in this regard. While we consider the signals to be bandlimited in the Fourier transform 

domain, much attention has recently been on extrapolation of signals bandlimited in 

linear canonical transform (LCT) domain; this being a four-parameter family of linear 

integral transform [13,14] that generalizes Fourier transform as one of its special cases. 

For extrapolation of LCT bandlimited signals, several iterative and non-iterative 

algorithms have been proposed [15-18]. Most of the iterative algorithms are centered on 

modifying the Gerchberg-Papoulis (GP) algorithm [19,20] that relies on successive 

reduction of error energy. Although theoretical convergence of the result has been shown, 

there is still some uncertainty associated with the swiftness with which this is achieved. 

With respect to the non-iterative algorithms proposed by Zhao et al. in [16], the authors 
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themselves admit that the extrapolation could become unstable with an increase in the 

number of observations. A comparison of the extrapolation of an LCT bandlimited signal, 

using an iterative GP algorithm and another algorithm based on signal expansion into a 

series of generalized PSWFs [18] is presented in [17]. The comparison showed better 

results for the iterative method proposed in [17] over the one described in [18], in terms 

of the normalized mean square error (NMSE).  

In another significant study [21], Gosse, an Italian mathematician performed Fourier 

bandlimited signal extrapolation by handling lower and higher frequencies of the signal 

separately. He used PSWFs for extrapolating lower frequency components while the 

higher frequencies were dealt with compressive sampling [22,23] algorithms. The 

efficiency of the proposed method was highly dependent on the correlation between low 

and high frequencies in the signal (it should be weak for better results), the existence of a 

sparse representation of higher frequencies in the Fourier basis, and on a reasonable 

choice of extrapolation domain. 

1.2 Motivation for Research 

Signal extrapolation can be used for various applications pertaining to the 

characterization of entities in the physical world. Prediction or forecasting of events is not 

just confined to any particular discipline but commonly to almost all the scientific fields. 

In relation to photonics and nanotechnology, it can be used in the analysis of distribution 

of light in optical fibers varying in their dimensions. It would be a convenient tool for 

developing mathematical models to predict light fluctuation in various lasers (for 

example, due to mode-hopping noise). Due to its excellent property of invariance to the 
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finite Fourier transform, it would be apt to use PSWFs for solving some of the differential 

equations that arise in the field of photonics. Extrapolation can also be applied in the field 

of image communication for implementing error concealment techniques as well as for 

image compression. In the field of signal processing, it could play a key role in signal 

recovery (optical, audio) as well as noise elimination. Forecasting or prediction of the 

behavior of financial signals is another important area where this can be applied. 

 The mere idea of predicting a signal behavior accurately from a finite observation 

range, combined with the numerous applications it can directly have an impact on, 

excited us and galvanized our minds into doing this research. It was also our objective to 

come up with an efficient implementation of Slepian’s proposed method of bandlimited 

signal extrapolation. 

1.3 Features of the Proposed Algorithm 

In this book, we propose a non-iterative and simple method for extrapolating bandlimited 

signals varying from relatively lower to higher frequencies using linear prolate functions 

(one-dimensional PSWFs, henceforth abbreviated as LPFs). Although we concentrate 

mainly on Fourier bandlimited signals, it however might also be applied for LCT 

bandlimited cases as is shown in one of the results. Several comparisons are made with 

the results obtained in earlier related publications. They show that, within the prescribed 

bandwidth, the proposed method is far superior over several other methods referenced in 

this book.  

LPFs for analysis purposes need to be computed accurately and with rather high 

precision. Here, we rely on a proprietary algorithm developed theoretically and 
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implemented numerically by Cada [24], for accurately generating the linear prolate 

functions set with desired high precision. Once the LPFs set is obtained with the 

corresponding eigenvalues (discussed in the following chapters of this book), they are 

employed in our algorithm for extrapolation. Here, we do not consider the storage of 

LPFs set as an issue (as put forward by Shi et al. in [17]) to be addressed, as it is not the 

primary objective of our work. 

Cada’s algorithm exploits robust properties of certain formulae derived that are efficient, 

accurate and suitable for fast numerical evaluations of LPFs and their eigenvalues. 

Previous methods (Slepian, Flammer [25], etc.) required lengthy cumbersome 

calculations with slowly converging series and necessary approximations that led to 

insurmountable numerical problems and/or failing when higher orders were concerned. 

Prolate functions and the eigenvalues change their properties drastically at certain 

parameter values (see chapter 2 and 3), which has caused described problems. Even 

standard professional high-quality commercial packages such as Mathematica or Matlab 

fail to compute these functions and eigenvalues correctly or at all for such a combination 

of parameters that is critical for extrapolation applications. His algorithm enables to break 

through this numerical barrier and makes it possible to calculate linear prolate functions 

and their eigenvalues correctly for basically any parameters. 

1.4 Scope of the Thesis  

The material presented in the book can also be found partly in [28,34,35] which were 

published during the course of this research. The following chapters of the book are 

organized as follows. In chapter 2, LPFs and their relevant properties are discussed. The 
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various steps involved in our proposed extrapolation algorithm are described throughout 

in chapter 3. Chapter 4 is devoted to presenting the actual extrapolated results of various 

test functions, their comparison and error analysis. Here we also look into the possibility 

of extrapolating some real experimental signals. Our algorithm is shown to work 

optimally for ideal signals which are highly precise (preferably with an accuracy of 100 

to 200 digits after the decimal point) and noise-free. These tests have helped us to 

characterize our model, to understand the optimal input conditions needed for the signal, 

for it to be extrapolated efficiently. Finally, in chapter 5, we conclude with our inferences 

and possible future prospects. 
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Chapter 2 

Linear Prolate Functions 

 

The theoretical treatment of bandlimited signal extrapolation using PSWFs was first 

discussed by Slepian and his colleagues in [2]. They explained the use of PSWFs, or 

more precisely, linear prolate functions (LPFs) as an orthogonal basis set for 

decomposition and reconstruction of the signal using analysis and synthesis equations. 

Linear prolate functions are one-dimensional PSWFs denoted by , where  is the 

order of LPF (non-negative integer),  is the time parameter and  is the bandwidth 

parameter also known as Slepian frequency. Following the notations of Moore in [8,33], 

LPFs can be evaluated using (2.1) as: 

 ,                                      (2.1) 

                          (2.2) 

where  is the eigenvalue (a measure of concentration of signal in the observation 

interval [- , ]) of sinc kernel system as shown in (2.2), with  as eigenfunction, 

and  is the observation boundary of the interval in which the function is known. 

 are the angular solutions of the first kind to Helmholtz wave equation [1] given 

by:



  8 

  

                                                   (2.3) 

where, 

                                                               (2.4) 

Here,  is the wavelength and  is the wave function expressed in the curvilinear 

coordinate system  where 

                                                          (2.5) 

and  

                                                                (2.6) 

 is the inter-focal distance within the ellipsoid. 

The eigenvalue  is given by, 

[ ,                                                 (2.7) 

where  are the radial solutions of the first kind to Helmholtz wave equation.  

Numerical evaluation of the LPFs set along with their corresponding eigenvalues 

practically seemed very difficult as it involved finding precise numerical values of the 

angular ( ) and radial ( ) solutions. For obtaining this, a typical power 

series expansion was used which was predetermined by the association of Legendre and 

spherical Bessel functions to the angular and radial solutions respectively. Interested 

readers are referred to [8,9,26] for more details on LPFs derivation. This study was more 

about working with the LPFs set along with their eigenvalues for signal extrapolation 
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than generating these set of functions itself. These LPFs along with their corresponding 

eigenvalues, obtained by Cada’s proprietary algorithm, have been used in our 

extrapolation algorithm. It should be noted that since extrapolation relies heavily on 

values of  and  for  , it is of paramount importance that one computes 

them accurately and with high precision. Ours is the first algorithm that offers such a 

capability. 

2.1 Properties of LPFs 

LPFs have many interesting properties of which some of the relevant ones related to this 

study are discussed below. 

2.1.1 Bandlimited 

Bandlimiting property of LPFs is denoted by a free bandwidth parameter (Slepian 

frequency)  given by: 

,                                                             (2.8) 

where   is the finite bandwidth of  for a given order . 

2.1.2 Symmetry 

LPFs exhibit even and odd symmetries based on their integer order . If  is even, 

 is even symmetric. If  is odd, then it is odd symmetric (figure 2.1, 2.2). 
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Figure 2.1: Even symmetry of  for  

 

 

Figure 2.2: Odd symmetry of  for  
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2.1.3 Orthogonality 

LPFs are linearly independent and orthogonal over finite as well as infinite intervals, 

unlike, for example, trigonometric functions that are orthogonal only over a finite 

domain. 

           (infinite domain)              (2.9) 

 

            (finite domain),           (2.10) 

where  ,  are non-negative integers. This property is greatly exploited for signal 

extrapolation especially in the analysis (3.3) and synthesis (3.4), explained in chapter 3. 

2.1.4 Invariance to Fourier Transforms 

Fourier transforms of LPFs over both finite and infinite intervals are simply scaled 

versions of themselves. 

     (finite domain)             (2.11) 

         (infinite domain)          (2.12) 

Expressions (2.11) and (2.12) show LPFs’ invariance to Fourier transforms and are a 

further proof of their bandlimiting property. 
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2.2 Fourier Transforms and Bandlimiting 

The Fourier transform  of a function  is defined [2,31] as, 

                                                (2.13) 

and, its inverse Fourier transform is given by, 

                                               (2.14) 

While the bandlimiting nature of continuous analog signals depend on their Fourier 

transforms, we can, for sure, say that any discrete-in-time (time sampled) signal or even 

the discrete counterparts of those analog signals mentioned above are inherently 

bandlimited due to sampling. The functions, even though continuous, are discretized in 

time for numerical computations on a digital computer. Hence, these functions would be 

bandlimited with frequency ranging from zero hertz to half of its sampling frequency 

[31,32]. While an analog signal could be made bandlimited by using an anti-aliasing 

filter, there is not a clear cut way of knowing whether a discrete-in-time signal (which is 

basically unknown) is bandlimited with or without aliasing. And hence, if such signals 

contain aliased frequencies (higher frequency components) in their spectrum, then 

treating them as bandlimited essentially may not be helpful for implementing Slepian’s 

bandlimited extrapolation (discussed further in chapter 4). 

 The numerical implementation of the discrete Fourier transform (DFT) for 

analyzing the frequency domain characteristics of the time sampled signal can be 

formulated [32] as, 
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                                 (2.15) 

                              (2.16) 

where  is the time sampled signal being analyzed,  and  are the 

frequency domain signals obtained which gives a measure of the amplitudes of the cosine 

and sine waves, the index   runs from 0 to , and the sampling index  runs from 0 to 

. Thus, the total number of samples of the signal  will be . Expressions (2.15) 

and (2.16) can be treated as the analysis equations for computing the DFT. 

The synthesis equation, otherwise referred to as, the inverse DFT is given by, 

           (2.17) 

where  is the - point signal being synthesized, with the index  running from 0 to 

.  and  contain the amplitudes of the cosine and sine waves 

respectively, with the index  running from 0 to . These amplitude functions, 

 and , are scaled versions of (2.15) and (2.16) obtained as per the 

formulae: 

                                                    (2.18) 

                                                (2.19) 

with the exceptions for  when  equals 0 or , given as, 

                                                  (2.20) 
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                                             (2.21) 

Here, generally, we consider the case when the signal  is real and not complex. The 

equations for the numerical calculation of the DFT and inverse DFT presented here, from 

(2.15) to (2.21), are valid only for the case when the signal being considered is real. 
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Chapter 3 

The Extrapolation Method 

 

Starting from the theoretical background and going through various numerical techniques 

involved, this chapter explains the steps with which we implemented our extrapolation 

algorithm. It should be noted, however, that though the LPFs considered here are 

functions continuous in the time domain, their numerical implementations on a digital 

computer requires it to be discretized or sampled. The functions were derived from 

Cada’s algorithm which is rooted on their basic generation formulae described in (2.1) 

and (2.3). 

3.1 Analysis and Synthesis 

Generally speaking, any bandlimited signal can be decomposed into a linear combination 

of weighted orthogonal basis functions using the relation: 

             (synthesis),                         (3.1) 

where   is the signal,  is a set of scalar coefficients, and  is the orthogonal 

basis set. 

The set of scalar coefficients is found from: 

                (analysis)                          (3.2)
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Employing LPFs as the orthogonal basis set for a fixed Slepian frequency  yields: 

 =           (analysis),                          (3.3) 

where  is known as the overlap integral, and  are the scalar 

expansion coefficient for a given order  of the LPFs set. 

The synthesis equation, used for signal extrapolation, is given by: 

              (synthesis),                        (3.4) 

where  is the truncation value for the order . 

The above equations (3.3) and (3.4) form the backbone of our signal extrapolation 

algorithm. 

3.2 LPFs Set 

Two distinct sets of LPFs were used as potential orthogonal basis sets for the proposed 

algorithm. These functions were discretized in time for numerical implementation. Each 

of these sampled data has very high numerical precision of about 200 digits. The two sets 

vary in their Slepian frequency; the specifics are as follows: 

 

(  Set 1) ,     ,  (see figure 3.1). 
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Figure 3.1: LPFs set 1 ( ) 

 

(  Set 2) , ,      (see figure 3.2). 

               

Figure 3.2: LPFs set 2 ( ) 
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The time parameter  is specified with 3 digits of precision after the decimal point as the 

sampling period in the time axis is 0.001s. Hence the LPFs are sampled at a rate of 1kHz. 

Generally, for any LPFs set with a fixed , as the order  increases, the concentration of 

the LPFs within the observation interval  decreases. For , the signal’s 

maximum concentration reaches the boundary of the observation interval which, in our 

case, is  (see figures 3.3, 3.4). 

  

Figure 3.3: Dependency of signal concentration on   for LPFs set 1  

As discussed in chapter 2, this can also be seen by observing the eigenvalue (a measure 

of concentration of signal in the observation interval [- , ])   plots for increasing orders 

of  . As the order    approaches and crosses the critical limit needed for extrapolation, 

which is   (which in our case corresponds to   for LPF set 1 and   for 

LPF set 2), we can see that eigenvalues suddenly drops from near unity to values close to 

zero as shown in figures 3.5 and 3.6. 
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Figure 3.4: Dependency of signal concentration on   for LPFs set 2 

 

 

                   

Figure 3.5: Eigenvalues   Vs Order   for LPF set 1 
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Figure 3.6: Eigenvalues   Vs Order   for LPF set 2 

3.3 Overlap Integral 

By taking a closer look at the analysis (3.3) and synthesis (3.4) equations using LPFs, one 

can notice that , the function to be extrapolated, is well defined in  , i.e. 

 (for sake of simplicity,  was chosen to be 1 for our study). Numerical values of 

and  as a set for a given  are also known (as discussed in chapter 2). The 

only unknown factor is an efficient method to calculate the overlap integral given by 

.  

Efficient estimation of overlap integral is of paramount importance in obtaining accurate 

results for extrapolation. As LPFs,  and eigenvalues,  are required to be of 

high precision for high orders of , the eigenvalues tend to become extremely small, 

close to zero, which makes this essentially a problem of high precision numerical 

integration. If and when computed inaccurately, the coefficients of expansion,  of 

the synthesis equation (3.4) assume extremely large values for such  that are crucial 
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and irreplaceable for extrapolation purposes. This, in turn, causes enormous numerical 

errors that thus render extrapolated signals completely incorrect and useless.  

Thus, the method called for very less amount of tolerance for approximation or round of 

errors that can be allowed when working with these function sets. The original precision 

with which these functions are obtained has to be preserved throughout our calculations 

in order to make use of its advantages that helps in containing the expansion coefficients 

to a desired limit which in turn helps in the synthesis of the bandlimited functions and 

thus extrapolation itself. 

3.4 Calculation of Overlap Integral 

A simple and efficient way to compute overlap integral is proposed and implemented to 

obtain satisfactory results. To make it simple and generic, polynomial approximation of 

the discrete samples of the scalar product  was chosen. Our primary focus 

was to obtain the right polynomial approximation for the underlying common function, 

 (for a given ), in any scalar product, irrespective of the bandlimited function 

. Another major task was to choose the right truncation value  for synthesis (3.4), 

which we determined by examining the behavior of the scalar expansion coefficients 

 obtained in analysis (3.3). After a series of thorough investigations using different 

kinds of polynomial interpolation and numerical integration techniques, it was found that 

piecewise polynomial approximation is best suited for the particular LPF sets that were 

used. 
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Direct method of piecewise polynomial interpolation [27] is used. Given  discrete data 

points,  to , it can be approximated to a polynomial of order  

as: 

,                                            (3.5) 

where the coefficients ( ) can be found by solving this linear system of equations: 

                            (3.6) 

Here, the  values are the sampled values of LPFs itself for varying time instances given 

as  values. The scalar coefficients (  to ) are the coefficients of the resulting 

polynomial representation of the sampled LPFs set. The big matrix (comprising of  

values) in (3.6) is commonly referred to as a Vandermonde matrix. As each  value 

varying from  to  is distinct, since they are the varying instances of the time axis, 

this Vandermonde matrix is nonsingular (determinant cannot be equal to zero as each row 

is distinct). This non-singularity of Vandermonde matrix guarantees us a unique solution 

for the system of equations in (3.6). 

Relating this approach to the problem at hand, there are 1001 sampled instances of the 

overlap integral expression , for a given ,  in the closed time interval  

and 2001 samples in the interval . The whole interval of  is divided into 8 

equal segments, thus there are 251 samples in each segment of the samples of the scalar 

product . Applying piecewise polynomial approximation to each segment 

containing 251 samples, one obtains a polynomial of order 250 for each segment. Thus, 
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the resulting Vandermonde matrix for each segment would be of the order . 

Once the corresponding linear system of equations as in (3.6) is solved for each of these 8 

segments, we are left with the corresponding polynomial expressions as given in (3.5). 

Integrating a polynomial expression is a relatively simple and easy task for any decent 

computational packages available these days. A simple integration of the resulting 

polynomials in each segment and subsequent addition yields us the desired overlap 

integral. 

 

 

Figure 3.7: Illustration of Overlap Integral Calculation 
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The key aspect of this approach is the fact that the original precision of the LPFs is 

maintained throughout in the calculations thus keeping the resulting overlap integral 

comparable to that of the corresponding eigenvalue  , for high orders of   well and 

above the critical limit  . This enables us to have a well contained set of expansion 

coefficients from (3.3) to be used for extrapolation in (3.4). 
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Chapter 4 

Results 

 

In this chapter, we show the results obtained by employing our extrapolation algorithm 

on various kinds of signals. Comparisons of the effectiveness of our method to that of 

other prominent works are also made at appropriate sections. This chapter is further 

divided into three subsections. The first section is devoted to showing extrapolation 

results of ideally known test signals; the second section contains results for known test 

signals that are perturbed in some way or other; and the third section contains our 

findings of extrapolation attempts on real or experimental signals which are basically 

unknown to the observer. 

Mathematica, a software tool that is well suited for high precision computing, has been 

used for implementing our algorithm. Extrapolation was carried out for some selected 

known test functions using both LPFs set 1 and 2; some results of which can also be 

found in [28,34,35] and is used here for making comparisons and drawing conclusions. 

The only restriction imposed on the selected signals was that its maximum frequency 

should be less than or equal to that of the corresponding LPFs set (the bandwidth 

parameter ) used for their extrapolation. In the results shown below, the same 

extrapolation formula was employed for both reconstructing the signal within as well as 

extrapolating it beyond the interval . To show the error estimates with respect to 
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the original signal, common logarithm of the absolute error between the extrapolated and 

original data is also plotted. Extrapolation errors of the order of up to 1e-03 are 

considered [21] acceptable. An error norm known as the normalized mean-square error 

(NMSE) is also used to analyze the effectiveness of our algorithm. Following their [17] 

notation, it is defined as: 

                                                           (4.1) 

where   is the extrapolated signal and  is the original signal. 

4.1 Extrapolation of Ideal Test Signals 

Some ideal signals/functions completely free of all kinds of noise is considered here as 

inputs to test our algorithm. As the signals are known, they can have infinite precision 

when used in the computations. The algorithm is then basically limited by the precision 

with which the LPF sets and their corresponding eigenvalues are obtained. In our 

calculations, this precision comes down to about 200 digits after the decimal point. The 

necessity of such high precision computing has been pointed out while comparing the 

results. Extrapolation results for both LPFs set 1 ( ) and set 2 ( ) is 

presented. This section ends with a special case in which the signal is known but is not 

bandlimited (with respect to LPF set 1), meaning the maximum frequency of the test 

signal is higher than that of the LPFs set considered. 

 The test functions extrapolated using our algorithm and presented here as results 

are listed below. 
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•  

•  

•  

•  

•  

•  

•  

 

 

 

Figure 4.1.1: original [solid] and extrapolated [dashed] versus time using LPFs set 1 
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Figure 4.1.2: Magnification of extrapolation of  versus time using LPFs set 1 

 

 

Figure 4.1.3: Logarithm of absolute error for reconstruction of   using LPFs set 1 
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Figure 4.1.4: Logarithm of absolute error for extrapolation of   using LPFs set 1 

 

 

Figure 4.2.1: original [solid] and extrapolated [dashed] versus time using LPFs set 1 
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Figure 4.2.2: Magnification of extrapolation of  versus time using LPFs set 1 

 

 

Figure 4.2.3: Logarithm of absolute error for reconstruction of   using LPFs set 1 
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Figure 4.2.4: Logarithm of absolute error for extrapolation of   using LPFs set 1 

 

 

Figure 4.3.1: original [solid] and extrapolated [dashed] versus time using LPFs set 1 
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Figure 4.3.2: Magnification of extrapolation of  versus time using LPFs set 1 

 

 

Figure 4.3.3: Logarithm of absolute error for reconstruction of   using LPFs set 1 
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Figure 4.3.4: Logarithm of absolute error for extrapolation of   using LPFs set 1 

 

 

Figure 4.4.1: original [solid] and extrapolated [dashed] versus time using LPFs set 2 
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Figure 4.4.2: Magnification of extrapolation of  versus time using LPFs set 2 

 

 

Figure 4.4.3: Logarithm of absolute error for reconstruction of   using LPFs set 2 
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Figure 4.4.4: Logarithm of absolute error for extrapolation of   using LPFs set 2 

 

 

Figure 4.5.1: original [solid] and extrapolated [dashed] versus time using LPFs set 1 
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Figure 4.5.2: Magnification of extrapolation of  versus time using LPFs set 1 

 

 

Figure 4.5.3: Logarithm of absolute error for reconstruction of   using LPFs set 1 
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Figure 4.5.4: Logarithm of absolute error for extrapolation of   using LPFs set 1 

 

 

Figure 4.5.5: original [solid] and extrapolated [dashed] versus time using LPFs set 2 
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Figure 4.5.6: Magnification of extrapolation of  versus time using LPFs set 2 

 

 

Figure 4.5.7: Logarithm of absolute error for reconstruction of   using LPFs set 2 
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Figure 4.5.8: Logarithm of absolute error for extrapolation of   using LPFs set 2 

 

 

Figure 4.6.1: original [solid] and extrapolated [dashed] versus time using LPFs set 1 
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Figure 4.6.2: Magnification of extrapolation of  versus time using LPFs set 1 

 

 

Figure 4.6.3: Logarithm of absolute error for reconstruction of   using LPFs set 1 
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Figure 4.6.4: Logarithm of absolute error for extrapolation of   using LPFs set 1 

 

 

Figure 4.6.5: original [solid] and extrapolated [dashed] versus time using LPFs set 2 
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Figure 4.6.6: Magnification of extrapolation of  versus time using LPFs set 2 

 

 

Figure 4.6.7: Logarithm of absolute error for reconstruction of   using LPFs set 2 
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Figure 4.6.8: Logarithm of absolute error for extrapolation of   using LPFs set 2 

 

 

Figure 4.7.1: Real part of original [solid] and extrapolated [dashed] versus time 

using LPFs set 1 
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Figure 4.7.2: Magnification of extrapolation of real part of   versus time using LPFs 

set 1 

 

 

Figure 4.7.3: Logarithm of absolute error for reconstruction of real part of   using 

LPFs set 1 
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Figure 4.7.4: Logarithm of absolute error for extrapolation of real part of   using 

LPFs set 1 

 

 

Figure 4.7.5: Imaginary part of original [solid] and extrapolated [dashed] versus 

time using LPFs set 1 
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Figure 4.7.6: Magnification of extrapolation of imaginary part of   versus time using 

LPFs set 1 

 

 

Figure 4.7.7: Logarithm of absolute error for reconstruction of imaginary part of   

using LPFs set 1 



47 

 

  

 

Figure 4.7.8: Logarithm of absolute error for extrapolation of imaginary part of   

using LPFs set 1 

 

 

Figure 4.8.1: Time-shifted original [solid] and extrapolated [dashed] versus time 

using LPFs set 1 
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Figure 4.8.2: Magnification of extrapolation of time-shifted   versus time using 

LPFs set 1 

 

 

Figure 4.8.3: Logarithm of absolute error for reconstruction of time-shifted   using 

LPFs set 1 
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Figure 4.8.4: Logarithm of absolute error for extrapolation of time-shifted   using 

LPFs set 1 

 

Table 4.1: List of expansion coefficients obtained for various test signals for the order     

 = 0 and    using LPFs set 1. 

Signal  = 0  = 60  ( ) 

 -0.0206569502899931607705209E+00 -0.0487016652046676878879641E+00 

 5.7327371177634251054171593E+00 0.2124653581676016842013255E+00 

 0.3460463825651238504454608E+00 2.4965033130791864627283940E+00 

 0.0730239924622742866572122E+00 0.1923977095882676452170990E+00 

 0.5722512441296884476417718E+00 -0.0283503815504023002607293E+00 

 
Real 

2.0895448593464104570509639E+00 0.0421065919291828922455449E+00 

 
Imagina

ry 

0.0055951271535220559258731E+00 -0.0038429769964853996040590E+00 

 
Time 

Shifted 

-0.0465161012904554349627271E+00 -0.1109413247278567697959512E+00 

 7.4831411815298664267198239E-28 -3.1156491395132373989633968E+08 
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Table 4.2: List of expansion coefficients obtained for various test signals for the order     

 = 0 and    using LPFs set 2. 

Signal  = 0  = 279  ( ) 

 -5.2283985552817264983218553E-11 -0.7421742877406385104563690E+00 

 0.0406853737511834265382343E+00 -1.3051215791723806157238255E-68 

 0.4178221903081345270475310E+00 0.0223717625256965700999427E+00 

 

Upon careful inspection of the plots in figures 4.5.1 to 4.5.8 and figures 4.6.1 to 4.6.8, 

one could notice that when the same signal was extrapolated using the two LPF sets, the 

higher Slepian frequency set (set 2) was more accurate in their approximations (see the 

logarithm of absolute error plots) within their effective extrapolation range. The signals 

for which the extrapolation is shown in figures 4.1.1 to 4.1.4 and figures 4.2.1 to 4.2.4, 

although not exactly bandlimited because of the Gaussian functions involved, also gave 

good results (as seen in figures 4.2.3, 4.2.4), which are comparable to what was achieved 

using strictly bandlimited cases (figures 4.3.1 to 4.3.4, 4.4.1 to 4.4.4 and 4.6.1 to 4.6.8). 

As expected, the effective extrapolation range was higher for the lower  LPFs set (set 1) 

as compared to the higher  LPFs set (set 2). The range of extrapolation is limited mainly 

due to the series truncation, , the value of which should be at least greater than  for 

performing extrapolation. We also verified the effective extrapolation range that can be 

achieved analytically by using simple sinusoidal signals, for which the analytical 

expressions are known [8]. We found that, using LPFs set 1, the truncation value  was 

mostly equal to 100 (out of the total order of   being considered), while using 

LPFs set 2 it was more or less close to 300 (out of ); both greater than their 

corresponding  values, thus allowing signal extrapolation.  
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However, it is worth mentioning at this point that what we considered here as the lower 

frequency set has been regarded as, or included in, the higher frequency group by Gosse 

in [21]. The effective extrapolation range in our case is significantly improved when 

compared with their results for the same signal (see page 1277 of [21]; and figures 4.1.1 

to 4.1.4 in this chapter). In the same context, the error analysis also shows better results 

as our method has absolute error magnitude around 1e-38 (while it is 1e-02 in [21]) 

within the reconstruction interval . We also obtained better ratios of error 

magnitudes (varying smoothly from the order of 1e-36 to 1e-03 using our algorithm, 

while oscillating between 1e-02 and 1e-01 in [21]) in the effective extrapolation region, 

i.e. outside  (see absolute error plots in figures 4.1.3 and 4.1.4). 

 

 

Table 4.3: Normalized mean-square error (NMSE) values obtained for various test 

signals. 

Signal   <LPF Set #> NMSE 

  <LPF Set 1> 0.00228449E+00 

  <LPF Set 1> 8.58712915E-08 

  <LPF Set 1> 0.00190264E+00 

  <LPF Set 2> 0.00011602E+00 

  <LPF Set 1> 2.43831466E-06 

  <LPF Set 2> 1.00703838E-12 

  <LPF Set 1> 6.77877025E-06 

  <LPF Set 2> 1.89254260E-12 

  <LPF Set 1> 8.43003145E-07 

 Time Shifted  <LPF Set 1> 3.21497874E+00 
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As mentioned earlier, we also performed extrapolation on an LCT bandlimited signal to 

compare our method with existing ones. We chose the same signal used by Shi et al. in 

[17]. It is given by the function  (the sinc function used is a normalized sinc 

function) in the results. The extrapolation and error analysis for the real and imaginary 

parts of the signal are shown in figures 4.7.1 to 4.7.4 and 4.7.5 to 4.7.8, respectively. The 

performance was measured by calculating the NMSE of the actual and extrapolated 

signals. The NMSE for the aforementioned signal, , using our algorithm is 8.430e-

07, as shown in table 4.3 which also has the NMSE listed for other test signals considered 

here as well. The corresponding NMSE using the iterative algorithm proposed in [17] is 

1.037e-04, and NMSE using the generalized PSWFs expansion method proposed in [18] 

is only 0.685e+00. Thus our algorithm is shown performs superiorly even for LCT 

bandlimited signals despite the fact that it is not the primary objective of our work. 

To check the robustness of our algorithm, within the ideal noise-free domain of the test 

signals, we considered a time-shifted version of the signal  also for extrapolation. 

The observation interval in this case was from  instead of  and the 

extrapolation was done using LPFs set 1. The signal was extrapolated as expected; the 

error analysis and extrapolation plots can be seen in figures from 4.8.1 to 4.8.4.  

Tables 4.1 and 4.2 hold some of the relevant scalar expansion coefficients obtained for 

extrapolation of the various test signals using LPF set 1 and LPF set2 respectively. 

Barring one exception (for the signal ),  we can see that these coefficients are all 

well-contained, not running away to assume huge values, thus enabling us to use them 

effectively for extrapolation. 
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A non-bandlimited test case was also considered, out of curiosity, to confirm with the 

theory established [2,3] that it is not extrapolatable. For examining this, we tried 

extrapolating the signal  using the LPFs set 1 which has a lower bandwidth 

parameter, , which is less than the maximum frequency  of the test signal. 

Confirming what was studied from the theory, the scalar expansion coefficients obtained 

from the analysis (3.3) assumed huge values for  , as evident from table 4.1 for 

the signal , thus creating numerical errors rendering the extrapolation incorrect.  

4.2 Extrapolation of Perturbed Signals 

The known ideal signals were perturbed or altered in some way to create some 

disturbance to study if the algorithm is tolerable at all to noise. Two types of 

perturbations were studied on an otherwise known ideal test signal: 

• Less precision 

• Induced error 

As the proposed algorithm demands very high precision of the signal being studied, we 

decided to test how our model responded to varying precisions of an input signal (ideally 

known). The precision of the input test signal alone was changed, while that of the LPFs 

set were preserved during computations. For the second type of perturbation, the induced 

error type, we were looking into the possibility of our test signal getting corrupted; the 

least case of which would be that affecting only one of the samples of the input signal. To 

be precise, we induced an error to the original test signal by changing only one significant 

digit at varying positions (as given in table 4.5) after the decimal point of the sample at 

the equivalent continuous time  seconds, which falls within the closed 
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observation interval of  and used such a signal for extrapolation. For both of these 

test cases, we chose the signal  as the original test input. The results for carrying out 

analysis (3.3) to obtain the expansion coefficients are shown in tables 4.4 and 4.5 along 

with those obtained using the original ideal signal  itself. 

 A careful analysis of table 4.4 shows that for input signal precisions of 5, 30 and 

50, the scalar coefficients of expansion were not contained and hence were not suitable 

for extrapolation. As the precision increased from 70, 80, 100 and finally 200, the 

coefficients start to get contained, and for a precision of 100 and 200 they were almost 

the same for roughly up to around 25 decimal digits. It is worth remembering now that 

these coefficients still had around 200 digits of precision as obtained from the LPFs set 

used. For ease of presentation, only 8 significant digits after the decimal point are shown 

here in the tables.  

 The extrapolation and error analysis plots for varying precisions of the input 

signal  is shown in figures from 4.9.1 to 4.9.4, 4.10.1 to 4.10.4 and 4.11.1 to 4.11.4. 

The error plots both for reconstruction (figures 4.9.3, 4.10.3 and 4.11.3) and extrapolation 

(figures 4.9.4, 4.10.4 and 4.11.4) clearly show that for increasing precision of the input 

signal, the algorithm performs better with lesser (absolute) errors in its approximation of 

the original signal. The results for the case shown in figures 4.11.3 and 4.11.4 which used 

a precision of 100 digits is even comparable with that of the ideal signal test case without 

any change in its actual precision (see figures 4.1.3 and 4.1.4). 
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Figure 4.9.1: with 70 digits of precision original [solid] and extrapolated [dashed] 

versus time using LPFs set 1 

 

 

Figure 4.9.2: Magnification of extrapolation of  with 70 digits of precision versus 

time using LPFs set 1 
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Figure 4.9.3: Logarithm of absolute error for reconstruction of  with 70 digits of 

precision using LPFs set 1 

 

 

Figure 4.9.4: Logarithm of absolute error for extrapolation of  with 70 digits of 

precision using LPFs set 1 
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Figure 4.10.1: with 80 digits of precision original [solid] and extrapolated [dashed] 

versus time using LPFs set 1 

 

Figure 4.10.2: Magnification of extrapolation of  with 80 digits of precision versus 

time using LPFs set 1 
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Figure 4.10.3: Logarithm of absolute error for reconstruction of  with 80 digits of 

precision using LPFs set 1 

 

 

Figure 4.10.4: Logarithm of absolute error for extrapolation of  with 80 digits of 

precision using LPFs set 1 
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Figure 4.11.1: with 100 digits of precision original [solid] and extrapolated [dashed] 

versus time using LPFs set 1 

 

 

Figure 4.11.2: Magnification of extrapolation of  with 100 digits of precision versus 

time using LPFs set 1 
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Figure 4.11.3: Logarithm of absolute error for reconstruction of  with 100 digits of 

precision using LPFs set 1 

 

 

Figure 4.11.4: Logarithm of absolute error for extrapolation of  with 100 digits of 

precision using LPFs set 1 
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Table 4.4: List of expansion coefficients obtained for varying precisions (less-precision 

case) of the input signal  for the order   = 0 and   using LPFs set 1. 

 

 

 

Table 4.5: List of expansion coefficients obtained for the order   = 0 and   

after changing 1 significant digit of the input signal sample at   for varying 

positions after the decimal point (induced-error case). The input signal is  and LPFs 

set 1 was used. 

Position  = 0  = 40  (= )  = 60  (> ) 

1 1.03057427E+10 3.67374224E+09 6.74566692E+18 

5 1.03057424E+06 3.67374314E+05 6.74566692E+14 

10 41.20231386E+00 14.78505740E+00 2.69826676E+10 

20 -0.02065695E+00 0.09008843E+00 -2.74696843E+00 

 (original) -0.02065695E+00 0.09008843E+00 -0.04870166E+00 

Precision  = 0  = 40  (= )  = 60  (> ) 

5 -7.71169588E+60 1.51970776E+61 -3.02186849E+70 

30 -1.65894258E+28 -5.11665568E+27 1.58270745E+37 

50 1.68985568E+08 -3.24908355E+07 -2.63426837E+17 

70 -0.02065695E+00 0.09008843E+00 -0.04854151E+00 

80 -0.02065695E+00 0.09008843E+00 -0.04870166E+00 

100 -0.02065695E+00 0.09008843E+00 -0.04870166E+00 

200 -0.02065695E+00 0.09008843E+00 -0.04870166E+00 

 (original) -0.02065695E+00 0.09008843E+00 -0.04870166E+00 
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Figure 4.12.1: Logarithm of absolute error for reconstruction of  with error 

introduced at 10
th

 position after the decimal point of the sample at ; LPFs set 1 

used. 

 

Figure 4.12.2: Logarithm of absolute error for extrapolation of  with error 

introduced at 10
th

 position after the decimal point of the sample at ; LPFs set 1 

used. 
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The expansion coefficients obtained for the induced error case (table 4.5) shows that the 

values only start to get contained and usable when the error induced was at a position of 

20 digits after the decimal point. Though the coefficients seem to be contained for both 

the positions 10 and (even more so for) 20, the absolute error plots (figures 4.12.1 and 

4.12.2) for the case when such a signal (for position 10) was extrapolated shows that the 

algorithm is greatly intolerable to noise introduced of any kind within the precision range 

of around 100 to 200 digits. These observations reinforce the fact that the signal being 

studied should not only be bandlimited and precise up to 100-200 digits, but also be free 

from all kinds of noise that can affect their discrete time values within this specified 

precision range. 

4.3 Extrapolation of Real Signals 

Extrapolation attempts on real or experimental signals are presented in this section. In 

general, two types of signals were considered; financial and medical related. Forex data 

was the financial signal which consisted of minute-by-minute, hourly and daily data of 

various currency pairs. The medical signals were acquired from Jose Gonzalez-Cueto 

which he collected as part of his doctoral thesis [36]. It consisted of one compound nerve 

action potential (CNAP) signal and one heart-rate signal. The forex signals had a 

precision of around 5 digits whereas the medical signals had it around 8 (see figures 

4.13.1, 4.14.1 and appendix for plots). Both LPF sets 1 and 2 were used in our attempts to 

extrapolate these signals. The results were not so satisfactory, but were, in a way, 

expected as these signals did not have enough precision in their approximations. The 
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expansion coefficients obtained up on analyzing (3.3) these signals, shown in tables 4.6 

to 4.9, sums up our expectations. 

 

Table 4.6: List of expansion coefficients obtained by analyzing forex signals for the order  

 = 0 and   using LPFs set 1. 

Currency 
Pair 

 = 0  = 40  (= ) 

AUDUSD 
(Minute 

by 
minute) 

-1.4567422675689705716561078E+64 -1.0123161315739405189735123E+64 

AUDCAD 
(Hourly) 

-3.2687768231578230247964782E+64 -2.9460175615612021103561236E+64 

USDJPY 
(Hourly) 

7.7251113748718677225409504E+66 5.2468995604176322404008702E+66 

USDJPY 
(Daily) 

-4.7756405507359359992360484E+67 -9.7359546912658133443254459E+67 

 

Table 4.7: List of expansion coefficients obtained by analyzing various forex signals for 

the order   = 0 and   using LPFs set 2. 

Currency 
Pair 

 = 0  = 200  (= ) 

AUDUSD 
(Minute 

by 
minute) 

-3.9380649636520560355828940E+63 -2.8485034609899331103746944E+64 

AUDCAD 
(Hourly) 

-7.2139422430790082976309127E+63 8.7207687344920871563916354E+64 

USDJPY 
(Hourly) 

1.3713926850375301172781807E+66 1.6557739473879092134964996E+67 

USDJPY 
(Daily) 

-9.6291178790652892959145316E+66 -2.6209619291254566626631711E+68 
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Table 4.8: List of expansion coefficients obtained by analyzing medical signals for the 

order   = 0 and   using LPFs set 1. 

Signal  = 0  = 40 (= ) 

CNAP 1.2588319537585376332892948E+66 -2.4029898449800878560424030E+66 

Heart 
Rate 

-5.7284722269058703657432894E+67 -1.1382414670365082311783822E+67 

 

Table 4.9: List of expansion coefficients obtained by analyzing medical signals for the 

order   = 0 and   using LPFs set 2. 

Signal  = 0  = 200  (= ) 

CNAP 4.0607682467111614500378111E+65 -5.9695634021746548288486608E+66 

Heart 
Rate 

-1.1657326781264318062263717E+67 -1.5351658936222501858298255E+67 

 

 

Figure 4.13.1: Forex signal of USDJPY currency pair (hourly) observed from 2013 to 

2014 
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Figure 4.13.2: Reconstruction plot of USDJPY (hourly) signal using LPFs set 1 

 

 

 

 

Figure 4.13.3: Extrapolation plot of USDJPY (hourly) signal using LPFs set 1 
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Figure 4.13.4: Logarithm of absolute error for reconstruction of USDJPY (hourly) signal 

using LPFs set 1 

 

 

Figure 4.13.5: Logarithm of absolute error for extrapolation of USDJPY (hourly) signal 

using LPFs set 1 
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Figure 4.14.1: Heart-rate signal obtained from Gonzalez-Cueto’s study [36] 

 

 

 

Figure 4.14.2: Reconstruction plot of heart-rate signal using LPFs set 1 
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Figure 4.14.3: Extrapolation plot of heart-rate signal using LPFs set 1 

 

 

 

Figure 4.14.4: Logarithm of absolute error for reconstruction of heart-rate signal using 

LPFs set 1 
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Figure 4.14.5: Logarithm of absolute error for extrapolation of heart-rate signal using 

LPFs set 1 

 

As evident from the tables (4.6 to 4.9) and figures (4.13.1 to 4.13.5 and 4.14.1 to 4.14.5), 

the expansion coefficients were not contained at all for the real experimental signals and 

hence were not suitable for use in extrapolation. Some of the possible reasons for this 

behavior of the scalar coefficients are discussed below. The signal might have been 

inadequately precise, with the precision only reaching up to around 5-8 digits. As evident 

from the experiments done in the previous sections, our algorithm requires very high 

precision of the input signal; with the signal being precisely known up to 100-200 digits 

after the decimal point. Another possible reason would be the presence of aliasing effects 

in the discretely bandlimited signal. Though the signal is inherently bandlimited due to 

sampling/discretization-in-time, there might be higher frequency components present in 

the signal that exceeds the limit imposed by the LPFs set used. Comparing the expansion 
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coefficients for the bandlimited and non-bandlimited test cases as shown in tables 4.1 and 

4.2, we can see that the coefficients were well contained for orders  for both 

cases, but assuming bigger numbers beyond the critical value, , for the non-

bandlimited case (table 4.1, signal ). When it came to corrupted test signals (tables 

4.4 and 4.5), either due to being less precise or because of having induced errors, the 

expansion coefficients were not contained for the cases of lower precision and error 

induced at lower positions after the decimal point (error at greater significant positions of 

the sample). The coefficients assumed these large ill-suited values irrespective of the 

order, , whether they were within or beyond the critical value, . As the precision of 

the signal was increased, and also when the induced-error position was changed to lower 

significant digits (higher positions after the decimal point, as shown in table 4.5), the 

coefficients started to get contained and thus becoming suitable for use in extrapolation. 

Presence of noise is another factor that can adversely affect our extrapolation algorithm. 

This may occur due to improper or inconsistent data acquisition methods used in 

connection with these experiments. As we saw in the induced-error test case, even a small 

change in the sampled values can impart significant changes in the way these signals get 

analyzed. Even known test signals will not be working satisfactorily, if there is some 

noise or if the precision is reduced. As our algorithm uses a more general method of 

numerical integration, less precise signals may not be even interpolatable or cannot be 

reconstructed using the analysis (3.3) and synthesis (3.4) equations.  

 



   

 72  

Chapter 5 

Conclusion 

 

We have presented an implemented robust and efficient algorithm for bandlimited signal 

extrapolation valid up to basically an arbitrarily high range of frequencies. Even though 

the algorithm is complex in the sense that it involves time consuming calculations and 

tedious computations with big matrices of very high precision, the overall idea is simple 

and easy to execute, thanks to the current computational speeds and available system 

memory. We believe that the accuracy with which the LPFs and their corresponding 

eigenvalues were computed with very high precision allowed this method to work 

efficiently thus making it suitable for extrapolating signals within the prescribed 

bandwidth.  

The model chosen was a noise-free model that performed extremely well under ideal 

conditions. Extrapolation of known test signals showed that the effective range of 

extrapolation is dependent on the truncation value  and also, in some way, to the 

Slepian frequency, . As we increased  (incorporating more high orders of ), the 

effective extrapolation range also increased. We were able to achieve relatively higher 

truncation values for the lower  LPF set 1 and thus able to attain better extrapolation 

range as compared to what was achieved using the higher  LPF set 2. When it comes to 

the accuracy of the results within the effective extrapolation range, the higher  LPF
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set 2 performed better than that of their lower  counterparts.  

When subjected to noisy conditions the algorithm almost collapsed with very high scalar 

expansion coefficients, hindering proper extrapolation. Inadequate precision of the 

original signal, and, the signal getting corrupted by some sort of noise, are the two main 

reasons attributing to this behavior. We found that the complexity of running our 

algorithm is mainly dependent on two factors – the Slepian frequency, , used and, the 

overall precision used for computation. When both these factors were increased, the 

overall computation time of our algorithm also increased. On the lab computer, which 

had an Intel® Core™ i5-2400 CPU @ 3.10 GHz processor and 8GB of RAM, it took 

around 2.5 hours for extrapolating using LPF set 1 ( ) and around 10 hours using 

LPF set 2 ( ). We believe that a qualitative analysis of the behavior of our 

algorithm to noisy signals (provided in the last chapter) may serve as a guide or reference 

to someone who is interested in taking this study a step further, to design a better model, 

in the future. 

5.1 Suggestions for Further Study 

This research can be regarded as a preliminary fundamental work for implementing 

effective bandlimited signal extrapolation using linear prolate functions as proposed by 

Slepian and his colleagues in [2]. This work was mainly concentrated on noise-free 

signals. However, similar studies [38] have been going on in parallel within our research 

group for interpolation using inbuilt Mathematica functions for applications related to 

digital filters. This abovementioned work focuses on reducing intersymbol interference 

using LPFs. Using this technique, the interpolation is satisfactorily achieved for some real 
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signals but fails in their extrapolation. For this, the interpolation order needs to be tailored 

according to the order of the LPFs used and it also depends on the signal being studied as 

well. We believe there is scope for a lot more to be done in this field. Some of them are 

listed below. 

• Modify the algorithm to incorporate higher  LPF sets. 

• Include noise-affected signals as well in the design, which may be more 

applicable in a practical sense. 

• An extensive study to formulate a relationship between the Slepian frequency, , 

the truncation value, , the observation interval, [- , ], and the effective 

extrapolation range, for achieving satisfactory signal extrapolation, is highly 

recommendable and would be of great use for application in the future models.  

• Implement 2-D extrapolation, that can be applied in areas of signal processing 

like image processing, by studying further on circular prolate functions (two 

dimensional PSWFs) [33]. 

• Investigate in detail the reasons for the ill-behavior of the expansion coefficients 

especially for values of    above the critical value, . 

• Study the relationship between the position of the induced error (noise) and the 

highest possible order    for which useful expansion coefficients are obtained. 

• Formulate other efficient and more general ways of high precision numerical 

implementation of the overlap integral.   

• Examine the relationship between the sampling rate of the discretized signal and 

the order of the resulting piecewise polynomial for finding the overlap integral. 
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Characterizing the Slepian functions (LPFs set) finely and precisely into an appropriate 

polynomial expression is the key with which, this method could be extended to other LPF 

sets. During the characterization process, emphasis should be on incorporating more 

higher order ( ) terms in the synthesis equation (3.4) thus making  sufficiently large for 

extrapolation. This is a promising development in the field of signal processing [15-

17,29,30] and will be helpful in the characterization of both known and random 

bandlimited observations. It should be stressed, however, that the key to the successful 

better-than-others results of our extrapolation algorithm is, indeed, the accurate numerical 

evaluations of linear prolate functions and their eigenvalues employing our proprietary 

robust algorithm for computing them.   
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Appendix 

 

A sample Mathematica code used in our algorithm for signal extrapolation, its 

explanation and some relevant figures are presented here in this section. 

A.1 Sample Mathematica Code 

The code for implementing bandlimited signal extrapolation was written in Mathematica 

version 9.0.1.0. The sample provided here is that written for the LPFs set 1 with Slepian 

frequency, . This code assumes that the “sample_code.nb” Mathematica 

notebook file (containing the code) is run from a folder named “Mathematica” located in 

the “My Documents” folder in a Windows 7 (64-bit) operating system. The relevant parts 

and purpose of the code are explained there itself. Interested readers are advised to refer 

to [37] for a more detailed explanation of the commands used. 

Comment: This code adds the directory in which the files are located for our program. 

AppendTo[$Path,ToFileName[{$HomeDirectory, "My 

Documents\\Mathematica\\"}]]; 

Comment: This code is for importing the high precision LPFs set 1. 

ko = << ksi0-20pi100c; 
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lo = << lms-20pi100c; 

ksi = << ksi-20pi2000; 

Comment: Initialization of a bunch of variables to work with and hold relevant results. 

The variable ‘expval’ is initialized here as a list of length 2001 containing zeros. This 

variable is actually supposed to be holding the 2001 samples of the signal to be analyzed 

within the observation interval . 

yvalue = Table[0, {101}, {2001}]; 

expval = Table[0, {2001}]; 

nval = cresult = lovalue = expCoeff = Table[0, {101}]; 

functionlist = Table[0, {101}, {8}]; 

Comment: Segment wise piecewise polynomial formulation and subsequent numerical 

implementation of the calculation of overlap integral is done in this block. In essence, the 

analysis (3.3) equation is implemented here. The key functions to be noted here are 

LinearSolve and Integrate. LinearSolve solves for  that satisfies the equation . 

Integrate is used here to compute the definite integral obtained in each segment of the 

piecewise-polynomial form of the scalar product in the overlap integral (see section 3.4). 

The resulting scalar expansion coefficients for various orders of  are stored in the 

variable ‘expCoeff’. 

Do[pans = res1 = 0; 

  yplus = Rationalize[ksi[[nvalue, Range[1, 1001]]], 0]; 
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  yminus =  

   If[OddQ[nvalue],  

    Reverse[yplus[[2 ;; 1001]]], -1*Reverse[yplus[[2 ;; 

1001]]]]; 

  yfull = Join[yminus, yplus]; 

  ynew = expval*yfull; 

  y = N[ynew, 500]; 

  nval[[nvalue]] = nvalue;   

  Do[xdata = Table[x, {x, i/1000, (i + 250)/1000, 1/1000}]; 

   n = Dimensions[xdata][[1]]; 

   M = Table[xdata[[i + 1]]^j, {i, 0, n - 1}, {j, 0, n - 

1}];    

   A = LinearSolve[M, y[[i ;; i + 250]]]; 

   fp[z_] := Sum[A[[j]]*z^(j - 1), {j, 1, n}]; 

   functionlist[[nvalue, 1 + (i - 1)/250]] = fp[z];    

   Do[yvalue[[nvalue, j]] = fp[j/1000]; 

    If[j == 2000, yvalue[[nvalue, j + 1]] = fp[(j + 

1)/1000]], {j, i,  
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     i + 249}];    

   res1 = Integrate[fp[z], {z, i/1000, (i + 250)/1000}]; 

   pans += res1, {i, 1, 1751, 250}];   

  cresult[[nvalue]] = pans;   

  lovalue[[nvalue]] = lo[[nvalue, 100]]; 

  expCoeff[[nvalue]] =  

   Divide[cresult[[nvalue]], lovalue[[nvalue]]], {nvalue, 

1, 41, 40}]; 

finaltable = {nval, cresult, lovalue, expCoeff}; Grid[ 

 Prepend[Transpose[finaltable], {"'n'", "Computational", 

"lo value",  

   "Expansion Coefficient"}], Frame -> All] 

 

Comment: Synthesis (3.4) of the analyzed signal is performed here. The synthesized 

signal in ‘newexFunction[]’ is used for both reconstruction and extrapolation of the 

signal. 

newexFunction[time_] := (sum = 0;  

  Do[If[MantissaExponent[expCoeff[[nvalue]]][[2]] <= 90,  
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    yplus = ksi[[nvalue, Range[1, 2000]]]; 

    yminus =  

     If[OddQ[nvalue],  

      Reverse[yplus[[2 ;; 2000]]], -1*Reverse[yplus[[2 ;; 

2000]]]]; 

    yfull = Join[yminus, yplus];  

    sum += (expCoeff[[nvalue]]* 

       yfull[[Rationalize[time, 0]*1000 + 2000]])], 

{nvalue, 1, 101}]; 

   sum) 

Comment: This code plots the resulting extrapolated signal. 

ListLinePlot[Table[{t, newexFunction[t]}, {t, -16/10, 

16/10, 1/1000}], 

  PlotRange -> All, PlotStyle -> Red, Frame -> True,  

 GridLines -> Automatic, GridLinesStyle -> Directive[Gray, 

Dashed]] 
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A.2 Figures of Experimental Signals 

This section contains the plots for the experimental real signals used for extrapolation 

using our algorithm. 

 

Figure A.1: Forex signal of AUDUSD currency pair (minute-by-minute) observed in 

2013 

 

Figure A.2: Forex signal of AUDCAD currency pair (hourly) observed from 2012 to 

2013 
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Figure A.3: Forex signal of USDJPY currency pair (daily) observed from 2000 to 2014 

 

 

Figure A.4: Compound nerve action potential (CNAP) signal obtained from Gonzalez-

Cueto’s study [36] 
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