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Abstract
Atmospheric particles, such as aerosols, have a wide range of sizes, shapes, and
compositions. It is difficult to determine the single scattering properties of an aerosol
taking account of all its possible physical properties. A numerical method, known as the
finite difference time domain (FDTD) method, can be used for this purpose. However,
because aerosol compositions are complicated, the effective medium approximation
(EMA) is usually employed. In this thesis, various EMAs are discussed and numerically
tested using the FDTD method. A composite particle modeled by a spherical particle with
multiple spherical inclusions is used to test the EMAs. It is found that the applicability of
the EMAs depends on the physical properties, the spatial arrangement, and the number of
the inclusions inside the host sphere. It is found that the Bruggeman and the quasi-
crystalline approximation with coherent potential and Percus-Yevick (PY) pair
distribution (QCA-CP-PY) mixing rules show better accuracy than other analytical
EMA:s for an inclusion size much smaller than the wavelength and for a volume fraction
less than 10%. For a larger inclusion, the extended Bruggeman method and the QCA-CP-
PY give more accurate results. When only one inclusion is inside the host sphere, the
extended Maxwell-Garnett is more accurate. Effective refractive indices obtained from
the Bruggeman mixing rule show a good agreement with the FDTD results for very small
inclusions. For a larger inclusion, a combination of Bruggeman and the Maxwell-Garnett
mixing rules shows a good agreement.

Atmospheric particles may be found in an absorbing atmospheric medium. In the
past the light scattering by a particle in a non-absorbing medium is generally considered.
The simplest shape for approximating an atmospheric particle is a sphere. A new
formulation of light scattering by a spherical particle (the Mie theory) in an absorbing
medium is also presented. Numerical results show that the absorbing medium can affect
the single scattering properties only for large particles or in highly absorbing host media.

For atmospheric applications, the effect is generally small and therefore can be neglected.

Xvii
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OWWE: one way wave equation

@ : angular frequency,
P! is the associated Legendre function of first kind of degree n and order 1.
p, q, r: coefficients for approximating function

PML.: perfectly matched layer

PY: Percus-Yevick pair distribution function

v, (0), v.(p), &, (p)and & (p): Riccati-Bessel functions and their derivatives with

respect to the argument p,
7, (cos(@)) = P,l1 (cos(8))/sin(@) : Legendre function

¢ : solar azimuth angle

XX



Q =W /Ina*: efficiency

QCA: quasi-crystalline approximation

QCA-CP: QCA with coherent potential

QCA-CP-PY: QCA-CP with Percus-Yevick pair distribution.
R, and R,: radii of sphere 1 and 2

Re : real part of

R(0°): normal reflectance

r,,.; - mean radius of polydisperse particles

p : free electric charge
o : electric conductivity of a medium
o =W /I : cross section

0, 0., O, extinction, scattering, absorption cross sections or coefficients

o, equivalent magnetic conductivity of a medium

S(0): total forward scattering amplitudes

S, : phase matrix

7,(cos(8)) = dP! (cos(#))/d@ : Legendre function

T(+), T(-): transmission of a wave travelling in the positive and negative x direction.

UEBR: Uncorrected Bruggemann mixing rule
UEBR: Uncorrected Extended MG
W, W

ext? sca

W, : net rate of the extinct, scattered, absorbed energy by a sphere
x = kga : size parameter
E.(p)=p(j,(p)+iy(p)): Riccati-Bessel functions

y, (p) : spherical Bessel functions of second kind of order n.
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Chapter 1

Introduction

Solar radiation is mainly in the form of short wave radiation with wavelengths less than

3 um. Its spectrum indicates a temperature of about 6000 K. The amount of solar

radiation received by the Earth is dependent on how much radiation is absorbed and
reflected (or scattered) by the Earth’s surface and atmospheric constituents. Some of the
absorbed radiation is then re-emitted by the Earth’s surface and the atmosphere in the

form of long wave radiation (wavelengths larger than 3 pm).

Atmospheric particles such as aerosols play significant roles in reflecting and
absorbing short wave and long wave radiation. There are two contributions of the
aerosols that can affect the Earth’s climate. The aerosols can directly modify the
incoming solar and outgoing long wave radiation by scattering and absorption processes.
This is known as the direct effect of aerosols (Seinfeld and Pandis, 1998). The aerosols
can also affect the climate indirectly by modifying the properties of cloud droplets in
which the aerosols play as cloud condensation nuclei (Seinfeld and Pandis, 1998;
Pruppacher and Klett, 1997).

The effect of aerosols on climate is usually assessed by the radiative forcing of

aerosols, which is defined as the change in solar irradiance absorbed by the surface-




atmosphere system due to the presence of aerosols (Kiehl and Rodhe, 1995). The
radiative forcing of aerosols can be positive or negative depending on the optical
properties of aerosols. These properties are affected by the geometrical shape, size
distribution, chemical composition and refractive index of aerosols. These properties can
be modified further when the aerosols are hygroscopic. In this case the aerosols can take
up water and grow in size with increasing relative humidity (Pruppacher and Klett, 1997).

One important type of aerosols is the carbonaceous aerosols. These aerosols are
mainly produced by anthropogenic activities. They are comprised of two classes of
materials, black carbon (soot) and organic carbon. The black carbon is produced by the
incomplete combustion of fossil fuel and biomass burning (Seinfeld and Pandis, 1998).
The organic carbon is produced by combustion and natural sources, or may be also by
gas-to-particle conversion of hydrocarbons (Seinfeld and Pandis, 1998). The organic
carbon particles are mainly scattering (Seinfeld and Pandis, 1998), whereas the black
carbon particles are mainly absorbing (Horvath, 1993).

Because of the absorbing nature of black carbon, it contributes mainly to a positive
radiative forcing and consequently to a net heating of the atmosphere (Horvath, 1993).
The radiative properties of aerosols are sensitive to how different aerosol components are
externally or internally mixed (Lesins et al., 2002). Black carbon may exist in the form of
several mixing states, but there are only three mixing states commonly used: (a) the black
carbon is completely separated from other aerosol particles (external mixture), (b) the
black carbon is embedded in other aerosols (internal mixture) and (c) the black carbon is
a core with a coating shell of other aerosol species (Jacobson, 2001). Consequently the
radiative forcing of the black carbon is also sensitive to the aerosol mixing states. It is
known that the internal mixture gives a higher radiative forcing than the external mixture.
In a study by Haywood and Boucher (2000), the radiative forcing for fossil fuel black
carbon is estimated by +0.16 W/m® for external mixture and +0.42 W/m® for internal
mixture with sulfate aerosol. The value of radiative forcing for a core with coating shell
model of aerosols is in between those of the external and internal mixtures (Jacobson,
2000, Lesins, 2002). In a recent study, Jacobson (2001) simulated the evolution of the

chemical composition of aerosols. This author found that the mixing state and radiative



forcing of the black carbon component are close to those of the internal mixture.
Therefore it is important to study the optical properties of the internally mixed aerosols.

To determine the optical properties of internally mixed aerosol and consequently its
radiative forcing, the problem of light scattering by a particle with inclusions needs to be
solved. This is a complicated problem. The properties of inclusions could complicate
finding an analytical solution. Many researchers have developed analytical solutions for a
spherical particle with spherical inclusions or with irregular inclusions (Fikioris &
Uzunoglu, 1979; Fuller, 1995; Borghese et al., 1992; Ioannidou and Chrissoulidis, 2002;
Videen et al., 1995). For this problem, the finite difference time domain (FDTD) method,
the discrete dipole approximation (DDA) and the extended boundary condition method
(EBCM) may also be used. It is generally considered to be impossible to calculate a large
set of particles with various compositions. Therefore an approximate method to estimate
the light scattering properties of composite particles is needed. Such an approximate
method is the effective medium approximation (EMA). If the size of inclusions is on
average small compared to the incident wavelength, it is possible to treat the particle as
homogenous. Therefore, the optical properties of a composite particle can be replaced by
optical properties of a homogenous particle.

In all the radiative forcing studies, it is assumed that an internally mixed aerosol can
be modeled by a homogeneous sphere with appropriate effective refractive index. It is
common to obtain the effective refractive index by simply taking the volume-weighted
average of refractive indices of the aerosol components (Haywood et al. 1997; Myhre et
al.,1998; Seinfeld and Pandis, 1998). Other EMAs, such as the Bruggeman and the
Maxwell-Garnett mixing rules (see e.g. Chylek et al.(2000)), may also be used for this
purpose. Depending on the choice of EMA, one could obtain different optical properties
of internally mixed aerosols.

It is uncertain which of the EMAs provide the accurate optical properties of
internally mixed aerosol. Various experiments and numerical tests for the applicability of
the EMAs for atmospheric applications were reported by several researchers (Chylek et
al., 1988 and 2000; Doicu & Wriedth, 2001; Kolokolova & Gustafson, 2001). However,
further tests are still needed to determine which of the EMAs is appropriate for estimating

the effective refractive indices of aerosol. Motivated by this need, various EMAs are



developed and examined in this thesis. For this study the FDTD method is developed and
used to test the EMAs. In this thesis, to enhance differences in the values of the effective
refractive indices obtained from various EMAs, a mixture of ice and water at 3.21 cm

wavelength is considered. The refractive indices of water and ice are m,, =7.14+2.89i
and m,, =1.78+0.0024i respectively. The water is highly absorbing and the ice has a

small imaginary part of refractive index, hence it can be considered non-absorbing. For a
black carbon — sulfate mixture, we have a black carbon (absorbing material) is mixed
inside a sulfate (non-absorbing) particle. Therefore a model of an ice sphere with multiple
spherical water inclusions is considered here. Using the FDTD method the optical
properties of this sphere are obtained and then compared with the optical properties
calculated using the Mie theory with effective refractive indices obtained from various
EMAs.

By testing a wide variety of EMAs, it is hoped that criteria can be determined for
selecting the most appropriate EMAs for a particular application. The choice of the most
appropriate EMAs requires consideration of the physical properties of the heterogeneous
particle in question. It is expected that some EMAs may be accurate for only a particular
structure of the heterogeneous particle, but not for other structures. For testing purposes,
we consider various sizes of inclusions, spatial arrangements and topologies of a mixture.
In this thesis, the numerical tests are limited to spherical inclusions. For computations the
refractive indices of water and ice at a wavelength of 3.21 cm are chosen in order to
compare the accuracy of various EMAs. With this choice, the different EMAs show
substantial differences in the computed properties. By examining the accuracy of EMAs
for the specified geometrical structure, we then can decide on criteria for choosing the
most appropriate EMA based on the structural properties of the particle. It is expected
that the conclusions given in this thesis regarding structures will also be applicable to
other set of refractive indices, particularly for atmospheric applications when the
difference in refractive index of the components of the mixture is smaller than that of
water and ice.

Beside the need for testing the EMAs, it was stated by Chylek et al (2000) that there
is also a need to explore a different criterion for EMA especially to improve the accuracy

for the absorption properties of a particle. Chylek et al. (2000) proposed to employ



average of dielectric constant and refractive index weighted by |E|2 , where E is the local
electric field. We can think of the average of dielectric constant weighted by the
|E|2 based on the conservation of energy content in the medium. This averaging method

has not been explored in the past. The validity of this method is unknown. Because the
FDTD method is based on direct discretization of Maxwell’s equations, we can obtain
easily the distribution of electric fields inside a heterogeneous particle. This creates an
opportunity to explore various averaging schemes. Instead of energy content, another
criterion for EMA based on the extinction or the attenuation of fields in the
heterogeneous medium is also examined in this thesis.

In the FDTD method, an absorbing boundary condition (ABC) is used for truncating
the FDTD computational space. The ABC is important since the accuracy of the FDTD
method depends on the properties of the ABC. In the past decade a method known as the
perfectly matched layer (PML) is frequently used. In the process of developing the FDTD
method, a new ABC, which is called multiple absorbing surfaces (MAS), is also
developed in this thesis.

In the past, a medium surrounding a particle is always considered to be non-
absorbing. However, a medium, in general, is absorbing. The absorption of the host
medium can, in some cases affect the scattering properties of a particle. It is therefore
important to treat the absorbing host medium. In a formulation of EMA the assumption of
a non-absorbing host medium is also used, even though the resulting effective medium is
an absorbing medium. A new formalism for the scattering by a spherical particle (Mie
scattering) in an absorbing host medium is developed in this thesis and a corrected
formalism of EMA is also given.

Before continuing to discuss EMA, a review of the FDTD method is presented in
chapter 2. In chapter 3, a new ABC for the FDTD method is presented. A new formalism
of Mie scattering in absorbing medium is presented in chapter 4. A review of EMAs and
a corrected EMA is presented in chapter 5. Numerical results of the FDTD calculations

and discussions are presented in chapter 6. Finally, conclusions are given in chapter 7.




Chapter 2

The Finmite-Difterence Time-Domain Method

2.1 Maxwell’s Equations

To solve a light scattering problem we begin with the fundamental equations that govern

the electromagnetic wave propagation for macroscopic scale i.e. Maxwell’s equations.

The time-dependent Maxwell equations (Jackson, 1999) are

V-D=p (2.1)

V-B=0 (2.2)

VxE+a—B:O 2.3)
ot

VxH—a—D—:Je (2.4)
ot

where E and H are the electric and magnetic field vectors, D and B are the electric

displacement and magnetic induction, p and J, are the free electric charge and free

electric current.

Beside the above equations (Eq. (2.1)-(2.4)) we also need to know relationships

between the vectors E and D, and between Hand B which constitute the properties of a

medium. For a linear, homogenous and isotropic medium the relationships are



D=¢E (2.5)

B=uH (2.6)
and for a conducting medium, the electric current is given by

J, =0k (2.7)
wheree ,u and o are permittivity, permeability and conductivity of a medium
respectively.

In the FDTD method, a magnetic current source J,, is usually added in Eq (2.3)

(Taflove, 1995). This addition is very useful since a magnetic loss contribution or a
magnetic source can be accounted for. This is also needed for development of the PML-

ABC and the MAS-ABC. A magnetic loss term is introduced in a similar way as adding

conductivity of the medium that is

J,=0,H. (2.8)
With a magnetic current term Eq. (2.3) is now given by
V><E+~aa—1::—Jm (2.9)

A material which has a small value of conductivity is known as an insulator or a
dielectric (Harrington, 1961). In a general problem a dielectric constant &, and a
refractive index m are often used. The dielectric constant is defined as the ratio of
permittivity of a medium to the permittivity of a free-space or a vacuum i.e. £, = £/¢,.
In frequency domain the dielectric constant generally has a complex value
(€, = £, +ig,; ). The dielectric constant is related to the refractive index by &, =m”.

In general, a medium can be considered absorbing. The absorption of the medium in
frequency domain is usually included in the imaginary part of the complex dielectric
constant. Because the FDTD method uses real fields, the complex quantity cannot be
used. It is possible, however, to include the absorption of the medium by introducing a
conductivity of the medium. It can be shown that the value of conductivity needed to

account for a non-zero imaginary part of the complex dielectric constant is given by

o = e, €E,; where w =2xf , f is the frequency of a field (Jackson, 1999, page 312).



2.2 The Finite-Difference Time-Domain Method

The FDTD technique is based on the curl Maxwell differential equations (Eq. (2.3) and
(2.4)). Taking the divergence of the curl equations can prove that the divergence
equations (Eq. (2.1) and (2.2)) are already included in the curl equations (Taflove, 1995).

Substituting Eq. (2.7) and (2.8) into Eq. (2.4) and (2.9), and after rearrangement Eq.
(2.4) and (2.9) become:

M _LlWxE+o,H] (2.10)
ot 7
% _LivxH-oR]. (2.11)
at €

We can note here that we have two coupled vector equations. To solve Eq. (2.10) and
(2.11), we can think of these differential equations as an initial value problem where
propagation of electromagnetic fields can be simulated by time marching of the above
equations. We can set initial fields to zero, then a wave source is generated in the
computational space by adding a current source. The propagation of the generated waves
is simulated in time, which then interact with an inhomogeneous medium. This time
marching scheme is the basis of the FDTD method.

In a Cartesian coordinate system the above vector differential equations are
expanded to

1[oH, oH,
— L - oF 2.12
o eloy a 12

oE, 1[oH. OoH
L= L L —oF 2.13
o €| oz ox ks (2.13)

OE, 1| oH, oH

e = | (=L -Z25)—0F 2.14
o ellax ) ] 14
oH, 1[9E, JE ]

ro— |- 2T 5 H .
% w5 e O (2.15)
oH, 1[dE, OE i

=~ | ==-Tx_5 H 2.16

o ulox oz Ot (2-16)




oH, _1|0E, _ai_amHz 2.17)
ot x| dy ox

Equations (2.12)-(2.17) are approximated by a central finite difference scheme in

both space and time. We follow a notation given by Yee (1966) where grid points in

Cartesian coordinate is denoted by (I, J, K) = (IAx, JAy, KAz) and fields that are a
function of space and time are denoted by F"(I,J,K) = F(IAx, JAy, KAz,nAt) where
Ax ,Ay and Az are spatial increments and At is a temporal increment. The FDTD

algorithm employs a leapfrog time stepping scheme. In this scheme the electric fields are
evaluated at time ¢ and the magnetic fields are evaluated at time 7+ Az/2.
To discretize the above equations in time, let us consider Eq. (2.12). Using a central

difference approximation of derivative at time ¢+ At/2, we have

A B UL T K —Erd+L. 0 K= (aHﬁ —aH-‘r’WE)—o—E”*% (2.18)
At E 22 SR el oy oz * '

where € and ¢ are evaluated at grid position of the electric field which in this case

I++5,J,K).

The electric fields at (n +1) is approximated by average of electric fields at n and
(n+1), thatis

EM = (E™ +E")/2 (2.19)

After a manipulation we have

— At H™ oH'"
L-NOI2€ by gy A 9H, OH,
1+Ato/2¢ e(l+Ato/2e)| 9y 0z

Ef(I+L,J,K)=

(2.20)
Similarly for Eq. (2.13)-(2.17), for example for the x component of magnetic field (Eq.
(2.15)),
1-Ato, /2u
1+Ato, 12U
L & {aE; _aE;} @20
Ud+Ato, /120)| oz 9y

HI (LT +4,0 + 9 = H! (1T +1,K+1)
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where £ and o, are evaluated at grid position of the magnetic field which in this case
I, J+5,K+3).

The spatial discretizations are done by considering a staggered arrangement of
electric and magnetic fields in a cubic cell as suggested by Yee (1966) (see Fig. 2.1). The
components of electric fields are placed in such a way that they are surrounded by four
components of magnetic fields. Similarly for the components of magnetic fields are
surrounded by four components of electric fields (Taflove, 1995; Sadiku, 1992). With

this arrangement Faraday’s law and Ampere’s law are satisfied (Taflove, 1995; Sadiku,
1992).

Z
(I,_],KM)} Ey  (IJ+1K+1)
Hz
E B ]
Z
Ey '
Ez E
Hy
—— ¥
Hx e L @HLK)

(+13K) g

d+1J+1,K)
Figure 2.1: A staggered arrangement of electric and magnetic fields.

With this staggered spatial arrangement, Eq. (2.20) and (2.21) become

EM'(I+1,7,K) =1“—N9£E;(1 +1,7,K)+
1+ Ato/2¢
At 1 nty 1 1 s 1 1
(—[H I+, 7 +1, K)—H" (I +1,7 -1, K)] (2.22)

E(1+Ato/2€) Ay

1 nil ol
—E[Hy 2(1+%’J’K+%)_Hy+2(1+%,J,K—%)]}
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1-Ato, /2u
1+Ato,, /21

At v
ul+Ato, /12u)

HIH (LT +4,K +9) = HI (L +4, K49+

{i[E;’(I,J+%,K+1)—E;’(I,J+%,K)]——Al—y[E;(I,J+1,K+%)—E;(I,J,K+%)]}

(2.23)

Discretizations of the other components of electric and magnetic fields can be
obtained in a similar way. We note here that the electric and magnetic fields are
interlaced in time and these are explicit equations. We can use these finite difference
equations to update electric and magnetic fields alternately. We can inject incident fields
and then propagation of fields can be determined by iteration in time.

To maintain stability of the FDTD iteration the spatial spacings and the temporal
spacing must satisfy a stability condition given by (Taflove, 1995)

Ar< 1 (2.24)

N
Ax* Ay A7

For FDTD simulations, the FDTD cell is usually taken to be a cubic cell where

Ax = Ay = Az = As . Therefore the stability condition is given by

A< As/ey3. (2.25)
For simplicity, we use in our FDTD simulations the temporal step At = As/2c .

In the FDTD method, a particle is modeled by assigning appropriate permittivities,
conductivities and permeabilities at the appropriate spatial grids. Yang and Liou (1996,
2000) assumed the dielectric properties within each FDTD cell are homogeneous. In
order to reduce staircasing errors Yang and Liou (1996 and 2000) used the Maxwell-
Garnett mixing rule to evaluate the averaged permittivity properties of each FDTD cell.
However, it was shown by Sun and Fu (2000) that the use of average value could
introduce some errors. Therefore, in this study, the local value of permittivity at the grid

point is used.

2.3 Absorbing Boundary Conditions

A scattering problem is an open space problem. In dealing with the open space problem

we need a method to truncate an FDTD computational domain such that there are no
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outgoing waves reflected back to the computational domain. This truncation method is
known as an absorbing boundary condition (ABC) or a radiation boundary condition.
This ABC is very important since the accuracy of the FDTD technique depends on the
choice of ABC. There are many methods can be used to truncate the outer boundaries
including one-way wave equations (OWWE), Higdon’s operator, space-time
extrapolations and absorbing materials method. The most popular method is the perfectly

matched layer (PML)-ABC that is based on absorbing material method.

2.3.1 One-Way Wave Equations

The OWWE is derived from the scalar wave equation, that is

L9 oo (2.26)
c® ot’ . '
The wave equation can be split into two pseudo operators, such as:
L'LU=0 (2.27)
where L] and L, are the OWWE operators for wave travelling in positive and negative z

direction. The operators are given by (Engquist & Majda, 1977; Taflove, 1995, Yang &
Liou, 2000).

L;=D, +—
‘ ‘o D}

2(D? + D2
D \[l_f__(._’_‘:_.iz (2.28)

where D, ,D,, D, and D, represent operators d/dx, d/dy,d/dz, and d/dt respectively.

The operator L, can absorb waves in the negative z direction without reflection if the
following OWWE is satisfied

LU=0 (2.29)

It seems that this would be the perfect ABC. However, since operators L} and L, are

pseudo operators, they cannot be used in a numerical computation. We need to
approximate the OWWE operators. The OWWE can be expanded using second order

Taylor expansion to

c D? ¢ 2 D

t

D c*(D? +D? c(D} +D?
L;=Dz——'\/1—(—izD __Qt___l___(__i____l_ (2.30)
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The second order approximation of the OWWE can be expressed after a

manipulation as (Taflove, 1995, Yang & Liou, 2000)

i 2 2 2 2
19 —ii—+1(—a—+a—]j|U:0 (2.31)

carz At 2{ax’ 9y

A first order approximation of the OWWE is

(19 9
19 _9y=0 2.32
X az] (2:32)

Many different expansions can be used to approximate the pseudo OWWE operators
including Padé approximation, least square approximation and Chebyshev approximation
(Taflove, 1995). Egs. (2.31) and (2.32) can be discretized and then can be used for

truncating the FDTD computational domain.

2.3.2 Higdon’s Annihilation Operators
Another important one way operator is Higdon’s annihilation operator. Higdon

proposed a differential operator that absorbs waves exactly in certain incident angles «;

which is of the form
il d o
H(cosaj—t—c_,—+ﬁj}1=o (2.33)
j=1 z
where N represents the order of the Higdon operator, ¢; is the speed in the medium, and

B, is a constant. It can be shown that by choosing appropriate values of ¢; , 3, and ¢,

the second order Higdon operator is the same as the second order OWWE (Eq. (2.31)).

Other properties of the Higdon operators are discussed further in chapter 3.

2.3.3 Perfectly Matched Layer ABC

The perfectly matched layer (PML) method was introduced by Berenger in 1994.
The PML is based on the use of an absorbing layer to absorb outgoing waves. The main
advantage in using the PML layer is that the impedance of the PML is matched with a
medium. As consequence the PML provides a layer that produces very small reflection

suitable for many applications.
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To match the impedance of a medium and the PML, the six scalar Maxwell’s
equations are split into twelve differential equations. Each Cartesian coordinate is split
into two components as follows (Berenger, 1994, 1996; Katz et al., 1994; Taflove, 1995).

E.=E_+E_,E =E, +E ,E =E, +E

H =H +H_H =H_+H_H =H, +H, (2.34)

xz? yz ?

The resulting equations with appropriate loss terms are

oH oE
Xy ____1_ _aEZ_o_m Hx ,asz ____1_ Y_O.mszz
ot  u| dy YO o | oz ’

H H
a yXZL aEZ _O-mxHx 9a X :l _aEx—‘o-m H,
ot  u| ox ’ o  u| Jz e
oE oH
0H, _1|_ oo, | e L 8Ex_o_m H,
ot ul ox ’ or | dy S
oE I oH
w _ 1 aHz—anx ,aExzzl M sk
ot e| Iy T ot e| oz
oE,, 1| oH JE,, 1[oH
__x:_ . z E , )z - X _ E,
T e
OE, 1[0H, 0E, 1[ oH
x _ E , zy P x ,E
o el ax v‘] o g[ ay ZY]

(2.35)

These equations can be discretized in similar way as before. Because we have
introduced loss terms in the split equations, the waves that propagate in the PML region
are attenuated. The rate of attenuation depends on the value of conductivities. In order
that there is no reflection caused by the interface between the PML region and the FDTD
region the conductivity must satisfy the following matching condition

9 _%n (2.36)
80 lu0
For a wave traveling in the z direction we need only to satisfy the matching condition

for o, , and o, other conductivities are set to zero. For waves in other directions such
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as the x or y direction, the matching condition is required only for the conductivity in the
direction of propagation. In the corner region, there is an overlap between the PML
layers. It was shown that the overlap region does not cause any reflections (Berenger,
1994).

For a continuous space, the interface between the PML layer and the FDTD region
does not cause a reflection (Berenger, 1994). However, in a discrete space the PML
causes considerable reflections. To reduce reflection the conductivity values are generally
chosen as small as possible at the PML and FDTD interface and the conductivity values
are then increased to a maximum value at the outer most layers. A polynomial

conductivity profile is generally used which is in the form of
G (1) = O (r/d)? (2.37)
where r and d are the distance from the interface of PML and FDTD medium, and the
length of the PML layer respectively. The maximum conductivity can be specified by the
normal reflectance R(0°)of the interface boundary as (Berenger, 1994; Taflove, 1995;
Gedney, 1998)
O =—(p+DecIn(R(0%))/2d . (2.38)
Many comparison studies between the PML-ABC and the analytical ABCs, such as
one way differential equations, showed that the reflection produced by PML is much
smaller than the analytical ABCs (Berenger, 1994; Katz et al., 1994). Because of this
superiority, the PML method is now considered as the standard method for truncating the
FDTD computational space (Shlager & Schneider, 1998).
Another type of ABC is called the multiple absorbing surfaces (MAS). This is a new
type of ABC developed in this thesis. The MAS method has a comparable reflection to
the PML method. This new ABC is discussed in the next chapter.

2.4 Incident Field

The incident fields are injected into an FDTD computational domain by using a virtual
surface or a Huygens surface surrounding the particle or a total-field/scattered-field
method. The virtual surface divides an FDTD spatial domain into two regions: inner

region and outer region. In the inner region only total fields are calculated and in the
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outer region only scattered fields are calculated. The total fields are the sum of the
incident fields and the scattered fields. In order to satisfy consistency between two
regions a connecting condition is imposed at the virtual surface. A discussion on this
topic is discussed in chapter 3, and further discussion can be found in Taflove (1995,

chapter 6).

2.5 Time Domain to Frequency Domain

Transformation

In order to determine optical scattering properties we need to transform the time domain
values obtained by the FDTD method to the corresponding frequency domain values. In
this report we use an incident Gaussian pulse for initial excitation and the discrete Fourier

transform to obtain the frequency response.
Let us consider a field in time domain at time step n denoted by f, and the field is
(Yang & Liou, 2000)
N
O = £,6(t—nAt) (2.39)
n=0
where d(¢) is the Dirac delta function. The discrete Fourier transform of Eq. (2.39) is

given by (Yang & Liou, 2000)
N N
F@ = [ f,8¢-nAnexpiand: =) f, explianar). (2.40)
7 n=0 n=0

The maximum time step N is chosen large enough such that the fields in computational

domain after time step N are very small values.

2.5 Optical Scattering Properties

The optical scattering properties of a particle can be calculated by a surface- or a volume-

integration method. The absorption cross section o, is obtained by

____1_ ’ * N, A 2 7
Tun =5 Re{i:f[E(r)xH )] -fd*r} (2.41)
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where the above integration is around surface enclosing a particle, fi is the unit vector

outward normal to the enclosing surface, E and H are the total fields outside the particle,
) ) 2 )
the asterisk represents complex conjugate, and I, = £0clE0| /2 where E; is the

magnitude of incident field. Similarly the scattering cross section is obtained by

G = ;I—Re{ﬁ[Em ) xH’, ()] -dd*r’) (2.42)

where E__ and H _, are the scattered fields outside the particle

a

Instead of the above surface integration the optical properties can also be computed

using a volume-integration. It can be shown (see chapter 4) that o, is given by

O ups = | l Ijjgl (r’)

where g, is the imaginary part of dielectric constant, k, is the wave number in the host

)| ar (2.43)

medium and the integration is over the volume of a particle. It can be shown also that the

extinction cross section o, is given by

3.7

W d?r (2.44)

o, = 511: £,0[Im{ jvjj(e, —eHET)-E! (¢’

where E, (r) is the incident fields, the asterisk means complex conjugate, €, = £, + &1

is the complex dielectric constant of the host medium.

The scattcred far field can obtained by a surface integration (Jackson, 1999; Maloney
& Smith, 1998):

exp(ik,yr) k

E @m= i

ﬁ{ £ X [AXET")] - 17,8 X £ x[Ax Hr")]} exp(—ik, £ -17)d *r’

(2.45)
where 77, = /i, /€, - and the corresponding volume integration for non-absorbing host
medium is (Yang and Liou, 2000)

jjj[ ()~ 1{E(") - £l - E@)]} exp(=ik,f - 1)d

(2.46)
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2.6 Amplitude Scattering Matrix

To obtain the amplitude scattering matrix, we follow here the convention given in Bohren
and Huffman (1983) where the direction of the incident field is in the z direction. The far

field vector E can be decomposed into two components (parallel and perpendicular to
the scattering plane) in the form

E,=E @& +E, € (2.47)
where in the spherical coordinate basis vectors, the parallel basis vector is &, =&, and the
perpendicular is €, =€, . The incident field can also be decomposed into the two
components,

E =E @& +E é,. (2.48)

The amplitude of scattered fields Eq. (2.47) can be expressed as a linear function of the

amplitude of incident fields Eq. (2.48) in the form of
Es,ll _ exp(ik(r — 2)) S, S, Eo,u (2.49)
E — ikr APRIY EO,J_ '

where S, is the component of amplitude scattering matrix. The amplitude of scattered

fields can be re-expressed as

E.\',Il _ GXP(ik(r—Z)) Fn
[E]___ (- M (2,500

FII = SZ S3 EO,II (250b)
F, S, S, I Ep. '

For an FDTD computation, the incident fields can be expressed in a Cartesian coordinate

where

system by
E =E X+E.§y (2.51)
The relationship between components of the incident field in the Cartesian basis

vector, and the basis vectors €, and €& is

E,| |cos¢ sing |E,
[E,-,i]—[smq) —cos¢}|:Ei’yj|' (2.52)
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Therefore

|:Fu]=|:52 S3:I|:COS¢ sin ¢ :":Ei,x:i (2.53)
F, S, S |sing -—cosgl E,,

By selecting the scattered fields for two polarizations of incident fields (x-polarized

(E,,=LE, 6 =0)and y-polarized (E;, =0,E, , =1), we can determine the amplitude

S, S, _ F, B, C?S¢ sin ¢ (2.54)
S, S F F , |sing —cos¢

where subscripts x and y represents the quantity F obtained for x- and y-polarized

scattering matrix by

incident fields.
The Stokes phase matrix can be computed using the expressions given in Bohren and

Huffman (1983, page 65). An example of expression for phase matrix S, is given by
IR (M A R A R (2.55)
A C language computer program was written to calculate the cross-sections,

asymmetry factor and phase function using the FDTD method with the PML- and the
MAS-ABC is given in Sudiarta (2003a).

2.7 Validations of the FDTD method

To validate the FDTD computer program developed here, we consider a spherical water
droplet with a radius a and refractive index 1.33+0.01i and we used the FDTD
parameter A/As =30, where A is the wavelength in vacuum. We computed the single
scattering properties for two size parameters, x =27 /A =1 and x = 5. The results for
efficiencies and asymmetry factors are given in Table 2.1 and 2.2. The FDTD results
show good agreement with the Mie results. For a small size particle (x =1), the relative
differences between the FDTD and the Mie results are less than 1% for scattering and
extinction efficiencies, and about 6% for absorption efficiency. By increasing the FDTD
parameter A/As , this relative error can be reduced. For a larger particle (x =5) all the
relative errors are less than about 1%. The FDTD results for phase function, as shown in

Fig. 2.2 and 2.3, generally have relative errors less than about 5%.
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Table 2.1: A comparison between the FDTD method (A/As =30, 4 is the wavelength
in vacuum) and the Mie solution for spherical particle with radius a, size parameter
x=2ma/A =1 and refractive index m =1.33+0.01:.

A= 1 Qext Qsca Qahs g
Mie results 0.1218 0.0933 0.0285 0.1852
FDTD 0.1208 0.0939 0.0269 0.1817
Relative Error (%) -0.8 0.6 5.7 19
1.2
i — Mie
« FDTD
c i
S 0.8 -
= 1
C
-
L
(0] i
o )
c 0.4 -
o i
0-0 i ! 1 T ' ! ! U U T i T U T U ! U 1 L i T T U T i L T U T
0 30 60 90 120 150 180
Angle(degrees)
< 2
o 1
0 —
© 0 —
> -1
T .
62""J“‘T‘\ill"'ll"""l!‘l‘
C o0 30 60 90 120 150 180

Angle (degrees)

Figure 2.2: A compafison of the FDTD and the Mie phase functions for radius a, size
parameter x = 2ma/A =1 and refractive index m =1.33+0.01i. The FDTD parameter is
AlAs =30, where A is the wavelength in vacuum.
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Table 2.2: A comparison between the FDTD method (A/As = 30) and the Mie solution
for spherical particle with size parameter x =5 and refractive index m =1.33+0.01:.

X = 5 Qexl Qsca Qabs g
Mie results 3.4842 3.2889 0.19524 0.8529
FDTD results 3.4834 3.2868 0.19661 0.8544
Relative Error (%) -0.02 -0.06 0.70 0.17
100.0 E
1 — Mie
1 « FDTD
- 10.0 E
2 1
6 4
S 1
[0] ]
(D |
©
o
0.1 -
0.0 { T L T T T T T T T T T T T T T T T T
0 30 60 90 120 150 180
Angle(degrees)

..5 i T T T T T T T T T 1
0 30 60 90 120 150 180
Angle (degrees)

Relative Error (%)
o

Figure 2.3: A comparison of the FDTD and the Mie phase function for size parameter
x =5 and refractive index m =1.33+0.01i. The FDTD parameter is A/As = 30.
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2.8 The FDTD Method for a Very Small Sphere

It has been shown that the FDTD method gives accurate results provided that appropriate
FDTD parameter is used. The FDTD accuracy is highly dependent on the grid spacing
used. In this study we have employed a rectangular grid for our FDTD method. The
reason for this choice is that the rectangular grid offers simplicity in computational code
and flexibility for approximating an arbitrary shaped object. However, the rectangular
grid can also introduce a truncation error especially for approximating a curved
boundary.

For atmospheric applications, scattering particles, such as aerosols, are composed of
many different components. The components may have dimensions much smaller than
the wavelength. In this study we use the FDTD method for solving a scattering by this
kind of particle. Therefore we need to investigate the validity of the FDTD method for a
small particle. Another reason for considering the small particle is the application of the
FDTD method for testing various effective medium approximations (EMAs). The
commonly used EMAs, such as the Maxwell-Garnett and the Bruggeman mixing rules,
assume the size parameter of composite grains are much smaller than 1 (Chylek et al.,
2000).

As mentioned previously a scatterer is approximated by assigning appropriate
dielectric properties at FDTD grid points. In this study we use local dielectric properties
of the scatterer at the grid points. If a FDTD grid point is located inside the scatterer, the
dielectric properties of the scatterer are used. If it is outside the scatterer, then the
dielectric properties of a host medium are used. This is an “in or out” approach.

To study the FDTD accuracy, the parameter A/As =400 is used. We performed
FDTD simulations for scattering by a spherical particle with a size parameter less than 1

and the refractive index of water m, =7.14 +2.89i at 3.21 cm wavelength. This

refractive index is used in chapter 6 to test various EMAs. The FDTD results for

efficiencies and asymmetry factor are given in Table 2.3.
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Table 2.3: Efficiencies and asymmetry factor of a spherical particle (m =7.14 +2.89i,
radius = a ) computed using the Mie theory and the FDTD method. The FDTD parameter
is A/ As =400 where A is wavelength in vacuum. The size parameter of the sphere is
x=2mal .

Mie
X Qext Qsca Qabs g
0.01 1.35E-03 2.48E-08 1.35E-03 1.54E-04
0.02 2.73E-03 3.97E-07 2.73E-03 6.15E-04
0.05 7.44E-03 1.55E-05 7.43E-03 3.84E-03
0.1 1.98E-02 2.51E-04 1.96E-02 1.53E-02
0.2 9.32E-02 4.19E-03 8.90E-02 5.65E-02
0.4 7.57E-01 8.65E-02 6.71E-01 -6.40E-02
0.5 9.75E-01 2.25E-01 7.50E-01 -1.66E-01
FDTD Relative Error (%)
X Qext Qsca Qabs g 3Qex 0Qgea OQaps 09
0.01 6.00E-03 3.76E-07 6.00E-03 -3.00E-06 346 1417 346 -102
0.02 3.25E-03 8.52E-07 3.25E-03 7.51E-04 19 115 19 22
0.05 7.84E-03 1.49E-05 7.82E-03 2.98E-03 5 -4 5 -22

0.1 2.28E-02 2.98E-04 2.25E-02 1.38E-02 15 19 15 -9
0.2 9.45E-02 4.39E-03 9.01E-02 5.41E-02 1 5 1 -4
0.4 7.58E-01 8.80E-02 6.70E-01 -6.11E-02 0.1 2 -01 -4
0.5 9.83E-01 2.30E-01 7.53E-01 -1.63E-01 1 2 0.4 -2

We can note in Table 2.3 that the FDTD method with A/As =400 is appropriate
only for size parameter 0.05 and larger than 0.2. Smaller grid spacing might be used to
increase the FDTD accuracy. This can only be done for a single particle. When a particle
with small inclusions is considered, the FDTD method with very small spacing requires
large computational resources. However, as the spacing becomes finer the FDTD error
increases due to a round-off error. Therefore the “in or out” approach for dielectric
assignment is not appropriate for approximating a small particle. An alternative method
for modeling a small particle in the FDTD method is needed.

When we have a very small particle (x << 1), in this case a sphere, we do not need a
high-resolution computation to resolve the particle since the fields are almost constants
inside the particle. This means that the inside fields can be approximated by a single
average field. Therefore, the particle can be approximated by assigning dielectric
properties at one FDTD cubic cell. Because of the staggered structure of an FDTD mesh,
we can only position the cube center at a position of a component of electric fields. Other

positions may cause a non-trivial assignment of dielectric properties.
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Let us consider a cubic cell of dielectric material centered at the position of electric
field E (I ++,J,K). A cross section of the cube in rectangular mesh is shown in Fig.
2.4. Because the cubic material is affected only by the field E (I ++,J,K), this cube
represents a dipole with polarization in the x direction.

When an FDTD grid spacing is much smaller than the wavelength in the medium,
the cube can be approximated by an equal-volume sphere. The size of the cube is As.
The radius of equal-volume sphere is r, = As¥/3/47 . The polarizability of the cube is
approximated in the static limit by

8 _—
a, =3(hs)} Se " En (2.56)
£, +2,

where £, and ¢,, are the dielectric constant of the cube and the host medium

respectively. In the static limit, the absorption cross section of the cube is given by

0., = kIm{e,} =3(As)’ klm{—gv—‘gm—} . 2.57)
£, +12¢,

and scattering cross section is

2

4 4 _
O-sca = L ac ’ = 9(As)6 —]'c_ _gc—g_m_ (258)
6 6r e, +2¢,
The phase function is given by
3
p©)=-11+ cos*(6)] (2.59)

The absorption and scattering cross sections can also be calculated exactly using the Mie

theory.
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Y
\4
X

Figure 2.4: A cross section of a cube located at grid (I ++,J,K) in a FDTD mesh.

To investigate whether the approximation of a cube by a sphere is appropriate, we
performed FDTD simulations for different grid spacing. We use the same refractive index

as previous simulations (m = 7.14+2.89i ). We consider a plane wave incident in the z-

axis direction, and polarized in x and y. The results for cross-sections of a dielectric cube
(size As = A/150) are shown in Table 2.4. Table 2.4 shows clearly the anisotropic nature
of the cube where the cross sections depend on the polarization of the incident field. The
cross sections are larger for x-polarized incident field than the y-polarized incident field.
This confirms that the cube represents an electric dipole.

Comparisons of FDTD results with Mie theory (equal-volume sphere) for x-
polarized incident field are shown in Fig. 2.5-2.7. The FDTD results are in agreement
with the Mie results for grid spacing less than 0.0074 . The relative errors are generally
less than or about 2% for grid spacing As < 0.0074. We also note that the FDTD results
and the static limit results show similar values. This indicates that the FDTD method

treats the field in the cubic cell as a static field.
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Table 2.4: Cross sections of a cube centered at position of electric field E, (I +4,J,K)

using the FDTD method ( A/As =150). The incident field propagates in a positive z-axis
direction.

Polarization of o

o o

ext sca abs

incidentfield o0\ 2)  Gnunit ) (inunit 2)

x-polarized 1.87486x1077  6.08529%x107"" 1.87466%1077
y-polarized  6.04606x107' 2.82012x10™®  6.35856x107%

Numerical results for phase functions are shown in Fig. 2.8. It is shown that the
phase function of the cube can be represented well by the phase function of a small
sphere.

We also perform another FDTD simulations for different refractive indices in order
to study the effect of refractive index of the cube. The results, as shown in Table 2.5,
indicate that the approximation of a cube particle with an equal-volume sphere is
justified. Conversely, we can also say that a small spherical particle can be approximated

in the FDTD method by a cubic cell provided that an appropriate grid spacing is used.
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Figure 2.5: Extinction cross section and relative error of a cube. The Mie results are

computed using an equal-volume sphere radius. The static limit results are calculated by
using Eq. 2.57 and Eq. 2.58.
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Figure 2.6: Scattering cross section and relative error of a cube. The Mie results are
computed using an equal-volume sphere radius. The static limit results are calculated by
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using Eq. 2.57.
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Phase function

O FDTD400
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—— (3/4)(1+cos ’0)
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Figure 2.8: Phase function of a cubic FDTD cell (refractive index 7.14 +2.89i , FDTD
grid spacing As = A/200 for FDTD200, and As = A/400 for FDTD400) computed using
the FDTD method and analytical formula (Eq. (2.59)).

Table 2.5: Extinction and scattering cross sections computed using the Mie theory and the
FDTD method for four refractive indices of a cubic FDTD cell (grid spacing

As = 1/400)
Mie FDTD Relative Error
(%)
m Gext cjsca Gext 0sca Gext Gsca

(unit A2) (unit A%) (unit A%) (unit A%

20401 4542x10™  4.542x10™ 4.507x10™* 4507x10™ -0.8  -0.8
1.33+0.011 1.655x10° 7.569x107"° 1.657x10”° 7.768x107° 0.1 2.6
1.78 + 0.00241 2 827x107"° 3.198x107™"* 2.834x107° 3.192x10™ 0.3 -0.2
7.14+2.891 9909x10° 1.690x10™" 9.872x107° 1.665x10™" -04  -L5
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2.9 Summary

The finite-difference time-domain (FDTD) method provides a flexible method for
calculations of scattering properties of irregular and inhomogeneous particles. The FDTD
method is a direct discretization of the Maxwell curl equations. The FDTD algorithm
involves a simple time marching iteration where electric fields and magnetic fields are
updated alternately.

An incident source is injected in the computational domain by employing surface
currents surrounding the particle or using the total/scattered field formulation where the
computational space is divided into two zones: total field zone and scattered field zone. A
connecting condition is performed at the boundary of the two zones.

A particle is modeled by assigning appropriate dielectric properties at grid points.
Here local values of dielectric properties at the grid points are used.

The frequency domain fields are obtained by discrete Fourier transformation of
the time domain fields. The frequency domain fields are then used to obtain scattering
properties of the particle by volume integration or surface integration.

It is shown that the FDTD method gives accurate results for extinction, scattering,
absorption, asymmetry factor and phase function.

The FDTD computer program developed here has been validated with the Mie
theory (see chapter 4). Because very small spheres are of interest for tesﬁng the effective
medium approximation (see chapter 6), a new approximation for very small spheres is

given in this chapter.



Chapter 3

Multiple Absorbing Surfaces-Absorbing
Boundary Condition

As mentioned in chapter 2 in order to apply the FDTD method, an absorbing boundary
condition (ABC) is required for an open space problem or for a scattering problem.
Although the perfectly matched layer method has been currently accepted as a standard
method to truncate the FDTD method. Development of a new and improved ABC is still
an active field. During the process of developing the FDTD method, a new method was
developed, and it is called multiple absorbing surfaces (MAS) ABC. The MAS method is

discussed in this chapter (sections 3.2-3.7).

3.1. One- and Two-Dimensional Maxwell Equations

For a two-dimensional problem where the electric and magnetic fields are

independent of z coordinate, for transverse electric (TE) fields i.e. E= E X+ E § and

H = H z, and for non-conductive medium, the time dependent Maxwell equations Egs.

(2.10) and (2.11) reduce to

32
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oH, _13E,_JE,

Az - 3.1
ot U4 dy ox G-
O, _10H, a2
ot € dy
oL, :_laHZ (3.3)
ot £ 0Ox

Using Yee’s method of differencing (see chapter 2) the above Eqgs. (3.1)-(3.3) are

discretized to
H (I +L,J+h=H" I +1,7+1)
At 1 n n 1 n n
+7{A—y[Ex (I +4.0 )= BT +4,00] =B (T +1,7 +3) = E)(1LJ + D))
3.4)

4

+ 1 At n+ n+
EM(I+1,0)=E'( +%,J)+~€A—y[HZ T+1,J+hH-HMI+1,0-0]1  (35)

E™MLJ +4) = BN +%)+-8AAX—I[H;*5(1—-2L,J + 1) —H (I +4, 7 +1)]

(3.6)

For simplicity, we first consider a one-dimensional wave propagation. For a one-

dimensional problem with only non-zero E, and H, components, Egs. (3.4)-(3.6)

reduce to

H:+%(1 +4) :H:‘%(1+5) +ﬁx_[E;(I’J +3) - E; (I +D]} (3.7)

ntt

B = Ej(D+ =L (H (A )~ (1 + ) (3.8)

Z

3.2. Total-Field/Scattered-Field Formulation

One concept needed in developing the MAS method is the total-field/scattered-field
formulation. In this formulation a virtual connecting surface is used to separate two

regions: total-fields region and scattered-fields region. Consider two regions in a one-
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dimensional FDTD simulation as shown in Fig. 3.1. In the left-hand region only the total
fields are calculated and stored in computer memory and in the right-hand region only the
scattered fields are calculated and stored. The total fields are defined as the sum of
scattered and incident fields.

Etot :Esca +E Htot = Hsca +Hinc (39)

inc?

|
i
Ey,tot Ey,tot : Ey,sca Ey,sca

Hz,tot T Hz,tot T :Hz,scaT Hz,sca T
@ L — & > X
k12 Lo 1 Lotin

I
le-Connecting surface

Figure 3.1: A one-dimensional FDTD mesh showing two regions (total-fields and
scattered-fields regions) separated by a connecting surface.

By knowing exactly the incident fields, the scattered fields can be simulated in the
scattered-fields region. Since the two regions have different fields, we have to impose a
connecting condition at the connecting surface such that consistency between the two
fields is ensured.

Equations (3.7) and (3.8) are used to calculate total fields and scattered fields in the
two regions except at the connecting surface. The condition for consistency at the
connecting surface can be determined by realizing that the fields are located in different

regions. Let us consider the electric field located at 1. It is updated by

E;n(1,)=E; (Ic)+—8iix[H"*%(lc L HI(I, +1)] (3.10)

v.fot y,tot z,tot z,tot

Since H (I, +7) is located in scattered-field region, Eq. (3.9) is used.

z ot
Hz,tot (Ic +é—) = Hz,sca (Ic +l2) + Hz,inc (Ic +é—) (31 1)

After substitution, we have

E™M (1)=E" (I, +ZAALx[H”*% (I, -1 _H™ I, +]

y.tot y.lot z,tot z,8¢a
N (3.12)
nts 1
- SAX Hz,in2c (Ic + E)

or
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n+ nt+ At 2
Evralt (I ) {Evt;t (Ic)}using (3.8) —EE z,inc (I 2) (313)

where {} denotes Eqs. (3.7) or (3.8) are used. Similarly for the scattered field at I+

the connecting condition is

At .,
zvc2a (I 2) {Hz vc2a (I )}usmg (37) lqu Ey mc(Ic) (314)

Therefore, we apply Egs. (3.7) and (3.8) to update the fields in both total-field and
scattered-field regions and the connecting condition is imposed by re-updating the field
using Eqgs. (3.13) and (3.14).

Because we have imposed the connecting condition at the connecting surface, the
incident fields that propagate in the positive x direction are absorbed by the surface
leaving only scattered fields to be transmitted across the surface. In other words, the
connecting surface acts as a filter that allows only scattered fields to propagate through
the surface.

This concept of a connecting surface is very useful for constructing an ABC because
we can think of the surface as an absorbing surface, which absorbs only the incident
fields propagating through it. We can modify the above concept such that the connecting

surface absorbs the total fields. This is done by replacing the incident fields by an

approximation of the total fields (E vapp L&) and H vapp L T 3)). Then we have new
connecting conditions given by:
n+l n+l At 3
Eytor(Ic) {Evrot(lc)}using 3.8 _E zapp(I 2) (315)
+ nl At
z sca (I {Hz sca (I 2) }using (3.7) ﬂAx E) app (I ) (3 1 6)

With these conditions the connecting surface now acts as an absorbing surface where
it only transmits the difference of the total field and the approximating field or the error
of approximation. We can expect that the field in the scattered region will be very small
when we have a good approximation for the total fields. The next step in constructing
ABC is to define a suitable approximating function such that the connecting surfaces

transmit small errors and without reflection.
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3.3. Approximating Functions

Since the total fields propagate in the positive x direction the approximating field must be
determined from fields in the total-fields region. In order to avoid an instability the
approximating fields should be a function of linear combinations of the total fields, since

a nonlinear function will produce a nonlinear response. For first order approximation

three neighboring points U"(I), U" (I —1) and U™ (I —1) (where U is the electric or

magnetic fields, I = I, for electric fieldand I =1, +1 for magnetic field) are used.
Therefore first order approximation is of the form

Ut y=pUu"d HY+qU"™"d-D+rU"J -1) (3.17)

app
where p, ¢, and r are constant coefficients. Using this approximating function the

fields are approximated by

En+l (Ic) = pEn

y,app y.tot

n+l n —
(Ic ) + qu,tot (Ic 1) + rE.vat (IC 1) (3 1 8)

and

H' (I +1)= plHZ (I +1)+ HZ (I, +1)]

z,app z,app z,5¢4

" —Y4 H L - 1)

zZ,tot

+ qHz,tot

(3.19)

There are a number of schemes that can be used for determining the above
coefficients. We can use an averaging method i.e. p =g =r =1/3, a space-time
extrapolation (e.g. p = g =0,r =1) and the first order Higdon annihilation operator
(Higdon, 1986 and 1987). In this thesis the Higdon operator is used. The Higdon operator
is found to have a higher accuracy than the other methods. It also simplifies the
formulation since it can be easily implemented and it also provides enough parameters
for wide variety of applications making the MAS method very flexible.

The first Higdon operator used to absorb an incident wave at angle « is given by

(Higdon, 1986 and 1987)

d 0
[cos()—+c—+ BIU =0
ot 0z p (3.20)

where c is the speed of wave in the medium and S is nonnegative number introduced to

ensure stability (Higdon, 1987). The parameter S can also be used to absorb evanescent
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waves (Fang, 1994).
Discretization of the Higdon operator by the central difference scheme produces
coefficients given by

_ cos(@)Az—cAt— fAtAz /2
cos(a)Az + cAt + fAtAz 1 2

(3.21a)
_ cos(a)Az —cAt + fAtAz ] 2
cos(@)Az + cAt+ PAtAZ [ 2 (3.21b)
. cos()Az + cAt — BAtAz [ 2
cos(a)Az +cAt + PAtAZ 1 2 (3.21c)

3.4. Transmission Functions

In order to know how effective the approximating function is, we need to investigate the
transmission of the connecting surface. An incident wave travelling in positive x
direction is given by

U, (I)= Aexp(ikIAx — ianAt) (3.22)
where A is the amplitude of wave and k and @ are the wave number and angular

frequency of wave. The transmitted wave is given as the difference between the incident

wave and the approximating wave.

UM (hH=0""(I)-U"™(I) (3.23)

sca tot app

Substituting Eq. (3.17) into Eq. (3.23), we have
Ut (D= pU 4 (D=qU i (I =)= rU,, (I =1 =U (D) (3.24)
The transmitted wave is in the form of
U’ (I)=TAexp(ikIAx — ianAt) (3.25)
After substitution of Egs. (3.25) and (3.22) into Eq. (3.24) and after a manipulation the
transmission is equal to
T(+)=1- pexp(iwAt) — g exp(—ikAx) — r exp(—ikAx + i wAt) (3.26)
Here we use (+) to indicate the transmission in positive x direction.
For the case of a wave travelling in negative x direction, the transmission is

determined by using the fact that a wave travelling in a negative x direction is exactly the
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same as the wave travelling in a positive x direction provided that the time runs

backward. Using the same previous analysis, for backward time direction the incident

wave is now given by U (I) and the transmitted wave is U, (I).

the waves travelling in negative x direction are in the form of

U. , (I) = Aexp(—ikIAx — ianAt) (3.27)
and

U, (I)=TAexp(-ikIAz — ianAt) (3.28)
After substitutions of Egs. (3.27) and (3.28) into Eq. (3.24), the transmission is now given
by

T(-) = 1/[1 - pexp(iwAr) — g exp(ikAx) — r exp(ikAx + iwAt)) (3.29)

Similarly (=) denotes for the transmission of a wave travelling in the negative x

direction.

3.5. Preliminary Numerical Simulations

A one-dimensional FDTD simulation is performed to test the concept of a connecting
surface for the absorbing boundary. In this simulation, the spatial spacing and temporal
increment is taken to be Ax =1.5 cm (it is A/20 at 1 GHz frequency) and

At = Ax/2¢ =25ps, where 4 and ¢ are the wavelength and speed of light in the

medium. In this numerical experiment we take a vacuum as the medium. The connecting
surface uses approximating function Eqgs. (3.17) and (3.21) with parameters ¢ =0

and B =0. Fig. 3.2a shows a Gaussian pulse generated at the left-hand boundary which

then propagates in the positive x direction. The pulse then propagates through the
connecting surface in which the pulse is absorbed leaving small-transmitted fields as
shown in Fig. 3.2b. However, for a pulse propagating in a negative direction (see Fig.
3.3a) is amplified when it passes the connecting surface (see Fig. 3.3b).

Using the same parameters, another numerical experiment is done to investigate the
transmission of the connection surface. In this simulation a Gaussian pulse source and the
discrete Fourier transform (DFT) scheme are used here to calculate the frequency

component for the incident field and the transmitted field. The spatial length in this



39

simulation is taken large enough such that the transmitted field is not reflected by the
boundary during the simulation.

A comparison of results from the FDTD simulation and from the theoretical
transmissions (Eqgs. (3.25) and (3.29)) is shown in Fig. 3.4. The numerical FDTD results
show good agreements with the theoretical transmissions. We note in Fig. 3.4b that the
transmission for negative x direction T(-) increases as the frequency decreases. It
approaches infinity when the frequency approaches zero. This can be noted from Eq.
(3.29) where the denominator approaches zero as frequency decreases. Therefore large
amplification is present for low frequency waves in negative x direction. This

amplification is reduced when we use a positive nonzero parameter f3 .
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Figure 3.2: One-dimensional FDTD simulations of a Gaussian pulse propagating through
a connecting surface: (a) an incidence pulse in the positive x direction, (b) a transmitted
pulse. The connecting surface uses approximating function Egs. (3.17) and (3.21) with
parameters & =0 and f=0.
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Figure 3.3: One-dimensional FDTD simulations of a Gaussian pulse propagating through
a connecting surface: (a) an incidence pulse in the negative x direction, (b) a transmitted
pulse, The connecting surface uses approximating function Egs. (3.17) and (3.21) with
parameters @ =0 and f=0.
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Figure 3.4: FDTD results and theoretical transmissions of connecting surface as a
function of angular frequency for wave travelling in (a) the positive x direction and (b)

the negative x direction. T(+) and T(-) is the transmission for the positive and the
negative x directions.
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As shown in Fig. 3.4b for a wave travelling in the negative x direction, the
transmission is large. To reduce the amplification for wave travelling in the negative
direction we construct another surface on the left side of the connecting surface as shown
in Fig. 3.5. With this additional surface, the region between the two connecting surfaces
is the total fields region. We can note that the second surface (S2) is an exact mirror to
the first surface (S1). Therefore, the properties of the second surface (S2) are the opposite
of the first surface (S1). There are some advantages when using this pair of surfaces. The
first advantage is that the resultant transmission is small regardless of the direction of
incident waves. This is important for maintaining the stability of the method. Beside that,
for this pair of surfaces we need only to store two additional variables for two connecting
surfaces, therefore the number of FDTD cells needed for the MAS boundary is kept to a

minimum.
| 1

I |
lEy,tot Ey,tot : Ey,sca Ey,sca

Hz scal T Hztot T :Hz,scaT Hz,sca T
'—c ® - X
L2 Ie ! Letip

|
I
I
! !(—Connecting surface
S2 S1
Figure 3.5: A one-dimensional FDTD mesh showing two connecting surfaces which
separate three regions (total-fields (middle) and two scattered-fields regions).

The connecting conditions for the second surface are

B U, =) = (B =Dy o + oo H Ly (=) (3:30)
2t At
H (I, -3)= (HY (0, =D mgon + ﬂAZEfap,,(l =1 (3.31)
and the approximation functions are given by
Eye, (I =D =pE (I, ~D+qE}, (1) +rE}, () (3.32)
and
HI (1, =3 = plH (1 =+ HIL (L )] a3

+qHzt0t(I 2)+ertot(I - )
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The resulted transmission for the pair of surfaces is

T 1— pexp(iwAt) — q exp(—ikAx) — r exp(—ikAx + iwAt)
1— pexp(iwAt) — q exp(ikAx) — r exp(ikAx + iwAt)

(3.34)

An illustration of a pair of surfaces in two dimensions is shown in Fig. 3.6. The
connecting conditions Egs. (3.15), (3.16), (3.30), and (3.31) and approximating functions
Egs. (3.18), (3.19), (3.32) and (3.33) can be used directly for the two-dimensional case by

replacing the index (I) with (I,J +3) in the expressions. Other connecting conditions

for y plane can be derived in similar way as previous discussion.

1 [ )
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Figure 3.6: A two-dimensional FDTD mesh consists of three regions separated by
connecting surfaces.

Generalization of the transmission function Eq. (3.34) in the two and three
dimensions is done by replacing the wave number k in Eq. (3.34) with the component of
wave number in the x direction k, = kcos(@) where @ is the incident angle from the x
axis. The transmission for two- or three-dimensional case is

T(9)= 1— pexp(iwAt) — q exp(—ik cos(8)Ax) — r exp(—ik cos(8)Ax + i wAt)
1— pexp(iwAt) — g exp(ik cos(8)Ax) — r exp(ik cos(@)Ax + i wAt)

(3.35)

Before constructing the MAS boundary we first observe the properties of a pair of

MAS surfaces. An FDTD simulation is performed to investigate the transmission
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characteristic of the pair of MAS surfaces. In this experiment 200x200 FDTD grid cells 1s

constructed. The spatial and temporal increments used here are Ax = Ay =1.5mm and
At = Ax/2c¢ =2.5ps. There is no lost of generality if we take a medium to be a vacuum.
A Gaussian pulse is generated at the center of the computational space. The Gaussian
pulse is H,(100,100) = exp(—((n —150)/ 30)*) . The pair of absorbing surfaces is located
10 cells away from the Gaussian source. The MAS parameters for the pair surfaces are

o = f# =0. The magnitude of the magnetic field distribution after n=300 time steps is

shown in Fig. 3.7. We can note here that the circular contours at the left-hand side region
are not affected by the presence of MAS surfaces. Observation of the magnetic fields
show that the reflection caused by the MAS surfaces is exactly zero.

We note that the transmission of MAS depends on the direction of incident wave.
Fig. 3.7 shows very small transmission for the forward direction and there is significant
transmission at large incident angle. This corresponds to the choice of Higdon’s
parameters used in this simulation where the operator annihilates waves in forward
direction (& = 0).

In order to know the angle dependence of transmission numerically we performed
another experiment. The configuration of this experiment is shown in Fig. 3.8. We used
a plane source generated near the MAS surfaces using the virtual connecting surface or
Huygens surface method. We observed the evolution of the field at position P which is
located near the MAS surfaces. The length of virtual surface and the position P are
adjusted in such a way that there are no undesired fields from B1 and B2 disturbing the
desired fields. Discrete Fourier Transform (DFT) is used here to obtain the frequency
component of transmission. We also selected carefully the duration of time for the DFT
such that the undesired fields (from B1 and B2) are excluded. The FDTD and MAS
parameters are the sameas in the previous simulation. The incident plane wave uses a

band pass Gaussian pulse with a Fourier spectrum symmetrical about frequency f,= 10

GHz given by H., = exp[—((n—150)/30)*Isin(27f, (n — 150)At).
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Figure 3.7: The magnitude of magnetic fields |H z| distribution after n=300 time steps

with a Gaussian pulse generated at a grid position (100,100). A pair of MAS surfaces is
located 10 cells away from the source.
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Figure 3.8: A configuration of FDTD simulation of a plane wave incident on a pair of
MAS surfaces.

The numerical results as shown in Fig. 3.9 agree with the theoretical transmission
Eq. (3.35). The theoretical and numerical transmissions for & =0’ show the zero

transmission is shifted to a larger angle instead of angle=0°. The shift is caused by the

discretization of the Higdon operator. The MAS parameters can be adjusted such that the
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desired absorption is achieved for any specified mesh discretization. A discussion of the

adjustment procedure can be found in (Prescott & Shuley, 1997).

10°
107 R I
my 10%F T
102 -
O FDTD results (o= 0°)
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—— Theoretical transmission

0 20 40 60 80
Incident Angle (degrees)

Figure 3.9: Numerical and theoretical transmission of a pair of MAS surfaces as a
function of incident angle. The MAS parameters are & =0°, =0 and @ =40°,5=0.

We can note here that the MAS surfaces can be tuned to absorb at desired incident
angle by selecting the appropriate angle ¢ . We can construct a number of MAS surfaces
with different parameter & such that the MAS surfaces absorb for wide range incident
angles.

The previous analysis is mainly concentrated on propagating waves. It is found that
the transmission function Eq. (3.35) can also be used for an analysis in the case of

evanescent wave. This is done by changing the real wave number &, to complex wave

numberk, =k, +ik, ., , where k, , and k,,, are real and imaginary parts. Choosing the

value of cos(er) =0 and nonzero positive values of 3, it is shown that the Higdon’s
operator can absorb evanescent wave (Fang, 1994). The optimum value of 8 depends on
the imaginary part of the wave number.

By selecting appropriately the MAS parameters & and [, we can construct MAS
surfaces that absorb both propagating waves and evanescent waves. The choice of MAS
parameters makes the MAS method very flexible. It is also possible to vary the speed of

light ¢ in the Higdon’s operator. This variation and with appropriate connecting

conditions modify the MAS method which also absorbs propagating waves in a
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dispersive medium. Moreover by choosing an appropriate value of f, the MAS can also
absorb propagating waves in an absorbing medium.

Because the MAS method is based on the application of the connecting surfaces or
Huygens surfaces. The MAS method can be applied to other coordinate systems such as

cylindrical and spherical coordinates.

3.6. Constructing ABC

The analysis of the pair of MAS has been discussed and the numerical results also agree
with the theory. The MAS is now ready to be applied as an ABC. We put the pair of
MAS surfaces at the outer computational boundaries. The outer most boundaries are
truncated by a perfectly electric conductor (PEC) as shown in Fig 3.10. Other ABCs such
as the PML may also be used instead of the PEC boundary. We note that there is an
overlap between the MAS surfaces at the corner region. The overlap region does not
cause inconsistencies in the connecting conditions. Therefore it does not produce any
errors in the simulation. FDTD simulations show that there is no reflection caused by the
overlap region. The analysis of MAS surfaces can be done separately without considering
the overlap region.

Because the outgoing waves pass through a pair of MAS twice before the waves re-
enter the computational domain, the reflection of the pair of MAS and the PEC structure

is given by

Re_ 1— pexp(iwAt) — q exp(—ik cos(8)Ax) — r exp(—ik cos(0)Ax + iwAt) 2 (3.36)
1 — pexp(iwAt) — g exp(ik cos(8)Ax) — r exp(ik cos(0)Ax + i wAt) '
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Figure 3.10: A square 40x40 cells computational domain with the MAS and PEC
boundary. A band pass Gaussian source generated at S. The field is observed at point P.

The reflection coefficient (Eq. 3.36) is exactly the reflection of the second order
Higdon ABC (Prescott & Shuley, 1997). This is expected since the Higdon operator is
used for the approximating function. The negative sign is added because of the reflection
from the PEC boundary. Adding an additional pair of surfaces lessen the reflection of
ABC. This is similar to higher order Higdon ABC. Therefore we can add many absorbing
surfaces until the desired reflection is achieved. Moreover, we can also use a combination
of different approximating functions for the surfaces such that the resulted ABC provides
good accuracy and stability for wide applications. Because we can construct multiple of
surfaces, this ABC is called Multiple Absorbing Surface (MAS) ABC. For 2N surfaces or

N-pair of surfaces, the reflection factor is

R _ﬁ{l ; p; exp(ia')At) -q; exp(—l:k cos(@)Ax) —r; exp(.—ik cos(8)Ax + iwAt) 2
54 — p; exp(imAt) — q; exp(ik cos(8)Ax) — r; exp(ik cos()Ax + iwAt)
(3.37)

The MAS method may be thought as a different way for implementing the higher
order one-way wave operators in the FDTD program. The MAS method may also be
thought to be the same as the higher order Higdon operators. However there are some
differences. First, the MAS-ABC consists of pair of surfaces. Each pair of surfaces can be

analyzed separately without consideration of the other pairs. Each pair of surfaces
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corresponds to a second order Higdon operator. Therefore, we may think that the MAS
method consists of multiple second order Higdon operators. Second, it was shown that
the second order Higdon operator is stable (Higdon, 1986 and 1987). As a consequence,
the MAS method or the multiple second order operators is also stable. This is in contrast

to the higher order Higdon operators, which employs a parameter f to stabilize the

method (Higdon, 1987). It is shown later from numerical results that the MAS method is

stable even though the parameter S =0 is used.

Instead of MAS surfaces constructed in pairs, we can also construct an ABC without
the pairing configuration. It is shown later (Fig. 3.12) that without the pairing
configuration the MAS is unstable. This is mainly due to a large amplification that has

been shown in Fig. 3.3.

3.7. Numerical Results

To investigate the performance of the MAS boundary, we consider here a square
computational domain (40x40 cells). We construct the MAS and the PEC boundary as
illustrated in Fig. 3.10. A band pass Gaussian source is used and placed at the center of
computational domain. We observed the temporal variation of magnetic field at position
P located at the corner 2 cells away from the MAS boundary. The MAS and FDTD

parameters are the same as in the previous simulation where Ax = Ay =1.5mm,
At=2.5ps and «; = B, =0 (where j=1,2,3,--, is index of a pair of MAS). The

magnetic fields obtained at P are compared with the reference fields obtained from the
simulation with large computational domain in which the reflection caused by the outer

boundary is not present in the calculation. For comparison we define the relative error as

= U -HI (1))

z,ref

max{|H?,, (I,])|}

z,ref

Relative Error =

(3.38)

where H,(1,J) is the field obtained at P with the MAS boundary and H wres (L, J) 18 the

reference field at P and max{} represents a maximum value.

We performed simulations for different numbers of the MAS surfaces. The results
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for two, six and ten surfaces are shown in Fig. 3.11. We note that the relative error
decreases as the number of MAS surfaces increases. For six and ten surfaces the relative
error is reasonably small. It is therefore suitable for application in an FDTD simulation.
We also observe that after long duration of simulation time (see Fig. 3.11) the paired

MAS is found to be stable even though we used 3, =0 for the Higdon parameter. In

contrast to the unpaired MAS, it is found to be unstable (see Fig. 3.12).
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Figure 3.11: The relative errors for different number of surfaces at point P. The MAS
parameters are o; = ﬂj =0 (where j=1,2,3,---, is index of a pair of MAS).
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Figure 3.12: The value of magnetic field at point P for ten MAS surfaces (with paired and
unpaired configuration). The MAS parameters are o, = 5, =0.

Using the same geometry, we performed an FDTD numerical experiment with the
PML-ABC. We use here 6-cell and 10-cell PML. The PML layers use a cubic

conductivity profile with the maximum conductivity chosen such that the theoretical
normal reflection is R(0) =10~ for the 6-cell PML and R(0) = 107" for the 10-cell PML.
The number of cells needed for the MAS boundary is the same as the number of MAS
surfaces. Therefore we compared the 6-cell PML with 6-surface MAS, and similarly for
the 10-cell PML. We use two sets of MAS parameters o/; = )i} ; =0 and

o; =0, ,Bj =0.2(j-1) (where j=1273..., is the integer index of a pair of MAS). The

relative errors of the numerical results at point P are shown in Fig. 3.13. It is noted that
the 6-surface MAS has lower maximum relative errors compared to the 6-cell PML.

However the 10-surface MAS with ¢; = §; =0 has higher the relative errors compared

to the 10-cell PML. We can improve the MAS boundary by selecting different parameters

o and S . An improvement is shown by the lowest maximum of the relative errors when

we use o; =0 and ,Bj =0.2(j —1). Further numerical experiments are needed to

optimize the properties of the MAS boundary. In general the MAS method has shown
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considerable high accuracy for a small number of surfaces and it also has been shown to
have accuracy comparable to or better than the PML method.

It has been shown in Fig. 3.13 that 6-surface MAS has a good accuracy for practical
applications. To show that the MAS method is applicable to scattering problems, we
preformed a three-dimensional FDTD simulation with MAS ABC. The connecting
conditions and the approximating functions for three-dimensional case can be determined
in similar way as previous discussion. The extension in three dimension of the MAS
method is done easily. For a comparison, we consider scattering by a spherical particle.
The FDTD method is truncated by two methods: the PML and the MAS method. Here,
the PML method is used as a reference. The free space between the spherical particle and
the PML or the MAS ABC is four cells. The MAS surfaces can be put close to the object
without affecting its accuracy. Many comparisons show that MAS method has
comparable accuracy to the PML. An example of the comparisons between the MAS and
the PML is shown in Fig. 3.14. In this figure shows a phase matrix S11 of a spherical
particle with size parameter x =27 /A =1 (where a is a radius of a sphere) using the
PML and the MAS method. It is noted that the MAS (with six surfaces) show very close
results to the PML. Therefore we can conclude that the MAS has shown a considerable

accuracy such that it is suitable for an FDTD method.
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Figure 3.13: The relative errors of fields at point P for the MAS and the PML method.
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3.8 Summary

A new absorbing boundary condition (ABC) which is called multiple absorbing surfaces
(MAS) has been developed. The MAS-ABC uses the total-field/scattered-field FDTD
formulation or the Huygens surface method. The MAS also uses a linear approximating
function to obtain fields at the Huygens surface. The MAS can be easily added in the
FDTD code. Numerical simulations have shown that the MAS-ABC has a comparable
accuracy to the perfectly matched layer (PML) method.

There are some advantages in using the MAS method over the PML method. The
advantages include the application of the MAS method for propagating and evanescent
waves in various media such as lossy and dispersive medium. The MAS method can also
be used to improve other ABCs, since the MAS method can be combined easily with
other ABCs. Because the Huygens surface can be inserted in many different coordinate

systems, the MAS method also can also be applied to other coordinate systems.



Chapter 4

Mie Scattering Formalism in Absorbing
Medium

Light scattering by a spherical particle embedded in a homogenous non-absorbing
medium is described by Mie scattering formalism (Bohren & Huffman, 1983; van de
Hulst, 1957; Kerker, 1969). Several authors attempted to generalize the Mie theory for a
case of spherical particle embedded in an absorbing medium (Chylek, 1977; Mundy et
al., 1974; Lebedev et al., 1999; Quinten & Rostalski, 1996; Sudiarta and Chylek, 2001a;
Fu and Sun, 2001; Bohren and Gilra, 1979). Mundy et al. (1974) and Chylek (1977)
extended the Mie theory to take into account the effect of absorbing medium by using a
far field approximation of the Mie solution. They also integrated the radiative fluxes over
a large sphere that included both the particle and the absorbing medium. Their approach
was further modified by Quinten and Rostalski (1996) who did not use the far field
approximation. Bohren and Gilra (1979) also attempted to extend the Mie theory by
considering a detector in the far field region that measures the change in the forward-
scattered energy (or the extinction energy) due to the presence of a spherical particle. In
all these versions of the Mie scattering generalization, the extinction is not a well-defined

quantity due to the integration over a large sphere concentric to the particle used in
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calculation of extinction. As a result the extinction is a function of the radius of an
integrating sphere considered.

In this chapter we calculate the extinction and other scattering quantities of interest
by integration over the surface of the spherical particle itself. This approach, similar to
that proposed by Lebedev et al. (1999), Sudiarta and Chylek (2001a) and Fu and Sun
(2001), removes the ambiguity in the definition of the extinction and provides methods

useful for practical applications.

4.1 Mie Formalism

Let us consider that a plane wave propagating in an absorbing host medium is incident on
a spherical particle (radius a ) in a direction of a positive z axis with electric and
magnetic field vectors E; and H, . The fields inside a sphere is denoted by E, and H,.
The scattered fields are E_, and H_, . The fields outside the sphere are the sum of the

scattered and the incident fields:

E2 :Ef +Esm’H2 :Hi +cha (41)
The incident and the scattered fields are expanded in vector spherical harmonics in
the forms
w i
Ei :zEn(Mill)n _lNSl)n)’ Hi — 0 ZEn (Mill)n -{-iNf)ll)n),
n=l1 ) —

4.2)

oln eln

oo k oo
E, =Y E,(a N> -bMP), H,, =——wL S E, b, NS +a M), (4.3)
=] =]

and the inner fields are

eln oln

- | = |
E, :;En(chflll)n -id N2, H, =;—12En d Mg, +ic, NO),  (4.4)

n=1
where E, =i"2n+1)E;/n(n+1), a,, b,, ¢, and d, are the scattering coefficients, @

is the angular frequency, k, =2mmn,,,, /A and k, = 27mm, [A,m,,, and m,, are the

refractive indices of the host medium and the sphere, A is the wavelength in vacuum, M

and N are the vector spherical harmonic functions, which are given by
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M,,, =cos¢r, (cosB)z,(p)é, —singt,(cosd)z,(p)E,,

M,,, =-sin¢r,(cos@)z,(p)e, —cos¢t,(cosh)z,(p)e,,

N,,, =n(n+1)sin@siné 7, (cos 6) "/(O'O)A +sin @7, (cos8) — 1 a[,Og (P)]A
+cos ¢, (cos8)— MA¢
op

1 d[pz,(p)] 8
ap ©

b

N,, =n(n+1)cosgsinf r, (cosH)

(p)A e +cos¢t,(cosf)—
Jo,

—sin ¢z, (cos@)— —[’%-@A

4.5)
where p =kr, z,(p)=j,(p) for superscript (1) of M and N, and z,(p) =h,(p) for

superscript (3), 77, (cos(8)) = P! (cos(8))/sin(8), 7,(cos(8)) = dP, (cos(8))/d@, P! is the

associated Legendre function of first kind of degree n and order 1.

The expansion coefficients a,, b,, ¢, and d, are obtained by matching the

boundary conditions on the surface of a spherical particle. The scattering coefficients for
nonmagnetic sphere and medium are found to be (Bohren & Huffman, 1983; Kerker,

1969, van de Hulst, 1957)
_my, (m 0y, (x) —y, (DY, (m,x)

- 4.6
", (n 0E ()€, COw, (m, ) o
_ Y, (m, )y, (x) —m,y, ()y, (m,x) @7

W, (m,x)& (x) —m, &, (Oy, (m, x) '

im

—_ r 4.8

& w, (m,x)E; (x)—m, &, (), (m,x) 5
.= a (4.9)

m,y, (m,x)&, (x) =&, )y, (m,x)
where ¥, (), w.(p), &,(p)and &, (p) are the appropriate Riccati-Bessel functions
and their derivatives with respect to the argument p, m, is the complex relative

refractive index of spherical particle ( m, =m_, /m,,, ) and size parameter x =k,a . The

sph

Riccati-Bessel functions used are defined as v, (p) = pj,(p) and
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E (p)=p(j,(p)+iy(p)), where j, (p) and y,(p) are spherical Bessel functions of
first and second kind of order n. We note here that we need to evaluate the Riccati-Bessel
functions and their derivatives for a complex argument x and m, x.

The above derivation is the original Mie formalism. Formally, the generalized Mie
solution is obtained by replacing the real refractive index of medium with a complex
refractive index or by replacing the real size parameter x with a complex number. The
scattering coefficients remain unchanged. The only modification is that all spherical
Bessel functions and size parameters are now complex quantities. In order to determine
the scattering properties, the rate energy scattered, absorbed and extinct by sphere are
needed. Due to the absorption effect of host medium, the amount of energy incident on

sphere is required for cross section calculation. These are discussed in the next section.

4.2. Energy Scattered, Absorbed, Extinct by a Sphere

4.2.1. Scattered Energy
The net rate of the scattered energy is determined by integral of radial component of

Poynting vector over surface of a sphere:
1 * A
W,, == Re[[ (B, xH;,)-fdA, (4.10)
2 N

where f is the unit vector pointing in the direction of outward normal to the surface of
sphere, Re means the real part and the asterisk denotes the complex conjugate. After
substituting for Eg., and Hica, and using the appropriate expansions in vector spherical
harmonics, we obtain:

2
EO

= Re{k; i 2n+1)(—i
ﬂa)lk()' n=1

T

FE(DE T (x) +i

an b’l

sca

g (x)g’*n(x))} (4.11)

where E, is an amplitude of an electric field at z =0.

4.2.2. Absorbed Energy

The energy absorbed by the sphere is evaluated in a similar way:

abs

1 .
W =—5ReJ;I(ExH)-rdA (4.12)



61

where E=E, +E_,,H=H, + H_, and the integral is evaluated over the surface of a

sca

sphere. We obtain

2

0

EE * —~ . * ’ . 2%
W, =———Re{k; >, Qn+D(iy, W, x) —iy, Xy, (x)
n=1

polk,|
+iby (O, (X) +ibly, OE () +ila,|" £ (DE (x)
—ifp,| &, (DE" 1(x) = ia, W ()&, (x) —iay, (D& ()
4.13)

Instead of using scattering coefficients a, and b, , the absorbed energy can also be
expressed in terms of scattering coefficients ¢, and d, . By similar derivation, it can be

shown that W, is of the form

2 oo
= —”zRe{kl*z @n+1)(
palk,| =i

Y (m, )y, (m,x) =i

dﬂ

abs 4 n

NACEA <m,x>>}

(4.14)

Another form of expression of W, is found by a volume integration. Using the

divergence theorem, the surface integration in Eq. (4.12) can be converted to a volume

integration in a form
1 .
Wo, =~ Re wV-(E1 xH)dV (4.15)

where the volume integration is over the volume of particle. Maxwell’s equations in

frequency domain (by substituting time dependence exp(—iax) ) are given by

VXE =iouH , and VxH = —iweE . Using a vector identity and with substitutions of the

Maxwell’s equations, it can be shown that V- (ExH") = —iwe” E|2 +1i a),u|H|2 . After

substituting £ =€,€, = €,(&; +i€,), we have
1 2
W =5 80816<>]JIIE1| av (4.16)

After substituting the expansions of internal fields Eq. (4.4) and after considerable

manipulations, it can be shown that
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oo

2 2oy, 2 5
£ 2n+1)c, J, (k) rodr
’21‘ JJViaar) . @.17)

4, [ 1+ D] G| + 7 k)| 1r2dr

E

o

Wabs = ”‘goa)

+

4.2.3. Extinction
Extinction is defined as energy removed by particle due to absorption and scattering i.e.

the sum of the scattered and absorbed energy W, +W,, (Chylek, 1977; Bohren and

Huffman, 1983). In this definition, the energy absorbed by the host medium is not
included. We have used the integrating sphere given by the surface of the particle to
eliminate the energy absorbed by the host medium. This is convenient when we are
interested in the extinction caused by the particle itself; not by the medium. The host
medium causes the field to decay as it travels through the medium. Consequently the host
medium affects the amount of energy incident upon the particle. This effect is accounted
for in the calculation of an average intensity incident upon the particle.

Adding Eq. (4.11) and Eq. (4.13) we obtain

2

E

4

T

Wext =
palk,|

Rk Y, Qn+ DY, WL =1v, O, ()
+ib, Y, (D&, (x) +ibyy, (D (x) (4.18)
—ia, W ()&, (x) ~iay, (D&, ()}

These results are equivalent to the expressions given by Lebedev et al. (1999) and by
Quinten and Rostalski (1996) when the size of integrating sphere is equal to the size of
particle. For non-absorbing medium, the scattering, absorption and extinction reduce to
the standard Mie theory form (Bohren & Huffman, 1983; Kerker, 1969; van de Hulst,
1957).

Using a similar derivation as for W, , but now we use w,, =W, +W, and Egs.

(4.1), (4.10) and (4.12), after some manipulations it can be shown that
1 * *
W = €qollm [[[ce, ~&nE, - Ejav}- [[JeulE] av1, (4.19)
\4 Vv

where E, is the incident field, &, = €,z + €, is the complex dielectric constant of host

medium. After substituting the expansions of vector spherical harmonics and some

manipulations, it can be shown that



63

W,, = ne,0lE,| Im{(e, - ;) S Qn+c, [ 1), &r)| ridr
O h 21‘ binter (4.20)
+d, [ 10+ V] G+l G| 2 dr ) =3ma’e, ]

4.3. Incident Intensity

As a consequence of an absorbing medium the field incident on the sphere is
different at different locations on the sphere. Therefore, we need to calculate the total
energy flux incident upon the particle. This can be done by calculating the net energy

crossing the illuminated part of the sphere. We define an average incident intensity as an

average energy flux crossing the cross-sectional area of a sphere, I =W/ ma” . Thus
average incident intensity is given by
1

I'= 27'[612 ke J.half sphere (E' X Hi ) ‘TdA (421)

The integration is over an illuminated part of a sphere. We obtain

2
I=|E0| Reik ) exp(2ak0’,)+1—exp(2ak20,,)
y0; 2ak, (2ak, ;)

(4.22)

where k,, is the imaginary part of wave number k, in host medium. This modification

of an average intensity incident upon a particle (Eq. (4.22)) was first derived by Mundy et

al. (1974).
The cross sections are now obtained as o =W /I and efficiencies are given by
Q =W /Ima* . Taking the limit of Eq. (4.22) for a non-absorbing medium (k,, =0), the

Eq. (4.22) reduces to the usual expression of intensity,

I = ;—£c|E L1 (4.23)

4.4. Numerical Results

A computer program for computing the Mie cross sections, for example as found in
Bohren and Huffman (1983), can be modified following the previous derivation. A

Mathematica notebook written for this purpose is provided in Sudiarta (2003a).
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The effect of an absorbing medium on the extinction efficiency is shown in Fig. 4.1
(the particle itself is not absorbing). The interference and the ripple structures (Chylek &
Zhan, 1989; Chylek, 1976) are significantly reduced with an increasing absorption of a
medium. As the radius of a sphere increase, the extinction efficiency approaches an
asymptotic limit of 1. This is in contrast to the non-absorbing medium case where the
extinction approaches a value of 2 (extinction paradox) (Bohren and Huffman, 1983; can
de Hulst, 1957). For a large spherical particle embedded in an absorbing medium, the
incident radiation is absorbed by a medium before it can reach the edges of a sphere.
Thus, in an asymptotic limit of a radius approaching infinity, there is no diffraction

contribution to the extinction efficiency.

AT :
msph = 1.33
A-mma =10
\ B - mmea = 1.0 + 0.001i
3 ‘ C - mMmed = 1.0 + 0.01i
N :W‘ A
Qext 27 \‘ Y W ‘WM
)'l 3
C
1r |
O : , ) . . E
0 20 40 60 80 100

Real part of size parametet

Figure 4.1: The extinction efficiency (Qex) of a non-absorbing sphere, with a refractive
index Mgphere = 1.33, placed in a medium of a given refractive index (1; 140.01i; 1
+0.0011) as a function of real part of size parameters x. The size parameter

x=2mam._ /A , where a is the radius of the sphere and A is the wavelength of

med

considered radiation in vacuum.
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Figure 4.2: The absorption efficiency (Qabs) for a sphere, with a refractive index
(m,, =1.33,1.33+0.01i, 1.33+0.1:), placed in a medium of a refractive index

(m,,, =1.0+0.001i) as a function of real part of size parameters X.

For the case of a non-absorbing sphere placed in an absorbing medium, the relative
refractive index of sphere is complex. Therefore, one can argue that a particle embedded
in an absorbing medium should absorb the radiation even if a particle by itself is non-
absorbing. This turns out, however, to be incorrect. The numerical calculations show
(Fig. 4.2) that the absorption is zero when the refractive index of a particle is real. It is
noted in Fig. 4.2 that for a large absorbing sphere the absorption efficiency approaches a

certain numerical value.
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Figure 4.3: The same as Fig. 4.2, except it is for the scattering efficiency (Qsca)-

The scattering efficiency for a sphere in absorbing medium is shown in Fig. 4.3.
Similar to absorption efficiency, the scattering efficiency also approaches a definite value
as the size parameter increases.

From Fig. 4.1 it is shown that the effect of absorbing host medium is significant for a
large particle or for very absorbing medium. For atmospheric applications, because of
small size particle and small absorption of the atmosphere, the effect is small and it can

be neglected.

4.5. Asymptotic Limit of Mie Scattering Efficiency

For non-absorbing host medium, the Mie scattering efficiency (Qsca) i given by

Q.. (x,m) =—2;i(2n+1)(| a, I +1b, 1%). (4.24)
X h=l

For the case of a spherical particle embedded in a non-absorbing medium, Herman (1962)

suggested the asymptotic limit of the scattering efficiency to be

lim @, =1+ R(0°) (4.25)

where R(0°) = |(mr -/(m, + 1)|2 is a reflectance of a plane surface at normal incidence.
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This limit seems to be intuitively plausible if we consider that the sphere becomes a
planar surface at an infinitely large radius. Thus the Qsca is expected to be equal to one
(the diffraction part) plus the reflection of a planar surface. The same limiting value was
deduced by Chylek (1973, 1975) by considering an asymptotic limit of the Eq. (4.24).
Acquista et al. (1980) argued that Chylek’s derivation may not be correct, since some
terms were neglected without a proper justification.

van de Hulst (1957) and later Deirmendjian (1969) suggested an alternative
expression for an asymptotic form of a scattering efficiency of a large absorbing sphere in

the form

w2

lim Q,, =1+ [(r1*+1r,*)cos( )sin( 6)d6 (4.26)
).

where r; and 1, are the Fresnel reflection coefficients (Jackson, 1999; Griffiths, 1981) for
radiation incident at the angle 8. The first term in Eq. (4.26) represents the diffraction and
the second term the radiation reflected at the front surface of a sphere. Bohren and
Herman (1979) provided numerical calculations for a sphere of the size parameter up to
the order of 10* to show that the numerical results, using the Mie scattering efficiency Eq.
(4.24), seem to approach the limit given by Eq. (4.26). Calculation of the Qq, for size
parameter up to the order of 10° supports this conclusion (Fig. 4.4). To verify this
numerical result, the absorption efficiency is calculated using Eq. (4.13) and the
numerical results are shown in Fig. 4.5. From the large size limit of absorption efficiency,
it can be shown that the scattering efficiency can be obtained from the relation

lim Q

X —oe

w = 2-1lm Q,, (4.27)
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Figure 4.4: Scattering efficiency of a sphere with index of refraction 1.33 +0.1i embedded

in a non-absorbing host medium (Mpeq =1). The crosses show
limiting value, given by Eq. (4.26), is 1.069299.

computed Qsca. The
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Figure 4.5: Absorption efficiency of a spherical particle with

10x10°  1.0x10°

the refractive index m; =

1.33 4+0.1i and m, = 1.75 + 0.58i embedded in a non-absorbing host medium (Mmed =1.0).
The crosses and circles show computed Qups for refractive indices m; and m2

respectively.
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Table 4.1: Calculated large radius limit of Qs and the right hand side of Eq. (4.26).

n, Qabs Qsca =2- Qabs Qsca from Eq (426)
1.33+0.1i 0.9307 1.0693 1.069299
1.75 + 0.58i 0.8310 1.1690 1.169033
1.55 +0.155i 0.8964 1.1036 1.103645
1.29 +0.0472i 0.9396 1.0604 1.060395

Comparison of results obtained from Eqgs. (4.25) and (4.26) is provided in Table 4.1.
Using previous results, the scattering efficiency of a spherical particle embedded in an
absorbing medium for the real part of the size parameter up to the order of 10* is shown
in Fig. 4.6. It is apparent that the scattering efficiency approaches the value given by the

reflection at a flat surface at perpendicular incidence, suggesting that we have
lim @, = R(0°) (4.28)

Comparing this expression with those for a particle in a non-absorbing medium, we
see that: (a) the diffraction term (equal to one in the case of non-absorbing medium) is
not present, and (b) the term representing the reflection by a sphere in Eq. (4.26) is

replaced by a reflection by a flat surface at perpendicular incidence.

0.5
X o mi=1.33+0.1i
0.4 1 o Xx X m2=3.0 +0.1i
e R1(0)
o X ——— R(0)
0.3 1
3 o “Mm—-
[72]
J 0.2 o
(o}
(o]
i (o]
0.1 °°o
B Oq%nmm ......
0.0 —
1.0x10° 1.0x10 1.0x10°

Real part of size parameter

Figure 4.6: Qs for a sphere with refractive index m;=1.33 + 0.11 and m, = 3.0 +0.11,
embedded in an absorbing medium with refractive index myey = 1+1074. R(0) =
0.021861 and Ry(0) = 0.250468 is the reflectance of a planar interface at normal
incidence, for refractive indices m; and m, , respectively.
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4.6 A Coated Sphere in an Absorbing Medium

I give here a brief explanation on how the solution for scattering by a coated sphere is
reformulated. The solution for a light scattering by a coated sphere in a non-absorbing
medium was first obtained by Aden and Kerker (1951). Following previous treatment for
generalizing the Mie theory for absorbing host medium, we can reformulate
straightforwardly the solution for a coated sphere. It was mentioned previously that one
crucial modification of the Mie theory is the replacement of the host medium with
complex quantities. The cross sections for a coated sphere can follow the previous
derivation.

Following the derivation given in Bohren and Huffman (1983), the electric and
magnetic fields are expanded in vector spherical harmonics, and the coefficients of
expansions are obtained by satisfying the boundary conditions at the interface of core and
coating, and interface of host medium and coating. The scattering coefficients are given
by

PG Wy, (myx,) = AL (myx,)] - myy, (x)ly, (myx,) — A, (myx,)]

" )WL (M%) = AL (myx,) = my& (2 )Y, (myx,) = AL, (myx,)]

b = my, (xz)[l//:; (myx,) — Bn‘f,: (myx,)]— l//;: (x)ly, (myx,) - Bngn (myx,)]

,(4.29
"omy, (xz)['//r’l (mzxz)_Bn‘f; (mzxz)]—é:; (x ), (myx,) = B,E, (m,x,)] ( :
where
_ mz'//; (myx )y, (m,x,) —my, (mx, )l//r,z (m,x;)
’ le//r,l (myx)E, (myx,) —my, (mlxx)gn/(mle) ’
_my, (myx )y, (m,x,) = my, (m;x, W, (m,x,) (4.30)

’ ’ ?
mayy,, (myx))6, (myx,) = myy, (myx,)E,, (myx,)
where m, and m, are the refractive indices of core and coating relative to the host
medium, x, =k,a, andx, =k,a,; a, and a, are the radius of core and coating,

ky =2mm,,, /A2, where A is the wavelength in vacuum.

med

The expressions for cross sections of a coated sphere turn out to be the same as the
expression for a homogenous sphere except size parameter x is replaced by the coating
size parameter x, . The net rate scattered, absorbed and extinct energy are rewritten here

as
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4.7 Summary

A new formulation of Mie scattering in an absorbing medium and numerical results are
presented in this chapter. Numerical results have shown that for an absorbing host
medium the extinction efficiency approaches one as the size parameter of sphere is large.
This is in contrast to the extinction efficiency for non-absorbing host medium where the
extinction efficiency approaches two. The reason for this difference is due to attenuation
of the incident field as it propagates in the absorbing host medium. This attenuation leads
to a decrease in incident field reaching the edge of sphere and consequently a decrease in
diffraction effect. The scattering efficiency of sphere in absorbing medium approaches
the reflection of a plane surface as the size parameter increases. On the other hand, for
non-absorbing case, the scattering efficiency approaches a geometrical reflection by a

sphere.



Chapter 5

Effective Medium Approximations

Single scattering properties of heterogeneous particles are needed for radiative transfer
calculations in atmospheric science, oceanography and remote sensing. The problem of
scattering by a heterogeneous particle is a very complicated problem. Therefore it is
desirable to have an approximate method that approximate the scattering properties of
heterogeneous particles. Various approximate methods, known as effective medium

approximations (EMAs), for composite linear media are discussed in this chapter.

5.1 Introduction
To simplify discussion, let us consider a composite material comprised of inclusion
particles with dielectric constant £; and a host medium with dielectric constant £, .

Because inclusion particles are randomly positioned and oriented, it is therefore possible

to represent this composite media with a homogenous effective medium with dielectric

constant £ , provided that the sizes of inclusions are less than the wavelength in the host

medium. Here, we use the subscripts eff , i and h for indicating the effective, the

inclusion, and the host dielectric constants. Let f be the fraction of volume occupied by

72
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the inclusions.

The effective medium in a quasi-static field is determined from a requirement that
the average of electric displacement of the heterogeneous medium is the same as that of
the homogenous effective medium. The electric displacement D and the electric field E
for linear media is related by Eq. (2.5), rewritten here,

D(r) = e(r)e, E(r) (5.1)
where £(r) is the dielectric constant (the subscript r of the dielectric constant &(r) is
dropped here to simplify the notation.), which generally depends on position r.

Therefore, an effective dielectric constant €, of a composite medium in a quasi-static
approximation is defined by
' < D(r) >=< ()&, E(r) >= € ,€, <E(r) > (5.2)

where the bracket <> represents a spatial averaging.

For a composite of two media, the effective dielectric constant can be defined as

. - [pav _fe,<E,>+(-f)e, <E, >
T [BV F<E>+(1-)<E,>

(5.3)

where E, and E, are the electric fields inside the inclusion and host medium,
respectively.
Depending on how <E, > and <E, > are approximated, and depending on the

assumptions of the sizes of inclusions, the shapes of the inclusions, and the topology of a
mixture, an approximate expression (also known as a mixing rule) for effective dielectric
constant can be obtained (Chylek et al., 2000). There are many mixing rules that have
been used in the past. The well-known mixing rules, often used in atmospheric
applications, are the followings:
(a) The Maxwell-Garnett (MG) mixing rule,

€ —En _ . EiE)

£, +26, ~ E+28,

(5.4)

(b) By interchanging the role of host and inclusion, €; <> €, and f <> (1—-f) inthe

Maxwell-Garnet mixing rule, we obtain the inverted Maxwell-Garnet (IMG) mixing rule,
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83 —-{;'l. € _gi
=1~ ) (5.5)
£ t2€ £, +2¢,
(c) The Bruggeman (BR) mixing rule is
€, —E, £, —E.,
= 41— f)——L =0;and (5.6)
€ +2€ 4 £, +2€,

(d) Some other simple mixing rules can be put in the form of

e, =|fer + - per]”, (5.7)
where « is a constant (—1< a <1). We have volume average with & =1, average of
refractive index « =1/2 and cube root average « =1/3 (Landau and Lifshitz, 1960).

The Maxwell-Garnett and Bruggeman methods are derived on the assumption of

spherical inclusions with the size parameters much smaller than the wavelength in the

host medium.

5.2 Dynamic Effective Medium Approximations

The previous definition of an effective medium (Eq. (5.2)) is applicable only for a quasi-
static fields. For a scattering problem the electromagnetic fields are time-dependent
fields. We, therefore, need to redefine the effective medium. In this study three methods
are considered for defining an effective medium based on: (a) the total (or extinction)
cross section, (b) the energy content, and (c) a multiple scattering approach. In the first
method, an effective medium is chosen in such a way that the requirement of the
difference in the total cross section between the composite medium and the effective
medium vanishes on average (Kirchner et. al, 1998; Busch & Soukoulis, 1995). In the
second method, we consider an electromagnetic plane wave propagating in a composite
material, and an effective medium is obtained by demanding the same energy content in
the composite material as in an homogenous effective medium (Busch & Soukoulis, 1995
and 1996). In the last method, the wave propagation in a random medium is first solved,

and the effective medium is then derived from an effective wave number in the medium.
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5.2.1 Equivalence of Extinction Cross Section (Aggregate Structure or Bruggeman
Type)

A composite material can be classified into two types: an aggregate structure (or
Bruggeman type) and a separated-grain structure (or Maxwell-Garnett type) (Chylek,
1988). We first discuss the aggregate structure. Let us consider a composite medium of

two materials with dielectric constants £ and &,, and volumes V| and V, as shown in
Fig. 5.1a. We define a volume fraction of the materials as f, =V, /(V, +V,) and

f, =V, I(V, +V,) . To reformulate EMA, we assume that an aggregate material (e.g. Fig.
5.1a) can be modeled by an aggregate of spheres with radii R, and R, (e.g. Fig. 5.1b).
We assume that the aggregate of material can be replaced by an effective material €, .

Let us consider a plane wave propagating in the aggregate material. To determine the
effective material, we use the requirement that the attenuation (or extinction) due to the
aggregate material is the same as the attenuation in the effective material. Let us consider
only one of the spheres in the aggregate of spheres (see Fig. 5.1b). This sphere feels the
homogeneous effective material as the surrounding medium since we assumed that the
effective material can replace the aggregate material. Therefore this sphere can be
considered to be embedded in the effective material. This is illustrated in Fig. 5.1c. The
attenuation of this sphere can be obtained from the solution of the Mie theory as
discussed in chapter 4. In order that the effective material represents the attenuation of
the aggregate material properly, the volume-averaged attenuation of all the spheres in the
aggregate of spheres model must be the same as the attenuation of the effective material.
In other words, the effective material is chosen in such a way that the difference between
the extinction cross sections of a sphere embedded in the effective material and a
spherical volume of the effective material vanishes on average (Kirchner et. al, 1998;

Busch & Soukoulis, 1996).
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Eefr Cett

(c) (d)

Figure 5.1: (a) An aggregate material, (b) an aggregate of spheres, (c) a plane wave
incident on a spherical particle in an effective medium, and (d) a plane wave propagating
in an effective medium. A spherical volume of the effective medium is also shown in (d).
The requirement for determining the effective medium is that the difference in
attenuation between the spherical particle in (c) and the spherical volume of the effective
medium in (d) vanishes on average.
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Stroud and Pan (1978) stated that the requirement of vanishing total (or extinction)
cross section is equivalent to a requirement of vanishing total forward scattering

amplitude §(0). This is true for a non-absorbing host medium since from the optical

theorem it is known that the total cross-section is proportional to S(0) (Bohren and
Huffman,1983). For an absorbing host medium, the total cross-section is no longer
proportional to S(0). This is because of the attenuation of the field in the host medium.
The effect of the absorbing medium on the scattering by a sphere is discussed in chapter
4. It was shown that the effect of an absorbing host medium becomes important when we
have a highly absorbing medium or a large spherical particle. Therefore S(0) cannot be
used for formulating the effective medium approximation in such cases.

Alternatively, we can use an equivalent requirement based on the difference in the
net rate of energy extinction of a particle volume, instead of the difference in total cross
section. This can be done since, by definition, a cross section is directly related to the net
rate of energy flow (see chapter 4). In other words, for an effective medium to represent a
composite medium, the net rate extinct energy of a particle volume should be the same as
the net rate of energy flow into the effective medium with the same volume as the
particle. Therefore, the equivalent requirement for an effective medium is of the form

<AW >=<W_, —-W,, >=0 (5.8)
where W, and W, are the net rate of energy extinction due to a spherical particle and

the net rate of energy extinction due to the same spherical volume of an effective

medium.

For an absorbing aggregate material, the corresponding effective medium is also an
absorbing one. Therefore we need also to include the absorption of the effective medium
in the formulation of EMA. For an absorbing medium the net rate extinct energy is given

by Eq. (4.18) and it is rewritten here,

2

T Relk” Y @n+ DGy GOV, 00 - i, (W ()
= e n+ DGy, (O, (x)—iy, (0w (x
palk|” o ' Vv

ext

+iby, ()E, (x)+ by, (DE (x) (5.9)
—ia,y, (x)& (x)—ia . ()& (x)}
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The net rate of energy extinction due to a spherical volume of an effective medium is
obtained by substituting a, =b, =0 into Eq. (5.9) since we know the fact that there is no

particle present.

W, =

|k| Re{k Z(2n+1)(zy/n(x)l//n(x)—zwn(x)y/n (x)) (5.10)
HO n=l

The difference in the net rate of energy extinction for a spherical particle, after a
manipulation using the identity Re{g"} =Re{g}, is given by
#lg,| el
TPl Re(> @n+Dlia, (k " (DE, (0 -k W (DE, (x)
,uco] ‘ n=1 (5.11)
+ib, (k' (0§,(x) —ky, (0" & (D))
For an aggregate of spheres, the requirement of EMA (Eq. (5.8)) can be expressed by

YW, ~W, )=0 (5.12)

J

- Wejf

where n; = f; / G fL'R.?) is the number concentration of the jth sphere. After substitution

of Eq. (5.11) into Eq. (5.12) and simplification, we have

Im{Zn 2 @n+Dla, ;(k y, (&, () - kv, ()&, (x)

(5.13)
+b, (kY (D&, (x) -k, (x)" &, ()]} =0
We assume here that the quantity inside Im{} is also zero, then we have
2" Y, @n+Dia, ;(k y, (D€, (x) = k'Y, (0)E(x) 514
n=l1 .

+b, ;v (D&, () —ky, (x)°E, ())]=0
For a non-absorbing medium, it can be shown using Wronskian relations that Eq.

(5.14) reduces to the original self-consistent requirement as stated by Stroud and Pan

(1978), that is
on Z(2n+1)[an1+b 1=0 (5.15)
j n=1
The mixing rule resulted from Eq. (5.14) with a homogenous sphere model will be

called Extended Bruggemann (EBR) mixing rule, whereas the mixing rule Eq. (5.15) will
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be called Uncorrected-EBR (UEBR).
For small particle grains (x << 1), we need to keep only the first term of the

expansions

Z f,- [al,j (k l/ll’* (x)fl (x)— k*l/ll* (x)éll(x)) + bl,j (k*'/ll/* (x)él (x)— kl/’l (x)*é, (xN]=0

(5.16)
The Riccati-Bessel functions and scattering coefficients are approximated by
x2 x* 2x  2x°
m~—=—+0 ~———+0
W, (x) 30 (x%), wi(x) 5 (x*),
£ (x) = —1——+ﬁ2—+0(x3> E/(x) = i—1+2—x+0(x2)
: x 2 3 e x2 2 3 ’
2ix’ €;~Ey x°
a; =- — L 0(x"), and b, ~———(——1)+O(x ).
" 3 €, +2¢, 5 €4
(5.17)

Keeping the first term only,

2 *
Zf[ LT (k x.x." +k* 3% X+ (- Dk 3 %% +k§xj2 )]=0

37 45 ‘e,
(5.18)
Substituting x =kR , k =27m,, /A, and £ = m*, we have
Zf[ 3’7(2 m2y 4| 2 o m =0 (5.9
m — m ; m._.m_. = .
2+2m, 30 A e S\ ey

If the radii of inclusions are much smaller than the wavelength, then the Bruggeman

mixing rule is obtained.

5.2.2. A Separated-Grain Structure (Maxwell-Garnett Type)

For a separated grain structure, we consider an inclusion particle of dielectric
constant £, embedded in a host medium of dielectric constant £, . The inclusions can
have arbitrary shapes in general, but in this study we consider only spherical inclusions
(see Figure 5.2a). This type of composite medium can be modeled by an aggregate of

coated spheres where the core is the inclusion &; with radius R; and the coating is the
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host medium &, with outer radius R, =R,/ 1. (see Figure 5.2b), where f; is the

volume fraction of the inclusions.

Figure 5.2: (a) a separated-grain structure, (b) an aggregate of coated spheres, and (c) an
aggregate of spheres with inclusion radius R; and host radius R, .

The formulation for an aggregate of coated-spheres model is the same as the
previous derivation for the aggregate structure. The expression for net rate of energy

extinction is also the same as Eq. (5.9) and (5.10). The only difference is the expression

for a, and b, (see chapter 4). Therefore the requirement for EMA is given by Eq. (5.14).

The mixing rule Eq. (5.14) with a coated sphere model will be called Extended Maxwell-

Garnett (EMG) mixing rule. The mixing rule Eq. (5.15) with coated sphere model is
called Uncorrected-EMG (UEMG).

For small inclusions x <<1, We need to keep only the first term of expansions

2ix’ (€, —€4)(E +26,)+ (R, /R, (26, +€,4)(€, —€,)
3 (g, +2e, )€ +26,)+2R,/R,) (2, —£,,)E —¢,)

o(x*),

A =
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b

le,j

.5
z%s—[(g" —£,)+ (6 —€,)(R,/R,)1+0(") (5.20)

where size parameter x = 22R,m,,, / A . Using Eq. (5.20) and Eq. (5.14), after some

med

manipulations, and keeping only for a,, ;, it can be shown that the Maxwell-Garnett rule

is reproduced.
The separated-grain structure can also be modeled by an aggregate of spheres with

inclusion radius R; and host radius R, much smaller than the wavelength (or host size

parameter x << 1, see Fig. 5.2c). For the purpose of specific calculation the host size
parameter x = 0.0001 is used in this report.

To see differences in effective refractive indices produced by extended EMAs and
uncorrected extended-EMAs, an effective refractive index for a composite material
comprised of ice as the host medium and spherical waters as the inclusions with volume

fraction f =0.125 is calculated. The wavelength of light is taken to be 3.21 cm. In this
wavelength the difference in refractive index between ice and water is large. The

refractive index of ice is m,, =1.78 +0.0024i, and refractive index of water is
m, =7.14+2.89i . These refractive indices are chosen in order to see clearly the effect of

the absorbing host medium. The results of effective refractive index as function of size
parameter of inclusions for EBR and UEBR are shown in Fig. 5.3 and for EMG and
UEMG are shown in Fig. 5.4. It is shown that the difference between the corrected and
uncorrected extended EMA becomes significant for size parameter x larger than about
0.4. Tt is also noted from Fig. 5.3 and 5.4 that the extended EMAs depart from the
Maxwell-Garnett or Bruggeman mixing rules for size parameter larger than about 0.05. It

can be concluded that it is generally important to consider the corrected extended EMA.
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Figure 5.3: Real and imaginary part of an effective refractive index of ice (host) and
spherical water (inclusions) for extended Bruggeman (EBR) and uncorrected EBR

(UEBR) as a function of size parameter x (x = 2maRe[m, ]/ A, where a is radius of

spherical inclusions and A is the wave length in a vacuum). We use volume fraction of
water f =0.125. The refractive indices are m,,, =1.78 +0.0024i, and

m, =7.14+2.89:.
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Figure 5.4: The same as Figure 5.3 except that these are for the real and the imaginary
part of effective refractive index for extended Maxwell-Garnett (EMG) and uncorrected
EMG (UEMG) as a function of size parameter x (x =2m Re[m,, 1/ A, where a is radius
of spherical inclusions).
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5.3.3. Equivalence of Absorbed Energy Model
In the previous discussion, we have used the equivalence of extinction for defining
an effective medium. Similarly, we can employ an equivalence of energy absorbed by a

medium. The requirement for EMA using the absorbed energy is
Yol [, -|[[u, @aer |=0 (5.21)
J \7 v;

where n; = f; / (%ﬂRf.) is the number concentration of the jth sphere, U, (r) and
U, (r) are the absorbed electric energy of the jth sphere and for a spherical volume of

effective medium respectively, and the integration is over the volume of the jth sphere.

For a harmonic field in a linear medium, the previous analysis (see chapter 4) has

shown that the absorbed electric energy density is proportional to
U (r) = Im[e(r)|E@)|’ (5.22)
where € is the permittivity of a medium. Because we have used the imaginary part of
permittivity, the equivalence of absorbed energy can only be applied for a mixture of
absorbing materials.
The solution of a scattering of electromagnetic plane wave by a homogenous

spherical particle is given in chapter 4. From an analysis in chapter 4 (Eq. (4.17)), the

energy content inside the ith sphere is

juk,r)| rdr +

ZJ‘R,‘
0

. 2
Jnat (kjr)l +n

Cn,j

[[Jo;@a’r =2nme, 1> @n+)
/ = (5.23)

d,;

ER(CES e Gy Y2

where for simplicity in derivation we use £0|Eo| =1, since it is only a proportionality

constant. The energy content in a spherical volume of the effective medium can be shown

to be

[[Ju, @ar =%7er. Tmie,; | (5.24)
Vi

where similarly we have used £0|E0|2 =1.
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In the limit of small spheres (R, << 4) or long wavelength limit, we need to

consider only the first term of scattering coefficients (n =1).

47R’ 3¢
[[Ju,)d’r = —LImle, }—2L— (5.25)
v 3 £, +2€,
After substitution, we have
2
Im{ f, o +f oy 0 (5.26)
m fi| e——— —€. E———| —¢€ = :
e +2e, & 1 e, + 26, 7

Alternatively, we can use the net rate of energy absorption by a spherical particle

given by Eqgs. (4.13) and (4.14). The EMA requirement is now
znj (Wabx,j - Wabx,eff,j) = 0 ’
j

oo

Imk; D n; 3, 2n+D(by, (S, (x)+b,y, ()& (x)+

=1

L ()E (%)

an

PE ) () —aw (DE () —aw (DEN(x)  }=0
(5.27)

bn

The expression for a separated-grain structure is determined in similar way as

previous discussion.

5.2.4 Multiple Scattering Approaches
The extended Bruggeman and the Maxwell-Garnett approaches are based on extinction
and absorbed energy of a single (homogeneous or coated) spherical particle embedded in
a homogeneous effective medium. For high frequency wave the effect of multiple
scattering is significant, especially when the volume fraction of inclusion is comparable
to the host medium. We can develop an effective medium approximation by solving
Maxwell’s equations for randomly positioned particles. For spherical inclusions it has
been done by Tsang and Kong (1980), for nonspherical particles by Twersky (1977,
1978) and Varadan et al. (1987a, 1987b) and recently also by Ao and Kong (2002).

For spherical shapes the well-known approximations are Foldy’s approximation (also
called the effective field approximation (EFA)), the quasi-crystalline approximation

(QCA) and the QCA with coherent potential (QCA-CP). QCA-CP has been found to be
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the most accurate method of these three. In the limit of small inclusion (compared to the
wavelength and for non-overlapping spherical inclusions, which corresponds to the
Percus-Yevick (PY) pair distribution function (Percus and Yevick, 1958), the effective
medium approximations using these methods are given by

3 2x°e?
EFA: e, =&, 140l 20 ET |
g,+3 (g, +3)

QCA-PY: ¢, =¢ [l+ 3¢, f t 2x°el f a-1)? ]
LEy =€, |

(- )3 [&,(-)+3P (+2f)
QCA-CP-PY:
3,2 512 9
e, =¢,|1+ 3£df(£eﬁ/sh) o 2xe, (€5 1€,) f2 (1_f)2 ,
E,(1=-f)+3(e,;1€,) [g,A=f)+3e,l€,)] A+2f)

where €, =(g;, —€,)/€,, f and x are the volume fraction and size parameter of

inclusions respectively.
A Mathematica notebook written to compute the effective refractive indices from

analytical EMAs presented in this chapter is provided in Sudiarta (2003a).

5.3 Operational EMA for a Scattering Problem

Instead of previous analytical expressions for the definition of effective medium, we can
also directly define various requirements for EMAs if we know the distribution of fields
inside a composite material. Using the FDTD method, a scattering by a particle with
inclusions is solved and the internal fields can be obtained. Following Chylek et al.
(1999), effective dielectric constants can be defined following two homogenization
requirements. As in previous discussion, the two requirements for an effective dielectric
are the total cross section model and the energy density model.

Effective dielectric constants or refractive indices are computed using the following

methods. The first method is

) zme(r)lEFdSr
BEDYIICEY

Method 1 (M1): £

(5.27)
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where E is the electric field inside a particle, the sum Z is over a number N of FDTD

simulations with different randomly positioned inclusions, and the volume integration is

over a volume of the host particle. We note here that the dielectric constant is weighted

by |E|2 . The weighting factor |E|2 is related to the energy density inside a spherical

article. The energy absorbed by a particle is proportional to Im{|||&(r)|E ? d’r}.
p
14

Therefore, the method 1 corresponds to the equivalence of absorption between a
heterogeneous particle and homogenous particle with an effective dielectric constant.
Instead of using a dielectric constant, a refractive index can also be used for an

averaging scheme.

i 2 LUm(r)lEr d’r
. ZJVmEFdBr

Another scheme is to use a weighting factor E-E; (where E, is the incident field)

Method 2 (M2): m (5.28)

since it is known that the extinction energy is proportional to Im{”j(e(r) -DE- Efd3r} .
v

Hence, another effective medium scheme is defined as

Y [[[emE-Ed*r
v Zj_v[jE-Ejd3r

Instead of using method 1 and 3, a combination of the two methods can be used. We

Method 3 M3): &

(5.29)

first determine the imaginary part of effective dielectric constant using method 1 and the
real part of dielectric constant is computed by requiring that the equivalence of extinction

energy.

Method 1 & 3 (M1&3):
(Y [[[e ®[E[d’r}
A Y ([T
\'4

(5.30)
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(Y, [[[emE Eid’r}-e,, Re(Y. [[|E-Bid’r)
Eorr = m{Y [[[E-E;d’r)

The numerical schemes given in this section 5.3 have not been used previously and

(5.31)

their validity for applications is not known. In the next chapter, FDTD simulations are

performed and the numerical schemes are examined.
5.4 Summary

Various effective medium approximations (EMAs) are discussed in this chapter. Three
analytical EMA approaches are (a) extinction based EMA, (b) absorption based EMA,
and (¢c) EMA based on multiple scattering approach. The classical EMAs, such as the
Maxwell-Garnett and the Bruggeman, are extended to include the effect of inclusion size.
The new formulation of extinction and absorption for light scattering by a spherical
particle in an absorbing medium, as discussed in chapter 4, is used here to reformulate the
extended EMAs. Some differences in the resulting effective refractive indices are noted
when the extended EMAs with an absorbing medium correction is used. Four numerical
approaches for calculating an effective medium are also presented. These EMAs are

tested using the FDTD method in the next chapter.



Chapter 6

Numerical Results and Discussion

In this chapter various effective medium approximations (EMAs), as discussed in chapter
S, are tested using the FDTD method. The FDTD method is used to obtain the scattering
properties and the distribution of internal fields of a heterogeneous particle. Then, the
effective refractive indices of various EMAs are calculated and compared. The effective
refractive indices from analytical EMAs are computed using the Mathematica program. A
Mathematica notebook for this purpose is given in Sudiarta (2003a). The purpose of this
test is to determine the appropriate EMA for a given specified geometrical structure of a
heterogeneous particle.

For a practical application of EMAs, we consider a scattering by a particle with
multiple inclusions. This type of particle is of considerable importance for atmospheric
applications. An example is a hail particle which is comprised of a mixture of ice, water
and air bubbles. Other examples are black carbon—sulfate mixture and black carbon-
water mixture. Because we consider many realizations of positions of the inclusions, we
need to average the single scattering properties. We define optical properties of the
heterogeneous particle by averaging over N realizations of the positions of inclusions.
For example,

1 N
< O-xca >=N_Zasca,j (61)

=l

89
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and
1 N
<S8, >= 7\/'25”’ ; (6.2)
j=1

We define also a normalized, azimuthally averaged phase function and asymmetry factor

by

2z
j< Sy >do
P(0) = 2

T2

[ [<s, >sin(@6)dgae
00

g= jP(e)cos(e) sin(6)deé . (6.3)

In this thesis we only consider a mixture of water and ice at 3.21 cm wavelength.
The values of refractive indices used here are given in Table 6.1. The reason for choosing
these values is that the differences in refractive index between water and ice are large.
We expect that the effective refractive indices obtained using various EMAs would be
significantly different from each other. This makes it easier to differentiate between

various EMAs and to determine which is more accurate for a prescribed structure.

Table 6.1: The values of refractive indices of water and ice at 3.21 cm wavelength.

Medium Refractive index
Ice 1.78 + 0.0024
Water 7.144+2.89

To test various EMAs, we use a spherical ice particle with multiple spherical water
inclusions. The random positioned spherical inclusions are placed sequentially inside the
sphere with a requirement that the inclusions cannot overlap.

There are four cases are investigated here. They are (a) very small spherical

inclusions, (b) finite size inclusions, (c) only one inclusion and (d) clusters of inclusions.

6.1 Case A: Very Small Inclusions

We first consider an ice sphere with very small spherical water inclusions (size parameter
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x << 1). This is important for testing the validity of the Maxwell-Garnett and the
Bruggeman mixing rules. As mentioned in chapter 5 that the Maxwell-Garnett and the
Bruggeman are derived in the limit of a very small spherical particle or in the limit of a
static field.

To model a very small spherical particle in the FDTD mesh accurately, an approach
given in chapter 2 is used. In this approach, a very small spherical particle is represented
by an FDTD cubic cell. It was shown that because of the nature of FDTD mesh, a cube of
material located at a position of a component of the electric fields has polarizability in the
direction of the field component. It is, therefore, anisotropic. Because we consider an
isotropic composite material, we need to assign the same number of cubes for each
component of the electric fields. The cubes are then randomly placed inside the host
sphere. To satisfy the requirement of smallness of the inclusions and to ensure the
validity of the cubic approximation, we used an FDTD parameter A/As =400. The size

parameter of an equal-volume sphere is x,, = 0.00974 . For calculations we used a

personal computer with Intel pentium4 2.66 GHz processor and 785 Mbytes memory.
Using these computational resources, our first calculation is limited to a host size
parameter 0.5. The number of inclusions is taken to be 5,000, 10,000 and 20,000. These
correspond to volume fractions of 0.037, 0.074 and 0.148. For each volume fraction, we
consider several FDTD simulations with different realizations of the positions of the
inclusions, and in each FDTD simulation the scattering properties for two linear
polarizations of incident waves are computed.

Values of effective refractive indices, efficiencies, and asymmetry factor obtained
from the FDTD method, and Mie calculations with effective refractive indices obtained
using various EMAs are shown in Table 6.2-6.4.

It is noted that the numerical method 3 (M3) (based on the numerical averaging by
extinction) is the most accurate method for all volume fractions, and its relative errors are
generally less than 1%. The numerical method 1 (M1), which is based on the numerical
averaging of internal energy (or absorbed energy), gives accurate results only for the
absorption efficiency. The M1 gives relative errors less than about 2% for absorption
efficiencies and gives large relative errors (larger than 10%) for scattering and extinction

efficiencies. The numerical method 2 (M2) produces inaccurate results for all
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efficiencies. The relative errors of the M2 can be as large as 70%. The combination of
numerical method M1 and M3 (M1 & 3) was constructed in such a way to minimize
both extinction and absorption but it does not perform as expected. This might be due to
numerical errors in the implementation of the FDTD method, since it was shown in
chapter 2 that the cubic approximation of sphere gives about 1-2% relative error. We note
also in Table 6.2 — 6.4 that the relative errors in efficiencies of the M3 are about 1-2%.
The M1 gives also about 1-2% relative error in absorption efficiency. Therefore
combining the M1 and the M2 may cause an increase in relative errors.

EMAs that are based on volume averages of dielectric constants, refractive indices,
and cube root of dielectric constants generally give relative errors much larger than 10%.
These methods generally overestimate the amount of absorption because the imaginary
part of the effective refractive indices are too large. Of these methods, we note that the
average of dielectric constants give the largest relative errors and the average of cube root
of dielectric constant give the least errors.

It is noted that the refractive indices of the extended-EMAs are close to the refractive
indices of the Maxwell-Garnett and Bruggeman rules. This is expected since in the limit
of a small particle (x << 1), the extended EMAs should give the same results as the
Maxwell-Garnett and the Bruggeman results. From the results, it is clearly shown that the
Bruggeman results are more accurate than the Maxwell-Garnett results. This indicates
that the Bruggeman model is more appropriate than the Maxwell-Garnett model for a
composite medium with inclusion sizes much smaller than the wavelength.

The inverted Maxwell-Garnett is found to produce the largest relative errors. It is
understood since the errors are mainly from an incorrect assumption of the topology of
the ice-water mixture. Here we have water inclusions embedded in an ice matrix.
However, the inverted Maxwell-Garnett assumes ice inclusions embedded in a water
matrix (an inverted topology). Therefore it is important to consider the topology of a
composite before applying the Maxwell-Garnett formulae.

For multiple scattering approaches, the EFA and the QCA-PY show large relative
errors for all efficiencies. On the other hand, the QCA-CP-PY gives reasonable results
(relative errors less than 5%) for small volume fraction less than 0.1. For a larger volume

fraction the QCA-CP-PY overestimates the efficiencies. This is in contrast to the
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Bruggeman and Maxwell-Garnett, which generally underestimate the efficiencies. Of the
multiple scattering approaches the QCA-CP-PY method is concluded to be the best
method.

Table 6.2: Effective refractive indices of various effective medium approximations, and
calculated efficiencies and asymmetry factors of a spherical ice (m,, =1.78 +0.00244,

x,, = 0.5) with spherical water inclusions (m,, =7.14+2.891, size parameter
x,, = 0.00974, with water volume fraction f, =0.037) obtained from an FDTD method

and Mie theory with effective refractive indices of numerical method 1-3 (M1-3), method
1&3, volume average of dielectric constants < £ >, volume average of refractive indices

< m >, volume average of cube root of dielectric constant < &' >, Bruggeman (BR),
Maxwell-Garnett (MG), inverted MG (IMG), extended BR (EBR,using extended EMA-
aggregate model with absorbing medium correction), uncorrected EBR (UEBR, using
extended EMA-aggregate model without absorbing medium correction), extended MG
(EMG, using Extended EMA-separated grain model with absorbing medium correction),
uncorrected EMG (UEMG, without absorbing medium correction), effective field
approximation (EFA), quasi crystalline approximation with Percus Yevick pair
distribution (QCA-PY), and QCA with coherent potential (CP) with PY distribution
(QCA-CP-PY). The FDTD parameter A/As is 400.

Effective Scattering Properties Relative Error (%)
Refractive Indices

mr mi Qext Qsca Qabs g 8Qext 0Qgcq 8Qqps 09
Mean of FDTD results 0.0511 0.0375 0.0136 00580 0.2 0.0 0.7 0.1
Std deviation of FDTD results 0.0001 0.0000 0.0001 0.0001
M1 1.79100 0.01400 0.0453 0.0318 0.0135 0.0562 -11 -15 -0.3 -3
M2 1.78521 0.00531 0.0366 0.0314 0.0052 0.0560 -28 -16 -62 -3
M3 1.87459 0.01463 0.0507 0.0373 0.0135 0.0587 -1 -1 -1 1
M1&3 1.91751 0.01308 0.0519 0.0401 0.0118 0.0600 2 7 -13 3
<g> 2.18011 0.35219 0.3274 0.0618 0.2656 0.0686 541 65 1857 18
<m> 1.97838 0.10927 0.1387 0.0445 0.0942 0.0621 171 19 594 7
<e’> 1.93682 0.07083 0.1042 0.0415 0.0627 0.0607 104 11 362 5
BR 1.87352 0.01400 0.0501 0.0872 0.0129 0.0586 -2 -1 -5 1
MG 1.86834 0.01212 0.0481 0.0369 0.0112 0.0585 -6 2 -17 1
IMG 2.06274 0.25230 0.2570 0.0520 0.2050 0.0648 403 39 1411 12
EBR 1.87356 0.01402 0.0501 0.0372 0.0129 0.0586 -2 -1 -5 1
UEBR 1.87356 0.01402 0.0501 0.0372 0.0129 0.0586 -2 -1 -5 1
EMG 1.86836 0.01213 0.0481 0.0369 0.0112 0.0585 -6 -2 -17 1
UEMG 1.86834 0.01212 0.0481 0.0369 0.0112 0.0585 -6 2 17 1
EnBR 1.79788 0.01203 0.0438 0.0323 0.0116 0.0564 -14 -14 -15 -3
EnMG 1.79773 0.01195 0.0438 0.0322 0.0115 0.0564 -14 -14 -15 -3
EFA 1.86554 0.01151 0.0473 0.0367 0.0107 0.0584 -7 2 21 1
QCA 1.86834 0.01212 0.0481 0.0369 0.0112 0.0585 -6 2 17 1
QCACPPY 1.87628 0.01511 0.0513 0.0374 0.0139 0.0587 0.4 -0.3 2 1




Table 6.3: The same as Table 6.2, except the volume fraction of water f, is 0.074.
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Effective Scattering Properties Relative Error (%)
Refractive Indices

mr mi Qext Qsca Qabs g Qu Qga 6Qus 09
Mean of FDTD results 0.0753 0.0450 0.0302 0.0613 0.3 01 0.7 0.2
Std deviation of FDTD results 0.0002 0.0000 0.0002 0.0001
M1 1.80845 0.03170 0.0632 0.0329 0.0303 0.0568 -16 -27 o 7
M2 1.79364 0.00983 0.0415 0.0320 0.0095 0.0563 -45 -29 -69 -8
M3 1.98561 0.03495 0.0748 0.0447 0.0302 0.0623 -1 -1 0 2
M1&3 2.26084 0.02535 0.0818 0.0630 0.0188 0.0725 9 40 -38 18
<g> 2.54021 0.60285 0.4578 0.0904 0.3674 0.0811 508 101 1115 32
<m> 217676 0.21615 0.2242 0.0588 0.1654 0.0691 198 31 447 13
<> 2.09725 0.14297 0.1677 0.0527 0.1150 0.0663 123 17 280 8
BR 1.98034 0.03100 0.0711 0.0443 0.0268 0.0621 -5 2 -1 1
MG 1.95844 0.02226 0.0624 0.0428 0.0195 0.0614 -17 -5 -35 0
IMG 2.33248 0.45001 0.3834 0.0738 0.3095 0.0739 409 64 924 20
EBR 1.98042 0.03105 0.0712 0.0443 0.0269 0.0621 -5 -2 -1t 1
UEBR 1.98042 0.03105 0.0712 0.0443 0.0269 0.0621 -5 -2 11 1
EMG 1.95847 0.02229 0.0624 0.0428 0.0196 0.0614 -17 -5 -35 0
UEMG 1.95847 0.02230 0.0624 0.0428 0.0196 0.0614 -17 -5 -35 0
EnBR 1.81673 0.02219 0.0546 0.0335 0.0211 0.0570 -27 -26 -30 -7
EnMG 1.81555 0.02155 0.0539 0.0334 0.0205 0.0569 -28 -26 -32 -7
EFA 1.94735 0.01986 0.0596 0.0421 0.0175 0.0610 -21 -6 -42 -1
QCA 1.95843 0.02226 0.0624 0.0428 0.0195 0.0614 -17 -5 -35 0
QCACPPY  1.99258 0.03693 0.0769 0.0451 0.0317 0.0625 2 0 5 2




Table 6.4: The same as Table 6.2, except the volume fraction of water f,, is 0.148.
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Effective

Refractive Indices

Scattering Properties

Relative Error (%)

mr mi Qext Qsca Qabs g dQqy dQgca dQaps dg

Mean of FDTD results 0.1479 0.0638 0.0840 00709 02 00 03 01
Std deviation of FDTD results 0.0002 0.0000 0.0002 0.0001

M1 1.87194 0.09350 0.1231 0.0373 0.0858 0.0587 -17 -41 2 -17
M2 1.82444 0.02630 0.0589 0.0340 0.0249 0.0572 -60 -47 -70 -19
M3 205048 0.11320 0.1466 0.0631 0.0835 0.0726 -0.9 -1.0 -0.7 2.4
M1&3 0.06552 2.67119 0.8421 0.6963 0.1458 -0.0169 469 991 73 -124
<g> 315439 0.96959 0.5835 0.1299 0.4536 0.1033 294 104 440 46
<m> 257352 0.42989 0.3513 0.0873 0.2641 0.0852 137 37 214 20
<> 242872 0.29785 0.2745 0.0760 0.1984 0.0794 86 19 136 12
BR 224204 0.09227 0.1306 0.0619 0.0688 0.0719 -12 -3 -18 1
MG 214535 0.04432 0.0903 0.0554 0.0349 0.0680 -39 -13 -58 -4
IMG 282575 0.76056 0.5133 0.1097 0.4037 0.0921 247 72 380 30
EBR 224222 0.09244 0.1308 0.0619 0.0689 0.0719 -12 -3 -18 1
UEBR 224222 0.09243 0.1308 0.0619 0.0689 0.0719 -12 -3 -18 1
EMG 214542 0.04438 0.0903 0.0554 0.0350 0.0680 -39 -13 -58 -4
UEMG 214540 0.04438 0.0903 0.0554 0.0350 0.0680 -39 -13 -58 -4
EnBR 1.85784 0.04434 0.0773 0.0362 0.0411 0.0582 -48 -43 -51 -18
EnMG 1.85246 0.04143 0.0744 0.0358 0.0386 0.0581 -50 -44 -54 -18
EFA 210152 0.03478 0.0805 0.0524 0.0281 0.0663 -46 -18 -67 -6
QCA 214534 0.04432 0.0903 0.0554 0.0349 0.0680 -39 -13 -58 -4
QCACPPY 2.29703 0.13305 0.1617 0.0657 0.0960 0.0741 9 3 14 5
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The energy-based approaches using the Maxwell-Garnett model (EnMG) and the
Bruggeman model (EnBR) show large relative errors. The errors can be as high as 50%.
The difference between EMAs with and without the absorbing medium corrections is
negligible due to the small size inclusion used.

The resulted phase functions are shown in Figs. 6.1-6.5. Because we have used a

small host sphere x,, = 0.5 the phase functions do not change considerably for different

effective refractive indices. The relative errors in phase function are generally less than
5%.
We next study the effect of changing the size of the host particle. For this study we

use a size parameter of the host particle x,, =0.25. We perform FDTD simulations for

the same volume fraction as previous simulations. The results are shown in Tables 6.5
and 6.6. The effective refractive indices obtained from the analytical EMAs are the same
as those in Tables 6.2 and 6.3 since the volume fractions and the inclusion sizes are the
same. Small differences (less than about 1%) are noted for the refractive indices of the
M1, M2, and M3. The refractive index of M1&3 is shown to be sensitive to the size
parameter of host particle. It is found also here that the M3 results are very close to the
EDTD results. The QCA-CP-PY gives relative errors less than about 2%.

The previous FDTD results have shown that the M3 gives accurate results for all
efficiencies. A further comparison, as shown in Fig. 6.6, indicates the relative errors of
the M3 are mostly less than 6%. Therefore we can consider the M3 to be the accurate
method for obtaining effective refractive indices. We can use the M3 as a reference for
comparison with other analytical EMAs. Figures 6.7 and 6.8 show the real and imaginary
parts of effective refractive indices computed by the M3, the Bruggeman, the Maxwell-
Garnett, and the QCA-CP-PY mixing rules. Here we did not show the extended EMAs,
because the resulted effective refractive indices are very close to the Bruggeman and the
Maxwell-Garnett method. Other mixing rules do not show an improvement over the

Bruggeman or the Maxwell-Garnett results and therefore they are not considered here.



Figure 6.1: The phase function of ice sphere (size parameter 0.5) with 10,000 spherical
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water inclusions (size parameter x,, = 0.00974 ) or volume fraction 0.074, calculated by

the FDTD method and Mie calculations with effective refractive indices obtained from
the numerical mixing rules (method 1, 2,3 (M1, 2, 3) and a combination of M1 and M3

(M1&3)).
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Figure 6.2: The same as Fig. 6.1 except the effective refractive indices are obtained from
the volume average of dielectric constants < £ >, refractive indices <m > and cube root

of dielectric constant < &

2 > mixing rules.
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Figure 6.3: The same Fig. 6.1 except the effective refractive indices are obtained from the
Maxwell-Garnett (MG), the Inverted MG, and the Bruggeman (BR). Note that the results
for the extended MG and the extended BR are the same as MG and BR respectively.
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Figure 6.5: The same as Fig. 6.1 except the effective refractive indices are obtained from
multiple scattering mixing rules (effective field approximation (EFA), quasi-crystalline
approximation (QCA) with Percus-Yevick (PY) pair distribution, and QCA with coherent
potential and Percus-Yevick pair distribution (QCA-CP-PY)).
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Table 6.5: The same as Table 6.2, except the size parameter of host ice sphere is 0.25.

Effective
Refractive Indices

Scattering Properties

Relative Error (%)

mr mi Qext Qsca  Qabs o) 8Qey 8Qqca 8Qaps 09
Mean of FDTD results 0.0081 0.0022 0.0059 00145 1.7 02 22 03
Std deviation of FDTD results 0.0001 0.0000 0.0001 0.0000
M1 1.79134 0.01416 0.0078 0.0019 0.0059 0.0142 -3 -14 0.7 -2
M2 1.78547 0.00535 0.0041 0.0019 0.0022 0.0142 -49 -15 -62 -2
M3 1.87484 0.01476 0.0080 0.0022 0.0058 0.0148 -1 -1 -1 2
M1&3 1.59757 0.01588 0.0089 0.0012 0.0076 0.0129 10 -45 30 -11
<g> 2.18011 0.35219 0.1112 0.0036 0.1076 0.0171 1273 62 1732 18
<m> 1.97838 0.10927 0.0421 0.0026 0.0395 0.0156 420 18 573 7
< 1.93682 0.07083 0.0289 0.0025 0.0265 0.0153 257 10 351 5
BR 1.87352 0.01400 0.0077 0.0022 0.0055 0.0148 -5 -1 -6 2
MG 1.86834 0.01212 0.0070 0.0022 0.0048 0.0148 -14 -2 -19 2
IMG 2.06274 0.25230 0.0880 0.0031 0.0850 0.0162 987 37 1347 12
EBR 1.87356 0.01402 0.0077 0.0022 0.0055 0.0148 -5 -1 -6 2
UEBR 1.87356 0.01402 0.0077 0.0022 0.0055 0.0148 -5 -1 -6 2
EMG 1.86836 0.01213 0.0070 0.0022 0.0048 0.0148 -14 -2 -19 2
UEMG 1.86834 0.01212 0.0070 0.0022 0.0048 0.0148 -14 -2 -19 2
EnBR 1.79788 0.01203 0.0069 0.0019 0.0050 0.0143 -14 -13 -15 -2
EnMG 1.79773 0.01195 0.0069 0.0019 0.0050 0.0143 -15 -13 -15 -2
EFA 1.86554 0.01151 0.0067 0.0022 0.0045 0.0148 -17 -2 -23 P
QCA 1.86834 0.01212 0.0070 0.0022 0.0048 0.0148 -14 -2 -19 2
QCACPPY 1.87628 0.01511 0.0081 0.0022 0.0059 0.0148 04 -04 0.7 21




Table 6.6: The same as Table 6.3, except the size parameter of host ice sphere is 0.25.
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Effective

Refractive Indices

Scattering Properties

Relative Error (%)

mr mi Qext Qsca Qabs g dQg dQqcs dQups  dg
Mean of FDTD results 0.0156 0.0026 0.0130 0.0152 3 02 3 06
Std deviation of FDTD results 0.0004 0.0000 0.0004 0.0001
M1 1.80928 0.03243 0.0153 0.0020 0.0134 0.0144 -2 -25 3 -5
M2 1.79414 0.01001 0.0061 0.0019 0.0042 0.0142 61 -28 -68 -6
M3 1.98641 0.03574 0.0155 0.0026 0.0129 0.0157 -1 -1 -1 3
M1&3 1.59888 0.03669 0.0189 0.0012 0.0176 0.0129 21 -53 36 -15
<g> 2.54021 0.60285 0.1419 0.0051 0.1368 0.0201 809 93 955 32
<m> 217676 0.21615 0.0702 0.0034 0.0668 0.0172 350 29 415 14
<gs> 2.09725 0.14297 0.0502 0.0031 0.0471 0.0166 222 16 263 9
BR 1.98034 0.03100 0.0138 0.0026 0.0112 0.0157 -12 -2 -14 3
MG 1.95844 0.02226 0.0107 0.0025 0.0082 0.0155 -31 -5 -37 2
IMG 2.33248 0.45001 0.1255 0.0042 0.1213 0.0183 704 61 836 21
EBR 1.98042 0.03105 0.0138 0.0026 0.0112 0.0157 -11 -2 -13 3
UEBR 1.98042 0.03105 0.0138 0.0026 0.0112 0.0157 -1 -2 -13 3
EMG 1.95847 0.02229 0.0107 0.0025 0.0082 0.0155 -31 -5 -37 2
UEMG 1.95847 0.02230 0.0107 0.0025 0.0082 0.0155 -31 -5 -37 2
EnBR 1.81673 0.02219 0.0111 0.0020 0.0091 0.0144 -29 -24 -30 -5
EnMG 1.81555 0.02155 0.0108 0.0020 0.0088 0.0144 -31 -25 -32 -5
EFA 1.94735 0.01986 0.0098 0.0025 0.0074 0.0154 -37 -6 -43 1
QCA 1.95843 0.02226 0.0107 0.0025 0.0082 0.0155 -31 -5 -37 2
QCACPPY  1.99258 0.03693 0.0159 0.0026 0.0132 0.0158 2 0 2 4
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Figure 6.6: Mean of FDTD efficiencies of an ice sphere ( x,, = 0.5) with multiple

ice

spherical water inclusions (x, =0.00974) are compared to efficiencies obtained by Mie
calculations with effective refractive indices of the numerical method 3 (M3) (see Figs.

6.7 and 6.8).
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B Water
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Figure 6.9: cross-sectional cuts through an ice sphere (in light grey, x,, =0.5) with
multiple very small spherical water inclusions (in black color, x,, = 0.00974 ) for four
volume fractions of the inclusion ( f,, =0.04, f, =0.15, f, =0.44 and f, =0.74)
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We can note in Fig. 6.7 and 6.8 that the real and imaginary parts of the effective
refractive indices obtained from the Bruggeman mixing rule show a good agreement with
the M3 results for all volume fractions of the water inclusion. The Maxwell-Garnett and
the QCA-CP-PY mixing rules give accurate results only for volume fractions less than
0.05. The M1 was previously shown to give accurate approximation of the absorption
efficiency. Because the absorption a medium is related to the imaginary part of refractive
index of the medium, we add the results for the M1 in Fig. 6.8. It is noted that the

imaginary part refractive indices of the M1 are observed to be lower to those of the M3.

6.2 Case B: Finite Size Inclusions

To study the effect of inclusion size, another FDTD simulations are performed for larger

size parameter of inclusions. We use inclusion size parameter x,, = 0.05 and the host size

parameter x,, =0.5. Here the approximation using small FDTD cube, as used for small

spherical particle, cannot be used here. Therefore we use the “in or out” approach for
assigning the dielectric properties in our FDTD method. It is shown in chapter 2 that the
relative error in scattering properties of sphere for size 0.05 is about 5% for all
efficiencies when the FDTD parameter A/ As = 400 is used. Due to limited
computational resources the FDTD simulations with a higher FDTD resolution cannot be
done here.

The results of the FDTD simulations are given in Tables 6.7 and 6.8. The previous
findings for smaller inclusions are also noted here. The method M3 is found to provide
the most accurate results for all efficiencies. As previously noted that the M1 gives
accurate results only for absorption efficiencies. It is also shown that some improvements
in efficiencies are observed when the extended EMAs are used. The extended Bruggeman
mixing rule shows a better accuracy than the extended Maxwell-Garnett mixing rule.

Similar to the previous results, the M3 gives correct values of all efficiencies with
relative errors less than about 6%. Therefore the M3 is also used here as a reference for
testing the validity of analytical EMAs. The results are shown in Figs. 6.11 and 6.12. It is

shown for low volume fraction (less than 10%) the Bruggeman and the Maxwell-Garnett
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rules give accurate effective refractive indices. As the volume fraction increases, the
accurate values of effective refractive indices obtained by using the method M3 are in
between those of the Bruggeman and the Maxwell-Garnett. This is different from the
previous finding for very small inclusions. This difference can be explained by
considering the geometrical structure of the ice-water mixture. In the previous case the
small spherical waters (approximated by small cubes) can fill up the space of the host
sphere as seen in Fig. 6.9. This means that the water inclusions can also act as a host

medium provided that the volume fraction is large ( f, > 0.1). Therefore there is no

preference which of the materials is the host material. In other words we have an
aggregate structure (or Bruggeman type structure). This is the reason why the Bruggeman

mixing rule shows an agreement with the numerical results.

For the case of inclusion size parameter x, = 0.05, we have finite size inclusions.

This means that the water inclusions cannot fill up the host sphere. The cross-sectional
cuts of the sphere with multiple spherical inclusions are shown in Fig. 6.10. The
inclusions are all the same size. But because Fig. 6.10 is the cross-sectional cut, it seems
that there are various sizes of inclusions. We note that the inclusions are well confined
inside the host sphere. This implies that the spherical inclusions always be inside the host
sphere. Therefore we can definitely say that the ice is the host and the water is the
inclusion. In other words, we have a separated grain structure or Maxwell-Garnett type.
However, when the volume fraction increé\ses, the water inclusions start to aggregate.
This is clearly seen in Fig. 6.10 that some spheres form an aggregate of two- or more-
spheres. Therefore we have the Bruggeman type structure inside the host sphere.
Therefore both Bruggeman and Maxwell-Garnett structures exist in the ice-water
mixture. This is the reason why the numerical results for effective refractive indices of
the M3 are in between those of the Bruggeman and the Maxwell-Garnett. A combination
of the Bruggeman and Maxwell-Garnett model (BR&MG) would be appropriate for this
case. If we assume that the probability of occurrence of the Bruggeman type structure is
the same as the probability of Maxwell-Garnett type, then following the derivation in

chapter 5, we can obtain the BR&MG mixing rule in the form of
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(6.4)
where £, and f are the dielectric constant and volume fraction of inclusion sphere

respectively, €, is the dielectric constant of host sphere. A similar mixing rule is also

given by Chylek et al. (1991). It is shown in Fig. 6.11 that the BR&MG gives a good
approximation for real part of refractive indices. However, it is shown in Fig. 6.12 that
the BR&MG rule underestimates the imaginary part of refractive indices. This may be
because the BR& MG rule does not include the size dependence of the inclusion. The
BR&MG can be extended by using the extended Bruggeman and the extended Maxwell-
Garnett rules (EBR&EMG). It is shown in Fig. 6.12 that an improvement is noted when
the EBR&EMG is used.

Figure 6.10: cross-sectional cuts through an ice sphere (in light grey, x,, =0.5) with
multiple spherical water inclusions (in black color, x, =0.05) for two volume fractions
of the inclusion ( f, =0.2 and f, =0.3)
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Table 6.7: The same as Table 6.2, except size parameter of inclusions x, =0.05 and the

volume fraction of inclusions is 0.02.

Effective Scattering Properties Relative Error (%)
Refractive Indices

mr mi Qext Qsca  Qabs g 8Qgq 8Qgs 8Qups 09
Mean of FDTD results 0.0439 0.0352 0.0087 0.0566 1 0 3 0
Std deviation of FDTD results 0.0003 0.0001 0.0002 0.0001
M1 1.78616 0.00896 0.0402 0.0315 0.0087 0.0561 -8 -10 0.00 -1
M2 1.78287 0.00404 0.0352 0.0313 0.0039 0.0560 -20 -11 -55 -1
M3 1.83153 0.00944 0.0434 0.0344 0.0089 0.0574 -1 -2 3 1
M1&3 1.85419 0.00864 0.0440 0.0359 0.0080 0.0580 0 2 -7 3
<eg> 2.00025 0.20841 0.2233 0.0471 0.1761 0.0628 409 34 1928 11
<m> 1.88720 0.06015 0.0930 0.0382 0.0548 0.0592 112 8 531 5
<g”s 1.86429 0.03891 0.0726 0.0366 0.0360 0.0584 65 4 314 3
BR 1.82901 0.00812 0.0420 0.0343 0.0077 0.0573 -4 -3 -12 1
MG 1.82754 0.00760 0.0414 0.0342 0.0072 0.0573 -6 -3 -17 1
IMG 1.93376 0.14563 0.1703 0.0419 0.1285 0.0607 288 19 1379 7
EBR 1.82943 0.00841 0.0423 0.0343 0.0080 0.0573 -4 -2 -8 1
UEBR 1.82943 0.00841 0.0423 0.0343 0.0080 0.0573 -4 -2 -8 1
EMG 1.82782 0.00783 0.0416 0.0342 0.0074 0.0573 -5 -3 -15 1
UEMG 1.82782 0.00783 0.0416 0.0342 0.0074 0.0573 -5 -3 -15 1
EnBR 1.78998 0.00778 0.0393 0.0318 0.0075 0.0562 -10 -10 -13 -1
EnMG 1.79001 0.00779 0.0393 0.0318 0.0075 0.0562 -10 -10 -13 -1
EFA 1.82670 0.00749 0.0412 0.0341 0.0071 0.0572 -6 -3 -18 1
QCA 1.82752 0.00766 0.0414 0.0342 0.0073 0.0573 -6 -3 -16 1
QCACPPY 1.82976 0.00847 0.0423 0.0343 0.0080 0.0573 -3 -2 -8 1
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Table 6.8: The same as Table 6.2, except size parameter of inclusions x,, = 0.05 and the

volume fraction of inclusions is 0.04.

Effective Scattering Properties Relative Error (%)
Refractive Indices
mr mi Qext Qsca  Qabs g Qe 8Qga 8Qus 99

Mean of FDTD results 0.0540 0.0388 0.0152 0.0573 1 0.3 4 1
Std deviation of FDTD results 0.0006 0.0001 0.0005 0.0006

M1 1.79281 0.01582 0.0472 0.0319 0.0153 0.0563 -13 -18 0.2 -2
M2 1.78609 0.00577 0.0371 0.0315 0.0056 0.0560 -31 -19 -63 -2
M3 1.88415 0.01684 0.0533 0.0379 0.0154 0.0590 -1 -2 1 3
M1&3 1.94640 0.01457 0.0549 0.0420 0.0129 0.0609 2 8 -15 6
<g> 2.21078 0.37520 0.3419 0.0643 0.2776 0.0696 533 66 1723 22
<m> 1.99440 0.11790 0.1463 0.0456 0.1007 0.0627 171 18 561 9
<> 1.94964 0.07652 0.1096 0.0424 0.0672 0.0612 103 9 342 7
BR 1.88163 0.01515 0.0516 0.0377 0.0139 0.0589 -4 -3 -9 3
MG 1.87554 0.01292 0.0492 0.0373 0.0119 0.0587 -9 -4 22 2
IMG 2.08512 0.26986 0.2700 0.0538 0.2162 0.0655 400 39 1320 14
EBR 1.88252 0.01580 0.0523 0.0378 0.0145 0.0589 -3 -3 -5 3
UEBR 1.88252 0.01579 0.0523 0.0378 0.0145 0.0589 -3 -3 -5 3
EMG 1.87606 0.01337 0.0497 0.0374 0.0123 0.0587 -8 -4 -19 3
UEMG 1.87606 0.01336 0.0497 0.0374 0.0123 0.0587 -8 -4 -19 3
EnBR 1.80026 0.01331 0.0452 0.0324 0.0128 0.0565 -16 -16 -16 -1
EnMG 1.80006 0.01321 0.0451 0.0324 0.0127 0.0565 -16 -16 -17 -1
EFA 1.87225 0.01234 0.0485 0.0371 0.0114 0.0586 -10 -4 25 2
QCA-PY 1.87552 0.01302 0.0493 0.0373 0.0120 0.0587 -9 -4 21 2
QCA-CP-PY 1.88484 0.01660 0.0531 0.0379 0.0152 0.0590 -2 -2 -0.2 3
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Figure 6.11: Real part of effective refractive indices obtained by the numerical method 3
(M3), the Bruggeman (BR), the Maxwell-Garnett (MG), and the quasi-crystalline
approximation with coherent potential and Percus-Yevick pair distribution (QCACPPY),
and a combination of BR and MG (BR&MG) mixing rules as a function of the volume
fraction of water inclusions. The size parameters of host and inclusion are 0.5 and 0.05
respectively.
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Figure 6.12: The same as Fig. 6.11 except that this is for the imaginary part of effective
refractive indices.
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6.3 Case C: Only One Inclusion

To consider further the effect of inclusion size we performed more simulations with
inclusion size parameter 0.2 and 0.3. Only one water inclusion in the host ice sphere 1s
considered here. The results are shown in Table 6.9 and 6.10. The results show that the
M3 does not produce accurate results as for the very small inclusions. The Bruggeman
and the extended Bruggeman and the Maxwell-Garnett mixing rules give large relative
errors, larger than 10%. Here the extended Bruggeman does not show any improvement
over the Bruggeman method. Instead, the extended Bruggeman worsen the relative errors.
It is also found that the solution of effective refractive index of the uncorrected EBR,
sometimes, can not be obtained using a numerical root finding.

The reason for the inability of extended Bruggeman can be explained since the
topology of the particle is the Maxwell-Garnett type structure. This is the reason why the
extended Maxwell-Garnett results show excellent agreements with the FDTD results for

all efficiencies. Its relative errors are within the standard deviation for x, =0.2 and
about 5% for x,, =0.3. It is also shown that the results using the QCA-CP-PY are very
close to the FDTD results for size parameter x,, =0.2. This implies that the QCA-CP-PY
is appropriate only for small size inclusions x,, <0.3.

The absorbing medium correction of the extended MG does show an improvement in

the efficiencies for size parameter x,, = 0.3 . For a smaller size x, = 0.2, the effect is

negligible. This implies that the effect of absorbing medium is important only for large

inclusions.
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Table 6.9: The same as Table 6.2, except size parameter of inclusion is x, =0.2 and the

volume fraction of inclusions is 0.064.

Effective
Refractive Indices

Scattering Properties

Relative Error (%)

mr mi Qext Qsca Qabs g dQgy dQsc, dQus dg
Mean of FDTD results 0.0723 0.0426 0.0297 0.0576 2 1 4 1
Std deviation of FDTD results 0.0018 0.0005 0.0013 0.0004
M1 1.80718 0.03042 0.0619 0.0329 0.0291 0.0567 -14 -23 2 2
M2 1.79306 0.00950 0.0411 0.0319 0.0092 0.0563 -43 -25 -69 -2
M3 1.94226 0.02875 0.0672 0.0418 0.0254 0.0608 -7 2 -14 6
M1&3 1.95874 0.02807 0.0675 0.0429 0.0246 0.0614 -7 1 -17 7
<g> 2.44681 0.54136 0.4309 0.0833 0.3477 0.0778 496 95 1072 35
<m> 212304 0.18721 0.2028 0.0549 0.1479 0.0672 180 29 399 17
< 2.05345 0.12308 0.1512 0.0496 0.1016 0.0647 109 16 243 12
BR 1.94998 0.02573 0.0650 0.0423 0.0227 0.0611 -10 -1 24 6
MG 1.93384 0.01946 0.0585 0.0412 0.0173 0.0606 -19 -3 -42 5
IMG 2.26105 0.40027 0.3556 0.0681 0.2875 0.0714 392 60 869 24
EBR 1.97054 0.05578 0.0922 0.0437 0.0485 0.0618 27 2 o4 7
UEBR 1.97085 0.05498 0.0915 0.0437 0.0478 0.0618 27 3 61 7
EMG 1.94560 0.03450 0.0724 0.0420 0.0305 0.0610 0 -2 3 6
UEMG 1.94576 0.03368 0.0717 0.0420 0.0297 0.0610 -1 -1 0 6
EnBR 1.84335 0.03653 0.0694 0.0352 0.0342 0.0578 -4 17 15 0
EnMG 1.84002 0.03474 0.0676 0.0350 0.0326 0.0577 -7 -18 10 0
EFA 1.92485 0.02094 0.0593 0.0406 0.0187 0.0603 -18 -5 -37 5
QCA 1.93335 0.02167 0.0605 0.0412 0.0193 0.0605 -16 -3 -35 5
QCACPPY 1.95746 0.03352 0.0722 0.0428 0.0294 0.0613 0 0 -1 6




117

Table 6.10: The same as Table 6.2, except size parameter of inclusion is x, = 0.3 and the

volume fraction of inclusions is 0.216.

Effective

Refractive Indices

Scattering Properties

Relative Error (%)

mr mi Qext Qsca Qabs g dQgy dQyca dQqs dg

Mean of FDTD results 0.2386 0.0741 0.1644 0.0638 2 2 2 1
Std deviation of FDTD results 0.0048 0.0016 0.0032 0.0007

M1 1.95383 0.16825 0.1899 0.0435 0.1465 0.0613 -20 -41 -11 -4
M2 1.86430 0.04781 0.0808 0.0366 0.0442 0.0584 -66 -51 -73 -8
M3 2.36324 0.15148 0.1756 0.0701 0.1055 0.0770 -26 -5 36 21
M1&3 3.20679 0.10251 0.1707 0.1176 0.0531 0.1280 -28 59 -68 101
<g> 3.63303 1.22774 0.6752 0.1530 0.5222 0.1168 183 106 218 83
<m> 2.93776 0.62612 0.4387 0.1109 0.3277 0.1019 84 50 99 60
<€ 2.74517 0.45180 0.3552 0.0972 0.2580 0.0940 49 31 57 47
BR 2.54508 0.20310 0.2109 0.0818 0.1291 0.0855 -12 10 -21 34
MG 2.32701 0.06744 0.1155 0.0674 0.0481 0.0754 -52 -9 -7 18
IMG 3.23638 0.99183 0.5892 0.1336 0.4556 0.1072 147 80 177 68
EBR 2.32147 0.63782 0.5099 0.0801 0.4299 0.0710 114 8 162 11
UEBR NA NA

EMG 2.35507 0.22404 0.2262 0.0703 0.1559 0.0765 -5 5 -5 20
UEMG 2.35951 0.20008 0.2095 0.0703 0.1391 0.0767 -12 -5 15 20
EnBR 2.31918 0.29287 0.2755 0.0692 0.2063 0.0746 15 7 26 17
EnMG 2.17980 0.21779 0.2254 0.0590 0.1663 0.0693 -6 -20 1 g9
EFA 2.22960 0.06836 0.1124 0.0610 0.0514 0.0713 -53 -18 -69 12
QCA 2.32562 0.07320 0.1195 0.0673 0.0522 0.0753 -50 -9 -68 18
QCACPPY 2.62023 0.33916 0.2942 0.0881 0.2061 0.0885 23 19 25 39

6.4 Case D: Clustering Effect

Previous cases used randomly positioned inclusions. As the volume fraction increases,

some of the inclusions start to form clusters. We next study the effect of spatial

arrangement of the inclusions in the host sphere. To study the effect of clustering to the

scattering properties, we consider a host sphere with two or more closely packed

inclusion spheres of the same sizes, which are line up in the direction of Cartesian axes.

Here the incident wave is in the direction of positive z-axis and it is polarized in x-axis

and y-axis. We first consider a simple case of two spheres in contact, called a bisphere.

The results for efficiencies of a spherical ice with water bisphere inclusions, which are

aligned in the x-axis, z-axis and random alignment in x-, y-, z-axes are shown in Table

6.11. We do not show the results for the bispheres aligned in y-axis because the results
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are same as those for bispheres aligned in x-axis. We show results here only for three
numerical methods of effective medium approximations. The M2 and other analytical
methods show errors larger than 20%, except for the bispheres aligned in z-axis. This
shows that spatial arrangement of inclusions inside the host medium affects greatly the
applicability of the EMAs.

We notice in Table 6.11 that the efficiencies are affected by the alignment of the
bispheres. When the alignment is in the direction of polarization of incident wave, for
example in x-axis, the efficiencies increase compared to the separated spheres case. A
large increase is observed in the absorption and the extinction efficiencies. A small
increase is found for scattering efficiency. But when the bispheres are aligned in the
direction of propagation of the incident wave (z-axis), the efficiencies slightly decrease.
This is mainly due to a shadowing effect in which a sphere in the shadow region of
another strongly absorbing sphere absorbs less energy. For randomly oriented bispheres,
the absorption and extinction efficiencies are larger than those of the separated spheres
case.

The effect of N number of closely packed spheres (N-spheres) is summarized in Fig.
6.13. It is shown that for N-spheres aligned randomly and in x-axis, the efficiencies show
a linear increase. For the alignment in z-axis, the efficiencies remain constant. Similar to
previous findings in this chapter the numerical method M1 is only suitable for calculating
the absorption efficiency and the method M3 has performed accurately for all efficiencies

with relative errors generally less than 5%.
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Table 6.11: Effective refractive indices of various effective medium approximations, and
calculated efficiencies and asymmetry factors of a spherical ice (m,, =1.78 +0.00241,

x,, =0.5) with two closely packed spherical water inclusions (or bispheres) aligned in x-
axis, z-axis and random axis (m,, =7.14+2.89i, size parameter x, = 0.05, water
volume fraction f, = 0.04) obtained from an FDTD method and Mie theory with

effective refractive indices of numerical method 1-3 (M1-3), method 1&3. Note that the
incident wave is in the positive z direction.

o o ) o
. Qext Q.\'ca Qabs g
meﬁ. ZmR +m11 Q ) Q Qh, g
%) (%) (%) (P
Separated spheres 0.0540 0.0388 0.0152 0.0573
(from Table 6.8):
Bispheres aligned in x-axis:
Mean of FDTD results 0.0675 0.0405 0.0269 0.0573
Standard deviation 0.0019 0.0003 0.0017 0.0006
M1 1.80480 0.02803 0.0595 0.0327 0.0268 0.0566 -12-19.3 -03 -1.1
M3 1.90391 0.02929 0.0657 0.0392 0.0265 0.0596 -2.6 -33 -1.6 4.1

Mi&3  2.02121 0.02503 0.0682 0.0470 0.0212 0.0635 1.1 16.1 -21 10.8
Bispheres aligned in z-axis:

Mean of FDTD results 0.0524 0.0385 0.0140 0.0573
Standard deviation 0.0010 0.0001 0.0008 0.0003
M1 1.79142 0.01439 0.0457 0.0318 0.0139 0.0562 -13-17.2 -05 -1.9
M3 1.87567 0.01442 0.0506 0.0373 0.0133 0.0587 -3.5 -29 -50 25

M1&3 1.89780 0.01359 0.0512 0.0388 0.0123 0.0594 -24 0.9 -12 3.7
Aligned randomly:

Mean of FDTD results 0.0635 0.0399 0.0236 0.0573
Standard deviation 0.0017 0.0003 0.0014 0.0009
M1 1.80134 0.02453 0.0560 0.0325 0.0235 0.0565 -12 -19 0 -1
M3 1.89580 0.02602 0.0623 0.0387 0.0237 0.0594 -2 -3 0 4

MI1&3 2.00755 0.02201 0.0649 0.0461 0.0188 0.0630 2 16 -21 10
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Figure 6.13: Efficiencies of a spherical ice particles (x,, = 0.5) with N-closely packed

e

spherical water inclusions ( x,, = 0.05) for different number of N. Note that (X), (Y) and

(Z) denotes the N-spheres aligned in x-axis, z-axis and random axis respectively. The
volume fraction of inclusions is 0.04.



Chapter 7

Conclusions

The finite-difference time-domain (FDTD) method has been discussed and analyzed. The
FDTD method is useful for solving light scattering by heterogeneous particles. A new
absorbing boundary condition (ABC), which is called multiple absorbing surfaces
(MAS), was also developed. The numerical results obtained from this computer program
have shown good agreements with the Mie results.

The MAS method showed a comparable accuracy to the existing perfectly matched
layer (PML) method. The MAS method is flexible, stable and efficient. Many long
simulations have shown that the MAS method does not produce any instability. The MAS
method uses computational resources comparable to the PML method. There are some
advantages in using the MAS method over the PML method. The advantages include the
application of the MAS method for various media such as lossy and dispersive medium
and for various coordinate systems. The MAS method can also be used in combination
with other ABCs in order to improve their performance.

The original formulation of the Mie theory can only be used for the case when the
host medium is non-absorbing. It is of interest to consider the absorption of the medium.
In this thesis, the reformulation of the Mie theory has been discussed and numerical

results were given. It is shown that the effect of the absorbing host medium is significant
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for large particles or for highly absorbing medium. For atmospheric applications, because
of small size atmospheric particles and small absorption of the atmosphere, the effect is
small and it can be neglected.

It is generally known that the large size limit of the extinction efficiency is two,
however when the host medium is absorbing, the limit is found to be one. This reduction
of extinction is due to the absence of diffraction at the edges of a sphere.

It was shown that the large size limit of the scattering efficiency approaches a
reflectance of spherical surface for a non-absorbing medium. For absorbing medium, the
scattering efficiency approaches a reflectance of a flat surface at perpendicular incidence.

To take account for the effect of the absorbing host medium, the effective medium
approximation (EMA) is reformulated. The numerical results showed some reductions in
relative errors of efficiencies obtained from the extended-EMA with the absorbing
medium correction.

Using the FDTD method, various EMAs were tested. In this thesis, a composite
particle was modeled by a spherical particle with multiple spherical inclusions. The
numerical results showed the following findings:

e Numerical method 1 (M1), which is based on homogenization of internal energy

8|E ? , 1s generally good for calculating the absorption efficiency. € is the permittivity

of the medium, and E is the electric field in the medium.

e Numerical method 2 (M2), which is the average of refractive index weighted by the

lE 2 gives relative errors in efficiencies larger than 15% for all the cases considered

in this thesis.

¢ Numerical method 3 (M3), which is based on the extinction energy, generally
approximates closely all efficiencies for small inclusions (size parameter much less
than 1). Its relative errors are generally less than the standard deviation of the FDTD
results. It can be considered the most accurate method for small inclusions.

e Numerical method 1 & 3 (a combination of M1 and M3) was constructed to minimize

errors in all efficiencies. Because of numerical errors in the FDTD results, this

method did not perform as expected.
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e Volume average of dielectric constants, refractive indices and cube root of dielectric
constants give large relative errors especially for absorption efficiencies. The relative
errors are generally larger than 100% for extinction and absorption efficiencies. For
the scattering efficiencies, the relative errors are larger than 15%.

e The Bruggeman and the Maxwell-Garnett Mixing rules showed good approximations
for extinction and scattering efficiencies for inclusion size parameters less than 0.1.
The Bruggeman mixing rule showed better results than the Maxwell-Garnett.

e The Inverted Maxwell-Garnett mixing rule produced the worst approximations for all
efficiencies for small volume fraction of inclusions.

e The Bruggeman and the Maxwell-Garnet mixing rules can be improved by using the
extended-EMA.

o The extended Bruggeman mixing rule showed better accuracy than the extended
Maxwell-Garnett.

e Energy based EMASs do not show any improvement over the Bruggeman and the
Maxwell-Garnett mixing rules.

¢ Of the multiple scattering approaches, the quasi-crystalline approximation with
coherent potential with Percus-Yevick pair distribution (QCA-CP-PY) showed the
best results. The QCA-CP-PY is shown to be more accurate than the Bruggeman
method for a small volume fraction.

o The geometrical structure, the physical properties, and the arrangement of the
inclusions are important to be considered for selecting appropriate EMAs for a
particular problem. It was shown that when we have small inclusions (much smaller
than the wavelength), the Bruggeman mixing rule and QCA-CP-PY should be used.
For finite size inclusions (size parameter < 1), the QCA-CP-PY and the extended
EMA should be employed for volume fraction less than 10%. For larger volume
fraction a combination of the Bruggeman and the Maxwell-Garnett is appropriate.

When there is only one particle in the host particle, the extended Maxwell-Garnett is

suitable.

Examination of these findings leads to the conclusion that the selection of the most

appropriate EMAs is highly dependent on the physical structure of the heterogeneous
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particle. A set of rules can now be defined for selecting the most accurate EMAs for a
given structure of particle. They are: (a) for very small inclusions it was shown that the
Bruggeman mixing rule is in agreement with the FDTD results, (b) for finite size
inclusions, a combination of the Bruggeman and the Maxwell-Garnett mixing rules was
found to be appropriate, (c) for only one inclusion, it was shown that the extended
Maxwell-Garnett rule is accurate. The spatial arrangement of the inclusions was also
shown to be a determining factor for choosing the most appropriate EMAs. An increase
in absorption was found when clusters of spheres are present in the structure.

In this thesis, a large difference in refractive index between the host and the inclusion
materials was considered for testing the validity of various EMAs. We expect that the
EMAs that showed good approximations for this case would be also appropriate for a
smaller difference in refractive index. One such application of EMAs is for solving light
scattering by a mixture of water and black carbon, and a mixture of black carbon and
sulfate.

In this thesis, only spherical particles were considered for a scattering in an absorbing
medium and for the EMAs. Further studies are needed to take account the effect of non-
spherical shapes. A similar approach as given in this thesis may be used to reformulate
the scattering by non-spherical particles in absorbing medium. To study the effect of non-
spherical shapes of composite grains, the FDTD method may also be used.

It has been shown that the FDTD method has an inherent numerical error, which is

“mainly due to the staircasing approximation of a curved boundary. This error becomes
large when the FDTD method is used to approximate a small particle. To overcome this
problem some other methods that may be appropriate for small particles are a conformal
mesh method, a subgridding method and a finite-volume method (Taflove, 1995; White
et al., 2001; Yee and Chen, 1997).
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