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Abstract

A Hopfield neural network is modified to handle inequality constraints by introducing an
exterior penalty function. The use of a penalty function converts constrained optimization
problems into unconstrained problems.

The optimal power flow is a general non-linear programming problem with a non-linear
objective function and non-linear functional equality and inequality constraints. Security
Constrained Dispatch is defined as an Optimal Power Flow problem, in which the
objective function is the total cost of generations and the security constraints are placed
on the bus voltage magnitudes, phase angles and the generated active powers.

This thesis presents an alternative method for solving optimal active power flow and
active security-constrained dispatch using a modified Hopfield neural network. The
objective function of security-constrained dispatch is the incremental generation cost
function in quadratic form which is expanded in a second-order Taylor series. The
equality and inequality constraints are modelled using a linearized network and appended
to the objective function using suitable penalty functions to form an augmented cost
function

The goal of this research is to model and study the applicability of the modified Hopfield
Neural Network for solving optimal active power flow and security-constrained dispatch
problem. In addition, this thesis aims to discover the advantages and disadvantages of
using this technique instead of the methods that currently exist.

The Hopfield Neural Network was simulated on a digital computer for four standard
IEEE test systems varying in size from a 5-bus system to a 57-bus system. The optimal
solution obtained using this approach is consistent with the solution obtained using the
conventional method.

The advantage of this method is in the ease of formalization of the problem. It is simple,
straightforward, and easy to apply. The method requires modest memory resources and is
efficient in computation time. This representation is applicable to many problems other
than the economic load-dispatching problem.

xvi



Chapter 1

INTRODUCTION

A significant requirement of any modern society is the economic secure operation of its
electric power system. It is a challenging task for the electric power systems engineer to
determine optimum economic dispatch for this complex system. Economic Dispatch
means allocating the demand among available generating resources while meeting
network constraints and minimizing the cost of operations. In addition, it is important to
consider other objectives such as minimizing the environmental impact of the operation.
Other major considerations needed in the operational plan are continuity of service,

reliability, and safety for both personnel and equipment.

The optimum operation of a power system will depend upon the restrictions imposed by
factors other than operating economics. This is due to the fact that the consumption of
electric energy has grown tremendously, and on the other hand, utilities have grown in
size to meet the demand to a point where significant savings in operating costs can be
achieved with even a fraction of percent improvements in operating efficiency such as
0.5%. Thus, it is vital to encourage any efforts by electric utilities to operate as efficiently
as possible. In addition, the ability to solve the optimal power flow problem can be
extremely useful for the planning and design of future equipment additions to power

systems.



1.1. Economic Dispatch Problem

Economic dispaich, as an approach to optimize active power flow, was first proposed in
early 1920s when two or more units were committed to take load on a power system
whose total capacities exceeded the required load. During these years, the operator was
confronted by the problem of how to divide the active load between the two units, within
which the total load is served and the total cost is minimized. Specifically, economic
dispatch is a computational process whereby the total active generation required is
allocated among the generating units available so that the constraints imposed are

satisfied and the energy requirements are minimized.

Conventional economic dispatch includes the active power balance equation which uses
the loss formula in order to obtain transmission losses. Yet, this formulation does not
account for network security constraints, such as the generator voltage magnitude or

phase angle difference.

In the late 1950s the power flow problem formulation made its first appearance. This
problem is characterized by inputs concerning the network under study, and injected
positive and negative active (P) and reactive (Q) powers at all the busses of the network.
The objective of power flow is to determine the voltages and angles at all busses of the

network from which all other quantities can be calculated.

Optimization later emerged as a requirement and was applied to power flows during the

1960s. An optimal power flow (OPF) is intended to find a power flow solution which



optimizes a performance function such as fuel costs, or network losses, while at the same
time enforcing the loading limits imposed by system equipment. A power flow solution is

then obtained that is both feasible and has a minimum value of the objective function.

When the total fuel cost is minimized, the optimal power flow results in an appropriate
economic dispatch. In addition, to determining the active power output of generators and
phase angles, the optimal power flow program also determines the reactive power output
of generators and other VAR sources as well as transformer tap settings. The optimal
power flow problem involves optimization of static operating conditions of an electric
power system by computing optimal schedules for the controllable variables in the
system. These variables are the real power (P) and reactive power (Q) injected into each
node, the magnitude of voltage (V) at each node, and the phase angle (8) of the voltage.
The main purpose of an OPF study is to schedule the power system controls in order to
achieve operation at the desired security level [1] while, at the same time, optimizing
(minimizing) such scalar objective functions as the cost of operation, the transmission

losses, the reactive power, etc.

The classic OPF problem is usually subdivided into two sub problems, namely the real
power and the reactive power optimization tasks. Current practice executes OPF on-line
and in such a manner as to observe security-constraints. This implies that the simulation
has to be on-line, and provisions should be made for the power system operator to

communicate interactively with the computer. Strict reliability requirements demand that



the security-constrained scheduling calculations, including results of OPF simulations,

are initiated, completed, and dispatched automatically.

One of the central components of an OPF problem solution is how to formulate the
objective function. The objective function may be one or more of the operating costs,
system transmission losses, or reactive power. It is often difficult to describe the best
operating state of a power system by a single scalar function. Wood and Wollenberg [1]

describe several techniques for setting up suitable objective functions.

1.2. Security-Constrained Dispatch
The Optimal Power Flow where the objective function is total cost of generation, and the
constraints on bus voltage magnitudes, phase angles, and generated reactive power are

considered, called a Security Constrained Dispatch program.

Several techniques for solving power optimization problems have been developed. Lee et
al. [27], for instance, presented a technique for optimal active and reactive power
scheduling by suggesting the use of the gradient projection method. The method is based
upon three modules coupled to each other. First, the P optimization module, and the
second is Q optimization module. The objective function is the total power production
cost. In the P-optimization module, the reactive power Q (swing bus, generator bus and
capacitor bus) behaves as a dependent variable, while, in the Q-optimization, P (swing
bus and generator bus) is a dependent variable. Finally, the load-flow module is used to

make fine adjustments of the results on P- and Q-optimization modules. This



optimization technique is performed by uniting the two decoupled optimization problems
into one framework. By doing this, the switching of objective functions from one to
another can be avoided. But, it is important to note that the OPF problem has been

attempted sequentially, rather than simultaneously.

The security-constrained dispatch problem developed by Salgado et al. [12] is also
somewhat similar to Lee’s. The technique involves the optimization of weighted reactive
power injections as a second objective function in the reactive power dispatch. The
formulation of the objective function for the optimization problem is also in order to
minimize the cost function. In order to have it in terms of the same decision variables as
the constraints, a modified objective function is used. The quadratic functions are
expanded in a second-order Taylor series such that the resulting objective function is an
incremental cost function [12, 27, 46). In this Security Constrained Dispatch, the
dependent variable constraints are on the bus voltage magnitude and the generated
reactive powers [12]. Sjoholm and Boye [46], propose a new method that modifies the
constraints, i.e., by replacing the bus voltage magnitude and generated reactive power
constraints with the constraints on the bus voltage angles. The objective function is the

same as that developed by Lee [27] and Salgado [12].

1.3. Hopfield Neural Network
Over the past few years, a number of approaches using Artificial Neural Networks have
been proposed as alternative methods in power system optimal operation. In general, the

neural network methodology should be applied in areas where conventional techniques



have not achieved the desired speed and accuracy. There are several types of neural
networks used in various applications. Among them are the layered perceptron, the
Kohonen and the Hopfield neural networks. The layered perceptron is trained using
supervised learning. The perceptron receives the desired output of each input pattern.
Multi-layer perceptrons can be used for both classification and system identification. In
classification, layered perceptrons are known to have superior generalization and noise
rejection capability, which makes them well suited for the task. In system identification,
the ability to accurately interpolate on a single or multi-dimensional output surface is the

key to a successful identification model.

The Kohonen network, on the other hand, uses unsupervised learning that does not
require knowledge of the output. A Kohonen-based classifier is a powerful tool for
system classification [2]. One key advantage is that the net can classify the patterns

during training without explicit knowledge of its class (status).

Hopfield Neural Networks have also been proposed for solving several combinatorial
search application problems. Since Hopfield applied the artificial neural network to
travelling salesman problems, its application to optimization problems has been studied.

This method can be applied to optimization problems such as dynamic economic load
dispatching by replacing the spontaneous reduction of energy with the minimization of
objective function. Since a parallel calculation by hardware can be considered, its
application to on-line operations of power systems, which requires high-speed

calculation, can be expected. In problems of optimization, the Hopfield Neural Network



has a well-demonstrated capability of finding solutions to difficult optimization problems

[2].

Solving optimization problems requires minimization of some cost functions that are
subject to a set of constraints. These cost functions are known in the neural network
literature as energy functions, and the Neural Network can produce good solutions by

minimizing the energy function.

Recently, many researchers have studied and developed new simulation techniques to
solve the OPF problem by using artificial Neural Networks of the Hopfield type and its
extended version in the Lin-Kennedy type. This Hopfield/Lin-Kennedy network type has
been applied to optimal power flow and economic load dispatch problems
[11,16,17,18,19,20,21]. Kasangaki et al. [11] presented a Hopfield artificial Neural
Network (ANN) for solving a constrained OPF problem. The objective function involves
minimizing the system transmission losses. To form an augmented cost function, they
introduced an extended interior penalty function. Park et al. [14] proposed solving the
economic load dispatch for piecewise quadratic cost functions using the Hopfield Neural
Network. They applied the method to the three generator units problem and the results of
this method were compared successfully with those of the numerical method in an
hierarchical approach. King et al. [19] introduced an improved Hopfield for the economic
environmental dispatching of electric power system problems. Their method has been
compared with the Newton-Raphson algorithm for a 12-generator test system and they

show that the execution time was approximately the same. Gee et al [15] improved the



mapping process and provided a computational method for obtaining the weights and
biases for the Hopfield networks in order to solve quadratic problems with linear equality
and inequality constraints. Abe et al. [13] introduced a slack variable to convert
inequality constraints into equality constraints. Yalcinoz et al [18] presented an improved
Hopfield Neural Network which modified Gee and Prager’s (GP) method in order to
solve Economic Dispatch with transmission capacity constraints. Constraints are handled
using a combination of the GP model and the model of Abe et al. [13]. This method has
achieved efficient and accurate solutions for two-area power systems with 3, 4, 40 and
120 units. Yalcinoz et al. [47] again proposed an improvement on the Hopfield Neural
Network approach [17, 18], for solving real time economic dispatch problem with
security constraints. They modified the activation function for which a symmetric ramp
function is chosen for the input-output function and applied to each element of the
variable set. They tested the network on the IEEE 30-bus system for different demands.
Gosh and Chowdhury [48] used the Hopfield Neural Network to solve the security
constrained optimal rescheduling. They combined the minimum deviations in real power
generations and loads at buses to form the objective function for optimization. The
inequality constraints are on active line flow limits and equality constraints are on real
power generation load balance. Transmission losses are also taken into account in the

constraint function.

This thesis presents an extended Hopfield model to handle inequality constraints by using

the exterior penalty function method [4, 30, 31], and then applies the algorithm to



determine the weights in the energy function. This model is used for solving the optimal

active power-flow where the objective function is an incremental cost function.

1.4 Objective and Scope of the Thesis

Since the original Hopfield model cannot handle the inequality constraints, Abe et al.
[13] introduced a slack variable in order to convert inequality constraints into equality
constraints. The difficulties arise in large scale power systems, which include a large
number of inequality constraints, requiring a large number of slack variable. In this
thesis, another way of handling the inequality constraints by introducing exterior penalty
function method is presented. This avoids difficulties associated with using many
additional slack variables. Chapter 3 gives a more detailed description of the Abe’s

method.

The technique mentioned above along with the Hopfield Neural Network are to be tested
via practical applications in power system optimization. Optimal power flow and
security-constrained dispatch problem are good examples of highly constrained non-
linear problems. Therefore, the objective of this research is to model and study the
applicability of the modified Hopfield Neural Network on solving optimal active power
flow and security-constrained dispatch problem. In addition, this thesis aims to discover
the advantages and disadvantages of using this technique to replace existing methods.

The modification introduced is compared with some conventional method (gradient
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projection & Lagrangian multiplier methods) and with techniques that already use the

Hopfield neural network but adopt different problem formulations.

In this thesis, the objective function is the same as used in references [12, 27, 46]. The
constraints used by Sjoholm and Boye [46] are modified by adding constraints on bus
voltage magnitudes, to avoid the low voltages that may result from using the decoupled

power flow method as mentioned in Chapter 2.

1.5 Thesis Outline

This thesis consists of six chapters. Chapter 1 is an introduction to the main ideas of the
thesis providing a background of economic power dispatch, optimal power flow, and the
Neural Network used. The objectives, the organization of the thesis and the work covered

are also outlined in this chapter.

Chapter 2 covers the description of the optimum operation problem. Within this chapter,
some discussions on dispatch, dispatch with losses, decoupled power flow, and full

power flow are presented.

Chapter 3 describes the concept of Artificial Neural Networks, in which two significant

approaches for optimization of power systems are discussed.

Chapter 4 shows the application of Hopfield model for solving the Economic Power

Dispatch problem. The discussion includes background and formulation. Results will be
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given in detail according to the output from different networks that are implemented in

the model.

Chapter 5 discusses active security dispatch using the Hopfield network. Some
background information on this topic will be covered, followed by the formulation used
for this study. Results obtained using the formulation will be presented as the conclusion

section of this chapter.

Chapter 6 covers the summary and conclusions drawn from the discussions presented in
the previous chapters. Several recommendations concerning future extensions of the
present work are made. A list of references used in this thesis will be presented after

chapter 6 and followed by several appendices.



Chapter 2
OPTIMUM OPERATION PROBLEM

2.1 Introduction

The solution to the optimal operation problem of power system is required to assist in the
optimal planning of facilities or devices for the system. In general, these facilities consist
of generating plants, transformers, reactive-power compensation devices and
transmission networks. Since Dommel and Tinney [40] introduced the optimal power-
flow method for the first time, many articles have appeared in the literature on this

subject [10, 11, 12, 22, 35, 36].

Generally, an optimal power flow problem deals with the optimization of both active and
reactive powers. Conventionally, the emphasis in performance optimization of fossil-
fuelled power systems has been on economic operation only, using the economic
dispatching approach. Known as economic Load Dispatch, the active power optimization
itself aims at minimizing the active generation cost, with the generated active powers as
the control variables, subject to satisfying system constraints. Whereas, reactive power
optimization on the other hand may be defined as the minimization of system real-power
transmission loss by controlling bus voltages, transformer tap settings and switchable

shunt capacitors/ reactors within the limits specified.

12
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Costs, power system security, and pollutant emissions are, in fact, all areas of concern in
power plant operation, and in practice, these three areas are treated in a system to affect a

compromise between the frequently conflicting requirements.

2.2 Economic Power Dispatch

The economic considerations are important when considering how to operate a power
system to supply all the loads at minimum cost. Within this system, we assume that we
have some flexibility in adjusting the power delivered by each generator. Economic
dispatch assumes an available unit commitment and seeks to optimize the operational
schedule such that power balance and physical feasibility constraints such as power flows

in the lines and voltage magnitudes in each node are satisfied.

2.2.1 Formulation of Economic Power Dispatch

In calculating the optimal dispatch, it is reasonable to neglect line losses, if all generators
are located in one plant or are otherwise very close geographically. The problem is to
minimize an objective function, Cr, which is equal to total fuel costs subject to the
constraints requiring that the sum of the powers generated must be equal to the power
demanded by the load. Note that any transmission losses are neglected.

Mathematically, this problem can be expressed as minimizing

Cr = ici (PGi)= i(ai +b, P + ciPGzi) dollar/hr 2.1)
i=1

i=1

where a,,b, and c, are fuel cost model parameters.
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Subject to the equality constraints:

The equality constraint is simply a statement of conservation of active power in the case

of a loss-free transmission system.

ZPGi=PD=ZPDi (2.2)
i=1 i=1

where

C, : the total production cost,
: the production cost of i* plant.
: the generation of i” plant

P, : the total load demand

P, : the total load demand at bus i

m : the total number of dispatchable generating plants

n : the total number of load nodes

a; :the fixed fuel cost at generator bus i

b; :the variable fuel cost in proportion to active power at generator bus i

¢; :the variable fuel cost in proportion to second order term of active power at generator

bus i
Pg is expressed in MW
The inequality constraints are

P min SPg <P 2.3)

Gi max
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It is convenient to consider first the case without the inequality constraints (i.e., without
the generator limits) given in (2.3). We augment the constraints into the objective

function by using the Lagrange multipliers [1]

F=C,+ /I(PD - ZPGl.) (2.4)
i=1

where
A :incremental cost (IC), is a slope of fuel-cost curve.

The condition for optimum dispatch is [1]

AP..

229 0) T m @2.5)
dPGi

or

b, +2¢,P, = A (2.6)

By substituting for P, in the equality constraint (2.2), we have [1]

P, + Zzb—‘
A=— L @.7)

The value of A found from (2.7) is substituted in (2.6) to obtain the optimal scheduling

of generation.

When the gencrators limits are included, the Kuhn-Tucker conditions complement the
Lagrangian ones including the inequality constraints as the additional terms. The

necessary conditions for the optimal dispatch with losses neglected become [1]
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ac, =4 for  Poimin < Foi < Poimax
dPGi
dc, <2 for P,=P,. .
dFg;
dC.
€. 24 for P, =Py
dPGi

The numerical solution is the same as before [1].

2.3 Economic Power Dispatch with Losses

Transmission losses are a major factor and affect the optimum dispatch of generation in a
large interconnected network where power is transmitted over long distances with low
load density areas. It then becomes necessary to consider them when developing an

optimal dispatch strategy.

The objective function is the same as that defined for Eq. (2.1). However, the equality
constraint equation previously shown in Eq. (2.2) must now be expanded to the one
shown below.

The active power balance equation:

DI A 0 — ,B;,)-P, = (2.8)
i=1

Pp: thal load

Pr: Transmission loss
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One common practice for including the effect of the transmission losses is to express the
total transmission loss as a quadratic function of the generator power outputs.
A general formula, known as Kron’s loss formula [3,7], containing a linear term and

constant term is frequently used

Ng Ng Ng
Py :ZZPGiBijPGj +ZBoiPGi +B, (2.9
i=l j=1 i=1
where

Bij = loss coefficients or B coefficients.

B coefficients are assumed constant.

The augmented cost function will become

F=CT+/1[PD+PL—ZPGi) (2.10)

i=1

Then the necessary optimality conditions turn out to be

oF _oCy, _ _OP, _
aPGi B y aPGi l(l ; aPGi - 0

3L6/1=PD+PL—(;PGJ=0 ........................ i=1lyn

From these necessary conditions we obtain

oCy,
OF%;

(1 _ 0P,

A= ,
‘r,)

-1

oF, 2P ) are referred to as the penalty factors.
Gi

The quantities (1 -
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In addition to the equality constraint, there are inequality constraints that apply to state,

control, and output variables. These are classified as follows:

1) Maximum and Minimum Limits of Power
The generating constraints give the maximum and minimum generating capacity, outside
of which it is not feasible to generate due to technical or economic reasons. The

generating limits are expressed as follows:

Py in SPoi <P (2.11)
Qo min < Qi = Q 6i max (2.12)
where

vimn -  1heminimum active power generation limit of unit i
P e : The maximum active power generation limit of unit i
Ogi mn:  The minimum reactive power generation limit of unit i
Qi max ¢ The maximum reactive power generation limit of unit i

(i)  Transmission limits

These constraints represent the maximum power which a given transmission line is
capable of carrying and are usually based on thermal and dynamic stability considerations
and these constraints can be expressed as follows;

P,

i min

PSP e i,j=1....N (2.13)
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where

By = |V;|2Gy _[Vi”leGij COS<5:' _§j)_|Vi B, sin(éi "5/')

Y,

N : The number of branches

P

if min

: the minimum active power flow

P

if max

: the maximum active power flow
P, (¢): the power flow between bus i and j

J. :voltage angle at bus i

H

G, : the real elements of nodal admittance matrix between bus i and busj

(iii)  Voltage Limits
This is usually a service quality requirement. Thus, to satisfy legal requirements and
design limitations, the voltage magnitudes are restricted to lie between specific upper and

lower limits expressed as follows:

Vmim' S Vt S Vmaxi (214)
where

V.. and V__  are the minimum and maximum voltage levels respectively. The

limits used in this thesis are 0.9 p.u. and 1.10 p.u. respectively.

(iv)  Phase Angle Limits
If the power flow between buses i and j is already constrained as expressed by Equation

(2.13), there is no need to constrain the voltage phase angles.
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The bounds for the phase angle may be varied depending on the problem under

consideration or the loading condition.

. <5,<5 (2.15)

minj max {

where
Omn and O, are the minimum and maximum voltage levels respectively.

In this thesis, by constraining the power flows in the lines, we bound the voltage phase
angles from —7z /9 degrees and 7 /12 degrees. These values are just for the experiment
purpose only.

To augment the objective function if the inequality constraints are included, we need a
method for converting constrained optimization problems into unconstrained problems.
Many methods have been proposed to handle the inequality constrained minimization
problems in order to obtain faster solutions. In this thesis the exterior penalty function is

applied.

2.3.1 Exterior Penalty Function Method

In order to convert constrained optimization problems into unconstrained problems we
used the exterior penalty-function methods [31]. This method is the easiest to incorporate
into the optimization process. We deal with the following problem

Minimize the objective function:
C=f;(x) (2.16)

Subject to:
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Equality constraints

T C N, =120 . (2.18)

A classical approach uses the sequential unconstrained minimization technique (SUMT)

to create a pseudo-objective function of the form:
é(x,K)= f(x)+KF(x) (2.19)
where
f(x) : the original objective function
F(x) : an imposed penalty function
K  :aspecified parameter, which determines the magnitude of the penalty.

By considering the equality-constrained problem, using the exterior penalty function

method gives the new objective function as
$(x.K) = £+ ) K {g, (x)f (2.20)
i=1

where K is a positive constant. To satisfying the i” constraint, we increase K, from zero
to infinity to give more and more weighting. When K, is equal to zero, means that the

constraint is ignored and when K, is infinity, the constraint is satisfied exactly. We

specify these weighting factors depend on how strongly we feel about satisfying the

constraints.
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To apply the exterior penalty function to the inequality constraints we have a new

objective function as

P K) = £+ 3K (), () @21)
where

0 if h(x)<0
1 if h(x)>0

u;(h;) = {
When x is located inside the feasible region, the step function u,(h;) serves to ignore the
constraint. On the other hand, when x is outside the feasible region, the step function
u;(h;) treats the constraint as an equality constraint. From equation (2.21), we see that no
penalty function is imposed if all constraints are satisfied, but whenever one or more

constraints are violated, the square of %,(x) is included in the penalty function.

By considering both of the constraints we have the new objective function as

$K) = 10+ 3K g OF + S Kl o) ) (222)

2.4 Power Flow Algorithm

The studies of power flow problem, commonly referred to load flow, are the backbone of
power system analysis and design. They are necessary for planning, operation, economic
scheduling, and exchange of power between utilities. The programs of the power flow are
used to study power systems under both normal operating conditions and disturbance

conditions.
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The main problem includes determination of the magnitudes and phase angle of the
voltages at each bus in a power system under balanced three-phase steady-state
conditions. Active and reactive power flows in equipment such as transmission lines and

transformers, as well as equipment losses, can be computed.

In order to obtain a solution to a power flow problem, the system is assumed to be
operating under balanced conditions within which a per/phase model is being used. Four

quantities will be included and are associated with each bus. These are voltage magnitude

v

, phase angle &, real power P, and reactive power Q. The system buses are generally

classified into three types.

e Swing bus : There is only one swing bus, is taken as reference where the
magnitude and phase angle of voltage are specified. The power flow program
computes Ps and Qs.

¢ Load bus : At these buses the active and reactive powers are specified. The power
flow program computes V and 6. Most buses in a typical power flow program
are load buses.

e Voltage controlled bus : These buses are the generator buses. At these buses, the
real power and voltage magnitude are specified. The power flow program
computes Q and o . Examples are buses to which generators, switched shunt

capacitors, or static var systems are connected.

These methods will be explained in the next sections.
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2.4.1 Newton-Raphson Method

Newton-Raphson method is the most widely used method for solving simultaneous non-
linear algebraic equations. This method is a successive approximation procedure based on
an initial estimate of the unknown and is derived from a Taylor’s series expansion, as

seen in the following formulae [3]

P, = §|Vk A A R W k=12,n
(2.23)
=—Z[Vk|| o[ Y|S0, = 5, + 8, ) k=12,....,n

where

P, : the real part of complex power at bus k

Q, : the imaginary part of complex power at bus k
n :the number of buses

V, = voltage at bus k

Y,, = the element km of admittance matrix of the transmission network
0., : phase angleof Y,
0, = voltage angle at bus k

The real power and reactive power mismatches at bus k are the difference between the
injected power at the bus and the sum of the powers flowing through the various lines

connected to other buses can be expressed as
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AP, = B¥ - ZiVHV“Ykm[cos( — 8 + 8, Jerernnee k=12,....,n
k=1

+Z|Vk|| i SI (B = B + 8 Yoeeernrirenns k=12,...,n

where

P” :scheduled real part of power at bus k

.’ : scheduled imaginary part of power at bus k

Equation (2.23) can be expanded in Taylor’s series at the present value of the control
variables and neglecting all second and higher order terms results in the following set of
linear equations.
AP® A5
Y
AQY AV
To distinguish the three different types of buses in the power system, the following

notation is used [54].

Af)PV A6‘PV
Moo 1%

AQI’V AI/PV
AQPQ A VPQ

(2.25)
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where

a}JPV aPPV aI>PV aI)PV
06, 06,y OVp OV,
oP,, 0P
06, 06,y OVy OV,
aQPV aQPV aQPV aQPV
06, 06,5 Ve OV,

aQPV aQPV aQPV aQPV
06, 06,y OV, OV,

J =the Jacobian matrix =

Thus, the relationships between bus power mismatches can be generalized as [3]

AP [H NT[AS
_ (2.26)
MR
where
H, = :? = V|V ullYin| sin (6, — S, +5,,) (k = m)
aPm (2.27)
Hy === WV Vo sin@,, -5, +6,)
k k#m
Vo= g = WlEleosOu 6+8,) (e
6Pm (2.28)
Ny = _6]71“ = 2|VkHYkk|c°S(‘9kk)+ kZ‘Ykm ||Vm|cos(9km —0; + 6’”)
k *m
o = 2?" =V V., “Ykm\cos(ﬁkm -5,+6,) (k = m)
; i (2.29)
M, =2 = S, 8, cos(0,, - 5, +6,.)

““ 85, &
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b= 22 05,45 (k)
an (2.30)
= 5‘7! = -2, ¥, |sin(@ ) - 3 |Yen |V |06, - 5 +5,.)
i k#m

Equation (2.26) is solved directly for the incremental voltage angles and incremental
voltage magnitudes that are used as corrections to the current estimate of the solution.
These computed corrections are used to determine new estimates of the voltage phase

angles and voltage magnitudes as follows

5new — 6old +A6new

(2.31)
Vnew = Vold +AVnew
The iterative process is said to have converged when the bus real power mismatch vector

AP and reactive power mismatch vector AQ have been reduced to within a specified

tolerance.

2.4.2 Decoupled Power Flow

The decoupled method assumes that the voltage magnitudes are insensitive to active
power computations and that the voltage phase angles insensitive for reactive power
computations. This decoupling allows fast computation as e.g. in fast decoupled load

flow.

There are several advantages of the decoupled approach [28], namely:
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1. To improve computational efficiency, especially for large systems. This is due to
a possible situation that each sub problem has approximately half the dimension
of the original problem.

2. To enable it to use different optimization techniques in solving the active power
and the reactive power OPF sub problems.

3. To allow it to have a different optimization cycle for each sub problem.

The disadvantage of decoupled approach :

For some classes of problems, the constraints (e.g. branch flows) are dependent on both
active power and reactive power variables. In these cases, the original OPF problem is
not completely separable into two sub problems. A second case involves a decoupled
active power OPF that may schedule the transfer of large amounts of active power over
long transmission lines when cost-effective generating units are located at a great
distance from the major load centers. This could result in unacceptable low voltages at
each node, which might not be correctable through the rescheduling of reactive controls

in the reactive power OPF alone [24].

2.4.2.1 Fast-Decoupled Power Flow
The Newton-Raphson method is more complicated and requires more computations per
iteration and more storage space than the Gauss-Seidel technique. To improve some of

the weaknesses of this method, a fast-decoupled method has been developed.
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The real power changes are less sensitive to the changes that occur in the voltage
magnitude and are most sensitive to the changes in the phase angle. The reactive power
changes are less sensitive to those changes in the phase angle and are most sensitive to

the ones in voltage magnitude.

Under steady-state conditions, the real power flows, P, are strongly associated with the
bus voltage angles 8, and likewise the reactive power flows, Q, with the bus voltage
magnitudes, V. The coupling between these P-V and Q-6 variable sets is weak compared
to the coupling between P and & or between Q and V. Therefore; the control variables
divide themselves, according to whether they primarily affect the P-0 or the Q-V system
operating conditions. The relevance of this is that the optimal power flow calculation
may be required to address only the P-8 sub problem, or only the Q-V sub problem.

Alternatively, it may schedule all controls simultaneously, giving a more globally optimal
solution by taking into account the in-reality non-negligible coupling between the two

sub problems.

So the first step in the fast-decoupled approach is to neglect the sub matrices M and N in

Eq. (2.26) to yield:

[ig] i {lg ﬂ [AA;J (2.32)
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or in component form
AP=HAS = [G_P} AS
08

50 (2.33)
AQ=LAV|= {EI—V—J AY|

where the matrices H and L are given by Egs. (2.20) and (2.23) and are reformulated as
H,, = Zle\le 1Y, Sin(B,, 5, +8,,) ~ Ve[ |V sin By

Hy =—0, -B.V.| (2.34)

Ly, =~V |¥ue|sin 6y - Z\Vkuym Y, |sin(6,, -5, +3,,)

L, = —|Vk‘Bkk +0, (2.35)
where

B,, : the imaginary part of the diagonal elements of the bus admittance matrix, is the sum

of susceptances of all the elements incident to bus k.

According to [3], in a typical power system, the self-susceptance B,, >> (0, , and we may

neglect O, . Further simplification is obtained by assuming [V,|* = [V,

,and |V, |~1.

Under operating conditions, &, —&,, is quite small. In addition, the transformer and line
reactances are normally greater than the corresponding resistances.
cos(5, -4,) =1 G, << B,,

sin(6, -6,) =0  Q, <<B,V?
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we have [3]:

Hip =] Bun (2.36)
Hkk = “]Vlekk

and

Lkm = _IVk|Bkm (237)
ka = —le|Bkk

With these assumptions, equation (2.19) can be rewritten as follows

ﬁ} ——B'AS (2.38)
—AQk —_ "

i }_ B"AV (2.39)
or

As =B I% (2.40)
A=z’ %,Q—l 2.41)

The matrices B’ and B” are the imaginary parts of the bus admittance matrix Ybus.
Matrix B’ may be obtained from Y, by stripping away the first row and column and

then taking the imaginary part. So, B’ is of order of (n-1), and B” is of order of (n-1-m),

where m is the number of voltage-regulated buses.
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These matrices are real, sparse and constant matrices, which respectively have the same
size as the Jacobian submatrices H and L, and have the same sparsity characteristics as

Ybus.

Convergence is achieved when both the real and reactive power mismatches are within
specified tolerances. The fast decoupled power flow solution requires more iterations
than the Newton-Raphson method, but requires considerably less time per iteration, and a

power flow solution is obtained very rapidly.



Chapter 3

Artificial Neural Network

3.1 Introduction

A neural network is defined as a set of highly interconnected processing elements, i.e.
nodes or neurons that are capable of learning information presented to them. Neural
networks are inspired by biological nervous systems and usually consist of one input
layer, one or more hidden layers, and one output layer. As in nature, the network function
is determined largely by the connections between the elements. These connections which
exist between the nodes of adjacent layers relay the output signals from one layer to the
next. All inputs to a node are weighted, combined, and then processed through a transfer
function that controls the strength or the signal relayed through the output connections of
the nodes. It is also possible to train the neural network to perform a particular function

by adjusting the values of the connections (weights) between elements.

In general, neural networks are adjusted, or trained, so that a particular input leads to a
specific target output. The network is adjusted, based on a comparison of the output and
the target, until the network output matches the target. Typically many such input/target

pairs are used, in this supervised learning mode, to train a network.

In recent years, artificial neural networks (ANN) have been proposed as an alternative
method for solving certain difficult power system problems where the conventional

techniques have failed to achieve the desired speed, accuracy, or efficiency [20].

33
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An optimization problem is usually defined in terms of the minimization of a scalar
function of a number of variables. If the variables are not constrained by inequality or
equality relationships, the optimization is said to be unconstrained. The function thus in

short, is an objective function, sometimes also called a cost function or criterion function.

In neural network studies, the objective functions take the following forms [52]:
1. For feed forward networks: The scalar error function E (w) in the weight space is
the objective function.
2. For recurrent networks: The scalar energy function E (v) is the objective function

in the network output space.

There are three basic elements of the neural network model (Fig. 3.1)
1. A set of synapses or connecting links, each of which in characterized by a weight
or strength of its own.
2. An adder for summing the input signals, weighted by the respective synapses of
the neuron.
3. An activation function for limiting the amplitude of the output of a neuron.
Typically, the normalized amplitude range of the output of a neuron is written as

the closed unit interval [0,1] or alternatively [-1,1]
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Figure 3.1 Nonlinear model of neuron

3.1.1 Types of Activation Function
The activation function denoted by go(v), defines the output of a neuron in terms of the
induced local field v. Here we identify three basic types of activation functions [2].

1. Threshold function or unipolar binary function. For this type of activation

function as illustrated in Fig. 3.2, we have [2]

1 ifv=20

0 ifv<0 G-

o(v)= {

Correspondingly, the output of neuron k employing such a threshold function is

expressed as [2]

" {1 A (32)

0 ifv, <0
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where v, is the induced local field of the neuron; that is (2]

v, = Zwijj +b, (3.3)
=

Such a neuron is referred to as the McCulloch-Pitts model. In this model, the
output of a neuron takes on the value of 1 if the induced local field of that neuron
is nonnegative, and 0 otherwise. This statement describes the all-or-none property
of the McCulloch-Pitts model. This model is also called a hard limiting activation
function or binary function. Networks such as this, whose output is either 0 or 1,
are potentially suitable for pattern classification problems in which we wish to
divide the patterns into two classes, labelled “0” and “1”.

Piecewise-Linear Function or unipolar ramp function. For this type of activation

function described in Fig. 3.3, expressed as 2]

1 ifvz.5
p(v)={v if5>v>-5 (3.4)
0 fv<-5

where the amplification factor inside the linear region of operation is assumed to
be unity. This form of the activation function may be viewed as an approximation
to a non-linear amplifier.

Sigmoid Function. The sigmoid function, whose graph is s-shaped, is by far the
most common form of activation function used in the construction of artificial
neural networks. It is defined as a strictly increasing function that exhibits a
graceful balance between linear and non-linear behaviour. The output of the

network is a real number and is not simply either 0 or 1 as for the binary function.
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An example of the sigmoid function is the logistic function or unipolar continuous

activation function, defined by [2]

1
o(v)= m (3.5)

in which a is the slope parameter of the sigmoid function. By varying the
parameter a, we obtain sigmoid functions of different slopes, as illustrated in Fig.
3.4. In fact, the slope at the origin is equal to a/4. In the limit, as the slope
parameter approaches infinity, the sigmoid function becomes simply a threshold
function. Whereas a threshold function assumes the values of 0 or 1, a sigmoid
function assumes a continuous range of values from 0 to 1. Note also that the

sigmoid function is differentiable, whereas the threshold function is not.

The activation functions defined in Eq. (3.5), range from 0 to +1. It is sometimes
desirable to have the activation function range from —1 to +1, in which case the
activation function assumes an antisymmetric form with respect to the origin; that
is, the activation function is an odd function of the induced local field.

Specifically, the threshold function of Eq. (3.1) is now defined as [2]

1 ifv>0
p(v)=30 ifv=0 (3.6)
-1 ifv<0

which is commonly referred to as the signum function. For the corresponding
form of a sigmoid function we may use the hyperbolic tangent function (Fig. 3.5)

or bipolar continuous activation function, defined by [2]
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1- exp(— v) _ 2 3
1+ exp(— v) 1+ exp(— v)

o(v)=tanh(v/2) = 1 (3.7)

The hyperbolic tangent activation function is a logistic activation function biased

and rescaled.
P (L)
o

—» U

Figure 3.2 Threshold activation function

Figure 3.3 Piecewise-Linear activation Function
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Figure 3.4 Logistic activation function
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Figure 3.5 Hyperbolic tangent activation function
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The hard limiting activation function as illustrated in Eq. (3.1) and Eq. (3.6) describes the
discrete neuron model. The soft-limiting activation functions are often called sigmoidal

characteristics.

Essentially, any function f(net) that is monotonically increasing and continuous such

that net € R and f(net) € (-1, 1) can be used instead of the soft limiting activation
function in neural modeling. A few neural models that often involve some form of
feedback require the use of another type of nonlinearity than that defined in (3.5) and

3.7).

3.2 Back Propagation NN
The usage of the term "back-propagation” appears to have evolved after 1985 when its
use was popularized through the publication of the seminal book entitled Parallel

Distributed Processing [42].

The back Propagation training algorithm is an iterative gradient algorithm designed to
minimize the mean square error between the actual outputs of multilayer feed-forward
preceptrons and the desired output. It requires continuous differentiable non-linearities.

The error signal at the output of neuron j at iteration » (i.e., presentation of the nth

training example) is defined by [2]

e;(n)=7,(n)-Y,(n) (3.8)

where
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I%(n) = actual output of i th. neuron

Y.(n) = target output of i th. neuron for a training set

The neuron j is an output node.

Haykin [2] defines the instantaneous value of the error energy for neuron j as % ejz. (n)
Correspondingly, the instantaneous value E(n) of the total error energy is obtained by

summing %ejz. (n) over all neurons in the output layer, these are the only 'visible" neu-

rons for which error signals can be calculated directly. Thus

E(n)= %Zef (n) (3.9)

jeC
where the set C includes all the neurons in the output layer of the network. Let N denote
the total number of patterns (examples) contained in the training set. The average
squared error energy is obtained by summing E(n) over all n and then normalizing with

respect to the set size N, as shown by [2]

E, = —JlggE(n) (3.10)

The instantaneous error energy £ (n), and therefore the average error energy E,, is a
function of all the free parameters (i.e., synaptic weights and bias levels) of the network.
For a given training set, E,, represents the cost function as a measure of learning
performance. The objective of the learning process is to adjust the free parameters of the

network to minimize E,,. Specifically, we consider a simple method of training in which
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the weights are updated on a pattern-by-pattern basis until one epoch, that is one
complete presentation of the entire training set has been dealt with. The adjustments to
the weights are made in accordance with the respective errors computed for each pattern
presented to the network, The model of each neuron in the network includes a nonlinear
activation function. Learning is accomplished by changing the value of the weights to
achieve the desired result, 1.e., the correct classification. The learning process adopted is

supervised learning in which the desired output is known.

Rumelhart et al. [42] demonstrated a feed forward layered machine of the perceptron
type, that could train itself autonomously as desired if it is used for activation at the
neurons and if a backward propagation of error algorithm is used to change the
interconnection weights and activation function threshold until proper recognition

capability had been attained.

The back propagation-training algorithm uses a gradient search technique to minimize a
cost function equal to the mean square difference between the desired output and the

actual net outputs of a multilayer feed-forward perceptron [55].

(7,6)- 7)) G.11)
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E(t)p Network ﬂh Frror _Y__(t)
Weights |« |q~ - e(t) "

Figure 3.6 Back-propagation training

The process begins with selecting small random weights and internal thresholds and then
presenting all training data repeatedly to train the net. Weights are adjusted after every
trial using side information specifying the correct class until weights converge and the
cost function is reduced to an acceptable value. An essential component of the algorithm
is the iterative method described below that propagates error terms required to adapt

weights back from nodes in the output layer to nodes in lower layers.

3.2.1 The back-propagation training algorithm
Within this type of algorithm, several processes are executed. The first step is to choose
small random number values for the hidden layer weights V and the output weights W.

This process is called initialize weights.

The second step is to present the inputs and desired outputs. In the learning process, the
network is presented with a pair of patterns, an input pattern and a corresponding desired

output pattern. The input and desired output patterns are [52]:
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-xl— ~y1—

Xy )
x= Y=

BRI | Vi

The third step is to calculate the actual outputs ¥(r), and the error E(n) for that set of

weights.

Assuming the use of a logistic function for the sigmoidal nonlinearity as expressed in

(3.5).

The output vector matrix is [52]:

_f/l _
7,
Y=
Ve
z, = f(Vx) =12 J
),}k = f(Wlth) k=1,2,......ccvvn K
where

v, isthe j’throw of V.

w, 1s the k’th row of W.

Calculate the average squared error as expressed in (3.11).



45

Using its weights and thresholds, the network produces its own output pattern, which is

compared with the desired output pattern.

The next step is to update the weights. In this process we calculate the derivatives of E
with respect to all of the weights. If increasing a given weight would lead to more error,
we adjust that weight downwards. If increasing a weight leads to less error, we adjust it

upwards.

Learning comprises changing the weights and thresholds so as to minimize this error
function in a gradient decent manner. Assume that the gradient descent search is

performed to reduce the error E through the adjustment of weights [52].

Awkj :775ij (3.12)
where & ;. 18 the error signal at an output unit k is given by [52] :

5, =t -2 F(-7)  for k=12, K (313

1 = learning rate parameter

The weight adjustment in the hidden layer is [52]:

Av. =nd x, (3.14)
where o | is the error signal at an output unit j is given by [52]:
5j :Zj(l_zj)%akwlg for j=1,2............ J (3.15)

In practice, one way to increase the learning rate without causing oscillations is to modify

the expression of AW,; above to include a momentum term, i.e. [52]:
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Awkj(n+1):775kzj +aAw,g.(n) (3.16)

where
n = the presentation number
o = constant which determines the effect of past weights changes on the current

direction of movement in the weight space.

After adjusting all the weights up or down, we start all over, and keep on going through
this process until the weights settle down or the average squared error computed over the

entire training set is at a minimum or acceptably small value.

In this thesis method, a tangent hyperbolic function or bipolar continuous function is used

for the sigmoidal nonlinearity. The error signal terms will become [52]

1 5 52
5, =5(Yk —YkII—Yk) for k=12,.........K
5. =1-2)3s5 for j=1,2 J
j~—2~( Zj)% kWi or =1,2............ .

The process is the same as that when logistic sigmoidal function is used.

3.3 Hopfield Neural Network

Neural Networks have been used to solve a variety of constrained optimization problems.
Due to their fast network convergence to optimal solutions, they eliminate the time
bottlenecks that usually arise in most sequential algorithms. In the problem of

optimization, the Hopfield neural network has a well-demonstrated capability of finding
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solutions to difficult optimization problems. Since Hopfield and Tank proposed an
artificial neural network in 1985 for solving difficult optimization problems like the
Travelling Salesman Problem (TSP), many researchers have applied this approach to a

number of constrained optimization problems.

Solving optimization problems requires minimization of some cost function subject to a
set of constraints. These cost functions are known as energy functions, and the neural

network will produce optimal solutions by minimizing an energy function.

In power systems, the Hopfield networks have been applied to optimal power flow and
economic load dispatch problems [14, 16, 17, 18, 19, 20, 21, 23]. The Hopfield network
consists of a set of neurons and a corresponding set of unit delays, forming a multiple-
loop feedback system as shown in Fig. 3.7. It is such that each neuron contains two op

amps. The output of neuron j is connected to the input of neuron i through a conductance
W, . The Hopfield network may be operated in continuous mode or discrete mode,

depending on the model adopted for describing the neurons. The continuous mode of
operation is based on an additive model as shown in Fig. 3.8. On the other hand, the
discrete mode of operation is based on the McCulloch-Pitts model. In formulating the
energy function E for a continuous Hopfield model, the neurons are permitted to have
fully connected. A discrete Hopfield model, on the other hand, need not have fully-

connected.

The standard Hopfield Neural Network can be described as follows.
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Neuron 1 has an input #,, and an output v,, and is connected to neuron j with a weight
W, . A connection from a positive output is known as excitatory, and a connection from a
negative output is called an inhibitory connection. Associated with each neuron is also an

mput bias terms /,. The node equation for the continuous-time network with n neurons

is given by [25]:

gy J

u,=> Wy, +1, (3.17)
j=1

where

u; :the total input to neuron i.

12

W.

; - the synaptic interconnection strength from neuron j to neuron i.
I, :the external input to neuron i.

v, : the output of neuron j.



49

External
nputs

Il II
Win

Win

W2l

Rl 1h

__l —I L Neurons
- 1 \1/ 2 - "2~
FPositive

output | Negative
output

Output
v vz

: : Amplifier inverting amplifier

® Resistor in Wij network

Figure 3.7 Hopfield Neural Network.
The output of the neuron is determined by the network input and the activation function

of the neuron [2].
Vi :f(ui) (3.18)
v, is a continuous variable in the interval O to 1, and f(u;) is a monotonically increasing

function which constrains v, to this interval, is usually a hyperbolic tangent of the form

as given by :
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1

) =g

(3.19)

where A is a constant called the gain parameter.
The equation represents a continuous, non-decreasing, and differentiable function called a

sigmoid function.

As shown in Figure (3.7) and (3.8), each neuron receives an external current /,, which

could represent actual data provided by the user of the neural network. From Figure 3.8,

the dynamics of the Hopfield network can be described by [2]

N
c.fiﬂ=ZW..v. —%+I. (3.20)

Current
souree
1;
Neural
- . Nonlinearity outout
Synaptic z wii® |, outpu
inputs < summing . 9 ()—
Junction 1
C, v;(t)

Win

oog(t) —/ Wopun(t):

Figure 3.8 Input node of i" neuron
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9

Dividing by C and redefining ?’ and E’ as W, and I,, the dynamics of the network

become [2]:

du, u, I

— =SS Wy, +1. 3.21
dt T ; R G2

where 7= RC 1is the circuit’s time constant, and N is the number of neurons in the

network.

Hopfield has shown that the dynamics of the neurons follow a gradient decent of the

quadratic energy function [2,14]

1 N N N
E= —EZZW,.jvivj —;Iivi (3.22)

i=1 j=1

Hopfield has also shown that while the state of the neural network evolves inside the N-

dimensional hypercube defining by v, € {0,1}, the minima of the energy function

occur at 2N corners of this space, only if A =0,

th

In terms of the energy function, the dynamics of the i” neuron are described by [2]

du, _ w0 (3.23)
dt T O,

3.3.1 Optimization by using Hopfield Neural Network

The general idea is discussed by taking the non-linear programming problem [20]:
Minimize  f(x)=%x'Px+q'x (3.24)

Subjectto g x = s, i=1... n (3.25)

i
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wix <d,
or (3.26)

wix2d, i=l..m
The mapping of the optimization problem to the Hopfield Neural Network is illustrated
by first ignoring the inequality constraints. Let us now relate the variable x to the neuron

output v and the following energy function converges to its minimum [20]:
E=aF()+Y BlG.O] (3.27)

Here the functions F(v) and G(v) correspond to the objective and equality constraints
and must satisfy some conditions required to be an energy function. The equality
constraints are taken into account by adding terms [ G(v) ]* to E in order to minimize the
mismatch to zero, otherwise the solution produced may have insufficient generation.
Positive coefficients « and [ are used to determine the relative importance of each
constraint and objective. Note that the energy function will contain the m equality
constraint terms in addition to the objective, and that the converged solution may not be

the global optimum.

There are some methods for handling inequality constraints. Tank & Hopfield solve the
inequality constraints based on a Linear Programming problem.

The linear Optimization formulation may be presented as [25] :
min C=A-V
Subject to

— —

D, VzB, | TR M
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il

j2

N

where
A : an N-dimensional vector of coefficients for the N variables which are the component
of V.

M : the number of constraint

-

D, : variable coefficients in a constraint equation.
B; : the bounds

If the equality constraints are considered as well, they each can be replaced by two

inequality constraints, so that the following discussion still holds.
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Figure 3.9 Neural Network to solve a linear programming problem

A network can be organized from these objectives and constraints as seen in Fig. 3.9 as

follows:

In the circuit of Fig. 3.9:

The N outputs V; represent the values of the variables in the linear programming

problem.

The components of 4 are proportional to input currents fed into these amplifiers.

The M outputs i j represent constraint satisfaction. This output injects current into
the input lines of the V; variable amplifiers by an amount proportional to -D;;

The input-output relations of V; amplifiers are linear: V; = g (u;)

The j amplifiers have the nonlinear input-output relation characteristic by the
function [25] :

Vv =f(uj))
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— —

u; =D..V—-B.

j j
f(z) =0, z>0
f(z) = -z, z<0

The circuit equation for the variable amplifiers can be written as [25]:

du, u;

C,—=-4, —E_;Djif(uj)

. (3.28)

=_Ai _Ei—ZDﬁf(Dj'V_Bj)
J

Consider an energy function of the form [25]
- . 1"
E=(A.V)+ZF(Dj-V—Bj)+z—]€jg’l(V)dV (3.29)
J i 0
where

_dF(z)
f@=

The time derivative of E is [25]:

E_ TN 4 S D (B, T-B 3.30
dt_idtR i jjif(j' j ()

By substituting for the bracketed expression from equation (3.28) gives [25]:

2
2o Ter ) ean

Since C; is positive and g_l(Vi) is monotone increasing function, this sum is nonnegative
and

E 0. E_o5 Yy forali (3.32)

dt dt dt

Thus, the time evolution of the system is a motion in state space, which seeks out a

minimum to E and stops.

Abe et al. [13] introduced a slack variable to convert inequality constraints into equality

constraints.
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The energy function E can be formulated as follows [13].

E=AFE +BE, +CE, (3.33)

where
E, : The objective function form Eq. 3.24
E, : the energy corresponding to the equality constraints (3.25)
E, : the energy corresponding to the inequality constraints (3.26)
A,B and C > 0 : the weights in the energy function

To obtain the energy function E,, they used the same approach as Hopfield & Tank. For

handling inequality constraints, they introduced a variable y, to convert Eq. 3.26 into

equality constraints as follows [13].

d,y;,—w;x=0 where 12y,
and (3.34)
d,y,-wx=0 where y,>1

The energy function of E, can be calculated by squaring Eq. 3.34 divided by two.

By introducing the internal variable vectors u and ¢ , and extending the range of x; to
[0,1], the model for energy function can be written as [13]:

x, =.5(+tanhu, /7,) for 12x,20 (3.35)

l—exp(=¢;/p;) if y: <1

yi—{l'*'exp(é’i/pi) if oy =21 (330
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du 2
dr Ox x b
- — =—(J - 3.37
g | | % ( )[yj [Oj (337
dt oy
where
U= (U ), 0>u, >=—w
] (T 6, o> >—w
7,(>0) for i=1,...,n; constant, and
p,(>0) for i=1,..... ,n; constant.

Thus, integrating (3.35) to (3.37) for arbitrary initial values of u and { we obtain a local

minimum solution in the sense that the energy function E is locally minimized.

In this thesis, to convert the constrained optimization problem into unconstrained
problem by considering just equality constrained, the same approach as Hopfield & Tank
is used. To handle inequality constraints, the exterior penalty function method is applied

[4,30,31].

3.3.2 Hopfield Network Algorithm

Step 1  Assign Connection Weights

This step is to map the objective function to energy expressions of the Hopfield Neural
Network. In this process we obtain the weights # and the input bias 7 .

Step 2 Initialize with unknown input pattern
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First, we choose the initial guess for the output v,. Calculate u; by using the inverse of

equation (3.18). This process is called initialize inputs.

@ —

G u T I»J v

AU

LU/

(b) *—@ “ Wv
b
I

Figure 3.10 Schematic diagram of the continuous Hopfield network

(a) Non-linear threshold functions constraining v to the unit hypercube.

(b) The change in u is specified by the differential equation (3.21)
Step 3 Iterate until convergence
This process is illustrated as in Fig. 3.10.
In (2) the process begins by expressing the output v as a function of the input u by
applying the activation function as Eq. (3.5) or (3.7).
The input « is update by implement dynamical transients in the network as expressed in

Eq. (3.21) as illustrated in process (b).
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The process is repeated until node outputs remain unchanged with further iterations.
Step 4 Print out the output.
This model is used in this thesis to handle the problems of both economic and security-

constrained dispatch.



Chapter 4

Economic Power Dispatch with Hopfield Neural Network

4.1 Background

The accomplishment of economic dispatch in power system operation consists of
minimizing the operating cost depending on demand and subject to certain constraints,
i.e. how to allocate the required load demand between the available generation units.
Many methods have been applied to Economic Dispatch to achieve better solutions.
Many of them suffer from slow convergence or even oscillating around the optimal
solution. Therefore, there is a need to develop a more stable technique for handling the

problem mentioned above.

For the combinatorial optimization problem with equality constraints, the Hopfield model
is considered to be appropriate. Many cases in combinatorial optimization problems
involve a linear combination of variables that are upper and lower bounded. In such

cases, the standard Hopfield model requires some modifications.

Abe et al.[13], solved inequality constrained combinatorial optimization by introducing
slack variables. The number of slack variables is always proportional to the number of
constraints. Therefore, we have to assume many slack variables for solving the
optimization problem that have many constraints. The problem would be very

complicated, especially with the large-scale systems.

60
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In this thesis, the Hopfield model is modified to handle inequality constraints by using
the exterior penalty function method. The algorithm determines the weights and input

bias in energy function is determined in this chapter.

4.2 Hopfield Neural Network Based Economic Power Dispatch
The economic power dispatch problem is formulated to find the optimal condition of
power generation to minimize the total fuel cost, represented as [14]:
Ng
Cost = Z(ai +b,P, +ciP(§l.) 4.1)
i=1
The problem constraints include the power balance equation of meeting the power de-
mand and power losses [14].
Ng
Py+P, =) P, (4.2)
i=1
where

P, is the total load demand, and

P, 1s the total of power losses, that can be expressed as [3,7]:

Ng Ng

Ng
g:Zm%+ZZ%%%+% (4.3)
i=1

i=l j=1
In some cases, losses are assumed constant. The active power scheduling is required to
satisfy the upper and lower bound of power generations.

P

Gimin = Foi < Fo (4.4)

i max
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By applying Hopfield Neural Network based on the following neuron dynamic equation:

dU,
—=>»>T.V.+1 4.5
PR (45)

U, is the total input of the neuron i, can be expressed as:

U, = ZT,,.VJ. +1, (4.6)

it
where

T, =the weight connection between neuron j and neuron i

V. is the output of neuron i , can be represented as a function of U, as

where g(U,) is a non linear function at neuron i , is typically a sigmoid function.

In this thesis, we use the two forms of sigmoid function, i.e. the tangent hyperbolic given
by [2]:

gU,)={1+tanh(AU,)}/2 4.7)

and the logistic activation function as

1
g(@)—m (4.8)

The energy E of the network is defined as follows [14]:

EW)==-5>.>T,yV,-> 1V, (4.9)

The reason for trying both logistic sigmoid and tangent hyperbolic sigmoid is only to

show that they both are valid and also lead to convergence.



63

The main idea behind solving the optimization problem is to formulate a suitable com-
putational energy function E(¥) so that the lowest energy state would correspond to the

required solution of V.

To map the economic dispatch problem by applying exterior penalty function for con-
verting constrained optimization problems into unconstrained problems, we write the en-

ergy function as:

2
_ 2)
E—(A/2)(PD +PL-%Pi] +(B/2)%(ai+bi P. +c; P

HCIDTAE ~F, p )* 4 (DIDT8 (P =Py ) (4.10)
1 1

Where A, B, C and D are weighting factors.

0 i PP, <0
P

The power output value P, can be represented as
Fi=¢g © i)
We then find the mapping from Economic Dispatch to Hopfield Neural Network by

comparing the coefficients of equations (4.9) and (4.10), and by representing ¥, as P,.

As aresult one obtains :
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T; =—A-Bc,—Ch, - Dg,
T,=-4 (4.11)
I, = A(P, +P,)-.5Bb, + Ch,P, ,, +Dg P,

4.3 Computational Result
In the following section, the simulation results of the economic power dispatch for some

standard test systems are documented and analysed.

The application of the proposed algorithm was tested on Standard IEEE test system
varying in size from 5-bus, 14-bus, and 57 -bus, and modified 30-bus. The basic charac-

teristics of selected test systems are given in Table 4.1.

Table 4.1. Characteristics of the four IEEE standard test systems

Number of buses 5 14 30 57
Number of lines 7 20 41 78
Number of thermal generators 3 2 6 4

The standard 5-bus system is taken from Saadat [3]. This system consists of three gen-
erators. These three generators are thermal and located on buses 1,2,and 3 respectively.
The fuel cost function models for the three generators are assumed to be quadratic and

expressed as




a
1

200 +7.0 P, +0.008 P2
C, =180+ 6.3 P, +0.009 P}
140+ 6.8 P, +0.007 P}

n
il

The limits of each generation is

10.0MW < P, <85.0MW
10.0MW < P, <80.0MW
10.0MW < P, <70.0 MW

Power losses can be formulated by using Kron loss formula as follows

0.0218 0.0093 0.0028 T P,
P, =[P P, P]0.0093 0.0228 00017 || P,
0.0028 0.0017 0.0179 | P,
P
+[0.0003  0.0031 0.0015] P, |+0.00030523
P3

The line parameters of the 5-bus system and power load are shown in Appendix A.

The 14-bus system is an IEEE-AEP standard system [32]. Unlike the 5-bus system, the
14-system has two generators. They are located on bus 1 and 2 respectively. They are

also thermal and the fuel cost models are given by

C, = 50.607 +10.662 P, +0.01165 P?
C, = 50.607 +10.662 P, +0.01165 P;

65
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where P, and P, are in MW
The lower and upper bounds of each generator is expressed as

10.0MW < P, £300.0 MW
10.0MW < P, <100.0 MW

The power losses are:

0.0245 0.0105| A,
PL:[Pl Pz]

P
+[0.0018  0.0006] "
0.0105 0.0135 | P, P,

2

} +8.8422¢ - 004
The 30-bus system is a modified IEEE 30-busbar system [27]. The system has six ther-

mal generators. The six generators are located on buses 1, 2, 5, 8, 11 and 13 respectively.

The line parameters are given in Appendix A as well.

The fuel cost models are expressed as follows;

C, =2.00 P, +0.00375 P?
C,=1.75P, +0.0175 P}
C, =1.00 P, +0.0625 P}
C, =3.25P, +0.00834 P;
C, =3.00P, +0.025 P2
C, =3.00 P, +0.025 P?



The limits of generations are

50.0MW < P, < 200.0 MW
20.0MW < P, <80.0 MW
15.0MW < P, <50.0 MW
10.0MW < P, <35.0MW
10.0MW < P, <30.0 MW
12.0MW < P, < 40.0 MW

The power losses for this system are expressed as

[ 0.0218
0.0102
=[P P PPP P 0.0010

17275811 "134] —0.0010
0.0001

| 0.0027

Py

+[—0.0003 0.0022 -0.0057 0.0034 0.0016 0.0078]

0.0102
0.0187
0.0004
—0.0015
0.0003
0.0031

0.0010 -0.0010

0.0004 -0.0015

0.0430  0.0134
-0.0134 0.0224
-0.0160 0.0097
—0.0108 0.0051

+0.0014

0.0001
0.0003
-0.0160
0.0097
0.0256
—-0.0000

0.0027 |
0.0031
~0.0108
0.0051
- 0.000

0.0358 |

In the 57-bus system, is an [EEE-AEP standard system [32]. There are four generators

located on buses 1, 3, 8, and 12 respectively. The line parameters and load powers are

given in Appendix A as well.
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The fuels cost are expressed as follows;

C, = 50.607 +10.662 P, +0.01155P?
C, = 50.607 +10.662 P, +0.01155P?
C, = 50.607+10.662 P, +0.01155 P?
C, = 50.607+10.662 P, +0.01155 P>

The power losses are expressed as

0.0113  0.0035 -0.0035 0.0000

p -l B p p] 0005 00115 -0.0013 -00015
POERTR T TR _0,0035 -0.0013  0.0097  —0.0036

0.0000 -0.0015 -0.0036 0.0057

[0.0028 0.0008 —0.0014 —0.0016] _* |+0.0077

o:U whc »—-hU

o

The generation limits for this system are

20.0 MW < P, < 600.0 MW
20.0 MW < P, < 600.0 MW
20.0 MW < P, <600.0 MW
20.0 MW < P, < 600.0 MW

Naviia v

e

[
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The results are the optimal solution of each generator, and the obtained minimal cost for
the different constant shape parameter (A ) of the activation function built to the neuron.

Moreover, the number of iteration for solving this problem is also recorded.

S bus test system.

Table 4.2. The optimal conditions for each unit and the minimal cost obtained, for 5-bus

test system.

Unit Optimal Condition (MW)
Conventional HNN
Method (La-
grangian Logsig Tansig
Multiplier)
P1(MW) 33.4701 33.2592 33.2592
P2(MW) 64.0974 64.1729 64.1729
P3(MW) 55.1011 54,9097 54.9097
Cost ($/hr) 1599.98 1597.50 1597.50
Losses(MW) 2.6686 2.3418 2.3418
Note :

Tansig : Tangent hyperbolic sigmoid activation function

Logsig : Logistic sigmoid activation function

The accuracy of the solution obtained by the algorithm when applying this proposed

method to the 5-bus test system, is shown in Table 4.2. These results have been done by
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using the hyperbolic tangent function and logistic function with the same shape constant.
In this case, we use the same initial guess for each neuron for these two types of activa-
tion function. The minimal cost for both activation function is exactly the same, but the
number of iteration to reach convergence is different. The load demand for this system is
150 MW. The minimal cost function obtained by using a hyperbolic tangent activation
function is the same as that obtained by using logistic activation function. In addition, can
be seen that by using different activation functions, the number of iterations to obtain
convergence when the tangent hyperbolic function is applied is about half of that required
by applying logistic function (see Table 4.4). This is because of the form of these two
functions are different as shown in the Fig. 4.1. By comparing with the conventional
method (employing the Lagrangian Multipliers), this result is relatively similar. The

losses obtained are slightly smaller than obtained by using conventional method
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Figure 4.1 Two types of activation function

The choice of the initial guess for each neuron is a difficult task. Once we choose the ini-
tial guess of the neuron, whatever the value of the shape constant would be, the minimal
conditions obtained are the same for two types of activation function. The difference is in
thé time consumed to reach convergence. By choosing different values of the initial
guess, the results obtained shown in Table 4.3. In this table, two different starting point

are chosen, and the optimal solution can be seen in case 1 and case 2.



Table 4.3. The optimal conditions obtained by using different initial guess for the neu-

rons, for 5-bus test system.

Unit Optimal Condition (MW)
Case 1 Case 2
P1(MW) 46.7763 46.7306
P2(MW) 57.4135 63.0069
P3(MW) 48.1765 42,7241
Cost ($/hr) 1600.20 1600.60
Losses(MW) 2.3663 2.4616

Table 4.4. Number of iterations required to reach optimal solution by varying the shape

constant of sigmoid and by using different types of activation function for 5-bus test sys-

tem.
Lambda No. of iteration
Logsig Tansig
0.0004 94 44
0.0005 74 34
0.0008 44 19
0.001 34 13
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0.0012 27 9
0.0015 20 10
0.0017 17 12
0.0018 16 16
0.0019 14 20
0.002 13 24
0.0024 9 76
0.0025 8 160
0.003 10 N/A
0.004 24

0.005 160

0.006 N/A

From Table 4.4. can be seen that the number of iterations decreases from 44 to 9 when
the value of lambda is increased from 0.0004 to 0.0012 by applying the tangent hyper-
bolic function. However, when the value of lambda is increased more beyond 0.0012, the
number of iterations is also increased and the result is not applicable when the value of
lambda is 0.003. At that value of lambda, the solution values undergo oscillations, and
eventually give an unacceptable result. The same situation happened with the logistic ac-
tivation function, where the number of iterations decreased from 94 to 8 when the value

of lambda is increased from 0.0004 to 0.0025.
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Table 4.4 shows the relation between the number of iterations and the value of lambda
by using different types of activation function. It seems that the number of iterations for
the two kinds of activation function will be the same when the value of lambda for logis-
tic function is twice the value of lambda for hyperbolic tangent function. For instance,
when the value of lambda is 0.001, by using tangent hyperbolic function the number of
iterations is 13. On the other hand, by using logistic sigmoid function, the value of

lambda 0.002 gives the number of iterations is equal to 13 also.

Generally, in this case the value of 0.0012 for lambda seems to give a good accuracy and

high speed of convergence, especially with using tangent hyperbolic activation function.

14-bus test system
The result obtained is shown as :
Table 4.5. The optimal conditions for each unit and the minimal cost obtained, for 14-bus

test system.

Unit Optimal Condition (MW)
Conventional HNN
method Logsig Tansig
P1(MW) 171.6240 171.9580 171.9580
P2(MW) 100.0000 99.2010 99.2010
Cost ($/hr) 3456.92 3451.40 3451.40
Losses(MW) 12.6240 12.1590 12.1590
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By using the same treatment as 5-bus system test above, the accuracy of the minimum
cost obtained in the 14-bus system test is as shown in Table 4.5. The minimum cost ob-
tained by this approach is little bit smaller than that obtained by conventional method.
With the power demand at 259 MW, the losses obtained by this method are slightly lower

than the conventional method.

The type of activation function also affects the speed of convergence. With the same ini-
tial guess for each neuron and the same shape constant, the number of iterations required
when using the hyperbolic tangent is lower than that by using logistic activation function.
On the other hand, the minimal cost for both activation functions are the same, as shown
in Table 4.5. Table 4.6 shows the values for the other cases when the different initial
guesses to the neuron are given. In these cases, the optimal conditions and the costs ob-

tained are different from that shown in Table 4.5.

From Table 4.7, can be seen that the tangent hyperbolic activation function gives the fast-
est solution when the value of lambda is 0.0008; and the number of iterations is 6.
Whereas, the logistic activation function gives the fastest solution with the number of it-

erations is 7 and the value of lambda is 0.0015.



Table 4.6. The optimal conditions obtained by using different initial guess for the neu-

rons, for 14-bus test system.

Unit Optimal Condition (MW)
Case 1 Case 2
PI(MW) 175.3956 178.4473
P2(MW) 95.9204 83.0115
Cost ($/hr) 3459.6 3467.3
Losses(MW) 12.3160 12.4588

Table 4.7. Number of iterations required to reach the optimal solution by varying the
shape constant of sigmoid and by using different types of activation function for 14-bus

test system.

Lambda No. of iteration
Logsig Tansig

0.0004 60 26
0.0005 46 19
0.0006 37 14
0.0007 31 10
0.00075 28 7
0.0008 26 6
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0.0009 22 11
0.001 19 13
0.0012 14 26
0.0014 10 76
0.0015 7 252
0.002 13 N/A
0.0025 34
0.003 252
0.004 N/A

For the value of lambda greater then 0.0015 with tansig activation function, and lambda
greater than 0.003 with logsig activation function do not give feasible result. The result

given at those values will alternate and end up at the upper and lower limits.

30-bus system test

Table 4.8 shows the performance for the 30-bus test system. The optimal solution by us-
ing tangent hyperbolic function and logistic function is reached. The proposed method
gives an amount of the minimal cost which is little bit lower than that obtained using the
conventional method. With the power demand 283.4 MW, the minimal cost obtained is
$801.9642 /hour and the losses are 9.3305 MW. The other cases shown in Table 4.9 by

changing the initial guess for the neurons.



Table 4.8. The optimal conditions for each unit and the minimal cost obtained, for 30-bus

test system.

Unit Optimal Condition (MW)
Conventional HNN

method Logsig Tansig
P1(MW) 176.9754 176.2093 176.2093
P2(MW) 48.2544 48.7806 48.7806
P5(MW) 20.9630 19.8327 19.8327
PS(MW) 22.4100 21.5560 21.5560
P11(MW) 12.3962 12.5991 12.5991
P13(MW) 12.0000 13.7528 13.7528
Cost ($/hr) 802.68 801.9642 801.9642

Losses(MW) 9.5990 9.3305 9.3305

Table 4.9. The optimal conditions obtained by using different initial guess for the neu-

rons, for 30-bus test system.

Unit Optimal Condition (MW)
Case 1 Case 2
P1(MW) 158.3727 155.1983
P2(MW) 49.1785 55.091°9
P5(MW) 29.5324 25.0451




P3(MW) 24 .6696 25.0378

P11(MW) 14.7974 16.0265

P13(MW) 14.8564 15.0169
Cost ($/hr) 808.4366 806.2651
Losses(MW) 8.0069 8.0165

Table 4.10. Number of iterations required to reach the optimal solution by varying the

shape constant of sigmoid and by using different types of activation function for 30-bus

test system.

Lambda No. of iteration
Logsig Tansig
0.0001 289 142
0.0004 68 31
0.0005 53 24
0.0006 44 19
0.0007 37 15
0.00075 34 13
0.0008 31 12
0.0009 27 10
0.001 24 7
0.0012 19 8
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0.0014 15 11

0.0015 13 15

0.0017 11 25

0.002 7 93

0.0025 10 N/A
0.003 17

0.004 99

0.005 N/A

For the 30-bus test system, in order to reduce the number of iteration, lambda is increased
from 0.0001 until 0.005 as shown in Table 4.10. Lower than 0.0001, the same result
could be reached, but it needs too much time to get convergence. The fastest solution
could be achieved when the value of lambda is equal to 0.002 by using the logistic trans-
fer function, and lambda equal to 0.001 for the tangent hyperbolic function. In this case,
by using tansig activation function, we could get a lower number of iteration to reach the
optimal solution than that by using logsig. When we set lambda greater then 0.002 for
tangent hyperbolic function and greater than 0.004 for logistic function, the result will an

unfeasible solution,
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57-bus test system

Table 4.11. The optimal conditions for each unit and the minimal cost obtained, for 57-

bus test system.

Unit Optimal Condition (MW)
Conventional HNN

method Logsig Tansig
PI(MW) 255.5308 295.6114 295.6114
P3(MW) 292 .6571 293.0090 293.0090
P8(MW) 339.9919 338.5716 338.5716
P12(MW) 346.0974 346.3031 346.3031

Cost ($/hr) 18505 18490 18490
Losses(MW) 23.4774 22.6951 22.6951

The minimal cost has been reached by applying this method on the 57-bus test system as
shown in Table 4.11. Using the Hopfield method gives a slightly lower amount of mini-
mal cost than that obtained by using the conventional method. The power demand given
is 1250.8 MW. Using the tangent hyperbolic function gives faster convergence than that
by using logistic function. The same problem as when applying this method to the other
test system 1is getting trap to the local minimal when choosing the different initial guess

for the neurons, as shown in Table 4.12.
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Table 4.12. The optimal conditions obtained by using different initial guess for the neu-

rons, for 57-bus test system.

Unit Optimal Condition (MW)
Case 1 Case 2
P1(MW) 292.8473 290.8870
P3(MW) 267.9581 265.9594
P8(MW) 342.9450 343.5210
P12(MW) 368.1548 371.3325
Cost ($/hr) 18,507.00 18,511.00
Losses(MW) 21.1052 20.8999

Table 4.13. Number of iterations required to reach optimal solution by varying the shape

constant of sigmoid and by using different type of activation function for 57-bus test

system.
Lambda No. of iteration
Logsig Tansig
0.0004 573 299
0.0008 284 147
0.0012 189 96
0.0016 147 71




0.002 116 55
0.0025 92 43
0.003 76 35
0.0035 64 29
0.004 55 25
0.0045 48 21
0.005 43 18
0.0055 39 16
0.006 35 14
0.0065 32 12
0.007 29 11
0.0075 27 9
0.008 25 8
0.0085 23 6
0.009 21 4
0.01 18 8
0.02 8 N/A
0.03 34
0.035 226
0.04 N/A

83
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The system finds a good solution for the minimal cost when setting the value of lambda
within the range 0.0004 to 0.01 for the hyperbolic tangent function, and within the range

0.0004 to 0.035 for the logistic function.

From Table 4.13, it is seen that using the value of lambda equal to 0.009 for applying the
tangent hyperbolic function and lambda equal to 0.02 for logistic function, the fastest
solution can be reached. This Table shows that for the same lambda, the number of itera-
tions required to get an optimal solution using the tansig function is always almost half of

that number reached using logsig activation function.

4.3.1 Comparison between the proposed method and the conventional method.

Comparing our results with those obtained by using conventional optimization method is
shown in Table 4.14. It can be seen that the results have been obtained by using four test
system are slightly different with the results when we use the conventional method (La-
grangian Multiplier). This means that the result obtained by this thesis method is consis-

tent with the result obtained by the conventional method (Lagrange Multiplier method).
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Table 4.14. The comparison of the optimal solution by using the proposed method and

Lagrange multiplier method.

NUMBER COST ($/HR) ERROR

(%)
OF BUSES PROPOSED CONVEN-
LOGSIG TANSIG TIONAL

3 1597.50 1597.50 1599.9 0.15

14 3451.40 3451.40 3456.92 0.16

30 801.9642 801.9642 802.68 0.089

57 18490 18490 18505 0.08

From Table 4.14 can be concluded that the proposed technique performs well with these
standard systems i.e. our results are almost the same as those obtained by means of
known conventional methods (Lagrangian Multiplier method). On the other hand this
proposed method still less significant than the other exist method because of its depend-
ency on the initial guess. Therefore, this proposed method needs to be improved in order
to overcome that difficulty mentioned above. In fact, the proposed method, using the hy-
perbolic tangent and logistic activation function gives the same results when the same
values of initial guess for the neurons is applied. The time required to get convergence
whatever the value of lambda used by applying the logistic function is twice that needed

when applying tangent hyperbolic function.



Chapter 5
ACTIVE SECURITY-CONSTRAINED DISPATCH USING

HOPFIELD NEURAL NETWORK

5.1 BACKGROUND

Security Constrained Dispatch is defined as an Optimal Power Flow problem, in which
the objective function is the total cost of generations and the security constraints are
placed on the bus voltage magnitudes, phase angles and the generated reactive powers.
The aim of using Security Constrained Dispatch is to find the optimal solution that will

minimize the production cost that satisfies all of the constraints as fast as possible [46].

In a Security Constrained Dispatch developed by Salgado et al. [12], the dependent
variable constraints are on the bus voltage magnitude and the generated reactive powers.
The results show that the effect of the bus voltage magnitude and the generated reactive

powers on the real power generated is excessively weak.

Considering the fact that there are strong relations between the power generated, P, and
the bus voltage angle, &, and also between the generated reactive power, Q, and the bus
voltage magnitude, V, and that the couplings between P-V and Q-5 are very weak.
Therefore, the Optimal Power Flow solution may be divided into a P-§ optimization

module and a Q-V optimization module [46].

86
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According to these principles, Sjoholm and Boye [46], have proposed a new method
involving modifying the constraints, i.e., by replacing the bus voltage magnitude and

generated reactive power constraints with the constraints on the bus voltage angles.

When the generating units are located at a great distance from load centres, the
production cost minimization may result in the transfer of a large amount of active power

through the transmission lines, resulting in a low voltage values at load buses.

In order to improve the shortcomings mentioned above, Kirschen and Van Meeteren [24]
suggested the MW/Voltage control, by introducing voltage constraints directly into the

active optimization process.

In this thesis, the method proposed by Sjoholm and Boye [46] is modified, by taking into
account a generated active power increment on the swing bus for the inequality and
equality constraints. In addition, the maximum and minimum values of load bus voltage
magnitudes are considered as suggested by [24]. These modification could result in more

accurate solution.

5.2 ACTIVE SECURITY CONSTRAINED DISPATCH ALGORITHM

For active power generation cost minimization, the cost function is given by the total sum

of generator fuel costs [12, 27, 46].
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Ng
C(PGi)ZZ(ai+biPGi+ciP(§i) (5.1)
=1

where
N, = set of indices of generator buses including the swing busbar.

In order to have the objective function in terms decision variables as constraints, the

equation (5.1) is approximated using the 2" order Taylor series expansion as [12, 27, 46]

Ng

Ng
C(PGi +APGi): Z(ai +b,F, +ciPG2i)+ Z(bi +20iPGi)APGi +ciAPGzi

i=1 i=1

The incremental generation cost function expanded in a second order Taylor series

Ng
F(AP) = Z(bi +2¢,P,)AP, + ¢, AP} (5.2)

i=1

Or, in matrix form [12, 27, 46]:

Fe (AP py) = [4,10P p, + AP, [4, 18P, (53)
where

[Al] : (1xN, ) row vector with components (b, +2¢,P)
[Az] : (NzxN ) diagonal matrix with components c;

AP, - (N,x1) column vector of the generated active power increments.

The optimization should satisfy many constraints. In this case, the equality and inequality

constraints are included.
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Equality Constraint
The equality constraint can be derived from the modification of the relation among
variables in load flow algorithm as follows:

The nodal difference equation for the busbar powers can be expressed in matrix form as

[3]:

AN [ &

The slack-bus phase angle and voltage magnitudes, the PQ buses active and reactive

powers and PV-buses voltage magnitude are assumed to remain constant

AS; =0, AV =0, AP, =0, AQ,, =0,and AV,, =0 (5.5)

By using the condition of Eq. (5.5) in Eq. (5.4) yields the following mutual dependencies

among real generating powers [27] :

s

where

AP, :the power generated increment at slack bus

AP, : the power generated increment at the PV bus
or

R0 I I R A el
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yields:

A5PV _ -1

o e
Thus

APy = [Hl][HZ]_l[APPV]

Finally we have

[1 - S][APS.PV ] =0 (5.6)
where
s =[a 7]

The above equation represents the linearized active power balance equation.

Inequality Constraints

The first constraints are on the upper and lower bounds of the power generating units.
The generating constraints give the maximum and minimum generating capacity, outside
of which it is not feasible to generate due to technical or economic reasons. The

generating limits are expressed as [12, 27, 46]

AP,

Gimin

<AP,<AP, (5.7)

The second sets of constraints are the upper and lower bounds of voltage phase angles.

The voltage phase angles depend on the generating units.
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From the power flow problem, the relation between the deviation of active and reactive

power generating and the deviation of voltage phase angle can be reformulated as [55]:

AP,

APS AS,,

AQ”V =[7]| AS,, (5.7)
s AV

AQ,y

By considering the fast decoupled algorithm as explained in Chapter 2, the successive

phase angle changes are [3]

1 AP

AS =-{B'] ;

(5.8)

So, the constraints on & can be written as follows:

8] 2527 < as (5.9)

A§Mn s A5PV,PQ == V max

where

AP, : the power generated increments at slack and PV bus

In this proposed method, the deviation of power of the generating units are included for
the swing bus and voltage controlled buses, as shown in (5.9), and the deviation of
voltage phase angles are included at the voltage control buses and load buses.

The third sets of constraints are the upper and lower bounds of the voltage magnitude.
Consideration of voltage magnitude constraints in the active optimization requires
knowledge of a linearized relation between the incremental voltage magnitude at bus i
and the incremental changes in the active controls [24]. According to [24], the effect of

the active power injections on the voltage magnitude is described by:
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= pm)ap,, (5.10)
By replacing the matrices H and L with the matrices B’ and B” of the fast-decoupled

power flow, we have [24]

AVrp =B C MXB) 8P, (5.11)

The Voltage constraint can be expressed as

AV S AV, = [( Y'(-Mm)B)" ]APS oy SAV (5.12)

5.3 ACTIVE SECURITY-CONSTRAINT DISPATCH USING HOPFIELD
NEURAL NETWORK
The objective of the optimization problem is the incremental cost function as expressed

in equation (3)

Min Fo (AP, ) = [Al ]APS,PV + APST,PV [Az ]APS,PV

Subject to

Equality constraint
L -s]apg =0

And Inequality constraints

A})Gimm - AP <APGtmax
AS . <AS [ ]‘1 S,PY
min =~ py,po ~ Omax

" _1 |"'1
AV hin <87 po = [( ) (- M)B) }APS’PVSAVmaX
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The cost objective function and the demand requirement constraint are combined to

produce an augmented objective function given by

2
$x.K)=K, ([A1 ]AP s.py + AP py [Az ]AP S,PV )+ K g {max[o’ h; (AP S,PV )]}
(5.13)

2 o )
+K2j?;1 jAPS,PV
where

K 0 ,K 1 and K 5 are weighting factors indicating the relative importance of each term.

h; (AP ;) is the inequality constraints as a function of power generated increments.

g (AP 5, ) is the equality constraints as a function of power generated increments.

Then the augmented objective function is mapped into the Hopfield network.
The Hopfield network is created with N neurons. The output value of each neuron

represents the generated increment of each unit.

The sigmoid function of each neuron is modified to limit the output value of each neuron
to lie between the minimum and maximum generated increment of each unit. The first

form used by Park et al. [14] is a hyperbolic tangent function given by

max i min i min §
APg py = (APS,PV —APg py )(1 + tanh(’wi )2+ APg py  (5.14)

And logistic function given by

— | A pmaxi_ , pmini 1 min i
APg py = (AP s,py AP, S,PV)(Hexp]_ U, )] +APg py  (5:15)
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5.4. Numerical Results

A Matlab program has been written to implement the modified Hopfield neural network
method to solve the four test systems described in this thesis. These systems are a 5-bus
test system from Saadat [3], an IEEE-AEP Standard 14-busbar system [32], and a

modified IEEE 30-busbar system [27], and IEEE-AEP 57-busbar test system [32].

The parameter A determines the shape of the sigmoid function and the rate at which the
output, V¥, is updated with respect to a change in input, u,. The proper value of A4

depends on the data being processed. The proper value has been chosen by trying

different values of A for each problem instance.

The data used in this chapter are the same as the data that was used in chapter 4.

The result for both systems is presented in Tables 5.1 to 5.16.

30-bus test system

The results obtained by applying this method for the 30-bus system test are shown in
Tables 5.1, 5.2, 5.3 and 5.4. This result has been compared with some other results by
using the Gradient Projection method from [27], [12], [46] and [47]. They used the same
objective function and data but different constraints. The inequality constraints used by
the first reference [27] is the limitation of power generations. The second [12] used the

upper and lower bounds of active power generating units, reactive power generating units
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and voltage magnitude of load buses as inequality constraints. The third [46], as the
inequality constraints are the upper and lower bounds of power generation and voltage
phase angles, and the last [47], they considered to be the active power flows along lines.
The minimal costs have been reached by those methods with the load 283.4 MW are

$804.853/hr, $806.88/hr, $820.89/hr and $821.57/hr respectively.

Using the proposed method, the constraints are the upper and lower bounds of power
generating units, voltage phase angles and voltage magnitudes. The first step is a power
flow unoptimizes calculation to determine the initial conditions from which the
optimization will begin. Afterward, the initial guess for the generated power increment is
chosen, and then run the program to get the optimal solutions, i.e. minimal cost of each

generating unit, voltage phase angle and voltage magnitude on each bus.

One of the problems of this method for computer applications is the need of an initial
feasible point. For the first case, a certain initial guess for increment of power generation
is chosen, and the solutions achieved are written in Table 5.1 and 5.2. for a minimal cost
obtained and voltage phase angles and voltage magnitude by applying the hyperbolic
tangent and logistic activation function. With the same power demand as the other
methods above, the minimal cost reached for these two types of activation function are
the same, i.e. $ 804/hour as shown in Table 5.1. The differences between them are on the
time to convergence. This amount is lower than those obtained by using the three
previous methods [12, 46, 47]. The power losses obtained by using this method are 8.8

MW, which is lower than that obtained by Lee’s [27], i.e. 10.154 MW, and 1.3 MW
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higher than that obtained by Yalcinoz’s [47], i.e. 7.532 MW. The active security dispatch
method is also checke‘d for the voltage magnitudes and voltage angles. The results are
shown in Tables 5.2. The lowest value of voltage magnitude on the load bus is 0.994 p.u.
on bus 3, and the highest is 1.0608 p.u. on bus 12. The bus voltage phase angles yielded
are also good, i.e. vary between the minimum —11.266 degrees and the maximum 0.00
degrees. Both voltage magnitudes and phase angles are consistent with other results. The
overall time needed to reach the convergence is 1.43 second. Therefore, the results are

reasonable.

Table 5.3 and 5.4 show the results where a different initial guess is used. In this case, the
minimal cost obtained is $ 809.645/hour, which is still consistent with those obtained by
three previous methods In addition, this result gives the lower losses than in Lee’s
method. The voltage magnitudes are also inside the bounds. The lowest value is 0.991
p.u. on bus 3 and the highest is 1.0820 p.u. on bus 12. The bus voltage phase angles lie
between the minimum of -11.266 degrees and the maximum of 0.00 degrees. From these

results it is seen that this method is consistent with the other methods.
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Table 5.1 The optimal conditions of power generated and minimal cost obtained by using

hyperbolic tangent and logistic activation function in the first case for 30-bus test system.

Variable Limits Optimal Condition
Lower Upper Tansig Logsig

P1 50.0 200.0 169.1185 169.1262

P2 20.0 80.0 48,8350 48.8375

P5 15.0 50.0 25.8993 25.8996

P8 10.0 35.0 20.1401 20.1400
P11 10.0 30.0 13.5199 13.5200
P13 12.0 40.0 14.7000 14.7000
Cost ($/hour) 803.9797 | 804.0152
Losses (MW) §.8126 8.8233

Table 5.2. The bus phase angles and voltage magnitudes obtained in the first case for 30-

bus test system.



BUS NO. DELTA VOLTAGE
(degrees) (p.u.)
1 0.0000 1.0600
2 -2.8649 1.0430
3 -7.3207 0.9940
4 -6.0802 1.0417
5 -7.8707 1.0100
6 -6.2100 1.0170
7 -6.1536 1.0186
8 -6.2180 1.0100
9 -6.2521 1.0535
10 -8.4780 1.0480
11 -4.8749 1.0820
12 -7.4425 1.0608
13 -6.4275 1.0710
14 -8.5540 1.0460
15 -8.6680 1.0410
16 -8.2650 1.04890
17 -8.6200 1.0430
18 -9.2910 1.0310
19 -9.4720 1.0290
20 -9.2800 1.0330
21 -8.9490 1.0350
22 -8.9450 1.0360
23 -9.1460 1.0310
24 -9.4440 1.0250
25 -9.4330 1.0210
26 -9.8500 1.0030
27 -9.1690 1.0270
28 ~-5.5784 1.0096
29 -10.3900 1.0070
30 -11.2660 0.9960

Table 5.3 The optimal conditions of power generated and minimal cost obtained in the

second case when the initial guess for the neurons is changed for 30-bus test system.



Variable Limits Cptimal Condition
Lower Upper Tansig Logsig
(MW) (MW) (MW) (MW)
Pl 50.0 200.0 150.6683 150.6762
P2 20.0 80.0 59.9966 59.9983
b5 15.0 50.0 22,9995 22,9598
P8 10.0 35.0 22.0000 22.0000
P11 10.0 30.0 15.0099 15.0100
P13 12.0 40.0 20.7299 20.7299
Cost ($/hour) 809.6447 809.6769
Losses (MW) 8.0044 8.0142
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Table 5.4. The bus phase angles and voltage magnitudes obtained in the second case

when the initial guess for the neurons is changed for 30-bus test system



BUS NO. DELTA VOLTAGE
(degrees) (p.u.)
1 0.0000C 1.0600
2 -2.5308 1.0430
3 -6.3886 0.9991
4 -5.6314 1.0048
5 -7.7617 1.0100
6 -5.9645 1.0120
7 -5.9684 1.0049
8 -5.9815 1.0100
9 -6.3342 1.0540
10 -8.4780 1.0480
11 -4.7928 1.0820
12 -7.6683 1.0610
13 -6.2017 1.0710
14 -8.5540 1.0460
15 ~-8.6680 1.0410
16 -8.2650 1.0480
17 -8.6200 1.0430
18 -9.2910 1.0310
19 -9.4720 1.0290
20 -9.2800 1.0330
21 -8.9490 1.0350
22 -8.9450 1.0360
23 ~-9.1460 1.0310
24 -9.44490 1.0250
25 -9.4330 1.0210
26 -9.8500 1.0030
27 -9.1690 1.0270
28 -5.6189 1.0160
29 -10.35900 1.0070
30 -11.2660 0.9960
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Based on the previous comparison, the proposed method can be considered to be an
alternative method for solving the optimization problem. In the rest of this chapter, the

proposed method is applied to the 14-bus, 57-bus and 5-bus test systems.

S-bus test system

Tables 5.5 and 5.6 show the results by applying this method to the 5-bus test system. The
minimal cost obtained using the two kinds of activation function are exactly the same
amount, i.e. § 1597.50/hour for the power demand 150 MW. The lowest voltage
magnitude at the load bus has been reached is 0.9798 p.u. at bus 5, and the highest is
1.0162 p.u. at bus 4. The voltage phase angles are within the maximum 0.00 degrees and
—2.975 degrees. Tables 5.7 and 5.8 show the results for the optimal conditions and the
voltage magnitudes and phase angles obtained when we start with the other initial guess
for the neurons. The minimal cost is $ 1600.50/hour. The different from the first case is
only 0.19%. The new voltage magnitudes at the load buses within the maximum 1.0168
p.u. and minimum 0.9836 p.u. The voltage phase angles reached are within the range —
3.351 degrees and 0.00 degree. The overall time needed for solving this problem is 0.22

second.
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Table 5.5 The optimal conditions of power generated and minimal cost obtained by using

hyperbolic tangent and logistic activation function for 5-bus test system.

Variable Limits Optimal Condition
(MW) Lower Upper Tansig Logsig
(MW) (MW) (MW) (MW)
Pl 10 85 33.2529 33.2530
P2 10 80 64.5999 64.6000
P3 10 70 54,4999 54.5000
Cost ($/hr) 1597.50 1597.50
Losses (MW) 2.3528 2.3529

Table 5.6. The bus phase angles and voltage magnitudes obtained in the first case for 5-

bus test system.

BUS DELTA VOLTAGE
NO. (degree) (p.-u.)
1 0.0000 1.0600
2 -0.5227 1.0450
3 -0.8053 1.0300
4 -1.4808 1.0162
5 -2.9750 0.9798
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Table 5.7 The optimal conditions of power generated and minimal cost obtained in the

second case when the initial guess for the neurons is changed for 5-bus test system.

Variable Limits Optimal Condition
(MW) Lower Upper Tansig Logsig
(MW) (MW) (MW) (MW)
Pl 10 85 47.5029 47.5029
P2 10 80 55.6899 55.6900
P3 10 70 49.1599 49.1600
Cost (§/hr) 1600.5 1600.5
Losses (MW) 2.3527 2.3529

Table 5.8 The bus phase angles and voltage magnitudes obtained in the second case for 5-

bus test system

BUS PHASE VOLTAGE
NO. ANGLE (p.u.)
(degree)
1 0.0000 1.0600
2 ~-0.8944 1.0450
3 -1.2913 1.0300
4 -1.9536 1.0168
5 -3.3510 0.9836
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14-bus test system

When applying this method to the 14-bus test system with the power load 259 MW, the
amount of minimal cost reached is $3451.20/hour by using the hyperbolic tangent
activation function or the logistic activation function as shown in Table 5.9. The voltage
magnitudes have the minimum value 0.9754 p.u. at bus 3 by using tangent hyperbolic
function and maximum value 1.0900 p.u. at bus 8. The voltage phase angles obtained are
also consistent with other results. The maximum has been reached is 0.00 degrees and the
minimum is —15.994 degrees as given in Table 5.10. By giving different values of initial
point for the increment of power generating, the results as shown in Tables 5.11 and 5.12.
The minimal cost has been reached is $ 3515.20/hour for either by using hyperbolic
tangent or logistic activation function. Both the voltage magnitudes and voltage phase
angles are consistent with other results. The overall time needed to solve this problem is

0.77 second.
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Table 5.9 The optimal conditions of power generated and minimal cost obtained by using

hyperbolic tangent and logistic activation function in the first case for 14-bus test system.

Variable Limits Optimal Condition
Lower Upper Tansig Logsig
(MW) (MW) (MW) (MW)
Pl 10.00 300.00 171.8159 171.8164
P2 10.00 100.00 99.3400 99.3400
Cost ($/hr) 3451.20 3451.20
Losses (MW) 12.1559 12.1564

Table 5.10. The bus phase angles and voltage magnitudes obtained in the first case for

14-bus test system

BUS NO. DELTA VOLTAGE
(degree) (p.u.)

1 0.0000 1.0600
2 -3.3849 1.0450
3 -12.1799 0.9754
4 -9.7441 0.9810
5 -6.8035 1.0482
6 -14.2500 1.0700
7 -13.3620 1.0610
8 -13.3620 1.0900
9 -14.9400 1.0550
10 -15.1030 1.0500
11 -14.8070 1.0570
12 -15.0960 1.0550
13 -15.1690 1.0490
14 -15.9940 1.0310
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Table 5.11 The optimal conditions of power generated and minimal cost obtained in the

second case when the initial guess for the neurons is changed for 14-bus test system.

Variable Limits Optimal Condition
Lower Upper Tansig Logsig

(MW) (MW) (MW) (MW)
Pl 10.00 300.00 194.4659 1954 .4665
P2 10.00 100.00 77.7998 77.7999
Cost (§/hr) 3515.20 3515.20
Losses (MW) 13.2657 13.2664

Table 5.12. The bus phase angles and voltage magnitudes obtained in the second case for

14-bus test system

BUS NO. DELTA VOLTAGE
(degree) (p.u.)

1 0.0000 1.0600
2 -3.9763 1.0450
3 -12.38%94 0.9882
4 -9.9682 0.9946
5 -7.5630 1.0377
6 -14.2500 1.0700
7 -13.3620 1.0610
8 -13.3620 1.0900
9 -14.9400 1.0550
10 -15.1030 1.0500
11 -14.8070 1.0570
12 -15.0960 1.0550
13 -15.1690 1.0490
14 -15.9940 1.0310
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57-bus test system

By applying the proposed method to the 57-bus system test also gives a consistent
solutions. There is a slight difference for the minimal cost when we apply this method for
the system by using the hyperbolic tangent function and using the logistic function. When
the hyperbolic tangent function is built in the network, and applied for power demand
1250.8 MW, the minimal cost obtained is $ 1.8492 x 10* /hour, and logistic function
obtained $ 1.8493 x 10 /hour as shown in Table 5.13. This might be because of the size
of the system and having too many constraints with the small value of variables (i.e.
power generating increment), as happened also in 30-bus system test. Table 5.14 shows
that there are no violations for voltage phase angles and voltage magnitudes obtained.
The lowest voltage magnitude value is 0.9630 p.u. at bus 31, and the highest is 1.0890 at
bus 46. The bus voltage phase angles have been obtained within the maximum 1.4631
degrees and minimum -18.62 degrees. By choosing different value of the initial guess for
the power generating increment, the result can be seen in Table 5.15 and 5.16. The
minimal costs obtained are $ 18,506/hour and $ 18,507/hour by using hyperbolic tangent
and logistic activation function respectively. All of the voltage magnitudes and voltage
phase angles are consistent with other results. The overall time needed to get convergence

1s 1.92 second.
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Table 5.13 The optimal conditions of power generated and minimal cost obtained by

using hyperbolic tangent and logistic activation function in the first case for 57-bus test

system.

Variable Limits Optimal Condition
(MW) Lower Upper Tansig Logsig

(MW) (MW) (MW) (MW)

Pl 20.00 600.00 297.3230 | 297.3150
P3 20.00 600.00 285.9509 | 285.9754
P8 20.00 600.00 339.9574 | 339.9787
Pl2 20.00 600.00 349.9543 | 349.9771

Cost ($/hr) 18,492 18,493

Losses (MW) 22.3856 22 .4462
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Table 5.14. The bus phase angles and voltage magnitudes obtained by using hyperbolic

tangent and logistic activation function in the first case for 57-bus test system

BUS NO. Phase VOLTAGE
Angle (p.u.)
(degrees)
1 0.0000 1.0600
2 1.4631 1.0499
3 -3.2996 1.0200
4 -8.3614 0.9854
5 -8.1350 1.0030
6 -8.0231 1.0055
7 -6.6952 1.0077
8 -5.2197 1.0200
9 -8.4781 1.0048
10 -11.0015 1.0067
11 -9.5960 1.0000
12 -9.3795 1.0400
13 -9.5771 0.9981
14 -8.9670 0.9970
15 -6.7761 1.0058
16 -8.1881 1.0358
17 -4.3910 1.0451
18 -11.2810 1.0300
19 -12.7010 0.9990
20 -12.9120 0.9%920
21 -12.4720 1.0360
22 -12.4220 1.0370
23 -12.4800 1.0360
24 -12.7490 1.0260
25 -17.4290 1.0100
26 -12.4460 0.9840
27 -10.9350 1.0040
28 ~-9.9070 1.0180
29 -9.2010 1.0310
30 -17.9590 0.9900
31 -18.6200 0.9630
32 -17.8470 0.9760
33 -17.8850 0.9730
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

-13.
.5660
.3080

-13
-13

-13.
.2970
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.3550
.5240
.6830

-12
-13
-13
-12
-13
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-11.

-8.
.6940

-10
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.4300
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.9340

-12
-12
-12
-11

-10.
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9590

0520
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.9820
.9890
.9980
.0080
.0400
.0060
.9930
.0330
.0140
.0390
. 0450
.0650
.0890
.0620
.0560
.0650
.0520
.0790
.0030
.9940
.0190
.0530
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.0230
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Table 5.15 The optimal conditions of power generated and minimal cost obtained in the

second case when the initial guess for the neurons is changed for 57-bus test system.

Variable Limits Optimal Condition

(MW) Lower Upper Tansig Logsig
(MW) (MW) (MW) (MW)

Pl 20.00 600.00 310.0098 310.0034
P3 20.00 600.00 313.5293 313.5547
P8 20.00 600.00 327.8578 327.8789
P12 20.00 600.00 324 .3351 324 .3575

Cost ($/hr) 18,506 18,507

Losses (MW) 24.932 24 .994
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Table 5.16. The bus phase angles and voltage magnitudes obtained in the second case for

57-bus test system

BUS NO. DELTA VOLTAGE
(degrees) (p.u.)
1 0.0000 1.0600
2 1.2830 1.0490
3 -3.1170 1.0200
4 -8.4481 0.9832
5 -8.1350 1.0030
6 -8.0055 1.0056
7 -6.6524 1.0078
8 -5.3403 1.0200
9 -8.3982 1.0055
10 -10.9558 1.0078
11 -9.5960 1.0000
12 -9.6427 1.0400
13 -9.4817 1.0004
14 -8.9670 0.9970
15 -6.8823 1.0043
16 -8.1374 1.0374
17 -4.3974 1.0458
18 -11.2810 1.0300
19 -12.7010 0.9990
20 -12.9120 0.9920
21 ~-12.4720 1.0360
22 -12.4220 1.0370
23 -12.4800 1.0360
24 -12.7490 1.0260
25 -17.4290 1.0100
26 -12.4460 0.9840
27 -10.9350 1.0040
28 -9.9070 1.0180
29 -9.2010 1.0310
30 -17.9590 0.9900
31 -18.6200 0.9630
32 -17.8470 0.9760
33 -17.8850 0.9730
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.0230
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In this chapter, we have applied the proposed method on the security-constrained
dispatch problems for standard IEEE 5, 14, 30 and 57-bus systems. From the results
obtained, we can conclude that the exterior penalty term added to penalize the objective
function in case of constraint violation is quite applicable for handling the problem of
security-constrained dispatch. From the comparison held between the proposed Hopfield
neural network and many other methods we also discovered that the accuracy of the
solutions obtained are almost the same. Moreover, the proposed algorithm consistently

converges to the optimal solution within a reasonable amount of time.



Chapter 6

Conclusion and Future Research

A solution to Economic Power Dispatch and Security-Constrained Dispatch problem
using a modified Hopfield Neural Network has been demonstrated. This proposed

strategy is applied to four standard test systems.

6.1 Conclusion

The results obtained by the proposed Hopfield Network are relatively good in terms of
accuracy and speed compared to the results obtained by the conventional method and
those obtained by other techniques. The minimal costs obtained by using this method for
the standard IEEE is slightly different than that obtained by conventional method. The
errors for all test systems obtained are not more than 0.2 %. Therefore, the proposed
technique can be used as an alternative method for solving optimization problems. By
applying hyperbolic tangent and logistic activation functions reached the same optimal
conditions but with different speed to obtain convergence. Using the hyperbolic tangent
function gives to get convergence than that by using the logistic function with the same
control factor 4. From the results shown in chapter 4, we conclude that the number of
iterations to obtain convergence when the tangent hyperbolic function is applied is about

a half of that required by applying logistic function.
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When choosing different initial conditions, the solution can be trapped into a local
minimum, as shown in Chapter 4. The results obtained are still consistant, because the
error is less than 1%. Convergence to the optimal solution is guaranteed with an

acceptable percentage of error.

Applying the method used in this thesis to active security-constrained dispatch for 30-bus
test system gives good results, relatively similar to the solution obtained by employing
gradient projection [27, 12, 46] and also similar to other Hopfield Neural Network
techniques [47]. The bus voltage magnitudes and the voltage phase angles obtained are

also consistent with other results.

One of the problems of the proposed technique is the need of a good starting point. When
choosing a certain initial guess for the generated power increment, the results obtained
and the computation time are consistent with other results as shown in Chapter 5.
Because of the fast computation and good results obtained, the method shows promise for
on-line applications. However a method of choosing proper initial conditions will have to

be developed.

The advantage of this method is in the ease of formalization of the problem. The method
requires modest memory resources and is efficient in terms of computation time. This
representation is applicable to many problems other than the economic load-dispatching

problem.



117

A disadvantage of this method is that we cannot guarantee the global optimum, because
the accuracy of result depends on tuning many parameters. There are not enough
guidelines to choose the parameters that give the best solution. In addition, the results
depend on the initial guess, supplied to the program. Improvement in these two areas will
be necessary in order to have confidence that the global optimum solution has been

achieved.

It is still difficult to explain why a solution sometimes converges not to a global optimal,
but to a local optimal. Moreover, the solution obtained by Hopfield Neural Network is
not guaranteed to be optimal, but just near optimal. Nevertheless, for most engineering

problems, suboptimal solutions are sufficient.

6.2 Future Research

Due to the fact that it is normally difficult to choose appropriate guidelines to tune the
parameters associated with the proposed algorithm, we see that an extended study has to
be carried out to test the sensitivity of the obtained solution to these parameters and to

specify a criterion to choose suitable values for these parameters.

The Hopfield neural network in continuous-time guarantees convergence to a stable
equilibrium solution but suffers from the possibility of local minimum reaching a
problems. One such method is described in reference [49], which uses a chaotic

simulated annealing theory to have higher ability of searching for globally optimal.
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The speed of convergence in our method is highly depending on the initial feasible point
and how far that point from the optimal solution. Therefore, using population-based
method could be helpful, because of having the ability of starting from different initial

feasible point.

Only constant penalty factors have been used for weighting the constraints in the energy
function. Further research can be conducted for choosing the best penalty functions and

whether they must be constant or adaptive penalties.
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In this Appendix, the data used in the study reported in this thesis will be given. All the

value are in per unit using 100-MVA base. However, the cost coefficients a, b and ¢ are

Appendix-A
Research Data

in $/hour, $/MWhour, and $/MW?hour respectively

Input data for modified IEEE 30-bus test system

Table A-1 The Line Data for IEEE 30-bus test system

Line | From To Line impedance Tap
Number | busbar | busbar R . B X setting
number | number (p-w) (p-w) (p.w

1 1 2 0192 0.0264 0575 1

2 1 3 .0452 0.0204 1852 1

3 2 4 .0570 0.0184 1737 1

4 3 4 .0132 0.0042 .0379 1

5 2 5 .0472 0.0209 1983 1

6 2 6 .0581 0.0187 1763 1

7 4 6 0119 0.0045 0414 1

8 5 7 .0460 0.0102 .1160 1

9 6 7 0267 0.0085 .0820 1

10 6 8 0120 0.0045 .0420 1

11 6 9 .0000 0.0000 .2080 1.078

12 6 10 .0000 0.0000 .5560 1.069

13 9 11 .0000 0.0000 .2080 1

14 9 10 .0000 0.0000 .1100 1

15 4 12 .0000 0.0000 2560 1.032

16 12 13 .0000 0.0000 .1400 1

17 12 14 1231 0.0000 2559 1

126




18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

12
12
14
16
15
18
19
10
10
10
10
21
15
22
23
24
25
25
28
27
27
29

15
16
15
17
18
19
20
20
17
21
22
22
23
24
24
25
26
27
27
29
30
30
28
28

0662
.0945
2210
0824
.1070
.0639
.0340
.0936
.0324
.0348
0727
0116
.1000
1150
1320
.1885
2544
.1093
.0000
2198
3202
.2399
.6360
.0169

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0214
0.0650

1304
.1987
.1997
1932
2185
1292
.0680
2090
.0845
0749
.1499
.0236
2020
1790
2700
3292
.3800
2087
.3960
4153
.6027
4533
.2000
.0599

b e e e e D i e e
[@))
o0

Pt ek ek ek ek ek ped ek e

P e ek
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Table A-2 The Load Data for IEEE 30-bus test system

Busbar Load
number P (p.u) Q(pw
1 0.000 0.000
2 0.217 0.127
3 0.024 0.012
4 0.076 0.016
5 0.942 0.190
6 0.000 0.000
7 0.228 0.109
8 0.300 0.300
9 0.000 0.000
10 0.058 0.020
11 0.000 0.000
12 0.112 0.075
13 0.000 0.000
14 0.062 0.016
15 0.082 0.025
16 0.035 0.018
17 0.090 0.058
18 0.032 0.009
19 0.095 0.034
20 0.022 0.007
21 0.175 0.112
22 0.000 0.000
23 0.032 0.016
- 24 0.087 0.067
25 0.000 0.000
26 0.035 0.023
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27
28
29
30

0.000
0.000
0.024
0.106

0.000
0.000
0.009
0.019

Table A-3 The Generator Data for IEEE 30-bus test system

Busbar Cost coefficients
number a b c
1 0.0 2.00 0.00375
2 0.0 1.75 0.01750
5 0.0 1.00 0.06250
8 0.0 3.25 0.00834
11 0.0 3.00 0.02500
13 0.0 3.00 0.02500
Generation Data
Bus Voltage MW limits
number Mag Min. Max.
1 1.060 50 200
2 1.043 20 80
5 1.010 15 50
8 1.010 10 35
11 1.082 10 30
13 1.075 12 40

129



Input Data for the standard IEEE 14-bus system

Table A-4 The Line Data for standard IEEE 14-bus test system

Line From To Line Impedance Tap
number | busbar | busbar setting
number | number R 2B X
(p-w) (p-w (p-w)
1 1 2 0.01938 | .0264 0.05917 1
2 2 3 0.04699 | .0219 0.19797 1
3 2 4 0.05811 | .0187 0.17632 1
4 1 5 0.05403 | .02064 0.22304 1
5 2 5 0.05695 | .0170 0.17388 1
6 3 4 0.06701 | .0173 0.17103 1
7 4 5 0.01335 | .0064 0.04211 1
8 5 6 0.00000 | .0000 0.25202 0.932
9 4 7 0.00000 | .0000 0.20912 0.978
10 7 8 0.00000 | .0000 0.17615 1
11 4 9 0.00000 | .0000 0.55618 0.969
12 7 9 0.00000 | .0000 0.11001 1
13 9 10 0.03181 | .0000 0.08450 1
14 6 11 0.09498 | .0000 0.19890 1
15 6 12 0.12291 | .0000 0.25581 1
16 6 13 0.06615 | .0000 0.13027 1
17 9 14 0.19711 | .0000 0.27038 1
18 10 11 0.08205 | .0000 0.19207 1
19 12 13 0.22092 | .0000 0.19988 1
20 13 14 0.17093 | .0000 0.34802 1
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Table A-5 The Load Data for standard IEEE 14-bus test system

Busbar Load
number P Q
(p.u) (p-w

1 0.000 0.000
2 0.217 0.127
3 0.942 0.190
4 0.478 -0.039
5 0.076 0.016
6 0.112 0.075
7 0.000 0.000
8 0.000 0.000
9 0.295 0.166
10 0.090 0.058
11 0.035 0.018
12 0.061 0.016
13 0.135 0.058
14 0.149 0.050

Table A-6 The Generator Data for standard IEEE 14-bus test system

Busbar Cost coefficients

Number a b c
1 50.607 10.662 0.01165
2 50.607 10.662 0.01165
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Generation Data
Bus Voltage Mag MW limits
number Min. Max.
1 1.060 10 300
2 1.045 10 100
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Input Data for the standard IEEE-57 bus system

Table A-7 The Line Data for standard IEEE 57-bus test system

133

Line From To Tap
Number | busbar busbar Line Impedance Setting
number number R (p.w) X (p.w) % B (p.u)

1 1 2 .0083 .0280 .0645 1
2 2 3 .0298 .0850 .0409 1
3 3 4 0112 0366 .0190 1
4 4 5 0625 1320 .0129 1
5 4 6 .0430 .1480 0174 1
6 6 7 .0200 .1020 .0138 1
7 6 8 .0339 1730 0235 1
8 8 9 .0099 .0505 0274 1
9 9 10 .0369 .1679 .0220 1
10 9 11 0258 .0848 .0109 1
11 9 12 .0648 2950 .0386 1
12 9 13 .0481 1580 .0203 1
13 13 14 .0132 0434 .0055 1
14 13 15 .0269 .0869 0115 1
15 1 15 0178 .0910 .0494 1
16 1 16 0454 .2060 0273 1
17 1 17 0238 .1080 0143 1
18 3 15 .0162 .0530 .0272 1
19 4 18 .0000 2423 .0000 0.978
20 5 6 .0302 0641 .0062 1
21 7 8 .0139 0712 .0097 1
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2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

10
11
12
12
12
14
18
19
21
21
22
23
24
24
26
27
28

25
30
31
32
34
34
35
36
37
37
36

12
13
13
16
17
15
19
20
20
22
23
24
25
26
27
28
29
29
30
31
32
33
32
35
36
37
38
39
40

0277
.0223
.0178
0180
.0397
0171
4610
2830
.0000
0736
.0099
1660
.0000
.0000
1650
0618
0418
.0000
1350
.3260
.5070
.0392
.0000
.0520
.0430
.0290
.0651
0239
.0300

1262
0732
.0580
.0813
1790
0547
.6850
4340
7767
1170
0152
2560
60276
.0473
2540
.0954
.0587
.0648
2020
4970
7550
.0360
9530
.0380
.0537
.0366
.1009
.0379
.0466

.0164
.0094
.0302
.0108
.0238
.0074
.0000
.0000
.0000
.0000
.0000
.0042
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0016
.0008
.0000
.0010
.0000
.0000

S S S G i O ey

1.043

1.043

[
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

22
11
41
41
38
15
14
46
47
48
49
50
10
13
29
52
53
54
11
44
40
56
56
39
57
38
38

38
41
42
43
44
45
46
47
48
49
50
51
51
49
52
53
54
55
43
45
56
41
42
57
56
49
48
55

.0192
.0000
2070
.0000
.0289
.0000
.0000
.0230
0182
.0834
.0801
1386
.0000
.0000
1442
.0762
1878
1732
.0000
.0624
.0000
5530
2125
.0000
1740
1150
.0312
.0000

.0295
7490
3520
4120
.0585
1042
0735
.0680
.0233
1290
1280
2200
0712
1910
1870
.0987
2320
2265
1530
1242
.1950
.5490
3540
3550
.2600
1770
.0482
1205

.0000
.0000
.0000
.0000
.0010
.0000
.0000
.0016
.0000
.0024
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0020
.0000
.0000
.0000
.0000
.0000
.0030
.0000
.0000

0.955
0.9

—_ e

0.93
0.895

0.94




Table A-8 The Load Data for standard IEEE 57-bus test system

Busbar Load
number P (p.u) Qpw
1 0.550 0.170
2 0.030 0.880
3 0.410 0.210
4 0.000 0.000
5 0.130 0.040
6 0.750 0.020
7 0.000 0.000
8 1.500 0.220
9 1.210 0.260
10 0.050 0.020
11 0.000 0.000
12 3.770 0.240
13 0.180 0.023
14 0.105 0.053
15 0.220 0.050
16 0.430 0.030
17 0.420 0.080
18 0.272 0.098
19 0.033 0.006
20 0.023 0.010
21 0.000 0.000
22 0.000 0.000
23 0.063 0.021
24 0.000 0.000
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

0.063
0.000
0.093
0.046
0.170
0.036
0.058
0.016
0.038
0.000
0.060
0.000
0.000
0.140
0.000
0.000
0.063
0.071
0.020
0.120
0.000
0.000
0.297
0.000
0.180
0.210
0.180
0.049
0.200

0.032
0.000
0.005
0.023
0.026
0.018
0.029
0.008
0.019
0.000
0.030
0.000
0.000
0.070
0.000
0.000
0.030
0.044
0.010
0.018
0.000
0.000
0.116
0.000
0.085
0.105
0.053
0.022
0.100
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54
55
56
57

0.041
0.068
0.076
0.067

0.014
0.034
0.022
0.020

Table A-9 The Line Data for standard IEEE 57-bus test system

Busbar Cost coefficients
Number a b c
1 50.607 10.662 0.01155
2 50.607 10.662 0.01155
3 50.607 10.662 0.01155
4 50.607 10.662 0.01155
Generation Data
Bus Voltage Mag MW limits
number Min. Max.
1 1.060 20 600
3 1.040 20 600
8 1.020 20 600
12 1.040 20 600
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Input Data for IEEE 5-bus test system

Table A-10 The Line Data for IEEE 5-bus test system

139

Line From To Line impedance Tap
number busbar busbar R X %2 B Setting
number | number (p.w) (p.w) (p.w)

1 1 2 0.02 0.06 .030 1

2 1 3 0.08 0.24 025 1

3 2 3 0.06 0.18 .020 1

4 2 4 0.06 0.18 .020 1

5 2 5 0.04 0.12 015 1

6 3 4 0.01 0.03 .010 1

7 4 5 0.08 0.24 025 1

Table A-11 The Load Data for IEEE 5-bus test system

Busbar Load

number P(p.uw Q(p.w
1 0.00 0.00
2 0.20 0.10
3 0.20 0.15
4 0.50 0.30
5 0.60 0.40




Table A-12 The Generator Data for IEEE 5-bus test system

Busbar Cost coefficients
Number a b c
1 200 7.0 0.008
2 180 6.3 0.009
3 140 6.8 0.007
Generation Data
Bus Voltage Mag MW limits
number Min. Max.
1 1.060 10 85
2 1.045 10 80
3 1.030 10 70
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Pseudoinverse of matrix

Appendix-B

The pseudoinverse, known as the Moore-Penrose generalized inverse, is an interesting

generalization of the ordinary inverse.

Consider a system of » linear algebraic equations in # unknowns

ApX; + Xy + o, +a,x, =b,

whose matrix form

Ax=5b
where
a;, 4y a,
a,, 4y as,
4=
_anl an2 ann n

The coefficients a; and b, are given, and we wish to find x,x,,

the equations. A is a square matrix.

x, that satisfy

Only square and non-singular linear system matrices have inverses in the ordinary sense.

It can be expressed in terms of 47" as x = A47'b.

For the nonsquare coefficient matrix 4 can be expressed in terms of the pseudoinverse

A" as x=A"b [50].

The procedure used here is based on the classical method of least squares.

According to [50],
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142

If 4e ™™, n<m,andrank (A4) = n, then the pseudoinverse of 4 = 4" = AT(AAT)~1
Where A" is the transpose of matrix 4. This pseudoinverse will satisfy the condition

A*A=1 ,where I is the identity matrix.



Appendix-C

Simulator Source Code

Economic Dispatch Problems

% IEEE 30-BUS TEST SYSTEM (American Electric Power)
% Bus Bus Voltage Angle ---Load---~ ---=-=-- Generator--
% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax
busdata= 1 1 1.06 0.0 0.0 0.0 0.0 0.0 0 0
2 2 1.043 0.0 21.70 12.7 80.0 0.0 -40 50
3 0 1.0 0.0 2.4 1.2 0.0 0.0 0 0
4 0 1.06 0.0 7.6 1.6 0.0 0.0 0 0
5 2 1.01 0.0 954.2 19.0 50.0 0.0 -40 40
6 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0
7 0 1.0 0.0 22.8 10.9 0.0 0.0 0 0
8 2 1.01 0.0 30.0 30.0 20.0 0.0 -30 40
9 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0
10 0 1.0 0.0 5.8 2.0 0.0 0.0 -6 24
11 2 1.082 0.0 0.0 0.0 20.0 0.0 0 0
12 0 1.0 0 11.2 7.5 0 0 0 0
13 2 1.071 0 0 0.0 20 0 -6 24
14 0 1 0 6.2 1.6 0 0 0 0
15 0 1 0 8.2 2.5 0 0 0 0
16 0 1 0 3.5 1.8 0 0 0 0
17 0 1 0 9.0 5.8 0 0 0 0
18 0 1 0 3.2 0.9 0 0 0 0
19 0 1 0 9.5 3.4 0 0 0 0
20 0 1 0 2.2 0.7 0 0 0 0
21 0 1 0 17.5 11.2 0 0 0 0
22 0 1 0 0 0.0 0 0 0 0
23 0 1 0 3.2 1.6 0 0 0 0
24 0 1 0 8.7 6.7 0 0 0 0
25 0 1 0 0 0.0 0 0 0 0
26 0 1 0 3.5 2.3 0 0 0 0
27 0 1 0 0 0.0 0 0 0 0
28 0 1 0 0 0.0 0 0 0 0
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29
30

To calculate power demand.

PD=sum (busdata(:,5)) ;

To define cost coefficienfs

p=[0 0 0 0 0 0];

g=[2.0 1.75 1.0 3.25 3.0 3.0];

r={ 0.00375 0.0175 0.0625 0.00834

To define B coefficient matrix.

Bij=[0.0218
0.0102
0.0010

-0.0010
0.0001
0.0027

0.0102
0.0187
0.0004
-0.0015
0.0003
0.0031

.0010
.0004
.0430
.0134
.0160
.0108

2.4

10.6

0.025 0.025];

-0
-0

BO= [-0.0003;0.0022;-0.0057;0.0034;0.

B0O0O = 0.001

mwlimits=[

Pmin

Pmax

4;

50
20
15
10
10
12

200
80
50
35
30
40];

mwlimits(:,1);

mwlimits(:,2);

.0010
.0015
.0134
.0224
.0097
.0051

0016;0.

0.0001
0.0003
-0.0160
0.0097
0.0256
-0.0000

007817 ;

0

-0.

-0.

.0027
.0031

0108

.0051

0000

.0358] ;
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lambda=0.001;
Alpha = 10%6;
Beta

1;
Gama = 10°3;
dt=0.00001;

sigP=ones (1,ng) ;
sigPsg=sigP'*sigP;
PP=eye (ng) ;
constr=[PP; -PP] ;
constrsg=constr'*constr;

b=[Pmax; -Pmin] ;

% To define cost function

Tobj=diag(r) ;

% Simulation of neural network

% To get initial wvalue of x

x=[155.00
55.00
25.00
25.00
16.00
15.00] ;

To calculate input u by using inverse of sigmoid function.

for i=1:ng
templ (i) =2* (x (1) -Pmin(i) )/ (Pmax (i) -Pmin (1)) ;
temp?2 (i) =atanh (templ (i) -1) ;
u(i)=temp2(i)/lambda;

end

$for i=1:ng
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Q

% templ(i)={(x(1i)-Pmin(i))/(Pmax(i)-Pmin(i));
% u(i)=(-1/lambda)*log((i/templ(i))-1);
Fend

N=1;
while N<100
% To define x
for i=1:ng
x(1)=(Pmax (i) -Pmin(i)) * (tansig(lambda*u(i))+1)/2+ Pmin(i);

end

x = [x(1);x(2);x(3);x(4);x(5);x(6)]

To calculate power losses by using Kron’s method

PL=0.01%* (x'*Bij*x+B0'*x+B00) ;

To solve inequality constraints by using penalty function method

W=zeros (ng) ;
s=zeros (ng, 1) ;
for i=1l:2*ng
if constr (i, :) *x<=b (i)
h(i)=0;
else
h(i)=1;
W=W+ {(constr (i, :)) '*constr (i, :);
s=s-b (i) * (constr(i,:))"';
end

end

Mapping from the augmented objective function into Hopfield NN.

To define weights and input bias.

weight=- (Alpha*sigPsg+Beta*Tobj+Gama*W) ;
ib=Alpha* (PD+PL) *sigP' -Beta*q'/2+Gama*s;
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% To update u
temp = weight*x+ib;

u = u + temp*dt;

To calculate energy function.

E=-.5*x'*weight*x-ib'*x;

N=N+1;

end

% To calculate Power generated and minimal cost
Power=x
cost=0.0;
for i=1:ng
cost=cost+p (i) +q (i) *Power (i) +r (i) * (Power (1)) *2;
end

cost

sigmaP=0.0;

for i=1:ng
sigmaP=sigmaP+Power (i) ;

end

sigmaP
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Active Security-Constrained Dispatch

IEEE 30-BUS TEST SYSTEM (American Electric Power)

de

% Bus Bus Voltage Angle ---Load---- ------- Generator--

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax
busdata= 1 1 1.06 0.0 0.0 0.0 0.0 0.0 0 0
2 2 1.043 0.0 21.70 12.7 80.0 0.0 -40 50
3 0 1.0 0.0 2.4 1.2 0.0 0.0 0 0
4 0 1.06 0.0 7.6 1.6 0.0 0.0 0 0
5 2 1.01 0.0 94.2 19.0 50.0 0.0 -40 40
6 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0
7 0 1.0 0.0 22.8 10.9 0.0 0.0 0 0
8 2 1.01 0.0 30.0 30.0 20.0 0.0 -30 40
9 0 1.0 0.0 0.0 0.0 0.0 0.0 0 0
10 0 1.0 0.0 5.8 2.0 0.0 0.0 -6 24
11 2 1.082 0.0 0.0 0.0 20.0 0.0 0 0
12 0 1.0 0 11.2 7.5 0 0 0 0
13 2 1.071 0 0 0.0 20 0 -6 24
14 0 1 0 6.2 1.6 0 0 0 0
15 0 1 0 8.2 2.5 0 0 0 0
16 0 1 0 3.5 1.8 0 0 ¢] 0
17 0 1 0 9.0 5.8 0 0 0 0
18 0 1 0 3.2 0.9 0 0 0 0
19 0 1 0 9.5 3.4 0 0 0 0
20 0 1 0 2.2 0.7 0 0 0 0
21 0 1 0 17.5 11.2 o] 0 0 0
22 0 1 0 0 0.0 0 0 0 0
23 0 1 0 3.2 1.6 0 0 0 0
24 0 1 0 8.7 6.7 0 0 0 0
25 0 1 0 0 0.0 0 0 0 0
26 0 1 0 3.5 2.3 0 0 0 0
27 0 1 0 0 0.0 0 0 0 0
28 0 1 0 0 0.0 0 0 0 0
29 0 1 0 2.4 0.9 0 0 0 0
30 0 1 0 10.6 1.9 0 0 0 0



%
% Bus bus
% nl nr
linedata= 1 2
1 3
2 4
3 4
2 5
2 6
4 6
5 7
6 7
6 8
6 9
6 10
9 11
9 10
4 12
12 13
12 14
12 15
12 16
14 15
16 17
15 18
18 19
19 20
10 20
10 17
10 21
10 22
21 22
15 23
22 24
23 24
24 25

O O O O O O O O 0O O o o o o o o Wm

.0192
.0452
.0570
.0132
.0472
.0581
.0119
.0460
.0267
.0120

.1231
.0662
.0945
.2210
.0824
.1073
.0639
.0340
.0936
.0324
.0348
.0727
.011e6
.1000
.1150
.1320
.1885

Line code

1/2 B = 1 for lines

p-u.

.0575
.1852
1737
.0379
.1983
.1763
.0414
.1160
.0820
.0420
.2080
.5560
.2080
.1100
.2560
.1400
.2559
.1304
.1987
.1997
.1923
.2185
.1292
.0680
.2090
.0845
.0749
.1499
.0236
.2020
.1790
.2700
.3292

> 1 or < 1 tr.
.02640
.02040
.01840
.00420
.02090
.01870
.00450
.01020

= = = = = =

.00850
.00450 1
.0 0.978

0.969

0.932

O O O O O O O O O O O O O O O O O O O O 0O O O O © O o O o o o o o

N = T = T = S Sy Sy S Oy S Ry =1

tap
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25
25
28
27
27
29

This is the

% Bus Bus

No

)

init=1

®w 3 o U A~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23

code

1

o O O O O O O O o O hM o N O O N O O N O O N

26
27
27
29
30
30
28
28

.2544
.1093

.2198
.3202
.2399
.0636
.0169

.3800
.2087
.3960
.4153
.6027
.4533
.2000
.0599

initial values from basic

Voltage Angle
Mag. Degree
1.060 0.000
1.043 -1.611
1.027 -3.699
1.019 -4.411
1.010 -6.280
1.016 -5.224
1.006 -6.189
1.010 -5.426
1.054 -6.609
1.048 -8.478
1.082 -4.518
1.061 -7.641
1.071 -6.229
1.046 -8.554
1.041 -8.668
1.048 ~8.265
1.043 -8.620
1.031 -9.291
1.029 -9.472
1.033 ~-9.280
1.035 ~8.949
1.036 -8.945
1.031 -9.146

---Load----

0

21.

94

22.
30.

=
= O

fay
w O < b v W v W o o o

MW
.000
700
.400
.600
.200
.000
800
000
.000
.800
.000
.200
.000
.200
.200
.500
.000
.200
.500
.200
.500
.000
.200

0.

0214
065

968

e

load flow

Mvar

=
= O =2 O W o U B M B O a9 O N o O

.000
.700
.200
.600
.000
.000
.900
.000
.000
.000
.000
.500
.000
.600
.500
.800
.800
.900
.400
.700
.200
.000
.600

Generator--

O O O O O O O o o

MW
.684
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

Mvar
17.583
10.010

0.000

0.000
15.142

0.000

0.000
13.843

0.000

0.000
15.090
.000
.799
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O O O O O O O O O NN o

.000
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25
26
27
28
29
30

o O O O O O o

.025
.021
.003
.027
.014
.007

N = = = e

.996

-9.
-9.
-9.
-9.

-10

-11.

444
433
850
169

.714
.390
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To calculate power demand.

PD=sum (busdata(:,5)) ;

To define cost coefficienfs

p=[0 0 0 0 0 0];

g=10"2*{2.0 1.75 1.0 3.25 3.0 3.0];
r=10%4*[ 0.00375 0.0175 0.0625 0.00834 0.025 0.025];

ng=

To set up the parameters.

6;

lambda=0.6;

A =
B =
C =
Del

10%-4;

10;

10%3;

ta =

7

1073;

dt=0.0001;

N O O W O o

10

.700
.000
.500
.000
.000
.400
.600

P O © O N O O

.700
.000
.300
.000
.000
.900
.900

o O O O O O ©O

.000
.000
.000
.000
.000
.000
.000

o O o O O O o

.000
.000
.000
.000
.000
.000
.000

% To get the initial value of generated powers, voltage phase angles

and voltage magnitudes.

initvi=init (:,3);

initDl=init (:,4) *pi/180;

initPl=init(:,7)/100;

nbus

length (init(:,1));

code=init (:,2);
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ii=0;
for k=1:nbus
if code(k)==0
ii=1ii+1;
initv(ii)=initVvl (k) ;
else,end
end

initv=initv';

ii=0;
for k=1:nbus
if code(k)==0 | code (k)==
ii=1i+1;
initD(ii)=initD1 (k) ;
else,end
end

initD=initD';

1i=0;
for k=1:nbus
if code(k)==1 | code(k)==2
1i=1ii+1;
initP(ii)=initP1 (k) ;
else,end
end

initP=initP’';

To define the limits of generated powers, voltage phase angles and

voltage magnitudes.

Pmin= .01*[50 20 15 10 10 12]';

Pmax= .01*[200 80 50 35 30 40]';



for i=1:1length(initD)
Dmin(i)= -pi/9;

end

for i=1:length(initD)
Dmax(i)= pi/12;

end

for i=1l:length(initV)
Vmin(i)= 0.90;

end
for i=1:length(initVv)

Vmax (1)= 1.10;

end

To define the initial value of the limits of increment generated

powers, increments phase angles and increment voltage magnitudes.

dPmin=Pmin-initP;
dPmax=Pmax-initP;

dDmin=Dmin-initD;

dDmax=Dmax-initD;

dvmin=vmin-initv;

dvmax=Vmax-initVv;

To define the inequality constraints.
constrmin=[dPmin;dDmin;dVmin] ;

constrmax= [dPmax; dDmax; dVmax] ;

To calculate Ybus matrix.
nl = linedata(:,1); nr = linedata(:,2); R = linedata(:,3);
X = linedata(:,4); Bc = j*linedata(:,5); a = linedata(:, 6);

nbr=length(linedata(:,1)); nbus = max(max(nl), max(nr));
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Z =R + j*X; y= ones(nbr,1l)./Z; $branch admittance
for n = l:nbr
if a(n) <= 0 af(n) = 1; else end
Ybus=zeros (nbus, nbus) ; % initialize Ybus to zero
$ formation of the off diagonal elements
for k=1:nbr;
Ybus (nl (k) ,nr (k) ) =Ybus (nl (k) ,nr(k)) -y (k) /a(k);
Ybus (nr (k) ,nl (k) )=Ybus (nl (k) ,nr(k));
end
end
$ formation of the diagonal elements
for n=1:nbus
for k=1:nbr

if nl(k)==n

Ybus (n,n) = Ybus(n,n)+y(k)/(a(k)”*2) + Bc(k);

elgeif nr(k)==n

Ybus (n,n) = Ybus(n,n)+y(k) +Bc(k);

else, end

end
end

Ybus;

ns=0;

nbus = length(busdata(:,1));

for k=1:nbus

n=busdata (k, 1) ;

kb (n) =busdata{k, 2) ;

if kb{(n) == 1, ns = ns+l; else, end
nss{n) = ns;

end

Ym = abs{(Ybus); t angle (Ybus) ;

G=real (Ybus) ;

Bl=imag (Ybus) ;

To calculate the coefficients of B’ and B” matrices.
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for i=1:nbus
for j=1:nbus
dpPdD (i, 3j)=-initvi(i)*B1(i,3j);
end
end

dpdD;

1i=0;

for ib=1:nbus

if kb(ib)==1 | kb(ib) == 2
ii = 1ii+1;
33=0;
for jb=1:nbus
if kb(jb) == 0 | kb(jb) == 2
33 = Ji+1;

dPdp1(ii, jj)=dPdD(ib, jb) ;
else,end
end
else, end

end
rank (dPdD1) ;

$Anew= (dPdD1 ' *dPdD1) *~1*dPdD1 ' ;
Anew=dPdD1'* (dPdD1*dPdD1') "-1;

ii=0;

for ib=1:nbus

if kb(ib)==
ii = 1i+1;
33=0;
for jb=1:nbus
if kb(jb) == 0
33 = 33+1;

dQdv(ii,jj)=dpdD (ib, jb) ;
else,end

end



else, end

end

rank (dQdV) ;
$hAnews= (AQAV ' *dQdvV) *-1+*d4Qdv’ ;
AAnew=dQdV!'* (dQdv+*dodv') *-1;

11=0;

for ib=1:nbus

if kb(ib) == 2
i1 = ii+1;
J3=0;
for jb=1:nbus
if kb(jb) == 0 | kb(jb) == 2
ji = 3i+1;

dpdp2 (ii,jj)=dPdD{(ib, jb) ;
else,end
end
else, end

end

rank (dPdD2) ;
$Anew2= (dPdD2 ' *dPdD2) *-1*dPdD2 ' ;
Anew2=dPdD2 ' * (dPdD2*dPdD2"') *-1;

for i=1:nbus
dQdD (i, i) =0;
for j=1:nbus

if i==j

dQdD(i,1)= dQdD(i,1i)+initVvl (i) *initVi(j)*G(i,]);

dQdD(1,1)=dQdD (i,i) -initVv1 (i) *G(i,i);
else
dQdD (i, j) =-initv1l(i)*G(i,J):
end
end

end
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$ To define the equality constraint
1i=0;
for ib=1:nbus

if kb(ib) == 1

ii = 1i+1;

33=0;

for jb=1:nbus
if kb(jb) == 0 | kb(jb)

1]
fl
[\

33 = J3+1;
L(ii,jj)=dPdD (ib, jb) ;
else,end
end
else, end

end

EQ=L*Anew2;

EQl=[1 -EQl;
Eg=EQ1;

% Inequality constraints
Pin=eve (ng) ;
ii=0;
for ib=1:nbus

if kb(ib) == 0

ii = 1i+1;

j3=0;

for jb=1:nbus
if kb(jb) == 0 | kb(jb)

]
1]
[\

33 = Ji+1;
dQdpi (ii, jj)=40QdD (ib, jb) ;
else,end
end
else, end

end
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K=AAnew* (-dQdD1) *Anew;

% To define w
w= [Pin;Anew;K] ;

WW=W;

% To define cost functions

Tobj=diag(r) ;

% To calculate matrix Egsg and s

Eqsq=Eq' *Eq;

% Simulation of neural network

% To choose the initial conditions for the increment of generated
powers
x=[ 0.4061
-0.3000
-0.1750
0.0250
0.0000
0.0600] ;

$for i=1l:ng

%  templ (i)=2*(x(1i)-dPmin(i))/ (dPmax(i)-dPmin(i));
% temp2 (i) =atanh (templ (i) -1) ;

% u(i)=temp2 (i) /lambda;

$end

for i=1:ng
templ (1) =(x (i) -dPmin(i})/ (dPmax (i) -dPmin(i)) ;
u(i)=(-1/lambda) *log((1/templ(i))-1);

end

initPnew=initP;
initDnew=1initD;

initvnew=initVv;



N=1;
while N < 10
% To define x

for i=1:ng

x(i)=(dPmax (i) -dPmin (i) ) *logsig(lambda*u(i)) + dPmin(i);

end

x=[x(1);x(2);x(3);x(4);x(5);x(6)]

for i=1:59
if w(i, :) *x<=constrmax (i)
g(i)=0;
else
g(i)=1;
end

end

g=g';

for i=1:59
wnew (i, :)=w(i, :)*g(i);

end

for i=1:59
if ww(i, :) *x>=constrmin (i)
h(i)=0;
else
h(i)=1;
end
end

h=h';

for i=1:59
wwnew (1, :)=ww (i, :)*h(1i);

end
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% To calculate W and V
W=wnew' *wnew;
WW=wwnew' *wwnew;
Vi=wnew'*constrmax;

V2=wwnew' *constrmin;

To update generated powers, voltage phase angles and voltage

magnitudes.

initPnew=initPnew+x;
initDnew=initDnew+Anew*x;

initvnew=initVnew+K*x;

% To define ib
for i=1:ng
ib(1i)=(g(i)+2*r (i) *initPnew(i));
end

ib=[ib (1) ;ib(2) ;ib(3) ;ib(4) ;ib(5) ;ib(6)1;

To update the limits of 4P, dD and dv.

dPmin=Pmin-initPnew;
dPmax=Pmax-initPnew;
dDmin=Dmin-initDnew;

dDmax=Dmax-initDnew;

dvmin=Vmin-initVnew;

dvmax=Vmax-initvVnew;

constrmin= [dPmin;dDmin;dvVmin] ;

constrmax=[dPmax; dDmax;dVmax] ;

% To update u
temp = - (A*Tobj+B*Eqsq+C*W+Delta*WW) *x;
temp = temp - .5*A*ib + V1*C + V2*Delta ;
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u = u + temp*dt;
N=N+1;

end
% To calculate optimal power conditions and minimal cost obtained.
To print out the optimal condition of generated powers and minimal cost

obtained.

Power=100* (initPnew)

cost=0.0;

initcost=0.0;

for i=1:ng
cost=cost+p (i) +q (i) *10"-2*Power (1) +r (i) *10"-4* (Power (1)) "2;
initcost=initcost+p (i) +q (i) *initP (i) +r (i) * (initP(i))*2;

end

cost

initcost

initsigmaP=100*sum(initP) ;

sigmaP=0.0;

for i=1:ng
sigmaP=sigmaP+Power (i) ;

end

sigmaP

To print out the result of voltage phase angles in degrees.

D=initDnew;

D=D*180/pi

To print out the voltage magnitudes obtained in p.u.

V=1initVnew





