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Bragg wavelength

Wavelength shift

Gauge factor of Bragg Grating sensor
Thermo-optic response of Bragg Grating sensor
Change in temperature of Bragg Grating sensor
Reference temperature

Mechanical strain

Load
Cross-sectional area of tendon
Longitudinal tensile modulus of tendon

Refractive index of core of Bragg Grating sensor
Poisson’s ratio
Strain-optic constants

Temperature sensitivity factor of Bragg Grating sensor
Thermal expansion coefficient of Bragg Grating sensor
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Fatigue strength
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Macroscopic (slow) variable
Microscopic (fast) variable
A general small (in comparison to unity) parameter

Stress tensor

Displacement field vector
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Actuation stress tensor
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Thermal expansion stress tensor
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Change in moisture content
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[Y] Volume of unit cell
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Youter Outer solution to boundary layer problem
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P, Prescribed stress
P Boundary condition actuation tensor
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K, Boundary condition thermal expansion tensor
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Auxiliary body force vector along transverse direction of smart composite
plate
Piezoelectric strain tensor

Hygroscopic expansion strain tensor

Thermal expansion strain tensor

Differential operator
Differential operator
Differential operator

Displacement function for smart composite plate
Strain function for smart composite plate

Homogeneous displacement function for smart composite plate

Piezoelectric differential operator

Thermal expansion differential operator

Hygroscopic expansion differential operator

1 term in temperature change variation
2" term in temperature change variation
1 term in moisture change variation

2" term in moisture change variation

1* term in electric field variation

2" term in electric field variation

Displacement function for smart composite plate
Piezoelectric displacement function for smart composite plate
Piezoelectric displacement function for smart composite plate
Thermal displacement function for smart composite plate
Thermal displacement function for smart composite plate
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ABSTRACT

This thesis discusses experimental and analytical aspects of active and passive smart
composite materials.

For the experimental purposes of the work, Bragg Grating and Fabry Perot fiber optic
strain sensors are embedded in glass- and carbon-fiber-reinforced polymer tendons during
pultrusion. The intended application is to embed these smart tendons in civil engineering
structures wherein they would act as concrete reinforcements, replacing steel and
overcoming the associated corrosion problems. As well, by virtue of the embedded
sensors, these tendons would provide remote for health monitoring of these structures. To
verify the operation of the embedded sensors, mechanical tests were performed at room
temperatures as well as at low (-40°C) and high (+80°C) temperature extremes. The
reliability assessment of the fiber optic sensors further involved a detailed examination of
their fatigue and creep behavior as well as the combined effect of sustained loads and
aggressive chemical solutions. The purpose of these latter tests is to closely simulate
conditions encountered in concrete. Other aspects of the work dealt with the use of the
fiber optic sensors to monitor the pultrusion process as well as tests performed to
investigate the effect of the embedded sensors on the structural integrity of the host
composite material.

For the analytical aspects of this thesis, the asymptotic homogenization method was used
to develop mathematical models pertaining to (active) smart composite structures with a
periodic array of embedded actuators. To make the model more comprehensive, thermal
and hygroscopic expansion effects were included. Asymptotic homogenization takes a
boundary value problem which is characterized by rapidly oscillating coefficients, and
replaces it with a simpler one containing some effective coefficients. This homogenized
problem is much more amenable to analytic and numerical treatment than the original
one. The effectiveness of the derived models was illustrated by means of two- and three-
dimensional examples. The asymptotic homogenization methodology was used also to
develop mathematical models describing the behavior of smart composite plates with
rapidly varying thickness and a large number of embedded actuators. This model was
applied to wafer-reinforced piezoelectric plates. These are plates reinforced with
mutually perpendicular ribs or stiffeners. The stiffeners themselves, may, if desired also
- exhibit piezoelectric characteristics.
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1.0 INTRODUCTION

Interest in composite materials has led in recent years to their integration within such
areas as the aerospace industry, civil engineering, transportation, medicine, and sports. At
the same time, significant advances in MEMS, telecommunications and other fields,
significantly facilitated the development of new and highly effective sensors and
actuators. It would seem natural therefore that the ever-expanding field of composite
materials would seek ways to take advantage of and encompass these advancements in
actuator and sensor technology. The merger of these domains gave birth to the so-called
“smart composite materials”. Smart composites are adaptive structures which incorporate
sensors and/or actuators. Depending on their type, smart composites may be classified as
passive or actively controlled. Passive smart materials incorporate sensors that provide
information on their state and integrity, while their actively controlled counterparts
incorporate both sensors and actuators and they can perform self-adjustment or self-repair

as conditions change.

This thesis discusses experimental and analytical aspects of smart composite materials.
The experimental aspects of this thesis are focused on fabrication, processing, testing and
evaluation of pultruded smart carbon fiber and glass fiber reinforced tendons with
embedded Fabry Perot and Bragg Grating sensors. This work has been conducted for the
purposes of ISIS Canada Project T3.4 on smart reinforcements and connectors. ISIS
Canada is a National Network of Centres of Excellence which combines the efforts of
many researchers from across the country in order to develop advanced technologies for
the civil engineering infrastructure. The long-term objective pertinentv to the smart
tendons described in this thesis is to embed them in structures such as bridges and
overpasses, wherein they would replace steel as the primary concrete reinforcement and
at the same time monitor the health of these structures by virtue of the embedded fiber

optic sensors.



The use of smart composite structures will be greatly facilitated if the effective properties
and coefficients such as elastic, piezoelectric, thermal expansion and hygroscopic
expansion can be predicted at the design stage. Consequently, for the purposes of the
analytic aspects of this thesis, mathematical models characterizing the behavior of smart

composites with a large number of embedded actuators are developed and applied.

Three models are derived. The first model pertains to a smart composite with
homogeneous boundary conditions and the second model modifies the first one by
prescribing stress boundary conditions on part of the boundary surface of the smart
structure. It is shown that the two models differ in what amounts to “boundary-layer”
solutions. The mathematical framework on which the two models are developed is that of

perturbation expansions and asymptotic homogenization.

The third mathematical model pertains to smart composite plates with rapidly varying
thickness and a periodic array of embedded actuators. This model is again developed on
the basis of asymptotic homogenization and is used to analyze, among others, wafer-
reinforced piezoelectric plates. These are plates reinforced with mutually perpendicular

ribs or stiffeners. Both the base plate and/or the stiffeners may exhibit piezoelectric

effects.

In summary Chapters 2-6 describe various aspects of the experimental work conducted
on (passive) pultruded glass and carbon fiber reinforced composite tendons with
embedded fiber optic sensors, and Chapters 7-12 present the development and application

of the various mathematical models pertaining to active smart structures. Finally, Chapter

13 concludes this work.




2.0 LITERATURE REVIEW

2.1 Introduction to Smart Composite Materials

Recent years have witnessed a steadily increasing volume of applications of advanced
composite materials in the fields of civil engineering, transportation and marine
engineering. Among the properties that make composite materials attractive for such
applications include high strength-to-weight ratio, corrosion resistance, enhanced (or
reduced) thermal and electrical conductivity, and good survivability in high-temperature
environments. More important however is the fact that engineers have the ability to
modify and adapt existing manufacturing techniques for the purpose of tailoring the
mechanical properties of composites so as to meet the design objectives and criteria of

the intended applications.

The last decade has seen a shift in the focus of the application of composite materials
from the aerospace industry to the larger-volume civil engineering field. However, the
task of replacing or strategically complimenting traditional materials such as steel and
concrete with this new class of materials is complicated by the fact that composites lack

reliable data pertinent to their long-term behavior.

One method of compensating for the lack of longer-term data for a particular application
is to monitor the condition of a structure continuously using “smart materials”. A smart
material is a structure characterized by all of the following fourfold functions [Udd, 1995,
page ix]. The first function is to monitor certain basic manufacturing parameters such as
temperature, pressure, viscosity and others during the manufacturing process using
sensors embedded in the structure. Fiber optic sensors are commonly used for this
purpose. Quite often the sensors can be embedded in the part during the fabrication of the

composite structure itself. In other cases, the sensors can be surface mounted. Surface



mounting however, means that the sensors are more susceptible to damage and eventual
failure. The second function of smart structures is to be able to perform a post-fabrication
evaluation of the various parts of the composite structure. It is imperative of course that
this evaluation not compromise the integrity of the structure in any appreciable way. This
all-important requirement often restricts the size and number of the sensing elements that
can be embedded in a composite part, see Georgiades [1998, pages 51-56] for a literature
review. The third function of smart structures is the ability to incorporate the sensors in a
central monitoring network that can be used to continuously assess the system with the
object of determining whether the intended performance goals are being achieved over
time. A smart structure that meets the above three criteria is often referred to as a
“passive” smart structure. If in addition, the structure is able to respond to external
disturbances such as change in load, temperature, moisture content etc. by altering the
natural frequency, shape, degree of polarization, or any other characteristic by means of a

suitable array of actuators, then the structure is termed an “active” smart material.

Jain and Sirkis [1994], compared, for obvious reasons, active smart structures to
biological systems. In their work they defined the goal of smart-structures technology as
being to “reproduce biological functions in load bearing structural systems. These
biological functions would include a skeletal system to provide load bearing capability, a
nervous system which is a network of embedded or attached sensors to monitor the state
of the structure, a motor system to provide adaptive response, an immune system to
provide healing capability and a neural system to provide learning and decision making
functions.” Shape-memory alloys, magnetostrictives, and particularly piezoelectric
materials are considered as suitable candidates for use as actuators in smart composite

systems.

The use of smart composite materials will be greatly facilitated if, in addition to the
broadening of the knowledge base pertaining to their long-term behavior, their effective

properties and coefficients such as the elastic, thermal expansion and other coefficients



can be predicted at the design stage. To achieve this goal, mathematical models
characterizing their behavior will have to be developed. Appropriately, subsequent
sections of this thesis will describe experimental and analytical aspects of passive and

active smart composite materials.

2.2 Composite Materials

Composite materials are defined in the Engineered Materials Handbook [1987] as “a
combination of two or more materials differing in form or composition on a macroscale.
The constituents retain their identities; that is they do not dissolve or merge completely
into one another although they act in concert. Normally, the components can be

physically identified and exhibit an interface between one another.”

Typically, composites are two-phase systems with one phase, the reinforcement, being
embedded in a continuous matrix phase. The reinforcement, being stronger and stiffer
than the matrix, is responsible for the load-carrying characteristics of the composite
material. For the composite to be an effective load-carrier, however, the stresses must be
transferred from one reinforcement to another and this is the primary responsibility of the
matrix. The matrix also serves to protect the reinforcements and, for the case of fibrous
composites, to hold them in a particular orientation. The latter is very important because
the macroscopic properties of the composite largely depend upon the orientation of the

reinforcements.

Composite materials can be classified in accordance with the nature of the matrix
[Schwartz, 1996a, page 10]. Thus we have polymer-matrix, metal-matrix, and ceramic-
matrix composites, and carbon-carbon composites. Another classification methodology
divides composites according to the type of the reinforcement [Engineered Materials

Handbook, 1987]. This gives rise to fiber-reinforced, particle-reinforced and laminated
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composites. The fiber-reinforced composites may contain continuous (long) or

discontinuous (short) fibers.

Fiber-reinforced composites contain fibers with lengths that are much larger than their
cross-sectional directions. Common examples of such fibers include glass, carbon,
aramid and silicon carbide. Discontinuous or short fiber composites are characterized by
the fact that their properties, such as strength and stiffness, depend upon the length of the
reinforcements (sometimes also called whiskers). The short fibers can be oriented in a
preferred direction, which results in the composite exhibiting orthotropic behavior, or can
be randomly embedded so that the composite behaves like a quasi-isotropic material. On
the other hand, the mechanical properties of continuous-fiber composites are independent
of the length of the fibers. The fibers can be oriented in a preferred direction, such as in
the direction of load application for uniaxially loaded members, or can be oriented at
right angles to one another giving rise to crossply fiber composites. Continuous fiber
composites tend to be stronger and stiffer than their short fiber counterparts but become
impractical when the final product is to have a complicated profile. In this case,
discontinuous-fiber composites are much more attractive and can be produced rather

quickly and inexpensively.

Particle-reinforced composites consist of particles (often called particulates) of different
sizes such as spheres, flakes and rods randomly embedded within the expanse of the
matrix. All the dimensions of particulate reinforcements are of roughly equal size and this
feature renders the pertinent composites macroscopically isotropic, also by virtue of the
random distribution of the particles in the matrix. Particulates are used in a broad range of
applications and are cheaper than the other types of reinforcements. The most common
types of particulates are silicon carbide (SiC), Aluminum Oxide (Al,Oz) and Boron
Carbide (BCy). Since mechanical properties such as strength and stiffness are enhanced
with an increase in the length of the reinforcements, particle-reinforced composites are

not as strong as their whisker-reinforced or fiber-reinforced counterparts.



Finally, laminated composites are those composed of two or more layers of the
reinforcement, with each layer having two of its dimensions much larger than the third.
Examples of laminated composites are bimetals, clad metals, plywood and formica

[Daniel and Ishai, 1994, page 20].

The ever-increasing popularity of advanced composites in practically all engineering
applications can be attributed to a number of benefits, the most important of which are:
high strength-to-weight ratio, high-stiffness-to-weight ratio, advanced survivability in
harsh (acidic or alkaline) environments, enhanced toughness and fracture characteristics,
improved friction and wear properties, and varying degrees of thermal and electric
conductivity. As well, in addition to the fact that close tolerances and optimum surface
finish can be integrated directly into the fabrication stage without the need to resort to
post-fabrication machining, composite materials can be tailored to achieve a broad range
of thermal expansivities in compliance with the specific applications at hand. [Engineered
Materials Handbook, 1988, page 36]. Thus composite materials have been successfully
integrated with the civil, construction, marine, aerospace and medical fields. Such
applications are expected to increase as the confidence of scientists and engineers in

composite materials grows through an increase in the appropriate knowledge bases.

2.2.1 Reinforcing Fibers

Although a broad range of both fibrous and particulate reinforcements are available for
use in the manufacture of composite materials, the focus of attention in recent years has
been directed towards fibrous reinforcements. Fibers, the most important constituent of
composite materials, have a significant influence on such macroscopic properties of the
end product as strength, stiffness, toughness, density, electrical and thermal conductivity,
wear resistance, as well as other issues such as chemical compatibility with different resin

systems, ease of fabrication and cost of production. There are a number of naturally



occurring minerals which may be used for the production ‘of composites, the most
important of which probably has been asbestos. The best source of asbestos is a mineral
called chrysotile [Matthews and Rawlings, 1994] which is a hydrated magnesium silicate.
Mg3S1,05(OH)4. Chrysotile fibers can be up to several centimeters in length and have a

very good strength-to-weight ratio and a high elastic modulus.

Although chrysotile and other forms of asbestos have been exploited commercially, most
practical composites are fabricated using synthetic organic and inorganic fibers. The

subsequent sections discuss some of the most common types of synthetic fibers.

2.2.1.1 Glass Fibers

Hopper

— Furnace

Platinum
Bushing

Filament Collecting and —p
Size Applicator

Collet

Winding Head Unit

Figure 2-1: Conventional fabrication procedure for glass fibers [Chawla, 1993]
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Glass fibers are the most commonly ehcountered type 6f fiber reinforcement. The
chemical composition of glass fibers is essentially the same as that of the common glass.
silicon dioxide (silica-SiO;) being the main constituent. Unlike common glass however.
commercially available gléss fibers only contain small amounts of sodium and potassium
oxides. This means that glass fibers exhibit enhanced corrosion resistance and have a
better surface finish [Schwartz, 1997]. Glass fibers exhibit an attractive combination of
both the well-known glass properties such as hardness and transparency and as the
desired reinforcement characteristics such as high strength-to-weight ratio and ease of

processability.

The most common types of glass fibers are E-glass and S-glass. E-glass is available as
continuous fibers or chopped strands and is the cheapest among all commercial types of
reinforcement. S-glass has superior properties to those of E-glass, primarily as a
consequence of its more stringent compositional requirements. However, the higher
manufacturing costs incurred restrict its applications primarily to aerospace projects.
There is a less expensive form of S-glass available, however, known as S-2 glass, with
similar mechanical properties to those of regular S-glass but with a different coating.
Another less common type of glass fibers is C-glass, which is known for its superior

chemical resistance. It is used therefore in highly corrosive environments.

A simplified schematic of the fabrication procedure for glass fibers is shown in Figure 2-
1 [Cflawla, 1993]. The raw materials are melted and then fed into an electrically-heated
platinum bushing that has a number of holes at its base. The molten glass flows through
the holes under gravity, forming continuous filaments which are subsequently passed
around a rotating collet, drawn at a speed that varies from 1 to 2 km min™' and finally
wound on a drum [Chawla, 1993]. Before winding, the glass fibers are treated with a

polymeric emulsifier for protection against foreign agents.



2.2.1.2 Carbon Fibers
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Figure 2-2: Processing polyacrylonitrile (PAN) and pitch-based carbon fibers [Swanson,
1997]

Carbon fibers are available with a wide range of tensile moduli ranging from 207 GPa to
over 1000 GPa [Schwartz, 1997]. They are characterized typically by very high strength-
to-weight and stiffness-to-weight ratios, and are thus used extensively in the aerospace
industry where weight saving is critical (and certainly deemed more important than cost
of production). In general, carbon fibers with intermediate tensile moduli have high
tensile and compressive strength, whereas their high-modulus counterparts exhibit lower
strength. High-strength grades are made from a PAN (polyacrylonitrile) fiber precursor
that is heat-treated and converted to carbon by pyrolysis. Low-strength grades are made
from a pitch precursor at a lower cost. A schematic of the PAN and pitch processes is
shown in Figure 2-2 [Swanson, 1997]. The main disadvantages of carbon fibers 31;6 low
impact strength and a relatively high electrical (and thermal) conductivity which renders

them unsuitable for some applicaﬁons.



2.2.1.3 Aramid Fibers

Aramid fibers are made from aromatic polyamides (polymers with long chains).
Aromatic compounds are characterized by the presence of the benzene ring, a hexagonal
arrangement of carbon atoms bonded to one another as well as to hydrogen atoms.
Aramid fibers were originally developed in the early 1970°s by Du Pont to replace steel
in radial tires [Weeton et. al, 1987] but have since been used in a wide range of
applications. Aramid fibers have a high tensile strength and modulus and a low density.
They exhibit particularly enhanced toughness and impact strength, and for this reason
they are currently the material of choice for bulletproof vests and other accessories. Other
advantages of aramid fibers are that they burn with difficulty and have a glass transition
temperature of about 360°C [Matthews and Rawlings, 1994]. Consequently they can be
used for extended periods of time in high-temperature environments. They have a high
thermal capacity, a low coefficient of thermal expansion and low electrical and thermal

conductivities.

The most common commercial names for aramid fibers are Kevlar (by Du Pont), Twaron

(by Akzo) and Technora (by Teijin).

2.2.1.4 Polyethylene Fibers

Polyethylene fibers are commercially available in a variety of trade names, the most
common of which are Spectra (Allied Signal) and Dyneema (DSM). They are made of

long hydrocarbon chains with each carbon atom bonded to two other carbon and two

hydrogen atoms.

Polyethylene fibers have the highest specific strength of all commercial fibers, and also

exhibit very low moisture absorption and good resistance to chemical attack. This makes



them particularly attractive for marine applications. Polyethylene fibers are also
characterized by high impact resistance. On the other hand, their susceptibility to creep at
temperatures above 100°C and their low melting point (135°C) prevents their use in high

temperature applications.

2.2.1.5 Boron Fibers

Boron fibers are made by chemical vapor deposition of boron onto a carbon or tungsten
substrate. Boron-fiber reinforced composites have superior mechanical properties when
compared to their carbon-fiber counterparts. In addition to a high tensile modulus, boron
composites exhibit excellent compressive strength, and this makes them attractive for
applications where buckling resistance is required. On the other hand, the high costs
incurred in the manufacture of boron fibers limits their use primarily to aerospace

applications.

2.2.2 Tensile Properties of Commercial Reinforcing Fibers

Table 2-1: Tensile properties of common fibers and steel [Mallick, 1988]

ile Failure
h (GPa) Strain (%)

10 2.54 72.4 3.45 4.8
10 249 86.9 4.30 5.0
7 1.85 344.5 - 234 0.58
11.9 1.45 131 3.62 2.8
140 2.70 393 3.1 0.79

- 3.08 207 0.58 (average) -




Table 2-1 [Mallick, 1988] compares the tensile properties of some commercially
available reinforcing fibers, and Figure 2-3 clearly demonstrates the superiority of these
fibers over some common metals, with respect to specific tensile strength and specific

tensile modulus [Schwartz, 1997].
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Figure 2-3: Specific tensile strength and specific tensile modulus of advanced fibers
[Schwartz, 1997]

In addition to the reinforcing fibers, the other component of a composite structure is the
matrix which serves to hold the fibers together, to keep them in the proper orientation. to
protect them from harsh environments and more importantly to transfer the load between
the fibers. As well, typically, the matrix is responsible for the shear strength of the
composite and provides resistance to crack initiation and propagation. The most common
matrix materials are polymeric which can be classified as either thermoplastics or

thermosets. They will be discussed in subsequent sections.



2.2.3 Matrix Systems

2.2.3.1 Thermoplastic Polymeric Matrices

Table 2-2: Tensile properties of thermoplastic resins [Harvey, 1993]

92-103 .
105 4
102 4.5
65.5-82.2 4.3
102 3.8
110 4.1
113-163 3.5-4.5
91.1 4.1
138-153 34-44
136-185 3.3-45
100-105 3-3.1
160 5.8

In a thermoplastic polymer, the individual molecules are held together by weak forces
such as Van der Waals bonds. As a consequence of the relative weakness of these bonds
as compared to the chemical covalent bonds, thermoplastic resins will soften when high
temperatures are applied and will regain their rigidity on cooling. The advantages of
thermoplastics are enhanced processability, attractive toughness and fracture
characteristics, large failure strains, high vibration damping coefficients, and reduced
moisture absorption. The latter is very important because moisture absorption can
deteriorate the performance of composites in two ways. First, moisture absorption causes
the matrix to swell up, and this change in shape is resisted by the much stiffer reinforcing
fibers. Consequently residual stresses are developed and the load-carrying capacity of the
composite is reduced. As well, moisture absorption reduces the glass transition
temperature of the polymeric matrix, causing deterioration in the mechanical properties

of the composite and limiting its use to lower temperature applications [Gibson, 1994].



The main disadvantage of thermoplastics is the high viscbsity of the molten resin, which
makes it difficult to incorporate fibers. As well, thermoplastic resins are more susceptible
to creep, especially at elevated temperatures. Some common types of thermoplastic resins
include polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone
(PEK), and polyphenyle sulphide (PPS). Table 2-2 [Harvey, 1993, page 202] shows the

tensile properties of some common types of thermoplastic resins.

2.2.3.2 Thermoset Polymeric Matrices

Table 2-3: Properties of thermoplastics and thermosets [Matthews and Rawlings, 1994:
Schwartz, 1997]

"hermoplastics
1.3-6.0 1.0-4.8
20-180 40-190
0.5-1.0 1.5-6.0
50-450 25-230

Very low High
Easy Difficult

In a thermoset polymer, the molecules are held together by strong covalent bonds which
form a network of cross-links between the molecules. Once these cross-links are created
during polymerization (setting of the resin), they cannot be reshaped by subsequent
heating. Thermosets typically contain one or more types of catalyst (curing agent) in
addition to the resin itself. It is the chemical reaction between the curing agents and the
thermosetting resin that marks the onset of the consolidation of a composite, and quite
often the application of heat is needed. In general, thermosets are stiffer than
thermoplastics, have better creep characteristics, and can be used in higher-temperature

environments. As well, they have a lower viscosity when molten, which facilitates the
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integration of the fibers. On the other hand, they have lower toughness and fracture
characteristics. Table 2-3 [Matthews and Rawlings, 1994, page 171; Schwartz, 1996,

page 46] compares some of the properties of thermosetting and thermoplastic resins.

The most common types of thermosetting resins are polyester resins, vinylester resins,
epoxies, phenolics, and polyimides. Of these, the polyester resins are the most common
and least expensive. They have low viscosity, which facilitates processability and fiber
impregnation. Epoxies have better mechanical properties than polyesters and exhibit
excellent resistance to most chemicals [Schwartz, 1997]. On the other hand, higher
thermal-expansion and hygroscopic-expansion coefficients lead to dimensional instability
and the generation of residual stresses in the resulting composites. Because phenolics are
inexpensive and have good fire resistance, they are used in environments where fire
regulations are more stringent. Vinylester resins have higher tensilé strength than
polyesters and also low viscosity and fast cure rates. However, their adhesive strength is
not as high as that of epoxy resins [Schwartz, 1997]. Finally, polyimides are more
expensive than epoxies or polyesters, but their superior thermal stability makes them
attractive for high-temperature applications. Table 2-4 [Matthews and Rawlings, 1994,
pagel73; Mallick, 1988, page 56] shows a comparison of the density and tensile

properties of thermosetting resins.

Table 2-4: Comparison of properties of thermosets [Matthews and Rawlings, 1994:
Mallick, 1988]

yimide  Vinylester

1.1-14 1.1-1.5 1.3 1.2-19 1.12-1.32
20-180  40-190 4.4 3-3.1 3-3.5
35-90 45-85 50-60 80-190 73-81




2.3 Fabricaticn of Composite Materials

Composite materials were manufactured traditionally by the hand lay-up method.
However, other methods have since evolved and gained popularity; examples include
pultrusion, filament winding, injection molding and many others. The following sections

will describe briefly the most common fabrication procedures.

2.3.1 Hand Lay-up Method

Pressure chamber

Vacuum bag /
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Compressor
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Figure 2-4: Autoclave molding [Gibson, 1994]

Hand lay-up is the cheapest and oldest of all of the manufacturing processes, and it can
produce parts with complicated profiles. The surface of a mold having the shape of the
part to be manufactured is first coated with adequate mold release compounds, to prevent
permanent bonding of the consolidated product. Then, unidirectional plies are manually
laid-up onto the mold and are subsequently saturated with resin. Sometimes, instead of
applying the resin to the laminae after they are laid up, one can use preimpregnated thin
sheets called prepregs. The part is then cured in an autoclave. An autoclave, see Figure 2-

4 [Gibson, 1994], is essentially a specialized pressure vessel into which the part is placed



and cured under predetermined conditions of temperature and pressure. The process of
preparing a laid-up part for autoclave is called vacuum bagging and requires the use of

special apparatus such as a breather, a bleeder, a separator and others.

The main problem associated with the hand lay-up method is that it is time-consuming
and labor-intensive. The mechanical quality of the finished product depends heavily on
the skill of the operator during both the actual lay-up and the preparation of the vacuum
bag. On the other hand, the incorporation of sensors such as fiber optic sensors, and
actuators such as shape memory alloy wires or piezoelectric films, within composite
‘materials is straightforward with the hand lay-up method. This, in conjunction with the
ease of egress of, say, the sensor leads from the consolidated product, makes hand lay-up

one of the most efficient procedures for the production of smart composite materials.

2.3.2 Filament Winding

Filament winding is used to produce hollow cylindrical or tubular parts. It involves the
continuous pulling of fibers from a set of spools through a resin bath. The saturated fibers
then pass through an array of rollers that serve to squeeze out excess resin from the
fibers. The rollers are fitted with tensioning control to ensure uniform tension across the
fibers. The fiber rovings are then positioned on a rotating mandrel. A simplified
schematic of the filament winding process is shown in Figure 2-5 [Gibson, 1994].
Filament winding can be classified as helical or polar. In helical winding, the fibers are
first placed on a horizontally translating surface, which subsequently positions them on a
rotating mandrel. In polar winding, a feeding units moves around a slowly rotating

mandrel [Mallick and Newman, 1990].
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Figure 2-5: Filament winding process [Gibson, 1994]
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2.3.3 Pultrusion

Pultrusion is an automated process that can be used to produce long prismatic parts. The
basic principle of operation of the pultrusion process is quite simple, but the underlying

thermomechanical processes that occur inside the die are very complex.

In the pultrusion of thermosetting resin composites, the fiber rovings are pulled
continuously from an array of spools or creel into a resin bath that also contains catalysts,
promoters and mold-release compounds. The fibers are impregnated thoroughly with
resin, and are subsequently directed towards the die through a set of guides. These guides
serve to orient the fibers and also to squeeze out excess resin so that the fibers are
uniformly saturated. The fibers then enter the die, which typically is fitted with a set of
strip heaters attached to the top and bottom surfaces. These strip heaters provide the
necessary thermal zones within the die needed to initiate and complete the consolidation
process. The processes which go on inside the dic are as follows [Sumerak, 1985:
Vaughan and Hacket, 1991]. First, the strip heaters raise the temperature of the die walls.
When the resin is in the liquid phase, it is at a lower temperature than the die walls and

thus heat transfer takes place inward, i.e. from the die to the resin. The heat absorption by



the resin further lowers its viscosity énd this promotes an even more uniform fiber
saturation or “wet-out”. The chemical catalysts mixed with the resin use this thermal
energy to initiate the curing process. This is a highly exothermic reaction and the heat
released gradually brings the temperature of the resin to a value which is higher than that
of the surrounding die walls. At this point the heat transfer direction is reversed, with
thermal energy flowing from the resin to the die. Consequently, the viscosity of the resin
begins to increase and soon the so-called “gel region” is reached. The peak exotherm is
reached within this gel zone. The degree of cure progresses to the point where shrinkage
allows the part to detach from the die walls; the presence of a suitable mold release is
crucial for this detachment to occur. The consolidated product finally exits the die and is
cut to the desired length. The pullers which move the product usually are hydraulic, and
they come in various forms such as hand-over-hand or contacting-wheels. A schematic of

the pultrusion process is shown in Figure 2-6 [Kalamkarov et al., 2000].
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Figure 2-6: Pultrusion process for production of smart composite

Fiber optic and other types of sensors, as well as actuators, can be embedded readily in a
composite part, provided they are protected from the harsh conditions that exist in the die
such as the fiber compaction pressure. Figure 2-6 illustrates the ingress of a Fabry Perot

fiber optic sensor in a pultruded composite part [Kalamkarov et al, 2000].



The structural integrity of the consolidated product will partly depend upon the overall
pressure profile that exists in the die. This is a function of a number of processing
parameters, the most important of which are the volume fractions of the fibers and resin,
the tolerance to which the die is machined, the die cross-sectional profile, the coefficient
of thermal expansion of the fibers and of the resin, and the variation in the thermal
expansion coefficient and the viscosity of the mixture from the onset of the curing
process through the gelation stages. Thus a comprehensive characterization of the
pultrusion process cannot take place without a thorough understanding of the pressure

profile in the die.

A number of researchers have attempted to assess experimentally the influence of such
variables as pulling speed, constituent volume fractions, die temperature, the presence of
different catalysts etc. on the mechanical integrity of the pultruded product. MacDonald
[1989] examined the effect of different processing parameters on the quality of pultruded
cylindrical glass rods and rectangular glass bars using a phenolic resin. It was found that
the optimal cure temperature for the composites was 180°C and the optimal resin
injection pressure was around 40-50 psi. The desired fiber pulling speed was 40 cm/min
and pultrusion rates higher than 50 cm/min jeopardized the mechanical properties of the
end product. It was also discovered that the use of a large weight fraction of the glass
reinforcement (75%) prevented resin seepage/scale problems in the die. As well, the use
of silane and caustic soda additives in the resin mixture improved the overall mechanical
properties of the product. More importantly, however, the strength of the composite
depended very strongly on the degree of cure. In particular, a 90% or more degree of cure
was necessary for the composite to develop its full strength. A 60% degree of cure meant

that the resulting composite was only half as strong in flexure and shear.

The characterization and optimization of the process variables that govern the pultrusion
process have been the subjects of investigation by many researchers over the last decade.

Vaughan et al. [1989] employed a series of statistical experiments to examine the
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ihteraction among fhe various parameters, and used the results obtained to optimize the
pultrusion process for any mechanical characteristic such as tensile strength or shear
strength. Lackey [1992] used similar statistical techniques to examine the effect of
pulling speed, fiber volume fraction and die temperature profile on the flexural strength
and short-beam shear strength of pultruded glass/epoxy and graphite/epoxy composites.
The effects of these same variables on the Iosipescu shear strength of pultruded
glass/epoxy and graphite/epoxy composites was assessed by Theobald et al. [1998]. The
influence of the pertinent variables on the dynamic characteristics (elastic modulus and
damping coefficient) of pultruded graphite/epoxy composites was investigated by

Mantena et al. [1992] and Kowsika et al. [1996].

2.3.4 Resin Transfer Molding

MIXING

HAND LAY UP PRESS MOLDING  RESIN TRANSFER
MOLDING

Figure 2-7: Schematic of the resin transfer molding (RTM) process [Mallick and
Newman, 1990]

Resin transfer molding (RTM) has the capability of producing composite parts of varying
size and complexity. A simplified schematic of the process is shown in Figure 2-7
[Mallick and Newman, 1990]. The dry fibers or prepregs are laid up into the lower half of

a mold. The mold is then tightly sealed and resin is injected into the cavity until the



reinforcements are fully vsaturated. The résin is Subsequently allowed to cure (at room
temperature or in autoclave) and finally the product is removed. Post-fabrication curing
may be necessary to ensure that the composite develops its full strength. A very similar
technique is the structural reaction injection molding (SRIM). The essential difference
between RTM and SRIM is that in the former the resin and the catalyst are mixed prior to

injection in the mold, whereas in the latter they are mixed as they are being injected.

2.3.5 Injection Molding

Figure 2-8: Schematic of the injection molding process [Wright, 1991]

Injection molding involves injecting a fluid plastic material into a closed mold. In
thermoplastic injection molding, a thermoplastic material is melted and forced into a
closed mold which is relatively cool. When the resin cures the mold is opened and the

consolidated product is removed. In thermosetting injection molding the resin is injected



into a warm mold. After the curing process, the mold is opened and the composite is
removed [Handbook for Infrastructure Applications of Composite Materials, 1998, page
24]. A schematic of the injection-molding process is shown in Figure 2-8 [Wright, 1991

page 92].
2.4 Overview of Fiber Optic Sensors

2.4.1 Optical Fibers

This thesis will deal with various aspects of smart composite materials. The first smart
composites to be discussed in the sequel will be pultruded glass- and carbon-fiber
reinforced rods with embedded Fabry Perot or Bragg Grating fiber optic sensors.

Therefore, a brief review of common types of fiber optic sensors is warranted.
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Figure 2-9: Schematic of an optical fiber

The two basic components of an optical fiber (see Figure 2-9) are the inner part, or core,
and the outer part, or cladding. The refractive index of the core is slightly greater than
that of the cladding so that light entering the fiber and striking the core/cladding interface

at an angle greater than the pertinent critical angle will undergo total internal reflection
and travel down the fiber. Hence, for light to be confined within the core, it must fall

within the acceptance angle as shown in Figure 2-9.



Theré aré three types of optical ﬁbers‘available: step—index (multimode), graded-index
(multimode) and single-mode fibers. A mode is a stable propagation state in a fiber. The
electromagnetic fields in the light waves reinforce one another to produce stable
propagation states only when light travels along certain paths. Each of these propagation
states is called a mode. As their name suggests, single mode fibers only carry one mode
of light, whereas step index and graded index fibers can carry many modes. The three
types of optical fibers are shown diagrammatically in Figure 2-10 [Guide to Fiber Optics
System Design, 1996].
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Figure 2-10: The three types of optical fiber [Guide to Fiber Optics System Design,
1996]

The next few sections will describe briefly the principles of operation of some fiber optic
sensors, particularly the ones that are being used or have the potential to be used for
smart composite structures. They are the Microbend, the Fabry Perot and the Bragg
Grating sensors. The Fabry Perot and Bragg Grating sensors are the ones used for the

purposes of this thesis.



2.4.2 Intrinsic and Extrinsic Fiber Optic Sensors

The term “fiber optic sensors” covers a whole spectrum of optical devices that operate in
many different ways. The advantages of fiber optic sensors that make them particularly
attractive for smart composite applications are light weight, and a small size that enables
them to be embedded in many composite structures without significant deteriorating
effects on the integrity of the host material. As well, fiber optic sensors are immune (o
electromagnetic interference, and can operate in high and low temperature environments.
Fiber optic sensors are very sensitive and some, like the Bragg Grating sensor, can be
constructed to output absolute readings, making the need for repeated calibration

obsolete.
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Figure 2-11: Fundamentals of (a) extrinsic and (b) intrinsic fiber optic sensors [Udd.,
1991]

Fiber optic sensors can be classified as extrinsic or intrinsic, as shown in Figure 2-11

[Udd, 1991]. In extrinsic sensors, modulation of light in response to environmental



changes occurs in a separate device and the optical fiber only acts as a carrier of the light
to and from the modulator. In intrinsic sensors, modulation occurs within the fiber itself.
Fiber optic sensors can monitor many variables including temperature, pressure,
mechanical strain, linear and angular displacement, change in conductivity and many

others.

2.4.3 Microbend Sensor

This is one of the most popular types of optic sensors, and can be used to measure
pressure, force, strain and other parameters. Its principle of operation is based on the fact
that when light rays strike a bend in a multimode fiber, those rays in higher modes may
strike the core/cladding interface at an angle that is lower than the critical angle.
- Consequently, they will not undergo total internal reflection and they will be attenuated.
Light rays in lower modes are less susceptible to attenuation but may switch to higher

modes further along the fiber and may leak out as well.
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Figure 2-12: Principle of operation of microbend sensor [Hecht, 1993]



Figure 2-12 shows the principle of operation of a microbend sensor [Hecht, 1993]. A
fiber is located between a pair of grooved plates. When there is no pressure acting on the
top plate, the fiber is fairly straight and a strong signal is detected. When the plate is
subjected to a pressure, microbends are induced along the length of the fiber so that some
of the light leaks out and the optical power transmitted to the detector is diminished. The
higher the applied pressure, the more extensive is the degree of microbending and

consequently the lower is the transmitted power.

2.4.4 Fabry Perot Sensor
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Figure 2-13: Fabry Perot sensor [Kalamkarov et al., 2000]

Interferometric sensors are among the most popular sensors in use today. Their principle

of operation is based on changes in the effective length of a fiber. The effective length of
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an optical fiber depends not only on the physical length (which may change as a result of

mechanical or thermal strain), but also on the refractive index.

The most common interferometric sensor used with smart materials is the Fabry Perot
sensor shown schematically in Figure 2-13 [Kalamkarov et al., 2000]. Fabry Perot
sensors were first used as temperature transducers and demonstrated high accuracy. They
generally consist of two reflective surfaces separated by a transparent medium. The
transmittance of the interferometer depends vitally on the proper spacing between these

reflectors, as well as on the wavelength of light [Udd, 1991].

The principle of operation of a Fabry Perot sensor is best explained by reference to
Figure 2-13. Light from a source such as a laser or a light-emitting diode (LED) is
coupled into the lead-in fiber, the end-portion of which is encapsulated into another
hollow core fiber of slightly larger diameter. Another small fiber segment with a
reflective surface is also fusion-welded to the inside of the hollow fiber. The lead-in fiber
and the fiber with the reflective surface are separated by a small air gap. Light from the
source reaching the end of the lead-in fiber will be mostly transmitted, but a small portion
will be reflected back. The light transmitted across the air gap will be reflected off the
reflecting fiber. Thus the incident light splits into two beams, one of which travels a
larger distance than the other by an amount equal to twice the length of the air gap. The
two reflected beams will therefore be out of phase and this results in interference.
Mechanical or thermal strain at the location where the Fabry Perot sensor is embedded or
attached will change the length of the air gap and hence the interference pattern of the

two reflected beams. Hence, the detected signal can be used to compute strain.

Fabry Perot sensors are very attractive for smart composite applications because their
extremely small size allows them to be embedded easily into composite materials, for
example in pultruded glass- and carbon-fiber reinforced tendons [Georgiades, 1998]. As

well, they are very sensitive in the direction parallel to the fiber axis and quite insensitive
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in the perpendicular direction. Fabry Perot sensors can be used to measure mechanical
strain [Georgiades, 1998], and if desired they can be designed with temperature
compensation. The Fabry Perot sensors embedded in the pultruded rods at the Smart
Composites Processing Lab at Dalhousie University are multimode sensors operating at a

wavelength of 1300 nm.

2.4.5 Bragg Grating Sensor

Another class of sensors is constructed by creating a pattern of refractive-index
differentials directly onto the core of the fiber. This may be achieved by directing two
laser beams operating in the ultraviolet from the side. An interference pattern results,
with alternating bright and dark fringes as shown in Figure 2-14 [Udd, 1995], which
resembles a diffraction grating. At the regions of constructive interference, the intensity
of light is high enough to cause optical damage at the sights occupied by gerrrianium
atoms. This changes the index of refraction of the core material, and creates a periodic

pattern known as a Bragg Grating. Appropriately, the pertinent sensors are called Bragg

Grating sensors.
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Figure 2-14: Bragg Grating sensor [Udd, 1995]



31

Broadband or
Tunable Source

Grating Sensor

$3)))))))

Optical Hber

index of
Refraction

Optical Spectrum Analyier
or Photedetector

Incident Light

>3
.

<

Reflected light
Transmitted Light
'

Figure 2-15: Schematic of Bragg Grating sensor response [Tennyson, 2001 ]

Fiber gratings selectively reflect certain wavelengths and transmit others as shown in
Figure 4-15 [Tennyson, 2001]. The reflected wavelength will be a function of the index
of refraction of the core as well as the spacing of the grating. Changes in temperature or
pressure will cause a change in the refractive index of the core material and hence cause a
shift in the narrow-band reflected light. A change in temperature will also induce a
thermal strain that will change the spacing of the grating. A similar effect will be
imparted by a mechanical strain. Consequently, thermal and/or mechanical strains will
cause a change in the peak reflected wavelength. This wavelength shift provides the basis
of operation of Bragg Grating sensors, as shown in Figure 2-16 [FLS 3100 Operation
Manual, 1998]. The main advantages of Bragg Grating sensors, other than their small
size, are a linear response and ease of manufacture. As well, being absolute sensors, they
do not require recalibration. Typically, optical fibers are supplied with a protective
coating such as polyimide or acrylate. However, Bragg Gratings often will be
manufactured with the coating around the sensor portion removed to facilitate surface

bonding or embeddement.
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Figure 2-16: Strained and unstrained reflectivities [FLS 3100 Operation Manual, 1998]

To determine the mechanical strain € from a Bragg Grating sensor the following equation
may be used [Tennyson, 2001]:

Ar _ GFxe+B AT @-1)
A’0
where Ay is the Bragg wavelength and AA the wavelength shift (see Figures 2-15 and 2-
16]. GF, the gauge factor, and B, the thermo-optic response of the grating at fabrication,
are supplied by the manufacturer. Finally, AT is the change in temperature on the grating
with respect to Ty, a reference temperature of the sensor at calibration (supplied by

manufacturer).

The Bragg Grating sensors used at the Smart Composites Processing Lab at Dalhousie

University are of the single-mode type, operating at a Bragg wavelength of around 1300

nm.
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Other sensors that are being employed today are the polarization sensors. They work on
the principle that certain fibers have different refractive indices for differently polarized
light. They have been used to measure pressure, displacement, acceleration and other
variables [Udd, 1991]. Other fiber optic sensors are based on the photoelastic effect, the
Sagnac interferometer, the Mach-Zehnder inteferometer, the Michelson Interferometer
etc. [Udd, 1991]. Fiber optic technology has grown tremendously over the past twenty
years, as evidenced by the fact that since 1980 there has been a steady, almost
exponential decrease in the cost of fiber optic components. For example, the cost of laser
diodes has fallen from aroﬁnd $3000 to a mere $3 and the cost of a single-mode fiber has
gone from $10 to $0.10 per meter [Udd, 1991, page 5]. It is anticipated that in the very
near future, fiber optic sensors, perhaps together with micro-electro-mechanical (MEM)
sensors, will enjoy widespread use in essentially all fields of health, engineering, and

telecommunications.

2.5 Civil Engineering Applications of Passive Smart Materials

In Section 2.1 a distinction was made between passive smart materials and active (or
adaptive) smart materials. Passive smart materials incorporate sensors that provide
information on their state and integrity, while actively controlled smart materials
incorporate both sensors and actuators and they can perform self-adjustment or self-repair
as conditions change. Chapters 3-6 of this thesis will deal with the production and
assessment of pultruded glass- and carbon-fiber reinforced tendons with embedded Fabry
Perot and Bragg Grating sensors. The objective is to use these and other similar passive
smart composites as prestressing tendons, cables or rebars in bridges, overpasses, dams
and other structures. Appropriately, Section 2.5 will discuss briefly some civil
engineering applications of passive smart materials and/or structures using fiber optic

sensors. Active smart materials will be dealt with in chapters 7-12 of the thesis.
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One of the biggest incentives in 'applying fiber optic sensor technology to the
infrastructure has been the monitoring of large structures such as bridges and dams. Their
economic and environmental impact is so pronounced that a concise assessment of the
structures and their foundations is of paramount importance. Vurpillot et al. [1996]
installed a large number of fiber optic deformation sensors together with thermocouples
and conventional strain gages in the concrete deck and steel girders of a highway bridge
near Lausanne, Switzerland. Their objective was to monitor the bridge during the first
hours after concreting and to perform a strain analysis of the bridge under the action of

static and dynamic loads (in the form of heavy trucks).

. - Mechanical piece
Loose-tube jacket . Relerence fiver
/ Pneumatic accessaries

A .
\ Nylon tube (0.5 mm) M Measurernent fiber

< Passive reqion Active region

L 4

Figure 2-17: Schematic of fiber optic sensor [Vurpillot et al., 1996]

The salient features of the sensor system used are shown in Figure 2-17. It consists of two
single-mode optical fibers. One fiber, the measurement fiber, is prestrained and anchored
between two mechanical pieces that serve to transmit the displacement of the deck to the
optical fiber. Prestraining the measurement fiber allows it to detect both tensile and
compressive strains. The second fiber, the reference fiber, is located free in the tube and
is not affected by mechanical displacements of the deck, and it will detect only thermal

expansions. Clearly, the combination of the two sensors renders the overall smart
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arrangement temperature-independent. The fibers are coated with a thin layer of acrylate

and are encapsulated in a 0.5 mm nylon tube.
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Figure 2-18: Placement of fiber optic sensors [Vurpillot et al., 1996]

Figure 2-18 [Vurpillot et al., 1996] shows the details of the installétion of the sensors.
Sections 1, 2, and 3 have 8 sensors each, monitoring the deck along the axis of the bridge,
and section 4 has 4 sensors that monitor the deck in a direction perpendicular to the

bridge axis. The sensor installation was very expedient, taking only half a day.

As stated earlier, the first objective of this project was to assess the deck after concreting.
The shrinkage measurements of the concrete deck indicated that during the thermal
expansion phase (the first few hours after concreting) the peak strains attained were about
0.06%. During the shrinkage (cooling) phase the fiber optic sensor measurements
exhibited discontinuities, indicative of crack formation eight days after concreting.
Hence, we see that similar experiments have the potential of providing valuable insight
into the underlying fundamentals of steel-concrete interaction as well as on the current
strain state of a structure. The load test, which was conducted four months after
concreting, involved locating 25-ton trucks on the deck according to six different load
patterns labeled a, b, ¢, d, e, and f with each load pattern repeated 3 times. Figure 2-19

shows the displacement output from one of the sensors. The repeatability of the readin as
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from this sensor is evident. The authors thus concluded that such a smart system is well
suited for bridge monitoring. As well, it was observed that the overall precision of the
fiber optic sensors would be increased if an integrated (rather than an external) optic

coupler were used.

Fiber optic sensor measurement

5.100
5.04 E e )
sfli: Nl Mo o

i
| | H
H

4.96 ""g p

a b c d e 0

Load arrangement

Figure 2-19: Displacement output from fiber optic sensor [Vurpillot et al., 1996]
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Figure 2-20: Strain behavior for 6 days following concrete pouring [Habel and Hofmann,
1994]
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The potential of using fiber optic sensors with the objective of monitoring civil
engineering structures was also demonstrated by Habel and Hofmann [1994], who
embedded Fabry Perot fiber optic sensors in the reinforced walls of a new sewage
treatment project. The sensors were placed inside a cement mortar body and subsequently
attached to the cage of the steel reinforcement. The wall was then concreted and the strain
data were acquired. Figure 2-20 shows the strain behavior recorded by one of the Fabry

Perot sensors for the first six days following concrete pouring.
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Figure 2-21: Health monitoring system for a bridge instrumented with Fabry Perot
sensors [Kim et al., 1997]

The first attempt at introducing smart elements (using fiber optic sensors) into real
bridges in the Republic of Korea was made by Kim et al. [1997]. Their study involved
performing diagnostic tests of the Sungsan Bridge (in Seoul), the busiest motorway
bridge in the country carrying a traffic load of about 200,000 vehicles per day. Three
spans were chosen for testing with the Fabry Perot sensors, along with accelerometers
and foil gages attached to a steel girder at midspan, as shown in Figure 2-21. Static and

dynamic tests were performed using a 30-ton truck and the results were recorded.

Typical plots are shown in Figure 2-22. The top graph shows the strain signature from the

Fabry Perot sensor due to the static load, and the other two graphs pertain to truck



velocities of 10 km/h and 20 km/h. The potential for strain monitoring using fiber optic

sensors is evident.
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Figure 2-22: Response of Fabry Perot sensors due to static and dynamic loads [Kim et
al., 1997]

Nellen et al. [1997] reported one of the earliest known applications of smart composite
structures, pertaining to the monitoring the Storck’s stay cable bridge in Winterhur,
Switzerland. Two novel carbon fiber reinforced cables equipped with strain gages.
temperature sensors and Bragg Grating fiber optic sensors had previously been installed

in the bridge.

A schematic of the Storck’s Bridge is shown in Figure 2-23. Each CFRP cable has a
length of 35 m and consists of 241 5 mm-diameter wires arranged in a hexagonal manner
inside a polymer tube. Each CFRP cable has 7 Bragg Grating (BG) sensors and 6
resistance strain gages (RSG). Three Bragg Grating sensors (BG1, BG4, and BG7) are

bonded to wires on the outer periphery of the array as shown in Figure 2-24. The



remaining sensors (BG2, BG3, BGS5, and BG6) are used as temperature compensators on

dummy wires that will not carry any load.
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Figure 2-24: Cross-Section of smart CFRP cable [Nellen et al., 1997]

Figure 2-25 shows the monitoring of the bridge during different phases. In particular
eight different events are represented on the graph. These are:

“ 1. The sensors are applied and the cables ready for shipment.
2. The cables are fixed to the bridge; no load is applied.
3. A first load which is used as reference load is applied to the cables.
4. The bridge is concreted and gains most of its weight.
5. The load distribution on all cables is adjusted.
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6. The load on the cables was measured with a hydraulic press for comparison.
7. Measurements made two days before the bridge opening.
8. Measurements on a typical winter day.”
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Figure 2-25: Monitoring of bridge using smart CFRP cables [Nellen et al., 1997]

The top graph in Figure 2-25 shows the strain output from the four Bragg Grating sensors
in one smart cable, and the bottom graph pertains to the other cable. One noteworthy
feature of the graphs is the excellent agreement between the fiber optic sensors and the
strain gages. It is thus clear that Bragg Grating sensors have great potential in monitoring
civil engineering structures in terms of strain measurements and temperature

compensation,

Tennyson et al. [2001] describe the use of what are referred to as “long gauge sensors” as

well as Bragg Grating sensors for strain monitoring of different structures in Canada. The
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long gauge sensor is an interferometric sensor and operates on a similar principle to that
of a Fabry Perot sensor. Since the sensing element is essentially a flexible optical sensor,
the long gauge sensor can vary in length from a few cm to tens of meters. This allows the
sensor to be employed in many interesting configurations, such as, for example, around a
composite column wrap to measure circumferential strain. The authors demonstrated the
feasibility of having fiber optic smart components monitor large structures by bonding
Bragg Grating sensors and long gauge sensors to composite rebars embedded into the
concrete repair of the Centre St. Bridge in Calgary, Alberta. The authors also used long
gauge sensors to monitor the strain state in the pier columns of the Portage Creek Bridge
in Victoria, British Columbia. Since this bridge was designated a “disaster route”, it
became necessary to reinforce the columns that were designed prior to the introduction of
the new seismic design guidelines in 1982. Figure 2-26 shows a schematic of a column

with FRP wrap and bonded long gauge sensors.
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The examples described in this section represent only a few select cases of smart
elements being integrated within various civil engineering structures. In some of the
above-mentioned projects, as well as in others (see for example Mufti et al., 2001,
Newhook et al., 2001) the fiber optic sensors are used in conjunction with composite
materials. In fact, smart composites are one of the most rapidly evolving fields with
applications not only in civil and structural engineering, but also in medicine, sports.
space research, machine design and control and many other fields. The impact of smart
composite materials undoubtedly will become more pronounced as the pertinent
knowledge base expands and scientists and engineers become more comfortable with

their long-term behavior.



3.0 EXPERIMENTAL MATERIALS, PROCESSES, AND
EQUIPMENT

3.1 Introduction

During the last few years, countries worldwide have been agonizing over the problem of
rehabilitating the huge volume of their steel-reinforced concrete structures, and the ever-
corroding steel has added a new dimension to the world’s infrastructure problems. Due to
the severity of its climatic conditions, Canada is in a more critical situation than most
other countries. ISIS Canada, a Network of Centres of Excellence, was created to combat
this problem and it combines the work of hundreds of researchers throughout the country.
ISIS stands for Intelligent Sensing for Innovative Structures. “ISIS Canada research
enables infrastructure to be built and rehabilitated using innovative materials that are
tremendously lighter, stronger, and longer lasting. In addition, structures can be
engineered to monitor and communicate the stresses and strains they encounter on a daily
basis. An engineer could arrive at work one morning to a message resembling E-mail,
warning of damage that could have a cost in human lives. Without even visiting the site,
those responsible will recognize the problem and be able to respond immediately.” [ISIS

Canada Annual Report, 1996].

This thesis research has primarily been funded by ISIS. Chapters 4-6 deal with the
fabrication, processing and reliability assessment of pultruded smart CFRP and GFRP
tendons with embedded fiber optic sensors. The long-term objective is to use these
tendons as both rebars and strain monitors in civil engineering structures. Such materials
eventually will replace steel as the primary concrete reinforcement, and at the same time
provide the strain data from the integrated fiber optic sensors to enable us to correct

problems before they become insurmountable. Appropriately, this chapter describes, in
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some detail, the experimental materials, processes and equipment used in the various

aspects of this research.
3.2 Pultrusion

Central to the current study is the fabrication of carbon- and glass-fiber reinforced
polymer (FRP) tendons using pultrusion. 9.5 mm-diameter rod stock was produced using
a customized pultrusion machine designed and built at the Smart Composites Processing
Lab at Dalhousie University. The pultrusion setup is shown in Figure 3-1 [Kalamkarov et
al., 1997]. The reinforcing fibers (E-glass or carbon) are pulled from a regular array of
spools into a tool-steel die. Prior to entering the die, the fibers pass through a set of fiber-
feed polyethylene guides and then through a dip-type bath that contains the resin and
appropriate catalysts and .mold-release compound. The fibers are thoroughly saturated
with resin and subsequently pass through another fiber feed guide with two sets of holes
arranged in horizontal lines. The holes in this guide help to squeeze out excess resin from
the fiber rovings so that there is an even distribution around the cross-section of each one.
The reinforcements then pass through another set of guides that has holes arranged in a
circular pattern. This guide finally leads the fibers into the die. It should be noted that one
roving traverses a straight path through the guides and into the center of the die. This
center roving is used to carry the optical fiber sensor in the cases where a sensor is
required to be embedded in the composite rod. The pulling force is maintained by a set of
counter-rotating wheels fitted with a thick layer of rubber. A groove is machined into the

center of the rubber to help guide the consolidated rod as it exited the die.

The glass fiber rovings used are continuous E-glass filaments formed into a single end
reinforcement, free from catenary and treated with 0.45 nominal wt% sizing which is
silane-based and compatible with most resin systems. The carbon rovings (see Figure 3-
2) used had a standard epoxy-based sizing. The rods were produced using a urethane
modified bisphenol-A based vinylester resin system known for its good mechanical

properties and excellent processability. Two types of organic peroxide catalysts were



used to cure the resin, di-peroxydicarbonate and tert-butyl peroxybenzoate, commonly
known as TBPB. Adequate release from the die was achieved by using an internal

lubricant. The mechanical properties of the vinylester resin system are given in Table 3-1.
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The properties of the carbon- and glass-fiber rovings which contained a Sizing compatible
with the vinylester resin system are given in Tables 3-2 and 3-3 respectively. The 9.5
mm-diameter GFRP rods were pultruded with a 64% reinforcement volume ratio and the
CFRP rods were pultruded with a 62.5% volume ratio. These figures correspond to 22
rovings for carbon and 26 rovings for glass. Six strip heaters attached in pairs of two on
the top and bottom surfaces of the die provided three thermal zones, one near the die
entrance (120°C), one in the middle region of the die (150°C), and one near the exit
(120°C). The operator of the pultrusion machine can adjust the pultrusion rate by means
of an integrated speed controller. However, it was found that a pulling speed of around 25
cm per minute produces good-quality rods. The color of the GFRP tendons permitted a
visual inspection of any defects. As far as the quality of the CFRP rods was concerned, a

simple manual hardness test proved sufficient.

Figure 3-2: Carbon and glass fiber spools together with pultruded CFRP and GFRP
tendons



Table 3-1: Properties of vinylester resin

* . Values taken from literature for similar materials

Table 3-2: Properties of carbon fiber rovings

* . Values taken from literature for similar materials

* - Values taken from literature for similar materials
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Figure 3-3 shows the overall puitrusion setup of the Smart Materials Centre, Dalhousie
University. The creel system loaded with glass fiber spools, the fiber guides and the
pultrusion die are clearly visible. A vent, seen above the machine, is an integral part of
any pultrusion lab due to the strong odor of the chemicals involved in the process.
Figures 3-4 and 3-5 show a close up views of two storage shelves. One holds carbon fiber
spools and the other has some of the chemicals added to the resin. Notice also in Figure
3-5 a spool with polyimide-coated optical fiber. Figure 3-6 shows glass fiber rovings
passing through holes machined in the polyethylene guides and Figure 3-7 is a close up
view of the creel loaded with glass fibers spools. Figures 3-8, 3-9, and 3-10 show glass
fibers guided into the die. Figures 3-11 and 3-12 show close up views of the die with the
strip heaters and their ceramic cap insulators, and Figure 3-13 shows the inside of the
controller box with the temperature controllers clearly visible. Figure 3-14 shows a
pultruded carbon rod exiting the pulling wheels and Figures 3-15 and 3-16 a pultruded

glass rod.

Figure 3-3: Overall pultrusion setup at Dalhousie University
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optical fiber
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Figure 3-5: Storage shelf with some of the resin additives



Figure 3-7: Close up view of creel with glass fiber spools
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Figure 3-9: Glass fiber rovings enter the die



Die entrance

Pultrusion die

Figure 3-11: Close up of the die shows two strip heaters



Ceramic insulator caps

Strip heaters

Figure 3-12: The strip heaters and their ceramic insulators

Temperature
controllers

Figure 3-13: Inside the pultrusion controller box
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Figure 3-14 shows a pultruded carbon rod exiting the pulling wheels and Figures 3-15

and 3-16 a pultruded glass rod.

Figure 3-15: Pultruded glass rod exiting the die and entering wheels



Figure 3-16: Pultruded glass rod exiting the wheels



3.3 Fiber Optic Connector Attachment

The next few chapters deal with different issues related to pultruded GFRP and CFRP
smart tendons with embedded fiber optic sensors. The main objective is to incorporate
these tendons into civil structures wherein they will replace steel as the principal concrete
reinforcement. As well, the integrated fiber optic sensors will provide designers and

maintenance engineers with the desired feedback on the strain state of the structure.

Protective Jacket

FC/APC connector

Sensor is here (not visible)

cad Piber Sirain Sen
ane Hraadly Wikt

B

Figure 3-17: Bragg Grating sensor prepackaged assembly

Two types of fiber-optic sensors were used; Bragg Grating sensors and Fabry Perot
sensors. The Fabry Perot sensors used in these experiments were rated for + 3000, +

5000, or 0-10000 microstrain (ie), while their Bragg Grating counterparts were rated for



+ 5000 pe. The sénsors were acquired as prepackaged assemblies, with the sensing
element being located at the front end of an optical fiber of approximately 2.0-3.0 meters
total length. The optical fiber was coated with a thin layer of polyimide to protect it
against the high temperatures encountered in the pultrusion die. This polyimide coating is
the contact surface between the optical fiber and the host GFRP or CFRP material. It is
thus imperative that the polyimide material be chemically compatible with the vinylester
resin so that a good bond between sensor and host is achieved. Bragg Grating sensors
cost about $200 each and Fabry Perot sensors about $220 each. A FIZ10 demodulation
unit (purchased for about $4000) was used to record strains from Fabry Perot sensors and
a BIS card (purchased for about $6000) was used to record strains from the Bragg

Grating sensors.

Polyimide- coated ; Protective
optical fiber fiberglass braid

The Fabry Perot sensor is here under the
protective tape

STP type connector

Figure 3-18: Fabry Perot sensor prepackaged assembly



To connect the optical fiber lead to thé appropriate demodulator, howevér, required a
different type of connector for each of the two sensors. In particular, a Face
Contact/Angled Physical Connector (FC/APC) was used for the Bragg Grating sensors
and an ST type connector was used for the Fabry Perot sensors. This section will describe
briefly the procedure for installing the FC/APC connector. It is essentially a three-stage
procedure beginning with the removal of the polyimide coating over the small portion of
the fiber on which the connector will be installed, proceeding with the installation and
assembly of the connector proper, and ending with the polishing of the fiber end. The
procedure for an ST connector only differs in the type of polisher used. In particular,
polishing the FC/APC connector requires an angled polisher, whereas the polishing of the

ST connector requires a flat polisher.

N
An FC/APC
Connector used with
Bragg Grating
Sensors

Strain-relief jacket

R

Housing

Figure 3-19: Photograph of an FC/APC connector with the various components shown
separately
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An FP/APC connector is depicted in Figure 3-19, wherein the individual components are
also shown. The dust cap covers and protects the ferrule when the connector is not
affixed to the demodulating unit. The ferrule is the white ceramic tip and serves to align
the optical fiber. It has a small hole bored along its length, with a diameter only slightly
larger than that of the fiber. The spacing between the ferrule and the optical fiber is
necessary for the epoxy to flow freely around the fiber and permanently bond it to the
ferrule. The housing is the metallic part that holds the ferrule on one end, and the strain-
relief jacket on the other end. As its name suggests, the strain relief jacket protects the

optical fiber against accidental cleavage.

Figure 3-20: Removal of polyimide coating by rapid heating

The first step in the connector-installation process is the removal of the polyimide coating

from a small portion of the optical fiber. There are essentially two methods for achieving

this [Lane et al., 1996]. The first method simply involves passing the optical fiber
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through an open flame in order to burn off the polyimide as shown in Figure 3-20. The
carbonized polyimide material then is removed easily by acetone-wetted tissue paper
[Lane et al.,, 1996]. This method is very quick and convenient, but comes with the
disadvantage that it renders the optical fiber very brittle and consequently sﬁsceptible to
breakage. The other method involves dipping the optical fiber in hot concentrated
sulphuric acid (heated to around 130°C) for a few minutes until the coating is dissolved,
see Figure 3-21 [Lane et al., 1996]. This method is time-consuming, requires a fume hood

and is hazardous. Thus, it is rarely used.

Figure 3-21: Removal of polyimide coating from optical fiber by dipping in hot
concentrated sulphuric acid [Lane et al., 1996]
The next step in the procedure is to make a suitable epoxy mixture by mixing a resin with
a suitable hardener. Using a hypodermic needle, two or three drops of the mixed epoxy

are injected into the ferrule of the connector. The uncoated optical fiber then is gently
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inserted into the ferrule from the opposite end of the housing (see Figure 3-19), and
finally the strain-relief jacket is screwed back onto the housing. The whole assembly then
is heated at about 150°C for a few minutes (Figure 3-22) to ensure that the resin cures and
bonds the fiber to the ferrule. At the Smart Processing and Instrumentation Lab,
Dalhousie University, we use an epoxy which changes to red ( from colorless) on curing,

thus signaling the end of the process.

Connector

Hot plate

Aluminum block

Figure 3-22: The fiber connector is mounted in a heated aluminum block to cure the
resin which bonds the optical fiber to the ferrule

The last step in the FC/APC connector installation involves a four-stage wet polishing
procedure utilizing 30-pum, 5-pum, 1-um, and sub-micron lapping films [Lane et al.,
1996]. An Ultra Tek model 8801 fiber polisher is used as shown in Figure 3-23. As
mentioned above, the procedure for installing an ST type connector (pertinent to Fabry
Perot sensors) is identical to the one described above. The only difference is that, since
the ST connector is flat (and not angled), the Ultra Tek polisher cannot be used. Instead, a

simple manual flat-end polisher must be used, as shown in Figure 3-24.
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Connector

Polishing
paper
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Figure 3-23: The Ultra Tek Model 8801 fiber optic polisher and some accessories

|

| Flatend polisher [
Polishing paper

Figure 3-24: The flat-end hand-held fiber optic polisher for ST connectors
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3.4 Fabry Perot Sensor Prereinforcement

Bragg Grating sensors were embedded in both GFRP and CFRP tendons during
pultrusion without any problems. With the Fabry Perot sensors, however, the situation
was slightly more complicated. The first attempts to embed a Fabry Perot sensor in a
carbon tendon led to the failure of all sensors, see Georgiades [1998] for more details.
What was unique about these failures, however, was the fact they occurred some time
after the consolidated rod exited the die and the pultrusion wheels and had cooled down.
In other words, the Fabry Perot sensor survived the high temperature and pressure
conditions inside the pultrusion die, as well as the passage through the pulling wheels, but

failed shortly thereafter.
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Figure 3-25: Fabry Perot sensor [Kalamkarov et al., 2000]

This post-fabrication failure was attributed to radial shrinkage of the composite rod when
it cooled down to room temperature after exiting the die, Causing a large pressure to be
exerted on the sensor. The origin of this radial pressure is the large difference between

the radial coefficients of thermal expansion of the rod (estimated to be about 29 x 10
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’m/m °C) and the sensor (about 0.5 x 10°° m/m °C). This effect is similar to fhe forces
developed when shrink fitting metal jackets on thick-walled pressure vessels. By
examining the schematic of the Fabry Perot sensor from Figure 2-13 reproduced above as
Figure 3-25 for convenience, one can see that this pressure could be significant enough to

cause the hollow section of the sensor to collapse.

To overcome this problem, it was found that Fabry Perot sensors had to be prereinforced.
The procedure for prereinforcement will be outlined in this section. Figure 3-26 shows all
the materials involved in the process. In particular, one will need, in addition to the
sensor, a straight metallic rod, some high-temperature tape, a thin piece of teflon tube
(with diameter equal to about 1 mm), a glass fiber or carbon fiber roving, and a small
amount of resin and suitable hardener. The resin used during the installation of the fiber

optic connectors, as described in the previous section, is a suitable candidate.

T

High-temperature
tape

Straight metallic

. Glass fiber roving g Fabry Perot sensor

Figure 3-26: Materials needed for prereinforcement of Fabry Perot sensors
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Tefflon tube

Metallic rod

High ~temperature
tape

Figure 3-27: The teflon tube is affixed to the metallic rod

The first step in the process is to cut a small piece of tefflon tube and attach it firmly to
the metallic rod as shown in Figure 3-27. The importance of ensuring that the tube is
straight when attached to the rod cannot be overemphasized. This tube eventually will be
the enclosure for the Fabry Perot sensor, and unless it is free from regions of any
significant curvature, this would lead to the fracture of the sensor. Subsequently, a few
strands from the glass-fiber roving are removed and passed through the teflon tube as
shown in Figure 3-28. The amount of glass reinforcement that can pass through the
tubing essentially depends upon the skill of the person. However, too few strands will
mean that the sensor will not be sufficiently reinforced. The glass-fiber strands are then

pulled from the opposite end of the tube until the length hanging outside the tube equals
the length of the tube.
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Length AB equals length of tube
which equals final length of
reinforced sensor

Strands saturated
with epoxy

Length CB equals half
the length of AB shown
in Figure 3-27

Figure 3-29: Saturating the fibers with epoxy resin
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The next step in the procedure is to mix the resin and a suitable hardener to make an
epoxy mixture, and to use this to saturate the glass fiber strands. Then the soaked fibers
are pulled halfway into the tube from the opposite end (see Figure 3-29). It is now time to
reinforce the sensor. The Fabry Perot sensor is threaded carefully just inside the tube, in
the middle of the hanging fiber bundle as shown in Figure 3-30. The fiber bundle is then
pulled all the way into the tube (from the opposite end) thus dragging the sensor with it as

well. At this point, the sensor is located halfway along the teflon tube, surrounded by

resin-soaked glass fibers.

Fiber optic lead

Resin-soaked
glass fiber strands

Fabry Perot sensor
is here, just inside
the tube

Figure 3-30: The Fabry Perot sensor is gently threaded just inside the tube

The final step in the procedure involves heating the tube on a hot plate at 150°C for about
5 minutes until the resin is cured (Figure 3-31). The consolidated rod is then carefully

removed from the tube with the aid of a blade.
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Figure 3-31: The teflon tube is heated on a hot plate to cure the resin

Reinforced Fabry
Perot sensor

Figure 3-32: The reinforced Fabry Perot sensor
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Fiberglass composite
microtube with the embedded
Fabry Perot sensor

Figure 3-33: The fiberglass microtube encompassing and protecting the Fabry Perot
Sensor.

The final reinforced sensor is shown in Figures 3-32 and 3-33. Thus, the overall
procedure amounts to encasing the Fabry Perot sensor in a glass-fiber composite
microtube. It was found that this prereinforced Fabry Perot sensor could be embedded
much more easily into a GFRP or CFRP tendon than its unreinforced counterpart, and
more importantly it did not fail after cooling down. In fact, all the prereinforced Fabry
Perot sensors subsequently pultruded survived the pultrusion process and remained
operational. Before closing this section, it should be mentioned that the reinforcement
procedure outlined produced a fiberglass microtube with the understanding that it would
be later embedded in a GFRP. If instead, a Fabry Perot sensor is to be embedded in a
CFRP, then the composite microtube will be made from carbon fiber strands using an

otherwise unchanged procedure.
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3.5 Application of Grips to the Tendons for Mechanical Testing

One of the objectives of the work described in this thesis is to perform a reliability
assessment of the embedded Fabry Perot and Bragg Grating sensors under different
environmental and load conditions. For example, one wants to know how the sensors will
perform in high- or low-temperature environments, andr how they will react to fatigue
loads. As well, it is important to collect data that reflect the repeatability of the sensor
readings and to compare their values with corresponding values from conventional strain-

measuring devices such as extensometers and foil gauges.

Spelter socket ——P,

Cured epoxy

Carbon tendon

Figure 3-34: Spelter socket used to grip the smart tendons in a load frame
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Figure 3-35: Spelter socket attaching the lower end of a pultruded carbon tendon to an
Instron machine

To meet these objectives, the pultruded smart tendons would have to be tested in a
suitable load frame such as an Instron machine. However, in order to perform this testing
it was necessary to grip directly onto the sample without damaging the fiber optic lead
that exited one end of the tendon. Thus, the standard wedge grips supplied with the
Instron were found to be unsuitable, and a special type of fixture known as an open
spelter socket was used instead. A schematic of the Spelter socket is shown in Figure 3-
34, and a photograph of an actual socket attaching a pultruded carbon tendon to an
Instron machine is shown in Figure 3-35. There is a central hole running along the length
of the spelter socket, and this allows the pultruded tendon to be inserted inside without
any difficulty and without compromising the fiber optic lead. The tendon is then held in

place by means of a strong adhesive such as a resin and its hardener. If the adhesive



strength of the resin of choice is high enough, then the tendons can be subjected to very
large tensile loads without encountering any slipping of the grips. However, the overall
procedure (as will be described in subsequent paragraphs) for installing the sockets can
be quite time consuming. Other types of grips, such as the “wire fingers” were also
considered (Figure 3-36) but these were later rejected because they tend to slip at

relatively low tensile loads.

Wire digs into the sample
when tensile load is applied

Figure 3-36: “Wire fingers” grips

Before explaining how the spelter socket is added to a tendon, the issue of protecting the
fiber-optic lead must be addressed. When a pultruded smart tendon exits the pulling
wheels of the pultrusion machine, the fiber optic lead protrudes out of its end. If this lead
fractures (and it is quite vulnerable), then the embedded sensor is of no use. To avoid this
problem, a protective jacket is used, which is slipped around the fiber. This jacket, shown
in Figure 3-37, consists of three components: a white inner tube, aramid fiber strands, and
an outer rubber jacket. The optical fiber is threaded into the inner tube, and is protected
against accidental pulling by the aramid fiber strands. Finally, the outer jacket offers
protection against accidental treading on the fiber, and more importantly provides strain

relief at the point of exit of the lead from the composite rod.
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Inner tube

Aramid fibers

Figure 3-37: Jacket used to encase and protect fiber optic lead

The steps involved in protecting the fiber optic lead are the following. First the fiber is
gently slipped into the jacket and guided to the other end through the inner tube. The
jacket is then pushed as far as possible through the uncured bundle of reinforcing fibers at
the back end of the composite tendon. This is shown in Figure 3-38. This bundle is then
tied together by a thread, and stiffened by applying a strong resin/hardener combination.
A good way to ensure satisfactory resin saturation of all the fibers in this bundle is to

inject the resin using a hypodermic needle. This is shown in Figure 3-39.

The last step in the process is the application of the spelter sockets. The sockets are
attached one at a time using the same resin/hardener that was mentioned above.

Essentially, the socket is held in place and then the mixed resin is poured in from the top
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and allowed to cure at room temperature overnight. A piece of plasticene holds the resin

within the confines of the socket. Figure 3-40 illustrates these steps.

Uncured Bundle of
carbon fibers

ST connector

Protective jacket
encasing optical fiber

Figure 3-39: Injecting resin to cure a carbon fiber bundle at the end of a CFRP tendon
and attach a protective jacket for strain relief
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CFRP tendon

igure 3-40: Attaching a spelter socket to a CFRP tendon
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3.6 Mechanical Testing of Pultruded Tendons

Following the fabrication of the pultruded composite tendons, a comprehensive reliability
study was undertaken. This involved subjecting the tendons to various types of loads in
different ambient conditions. Much of the testing was done with the aid of a load frame at
the Experimental Mechanics Lab, Dalhousie University. The load frame used was an
Instron Model 1321 controlled by an Instron 8500 series controller and fitted with a 45
kN load cell. The overall setup is shown in Figures 3-41 and 3-42. Figure 3-43 shows a

close-up of the Instron frame.

Extensometer

Spelte
Socket:

77777 77777

Load Frame Controller PC Data
Acquisition

Figure 3-41: Instron machine and controller at Experimental Mechanics Lab, Dalhousie
University [Kalamkarov et al., 1998]



Figure 3-42: Overall setup for mechanical testing

Figure 3-43: Instron machine used for tension loading of pultruded tendons
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To assess the performance of the embedded fiber optic sensors, the phltruded tendons
were subjected to two types of loads: sinusoidal and trapezoidal. The following load vs.

time graphs (Figures 3-44, 3-45) show the characteristics of the load waveforms.

100 N 12000 N

y

Load (N)

T T T T 1

Time (seconds)

Figure 3-44: Sinusoidal tension load applied to tendons

1 12000 N

v

Load (N)

Time (seconds)

Figure 3-45: Trapezoidal tension load applied to tendons
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For the trapezbidal waveform, fhe load was ramped up fo its peak value (typically 7-12
kN) from a small preload level of around 100 N. The rate of load application was 90
N/sec. The tendons were held at this load level for 20 seconds and then the load was
ramped back down to the starting load at a rate of 90N/sec. For the sinusoidal waveform.
the frequency of the applied load was one cycle per minute (0.0167 Hz) for five cycles.
Slow load rates were chosen because it was desired to avoid any fatigue effects for these
tests. To verify the accuracy of the strain values from the embedded Fabry Perot and
Bragg Grating sensors, we also attached an extensometer to the surface of the tendons as

shown in Figure 3-46.

CFRP
tendon

Extensometer

Figure 3-46: Strain from a Fabry Perot sensor embedded in a CFRP tendon and an
externally affixed extensometer
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Thus, duﬁng testing, four analogue signals were read into the data acquisition program.'
They were the three voltage signals from the extensometer, the load cell, and an LVDT
(linear variable displacement transformer), and a strain signal from the Bragg Grating or
Fabry Perot sensor. FLS 2000 and FIZ 10 demodulation units were used to record strain

from the Bragg Grating and Fabry Perot sensor respectively (see Figure 3-47).

clesT

crsal Fiber Optic

Figure 3-47: FIZ 10 demodulation unit for Fabry Perot sensors

In addition to tests performed in ordinary laboratory conditions, the reliability assessment
of the smart tendons required that tests be done in hot and cold environments. Specialized
equipment such as an environmental chamber fitted with a temperature controller had to
be used, and consequently these tests were performed at the laboratories of the PSC
Analytical company in Dartmouth, Scotia. Figure 3-48 shows the overall setup at PSC
Analytical, that includes an MTS model 8540RM load frame (with a capacity of 400 kN),

an Instron Series IX controller, and an Instron temperature chamber fitted with its own



controller. A thérmocouple monitored the temperature in the chamber. Figure 3-49 shows
the temperature chamber and its controller, and Figures 3-50 and 3-51 show close-up

views of a glass tendon being tested at —40°C.

Figure 3-48: Load frame and temperature frame at PSC Analytical



Figure 3-49: Temperature frame and controller at PSC Analytical
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Figure 3-50: GFRP tendon during testing at -40°C
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Figure 3-51: Close-up view of a GFRP tendon during testing at —40°C

In addition to static tests at various temperatures, the behavior of the sensors when the
tendons in which they are embedded are subjected to fatigue or creep loads was

examined. More details from these tests will be given in subsequent chapters.



4.0 MANUFA CTURING, PROCESSING AND RELATED ISSUES

4.1 Introduction

The first objective of this research was to undertake a comprehensive reliability study of
the smart pultruded FRP tendons. This will include tensile tests in high-temperature and
low- temperature ambient conditions, fatigue tests, short-term creep tests, and longer-
term creep tests in alkaline environments. Before dealing with these tests however, a few
other issues should be addressed. These are (a) a micromechanical investigation of the
smart tendons, (b) sensor embeddement and pultrusion monitoring, and (c) tension testing
of the pultruded tendons under ordinary laboratory conditions. Details regarding the first
issue are given by Kalamkarov and MacDonald [1997], and the other two issues are

discussed by Georgiades [1998]. A brief account of this work will be given in this
chapter.

4.2 Micromechanical Study of Smart Tendons

IR

Figure 4-1: SEM micrograph shows excellent interface between polyimide coated optical
fiber and host material [Kalamkarov and MacDonald, 1997]
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Optical fibers usually are supplied‘ with an outer buffer coating for added protection, and
consequently the bond strength between the embedded fiber and the host material will
depend upon the features of this coating. In particular, two noteworthy features are the
extent of chemical compatibility between the buffer coating and the surrounding matrix,
and also the ability of this coating to sustain the elevated temperatures encountered in the

pultrusion die. Two common types of coating materials are polyimide and acrylate.

8128 18KV X250 160vm WD15

Figure 4-2: SEM micrograph shows debonding between acrylate coated optical fiber and
host material {Kalamkarov and MacDonald, 1997]

To compare the relative merits of these buffers, a polyimide-coated single-mode optical
fiber with an overall diameter of 155 microns and an acrylate-coated multimode fiber
with an overall diameter of 250 microns were pultruded in GFRP and CFRP rods
[Kalamkarov and MacDonald, 1997]. The SEM micrograph in Figure 4-1 shows an

excellent interface between the polyimide coated optical fiber and the host material.
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Figure 4-2 shows however extensive debonding between acrylate-coated optical fibers
and the surrounding matrix. The above results show that acrylate-coated optical fibers
cannot withstand the temperatures in the die (over 150°C) and consequently only

polyimide-coated ones were used for further research.

Another related issue that is of paramount importance is the effect of the embedded fiber
on the mechanical integrity of the composite tendon. For this purpose, tensile and shear
tests were carried out in accordance with ASTM D3916 and ASTM D4475 respectively,
using an MTS Model 850RM load frame driven by an Instron controller [Kalamkarov
and MacDonald, 1997]. The results obtained are summarized in Tables 4-1 and 4-2.

Table 4-1: Tensile properties of GFRP and CFRP tendons [Kalamkarov and MacDonald,

1997]
Standard
~ Deviation
(GPa)
902 1.1
949 55 47.3 0.7
1245 118 140.8
1246 56 144.2 3.4

As Table 4-1 shows, the tensile modulus and strength of the GFRP and CFRP tendons are
essentially unaffected by the presence of one optical fiber. The most probable reason for
this is that, for such unidirectional composites, the reinforcing fibers are practically solely
responsible for the tensile properties [Kalamkarov, 1992]. Table 4-2 however, showé that
the embeddement of optical fibers has a small degrading effect on the shear properties of
GFRP tendons. Also, the decrease in shear strength becomes more pronounced as the

number of embedded optical fibers increases. On the other hand, the shear strength of
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CFRP tendons did not seem to be affected by the presence of a single embedded optical
fiber.

Table 4-2: Shear properties of GFRP and CFRP tendons [Kalamkarov and MacDonald,

Before closing this section, let us mention that the different aspects regarding the
embeddement of optical fibers in composites have been the subject of research for many
years. Leka and Bayo [1989], Davidson et al., [1989], Jensen and Pascual [1990],
Carman et al., [1993], Lee et al. [1995], among others, used experimental techniques to
assess the effect of embedding different numbers of different-sized optical fibers on the
tensile, shear and fatigue properties of composite laminates. Sirkis and Singh [1994], Tay
and Wilson [1989], Eaton et al. [1994], and others used finite element techniques to
investigate the issue. The general results were that embedded optical fibers are not likely
to have a significant effect on the mechanical properties of a composite part if fhe optical
fibers have a small diameter and are embedded in a direction that is parallel to the
orientation of the reinforcing fibers. As well, the fewer the number of embedded fibers,
the less pronounced is the impact. Finally, the better the degree of chemical compatibility
of the fiber coating with the surrounding matrix, the lower are the stress and strain

concentrations imparted to the matrix.
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4.3 Sensor Ingress and Pultrusion Monitoring

As a first attempt at embedding a sensor in a pultruded CFRP rod, an unmodified Fabry
Perot sensor was added to the fiber feed side of the pultrusion process. The forward end
of the sensor was bonded to a carbon fiber roving to ensure that it would traverse the die.
From the location where it was bonded, the sensor had to pass through two polyethylene
guide cards, in and out of the pultrusion die, and finally through the two sets of pulling
wheels when the CFRP tendon had consolidated. At this point, the resin bath was drained

and the pultrusion process stopped to enable the connector to pass through the die.

The result of the first trial was a CFRP rod with an embedded Fabry Perot sensor.
However, when the sensor lead was coupled to the demodulator, it was discovered that
this sensor was no longer operational. This failure was originally attributed to one of two
possible factors. The first was simply that the sensor was not handled with due care and
thus it was damaged either through contact with the polyethylene guides or at the
entrance of the die. The second was that the sensor failed because it could not sustain one
or more of the conditions prevailing inside the die, namely high temperature, resin cure
and associated residual stresses, or the compaction pressure from the surrounding
reinforcing fibers. To test the latter theory, it was decided to conduct a number

experiments that would subject the Fabry Perot sensor to each of the variables mentioned

above, hoping to isolate the one that was primarily responsible for the sensor failure.

To test whether fiber compaction pressure was crushing the Fabry Perot sensors, a sensor
was passed through the die but with the die heaters switched off and the resin bath
completely devoid of any resin [Georgiades, 1998]. The results indicated that fiber
compaction pressure alone was not high enough to cause any damage to the sensor. The
experiment was then repeated, but this time the heaters were switched on and the die was
allowed to reach steady state at the same temperatures as for a normal pultrusion run. For

this experiment also, no resin was used. Once again, the Fabry Perot sensor survived the
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process andv this led to the cdnclusion that the high temperatures encountered inside the
die were not responsible for the sensor failure. The third experiment using the same
sensor was a normal pultrusion run. The carbon fiber rovings were pulled through the
resin bath and into the heated die through the fiber feed guides [Georgiades, 1998]. The
sensor did survive the pultrusion but failed shortly thereafter, with the reason for this
failure not obvious. In fact, all subsequently used Fabry Perot sensors met with the same

fate.
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Figure 4-3: Comparison of output from reinforced and unreinforced Fabry Perot sensors
during pultrusion [Georgiades, 1998]

These post-fabrication failures were attributed to the radial shrinkage of the composite
tendon as it cooled down from the die temperature to room temperature [Kalamkarov et
al., 1998]. This shrinkage, in turn exerts an external pressure on the hollow portion of the
Fabry Perot sensor (see Figure 3-24), causing it to collapse. To avoid this failure it
became necessary to prereinforce the sensor [Kalamkarov et al., 1998]. Figure 4-3
[Georgiades, 1998] shows the strain output from a prereinforced sensor together with the

output from an unreinforced sensor. Subsequently, all Fabry Perot sensors were
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prereinforced and this ensured their successful pultrusion in both GFRP and CFRP
tendons. The reliability experiments described in the next chapter and pertaining to Fabry
Perot sensors all involved prereinforced sensors. The detailed prereinforcement procedure

was given in Section 3.4 of this thesis.
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Figure 4-4: Comparison of output from Bragg Grating sensor during normal and dry
pultrusion [Georgiades, 1998] ’

Unlike Fabry Perot sensors, Bragg Grating sensors showed enhanced survivability in the
pultrusion process and hence it was not deemed necessary to prereinforce them.
Nonetheless, Bragg Grating sensors were also subjected to dry (no resin) pultrusion runs
[Georgiades, 1998]. Figure 4-4 shows the strain plots from the dry and normal pultrusion
experiments superimposed. The differences between the two plots are caused by the
curing of the resin. For example, the peak strain attained during normal pultrusion is
about 800 microstrain higher than the corresponding value encountered in dry pultrusion.
This difference is caused by the chemical processes that accompany the curing of the
resin are highly exothermic, and the heat energy released induces a higher thermal strain.

It is also noteworthy to observe that once the pultruded rod has exited the die and cooled
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to the ambient temperature, the strains recofded by the embedded sensor do not return to
zero as for the case of the dry run. These are the process-induced residual strains, which
are “locked in”. Finally, one of the most interesting features of Figure 4-4 is the sudden
spike at point A. This possibly represents the location where the consolidated rod
detaches itself from the walls of the die, at which point there could be a transition of
forces from shear at the rod/die interface to the much larger tensile force in the rod itself.
Thus figures such as 4-3 and 4-4 can give valuable insight as to complex phenomena that
take place inside the pultrusion die, and which are otherwise extremely difficult to predict
analytically or numerically. More details regarding the experiments described in this

section can be found in the author’s MASc. thesis [Georgiades, 1998].
4.4 Mechanical Testing in Laboratory Conditions

The next natural phase in the research involved testing the pultruded tendons in order to
characterize the behavior of the embedded sensors. This was accomplished by applying
various loads while continuously monitoring the strain from the sensors. The accuracy
and reliability of the Fabry Perot and Bragg Grating sensors was verified by comparing
the results with those obtained from a conventional extensometer which was clipped to
the outside of the tendons, as described previously in Section 3.6. Care was exercised not

to exceed the strain limit on either the extensometer or the sensor.

The smart GFRP and CFRP tendons were subjected to the two load waveforms described
in Section 3.6. The first was a trapezoidal waveform, whereby the load was ramped up to
a peak level at a rate of 90 N/sec, held at the peak level for 20 seconds, and then ramped
back down at the same rate as for ramp-up. Prior to the beginning of each test, a small
preload was imparted to the rods to keep them straight. The second waveform to which
the tendons were subjected was a sinusoidal one, which typically involved five or six

cycles of applied load at a frequency of 0.0167 Hz (1 cycle per minute).



93

3000
2500 + Bragg Grating sensor
Microstrain
2000 +
1500 1

1000 +

500 ¢

-1000 1000 2000 3000 4000 5000
-500 oad (N)

f=a]

Figure 4-5: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a sinusoidal load [Georgiades, 1998]
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Figure 4-6: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a sinusoidal load [Georgiades, 1998]
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Figure 4-5 shows the strain output from an extensometer and a Bragg Grating sensor

embedded in a GFRP tendon. The amplitude of the applied sinusoidal load was 5 kN. The

figure shows a very good agreement between the extensometer and the sensor, although

the extensometer is more consistent than the Bragg Grating sensor, and its data exhibit

less scatter as the load is cycled [Georgiades, 1998]. The excellent degree of conformity

between the two strain-monitoring devices is perhaps more evident in Figure 4-6, which

replots the data from Figure 4-5 as microstrain vs. time. The discrepancy between the

sensor and the extensometer does not exceed 100 microstrain (about 4% discrepancy) and

this only occurs at the peak load. Figure 4-6 also illustrates the high degree of

repeatability of the two devices. Indeed, both the extensometer and the Bragg Grating

sensor attain the same peak in every cycle.
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Figure 4-7: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a sinusoidal load [Georgiades, 1998]
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Figure >4—7 shows the results from another sinusoidal test, this time performed on a CFRP
tendon [Georgiades, 1998]. The embedded sensor again was of the Bragg Grating type. It
is evident that there is a good agreement between the sensor and the extensometer

throughout the entire load range. However, the degree of scatter in the sensor data is
higher than that corresponding to the extensometer values.
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Figure 4-8: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a sinusoidal load [Georgiades, 1998]

Figure 4-8 shows the data from Figure 4-7 plotted as strain vs. time. The conformance

between the Bragg Grating sensor and the extensometer is evident once again. As well,

both strain-monitoring devices are very consistent, peaking at essentially the same strain
value with each cycle.
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Figure 4-9: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load [Georgiades, 1998]

A GFRP tendon with an embedded Fabry Perot sensor was also subjected to sinusoidal
and trapezoidal loads. The results from a trapezoidal test are shown in Figure 4-9
[Georgiades, 1998]. Unlike the tests corresponding to Figures 4-5 to 4-8, the peak load in
this trapezoidal test was allowed to reach 7kN in magnitude. It is seen that the agreement
between the extensometer and the Fabry Perot sensor is very good, and that the
discrepancy between the two strain-monitoring devices increases from negligible at low
load levels to about 150 microstrain (about 7.5%) at the peak applied load. The amount of
scatter was negligible for both the sensor and the extensometer. The data from Figure 4-9
are plotted as microstrain vs. time in Figure 4-10. This graph too indicates a high degree |

of conformity between the strain outputs from the extensometer and the Fabry Perot

se€nsor.
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Figure 4-10: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load [Georgiades, 1998]
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Figure 4-11: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a trapezoidal load



9%

Similar tests were performed on CFRP tendons with the embedded Fabry Perot sensors.
A more extensive account on the mechanical performance of the smart pultruded FRP
tendons at room temperature can be found in the author’s MASc. Thesis [Georgiades,
1998]. We close this section by showing the results from a very interesting trapezoidal
test in Figure 4-11. In this test, a CFRP tendon with an embedded Bragg Grating sensor is
being subjected to a trapezoidal load waveform when the spelter socket on one end
suddenly slips and the load drops abruptly to zero. As Figure 4-11 shows, the Bragg
Grating signal, unlike the corresponding extensometer signal, goes directly to zero with

no “bounce”.



5.0 RELIABILITY ASSESSMENT OF THE PULTRUDED SMART
TENDONS

5.1 Introduction

Fiber-optic sensors and smart composite materials have shown great promise in replacing
or strategically complimenting traditional materials such as steel and concrete and
conventional strain-monitoring devices such as extensometers and foil gauges. However,
the full potential of any new material system cannot be realized until researchers and
engineers attain a level of confidence with regards to long-term behavior. It is precisely
the fact that smart composite materials have been the “new kid on the block” that has
slowed their progression into new domains of application. Quite simply there are not
enough data characterizing their long-term behavior. For civil and marine applications,
the composite materials will be exposed to humidity, chemical environments, low and

high temperature extremes, dynamic loads, as well as mechanical stress.

The overall performance of fiber-optic sensors depends to a large extent on whether they
are surface mounted or embedded. It is clear that embedded sensors have an added level
of protection against friction and wear as well as chemical attack. On the other hand,
embedding the sensors often requires some sophistication pertaining to changes that must
be effected in the composite manufacturing process. More importantly, embedding a fiber
optic sensor will inevitably mean that unless the associated léad is recovered from the
composite, the sensor cannot be coupled to the demodulator. Despite its paramount

importance, the issue of fiber-optic lead egress or recovery has not yet been adequately

addressed.

To fully assess environmental effects on smart composite structures, one must consider

both the individual components and the overall system. The manufacturers of the Fabry

99
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Perot sensors used in this work specify that the sensors are reliable over the temperature
range of —40°C to +125°C [RocTest Ltd., 1997]. Specifications for the Bragg Grating
sensors used in the various experiments indicate that accuracy is maintained only up to
80°C. It has been shown by Erdogan et al. [1994] that the decay of reflectivity in an
optical fiber is fairly small at temperatures up to 300°C, and that losses are negligible
over a span of 50 years if the temperature is maintained below 80°C. However, an
adverse combination of high temperature and moisture .exposure might lead to decay in
reflectivity, which in turn would lead to some scatter in the signal from such devices as
Fabry Perot and Bragg Grating sensors. On the other hand, it is possible to construct
specialized sensors that can be used exclusively in high-temperature environments.
However, such customized sensors come with a high price tag which limits their use to
mainly aerospace applications. For example, Wang et al., [1994] constructed and tested a
sapphire fiber-based polarimetric optical sensor based on the polarization-maintaining
characteristics of a sapphire fiber. Sapphire (A103) can perform very well under adverse
conditions and in temperatures up to 2000°C,.and the resulting sensor was demonstrated
for temperature measurement up to 1200°C with a 2°C resolution [Wang et al., 1994].
Gunther et al., [1994] used a sputtering technique to deposit nickel-based super alloy

coatings on optical fibers, rendering them operational in temperatures approaching
1000°C.

Temperature, humidity and other environmental factors affect not only the sensors
themselves but also the buffer coatings. An excellent survey was performed by Leka and
Bayo [1989], who discussed the findings of many researchers with regard to fiber optic
ingress in composite materials and other related issues. Among the results reported was
the fact that acrylate-coated optical fibers could not sustain temperatures in excess of
85°C, whereas polyimide-coated optical fibers could withstand temperatures in excess of
350°C. The same conclusions were reached by Kalamkarov and MacDonald [1997], in
attempting to embed polyimide-coated and acrylate-coated optical fibers in composite

rods during pultrusion. The SEM micrographs in Figures 4-1 and 4-2 illustrate this point.
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Another closely-relatéd issue is the susceptibility to chemical attack. The question whic.h
immediately arises is whether the superiority exhibited by polyimide buffers over their
acrylate counterparts in elevated-temperature environments suggests a similar trend in
acidic or alkaline environments. Habel et al., [1994] demonstrated that optical fibers and
their coatings are particularly susceptible to chemical attack when exposed to certain
agents. It was discovered that, in a reversal of roles, polyimide coatings were degraded as
a consequence of exposure to solutions with pH values greater than 11, whereas acrylate
coatings were only slightly affected. This is a very important issue, because civil and
structural engineering applications inevitably will expose fiber optic sensors to cement
mixtures which are alkaline in nature. Thus, polyimide-coated optical fibers are not
suitable for direct contact with concrete. However, when embedded in a composite, the
extra level of protection offered by the matrix might render the resulting smart material
suitable for incorporation in concrete structures, wherein it could monitor the health of

such structures.

With respect to the overall system, one should consider the effect of the environment on a
smart composite material over an extended period of time. The environmental behavior
~of composite materials alone has been the subject of investigation for some time. For
example, it is known that moisture absorption can deteriorate the performance of
composites in two ways [Gibson, 1994]. Firstly, moisture absorption causes the matrix to
swell up, and these dimensional changes are resisted by the much stiffer reinforcing
fibers. In turn, this creates residual stresses and limits the load-carrying capacity of the
composite member. Secondly, moisture absorption reduces the glass transition
temperature of the matrix, which leads to a corresponding reduction in the composite
properties. The effects of moisture absorption are very similar to the effects of
temperature increase. Contrary to composite materials themselves, the overall effects of
temperature change and moisture absorption on the embedded fiber optic sensors have

not been characterized.
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In addition to the environmental impact 0ri smart composites, it is imperative that one
also considers the influence of fatigue loads. With respect to fatigue behavior, it is of
interest to determine whether the embedded sensors maintain their accuracy and
repeatability after thousands or millions of cycles of applied load. From a structural point
of view, one is also concerned with the potentially degrading effects that the embedded

sensor might have on the fatigue life of the composite.

A comprehensive reliability analysis of smart composite materials mﬁst also include a
study of the effects of creep and stress relaxation on their mechanical performance.
Particularly, and in addition to the behavior of the composite itself, one must understand
how the embedded sensor will react to prolonged periods of sustained load. As well, it is
necessary to assess the combined long-term effects of creep loads and environmental
exposure on the composites. For the CFRP and GFRP rods described in this thesis, such
long-term testing can be designed to simulate conditions encountered in concrete

structures wherein they may be used as rebars or prestressing tendons.

The present chapter will give a detailed account of the reliability assessment performed
on the smart pultruded FRP tendons. The testing regime will include the following:

temperature tests on GFRP tendons with embedded Fabry Perot sensors
temperature tests on CFRP tendons with embedded Fabry Perot sensors
temperature tests on GFRP tendons with embedded Bragg Grating sensors
temperature tests on CFRP tendons with embedded Bragg Grating sensors
fatigue tests on GFRP tendons with embedded Fabry Perot sensors

fatigue tests on CFRP tendons with embedded Fabry Perot sensors

fatigue tests on GFRP tendons with embedded Bragg Grating sensors
fatigue tests on CFRP tendons with embedded Bragg Grating sensors

. short-term creep tests on GFRP tendons with embedded Fabry Perot sensors
10. short-term creep tests on CFRP tendons with embedded Fabry Perot sensors
I'1. long-term creep tests on GFRP tendons with embedded Fabry Perot sensors
12. long-term creep tests on CFRP tendons with embedded Fabry Perot sensors.

WO W=

In the above list, item 1 was covered in the author’s MAsc. Thesis [Georgiades, 1998].

However, for the sake of completeness, item 1 will also be included in this chapter.
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5.2 Temperature Tests on GFRP tendons with Embedded Fabi'y Perot sensors

Figure 5-1: The pultruded GFRP tendon during temperature testing

As mentioned before, the long-term objective is to embed the smart pultruded GFRP and
CFRP rods in large structures, wherein they would monitor the health of the critical
members of those structures and at the same time act as concrete reinforcements. For
such applications it is imperative that the sensors behave reliably irrespective of ambient

temperature fluctuations. Consequently, the smart tendons produced at Dalhousie
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University were subjected’to trapezoidal and sinusoidal tests at temperatures that varied
from —40°C to +60°C. These tests were conducted at the “PSC Analytical” company in
Dartmouth, Nova Scotia, using a 400kN-capacity MTS model 8540RM load frame

controlled by an Instron Series IX controller, and an Instron temperature chamber.
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Figure 5-2: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at 40°C [Georgiades, 1998]

First a GFRP tendon was prepared with an embedded Fabry Perot sensor (Figure 5.1). It
was then mounted into the temperature chamber and an extensometer was clipped to its
surface. The temperature chamber was heated to 40°C and allowed to reach steady state
as indicated by a thermocouple located inside the chamber. The tendon then was given a
small preload (a few N) to keep it straight, and subsequently was subjected to a
trapezoidal test. The specifics of this trapezoidal waveform were as follows: (1) A ramp-

up to 12,000 N at a rate of 90 N/sec, (2) a steady load level at 12,000 N for 30 seconds
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and (3) a ramp-down to the original preload at a rate of 90N/sec. At the beginning of this
test and prior to the application of any load, it was observed that the strain reading of the
Fabry Perot sensor was about 110 pe (microstrain). This was a purely thermal strain
caused by the expansion of the glass tendon. This thermal strain was factored out of both
the sensor and the extensometer strain readings, by nulling the two strain-monitoring
devices after the temperature in the chamber had reached steady state and just before any

load application. This was repeated for all subsequent temperature tests.
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Figure 5-3: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in a
GFRP tendon subjected to a trapezoidal load at 40°C [Georgiades, 1998]

The results from this test are shown as microstrain vs. load in Figure 5-2 and microstrain
vs. time in Figure 5-3. It is seen from these two figures that the maximum discrepancy
between the two strain-monitoring devices is about 9% at the maximum applied load, and
that the extensometer readings are consistently lower than the sensor readings. A possible
reason for this is that there could be a slight misalignment between the spelter sockets

and the rod so that the extensometer reads compressive bending strains in addition to the

tensile axial strains.



106

2500

=
‘8 100 4
8
8
=
1500 +

Extensometer

-2000 [l 2000 4000 6000 aano
Load (N)

-500 4

Figure 5-4: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 40°C [Georgiades, 1998]
The same GFRP tendon was then subjected to a sinusoidal load with frequency of 1 cycle
per minute and amplitude of 7,000 N. The temperature in the chamber was still at 40°C.
Figure 5-4 shows the results from this test plotted as microstrain vs. load. It is seen that
the amount of scatter in the sensor readings is greater than that pertaining to the
extensometer. The two devices agree well with one another, although a more quantitative
assessment of the relative discrepancy can be made after consulting Figure 5-5, which
plots microstrain vs. time. As with the trapezoidal test, the discrepancy between the two
devices is around 9% at the peak load. Figure 5-5 also shows that both the extensometer
and the Fabry Perot sensor are very consistent and repeatable, reaching the same values

in each cycle.
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Figure 5-5: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in a
GFRP tendon subjected to a sinusoidal load at 40°C [Georgiades, 1998]

With the temperature in the chamber maintained at 40°C, the GFRP tendon was subjected
to another sinusoidal load, but this time the amplitude of the waveform was selected to be
12,000 N. This is the same amplitude as for the trapezoidal tests of Figures 5-2 and 5-3.
The results from this new sinusoidal test are shown in Figures 5-6 and 5-7 (load vs.
microstrain and microstrain vs. time). It is evident from these figures that the sensor and

the extensometer agree well with one another (about 10% discrepancy).

Thus, based on the results so far, one can conclude that Fabry Perot sensors embedded in
GFRP tendons, performed quite well at 40°C, and that their accuracy and consistency was

- not affected by this high temperature.
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Figure 5-6: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 40°C [Georgiades, 1998]
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Figure 5-7: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in a
GFRP tendon subjected to a sinusoidal load at 40°C [Georgiades, 1998]
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Figure 5-8: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at 60°C [Georgiades, 1998]

The temperature chamber was subsequently heated to 60°C and allowed to reach
equilibrium, and the GFRP tendon was subjected to two sinusoidal and trapezoidal tests.
The first set of tests had a peak load amplitude of 8 kN, while the amplitude of the last set
was 13 kN. The microstrain vs. load plot pertaining to the first trapezoidal test is shown
in Figure 5-8. It can be observed that the extensometer and the Fabry Perot sensor agreed
extremely well with one another. The negligible discrepancy between the two devices is

even more evident in the microstrain vs. time graph of Figure 5-9.
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Figures 5-10 and 5-11 correspond to the first sinusoidal test. They too indicate a
remarkable degree of conformance between the two strain-monitoring devices. Figures 5-
12 and 5-13 depict the outcome of the higher-amplitude trapezoidal test, and Figures 5-14
and 5-15 pertain to the corresponding sinusoidal test. The same conclusion can be
reached from these tests as for the previous ones. Fabry Perot sensors and extensometers

agree extremely well with one another even at temperatures as high as 60°C.

To sum up, the temperature tests performed thus far on the smart GFRP tendons with
embedded Fabry Perot sensors indicate that they remain extremely reliable and accurate

in high-temperature environments.
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Figure 5-9: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in a
GFRP tendon subjected to a trapezoidal load at 60°C [Georgiades, 1998]



111

Extensometer

Microstrain

{ 2000 4000 6000 8000
Load (N)

Figure 5-10: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 60°C [Georgiades, 1998]
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Figure 5-11: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a sinusoidal load at 60°C [Georgiades, 1998]
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Figure 5-12: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at 60°C [Georgiades, 1998]
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Figure 5-13: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at 60°C [Georgiades, 1998]
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Figure 5-14: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 60°C [Georgiades, 1998]
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Figure 5-15: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a sinusoidal load at 60°C [Georgiades, 1998]
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Subsequent fo the high-témperature tests, the temperature chamber was cooled down
(use was made of a carbon dioxide supply) and allowed to reach steady state at 0°C. The
GFRP tendon was then subjected to sinusoidal and trapezoidal load waveforms as was
done during previous tests. The amplitude of the first trapezoidal and sinusoidal tests was

8 kN, and the amplitude of the other two tests was 13 kN.
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Figure 5-16: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at 0°C [Georgiades, 1998]

The microstrain vs. load results for the first trapezoidal test are shown in figure 5-16. As
for the high temperature tests, the degree of conformance between the embedded Fabry
Perot sensor and the extensometer is remarkable. Figure 5-17 is a plot of microstrain vs.

time for the same test.
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Figure 5-17: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at 0°C [Georgiades, 1998]

Since the thermal strains were factored out of all readings, one may compare Figures 5-
16 and 5-17 with corresponding Figures 5-8 and 5-9. It is clear that the two sets of figures
are essentially the same, and this reiterates the remarkable consistency and repeatability
of the Fabry Perot sensor. It behaves just as reliably at 60°C, as it does at 0°C. The same
conclusion is reached by observing the results pertaining to the first sinusoidal test at 0°C,
Figures 5-18 and 5-19, and then comparing them with the corresponding Figures 5-10
and 5-11. ”

Figures 5-20 to 5-33 show the results from some of the remaining tests performed at 0°C,
-20°C, and -40°C. They all support the conclusion that Fabry Perot sensors perform

extremely well at low temperatures. Thus, on the basis of all the temperature tests
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performed on the smart GFRP tendon, one can see that embedded Fabry Perot sensors

perform just as accurately in the “-40°C to +60°C ™ range as they do at room temperature,

and high or low temperatures do not represent an obstacle to their performance.
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Figure 5-18: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 0°C [Georgiades, 1998]
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Figure 5-19: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a sinusoidal load at 0°C [Georgiades, 1998]
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Figure 5-20: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at 0°C [Georgiades, 1998]
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Figure 5-21: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at 0°C [Georgiades, 1998]
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Figure 5-22: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at 0°C [Georgiades, 1998]
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Figure 5-23: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a sinusoidal load at 0°C [Georgiades, 1998]
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Figure 5-24: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at -20°C [Georgiades, 1998]
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Figure 5-25: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at -20°C [Georgiades, 1998]
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Figure 5-26: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at -20°C [Georgiades, 1998]
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Figure 5-27: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at -20°C [Georgiades, 1998]
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Figure 5-28: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at -40°C [Georgiades, 1998]
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Figure 5-29: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at -40°C [Georgiades, 1998]
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Figure 5-30: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a trapezoidal load at -40°C [Georgiades, 1998]
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Figure 5-31: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a trapezoidal load at -40°C [Georgiades, 1998]
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Figure 5-32: Strain from extensometer and embedded Fabry Perot sensor in a GFRP
tendon subjected to a sinusoidal load at -40°C [Georgiades, 1998]
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Figure 5-33: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a GFRP tendon subjected to a sinusoidal load at -40°C [Georgiades, 1998]
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5.3 Temperature Tests on CFRP Tendons with Embedded Fabry Perot Sensors

The experiments described in the previous pages all indicated that Fabry Perot sensors
embedded in GFRP tendons performed very well under conditions of high or low
temperature. To further assess the behavior of these sensors, it was decided to repeat the
testing protocol with a CFRP tendon and an embedded sensor. Thus, a Fabry Perot sensor
was prereinforced according to the procedure described in Section 3.4 and then
embedded in a CFRP rod during pultrusion. The smart tendon was subsequently cut to
the desired length, and had two spelter sockets fitted at the ends as described in Section
3.5. The sensor fiber optic lead was protected by a Kevlar-reinforced jacket (see Section
3.5). The final product was now ready for testing, and was mounted in the same MTS
frame at “PSC Analytical” as its glass counterpart. Sinusoidal and trapezoidal load

waveforms were then preprogrammed on the Instron controller and testing began.
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Figure 5-34: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a trapezoidal load at room temperature
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Figure 5-35: Strain vs. time plot from extensometer and embedded Fabry Perot
sensor in a CFRP tendon subjected to a trapezoidal load at room temperature

The first set of tests involved trapezoidal and sinusoidal loads at ordinary laboratory
conditions (26°C). Figure 5-34 is a microstrain vs. load plot pertaining to the trapezoidal
test. There is a discrepancy of around 150 microstrain between the extensometer and the
Fabry Perot sensor, with the extensometer readings being higher. One possibility that
could explain this is a misalignment between the spelter sockets and the tendon.
Reference to the procedure for attachment of the spelter sockets in Section 3.5 will show
that it is quite difficult to align them perfectly with the rod. In fact, for most of the
pultruded tendons used during the research, there was some misalignment present.
Consequently, when the tendon is mounted in the load frame, it will also experience
bending strains in addition to the axial ones. Thus, if the extensometer is attached on the
side that experiences tensile flexural stresses, it will record larger strains. The Fabry Perot
sensor however, will be insensitive to bending since it is embedded in essentially the

middle of the rod. The results from the remaining tests will shed more light as to whether
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this is a viable explanation for the observed discrepancy. Figure 5-35 is a microstrain vs.

time plot of the same data.
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Figure 5-36: Strain from extensometer and embedded Fabry Perot sensor in a CFRP

tendon subjected to a sinusoidal load at room temperature

The smart tendon was then subjected to a sinusoidal test at room temperature. The

microstrain vs. load plot is shown in Figure 5-36 and the microstrain vs. time plot in

Figure 5-37. One can observe from these plots that the extensometer readings are a little

higher than the corresponding sensor readings, the discrepancy being equal to about 120

microstrain at the peak applied load. The level of this discrepancy is similar to that

pertaining to the trapezoidal test (Figures 5-34 and 5-35) which further indicates that the

extensometer is “picking up” flexural strains in addition to axial strains. These flexural



strains could be avoided by moving the extensometer around the tendon (for example

four locations spaced at 90° intervals) and averaging the results.
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Figure 5-37: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a CFRP tendon subjected to a sinusoidal load at room temperature

The temperature in the chamber was subsequently raised to 40°C and allowed to reach
steady state. The thermal strain induced by this temperature increase was factored out of
both the extensometer and the sensor outputs, as was done for the case of the GFRP
tendon in the previous section. The tendon was then subjected to the same sinusoidal and
trapezoidal tests as those performed at room temperature. The results from the trapezoidal
test are shown in Figures 5-38 and 5-39 and those from the sinusoidal test are shown in
Figures 5-40 and 5-41. Comparison of these with Figures 5-34 to 55-37 will reveal
essentially the same extensometer and Fabry Perot readings. Thus, raising the

temperature to 40°C does not seem to affect the consistency and reliability of the
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embedded Fabry Perot sensor, which exhibits a good degree of conformance with the
extensometer. The extensometer readings are in both cases about 140 microstrain higher,

indicating that it was indeed clipped on the “tension” side of the tendon’s bending.
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Figure 5-38: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a trapezoidal load at 40°C

1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 -

Extensometer

Microstrain

Fabry Perot sensor

-200 -
Time (sec)

Figure 5-39: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a trapezoidal load at 40°C
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Figure 5-40: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a sinusoidal load at 40°C
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Figure 5-41: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a sinusoidal load at 40°C
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Subsequéntly to the high témperature tests, the carbon dioxide supply was switched on
and the chamber was gradually cooled down to 0°C, at which point it was allowed to
reach steady state as evidenced by the thermocouple readings recorded by the data
acquisition program. The same tests that were conducted at high temperatures would now
be conducted at low temperatures as well. Figure 5-42 shows the microstrain vs. load

results pertaining to a trapezoidal test at 0°C.
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Figure 5-42: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a trapezoidal load at 0°C
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As for the previous tests one can observe that there is a good agreement between the
extensometer and the Fabry Perot sensor, the discrepancy between the two increasing as
the load is increased. As the corresponding microstrain vs. time graph of Figure 5-43

shows the discrepancy at the peak load is around 170 microstrain.
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Figure 5-43: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a CFRP tendon subjected to a sinusoidal load at 0°C

It can be observed from a comparison of Figures 5-42 and 5-43 with corresponding sets
such as Figures 5-34 and 5-35 or Figures 5-38 and 5-39, that the Fabry Perot sensor is

very consistent and repeatable irrespective of the ambient temperature.



Figures 5-44 and 5-45 show the resuits from the sinusoidal test at 0°C.

Extensometer

Microstrair

Fabry Perot sensor

T T T T T 1

2000 4000 6000 8000 10000 12000

Load (N)

Figure 5-44: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a sinusoidal load at 0°C
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Figure 5-45: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a sinusoidal load at 0°C
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Figures 5-46 to 5-53 depict the results from the remaining tests performed at

temperatures equal to —20°C and —40°C.
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Figure 5-46: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a trapezoidal load at -20°C
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Figure 5-47: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a trapezoidal load at -20°C
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Figure 5-48: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a sinusoidal load at -20°C
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Figure 5-49: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a sinusoidal load at -20°C
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Figure 5-50: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
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Figure 5-51: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a trapezoidal load at -40°C
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Figure 5-52: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
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Figure 5-53: Strain vs. time plot from extensometer and embedded Fabry
Perot sensor in a CFRP tendon subjected to a sinusoidal load at -40°C
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On cornpletion of the temperature tests on the smart CFRP tendons, it was evident that
the embedded Fabry Perot sensor performed very well at both high and sub-zero
temperatures. The sensor exhibited remarkable consistency and repeatability, so that the
strain output from a test at a particular temperature was essentially indistinguishable from

that pertinent to the same test performed at a different temperature.

Furthermore, it was observed that whereas the sensor readings agreed well with the
corresponding extensometer readings, there was, nevertheless, a discrepancy of about
140-180 microstrain between the two strain-monitoring devices. It was surmised that the
most likely reason behind this discrepancy was the misalignment between the spelter
sockets and the extensometer. Thus, the test frame was imparting a small bending load on
the CFRP tendon, in addition to the desired axial load. This idea was further reinforced
by the fact that the discrepancy between the two devices was increasing almost linearly

with a corresponding increase in the load.

It would be of interest to compare the two strain outputs with the theoretical output
obtained by using:

_P
AE

where P is the mechanical load (N), A is the cross-sectional area of the tendons (9.5

3 (5.1)

mm?), and E is the longitudinal tensile modulus of the CFRP tendons with an embedded
sensor (see Table 4-1). Figures 5-54 and 5-55 show the results from another test
performed on the CFRP tendon. It is seen that even though the discrepancy between the
extensometer and the Fabry Perot sensor was still around 150 microstrain at the peak
load, the discrepancy between the theoretical and the sensor readings was negligible.
Thus, one is reasonably confident that the extensometer readings during the tests
described in this section represent a combination of tensile and flexural strains, and that

the Fabry Perot output is indeed very accurate.
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Consequently, on the basis of the results obtained in Sections 5.2 and 5.3, it is clear that
Fabry Perot sensors embedded in GFRP and CFRP tendons perform just as accurately
and reliably in high- and low-temperature environments as they do under ordinary

laboratory conditions.
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Figure 5-54: Strain from extensometer and embedded Fabry Perot sensor in a CFRP
tendon subjected to a trapezoidal load
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Figure 5-55: Strain vs. time plot from extensometer and embedded Fabry Perot sensor in
a CFRP tendon subjected to a trapezoidal load
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5.4 Temperature Tests on GFRP Tendons With Embedded Bi'agg Grating Sensors

5.4.1 Introduction

Among the sensors commonly used to monitor the health of civil engineering structures
are Bragg Grating sensors. Davis et al. [1997] employed such sensors to monitor the
dynamic strain response of an in-service I-10 interstate bridge in Las Cruces, New
Mexico. One of the two sensors used (flange sensor) was attached along the lower flange
of the girder, while the other (web sensor) was placed vertically on the web of the same

girder.
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Figure 5-56: Flange sensor data over a span of 2 minutes [Davis et al., 1997]

Figure 5.56 shows the strain output from the flange sensor over a time span of two

minutes. During this time, five cars and two big trucks passed over the bridge, and the
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passage of each vehicle is clearly evident by the corresponding spikes on the strain output
of Figure 5-56. The five spikes produced by the cars are all similar and have an amplitude
of around 6 microstrain, but the magnitudes of the two spikes corresponding to the trucks
are quite different due to the significant weight difference between the two vehicles. It is
also of interest to note that there is an appreciable compressive strain prior to the
expected tensile spike accompanying the passage of each truck. This strain is due to the
fact that as the trucks are traveling over the bridge span before the instrumented one, the
sensor span lifts slightly up putting the lower flange in compression which manifests
itself as a negative reading of the sensor. Then, when the truck passes over the

instrumented span, the flange goes into tension and this is picked up by the Bragg Grating

sensor.
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Figure 5-57: FFT of flange sensor strain data for truck C [Davis et al., 1997]

Figure 5-57 shows the FFT (Fast Fourier Transform) data pertaining to the passage of
truck C. The strong peak at 0.3 Hz is probably due to the fundamental mode of

longitudinal vibration of the bridge span with the installed Bragg Grating sensor [Davis et



al., 1997]. Figures 5-58 and 5-59 show the strain data and corresponding FFT

respectively, obtained by the web sensor when a truck passes over the bridge.
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Figure 5-58: Web sensor data as truck passes over bridge [Davis et al., 1997]
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Figure 5-59: FFT of web sensor strain due to passage of a truck [Davis et al., 1997]
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It is clear therefore that Bragg sensor measurements like the ones presented can be used
to (a) characterize vehicle types by their strain signature (b) perform weight
measurements of large trucks without having to stop the vehicle, and more importantly

(c) monitor important structural elements of the bridge.

More recently, Udd et al., [2001] used Fiber Gratings to monitor the Horsetail Falls
Bridge in the Colombia River Gorge National scenic area. Although the first sensors were
installed to monitor traffic on the bridge, similar arrangements can be used to perform

structural and health monitoring.

To install the sensors, one asphalt and one concrete test pad were constructed and slots
were cut into them to accommodate the sensors. The slots were then cleaned, dried and
lined with a thin layer of epoxy. The sensors were then installed and the slot was then
filled with more epoxy. Finally, the epoxy was cured using large portable heaters [Udd et
al., 2001].
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Figure 5-60: Output from three sensors due to passage of fully loaded truck [Udd et al.,
2001]
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Figure 5-60 shows the strain cutput from three fiber grating sensors when a truck passes
over a test pad. Figure 5-61 shows how such sensors can be used to distinguish between

different vehicle types.
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Figure 5-61: Output from fiber grating sensor which demonstrates vehicle classification
[Udd et al., 2001}

The two papers described in this section demonstrate the viability of using Bragg Grating
sensors to measure strain and consequently to monitor the strain state of various
structures. However, for the work described in the first paper [Davis et al., 1997], the
sensors were bonded to the outside of the structure where they would be vulnerable to
damage. As far as the work described in the second paper is concerned [Udd et al., 2001],
labor-intensive and time-consuming installation procedures were required. Both of these
problems could be avoided if the sensors were embedded in GFRP or CFRP rebars which

could be installed in the bridges at the time of construction, using the same procedure as
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the one used for installing conventional steel rebars. In fact, the instrumented FRP rebars
can replace steel altogether, thus eliminating corrosion problems. Examples of such
rebars are the ones described in this thesis. In Section 4.4, the results from some
mechanical tests performed on GFRP and CFRP tendons with embedded Bragg Grating
sensors were described. These tests however, were performed in the laboratory under
normal temperature conditions. If these tendons are to be embedded in concrete they will
encounter much more adverse climatic conditions. Hence, it is necessary to assess the
behavior of these embedded sensors in high- and low-temperature situations. In Section
5.3, extensive testing on GFRP and CFRP tendons with embedded Fabry Perot sensors,
indicated that these sensors are completely reliable in the “~40°C to +60°C ™ temperature
range. In this section, similar testing will be performed on embedded Bragg Grating

Sensors.
5.4.2 Demodulation Unit for Bragg Grating sensors

For all the experiments involving Bragg Grating sensors described in Chapter 4, i.c.
pultrusion monitoring and testing at room temperature, a BIS 1000PC demodulator
[Electrophotonics Corporation, 1996] was used to read and record strains. However, the
demodulator software system was prone to unexpected crashes that often led to loss of
experimental data and significant downtime. For this reason, an.upgraded demodulator,
the FLS 3100, was acquired from the Electrophotonics Corporation [Electrophotonics
Corporation, 1998]. The FLS 3100 is custom-designed unit that can handle up to eight
plug-in modules with an independent analog output for each module. It can accommodate
four to 128 channels with a frequency response of 1 kHz on all channels and 0 to S VDC
(temperature) and 0 to 10 VDC (strain) analog outputs. The particular mode! used for the
purposes of the experiments described in the sequel only included one module. The front
panel of the module, see Figure 5-62, Consists of an FC/APC bulkhead connector for
connection of the sensor, a type T Thermocouple connector for temperature

measurement, and indicators for low signal, out-of-range signal, and power on/off.
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Figure 5-62: FLS 3100 front panel layout [Electrophotonics Corporation, 1998]

The operation of a Bragg Grating sensor was described in Section 2.4.5. The wavelength

shift in the Bragg signal is given by [Electrophotonics Corporation, 1998]:

—i—}”—zGer+BxAT (5.2)

where A\ is the wavelength shift and A, is the Bragg center wavelength (see Figures 2-15
and 2-16). The Gauge Factor, GF, reflects the strain sensitivity of the grating wavelength
and accounts both for the change in length due to mechanical strain, and for changes in
the refractive index of the core (on which the grating is etched) due to the strain-optic
effect -[Electfophotonics Corporation, 1998]. The value of GF is provided by the

manufacturer and is calculated from [Electrophotonics Corporation, 1998]:

2
GF:%[PH _V(Pu +Py )] (5.3)
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where n is the refractive index of the core, v is Poisson’s ratio, and p;y, pi2 are the strain-
optic constants. The thermal strain, reflected by a thermal wavelength shift, is due to the
thermooptic respohse of the grating, and to the difference between the values of the
thermal expansion coefficients of the sensor (¢,) and the substrate (0). For our purposes
the substrate is of course either the GFRP or the CFRP tendon in which the sensor is
embedded. The temperature sensitivity factor, §, which appears in equation (5.2) is given

by [Electrophotonics Corporation, 1998]:

B =B, +GFx{o, -0, ) (5.4)
where [, is the thermooptic response coefficient provided by the manufacturer. To
calculate the total strain due to mechanical and thermal effects, § = 3, is entered in
equation (5.2). To compensate for the thermal strain and only record mechanical strain,
the total value of B from equation (5.4) is substituted into equation (5.2). For the
experiments pertaining to the Fabry Perot sensors, we manually factored out the thermal
strains by nulling the embedded sensor prior to any load application. For the experiments
involving Bragg Grating sensors, we achieved the same result by using the full value for

B from equation (5.4).

The FLS 3100 provides analog output from a 50-pin connector and three signals are
needed for accurate measurements (see Figure 5-63). The strain signal is O to 10 volts, the
Internal Self Calibration Signal is O to 5 volts, and the thermocouple signal is O to 5 volts.
Figure 5-64 shows the specification sheet for the FLS 3100 module used for the
experiments that will be described in Section 5.4.3, and Figure 5-65 is the calibration
sheet (provided by the manufacturer). Note that ay, a;...a;s, b; and b, are calibration

parameters needed to calculate the wavelength shift (from the output analog signals)

which 1n turn is used to calculate strain.
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Channel: | 1 2 3 4 5 6 7 8
FGSStrain | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32
Internal Self Calibration | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48
Thermocouple | 2 4 6 8 110 |12 | 14 | 16
Ground | 19 | 21 |} 23 | 25 | 27 | 29 | 31 | 33
Ground | 35 | 37 | 41 | 43 | 45 | 47 | 49
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Figure 5-63: Pin configuration for 50-pin analog output connector [Electrophotonics

Corporation, 1998]
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SPECIFICATION SHEET

Model No:  FLS 3100 Module
Serial No: 01140

1oput:
Thermocouple
Fiber Grating Sensor

Power

]

OQutput:

Signal Output

Warm up:

Analog signal
Range
Avg.p-p noise

Optical Characteristics:

Wavelength Range
Center wavelength
Max. Lead Sensitivity

Stability over 15 hours

T-type; Miniature panel jack
FC/APC
90-240 VAC ( 50/60 Hz) ( supplied

to the in-line power supply )

1. FGS Strain ( orange )

2. Common ground ( brown )

3. Internal Self Calibration ( red )
4. Thermocouple ( green ;

35 minutes

994V 10089V
<6.2mV @ 4.788V

9300 pm
1309236 pm
<+4/-2 ue

< +- 15 e

Figure 5-64: Specification sheet for FLS 3100 module [Electrophotonics Corporation,
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ElectroPhotonics Corporation

Calibration Certificate
Model: FLS 3100
Serial No. 01146
Analog signal to strain conversion :
(see manual for equations and detailed discussion of data conversion)
Non - linear data processing:

Input:
Analog Signal 9.940 V10 0.890 V
Output:
Strain Range 8450 e (@ GF=0.77, Ay=1310000 pm)
Non-linearity < 0.25 % over (8450 ue)
Linear data processing:
Input:
Analog Signal 7230 Vto2.520V
Output:
Strain Range 3720 pue ( @ GF=0.77, A, 1310000 pm )
Non-linearity < 0.52 % (over 3720 ue)
Curve-fit Parameters:
a 1309385.379 dy 1313627.151
ay -9.1002592E+01 d, -848.7543126
ap -3.3113098E-02
as -3.9064205E-02
a -5.2357688E-04
as 1.5489706E-04
a 1.9178943E-06
ay -4 1047027E-07
ag -1.2833503E-09
ag 6.0345176E-10
aypp -2.4443571E-12
an -5.0630968E-13
ap 4.9145159E-15
ais 2.2618996E-16
ass -3.2657857E-18
a5 -4.3009841E-20
ars 8.5481625E-22
ar 6.3898444E-25
A -4 6220059E-26
by 234.980
b, 733.285
c 0.050
Sirer 2.0268

Figure 5-65: Calibration sheet for FLS 3100 module [Electrophotonics Corporation,
1998]
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5.4.3 Sinusoidal and Trapezoidal Tests Performed on GFRP Tendons with

Embedded Bragg Grating Sensors in Varying Temperature Environments

It was decided to begin the testing program with Bragg Grating sensors embedded in
GFRP tendons. As mentioned in Chapter 4, Bragg Grating sensors showed enhanced
survivability in the pultrusion process, and therefore there was no need to prereinforce
them according to the procedure outlined in Section 3.4 for Fabry Perot sensors. As a
result, the Bragg Grating sensor was embedded without modification in the GFRP tendon

during pultrusion.
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Figure 5-66: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a trapezoidal load at room temperature
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Like the tests performed on smart FRP tendons with embedded Fabfy Perot sensors, the

trapezoidal and sinusoidal tests to be described in the sequel were conducted at PSC

Analytical using the same 400 kN-capacity MTS model 8540RM load frame and Instron

. Series IX controller, and an integrated temperature chamber with its own Instron

controller. The load parameters, i.e. the amplitude of both waveforms and the frequency

of the sinusoidal waveform were the same as for the tests described in Section 5.3.
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Figure 5-67: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a2 GFRP tendon subjected to a trapezoidal load at room temperature



" The first test was a trapezoidal load performed in ordinary laboratory conditions before
the temperature of the chamber was raised. The results are plotted in Figure 5-66. As
shown in the figure, there is a very good degree of conformance between the Bragg
Grating sensor and the extensometer, the discrepancy between the two being about 250
microstrain (or 7.5%) at the peak applied load. The good agreement between the values
from the two strain-monitoring devices is also evident from the microstrain vs. time plot
of Figure 5-67. One feature that is evident in both of these figures is the small amount of
“waviness” associated with the trend lines. This is not to be attributed to the sensor or the
extensometer, but rather to the large-capacity load cell that was used for these tests. The
load cell used for the tests of the previous section was of much smaller capacity (100 kN)

and hence there was much less wandering from the mean trend line.
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Figure 5-68: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a sinusoidal load at room temperature
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Thé smart GFRP tendon was subscqhently subjccted to a sinusoidal load at room
temperature. The load vs. strain plot in Figure 5-68 again shows a very good agreement
between the sensor and the extensometer with a corresponding discrepancy of about 8%
at the peak applied load. The data from Figure 5-68 are plotted as microstrain vs. time in
Figure 5-69.
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Figure 5-69: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a sinusoidal load at room temperature

The temperature chamber was then heated to 40°C and allowed to reach steady state. The
smart tendon was then subjected to the same trapezoidal and sinusoidal loads as those

performed at room temperature. The results are shown in Figures 5-70 to 5-73.
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Figure 5-70: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
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Figure 5-72: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a sinusoidal load at 40°C
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Figure 5-73: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a trapezoidal load at 40°C
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Figure 5-74: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
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Figure 5-75: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a trapezoidal load at 60°C
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Figure 5-76: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a sinusoidal load at 80°C
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Figure 5-77: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a sinusoidal load at 80°C
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Subsequently to the tests at 40°C, the temperature of the chamber was raised first to 60°C
and then to 80°C, and trapezoidal and sinusoidal tests were performed at each
temperature. The results of some of these tests are plotted in Figures 5-74 to 5-77. The
same conclusions can be drawn from these plots as from the previous ones. Bragg
Grating sensors embedded in GFRP tendons are very consistent and reliable even at
temperatures as high as 80°C and produce strain data that conform very well with

corresponding extensometer data.

On completion of the testing at 80°C, the temperature chamber was gradually cooled
down. When its temperature stabilized at 0°C, the testing was resumed. The first load to
which the tendon was subjected was a trapezoidal one and the load vs. strain results from

this test are given in Figure 5-78.
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Figure 5-78: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a trapezoidal load at 0°C
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Figure 5-78 shows that there is a good agreement between the extensometer and the
embedded Bragg Grating sensor, except for low strain values, less than 350 microstrain.
On examining the raw data sheet, there was no apparent error signal such as a “low
signal” or “no signal” warning from the demodulator at low strain levels. It was simply
recording erroneous results. The same conclusions can be drawn from the microstrain vs.

time plot in Figure 5-79.
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Figure 5-79: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a trapezoidal load at 0°C

The same GFRP tendon was subsequently subjected to a sinusoidal load at 0°C, as well as
at sub-zero temperatures. The results, as shown in Figures 5-80 to 5-83, are characterized

by the same problem as Figures 5-78 and 5-79.
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Figure 5-80: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a sinusoidal load at 0°C
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Figure 5-81: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a trapezoidal load at -40°C
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Figure 5-82: Strain from extensometer and embedded Bragg Grating sensor in a GFRP
tendon subjected to a sinusoidal load at -40°C
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Figure 5-83: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a GFRP tendon subjected to a sinusoidal load at -40°C
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5.5 Temperature Tests on CFRP Tendons with Embedded Bragg Grating Sensors

FC/APC
connector

Pultruded CFRP
tendon

Figure 5-84: Pultruded CFRP tendon with embedded Bragg Grating sensor
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Figure 5-85: Close-up view of the end of CFRP tendon with an embedded Bragg Grating
sensor
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The same testing program that was described in the previous section for the case of a
smart GFRP tendon was also conducted on a pultruded CFRP tendon with an embedded

Bragg Grating sensor.

The tendon was first subjected to a trapezoidal waveform (with the same parameters as
those described in previous sections) at room temperature and the results of this test are

shown in Figures 5-86 and 5-87.
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Figure 5-86: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a trapezoidal load at room temperature
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Figure 5-87: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a trapezoidal load at room temperature

It is seen in Figures 5-86 and 5-87 that even though the extensometer and the embedded
Bragg grating sensor agree well with one another, the FLS 3100 demodulator could not
record any strain values below about 350 microstrain. This is the same as the problem
encountered during testing of the GFRP tendon at low temperatures (Figures 5-78 to 5-
83). Again, no explanation can be given for this and no error signal was recorded in the
data acquisition program. The problem is even more evident in the results of the

sinusoidal test at room temperature, shown in Figures 5-88 and 5-89.
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Figure 5-88: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a sinusoidal load at room temperature
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Figure 5-89: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a sinusoidal load at room temperature
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Figure 5-90: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a trapezoidal load at —20°C
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Figure 5-91: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a trapezoidal load at —20°C
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Figure 5-92: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a sinusoidal load at 40°C
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Figure 5-93: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a sinusoidal load at -40°C
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Figure 5-94: Strain from extensometer and embedded Bragg Grating sensor in a CFRP
tendon subjected to a trapezoidal load at 40°C
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Figure 5-95: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a trapezoidal load at 40°C
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Figure 5-96: Strain vs. time plot from extensometer and embedded Bragg Grating sensor
in a CFRP tendon subjected to a trapezoidal load at 60°C

On completion of the tests at room temperature, the smart tendon was subjected to
sinusoidal and trapezoidal load waveforms at low and high temperatures. As is evident
from the results in Figures 5-90 to 5-96, the demodulator kept recording properly only the
high strain values. This problem seemed to be more prevalent at low temperatures.
Nevertheless, the sensor and the extensometer conformed well to one another at high load

levels.

The observed problem with the demodulator was not the only one that was encountered
during the research. Another perhaps more significant difficulty had to do with the fact
that the “zero” strain level of the Bragg Grating sensor was not retained every time the
sensor was disconnected from the FLS 3100 unit. It is known that Bragg Grating sensors,
like their Fabry Perot counterparts, are absolute sensors. Thus, when “zeroed” at a
particular load value (usually at no load), they maintain that particular reference, so that a
non-zero signal is indicative of either mechanical or thermal strain. Indeed, this was
observed for the case of Fabry Perot sensors. Bragg Grating sensors however, “lost track™

of their zero reference point every time they were disconnected from the demodulator!
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Thus, at the onset of a different test, and before any load was applied, the demodulator
was showing a non-zero value. Other researchers who used the same demodulator (at the
University of Sherbrooke for instance) were also faced with similar problems. Following
a large volume of complaints regarding various problems associated with the

demodulator, the manufacturer eventually recalled all FLS 3100 models.

5.5.1 Synopsis of Temperature Tests on Smart Tendons with Embedded Bragg

Grating Sensors

Based on the results of Sections 5.4 and 5.5, one may conclude that Bragg Grating
sensors embedded in GFRP tendons provided accurate readings in high-temperature
environments. For the tests at low temperatures, the Bragg Grating sensors only gave a
reliable strain output at the peak load levels. At low applied loads, the sensors recorded
erroneous results. Similar conclusions may be drawn from the tests performed on Bragg
Grating sensors embedded in CFRP tendons. For both high- and low-temperature tests,
the sensor strain values conformed to extensometer readings only at high load levels. At
low stress levels, the sensors did not respond reliably, and the situation seemed to worsen
as the ambient temperature was lowered. It is now believed that this odd behavior is
attributed to the demodulator rather than the Bragg Grating sensor itself. For all high- and
low-temperature tests (as per the room-temperature tests), some of the difference between
the embedded sensors and the extensometers is attributed to the misalignment between

the spelter sockets and the axis of the tendons.
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5.6 Fatigue Behavior of Smart Pultruded GFRP and CFRP tendons

5.6.1 Introduction

The determination of a conventional stress-strain diagram of a material which conveys
information such as Young’s modulus, proportional limit, yield strength, ultimate tensile
strength and others is obtained by loading the specimen slowly, thus allowing ample time
for the stresses to distribute themselves more or less evenly. As well, the specimen is

typically loaded to failure. Loading of this nature is called ‘static’.

In many practical applications, however, it happens that components of a machine part or
structure are subjected to stresses that are not monotonically increasing or decreasing, but
are instead varying periodically, often at a high frequency. A typical example is that of a
rotating shaft, transmitting power from a high-speed motor to one or more loads. In
addition to torsional stresses, the material of the shaft also experiences cyclic flexural or
bending stresses. During the first half-cycle of any revolution the top fibers of the shaft
might experience tension (and the bottom ones compression), and during the second half
cycle the situation reverses, with the top fibers experiencing compression and the bottom
fibers experiencing tension. If the motor imparts a speed of 10 Hz to the shaft, then the
stresses experienced by the fibers completely reverse themselves ten times each second.
Loads of this nature are called alternating or cyclic loads. Different types of cyclic

stresses are illustrated in Figure 5-97 [Shigley, 1986].

It is known that when a part is subjected to a sufficiently large number of cycles of load,
it fails at stress levels significantly lower than its ultimate strength and sometimes even
its yield strength, and that the failure is incurred suddenly and without warning. As well,
ductile materials (such as most metals) may fail in a brittle-like fashion when subjected to

cyclic loads for extended periods of time. Appropriately, this failure mode is termed
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fatigue failure, and the properties of a material associated with its bchavior under

conditions of prolonged cyclic loads are called fatigue properties.
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Figure 5-97: Some stress-time relations: (a) fluctuating stress with high frequency ripple;
(b) and (c) nonsinusoidal fluctuating stress; (d) sinusoidal fluctuating stress; (e) repeated
stress; (f) completely reversed sinusoidal stress [Shigley, 1986]
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Figure 5-98: An S-N diagram plotted from the results of completely reversed axial
fatigue tests. Material: chromium-molybdenum steel, normalized; S, = 800 MPa; S, =
338 MPa [Shigley, 1986]

The fatigue behavior of a material is characterized by a plot of stress amplitude to failure
vs. number of cycles to failure, called an S-N diagram (see Figure 5-98). This diagram is
obtained by subjecting a carefully machined specimen to cyclic stresses of different
amplitude until failure occurs. The study of fatigue failure that occurs after 1000 cycles
or less is called low-cycle fatigue, while high-cycle fatigue examines failure after more
than 1000 cycles [Shigley, 1986]. In the case of steels, a “knee” occurs on the S-N plot
and this defines the fatigue limit or endurance limit, S.. For stress levels lower than the
endurance limit, fatigue failure will not occur irrespective of the number of applied

cycles. The most common apparatus used for obtaining the S-N curves is called an R. R.
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Moore rotating beam fatigue tester. A schematic of a Moore tester is shown in Figure 5-

99 [Juvinall and Marshek, 1991].
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Figure 5-99: R.R. Moore rotating beam fatigue-testing machine [Juvinall and Marshek,
1991]
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Figure 5-100: Tension-tension S-N diagram for a 0° E-glass/Epoxy laminate [Mallick,
1988]
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For most fiber-reinforced composite materials, the characteristic “knee” marking the
fatigue limit is not observed. However, the slope of the S-N curve at low stress levels
(large number of cycles) is significantly reduced, and consequently, it is customary to
give the fatigue strength of composite materials at a large number of cycles, typically 1
million cycles [Schwartz, 1996]. S-N curves for E-glass/fepoxy and carbon/epoxy
laminates subjected to tension-tension fatigue are shown in Figures 5-100 and 5-101
respectively [Mallick, 1988]. The stress ratio, R, in these figures is the ratio of maximum

to minimum stress.
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Figure 5-101: S-N diagrams for [0/£30]¢s carbon/epoxy laminates at various stress ratios.
[Mallick, 1988]

Studies [Schwartz, 1996] have shown that composite materials exhibit far superior
fatigue resistance to those of metals. One reason for this has to do with the fact that
internal flaws in metals act as sites where a crack may initiate and subsequently
propagate when the metal part is subjected to cyclic loads. A composite material,

however, is less vulnerable to flaws and internal defects, because the large number of
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fibers create redundant load paths [Schwartz, 1996]. The superior fatigue-resistance
characteristics of composites over metals such as steel and aluminum is evident in Figure
5-102. It should be noted that the “stress density” on the lower axis of the figure is the

ratio of applied stress to material density.
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Figure 5-102: Fatigue of composites [Schwartz, 1996]

Issues related to fatigue of composites have been studied extensively by many
researchers. Mallick et al. [1986] investigated fatigue damage in notched pultruded E-
glass/polyester rods with a 75% (wt) reinforcement fraction. The specimens had a
diameter of 13 mm and a length of 102 mm, and were characterized by a sharp machined
60° V-notch in the middle. The specimens were tested in an R. R. Moore tester, and the
results indicated that the tensile strength of the material was reduced from 690 MPa (as

determined from conventional static tests) to 240 MPa. This represents a 60% loss of
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strength. Ramkumar and Tossavairien [1986] investigated the fatigue strength of bolted
laminates. The AS1/3506 graphite/epoxy specimens were made up of 20, 40, 60 plies in
different stacking configurations, with the fibers oriented along the 0°, +45°, +90°
directions. Constant-amplitude fatigue tests were conducted at a frequency of 10Hz, with
stress ratios of O (tension-tension fatigue), -1(completely reversed tension-compression
fatigue), and < (compression-compression fatigue. Tension-tension fatigue results
indicated that the maximum bearing strength was reduced by at most 15% as compared to
the static counterpart depending upon the static configuration of the laminate. Similar
results were obtained for the compression-compression tests, but for the completely
reversed fatigue tests, the overall reduction in strength was up to 50% compared to the

static case.

For the current research, it is of interest to assess (a) the impact of an embedded fiber-
optic sensor and associated lead on the fatigue properties of the host composite material,
and (b) the effect of cyclic loads on the reliability and accuracy of the embedded sensor.
~ Lee et al., [1995] investigated the effect of embedded fiber optic sensors on the fatigue
behavior of composite laminates. For their experiments, the authors fabricated two
unidirectional and cross-ply glass/epoxy laminates in which they embedded optical fibers
with 125 micron diameters. It was determined that the fatigue life for each configuration
of crossply and unidirectional laminates was significantly reduced as a result of the
embedded optical fibers, and that the effect was more pronounced for the cases of the
Jaminates with a larger number of embedded fibers. It should be mentioned, however,
that in these tests the applied fatigue loads were about 70% of the laminate tensile
strength (in static conditions) for both stacking configurations. When considering typical
safety factors of structural design, it is clear that such a level of applied cyclic load is too

high.

Alavie et al. [1994] investigated the reliability of Bragg Grating sensors bonded onto the

surface of the CFRP tendons inside a prestressed concrete girder. It was found that the
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sensors were not affected by 320,000 cycles of applied load showing excellent stability

and durability (see Figure 5-103).
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Carman and Mitrovic [1994] investigated the performance of a carbon/SiC woven
composite system subjectéd to long- term mechanical fatigue, with a Fabry-Perot sensor.
In particular, the authors monitored the reduction in stiffness, and their results indicated
that Fabry Perot sensors functioned extremely reliably during long-term fatigue loading
of up to 1,000,000 cycles, giving results that conformed very well to conventional
extensometers (Figure 104). On the contrary, resistance foil gaugés deteriorated fairly

rapidly.
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'Figure 5-104: Loading stiffness vs. number of cycles for C-SiC composite (comparison
of two results: extensometer-fiber optic strain sensor [Carman and Mitrovic, 1994]

Gu and Ansari [2000] successfully demonstrated the use of a multi-gauge-distributed
sensor to detect cracks and measure deformations in concrete structures. It was shown
that these sensors do not exhibit any hysteresis and therefore can be used for monitoring

civil engineering structures that are subjected to fatigue loads.
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5.6.2 Tension-Tension Fatigue Testing

The tension-tension fatigue cycling test is conducted according to ASTM
D3479/D3479M [2001]. The specimen can be tested by subjecting it either to in-plane
axial stress at a specified frequency (procedure A) or to in-plane axial strain again at a

specified frequency.
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Figure 5-105: Tension (and fatigue) test specimen drawing [ASTM D3039/D3039M]

The test sample is a thin flat rectangular prismatic strip mounted into the grips of a testing
‘machine such as an Instron. Although many material configurations such as

multidirectional laminates can be tested without tabs, it is strongly recommended that



tabs be used (see Figure 5-105) when fatigue testing of unidirectional laminates is to be
undertaken [ASTM D3479]. The geometry and dimensions of the test specimen
(including tabs) is the same as for the standard tensile test for polymer matrix composite

materials and are given in Table 5-1 [ASTM D3039].

Table 5-1: Tensile (and fatigue) specimen geometry recommendations [ASTM D3039]

3T T
h - Thickness
= (mm)

1.5
1.5

5.6.3 Experimental Procedure

The fatigue tests were performed on the MTS load frame used for the temperature tests
described in the previous sections. The pultruded tendons were subjected only to tension-
tension fatigue with a maximum load of 11 kN and a minimum load of 7 kN. This gives a
stress ratio, R, (ratio of minimum to maximum load) of 0.64. The load waveform had a
frequency of 1 Hz. The first experiments were conducted on GFRP and CFRP tendons
with embedded Fabry Perot sensors. As mentioned before, a FIZ 10 demodulation unit is
used to record the strain values from the embedded sensor. The number “10” in the name
of the demodulator designates the rate at which the unit can acquire data per second. Thus
FIZ 10 can acquire 10 samples per second whereas FIZ 100 (also provided by the
manufacturer of the Fabry Perot sensors) can sample at 100 Hz. It was decided to select
10 data points per second for the purposes of the experiments described in this thesis.
Testing was performed for up to about 300,000 cycles. The main parameters

characterizing the fatigue loads used are summarized in Figure 5-106.
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R =0.64
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Figure 5-106: Testing parameters for the fatigue tests

5.6.4 GFRP and CFRP Tendons with Embedded Fabry Perot Sensors

First a GFRP tendon with an embedded Fabry Perot sensor was tested. Figure 5-107
shows the results after 200 load cycles had elapsed. Two features are worth mentioning.
The first one is that after 200 cycles the extensometer and the Fabry Perot sensor agree
very well with one another. However, it is still too early in the testing phase to conclude
on the ability of embedded Fabry Perot sensors to monitor cyclic loads. The second
feature is that the FIZ 10 is not recording at the 10 samples-per-second rate as it was
supposed to. In fact, an examination of the raw data sheet will reveal that interspersed
with actual strain readings were many “no signal” indications. However, there were

enough data points recorded at the peaks of the waveforms to be able to draw firm
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conclusions with regard to the capability of the sensors themselves. For the purposes of

plotting the graphs, the “no signal” points were simply ignored.
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Figure 5-107: Strain from extensometer and Fabry Perot sensor in a GFRP tendon
subjected to a fatigue load for 200 cycles
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Figure 5-108 shows the results after 900 cycleS.
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Figure 5-108: Strain from extensometer and Fabry Perot sensor in a GFRP tendon
subjected to a fatigue load for 900 cycles

The GFRP tendon was left in the frame overnight, and the next day (after about 100, 000

cycles had elapsed) the results were checked and plotted again.
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Figure 5-109: Strain from extensometer and Fabry Perot sensor in a GFRP tendon
subjected to a fatigue load for 100,000 cycles

It is clear from Figures 5-107 and 5-109 that the strain output from the Fabry Perot sensor
(as well as the extensometer) is essentially the same at 200 cycles as it is at 100,000
cycles. Consequently, and based on the results of these tests, one may conclude that
Fabry Perot sensors remain accurate and reliable when the GFRP tendons in which they

are embedded are subjected to 100,000 cycles of tension-tension fatigue.
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Subsequently to the GFRP tendon, a CFRP tendon with an embedded Fabry Perot sensor

was tested in much the same way.
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Figure 5-110: Strain from extensometer and Fabry Perot sensor in a CFRP tendon
subjected to a fatigue load for 100 cycles
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The results after the lapse of 100 cycleé aré shown in Figure 5-110. As fof the case of its
counterpart in the GFRP tendon, the Fabry Perot sensor embedded in the CFRP tendon
agreed very well with the extensometer at the beginning of the test. However, there were
again-a lot of “no signal” readings in the data sheet, confirming one more time that the
FIZ 10, contrary to the accompanying documentation, can not be relied upon to sample at

10 Hz.
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Figure 5-111: Strain from extensometer and Fabry Perot sensor in a CFRP tendon
subjected to a fatigue load for 800 cycles
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Figure 5-111 shows the results after 800 cycles. Once again, the Fabry Perot sensor and
the extensometer agree very well with one another. Testing was continued until the next

day, and the results after 70, 000 cycles are shown in Figure 5-112.

1400 - _

1200 -

1000 -

800 ~

Microstrain

600 -

Extensometer

Fabry Perot
400 4 _ sensor

200 -

o 1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15

Time (sec.)

Figure 5-112: Strain from extensometer and Fabry Perot sensor in a CFRP tendon
subjected to a fatigue load for 70,000 cycles
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It is apparent in Figure 5-112 that the FIZ 10 demodulator worked properly for the first
time and no “no signal” indications were recorded in the data sheet. It was decided to
continue testing for another day and the results after about 138,000 cycles (38 hours) are

shown in Figure 5-113.
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Figure 5-113: Strain from extensometer and Fabry Perot sensor in a CFRP tendon
subjected to a fatigue load for 138,000 cycles
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Figuré 5-113 is very similar to Figure 5-112. Thus, one may conclude from Figures 5-107
to 5-113 that Fabry Perot sensors embedded in GFRP and CFRP tendons are not affected
by up to 140,000 cycles of applied load, and they retain their accuracy and reliability.

I
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Figure 5-114: Strain from extensometer and Bragg Grating sensor in a CFRP tendon
subjected to a fatigue load for 50 cycles
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The testing program was then continued with Bragg Grating sensors embedded in GFRP
and CFRP tendons. The FLS 3100 demodulation unit was used for these tests. It allows
for a higher sampling rate than the FIZ 10, and so a frequency of 20 sample points per
second was selected. The load was applied at 1 Hz as for the previous tests, and thus it

was felt that 20 sample points per cycle would be more than sufficient to plot a smooth

T
DT

Time (s)

Figure 5-115: Strain from extensometer and Bragg Grating sensor in a CFRP tendon
subjected to a fatigue load for 330,000 cycles
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The first fatigue test involving Bragg Grating sensors was conducted on a CFRP tendon.
Figure 5-114 shows the strain readings from the embedded sensor and the externally
affixed extensometer at the beginning of testing (after 50 cycles). One may observe that
the FL.S 3100 demodulation unit can sample much more frequently and reliably than the
corresponding FIZ 10 unit. Also, at the beginning of the test the two strain-monitoring

devices agree very well with one another.
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Figure 5-116: Strain vs. load for extensometer and Bragg Grating sensor in a CFRP
tendon subjected to a fatigue load for 330,000 cycles



This tendon was tested for 4 days (330,000 cycles) at the end of which the data was
collected and plotted. The results are shown in Figure 5-115. Comparing this plot with
the corresponding one in Figure 5-114 reveals that the two are essentially the same. The
data from Figure 5-115 are plotted as microstrain vs. load in Figure 5-116. Thus, one may
conclude that Bragg Grating sensors embedded in CFRP tendons are not affected by

more than 300,000 cycles of applied load, retaining their accuracy and reliability.
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Figure 5-117: Strain from extensometer and Bragg Grating sensor in a GFRP tendon
subjected to a fatigue load for 25,000 cycles
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Finally, a pultruded GFRP tendon with an embedded Bragg Grating sensor was tested.
The results after 25,000 cycles are shown in Figure 5-117. It is seen that the extensometer
data are not as smooth as in previous tests, particularly at the peaks. The most probable
reason for this behavior is the device was not firmly affixed to the tendon. On the
contrary, the sensor data produced a well-defined plot. That aside, the two strain-
monitoring devices conformed very well to one another. The data from Figure 5-117 are

plotted as microstrain vs. load in Figure 5-118.
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Figure 5-118: Strain vs. load for extensometer and Bragg Grating sensor in a GFRP
tendon subjected to a fatigue load for 25,000 cycles
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Unfortunately, after about 25,000 load cycles had elapsed, one 'spel_ter socket slipped
from its grip and the loading stopped. As well, it was the socket on the side of the sensor
lead that slipped, and in doing so it broke the lead off. Consequently, the GFRP tendon

was of no further use.
5.6.5 Conclusions
It may be inferred from the tests of Section 5.6.3 that Fabry Perot sensors embedded in

GFRP and CFRP tendons are not affected by many thousands of load cycles applied at a

frequency of up to 1 Hz, and they maintain their accuracy and repeatability.
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5.7 Short-Term Creep Behavior of Smart Pultruded GFRP & CFRP tendons

5.7.1 Introduction

When materials are subjected to a load for prolonged periods of time, they continue to
experience strain even if the applied load level remains constant. This deformation is a
combination of elastic and viscoelastic effects and is consequently non-linear in nature. It

is called creep deformation and it depends primarily upon the stress level and the

temperature.
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Figure 5-119: Schematic representation of creep strain and recovery strain in a polymer
[Mallick, 1988]
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As Figure 5-119 shows, the total strain experienced is the sum of the elastic mechanical
strain that develops very quickly, and the creep strain that develops gradually over time.
When the load is removed the elastic strain is recovered, but the creep strain recovers

asymptotically to the recovery strain [Mallick, 1988].

In general, creep deformations become more important at elevated temperatures and are
characterized by three phases as shown in Figure 5-120 [Evans and Wilshire, 1993]. The
primary phase, during which the creep rate decreases with time, leads to the secondary
phase of more or less constant strain rate, and this in turn leads to the tertiary phase

whereby the creep rate increases steadily, eventually causing what is called creep rupture.
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Figure 5-120: Schematic representation of a high temperature creep curve [Evans and
Wilshire, 1993]
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In spite of the dependence of creep on temperature, mariy unreinforced polymers do
exhibit significant creep at low stress levels and ordinary temperatures. In general,
thermoplastic polymers are characterized by larger creep strains than thermosetting
polymers. As well, commercial fibers (glass, carbon, boron) with the exception of Kevlar

49 do not creep [Mallick, 1988].
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Figure 5-121: Tensile creep curves for SMC-R25 polyester laminates {Mallick, 1988]

An important parameter that characterizes the creep behavior of a polymer-matrix
composite is the creep compliance, which is defined as the ratio of the time-dependent
creep strain to the applied stress (a constant). Figure 5-121 [Mallick, 1988] shows typical

creep curves for an SMC-R25 polyester laminate at different stress levels. As shown in
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this figure, creep strains increase with time and applied stress level. As well, the higher
the temperature, the larger the compliance. It was mentioned above that most of the
commercially-available reinforcing fibers do not creep, but many unreinforced polymers
exhibit substantial creep strains even at ordinary temperatures and low stress levels. Thus,
for unidirectional composites, creep in the longitudinal direction is negligible because
deformation in that direction is primarily fiber-dependent. For off-axis laminates
however, longitudinal creep can be very high due to the significant matrix involvement in

the deformation.
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Figure 5-122: Strain-time plot obtained in a tensile creep test [Little et al., 1995]

Little et al., [1995] describe an experimental investigation of the tensile creep behavior of
a random continuous fiber mat reinforced polypropylene composite commercially
available under the name “Azdel”. The authors used a specialized fixture for their testing.

It consists of a tension rod placed inside a cylindrical tube. The upper end of the



202

specimen (which is located underneath the tension rod) is connected to the lower end of
the tension rod by means of a grip. The specimen is attached to the outer tube by means
of a lower grip and a pin. Tension is applied by turning a wheel at the top, which pulls the
rod against a spring. Self-aligning bearings eliminate any flexural loads and an LVDT
measures the changes of distance between the grips, from which the strain in the sample
can be determined. The overall setup was placed inside a temperature chamber, and
testing was performed at 75°C and 100°C. The samples were left in the temperature
chamber for 48 hours prior to the commencement of the testing. Typical results are
shown in the plot of Figure 5-122, that clearly shows the three different phases, namely
primary, secondary, and tertiary creep.
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Figure 5-123: Creep compliance curves from flexure tests [Abdel-Magit and Gates,
2001]

Abdel-Magit and Gates [2001] used three accelerated (at high temperatures) experimental
methods, flexural, tensile, and compression creep tests to obtain the creep properties of a
unidirectional carbon/polyimide composite available in the commercial name IM7/K3B.

The results from the three methods conformed well to one another. Figure 5-123 shows
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creep compliance curves obtained from tests at 210°C, 215°C, 220°C, 225°C, and 230°C
with a 30-minute duration for each test. The results clearly show that both creep rate and
compliance are strong functions of temperature, and increase as the temperature is raised
from 210°C to 235°C. Similar results were obtained from the tensile and compression

creep tests.

Franke and Meyer [1992] derived and validated a model that predicted the creep-rupture

behavior of pultruded GFRP rods. Their model encompasses some statistical techniques.

In addition to the experimental and analytical techniques used to study creep-related
properties of composite materials, it is useful to examine the potential of fiber optic and
other sensors to measure and assess creep strain. This is particularly important for long-
term monitoring applications of large civil engineering structures such as bridges and
overpasses. In an extensive report, Busel and Lindsay [1997] examine the incorporation
of composite materials in 30 bridges in Europe, Japan and the United States. One of the
important conclusions drawn by Busel was that “many of the British engineers
complained that there is not enough known about composites in design and durability.
They added that the lack of specifications and standards does not allow widespread use of
composites in constructed facilities unless it is designated as a demonstration.” The use of
fiber optic sensors to continuously monitor long-term creep deformations in structures
presumably eventually will arm engineers with the confidence they need to expand the
volume of applications of composite materials. Unfortunately, a literature review did not
reveal many publications dealing with the use of fiber optic sensors in monitoring creep
deformations. Busel and Lindsay [1997] mention that fiber optic and chemical sensors
are used for monitoring purposes in the Ulenborgstrasse and Schiessborgstrasse Bridges

in Germany. Monitoring confirms that no creep has occurred.

A very interesting field application is described by Slowik et al. [1998]. In their work,

four Bragg Grating sensors were embedded in a prestressed concrete bridge near



Dresden, Gerrﬁany. The sensors were located in the midspan section of the bridge parallel
to the prestressing cables. The results of the strain measurement are shown in Figure 5-

124.
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Figure 5-124: Results of the strain measurement [Slowik et al., 1998]

The compressive strain increase 10 to 56 days after prestressing is caused by temperature
drop, shrinkage and creep. Although with the given arrangement the various effects
(temperafure, creep, shrinkage) cannot be separated, a more strategic sensor- system
installation (including for example sensors for temperature compensation) could be used
to decouple creep strain from other strain components. It is also worth noting that at the
time of publication, the Bragg Grating sensors were still operational (1.5 years after
casting), thus reiterating their potential for long-term monitoring. Finally, it should be

remarked that in order to protect the sensors from accidental damage and damage due to
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contact with the cement (alkaline environment), some sophisticated-steel sensor-holdérs
were fabricated. These worries would have been avoided if the sensors had been
embedded in CFRP or GFRP rods, which would have provided protection against both
accidental damage and a harsh alkaline environment. As well, as evidenced in the
previous sections and as will be observed in the sequel, embedding fiber optic sensors in
FRP tendons does not compromise their integrity or reliability even when the tendons are

subjected to fatigue or creep loads, or experience low and high temperature extremes.

The combined effect of creep loads and high ambient temperatures on the reliability of
fiber optic sensors was investigated by Barnes et al. [1995], who used Fabry Perot
sensors bonded to the surface of stainless steel specimens, and subjected them to uniaxial
strain. Testing was performed at temperatures up to 538°C, and the results indicated an
excellent degree of conformance between the sensors and ceramic knife-edged

extensometers.
5.7.2 Creep Tests

CFRP and GFRP tendons with embedded Fabry Perot sensors were used for short-term
creep testing. One test was performed on a GFRP tendon, and it involved subjecting it to
a sustained load of 9 kN for 150 hours at ordinary laboratory conditions. Two tests were
performed on a CFRP tendon, one involving a 9 kN-load for 150 hours, and the other
involving a 13 kN-load for 300 hours. Testing was conducted on an Instron Model 4507
electromechanical load frame at PSC Analytical. Special fixtures were used to anchor the
tendons to the frame. As for the previous tests, the sensor readings were compared with

extensometer readings.

The objectives of the testing regime were to investigate whether the FRP tendons would

experience any creep strains, and more importantly to assess the behavior and reliability
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of the embedded sensors when subjected to many hours of sustained load. Figure 5-125

shows the CFRP tendon that was used for the tests.

Figure 5-125: CFRP tendon (with embedded Fabry Perot sensor) used for creep testing



Figure 5-126 shows the results from the first test performed on the CFRP tendon. The
strain readings of the Fabry Perot sensor remained almost perfectly constant, whereas the
data from the extensometer showed a slight increase at first followed by a slight decrease
later on. This behavior however, is attributable to the imperfect attachment of the
extensometer to the tendon and not to any creep deformation. It is clear therefore that
neither the sensor nor the tendon experience any creep strains. Since the load is applied in
the direction of the reinforcing fibers, it is of no surprise that the tendon experiences no

creep deformation at room temperature (see brief discussion on page 201).
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Figure 5-126: CFRP tendon (with embedded Fabry Perot sensor) subjected to a 9- kN
load for 150 hours
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The same CFRP tendon was subsequently subjected to a 13-kN load, but this time testing
was conducted for twice long a period. The results are shown in Figure 5-127. Once

again, neither the Fabry Perot sensor, nor the CFRP tendon experienced any creep strain.
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Figure 5-127: CFRP tendon (with embedded Fabry Perot sensor) subjected to a 13-kN
load for 300 hours

The GFRP tendon was also subjected to a sustained 9-kN load, and the results after 150
hours are shown in Figure 5-128. Once again, it is evident that there is no creep in the
sensor or the GFRP tendon. In fact, the output from the two strain-monitoring devices is

essentially constant throughout the duration of the test.
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Figure 5-128: GFRP tendon (with embedded Fabry Perot sensor) subjected to a 9- kN
load for 150 hours

5.7.3 Conclusions

It is concluded on the basis of these experiments that the embedded Fabry Perot sensors
do not experience short-term creep strain, and that they maintain their reliability for up to
at least 300 hours. As well, neither the GFRP nor the CFRP tendons experience any

short-term creep if the applied load is in the direction of the reinforcements.
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5.8 Long-Term Creep Behavior of Smart Pultruded GFRP & CFRP Tendons
5.8.1 Introduction

One of the major problems faced by engineers and designers in their quest for cost-
effective rehabilitation of the infrastructure is the corrosion of steel. The immunity of
fiber-reinforced polymer rebars and prestressing tendons to corrosion makes them the
most attractive alternative to steel. The other advantages of composites, primarily their
superior specific tensile characteristics, the ease with which their properties can be
tailored to meet design criteria and specifications, and the ability to encompass other
technologies such as fiber-optic sensors and piezoelectric and shape-memory-alloy
actuators, simply makes their case stronger still. The only question lingering is whether
their properties can remain durable during the lifetime of a structure. Naturally, the issues
related to the durability of composites and smart reinforcements are interlinked with, and

dependent on, the environment.

With regards to smart composite materials for infrastructure applications, one ought to
consider the effects of the environment on the individual components (polymer matrix,
reinforcing fibers, embedded or surface-attached sensor) as well as on the overall smart

composites proper.

Duncan et al. [1985] investigated the fatigue-weakening of optical fibers by measuring
their strength as a function of temperature, humidity, and other factors. Their results
indicated that at constant relative humidity, the strength of silica and sodium borosilicate
optical fibers decreased with an increase in temperature. The authors also measured the
optical fiber breaking strain (at constant temperature) in environments with different
moisture content. For both types of fiber, the breaking strain in vacuum or dry nitrogen

were found to be considerably higher than in water or air with 50% relative humidity. In
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conclusion, elevated temperatures and moisture have a degrading effect on the strength of

optical fibers.
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Figure 5-129: Environmental conditioning [Micelli et al., 2001]

An excellent paper by Micelli et al. [2001] reports the results of durability tests
performed on GFRP composites. Two different types of specimens were used; “G1” bars
(with a diameter of 12 mm) were E-glass-reinforced thermoplastic resin, and “G2” bars
(with a diameter of 6 mm) were made of E-glass- reinforced polyester resin. Two test
protocols were undertaken. The first protocol involved immersing the GFRP specimens
in an alkaline solution consisting of 0.16 wt% Ca(OH),, 1 wt% Na(OH), and 1.4 wt%
K(OH) in distilled water, giving a pH value of 12.6. The rods were simultaneously placed
in an oven at 60°C in order to accelerate ageing. Under these conditions of alkalinity and
temperature, a 42-day exposure is equivalent to 28 years in concrete. The second test
protocol subjected the specimens to four combined environmental cycles. As Figure 5-

129 shows, each exposure consisted of 50 freeze-thaw cycles, 120 relative humidity
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cycles, and 150 high-temperature cycles. During the high-temperature cycles, the
specimens were simultaneously subjected to UV radiation. It is known [Dutta et al.,

1998] that prolonged exposure to UV rays may harden and discolor the matrix.

The main results from these protocols were that the G1 rods showed an excellent
durability in the alkaline solution, but G2 rods were seriously degraded by alkali attack,
and their tensile strength showed a marked decrease. Both types of rods were insensitive

to the environmental exposure.

Another comprehensive testing program was conducted by Tannous and Saadtmanesh
[1999] on pultruded glass/polyester and glass/vinylester rods. The specimens were
immersed in eight different solutions simulating various ambient conditions. These
solutions and their impact on the tensile properties of the specimen were as follows.

1. Water at 25°C, simulating exposure to high humidity: The amount of moisture
content was higher for polyester than for vinylester bars. The tensile strength of
the former was reduced by 7.3% and for the latter by 5.9%. The tensile modulus
was not significantly degraded.

2. Saturated Ca(OH), solution (pH = 12) at 25°C, simulating exposure to
hydrating cement: Again, the amount of moisture content was lower for the
vinylester specimens. The average loss of tensile strength was 13.3% for polyester
bars and 9.9% for vinylester bars.

3. Saturated Ca(OH), solution (pH = 12) at 60°C, simulating exposure to
hydrating cement at a higher temperature: The amount of moisture content
was higher under these conditions for both types of bars. As well, measured loss
in strength ranged from 14.1% to 22.7% for vinylester specimens and 16.9% to
28% in polyester specimens. Hence, it is clear that elevated temperatures have an
important impact on both diffusivity and strength.

4. HCI solution (pH = 3) at 25°C, simulating exposure to acidic environment:
Moisture content was higher for polyester bars. However, no appreciable loss in
strength was measured for either specimen type.

5. NaCl 3.5 wt% solution at 25°C, simulating exposure to seawater: As with all
previous tests, it was observed that moisture content was higher for the polyester
specimens. There was some loss in the tensile strength of both composite types.




6. NaCl + CaCl, (2:1) 7.5 wt% solution at 25°C, simulating exposure to sodium
chloride and deicing salts: The same general trend was observed in this case as
for the case of the NaCl solution above. However, higher losses in tensile strength
were reported, probably due to the higher chloride ion content.

7. NaCl + MgCl, (2:1) 7.5 wt% solution at 25°C, simulating exposure to sodium
chloride and Ice-Stop deicing salts: The conclusions drawn from this test are
similar to the ones pertinent to the deicing-salts solution.

8. Ultraviolet Radiation: After a six-month exposure in UV radiation, it was
observed that the glass bars were not seriously affected. The average loss in
tensile strength was 5.2% for polyester bars and 5.7% for their vinylester
counterparts.

The results of this work indicate that environmental conditions may have a significant

effect on the properties of smart composites, and should be given due consideration at the

design stage.

Many other researchers performed accelerated reliability tests on composite materials.
Strait et al. [1992] investigated the effects of seawater immersion on the impact resistance
of GFRP composites. Two types of laminated specimens were used; type A consisted of
E-glass fibers in an epoxy resin, and type B consisted of woven E-glass fibers in a rubber-
toughened epoxy resin. The samples were soaked in synthetic seawater for a prolonged
time. The samples were deemed saturated when their weight did not increase by more than
3% of the initial weight during the period of one week. To accelerate the effects of water
absorption, the seawater was maintained at 60°C. Impact tests were subsequently
performed on the specimens. The results showed that both A and B composites
experienced significant reduction in peak load and energy absorbed at peak load due to
degradation of the fibers and the fiber/matrix interface as a result moisture absorption. As
well, the total energy absorbed was substantially reduced for both types. In conclusion, the

authors remarked that moisture absorption significantly reduces the impact resistance of

glass/epoxy composites.
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Hamidah et al. [2001] investigated the absorption characteristics of aramid prestressing
rods in aggressive solutions. The testing indicated that for rods immersed in water, the
degradation occurs due to the volume changes and expansion of the matrix. For rods
immersed in alkaline solutions, the solutions dissolve the surface and exposes the fibers,
and for rods immersed in acid, the solution penetrates more deeply, dissolving the matrix

and leaving the fibers unbound (see Figure 5-130).

debonding

Figure 5-130: SEM micrograph shows debonding of aramid fibers after exposure to
acidic solutions [Hamidah et al., 2001]

In conclusion, the effect of the environment will be perhaps the decisive factor that will
determine the extent of integration of smart composite materials into the structural field.

We have seen in previous sections that in order to protect surface-attached sensors from
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the alkalinity of cement mixtures, researchers often resort to labor-intensive and
potentially expensive casings to protect the sensors. It is clear that the issue of sensor
protection can be resolved to a large extend by embedding the sensors in their respective
GFRP or CFRP tendons. However, this section has evidenced that alkaline or acidic
environments may cause degradation of the composite, and the aggressive solution may
even penetrate enough into the composite to compromise the integrity of the sensor as
well. Furthermore, the literature research revealed that researchers saturated the pertinent
specimens in various stagnant solutions and only afterwards tested them. Bearing all these
in mind, it is of interest to immerse the tendons in an alkaline solution which is
continuously circulating, and at the same time subject them to sustained loads for
prolonged periods of time. The readings from the embedded sensors will be compared

once again with conventional strain-monitoring devices.
5.8.2 Experimental Details and Results

Long-term testing involved the combined effects of load and alkaline exposure. A
schematic of the set-up is shown in Figure 5-131. The smart tendons were placed in a
long-term fixture and loaded to 12 kN. The fixtures were made of square steel box tube
with a base, two uprights and a single cross beam. Each fixture was approximately 2.13 m
high and 0.91 m wide between the uprights. A smart tendon was then suspended from the
cross beam of each fixture by using a chain and a turnbuckle. A shackle was used to attach
the weights (solid steel bars welded together) to the tendon. The tendons were encased in a
glass environmental chamber sealed at the two ends. A pump was used to circulate an
alkaline solution from a reservoir nearby, in and out of the chamber. The solution was
made of 0.32 mol/L KOH, 0.17 mol/LL. NaOH, and 0.07 mol/L Ca(OH), dissolved in
distilled water. The resulting pH value was 12.8 [Kalamkarov et al., 2000].
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Figure 5-131: Experimental setup for long-term creep testing in alkaline environment

Testing was conducted for a period of 75 days. The readings from the embedded Fabry
Perot sensors were compared with corresponding values from conventional foil gauges.
Obviously, due to their vulnerability, the foil gauges were bonded to a small region of
each tendon which was not inside the environmental chamber (near the top spelter socket).
Figures 5-132 and 5-133 show the results from testing on the GFRP and CFRP tendons

respectively. It is clear that there is a good agreement between the two strain monitoring
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devices. As well, the output from the embedded sensor did not seem to be affected by

either the sustained 12-kN load, or the alkaline solution.

3500 +
P FTTL IS B m BN " = o
3000 +
e e Vbt p T ”“""‘}
= 2500 +
‘=
H
8
S
> Foil gauge
2000 +
- Fabry Perot
sensor
1500 +
1000 4— | | | |
40 540 1040 1540 2040

Time (Hours)

Figure 5-132: GFRP tendon with embedded Fabry-Perot sensor (in an alkaline solution)
with a sustained load of 12 kN [Kalamkarov et al., 2000]
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Figure 5-133: CFRP tendon with embedded Fabry-Perot sensor (in an alkaline solution)
with a sustained load of 12 kN [Kalamkarov et al., 2000]

5.8.3 Conclusions

Based on the results of Sections 5.7 and 5.8, one may conclude that Fabry Perot sensors
are not affected by sustained loads, exposure to alkaline solutions, or a combination of
both. They retain their accuracy, repeatability and reliability, thus showing great potential
for health-monitoring of civil engineering structures when embedded in composite

prestressing tendons and rebars.




6.0 APPLICATIONS OF SMART COMPOSITE TENDONS

6.1 Introduction: ISIS Canada

The work described in the previous chapters of this thesis was conducted for the purposes
of project T3.4, “Smart Reinforcements and Connectors”, under the auspices of ISIS
Canada (Intelligent Sensing for Innovative Structures). ISIS Canada is a federal Network
of Centres of Excellence program combining the efforts of 15 universities throughout
Canada. It was created in 1995, and the researchers involved are experts in their
respective fields which include civil, mechanical, electrical, aerospace and materials

engineering.

ISIS Canada was created with one goal in mind: to develop the means by which the
problem of deteriorating steel-reinforced concrete in bridges, overpasses, dams and other
structures could be combated, and to design integrated fiber-optic system technology that
can be used for the remote strain sensing and field monitoring of such structures. It
became clear that the most attractive and viable replacements for steel were fiber-
reinforced polymers such as the ones described in this thesis. Under the guidance of ISIS
Canada, GFRP U-shaped stirrups were used on the outside faces of beams to improve
their shear strength, CFRP polymer sheets were wrapped around concrete columns for
strengthening and rehabilitation, CFRP laminates were used to reinforce concrete beams,
CFRP and GFRP rebars integrated with fiber optic sensors were used as concrete

reinforcements and strain monitors in concrete bridge decks, etc.

This chapter will give a brief account of some of the applications of CFRP and GFRP
rods with integrated fiber optic sensors. The applications to be described involved FRP

tendons pultruded at Dalhousie University.
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6.2 GFRP Rods with Pure Optical Fiber Embedded in Concrete Beams

The first application to be described involves the pultrusion of GFRP rods with
embedded optical fibers. In other words, no Fabry Perot or Bragg Grating sensors were
used, but rather a length of polyimide-coated optical fiber. It is known that regular optical
fibers can act as strain and temperature sensors themselves, and one of the techniques that
can be used to take advantage of this fact is the Brillouin scattering technique developed
by Dr. Bao at the University of New Brunswick. Brillouin scattering uses optical time
domain reflectometry (OTDR) techniques with pertinent signal processing to measure

temperature and mechanical strain [Chhoa et al., 2001].
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Figure 6-1: Concrete beam with embedded GFRP tendons [Chhoa et al., 2001]

For the purposes of this project, two GFRP tendons with embedded optical fibers were
pultruded, sand-coated and embedded in concrete beams (Figure 6-1). The beams were
then tested and the strain at mid span measured (see Figure 6-2). It was discovered that
the strain readings from the optical fiber were not very accurate, probably because the

rods slipped in the concrete. Before embedding the tendons, one must ensure that their




outside surface is rough enough so that a goéd bond with the surrounding concrete can be
achieved. This entails the coating of the rods with silica sand. Unfortunately, in this case
the GFRP tendons were only coated with regular “beach” sand that appeared to be
inadequate for good bond strength.

Figure 6-2: Concrete beam being tested. The ends of the GFRP tendons with the
associated fiber-optic leads are shown on the RHS of the picture [Chhoa et al., 2001]
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6.3 Waterloo Creek Bridge, British Columbia

The Waterloo Creek Bridge is one of a new series of bridges being constructed by the
British Columbia Ministry of Transportation and Highways as part of the new Vancouver
Island highway [ISIS Canada, 2000]. The bridge consists of two 25-m by 12-m single-
span decks, one deck for the north-bound traffic and one deck for the south-bound traffic.
Each deck is supported by five precast concrete girders. The south-bound deck is
constructed of conventional steel-reinforced concrete, but its north-bound counterpart is
steel-free and is reinforced with chopped polyethylene fibers and commercially

manufactured GFRP rebars of diameter 25 mm. '

Figure 6-3: Construction of Waterloo Creek Bridge [Tsai and Ventura, 1998]

For the purposes of this project (Figure 6-3), three pultruded smart GFRP tendons with

embedded Fabry Perot sensors were manufactured at Dalhousie University. These were




sand-coated and embedded iﬁ the deck girders together with the commercial GFRP
rebars. The fiber optic leads from the sensors were 10 m long. The three embedded Fabry
Perot sensors together with an additional array of 53 other sensors have been used for
monitoring the deck. Figures 6-4 and 6-5 [Tsai and Ventura, 1998] show a close-up view
of one of the commercial sand-coated GFRP rebars, and an instrumentation box
respectively. The fiber optic leads protected with a rubber jacket are clearly visible in

Figure 6-5.

Sand-coated GFRP rebar

Figure 6-4: Close-up view of GFRP rebar in Waterloo Creek Bridge deck [Tsai and
Ventura, 1998]
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Figure 6-5: Instrumentation box at Waterloo Creek Bridge deck [Tsai and Ventura,
1998]



6.4 Crowchild Trail Bridge, Alberta

This is a 90-m long, 11-m wide bridge that carries two lanes of traffic over its three
spans, see Figure 6-6. The deck is steel-free and is reinforced with chopped polyethylene
fibers and commercially produced GFRP C-bars. GFRP bars were also used to reinforce
the cantilever slabs of the bridge [ISIS Canada, 2000]. Three smart GFRP tendons with
embedded Fabry Perot sensors were pultruded at Dalhousie University and embedded in
the deck of the bridge. Unfortunately, these tendons were damaged during shipping or
installation. In addition to these three Fabry Perot sensors, the bridge is instrumented with
81 strain gauges, 19 embedded gauges, and two other fiber optic sensors [ISIS Canada,
2000].

Figure 6-6: The Crowchild Trail Bridge in Alberta [Ventura et al., 2000]
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6.5 Hall’s Harbor Wharf, Nova Scotia

Hall’s Harbor wharf (Figure 6-7) is a timber structure built in 1904 and Hall’s Harbor is
the only safe harbor on the Fundy Shore north of Digby, Nova Scotia that is open
throughout the winter months. Hall’s Harbor is a working fishing village involved with

lobster exports and a thriving tourist industry.

.............

Figure 6-7: Hall’s Harbor wharf in Nova Scotia

On a cold February night in 1998, the people of the community woke up to a formidable
sight. A 40-m section of the west breakwater of the wharf had collapsed overnight. For
the rebuilding of the wharf, it was decided to construct a completely steel-free concrete

deck reinforced with chopped polypropylene fibers and GFRP rebars. The deck is
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supported by concréte beams 4 meters apart. The beams contain both GFRP and steel

rebars (see Figure 6-8).

Smart GFRP

Steel

GFRP
reinforcement

Figure 6-8: Concrete beam reinforced with GFRP rods and steel and instrumented with a
pultruded smart GFRP rod with an embedded Bragg Grating sensor

For the purposes of this project, six smart GFRP rods with embedded Bragg Grating
sensors were pultruded at Dalhousie University. A schematic showing one such tendon in
a concrete beam is shown in Figure 6-8. Since the FRP rods produced in the pultrusion
lab are much smaller than the 25-mm-diameter tendons required for the concrete
reinforcement in this project, the smart tendons were used only as strain monitors and
were not intended to carry any load. In addition to the embedded Bragg Grating sensors,
the structure is instrumented with a large number of other sensors as well as strain
gauges. Figure 6-9 shows one of the sand-coated GFRP smart tendons prior to installation

in Hall’s harbor wharf.
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Figure 6-9: Sand-coated GFRP tendon with embedded Bragg Grating sensor prior to
installation in Hall’s Harbor wharf project




7.0 SURVEY OF ACTUATORS FOR ACTIVE SMART MATERIALS

7.1 Introduction

The previous chapters of this thesis dealt with manufacturing, processing, testing, and
evaluation of passive smart composite reinforcements. The pultruded tendons were
classified as “passive” because they were characterized by sensing capabilities alone. As
demonstrated, the embedded Fabry Perot and Bragg Grating sensors provided very
reliable strain information even under such adverse conditions as high- and low-
temperature extremes, alkaline environments, creep loads, and fatigue loads. Thus,
materials similar to these tendons are extremely useful in alerting technicians, engineers
and other operators of changes or significant perturbations in the state (strain, thermal
etc.) of the structure or part that they are monitoring. One would be even more interested,
however, if the smart material could perform self-adjustment or self-repair as conditions
change, because this could potentially prevent the aggravation of an unpleasant situation
and consequently reduce downtime and maintenance costs and extend life e.g. of civil
engineering structures. A material with combined sensory and response capabilities is
called active or adaptive smart material and will incorporate both sensors and actuators.
The integration of composites and sensors/actuators gave rise to the most promising

material system known as active smart composites.

The use of smart composite structures will be greatly facilitated if the effective properties
and coefficients such as elastic, actuation, thermal expansion, hygroscopic expansion etc.
can be predicted at the design stage. The realization of this objective necessitates the
development of mathematical models that characterize the behavior of the smart
composite materials. It is understood that the microstructural makeup of a smart
composite material is dependent upon the nature, distribution, orientation and interaction

of both the reinforcements (long fibers, particles, whiskers etc.) and the sensors and
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actuators. This microstructural composition will in turn govern the macroscopic behavior
of the smart material. It is thus imperative that the mathematical models be neither too
complicated for any practical implementation, nor too simple to reflect the real behavior

and properties of the smart composite material.

Sensors, particularly fiber optic ones, have been discussed in sufficient detail in previous
sections. This chapter will give a brief introduction to those material systems that are
employed most commonly for their actuation characteristics in active smart materials.

These are piezoelectrics, shape memory alloys, magnetostrictives, and electrorheological

fluids.
7.2 Piezoelectrics

The term piezoelectric is derived from the Greek words “piesis” meaning pressure and
“electronion” meaning electron. Thus piezoelectric materials will generate an electric
voltage when a pressure is applied. The converse effect is also exhibited; the application

of an electric field will lead to dimensional changes in a piezoelectric material.

A piezoelectric material has electric dipoles randomly oriented within its expanse. When
it is heated above a characteristic temperature known as the Curie temperature, these
dipoles can change their orientation, and under the influence of a strong electric field they
become aligned in the direction of the field. If the material is cooled subsequently to a
temperature below the Curie temperature, the dipoles are “locked in” and will maintain

their existing orientation. This procedure is known as poling [Srinivasan and McFarland,
2001].

The most common piezoelectric material is lead-zirconate-titanate (PZT). Figure 7-1
[APC International, 1999] illustrates the piezoelectric effect in a cube of PZT material.

Figure 7.1(a) shows the material before any load is applied. Figure 7-1(b) shows that




231

when a compressive force is applied, a resulting voltage develops across the electrodes
and it has the same polarity as the poling voltage. If the applied force causes a tensile
strain as shown in Figure 1(c), the resulting voltage is of opposite polarity to the poling
voltage. The converse effect is illustrated in the remaining three figures. In Figure 1(d),
an external voltage of opposite polarity to the poling voltage induces a compressive strain
and in Figure 1(e), a voltage of like polarity as the poling voltage induces a tensile strain.
Finally, in Figure 1(f), an alternating voltage causes the PZT cube to stretch and shrink at
the same frequency as the applied voltage. Note also that in all of the figures, the

dimensional changes in the longitudinal direction are accompanied by appropriate strains

in the transverse direction in accordance with Poisson’s effect.

(d) (f)

Figure 7-1: Piezoelectric effect in a cube of PZT material [APC International, 1999]




The relationship between the applied electric field and the resulting strain is defined by
the piezoelectric strain coefficients dij, where the subscripts i and j correspond to the
mechanical strain in the tensorial sense, and the subscript k corresponds to the direction

of the electric field.

The availability of piezoelectric materials in many forms such as thin films, patches and
rods, and their light weight has made them ideal for active shape, vibration and control of
structures. Their amenability to embeddement within composite materials and surface
attachment to virtually all materials makes them attractive in structural control because
all the moving parts encountered with conventional actuators are eliminated [Shakeri et
al.,, 2001]. A number of applications involving piezoelectrically-driven actuation of
structural components, such as axial motion of rods, bendi_ng of beams, and harmonic
excitation of beams are discussed by Srinivasan and McFarland [2001]. Shakeri et al.
[2001] discuss applications of piezoelectric actuators in vibration-isolation of the engines

from the fuselage in aircraft, vibration control of a composite box beam, and others.

Mathematical modeling of piezoelectric composites has become very important in view
of the widespread applications of such materials. Rajapakse [1997] developed closed-
form plane-stress and plane-strain solutions for piezoelectric laminates. The use of
piezoelectric actuators and sensors as elements of smart structures was investigated by
Crawley and de Luis [1987], Tzou [1993], Tzou and Bao [1995], Sester and Poizat
[2000], Wang and Quek [2000], Vel and Batra [2000a, 2001a, 2001b], Kalamkarov and
Drosdov [1997], Reddy [1999] and others. A number of analytical results have been
published concerning different aspects of piezoelectric problems, see for example Rose
and Wang [2000], Yang et al. [2000], Tauchert et al. [1999] and others. Asymptotic
approaches for thin piezoelectric plates were developed by Maughin and Attou [1990],
Cheng et al. [2000], Kalamkarov and Kdlpakov [2001], Kalamkarov and Georgiades
[2001a, 2001b].
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7.3 Shape Memory Alloys

Shape memory alloys (SMA) have the ability to “remember” a shape and revert to it at a
characteristic temperature even if they have been extensively deformed. This shape
memory effect was first observed in 1932 in samples of gold-cadmium, and in 1938 in
samples of copper-zinc (brass). The most significant observation however did not occur
until much later, in 1962, when William J. Buehler and his coworkers at the Naval
Ordnance Laboratory (NOL) discovered that nickel-titanium alloys possessed this
remarkable property [Srinivasan and McFarland, 2001]. Buehler named the nickel-
titanium alloy NiTiNOL which includes the initials NOL of his laboratory. Typical SMA
used today include Cu-Al-Ni, Cu-Zn-Al, Cu-Al-Ni, and of course Ni-Ti.

o—healing wm———

{a) austenite (¢} deformed mariensite

Figure 7-2: Shape memory effect [Wayman and Duerig, 1990]




SMA alloys are characterized by two distinct solid phases, a high-temperature phase and
a low-temperature phase. The high-temperature phase is called austenite and the low-
temperature phase is called martensite. Figure 7-2 shows the difference between the two
phases and illustrates the salient features of the shape memory effect. The material in the
austenite form is cooled to form twinned martensite. This phase transformation is not
accompanied by a shape change. The martensite is then deformed by the application of
stress. If the deformed material is now heated without physical constarint, it will revert to

the austenite form and fully recover its original undeformed shape.

Figure 7-3: One-way and two-way shape memory effect [Perkins and Hodgson, 1990]

One should distinguish between one-way and two-way shape memory effects. Reference
will be made to Figure 7-3 [Perkins and Hodgson, 1990]. In one-way effect, the sample P
is cooled to the martensite form, deformed to shape M’, and then heated to the austenite

form to fully recover the original shape P. This high-temperature shape is retained on




[
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subsequent cooling, and if it is desired to start another shape memory cycle, it must be
deformed again. If the material is conditioned to display the two-way shape memory
effect, it can be made to continuously revert from say M’’ on cooling to P’ on heating

without the application of any force.

Shape memory alloys have been or have the potential to be used in a number of
applications. Stockel [1990] discusses a wide variety of potential automotive
applications, Todoroki [1990] explains the advantages of SMA actuators as aif—direction
changing mechanisms in air-conditioning units, Runtsch [1990] investigates the
performance of SMA actuators as circuit breakers, Furuya and Shimada [1990] discuss

some very interesting robotics applications for SMA actuators.

One of the most popular areas of application of SMA actuators has been as elements of
smart structures and smart composite structures for vibration excitation and vibration
control. Some examples can be found in Lagoudas and Tadjbakhsh [1992], Rhee and
Koval [1993], Madill and Wang [1998], Stalmans et al. [1998], Huang [1999], Brennan et
al. [1999], Song et al. [2000], Adachi et al. [2000], Tawfik et al. [2000], Lammering and
Schmidt [2001], Saadat et al. [2001].

Mathematical modeling of smart composite materials with integrated SMA actuators and
other related issues have received a lot attention in recent years. Aboudi [1996)
developed a microstructural model that encompasses both local and global effects, to
analyze the behavior of resin-matrix and metal-matrix composites with embedded SMA
fibers. Choi and Lee [1998] performed experimental and analytical studies on shape
control of glass/epoxy composite beams with embedded SMA wire actuators. Vokoun
and Kafka [1999] obtained a set of simple differential constitutive equations to model the
shape memory effect in NiTiNOL alloys by hypothesizing that during transformation, the
distances between the first atomic neighbors (Ni-Ti) remain unchanged, while the

distances between second neighbors (Ni-Ni and Ti-Ti) change significantly.
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It is certain that the volume of applications of SMA actuators as elements of smart
composites will increase as engineers become familiar with their unusual behavior. The
formulation of mathematical models which can relate internal stresses and strains with

macroscopic behavior would be a step in the right direction.



7.4 Magnetostrictives and Electrorheoclogical Fluids

Magnetostrictives are materials which experience strain under the influence of a magnetic
field, and conversely generate a magnetic field when strained. The strength of the
magnetic field is proportional to the rate of strain [Shakeri et al., 2001]. Early
magnetostrictive materials were not studied extensively because the forces and strains
they generated were much less than those for piezoelectric materials and shape memory
alloys. This situation changed drastically with the development of Terfenol-D (an alloy of
iron, terbium, and dysprosium) and other so-called giant magnetostrictors. These
materials are capable of generating strains much larger than conventional piezoceramics

with similar force outputs [Shakeri et al., 2001].

Kannan and Dasgupta [1994] performed finite element studies of the behavior of multi-
functional composites with embedded magnetostrictive devices. Fenn and Gerver [1994]
examined passive damping and velocity sensing using Terfenol-D transducers. Bi and
Anjanappa [1994] examined the feasibility of implementing embedded magnetostrictive
miniactuators for smart-structure applications, such as control of beam vibrations. Duenas
et al. [1997] developed a composite magnetostrictive material by embedding Terfenol-D
particles in a resin system and curing the composite under the influence of a strong
magnetic field. The authors also developed a constitutive mathematical model for this

material, which produced very accurate results when compared with experimental data.

Electrorheological fluids are suspensions of particles in a host liquid. These particles are
typically 1 to 10 microns in size and are added to fluids such as mineral oils in weight
fractions as high as 50% [Srinivasan and McFarland, 2001]. When an electrorheological
fluid is subjected to an electric field, such properties as viscosity, and plasticity change
dramatically, and these changes are reversible. Essentially, the electrorheological fluid
changes from a liquid to solid-like gel when a field is applied [Shakeri et al., 2001]. It

seems that these fluids have no potential for use with structural composite materials.




8.0 ASYMPTOTIC HOMOGENIZATION MODELS FOR SMART
COMPOSITE MATERIALS

8.1 Introduction

Adaptive smart materials are expected to play an ever-increasing role in engineering
applications, and consequently the mathematical formulation of such materials with a
large number of actuators will be developed in this section. The general mathematical
framework is that of asymptotic homogenization [Bensoussan et al.,, 1978; Sanchez-
Palencia, 1980; Cioranescu and Donato, 1999]. The three essential features characterizing
asymptotic homogenization are asymptotic or perturbation expansions, two-scale
expansions and the homogenization process. These will be explained briefly in the

following sections.
8.2 Asymptotic Expansions

The differential equations describing the behavior of real structures or systems are often
characterized by the presence of a certain parameter, €, which even though small in
relation to the other parameters and variables, may have an effect too important to be
ignored. However, the presence of this parameter more often than not, renders the
pertinent differential equation extremely difficult to solve by making it for example
weakly non-linear. One therefore looks to alternative methods of solution. Asymptotic
expansions are simply infinite series representations of the solution of these differential
equations, in terms of the small parameter €. Typically, but certainly not always, these

series are in the form of power terms of €, i.e.

ysolution = yo +€yl +£2y2 +83Y3 +... (8 l)
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Here y may represent a scalar, vector or tensor. It is imperative of course that the series in
Equation (8.1) converges, or at least converges before it starts diverging, so that one has

control of the error incurred when the series is truncated after a certain number of terms.

As an illustration, standard asymptotic or perturbation techniques will be used to obtain

the solution of the following differential equation with appropriate boundary condition:

dy 2
—+y=¢
dx y= (8.2)
y(0)=1
The first step is to assume that the solution, y, may be expressed as:
y =y, (x)+ey, (x)+e%y,(x)+ Ole’) (8.3)

The symbol “O” in Equation (8.3) is one of the two so-called Landau symbols, and it

means “order of”. Basically, a function f(g) is said to be of order @(¢) if the ratio is

bounded for ¢ near £, [Holmes, 1995]. In other words, if the limit
limﬂ (8.4)
£0¢E, (p(g)
exists, then f = O(¢@). Thus, in Equation (8.3), the error incurred by truncating the series
after the ¢” term is of order €. It should also be noted in Equation (8.3) that the y; terms

are all functions of the independent variable x, and do not depend on &.

The next step in the process involves substitution of the expansion of Equation (8.3) into

Equation (8.2), to obtain, after neglecting higher-order terms:

Yo, eI
dx dx

d
+82 24y vey, +ely, =e(y, +ey, ) (8.5)

Collecting terms of like powers of €, Equation (8.5) may be rewritten in the form:

dy,
dx

d d
by e Sy, [+e’l Sy, |=eyl+2ey,y, (8.6)
dx dx
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Since the y; functions in Equation (8.6) are independent of €, the following three

equations are implied:

dL+yo =0 (8.7a)
dx

By oy (8.7b)
dx

d

—L2—+y2 =2y.Y, (8.7¢)
dx

In order to have a well-formulated problem, one must also consider the boundary
conditions. To this end, Equation (8.3) is substituted in the boundary condition in
Equation (8.2) to give:

y,(0)+ey,(0)+£%y,(0)=1 (8.9)
Equating terms with like powers of € gives the following set of boundary conditions

which must be satisfied in conjunction with Equations (8.7a) to (8.7¢):

y,0)=1 (8.10a)
y,(0)=0 (8.10b)
y,(0)=0 | (8.10c)
From Equation (8.7a)
Yo(x)=Ae™ (8.112)
From Equation (8.10a) A = 1, so that
yo(x)=e” (8.11b)

Substitution of Equation (8.11b) into Equation (8.7b) and solving gives:

y,(x)=Be™ —e™ 8.11¢)
From Equation (8.10b) B =1, so that

yi(x)=e™ —e™ (8.11d)
Finally, substitution of Equations (8.11b) and (8.11d) into Equation (8.7c) and solving

gives the general expression for y; as:

y,(x)=De™ —2e* +e™* (8.11e)
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The constant D = 1 is easily verified frorri Equation (8. 100), and thus:

X

y,(x)=e™ -2 +e™* (8.11f)
Combining expressions (8.11b), (8.11d) and (8.11f) gives the total expression for the
asymptotic solution of the problem at hand as follows:

y(x)=e> +£(C_" —e™ )+ eZ(e“" —2e ™ 4™ )+ 0(83) _ (8.12)

To assess the accuracy of this approximation, one must compare it with the exact
solution. From Equation (8.2), a simple separation of variables gives the analytic solution
as:
y(x) == (8.13)
e*(l+e)-¢
Figure 8-1 compares the analytic and asymptotic solutions. It is seen that they conform so
well to one another that they are virtually indistinguishable. For the purposes of this

graph, a value of € = 0.1 was selected.

Asymptotic solution

a

Analytic solution

0.6

0.4 -

0.2 A

Figure 8-1: Comparison of analytic and asymptotic solutions for the example in Equation
' 8.2)



8.3 The Method of Two Scales

The second characteristic feature of the method of asymptotic homogenization is the two-
scale expansion technique. The best way to illustrate this is by means of a very simple
example. This example will also show why a “regular” asymptotic expansion like the one

discussed in the previous section is not adequate to handle a problem of this nature.

Consider the following differential equation and pertinent initial conditions:
X+ex+x=0 (8.14a)
x(0)=1, x(0)=0 (8.14b)
Equations ‘(8.14a) and (8.14b) could represent a spring-mass-damper system with weak

damping (since € is small in comparison to unity).

In an attempt to obtain a regular perturbation expansion, one writes:

x=xo(t)+8x1(t)+£2x2(t)+0(83) (8.15)
Equation (8.15) is subsequently substituted in Equations (8.14a) and (8.14b) to obtain:
i, (t)+ex, (t)+ex, (t)+x, +ex, =0 (8.16a)
x,(0)+ex,(0)=1 (8.16b)
x,(0)+ex,(0)=0 (8.16¢)

The system of equations (8.16a) to (8.16c) splits into the following two groups:

% (t)+x, =0 (8.17a)
x,(0)=1 (8.17b)
x,(0)=0 (8.17¢)

and
%,(0)+x, =%, (8.17d)

x,(0)=0 (8.17e)
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%,(0)=0 (8.17f)

The solution of Equation (8.17a) which satisfies the initial conditions (8.17b) and (8.17¢)
is readily obtained to be:

X, = cos(t) (8.18)
By substituting Equation (8.18) into Equation (8.17d) and solving in conjunction with

the initial conditions (8.17¢) and (8.17f) gives the solution of x; to be:
X, =%(sint—tcost) (8.19)

Thus, combining Equations (8.18) and (8.19) gives the total expression for x to be as

follows:
X, =cos(t)+—12—£(sint—tcost) (8.20)

To proceed further, the analytical solution must be obtained so that it can be compared
with its asymptotic counterpart. Thus, from Equations (8.14a) and (8.14b), and after some

algebraic manipulations, the exact solution for X is given by:

_E _ 2 2
x(t)=e 2 ———e/isin 1= t+cos -t (8.21)
J1-¢€*/4 4 4

Figure 8-2 is a plot of Equations (8.20) and (8.21) for € = 0.05. It is clear that the solution
is only accurate up to about 20 seconds and then the error becomes progressively larger.
Thus the asymptotic solution is correct up to times = O(1/€)=20 seconds. The problem
beyond t = 20 seconds is that the last term in Equation (8.20) becomes as large as the first
term. In any valid expansion, it is required that each term be only a small correction to
the previous term. In this case the term etcostis small in comparison to cos t when the
combination et << 1, i.e. when t = o(1/g), where “0” is the small Landau symbol. Hence,

for £ = 1/20, t must be less than 20 in order for the expansion to be valid.

To appreciate the source of the difficulty for the situation at hand, one ought to observe

that the actual solution is characterized by two quite different scales. As shown in Figure
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8-2, superimposed on a “rapid” oscillating scale, there exists a much slower (exponential)
variation. Thus, the actual solution decays slowly, but the asymptotic solution can
“capture” only the fast variation in this case. In its attempt to correct the first term, the
second term in the asymptotic expansion becomes progressively larger and eventually

even larger than the first term. The term tcos tis called a “secular” term.

1.5 1

Analytic solution Regular asymptotic expansion r\

: N

|

O() I . va DU\/ 1(I)o
0.5 - g U

time (seconds)

[\

-1.5 -

Figure 8-2: Comparison of analytic and regular asymptotic solutions for a
weakly damped spring-mass-damper system

In an attempt to obtain a uniformly-valid asymptotic expansion, one recognizes that the
problem arises because of the mismatch between the two time scales. The solution is to
simply “speed up” the slow variation by introducing a new variable t, = €t. Thus, the two

time scales are:
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t,=t
L e (8.22)

In Equation (8.22) t; is commonly referred to as the fast variable and t, the slow variable.
The procedure from here onward is straightforward and the two variables are treated as
independent. The only problem associated with the introduction of a new variable, is that
an o.d.e. (ordinary differential equation) becomes a p.d.e. (partial differential equation)!
Thus,

4 0%, ad

dt dt, ot dt, ot

(8.23a)
4,9 .9
dt dt, dt,
and
2 2 2 2
4 _9(9 =9 e 0t (8.23b)
dt* dt{dt | dt, at,ot, at;
The differential equation in (8.14a) and (8.14b) now becomes:
a°x a’x ,9°Xx 90X, 0X
+2¢ +€ +e—+e —+x=0
ot} ot,ot, at> ot o,
X[ om0 =1 and (8.24)
dt, 9ty

It should be noted that even though Equation (8.24) is 2™ order with respect to t; and 2
order with respect to t, only 2 initial conditions are given. These can be expanded to 4 in
an infinite number of ways. To make the solution unique, one needs to impose certain
restrictions so as to avoid secular terms [Holmes, 1995]. This will be demonstrated

shortly.

Subsequently, one assumes an asymptotic expansion of the form:
x(t,.t,)=x,(t,,t, )+ex, (t,,t,)+ ... (8.25)

This is then substituted in Equation (8.24) to give the following two problems:
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=1 (8.26a)

and

=0 (8.26b)
Jx, ox
+_..._

o

it =0
ot, dt,

{,=t,=0

The solution of Equation (8.26a) is readily obtained to be:
x, = A(t, )sint, +B(t, )cost, (8.27a)
A(0)=0, B(0)=1 (8.27b)

Substitution of Equation (8.27a) into Equation (8.26b) yields, after some manipulation:

t2 2

x, =D(t, )sint, +E(t, )cost, —%(2%+A}1 sin t, ——;—[23—%+B}1 cost, (8.28)
It is clear that to avoid secular terms, one must impose the following conditions on A and
B:
dA

2—+A=0
dt,
B (8.29)
2—+B=0
t2
The solution of Equation (8.29) in conjunction with Equation (8.27b) leads to:
t
A=0 and B=e ? (8.30)
Thus, the solution of x, is:
L el
X, =€ 2cost, =e ?cost (8.31)

Finally, substituting the last expression into Equation (8.25) gives:
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t
X=e 2cost+0(€2) (8.32)
Note that the procedure outlined here simply amounts to letting &t = ¢ be a new variable
and substituting it into the model. The next term in the series will be of order €t; = O(gz),

which explains the form of Equation (8.32). A plot of this asymptotic expansion

alongside the analytical solution is shown in Figure 8-3.
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Figure 8-3: Comparison of analytic and two-scale asymptotic solutions for a
weakly damped spring-mass-damper system

It is apparent that the two solutions are indistinguishable form one another.
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8.4 Einstein’s Summation Convention

It was mentioned previously that the method of homogenization will be used to develop a
mathematical model describing the behavior of smart composite structures with a large
number of actuators. It was also explained that the homogenization technique depends on
(a) perturbation expansions, (b) the two-scale method, and (c) the homogenization
process itself. A brief account of regular perturbation and two-scale expansions was
given in the previous sections. The actual homogenization technique will become clear
during the various stages of the model development. Before embarking on the task at
hand, it is necessary to say a word about Einstein’s summation convention, which will be

used extensively in the sequel.

This convention was introduced by Einstein in his development of the theory of relativity
[Kay, 1988]. According to this convention, an equation of the form
3
a,X, +a,X, +a;X, :z:aixi (8.33)
i=1
will be represented as a,x, with the understanding that the repeated index i is summed
over its range 1 to 3. The index i is called a dummy index. Next consider the following
equation:
u, =c;b. (8.34)

Since j is repeated on the right hand side (RHS) of Equation (8.34), it is summed over its
range. However, the index i is not repeated on the RHS and is therefore called a free
index. Thus assuming that both i and j may attain values from 1 to 3, Equation (8.34) is
equivalent to the following three equations:
u, =c;;b; +¢,b, +¢3by
u, =c, b, +c,b, +cysb, (8.35)
u, =cyb, +cy,b, +cy3b;y
It is apparent that the notation in Equation (8.34) is much more concise than that of

Equation (8.35) and is therefore a powerful time-saving tool.
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8.5 Asymptotic Hombgenization Model for Sinart Structures
8.5.1 Introduction

As explained previously, smart structures consist of active and passive structural
elements, actuators and sensors. In many cases, it is possible to assume that the sensors
have no influence on the mechanical properties of the smart structure (see Chapter 4).
Then, the mechanical properties and deformation of the smart structure are determined by
the joint work of structural elements and actuators. In this context, the actuator is
understood to be a structural element of arbitrary nature which can be activated in some
way in order to produce residual strains and stresses. It can be an inclusion, or a device
such as for example a piezoelectric element. If the characteristic dimensions of the
structural elements are small in comparison to the overall dimensions of the structure,
then the original inhomogeneous body can be replaced, in an asymptotic sense, by a
homogeneous structure with similar mechanical behavior. The problem of calculating the
effective characteristics of the homogenized structure is not a trivial matter. It requires
application of rigorous mathematical methods. For inhomogeneous structures of a
periodic nature, the asymptotic homogenization method has been applied in a number of

cases [Duvaut, 1976; Bensoussan et al., 1978; Sanchez-Palencia, 1930].

Kalamkarov [1992] used the asymptotic homogenization technique for the case of a
composite material containing a periodic array of reinforcements such as fibers. In this
chapter, the same technique will be used to analyze a smart composite structure with a
periodic arrangement of actuators. As well, due to the important effect of temperature and
moisture on the mechanical properties of composites (see Chapter 5), the model

developed will incorporate thermal expansion and moisture (hygroscopic) expansion

effects.




250

8.5.2 Motivation and Methodology of Development of Mathematical Model

Consider a fiber-reinforced composite with a regular structure, such as the one depicted

in Figure 8.4.
B
Matrix
Fiber
€
A
A £
Unit cell

Figure 8-4: Cross-section of a periodic composite with a regular structure

It is evident from this figure that the composite medium can be thought of as a regular
arrangement of what one might justifiably call unit cells. Suppose that the unit cell in this
case has both length and width equal to €, where € is clearly a very small number since its
magnitude is of the same order as the diameter of the reinforcing fibers or the spacing
between the fibers. For example, the glass and carbon fibers used in the pultrusion of the
GFRP and CFRP tendons discussed in previous chapters of this thesis have a diameter of

23 microns and 7 microns respectively. Hence, comparing € to the overall macroscopic
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dimensions of the composite, one will appreciate why the dimensions of the unit cell are

specitied as “small parameters”.

Coefficient

Distance Along AA or BB

Figure 8-5: Cross-section of a periodic composite with a regular structure

Suppose now that one plots the variation along AA or BB, of a typical material parameter
or coefficient such as the longitudinal stiffness. The result will resemble Figure 8-5. In
other words, this coefficient will repeat itself regularly every € microns. Consequently,
the differential equations characterizing heterogeneous media with a periodic structure

have rapidly oscillating coefficients which depend upon the physical properties of the

various constituents such as reinforcing fibers, actuators, sensors, and matrix. Said
differently, these coefficients are periodic with extremely small period equal to €. It

further follows that the dependent variables that appear in these differential equations. for
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example the stress or strain fields, tempefature at steady state etc., will also be periodic
with a period €. In a general three-dimensional medium, these variables will be periodic
in all three directions, X;, X2, X3 (or X, ¥, z). In addition to being periodic, however, the
dependent variables naturally will also depend upon the location in the composite. In
other words, these variables will have periodic and non-periodic dependencies or
components. For example, it is evident that the value of the stress field will be different at
the location of a fiber at one end of a periodic composite than at a corresponding point in
a fiber at the other end of the composite. Thus, from the discussion so far, it is apparent
that the problem of a periodic structure is characterized by two vastly different scales, a
microscopic scale which is a consequence of periodicity and, superimposed upon it, a
macroscopic scale. Figure 8-6 shows a typical variation of a dependent variable along a

certain direction in a periodic medium [Holmes, 1995].

Stress
I

The microscopic and macroscopic variations are clear
in this figure

T T 1 T T

0.2 0.4 Position 0.8 1.0

Figure 8-6: Variation of stress in a periodic medium shows microscopic and macroscopic
scales [Holmes, 1995]




In Figure 8-6, one can observe a microscale which is of order 0.1 superimposed on a

macroscale which is of order 1.

To put the notions of this section in a better perspective, reference will be made to Figure

8-7 [Sanchez-Palencia, 1980].

-P4

D
T /

L]

Figure 8-7: A periodic medium [Sanchez-Palencia, 1980]

Suppose one is interested in determining the temperature distribution, T, in the periodic
composite of Figure 8.7. In a problem of this nature, the thermal conductivity, K, will
inevitably show up in the pertinent differential equations. Because of the physical
periodicity, and because points P, P, and P, represent corresponding points in different
unit cells, the thermal conductivity at these points will be the same. However, the thermal
conductivity at point P; will be different. Now suppose that one is looking at the

temperature field at steady state. The periodic component of the temperature at points P,
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and P4 will be the same, but fhe non-periodic cémponent will be different because P, and
P, are rather far apart. Consequently, the steady state temperature at these points will be
different. For points P; and P, however, the situation is different. The periodic component
of the temperature is again the same (corresponding points), but this time the non-
periodic component is also essentially the same because the two unit cells are adjacent,
and macroscopically their separation represents a small distance. We conclude by
asserting that the thermal conductivity and other material parameters are strictly periodic
in a medium of this nature, whereas, temperature and other dependent variables are

characterized by both periodic and non-periodic dependencies.

Matrix

Fiber

Figure 8-8: Introduction of fast variables

The presence of these two scales means that one will not be able to obtain a regular
perturbation expansion for the problem of a periodic medium, much as it was not possible
to obtain a regular uniformly-valid expansion for the weakly damped oscillator of Section
8.3. In that case, the difficulty was the mismatch between a rapid oscillating scale and
slow exponential scale. This difficulty was overcome by “speeding up” the slow scale.

The same technique will be employed for the case of a periodic medium. Here the
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difficulty arises because the microscale is very small (order ¢), while the macroscale 1s
very large (order 1). The solution is to simply expand the domain of the unit cell! This is
shown in Figure 8-8. Thus, in addition to the regular macroscopic variables, the periodic
smart structure will be characterized by a new set of variables, the microscopic variables

V1, ¥2, y3 defined by:

y,=—, i=123 [8.36]
£

It was mentioned at the beginning of Section 8.5.2 that a differential equation which
attempts to describe the physical behavior of a heterogeneous medium with a periodic
structure is characterized by rapidly oscillating coefficients with period €. In view of the
introduction of the microscopic scale, these coefficients will now be periodic in y; with a
period 1, the size of the enlarged unit cell. The introduction of the unit cell will
eventually lead to the determination of averaged or homogenized coefficients which are
independent of the fast scale. The combination of multiple scales and the determination
of these homogenized coefficients is called the method of homogenization [Bensoussan
et al., 1978; Sanchez-Palencia, 1980; Bﬁkhvalov and Panasenko, 1984; Cioranescu and
Donato, 1999]

8.5.3 Problem Formulation

Consider a smart structure representing an inhomogeneous solid occupying domain G
- with boundary dG that contains a large number of periodically arranged actuators as

shown in Figure 8-9.

The elastic deformation of this smart structure can be described by means of the

following boundary value problem:

dJo;,
—=f, onG (8.37)

axj

u*=0 ondG (8.38)




X3
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Reinforcement

X1

Y, A Matrx

|

Actuator @ Unit Cell

—> Y

Y,
Reinforcement

Figure 8-9: Composite containing a large number of periodically arranged actuators and
its periodicity cell Y in the “fast” variables y




Equation (8.37) represents the equations of static equilibrium. A complete derivation can
be found in Appendix A. In this equation and its accompanying boundary conditions, G
represents the stress field, and u is the displacement field. As well, x, with components x;

(i=1, 2, 3) is the macroscopic position vector of any point in the smart structure.

As previously explained, a problem of such periodic nature is characterized by two very
different scales. One scale, the macroscopic or slow scale accounts for the variation of the
dependent variables such as the displacement and stress fields from one cell to another.
This scale is of order 1. The other scale, referred to as the microscopic or fast scale,
accounts for the periodicity of the problem at hand. The fést scale is of order 1/e. Thus, to

account for these observations, Equations (8.37) and (8.38) may be rewritten as follows:

J0;; x,i
=f onG (8.39)
X,
o X
u (x,—}=0 on 0G (8.40)
£

The strain field, e, is given in terms of the displacement field by the following well-

known expressions [Lai et al., 1993]:

4 du;
eifx X )= L M X ], Sl X (8.41)
e) 2|dx;| ¢ 0x; £

The stress-strain relationships for this structure will be given by Hooke’s Law which is
modified to include actuation, thermal expansion and hygroscopic absorption effects and

has the following form:

Gé[x,5)= Cy (3‘-};()@3)— P, (E)Rk (x)- KU(E)@(X) _B, (f]coo (8.42)
£ £ € £ £ £

Here Cjy is the tensor of elastic coefficients, Pjk is a tensor describing the effect of a
control signal R on the stress field o, Kj; is the thermal expansion tensor, and Bij the
hygroscopic (moisture) expansion tensor. Finally, ® and C represent changes in

temperature and moisture content (with respect to a reference hygrothermal state)
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respectively. It is assumed in Equation (8.42) that Ciu, Pijk, Kjj and Bj; are all periodic
with a unit cell Y of characteristic dimension &, the characteristic distance between the

actuators, as shown in Figure 8-9. Substituting Equation (8.41) in Equation (8.42) gives:

o x X )=t [2Y P p (X R (x)-K [ X o -B,[X e ©.43)
e 2 Mle )|dx, dx, "le "\ e "\ e

Consider now the term

du
C—= 8.44)
i ox, (
By interchanging the dummy variables k and 1, the following equality is true:
du du
Cjg—==Cy — 8.45
ijkl axl ijik axk ( )

Symmetry of the elastic coefficients [Lai et al., 1993] stipulates that C,, = C;,, . Thus

du, _c au,

( e —_— . _—
k1 ki
ox, " oox,

(8.40)

Consequently, Equation (8.43) may be written as follows:

GE(X,E} Cia [3)( %, )— P, (Ejkk (x)-K, (3 ]@(x) - Bﬁ(f )C(x) (8.47)
€ “le )\ o9x, € "\ e e

The first step in the homogenization process is to define the fast variable y = x / € as was

explained in the previous section. With this new variable, the equations characterizing the

smart structure now become:

3o¢ (x,
L(’(X_)-_-fi (8.48)

0X;
u®(x,y)=0 ondG (8.49)

0
oF (X’ Y) = Cij (y{%}_ Py (Y)Rk (X)_ K (Y)G(X) - B; (Y)C(X) (8.50)
I

At this point a quick note on the ensuing terminology is warranted. Suppose that the
physical dimensions of the unit cell in Figure 8-9 are 2¢ microns in the x; direction, €

-microns in the x, direction, and 3¢ microns in the x3 direction. Upon introduction of the
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fast variable y, the dimensions of the unit cell bécome 2 in the y; direction, 1 in the y,
direction, and 3 in the y3 direction. Thus, in Figure 89,Y,=2,Y2=1,and Y3 =3. One
may refer to the problem as being 2-periodic in y;, 1-periodic in y», and 3-periodic in ys,
or collectively Y-periodic in y where it is understood that Y may have unequal

components (and in general will have) in the 3 directions.
8.5.4 Two-Scale Asymptotic expansions

Based on the method of two scales explained in Section 8.3, the displacement and stress
fields may be expanded asymptotically as follows:
(a) Asymptotic expansion for displacement:
ut(x,y)=u®(x,y)+eu®(x,y)+eul(x,y)+- (8.51)
(b) Asymptotic expansion for stress:
o (x,y)= Gi(jo)(x, y)+ eci(jl)(x, y)+ achjz)(x, ¥+ (8.52)
The introduction of the fast variable y necessitates the transformation of the derivatives

(through the application of the chain rule) as follows:

8_)8+88yi

no summation over i 8.53a
Jx, dx; Oy, 9Ix, ( ) ( )
Since y, = o i L (8.53b)
e dx, €
a g 194
then — > —+—— 8.53
: dx;, dx, €0y, (8:53¢)
Thus
dJo;; . d0; N 1 JG;;
ox, dx. €dy,
! ! Vi (8.53d)
duj N du; +_1_8ui
dx, Odx, €dy,

Thus, the problem in Equations (8.48) to (8.50) becomes:
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ut =0 onodG (8.55)

c; (x.y)= Cin (y {aaik + ‘:;%uy—k)“ Py )R, (x)- K; (y)om) - By (y)Cx)  (8.56)
| 1

8.5.5 Elimination of the Fast Variables from u®

This section will show that the first term in the asymptotic expansion for the

displacement field is independent of the fast variable. To this end, one proceeds to

eliminate ¢ by substituting Equation (8.56) into Equation (8.54) to get:

3’ 1 9’ R, 00 oC
1Jk1( ){ x x }_Pijk(y)_—Ku( ) Bij(y)_+

X . ax, € dx 0y, ox, X X ;
aC. 2 2
1] % | 9u, +lauk +Cyy 9 U, +l 9, + (8.57)
e| dy; | 9x, €9y, dx,dy; ¢€dy,0y,
oP, oK. dB,
—1{ *R, +—2O+—LC}=f
€| dy; 9y dy,

In arriving at Equation (8.57) one takes advantage of the fact that Cj;, Pyx, Kjj and Bj; are

strictly functions of y. The next step is to substitute expansion (8.51) into Equation (8.57)

to get:
2 (o 2. (1) 2._(0) 2.1
C, { Iy |3 o u, +ea S o, —&’Py, R, -e’K; — 90 _B”_8£
E)xjé)x1 ox;0x,  0x;9y, ox ;dy, X ox, 0x
+ (8.58)

dCyy {8 auio) Lo auﬂ) N auff’) +Saug):|+
dy; ox, ox, 9y, dy,

©) 2 1) 32,0 2. 0) 9P IK. B.
Ciu au PPEIRCAL SO ST 4 ) N —*R +¢ "®+ea bol=¢g’f
ax 9y ox,dy; dydy, dydy, Iy, 9y; Iy

Since uS,‘l‘) are all independent of €, then one may equate terms with equal powers of € in

Equation (8.58). Equating terms multiplied by € coefficients gives the following:




Al S (8.59)
9y ; ay, " anaY1

Thus,
d u?(x,y)
—| Cyu (y)—"7 =0 (8.60)
ayj‘( ]k]( ay,

Integrating both sides gives:

P © ,
Cijkl (Y)'%@’(“Z) =g (x)
Y,

auk (X9Y)
"y = G o (v)g ()

(8.60b)

Here Cl;,ld is the inverse of C, . The next step is to integrate the last expression between

0 and Y}, where Y is the value of the period of the unit cell in the y; direction (see Figure
8-9). Thus

Y,

Toud(xy)
J. j y)gu x)dy, (8.61)

0 0
Treating x as a parameter as far as integration with respect to y; is concerned, allows one

to move g;; outside the integral sign. Thus
Y,
@6 y)t = [Crudy, gy (x) (8.62)
0

From periodicity, the LHS of Equation (8.62) vanishes and therefore g;(x) = 0. Hence,
from Equation (8.60b) one arrives at:
uy) _,
ay, (8.63)
= v (x,y)=u(x)
One concludes that the first term in the asymptotic expansion for the displacement field

depends strictly on the slow variables.
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8.5.6 Determination of Stress Terms

Based on the results of Section 8.5.5 the asymptotic expansions for the stress and

displacement fields are:

ut (x,y)=u®x)+euV(x,y)+eu (x y)+ (8.64)
ot (x,y) =0V (x,y)+e0f (x.y)+ 26D (x,y)+-- (8.65)

Substitution of Equation (8.65) into the equilibrium expression (8.54) gives:

() o (0) 1))
Jo; , 0G;; N oo +€acij _

€ +€ =¢f, : (8.66)
X ; ox; 9y, 9y,
Considering only terms multiplied by € and £! one obtains the following two expressions
from Equation (8.66):
ac
1 =0 (8.67a)
9y
o 3c?®
R BT Y 8.67b
dy, ox. ( )

J J
These equations will be used in the sequel. Finally, substituting Equations (8.64) and
(8.65) into Equation (8.56) and separating terms with like powers of € results in the

following expressions for the first terms of the asymptotic expansion of the stress field:

ou® ogul
) k k
o =C,| T2+ |-P, R, -K,0-B,C 8.684)
Y Jkl[ axl ayl jk*~k j j (
oo
1.=0 (8.68b)
9y

8.5.7 Determination of the Unit Cell Problems

Combining Equations (8.67a) and (8.68a) leads to the following Equation:
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J du?  au)
W{C“‘d[a; T R
j 1 1
: [C auf(’)(x,y)} Py oK JB; _acijkl duy”
ijkl

. = R +—1@+—L¢C
dy, dy, dy, Iy, Jy . dy; Ox,

J

(8.69)

i
The separation of the variables in each term on the RHS of Equation (8.69) permits one
to write down the solution as follows:
) k du iO) (x) K
uld (x,y)=V,(®)+R, &)N; (y)+0(x)M, (y)+ C(X)Sn(y)+——a;——-Nn (y) 870
1

In Equation (8.70) the various functions satisfy the following equations:

) ONE (v)) 9Py
— . (y)—2 =3 8.71:
ayj ( ijml (y/ ayl ay] ( d)
2 e, (y\aM'“(y) _ %K, (8.71b)
dy; L dy, dy;
2 35,(v))_3B,
— I C. )_m = ! 8.71
K aC..
_aa [Ci,m (y)-*———al\;’“(Y)]b——“” (8.71d)
yJ' Y BYJ

The function V,(x) is the homogeneous solution of Equation (8.70) and satisfies the

following expression:

J v (x)
| C. —m3 = 8.71

Notice that V(x) is independent of the fast variables and this can be easily shown by

integrating both sides of Equation (8.71¢) to obtain:

A%
Cijou (Y)a_m =g; (X) (8.72a)
¥i

oV _
3 - ::lelij (y)gij(x) (8.72b)
Yy
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Integfating Equation (8.72) leads, on account of the periodicity of the pertinent functions,

to:
gij (X):O (8.72¢)
Substituting Equation (8.72c) into Equation (8.72a) finally leads to:
M, _,
ady, (8.72d)
~V, =V_(x)

One observes that Equations (8.71a) to (8.71d) depend entirely on the fast variable y and

are thus solved in the domain Y of the unit cell, remembering at the same time that
Cljkl . Nkl N;, M,_, S, are Yj-periodic in y;. Thus, the differential equations in (8.71a) to

(8.71d) are appropriately referred to as “unit cell” problems.

Having determined u®(x)andu{(x,y), one naturally proceeds to the determination of

the stress field. To this end, Equation (8.70) is substituted in Equation (8.68a) to get the

following expression:

(0)(X y) ljkl( )auk ( ) ljmn(y>{.éNn__()’_)Rk(x)+ aMm(y)@(X) asm( )C( )

9y, 9y, ay,
L NG () 3uy (x) (8:73)
y)ou,’(x
3. ox) }—Piijk -K;0-B,C.
This equation is subsequently substituted in Equation (8.67b) to get:
NG (), M, (v) 3S,,(y)
——=0(x )+ ——Clx)+
doy’ (x,y) 9 ou (°)(x) 9y, R,(x ) ady, ) dy, ()
* ukl( ) *+Ciimn (y +
dy; 0K INE (y) u(x)
ady, ox,

_ai{Piijk ~K,T-B,C}=f, (8.74a)

X

j

After some simplification one finally arrives at the following expression:
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acgy(x,y) lkl(y)azu;wx) Clmn(y{aNk(y)aR (&), M (y)a@(x) (y)ac(x)

dy n OX; dy, X, dy, X,
. ON¥ (y) 92u (x) _p. JdR, _K. 00 _B. aC _f (8.74b)
dy,  0x,0x, 5 9x Yox; Tox;

The last expression will be used to obtain the governing equations of the problem by

averaging over the domain of the unit cell.
8.5.8 Homogenization Procedure and Governing Equations

The next important step in the homogenization process is to average Equation (8.74b)
over the domain of the unit cell (with volume | Y|) remembering to treat x; as a parameter
as far as integration with respect to y is concerned. This gives the following expression:

doy’ (x y ON¥ ) 9%u®(x)
k5 b w00

9y, . 0x ;0x,

oN* ). oR, (x) oM 00(x)
—— [P 3)-C,. ()= [dv— - — | | K, (¥)=Cpp (v )= |d
|Y| J-Y( ijk (y) ijmn (yl ayn ] \Y axj IY] J;( ij (Y) ijmn (y/ ayn ] A% Ix j +

(8.75)
L (B0 Cp ) | T
lYl J 9y, 0x;
To simplify this expression the following definitions will be made:

= 1 oN¥

Ci = MJ‘Y [Cijkl (Y)"' Cim (Y) ay: }jv (8.76a)

5 1 oN¥

Py = ML (Pijk (Y)— Cijm (Y) ay:’ }’V (8.76b)

=~ 1 oM ' .

K;= MJY(Kij (Y)'" Cijmn (Y)“a‘;“}V (8.76¢)

= 1 as,,

B, Z'—Y—I-].Y[Bij (y)_Cijmn (Y)a—yn‘}iv (8.76d)

In Equations (8.76a) to (8.76d),quantities with the tilde denote averaged or homogenized

coefficients. With these definitions, Equation (8.75) becomes:
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|Ylj 86(”(xy o azuio)(x)_r) aRk(x)_K BG(X)_E oC(x)

; iy . =f. (8.77)
jki ijk i i i
ay; *Gi 0x 0X, Hox b ox; 'oox,
Consider now the integral in Equation (8.77). It may be written as:
dol’ (x
—Md = [dive®dv (8.78)
9y, Y

Here use was made of the fact that the divergence of a second order tensor in index

notation is given by [Holzapfel, 2000]:

0A,
divA = — (8.79)
dy,
Application of the divergence theorem to Equation (8.78) gives:
j v=[divo®dv=] o"(x,y)ndA (8.80)

In the last expression, n is the unit vector normal to the boundary surface dY of the unit
cell. Owing to the periodicity of 6"(x,y), its values at corresponding points on opposite
sides of the unit cell are the same. However, the unit normal vectors have opposite signs
at these points as shown in Figure (8—10)‘. Consequently, the integral in Equation (8.80)
vanishes and the “homogenized” equation for the displacement field becomes:

2..(0) ~ 5 B
i'klg_—u—k'_(X_)—Pi‘k BRk(x)_Ki. 90(x) _g, ) 9C(x) _ -f, (8.81a)
" ox 0x, ¥ 0x ' ox, ' ox;

J

As well, from the boundary condition in Equation (8.55) and the asymptotic expansion

(8.51) the following boundary condition is obtained:
u@(x)=0 (8.81b)
It is noteworthy to mention that any dependency on the fast variable y is removed after

the effective coefficients in Equations (8.76a) to (8.76d) are calculated. Consequently, all

functions in Equation (8.81a) are functions solely of the slow variables x.
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n;

-n2

Figure 8-10: Unit normal vectors acting on opposite sides of the unit cell

Similarly to the procedure that was used to obtain the homogenized equation for the
displacement field in (8.81a), one may obtain the homogenized equation for the stress
field by averaging Equation (8.73) over the domain of the unit cell. Thus:

wfer - VONE()| . oul(x)
|Y|,£Gij (x,y)dv ‘Yl{lcijkl(y)‘*'cijmn(y/ dy dv o +

n

I BN‘;(y) 1 aMm( )
_M{ipﬁk()’)_cijnm(y) dy }dVRk(X)_—l—?—]{;‘;Kij(y)_Cijmn(y)'Ty;—y—}dV@(X)'F

n

1 {.[Bij (¥)~Cijm ()’)%(Y)} dvC(x)

MG :

(8.82a)

Substituting definitions (8.76a) to (8.76d) into Equation (8.82a) results in the following

expression:
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~(0) _ duy’ s = =
Gy =Ci ox -Py R, -K;0-B,;C (8.82b)
1
Substituting Equation (8.82b) into Equation (8.81a) results in:

=(0)
0G;; _

=f. (x) (8.83a)
X,
The similarity between this expression and the original differential equation
dJo;;
—=f (8.83b)
ox;

is evident.
8.5.9 Synopsis and Important Results
The main results arrived at during the development of the mathematical model are the

following:

(a) Unit cell problems:

d ON" (y)
—| C. 2 C. =0
ayj ijmn (y) ayﬂ + ijkl
d ON¥
a_y Cijml (Y)"s;';'@ - Pijk ): 0
aJ ) ‘( ) (8.84)
M_(y ,
—| C. K. |=0
ayj ijml (Y) ay] ij )
9 38, (y)
“lc. oV B =0
ayj ijml (y) ayl 1j ]
(b) Effective (homogenized) coefficients:
~ 1 oNE
Cin = MJY (Cijkl (Y)"' Cijmn (Y) aym }dv
" (8.852)

- 1 oN¥
Pijk = E‘IJY (Pijk (Y)_ Cijmn (y )gm“ ]dv

n
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Ihéijvz I%IJ‘Y(Kij ()~ Cmn (Y)aMm )dv

d
. & (8.85b)
-1 S,
Bij = I?I_[Y[Bij (Y)_ Cijmn (Y) 3y )dv
(c) Homogenized Problem:
" azuio) (X)—IBi.k aRk(x)—Kij 3®(x)_]§ij BC(x) _ fi
0x 0%, Hox, 0x 0X (8.86)
u@(x)=0
(d) Stress Field:
ONY duy” ONK
ngm = Cijmn (Y) m(y)+cijk1(Y) T Pijk(Y)_Cijnm (Y)—“@ R, +
aYn axl ayn (8 87)
M 3s,, '
Ak 0)-Con 2o 5,00 (el

Equations (8.85a), (8.85b) and (8.86) répresent the governing equations of the
homogenized model of a smart composite structure with periodically arranged actuators.

Equations (8.84) represent the unit cell problems which determine
theN¥, NX M _, S, functions. These in turn lead to the calculation of the effective

coefficients from Equations (8.85a) and (8.85b). These coefficients then enter the
homogenized equation in (8.86) which is totally independent of the fast variable. The
homogenized problem therefore is much more amenable to analytic or numerical
solutions than the original problem in Equations (8.37) and (8.38). The determination of
the displacement field u can be followed, if desired, by the determination of the stress

field through Equation (8.87). The solution of the unit cell problems and the

determination and use of the effective coefficients will be illustrated in Chapter 10.




9.0 HOMOGENIZATION MODELS FOR SMART COMPOSITE
MATERIALS WITH NON-ZERO BOUNDARY CONDITIONS

9.1 Introduction: Boundary Layers

The problem discussed in Chapter 8 was characterized by homogeneous boundary
conditions. In this chapter, a different model will be developed whereby mechanical
stresses will be prescribed on the boundary. Before proceeding with the formulation of
the problem at hand, a simple “boundary layer” example will be discussed here. It will be
seen in the sequel that the essential difference between the mathematical model of this
chapter and its counterpart in the previous chapter is the existence of “boundary layer”
type solutions. It is therefore noteworthy to examine the underlying principles pertaining

to boundary layers.

Consider the simple differential equation and accompanying boundary conditions shown

in Equations (9.1a) and (9.1b).

2

eV oW i3y-0  0<x<l (9.1a)
dx dx-
y(0)=0 and y(1)=2 (9.1b)

In this equation € is a small parameter, much smaller than unity. The analytical solution

of this problem is fairly straightforward and is:

2
y = x,—x_{eklx —e**}  where
e —e™

—1—-4/1-3¢ —-1+4/1-3¢

Wtk Ut Y
€ €

(9.2)

For & = 0.01 the plot of the solution over the domain of the problem is given in Figure 9-

1. The source of difficulty is immediately apparent! The solution which is very smooth
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over almost the entire range, changes abruptly at a region near X = 0 in order to satisfy the

boundary condition there. This narrow region is called “boundary layer”.

29 <
1 —\ Boundary layer

O i I T T 1
0 0.05 0.1 0.15 0.2

Figure 9-1: Analytic solution

It is therefore clear that a standard perturbation expansion (Section 8.2) will be able to
follow y outside the boundary layer, but inevitably will not be able to capture the
boundary condition at x = 0. In other words, a regular perturbation expansion will not
approximate the solution within the boundary layer. This is also evident from another

perspective. Consider an asymptotic solution for y, of the form:
y=y,(x)+ey, ()+ ey, (x)+Ofe*) (9.3)
It follows from Equation (9.3) that the first term in the expansion, y,(x), is the solution

to the problem for € = 0. But making € = 0 in Equation (9.1a) changes the 2"%-order

differential equation into a 1**-order one, namely:
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2§—i+3y=0 O<x<l (9.4)
Since a 1*-order equation with a unique solution can only satisfy one boundary condition,
then one of the two boundary conditions in Equation (9.1b) must be dropped. As Figure
9-1 shows, the boundary condition at x = 0 must be dropped, which means that the
asymptotic expansion (9.3) will only satisfy the boundary condition at x = 1 and will only
approximate y outside the boundary layer. To verify this, the first term of Equation (9.3)

is determined as follows:

1.5 -1.5x

YO(X)= 2ee

(9.5)
sy =2e"e™ +0(g)

A plot of Equation (9.5) alongside the analytic solution is shown in Figure 9-2.

“Quter” Solution

3 Analytic Solution

2

1

0 T T T T A
0 0.2 0.4 0.6 0.8 1

X

Figure 9-2: Analytic vs. “outer” solution




It is evident from the figure that even the first term of the asymptotic expansion (9.5b)
matches the analytic solution extremely well, except in the narrow region of the boundary

layer.

Since the singularity of this problem arises from the existence of the boundary layer and
in particular from the fact that the solution changes rapidly in the boundary layer, the

remedy is to introduce a new variable  such that:

g=2 (9.6)
£

This has the effect of “stretching out” the boundary layer. Said differently, the new
variable & is now of order 1 and can be used to construct an asymptotic solution which is
accurate within the boundary layer. One will observe that this is essentially the same
technique as the one used in the two-scale expansion method of the previous chapter,
whereby the region of the unit cell was “stretched out” and rendered of the same order as
the macroscopic smart composite structure. With this new variable, the differential

equation (9.1a) becomes:

§;§+23—2+3ay=0 9.7)
An asymptotic expansion of Equation (9.7) is of the form:
y=,(&)+ey,€)+£%y,(€)+Ole’) 9.8)
The general solution of yy is readily determined to be:
Yo(€)=A+Be™ 9.9)

Since this is an “inner” solution, it must satisfy the boundary condition at x = & = 0. This
means that:
A+B=0=A=-B
~Yo&)=All-e™)

Equation (9.10) still has an extra constant remaining. To determine this constant, one

(9.10)

refers to the “outer” expansion, Equation (9.5) and notes that:
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lim2e'de ™% = 2e!”° 9.11)

x—0

To calculate the constant A, one may then impose the following condition:
limA(l-e?)=2¢"s = A =2¢'*
o (9.12)
Y e =26 (1-07)
What was done in Equation (9.12) is usually referred to in literature [Nayfeh, 1973;
Holmes, 1995] as “matching”. The logic behind this technique is that if there is an
“inner” expansion valid within the boundary layer, and an “outer” expansion valid
outside the boundary layer, thén there must be a small region just outside the boundary
layer (but still close to it) where both expansions are equally valid. Since this region is

outside the boundary layer, & = x / € takes on large values, but since it is still close to the

boundary layer, x is still close to 0. Thus, one requires that:

hng Yinner = };Im youxer (9 13)

Asymptotic

N
|

Analytic

0 0.2 0.4 0.6 0.8 1

Figure 9-3: Analytic vs. uniformly valid asymptotic solution
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Combiriing the “inner” and “outer” solutions frorri Equations (9.5) and (9.12) results in
the final uniformly valid asymptotic solution plotted in Figure 9-3. It is apparent that the
two solutions match one another extremely well throughout the entire domain. Thus, to
summarize, the main result here was that the “outer” asymptotic solution was very
accurate in most of the domain of the problem except near the boundary layer where the
actual solution changed abruptly to capture the boundary condition. To “capture” this
boundary condition, the “outer” solution had to be modified by adding an “inner”

solution.

A similar boundary-layer situation will arise for the case of the smart composite structure
with specified stress boundary conditions. The mathematical model for this structure will

be derived in subsequent sections of this chapter.
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9.2 Problem Formulation

The problem discussed in the previous chapter had homogeneous boundary conditions.
When the boundary conditions are non-zero, one has to consider certain modifications.
Kalamkarov [1992] used the homogenization technique for a 2-d problem of a regular
periodic composite with non-zero boundary conditions. In this section, the same method
will be applied to a more general 3-d problem that also includes (in addition to the
composite reinforcements) a periodic array of embedded actuators. As well, the
mathematical model derived here will incorporate hygroscopic and thermal expansion
effects so that it can be compared directly with the corresponding model of the previous
chapter. In particular, it will be interesting to see whether the same expressions for the

effective coefficients are obtained, and how different the new homogenized equation will

be.

Consider a smart structure representing an inhomogeneous solid occupying domain G

with boundary dG that contains a large number of periodically-arranged actuators as

shown in Figure 9-4.

The elastic deformation of this smart structure can be described by means of the
following boundary-value problem with prescribed stress boundary conditions imposed

onx3=0:

€
do;

X .

]

=1, le,x2|<oo, X, 20 (9.14a)

0;3(x1>xz’0)=Pi(X1’X2) (9.14b)

o x)_ 1{ou;(_x) du;( x

s o
M x X \du X X X X
XICHtH = (AR SO H e B

where i, j,k,1=1,2,3 (9.14d)
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X2

Reinforcement

Matrix

Y1
A Actuator

Y

y2

Reinforcement

Figure 9-4: Composite containing a large number of periodically arranged actuators and
its periodicity cell Y in the “fast” variables y

As before, Cjjq is the tensor of elastic coefficients, ey is the strain tensor, Pjy a tensor
describing the effect of a control signal R on the stress field o, Kj; is the thermal
expansion tensor, and Bj; the hygroscopic expansion tensor. Finally, ©® and C represent
changes in the temperature and moisture content (with respect to a reference

hygrothermal state) respectively. Also as explained in the previous chapter, Cijy, Pijx, Ki;




and Bj; are all periodic with a unit cell Y of characteristic dimension €, the characteristic
distance between the actuators, as in Figure 9-1. Consequently, the smart structure is seen
to be made up of a large number of unit-cells periodically arranged within the domain G.
It is evident that the condition “the number of actuators is large” is equivalent to the

condition “g is small”.
9.3 Two Scale Asymptotic expansions

The asymptotic expansions for the displacement and stress fields are the same as before
(Chapter 8) and are given by:
(a) Asymptotic expansion for displacement:
ut(x,y)=ux)+eu®(x,y)+eu®(x,y)+- (9.15a)
(b) Asymptotic expansion for stress:
ot (x,y)=0(x,y)+ eal(x,y)+e’0 (x,y )+ (9.15b)
The introduction of the new variables, y, necessitates the transformation of the
derivatives, so that the boundary value problem in Equations (9.14a) and (9.15) becomes:
do;
ox; &dy;
Gi3(xl,x2,0)= P, (x,,xz)

00°
199 _ in G

i

(9.16)

It will be observed that the first term in the asymptotic expansion for the displacement
field in Equation (9.15a) is independent of the fast variables y. This can be readily seen

by substituting Equations (9.14d) and (9.15a) into Equation (9.16) and considering the

periodicity of u.

Substitution of Equation (9.15b) into Equation (9.16) results in:

96? 106® 9P 9o®
ij +— 1j +£ ] ij +"'=Fi (917‘1)
dx; & dy, ox; dy,

] }

2__(0)

o +e26{

{1)
x;=0 T€0i3

oo T =Pi(x, x5) (9.17b)

x3=0




Equating like powers of € results in a series of differential equations (with pertinent

boundary conditions) the first two of which are:

(0)
do;;
it /!

dy; (9.182)
Gg) xX3=0 Pi(X2’X3)

) ©
aoij . acij

=F,
dy;,  Ox; (9.18b)

9.4 Determination of u®”

Substitution of Equations (9.15a) and (9.15b) into Equation (9.14d), equéting like powers

of €, and combining the resulting expressions with those in Equations (9.18a) and

(9.18b), results in the following expressions:

aiyj [ Con (y)au i; }(’T Y)} __ aua{’: l(x) acaij;j(y) P, ()R, () oo
+K;; ()T (x)+B; (y)C(x)
Cira yazoau_y =—Ciy y3=0%“—§?) + Py 0 R pc0 + K| yroo Tlroco +
1 lyymo i lym0 (9.19b)
Bis|yie0C] xym0 + P (x.%,)
and

a ) 1 2..(0) 2D
d {CW uf }=_ J {C du! }—Ciﬂdau“ c oY o OR
1

ikl e No | il ijk +
ayja 8)(;, dy. | 7 9x, 0x0X, J X0y, " ox, (9.20a)
T C
K.—+B.—+F
Y ox Tox !
2 g
C, ) K =-C, Tk 9.20b
3K1| y;=0 dy, 3“‘%‘0 ox ( )

¥3=0 I ixy,y;=0




280

The sepératiori on the RHS of Equatioh (9.19a) prompts one to write down the general

solution as:

2 =08 ey NSO BN R, ()4 M T+, 6T) 021

1

The various functions in Equation (9.21) satisfy the following equations:

a_?/ j [cijml aug,;;(lx,y )] =0 022
aiyj c,, (y)al\; ‘,3 l(y): _ acg;lj(y) ©.270)
% Cn (y)al\;“;l(y): _ al;ij;fy) 0.22¢)
%}, c,, (y)al\/;;l(y)] _ aI;; fy) ©.224)
aiyj [ c,, (y)asg; fy)} _ alzi;fy) ©.2%)

Equation (9.51) satisfies the boundary condition at x3 = 0. Thus substitution of Equation
(9.21) into Equation (9.19b) leads to:

dut? aN* M.,

Ci3ml| y3=0_a— == Ci3n‘ﬂ ‘a—‘—_ Pi3k Rk X3=0 Ci3ml a— - Ki3 T X3=0
Y1 im0 .Y1 $3=0 Y1 Y120

S Nkl (®) (9.23)
- Ciamla—m""Bw Clao— Ci3mla—m+ci3kl a_uLx=o+Pi(X1’xx)

9y, ’ 9y, ox, '™ .

1y;=0 X3=0
As well, the following condition must be satisfied:
ﬁﬁ,’;z) (xy)=>0 asy, - oo (9.24)

Perhaps the most interesting feature of the solution (9.21) is the presence of the

homogeneous portion u""? which is the only function that is not entirely dependent on y.

As well, u? is periodic in y; and y, only (not y3) as evidenced by Equation (9.24). To




appreciate this, one has to look at Equation (9.23) and in particular the term Pi(x,X3)
which defines the prescribed stress boundary condition. It is evident that if this term were
zero, then Equation (9.23) would have been satisfied only if ou'!?/ dy, were also zero.
This would imply further that u">? was solely a function of x, a conclusion which could
have also been established directly from Equation (9.22a) by insisting that u''? was
periodic in all of y,, y,, and y; and not just y; and y,. Thus, the presence of non-zero

boundary conditions necessarily means that u-?

is a function of both x and y, and is
periodic in y; and y;, only. Alternatively, one can say that we have a boundary-layer type
solution at x3 = O (see Section 9.1 and also Kalamkarov, 1992; Nayfeh, 1973; Holmes,
1995) and u'? is the “inner” solution whereas the remaining terms in Equation (9.21)

collectively represent the “outer” solution.

In an attempt to solve for u?, Equation (9.22a) will be integrated over the semi-infinite
volume defined by O<y;,y»<1, y3>0. After some manipulation, the resulting expression is
given by:
11 1,2
ou?
[JCw=  dydy,=0. (9.25)
00 ay,

y3=0
Equation (9.23) is subsequently integrated with respect to y; and y, taking at the same

time Equation (9.25) into consideration. The resulting expression is of the form:

L1
JJR% YI9Y2’O)R dY1dY2+JjK Y1’Y2’O)TdY1dY2+IIBH(Y1sY2’ )CdY1dY7
0

i o (9.26)
+IJC13U(Y1’Y2’O) dy,dy,-P, =0
00 ox,
Here the following definitions are used:
oNE
(Cile a—m+ci3kl ) =Cia (YI’Y2’0) (9.27a)
Y y320
ONE
[CiBml ?—Pﬂk =Py (Y1vY2’O) (9.27b)
! y3=0
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oM
Cism =-Ki; =K; (Y1 2 Yo ’0) (9.27¢)
BYl ¥3=0
S
(Ci3ml ’aa—__B =Bi3(y,,y2,0) (9.27d)
Yy $320

If further, the following definitions are made,

i1
J_[Pmk (Y1 ’Y2a0)dY1dY2 = P:;k (9.28a)
00
11
J'_[Ci3kl (yI’ YZ 70)dYIdY2 = Ci3k1 (928b)
00
11
J‘JKQ(YI’YZ’ ledY2 = K (9.28¢)
00
11
jjBi3(Y1’Y2’O)dY1dY2 =B, (9.28d)
00

then Equation (9.26) becomes:

. ou?

Chn + P;;kRkLa:O + K;TLFO + Bf3C|x3=0 =P(x,,x,)  (9.29)

x3=0

1

This is now substituted back in Equation (9.23) in order to eliminate P;. The resulting

expression,

a2
du;

1

©)
[C13kl Cisu Y1 »Y2 ’O)]Q—

¥3=0 X1 lxy=0 (9.30)
+ [Kra -Kj (YI’ Y270) =0 T [st -B; (Y1 1Yo

together with Equation (9.22a) are satisfied by u""?. The solution of u'"* can be written

Ci3m]

13k (YP}’z’O)]R %3=0

x3=0

in the form:

0)
al?(x,y)= N S 4 NO'R, 4+ MOT+50C 031
Xy

Here NOY NO* M® SO are all periodic in y, and y, but not y; and satisfy the

following differential equations:
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MK
i{cijml (y)aN—m‘(y_)} =0, 0<y,y,<L y;>0 (9.32a)
an 9y,
Mk '
—a_{cljml(y)al\l—m(y_)}:o’ 0<y1’y2 <1a Y3 >0 (932b)
ayJ' ay,
(3]
“?—{Cijml (Y)M}’;O, 0<y,,y, <1, y;,>0 (9.32¢)
a}’j 9y,
M)
i{cm (y) e (y)} =0, 0<y,y, <L y;>0 (9.32d)
an aY1

As well, functions NV¥ NWx M® SO satisfy the following boundary conditions:

ONVH .
Cosm— =Ciu —Cian (Y1 s YQ>0) 4 (9.33a)
r ly,=0
IN WK .
Com—y | = PP (¥,,¥,:0) (9.33b)
Yi ¥3=0 '
oM® .
Ci3ml7m— =K;;-K;; (YI’ Y2’0) (9.330¢)
yl ¥,=0
oSV .
Ci3m1'a—m =B, ’"Bia()’p}’z’o) (9.33d)
Vi ¥3=0
and N N MO SD 50 asy, - oo (9.33e)

9.5 Determination of Effective Coefficients

One now returns to u® defined by Equations (9.20a) and (9.20b). In particular, one
substitutes Equations (9.21) and (9.31) into Equation (9.20a) to obtain the following

differential equation:

(2)
J o 0" | _ part 14 Part | (9.34)
ayj' dy,

where
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d u® R, g T ac
I=——J{C, [N 2k 4 NK 9 s &
Part 9y { “m"{ "ox0x, "ox, "ox, = ox, ﬂ
ONM 9%u® oNk OR, oM, T aS, oC
-C, m 9 Ui m % T & 4 Om 9.35:
"m"{ dy, Ox,0x, " dy, ox; dy, ox; 9y, 8xj} (9-359)
d’ul oR, df o oC

+P, —E+K, i——t+E
i X y ax By ox;

—-C..
™ 9x 0x,

and,

Part 1= -2 { ¢, .| N 207 o Ry o T gy OC
ay, | ™| " oxox, ax Tox, " oox,

o [oN®r o  anoar, MO T asy ac
"1 dy, oxodx, dy, ox; dy, ox; Iy, Ox,

(9.35b)

Similarly, the pertinent boundary condition is given by the following expression:
Ju®

1

Ci3kl

0)
~Cigma 9 I N L NKR ML T+S,C
%50 9 ox,

y3=0 ¥3=X3=0

(9.36)

~Cisml N N +ND¥R, +MPT+80C
Brly=ogx |T ™ 9x,

Ya=x2=0
It will be observed that functions N‘:l, N]r‘n,Mm,Sm in Part I are periodic in all of yy, y», y3
whereas functions NV NV M@ SO i Part 1 are periodic in y; and y, only. The
solution of u*? from Equation (9.34) can be written as:

u? (x,y) =uY (x,y) + 0 (x,y) 9.37)
In Equation (9.37) ul" satisfies Part I and u{*® satisfies Part I. Clearly, the former is

periodic in y;, y, and y3, whereas the latter is only periodic in y; and y,.

We will now average the differential equation satisfied b u(z’l), 1.e. Part 1, by integrating
g q y y integrating
it over the volume Y of the unit cell. This results in the following expression:

u® -~ IR, g 9T 5 oC
ijki ~ Lijk T —Bij
ox0x, X, 0X, X

=F (9.38)
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In arriving at Equation (9.38), use was made on a number of occasions of the well-known

divergence theorem. For example:

1 ¢ 9 JuV( xy)} 1
— | =—1C.,(y —k ANI IV = —
lYliayj{ ) dy Y| J

Y
du’ (x,y)

where L; =Cjy (y) 3
1

(9.39)
i : 1
j—dv— fdiviav =— [L;n,dV =0
|Y| 9y, | F
In Equations (9.39), n; are the components of the unit vector normal to the boundary
surface dY of the unit cell. Owing to the periodicity of Lj (a consequence of the
periodicity of u*" and Ciju), its values at corresponding points on opposite sides of the
unit cell are the same. However, the unit normal vectors have opposite signs at these

points and consequently the integral vanishes identically.

As well, the following definitions were made in Equation (9.39):

~ 1 oON¥
ikl = IYII Cum +C,]mn aym :ldV (9.40a)
P —-—j P, -C oN,, dv (9.40b)
Uk lYIYL e dy, ‘
~g =%J’ Kij —Cijmn agvlm}dv (9.40c¢)
Y_ Yn
5 o1 | oS,
B, =_§.{_ i _Bij—Cij,,,,, 3. }dv (9.40d)

Hereéijkl,Puk,K Bij are the homogenized or effective elastic, actuation (such as

ij?
piezoelectric), thermal expansion, and hygroscopic expansion coefficients respectively.

In terms of these coefficients, Equation (9.38) may be termed the “homogenized”

equation for the displacement field.
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9.6 Synopsis and Important Results'

(a) Unit cell problems:

unm

i ()BN (v) +Cyq )=O
0 uml( )BN (y

(9.41)

() }}
d Couy )BM y

) 0S ( ) B
_—.— Cijml() ay[y Bij)_

(b) Effective (homogenized) coefficients:
~ 1 oN¥
Ciu = ]’Y_IJY [Cijkl (Y)"' Cijm (Y) dy. ]dv
- 1 ONK
Pijk = ML(P ik Y ( 1_]mn (Y) 3y )dv

n

Kijzl%‘J’Y(Kij( .Jmn(Y) 3. )dv
B, = |Y|I[B”(y) Cumn(y) 3. ]dv

(9.42)

(c) Homogenized Problem:
2.(0) - . 5
N 0*u (x) B, dR, (x) R, 00(x) _B, aC(x) -F
ox 0x, X X, ox,

. du f(o)

(:i3H

(9.43)
+ P;;kRk|X3:O + K;‘3T|x3 +Bﬂc| =P,(x,,x,)

1

x3=0
It is thus concluded that the original boundary-value problem defined by Equations
(9.14a) and (9.14b) reduces to that of solving (9.43). To perform this solution one needs

to only detrmine the effective coefficients from Equation (9.42) by calculating the local
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functions N¥,N ',‘n,Mm,Sm from Equation (9.41). It will be observed that these problems
depend entirely on the fast variable y and are thus solved on the domain Y of the unit cell
remembering at the same time that all of N, N, M ,S, are periodic in y;. These are the
“unit-cell” problems. Comparing these equations with the corresponding equations
(8.84), (8.85) and (8.86) of the previous chapter, one will observe that they are the same.
Where the two models differ is in the determination of the next term in the displacement
field (i.e. u' ) and the first term in the stress field. To calculate these, one needs to also
find the auxiliary local functions N¥ N®* M® S® from Equations (9.32a) to (9.32d)
and (9.33a) to (9.33e). The results are:

SO B S IR MO

u =u9%x+e e’ ) (9.44)
M., (v)+ MO (Ir(x)+[5,, 0)+52 (k)

and

(.. ©) K WK (Y] 340 @ k (k
dug +[aNm(y)+aNm (v) 3 (x)+[aNm(y)+aNm (y)}Rk(x)i

ox, a9y, Iy, A ox, a9y, 9y,
o 0) MO [3546), 3506)

|: m y + m y ]Tk(X)+ m y + m y ]Ck(x) (945)

L dy, ay, | 9y, ay, J

- Py (y )Rk (X)_ K; (y )T(X)“ B; (Y)C(X)+ 0(8)

Comaparing Equations (8.87) and (9.45), one observes that they differ only by the

auxiliary local functions N®V¥ NOx M® SO

The most important parameters are the effective coefficients given in Equations (8.85)
and (9.42). With the help of these coefficients, one is able to examine a variety of

problems by studying only the unit cells specific to the smart composites in question.

This will be illustrated in the next chapter.




10.0 APPLICATION OF UNIT CELL PROBLEMS FOR
LAMINATED STRUCTURES

10.1 Introduction

In order to calculate the effective characteristics of the homogenized model, the unit-cell
problems of Equations (8.84) or (9.41) must be solved and the formulae (8.85) or (9.42)
must be applied. The unit-cell problems can be solved by means of different methods

depending on the specific structure of the periodicity cell.

Let us consider a laminated composite structure made of layers of different materials that
can be isotropic, transversely isotropic, orthotropic or generally anisotropic. The laminae
may also exhibit piezoelectric or magnetostrictive effects, or in general be associated
with some transduction characteristics that can be used to induce residual strains and
stresses. All the characteristics of such a laminated solid will depend only on one spatial
coordinate perpendicular to the laminae. Consequently, all the relevant unit cell problems
will be reduced to ordinary differential equations and can be solved analytically. The

effective characteristics can then be obtained.

In subsequent sections, the effective elastic, piezoelectric, thermal expansion and
hygroscopic expansion coefficients will be determined and illustrated. Kalamkarov
[1992] also calculated the effective elastic coefficients for laminated structures. However,
it would be rather unreasonable to present the effective piezoelectric, thermal expansion,
and hygroscopic expansion coefficients alone without mentioning anything about the
elastic coefficients. Consequently, for the sake of continuity the effective elastic

coefficients will be presented as well.

288
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10.2 Effective ElaStic Coefficients for Laminated Structures

Consider a laminated structure such as the one in Figure 10-1. Without loss of generality,
it will be assumed that the laminate consists of only two different anisotropic materials,

material A and material B.

X3

AN

VAN,
[ [ L[]

\—/\_\/_‘\N
N

[/ [

<
§

s
|

N

Figure 10-1: Laminated Structure

If all A layers have the same thickness, and all B layers have the same thickness (which
may be different from that of A layers) the pertinent unit cell would be of the form shown

in Figure 10-2.
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y3
A
|
L 4
1)
z y‘
v —»>
Figure 10-2: Unit cell of laminated structure
The first unit cell problem in Equation (9.41) is:
J oN, (Y) dCyy
5| Cin )52 | (10.1)
dy; ( ’ 9y, dy,

Due to the nature of the unit cell, the partial derivatives in Equation (10.1) become total

derivatives resulting in:

ki
i C ( \de(Y3) =_dCi3k1 0<v. <l (10.22)
d i3m3 YB/ d y3
Y3 Ys dy,
where,
Ci 0<y,<a
Cy = ﬁ(dz) ? (10.2b)
Cin o<y, <1

Integrating Equation (10.2a) results in:

dNE(y
Ciam (Y3 )—a}‘l(_3) =—Cuy +Ay
3 (10.2¢)

dN: (Y3 )

-1 -1
=-C m3i3Ci3kI + Cm3i3Aikl
dy,

In equation (10.2c) Ajj are arbitrary constants and Ci}i, is the inverse of C; so that:

C;3lm3cm3j3 = Sij (10.3)
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Here, §;; is the Kronecker Delta [Holzapfel, 2000; Basar, Y., and Weichert, D., 1999].
Integrating Equation (10.2c) one more time with respect to y3, while considering at the

same time the periodicity of the pertinent functions gives:
<C:n13i3ci3kl> = <C;113i3 >Aikl
- _1 -
LAy T <Ci3lm3> <Cm13n3cn3kl>

In Equation (10.4) quantities in angled brackets represent averaged quantities, which are

(10.4)

obtained by integration through the volume of the unit cell. Constants A, from Equation
(10.4) are then substituted into Equation (10.2c) the resulting expression is substituted

into Equation (9.42),
~ 1 oNY
Cijkl =|‘Y_|L(Cijkl (Y)"' Cijmn (Y)_af}jv (10.5)

to determine the effective elastic coefficients. The resulting expression is given by

Equation (10.6):

éijkl = <Cijk1 > - <Cijm3c;1l3q3cq3kl> + <Cijm3c;nl3q3><C;;p3>_l <C;;n3cn3kl > (10.6)

To proceed further one needs to specify the symmetry of the anisotropic media within the
unit cell. Suppose for illustration purposes that the unit cell consists of laminae which
exhibit hexagonal symmetry about the x3 axis. Examples of materials with hexagonal
symmetry (6 mm) are many common piezoelectric materials such as BaTiO;, PZT-4 and
PZT-6B [Rajapakse, 1997]. In that case the effective elastic moduli are readily
determined from Equation (10.6) and are given by expressions (10.7). It will be observed

that the contracted notation for the elastic coefficients is used in Equation (10.7).

1

Co={(Cu)-(cica)+{csca) (ci)",  Gu=(Cu)-(Cics)+{cucY (c)"
513 = <C13C3_31 ><C3_31>_1’ 633 = <C1—a1 >_1, 544 = <Cz:4l >_]

~ - - ~ - 1~ =~
»=C, Cy=Cyp, Css =Cy, C66=5(C11—C12)

(10.7)

ol
i

It is seen from Equation (10.7) that the homogenized laminate behaves like a single

material with hexagonal 6mm symmetry about the x3 axis.
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The use of expressioné (10.7) will be demonstrated By means of a plane-stress example.
In particular, consider a 21-ply laminate made of BaTiO3; and PZT-6B piezoelectric
layers with electroelastic properties shown in Table 10-1 [Rajapakse, 1997]. Here, C;
denote elastic coefficients, e;; denote piezoelectric constants, and g; denote dielectric
permittivities. The piezoelectric and dielectric coefficients will be used in the next
example. The top and bottom laminae have a thickness of 0.125 mm while the remaining
laminae have a thickness of 0.25 mm. It is assumed that the in-plane dimensions of the
laminate are such in order to justify the plane-stress assumption. The unit cell for this

laminate is shown in Figure 10-3.

Table 10-1: Material Properties [Rajapakse, 1997]

6B
15.0 13.9 16.8
6.6 7.78 6.0
6.6 7.43 6.0
14.6 11.5 16.3
4.4 2.56 2.71
-4.35 -5.2 -0.9
17.5 15.1 7.1
114 12.7 4.6
9.87 6.45 3.6
11.15 5.62 34

Figures (10-4) and (10-5) show through-the-thickness variation of the C;; and Cy4 elastic
coefficients for the laminate in question, obtained through the application of Equation
(10.7). Suppose now that the laminate is subjected to in-plane forces per unit length N, =
150 KPa m and N, = 50 KPa m as well as to moments per unit length M, =1.0 KPa m’
and My = 0.5 KPa m”. Figure (10-6) shows that the mechanical strain in the x-direction &,
is virtually the same for the original laminate (calculated from the classical laminate

theory) as for the homogenized one. Similar results pertain to the y-directed strain &,.
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Figure (10-7) shows variation of the stress Gy through the thickness of the laminate which
as expected is piecewise continuous, alongside corresponding values for the
homogenized laminate. It is seen that the agreement between the two models is best at the
inner plies where the actual stress variation from a PZT-6B layer to an adjacent BaTiO;
layer is not very pronounced, and the maximum discrepancy occurs at the top and bottom
plies. Similar considerations apply for o, as is shown in Figure (10-8). It should be noted
that for the all results pertinent to the actual laminate (Figures 10-6 to 10-8), the classical

composite plate theory was used [Gibson, 1994; Reddy, 1997].

///T%.‘Zj///i

Figure 10-3: Unit cell for piezoelectric laminate
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Figure 10-4: Variation of C,; through thickness of laminate




Ca4 (x10'%) Pa

5.00 Actual Coefficient

4.50 A ¢

Effective Coefficient

4.00 -

3.50

3.0Q

2.00 +

1+ 50
OoU

T 1 L T ¥ 1

2.50 -1.50 -0.50 0.50 1.50 2.50
Depth (mm)

Figure 10-5: Variation of Cy4 through thickness of laminate
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10.3 Effective Piezoelectric Coefficients for Laminated Structure

The next example to be considered is another laminate similar to the one discussed in the
previous section, but consisting of alternate PZT-4 and BaTiO; laminae. The appropriate

unit cell problem from Equation (9.41) is given by:

Nk oP,
2 Cijm (Y)a ) =—* (10.8)
dy i dy, dy j
The nature of the problem means that Equation (10.8) simplifies to:
d dN¥ dp,
4 [ 5) Nalts) | P (109)
dy, dy, dy,

Integrating Equation (10.9) results in the following expression:

Cisms %ﬁ‘}' =Py + By (10.10)
Here Bj. are arbitrary constants. Integrating Equation (10.10) one more time with respect
to y3 results in:

dN¥

dy,

=C;1l3i3Pi3k +Cr_nl313Bik (10.11)

Before proceeding, and since the laminate under consideration in this section consists of
plies with hexagonal symmetry, it is noteworthy to show how the structure of the
piezoelectricity tensor (or any third order tensor for that matter) of a material with

hexagonal symmetry compares to that of a completely anisotropic material.

—Pm P Pus- —Pu Py P31_
Ppi Pu Py P, Py Py
Py Py, Py - Py Py Py (10.12a)
Py Py Py Py Py Py
P, P, Py, P, P, Py
_Pm Py P | |[Ps Py Py i

Equation (10.12a) shows the relationship between the actual tensorial coefficients of a

third order tensor (such as the piezoelectric tensor) and the contracted coefficients
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pertaining to an anisotropic material. The contracted notation is adopted in order to

reduce computational effort. It must also be mentioned that many authors represent the

contracted matrix in the following format instead:

P, P,

P, Py

Py Py

P, P,

s P

| P, Pe,

v

w

g

%}
1l

é‘U

o

W
2

oG

3

(10.12b)

Irrespective of what format is adopted, the subscript which ranges from 1 to 3 represents

the electric field strength, and the subscript with a range of values from 1 to 6 represents

the strain field.

A material that exhibits hexagonal symmetry (6mm) has most of the terms in the

piezoelectric matrix vanishing. In particular, for such a material, the matrix has the

following format:

0 0
0 0
0 0
0 P15

P, 0
0 0

L

w

o o O

—

—

(10.12¢)

Consequently, most of the N’ functions will vanish. Returning to Equation (10.11),

considering at the same time the matrix of Equation (10.12c), and bearing in mind the

structure of the elasticity tensor of a material with hexagonal symmetry [Reddy, 1997},

the following expressions are readily obtained:

dN!

dy,

dN:
dy,

_ - =
= Cl3Ps +CaiBy

_ -l -1
= C1313Pi3l +C13i3Bil

(10.12d)




298

. dN; .
Thus, from (10.12d), the final expression for —is given by:

Y3
! P B
dN, =13 4 (10.12e)
dy, Cupn Cap
Similarly,
dN2 ;
dy 2= C2;i3 Pi32 + C2;i3Bi2
3
dN2 _ X
dy2 = CoypsPysy + Cippy By (10.12f)
3
dN% — P, + B,
dy, Cupn Cuyn
and
dN? ,
dy L= C3;i3Pi33 + C3;i3Bi3
3
dN? . _
dy3 =C3;33P333 +C3;33B33 (10.12g)
3
ng _ Py, + By

dy; Cus Cug

The derivatives of the remaining functions all vanish. For example consider the
following:

dN? _

yl =C131i3Pi32+C1::i3Bi2

(;Nz (10.12h)
- : =C1_3113B12

dy,

Integrating the latter expression with respect to ys, gives on account of the periodicity of

the N? function the following result:

C1_3113B12 =0 =B, =0
CdN?
. dy,

Similar considerations lead to the following result:

(10.121)
0
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dN} dN, dNj dNj  dN7
dy, dy, dy, dy, dy,

0 (10.12))

The non-vanishing constants Bjj (no summation on j) can now be determined readily.
Firstly, from Equation (10.12¢) one gets:
l)131

Bll

0= dy, + |

1313 C1313
e ~(PyiCiais ) =By (Ciis) (10.13a)
~(PsCiais)

(Cin)

Similarly, from Equations (10.12f) and (10.12g) the remaining non-vanishing constants

dy,

~B, =

are:
5, - el
a (10.13b)
- <P333C;;33>
By =—7 31—

(C3)
These expressions then may be substituted back into Equations (10.12e), (10.12f), and

(10.12g) to determine the Nij functions. However, the objective here is to determine the

effective piezoelectric coefficients, and for those, one does not need the Nij functions, but

rather their derivatives. From Equation (9.42), the effective piezoelectric coefficients are

given by:

_ aNE
Py = MJY(Rjk (y)_Cijmn (Y) 3y }dV (10.14a)

For the problem at hand, Equation (10.14a) reduces to:
1 k
~ dN
Py :J Py (yS)_Cijmn (Y3)_m dy, (10.14b)
0 dY%
The effective moduli are therefore determined from Equation (10.14b).Thus, from

Equations (10.12g), (10.13b), and (10.14b) the following result is obtained:




P

113

(Pm - Cllm3 —c_l——n—]-

Pll3

_C1133

dN?

Y3

3

dN;3
d ]dY3

}dY3

<P333C;;33 >

P
P 3 _C1133 2 _
) C3333 <C3;33>C3333

<C1 1 ?3C ?;?3 ><C31ﬂ P‘H?

(Cii )

= <P113> “<C1133C;33P333>

} dy,

Similarly, from Equations (10.12g), (10.13b) and (10.14b) one obtains:

© S

P...=

333

I

1
1
0

P333

333 J.[ 333 © 33m3
0

C3333

<C;;33P333 >

(Cii)

dN?

3

3

dN;
)dY3
dy

]dYZ

<P333C;33 >

P
P333 - C3333 . _
C3333 <C3;33 >C3333

From Equations (10.12f), (10.13b) and (10.14b), one obtains:

el
Il

232

[ =

=Y S

P

3=

P232

P232

P
P232 _C2323{ 2

Finally, it may be shown easily that:

- C23m3

- C2323

<C 511‘323 P232 >

(Cois)

dN2
dy,

3

dN; z
]dy 3
dy

]dY3

<P232C;;23‘>

C2323 <C ;;23 >C 2323

} dy,

} dy,

300

(10.15a)

(10.15b)

(10.15¢)
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~ (10.154)

Collectively, the effective piezoelectric coefficients (in contracted notation) for such a
laminate consisting of laminae with hexagonal symmetry are given by:

B, = (P)— (CCity, ) +{CCa NP C)(C3) ', By =B,

(10.16)

~

Py = <P33C;;><C;;>‘l, l~)42 = <P42C4_‘lt><cgg>

Thus, the homogenized laminate behaves like a single material with hexagonal 6mm

> P51 = P42

symmetry about the x; axis. The pertinent matrix is of the form shown in Equation

(10.17).

0 0 P,
0 0 P,
0 0 B (10.17)
0 P, O
B, 0 0
0 0 0]

The use of Equation (10.16) will be demonstrated by determining the natural frequencies
of a piezoelectric transducer in the form of a thick laminate with alternating PZT-4 and
BaTiO; laminae. The transducer has 20 layers of 1 mm thickness each, with the width
and depth of the transducer both equal to 8 cm. An electrode attached to the top surface
of the laminate is grounded. With the help of finite element techniques, the first few
natural frequencies of this laminated transducer are compared with the corresponding
frequencies of a homogenized transducer with elastic coefficients determined by means
of Equation (10.7) and piezoelectric coefficients determined by means of Equation
(10.16). In other words two different numerical models are employed. The first
(laminated model) is a model of the laminate in its actual form with the alternate PZT-4
and BaTiO; laminae. As expected, the material has step-wise continuous properties given
in Table 10-1. The second (homogenized model) is a model of a structure with the same

macroscopic dimensions but with uniform elastic and piezoelectric properties as
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determined by Equations (10.7) and (10.16). The dielectric permittivity of the
homogenized laminate was calculated in the same manner as the homogenized 2" order
thermal expansion tensor explained in the next section. The unit cell for this laminate 1s
given in Figure 10-9. The variation of the P3; and P4, piezoelectric coefficients through

the thickness of the lamina is shown in Figures 10-10 and 10-11.

The geometry of both models allows us to take advantage of their quarter symmetry in
order to reduce the number of elements and hence the computational effort involved. As
well, consistency considerations necessitate the use of the same overall number of
elements for both the actual laminate and the homogenized structure. Table 10-2
compares the first 5 natural frequencies from the laminated and homogenized models
obtained by a finite element program. It can be seen that the two models predict similar
results differing by at most 1%. Figures 10-12 and 10-13 show the mode shape for the 2"
and 5™ modes. The mode shapes are the same for both the laminated and the

homogenized models.

Y3

7]

Yi

Figure 10-9: Unit cell for piezoelectric laminate
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Table 10-2: Natural Frequencies pertaining to the laminated and homogenized models

9.74

12.98
20.94
24.32
24.65

9.71
12.85

20.88
24.25
24.58




Figure 10-12: 2™ mode of free vibration (original laminate or homogenized model)




Figure 10-13: 5™ mode of free vibration (original laminate or homogenized model)
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10.4 Effective Thermal Expansion Coefficients for Laminated Structure

In this section the effective thermal expansion coefficients will be determined. The

pertinent unit cell problem as given by Equation (9.41) is:

JK.
—Q—[Cijkl (Y)aMk(y)j: : (10.18)
i

dy; ay, ay;

Because of the nature of the unit cell, this equation simplifies to:

dM dK.
< Ci3k3(Y3) k(Y3) =—" (10.19)
dy, dy, dy,

Integrating Equation (10.19) results in the following expression:
Cina (V5 )Mﬁ) =K, +D, (10.20)
dy,
Here D; are arbitrary constants. Integrating Equation (10.20) one more time with respect
to ys3 results in:
dM,
dy;,

=C;13i3Ki3 +C;;i3Di (10.21)

In this section, the example that will be considered will involve composites with
transversely isotropic laminae. As such, it will be important for subsequent work to show

the nature of the thermal expansion tensor for such a material.

Ky K,
K, K, K; K K2

K K,
K, Ky Kyu|= K\ = K\ (10.22)
Kis Kyu Ky KZ? K:

K| [Ke ]

Equation (10.22) shows the thermal expansion tensor for a general material with no
symmetry. For transversely isotropic materials, such as for example fiber-reinforced
laminae, the thermal expansion tensor ( and any second-order tensor) has the following

format when referred to its principal coordinate system:
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Kll I<1
K K
K“ 0 0 K22 KZ
g KO22 Ko = 022 = 02 (10.23)
22 0 0
| 0] LO]

However, most composite laminates, have laminae that are not all oriented in the same
direction. For such a laminate, relevant parameters are expressed with respect to a
coordinate system that does not coincide with the principal coordinate system of the
laminae. The thermal expansion tensor for such a material has the same non-zero terms as

a monoclinic material and has the following format:

KXX KX
0 yy KY
XX Xy KZZ Kz
K, K, 0= J|=|, (10.24)
0 K,
- 0 0
_ny_ _ny_

Returning to Equation (10.21) and proceeding in a similar manner to the previous two

unit cell problems, one obtains:
1 1
JC;i3Ki3dY3 = _J. CiaiDidy,
0 0
{CiaKi ) =~(Cio )D; (10.25)
=D, = _<Ci_3116 >_1 <C;;13K13>-
The expression for D; from Equation (10.25) is then substituted into Equation (10.21) to

obtain:

dM,
dy,

= C;_I%BKB - C;;n3 <C;Zl§m3 >_l <Cr_nl3s3K53> (10.26)

Having obtained the M; functions, one subsequently resorts to the general expression for

the effective thermal expansion coefficients from Equation (9.42):
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Kj |Yl J (KU (y Cijmn

The first order of business is to transform Equation (10.27) according to:

R, = [[ Ky (02)- Co ) e (10.28)
ij ! ij Hjm dy;

- m )dv (10.27)

Substitution of Equation (10.26) into Equation (10.28) results in the following expression

for the effective thermal expansion coefficients:

Kij =<K > <C1]m3cm3n3K > <Cum3cr—1113n3 ><C;ll':p3> <C;;q?K > (1029)
For a laminate consisting of transversely isotropic laminae with the reinforcing fibers
oriented along arbitrary directions, the effective thermal expansion coefficients (in

condensed format) are readily determined from Equation (10.29) to be as follows:
=(K) (o) )+ (ealen) e () )

, = () ~(Calcu) )+ {culca) Wiien ) Yen) )

= ()~ (Culcs) K3+ {culca ) Wi en ) Yiew )

R =(kica) Yew)")

In Equation (10.30) primed coefficients denote quantities that are referenced with respect

o
1

P

(10.30)

R
Il

to an arbitrary coordinate system i.e.

K =K,, K,=K,,, K;=K,, K{=K,, (10.31)
etc. It should also be reiterated at this point that the Kj; coefficients referred to here relate
stress and temperature as shown in Equation (8.42) or Equation (9.14d) and can be
determined from the double contraction of the elastic coefficients Cjj and the perhaps

more familiar oy; expansion coefficients (which relate strain with temperature). Thus Kj; =

CijaOl.
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For illustrative purposes, we will consider a 21-ply laminate consisting of alternating 0°
and 90° AS/3501 graphite/epoxy plies with material properties given in Tables 10-3 and
10-4 [Gibson, 1994].

Table 10-3: Mechanical properties [Gibson, 1994]

Table 10-4: Hygrothermal coefficients [Gibson, 1994]

As mentioned at the beginning of this section, when a transversely isotropic lamina is not
referred to its principal material coordinate system, the number and location of the non-
zero terms of the matrix of elastic coefficients coincide with those of a monoclinic

material. This matrix has the following form [Reddy, 1997]:

Cll C12 C13 0 O CIG
Co Cpn G 0 0 Cy
Cl3 C23 C33 0 O C36 (10 '%2)
0 0 0 C, C, O -
0 0 0 C, C, O
_CIG C26 C36 0 O C66 ]
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Consequently, the expressions in Equation (10.7) are not valid in this case, and in order to
calculate the effective elastic coefficients, one has to resort to the general equation in
(10.6) which of course is valid for all types of symmetry. The results obtained and shown
in Equation (10.33) are the same as those determined for the case of layered media by
Chou et al. [1972] (see also Bogdanovich, 1997) who used a completely different
technique based on a combination of Voigt’s hypothesis, that assumes that all the strain
components for an anisotropic medium are uniform, and Reuss’s hypothesis which

assumes that all the stress components are uniform.

&, =(C,)—{C.c, i) +{Caem)C e ca) forij=1,2,3,6
- (c®™)

REED DK o
where R =C,,C,, —Ci;

fori,j=4,5 (10.33)

j

Thus the effective elastic properties for the graphite/epoxy laminate are given by
Equation (10.33) and the effective thermal expansion coefficients are given by Equation
(10.30). The variation of typical thermal expansion coefficients through the thickness of

the laminate is given in Figures 10-14 and 10-15

Comparing now the thermal strain induced in the original laminate caused by a
temperature increase of 100°C with the corresponding strain from the homogenized
laminate, one finds out that the x-directed strain, €, for both models is the same and
equals 319 microstrain. The same conclusion pertains fo &, which equals &, (see Figure

10-16). Thus strains are predicted very accurately by the model.
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Figure 10-14: Variation of thermal expansion coefficient K, (K,,) through the

thickness of laminate composed of graphite/epoxy layers, alongside effective value f(‘,
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Figure 10-15: Variation of thermal expansion coefficient K, (K,,) through the

thickness of laminate composed of graphite/epoxy layers, alongside effective value I~<'2
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Figure 10-16: Variation of thermal strain induced in a laminate due to a temperature
increase of 100°C

10.5 Effective Hygroscopic Expansion Coefficients for Laminated Structure

From the unit cell problem in Equation (9.41) one notices that the effective hygroscopic
expansion coefficients are obtained in the same way as the thermal expansion

coefficients. Thus,

~ _ _ _ -1 _
Bij = <Bij> - <Cijm3cml3n3Bn3> + <Cijm3le3n3><Cn;p3> <Cp;q3Bq3> (1034)
which is similar to Equation (10.29). For a laminate consisting of transversely isotropic

laminae with the reinforcing fibers oriented along arbitrary directions, the homogenized

hygroscopic expansion coefficients (in condensed format) are readily determined (39b) to

be as follows:
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B)(Co(Ca) B+ (G ><B3<c337‘><(c;37‘>"
B))- < . 3JB>+<C23 >

B,)- < . 33)13>+<c36
Bo=(B,(Ca) N(en)")

As for the thermal expansion coefficients, the Bj (which relate stress with moisture

e
1l
——

(10.35)

™
o -
il
T T~

percent content) are given by the double contraction of the elastic coefficients Cjj and

the B;; coefficients (which relate strain with moisture percent content). Thus Bjj= CijxiBxi.

Consider now a 21-ply laminate consisting of alternating +45° and -45° Scotchply® E-
glass/epoxy plies with material properties given in Tables 10-3 and 10-4. The
homogenized laminate has elastic coefficients given by Equation (10-33) and moisture
expansion coefficients readily determined from (10-35). The variation of the moisture
expansion coefficients through the thickness of the laminate is similar to that pertaining
to the thermal expansion coefficients. A typical example is given in Figure 10-17. If now
one compares the strain induced in the original laminate due to an increase in moisture
content by 1% with the corresponding strain from the homogenized laminate, one
observes that the two models predict the same value of 700 pe for both €, and €, (Figure
10-18).
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Figure 10-17: Variation of hygroscopic expansion coefficient B, (B,, ) through the

thickness of laminate composed of E-glass/epoxy layers, alongside effective value INB']
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Figure 10-18: Variation of strain induced in a laminate due to a 1% increase in moisture
concentration




11.0 MATHEMATICAL MODELS FOR SMART COMPOSITE
PLATES WITH RAPIDLY VARYING THICKNESS

11.1 Introduction

In this chapter asymptotic horhogenization models for smart composite plates with
rapidly varying thickness and periodically arranged actuators are derived, and effective
elastic, actuation, thermal expansion and hygroscopic expansion coefficients are
obtained. The general symmetry properties of the effective actuation coefficients are
obtained, with the implication that it suffices to find the solutions of the purely elastic
local problem in conjunction with the constituent properties, in order to derive the
effective actuation coefficients. It is shown that the original problem for the regularly
non-homogeneous smart composite plate with rapidly oscillating thickness reduces to a
system of eight simpler types of problem. It is precisely these “unit-cell” problems that
enable the determination of the aforementioned effective coefficients and subsequently
the strain and stress fields. In the limiting case of a thin elastic plate of uniform thickness,
the derived model is shown to converge to the familiar classical plate model. In Chapter
12, the theory is illustrated by means of examples pertaining to a thin smart plate of
uniform thickness and a wafer-type smart composite plate reinforced with smart ribs

oriented along one or both of the tangential directions of the plate.

The mathematical model of a composite plate with rapidly varying thickness (including
thermal effects) was developed by Kalamkarov [1992]. In this chapter the same technique
is applied to a smart composite plate that also has a large number of embedded actuators.
This problem has not yet been analyzed. As well, moisture absorption effects are also

considered in order to make the model more comprehensive.
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11.2 Problem Formulation

Consider a thin smart layer representing an inhomogeneous solid with wavy surfaces and
containing a large number of periodically-arranged actuators as shown in Figure 11-1.
This periodic structure is obtained by repeating a certain small unit cell 5 in the x;-x>
plane. All three pertinent coordinates are assumed to have been made dimensionless by
dividing by a certain characteristic dimension of the body, L. Note that the shape of the
lateral surface of the layer is determined by the type of the surface reinforcement, for
example by shape of stiffeners or reinforcing ribs. In particular, this surface can be planar

if surface reinforcements are not used.

The unit cell of the problem is defined by the following inequalities (see Figure 11-1),

h
{—%<xl<§h, —§h<x2<8—2—, S'<x3<S+}, where
2 2 2
(1.1
st=+Opop{ X X2
2 oh, oh,
and the elastic deformation of this smart structure is characterized by the following
system:
J0;
—L—-P, =0 where,
X,
6, =Cyafw AR, —0@T-BOC} and (11.2)

1 aui auj
ey =—| ——+=—
2{ ox; ¥

Here, Cjji is the tensor of elastic coefficients, ey is the strain tensor which is a function of
the displacement field u, dj is a tensor of actuation (such as piezoelectric) strain

cocfficients describing the effect of a control signal R on the stress field o, ocfie’ is the

thermal expansion strain tensor, and Bi(j” is the hygroscopic expansion strain tensor.

Finally, T and C represent changes in the temperature and moisture content (with respect

to a reference hygrothermal state) respectively. It is assumed in Equation (11.2) that



318

Cya-d5), 0 and By are all periodic in x; and x, with respective periods h; and &h,

but are not periodic in the transverse coordinate Xj.

Smart composite

plate .............................................
N

unit cell

X3
g+ Qs Surface Reinforcement

oh;
> x;
S }h?
/’f /‘ Actuator
X1 S

Figure 11-1: Thin smart composite solid of a periodic structure and
its unit cell




319

Assume that the top and bottom surfaces of the plate S* are subjected to surface tractions
pi (not to be confused with the body forces P;) which are related to stresses by:

Gijnj ..':pi (1 13)
Equation (11.3) is of course a statement of the well-known Cauchy’s stress theorem. The

. + .
unit normal vector for the surfaces x3 = S™ (X, X,) 1s:

5 2 -1/2

. [_0S* _os* oS* oS*
n =+ F ,1 + +1 (1.4
Jx, Ox, 0x, ox,

11.3 Asymptotic Analysis and Basic Assumptions

The analysis begins with the introduction of the “fast” variables as follows:

L T PO
1 5%0, T an, 5

(11.5)

Remember that J is the thickness of the smart layer. Hence, in terms of these variables.

the unit-cell s is defined by:
{_l< v, <-1-, —é-< Y, <%, Z <z< Z+}, where

+F*(y) and (11.6)

y=(Y1’Y2)v X=(X1,X2),

Then, the unit normal vector from Equation (11.4) becomes:

. . L\ L1
=7 LI g LI 1, L JF +L oF (11.7)
h, oy, h, 9y, hi{dy, | h;| 9y,

The next step is to make the following asymptotic assumptions

pi =8, (x.y) p;=98q;(xy)

(11.8a
Poc = Sfa(x’y9z)7 P3 = 82g3(x,y,2) )

and
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oci(;” = 8oL (v.2)
5 =8B, (y.2) (11.8b)
di(jrk) = Bdijk (y,Z)
As well, assume the following through-the-thickness linear relationships for T, C, R;.
T=Tx)+zT"(x)
C=C“(x)+zC"(x) (11.8¢c)
R, =R“(x)+2zR," (x)
It should be noted that in Equation (11.8a) and in the sequel Greek indices will be

assumed to take on the values of 1 and 2, and Latin indices will vary from 1 to 3.

The introduction of the fast variables necessitates the transformation of the derivatives
according to,

ad d 1 0 g 190
- + and ==-—
ox ox, oh, dy, dx, doz

o o

(11.9)

so that the equilibrium equations and the strain-displacement relationships in Equation

(11.2) become:

90, , 1 90,  190; (11.10)

+ + =
ox, ©oh,dya & 9z '

o

l(i)uoc 1 ou, du; 1 auﬁ}
= + +

€op == +
2| oxg OShy dy, ox, Oh, dy,
1{du, 1 du, 10dug
_1fou, | L1 1111
o z(axB Sh, dy, & oz (4D
1 du,
S

As in the previous chapters, one next assumes asymptotic expansions for the

displacement and stress fields in the form of:

u, =u@x)+8u(x,y,z)+8u® (x,y,z)+... (11.12a)

o, =0 (x,y,z)+86) (x.y,z)+ 8’0" (x,y,2)+... (11.12b)

j
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Subsequent substitution of Equation (11.12a) into (11.11) and equation of like powers of

3, leads to the following asymptotic expansion for the strain field:

e. = ei‘jo) + Sei(j” + 5zefj2) +...

» “h (11.13a)
where,
e(m) =l au&m) +auém) +_1—au((xm+l) +—Lau;}m+l)
) ox, dx, hy dyy h, dy,
m m+ (m+1)
o _1 du{™ +_1_8u§ b _'—E)uﬁ +
3B 2 axﬁ h[; ayﬁ oz (11.13b)
e%n) _ augmﬂ)
) oz
m=0,12....

It is worth noting that unless the u!” term in eq. (11.12a) is independent of the fast

variables y and z, the strain expressions in Equation (11.13b) become unbounded as &

becomes infinitesimally small.
11.4 Equilibrium Equations and Boundary Conditions
The next step in the homogenization procedure is to substitute the asymptotic expansion

for the stress field, Equation (11.12b), into the modified equilibrium equation (11.10).

This results in the following expression:

I  do¥ 062 1 do
io +8 io +82 i + o

dx,, ox,, dx, oh, dy, (L1.14)

L1300 83 1300 Dol ool |
h, dy, h, dy, & oz dz oz '

Equation (11.2a) necessitates the splitting of Equation (11.14) into two parts:

00y +6802,§ e 00 L 00 L 00

oxy oxg oxg Shy dy, hy dy, (115

§ 005 190©) acl _ocl o

af 4+~ al + al +8 a3 _ 6f

hy, dy, & oz az &z °
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and
© ) @) © 0)
d05 +6603B L5 d05; N 1 doy +Lao3ﬁ N
dx, 0Xgy oxg Shy dy, hy dy, (11.15b)
§ do%y Ll oo N ocd) N 880523) _5
= ry =0 g,
hy dy, & oz dz dz
Equating like powers of J results in the following expressions:
©)
190y o
h, dy, 0z
ooy doly M
e T
Xp  p OYp z
o8 1 30D 5a® (11.16)
oxg  hy dy, oz ’
Jdojg’ +_1_30§§) N Lo .
dx, hy 9y, oz '
Here the following definitions were made:
f, =8, =8,=0 | (11.17)

Attention is subsequently turned to the boundary conditions in (11.3) that may be

rewritten as follows:
o.n: =1p, (11.18)

Here the negative sign on the right-hand-side of Cauchy’s expression is necessary if one
uses an inward, n’, instead of an outward, n*, unit normal vector (for the sake of
computational convenience, an inward normal will be used for the lower surface S™ of the
plate). The stress field expansion in Equation (11.2b) is then substituted into Equation
(11.18) to yield the following two equations that must be satisfied on the boundary of the
plate:

O N7 +30)NT + 8’60 NT +8°0'NT +...=+0*8’r;

. . N ten s (11.19)
oy NT +80%Nj +8°05)N} +8'05)N; +...=x0"d'q;
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Here, use was again made of expressions (11.8a) and at the same time the following

quantities were defined:

S I )P [
h, dy, h, dy,

o = 14— oF 2+i o
B by { 9y, h; | 9y,

Equating equal powers of & one finally obtain for the boundary conditions pertinent to

(11.20)

surfaces Z7,
o{"Ni=0 m=0,l
o’Ni =+’ and (11.21a)
oPN? =2a'q}

where the following definitions were used:

;, =q; =q; =0 (11.21b)

The next step is to introduce the averaging procedure

(w)= [ wdy,dy,dz (11.22)

Qs
defined over the volume of the unit Qs with boundary surface d€2s, and proceed to show

the following relationship
hh
<El—aaQa +8aQZ3>: | j(Q;N;_Q;I\J;)dy,dy2 (11.23)
where N* is defined in Equation (11.20) and Qii are the values Q; takes on the surfaces

Z*. Starting with the divergence theorem one writes

1 9Q, _ 09, 1 9Q, . 2Q, |
_— e TRy = = ZXe 73 4y = RE . '
<h(1 9y, + oz > é‘;(ha Jy, * 3z ] v a;[s[ha Quny, +Q;n )ﬂA, (11.24a)

where n; (n}) is the outward (inward) unit normal vector defined with respect to the (y;,

y2, z) coordinate system of the unit cell and is given by:
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n§:( ~a—F——aF aF_ +1 (11.24b)
k aY1 aY2

Here dA is a surface area element. Now, the function Q; has the same values at

corresponding points on opposite boundaries on the lateral surface of the unit cell on
account of its periodicity, but the normal vector has opposite signs at these points.
Consequently, the integrals vanish over the lateral surfaces of the unit cell and the

integral in (11.24b) reduces to [Kalamkarov, 1992]:

J-( Q;n;a+Q } ( Qa y(x+Q% y’%% (1125)

Here, n’y” (n) is the outer (inner) unit normal vector defined with respect to the (y;, y», z)

coordinate system, and dsj(dsg)is a differential area element defined on the top

(bottom) surfaces of the unit cell and is given by:

2 2
. |(oFY (o
dsg, =./|— | + +1 dy,dy (11.26)
“ \[(a% ) (BY2 ] s

Finally, substitution of Equation (11.26) into Equation (11.25) proves the result in

Equation (11.23) on account of Equation (11.20).
11.5 Derivation of Unit Cell Problems

Substitution of Equations (11.4b), (11.13a) and (11.13b) into the second expression in

Equation (11.2) and group terms multiplied by the same power of 9, yields the following

expressions for the terms " andc’ defined in expansion (11.12b):

1 oul? oul
(0) — 7k 7k )
G quﬂ(h Jy + Cijs 2z + Ciip€ip »
B

PR (11.27a)
e® _ 1 ic auk au
fi Ty X, axk

and
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1 oul® u? 1 oul”
@ K K K
o.’ =C.. — X +C. —= +C. _— (1127b)
Y ”kﬁ(hB 9y, 3 9z e hg ox,

0) k) ©0) (1) (0) (1)
_CijkldklmRm _CijkldklmZRm =Gy T _Cijkla’klZT _Cijlele _CijkIBklZC

Although the problem defined by Equation (11.27a) has been solved by Kalamkarov
[1992], the solution will be repeated here because it (together with some ensuing
definitions) will be used for the solution of problem (11.27b). Substitution of Equation
(11.27a) into the first of the equilibrium equations (11.16) and the corresponding

boundary condition (11.21a) gives the following two equations:

D, u® =—, (y,ze?(x) and
ik kl kot (i' +k(x( ) ) (11.282)
(Lijkuf() +Cyp€ip N7 =0 on Z*
Here, the following operators [Kalamkarov, 1992] are defined:
1 0 d
Ly = Cijo K—‘a—— + G 3%
1 0 )
D.=——L +—L..,and 11.28b
ij ha aya iy aZ i3j ( )
1 aCiﬁaJ aCi3txj

The separation of variables on the right-hand-side of the equilibrium equation (11.28a)

prompts one to write down the solution of u‘" in the form of:
ug) = U (v, z)eiq (0)+ vy, (x) (11.29)
In Equation (11.29) v\ is the homogeneous solution, which satisfies
D, vl =0 (11.302)
and UX* the particular solution, which satisfies: |

D, U™ =—c, and

ma s . (11.30b)
(L U™ +Cyuo NE =0 on Z*

ijmo
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One can easily show the independency of v{’ on the fast variables by first writing out
Equation (11.30a) in full using the operator definitions in Equation (11.28b).
18{'18(1) a(l)}a{ 1 9 3
— ——3Ch—— V' +Cs =V 1+ 31Ch Vi +Ciaa == Vi ¢ =0 (11.31)
hy dy, Peh dy, z | 9z| "“h,ay, " oz
Subsequent integration of the latter equation over the volume of the unit cell with a

simultaneous consideration of the general result in Equation (11.23), finally leads to:

) a
%Vk =a;k =0 (11.32)
Y, Oz

This shows that v{’ only depends on the slow variables.

Problem (11.30b) is solved easily for the case when m=3 giving the following results:
U3 =U%=—z and U}'=U}=0"=U7=0 (11.33)
This can be seen immediately by writing the differential equation and boundary

conditions in Equation (11.30b) explicitly and substituting solution (11.33) in the

resulting expressions [Kalamkarov, 1992].

On defining [Kalamkarov, 1992],

bg’“ = Liijkm +C (11.34)

jjmo
and noting that bf;“ =0 on account of Equation (11.33), then expression (11.27a)
becomes:

o) =b’ey (11.35)
One subsequently averages the second equilibrium expression in Equation (11.16) while
considering at the same time the boundary conditions (11.21a) and the general result
(11.22), to arrive at:

d

— |bgdvel) =0 =&l =0 (11.36)
oxy o

Finally, from Equations (11.27a) and (11.29) it is found that [Kalamkarov, 1992]:
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u® =u® =0, uf =w(x)
uf,l) = vs)(x)_zg_w, ugl) (31)( ) (11.37)
XV
As well, Equation (11.35) leads to:
oy =0 (11.38)

One is now in a position to solve for the second term of the asymptotic expansion of the
stress field. To this end, substitution of solution (11.37) into Equation (11.27b) leads to

the following result:

(1) - @ M © M 4
Lyu” +Cyp8ip +2C;00To — Py R —ZP Ry

(11.39)
- KijT(O) - ZKijT“) - BijC(O) - ZBijC(l)
Here the following definitions are made:
av(l) av(l) _aZW
® B ,
o [ Xz  dx, @ 0x,0%, ( )
Pijm = Cijkldklm’ Kij = Cijkla‘kl s Bij = Cijlekl (11.40b)

Now, on account of Equation (11.38), the second equilibrium expression (11.16) and

appropriate boundary conditions (11.21a) become:

1) 1)
1 9o +8<5i3

=0 (11.41a)
h E)yB oz

MNE — +
6N* =0 (onZ*) (11.41b)

Substitution of Equation (11.39) into Equation (11.41a) leads to:

leu<2>+—}—- J Cipael) +2C 1
hg dy,

~ K, T —2K ,;TO - B, C® - zBlBC“’}+—{C,zka8§3+ZC

P, RO —2p RV 4

1Bau o ik iBk

+ (11.41c)

Hau ap
- Pi3kR§<0) - ZPi3le(<l) - Ki3T(O) - ZKBT(I) - B13C(O) - ZBBCO }: 0

Rewriting this equation as
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1 aCinu e 4 0C 314 81(:(3 1 ?E“‘L”zrw +a—c—i33—”— +CﬁmJ o
h[3 ayB aZ

D, ul” +—
ik "k 1]‘3 ayB ka aZ

1 OP, ©) oP,,, R(O)__l_égﬁ_kZRg)—PmkRS)+

I RO i3k
h ay[g * 0z ) h ayﬁ
11.41d
___LaKlﬁ 10 _ Ko go_ 1% o _g 10, L
hB ayB oz hﬁ aYﬁ
LBB,B C(O)_aBi3 C(o) 1 a 1[3 C(l) Bi3C(l):0

and making the following definitions
o _ 1 Py OBy

Py =—
k hg dy, oz

k=L Ko, Ky (1141e)
h, E)yB 0z
o_ 1 0By aBi3
: h E)y‘5 0z

finally leads to the following expression foru(”:
0 =l ~ (Cogu + 200 oo + PR # P v 2BLRE+

Dy uy” = —Cyo e —
+K;T® (Ki3 +2zK; )T(” +B;C? + (Bi3 + zB:ﬁ(”
Subsequently, one substitutes Equation (11.39) into Equation (11.41b) to get
-P RO —7* PukR(” +
. (11.43)

(Lljku§(2) +C|}kB8(1) + Z ClJaBTaB ijk
K, T -Z*K,T" -B,C® -Z*B,CY)N* =0 (z=2*)

The separation of variables in each term on the right-hand-side of Equation (11.42)

prompts the solution for u!® in the form of:
u® =Ukel + VBt +UKRY + VERY + W TO + X TV +Y, C?Y +A C" (11.44)

Here use was also made of Equation (11.30b). Substitution of solution (11.44) into

Equations (11.42) and (11.43), leads, on account of (11.34) and the following definitions
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b =L, V¥ +2C
kK _ k

dij - Pijk —Liijm
) k

dij --zPijk -L. V

jjop

jm " m
@ij = Kij —Liijm (11.45)
®ij = ZKij "Liijm
Aij = Bij ‘Liijm

Ay =2B; -L A,
to a group of eight problems to be referred to in the sequel as unit-cell problems. They are
dbly b
_1-__.._@__ + .8_13 =0,
hy dy, oz (11.46a)
oONTE *
bEN* =0 (on Z*)

1 9bg®  aby”
hy dy, dz (11.46b)
b *N7 =0 (on z*)

odk dx
i iB +a_‘3=0’
hy ay[i oz (11.46¢)
k * +
dEN* =0 (on Z*)

*k *
h, dy, oz (11.46d)
art +
d*N* =0 (onZ*)

00, .
i‘ iB + 8913 :O,
hy dy, oz (11.46¢)
®,N* =0 (onZz*)

00 ;
_1_____1[_3_.}.86)_‘} = 0’
hy dy, 0z (11.46f)
O;N7 =0 (on Zi)




19Ay 0As
by oy, 0z (11.46g)
AN =0 (onZ*)

IA’ '
L i +aA13 =0,
h, dyp oz (11.46h)
* + +
AyNE =0 (onZ*)

It should be noted that four of these unit-cell problems, (11.46a), (11.46b), (11.46e),
(11.46f) were derived by Kalamkarov [1992]. Here, the same technique was used to
derive the remaining four unit cell problems, (11.46¢), (11.46d), (11.46g) and (11.46h),

that account for the effect of the embedded actuators and hygroscopic absorption.

The unit-cell problems provide the functions U (y,z), V¥ (y,z), UP(y,z),V."(y.z),
and W, (y,z), X, (v.2) Y, (y,2) A, (y,z) which are 1-periodic in y; and y, and determine

in turn the functions b b;; B dk d* e.,0, A A needed to calculate the first non-

i i i » 9y, Oy, Ay,
vanishing term in the asymptotic expansion for the stress field, Equation (1 1.12b), given
by:

oy’ =bifel) +b; P15 —dfR® —d'R{’ -0, TV —0;TV - A,CV ~ A,C" (11.47)
As a final note, it should be remarked that unlike the unit-cell problems of classical
homogenization schemes (Sanchez-Palencia 1980, Bakvalov and Panasenko 1984), those
set by egs. (5.17a)-(5.17h) depend on the boundary conditions at Z* rather than on

periodicity in the z direction.
11.6 Governing Equations of Homogenized Smart Plate

Before deriving the governing equations of the homogenized smart composite plate with
rapidly varying thickness, consider a typical unit cell problem, say (11.46h).
L aAiB + aA:3

=0 11.48:
h, dy, oz ( &
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AN: =0 (on Z*) (11.48b)

Multiplying Equation (11.48a) by z and integrating over the volume of the unit cell gives:
oA A’

| S LU TV P (11.49)
h, dy, Bz

Due to the fact that the fast variables are independent of one another, Equation (11.49)

reduces to:

J L 9 ZA aA” dv=0
hg dy, oz
1 9 . 9 .. .
j(ﬁ;é};m"* +=ak, }dv—jABduo (11.50)

1 9 d .
j(h P Alﬁ+£zA ) (A%)

Using the result in Equation (11.24a) means that the last expression in Equation (11.50)

becomes:
| [z aN;dy,dy, ~ [ [ ANjdydy, = (&) (11.51a)
Finally, from Equations (11.48b) and (11.51a) one arrives at:
(Ks)=0 (11.51b)

Similarly, from unit cell problem (11.46d) one writes:
*K
I——L J d:?;+zadi3 dv=0
h; dy, oz
. 1 a a *k *k
"f(gay zd + o7 ]dv [didv=0 (11.51c)
| =z L |= ()
h, dy, oz

From Equation (11.24a) and the boundary conditions in Equation (11.46d), the last

expression in Equation (11.51¢) reduces to:
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(ax)=0 (11.51d)

Thus, collectively one finds that:

(b2 )=(b3P) = (ak) =(di¥) =(05) = (0} ) = (A;s) = (A};) =0 (11.52)

Next, consider a typical unit-cell problem, say Equation (11.46c¢), multiply by z* and then

integrate over the volume of the unit cell. This gives:

k
jii *dig +2° 2 9y dv=0
hg dy, 0z

A 19 2dfﬁ+izzdk lav -~ [22d%dv =0 (11.53a)
hg dy, oz ‘

. J-[_hL_E_)_i_B de +§szk ]dV=2<Zdik3>

From Equation (11.24a), the last expression becomes:

BY hho
| [z diN;dy,dy, - | [2* d§Njdydy, =2(zd}) (11.53b)

From the boundary condition in Equation (11.46d) the integrals in the expression above

vanish, giving:
(zdty) =0 (11.53¢) -

Thus collectively, one finds that:

)= (3%) = o) = e

(20,,) = (20},) =(zA;,) = (zA},) =0 (11.54)

Letting 1 = 3 in Equation (16.47) gives:
o) =bFel +b 1, —dERY ~diR{’ -0, T -0, T" —A,,C” - A},C" (11.55)
Averaging Equation (11.55) over the volume of the unit cell results in:
(o) = (b2 ey +(bis" o ~(a5 )R ~(a )R} +

_<®i3>T<O> _<®i3>T(l> —<Ai3>C(°) —<A:3>C“’ (11.56a)
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In view of Equations (11.52), Equation (11.56) reduces to:

(a%)=0 (11.56b)
Similarly, multiplying Equation (11.55) by z and averaging over the volume of the unit
cell, gives on account of Equation (11.54) the following expression:

(o) =0 (11.56¢)

The averaging procedure is then applied to the last two equations in (11.16) to give, on

account of Equations (11.56b) and (11.56c), the following expressions:

5a—'<oﬁg>+pa +(f,)=0, (11.57a)
Xp

0 0
2 (08) =0 5-(08)+h+(es)=0 (1.57)

Here the following definitions were made:

V2 12

p(x)= | [0+ Jaydy,

-2-12

. (11.57¢)
)= | [(0e)+0q;)dy,dy,

J24p

By multiplying the third equation in (11.16) by z and averaging over the volume of the

unit cell, taking boundary conditions (11.21a) into account, one can eliminate <c§é’ > from

Equation (11.57b) to give:

Jd (o
o [E< of;g)+ Ka(x)+<zfa>j+7»3+<g3>=0 (11.58)
Here the following definition was made:
Y2 12
k()= [ [ty +z07r; )dy,dy, (11:59)

—y2-1/2
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It is noteworthy that as far as the stresses are concerned, Equations (11.57a) and (11.58)

only contain the averaged quantities <cfx’é> and <26$é> which may be written down from
Equation tl 1.47) as:
)=+, IR R
< ﬁ>T(°) < >T(x) <AQB>C(O) _<A*u[3>c(”
(z0%) = (zbts el +(zbly I, —(2dls )R — (2d 3 R +

(10,60 {203, T (1) (28,

(11.60a)

(11.60b)

In conclusion, the original problem for the regularly non-homogeneous smart composite
plate with rapidly varying thickness and an embedded array of actuators reduces to eight
simpler unit-cell problems given by Equations (11.46a) to (11.46h). These problems yield
functions U (y,z), V¥ (y,z), Ut (y,z), V" v,z W, (y,z), X, (v,2), Y, (y,z), and A, (y,z)
from which functions b,‘;ﬁ, bu“B, d:}, d:;k, 0, 0], A, A can in turn be determined
using definitions (11.45). These latter functions are then averaged to give the effective
elastic, actuation, thermal expansion and hygroscopic expansion coefficients,
<b§5>, <b*°‘5> < b°‘B> <zb;°‘ﬁ> ,<d§ >, <zd};> etc, which enter Equations (11.60a) and
(11.60b). One then naturally proceeds to the boundary-value problem and substitutes

Equations (11.60a) and (11.60b) into Equations (11.57a) and (11.58) from which

8(1) and T,5are determined which in turn give the displacement functions

vi"(x),v{’(x), and w(x). The displacement and stress fields are then found from

expansions (11.12a) and (11.12b) and are given by:
ow
u, =dv(x)-x, ——+8*(U%el + VP _ )+
1 1 () 3axl ( 1 ~af 1 (IB) (1]6]&)
+8(USR + VR + WTO + X, TV +Y,CO +A,C")
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ow
u, = v (x)-x, —+ 8*(UPel) + VP, )]+
2 P (x)-x, " (us gt V2 B) (11.61b)

+82(USR® + VIRY + W, T + X, TV + Y,C® +A,C")

u, = wx)+8v® + 82 (U%ed + 82Vl )+

* (11.61c)

+82(USR + VER® + W, T + X, TV + Y,C¥ + A,C")
6, =5(b%Pel) +b®1, —d*RO —~d}RY -0, T -©;TV —A,C¥ —A,C") (11.61d)
Here one recalls that the Greek suffixes o, f vary from 1 to 2 and the Latin suffixes i, j,

and k vary from 1 to 3.

It is worth noting that the local problems are completely determined by the structure of
the unit cell and are totally independent of the formulation of the global boundary value

problem.
11.7 Symmetry Properties of the Effective Coefficients

When the properties of a material are periodic in all three coordinates, it can be shown
[Bakhvalov and Panasenko, 1984] that the symmetry properties of the coefficients
involved remain the same after the homogenization process. For the current work, there is
no periodicity in the transverse direction and so the question of symmetry of the effective
coefficients is given special consideration. The symmetry properties of the effective

elastic coefficients and thermal expansion coefficients as stated below
(o) =(b5,), (sp")=(bys), (bj™)=(zb}) (11.62a)

86, ) = <(Xi(je)b§m > 8(z6,,)= <0ij°')b;m“>
6<6;n> = <zai(j°)bg‘" > 6<zetm> = <zai(j°)b;"’">

have been proved by Kalamkarov [1992]. Here, the same technique will be used to prove

(11.62b)

following relationships pertaining to the effective actuation coefficients and hygroscopic

expansion coefficients:
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(@b, 8(zd", )= (dPo;™),
(zdPbym), 8(zdpk )= (zdb;™)

B(d)
8dm)

(11.63a)

il

and
B{A )= (BB, B(an ) = (B)

8(Koa) = (70", (2 ) = (2B 05"

(11.63b)

In proving Equations (11.63a) the first step is to introduce the following new variables:

& =hy, &=hy, &=z (11.64a)
In view of Equation (11.64a), definitions (11.28b) become:
1 a a a a(:im'k
L,=Cy——, D;=—-C,_,—, ¢y =— (11.64b)
. e hl a&l ' a&m ) agk Jk agm
Likewise, unit-cell problem (11.46¢) becomes:
od;
4 =0,
o€, ; (11.65)

dN* =0 (onZ*)

Next, for a tensor ¢ of arbitrary rank, one writes:

9 dj 99 _ i 99
d¥ +d; =d. 11.664
a& (('p lj ) (p aéj l_| a& ] agj ( fl)

Here use was made of Equation (11.65). If Equation (11.66a) is integrated over the

volume of the unit cell, the following expression follows, in view of Equation (11.23):

J¢
d- 0 11.66b
< i > ( )

Similarly, the following relationships can be shown in a similar manner:

d;ka—‘p =0

agj
pm ZP N _ [prm 9PN _
< ¥ a§p> < * a§p>

(11.66¢)
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Now, replacing ¢ with U in Equation (11.66b) results in:

qr \
ds U)o (11.67a)
y ag
From the relations in Equation (11.64b), the basic definition of d}; from Equation (11.45)
becomes:
Uk ,
di =P, —C; m (11.67b)
ijk ijml a&l
Thus:
qr qr k qr
d}j dU; ~(p, JU; —Cy ou ;. dU; -0
dg; 0E; &k, &,
(11.67¢)

au¥ aUk ou¥r
O (§ it C,
(72 35 (e 205

Then, replacing ¢ with U in the second expression in Equation (11.66c) results in:

. ou:
b . =0 (11.682)

From the relations in Equation (11.64b), the basic definition of b_'from Equation

(11.34) becomes:

b =C U, +C (11.68b)

ap qprl 8_&1 qpmn

Thus from Equations (11.68a) and (11.68b), one obtains:
dU U’ ou?
C . — = )+(C_,.. —=)=0
< ™ oK, 3§1> < e 3€1>
k qr
Cmﬁj-a-gﬂaui C e (11.68¢)
9§, dE; ail

oU; oUf Uk
C C U
< mlij a&l aé > < migr a&‘ >

Comparing the last expressions in Equations (11.67¢) and (11.68c) leads to:
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aUGr ‘
11.69
< ijk a& > <C migr a&l > ( )

Next, from Equation (11.67b) one writes:

qu <Cqm.1 %, > (11.70)
From Equations (11.69) and (11.70):

<d:r> - <quk> +<Pijk %I_Jg'_> (LE71)
j

On account of Equation (11.40b), Equation (11.71) becomes:

x U
(d% ) = (C g ) + <Cmd a§j>

ou¥
o dk = Crmn (:i'mn—l dmn
= {fom rem B fo)

On account of Equation (11.68b), the last expression in Equation (11.72a) becomes:

(11.72a)

(d5) = (6% d, ) (11.72b)
Finally, on account of Equations (11.8b), Equation (11.72b) becomes: _
8(dk ) = (d, b, ) (11.73)

This is the desired symmetry relationship as it appears in Equation (11.63a).

Although the proof of the third expression in Equation (11.63a) is similar to the one given

above, there are nonetheless a few differences that must be explained. The proof begins

qr
<dl}" CAA >=0 (11.74)
0,

The similarity of this equation to Equation (11.67a) is obvious, and its validity can be

with the following equation:

established easily in the same manner. From the definition of d - 1n Equation (11.45), the

following expression is true on account of definition (11.64a):
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. A
dijk = ZPijk _Cijml —a'é*l— (1 175)

Combining Equations (11.74) and (11.75) and using the averaging procedure of Equation

(11.22) results in:
A oV, oV
P. c. —mZh \_
(3 e

A oVE gv¥
~{zP, C. m i
< ", > < %, aéj>

Then, replacing ¢ with V in the third expression in Equation (11.66¢) results in:

b*““'av‘*r =0 (11.77)
ap a&p - .

From Equation (11.77) and the basic definition of b;’;‘“ from Equation (11.45), the

(11.70)

following expression can be derived:

oV VS dUVF
C. C . — : 11.78
< ijqr a& > < mlij agl aé] > ( )

Comparing the last expression in Equation (11.76) with Equation (11.78), and

considering at the same time the symmetry of the elastic coefficients, results in:

qr V
Py —— Ad — 2Cyy J (11.79)
a& aE.bk)
Next, from Equation (11.75) one arrives at:
oV,
*k 2 i
() =~(2"Pu) - < Cre —é—§~> (11.80
]
Thus, from the last two Equations:
. A
<de>_<z2pqu +2zPy 3 > (11.81)

On account of Equation (11.40b), Equation (11.81) becomes:
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zd®)=(z’C__d_ +zC, d v
(2d5) ={ 2" Comns

ijmn “* mnk ?
i

qr
- <Zd;1r(> = <{Zcqrmn + Cijmn %}deﬂk>
]

On account of the first expression in Equation (11.45), the last expression in Equation

(11. 82) becomes:

(11.82)

(zdyf ) =(2byd oy, ) (11.83)
Finally, on account of Equations (11.8b), Equation (11.83) becomes:
8(zdys ) = (zd byt ) (11.84)

This is the desired symmetry relationship as it appears in Equation (11.63a). The
remaining two expressions in Equation (11.63a) can be shown in a similar manner.
Finally, the symmetry properties of the effective actuation coefficients as shown in

Equation (11.63b), can be proved in a similar manner.
11.8 Homogenized Plate vs. Composite Laminate Theory

The model derived in this chapter is valid for a thin plate with a rapidly oscillating
thickness. However, it is interesting to see what the model converges to for the case when

the plate has a uniform thickness.

Consider the stress components acting on a differential plate element as shown in Figure
11-2. It follows from the notation introduced in this paper that the force and moment

resultants as defined by Gibson [1994)] or Vinson ([1993] among others, are given by:
N =8(o0). N,=8(ol). N, =5(ol)
Q =8(c), Q,=8(c}) (11.85)
M, = 83<ZG§11)>, M, = 63<Z(S(212)>, M, = 53<ZG§'2’>

Here, the results in Equations (11.56b) and (11.56¢) were also used.
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Figure 11-2: Differential plate element

Substitution of Equations (11.60a) and (11.60b) into Equation (11.85) with a
simultaneous consideration of Equations (11. 61a), (11.61b) and (11.61c) leads to:
u, =v,(x)-x, —E)——VY-+ SUPe 5+ 87V P14 +
X

! (11.86a)
+82(URY + VIRY + W,TO + X, TV +Y,C” + A,C")

ow
u, =v,(x)-x, — +8UPe , +3° VP , +
o ‘ox, o0 2ol (11.86b)
+8°(USRQ + VERY + W,TO + X,T® +Y,C? + A,CV)

u, = w(x)+ vl +8U§;‘B$mB +82V3°‘B’cmB +

(11.86¢)
+82(USRQ + VIRY + W, T + X, TV +Y,C® + A,C")
N, =8(bif Yeo +87 (b7 )1, - 87(df )R - 87 (d;F )R + sed
1.
-8%(0,, )TV -8*(0;, )TV -87(A,, )V - 8*(A;, )C ( :
N, =8(b3 Jey +87(b35" ), —87(d%, )R ~87(d35)R Y + (11.86¢)

—8%(0, )T —87(03,)T" - 87(A,,)C® - 87 (A5, )C
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N, = 8(biF Je  +82(b15P )1, = 87(d}, )R - 8 (af )R +

(11.86f)
—~8%(0,,)T® - 82(0;, )TV - 8*(A,)C - 8*(A7, )"
Q, =8(a?) (11.86g)
Q, =8’(c%) (11.86h)
M, = 8(zb}? Je 5 +8°(2b;i" 1, — 8*(zdf )R - 87 (2d}F )R + |
1.86i)
—8(z0,,)T® - 87(20;, )TV - (24, )C) - 8*(zA’, )C! "
M, =8(zb% Je i + 87 (2" ), — 87(2d}, )R — 87 (zd % R ! + "
1.86j)
= 8(20,, )TV - (203, )TV - 8*(zA,, ) - 8 (zA", )" :
My, = (b Ve, +87 (2013 )1, — 8 (2d} )R - 87 (zd ) )RY + L
=8*(20,,)T - 8%(z0;, )TV - 87 (2, )C® - 8 (zA}, )V
In Equations (11.87a) to (11.87k) the following definitions were made:
v,(x)= v (x), v, (x)= &vy'(x), €, =€l (11.88)

One therefore concludes that v,(x), v,(x)and w(x) represent the displacements of the

middle plane of the plate and consequently €,,,€,, and €, are the mid-surface strains.
2 W2

ow : .
As well, -——=1,, =x,, and ——-=1,, = X,, are the bending curvatures associated

1 X2
with bending of the middle surface in the x;-x3 and x,-x3 planes respectively, and

ow?

ox,0x,

-2

=21, =k,, is the twisting curvature associated with torsion of the middle

surface, see also Equation (11.49a). Other terms in Equations (11.86a), (11.86b) and
(11.86c) account for the effect of hygrothermal expansion as well as that of the external
control signal R on the displacement field. In addition, the following relationships are

evident [Gibson, 1994]:
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Ay, = 8<b:i>’ Ap = 8<b1212>’ Ay = 8<b:f>’ Ay = 8<b§§>’ Ay = 8<b1222>’ Ag = 5<b:§>,
B,, =8"(zb}} ) =8%(b;\'), B,, =87(zb]7) = 8*(bj*), B,s = 8%(zb}}) =87 (b}}"),
B = 63b) = 5. B () =) By ()=o)

D, =8'(zb}}'), D,, =8°(zb,"), D, =8*(zb;)"), (11.89)
Dy, = 53<Zb;§2>, Dy = 83<Zb;122>’ D = 83<Zb:122>

To continue the comparison, it becomes necessary to consider the thermal, hygroscopic
and actuation (e.g. piezoelectric) effects on the force and moment vectors. Gibson [1994],
defines the force and moment vectors due to hygrothermal effects by the following
relationships:

N

{NT }= T® i [611( {0‘(0) }k (Xa,k — X3k ) {MT }: %O)z [G]k {0‘(6) }k (Xg,k - Xi,k—l )

k= k=1

{NM }= c® g [a]k {ﬁm }k (x3,k X3k ) {MM }= C_g [_Q—]k {B(C) }k (xi,k ~ X3k l

©
2

—

(11.90)

Here, [GL is the matrix of the plane stress-reduced elastic coefficients for the k™ ply, and
X3k X3k-1 dénote the distance of that ply from the middle of the laminate. As well, the
superscripts T and M refer to thermal and hygroscopic effects respectively. For the
purposes of the work in this chapter, one has to modify Equation (11.90) to take into
consideration the linear (rather than constant) variation in the change in temperature and

moisture content, see Equation (11.8c). Thus the thermal and hygroscopic forces and

moments become:

62<®aﬁ >T(o> +8° <®ZB >T“’ i

5 (20, )T + 8 (20, )T
{

(A B)C“” + 52<A*aﬁ>c<‘>,

NT, =
MY =

> (11.91)
NM =

Q
My = 8" (28,45 )C© +8* (27, )C®

Similarly, one may define actuation forces and moments as follows:
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m 0 2 *m 1)
NE, =8%(dm )R +52(d8 R E 1192
m 3 *m\p (1) ’
M3, =8*(zdp JRQ +8°(zd g )R,
In view of relations (11.86d)-(11.86k), (11.91), (11.92), the meaning of the effective

properties as defined in Section 11.6 is clear.
11.9 Summary and Concluding Remarks

The method of asymptotic homogenization was used to analyze a periodic smart
composite plate of rapidly varying thickness and a large number of embedded actuators.
A set of eight three-dimensional local unit-cell problems was derived which, unlike
classical homogenization schemes, were shown to depend on boundary conditions rather
than periodicity in the transverse direction. The solution of the unit-cell problems yields a
set of functions which, when averaged over the volume of the periodicity cell, determine
the effective elastic, actuation, thermal expansion and hygroscopic expansion coefficients
pertinent to the homogenized anisotropic smart plate. These effective coefficients then
enter the governing equations of the system, which in turn yield a set of displacement
functions. These functions having been determined enable one to make accurate
predictions concerning the three-dimensional local structure of the displacement and

stress fields.

It will be observed that the local problems are completely determined by the structure of
the unit cell of the smart plate, and are totally independent of the global formulation of
the problem. Hence, the effective coefficients determined from these problems are quite
general and may be used to examine a variety of problems associated with a given smart
structure. Finally, it is shown that in the limiting case of a thin elastic plate of uniform

thickness the derived model converges to the familiar classical plate model.

Appropriately, Chapter 12 illustrates the theory developed here with some practically-

important examples. In particular, two broad classes of examples are considered. One
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pertains to various laminates composed of monoclinic or orthotropic materials, and the
other deals with the determination of the effective properties of wafer-type piezoelectric

plates reinforced with mutually perpendicular ribs or stiffeners.




12.0 APPLICATIONS OF MODEL ON SMART COMPOSITE
PLATES WITH RAPIDLY VARYING THICKNESS

12.1 Introduction

In Chapter 11, the mathematical model for a thin smart composite plate with rapidly

varying thickness and an embedded array of actuators (see Figure 12-1) was derived.

Smart Composite
Reinforced Periodic plate

AVAVAVI'AVAVAVAV
‘ ‘A‘ ‘ ™ ‘ v

/ Actuator

Yi

Figure 12-1: Thin smart composite periodic plate with rapidly varying thickness and its
unit cell

346
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In this Chapter, the thedry developed will be illustrated by means of various examples. At
first, the effective properties of constant thickness laminates comprised of monoclinic
materials or orthotropic materials not referred to their principal coordinate system will be
determined. These effective coefficients subsequently will be used to calculate strains and
stresses induced in laminates by external loads, hygrothermal effects, or electric fields.
Further examples illustrate the determination of the effective properties of wafer-type
smart composite plates reinforced with smart ribs or stiffeners oriented along the
tangential directions of the plate.-For generality, it will be assumed that the ribs and the

base plate are made of different orthotropic materials.
12.2 Constant-Thickness Laminates

The first examples pertain to laminates of constant thickness, as shown in Figure 12-2. It
will be assumed that all layers are made of homogeneous materials and are perfectly
bonded with one another. As shown in the unit cell of Figure 12-2, each layer is
completely determined by the parameters 81, O7,... O Where M is the total number of
layers. The thickness of the m'? layer is therefore 8,,-8p,.; with 8p= 0 and &y = 1. The real
thickness of the m™ layer as measured in the original (X;,X;,X3) coordinate system is &(d-
Om1) where & is the thickness of the laminate (again with respect to the original
coordinate system). Clearly, since material coefficients for this problem are independent
of y; and y, then all partial derivatives in the unit cell problems of Equations (11.46a)-
(11.46h) become ordinary derivatives with respect to z and the unit cell problems can be
solved in a straightforward manner. As well, it is known that when an orthotropic or
transversely isotropic material is not referred to its principal coordinate system, the
number and location of the non-zero terms of the matrix of elastic, thermal expansion etc.
coefficients conform to those of a monoclinic material, see Equation (12.1), [Reddy,

1997]. Consequently, the effective coefficients derived next will pertain to monoclinic

materials.
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Figure 12-2: Unit cell of laminated plate
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|
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Before proceeding to the solution of the unit-cell problems observe that definitions

(11.28b) now become:
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d d _ dCi

L.=C..—, D ,=—L,., C,u= 12.2
ijn ijn3 dZ in dZ 3 B dZ ( )
As well, one observes from Figure 12-2 that:
Z* =il, n=N=(0,0,1), 8m=z+—1— (12.3)
2 2
12.2.1 Effective Elastic Coefficients
In view of Equation (12.2), the unit-cell problem (11.46a) becomes:
ibgﬁ =0
dz (12.4a)
b¥ =0 onz=z"
The solution of Equation (12.4a) leads to
b =0 (12.4b)

everywhere in the unit cell. On account of the pertinent definition in Equation (11.45)

implies that
dug® By
=-C3;C; where
dZ k3i3 ™ i3of

-1 _
Ck3i3ci3n3 - 8kn ?

(12.4¢)

Ok being the Kronecker symbol. Hence, for a monoclinic material, see Equations (12.1a)

and (12.1b),

dui? _du U Cag
dz dz =~ dz C
- 3333 (12.5)
and ~b® =-C;, 24 C
C e
3333
The elastic bg‘g parameters for this material are thus given by:
C; C,C C,;C C;
b, :—Eli"'cn’ b =——2-2+C,,, by _—_—%—3—6—.1.@16, by =-—*+C,,,
33 33 33 33
blzzz :_M+Czsv b}% :‘“i'*'cés’ bgﬁ = bﬁg zbyﬁ

33 33
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Here the contracted notation for the elastic coefficients was used.

The solution of the second unit cell problem from Equation (11.46b) proceeds in a similar

manner. Thus:

d

Lo =0
dz (12.7a)
b#=0 onz=z"
Therefore:
b3 =0
dv :ﬁ . (12.7b)
=—2C5;Clsq4
dz k3i3 “i30p
Consequently, for a monoclinic material, one finds that:
dvi? _dvy® 0 av;? _, Canup
dz dz =~ dz C
3 (12.7¢)
. 1 *op C33aﬁ
and . by" =-zCpyy ———+12C; 4
3333
The elastic b;)‘;” parameters for this material are thus given by:
C; c,C C,,C
bl'=—z—24+2C,, bP=-z—2"84,C,, bl=-2—27647C,,
1 C.. 11 1 C, 12 1 C,, 16 (12.7d)
. C? . C,,C R C: .
bl =-z—242C,, by =—z———g—36+zC26, by =-z2—%+2C, b)f;B = bﬁ“ =b
33 33 33
Comparing Equations (12.6) and (12.7d) one observes that:
by = zbys (12.7e)

To calculate the effective elastic coefficients, one proceeds in accordance with definition
(11.22) and integrates throughout the volume of the unit cell, considering at the same

time Equation (12.3). The results are:

(bi5) = b5 6, ~5.0,)
A LS (52 g2
(2bl3) =5 20" 6 =81~ 60 =5,0.)

m=l

(12.8a)
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(bo) = (zbl%) = %ibﬁﬁ(m’ (62 -8, - (8, —3,..)) (12.8b)

(ab) = (2764 ) = %ibggm)(s; 8- % (62 - 52, )+ %(5,“ -5, ))
The use of these coefficients will be illustrated by calculating the strains and stresses in
an 8-layer [+45/-45], antisymmetric angle-ply laminate consisting of 0.125-mm-thick
AS/3501 graphite/epoxy laminae with material properties shown in Table 10-3 [Gibson,
1994], and subjected to forces Ny = 10 kN/m, Ny = -5 kN/m and moments My = 4 Nm/m
and M, = -3 Nm/m. Typical plots are shown in Figures 12-3 and 12-4. Figure 12-3 shows
the variation of &, and €, through the thickness of the laminate and Figure 12-4 the
variation of o,. The results are consistent with the classical plate theory to which the

model converges.

2000 7 &

1500 - \

1000 -

Strain (ue)

T T 1

-0. 0.1 0.3 0.5
Depth (mm)

Figure 12-3: Variation of & and €, through thickness of laminate
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Figure 12-4: Variation of oy through thickness of laminate
12.2.2 Effective Thermal Expansion Coefficients

In view of Equation (12.2), the unit cell problem (11.46e) becomes:

iGB =0, subject to
dz

(12.9a)
®,=0 onZ*
The solution of Equation (12.9a) leads to:
©,; =0 everywhere in the unit cell
dW, (12.9b)
= = CryiKis
dz

The latter expression follows directly from the appropriate definition in Equation (11.45).
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It should be recalled that the Kj coefficients relate stress and temperature and are
determined from the double contraction of the elastic coefficients Cjy and the more
familiar oy coefficients (which relate strain and temperature), see Equation (11.40b).

Hence, for a monoclinic material, Equation (12.1b), the solution of Equation (12.9b)

leads to:
C...K,
_ ij33+*i3
@ij—Kij-— C
33(3; K c K o (210
=>@“=K”__u’ 0, =K,, - 2823 0,=K,- 3633
33 3 Cy

The unit cell problem from Equation (11.46f) proceeds in much the same way. Thus:

i@; =0, subject to
dz : (12.11a)
©,=0 onZ*

‘The solution of Equation (12.9a) leads to:

®;, =0 everywhere in the unit - cell

dx (12.11b)
= —" =2C5;:K;
dz Tn
Hence, for a monoclinic material, the solution of Equation (12.11b) leads to:
2C,;;K
* ij33 ™33
R R (12.12)
3333
* C,.K . C. K . K
=0, =z K”_M 0, =z Kn—M O, =z Klz_Cm 33
Cas Cy Ci

Integrating Equations (12.10) and (12.12) over the volume of the unit-cell gives the

effective coefficients. They are:
M
<®aﬁ> = ZG)SE) (8m - 8m—l )
m=}
(0)=(20,4) =23 0% -5, (5, -5, (213
m=1

(100) = (0u)=3 3 051 8., -3 60 -82. )+ 36, 5., )

m=1
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The use of these effective coefficients will be illustrated by subjecting the same 8-layer
[+45/-45]4 antisymmetric angle-ply laminate considered in the previous example to a
temperature change. In particular it will be assumed that T and T as defined in
Equation (11.8¢) are 40° C and 100° C respectively. One recalls that based on Equation
(11.91) the expressions for the thermal force and moment vectors in terms of the effective
coefficients were determined to be:

NIy =82(0, )T +8°(0,,)T®,

Miﬁ = 83<Z®ap>T(0) +8° <Z®;B >T(1) (12.14)
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Figure 12-5: Strain variation through thickness of laminate subjected to temperature
change



355

The thermal expansion coefficients for the graphite epoxy laminae in question are given
in'Table 10-4, [Gibson, 1994]. Figure 12-5 shows the normal and shear strain distribution

in the laminate as a result of the given temperature increase. As expected, if T'" = 0 (or if

the <®’;ﬁ> and <z®;ﬁ> effective thermal expansion coefficients are neglected) the strain

values obtained conform with those pertaining to the classical plate theory. Figures 12-6
and 12-7 show the variation of oy (or oy) and 7,y respectively. It is observed that the
stress distribution is quite complex (due to coupling) and that the laminate experiences

both bending about the x; and x; axes, as well as out-of-plane warping.

40 -
B
> 351 /
() . 3
30 -
/
/ 5
[ T T O T T T
0.5 0.3 0.1 0.1 0.3 0.5
Depth (mm)

Figure 12-6: o, (or oy) variation through thickness of laminate subjected to temperature
change
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Figure 12-7: 1,, variation through thickness of laminate subjected to temperature

change

12.2.3 Effective Hygroscopic Expansion Coefficients

In view of Equation (12.2), the unit-cell problem (11.46g) becomes:

iAi3 =0, subject to
dz

A;=0 onZ*
The solution of Equation (12.15a) leads to:

A; =0 everywhere in the unit cell

dY
== C;l3i3Bi3
Z

=

Hence, for a monoclinic material, the solution of Equation (12.15b) leads to:

(12.15a)

(12.15b)
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C...B.
. §j337143
Aij —Bij -
33C33 B c B o (12.16)
= A, =B, - 2 33’ Ay, =By, - 25, A, =B, - =
Cy C 33

Similarly, the unit-cell problem (11.46h) becomes:

~d—A =0, subject to
dz (12.17a)
A,=0 onZ*

The solution of Equation (12.17a) leads to:

A, =0 everywhere in the unit cell

A (12.17b)
s =2C 5K 3
dz

Hence, for a monoclinic material, the solution of Equation (12.17b) leads to:

. 2C,,,B
Ay =By ——— (12.18)
Ci
- C,..B . C.B . C.B
= A, =2 B“—M A, =7| B, _ 3733 A,=7B, - 36033
Cy C,, C.,,

It should be noted here that the Bj coefficients relate stress to change in moisture
concentration, and are determined from the double contraction of the elastic coefficients
Ci and the more familiar Bj coefficients (which relate strain and moisture
concentration). The effective hygroscopic expansion coefficients pertaining to a
monoclinic elastic solid are thus obtained from Equations (12.16) and (12.18) by

integrating over the volume of the unit cell. The results are:

(Aep)= ZA‘"" o)
(M) =(2he) = ZA('") [5 -8, -6, -8,.)]
<zA*aﬁ> = < > ZA““)[EV —%(5,2,1 ~82 )+ %(&n ~8,. )}

As an illustration of the use of the effective hygroscopic coefficients, consider the same

(12.19)

angle-ply laminate from the previous example and assume that both C9 and C'" defined
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in Equation (11.8¢) to be 0.5%. The variation of the normal and shear strains through the
thickness of the laminate is determined and plotted in Figure 12-8. It is noted that the
calculation of these induced strains was based on the expressions for the hygroscopic
forces and moments determined from Equation (11.91) to be:
M _ Q2 0 2/ A% m
N = 82(A g )OO + 87 (A4 )C
. , © <3/t \mih (12.20)
M, =8°(zA,4)C” +3 <zAaﬁ)c‘
As well, Figures 12-9 and 12-10 show the variation of ox (or o) and Ty, respectively.

Similarly to the previous example, the laminate experiences both bending and out-of-

plane warping. It should be noted that if (A*ocB> and <zA*aﬁ> are neglected, or equivalently

if C = 0, then the resulting strains and stresses agree with their counterparts from the

classical laminate theory.

g 950 -
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& 750 - \
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Figure 12-8: Strain variation through thickness of laminate subjected to a change in
moisture content
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Figure 12-9: o, (or 6,) variation through thickness of laminate subjected to a change in
moisture concentration
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Figure 12-10: t,, variation through thickness of laminate subjected to a change in moisture
concentration




12.2.4 Effective Piezoelectric Coefficients
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Consider now the unit-cell problem (11.46¢c), which, for a laminate made of

homogeneous layers, reduces to:

didg =0, subject to
z
d=0 onZ*

The solution of Equation (12.21) leads to

d¥ =0 everywhere in the unit cell
du¥

oty
dz - Cm3i3Pi3k 4

=

the latter following from the appropriate definition in Equation (11.45).

Thus, for a monoclinic piezoelectric solid, one obtains:

au; B} du? . }
le = C5;P15 + C4§P14 ’ 'Ej‘ = Cs:lspzs + C4;P24’
Lo B} auz _

d22 = CosPys + CyP, _Zz = CsPys + CyPyy,
du; _ Py

dz C,’
du; _du; _du; _ du? ~o

dz dz dz dz

The solution of Equation (12.23) leads to,
C C C
d?l =P, "“'lipsy dzz =P, —iPaw d?z =Py —iPax
33 33 33

dly =0,

(12.21)

(12.22)

(12.23)

(12.24)

where, as before, Greek suffixes range from 1 to 2 as opposed to Latin indices, which

range from 1 to 3.

Likewise, unit-cell problem (11.46d) becomes:




361

d . )
—d* =0, subjectt
dz ° subject fo (12.25)

dx =0 onZ*
The solution of Equation (12.25) leads to:

d;x =0 everywhere in the unit cell

K (12.26)
d;;m = Zc:n13i3Pi3k
It will be observed from the last expressions in Equations (12.22) and (12.26) that:
k k
Vo =sz“‘ (12.27)
dz dz
Thus,
A i} B av; B} _
—= Z(C5;P15 + C4;P14)’ — = Z(Csépzs + C4;P24)
dz dz
dv) ) . dv; _ _
de = Z(C4;P25 + C4£1tPl4) de = Z(C4;P25 + C4411P24)
3 (12.28)
dv; , P,
dz Cy,
vy dv; dvy; dvy 0

dz dz dz dz
The solution of Equation (12.28) leads to:

* C * C N C
Befngn | aefnogn | asfngn)

o
It is noted here that Py represent the piezoelectric stress coefficients which are obtained
by the double contraction of the elastic coefficients and the piezoelectric strain

coefficients djj.

The effective piezoelectric constants pertinent to a monoclinic laminate are determined
from Equations (12.24) and (12.29) and the averaging procedure, defined in this work as

the integration over the volume of the unit cell. They are:
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(d2) = idi};“’ (G =8, )

m=1

(a2} =(a) =2 S a2 -82.)-6,-5,.)

m=]

(s = (2azp) =2 30| 62 -82. - 302 -0 Je 26,5,

(12.30)

Bl

m=1

Table 12-1: Material Properties [Vel and Batra, 2000b]

Cy, (GPa) 238.24
C12 (GPa) 3.98
C3(GPa) 2.19
C22 (GPa) 14.6
C23 (GPa) 44
C13 (GPa) 10.64
Cu4 (GPa) 2.15
Css (GPa) 2.15
C66 (GPa) 6.43
e31(Cm™) -0.130
e3(Cm™>) -0.145
e33(Cm™>) -0.276
e24(Cm™) -0.009 -
e15(Cm™) -0.135

The use of the effective piezoelectric coefficients will be illustrated by calculating the
strains and stresses induced in a [0/90], laminate composed of PVDF piezoelectric layeré

with elastic and piezoelectric properties shown in Table 12-1 [Vel and Batra, 2000b]. It
will be assumed that R{” and R, are both equal to 100V/mm. After calculating the

effective elastic coefficients of this laminate from Equations (12.8a) and (12.8b), and

using the derived expressions for the piezoelectric force and moment vectors from
Equation (11.92), i.e.,
R _ 2 m (O] 2 *m 1
N =8 (dg )RY +8*(dp )RY

Mgﬂ - 53<Zd2B>R$)) +53<Zd;E>R$) (12.31)
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the strains due to the electric field are readily determined and are plotted in Figure 12-11.

Figures 12-12 and 12-13 are plots of o and G, respectively.
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Figure 12-11: Strain variation through thickness of piezoelectric laminate due to
an electric field
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Figure 12-12: o, variation through thickness of piezoelectric laminate due to an
electric field
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Figure 12-13: o, variation through thickness of piezoelectric laminate due to an
electric field '
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12.3 Wafer-type Reinforced Plates

In the subsequent examples a different type of structure will be considered, namely a
wafer-reinforced piezoelectric plate, shown in Figure 12-14 [Kalamkarov, 1992]. For
generality it will be assumed that the reinforcements also exhibit piezoelectric properties,
which may be, if desired, set to zero. As well, each constituent of the unit cell will be
made of a different orthotropic material. We are interested in calculating the effective

piezoelectric, elastic, thermal expansion and hygroscopic coefficients for this structure.

The elastic and thermal expansion coefficients for wafer-reinforced composite plates
were calculated by Kalamkarov [1992]. Neither the plate nor its reinforcements exhibited
any actuation characteristics. In this section, the same technique will be applied to smart
composite plates with smart wafers or ribs. In addition to the effective piezoelectric
coefficients, the effective hygroscopic coefficients will also be determined. As well,
Kalamkarov [1992] did not use the unit-cell problems defined by Equations (11.46¢) and
(11.46f) when calculating the effective thermal expansion coefficients. Instead, he used
the symmetry relationships shown in Equation (11.62b). Hence, in this section, in
addition to the piezoelectric and hygroscopic expansion coefficients, the thermal

expansion coefficients will also be calculated directly from the unit-cell problems.

A solution of the local problems relevant to this kind of geometry may be found under the
assumption that the thickness of each of the three elements of the unit cell is small in
comparison with the other two dimensions, i.e.

t,<<h,, t,<<h,, H~h.,h,. (12.31)
The local problems then can be solved approximately for each of the unit-cell elements,
assuming that complications at the joints are highly localized and do not contribute
significantly to the integrals over the unit cell. Consequently, the local problems can be

solved independently for regions €;, €, and €23 as shown in Figure 12-15 [Kalamkarov,
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1992]. Figure 12-15 also shows the transformed unit cell under the introduction of the

rapid coordinates yj, y2, and z.

Wafer reinforced plate

Z
l
X3
A
Unit cell
oty
yd ‘
]
oty / > X,
8¢ // oh,
/ 5h2 -
X]

Figure 12-14: A wafer-reinforced plate and its unit cell [Kalamkarov, 1992]
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Figure 12-15: Unit cell of a wafer (with respect to fast coordinates) and the individual
elements [Kalamkarov, 1992]
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12.3.1 Effective Elastic Coefficients

The solution of the elasticity problem through unit-cell problems (11.46a) and (11.46b)
has been obtained by Kalamkarov [1992]. The results only will be given below:

0 anI O ) ln Ql’ QZ
b}i =<E1 ln QZ blzl2 =b12]2 = V12E2 an , b:'ll :bllzz :()
3
E, inQ, 1-v,vy
1_V12V21
E in Q
22 2 . 1 12 0 in Ql’ QZ 12 " ap
b22 =<0 1mn Qz blz = G . b“ =b22 :b3| =O,
E 12 3
2 in Q,
\1_\’12\’21 (12.32)
b;” = Zb:jl’ bi*jzz _ Zbgz’
( a nrth, |G
H+1 2H ¢ =17 ko h[ Hl\/an‘] ““(Z——]
Glz(l )+G12—22 2 cos in Q,
2 n=l nrth, 6, |G, H
cosh 2
2H Gy,
b;122=< [1—(—1)"]C0$h('r% _g_lé_ 2) nn(z—l]
Gl2( _H+1)+G12£2 = cos 2 in Q,
2 L= h,5, [G H :
l cosh 07,0, 1P
2H G,
26, in Q,

by =by =by’ =0
The effective elastic coefficients are determined from Equation (11.22) and (12.32) and

are:
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E® i} EY ) DE®
()= v B (o) = B ()=
()= (- [)-EESE (1))t

(zb)') = E, +EPI, (b)) = Es +EVI™),

(3),,(3) 3),®
12(1-vOv 120 -v;vs,

. VEY . o O (Ht G2 (H'% ’
<Zb2l21> vy E| <Zb1§2>= Gy +G12 { L_K, }_*__12(_11_2_[(2 (12.33)
/

120-vOvOY) 12 12| h, 12

4 (1) o G(l) t
whereK,—%H (1)2[1 ] of um, nn
G & GU 2H

. K2_96H4 ngz[l S . GEZ nnt,
67 & G? 2H

Here the superscripts (1), (2), and (3) refer to regions €y, £2;, and Qs respectively and the

quantities ™, S, J™™ are defined as follows [Kalamkarov, 1992]:

H
1)9,)L = JldY1dY2dZ = htu =Fo(cW)’ <1>93 =1,

Q, o
H’+H ,
Z)Qm = JZdY1dY2dZ = (—‘;IT'L = Sfxw), <Z>Qa =0, (12.34a)
Q o
(4H® +6H? +3Hk,
<Z2>QOL = d[22(1)’1(1yzdz = 12ha = J(x ), <Z>Q] =1/12,

Thus Fl(w),Fz(W) are cross-sectional areas, wa),S(zw) are first moments, and J fw) g (2‘” are
moments of inertia of the cross-sections of the reinforcing elements €; and €2, relative to

the middle surface of the plate Qj;. Reference to Figure 12-15 in conjunction with

Equation (11.22) leads to Equations (12.34) in a straightforward manner.

As a final note, it is worthwhile to mention here the following relationships between the

elastic coefficients and the engineering constants [Kalamkarov, 1992]:
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V21E1 =C. — C13C23 Ex _ _ C123 Ez =C,,— ng
-2 > — 11 s 2
1_V12V21 C33 1_\’12\’21 C33 1_V12V2x C33
E1 - C“ + 2C12C13CCz3 ;ClzZ%; _C123C22 , E2 - C“ + 2C12C13(é:23 (—:Clzz(éz; "C§3C1| i
' 2233 T V03 11233 7 M3
E.=C 2C12C13C23 —C123C22 _'C§3Cu _ C|2C33 "C13C23
3=Cyut C O _c2 » Ve T T e 2 (12.34b)
1122 12 _ 2233 23
V.. = C12C33 _C13C23 V.. = C22C13 —C12C23 V.. = C22C13 _C|2C23
217 s 13 ’ 31 s
C11C33 _C123 C22C33 -—C§3 Cnczz _C122
C,C,.-C.C C C,,-C.C
_ 1123 1312 et § 1312 , st =C44, G13 =C55, ze :Cm

Vo3 = 7 Vi, 2
C11C33 —C13 Cuczz _Cl2
Here vi2, Va1, Vi3, V31, V23, V32 are Poisson’s ratios, E; E, Ej are Young’s moduli, and G,

Gi3, Gy3 are the shear moduli.
12.3.2 Effective Hygroscopic Expansion Coefficients

One starts with the unit-cell problerﬁ (11.46g), in an attempt to calculate the effective

hygroscopic expansion coefficients. In the pertinent definition of Equation (11.45),

define:
T = Lijn Y (12.35a)
One recalls that the operator Ly is defined by:
1 0 )
Lijk =Cijka E—;E-i_cijk:?)g; (12.35b)

Since each element of the periodicity cell is made of a homogeneous material, the
differential equation of the unit-cell problem in Equation (11.46g) becomes:
1 aTi IT.
— P 4By (12.36)
o hy dy, oz
Thus for an orthotropic material, the functions T pertinent to the hygroscopic problem

become:



371

Y 1 aY aY.
T Z_I'Cu J 1 +—C), 2 +C; :
h, dy, h, 9y, oz

L9y, 1 . dY, . aY,

=C,, ——+—C, —+ —_—
Ty h, 12 ayl h, 22 ayz 27,
1 aY, 1 Y. Y
C13 h_Cza‘é'y—j_"'Casa_Z}
_¢ 1 aY E)Y (12.37)
“ h2 ay2 oz
C 1 BY BY
h1 E)y1 dz

T, =C 1 9Y, +8Y
* h dy, 9y,
Next, the bbundary conditions from Equation (11.46g) will be considered. These will

firstly be rewritten as:

A A, =0 (12.38)

a

Here, one recalls that n is the unit vector normal to the surface Z= of the unit cell, and
n :El—N , n; =N, (12.39)

Thus from Equation (12.38) one writes:

1 1
B_A“nl +h—Ai2n2 +A;n, =0

1 2

1 ) (12.40a)
h_(Bn'"Til)nl“*'h ( i2 = 12)n2+(B13 13)n3=0
1
Define next the following quantities:
6=T, =+ T, = +T,
1 2
1 n,
t, =T, — +T,,—+7TyN, (12.40b)
I 2
ty =Ty +Ty =+ Ty0



Thus, from the last expression in Equation (12.40a) one writes:

B, —%+B,n,—t, =0 (12.40¢)

a
Finally, for an orthotropic material the boundary conditions become:

n, n,

-2 t,=B,— onZ* (12.41)
22h2 3 33h3

n
t =B,,—, t,=B
1 Ilh 2
1

The Ay functions (for an orthotropic material) are obtained as follows:

Ay =B, -1

Ay =By-1,

Ay =By — Ty (12.42)
Ap=-1,

Ay =1,

Ay =Ty

As explained above, the A functions will be solved by considering each element of the

unit cell separately, see Figure 12-15.

(a) Region Q;:
This is defined by:

-9,/2<y,<8,/2, -1/2<y,<1/2, 1/2<z<]/2+H (12.43a)
Boundary conditions must be supplied on z = Y2, z = ¥2+H, where n; =n, =0, n3 = | and
on y; = £8;/2 where n; = n3 = 0, ny = 1. Thus, from Equations (12.40b) and (12.41) the

boundary conditions become:

B
t,=t, =0, t,=—" o

h, (12.43b)
=1,=1,=0, 17,=B, (ony, :i81/2)

and

(12.43¢)
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Keeping in mind that in region Q, there is periodicity in y,, the Y; functions are readily
determined to be:

- h1(C13kB33 _C33B11)

=<

C123 _C11C33 1
Y, =0 (12.442)
Y3 - C13]2311 "C11B33 7z
C13 —C11C33

These functions, yield, on account of Equations (12.37), (12.42) and (12.34b) the
following expressions: ’
Ay =0, A, =B22_V23B33'V21B11’ (12.44b)
A33=A12:A13=A23=0 v
(b) Region Q,:
This is defined by:
~-1/2<y, <12, -8,/2<y,<8,/2, 1/2<z<]/2+H (12.452)
Boundary conditions must be supplied on z = %2, z = Y2+H, where n; = n; =0, n; = 1 and
on y; = £8,/2 where n; = n3 = 0, n, = 1. Thus, from Equations (12.40b) and (12.41) the

boundary conditions become:

B
t,=t, =0, t,=—2
h, (12.45b)
=7T,=1,=0, T,=B, (ony, =%3,/2)
and
t,=t,=0, t;=By

(12.45¢)
=T,=T,=0, T,,=B,, (onz=1/2,2=1/2+H)

Keeping in mind that in region £, there is periodicity in y,, the Y; functions are readily
determined to be:
Y, =0 (12.462)

and
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— hz(c33B22 _C23B33)
C22C33 _C§3
— C22B33 "CzaBzz 7
C22C33 _C§3

Y,

2

(12.46b)

Y,

These functions, yield, on account of Equations (12.37), (12.42) and (12.34b) the
following expressions:
A, =B, -v;,B,—Vv;;Bi, A,y =0, (12.46¢)
Ay=A,=A;=A,;=0
(c) Region Q3
This is defined by:
-1/2<y, <12, -12<y,<V2, -1/2<z<]/2 (12.47a)
Boundary conditions must be supplied on z = %2, z = Y2+H, where n; = n, =0, n; = 1.
Thus, from Equations (12.40b) and (12.41) the boundary conditions become:
L=t=0 1 =B, (12.47b)
=T, =T, =0, T,,=B;, (on z=%1/2)
An account of periodicity in y; and y,, and from differential equations (12.36) and
boundary conditions (12.47b) one writes:
T3 =Ty =0, 1T, =B,; everywherein €, (12.48)

Hence, from Equations (12.48) and (12.37) the functions Y; are given by the following

expressions:
Y, =Y,=0 .
12.49:
Y, = h 7 ( )
C33

The latter expressions yield, on account of Equations (12.37) and (12.42), the following

expressions for the Aij functions:

C;B CyxB
A, =B, ———, Ay =B, ——2—2, Ay =0
C,, C,, (12.49b)

Apy=A;=A,=0
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. The solution of the unit cell problem from Equation (11.46h) proceeds in much the same
way. Starting from
A :
._1__.__'B + ’81\_13 — O’
hg dy, oz (12.50a)
* oyt £
AN =0 (on Z*)

and defining

%ij = Liijm (12501))
leads to
o7, T.
1 9%, 9T (12.50¢)
hg dy, 9z

on account of the fact that each element of the periodicity cell is made of a homogeneous

material.

Thus for an orthotropic material, the functions T; pertinent to the hygroscopic problem,

become:
_ 1 JA 1 JA JA
Ty =_C11—1+—C12_2+C13“_‘3‘
h, “dy, h, "ay, 0z
_ 1 JA 1 JA oA
Ty == Cpp ot —Cpy —2+Cp —
h, dy, h, ay, 0z
_ 1 JA 1 JA JA
Ts3 =———-C13-—1+—C23——2~+C33—3
h, dy, h, dy, oz
_ 1 3A, A, (12.51)
Ty = Cu| +—
h, dy, oz
A
T3 =Css ia > +§é’l‘
h, dy, oz
Ty, =Cg ‘L%“LaAZ
h, dy, 9y,

Next, the boundary conditions from Equation (12.50A) will be considered. First define
the following:
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- _ n _ n, _
G =T+ Ty T+ T30,
hl 2
- _ n, _ n, _
t, =T, —+T, —=+7,0, N (12.52q)
hl h2
- _ n, _ n, _
Uy = T3 7+ T3 7= 1 U530,
hl 2
Thus the boundary conditions become:
n -
zB,, h—“+ zB;n, —t, =0
* (12.52b)
- n - n - n
t,=B,,—, t,=B,~%, t,=B,—* onZ*
1 11 2 22 h 3 33 h
hl 2 3
The A*ij functions (for an orthotropic material) are obtained as follows:
A, =2B, -7,
Ay =2By -1y
Ay =2By -5 (12.52¢)
Ap=-T,
Ay =T
Ay =Ty

The A*ij functions will be solved by considering each element of the unit cell separately,

as was done for the previous unit cell problem.

(a) Region Q;:

The boundary conditions are:

f,=1,=0, T,=z0u
h,
=1,=1,=0, T,=2B,
and
t,=t,=0, t,=zB,,
= T3 =Ty =0, T3,=By,

(12.53a)
(ony, =%38,/2)

12.53b
(onz=1/2,2=1/2+H) ( )
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Keeping in mind that in region Q; there is periodicity in y,, the A; functions are readily
determined to be:

hl(c33Bll "C13B33)

A = y,Z

1 C11C33 "C123
A,=0 o (12.54a)
A3 — C11B33 _C13B11 Z—2-+h2 (C13B33 ‘CaaBn))’_lz

C11C33 _C123 2 l C11C33 _C123 2
These functions yield, on account of Equations (12.51), (12.52¢) and (12.34b), the
following expressions:

A*n =0, A*zz = Z(Bzz -Vy;By, _Vleu)’

. . « . (12.54b)
Ay =A,;=A;=A;=0
(b) Region Q,:
The boundary conditions are:
- - B
tl=t3=0, t2=_Z___22_ _
h, (12.55a)
=7T,=1,=0, T, =B, (ony,=%3,/2)
and
t,=1,=0, T,=2B, 1255

=7T,=1,=0, T,;=2zB, (onz=1/2,2=1/2+H)
Keeping in mind that in region £, there is periodicity in y;, the A; functions are readily
determined to be:

A, =0
h,(C,,B,,—C..B
AZ: 2( 33+-22 C223 33)yzz (1256(1)
C22C33_C23
A, = C22B33 _C23B22 £+h2 C23B33 _C33B22 Y_g
5=
C22C33“C§3 2 C22C33_C§3 2

These functions, yield, on account of Equations (12.51), (12.52c) and (12.34b) the

following expressions:
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A*u = Z(Bu -V;,By —Vi3By )’ A*zz =0,

. X X . (12.56b)
A=A, =A5=Ay =0
(c) Region Q3:
The boundary conditions are:
t,=t,=0, t,=zB, (12.572)

=T, =1, =0, T;;=2B; (on z=%1/2)
An account of periodicity in y; and y,, and from differential equations (12.50c) and
boundary conditions (12.57a) one writes:

T,=7T,,=0, T;,=2B;; everywherein 2, (12.57b)

Hence, from Equations (12.57b) and (12.51) the functions A; are given by the following

expressions:
5 Z (12.58a)

The latter expressions, yield on account of Equations (12.51) and (12.52¢) the following

expressions for the A, functions:

. C,;B . C,B .
An:Z(Bu" 833} A22=Z[B22—- 233} Ay =

(12.58b)

33 33

A*23 = A*13 = A*l2 =0

Having solved the unit-cell problems for the hygroscopic coefficients and remembering
that
By
B; =Cyu ? (12.59)
then on account of Equation (12.34b), the hygroscopic strain coefficients are given from
Equations (12.44b), (12.46¢), (12.49b), (12.54b), (12.56b), and (12.58b) by the following

expressions:
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A, =0, dA, =E,BY inQ,

A, =0, A, =EpY inQ, (12.60a)
() (c) {c) E (e)
SA“ — EIBI + V21E1B2 , 8A22 = E2B2 + V21 lBl in Q3
1_\’12\’21 1—"’12\’21 1—V12V21 1_V12V21
Ay =A,=A;=A,;=0 in Q,,Q,,Q,
A, =0, A, = ZE2B(2°) in Q,
(12.60b)

A, =0, 8A}, =zEB® inQ,
() () E.3© (©)
SA*” — Z( EIBI + VZIEIBZ ) 8A"‘22 = Z( 2B2 + VZIEIBI ) in Q}

1_\'12\’21 1_V12V21 1_\/12\’21 1_\’12\’21

A*33 = A*xz =A*13 =A*23 =0 inQ,Q,,Q,.

Comparison of Equations (12.60a) and (12.60b) reveals that:

A, =zA, (12.60¢)

The effective hygroscopic expansion coefficients are determined from Equations (12.60a)

and (12.60b), bearing Equations (11.22) and (12.34b) in mind. They are given by the

following expressions:

E§3>Blc)<3) +E(3’ (%)B(c)m
VIV
E<3)B(c)<3) +E(”v“)B(°)(”

vV
8<zA“ < > E(Z)B(c)u)S(w)

)=
52A22) < >E<1>B(c<1)s<w>
)=

8<A11> = E§2)B$C)(2)F2(W) +

8( A, > E<21> ﬁgC)(l)Fl(W)

(12.61)

E<3>B(c)(3)+E<3> 3R X3

2

E<2>B(c)<2>J(w>

12(1-viv ‘23,’)
E(ZS)B(;)G) +E(” (DB(c)(%)
12@—v8N$0

{
5<ZA "
<

8(zA, ) =BPBSOIM +

12.3.3 Effective Piezoelectric Coefficients
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It should be first noted that for an orthotropic material, the matrix of piezoelectric stress

or strain coefficients is of the following form:

0 o0 df
0 o0 4§
g d(‘)” dé; (12.62)
24
a? o0 0
0 0 0]

The first unit cell problem to be dealt with is Equation (11.46¢) repeated here for
convenience:
od; k
_1_ iB + ad13 — 0
hg dy, oz (12.63)
KnTE: +
d*N* =0 (on Z*)

One also recalls that:

dj =Py L, Up (12.64)
If next, one defines

=L, Uk - (12.65)
then the differential equation in(12.63) becomes:
1 a’tf ots
— BB (12.66)
hy dy, oz

Here the Tg functions for an orthotropic material are given by the following expressions:

1 . U 1 Uk U’
T:(l =_C11‘_1'+_C12 : +C13 2
h, dy, h, ay, oz
. 1, dur 1 ou} U’
=—C,—+—C +C - 12.67a
22 hl 12 ayl h2 22 ay2 23 aZ ( )
1 . dUF 1 Uk Ut
]3(3 =—C; : +—C, 2 +Cy; :
h, dy, h, ady, o0z
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1 9Ut QU

Ty, =C +
2o 7% h, 0y, oz
. 1 oU¥  9Uf
= | Loy 12.67b
B 7% h oy, oz ( )
Ul  dU;
1), = Ces La St
h, dy, dy,

One subsequently considers the boundary conditions in Equation (12.63). To this end,
one defines:

X x g k .
t, = TmH——+Ti3n3 (12.68a)

o

Thus, from Equation (12.68a) the boundary conditions become:

i i 1 n,;
t, =Psn,, , =0, t3:P15F"
1
n
t?=0, tl=Py,n,, t§:P24h—2, onz* (12.68b)
2
n n
2=p, L, =P,—2, t2=P,n
1 31h 2 32h 3 33783

The d:} functions are then obtained from the following expressions:

dy, =-1, dj, =1, dj, =Py, -1,

di, = -1y, dj, = -1, d, =1,

dy, =13 ‘ d3, = -15, d3, =Py, — 75 (12.69)
dy, = —T5 d3, =Py —15, d3, =-13

d133 = _T133 d§3 = _T§3 dg3 =P, - T§3

dy, =P -1y, df =-15, d3, = -1,

As for the hygroscopic problem, the di'; functions will be solved by considering each

element of the unit cell separately. The ’ci'j problem will be dealt with first.



(a) Region Q;:
From Equations (12.68a) and (12.68b) the boundary conditions are:

P
tt=tl=0 t;=-1
1 2 3 hl
STy =T, =0 T, =P ony, =13,/2
and (12.70a)

tlz"_‘tlazo t}’_‘Pls
nT,=Pg, T,=1,=0 onz=1/2, z=1/2+H
Thus, considering the periodicity in y,, and using Equations (12.66), (12.67a), (12.67b)

and (12.70a), the following functions are determined:

P
Ul =—Lg,
C55
UL,=U;=0 (12.70b)

P P S B B -
=T, =Ty =T =Ty =T, =0, T;=P;

(b) Region ;:
From Equations (12.68a) and (12.68b) the boundary conditions are:

and ‘ (12.71a)

ST, =P, T =133=0 onz=1/2, z=1/2+H
Thus, considering the periodicity in y;, and using Equations (12.66), (12.67a), (12.67b)
and (12.71a), the following functions are determined:

P
1
Ul=—15g

55

U,=U,=0 (12.71b)

| (S S R SR S 1
:>Tll—T22—T33_T23—112_0’ Tla—Pls

(c) Region Qj:

The boundary conditions are:
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tl=P, t,=t;=0
R (12.72a)
ST, =P, T, =13=0 onz=x1/2
Thus, considering the periodicity in y, y, and using Equations (12.66), (12.67a), (12.67b)
and (12.72a), the following functions are determined:

P
U: :iZ,

55
Ul=U;=0 (12.72b)
= T:l =Ty, = Tl33 = le3 :1712 =0, T}3 =Py
Thus, considering Equations (12.64), (12.65), (12.70b), (12.71b) and (12.72b) one
obtains:
d:l = diz = dlzz = dlza = d133 =0,

| }in Q,,Q,,Q, (12.73)
d; =P, -P; =0

The solution of the 'tizj problem is very similar to the ’c}j problem and is:

T =T, =T =T, =1, =0

n="Typ =T =131, inQ,Q,,Q, (12.74a)
, 2

T3 = Py

Thus:

df =d}, =d}, =d}; =d5; =0
121 12 = Uy = Uy3 =0y inQ,Q,, Q, (12.74b)
dy =Py —Py =0

The final problem to be solved pertains to the T?j functions. As usual, the solution will be

obtained on region-by-region basis.

(a) Region Q;:
In Q, the boundary conditions are:

P
t; = tg =0 t13 =3
h, (12.75a)

R S 3 _ =
STy =13 =0 T, =Py ony =%§,/2
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=t=0 ;=P (12.75b)
1, =P, 1,=1,=0 onz=1/2, z=1/2+H
Hence, from Equations (12.66), (12.67a), (12.75a) and (12.75b), and considering

periodicity in y, the U} functions are:

U13 — C33P31 “C1312)33 h‘ ]

C11C33 —C13
U, =0 (12.76)
Ug — C11P33 "C13P31 7z

C11C33 - C123
Thus, the d?j piezoelectric coefficients are obtained through Equations (12.67b), (12.69),

(12.34b) and (12.76) and are:
dgz =Py, — vy Py =V 3Py, d?l = d§3 = d132 = diz = d;; =0 (12.77)

(b) Region Q;:
In €, the boundary conditions are:

P
t=t=0 tj=-"2
h, (12.782)
3

g3 3 — —
STy =Ty =0 T, =Py, ony,=%3,/2

and

3 _ 43 3
tp=t;=0 t; =Py

, 5 , (12.78b)
ST =Py, T,=1,=0 onz=1/2, z=1/2+H

Hence, from Equations (12.66), (12.67a), (12.78a) and (12.78b), and considering

periodicity in y; the U’ functions are:

Ul =0

_ C33P32 '“C23P33

= 2 2Y2
C22C33 _C23

— C22P33 —C23P32
C22C33 ;C§3

U

(12.79)

U;
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Thus, the d?] piezoelectric coefficients are obtained through Equations (12.67a), (12.67b),
(12.69), (12.34b) and (12.79) and are: ,

d} =P, —v,,P, VP, d}, =d}, =d},=d};=d}, =0 (12.80)
(c) Region Q3:

The appropriate boundary conditions are:

t?=t2=0, t;=P
; g 13 133 (12.81a)
13, =2P,, T,,=T,,=0 onz=%1/2

Thus from Equations (12.66), (12.67a), (12.67b) and (12.81a) and on account of

periodicity in y; and y, one obtains:

P
Ul=22, U=U}=0
33
C C
— T131 =—‘—§-P33, 132 =—2p, 133 =P, (12.81b)
33 C33

T =Tj3 =Ty =0
Thus, from Equationl(12.69) the d?j functions are obtained as follows:
C
dfl =Py —JP%

33

d}, =P, -—2P,, (12.81¢)

The solution of the unit-cell problem from Equation (11.46d) will now be presented.
Starting from
ady ad’*
1 9  ods \
hy dy,  dz- : (12.82a)
d*N* =0 (onZz*)

and defining

T =L,V (12.82b)
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leads to:

L 9Ty IT

— =P, (12.82¢)
hy 9y, 9z

Thus, for an orthotropic material, the functions Ti‘j‘ pertinent to the piezoelectric problem

become:

_ 1 Ve 1 oV A
lel =—C, : +—Cp 2 +C13 .
h, dy, h, ay, oz

. 1 . 9vf 1 A Vs
T, =—C;,,——+—C +C
2 h, 12 dy, h, 22 Jy, 8BS,
‘ A vy
—;(3 =£—C13 aVl _l'-‘LCIBa 2 +C33 :
h, dy, h, ay, 0z 1283
= —C 1av3“+av2‘< (1=
23 T a4 T N
h, dy, oz
VAREA'A
T1k3 =Cy; La S+
h, dy, 0z
k Vk
T, = Ces LaVl +a :
h, dy, 9y,

Next, define the following:

Tk

5 N 1 n _
t =T51_1+T11(2“"2‘+71k3n3
h, 2
- n n
Kk =k Ny _x Dy g
t, = le—t—l—+t22—+123n3 (12.84)
1 2
— n n
Kk =k 0y |k M, g
by =T+ T+ T30,

1 2
In view of Equation (12.84), the boundary conditions in Equation (12.82a) become:

%"—+2Pi3kn3 (12.85a)

o

tf =zP

ik

Thus:
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_ _ - n

t! =zP,n,, t)=0, t3=2zP;—,
1

_ _ - n

?=0, t2=2zP,n,, t.=2P, 2, L onz* (12.85b)
2

- n - n -

t =2P, -, 1 =2zP,—%, 1}=1zP;n,

h, h,

The dg functions for an orthotropic material are then obtained from the following

expressions:

S ) *3 =3

d,, =-T, d;; =T dj = zPy — T
q =l ) 3 =3

d12 =T, d12 =T d12 =T

d? = 7! 4?2 = 72 d? =zp. 7
22 2 2 22 22 32 2

dd =_7! d2 =zP. — 72 42 =73 (12.86)
32 = Ty 3 =2y =Ty 3= Ty
=l 2 =2 @ =3

d33 =Ty d33 =3y d33 - ZP33 — T3
q _ —1 X =2 B =3

dy, =2P5 Ty  dy =-T5 dy =-T3

As for the previous unit-cell problem, the di*jk functions will be solved by considering

each element of the unit cell separately. The ”Eilj problem will be dealt with first.

(a) Region {;:
From Equations (12.84) and (12.85b) the boundary conditions are:

-1 = - P
=t,=0 t=z2

1
~7,=T,=0 T,=zP5 ony =18 /2
and (12.87a)

<1 <1 71
th=ti=0 1 =zP,

AT, =2Ps, T =Tu=0 onz=1/2, z=1/2+H
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Thus, considering the periodicity in y,, and using Equations (12.82c), (12.83), and

(12.87a), the following functions are determined:

V! =_P1_5Z2
'C 2
Vi=V)= (12.87b)

1 _ =l _=l _=l _=lo_q = _
DT, =Ty =T33 =1y = 4, =0, T3 =2P5

(b) Region ,:
From Equations (12.84) and (12.85b) the boundary conditions are:
=1 =1=0
ST, =T, =Ty, =0 ony,=%8,/2
and (12.88a)
t,=t;=0 ¢ =zP;
ST =P, Ty =Ty =0 onz=1/2, z=1/2+H
Thus, considering the periodicity in y;, and using Equations (12.82c), (12.83), and

_ (12.88a), the following functions are determined:

V! =££_Zi
e, 2
V)=V, =0 (12.88b)

-1 _ =l _ =1 _=1 _ =1 _ 1
=T, =0, =153 =T, =1, =0, T;=2P;

(c) Region Qj3:
The boundary conditions are:

tj=2zP; t,=1;=0

oe o (12.89)
T, =2P Ty =T, =0 onz==x1/2

Thus, considering the periodicity in y;, y. and using Equations (12.82c), (12.83), and

(12.89a), the following functions are determined:

V! =_l_)ii
boc, 2]
V)=V, =0 (12.89b)

1 =1 =l _ =l _ =1 _ _
DT =Ty =Ty =1y =1, =0, T3 =2zP;
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Thus, considering Equations (12.87Db), (12.88b), (12.89b), and (12.86) one obtains:
djj =dj; =dy =dy =dy; =

0,
! inQ,Q,,Q, L (12.90)
djy =zP;—2zP; =0

The solution of the Ts problem is very similar to the Ti'j problem and is:

2 2 2 2 2
-121 2 = b Tl T e } inQ,Q,,Q, (1291a)
Ty = 2P,
Thus:
dif =d;; =dy =d3=d;; =0

. in Q,,Q,, Q, (12.91b)
d2§ =zP,, —zP,, =0

Now the T; problem will be dealt with.

(a) Region Q;:
In Q, the boundary conditions are:

-~ - - P
p=t=0 t =z
h, (12.924a)
LT =T,=0 T, =2P, ony =%§,/2
and
t=t=0 1}=2zP, (12.92b)
ST =2P,, T =Tn=0 onz=1/2, z=1/2+H
Hence, from Equations (12.82c), (12.83), (12.92a) and (12.92b), and considering

periodicity in y, the V;* functions are:

V3 - C33P31 "C13P33
1
C11C33 "C123
V=0 (12.93)
— C11P33 _C13P3x ﬁ_ C33P31 _C13P33
C11C33 —C123 2 C11C33 _Cx23

h)y,z

\4

L
2
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Thus, the d;’ piezoelectric coefficients are obtained through Equations (12.83), (12.86),

(12.34b) and (12.93) and are:
df =dj =d; =d;3=d;; =0

(12.94)
d) = z(Py, — Vo, Py —V,5Pys)
(b) Region £);:
In Q, the boundary conditions are:
W=h=0 G ZZ% (12.95a)
T =T,=0 7T,=P, ony,=18§,/2
and
t,=1=0 1t =zP, (12.95b)

LT =2Py, T =Ty =0 onz=1/2, z=1/2+H
Hence, from Equations (12.82c), (12.83), (12.95a) and (12.95b), and considering
periodicity in y; the V;’ functions are:
V) =0
— C33P32 - C23P33
C22C33 - Cia
— CyPy —CpPy, Ei_ Cy3Py, —CyiPy, h2 _3_’_2_
- 2
C22C33 —C§3 2 C22C33 _C§3 2

\'A h,y,z (12.96)

5

Thus, the d:f piezoelectric coefficients are obtained through Equations ((12.83), (12.86),
(12.34b) and (12.96) and are:
dﬁ = Z(P31 —V,P3, _V13P33)

(12.97)
%3 *3 *3 *3 *3
dy =dy3=d;=d;;3=d, =0
(¢) Region Q5:
The appropriate boundary conditions are: B
t)=1,=0, t;=zP
o2 } + (12.982)

T, =2P,, T,=T,=0 onz==xl1/2
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Thus from Equations (12.82c), (12.83), and (12.98a) and on account of periodicity in y,

and y, one obtains:

V3= i.z_z_
P, 2
V3 — 3 =
r=Va =0 (12.98b)
-3 _Cp -3 _Cy 3
=T, =—=Pyuz, T =—"Pyz, T;=P;z
33 33
T132 =_f133 =T;3 =0
Thus, from Equation (12.69) the d?j functions are obtained as follows:
' C
d? =2 P, ——2P,
11 [ 31 C33
*3 C23
d,, =z| P, ——=P,, (12.98¢)
C33

¥3 g3 %3 43
dy; =d;; =d;3=d,; =0

Having solved the unit-cell problems for the piezoelectric coefficients and remembering
that
®
dklm
)
then on account of Equation (12.34b), the piezoelectric strain coefficients are given from

Equations (12.73), (12.74), (12.77), (12.80), (12.81c), (12.90), (12.91b), (12.94), (12.97)

Pin = Cijkl

ijm

(12.99)

and (12.98c) by the following expressions:
dilj =d3 =d§3 =df2 =df3 =d;3 =0 1In Ql’ QZ’ Q3

0 in Q

&d}, = {d{VE, in Q,

dgrl)El +d§r2)v21El
1=v,vy,

(12.100a)

in Q,




d3E,
8d;, =10

) )
d32 E2 + d31 VIZEZ

1“V12V21

4 =d =djj=d;=d=d3=0 inQ,Q,,Q,

0 -
8d,} =42dE,
(r) (1)
d31 El + d32V21E1 7
1_\’12\’21

¥ q*2 _ g*3 _ g*3 a3 4*3 .
dij —dij =d;=d;=d;=d;=0 inQ,Q,,Q,

(r)
zd; E,
*3
&d,, =40

dQE, +d{)v,E
322 3 vz
1_V12V21

Comparison of these Equations reveals that:

]

in Q,
in Q,

in Q,

in Q,
in Q,

in Q,

in Q,
in Q,

in Q,.

dF =zd* inQ,Q,Q,

392

(12.100b)

(12.100¢)

(12.100d)

(12.100e)

The effective piezoelectric coefficients are determined from Equations (12.100a),

(12.100b), (12.100c), and (12.100d), bearing Equations (11.22) and (12.34b) in mind.

They are given by the following expressions:

Ef”dgrl)(a) +E‘3) <3>dgr2)(3)

8<dl31> = E§2)dgr1)(2)F2(W) + 1—vOy®
12Vl

E(23)dg2(3)+E(3) 3)dgrl)(3)

sld > E“’d(')(”F(W)

1—viv®

g
(udh) =) =B
<

3 zd;2> = < >: ELdOwgm

(12.1012)
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B4 + EPVRA
120-vEve)

BP9 + BEOvag
2f—Viv)

8(zd}}) = EPd{}Ig +

(12.101b)

8(zd73) = EVAOT +

12.3.4 Use of Symmetry Relationships for Effective Piezoelectric Coefficients

In Section 11.7 the symmetry properties of the effective piezoelectric coefficients were
derived. The implication was that it suffices to find the solution of the purely elastic local
problem in conjunction with the constituent properties, in order to derive the effective
piezoelectric coefficients. In this section, these symmetry properties will be shown to

produce the same results as the direct solution of the pertinent unit-cell problems.

One begins with the symmetry relationships from Equation (11.63a). They are repeated

here for convenience:
8(dk, ) =(dibm),  8(zdk, )= (dfo;™ ),
8(dp,) = (zdbi), 8(zdi )= (zdb;™)

As an illustration of Equation (12.102) the following expression from Equation (12.101a)

(12.102)

will be proved:

E}”dgﬂ)@)+E§3’V(231)d§'2)(3)

(), ®
1_Vuvn

8<df1> =B@d{PE™ 4 (12.103)

One begins with the first expression in Equation (12.102) and expands the appropriate

indices to obtain for k = 3 and m = n = 1, the following expression:

Thus

8(d}, ) = (b)) +2d5bi; +dSbl, +dEbY +2dFbY +2d,bY ) (12.104b)
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In Equation (12.104b) the piezoelectric coefficients were written in the contracted (rather
than the tensorial) format. Now, for an orthotropic material, see Equation (12.62), the

piezoelectric coefficients d{?,d(,d< all vanish. As well, the elastic coefficient b}, also

vanishes, see Equation (12.32). Consequently, Equation (12.104b) reduces to:
3(d;, ) =(dby} +d bl ) (12.104c¢)
The RHS of Equation (12.104c) will be treated term by term bearing the averaging

procedure of Equation (11.22) in mind. Thus:
3 3 . .
(dbii)=[abll dv="" [dPbl dv=) d{Ob® (1), (12.104d)

i-1 Q. i-1

Substituting the first expressions of Equations (12.32) and (12.34a) into Equation
(12.1044d) results in the following:

dOOREB)
<d§r1)b}}>= dgrl)(Z)Efz)Fz(W) +—= 3 1(3> (12.104e)
l-v 12 Va2
Likewise, the second term on the RHS of Equation (12.104c) is:
3 3 , )
(agbis) = [agbly dv=" [agbl) dv =3 dgubL" (1), (121040
i-1 Q i-1
Thus,
dOOyOEB)
dby, ) =—2—2_-L (12.104g)
=S )
Hence, from Equations (12.104¢) and (12.104g) one writes:
] y dOOEE) 4 qwe)y,OE6)
8<df,> - dgl)(z)Egz)Fé ) 4 32 i (3)32 5 21 71 (12.105)
Vi Vy

This is then the desired expression. Likewise all the remaining expressions for the
effective piezoelectric coefficients can be determined in this manner. Using the
expressions in Equation (11.63b) that represent the symmetry properties of the
hygroscopic expansion coefficients will give the same results as those shown in Equation

(12.61) which were determined directly from the unit-cell problems.
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12.3.5 Effective Thermai Expansion Coefficients

The last effective coefficients to be determined are the thermal expansion coefficients.
The solution of the unit cell problems from Equations (11.46¢) and (11.46f) results in the
following expressions:
©,=0, 30, =E,af inQ,
0, =0, 80, =E,a® inQ,
Eo®  v,Eaf
30, = +
1-v,v, 1-v,v, . (12.106)
© © [
EZG'Z + VZIEIG‘I
1-v,vy » 1-v,,vy
0,;,=0,=0,;=0,=0 inQ,,Q,,Q,

00, =

0], =0, 80,,=zE,a® inQ,
0,,=0, 30, =zE,0® inQ,

50" =4 E, 0 +v21Eloc(2°)
: 1=vpvy I=vpvy inQ (12.107)
E,0® v,Ea® s
8@’;2 =z 22 + 2171
1_\/12\’21 1_V12V21 )
0,=0,=0,=0,=0 nQ,,Q,Q,
The effective thermal expansion coefficients are thus determined as follows:
E®@q®B) L E®y® )0
6<G)H>=E§2)af")(2’F2(“’) +L 1 VY Mg
Vi)
E® g8 £ E®y 3 0)3)
5O\ =EVqOWRm 4 =2 2 2 V12 Y%y
22> 2 Y2 1 l_vg)v(;l)
§(z0,,) = 8(0},) =EPa*s{
(12.108)

= §(0;,) = EVo0sw

E§3>a§e)(3) +E§3)v(231’a§°)(3)
120~ Vi)

E‘;)oc(ze)m + Ef)vf‘;’ocfe)m
120-vivey)

)
)
20,,) = EP o1 +
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12.3.6 Summary of Effective Coefficients

For the wafer-reinforced piezoelectric plates shown in Figure 12-14, the effective elastic,
piezoelectric, thermal expansion and hygroscopic expansion coefficients are summarized

below:

(1) Elastic:

E(3) E(3) . . vY )E(?)

<bii> = +EBE@E™ <b22> +E{E™, <b > __Vau
3),,3) 172 > 22 By, (3) 22 (3)y,(1’
1 V12V21 1 V 1- VIZVZI

bi3) =G, (zb}})=(b}') =EPS}"), <zb§§>=<b*”) EPS™),

12V21

Zb*“> Vzl)E(3) <Zb:122 G(B) Gilz) [H3t1 K, )_*_ Gg) [H3t2 -K, }

i E;” @) ) E @)y
zb)') = +EYIW - (ab +EW™)
(#bit)= 12(1- vg)v(;fi P, (@i = {-vevgy)
< 120-vOvOY h 12 | h, :
96H* [GU & [ ] G® nmt,
where K, = 12 tanh| _|—2-

96H4 GP ¢ [1 (1)“] G? nmt,
and K2— g)n}—; s tanh Gg) 0

(2) Piezoelectric:

1

E®d00) 4 EQvPae®

3 d?l = E§2)dgr1)(2)F2(W) + =
il =VVT
E(3)d )3) E(a)v(3)d(r)(3)
3 M) 4(cXD W) 4 2 -3 12 Y31
5 d22> E d32 F1 1— Vg)v(a)

8(zd}, ) =8(d;}) =EPd{}™sy”

<

(ad)) =

Bats) =8(d) = B s
(edit) =

(2d3) =

(12.110)

E@d0O + EOyGaf®

zd;}) =EB{a{)®1 +

12(1- vﬁ)v“))
E‘23’dg’2)(3 +E§3)v§?d§'l)(3)

E(l)d(r)(l)J(W)
20-vivsy)

&(zd;




(3) Hygroscopic:

E?)BEC)(}) + E(%)Vzl)B(c
1=viVE
E<23)B(2c )3) E‘”vﬁ B(c)(3

0}

B(h,) = BVBOVR +

S(A. )= EVRODEW 4
( 22) 2B2 1 1— Vg)v

5<ZA1|> = 6<A*11> = E@Bgc)(z)s(zm
§(A%,) =ESBOVS™
E?)chxs) + E(” (3>B(2c)(3)
12@—v8v?)
(3)13 ©)3) 4 E‘” <3)Blc)(3)
12(1- v(”v‘;,’)

)
8<zA"“> = E§2)B§c)(2>J<2w) +

Bu,) = EBOIL

(4) Thermal:

E<3)a(e)(3) +E(3)v‘3) (9)(3)
50, ) = EPa ™ +

ViV
0)(3
E(23)0L(2°)(3) +E‘3) (3)(15 )3)

80, V= BV @R 4
< 22> 2 2 1 1_\1532)\1(231)

8<Z@”> = 8<®:1> = E@ 08
<Z@22 = 5<®;2> — E(zl)(x(ze)(l)sgw)

o
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)
8<Z®:\> = Efz’afe)‘z’J;‘” +
)
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12.4 Thin Plates Reinforced by Parallel Ribs

Thin reinforced
plate

X3

unit cell

6t2

SH 77 P X>
oh,

ohy
X1

Figure 12-16: A thin plate reinforced with ribs and its unit cell
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unit cell

& :
H \'&

. >y,
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Figure 12-17: Unit cell of a reinforced plate (with respect to fast
coordinates) and the individual elements
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The results obtained for the wafer-reinforced plate in Section 12.3 can be extrapolated for
the case of a piezoelectric plate reinforced by parallel ribs as shown in Figures 12-16 and

12-17. The average coefficients are simply stated below:

(1) Elastic:
E(l) E(l) V(I)E(l)
bll = +E(2)F(W), b22 — , bll - 21
bl =g B PRl PR
(b;§>=G§'}, (i) = (by1') =BPS(, (2bZ)=(b3Z) =0
. E(l) . E(l)
zby)! +EPIM, (077 ) = (12.113)
(#bit) = 120-vOv®) (#b:x) 12(1 - v vy
. WE® . G(‘) @ (13
<Zb2121>= ZV D) )’ <Zb1122 ~ Glz “-K
12{L - v}, vy h,

4 2) (2)
where K= 965H G‘; Z[ ]tanh G‘; n,
Gf3) v sz) 2H

(2) Piezoelectric:

Ef”dgrl)(‘)+E(”v(”d§r2)(l)

§(d},) = BPdS)VE™ +

=N
say) < EL8Y 4 Evitagy
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1-vivy)
§(zd},) =8(d;}) = EPd sy »
(12.114)
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(3) Hygroscopic:

EOgE0 E‘” W)X
8(A, )= EPpE@Ee + BLPT+E Val

1 Vf2)v(211)
B )< ES B+ EDVRBEN
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(4) Thermal:
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s
5 @22 _ E(zl)a(;a)(l) +E(1)V(l)a§e)(l)
VD
3(z0,,) = §(0y,) = EP o X?s

(6)1) E(”v(zll)ag )

12(-vive)

. E®
z@“> EPq (exz)J(w) oy
> E(zl)a(:)(l) + E(l) (1) fe)(l)

12(1-viv ‘2‘1’)

401

(12.115)

(12.116)



402

12.5 Summary

The method of asymptotic homogenization was used to analyze a general periodic smart
composite plate of rapidly varying thickness and a large number of embedded actuators.
From a set of eight three-dimensional local unit cell problems the effective elastic,
actuation, thermal expansion and hygroscopic expansion coefficients pertinent to the
homogenized anisotropic smart plate were derived. These effective coefficients are very
general in nature and may be utilized in studying different types of problems associated

with a variety of smart structures.

To illustrate the use of the unit cells and the applicability of the effective coefficients, two
broad classes of examples were considered. The first pertained to various laminates
composed of monoclinic or orthotropic materials. In particular, an 8-layer [+45/-45]4
angle-ply graphite/epoxy laminate was subjected to mechanical loads, electric fields,
changes in temperature and changes in moisture concentration. In each case, the resulting
strain and stress distribution was calculated and plotted. If some of the effective
coefficients are neglected, the results obtained are consistent with the classical plate

theory to which the model converges.

The other example dealt with wafer- or rib-reinforced piezoelectric plates. These are
plates reinforced with ribs or stiffeners oriented in one or both of the tangential directions
of the base plate. The most general case was examined whereby the ribs had different
properties than the base plate and also exhibited piezoelectric characteristics. The unit
cell problems were solved for this unique structure by considering each of the regions of
the unit cell separately. In the solution, complications at the joints were ignored because
they are highly localized and contribute very little to the integrals over the unit cell. The
solution of the unit cell problems led to the determination of the effective elastic,

piezoelectric, thermal expansion and hygroscopic expansion coefficients.



13.0 SYNOPSIS & CONCLUSIONS PERTAINING TO THESIS

This thesis dealt with experimental and analytical issues regarding smart composite
materials. Smart materials in general may be divided into two broad classes, passive and
active smart materials. Passive smart materials contain a built-in sensing device such as a
fiber optic sensor,bto continuously assess the current condition and serviceability of a
structure. Active or adaptive smart materials have, in addition to sensors, integrated
actuators such as piezoelectrics or magnetostrictives, and can perform self-adjustment or

self-repair as conditions change.

The experimental aspects of this thesis were focused on the fabrication, processing,
testing and assessment of pultruded smart GFRP and CFRP tendons with embedded
Fabry Perot and Bragg Grating sensors. The long-term objective is to be able to use smart
composite tendons of this nature in civil-engineering structures wherein they would
replace steel as the primary concrete reinforcement, and at the same time act as strain
gauges so as to permit continuous health-monitoring of these structures. This work was
conducted for the purposes of ISIS Canada Project T3.4, on smart reinforcements and
connectors. ISIS Canada is a National Network of Centers of Excellence that combines
the collaborative efforts of researchers from fifteen universities across Canada. Its
mandate is to develop advanced technologies for civil engineering infrastructure that

incorporate integrated fiber-optic systems with advanced composite materials.

The analytical aspects of this work pertained to the mathematical modeling of active
smart materials with a periodic array of embedded actuators. It is evident that the use of
smart composite méterials will be greatly facilitated if the effective properties and
coefficients such as elastic, piezoelectric, etc. can be predicted at the design stage. One of
the most useful means by which this goal can be achieved is the development of

mathematical models that must on one hand be as realistic and consistent as possible,
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while on the other hand not too complicated to implement. In this thesis, different

mathematical models describing the behavior of smart composite materials have been

developed and illustrated.

For the experimental work, GFRP and CFRP tendons were produced by the method of
pultrusion. Fiber optic sensors were embedded in the smart tendons during pultrusion.
However, the pultrusion process has the inherent potential to generate residual stresses
within a composite component that may have a detrimental effect on its structural and
mechanical integrity. It is therefore useful to investigate the ability of the embedded
sensors to monitor the strains during the composite processing. For this purpose, Bragg
Grating and Fabry Perot sensors were embedded successfully into carbon and glass
tendons and the strain output was recorded as the sensors passed through the die and the
pulling wheels. The information provided by these experiments yields valuable insight as

to the specifics of the pultrusion process.

It was discovered also that Bragg Grating sensors exhibited good survivability in the
pultrusion process and therefore could be embedded without any modification. Fabry
Perot sensors however, did not survive during the pultrusion process, so that they had to
be prereinforced. The prereinforcement procedure entailed encapsulating the Fabry Perot
sensor inside a bundle of reinforcing glass or carbon fibers and then curing this bundle
with a suitable epoxy. In effect, this creates a composite microtube with the optical sensor
inside. In turn, this ﬁﬁcrotube was embedded in the glass or carbon tendon during

pultrusion.

Pertinent microscopic analysis indicated that polyimide-coated optical fibers formed a
good interface between the optical fiber and the host material. On the other hand,
acrylate-coated optical fibers did not survive pultrusion and led to significant débonding
between the fiber and the composite matrix. For this reason, acrylate coatings were

excluded from further research. Standard tensile and shear tests performed on the
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pultruded tendons indicated that a single embedded optical fiber did not affect the tensile
properties, but had a slight deteriorating effect on the shear properties. This effect was
more evident for the case of the glass tendons, and became more pronounced as the

number of embedded optical fibers increased.

GFRP and CFRP tendons with embedded Bragg Grating and Fabry Perot sensors were
subsequently subjected to trapezoidal and sinusoidal tests at room temperature. During
the trapezoidal tests, the applied load was increased from a low preload level to a
maximum value at a constant rate, held there for a few seconds and then ramped back
down at the same rate as for the ramp-up. Sinusoidal tests involved subjecting the
tendons to 5 or 6 load cycles at a frequency of 1 cycle per minute. In each case, the strain
output from the embedded sensors was compared to that from externally affixed
extensometers. It was observed that at ordinary laboratory conditions, the readings from
Bragg Grating and Fabry Perot sensors embedded in both GFRP and CFRP tendons

conformed very well to the corresponding extensometer values.

Since the long-term objective of this part of the research is to embed these smart tendons
in concrete structures, it became necessary to assess the performance of the embedded
sensors in low and high temperature environments. For this reason, the same trapezoidal
and sinusoidal tests described above were also conducted in an environmental chamber

wherein the temperature was controlled between —40°C and +60°C temperature extremes.

Fabry Perot sensors embedded in GFRP and CFRP tendons were first tested under these
conditions. It was found that the sensors behaved very accurately and reliably in both
cold and hot conditions, providing strain readings that agreed very well with

corresponding extensometer readings.

Subsequently, Bragg Grating sensors embedded in GFRP tendons were tested. It was

observed that high temperatures did not affect the performance of the Bragg Grating
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sensors, which gave accurate readings closely matching extensometer readings even at
temperatures as high as +80°C. At low temperatures however, the Bragg Grating sensors
provided accurate readings only at the peak loads. At low load levels, the sensors failed
to record the correct values, and this discrepancy seemed to worsen as the temperature

- was lowered even further.

Bragg Grating sensors embedded in CFRP tendons were also tested under conditions of
high and low temperature extremes. At high load levels the extensometer readings were
accurate and reliable, agreeing well with extensometer readings. At low load levels,
however, the sensor did not record the correct strains. The situation was worse at low
than at high temperatures. These results were believed not to be an indication of the
performance of the sensor itself, but rather the demodulating unit. This conclusion was
further reinforced by the fact that every time the Bragg Grating sensors were
disconnected from the demodulator they did not retain their “zero” or reference value,
and had to be constantly recalibrated. However, Bragg Grating sensors (as well as their
Fabry Perot counterparts) are “absolute” sensors and should not require recalibration.
Other researchers have been faced with similar problems, and after many complaints the
manufacturer was forced to recall the demodulator units in order to make the necessary

adjustments.

The behavior of the embedded sensors under the influence of fatigue loads was also
investigated. The tendons were subjected to tension-tension fatigue whereby the load was
cycled between 7 kN and 11 kN (stress ratio of about 0.64) at a frequency of 1 Hz. It was
discovered that Fabry Perot sensors embedded in GFRP tendons performed very well
through 100,000 load cycles and their strain output was the same as at the beginning of
the test. The same results were observed for the CFRP tendons with embedded Fabry
Perot sensors. The sensor behaved just as accurately and reliably after 140,000 cycles of
applied load as it did at the early stages of testing. For Bragg Grating sensors, testing was

conducted for more than 300,000 cycles. For these tests, it was concluded once again that
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Bragg Grating sensors embedded in GFRP and CFRP tendons were not affected by

fatigue loads.

Subsequently to the fatigue tests, CFRP and GFRP tendons with embedded Fabry Perot
sensors were subjected to sustained loads for many hours in order to assess their creep
behavior. The GFRP tendon was subjected to a 9-kN load for 150 hours, while the CFRP
tendon was subjected to a 13-kN load for a duration of 300 hours. In all cases, it was
observed that the sensor gave a nearly constant strain output that agreed well with the
-extensometer output. These results indicated that no creep deformation had occurred in

either the sensor or the composite tendon.

Longer-term testing was finally conducted on GFRP and CFRP tendons with embedded
Fabry Perot sensors. This testing included the combined effects of a sustained load and
the action of a continuously circulating highly alkaline solution. This environment
simulates conditions encountered in concrete structures wherein the rods may be used as
prestressing tendons and rebars. The tendons were located inside an environmental
chamber through which an alkaline solution (pH. of 12.8) was circulated by a pump. The
solution was composed of 0.32 mol/LL KOH, 0.17 mol/L. NaOH, and 0.07 mol/L Ca(OH),
in distilled water. At the same time, the tendons were also subjected to a constant load of
12 kN, and testing was conducted for a period of more than two months. The strain
output from the embedded Fabry Perot sensors was nearly constant for the duration of the
tests and conformed well to that from externally bonded foil gauges. Thus, the
combination of aggressive solution/sustained load did not have an effect on the behavior
of the embedded Fabry Perot sensors.

\
The results of these tests indicate that the smart tendons have potential for significant
benefit in the long-term monitoring of strain levels in civil engineering structures such as

bridges, dams and overpasses. At the same time, the composites represent a viable
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solution to the problem of replacing corroding steel as the primary concrete-

reinforcement.

The analytical aspects of the work presented in this thesis dealt with active or adaptive
smart materials which are expected to play an ever-increasing role in a great many
engineering applications. In particular, mathematical models describing the behavior of

broad classes of such structures were developed and applied.

The first mathematical model developed pertained to a general three-dimensional smart
composite structure with a periodic arrangement of reinforcements and embedded
actuators. It is known that the differential equations that govern the behavior of such
structures are characterized by rapidly oscillating coefficients that render their solution
extremely difficult even with the help of high-powered computers. Consequently, one
looks at alternative methods of analysis. A mathematical technique that provides a
suitable framework for the study of periodic smart structures is the method of asymptotic
homogenization. Asymptotic homogenization permits the transformation of the original
boundary value problem into a similar problem with so-called effective coefficients that

make the problem much more amenable to both analytic and numerical treatment.

Thus, the asymptotic homogenization model pertinent to a smart structure was derived,
and subsequently general expressions called unit cell problems were obtained. It is
precisely these unit-cell problems that were used to determine the effective coefficients
mentioned above. For the purposes of this first model, four different effective coefficients
were determined. These were the elastic, actuation, thermal expansion and hygroscopic
expansion coefficients. The actuation coefficients characterize the intrinsic transducer
nature of active smart materials that can be used to induce strains and stresses in a
controlled manner. The analysis presented was applied to piezoelectric materials, but the
equations derived should be considered to hold equally well if the material in question

exhibits for example magnetostrictive characteristics or is associated with some general
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transduction characteristics that can be used to induce strains and stresses. The effective
thermal expansion and hygroscopic expansion coefficients were introduced in order to
make the mathematical model more comprehensive especially in light of the fact that
temperature variations and moisture absorption are very important for composites
because they lead to dimensional changes which in turn lead to residual stresses and a

consequent degradation of their mechanical properties.

The use of the unit-cell problems was illustrated by means of two- and three-dimensional
examples. In particular, a laminate composed of piezoelectric layers was subjected to in-
plane forces and moments, and the resulting stress and strain fields were compared to
those obtained with the homogenized model. The two models agree quite well. Next, the
first few natural frequencies of a thick laminated piezoelectric transducer were
determined and compared with corresponding values from the homogenized model. The
results from the two models conformed very well with one another, differing by at most 1
%. Finally, the mechanical strains induced in laminated composites by temperature or
moisture content changes were determined and again compared with the strains pertinent
to the homogenized model. The two models gave results that conformed very well to one

another.

The mathematical model just described was characterized by homogeneous boundary
conditions. The second model that was developed was similar to the first one, but differed
in the sense that part of its boundary had prescribed boundary stress conditions. Once
again, the governing equations pertaining to a very general model that included elastic,
actuation, thermal expansion and hygroscopic expansion effects were derived. These
equations were shown to differ from those of the corresponding problem with
homogeneous boundary conditions by what amounts to a so-called “boundary layer”
solution. However, the effective coefficients obtained through this model were the same

as the ones pertinent to the first model. Hence, it was concluded that these coefficients
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are universal in nature, and once determined they can be used to study a wide variety of

static and dynamic problems associated with composite smart structures.

The third and final mathematical model developed was used to analyze a periodic smart
composite plate with rapidly varying thickness and a large number of periodically-
arranged actuators. A set of eight three-dimensional local unit-cell problems was derived
which, unlike the homogenization schemes pertinent to the first two models were shown
to depend upon boundary conditions rather than periodicity in the transverse direction. In
other words, this model was characterized by periodicity in only the two tangential

directions.

The solution of the unit-cell problems yields a set of functions which when averaged over
the volume of the periodicity cell determine the effective elastic, actuation, thermal
expansion and hygroscopic expansion coefficients pertinent to the homogenized
anisotropic smart plate. These effective coefficients then enter the governing equations of
the system which in turn yield a set of displacement functions. These functions having
been determined, enable one to make very accurate predictions concerning the three-

dimensional local structure of the displacement and stress fields.

The general symmetry properties of the effective actuation, thermal expansion and
hygroscopic expansion coefficients were obtained with the implication that it suffices to
know the solution of the purely elastic problem in order to calculate the remaining
effective coefficients. It was subsequently shown that in the limiting case of a thin
homogeneous elastic plate of uniform thickness, the model converges to the familiar

classical plate model.

To illustrate the use of the unit cells and the applicability of the effective coefficients, two
broad classes of examples were considered. The first pertained to various laminates

composed of monoclinic or orthotropic materials. In particular, an 8-layer [+45/-45],
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angle-ply graphite/epoxy laminate was subjected to mechanical loads and the resulting
strain and stress distribution was calculated and plotted. The results are consistent with
the classical plate theory fo which the model converges in this case. The same laminate
was subsequently subjected to a temperature variation, and the normal and shear strain
and stress distribution through the thickness of the laminate were determined. If some of
the effective thermal expansion coefficients are neglected the strain and stress values
obtained conform to those pertaining to the classical plate theory. Further examples
examined the effect of a change in moisture content on this Jaminate. As with the case of
temperature variations, it was observed that the moisture content of the laminate induces
both bending and out-of-plane warping. Again, in the limiting case when some of the
effective hygroscopic expansion coefficients are ignored, the stress and strain values
agree quite well with the classical plate theory. Finally, the effect of an electric field on
the strains and stresses in a [0/90]4 piezoelectric PVDF laminate was examined. It was

shown that the piezoelectric effect is similar to the hygrothermal effect.

The second example dealt with wafer-reinforced piezoelectric plates. These are plates
reinforced with mutually perpendicular ribs or stiffeners. The most general case was
examined whereby the ribs had different properties than the base plate and exhibited
piezoelectric characteristics. The unit-cell problems were solved for this unique structure
by considering each of the three regions of the unit cell separately. In the solution,
complications at the joints were ignored because they are highly localized and contribute
very little to the integrals over the unit cell. The solution of the unit cell problems led to
the determination of the effective elastic, piezoelectric, thermal expansion and
hygroscopic expansion coefficients. Finally, the results were extrapolated for a case of a

plate reinforced with ribs in only one of the tangential directions.



14.0 REFERENCES

Abdel-Magid, B.M., Gates, T.S., (2002) Accelerated Testing of polymeric composites
using the dynamic mechanical analyzer [online]

Available:

http://techreports.larc.nasa.gov/ltrs/PDF/2001/mtg/NAS A-2001-16asc-bma.pdf [2002]

Aboudi, J., The response of shape memory alloy composites, Smart Materials and
Structures, Vol. 6, 1997, pp. 1-9

Adachi, Y., Unjoh, S., Kondoh, M., Development of a shape memory alloy damper for
intelligent bridge systems, Proceedings of the International Symposium on Shape
Memory Materials, Kanazawa, Japan, 1999, pp. 31-34

Alavie, A.T., Maaskant, R., Ohn, M.M., Rizkalla, S., Measures, R.M., Application and
characterization of intracore grating sensors in a CFRP prestressed concrete girder, SPIE,
Vol. 2191, 1994, pp. 103-110

APC International Limited, (1999) Piezoelectric ceramics [online]
Available:

http://www.americanpiezo.com [2002]

ASTM D3039/D3039M: Standard test method for tensile properties of polymer matrix
composite materials

ASTM D3479/D3479M: Standard test method for tension-tension fatigue of polymer
matrix composite materials

Bakhvalov N., & Panasenko, G., Homogenisation: Averaging processes in periodic
media, Kluwer Academic Publishers, Netherlands, 1984

Barnes, A., Pedrazzani, M.J., Murphy, K., Claus, R., Tran, T., Greene, J., Poland, S.,
Coate, J., Creep measurement of refractory material in high-temperature tensile loading
tests, SPIE, Vol. 2444, 1995, pp. 432-437

Bagar, Y., Weichert, D., Nonlinear continuum mechanics of solids, Springer, 1999

Bensoussan, A., Lions, J.L., Papanicolacu, G., Asymptotic analysis for periodic
structures, North-Holland Publ. Comp., Amsterdam, 1978

Bi, J., Anjanappa, M.A., Active vibration damping using magnetostrictive miniactuators,
SPIE, Vol. 2190, 1994, pp. 171-180

412



413

BIS1000PC and BIS SoffControls Operation Manual, Electrophotonics Corporation,
Toronto, 1996

Bogdanovich, A.E., Deepak, B.P., Three-dimensional analysis of thick composite plates
with multiple layers, Composites part B: Engineering, Vol. 28B(4), 1997, pp. 345-357

Brennan, M.J., Garcia-Bonito, J., Elliot, S.J., David, A., Pinnington, R.J., Experimental
investigation of different actuator technologies for active vibration control, Smart
Materials and Structures, Vol. 8, 1999, pp. 145-153

Busel, J.P., Lindsay, K., On the road with John Busel: A look at the world’s bridges,
Composites Design & Application, January/February 1997, pp. 14-23

Carman, G.P., Mitrovic, M., Health monitoring techniques for composite materials
employing thermal parameters and fiber optic sensors, SPIE, Vol. 2191, 1994, pp. 244-
256

Carman, G.P., Paul, C., Sendeckyj, G.P., Transverse strength of composites containing
optical fibers, SPIE, Vol. 1917, 1993, pp. 307-316

Chawla, K.K., Ceramic matrix composites, Chapman & Hall, London, 1993

Cheng, Z.Q., Lim, C.W., Kitipornchai, S., Three-dimensional asymptotic approach to
inhomogeneous and laminated plates, International Journal of Solids and Structures, Vol.
37, 2000, pp. 3153-3175

Chhoa, C.Y., Bao, X., Bremner, T.W., Brown, A.W., DeMerchant, M.D., Kalamkarov,
A.L., Georgiades, A.V., Strain measurement in concrete structure using distributed fiber
optic sensing based on Brillouin scattering with single mode fibers embedded in glass
fiber reinforcing Vinyl ester rod and bonded to steel reinforcing bars, SPIE, Vol. 4337,
2001, pp. 466-476

Choi, S., Lee, 1.J., The shape control of a composite beam with embedded shape memory
alloy wire actuators, Smart Materials and Structures, Vol. 7, 1998, pp. 759-770

Chou, P.C., Carleone, J., Hsu, C.M., Elastic constants of layered media, Journal of
Composite Materials, Vol. 6, 1972, pp. 80-93.

Cioranescu, D., Donato, P., An Introduction to homogenization, Oxford University Press,
1999

Crawley, E.F., de Luis, J., Use of piezoelectric actuators as elements of intelligent
structures, AIAA J., Vol. 25, 1987, pp. 1373-1385.



414

Daniel, M., Ishai, O., Engineering mechanics of composite materials, Oxford University
press, Inc., New York, 1994

Davidson, R., Bowen, D.H., Roberts, S.J., Composite materials monitoring through
embedded fiber optics, 1997, SPIE, Vol. 1120, 1989 '

Davis, M.A., Kersey, A.D., Berkoff, T.A., Jones, R.T., Idriss, R.L., and Kodinduma, M.,
Dynamic strain monitoring of an in-use interstate bridge using fiber Bragg Grating
sensors, SPIE, Vol. 3043, pp. 87-95

Duenas, T.A., Hsu, L., Carman, G.P., Magnetostrictive composite material systems:
Analytical/Experimental, Symposium on Materials for Smart Systems II, Vol. 459, Ed.
George, E.P., Gotthardt, R., Otsuka, K., Trolier-McKinstry, S., Wun-Fogle, M., 1997, pp.
527-543

Duncan, W.J., France, P.W., Craig, S.P., The effect of environment on the strength of
optical fiber, Strength of organic glass, Ed. C.R. Kurkjan, Plenum Press, New York, 1995

Dutta, P.K., Bailey, D.M., Tsai, S.W., Jensen, D.W., Hayes, J.R., McDonald, W.E.,
Smart, C.W., Colwell, T., Earl, J.S., Chen, H.J., Composite grids for reinforcement of
concrete structures, USACERL Technical Report 98/81, June 1988

Duvaut, G.,. Analyse fonctionnelle et méchanique des milieux continus, Proceeding of
the 14™ JTUTAM Congress, Delft, 1976, pp. 119-132

Eaton, N.C., Drew, R.C., and Geiger, H., Finite element stress and strain analysis in
composites with embedded optical fiber sensors, Smart Materials and Structures, Vol. 4,
1995, pp. 113-117

Engineered materials handbook, Volume 1: Composites, ASM International, Metals Park,
Ohio, 1987

Erdogan, T., Mizrahi, V., Lemaire, P.J., and Monroe, D., Decay of ultraviolet-induced
fiber Bragg Gratings, Journal of Applied Physics, Vol. 76(1), 1994, 73-80.
Evans

Fenn, R., Gerver, M.J., Passive damping and velocity sensing using magnetostrictive
transduction, SPIE, Vol. 2190, 1994, pp. 216-227

FLS 3100 operation manual, Electrophotonics Corporation, Toronto, 1998

Franke, L., Meyer, H.J., Predicting the tensile strength and creep-rupture behavior of
pultruded glass-reinforced polymer rods, Journal of Materials Science, Vol. 27, 1992. pp-
4899-4908 -



415

Furuya, Y., Shimada, H., Shape memory actuators for robotic applications, Engineering
aspects of shape memory alloys, Edited by Duerig, T.W., Melton, K.N., Stockel, D.,
Wayman, C.M., Butterworth-Heinemann, 1990

Georgiades, A.V., Fabrication, processing, testing and evaluation of pultruded smart
composite tendons, MAsc. Thesis, Dalhousie University, Halifax, Nova Scotia, 1998

Gibson, R.F., Principles of composite material mechanics, McGraw-Hill, Inc., 1994
Guide to fiber optics system design, Belden Wire and Cable, 1996

Gu, X., Ansari, F., (2000) Distributed monitoring of structural cracks by interferometric
fiber optic sensors [online]

Available:

www.ce.utexas.edu/em 2000/papers/XiangGu.pdf, 2002

Gunther, M.F., Zeakes, J.S., Leber, D.E., May, R.G., and Claus, R.O., Sputtered metallic
coatings for optical fibers used in high temperature environments, SPIE, Vol. 2191, 1994,
pp- 2-12

Habel, W.R., Hofmann, D., Strain measurements in reinforced concrete walls during the
hydration reaction by means of embedded fiber interferometers, SPIE, Vol. 2361, 1994,
pp- 180-183

Habel, W.R., Hopcke, M., Basedau, F., and Polster, H., The influence of concrete and
alkaline solutions on different surfaces of optical fibers for sensors, SPIE, Vol. 2361,
1994, pp. 168-179

Hamidah, H.M., Gowripalan, N., Fadhil, N.M., Absorption of aramid prestressing rods in
aggressive solutions, Journal of Composites for Construction, Vol. 5(4), 2001, pp. 254-
257

Handbook for infrastructure applications of composite materials, SAMPE, 1998

Harvey, J.A., Polymeric-matrix composites for intermediate and high-temperature
applications, Proceedings of the conference on processing, fabrication and application of
advanced composites, Long Beach, California, 1993, pp. 199-202

Hecht, J., Understanding fiber optics, Sams Publishing, Indianapolis, 1993

Holmes, M.H., Introduction to Perturbation Methods, Springer-Verlag, New York, 1995.
Holzapfel, G.A., Nonlinear solid mechanics, John Wiley & Sons, 2000

Huang, W., Modified shape memory alloy (SMA) model for SMA wire based actuator
design, Journal of intelligent material systems and structures, Vol. 10, 1999, pp- 221-231



416

ISIS Canada annual report, 1996

Jain, AK., Sirkis, J.S., Continuum damage mechanics in piezoelectric ceramics,
Adaptive Structures and Composite Materials: Analysis and Application, Eds. E. Garcia,
H. Cudney, A. Dasgupta, 1994, pp. 47-58

Jensen, D.W., Pascual, J., Degradation of graphite/bismaleimide laminates with multiple
embedded fiber-optic sensors, SPIE, Vol. 1370, 1990, pp. 228-237

Juvinall, R.C., and Marshek, K.M., Fundamentals of machine component design, John
Wiley & Sons, 1991

Kalamkarov, A.L., Composite and reinforced elements of construction, Wiley, New
York, 1992

Kalamkarov, A.L., Drosdov, A.D., Optimal design of intelligent composite structures,
Journal of Intelligent Materials Systems and Structures, Vol. 8(9), 1997, pp. 757-766

Kalamkarov, A.L., Fitzgerald, S.B., MacDonald, D.O., The use of fiber optic sensors to
monitor residual stresses during pultrusion of FRP composites, Composites B:
Engineering, Vol. B30(2), 1998, pp. 167-175

Kalamkarov, A.L., Fitzgerald, S.B., MacDonald, D.O., and Georgiades, A.V., Smart

pultruded composite reinforcements incorporating fiber optic sensors, SPIE, Vol. 3400,
1998, pp. 94-105

Kalamkarov, A.L., Georgiades A.V., Modeling of smart composites on account of
actuation, thermal conductivity and hygroscopic absorption, Composites part B:
Engineering, 2001a, in press

- Kalamkarov, A.L., Georgiades, A.V., Micromechanical modeling of smart composite
materials with a periodic structure, Proceedings of the SPIE’s 9™ Annual International
Symposium on Smart Structures and Materials, 2001b, in press

Kalamkarov, A.L., Georgiades, A.V., MacDonald, D.O., Fitzgerald, S.B., Pultruded fiber
reinforced polymer reinforcements with embedded fiber optic sensors, Canadian Journal
of Civil Engineering, Vol. 27(5), 2000, pp. 972-984

Kalamkarov, A.L., Kolpakov A.G., Analysis, design and optimization of composite
structures, Wiley, New York, 1997

Kalamkarov, A.L., Kolpakov, A.G.,, A new asymptotic model for a composite

piezoelastic plate, International Journal of Solids and Structures, Vol. 38, 2001, pp. 6027-
6044



417

Kalamkarov, AL., MacDonald, D.O., Westhaver, P., On pultrusion of smart FRP
composites, SPIE, Vol. 3042, 1997, pp. 400-409

Kannan, K. S., Dasgupta, A., Finite element modeling of multi-functional composites
with embedded magnetostrictive devices, Adaptive Structures and Composite Materials:
Analysis and Application, Editors Garcia, E., Cudney, H., Dasgupta, A., 1994, pp. 21-28

Kay, D.C., Theory and problems of tensor calculus, Schaum’s Outlines, McGraw-Hill,
1988

Kim, K.S., Ryu, J.U,, Lee, S.J., Choi, L., In-situ monitoring of Sungsan bridge in Han
river with an optical fiber sensor system, SPIE, Vol. 3043, 1997, pp. 72-76

Kowsika, M., Raju, P.M., Optimal pultrusion process conditions for improving the
dynamic properties of graphite-epoxy composite beams, Materials Evaluation, Vol.
54(3), 1996, pp. 386-392

Lackey, E., Characterization of the pultrusion process using the central composite desien
method of statistical experimentation, Master Thesis, University of Mississippi, 1992

Lagoudas, D.M., Tadjbakhsh, Active flexible rods with embedded SMA fibers, Smart
Materials and Structures, Vol. 1, 1992, pp. 162-167

Lammering, R., Schmidt, I, Experimental investigations on the damping capacity of NiTi
components, Smart Materials and Structures, Vol. 10, 2001, pp. 853-859

Lane, P., Starzomski, M., Van Dommelen, R., Fiber optic connectorization procedure for
FC/APC type connectors, Dalhousie University, Halifax, Nova Scotia, 1996

Lee, D.C,, Lee, J.J., Fatigue behavior of composite structures with embedded optical fiber
sensors, Proceedings of ICCM-10, 1995, pp. 307-314

Leka, L.G., Bayo, E., A close look at the embedment of optical fibers into composite
structures, Journal of Composites Technology & Research, Vol. 11(3), 1989, pp. 106-112

Little, R.E., Mitchell, W.J., Mallick, P.K., Tensile creep and creep rupture of continuous

strand mat polypropylene composites, Journal of Composite Materials, Vol. 29(16),
1995, pp. 2215-2227

MacDonald, D.O., Development and characterization of pultruded composite profiles,
MAsc. Thesis, Technical University of Nova Scotia, Halifax, Nova Scotia, 1989




418

Madill, D.R., Wang, D., Modeling and L2-Stability of a shape memory alloy position
control system, IEEE Transactions on Control Systems Technology, Vol. 6(4), 1998, pp.
473-481

Mallick, P.K., Fiber reinforced composites: Materials, manufacturing, and design, Marcel
Dekker, Inc., 1988 ’

Mallick, P.K., Newman, S., Editors, Composite Materials Technology: Processes and
properties, Hanser Publishers, Munich, 1990

Mantena, P.R., Vaughan, J.G., Donti, R.P., Kowsika, M.V.,; Influence of Process
Variables on the Dynamic Characteristics of Pultruded Graphite-Epoxy Composites,
Vibro-Acoustic Characterization of Materials and Structures, ASME, 14, NCA-14, 1992,
pp. 147-154

Matthews, F.L., Rawlings, R.D., Composite materials: Engineering and science,
Chapman & Hall, London, 1994

Maugin, G.A., Attou, D., An asymptotic theory of thin piezoelectric plates, Quarterly
Journal of Mechanics and Applied Mathematics, Vol. 43, 1990, pp. 347-362

Micelli, F., Nanni, A., La Tegola, A., Effects of conditioning environments on GFRP
bars, 22" SAMPE Europe International Conference, CNIT Paris, March 27-29, 2001

Mufti, A.A., Bakht, B., Tadros, G., Newhook, J.P., Butt, S., Structural health monitoring
of innovative bridge decks, SPIE, Vol. 4337, 2001, pp. 212-222

Nayfeh, A., Perturbation methods, John Wiley & Sons, New York, 1973

Nellen, P.M., Anderegg, P., Bronnimann, R., Sennhauser, U., Application of fiber optical
and resistance strain gauges for long-term surveillance of civil engineering structures,
SPIE, Vol. 3043, 1997, pp. 77-86

Newhook, J.P., Bakht, B., Mufti, A., Tadros, G., Monitoring of Hall’s Harbour wharf,
SPIE, Vol. 4337, 2001, pp. 234-244

Perkins, J., Hodgson, D., The two-way shape memory effect, Engineering aspects of
shape memory alloys, Edited by Duerig, T.W., Melton, K.N., Stéckel, D., Wayman,
C.M., Butterworth-Heinemann, 1990

Rajapakse, R.K.N.D., Plane strain/stress solutions for piezoelectric solids, Composites
part B: Engineering, Vol. 28B(4), 1997, pp. 385-396



419

Ramkumar, R.1., Tossavainen, E.W., Strength and lifetime of bolted laminates, Fatigue in
mechanically fastened composite and metallic joints, ASTM STP 927, John M Potter.
Ed., American Society for Testing and Materials, Philadelphia, 1986, pp. 251-273

Reddy, J.N., Mechanics of laminated composite plates, CRC Press, New York, 1997

Reddy, J.N., On laminated composite plates with integrated sensors and actuators,
Engineering Structures, Vol. 21, 1999, 568-593

Rhee, S.W., Koval, L.R., Comparison of classical with robust control for SMA smart
structures, Smart Materials and Structures, Vol. 2, 1993, pp. 162-171

RocTest Ltd., Technical Information, Equipment, and Manuals, St-Lambert, Quebec,
Canada, 1997

Rose, L.R.F., Wang, C.H., Modeling and optimization of passive damping for bonded
repair to acoustic fatigue cracking, Proceedings of IUTAM-Symposium on Smart
Structures and Structronic Systems, Magdeburg, September 26, 2000, pp. 49-57

Runtsch, E., Shape memory actuators in circuit breakers, Engineering aspects of shape
memory alloys, Edited by Duerig, T.W., Melton, K.N., Stockel, D., Wayman, C.M.,
Butterworth-Heinemann, 1990

Saadat, S., Davoodi, H., Hou, Z., Suzuki, Y., Masouda, A., Using NiTi SMA tendons for
vibration control of coastal structures, Smart Materials and Structures, Vol. 10, 2001, pp.
695-704

Sanchez-Palencia, E., Non-Homogeneous media and vibration theory, Springer-Verlag,
Berlin, 1980

Schwartz, M.M., Composite materials, Volume I: Properties, nondestructive testing, and
repair, Prentice Hall, 1997

Sester, M., Poizat, Ch., On the analytical and numerical modeling of piezoelectric fiber
composites, Proceedings of TUTAM-Symposium on Smart Structures and Structronic
Systems, Magdeburg, September 26, 2000, pp. 103-112

Shakeri, C., Noori, M.N., Hou, Z., (2001) Smart materials and structures: A review
[online]
Available:

http://me.wpi.edu/~cirrus/publications/smartmaterials/smartmaterialextension.htmi
[2002]




420

Shigley, J.E., Mechanical engineering design, McGraw Hill, 1986

Sirkis, 1., Singh, H., Moiré-Analysis of thick composites with embedded optical fibers,
Experimental Mechanics, 1994, pp. 300-305

Slowik, V., Schlattner, E., Klink, T., (1998) Fiber Bragg Grating sensors in concrete
technology [online]

Available:

www.uni-leipzig.de/~massivb/institut/lacer/lacer03/103 13.pdf [2002]

Song, G., Kelly, B., Agrawal, B.N., Active position control of a shape memory alloy wire
actuated composite beam, Smart Materials and Structures, Vol. 9, 2000, pp. 711-716

Srinivasan, A.V., McFarland, M.D., Smart structures: Analysis and design, Cambridge
University Press, 2001

Stalmans R., Michaud, V., Bidaux, J-E., Gotthardt, R., Manson, J-A.E., Adaptive
Composites with embedded shape memory alloy wires, Proceedings of the 4th European
Conference on Smart Structures and Materials, 1998, pp. 801-804

Stockel, D., Shape memory actuators for automotive applications, Engineering aspects of
shape memory alloys, Edited by Duerig, T.W., Melton, K.N., Stéckel, D., Wayman,
C.M., Butterworth-Heinemann, 1990

Strait, L. H., Karasek, M. L., Amateau, M. F., Effects of Seawater Immersion on the
Impact Resistance of Glass Fiber Reinforced Epoxy Composites, Journal of Composite
Materials, Vol. 26(14), 1992, pp. 2118-2133

Sumerak, J.E., Understanding pultrusion process variables, Modern Plastics, March 1985,
pp- 58-64

Swanson, S.R., Introduction to design and analysis with advanced composite materials,
Prentice Hall, New Jersey, 1997

Tannous, F.E., Saadatmanesh, H., Durability of AR glass fiber reinforced plastic bars,
Journal of Composites for Construction, Vol. 3(1), February 1999, pp. 12-19.

Tauchert, T.R., Ashida, F.,, Noda, N., Adali, S., Verijenko, V., Development in
thermopiezoelasticity with relevance to smart composite structures, Composite
Structures, Vol. 48, 1999, pp. 31-38

Tawfik, M., Duan, B, Ro, j., Mei, C., Suppression of post-buckling deflection and panel-
flutter using shape memory alloy, SPIE, Vol. 3991, 2000, pp. 346-357



421

Tay, A., Wilson, D.A., Strain analysis of optical fibers embedded in composite materials
using finite element modeling, SPIE, Vol. 1170, 1989, pp. 521-533

Tennyson, R., Installation, use and repair of fiber optic sensors, ISIS Canada, design
manual no. 1, 2001

Tennyson, R.C., Mufti, A.A., Neale, K., Fiber optic sensing for civil infrastructure, SPIE,
Vol. 4337, 2001, pp. 203-211

Theobald, D., Blount, K., Vaughan, J.G., Lackey, E., Effect of Processing Parameters on
the Josipescu Shear Strength of Various Pultruded Glass/Epoxy and Graphite/Epoxy
Composites, International Composites Expo '98 - Proceedings of the Composite Institute,
January 19-21, 1998, pp. 1-8

Todoroki, T., Shape memory sensor and actuator for air conditioners, Engineering
aspects of shape memory alloys, Edited by Duerig, T.W., Melton, K.N., Stockel, D.,
Wayman, C.M., Butterworth-Heinemann, 1990

Tsai, P., Ventura, C., Waterloo Creek Bridge project instrumentation progress report No.
1, University of British Columbia, 1998

Tzou, H.S., Piezoelectric shells: Distributed Sensing and control of continua Kluwer,
Dordrecht, 1993

Tzou, H.S., Bao, Y., A theory on anisotropic piezothermoelastic shell laminates with
sensor/actuator applications, Journal of Sound and Vibrations, 184, 1995, pp. 453-473

Udd, E., Editor, Fiber optic sensors: An introduction for engineers and scientists, John
Wiley & Sons, Inc., New York, 1991

Udd, E., Editor, Fiber optic smart structures, John Wiley and Sons, Inc., New York, 1995

Udd, E., Kunzler, M., Laylor, M., Schulz, W., Kreger, S., Corones, J., McMahon, R.,
Soltesz, S., and Edgar, R., Fiber grating systems for traffic monitoring, SPIE, Vol. 4337,
2001, pp. 510-516

Vaughan, J.G., Hacket, R.M., Pultrusion process characterization, NASA contract NAS8-
37193, 1991

Vaughan, J.G., Robert M.H, Ellis C.S, Optimization of the Pultrusion Process for
Graphite/Epoxy, Fiber-Tex 1988, NASA CP-3038, September 13-15, 1989, pp. 285-299




Vel, S.S., Batra, R.C., Cylindrical bending of laminated plates with distributed and
segmented piezoelectric actuators/sensors, American Institute of Aeronautics and
Astronautics Journal, Vol. 38(5), 2000a, pp. 857-867

Vel, S.S., Batra, R.C., Three-Dimensional analytical solution for hybrid multilayered
piezoelectric plates, Transactions of the ASME, Vol. 67, 2000b, pp. 558-567

Vel, S.S., Batra, R.C., Analysis of piezoelectric bimorphs and plates with segmented
actuators, Thin-walled Structures, Vol. 39(1), 2001a, pp. 23-44

Vel, S.S., Batra, R.C., Exact solution for rectangular sandwich plates with embedded
piezoelectric shear actuators, American Institute of Aeronautics and Astronautics Journal,
Vol. 39(7), 2001b, pp. 1363-1373

Ventura, C.E., Onur, T., Tsai, P.C., Dynamic characteristics of the Crowchild Trail
bridge, Canadian Journal of Civil Engineering, Vol. 27(5), 2000, pp. 1046-1056

Vinson, J.R., The behavior of shells composed of isotropic and composite materials,
Kluwer Academic Publishers, Dordrecht, Netherlands, 1993

Vokoun, D., Kafka, V., Mesomechanical modeling of shape memory effect, SPIE, Vol.
3667, 1999, pp. 596-601

Vurpillot, S., Inaudi, D., Ducret, J., Bridge monitoring by fiber optic deformation
sensors: Design, emplacement and results, SPIE, Vol. 2719, 1996, pp. 141-150

Wang, A., Zhang, P., May, R.G., and Murphy, K.A., Sapphire fiber-based polarimetric
optical sensor for high temperature applications, SPIE, Vol. 2191, 1994, pp. 13-22

Wang, Q., Quek, S.T., Flexural analysis of piezoelectric coupled structures, Proceedings
of IUTAM-Symposium on Smart Structures and Structronic Systems, Magdeburg,
September 26, 2000, pp. 161-168

Wayman, C.M., Duerig, T.W., An introduction to martensite and shape memory,

Engineering aspects of shape memory alloys, Edited by Duerig, T.W., Melton, K.N.,
Stockel, D., Wayman, C.M., Butterworth-Heinemann, 1990

Weeton, J.W., Peters, D.M., Thomas, K.L., Editors, Engineers’ guide to composite
materials, ASM International, Metals Park, Ohio, 1987

Wright, R.E., Molded Thermosets: A handbook for plastics engineers, molders. and
designers, Hanser Publishers, Munich, 1991




Yang, X.M., Shen, Y.P., Tian, X.G., Dynamic instability of laminated piezoelectric
shells, Proceedings of IUTAM-Symposium on Smart Structures and Structronic Systems,
Magdeburg, September 26, 2000, pp. 153-160



A EQUILIBRIUM EQUATIONS

The basic differential equations used for the mathematical models in this thesis are the
equilibrium equations. Because of their importance, a tensorial derivation of these

equations will be given. It is based on Bagar and Weichert [1999] and Holzapfel [2000].

Differential
area dA

Unit Normal Vector n
Body Force per

Cauchy Stress unit volume - P

Vector - t

Deformed

Continuum

X3 Differential
volume dv

X2

X,

Figure A-1: Continuum subjected to surface tractions and body forces

Consider a body subjected to surface tractions and body forces as shown in Figure A-1.

The linear momentum per unit mass of a differential element dv is given by ¥ where 1 is
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the position vector to that differential element measured with respect to an inertial

reference frame. Hence the total momentum for the continuum is given by:

1= [pidv | (A.1)
G

Let t denote the traction per unit surface area of the body. This vector is commonly
referred to as Cauchy stress vector [Bagar and Weichert, 2000; Holzapfel, 2000]. It

follows that the total surface forces acting on the body are given by:

= JtdA (A.2)

Similarly, let p denote the resultant body force per unit volume. Thus, the total body

forces acting on the continuum are:

B, =dev (A.3)
G

The net force acting on the body is therefore given by the sum of the terms in Equations

(A.2) and (A.3), i.e.
= [pdv+ [tdA (A.4)
G aG

Applying Cauchy’s stress theorem [Bagar and Weichert, 2000; Holzapfel, 2000] to the
second integral on the RHS of Equation (A.4) gives:

=[pdv+ [onda (A.5)
G aG

Here © is the Cauchy stress tensor familiar from elementary stress analysis, and n is the
unit vector normal to the boundary surface dG. Application of the divergence theorem to

the second integral on the RHS of Equation (A.5) gives:

jp dv + JleG dv

J(p +dive)dv

(A.6)

It is known from elementary mechanics [Hibbeler, 1995] that the rate of change of linear
momentum of a body equals the net external resultant force. Thus from Equations (A.1)

and (A.6) one may write:




-—DQt—!pi'dv = | (p+ divc)dv

Differential Element ' Differential Element
dVi

Initial Configuration G;
Density - p;

Figure A-2: Undeformed and deformed configurations of a continuum
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To simplify the LHS of Equation (A.7), consider Figure A-2. A typical differential
element is located by a position vector r; before any loads are applied. After deformation,
the position vector of that differential element is r and therefore its displacement vector,
u, is given by r-r;. Thus
Ut (A.8)
r=u
In Equation (A.8) the derivative of the initial position vector is zero because this vector is

of course not a function of time. Thus, with this result, the LHS of Equation (A.7) may be

written as follows:
D D D
— |prdv=—/{|padv=-— |p.udyv, A9
Dtlp Dtip Dt(:[p' ' (A-9)

In Equation (A.9), the principle of mass conservation was invoked. The advantage of
switching to the undeformed configuration G; is that it is not a function of time, and
hence the time derivative can be shifted inside the integral sign. Thus the expression in

Equation (A.9) becomes:
D D
— |padv, = |—p.udv, = |pidv, = |pudv A.10
Dtip, , ({Dtp, 1 Jp . !p @0

In the last step, the domain of integration was switched back to the deformed

configuration by using mass conservation once more. Next, combining Equations (A.7)

and (A.10) gives:

[(pii-divo-p)dv=0 (A.11)
G

Equation (A.11) is independent of the domain of integration, i.e. it is valid for the entire

body, as well as for any differential element. Thus, one may write:

u—divo-p=0
pu—dvoTp (A.12)
spu=divo+p
In index form, Equation (A.12) becomes:
.. acij
pu, =——+p, (A.13)
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If one only considers structures that are in static equilibrium thenii vanishes and Equation

(A.13) reduces to:

L=—p, =f (A.14)

This is the desired expression.





