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ABSTRACT

Canada is one of the countries that signed the Kyoto Protocol. If Canada ratifies the
Protocol, it will be legally bound to reduce its greenhouse gas (GHG) emissions. One of
the effective means of reducing the GHG emissions is reducing the end-use energy
consumption and the associated emissions from the residential sector. This requires that
the energy consumption characteristics of the residential sector, as well as the complex
interrelated effects of energy saving measures that can be adopted to reduce energy
consumption are well understood. To this end, detailed mathematical models of
residential end-use energy consumption are required. So far, two types of models have
been used to model residential end-use energy consumption. These are the Engineering
Model, used to model the energy consumption at the national and regional levels, and the
Conditional Demand Analysis (CDA) Model used at the regional level.

This thesis investigates the use of Neural Network (NN) and CDA methods for
modeling residential end-use energy consumption at the national and regional levels. In
this work, end-use energy consumption models were developed for the Canadian
residential sector using the NN and CDA methods and the extensive data available in the
1993 Survey of Household Energy Use database of Statistics Canada. Although NN's
have characteristics suitable for modeling residential energy consumption at the national
and regional levels, no NN based model had been reported in the literature before the
current work. Similarly, the CDA method had not been used to model residential energy
consumption at the national level, although there are several studies where CDA was used
to model energy consumption at the regional level. Thus, the NN and CDA models
developed in this work are the first of their kind, and represent original contributions to
the state-of-the-knowledge in energy modeling.

The prediction performance and the ability to characterize the residential end-use
energy consumption of the NN Model and the CDA model are compared with those of an
Engineering Model developed earlier by others. The effects of socio-economic factors
and impacts of energy saving measures on the end-use energy consumption were
estimated using the NN and the CDA Models, and, where possible, the results are
compared with those of the Engineering Model.

A comparison of the estimates of the models showed that the NN Model has a higher
prediction performance than the CDA and the Engineering Models. The NN Model was
able to successfully estimate the impact of socio-economic factors and energy saving
measures on the end-use energy consumption in the residential sector. Due to the limited
number of variables the CDA Model can accommodate, its capability to evaluate these
effects is significantly lower than the NN Model. While the Engineering Model has the
highest level of flexibility amongst the three models to evaluate energy saving measures,
it cannot deal with socio-economic factors since these factors are not accommodated by
the thermodynamics/heat transfer based model.

The results of this work show that the NN Model can be used to estimate the end-use
energy consumption in the residential sector, to categorize the household and end-use
energy consumption, and to evaluate the effects of a large number of socio-economic
factors and the impacts of energy saving scenarios on end-use energy consumption. The
CDA model, while simpler and easier to use than the NN model, has limitations that limit
its usefulness.
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Chapter 1

Introduction

1.1 Background

Energy use has been a matter of policy concern since the 1970s. After the oil crises in
1973 and 1979, governments intensively promoted energy conservation. Then in the 80's,
the primary focus shifted to air pollution caused by combustion of fossil fuels. In recent
years, energy use and associated greenhouse gas (GHG) emissions, and their potential

effects on the global climate change have been the worldwide concern.

"Greenhouse effect"” can be described as the blanketing effect of the earth's
atmosphere acting like the panes of glass of a greenhouse, and preventing the long wave
radiation emitted by the earth's surface from dispersing into space. The principal long-
lived gases responsible for absorbing outgoing radiation are carbon dioxide, methane,
nitrous oxide, and chlorofluorocarbons. Among human caused emissions, carbon dioxide

is by far the most globally significant GHG.

In December 1997, 160 nations gathered in Kyoto, Japan, developed the Kyorto
Protocol that committed the developed countries to reduce GHG emissions by at least
five percent below 1990 levels by 2008 - 2012. Within this legally binding agreement,
Canada promised a six percent reduction below 1990 emission levels by 2010

(Environment Canada, 2001).



Improving the end-use energy efficiency is one of the most effective ways to
reduce end-use energy consumption and associated emissions, especially for Canada. In
2000, the total energy consumption in Canada was about 8,200 Petajoules, making
Canada one of the highest per capita energy consumers in the world (OEE, 2002). The
energy consumption and associated GHG emissions in each sector in 2000 are given in
Figure 1.1. Mostly owing to its northerly location, and the prevalence of single family
housing, close to 17% of this total, about 1,388 PJ, was for residential use, while the
associated GHG emissions were 74.7 Mt, representing 16 percent of secondary energy
related emissions. Thus, one of the effective means of approaching the GHG emission
reductions required by the Kyofo Protocol is reducing the end-use energy consumption

and the associated emissions from the residential sector.

ENERGY USE IN 2000 GHG EMISSIONS IN 2000
Commercial Commercial
[1059 PJ] [59.9 Mt]

Residential Industrial Residential

[1388 PJ] [159.3 Mt]
Industrial

[3204 PJ] 3 % Agriculture 39, Agriculture
[232 PJ] [16.4 Mt]
Transportation Transportation
[2282 PJ] [163.4 Mt]

Figure 1.1. Energy consumption and associated GHG emissions in Canada, sectoral
distribution in 2000 (OEE, 2002)

To reduce the end-use energy consumption and pollutant emissions from the
residential sector, a large number of options need to be considered. These include
improving the energy efficiency of dwellings through improving envelope characteristics;
using higher efficiency heating equipment, household appliances and lighting; switching
to less carbon-intensive fuels for space and domestic hot water heating (DHW); erc.

Energy efficiency improvements have complex interrelated effects on the end-use energy



consumption of households and the associated pollutant emissions (Ugursal and Fung,
1996, Ugursal and Fung, 1998; Farahbakhsh et al., 1998). As a result, evaluating the
effect of various energy efficiency improvement options on residential end-use energy

consumption and associated emissions requires detailed mathematical models.

1.2 Problem Definition

As stated earlier, energy efficiency improvements have complex interrelated effects on
the end-use energy consumption of households and the associated pollutant emissions.
For example, improving the efficiency of lighting reduces the heat gain from lights,
increasing the space heating energy consumption. Owing to such interrelations, detailed
mathematical models are necessary to evaluate the effect of various energy efficiency
improvement options on residential end-use energy consumption and associated

emissions.

Recently, two approaches have been used to model residential end-use energy
consumption: the engineering approach (Farahbakhsh, 1997; Farahbakhsh ez al., 1997,
1998) and the conditional demand analysis (CDA) approach (Parti and Parti, 1980;
Aigner et al., 1984; Fiebig et al., 1991, Kellas, 1993; Lafrange and Perron, 1994; Hsiao et
al., 1995). The engineering approach involves developing a housing database
representative of the national housing stock and estimating the end-use energy
consumption of the households in the database using a building simulation program. A
building simulation program models the end-use energy consumption of a building based
on thermodynamic and physics principles taking into consideration such factors as
envelope characteristics, internal and solar heat gains, weather conditions, and occupant
behaviour. Thus, this approach requires a database representative of the housing stock

with detailed household description data'. The cost of conducting a survey with sufficient

! Sufficient data are needed for each household to develop the input data file for the building simulation
program used.



information to develop input data files for a building simulation program is in the range

of hundreds of dollars per household, and therefore can be prohibitive.

CDA, on the other hand, is a regression-based method. The regression essentially
attributes consumption to end-uses on the basis of the household energy consumption.
Since CDA does not involve modeling of the energy consumption of each household, it
does not require as detailed data on the characteristics of the households as the
engineering approach does; however, its results are sometimes unreliable due to
multicollinearity problems (Fiebig et al., 1991; Bauwens ef al., 1994; Hsiao et al., 1995).
The multicollinearity problem makes it difficult to isolate the energy use of appliances
with high saturation (i.e. appliances owned by a large majority of households), such as the
refrigerator. Also, the model requires a very large amount of data due to the high number

of independent variables used in the regression equations’.

One of the major difficulties associated with the use of the engineering approach
based models to estimate the unit energy consumption (UEC) of the end-uses in the
residential sector is the inclusion of socio-economic characteristics of the occupants that
have a significant effect on the residential energy use. The CDA approach, which is based
on regression analysis to decompose household energy consumption into appliance
specific levels, can handle socio-economic factors if they are included in the model

formulation.

The most comprehensive engineering approach based residential end-use energy
consumption model for the Canadian housing stock is the Canadian Residential Energy
End-use Model (CREEM) (Farahbakhsh, 1997; Farahbakhsh et al., 1997, 1998). To
develop the CREEM, data from the 1993 Survey of Household Energy Use (SHEU)
(Statistics Canada, 1993) was used as the core of the database. Since the information in
the 1993 SHEU database was not sufficient for this purpose, it was augmented by
developing house archetypes using the Statistically Representative Housing Stock

database (Ugursal and Fung, 1994; and Scanada Consultant Limited, 1992), the 1993/94

2 Data on several thousands of households are needed.



“200-House Audit” project database (NRCan, 1994), HOT2000 default values (NRCan,
1996) and minor contributions from other sources, such as engineering estimates.
CREEM is a representative engineering model for the Canadian housing stock, and
contains 8,767 household files. It is a versatile end-use energy model that can evaluate the
impact of all types of potential energy saving measures on the residential end-use energy
consumption in Canada. However, it requires extensive user expertise and lengthy input
data preparation time. A detailed description of CREEM and its applications are given
elsewhere (Farahbakhsh, 1997; Farahbakhsh et al., 1997, 1998).

The CDA approach was used by Kellas (1993) and Lafrange and Perron (1994)
to estimate the household end-use energy consumption in Manitoba and Quebec,
respectively. Kellas used the data from the Residential Energy Use Survey conducted by
Manitoba Hydro in 1991. The author faced difficulties in predicting the energy
consumption of highly saturated appliances (e.g. main refrigerator) due to the
multicollinearity problem. The estimates for space and DHW heating energy consumption
were reasonable, but the estimates for space cooling were too high. The other Canadian
CDA study was conducted by Lafrange and Perron (1994) using the data from three large
surveys of Hydro-Quebec carried out between 1979 and 1989. The authors obtained
reasonable estimates for DHW heating energy consumption, but low space heating and
too high space cooling energy consumption estimates. Like Kellas (1993), the authors had

difficulties to estimate the consumption of highly saturated appliances.

There is a need for an end-use energy consumption model for the Canadian
housing stock that is accurate, reliable, and simpler to use than the CREEM. Such a
model should be capable of characterizing the end-use energy consumption in the
residential sector and should be capable of breaking down the residential energy
consumption into end-use categories. The model should also be able to reflect the effects
of socio-economic characteristics on residential end-use energy consumption. Such a

model would be a useful tool to understand how energy is used in the residential sector, to



develop optimal strategies for reducing the energy consumption’, and evaluate the impact

of energy efficiency measures on the energy consumption in the residential sector.

In this thesis, the Neural Network (NN) approach is used to develop a model to
estimate the end-use energy consumption of Canadian single family households. Neural
Networks are simplified mathematical models of biological neural networks. They are
highly suitable for determining causal relationships amongst a large number of
parameters such as seen in the energy consumption patterns in the residential sector. The
NN approach has been used for prediction problems as a substitute for statistical
approaches due to their simplicity of application and accurate estimates. A review of the
published literature indicates that the NN approach has not been used or tested for

national housing sector energy consumption modeling in Canada or elsewhere.

1.3 Objective of the Thesis

The major objective of this thesis is to develop an end-use energy consumption model of
the Canadian housing stock using the NN approach. To date, efforts to model the housing
sector energy consumption in Canada have been limited to the use of the engineering
approach (Farahbakhsh, 1997; Farahbakhsh et al., 1997, 1998) at the national level and
the CDA approach (Kellas, 1993; Lafrange and Perron 1994) at the provincial level.

The end-use energy consumption model for the Canadian housing stock,
CREEM, which was developed using the engineering approach, is as advanced as
possible within the constraints of the available data. Therefore, it was decided not to

attempt to improve the engineering approach based model in this thesis.

? In this work, all values cited for energy consumption and savings are for "end-use" energy rather than
"source" energy. This distinction is especially important in interpreting the results for electrical energy
consumption and savings. "End-use" electricity consumption and savings values are to be interpreted as
electricity consumption and savings at the end-user level; as such, the efficiencies of electricity generation
and transmission are not reflected in these values.



Since none of the existing CDA models address nationwide energy consumption
in the residential sector; a secondary objective of this thesis is to develop a new CDA
model using the data from 1993 SHEU database to compare the prediction performance

of the NN Model with the CDA and the Engineering Models.

Thus, the objectives of the thesis are as follows:

1. To develop two new energy consumption models of the Canadian residential sector
representative of the Canadian housing stock, one using the NN approach and a second
one using the CDA approach. Both models are to be developed based on the data from
the 1993 SHEU database.

2. To estimate annual average end-use and total household energy consumption of the
Canadian housing stock using the NN and CDA Models, and categorize the estimated
annual average household energy consumption by dwelling type, by province, by
vintage, and by space heating fuel types and energy sources;

3. To assess the accuracy of the predictions of the NN, CDA, and Engineering Models by
comparing their predictions with metered data, the results from other studies, and with
each other;

4. Using the NN and CDA Models developed, to assess the impact of energy efficiency
measures on residential energy consumption in Canada;

5. To conduct a comparative assessment in terms of prediction performance and
flexibility in evaluating the effects of the socio-economic factor and energy savings

measures of the NN, CDA, and Engineering Models.

1.4 Scope of the Thesis

This thesis deals with the modeling of the housing sector energy consumption using the
NN and CDA approaches. The models were developed using the detailed data available in
the 1993 SHEU database on 8,767 households from all provinces of Canada. The 1993
SHEU was conducted by Statistics Canada, and the database is representative of the

Canadian housing stock. Actual energy billing data obtained from fuel suppliers and



utility companies for a complete year are also available for 2,749 of the 8,767 households
in the 1993 SHEU database. The households from the 1993 SHEU database with the
billing data and the actual weather data for the year 1993 available from Environment
Canada (1999) were used in the development of the models. Consequently, the accuracy

of the models is bounded by the accuracy of the information available from these sources.

In this thesis, the Stuttgart Neural Network Simulator (SNNS) V4.2 software
(SNNS, 1998) was used in development of the NN Model. SNNS is a well-established
NN simulator that was developed at the University of Stuttgart in 1990. Since then,
numerous researchers have used it as an NN development tool, including atmospheric
scientists (Gottsche and Olesen, 2001; Del Frate and Schiavon, 1995), electrical and
computer engineers (Binfet and Wilamowski, 2001; El-Fergany et al., 2001), medical
doctors (Okon et al., 2001), and food technologists (Wittmann et al., 1997).

The SYSTAT 9.0 software (SYSTAT, 1998) was used in the development of the
CDA Model. SYSTAT is a widely used statistical analysis software preferred by
scientists and engineers to conduct research in areas ranging from bio-medical
engineering to telecommunications, including Leach et al. (2001), Sindt et al. (2001),
Bierbaum et al. (2000), Gemperline (2000), Chen (1999), Kombrot (1999), and Miller et
al. (1998).

1.5 Structure of the Thesis

The contents of the individual chapters are as follows:

Chapter 2: Review of the literature on NN and CDA methods and their uses in energy

modeling, as well as overview and estimation of the models, are presented. The learning

algorithms commonly used in NN modeling are also discussed.

Chapter 3: Information on the sources of data and methodologies used to develop the
models to estimate the residential energy consumption using the NN and the CDA

approaches are presented. The flowcharts depicting the NN and CDA methodologies are



included in this chapter. The procedures used to compare the results of the models and to
conduct the energy efficiency measures are also presented at the last sections of the

chapter.

Chapter 4: The processes used in the development of the NN and the CDA Models are
presented in detail, including the development of the datasets, input and output units, and
the network architecture of the NN Model, as well as the development of the datasets and
UEC equations of the CDA Model.

Chapter 5: The end-use and household energy consumption estimates obtained using the
NN and the CDA Models are compared with those from the Engineering Model. The
effects of socio-economic factors on the NN and the CDA Models end-use energy

consumption estimates are also discussed.

Chapter 6: The impact of energy savings scenarios on DHW and space heating energy
consumption estimated by the NN and CDA Models are examined and compared with

those estimated by the Engineering Model.

Chapter 7: General conclusions and recommendations for future work are presented.



Chapter 2

Review of NN and CDA Modeling Approaches

2.1 Overview

As presented in Chapter 1, the main objective of this study is to develop two new
residential energy consumption models, one using the NN approach and the second one
using the CDA approach. In this chapter, a brief background of NN and CDA modeling
approaches is presented, followed by a literature review on their use in energy modeling.
Next, a detailed overview of each modeling approach and information on estimating

energy consumption using each model are presented.

2.2 Review of the NN Methodology

2.2.1 Background

A Neural Network (NN), also commonly referred to as an Artificial Neural Network, is
an information-processing model inspired by the way the densely interconnected, parallel
structure of the brain processes information. In other words, neural networks are
simplified mathematical models of biological neural networks. The key element of the

NN is the novel structure of the information processing system. It is composed of a large
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number of highly interconnected processing elements that are analogous to neurons, and

tied together with weighted connections that are analogous to synapses.

NNs are capable of finding internal representations of interrelations within raw
data. NN are considered to be intuitive because they learn by example rather than by
following programmed rules. The ability to learn is one of the key aspects of NNs
(Curtiss et al., 1996). This typical characteristic, together with the simplicity of building
and training NNs, has encouraged their application to the task of prediction. Because of
their inherent non-linearity, NNs are able to identify the complex interactions between
independent variables without the need for complex functional models to describe the

relationships between dependent and independent variables (AlFuhaid et al., 1997).

Recently, the NN approach has been proposed as a substitute for statistical
approaches for classification and prediction problems. The advantages of NNs over
statistical methods include the ability to classify in the presence of nonlinear relationships
and the ability to perform reasonably well using incomplete databases. The comparison of
the results from NNs and statistical approaches indicated that neural networks offer an
accurate alternative to classical methods such as multiple regression or autoregressive

models (Feuston and Thurtell, 1994; AlFuhaid et al., 1997).

Although the NN concept was first introduced in 1943 (McCulloh and Pitts,
1943), it was not used extensively until the mid-1980's owing to the lack of sophisticated
algorithms for general applications, and its need for fast computing resources with large
storage capacity. Since the 1980's, various NN architectures and algorithms were
developed (e.g. the multi-layer perceptron (MLP) which is generally trained with the error
backpropagation algorithm, Hopfield Network, Kohonen Network, etc. [Hassoun, 1995]).
Consequently, NN models have been used extensively as a tool for modeling, control,
forecasting, and optimization in many fields of engineering and sciences such as process

control, manufacturing, nuclear engineering, and pattern recognition.
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2.2.2 Use of NNs in Energy Modeling

In the area of end-use energy consumption modeling, the application of NN has been
mainly limited to utility load forecasting. There are several hundred papers in the
literature on the application of NN for utility load forecasting. These clearly show the
superior capability of NN models over conventional methods (such as regression
analysis). Park et al. (1991) were the first group of researchers to use NN for load
forecasting. The authors used a 3-layer' NN to forecast the electrical load in the
Seattle/Tacoma area, 1-hour and 24-hours ahead of time. Using past and current ambient
temperatures and electrical load, their NN model could forecast the future load with an
absolute error of about 1-2% for 1-hour, and 4% for 24-hour ahead forecasts,
respectively. For 24-hour load forecasting, Peng et al. (1992) used an improved NN that
used an alternate formulation of the problem in which the input was mapped to the output
by both linear and non-linear terms, and an improved method for selecting and scaling the
input units. Consequently, the absolute error in their 24-hour forecasts was less than 3%

for each day of the week, with some days less than 2%.

Kiartzis et al. (1995) also used a 3-layer NN with 24 output neurons, one for
each hour of the day (i.e. their model could forecast the next 24-hour load profile on an
hourly basis). With a NN made up of 63 input, 70 hidden, and 24 output neurons, the
yearly average absolute error of their forecasts was 2.66%. The authors expected that
incorporation of additional weather information such as cloud cover, humidity, rainfall,
etc. would further reduce the forecast error. Chen et al. (1996) included humidity in their
NN model in addition to ambient temperature to account for the effect of humidity on air-
conditioning component of the load at three types of sub-stations (residential,
commercial, and industrial). The authors used a functional link network algorithm (a

combination of the time series and the backpropagation algorithms) to train the network

' The definitions of the NN terms such as input, output, and hidden layers, neurons, and learning
algorithms are given in Section 2.2.3.
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due to its higher convergence speed and accuracy. The load forecasting errors were 1.93,

2, and 2.87% for residential, commercial, and industrial substations, respectively.

AlFuhaid et al. (1997) used a cascaded artificial NN (CANN) to forecast half-
hourly loads for the next 24-hours. The CANN approach captured the sensitivity of the
non-linear influence of temperature and humidity on the load. The authors used a 3-layer
NN (16 input, 8 hidden, and 3 output neurons) as the lower NN, and a 4-layer NN (107
input, 70 hidden, and 48 output neurons) as the cascaded NN. The use of the cascaded
NN approach as opposed to standard NN reduced the absolute error from 3.4% to 2.7%.

NN models were used to predict energy consumption of individual buildings
since they have a high potential to model nonlinear processes such as building energy
loads (Kawashima, 1994). NN applications specifically to building energy analysis were
pioneered by the Joint Centre for Energy Management at the University of Colorado,
Boulder, about a decade ago. It is reported by Krarti et al. (1998) that Kreider and Wang
(1991) were the first to apply a NN model to predict the energy consumption of a
building. The electricity consumption of a commercial building was predicted and the
results showed that the prediction of the NN model was accurate. The authors indicated
that NN was easier to use than classical regression methods since they learn from fact
patterns, and there was no requirement for a priori statistical analysis. In a later study by
the authors, the NN results were compared with statistical results for the same
commercial building data (Kreider and Wang, 1992). The regression model attempted to
fit all the data globally, but the accuracy at some specific points was not acceptable. The
prediction of the NN model was high for those points where regression method

completely missed.

Anstett and Kreider (1993) used NN to predict energy use (steam, natural gas,
electricity, and water) in a complex institutional building. The authors used various
network configurations, starting with a simple configuration with no hidden layers,
moving progressively to more complex configurations with two or three hidden layers.

The authors used the month, day of the month, day of the week, and outdoor (high, low,
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average) temperatures as input units, and evaluated several different training algorithms.

The predictive quality of the NNs was found to be satisfactory.

In order to evaluate many of the analytical methods and to asses new methods
not widely used in building data studies, an open competition was held in 1993 to identify
the most accurate method for making hourly energy use predictions based on limited
amount of measured data (Kreider and Haberl, 1994). More than 150 contestants
requested the building data. The results of the top six models were presented in the study
of Kreider and Haberl (1994). Excellent predictions were achieved by neural networks in
all six models, with coefficient of variations® ranging from 10% to 17%. The results of
the competition indicated that NN of various designs and training methods obtained more

accurate values than the traditional statistical methods.

Kreider et al. (1995) used NN to predict the energy consumption of a complex
building without knowledge of past energy consumption patterns. In this case, the
forecasting problem was more difficult because the forecast was several months into the
future rather than few hours. Using dry bulb temperature, humidity ratio, horizontal solar
flux, wind speed, hour of the day, and weekday/weekend binary flag as inputs and
recurrent (feedback) NNs (with 1- or 2-hidden layers and five or nine neurons,
respectively), the authors predicted future heating and cooling loads. The authors also
used the NN method to estimate the building equivalent thermal resistance and thermal
capacitance from time series data on energy consumption. The assumption was that the
energy consumption data contains, or implicitly represents, the characteristics of the
building and its usage. Their NN model was able to estimate both the building equivalent

thermal resistance and thermal capacitance with less than 1% error.

Besides predicting building energy consumption, NN was also used to predict
energy savings from building retrofits (Cohen and Krarti, 1995; Dodier and Henze, 1996).
Cohen and Krarti (1995) developed a NN model from the monitored building end-use

data available for a given period of time before the retrofit was implemented. Using the

% The definition of the coefficient of variation is given in Section 2.2.5.
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pre-retrofit NN model, the future building energy use without the retrofit was predicted.
The energy savings were calculated from the difference between the actual post-retrofit
measured data and the energy use prediction from the pre-retrofit NN model. In general,

the NN model predicted savings within 10%.

Another NN approach to determine energy savings from building retrofits was
proposed by Dodier and Henze (1996). The authors used one network for each energy
end-use to estimate the pre-retrofit energy consumption of a commercial building. All
networks had two hidden layers of 25 neurons each. The energy savings were estimated
as the difference between the actual (i.e. measured) post-retrofit energy consumption of
the building and the energy consumption predicted by the model for the pre-retrofit
building. The energy savings predicted by the model obtained an average coefficient of

variation of 17%.

NN approach was used by Olofsson and Andersson (2001) to predict annual
energy demands of six Swedish single-family dwellings using data from daily
measurements. The authors developed the NN model using daily indoor and outdoor
temperature difference, as well as heating and internal use energy consumption data. The
NN model had two hidden layers, each with 12 neurons, and trained with generalized
delta learning algorithm'. The authors achieved a deviation of 4 % between the predicated

and measured daily energy demands of the dwellings on an annual basis.

As this literature review indicates, NN approach has been widely used for load
forecasting. Recently, the approach has been used for estimating the energy consumption
of various types of commercial and residential buildings; however, NNs have not yet been

used to model the residential energy consumption at the regional or national scale.

2.2.3 Overview of the NN Model

NNs use simple processing units, called neurons, to combine data, and store relationships

between independent and dependent variables. An NN consists of several layers of
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neurons that are connected to each other. This connection is an information transport link

from one sending to one receiving neuron.

A widely used NN model called the multi-layer perceptron (MLP) NN is shown
in Figure 2.1. The MLP type NN consists of one input layer, one or more hidden layers
and one output layer. Each layer employs several neurons, and each neuron in a layer is

connected to the neurons in the adjacent layer with different weights.

Input Layer Hidden Layer Output Layer

Figure 2.1. Architectural graph of an MLP with one hidden layer

Signals flow into the input layer, pass through the hidden layer(s), and arrive at
the output layer. With the exception of the input layer, each neuron receives signals from
the neurons of the previous layer. The incoming signals (x;;) are multiplied by the weights

(vi) and summed up with the bias (b;) contribution.

net; =Z:xivij+bj 2.1
i=1
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where,
netj: total input of the hidden layer neuron j
X;:  input to the hidden layer neuron j from input layer neuron i
vii:  weight between the input layer neuron i and hidden layer neuron |
bj:  bias of the hidden layer neuron j

n:  number of neurons in the input layer

The output of a neuron is determined by applying an activation function to the
total input (net;) calculated using Equation 2.1. The bias (5,) in Equation 2.1 has the effect
of increasing or decreasing the total input to the activation function, depending on
whether it has a positive or negative value, respectively, and can be evaluated similar to
the intercept term in a linear regression model. The bias avoids the tendency of an
activation function to get "stuck” in the saturated, limiting value area of the activation
function (Kreider and Wang, 1992). The bias is actually a unit connected to a neuron with

a weight of one.

Activation functions for the hidden units are needed to introduce nonlinearity
into the network. Without nonlinearity, hidden units would not make MLPs more
powerful than just plain networks which do not have any hidden layer units, just input and
output units. The sigmoid functions, such as logistic and hyperbolic tangent functions, are
the most commonly used activation functions in networks trained by backpropagation
(Fausett, 1994). The logistic function with the output amplitude lying inside the range
[0.0 to 1.0] is shown as:

1

1+e ™

z, = f(net;) = 2.2)

The output amplitude of the hyperbolic tangent function lies inside the range [-1.0 to 1.0],

and is shown as:

1 _ —2netj

z; =f(ne:tj)=tanh(netj)=1 2.3)

—2net;
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The outputs of the activation functions become the inputs to the layers
downstream. The ultimate output of a NN model, y, is the output of the activation
function at the output layer. The activation function for the output units is mostly chosen
to be logistic, hyperbolic tangent or linear (identity) functions. The identity function can

be shown as
z; = f(net;) = ne; (2.4)

If the computed outputs do not match the known (i.e. target) values, NN model is
in error. Then, a portion of this error is propagated backward through the network. This
error is used to adjust the weight and bias of each neuron throughout the network so the
next iteration error will be less for the same units. The procedure is applied continuously
and repetitively for each set of inputs until there are no measurable errors, or the total

error is smaller than a specified value.

At this point, the net remembers the patterns for which it was trained and is able
to recognize similar patterns in new sets of data. Once the structure and training are
completed, predictions from a new set of data may be done, using the already trained
network. During the training process, the neural network develops the capability of

recognizing different patterns and capturing relevant relationships in the training dataset”.

Therefore, the underlying assumption in using the NN model is that the
relationships between the input and the output variables in the training dataset, the testing
dataset, and prediction dataset are the same. This feature of the NN Models can also be
seen in CDA models, but not in Engineering Models. The models based on the
engineering approach have the capability to estimate a wide range of variables, as long as

the detailed house description data are available.

* The definitions of the datasets used in the NN development are given in Section 2.2.4.
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2.2.3.1 Leaming Algorithms

Brief explanations of the learning algorithms used for the training of the feedforward
network model are given below, including references for further reading. Somewhat more

detailed descriptions are given in Appendix A.

1. Backpropagation Algorithms

(a) Standard (Plain Vanilla) Backpropagation

Vanilla backpropagation algorithm was introduced by Rumelhart and McClelland (1986)
and is the most commonly used learning algorithm. During training, each output layer
neuron compares its output with its target value to determine the associated error. Based
on this error, the error information term is computed (derivation is given in Appendix A),
which is used to distribute the error of output layer neuron back to all neurons in the
hidden layer by updating the weights between the hidden layer and output layer. In a
similar way, the error information term is computed for each hidden unit and used to

update the weights between the hidden layer and input layer.

The weight correction term for each weight is computed by using the error
information term. Also, a learning parameter which is usually taken as a positive number
less than one, is added to the weight correction formula to reduce the changes in the
weights, so that the instability (i.e. oscillation) of the network is prevented. The
corrections to all weights are done simultaneously by adding the weight correction term

to the old weight after each training pattern.

(b) Enhanced Backpropagation

This is an improved version of the standard (vanilla) backpropagation algorithm, which
uses a momentum term and a flat spot elimination value. The momentum term introduces
the old weight correction term as a parameter during the computation of the new weight

correction term. This avoids the oscillation problem common with the standard
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backpropagation algorithm when the error surface has a very narrow minimum area, and

keeps the weight changes going in the same direction (Anstett and Kreider, 1993).

The derivative of the activation function, which is used during the computation
of the error information term, goes to zero as the unit's output approaches to the
maximum and minimum values of the activation function. Thus, the flat spot elimination
value is added to the derivative of the activation function to enable the network to
overcome this "sticking weights" problem (SNNS, 1998). The formulae for the
computation of weight correction term and error information term are given in Appendix

A.

2. Quickprop

One method to speed up the learning is to use the information about the curvature of the
error surface. The Quickprop algorithm is based on the assumption that the error curve
can be approximated by a quadratic polynomial (i.e. parabola), which is concave up
(Fausett, 1994). The partial derivative of the error function with respect to the given
weight summed over all training patterns is referred as slope and used in the algorithm.

The slope term is calculated for all weights as given in Appendix A.

The weight correction term for the hidden and output layer weights is computed
by using the information about the previous weight correction term together with the
previous and current value of the slope. The initial weight correction term is computed by
standard (vanilla) backpropagation algorithm. The computation of the weight correction

term is given in Appendix A.

3. Resilient Propagation (RPROP)

This algorithm was introduced by Riedmiller and Braun (1993). It performs a direct
adaptation of the weight adjustment based on local gradient information. The main
difference from other algorithms is that the adaptation is not blurred by gradient

behaviour. In this algorithm, the size of the weight correction term is changed directly,
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i.e. without considering the size of the partial derivative, whose unforeseeable behaviour

can disturb the adapted learning rate (Riedmiller and Braun, 1993).

Each weight is introduced by an individual update value, which determines the
size of the weight correction term. The update value is computed during the learning
process based on the local sign of the error function. Once the update value of each
weight is adapted, the weight correction itself follows a very simple rule: if the derivative
is positive (i.e. increasing error) the weight is decreased by its update value, if the
derivative is negative, the update value is added. The formulae used for the computation

of the weight update value and weight correction term are given in Appendix A.

2.2.4 Estimation by the NN Model

To develop an NN model, the dataset is first divided into two sets: one to be used for the
training of the network, and the other for testing its performance. Approximately 70 or 80
percent of the dataset is used for training and the rest for testing (Anstett and Kreider,
1993).

After deciding which activation function to use for the hidden and output layer
units, the datasets are scaled so that each value falls within the range for which the
amplitude of the outputs of the chosen activation functions lie. This is done to prevent the
simulated neurons from being driven too far into saturation (Highley and Hilmes, 1993),
especially when the data span many orders of magnitude. Anstett and Kreider (1993)
found that the [0.1 to 0.9] interval provided better results for their dataset, when logistic
function and linear function were used as the activation functions for the hidden and
output layer units, respectively. Kawashima (1994) scaled the input data in the [0.0 to 1.0]
interval and the output data (target values) [0.1 to 0.9] interval for his network, which
used logistic function for both hidden and output layer units. Thus, it is not possible to
predict which activation and which scaling interval would be best suited for any given

network, and these should be chosen after testing various combinations.
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There are no rules to establish the number of hidden layers and the number of
neurons for each hidden layer for a particular application. Generally, one hidden layer is
sufficient for load prediction (Kawashima, 1994; Stevenson, 1994). Network architecture
is decided basically by trial and error; comparing the performance of the nets with

different number of neurons in the hidden layer(s).

The weights and the biases are initialized with distributed random values before
the training starts. The learning algorithm resulting in the best performance when
compared to those of the other algorithms is chosen for the training of the network. The
training is repeated until the sum of the square of errors (SSE) for the entire training data

is less than a specified value.

A smaller number of data that have never been shown to the network during
training, i.e. the testing dataset, is used to test the prediction performance of the network
after training is complete. The output of the network for the testing dataset is then

descaled to get the original units.

2.2.5 Assessing the Prediction Performance of NNs

To judge the prediction performance of a network, several performance measures are
used. Some of these measures are given in Table 2.1, where;

t;: target value of the i pattern

t: mean of the target values

yi: predicted value of the i™ pattern

N: number of patterns
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Table 2.1. Measures used to judge the performance of NNs

Name Symbol Formula - | Reference
i 2
(yi —t)

. . iz Anstett and
Fraction of Variance R? 1-=— Kr:iger,alll993
Root Mean Square RMS Kreider and Wang,

1992
) _ Kreider and
Coefficient of Variation Ccv Haberl, 1994
N
z (yl - tx )
Mean Bias Error MBE i Kawashima, 1994
N__ 100

N 2
Sum of Square of Errors SSE 2. (yi—ti)

i=1

2.3 Review of the CDA Methodology

2.3.1 Background

CDA is a regression based econometric technique designed to decompose household
energy consumption into appliance-specific components. The regression breaks down the
consumption into major end-uses on the basis of the association between appliance

holdings and household energy consumption.

CDA was first introduced by Parti and Parti in a study conducted for San Diego
Gas & Electric Company in 1977 (Parti and Parti, 1980). The CDA model developed by

the authors separated the total household energy consumption into 16 appliance
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categories based on the data from 5,286 households. Their estimates of appliance energy
use were reasonably close to the engineering estimates. Similarly, their estimates for price

and income elasticities lied within the range of estimates presented in previous studies.

Four kinds of data are generally used to develop a CDA model: household
energy consumption, generally in the form of billing records; information on the
household appliance holdings and economic/demographic features, obtained from
appliance saturation surveys; weather data; and information on market conditions (e.g.

energy prices).

Besides being used to estimate the end-use energy consumption of households
(with different physical and demographic characteristics), CDA is used to estimate
income and price elasticities (Parti and Parti, 1980), and the hourly load of major
household appliances through the day (Aigner et al., 1984; Fiebeg et al., 1991; Blaney et
al., 1994; Hsiao et al., 1995). CDA can also be used, to some extent, to assess the impacts
of energy conservation measures, such as increasing building envelope insulation and

appliance efficiencies.

2.3.2 Use of CDA in Energy Modeling

Aigner et al. (1984) used the CDA method and 15-minute demand data from 130
households to obtain hourly end-use load profiles. The authors used 24 regression
equations, each representing an hour of the day, to estimate the consumption through the
day. In order to generate more precise estimates, restrictions were imposed on the
parameters of the hourly equations, assuming that some appliances were not used in the
early hours of the morning and hence could be excluded from those particular equations.
The equations were first estimated by Ordinary Least Square (OLS) method (well-known
as Gauss and Markov Theorem [Johnston and DiNardo, 1997]) and the multiple
coefficient of determination values of the equations ranged approximately from 0.55 to
0.80. Generalized Least Square (GLS) (Johnston and DiNardo, 1997) was also used for
the estimation of the hourly end-use loads and the results showed that GLS method
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estimated the hourly loads lower than the ones estimated by OLS. The estimated hourly
loads for most of the appliances were reasonable, whereas some hourly load estimates of
dishwasher, clothes washer, cooking range, and clothes dryer were negative (i.e.

unreasonable).

In order to improve the accuracy of estimates, Fiebig ef al. (1991) reformulated
the standard CDA model into a random coefficient framework (Swamy, 1970). During
any particular hour, the intensity of use of a particular appliance varies from household to
household, and the appliance dummy variables indicate only absence or presence of the
appliance and do not allow for variation in size and capacity. Therefore, the authors
treated the coefficients of appliance ownership dummy variables as random variables
rather than fixed variables, which also enabled the integration of metered data. The
authors used a sample of 348 households, with direct metering data for two appliances,
namely main tariff water heater and off peak tariff water heater which was charged at a
lower than normal rate. For off peak tariff water heater, a total of 125 out of 189
households owning the appliance were directly metered, while it was 21 out of 105 for
main tariff water heater. The model obtained positive hourly estimates for all appliances
except the freezer. The estimated hourly loads for the off peak tariff water heater was
compared with the average hourly loads obtained from the direct metering data, and the
estimated hourly loads obtained from a random coefficient model which was not
integrated with direct metered data. The results showed that estimates from the model
integrated with metered data were closer to the direct metered data than the ones obtained

from the model without the integration of the direct metered data.

Bauwens et al. (1994) used a Bayesian approach (Zeller, 1971) to integrate the
direct metering data by viewing the data as prior information on the energy consumption
of a specific appliance. A sample of 174 households from the dataset used by Fiebeg e? al.
(1991) was used to estimate end-use consumption on weekdays and weekends. Direct
metering data for the main and off peak tariff water heaters were available for 21 and 87
households, respectively. The results from the standard CDA contained negative

estimates for freezer and pool pump for both weekdays and weekends, whereas, the CDA
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model reformulated using the Bayesian approach to integrate the direct metered data

obtained no negative estimates for any appliance.

To estimate the hourly electricity use of 15 residential end-uses, Blaney et al.
(1994) used a CDA model incorporated with Bayesian priors of electricity use for each
end-use estimated using the results of a previous monthly CDA and load shape
representations developed from an earlier residential household metering project. The
database used in the model contained information on the electricity consumption,
appliance stock, physical and demographic characteristic data for 181 households and
actual hourly temperature for each household's region. The estimates obtained from
standard CDA were statistically significant and had the right sign, however the estimated
load shapes for highly saturated appliances, i.e. appliances owned by the majority of the
households such as clothes washer and microwave, were not reasonable. The
incorporation of the Bayesian priors greatly improved the estimated load shapes for these

highly saturated appliances.

The metered data information from a 1986 survey that included space heating
direct metering data for 30 and water heating direct metering data for 23 households were
used by Hsiao et al. (1995) to form prior distributions of appliance consumption. Then,
by applying Bayesian technique, these prior distributions were combined with the load,
appliance ownership, and demographic data from a survey conducted in 1983 including
347 households. The model included the interactions of appliance dummy variables with
socio-economic variables, and weather data as explanatory variables. The hourly water
and space heating consumption estimates from standard conditional demand analysis
approach were compared with the ones obtained from the proposed approach. The
comparison done by evaluating the hourly consumption profiles showed that the proposed

approach obtained more reasonable hourly estimates for water and space heating

consumption.

Either random coefficient framework or Bayesian analysis were used by Fiebig
et al. (1991), Bauwens et al. (1994), Blaney et al. (1994), and Hsiao et al. (1995) to

integrate prior information on end-use energy consumption in terms of metered data into
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the CDA models to increase the accuracy and reliability of the estimates. The following

studies integrated the estimates from the engineering models into their CDA models.

Caves et al. (1987) treated the information from the engineering approach as
prior evidence on usage patterns for specific appliances, and by using Bayesian analysis,
engineering estimates were integrated into CDA model to estimate hourly appliance
consumption. The sample data of the analysis contained electric consumption and
appliance ownership information for 129 households for two summer months in 1977.
The engineering estimates were generated from a simulation program running twelve
scenarios. Average loads for each of these appliances for the sample data were
constructed using a weighted average of the twelve scenarios, where the weights reflected
the housing type and size characteristics of the sample, and the distribution of the sample
households between the weather districts. The dishwasher and central air conditioning
hourly loads estimated by engineering simulation model and the proposed model were
compared. For central air conditioning, both methods provided similar estimates, but for
dishwasher the estimates differed considerably, since dishwasher consumption was more

dependent on consumer behaviour than that of central air conditioning.

The Statistically Adjusted Engineering (SAE) model developed by Train (1992)
combined engineering estimates of end-use loads with CDA. The survey data and
consumption information at both the household and end-use levels of 800 households
were used in the study. The engineering estimates of loads for each end-use were entered
as explanatory variables in CDA model. The estimated coefficients of these variables
adjusted the engineering loads statistically to reflect the actual total loads of households.
These estimated loads and engineering loads were then compared with metered end-use
loads for the same households. It was found that SAE model improved the engineering
estimates considerably for space conditioning appliances, but added error to the

engineering estimates for other appliances.

One of the Canadian CDA models was developed by Kellas (1993) using the
data from the Residential Energy Use Survey conducted by Manitoba Hydro in 1991
together with the 1991 weather data. The model included 38 independent variables,
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including appliance ownership dummy, demographic, and weather variables, and
achieved multiple coefficient of determination of 0.75. The estimates of the model
showed an error of 2.8% when compared with the billing data. Due to the
multicollinearity problem, the author faced difficulties in predicting the energy
consumption of highly saturated appliances, such as refrigerator and clothes washers. The
estimates for space and DHW heating energy consumption were reasonable, but the

estimates for space cooling were high, i.e. about 1,360 kWh/yr/household.

Lafrange and Perron (1994) used the data from 1979, 1984 and 1989 large-scale
surveys for Hydro-Quebec to estimate residential end-uses using CDA approach in
Quebec. The surveys included technical characteristics of the dwellings and appliances,
and demographic characteristics of the occupants. The estimates for DHW heating energy
consumption were reasonable, however space heating estimates were low and cooling
estimates were high. The estimates showed similarities with engineering model estimates,
but the space heating estimate was lower than the engineering model estimate. Like other
researchers, the authors had difficulties to estimate the consumption of highly saturated

appliances.

This literature review indicates that in the 80’s and mid 90’s the CDA approach
has been widely used to model energy consumption in the residential sector. Although
various methods have been used to increase the accuracy of CDA models, and the
reliability of the estimates, the CDA approach has not received wide acceptance due to its
low prediction performance, and the high cost of obtaining prior information in terms of
metered data or engineering estimates. Like the NN approach, the capability of the CDA
models is limited to the variables used in the model equation, thus limited energy

efficiency measures can be tested using the CDA approach.
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2.3.3 Overview of the CDA Model

The energy consumption of a household can be expressed as a summation of the energy
consumed by each of the appliances present in the household.* Thus, the energy
consumption of a household is directly related to the appliance stock present in the
dwelling, specific features of these appliances, dwelling characteristics, and utilization
patterns such as thermostat settings on water/space heaters, and behavioural patterns

relating to the use of appliances.

The basic CDA model can therefore be represented in algebraic form as (EPRI,
1989):

J
HEC, =) UEC, xS, (2.5)

j=I
where,

HEC;: energy consumption by household 1 in period t
UEC;;: end-use j unit energy consumption of household i in period t

Sij: a binary indicator of household i's ownership of appliance j

To develop a CDA model, the data on household energy consumption (HECj)
can be obtained from utility billing records and appliance stock (S;) information can be

obtained through an appliance saturation survey.

The end-use energy consumption depends upon a variety of factors and this

relationship can be formalized as:

UEC,, = f,(AF,

,,STRUC,,UP, ¢, ) (2.6)
where,

AFj: features of household i's appliance j

STRUC;: structural features of household i

* Here the term "appliance” is used in the most general way, including the space and domestic hot water
heating as well as space cooling equipment.
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UPjje: utilization patterns relating to appliance j

€ijt: a random error term for the end-use

The effect of weather conditions (WC;,), market conditions (MCj), and
household's economic and demographic characteristics (EDC;) on the end-use energy

utilization pattern can be shown as:
UP, =g,(WC,,MC,,EDC;) 2.7)
Substituting Equation 2.7 into Equation 2.6 yields:

STRUC,, WC,,MC,,EDC, ¢, ) (2.8)

it 2

UEC,, =F;(AF,

i} ij°

And finally substituting Equation 2.8 into Equation 2.5 gives the general

equation:

J

HEC;, = ZFJ- (AFi-,STRUCi,WCit,MCit,EDCi,eijt )x Sij (2.9)
j=1

Since the individual error terms are additive within their respective UEC

functions, the household energy consumption equation can then be written as:

j
HEC;, = Y Fj(AF;,STRUC;, WCy;, MCy, EDC; xS + ¢ (2.10)
j=1

where ¢, = leel.j xS
1

In most CDA models, multicollinearity problem arises, which is caused by
correlation amongst the variables included in the CDA Model, limiting the capability of
the regression to distinguish the impacts of these variables. Thus, the influence of some
individual appliances on the total end-use energy consumption becomes difficult to
separate. Mostly, appliances with high saturation cause multicollinearity problems.
Moreover, it is not uncommon for this approach to yield unrealistic negative appliance

consumption estimates, because of the high degree of multicollinearity.
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The problem of multicollinearity is a gap between the information requirement
of the model and the information provided by the sample data. The way to reduce this gap
is to either expand the information content of the data, reduce the requirements of the
model, or both. It is possible to reduce the problem of multicollinearity by expanding the
sample size, as long as the configuration of appliance ownership is not of exactly the
same pattern among individual observations. However, it requires an important expansion
of sample size before a reasonable reduction in the degree of multicollinearity may be
achieved (Hsiao et al., 1995). Therefore, as shown in the previous section, reduction in
the requirements of the model through the use of prior information in the form of data
obtained by directly metering specific appliances (Fiebeg et al., 1991; Bauwens et al.,
1994; Blaney et al., 1994; Hsiao et al., 1995), or engineering estimates (Caves et al.,
1987, Train, 1992) is an approach used by researchers with varying degrees of

effectiveness.

In some cases metering data on one or more appliances is available only for a
subset or a few of the total number of households, since direct metering of all of the
houses in the database is not cost-effective. Thus, an appropriate method of incorporating
limited direct metering data into the CDA model should be considered (Caves et al.,
1987; Fiebeg et al., 1991, Train, 1992; Bauwens et al., 1994; Blaney et al., 1994; Hsiao et
al., 1995).

2.3.4 Estimation of the CDA Model

The CDA model can be estimated statistically by standard multivariate regression
analysis using data on household energy consumption, appliance saturation, and other

variables given in Equation 2.10.

The overall fit of the CDA model depends on the model specification and data
quality. In general, the multiple coefficient of determination values of these models range
from 0.55 (Aigner et al., 1984) to 0.75 (Kellas, 1993). These values might seem low, but

explaining the cross sectional behaviour of individual households is a difficult process
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since energy consumption is affected by many other factors that cannot be readily
identified or quantified (tastes, habits, special circumstances), and consequently, can not
be incorporated into the model. Similarly, it is not possible to incorporate all of the house
characteristics (e.g. wall, roof, window, efc. areas, insulation values, infiltration, solar

heat gains, climatic factors, ezc.) into the regression model.

Once the CDA model is estimated statistically, it can be used to predict the UEC

of individual households, as well as a designated group of households.

2.4 Closing Remarks

In this chapter, reviews of NN and CDA models used in energy consumption modeling
are presented. Neural networks have been widely used in load forecasting, but there are
only a few studies on commercial and residential energy consumption estimation. These
few studies are limited to estimating the energy consumption of individual or a very small

number of buildings.

The CDA approach has been used to disaggregate the whole house electricity
consumption into end-uses. To increase the accuracy and reliability of the estimates,
recent studies integrated metered data or engineering estimates into the CDA models
using Bayesian or random coefficient framework techniques with varying levels of
success. Despite these efforts, the CDA approach is not preferred due to the low accuracy
of its estimates and the high cost of obtaining prior information in terms of metered data

or engineering estimates.

The capability of the NN and the CDA approaches to estimate the impact of
energy efficiency measures is limited to the input units included in the models and the
dataset used to develop the models. However, the Engineering Models have the capability
to estimate the impact of a wide range of measures, as long as detailed house description
data are available. In the next chapter, the methodologies used to develop the NN and
CDA models are presented.



Chapter 3

Research Methodology

3.1 Overview

The chapter begins with information on the sources of data used to develop the NN and
the CDA Models. The methodologies used to develop the models are discussed in the
subsequent sections. The chapter continues with the procedures used to compare the

results of the models and to conduct the energy savings scenarios.

3.2 Sources of Data

Two sources of data were used for the development of the input units of the NN and the
CDA Models: the data from the 1993 Survey of Household Energy Use (SHEU) database
(Statistics Canada, 1993), and the weather and ground temperature data for 1993
(Environment Canada, 1999). The source of data for the output unit of the models was the
actual energy billing data obtained from fuel suppliers and utility companies for a set of
households from the 1993 SHEU.

The 1993 SHEU was conducted by Statistics Canada on behalf of Natural
Resources Canada, in cooperation with the provinces of Nova Scotia, New Brunswick,

Ontario, Manitoba, Saskatchewan, and with SaskPower. SHEU was commissioned to
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enrich the residential sector data in Canada. The target population for this survey was
composed of all the housing units in Canada (excluding Yukon and North Western
Territories) occupied as primary residences, both owned and rented. It is based on a mail
out survey that included 376 questions. The database includes detailed information on
8,767 single-family houses from all provinces of Canada, and representative of the

Canadian housing sector.

The 1993 SHEU database contains detailed information on house construction,
space heating/cooling and DHW heating equipment, household appliances, and socio-
economic characteristics of the occupants for 8,767 houscholds in Canada. The actual
energy billing data exist for 2,749 households of the 1993 SHEU database. With the
permission of the occupants, Statistics Canada obtained the complete year energy billing

data of each one of these households from their fuel suppliers and utility companies.

The weather and ground temperature data for the cities where the 2,749
households are located were obtained from Environment Canada (1999). The weather
data obtained includes the local mean daily temperatures (MDTs) of the households for
the year 1993. The MDTs were used to calculate the heating degree days (HDD) and
cooling degree days (CDD) for the locations'.

3.3 NN Model

As stated previously, there are 2,749 households with energy billing data. However, only
1,067 of these households have complete energy billing data for all types of fuels and
energy sources used by the households. The number of households that use electricity for

DHW and space heating is 594 in the set of 1,067 households. Hence their electricity
billing data account for DHW, space heating, appliance, lighting, and space cooling

' A base value of 18°C is taken for the HDD and CDD calculations. If the MDT is higher than 18°C, then
the day is said to be a cooling day, and will have (MDT - 18) cooling degree days. If the MDT is lower
than 18°C, then the day is said to be a heating day, and will have (18 - MDT) heating degree days. The
annual CDD and HDD values for each city are calculated by summing the daily CDD and HDD values.
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energy consumption. Thus, the electricity billing data of the remaining 473 households in
the set of 1,067 households represents the appliance, lighting, and space cooling energy
consumption, while the natural gas or oil billing data represent the DHW and space
heating energy consumption. A set of 473 households is not sufficient to develop a single
NN model with three output units each representing specific end-use (i.e. DHW heating,
space heating, and appliance, lighting, and cooling). Therefore, the NN Model developed
in this thesis consists of three networks. Each network is used to predict a single end-use

energy consumption. These are:

— Space heating (SH) end-use energy consumption,
— Domestic hot water (DHW) heating end-use energy consumption,

—~ Appliances, and lighting, and cooling (ALC) end-use energy consumption.

The development of the networks is similar and pursues the steps shown in

Figure 3.1 as described below.

3.3.1 Development of Network Datasets

The selection of households for each network dataset was based on fuel type and energy
source information, and availability of energy billing data. Fuel type and energy source
information was taken from the 1993 SHEU database, and the energy billing data were

obtained from Statistics Canada. Statistics.

The ALC network dataset contains 988 households with electricity bills from the
1993 SHEU database, that do not have electrical SH or DHW heating equipment. In the
ALC dataset, there are 355 households that own space cooling equipment; thus, the
electricity usage of these 355 households represents space cooling, appliance, and lighting
energy consumption. The electricity usage of the remaining 633 households represents

appliance and lighting energy consumption.
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Figure 3.1. Flowchart diagram depicting the methodology used for the development of
the NN Model
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The number of households in the DHW dataset that use electricity or natural gas
for DHW heating is 563. The dataset contains 388 households with electricity bills, and
175 with natural gas bills. Due to lack of data, households with oil bills could not be
included to the DHW dataset, as explained in detail in Section 4.2.2.1.

The SH dataset contains 1,228 households with space heating billing data. There
are 396 households with electricity billing data, 755 households with natural gas billing
data, and 77 households with oil billing data for space heating, as explained in detail in
Section 4.2.3.1.

3.3.2 Development of Input and Output Units
The input units of the networks describe:

— the construction details of the dwellings,

— the ownership, specifications, and usage of the space cooling equipment,
appliances, and lighting,

— the specifications of the DHW and SH equipment,

— the socio-economic and behavioural characteristics of the occupants,

— the weather characteristics.

The number of input units is different for each network. Input units were selected
based on their contribution to the specific end-use energy consumption. Since, the 1993
SHEU database has limited data on dwelling characteristics and heating equipment (for
example, there is no detailed information on building envelope thermal characteristics),
input units for these missing data were developed using information from other sources,
such as HOT2000 users manual (NRCan, 1996), and studies conducted by Farahbakhsh
(1997) and Farahbakhsh er al. (1997 and 1998). The actual energy consumption data for

each household was used as the output (target) unit of the networks.
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3.3.3 Development of the Testing and Training Datasets

The dataset of each network was divided into two sub-sets; one was used for the training
of the networks and the other for the testing of the performance of the networks. As
explained in Section 2.2.4, approximately, 70-80 percent of the dataset was used as the
training set, and the remaining was used as the testing set. The households in each sub-set
were selected randomly. However, special care was given to include the households with
minimum and maximum input and output values into the training dataset. This is done to

increase the estimation range of the NN Model.

3.3.4 Selection of the Activation Functions and Scaling Intervals

In this work, identity, logistic, and hyperbolic tangent functions were tested as the
activation functions for the hidden and output layers. As it was pointed out in Section
2.2.3, these are the most commonly used activation functions for networks trained by

backpropagation.
The training and testing datasets were scaled into the following intervals:

[0.1t0 0.9]

[-0.5 to 0.5]

- [0.0t01.0]

[-1.0 to 1.0]

[-0.9 to 0.9]

The following equations were used to scale the data into each interval:

= For the [0.1 to 0.9] interval:

v, =o.8(MJ+o.1 3.1)
Ymax = Ymin
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= For the [-0.5 to 0.5] interval:

v, =1.o(—y“—ym"—"—}o.5 (3.2)
Ymax = Ymin

=  For the [0.0 to 1.0] interval:

) = (&_) 63
Ymax — Y min
»  For the [-1.0 to 1.0] interval:
v, =2.o[—y—_—y—mﬂ—j-1.0 (3.4)
Ymax = Y min

» For the [-0.9 to 0.9] interval:

Y =1.8(;y—'—_&"yfﬁ—j-o.9 (3.5)
max min

where,
yn:  value of the scaled input/output unit
y:  value of the input/output unit
Ymin: minimum value of the input/output unit

Ymar: Maximum value of the input/output unit

Another method used for scaling is the normalization of the input/output units by
subtracting the mean and dividing by the standard deviation:

Yy =2t (3.6)
(e)

where,

A mean of the input/output unit

o: standard deviation of the input/output unit

Two approaches are used in this work with respect to scaling:

i) All of the data in the dataset were scaled into the intervals given above,
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ii) Only continuous data in the dataset were scaled into the given intervals, and the

discrete [0,1] data were left “as is”, without scaling.

With five scaling intervals to be compared, a total of 11 datasets were therefore

generated:

1. All data scaled to the [0.1 to 0.9] interval,

2. Only continuous data scaled to the [0.1 to 0.9] interval,

3. All data scaled to the [-0.5 to 0.5] interval,

4. Only continuous data scaled to the [-0.5 to 0.5] interval,

5. Only continuous data scaled to the [0.0 to 1.0] interval, since discrete data is already

in the [0,1] range,
6. All data scaled to the [-1.0 to 1.0] interval,
7. Only continuous data scaled to the [-1.0 to 1.0] interval,
8. All data scaled to the [-0.9 to 0.9] interval,
9. Only continuous data scaled to the [-0.9 to 0.9] interval,
10. All data normalized,

11. Only continuous data normalized,

Identity, logistic, and hyperbolic tangent activation functions were used to
develop eight networks with the configurations shown in Table 3.1. Each of the eight
configurations given in Table 3.1 was tested for each of the eleven datasets that were

scaled to different intervals.



Table 3.1. Network configurations tested

Network Name Hidden Layer Output Layer
Activation Function Activation Function
Network-A Logistic Logistic
Network-B Logistic Hyperbolic Tangent
Network-C Logistic Identity
Network-D Hyperbolic Tangent Logistic
Network-E Hyperbolic Tangent Hyperbolic Tangent
Network-F Hyperbolic Tangent Identity
Network-G Identity Logistic
Network-H Identity Hyperbolic Tangent
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3.3.5 Development of the Network Architecture

Since the number of input and output units are decided based on the available data and the
desired output, respectively, only the number of units in the hidden layer(s) is left to be
determined. Networks with the number of hidden layer units ranging from one to 30 or 40
were trained with each of the learning algorithm given in Section 2.2.3.1. The number of
units in the hidden layer of the network and the learning algorithm resulting in the highest

prediction performance was chosen as the network architecture for the NN Model.

After determining the number of hidden layer units and the learning algorithm
resulting in the highest prediction performance, different networks with the number of
hidden layer units in one, two or three layers were trained with the chosen learning
algorithm to determine the best network architecture. The performance of the networks
was improved by “fine-tuning” the parameters of the chosen learning algorithm given in
Section 2.2.3.1. The “fine-tuning” is done by testing a wide range of values of the

learning algorithm parameters.
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3.3.6 Training of the Networks
The training of a NN is an iterative procedure, which follows the steps described below:
(a) Initialization of weights and biases:

All weights and biases are set to small random values between -1 and 1 (or some other

suitable interval).
(b) Feedforward propagation:

Each input unit receives an input signal and sends the signal to all units in the hidden
layer. Each hidden unit sums its weighted input signals with the bias contribution, applies
its activation function to compute its output signal and sends this signal to the output unit.
The output unit sums its weighted input signals with the bias contribution, and applies its

activation function to compute the output of the network.
(c) Error calculation:

The output of the network, i.e. its prediction, and the output (target) parameter are used to
compute the network error in terms of SSE. The error is used to compute the necessary

changes of the weights and biases to minimize the error of the network.
(d) Backward propagation:

The weights and biases are adjusted in a way that minimizes the error. The learning
algorithms used in this work are given in Section 2.2.3.1. The steps from (a) to (d) are
repeated until the SSE of the testing dataset stops decreasing and starts to increase, which

is an indication of overtraining.

Once the networks are complete, they are used to predict the end-use energy
consumption of the households in the 1993 SHEU database that are not included in the

training and the testing datasets.
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3.3.7 Assessing the Prediction Performance of the NN Model

The prediction performance of the NN Model is assessed using SSE, R% RMS, and CV as

explained in Section 2.2.5.

3.4 CDA Model

As stated in Section 3.3, there are 2,749 households with energy billing data. However,
there are only 1,067 households with billing data for all types of fuels and energy sources
used by the households. To develop a CDA model for estimating household energy
consumption, a set of 1,067 households is not sufficient, especially when there is no

metered data to be used for prior information.

There are 2,050 households with electricity billing data, 1,012 households with
natural gas billing data, and 236 households with oil billing data. Thus, a CDA model is
developed with three components. Each component of the model was used to
disaggregate the energy consumption of the households with one type of energy billing

data. These models are:

— Electricity model (EM),
— Natural gas model (NGM),
— Oil model (OM).

The process used in the development of the each component of the model is
similar and pursues the steps shown in Figure 3.2, and described in the following

sections.
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Figure 3.2. Flowchart diagram depicting the methodology used for the development of
the CDA Model

3.4.1 Development of the Datasets

The households from the 1993 SHEU database with electricity, natural gas, or oil billing
data were selected for the datasets of the CDA Model. Hence, the dataset of the
Electricity CDA Model includes the households with electricity billing data, while the
datasets of the natural gas and oil CDA Models include the households with natural gas

and oil billing data, respectively.



45

3.4.2 Development of UEC Equations

The total energy consumption of a household is the cumulative of all energy consumed
for the various end-uses in the household. As explained in Section 2.3.3, a unit energy
consumption (UEC) equation is developed for each end-use. The 1993 SHEU database
(Statistics Canada, 1993), and the 1993 weather and ground temperature data
(Environment Canada, 1999) are the sources of information used in the development of

the UEC equations.

The input variables of each end-use UEC equation were chosen taking into
consideration the major determinants of the end-use consumption. For example, the input
variables for the space heating UEC equation contain information on the structural
features of the dwellings (such as heating area, type of foundation, the number of
windows, doors, and floors, efc.), characteristics of the heating equipment, economic and
demographic variables of the occupants, and weather conditions. After identifying the
major determinants of the end-uses, the UEC equation for each end-use was developed as

given in Equation 2.8.

The end-uses in the 1993 SHEU households are as follows:

— Electricity end-uses:

* Main and supplementary space heating,

* DHW heating,

= Space cooling,

= Major and minor appliances,

» Lighting.
— Natural gas end-uses:

* Main and supplementary space heating,

* DHW heating,

= Fireplaces,

* Cooking,

s Clothes drying,

®= Pool heating,.
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— Qil end-uses:
* Main and supplementary space heating,
= DHW heating,
= Cooking,

= Pool heating.

Thus, a separate UEC equation was developed for each one of these end-uses.

These are presented in Chapter 4.

3.4.3 Estimation of the Model Equation

As shown in detail in Chapter 4, the CDA Model equation of each component, given in
Section 3.4, was developed combining the end-use UEC equations for each fuel type and
energy source, as seen in Equation 2.10. Then, the actual energy consumption was
regressed on the variables in the CDA Model equation by standard multivariate regression

analysis using the SYSTAT software (SYSTAT, 1998).

344 Assessmenf of the Prediction Performance of the CDA Model

When a CDA model is first set up, it includes many variables that are expected to have an
influence on the energy consumption. However, in reality, some variables have little or no
influence. To test whether a variable has any influence, the student t-test is used (Johnston
and DiNardo, 1997). The t-test identifies the coefficients that are not significant at a
particular level. Thus, if the absolute value of the t-statistic exceeds the t-value, the
hypothesis that the coefficient of a variable is zero would be rejected at a particular
percent of significance. The “p-values” which are the probability of obtaining a variable
as far or farther from zero (Johnston and DiNardo, 1997) are calculated by SYSTAT as
part of the regression analysis. Thus, in this work, if the p-value of the variable is larger
than 0.010, then the variable is not significant at 10% level, and the variable is excluded

from the model equation.
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As explained in Section 2.3.3, multicollinearity is a common problem in the
CDA approach. Variables that cause multicollinearity are identified using the “condition
index” (CI). To determine the CI, variables matrix (X) is multiplied by its transpose (X'),
and the eigenvalues of this matrix multiplication (X"X) is computed. The square root of
the ratio of the largest eigenvalue to the smallest eigenvalue of this matrix multiplication
represents the CI of the model (Weisberg, 1985). The variables that increase the CI are

the sources of multicollinearity and are excluded from the model equation.

The data points that do not seem to follow the same patterns as the rest of the
data are called outliers, and the data points whose removal causes major changes in the
results of the regression analysis are called influential (Weisberg, 1985). Outlier and
influential data points are identified by tests based on computing the studentized t-values
and Cook’s distances (Weisberg, 1985; SYSTAT, 1998), and based on their effects on the
end-use energy estimation, the data points that are identified as outlier or influential are

removed one-at-a-time from the dataset.

The regression analysis is repeated by removing necessary variables from the
model until all remaining variables are significant at the 10% level, there is no significant
multicollinearity, and no outlier and influential data points are left. Significance level of
10% is chosen as this significance level is commonly used in estimating the end-use
energy consumption in the residential sector (Lafrange and Perron, 1984; Blanet et al.,
1994). Once the model is complete, it can be used to predict the energy consumption of
the households in the 1993 SHEU database that are not used in the model development

datasets.

3.5 Comparative Evaluation of Models

The annual end-use and household energy consumption of the households in the 1993
SHEU database estimated using the NN and CDA Models were compared with the
estimates obtained from the Engineering Model (Farahbakhsh, 1997; Farahbakhsh ef al.,

1997, 1998), as well as with estimates reported in the literature. Comparisons were
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carried out for each category of households based on dwelling type (single detached and
single attached) and vintage (before 1941, 1941-1960, 1960-1980, 1981-1995), province,

and space heating fuel types and energy sources (electricity, oil, and natural gas).

3.6 Estimation of the Impact of Energy Saving Scenarios

The impact of energy saving scenarios on DHW and SH energy consumption was
estimated by the NN and CDA Models, and the results were compared with those
obtained from the Engineering Model. The energy saving scenarios include insulating hot
water pipes, increasing the efficiencies of the DHW and SH equipment, upgrading the

glazing of windows, and lowering the overnight temperature.

After identifying the households that could undertake energy saving scenarios,
the input units of the NN Model and the variables of the CDA Model were changed to
reflect the energy saving scenarios. For example, for the SH equipment efficiency
upgrade scenario, the SH efficiency input unit in the SH dataset of households with

standard efficiency was changed to high efficiency.

The DHW and SH energy consumption of the households that undertook the
energy saving scenarios were estimated using the NN and CDA Models. The difference
between the DHW and SH energy consumption estimates of the households before and
after the energy efficiency upgrades provided the impact of energy saving scenarios on

DHW and SH energy consumption.

3.7 Closing Remarks

In this chapter, methodologies used to develop the NN and the CDA Models are
presented. Detailed information on the sources of data that will be used to develop the
models, and procedures that will be used to assess the accuracy of the predictions of these

models, as well as, procedures that will be used to evaluate the impact of various energy
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saving scenarios on the energy consumption in the residential sector are discussed. In the
next chapter, the processes used in the development of the NN and CDA Models are

described in detail.



Chapter 4

Development of the NN and CDA Models

4.1 Overview

This chapter presents the processes used in the development of the NN and the CDA
Models. In the first section of this chapter, the development of the dataset for each
network of the NN Model is presented, followed by detailed reviews of the de\}elopment
of the input and output units, testing and training datasets, and network architectures. In
the second section of the chapter, the development of the dataset and UEC equations of

each component of the CDA Model are presented.

4.2 Development of the NN Model

The NN model consists of three networks:

* Appliance, lighting, and space cooling (ALC) energy consumption network,
* Domestic hot water (DHW) heating energy consumption network,

» Space heating (SH) energy consumption network.

The processes used in the development of the ALC, DHW, and SH networks are

presented in this section.
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4.2.1 Appliance, Lighting, and Cooling (ALC) Network

4.2.1.1 Development of the ALC Network Dataset

The dataset used in the development of the ALC network is a subset of the 1993 SHEU
database. There are 2,050 households in the 1993 SHEU database with electricity billing
data. The electricity bills of these households account for the energy consumption for
appliances, lighting, space and DHW heating (if electricity is used as the energy source),
and space cooling. When these 2,050 households were categorized based on their space
cooling equipment, and electric space and DHW heating equipment ownership, it was

found that:

» There are 633 households that do not own space cooling equipment, or electric space
and DHW heating equipment. Thus, the electricity usage of these households

represents only the appliance and lighting energy consumption.

= There are 355 households that own space cooling equipment and do not use electricity
for space and DHW heating equipment. Thus, the electricity usage of these households

represents the space cooling, appliance, and lighting energy consumption.

Hence, the number of households with electricity billing data in the ALC
network dataset is 988 (633+355). Details of the analyses of the electricity billing data are
given in Appendix B.

4.2.1.2 Development of the ALC Network Input and Output Units

The input units of the ALC network dataset were developed using the information
available from the 1993 SHEU database on appliances, lighting, and space cooling
equipment of the households with electricity bills. The contribution of appliance, lighting,
and space cooling energy consumption to the overall household energy consumption was

considered during the selection and development of the input units.

The following sections present the final input unit dataset used for the

development of the ALC NN Model. Various combinations of the input unit datasets were
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tested, however none produced better predictions than this presented final dataset. Some

of the tested input unit datasets are given in Table 4.1.

Table 4.1. Some of the tested input unit datasets

Attempt # | Number of Input Units Description

1 18 Seven major‘, three minorl, five miscellaneous'
appliances, central A/C, lighting, and area

Eight major, five minor, ten miscellaneous
2 30 appliances, central and window A/C, CDD,
lighting, area, income, and number of occupants

Seven major, four minor, three miscellaneous
3 19 appliances, central A/C, CDD, lighting, income,
and number of occupants

4.2.1.2.1 Input Units for Appliances

In order to reflect the contribution of the appliance energy consumption to the total
household energy consumption, input units reflecting ownership, size, and usage
information are included in the ALC network. The 1993 SHEU database contains
information on 40 appliances, and all 40 are included in the ALC network. The number of

households in the ALC network dataset that own the 40 appliances is given in Table 4.2.

" The major appliances are the refrigerators, freezers, ranges, dishwashers, clothes washers, and dryers. The
minor appliances are the microwaves, TV’s, VCRs, furnace fans, and boiler pumps. The miscellaneous
appliances are the remaining appliances owned by the households such humidifiers, coffee makers, etc.
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Table 4.2. Number and percentage of households in the ALC network dataset that own

the 40 appliances (total number of households 1s 988)

Appliance Number of households | Percentage of households
that own the appliance | that own the appliance
Main refrigerator 985 99.7%
Clothes washer 967 97.9%
Electrical cooking appliance 931 94.2%
Color TV 913 92.4%
Microwave 880 89.1%
Clothes dryer 861 87.1%
VCR 835 84.5%
Main freezer 826 83.6%
Furnace fan 741 75.0%
Stereo 668 67.6%
Kitchen exhaust fan 603 61.0%
Dishwasher 543 55.0%
Bathroom exhaust fan 521 52.7%
Car block heater 517 52.3%
Portable fan 451 45.6%
Ceiling fan 419 42.4%
CD player 342 34.6%
Second refrigerator 266 26.9%
Computer 249 25.2%
Central electronic humidifier 239 24.2%
Black and white TV 202 20.4%
Portable electric heater 202 20.4%
Central vacuum cleaner 196 19.8%
Portable humidifier 186 18.8%
Water softener 185 18.7%
Water bed 174 17.6%
Portable dehumidifier 163 16.5%
Boiler pump 137 13.9%
Sump pump 135 13.7%
Interior car warmer 118 11.9%
Electric blanket 114 11.5%
Central electronic air filter 99 10.0%
Central ventilation system 75 7.6%
Second freezer 74 7.5%
Jacuzzi 72 7.3%
Fish tank 64 6.5%
Central electronic dehumidifier 21 2.1%
Heat recovery ventilation system 19 1.9%
Water cooler 12 1.2%
Sauna 11 1.1%
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Input units for appliances in the ALC network were developed from the
appliance ownership, size, or usage information. A review of the ALC dataset indicated
that households own only one of some appliances (e.g. clothes washer) and more than one
of others (e.g. color TV). Out of the 40 appliances in the dataset, 23 appliances (main
refrigerator, second refrigerator, electrical cooking appliance, dishwasher, main freezer,
second freezer, clothes washer, clothes dryer, microwave, furnace fan, boiler pump, water
cooler, kitchen exhaust fan, central electronic air filter, central electronic humidifier,
central electronic dehumidifier, central ventilation system, heat recovery ventilation
system, central vacuum cleaner, sump pump, water softener, Jacuzzi, and sauna) belong
to the first category, and the remaining 17 (colour TV, black and white TV, portable
electrical heater, VCR, CD player, stereo, computer, electrical blanket, water bed,
portable humidifier, portable dehumidifier, car block heater, interior car warmer, fish

tank, bathroom exhaust fan, ceiling fan, and portable fan) belong to the second.

To indicate the ownership of the appliances that a household owns only one of,
binary variables zero and one were used as input units. Thus, the variable one was used if
the household owns the appliance, and zero was used if it does not. For the appliances
that the household may own more than one of, the number of units of the appliance that

the household owns was used as the input unit.

Household appliance energy consumption depends on the properties and the
usage pattern of the appliances. It is therefore possible to improve the prediction
performance of the network by incorporating appliance properties and usage pattern

information into the input units in addition to ownership.

The 1993 SHEU database, and consequently, the ALC network dataset, contains
information on the size of the main and second refrigerators and freezers as shown in
Tables 4.3 and 4.4, respectively. Input units reflecting the size, as well as ownership, of

the main and second refrigerators are used as input units as shown in Table 4.5.
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Table 4.3. Refrigerator size information from the 1993 SHEU database

i Ave. Number of Households
e Volume | Main Refrigerator | Second Refrigerator
Bar, less than 185 L 170 L 4 29
Small, 185350 L 285L 43 82
Medium, 350 —470 L 425 L 504 116
Large, 470 - 570 L 540 L 414 38
Very large, more than 570 L 625 L 20 1

Table 4.4. Freezer size information from the 1993 SHEU database

_ Ave. Number of Households
Size -
Volume Main Freezer Second Freezer
Very small, less than 200 L 185 L 34 4
Small, 200 - 400 L 310 L 244 26
Medium, 400 - 510 L 450 L 323 28
Large, 510-650 L 595 L 182 15
Very large, more than 650 L 710 L 43 1

The 1993 SHEU database, and consequently, the ALC network dataset, contains
information on the average weekly usage (in terms of number of loads) of dishwashers,
clothes washers, and clothes dryers. The input units reflecting the number of loads per
week, as well as ownership, of the dishwashers, clothes washers, and clothes dryers are

used as input units as shown in Table 4.5.

Table 4.5. Input units used for appliances in the ALC network

Input Unit Range
Boiler pump 0-1
Central electronic air filter 0-1
Central electronic dehumidifier 0-1
Central electronic humidifier 0-1
Central vacuum cleaner 0-1




Table 4.5. (continued) Input units used for appliances in the ALC network

Input Unit Range
Central ventilation system 0-1
Electrical cooking appliance 0-1
Furnace fan 0-1
Heat recovery ventilation system 0-1
Jacuzzi 0-1
Kitchen exhaust fan 0-1
Microwave 0-1
Sauna 0-1
Sump pump 0-1
Water cooler 0-1
Water softener 0-1

Portable dehumidifier 0-2
Black and white TV 0-3
CD player 0-3
Portable electric heater 0-3
Portable humidifier 0-3
Bathroom exhaust fan 0-4
Computer 0-4
Interior car warmer 0-4
VCR 0-4
Water bed 0-4
Stereo 0-6
Car block heater 0-7
Ceiling fan 0-7
Color TV 0-7
Electric blanket 0-7
Fish tank 0-8
Portable fan 0-8
Clothes dryer [loads/week] 0-15
Clothes washer [loads/week] 0-15
Dishwasher [loads/week] 0-15
Main refrigerator [L] 0-625
Second refrigerator [L] 0-625
Main freezer [L] 0-710
Second freezer [L] 0-710

56
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4.2.1.2.2 Input Unit for Air Conditioners

There are 275 households with central air conditioning (A/C) and 84 with window A/C
units in the ALC network dataset. The information on A/C equipment is limited to the
capacity and annual usage of central and window A/C equipment. Since not all of the
households reported the capacity of their A/C units, it is not possible to include capacity
as an input unit in the ALC network.

The information in the ALC network dataset on the annual usage of the central

and window A/C units is in the form of:

Never

Only a few days

Less than half of the summer
About half of the summer
Most of the summer

AN e

The number of hours that the A/C units were used in 1993 was estimated by
assuming that the response “about half of the summer” in the 1993 SHEU corresponds to
750 hours/yr.2 The number of hours of usage for the other four categories were estimated
based on this value. The number of households in the ALC network database with central

or window A/C units, and their usage hours are given in Table 4.6.

Based on the available information in the dataset, only the annual usage of A/C
equipment is used to reflect the contribution of the A/C units to the total household
energy consumption. The input units that are used to represent the energy consumption of

central and window A/C units are given in Table 4.7.

2750 hours/yr is calculated as follows:
Summer months: May - August (123 days)
A/C operation: During daytime (12 h/day)
"Half of the summer": 1/2 x 123 days x 12 h/day=738 h ~750 h



Table 4.6. Number of households with central and window A/C

corresponding annual usage hours
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units and the

A/C Unit | Usage information in the 1993 Number of
SHEgU Database Usage Hours households

Central | Never 0 hr/yr 9
Only a few days 0.25x750=187.5hr/yr 157
Less than half of the summer 0.50x750=375hr/yr 67
About half of the summer 750 hr/yr 21
More than half of the summer 1.50x750=1125hr/yr 21

Window | Never 0 hr/yr 9
Only a few days 0.25x750=187.5hr/yr 44
Less than half of the summer 0.50x750=375hr/yr 22
About half of the summer 750 hr/yr 2
More than half of the summer 1.50x750=1,125hr/yr 7

Table 4.7. Input units used for A/C units in the ALC network

Input Unit Range
Central A/C [hours/yr] 0-1,125
Window A/C [hours/yr] 0-1,125

4.2.1.2.3 Input Unit for Weather Effects

The outside temperature has an important effect on the space cooling energy

consumption. Therefore, the cooling degree-day (CDD) is used as an input unit as shown

in Table 4.8. For this purpose, the 1993 CDD data for the cities in which the households

in the ALC network dataset are located were obtained from Environment Canada

(Environment Canada, 1999).

As shown in Table 4.8, the heating degree-day (HDD) is also used as an input

unit in the ALC network to reflect the temperature effect on the usage of portable electric

heaters. The HDD data for the cities in the ALC network database were obtained from

Environment Canada (Environment Canada, 1999).
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Table 4.8. Input units used for weather effects in the ALC network

Input Unit Range
HDD [°C-day] 2,930 - 6,128
CDD [°C-day] 3.7-405

4.2.1.2.4 Other Input Units

The lighting energy consumption is another contributor of household energy
consumption. In order to reflect the effect of lighting energy consumption, the total
number of halogen, fluorescent, and incandescent lights that households own are used as

input units.

The other input units included in the dataset are total heated area, household
income, dwelling type and ownership information, size of residence area information,
number of children and adults, and ratio of employed adults in the household. These input
units are given in Table 4.9. With the inclusion of these, the number of input units in the

dataset increases to 55.

4.2.1.2.5 Output Unit

The annual electricity consumption for appliances, lighting, and space cooling is the
output unit for the ALC network. Thus, the annual electricity consumption values
obtained from the energy billing data for the 988 households are used as the output unit of
the ALC network. The electricity consumption billing data covers the calendar year of

1993, and the consumption is given in kWh.
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Table 4.9. Lighting and other input units used in the ALC network

Input Unit Range
Halogen lights 0-18
Fluorescent lights 0-46
Incandescent lights 0-106
Total heated area [m*) 51.2-753
Income [$1,000/yr] 10-85
Dwelling type: 0-1

1 if single-detached; O if single-attached

Dwelling ownership: 1 if owner; 0 if renter 0-1

Size of area of residence:
1 if population is less than 15,000

2 if population is between 15,000 and 100,000 1-3
3 if population is 100,000 or over

Employed adult ratio: 0-1
Number of Employed Adults / Number of Adults

Number of children 0-6
Number of adults 1-8

4.2.1.3 Development of the ALC Network Training and Testing Datasets

The ALC network dataset was divided into two subsets. One of these subsets was used for
training (training set) and the other was used for testing (testing set) of the network. The
training set contains 741 households (75% of all households in the dataset) and the testing
set contains 247 households (25% of all households in the dataset). The households in

each sub-set were chosen randomly.

4.2.1.4 Selection of Activation Functions and Scaling Intervals

The training and the testing datasets of the ALC network were scaled to the intervals
given in Section 3.3.4 resulting in eleven datasets. Each of the eight configurations given

in Table 3.1 was tested for each of the eleven datasets that were scaled to different
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intervals. Thus, a total of 88 networks were tested as follows: 11 scaling intervals x 8

network configurations = 88 networks.

A network with 55 input, 25 hidden, and one output units (55:25:1) trained by
standard backpropagation learning algorithm with a learning rate of 0.02 was used to
compare the various scaling intervals and activation functions with respect to their

prediction performance.

The training of the 55:25:1 network was halted when the testing set SSE value
stopped decreasing and started to increase, which is an indication of overtraining. The
prediction performance and the number of cycles for each of the eight configurations that

produced the best prediction performance for each of the eleven datasets are given in

Table 4.10.

As seen in Table 4.10, normalization of the data did not produce good
predictions, while the prediction performance of all other scaling and activation function
combinations were very good with an R? of 0.875 or better (except one). The network
with the best prediction performance (R* of 0.895) used data scaled to interval [-0.5 to
0.5], the logistic function for the hidden layers, and the identity function for the output
layers. Thus, in the rest of the ALC network development, the logistic function was used
as the activation function for the hidden layers, the identity function was used as the
activation function for the output layer, and all data in the dataset were scaled to interval
[-0.5 to 0.5].
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Table 4.10. Comparison of scaling intervals and activation functions

Scaling Interval Applied to Network Configuration R’ Cycles

0.1t0 0.9 All data Network G: Identity + Logistic | 0.876 318

0.1t0 0.9 Only continuous [Network G: Identity + Logistic | 0.875 | 1093

-0.5t0 0.5 All data Network C: Logistic + Identity | 0.895 160

-0.5t0 0.5 Only continuous |Network C: Logistic + Identity | 0.888 174

0.0to 1.0 All data Network G: Identity + Logistic | 0.724 202
-1.0t0 1.0 All data Network C: Logistic + Identity | 0.888 49
-1.0t0 1.0 Only continuous |[Network C: Logistic + Identity | 0.890 79
-0.9t0 0.9 All data Network C: Logistic + Identity | 0.889 55
-0.9 t0 0.9 Only continuous |Network C: Logistic + Identity | 0.892 90
Normalization all dataset  |Network A: Logistic + Logistic | 0.215 156
Normalization | Only continuous [Network A: Logistic + Logistic | 0.221 87

4.2.1.5 Development of the ALC Network Architecture

There are 55 input data units and one output data unit in the ALC NN Model. In order to
find the number of hidden layer units resulting in the best prediction performance,
networks with the number of hidden layer units ranging from one to 30 were trained with
the four different learning algorithms presented in Section 2.2.3.1. Thus, a total of 120
networks were tested as follows: 4 learning algorithms x 30 network configurations = 120
networks. The parameters of the learning algorithms used in the analysis are given in
Table 4.11.



Table 4.11. Parameters of the learning algorithms used
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Learning Algorithm

Parameters*®

Standard Backpropagation

n:0.010

Enhanced Backpropagation

n:0.010, z:0.001, c: 0.04

Quickprop

n:0.0015, p: 2.10, v: 0.000015

Resilient Propagation

B: 1.10, ditiar : 0.00075, Gy : 30

*The definitions for the parameters of the learning algorithms are given in Appendix A.

Training was halted when the testing set SSE value stopped decreasing and

started to increase, i.e. an indication of overtraining. The prediction performance in terms

of SSE, R?, RMS, and CV of the networks with the lowest testing set SSE values amongst

the 30 networks for each of the four learning algorithms is presented in Table 4.12.

As seen from Table 4.12, all learning algorithms produced very good predictions

with the lowest R? being 0.903. The network trained with the Quickprop learning

algorithm with 27 hidden layer units results in the lowest testing set SSE, RMS, and CV,

and highest R’, indicating that this network has the highest prediction performance

amongst the networks tested with the four learning algorithms given in Table 4.13.

Table 4.12. Performance of networks trained using four different learning algorithms

Number of Number
Network | Learning Algorithm | Hidden | gSg | R? |RMS| Cv |of Cycles
Units
55:27:1 |Quickprop 27 3.015 10.908 |0.110 | 2.099 182
55:02:1 [Resilient Propagation 2 3.084 10.906{0.112| 2.123 90
55:02:1 |Enhanced Backprop. 2 3.131 [0.9050.113 | 2.139 833
55:02:1 |Standard Backprop. 2 3.208 {0.903[0.114| 2.165 1,280
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To determine the network architecture that produces the best prediction
performance, different network architectures with a total of 27 hidden layer units in one,
two or three layers were trained with the Quickprop learning algorithm. The prediction
performances of these networks are given in Table 4.13. The configuration with three
hidden layers each having nine units achieved the highest prediction performance with a
R? value of 0.909. Thus, the network with three hidden layers each having nine units
(55:09:09:09:1) trained with the Quickprop leaming algorithm, and using logistic
function for the hidden layers, the identity function for the output layer, and dataset scaled
to interval [-0.5 to 0.5] was found to be the most suitable network architecture to predict
the energy consumption by household appliances, lighting, and space cooling in Canadian
single family households. The architectural configuration of the ALC NN Model
(55:09:09:09:1), as well as the values of the weights and biases, are given in Appendix E.

Table 4.13. Performance of networks with different architectures

Number of Hidden Number
Network Layer Units SSE R? RMS Ccv of
Cycles

Layer 1 |Layer 2 | Layer 3
55:27:27:1 27 27 3.295 | 0.900 | 0.116 2.195 164

55:27:27:27:1| 27 27 27 3.749 | 0.886 | 0.123 2.341 451

55:10:17:1 10 17 3.371 | 0.898 | 0.117 2.220 170
55:17:10:1 17 10 3412 | 0.896 | 0.118 2.233 96
55:09:09:09:1f 9 9 9 3.001 | 0909 | 0.110 2.094 173

4.2.2 Domestic Hot Water (DHW) Network

4.2.2.1 Development of the DHW Network Dataset

The dataset used in the development of the DHW network is a subset of the 1993 SHEU
database. It is shown in Appendix C that:
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- out of the 2,050 households with electricity bills, 1,037 have electrical DHW
heating systems,

- out of the 1,012 households with natural gas bills, 942 have natural gas DHW
heating systems,

- out of the 236 households with oil bills, 140 have oil DHW heating systems.

As shown in Appendix C, when the energy billing data of these households were
analyzed, it was found that:
- out of the 1,037 households with electrical DHW heating systems, only 388 could
be included in the DHW network dataset,
- out of the 942 households with natural gas DHW heating systems, only 175 could
be included in the DHW network dataset,
- out of the 140 households with oil DHW heating systems, none of them could be
included in the DHW network dataset.

Hence, the number of households in the DHW network dataset is 563 (388+175).

For households with electrical DHW heating systems in the database, the annual
DHW electricity consumption was calculated by deducting the ALC electricity
consumption estimated using the ALC NN Model from the total annual energy billing
data. This introduces an error in the DHW electricity consumption data used in
developing the DHW NN Model; however, this approach was used since disaggregated
DHW electricity consumption data do no exist. Details of the analyses conducted to

develop the DHW network dataset are given in Appendix C.

4.2.2.2 Development of the DHW Network Input and Output Units

The input units of the DHW network dataset were developed using the information on
DHW heating system and equipment properties, DHW consumption patterns, and socio-

economic characteristics of the households available from the 1993 SHEU database.



4.2.2.2.1

Input Units for DHW Heating System and Equipment Properties
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The information available in the 1993 SHEU database on the DHW heating system and

equipment properties are:

the fuel types and energy sources used,

number of water heaters,

age of the system,

size of the water tank,

ownership information (single user or shared),

insulation of hot water tank and hot water pipes.

Since the 1993 SHEU database does not contain information on the end-use

efficiency of the DHW heating systems, the typical efficiency values given in HOT2000

(NRCan, 1996) for different types of DHW heating systems were used. These are given in
Table 4.14.

Table 4.14. Typical efficiency values of the DHW heating systems (NRCan, 1996)

Energy Source or

End-use efficiency of the DHW Heating System

Fuel Type With Tank Without Tank
Electricity 0.824 0.936

Oil 0.530 0.450
Natural Gas/Propane 0.554 0.460
Wood 0.300 -

All households in the DHW network dataset have DHW heating systems with

tanks. Based on this information and typical end-use efficiency values given in HOT 2000

(NRCan, 1996), the end-use efficiency of the DHW heating systems of the 388

houscholds with electricity bills were set to 0.824, the DHW heating system end-use

efficiency of the 175 households with natural gas bills were set to 0.554. The data

available in the DHW dataset on the distribution of DHW water tanks with respect to size

and age are given in Tables 4.15 and 4.16.
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Table 4.15. Water tank size information from the 1993 SHEU database

Size Ave. Value Number of households
Small 130L 61
Medium 180 L 418
Large 230L 37
Very large 280 L 47

Table 4.16. DHW heating system age information from the 1993 SHEU database

Age Ave. Value Number of households
1 year or less 0.5 yrs 52
2 years 2 yrs 39
3 years 3 yrs 43
4 years 4 yrs 27
5 years 5 yrs 44
6 — 7 years 6.5 yrs 41
8 — 10 years 9 yrs 112
11 —15 years 13 yrs 120
16 years or more 18 yrs 85

The binary variables of zero and one are used as input units to indicate the
presence of insulation around the hot water tank and hot water pipes, as well as the
sharing of the DHW heating system by other dwellings. The variable one is used if there
is insulation around the hot water tank or hot water pipes, and if the DHW heating system
is shared by other dwellings, and zero is used if there is no insulation around the hot water
tank or hot water pipes, and if the household is the single user of the DHW system. The

input units representing the DHW heating system and equipment properties are given in
Table 4.17.
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4.2.2.2.2 Input Units for DHW Consumption Patterns

The 1993 SHEU database contains information on the factors affecting the DHW
consumption; such as number of occupants, number of weekly clothes washer and
dishwasher loads, and number of low-flow showerheads and aerators used by the

household. The input units representing the DHW consumption pattern are given in Table
4.17.

4.2.2.2.3 Input Unit for Weather Effects

Ground temperature has an important effect on the DHW heating energy consumption.
Therefore, the average annual ground temperature is used as an input unit. For this
purpose, the 1993 average annual ground temperature data for the cities in which the
households in the DHW network dataset are located were obtained from Environment

Canada (Environment Canada, 1999).

Data on average annual ground temperatures were available for only 22 cities in
1993 from Environment Canada (Environment Canada, 1999). For those cities for which
no ground temperature data exists, the data from neighbouring cities were used. The

range of the ground temperature data is from 5 °C to 12 °C, as given in Table 4.17.

4.2.2.24 Other Input Units

The other input units included in the dataset are the household income, the dwelling type,
dwelling ownership information, and size of residence area information. With the
inclusion of these, the number of input units in the dataset increases to 18. These input
units are given in Table 4.17. The size of area of residence is included into the input data

set to reflect the socio-economic differences between the urban and rural population.



Table 4.17. DHW network input units
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2 if population is between 15,000 and 100,000

3 if population is 100,000 or over

Input Unit Range
DHW heating End-use efficiency of the system 0.554 -0.824
ZZitii)r?n:E?prope Hes Age of the system [years] 0.5-18
Size of the water tanks [L] 130 - 280
Number water heaters 1-2
Shared with other dwellings 0-1
Insulation around the water tank 0-1
Insulation around hot water pipes 0-1
DHW consumption | Number of children 0-5
patterns Number of adults 1-8
Clothes washer [loads/week] 0-15
Dishwasher [loads/week] 0-15
Number of low-flow shower heads 0-3
Number of aerators 0-4
Weather effects Ground temperature [°C] 5-12
Socio-economic Income [$1,000/yr] 10— 85
characteristics of the Dwelling type:
households ) .
1 if single-detached; O if single-attached 0-1
Dwelling ownership: 1 if owner; 0 if renter 0-1
Size of area of residence:
1 if population is less than 15,000 L3

4.2.2.2.5 Output Unit

The annual DHW heating electricity and natural gas consumption is the output unit of the

DHW network. Thus, the annual electricity and natural gas consumption values obtained

from the energy billing data for the 563 households are used as the output unit of the
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DHW network. The electricity and natural gas consumption data cover the calendar year

of 1993, and were converted to GJ.

4.2.2.3 Development of the DHW Network Training and Testing Datasets

The DHW network dataset was divided into two subsets. One of these subsets was used
for training (training set) and the other was used for testing (testing set) of the network.
The training set contains 422 households (75% of all households in the dataset) and the
testing set contains 141 households (25% of all households in the dataset). The

households in each sub-set were chosen randomly.

4.2.2.4 Selection of Activation Functions and Scaling Intervals

The training and the testing datasets of the DHW heating network were scaled to the
intervals given in Section 3.3.4 resulting in eleven datasets. Each of the eight
configurations given in Table 3.1 was tested for each of the eleven datasets that were
scaled to different intervals. Thus, a total of 88 networks were tested (= 11 scaling

intervals x 8 network configurations).

A network with 18 input, 10 hidden, and one output units (18:10:1) trained by
standard backpropagation learning algorithm with a learning rate of 0.02 was used to
compare the various scaling intervals and activation functions with respect to their

prediction performance.

The training of the 18:10:1 network was halted when the testing set SSE value
stopped decreasing and started to increase, which is an indication of overtraining. The
prediction performance and the number of cycles for each of the eight configurations that

produced the best prediction performance for each of the eleven datasets are given in

Table 4.18.

As seen in Table 4.18, normalization of the data did not produce good

predictions, which was also seen during the development of the ALC network. The other
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scaling and activation function combinations resulted in predictions with R? higher than
0.590. The network with the best prediction performance (R® of 0.863) used the dataset
with only continuous data scaled to interval [0.1 to 0.9], and the logistic function for the
hidden and output layers. Thus, in the rest of the DHW network development, the logistic
function was used as the activation function for the hidden and output layer, and only

continuous data in the sets were scaled to interval [0.1 to 0.9].

Table 4.18. Comparison of scaling intervals and activation functions

Scaling Interval|  Applied to Network Configuration R? Cycles
0.1t00.9 All data Network A: Logistic + Logistic | 0.862 438
0.1t0 0.9 | Only continuous |Network A: Logistic + Logistic | 0.863 442
-0.5t0 0.5 All data Network B: Logistic + TanH 0.595 57
-0.5t0 0.5 | Only continuous |Network B: Logistic + TanH 0.593 69
00t0 1.0 All data Network A: Logistic + Logistic | 0.766 315
-1.0to 1.0 All data Network H: Identity + TanH 0.608 191
-1.0to 1.0 | Only continuous |Network H: Identity + TanH 0.607 186
-0.9t0 0.9 All data Network H: Identity + TanH 0.607 258
-0.9t0 0.9 | Only continuous {Network H: Identity + TanH 0.607 244

Normalized All dataset  |Network D: TanH + Logistic 0.179 16
Normalized | Only continuous [Network B: Logistic + TanH 0.175 54

4.2.2.5 Development of the DHW Network Architecture

There are 18 input data units and one output data unit in the DHW NN Model. In order to
find the number of hidden layer units resulting in the best prediction performance,
networks with the number of hidden layer units ranging from one to 40 were trained with
the four different learning algorithms presented in Section 2.2.3.1. Thus, a total of 160
networks were tested as follows: 4 learning algorithms x 40 network configurations = 160
networks. The parameters of the learning algorithms used in the analysis are given in

Table 4.19.
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Learning Algorithm

Parameters*

Standard Backpropagation

n7:0.025

Enhanced Backpropagation

77:0.015, £:0.1,¢c:0.1

Quickprop

n:0.005, p: 1.5, v: 0.0005

Resilient Propagation

B 1.7, @mitiar: 0.02, Gnax: 30

*The definitions for the parameters of the learning algorithms are given in Appendix A.

Training was halted when the testing set SSE value stopped decreasing and

started to increase, which is an indication of overtraining. The prediction performance in

terms of SSE, Rz, RMS, and CV of the networks with the lowest testing set SSE values

amongst the 40 networks for each of the four learning algorithms is presented in Table

4.20.

As seen from Table 4.20, the learning algorithms produced good predictions

within the range of R*> of 0.869 to 0.871. The network trained with the Resilient

Propagation learning algorithm with 29 hidden layer units resulted in the lowest testing

set SSE, RMS, and CV, and highest R?, indicating that this network has the highest

prediction performance amongst the networks tested with the four learning algorithms

given in Table 4.19.

Table 4.20. Performance of networks trained using four different learning algorithms

Number of Number
Network| Learning Algorithm | Hidden | SSE | R* |RMS | CV of
Units Cycles
18:29:1 |Resilient Propagation 29 2.518 | 0.871 | 0.134 | 3.337 28
18:29:1 |Quickprop 29 2.521 | 0.871 | 0.134 | 3.340 21
18:29:1 |Enhanced Backprop. 29 2.549 | 0.869 | 0.134 | 3.358 45
18:29:1 |Standard Backprop. 29 2.551 | 0.869 | 0.135 | 3.360 57
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To determine the network architecture that produces the best prediction
performance, different network architectures with a total of 29 hidden layer units in one,
two or three layers were trained with the Resilient Propagation learning algorithm. The
prediction performances of these networks are given in Table 4.21. None of these
configurations resulted in better prediction performance than the network with 29 hidden
units in one hidden layer. Thus, the network with one hidden layer with 29 units (18:29:1)
trained with the Resilient Propagation learning algorithm, and using logistic function for
the hidden and output layers and dataset scaled to interval [0.1 to 0.9] was found to be the
most suitable network architecture to predict the DHW heating energy consumption in
Canadian single family households. The architectural configuration of the DHW NN
Model (18:29:1), as well as the values of the weights and biases, are given in Appendix E.

Table 4.21. Performance of networks with different architectures

Number of Hidden
Network Layer Units SSE R? RMS CV | Number
Layer 1 |Layer 2 |Layer 3 of Cycles
18:29:1 29 2.518 | 0.871 | 0.134 | 3.337 28
18:29:29:1 29 29 2.645 | 0.864 | 0.137 | 3.421 38
18:29:29:29:1| 29 29 29 2.687 | 0.862 | 0.138 | 3.448 25
18:14:15:1 14 15 2.635 | 0.865 | 0.137 | 3.415 28
18:15:14:1 15 14 2.614 | 0.866 | 0.136 | 3.401 30
18:10:19:1 10 19 2.676 | 0.863 | 0.138 | 3.441 19
18:19:10:1 19 10 2.605 | 0.867 | 0.136 | 3.395 31
18:9:10:10:1 9 10 10 2.650 | 0.864 | 0.137 | 3.424 35
18:10:9:10:1 10 9 10 2.585 | 0.868 | 0.135 | 3.382 30
18:10:10:9:1 10 10 9 2.665 | 0.864 | 0.137 | 3.433 28

4.2.3 Space Heating (SH) Network

4.2.3.1 Development of the SH Network Dataset

The dataset used in the development of the SH network is a subset of the 1993 SHEU
database. It is shown in Appendix D that:
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- out of the 2,050 households with electricity bills, 556 have electrical SH systems,
- out of the 1,012 households with natural gas bills, 978 have natural gas SH systems,
- out of the 236 households with oil bills, 227 have oil SH systems.

As shown in Appendix D, when the energy billing data of these households were
analyzed, it was found that:
- out of the 556 households with electrical SH systems, only 396 could be included in
the SH network dataset,
- out of the 978 households with natural gas SH systems, only 755 could be included
in the SH network dataset,
- out of the 227 households with oil SH systems, only 77 could be included in the SH

network dataset.

Hence, the number of households in the SH network dataset is 1,228
(396+755+77).

For electrically heated households in the database, the annual SH electricity
consumption was calculated by deducting the ALC and DHW heating electricity
consumption estimated using the ALC and DHW NN Models from the total annual
energy billing data. For natural gas heated households in the database, the annual SH
natural gas consumption was calculated by deducting the DHW heating natural gas
consumption estimated by the DHW NN Model from the total annual energy billing data.
This introduces an error in the SH energy consumption data used in developing the SH
NN Model; however, this approach was used since disaggregated SH energy consumption

data do no exist.

The households with oil fuelled space and DHW heating systems could not be
included in the SH NN database, because it was not possible to estimate their DHW
heating energy consumption using the DHW NN model due to lack of data. The
households using oil only for SH were included in the SH NN dataset. Details of the

analyses conducted to develop the SH network dataset are given in Appendix D.
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4.2.3.2 Development of the SH Network Input and Output Units

SH energy consumption of a dwelling can be determined by conducting an energy

balance between heat losses and heat gains as follows:

SH Energy Consumption = Z Heat Losses — Z Heat Gains 4.1)
where,

Z Heat Losses = Heat losses due to transmission through the building envelope

+ Heat loss due to infiltration and ventilation

ZHeat Gains = Internal heat gain from people, lighting, and appliances

+ Solar heat gain

The magnitude of the heat losses and gains depend on the building envelope
thermal characteristics and area, envelope tightness, outdoor weather conditions, occupant
behaviour, presence of electric appliances and lighting, and solar radiation. Detailed

information on these factors is given below.

— Building envelope thermal characteristics and exposed area

‘The heat transferred through walls, ceiling, roof, widows, floors, and doors is estimated

from
g=UA(t, -t,) (4.2)

where ¢ is the heat transfer rate (W), U is the overall heat transfer coefficient (W/m’K),
A (mz) is the net area for the given component for which U was calculated, and ¢ and ¢,
(K) are the indoor and outdoor temperatures, respectively. The U-value of a component of
a dwelling is determined by summing the resistances of the materials and surfaces
involved, and then inverting this total resistance to give a transmittance or conductivity

value.
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— Building envelope tightness

One of the major heat losses in the dwelling is the heat required to warm outdoor air
entering the dwelling through cracks and crevices around doors, windows, lighting

fixtures, and joints between walls and floor, and through the building material itself.

— Internal and solar heat gains

Internal heat gains are from people, lighting, and appliances, whereas solar heat gain is a
result of solar radiation entering a building through opaque and transparent surfaces such
as fenestration, skylights, etc. Solar hear gain is a function of the location of the sun in the
sky and the clearness of the atmosphere, as well as the nature and orientation of the

glazing, and presence and type of blinds and other solar control devices.

— Qutdoor weather conditions

Outdoor weather conditions such as wet and dry bulb temperatures, wind speed,

humidity, and solar radiation determine the magnitude of heat losses and gains.

— QOccupant behaviour

Occupant behaviour, such as temperature setting, opening of windows, orientation of

blinds and curtains, influence the amount of energy used for SH.

The input units of the SH network dataset were developed taking into
consideration the above factors and using the information available from the 1993 SHEU

database.

4.2.3.2.1 Input Units for Building Envelope Thermal Characteristics

The following information on building characteristics is available in the 1993 SHEU
database:

- dwelling type (single detached, double, row or terrace, duplex),

- number of storeys,

- exterior wall material types (aluminium/steel siding, brick, stucco, vinyl siding,

stone/concrete, wood, log, asbestos shingle),
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- number of doors,

- number of triple, double, and single glazed windows,

- total heated area excluding basement and garage,

- year dwelling was built,

- basement type and area,

- attic and roof type,

- presence and year of the improvements done to wall, roof, basement wall, and
basement floor insulation,

- presence of heated basement and garage.

The 1993 SHEU database does not contain sufficient information on building
envelope thermal characteristics to develop the overall heat transfer coefficients for each
component of the envelope. The only information available is the type of material used in
the exterior walls, but information on the thickness and type of the exterior wall and
insulation materials is not given. Due to lack of direct information in the 1993 SHEU
database to calculate the overall heat transfer coefficient values, the vintage of the
envelope components is used as proxy for envelope thermal characteristics based on the

work of Farahbakhsh (1997) and Farahbakhsh ef al. (1997, and 1998).’

As seen in Table 4.22, the year of construction of the dwellings is reported in six
categories in the 1993 SHEU database. These categories are used in the input unit dataset
to denote the ages of the dwellings. The year in which the insulation improvements were
conducted is given in three categories as seen in Table 4.23. If a dwelling had undertaken
any insulation improvement, the age category of that envelope component was increased

as given in Table 4.24. The wall, basement wall, basement floor, and roof age categories

® The relationship between the vintage of the dwellings and the overall heat transfer coefficient of each
component of the envelope was studied by Farahbakhsh (1997) and Farahbakhsh ef al. (1997 and 1998).
A database was developed using the information available from the Modified STAR HOUSING database
(Scanada Consultants, 1992), the 1993/94 “200-House Audit” project database (NRCan, 1994), and the
1994 New House Survey database (NRCan, 1996), and the thermal resistances (i.e. R-values) of building
envelope components (e.g. walls, roofs, doors, windows, etc.) were categorized based on the vintage of
the dwellings. It was found that R-values increase as the age of the dwellings decrease.
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were included as input units using this procedure. For example, if a dwelling was built
before 1941 and its roof and walls were improved in 1980, age categories of the house,
wall, roof, basement wall and floor would be 1, 4, 4, 1, and 1, respectively. The input
units used for building envelope thermal characteristics are given in Table 4.26 along

with all other input units used in the SH NN Model.

Table 4.22. Age categories based on the year of construction of the dwellings in the 1993

SHEU database
Years Category for the year of construction
Before 1941 1
1941 - 1960 2
1961 - 1977 3
1978 — 1982 4
1983 — 1988 5
1989 or later 6

Table 4.23. Age categories for the year of the insulation improvements in the 1993 SHEU

database
Years Category for the year of improvement
1977 or earlier 1
1978 — 1983 2
1984 or later 3

Table 4.24. Age categories of the envelope components with insulation improvements

Year of the insulation improvement Updated age category
1977 or earlier 3
1978 — 1983 4
1984 or later 5
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4.2.3.2.2 Input Units for Building Envelope Areas

The areas of the envelope components were calculated using the available information in
the 1993 SHEU database and assumptions used in other similar studies (Farahbakhsh,
1997, Farahbakhsh et al., 1997 and 1998). The input units used for building envelope
areas are given in Table 4.26. The assumptions and calculation procedures used in

determining the envelope areas are given below.

Floor Area: The total heated area (excluding basement and garage) and number of storeys
of the dwellings are available in the 1993 SHEU database. The floor area was
calculated by dividing the total heated area by the number of storeys.

Wall Area: The wall area was calculated using Equation 4.3, assuming that the dwellings
have square foot print and the height of the walls are 2.5 m. The number of

walls is four for single detached, and three for single attached dwellings.

Wall Area = v/ Floor Area * Wall Height * No. of storeys * No.ofWalls  (4.3)

Basement Floor and Wall Area: The basement type and floor area are available in the
1993 SHEU database. Assuming that basement wall height is 2.5 m for full
basements, 1.8 m for partial basements, and 0.6 m for crawl spaces, the

basement wall areas were calculated using Equation 4.4:

Basement Wall Area = +/Basement Area * Basement Wall Height * 4 4.4)

Roof Area: The 1993 SHEU database contains information on the presence of an attic. If
the dwelling has an attic, it was assumed that the ceiling is insulated, and the
heat transfer area is taken to be equal to floor area of the dwelling. If the
dwelling does not have an attic, then the roof area was calculated assuming
that the dwelling has square foot print and a roof slope of 0.25. Therefore,

Equation 4.5 gives the roof area:

Roof Area = Floor Area *1.16 (4.5)
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4.2.3.2.3 Input Units for Windows and Doors

In the 1993 SHEU database, the number of single, double, triple windows and skylights,
and the number of metal, wood, and patio doors are given. There is no information about
the R-values, dimensions, or directions of the windows and doors. Therefore, as shown in
Table 4.26, the number of doors and windows are used as input units representing the

heat loss through these components.

Triple, double, and single glazed patio doors and skylights were considered as
windows, and single glazed windows with storm windows were considered as double

glazed windows.

4.2.3.2.4 Input Units for Heated Basements and Garages

The 1993 SHEU database contains qualitative information on the amount of heated
basement area, which was converted to percentage values as shown in Table 4.25. Binary
variables zero and one are used as input units for the heated garage ownership; the
variable one is used if the household owns a heated garage, and zero is used if it does not.

These input units are given in Table 4.26.

Table 4.25. Amount of basement area heated

Information in the 1993 SHEU database Corresponding Percentage (%)
The whole basement 100
More than one half 75
About one half 50
Less than half 25
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Input Unit Range
Dwelling. . Dwelling type: 0-1
Characteristics 1 if single-detached; O if single-attached
Number of doors 1-11
Number of triple glazed windows 0-30
Number of double glazed windows 0-48
Number of single glazed windows 0-24
Wall area [m’] 71 - 733
Floor area [mz] 17 - 265
Basement wall area [m’] 0-163
Basement floor area [m?] 0-265
Roof area [m?] 17 - 265
Dwelling age category 1-6
Wall age category 1-6
Roof age category 1-6
Basement wall age category 0-6
Basement floor age category 0-6
Percentage of the basement heated [%] 0-100
Heated garage: 1 if heated; 0 if not heated 0-1
SH system and End-use efficiency of the SH equipment [%] 65 - 100
equipment properties | presence of heat recovery ventilation system 0-1
Presence of programmable thermostats 0-1
Indoor and outdoor | Average indoor temperature [°C] 16 - 24
temperatures Heating degree days [°C-day] 2,930 - 6,541
Socio-economic Income [$1,000/yr] 10 -85
characteristics of the | pyeiling ownership: 1 if owner; 0 if renter 0-1
households -
Number of children 0-6
Number of adults 1-6
Daytime occupancy 0-1
Size of area of residence:
1 if population is less than 15,000 -3
2 if population is between 15,000 and 100,000
3 if population is 100,000 or over
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4.2.3.2.5 Input Unit for Dwelling Types

In the 1993 SHEU database, dwellings are classified into four categories: single detached,
double, row or terrace, and duplex. In this study, double, row or terrace, and duplex
dwellings are combined into one category called “single attached”. Binary variables zero
and one are used as input units for the dwelling type; variable one is used if the dwelling

is single-detached, and zero if it is single-attached, as shown in Table 4.26.

4.2.3.2.6 Input Units for SH System and Equipment Properties

The information available in the 1993 SHEU database on the SH system and equipment
properties includes:
- type of SH equipment (furnace with hot air vents, boiler with hot water radiators,
wood stove, electric baseboards, electric radiant heaters)
- fuel types and energy sources used for SH (natural gas, oil, electricity, wood,
propane, coal)
- efficiency rating of the oil and natural gas SH equipment (standard, medium, high)
- age of the SH equipment,
- use of heat pump and back-up furnace,
- source, age, and power of heat pump system,
- fuel types and energy sources of the back-up furnaces (natural gas, oil, electricity,
wood, propane, coal),
- use of programmable thermostat,

- use of heat recovery ventilation (HRV) system.

The 1993 SHEU database contains information on the efficiency ratings of the
oil and natural gas fuelled SH equipment in three categories, which are standard (50-
65%), medium (75-80%), and high (90% or higher) efficiency. The typical efficiency
values given in HOT2000 (NRCan, 1996) for different types of oil and natural gas fuelled
SH equipment are given in Table 4.27. Using the average values of the responses in the

1993 SHEU database, the HOT2000 default values from Table 4.27, and engineering
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judgment, the SH equipment efficiency values given in Table 4.28 were chosen to
represent each efficiency rating, and energy source and fuel type. The end-use efficiency
of the SH systems that use electricity were set to 100%. The input unit for the SH

equipment efficiency is given in Table 4.26.

Table 4.27. Typical efficiency values for natural gas and oil SH equipment (NRCan,

1996)

Fuel Type Equipment Type Efficiency (%)

Natural Gas | 1. Furnace/boiler with continuous pilot 78
2. Furnace/boiler with spark ignition 78
3. Furnace/boiler with spark ignition, vent damper 78
4. Induced draft fan furnace/boiler 80
5. Condensing furnace/boiler 94

0Oil 1. Furnace/boiler 71
2. Furnace/boiler with flue vent damper 71
3. Furnace/boiler with flame retention head 83
4. Mid efficiency furnace/boiler (no dilution air) 85
5. Direct vent, non-condensing 87
6. Condensing furnace/boiler (no chimney) 93

Table 4.28. Efficiency values used for each efficiency rating and fuel type

Standard Medium High
Natural Gas 70 % 78 % 94 %
Oil 65 % 75 % 93 %

There are only a few households using heat pump systems for SH in the 1993
SHEU database. More than half of these households do not have information on the
source and/or the power of their heat pump systems. Thus, the households with heat pump

systems were excluded from the SH network dataset as explained in Appendix D. The
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programmable thermostat and HRV system ownerships are represented by binary

variables zero and one as given in Table 4.26.
4.2.3.2.7 Input Units for Indoor and Outdoor Temperatures

The 1993 SHEU database contains information on the average indoor temperature during
daytime (6 am — 6 pm), evening (6 pm — 10 pm), and ovemight (10 pm — 6 am). The

average indoor temperature was calculated using Equation 4.6.
AlT = TI*E + T2>|=i + T3*i (4.6)
24 24 24

AIT: average indoor temperature [°C]

where,

T;: daytime (6 am — 6 pm) temperature [°C]
T,: evening (6 pm — 10 pm) temperature [°C]
Ts:  overnight (10 pm — 6 am) temperature [°C]

The outside temperature has an important effect on the SH energy consumption.
Therefore, heating degree-day (HDD) is used as an input unit as shown in Table 4.26. For
this purpose, 1993 HDD data for the cities in which the households in the SH network
dataset are located were obtained from Environment Canada (Environment Canada,

1999).

4.2.3.2.8 Other Input Units

The other input units included in the dataset are the household income, dwelling
ownership information, number of children and adults in the households, daytime
occupancy, and size of residence area information. The 1993 SHEU database contains
information if the dwellings are occupied on average weekdays. Thus, binary variables
one and zero are used to indicate if the dwellings are occupied on average weekdays as

given in Table 4.26 (one indicates that dwelling is occupied, zero indicates unoccupied).
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4.2.3.2.9 CQutput Unit

The annual electricity, natural gas, and oil consumption for SH is the output unit for the
SH network. Thus, the annual SH electricity, natural gas, and oil consumption values
obtained from the energy billing data for the 1,228 households are used as the output unit
of the SH network. The SH consumption data of the households covers the calendar year

of 1993, and were all converted to GJ.

42.3.3 Development of the SH Network Training and Testing Datasets

To facilitate the development of the SH NN Model, the SH network dataset was divided
into two subsets. One of these subsets was used for training (training set) and the other
was used for testing (testing set) of the network. The training set contains 921 households
(75% of all households in the dataset) and the testing set contains 307 households (25%

of all households in the dataset). The households in each sub-set were chosen randomly.

4.2.3.4 Selection of Activation Functions and Scaling Intervals

The training and the testing datasets of the SH network were scaled to the intervals given
in Section 3.3.4 resulting in eleven datasets. Each of the eight configurations given in
Table 3.1 was tested for each of the eleven datasets that were scaled to different intervals.
Thus, a total of 88 networks were tested (= 11 scaling intervals x 8 network

configurations).

A network with 28 input, two hidden, and one output units (28:2:1) trained by
standard backpropagation learning algorithm with a learning rate of 0.02 was used to

compare the various scaling intervals and activation functions with respect to their

prediction performance.

The training of the 28:2:1 network was halted when the testing set SSE value
stopped decreasing and started to increase, which is an indication of overtraining. The

prediction performance and the number of cycles for each of the eight configurations that
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produced the best prediction performance for each of the eleven datasets are given in
Table 4.29.

As seen in Table 4.29, normalization of the data produced poor predictions,
which was also seen during the development of the ALC and DHW networks. The [-0.5
to 0.5], [-1.0 to 1.0], and [-0.9 to 0.9] scaling intervals also resulted in poor predictions
with R? around 0.5. The [0.0 to 1.0], and [0.1 to 0.9] scaling intervals produced good
predictions with R* higher than 0.85. The network with the best prediction performance
(R? of 0.9064) used the data scaled to interval [0.1 to 0.9], the identity function for the
hidden layers, and the logistic function for the output layers. Thus, in the rest of the SH
network development, the identity function was used as the activation function for the
hidden layers, the logistic function was used as the activation function for the output

layer, and all data in the dataset were scaled to interval [0.1 to 0.9].

Table 4.29. Comparison of scaling intervals and activation functions

Scaling Interval{  Applied to Network Configuration R? Cycles

0.1t00.9 All data Network G: Identity + Logistic 0.9064 2260

0.1t0 0.9 |Only continuous |[Network G: Identity + Logistic 0.9063 1564

-0.5t0 0.5 All data Network H: Identity + TanH 0.5062 1259
-0.5t0 0.5 |Only continuous [Network H: Identity + TanH 0.5055 1282
0.0to 1.0 All data Network G: Identity + Logistic 0.8517 1883
-1.0t0 1.0 All data Network E: TanH + TanH 0.5122 1087
-1.0to 1.0 | Only continuous |Network H: Identity + TanH 0.4991 195
-0.9t0 0.9 All data Network E: TanH + TanH 0.4979 514

-0.9t0 0.9 [Only continuous [Network C: Logistic + Identity 0.4941 1276

Normalized All dataset  |Network B: Logistic + TanH 0.3175 45

Normalized |Only continuous [Network H: Identity + TanH 0.3340 24
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4.2.3.5 Development of the SH Network Architecture

There are 28 input data units and one output data unit in the SH NN Model. In order to
find the number of hidden layer units resulting in the best prediction performance,
networks with the number of hidden layer units ranging from one to 40 were trained with
the four different learning algorithms presented in Section 2.2.3.1. Thus, a total of 160
networks were tested as follows: 4 learning algorithms x 40 network configurations = 160
networks. The parameters of the learning algorithms used in the analysis are given in
Table 4.30.

Table 4.30. Parameters of the learning algorithms used

Learning Algorithm Parameters*

Standard Backpropagation n:0.0075

Enhanced Backpropagation n:0.0075, u: 0.0005, c : 0.005
Quickprop n:0.001, p: 2.0, v: 0.00001
Resilient Propagation B 1.1, Guitiar: 0.06, @ax: 10

*The definitions for the parameters of the learning algorithms are given in Appendix A.

Training was halted when the testing set SSE value stopped decreasing and
started to increase, which is an indication of overtraining. The prediction performance in
terms of SSE, Rz, RMS, and CV of the networks with the lowest testing set SSE values
amongst the 40 networks for each of the four learning algorithms is presented in Table
4.31.

As seen from Table 4.31, the learning algorithms produced good predictions
within the range of R* of 0.907 to 0.908. The network trained with the Resilient
Propagation learning algorithm with two hidden layer units resulted in the lowest testing
set SSE, RMS, and CV, and highest R?, indicating that this network has the highest
prediction performance amongst the networks tested with the four learning algorithms
given in Table 4.30. As seen in Table 4.30, the Resilient Propagation and Quickprop

learning algorithms achieved convergence at lower number of cycles than the Standard
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and Enhanced Backpropagation learning algorithms due to the their mechanism of

updating weights and biases as mentioned in Section 2.2.3.1 and Appendix A.

Table 4.31. Performance of networks trained using four different learning algorithms

Number
_ . ) ) Number
Network | Learning Algorithm |of Hidden| SSE R RMS | CV
_ of Cycles
Units
28:2:1 |Resilient Propagation 2 5.400 | 0.908 | 0.133 | 1.871 42
28:28:1 |Quickprop 28 5.433| 0908 | 0.133 | 1.877 411
28:1:1 |Standard Backprop. 1 5.508 | 0.907 | 0.134 | 1.890| 3981
28:1:1 |Enhanced Backprop. 1 5.508 | 0.907 | 0.134 { 1.890 | 3863

To determine the network architecture that produces the best prediction
performance, different network architectures with a total of two hidden layer units in one,
two or three layers were trained with the Resilient Propagation learning algorithm. The
prediction performances of these networks are given in Table 4.32. None of these
configurations resulted in better prediction performance than the network with two hidden
units in one hidden layer. Thus, the network with one hidden layer with two units (28:2:1)
trained with the Resilient Propagation learning algorithm, and using identity function for
the hidden layer, the logistic function for the output layer, and dataset scaled to interval
[0.1 to 0.9] was found to be the most suitable network architecture to predict the SH
energy consumption in Canadian single family households. The architectural
configuration of the SH NN Model (28:2:1), as well as the values of the weights and

biases, are given in Appendix E.
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Table 4.32. Performance of networks with different architectures

Number of Hidden
) ) Number
Network Layer Units SSE R RMS Cv
of Cycles
Layer 1 |Layer 2| Layer 3

28:2:1 2 5.400 | 0.908 | 0.133 | 1.871 42

28:2:2:1 2 2 5.482 | 0.907 | 0.134 | 1.885 29

28:2:2:2:1 2 2 2 5.481 | 0.907 | 0.134 | 1.885 374

28:1:1:1 1 1 5.492 | 0.907 | 0.134 | 1.887 441

4.3 Development of the CDA Model

The CDA Model consists of three components:
» Electricity model (EM),
* Natural gas model (NGM),
* Qil model (OM).

The processes used in the development of the electricity, natural gas, and oil

models are presented in this section.

4.3.1 Electricity Model

4.3.1.1 Development of the Electricity Model Dataset

The dataset used in the development of the CDA EM is a subset of the 1993 SHEU
database. There are 2,050 households in the 1993 SHEU database with electricity billing
data. The electricity bills of these households account for the energy consumption for
major, minor, and miscellaneous appliances, lighting, space and DHW heating, and space
cooling. The electricity billing data for these 2,050 households were used in the
development of the CDA EM. Details of the analyses of the electricity billing data are
given in Appendix B.
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4.3.1.2 Development of the Electricity Model UEC Equations

The UEC equations for each end-use was developed using the information available from
the 1993 SHEU database and 1993 weather and ground temperature data obtained from
Environment Canada (Environment Canada, 1999). The CDA EM was developed by

combining the UEC equations of the end-uses as given in Equation 4.7.

HEC, = Constant +iUECij 4.7
j=1
where,
HEC;: Electricity consumption of household i [kWh/yr]
UEC;;: End-use j unit energy consumption of household i [kWh/yr]
N: Number of electricity end-uses, i.e. main and supplementary space
heating, DHW heating, space cooling, lighting, major and minor

appliances.

The constant term in Equation 4.7 was included in the CDA EM to represent the
electricity consumption by miscellaneous appliances. As seen in Equations 4.8 to 4.40,
the CDA Model was developed as a linear model; however, a large variety of
mathematically manipulated variables (for example by taking a power or a logarithm of
one or more variables, or by cross multiplication of several variables) can be used. Use of

such manipulated variables may improve the prediction performance of the CDA models.

4.3.1.2.1 Main and Supplementary Space Heating (SH) UEC Equations

The input variables of the SH UEC equations were chosen considering the structural
features of the dwellings, economic and demographic characteristics of the occupants,
and the weather conditions. The main and supplementary SH UEC equations used in the
CDA EM are given in Equations 4.8 and 4.9, respectively, and the definitions of the

commonly used variables in the equations are given in Table 4.33.
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UECgy = SH * [ag + a; PROGT + a; HRV + a3 AIT + a; DTYPE +
as AREA + ag AGECAT + a; BSMNT + ag GARAGE +
ag ATTIC + a;o TRIPLE + a;; DOUBLE + a,; SINGLE +
a;3 DOOR + a;4 HDD +a;5s OWNER + a; INCOME +

a;7 CHILD + aj3 ADULT +a;9 DAYTIME + a9 POPUL] (4.8)
where,
UECsnu: Space heating unit energy consumption [kWh/household/yr]
SH: Dummy variable: one if the household has electricity SH

equipment, zero if not.

ag, ..., a: Regression coefficients of each variable®.

UECssy = SSH * [ag + a; AIT + a, AREA + a; HDD + a4 CHILD +

as ADULT + as DAYTIME] (4.9)
where,
UECssy: Supplementary space heating unit energy consumption
[kWh/household/yr]
SSH: Dummy variable: one if the household has electricity

supplementary SH equipment, zero if not.

ag, ..., 6. Regression coefficients of each variable.

To simplify the UEC equations, the variables representing the number of single,
double, and triple glazed windows were combined into one variable that represents the
total number of windows (WINDOW). Similarly, the variables representing the number
of adults and children were combined into one variable that represents the total number of
occupants (HHSIZE). These two new variables were used in place of the corresponding

variables in the end-use UEC equations.

* The a, is used as a generic symbol to denote all regression coefficients in this work. Thus, a, in one given
equation has a different value than another 4, in another equation.
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The input variables of the DHW heating UEC equation were chosen based on the

available information on DHW heating system and equipment properties, DHW

consumption patterns, economic and demographic characteristics of the occupants, and

the weather conditions. The DHW heating UEC equation used in the CDA EM is given in

Equation 4.10, and the definitions of the variables used in the equation are given in Table

4.33.
Table 4.33. Definitions of commonly used variables in UEC equations
Variable Definition Range
PROGT Dummy variable: one if the household has 0-1
programmable thermostat, zero if not.

HRV Dummy variable: one if the household has a heat 0-1
recovery ventilation system, zero if not.

EFF Efficiency of the natural gas or oil furnace/boiler [%] 65 - 94

SHAGE Age of the natural gas or oil furnace/boiler [years] 1-25

AIT Average indoor temperature calculated using Equation 16 - 24
4.6 [°C] i

DTYPE Dummy variable: one if the dwelling type is single 0-1
detached, zero if it is single attached.

AREA Heated living area [m’] 51-502

AGECAT 12)2welling construction year category as given in Table 4. 1-6

BSMNT Dummy variable: one if the household has a heated 0-1
basement, zero if not.

GARAGE Dummy Variz.lble: one if the household has a heated 0-1
garage, zero if not.

ATTIC Dummy variable: one if the household has an attic, zero 0-1
if not.

TRIPLE Number of triple glazed windows 0-30

DOUBLE Number of double glazed windows 0-60

SINGLE Number of single glazed windows 0-74

DOOR Number of doors 1-11

HDD Heating degree days [°C-day] 2,930 - 6,541

OWNER Dummy variable: one if owner, zero if renter. 0-1

INCOME Household income [$10,000/yr] 10 - 85
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Variable Definition Range
CHILD Number of children 0-7
ADULT Number of adults 1-8
DAYTIME | Dummy variable: one if the dwelling is occupied 0-1
daytime during weekdays, zero if not.
POPUL Size of area of residence:
1 if population is less than 15,000 1-3
2 if population is between 15,000 and 100,000
3 if population is 100,000 or over
TANK Size of the DHW tank [L] 130 - 280
SYSAGE Age of the DHW heating system [years] 0.5-18
BLANKET | Dummy variable: one if there is an add-on insulation 0-1
blanket around the outside of the DHW tank, zero if not.
PIPEINS Dummy variable: one if there is insulation around the
, DHW pipes, zero if not. 0-1
AERATOR | Number of aerators 0-7
LOWFLOW | Number of low-flow shower heads 0-3
GT Ground temperature [°C] 4-12
CWLOAD | Clothes washer [loads/week] 0-15
DWLOAD | Dish washer [loads/week] 0-15
CACUSE Central A/C unit usage [hours/year] 0-1,125
WACUSE | Window A/C unit usage [hours/year] 0-1,125
VOLRI1 Volume of the main refrigerator [L] 0-625
VOLR2 Volume of the second refrigerator [L] 0-625
FROSTRI1 Dummy vgriable: one if the main refrigerator is frost- 0-1
free, zero if not.
FROSTR2 | Dummy variable: one if the second refrigerator is frost- 0-1
free, zero if not.
HHSIZE Number of occupants in the household 1-11
VOLF1 Volume of the main freezer [L] 0-710
VOLF2 Volume of the second freezer [L] 0-710
MICROW Dummy variable: one if the household has a microwave, 0-1
zero if not.
CDLOAD Clothes dryer [loads/week] 0-15
LIGHTS Total number of incandescent, fluorescent, and halogen 7-132
lamps
WINDOW | Total number of single, double, and triple glazed 4.76

windows
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UECpuw = DHW * [a +a; TANK + a; SYSAGE + a; BLANKET +
a; PIPEINS + as LOWFLOW + ag AERATOR + a; GT +
ag CWLOAD +a, DWLOAD + a;o DTYPE +
a;; OWNER + a;, INCOME +a,; CHILD +
a;s ADULT] (4.10)

where,
UECpuw: DHW heating unit energy consumption [k Wh/household/yr]
DHW: Dummy variable: one if the household has electricity DHW
heating equipment, zero if not.

ag, ..., d14° Regression coefficients of each variable.

4.3.1.2.3 Space Cooling UEC Equations

The input variables of the central and window A/C UEC equations were chosen based on
the available information on space cooling system usage, structural features of the
dwellings, economic and demographic characteristics of the occupants, and the weather
conditions. The central and window A/C UEC equations used in the CDA EM are given
in Equations 4.11 and 4.12, respectively, and the definitions of the variables used in the

equations are given in Table 4.33.

UECcac = CAC * [ao + a; CACUSE + a, DTYPE + a; AREA + a; AGECAT +
as ATTIC + ag TRIPLE + a; DOUBLE + ag SINGLE +
a, DOOR + a;9 CDD + a;; OWNER + a;; INCOME +
a3 CHILD + a;4 ADULT + a;5 DAYTIME] (4.11)

where,
UECcac: Central A/C unit energy consumption [kWh/household/yr]
CAC Dummy variable: one if the household has central A/C unit, zero
if not.

ag, ..., ai5: Regression coefficients of each variable.
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UECwac = WAC * [ag + a, WACUSE + a; AREA + a; AGECAT +
as CDD + a5 INCOME + a CHILD + a; ADULT +
ag DAYTIME] (4.12)

where,

UECwac: Window A/C unit energy consumption [k Wh/household/yr]

WAC Dummy variable: one if the household has window A/C unit, zero
if not.
ag, ..., ag: Regression coefficients of each variable.

4.3.1.24 Major Appliances UEC Equations

The major appliances include the main and secondary refrigerators, main and secondary
freezers, electric ranges, dishwashers, clothes washers, and electric clothes dryers. The
input variables of the major appliances UEC equations were chosen based on the
available information on appliance properties, and economic and demographic
characteristics of the occupants. The major appliances UEC equations used in the CDA
EM are given in Equations 4.13-4.20, and the definitions of the variables used in the

equations are given in Table 4.33.

UECggr1 = REF1 * [ay + a; VOLR1 + a; FROSTR1 + a3 INCOME +

a, HHSIZE] (4.13)
UECker2 = REF2 * [ag + a; VOLR2 + 2 FROSTR2 + a; INCOME +

2 HHSIZE] (4.14)
UECkrezi = FREZ1 * [a + a) VOLF1 + a; INCOME + a; HHSIZE] (4.15)
UECsrezz = FREZ2 * [ag + a; VOLF2 + a; INCOME + a; HHSIZE] (4.16)
UECcook = COOK * [y + a; HHSIZE + a; MICROW] (4.17)
UECpisy = DISH * [a5 + a, DWLOAD)] ' (4.18)
UECcLots = CLOTH * [ay + a; CWLOAD] (4.19)

UECpryer = DRYER * [a() + a4 CDLOAD] (420)



where,

UECREFl .
UECRE}:zI

UECkrgrez1:
UECkrez2:
UECcook:
UECpisu:

UECcrotn:
UECpRryEr:

REF1:

REF2:

FREZ1:
FREZ2:

COOK:

DISH:

CLOTH:

DRYER:
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Main refrigerator unit energy consumption [k Wh/household/yr]
Secondary refrigerator unit energy consumption,
[kWh/household/yr]

Main freezer unit energy consumption [kWh/household/yr]
Secondary freezer unit energy consumption [k Wh/household/yr]
Electric range unit energy consumption [kWh/household/yr]
Dishwasher unit energy consumption [kWh/household/yr]
Clothes washer unit energy consumption [k Wh/household/yr]
Electric clothes dryer unit energy consumption
[kWh/household/yr]

Dummy variable: one if the household has a refrigerator, zero if
not.

Dummy variable: one if the household has a secondary
refrigerator, zero if not.

Dummy variable: one if the household has a freezer, zero if not.
Dummy variable: one if the household has a secondary freezer,
zero if not.

Dummy variable: one if the household has an electric range, zero
if not.

Dummy variable: one if the household has a dishwasher, zero if
not.

Dummy variable: one if the household has a clothes washer, zero
if not.

Dummy variable: one if the household has an electric clothes
dryer, zero if not.

Regression coefficients of each variable.
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4.3.1.2.5 Minor Appliances UEC Equations

The minor appliances include microwaves, color TVs, black and white TVs, VCRs,
furnace fans and boiler pumps. The input variables of the minor appliances UEC
equations were chosen based on the available information on the demographic
characteristics of the occupants and weather conditions. The minor appliances UEC
equations used in the CDA EM are given in Equations 4.21-4.26, and the definitions of

the variables used in the equations are given in Table 4.33.

UECsr = FF * [ag + a; AREA + a; HDD] (4.21)
UECgp = BP * [a, + a; AREA + a, HDD] (4.22)
UECwmicrow = MICROW * [a) + a; HHSIZE] (4.23)
UECctv = CTV * [ay + a; HHSIZE] (4.24)
UECpwtv = BWTV * [ay + a; HHSIZE] (4.25)
UECvcr = VCR * [ay + a; HHSIZE] (4.26)
where,
UECkr: Furnace fan unit energy consumption [k Wh/household/yr]
UECsp: Boiler pump unit energy consumption [kWh/household/yr]

UECmicrow: Microwave unit energy consumption [kWh/household/yr]
UECcrv: Color TV unit energ}; consumption [kWh/household/yr]
UECgwtv:  Black and white TV unit energy consumption [kWh/household/yr]
UECycr: VCR unit energy consumption [kWh/household/yr]

FF: Dummy variable: one if the household has a furnace, zero if not.
BP: Dummy variable: one if the household has a boiler, zero if not.

MICROW: Dummy variable: one if the household has a microwave, zero if

not.
CTV: Number of colour TVs owned by the household
BWTV: Number of black and white TVs owned by the household
VCR: Number of VCRs owned by the household

ag, ..., a2: Regression coefficients of each variable.
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4.3.1.2.6 Lighting UEC Equation

The input variables of the lighting UEC equation are the number of halogen,
incandescent, and fluorescent lamps. The lighting UEC equation used in the CDA EM is

given in Equation 4.27.
UECLigut = a; HALO+ a; INCA + a; FLOU 4.27)
where,

UECigur:  Lighting unit energy consumption [kWh/household/yr]

HALO: Number of halogen lamps owned by the household
INCA: Number of incandescent lamps owned by the household
FLOU: Number of fluorescent lamps owned by the household
ag, ..., a3 Regression coefficients of each variable.

To simplify the UEC equations, the variables representing the number of
halogen, incandescent, and fluorescent lamps were combined into one variable that
represents the total number of lamps (LIGHTS). This new variable was used to replace

the corresponding variables in Equation 4.27.

4.3.1.3 Estimation of the Electricity Model Equation

The end-use UEC equations given in Equations 4.8 to 4.27 were combined to develop the
CDA EM. The model equation resulting from the integration of all individual end-use
UEC equations is given in Figure F.1 of Appendix F. SYSTAT statistical software
(SYSTAT, 1998) was used to regress the CDA EM equation, and the detailed output of
the regression analysis is given in Figure F.2 of Appendix F. The model equation was
reduced by removing the non-significant variables at 10% level, outlier and influential
data points, and variables that increase multicollinearity. The resulting model equation is

as follows:
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HEC = 2128.65 + SH * [1.60 * HDD — 2516.01 * HRV + 1891.75 * DTYPE +
12.67 * AREA - 785.40 * AGECAT +
78.14 * INCOME] +
SSH * [8.13 * AREA + 569.33 * CHILD] +
DHW * [16.86 * TANK — 691.34 * LOWFLOW +
215.04 * DWLOAD + 752.83 * ADULT] +
CAC *[1.27 * CACUSE] +
REF1 * [1030.23 * FROSTR1] +
REF2 * [1636.48 * FROSTR2 + 28.24 * INCOME] +
FREZ1 * [1.50 * VOLF1] + COOK * [421.25 * HHSIZE] +
DRYER * [303.61 * CDLOAD] + 50.18 * LIGHTS (4.28)

As shown in Figure F.2 of Appendix F, the multiple coefficient of determination
of the CDA EM is 0.66, which indicates that 66% of variation in the estimated household
electricity consumption can be accounted for by the prediction based on the variables of

the Equation 4.28.

As stated in Section 3.4.4, one way to measure multicollinearity is determining
the condition indices (Weisberg, 1985). As shown in Figure F.3 of Appendix F, the
condition index of the model is 15.865 suggesting a possible multicollinearity problem
(SYTAT, 1998). The condition index of the model can be reduced by removing the
variables that are highly correlated with others. However, the model has already been
reduced to a minimum number of variables required to distinguish the electricity
consumption into end-uses. Further reduction in the number of variables could restrict the

capability of the model to estimate the consumption of major electricity end-uses.

With the multicollinearity problem, the estimation of the coefficients would still
be unbiased (Johnston and DiNardo, 1997), but inferences from the standard errors are
likely to be misleading. In other words, multicollinearity problem would not affect the

predictions as long as estimates of the average household electricity consumption would
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be in the range of the original data. The derivations to prove that the estimations of the

coefficients are still unbiased under multicollinearity are given in Appendix G.

As seen in Figure 4.1, the residuals (i.e. the errors) form an approximate straight

line in the normal probability. This confirms that the errors are distributed normally.
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Figure 4.1. Normal probability plot of the residuals of the CDA EM

In order to check the assumption that the variability of the residuals is the same
at all levels, the residuals were plotted against the estimated values as given in Figure 4.2.
The plot shows that the errors might not have constant variance since the errors were not
arranged in a horizontal band within two or three units around the zero line of the plot;

instead a right opening megaphone structure was formed.

The White test (Johnston and DiNardo, 1997) was used to check the non-
constant variance assumption of this model. The result of the test shows that the constant
variance assumption was violated. However, the power of the White test diminishes as
the number of variables of the model increases (Johnston and DiNardo, 1997). The CDA

EM has 20 variables, thus the result of the test is not conclusive. In addition, the
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estimation of the coefficients would still be unbiased with the non-constant variance

situation (Johnston and DiNardo, 1997).

Plot of Residuals against Predicted Values
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Figure 4.2. Plot of residuals of the CDA EM against estimated values

4.3.2 Natural Gas Model

4.3.2.1 Development of the Natural Gas Model Dataset

The dataset used in the development of the CDA NGM is a subset of the 1993 SHEU
database. There are 1,012 households in the 1993 SHEU database with natural gas billing
data, and four of these households have no natural gas end-uses reported in the 1993
SHEU database. The natural gas bills of the remaining 1,008 households account for the
energy consumption for space and DHW heating, cooking, clothes drying, pool heating,
and fireplaces. The natural gas billing data for these 1,008 households were used in the
development of the CDA NGM. Details of the analyses of the natural gas billing data are
given in Appendix B.
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4.3.2.2 Development of the Natural Gas Model UEC Equations

The UEC equation for each end-use was developed using the information available from
the 1993 SHEU database and 1993 weather and ground temperature data obtained from
Environment Canada (Environment Canada, 1999). The CDA NGM was developed by
combining the UEC equations of the end-uses as given in Equation 4.29. Since all natural
gas end-uses were reported in the 1993 SHEU database, the constant term was not

included in the model.

HEC, = iUEC,.j (4.29)
J=1
where,
HEC;: Natural gas consumption of household 1 [m*/yr]
UEC;: End-use j unit natural gas consumption of household i [m’/yr]
N: Number of natural gas end-uses, i.e. main and supplementary space
heating, DHW heating, clothes drying, cooking, pool heating, and

fireplaces.

4.3.2.2.1 Main and Supplementary SH UEC Equations

The input variables of the SH UEC equations were chosen considering the end-use
efficiency of the SH equipment, structural features of the dwellings, economic and
demographic characteristics of the occupants, and the weather conditions. The
supplementary SH UEC equation includes the households with natural gas supplementary
SH units and fireplaces, since there are only eight households with natural gas
supplementary heating systems and 37 households with natural gas fireplaces. The main
and supplementary SH UEC equations used in the CDA NGM are given in Equations
4.30 and 4.31, respectively, and the definitions of the variables used in the equations are

given in Table 4.33.
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UECsy = SH * [ag + a; EFF + a; SHAGE + a3 PROGT + a4 AIT +
as DTYPE + ag AREA + a; AGECAT + ag BSMNT +
a9 GARAGE + a;o ATTIC + a;; TRIPLE + a,; DOUBLE +
a;3 SINGLE + a;4 DOOR + a;5 HDD + aj6 OWNER +
a;7 INCOME + a;3 CHILD + a;9 ADULT + a0 DAYTIME +

where,
UECsnu: Space heating unit energy consumption [m*/household/yr]
SH: Dummy variable: one if the household has natural gas SH

equipment, zero if not.

ag, ..., a1: Regression coefficients of each variable.

UECssy = SSH * [ag + a; AIT + a; AREA + a; HDD + ay CHILD +

as ADULT + as DAYTIME] (4.31)
where,
UECssn: Supplementary space heating unit energy consumption
[m>/household/yr]
SSH: Dummy variable: one if the household has natural gas

supplementary SH equipment and/or fireplace, zero if not.

ag, ..., a6 Regression coefficients of each variable.

4.3.2.2.2 DHW Heating UEC Equation

The input variables of the DHW heating UEC equation were chosen based on the
available information on DHW heating system and equipment properties, DHW
consumption patterns, economic and demographic characteristics of the occupants, and

the weather conditions. The DHW heating UEC equation used in the CDA NGM is given
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in Equation 4.32, and the definitions of the variables used in the equation are given in

Table 4.33.

UECpuw = DHW * [ag + a; TANK + a; SYSAGE + a; BLANKET +
a4 PIPEINS + as LOWFLOW + ag AERATOR + a; GT +
ag CWLOAD + ao DWLOAD + a;o DTYPE +
a;; OWNER + a;; INCOME + a;; CHILD +
aj4 ADULT ] (4.32)

where,
UECpuw: DHW heating unit energy consumption [m*/household/yr]
DHW: Dummy variable: one if the household has natural gas DHW
heating equipment, zero if not.

ag, ..., d14: Regression coefficients of each variable.

4.3.2.2.3 Cooking, Clothes Drying, and Pool Heating UEC Equations

The input variables of the cooking, clothes drying, and pool heating UEC equations were
chosen based on the available information on appliance usage, and economic and
demographic characteristics of the occupants. The UEC equations used in the CDA NGM

are given in Equations 4.33-4.35, and the definitions of the variables used in the equations

are given in Table 4.33.
UECcook = COOK * [ay + a; HHSIZE + a, MICROW] (4.33)
UECpryer = DRYER * [y + a; CDLOAD] (4.34)
UECpooL = POOL * [a() + a; INCOME] (4.35)
where,
UECcook: Natural gas range unit energy consumption [m>/household/yr]

UECprygr:  Natural gas clothes dryer unit energy consumption

[m*/household/yr]
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UECpooL: Natural gas pool heating unit energy consumption
[m*/household/yr]

COOK: Dummy variable: one if the household has a natural gas range,
zero if not.

DRYER: Dummy variable: one if the household has a natural gas clothes

dryer, zero if not.
POOL: Dummy variable: one if the household has a natural gas pool
heater, zero if not.

ag, ..., A Regression coefficients of each variable.

4.3.2.3 Estimation of the Natural Gas Model Equation

The end-use UEC equations given in Equations 4.30 to 4.35 were combined to develop
the CDA NGM. The model equation resulting from the integration of all individual end-
use UEC equations is given in Figure F.4 of Appendix F. The SYSTAT statistical
software (SYSTAT, 1998) was used to regress the CDA NGM equation, and the output of
the regression analysis is given in Figure F.5 of Appendix F. The model equation was
reduced by removing the non-significant variables at 10% level, outlier and influential
data points, and variables that increase multicollinearity. The resulting model equation is

as follows:

HEC = SH * [-207.75 * PROGT + 129.84 * DOOR + 26.30 * WINDOW +
46.03 * SHAGE + 437.69 * GARAGE + 6.61 * AREA +
181.61 * ADULT] +
DHW *[13.21 * SYSAGE + 70.77 * HHSIZE + 720.97 * DTYPE] +
COOK * [94.04 * HHSIZE] + DRYER * [35.91 * CDLOAD] +
969.56 * POOL (4.36)

As shown in Figure F.5 of Appendix F, the multiple coefficient of determination

of the CDA NGM is 0.92, which indicates that 92% of variation in the estimated
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household natural gas consumption can be accounted for by the prediction from the
variables of the Equation 4.36. The condition index of the model is 10.27 indicating that

there is not a significant multicollinearity problem as given in Figure F.6 of Appendix F.

The residuals (i.e. the errors) form an approximate straight line in the normal
probability plot as seen in Figure 4.3. This confirms that the errors are distributed

normally.

In order to check the assumption that the variability of the residuals is the same
at all levels, the residuals were plotted against the estimated values as given in Figure 4.4.
The plot shows that the errors have constant variance since the errors were arranged in a
horizontal band within two or three units around the zero line of the plot. When the White
test was applied to the CDA NGM, its result showed that the constant variance
assumption was violated. However, the number of variables in the CDA NGM is high,
therefore the power of the test tends to diminish and its result could be unreliable

(Johnston and DiNardo, 1997).
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Figure 4.3. Normal probability plot of the residuals of the CDA NGM
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Plot of Residuals against Predicted Values
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Figure 4.4. Plot of residuals of the CDA NGM against estimated values

4.3.3 Oil Model

4.3.3.1 Development of the Oil Model Dataset

The dataset used in the development of the CDA OM is a subset of the 1993 SHEU
database. There are 236 households in the 1993 SHEU database with oil billing data, and
five of these households have no oil end-uses reported in the 1993 SHEU database. The
oil bills of the remaining 231 households account for the energy consumption for space
and DHW heating, cooking, and pool heating. The oil billing data of these 231
households were used in the development of the CDA OM. Details of the analyses of the
oil billing data are given in Appendix B.

4.3.3.2 Development of the Oil Model UEC Equations

There are only two households with oil cooking ranges or pool heaters in the database.

Therefore, oil cooking and pool heating energy consumption are not addressed in the
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model. UEC equations for SH and DHW heating end-uses were developed using the
information available from the 1993 SHEU database and 1993 weather and ground
temperature data obtained from Environment Canada (Environment Canada, 1999). The
CDA OM was developed by combining the UEC equations of the end-uses as given in
Equation 4.37. Since all oil end-uses were reported in the 1993 SHEU database, the

constant term was not included in the model.

N
HEC, = ) UEC;, (4.37)

=1

HEC;: Oil consumption of household i [L/yr]
UEC;;: End-use j unit oil consumption of household i [L/yr]
N: Number of oil end-uses, i.e. main and supplementary space heating,

DHW heating, cooking, and pool heating.

43.3.2.1 SH UEC Equation

There are only two households with oil supplementary heating units in the CDA OM
dataset. Thus, the oil supplementary space heating UEC equation is excluded from the
analysis. The input variables of the SH UEC equation were chosen considering the end-
use efficiency of the SH equipment, structural features of the dwellings, economic and
demographic characteristics of the occupants, and the weather conditions. The SH UEC
equation used in the CDA OM is given in Equation 4.38, and the definitions of the

variables used in the equations are given in Table 4.33.

UECsy = SH * [ay + a; EFF + a; SHAGE + a3 PROGT + a4 AIT +
as DTYPE + ag AREA + a; AGECAT + ag BSMNT +
ag GARAGE + a;o ATTIC + a;; TRIPLE + a;; DOUBLE +
a;3 SINGLE + a;4 DOOR + a;5s HDD + aj OWNER +
a;7 INCOME + a;3 CHILD + a; ADULT + a0 DAYTIME +
ay; POPUL] (4.38)



where,

UECSHI
SH:
g, ..., A21:
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Space heating unit energy consumption [L/household/yr]
Dummy variable: one if the household has oil SH equipment, zero
if not.

Regression coefficients of each variable.

4.3.3.22 DHW Heating UEC Equation

The input variables of the DHW heating UEC equation were chosen based on the

available information on DHW heating system and equipment properties, DHW

consumption patterns, economic and demographic characteristics of the occupants, and

the weather conditions. The DHW heating UEC equation used in the CDA OM is given in

Equation 4.39, and the definitions of the variables used in the equation are given in Table

4.33.

UECpuw = DHW * [ag + a; TANK + a; SYSAGE + a; BLANKET +

where,

UECDHW:
DHW:

veey A140

a4 PIPEINS + as LOWFLOW + ag AERATOR + a; GT +

ag CWLOAD + ag DWLOAD + a;o DTYPE +

a;; OWNER + a;; INCOME + a;3 CHILD +

a;s ADULT ] (4.39)

DHW heating unit energy consumption [L/household/yr]
Dummy variable: one if the household has oil DHW heating
equipment, zero if not.

Regression coefficients of each variable.
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4.3.3.3 Estimation of the Oil Model Equation

The SH and DHW heating UEC equations given in Equations 4.38 and 4.39 were
combined to develop the CDA OM. The model equation resulting from the integration of
all individual end-use UEC equations is given in Figure F.7 of Appendix F. The SYSTAT
statistical software (SYSTAT, 1998) was used to regress the CDA OM equation, and the
ooutput of the regression analysis is given in Figure F.8 of Appendix F. The model
equation was reduced by removing the non-significant variables at 10% level, outlier and
influential data points, and variables that increase multicollinearity. The resulting model

equation is as follows:

HEC = SH * [40.05 * SHAGE + 4.95 * AREA + 41.68 * WINDOW +
471.21 * DTYPE] +
DHW * [5.28 * TANK + 50.91 * DWLOAD] (4.40)

As shown in Figure F.8 of Appendix F, the multiple coefficient of determination
of the CDA OM is 0.87, which indicates that 87% of variation in the estimated household
oil consumption can be accounted for by the prediction from the variables of the Equation
4.40. The condition index of the model is 5.95 suggesting that there is no significant

multicollinearity problem as given in Figure F.9 of Appendix F.

The residuals (i.e. the errors) form an approximate straight line in the normal
probability plot as seen in Figure 4.5. This confirms that the errors are distributed

normally.

In order to check the assumption that the variability of the residuals is the same
at all levels, the residuals were plotted against the estimated values as given in Figure 4.6.
The plot shows that the errors have constant variance since the errors were arranged in a
horizontal band within two or three units around the zero line of the plot. When the White
test was applied to the CDA OM, its result showed that the constant variance assumption
was not violated. Since the number of variables in the CDA OM is not high, the result of

the test is reliable.
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Figure 4.5. Normal probability plot of the residuals of the CDA OM
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Figure 4.6. Plot of residuals of the CDA OM against estimated values
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4.4 Closing Remarks

NN and CDA Models were developed to estimate the ALC, DHW, and SH energy
consumption in single family residences in Canada. The NN Model is the first of its kind.
Before this work, NNs were not used to model residential energy consumption at the
national or regional level. Although the CDA modeling approach has been used to model
residential energy consumption at the regional level, it was not used at the national level
prior to this thesis. Thus, the CDA Model also represents an original addition to the state-

of-the-art in energy modeling.

The ALC NN Model was developed using the available information in the subset
of 988 households with electricity billing data in the 1993 SHEU database. The
households in the ALC dataset do not have electrical DHW or space heating equipment,
thus their electricity consumption billing data represent appliance, lighting, and space
cooling electricity consumption. The model has 55 input units and three hidden layers
each having nine units. The Quickprop leaming algorithm was used to train the network
with the training dataset of 741 households. The logistic function was used as the
activation function for the hidden layers, the identity function was used as the activation
function for the output layer, and all data in the dataset were scaled to interval [-0.5 to
0.5]. The ALC NN model achieved a high prediction performance (R? = 0.909) for a
subset of households with electricity bills.

The DHW dataset was developed using the available information in the 1993
SHEU database of the 563 households with natural gas and electricity billing data that
represent DHW heating energy consumption. For the DHW NN Model, the logistic
function was used as the activation function for the hidden and output layers, and only
continuous data in the datasets were scaled to interval [0.1 to 0.9]. The model has 18
input units and one hidden layer with 29 hidden units. The Resilient Propagation learning
algorithm was used to train the network with the training dataset of 422 households. The
DHW NN model achieved a high prediction performance (R* = 0.871) for a subset of

households with natural gas and electricity bills.
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The SH dataset used to develop the SH NN Model contains available
information in the 1993 SHEU database of the 1,228 households with electricity, natural
gas, and oil billing data. The NN Model achieved a high prediction performance (R* =
0.908) for a subset of households with electricity, natural gas, and oil bills for SH energy
consumption. The model has 28 input units and one hidden layer with two units. The
Resilient Propagation learning algorithm was used to train the network with the training
dataset of 921 households. The identity function was used as the activation function for
the hidden layer, the logistic function was used as the activation function for the output

layer, and all data in the dataset were scaled to interval [0.1 to 0.9].

The DHW heating electricity consumption of the households in the DHW NN
dataset were calculated by deducting the ALC electricity consumption estimated using the
ALC NN Model from the total annual electricity billing data. Also, for electrically heated
households, the annual SH electricity consumption was calculated by deducting the ALC
and DHW heating electricity consumption estimated using the ALC and DHW NN
Models from the total annual electricity billing data. For natural gas heated households,
the annual SH natural gas consumption was calculated by deducting the DHW heating
natural gas consumption estimated by the DHW NN Model from the total annual energy
billing data. This introduces error in the DHW heating and SH energy consumption data
used in developing the DHW and SH NN Models; however, this approach was used since
disaggregated DHW heating and SH energy consumption data do no exist.

The CDA EM was developed with a constant term and a total of 20 variables
from 12 electricity end-use UEC equations. The model achieved a multiple coefficient of
determination of 0.66. The condition index of the model suggested a possible
multicollinearity problem, however this problem would not effect the unbiased estimation
of the coefficients. Despite the multicollinearity problem, the number of variables of the
model was not reduced in order to retain the capability of the model to estimate the

energy consumption for each end-use.

The graphical analysis of the residuals showed that the errors are normally

distributed. However, the graphical analysis of the residuals and the White test result for
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the constant variance assumption showed that the residuals do not have constant variance.
On the other hand, the estimation of the coefficients would still be unbiased with the non-

constant variance situation (Johnston and DiNardo, 1997).

The CDA NGM was developed with a total of 13 variables from five natural gas
end-use UEC equations. The CDA OM has six variables from two oil end-use UEC
equations. The CDA natural gas and oil models achieved high values for multiple
coefficient of determination, 0.97 and 0.82, respectively. Neither model faced the

multicollinearity problem.

The CDA Model developed in this thesis is linear; however, a large variety of
mathematically manipulated variables (for example by taking a power or a logarithm of
one or more variables, or by cross multiplication of several variables) can be used. Use of

such manipulated variables may improve the prediction performance of the CDA models.

It can thus be stated that the NN and CDA methods were shown to be suitable
for the modeling of residential energy consumption at the national and regional levels.
The models that were developed in this work demonstrated to have good prediction

performance.

The comparisons of the prediction performance of the NN, CDA, and
Engineering Models based on the metered energy consumption data and estimates are

presented in the next chapter.



Chapter 5

Comparison of the Models

5.1 Overview

In this chapter, a comparative evaluation of the NN, CDA, and Engineering Models is
conducted by comparing their energy consumption estimates with actual energy
consumption data, as well as by comparing their estimates with each other. Comparisons

are carried out for the following end-uses:

= Appliance, lighting, and space cooling (ALC) energy consumption,
s Domestic hot water (DHW) heating energy consumption,

= Space heating (SH) energy consumption.

The Engineering Model developed by Farahbakhsh (1997) and Farahbakhsh et
al. (1997, 1998) is used in the comparisons. In addition to the comparison of the models
with respect to the accuracy of their predictions, a qualitative comparison is also carried

out to show the relative strengths and weaknesses of each model, and its usefulness.

The chapter continues with a review and analysis of the household energy
consumption estimates of the NN, CDA, and Engineering Models based on SH energy
source and fuel type, dwelling type and age, and provincial distribution. In the last section
of the chapter, the effects of some socio-economic factors on the mentioned end-uses are

examined.
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5.2 ALC Energy Consumption

5.2.1 Households with Energy Billing Data

The prediction performance of the NN, CDA, and Engineering Models was assessed by
comparing the estimates of the models with actual energy consumption data from the 247
households in the ALC NN testing dataset. The results are presented in Table 5.1. The
CDA and the Engineering Models have lower R* and higher CV values than the NN
Model, which shows that the CDA and the Engineering Models have a lower prediction
performance than the NN Model.

Table 5.1. Prediction performance of the NN, CDA, and Engineering Models- ALC

Model R? Ccv

Engineering 0.780 3.463
CDA 0.795 3.343
NN 0.909 2.094

The estimates of the Engineering, CDA, and NN Models are plotted along with
the actual energy consumption data for the 247 households in the ALC NN testing dataset
in Figures 5.1 to 5.3, respectively. The NN Model, as well as the CDA and Engineering
Models, were not able to predict the energy consumption of some households with high
energy billing data as seen in Figure 5.1 to 5.3. When the input units of these households
were examined, it was found that these households could not be expected to have such
high ALC electricity consumption values. The number, size, and usage of appliances of
these households are very close to the corresponding average values in the testing dataset.
This shows that there are other factors affecting the electricity consumption than those
reported in the 1993 SHEU database and represented by the input units in the model (such
as workshops in garages) that would increase ALC electricity consumption of the

households.



117

40000 : ; ‘ ‘ :
E | | \
| \ 1
35000 : ‘
S
IS 30000 — - : ‘ i
s ? ! : 1
87 & |
& '«;» 25000 /
38 |
5 5 |
& § 20000 ‘ ’
2% i ! !
g S K X L4 @
2 15000 L2 %
g g * o *¢” Ev M . o*
= i i
Ly RIS P 7 AL A D SN IR AR I N
2 G 10000 4T & "l vou ¥ ° “
8 S * e ': | * o i Aad
s & i
5000 LA SN IR S
oot 3 | ! | |
' i i
l \ | 3 i
0 T t T t : .
0 5000 10000 15000 20000 25000 30000 35000 40000
Actual ALC Electricity Consumption [kWh/yr/household]

Figure 5.1. Actual billing data and Engineering Model estimates for ALC energy
consumption of the households in the ALC NN testing dataset
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Figure 5.2. Actual billing data and CDA Model estimates for ALC energy consumption
of the households in the ALC NN testing dataset
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Figure 5.3. Actual billing data and NN Model estimates for ALC energy consumption of
the households in the ALC NN testing dataset

5.2.2 Households without Energy Billing Data

5.2.2.1 Average Household ALC Electricity Consumption

The 1993 SHEU database has data on 8,767 households, and data on 988 of these were
used to develop the ALC NN Model. These 988 households were not included in the
dataset used in the predicting the various components of ALC electricity consumption.
The “ALC prediction dataset” therefore includes the remaining 7,779 households. The
NN and the CDA Models are used here to predict the ALC electricity consumption of
these households. Since the 1993 SHEU database is representative of the Canadian
housing stock, it is possible to extrapolate the predicted electricity consumption of the
households in the 1993 SHEU database to the entire Canadian housing stock using
weighting factors (Statistics Canada, 1993).
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The weighted average ALC consumption estimated by the CDA, Engineering,
and NN Models for the 7,779 households in the ALC prediction dataset, and the average
percent deviations between the NN Model and Engineering Model, and between the NN
Model and CDA Model calculated using Equations 5.1a and 5.1b, respectively, are given
in Table 5.2. The ALC electricity consumption estimated by the Engineering Model is
about 2.5% higher than the NN Model estimate, whereas the CDA Model estimate is
4.6% lower.

Deviation (% ) ~100* Enginnering Model Estimate -'NN Model Estlmatej (5.12)
NN Model Estimate
Deviation (% ) ~100* CDA Model Estimate - NN Model Estimate (5.1b)
NN Model Estimate

Table 5.2. Weighted average ALC electricity consumption estimated by the Engineering,
CDA, and NN Models for the 7,779 households and average percent deviations

Model Weighted Average ALC Electricity Consumption | Average Deviation
[kWh/yr/household] [%]
NN 8,791 -
CDA 8,391 -4.6
Engineering 9,012 2.5

The appliance and lighting energy consumption estimate used by NRCan’s
EnerGuide for Houses program is 24 kWh/day/household, which is equivalent to 8,760
kWh/yr/household (NRCan, 2002). This estimate does not include the household space
cooling energy consumption. However, the space cooling energy consumption accounted
for about 0.5% of the total national residential energy consumption in 1993 (OEE, 2002).

Therefore, the addition of space cooling energy consumption to the NRCan’s average
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household appliance and lighting energy consumption estimate of 8,760
kWh/yr/household would make an insignificant increase. As seen in Table 5.2, the

estimates by all three models are close to the estimate by NRCan.

5.2.2.2 Scenarios to Predict Electricity Consumption of Some Appliances

The average electricity consumption of individual appliances in the ALC input unit
dataset was estimated using the ALC NN Model. It was found that the NN model fails to
accurately estimate the electricity consumption of appliances with high saturation values
(e.g. main refrigerator). However, the model was able to reasonably predict the average

electricity consumption of several major appliances as discussed below.

52.2.2.1 Central A/C Unit Electricity Consumption

There are 720 households with central A/C units in the ALC prediction dataset of 7,779
households. In order to estimate the central A/C electricity consumption, a dataset was
developed by changing the central A/C input units from one to zero in the input files of
the 720 households, and the ALC NN Model was applied to these files to estimate the
household electricity consumption. Thus, as shown in Table 5.3, the difference between
the predicted electricity consumption of the 720 households with and without the central
A/C units provides the estimated electricity consumption by the central A/C units. As
seen in Table 5.3, the average electricity consumption estimated by the ALC NN Model is
832 kWh/yr/household.
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Table 5.3. Average ALC electricity consumption of 720 households in set of 7,779

households with and without central A/C units

Average Electricity Consumption
[kWh/yr/household]
720 Households with central A/C units 9,941
720 Households without central A/C units 9,109
Electricity consumption difference =~ 832
Central A/C consumption

As seen in Equation 4.28, the central A/C usage is one of the variables of the
CDA EM. Thus, it was possible to estimate the average central A/C electricity
consumption of the 720 households in the ALC prediction dataset using the CDA EM.
The CDA EM estimate of 569 kWh/household/year is 32 % lower than estimate of the
NN Model.

The average central A/C consumption for these 720 households was estimated
by the Engineering Model to be 1,624 kWh/yr/household. However, the Engineering
Model does not consider the central A/C usage characteristics (i.e. whether the central
A/C unit is used continuously or intermittently). Based on the Engineering Model
estimates, the central A/C consumption of the households in the 1993 SHEU database
was estimated statistically by Aydinalp et al. (1998) to be 865 kWh/yr/household. This
estimate took into consideration the central A/C usage characteristics of the households.
The 865 kWh/yr/household estimate is slightly higher than the 832 kWh/yr/household
estimate of the NN Model.

The CDA model developed by Lafrange and Perron (1994) using Hydro Quebec
data estimated the central A/C consumption to be 1,662 kWh/yr/household without
considering the usage characteristics of the central A/C unit. Another CDA model
developed by Kellas (1993) using Manitoba Hydro data estimated the central A/C
consumption to be 1,360 kWh/yr/household.



122

The central A/C unit electricity consumption estimates of the CDA models of
Lafrange and Perron (1994) and Kellas (1993), and the Engineering Model are about 60
to 100% higher than that of the NN Model. This is largely owing to the fact that the
central A/C electricity consumption was estimated by the CDA models and the
Engineering Model taking into account only the central A/C unit ownership, and
assuming a constant number of hours of central A/C usage. The estimates of the statistical
model by Aydinalp et al. (1998), and the NN and CDA EM Models were developed
considering the number of hours each household used the central A/C unit during the
summer. Thus, the estimates obtained using the NN Model, as well as the CDA EM and
the statistical model are more reasonable than those obtained using the CDA models by
Lafrange and Perron (1994) and Kellas (1993), and the Engineering Model.

5.2.2.2.2 Second Refrigerator Electricity Consumption

There are 1,444 households with second refrigerators in the ALC prediction dataset of
7,779 households. In order to estimate the second refrigerator electricity consumption, a
dataset was developed by changing the second refrigerator input units from one to zero in
the input files of the 1,444 households, and the ALC NN Model was applied to these files
to estimate the household electricity consumption. Thus, as shown in Table 5.4, the
difference between the predicted electricity consumption of the 1,444 households with
and without the second refrigerator provides the estimated electricity consumption by the
second refrigerator. As seen in Table 5.4, the average electricity consumption estimated

by the ALC NN is 755 kWh/yr/household.
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Table 5.4. Average ALC electricity consumption of 1,444 households in the set of 7,779

households with and without second refrigerator

Average Electricity Consumption
[kWh/yr/household]
1,444 Households with second refrigerator 9,969
1,444 Households without second refrigerator 9,214
Electricity consumption difference ~ Second 755
refrigerator consumption

As seen in Equation 4.28, there are two variables in the CDA EM that are from
the second refrigerator UEC equation (Equation 4.14). Thus, it was possible to estimate
the average second refrigerator electricity consumption of the 1,444 households in the
ALC prediction dataset using the CDA EM. The CDA EM estimate of 1,981
kWh/household/year is about 2.5 times higher than the estimate of NN Model. On the
other hand, the CDA model developed by Kellas (1993) using Manitoba Hydro data
estimated second refrigerator consumption to be 815 kWh/yr/household.

The size of the refrigerator is one of the factors affecting its electricity
consumption. The average sizes for the main and second refrigerators in the SHEU 1993
database are 460 L and 375 L, respectively. Since the second refrigerators are smaller
than the main refrigerators, their electricity consumption is expected to be lower than that
of the main ones. Given that an average main refrigerator consumes around 1,330
kWh/yr/household (Fung et al., 1997; Ugursal and Fung, 1994), electricity consumption
by the second refrigerator should be lower than 1,330 kWh/yr/household. This shows that
the second refrigerator electricity consumption estimate of the CDA EM is high, while
estimates of the NN Model and the CDA model developed by Kellas (1993) are

reasonable.
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5.3 DHW Heating Energy Consumption

5.3.1 Households with Energy Billing Data

The prediction performance of the NN, CDA, and Engineering Models was assessed by
comparing the estimates of the models with actual energy consumption data from the 141
households in the DHW NN testing dataset. The results are presented in Table 5.5. The
CDA and the Engineering Models have lower R? and higher CV values than the NN
Model, which shows that the CDA and the Engineering Models have a lower prediction
performance than the NN Model.

Table 5.5. Prediction performance of the NN, CDA, and Engineering Models- DHW

Model R’ 0y
Engineering 0.828 3.898
CDA 0.814 4.052
NN 0.871 3.337

The estimates of the Engineering, CDA, and NN Models are plotted along with
the actual energy consumption data for the 141 households in the DHW NN testing
dataset in Figures 5.4 to 5.6, respectively. The DHW NN Model, as well as the
Engineering and CDA Models, failed to accurately predict the DHW heating energy
consumption of most of the households with consumption values lower than 15 GJ/yr as
seen in Figures 5.4 to 5.6. When the input data for these households were analyzed, it was
found that most of these households use electricity for DHW heating. As pointed out in
Section 4.2.2.1, the amount of electricity consumed in these households for DHW heating
was calculated by subtracting the ALC electricity consumption predicted by the ALC NN
Model from the total billed electricity consumption. Therefore, the annual DHW heating
electricity consumption of these households contain a cumulative error from the ALC and

the DHW NN Models.
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Out of 563 households in the DHW dataset, 388 have electricity bills, while the
remaining 175 have natural gas bills. It was not possible to exclude the 391 households
with electricity bills from the DHW dataset and develop a representative model with data
from only 175 households with natural gas bills.

When the input units of these households were examined, it was found that based
on the values of the input units these households could not be expected to have such low
DHW heating energy consumption values. The age and size of the DHW heating systems,
the annual ground water temperature, the number of clothes and dishwasher weekly loads,
and the number of occupants of these households are either higher or very close to the
corresponding average values in the testing dataset. This shows that there are other factors
affecting the DHW heating energy consumption than those reported in the 1993 SHEU
database and represented by the input units in the model that would decrease DHW load
of the households (such as taking moming showers in the gym, or some people not taking

as many showers).

Engineering Model Estimates for DHW
Heating Energy Consumption [GJ/yr/household]

0 10 20 30 40 50 60 70
Actual DHW Heating Energy Consumption [GJ/yr/household]

Figure 5.4. Actual billing data and Engineering Model estimates for DHW heating energy
consumption of the households in the DHW NN testing dataset
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Figure 5.5. Actual billing data and CDA Model estimates for DHW heating energy
consumption of the households in the DHW NN testing dataset
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Figure 5.6. Actual billing data and NN Model estimates for DHW heating energy
consumption of the households in the DHW NN testing dataset
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5.3.2 Households without Energy Billing Data

5.3.2.1 Average Household DHW Heating Energy Consumption

The 1993 SHEU database has data on 8,767 households, and data on 563 of those were
used to develop the DHW NN Model. There are 85 households without any DHW heating
systems in the remaining 8,204 households in the 1993 SHEU database. The DHW
heating prediction dataset was developed from the remaining households excluding the
households using oil or wood fuelled, or tankless DHW heating systems, since these
households were not represented in the DHW NN training dataset which was used in the
development of the DHW NN Model. Thus, the DHW heating energy consumption of the
remaining 7,070 households were estimated using the NN and CDA Models. The
weighted average DHW heating energy consumption estimated by the CDA, Engineering,
and NN Models for the 7,070 households, and the average percent deviations calculated
using Equations 5.1a and 5.1b are given in Table 5.6. As seen in Table 5.6, the DHW
heating energy consumption estimated by the CDA and the Engineering Models are 3.1%
and 4.5% lower than the NN Model estimate, respectively.

Table 5.6. Weighted average DHW heating energy consumption estimated by the CDA,
Engineering, and NN Models for the 7,070 households and average percent

deviations
Model Weighted Average DHW Heating Average Deviation
Energy Consumption [GJ/yr/household] [%]
NN 26 -
CDA 25 -3.1
Engineering 25 -4.5

The OEE estimated the DHW heating end-use energy consumption in 1993 to be
284 PJ (OEE, 2002), while the total number of households in 1993 was estimated to be
10,359,216 by Statistics Canada (1993). Therefore, the average household DHW heating



128

energy consumption in 1993 is 27 GJ/yr/household. As seen in Table 5.6, the NN Model

DHW heating energy consumption estimate is the closest to the estimate by OEE.

5.3.2.2 DHW Heating Energy Consumption Categorized Based on Energy Source and
Fuel Type

The weighted average DHW heating energy consumption of the 7,070 households
categorized based on the energy source and fuel type used for DHW heating is given in
Table 5.7. As seen in Table 5.7, the households using electricity for DHW heating have
lower DHW heating energy consumption than those using natural gas or propane. This is
largely due to the fact that the end-use efficiency of the DHW heating systems using
electricity is higher than the DHW heating systems using natural gas or propane. As it
was given in Table 4.14, the end-use efficiency of the DHW heating systems using
electricity is 82.4%, and for the natural gas or propane systems this figure reduces to
55.4%. Therefore, the households using natural gas or propane would have higher DHW
heating energy consumption values than the households using electricity, even if both
households would have the same DHW consumption and average annual ground

temperatures.

Table 5.7. Weighted average DHW heating energy consumption of the 7,070 households
based on the DHW heating energy source and fuel type

DHW Energy Weighted Average DHW Heating Energy Consumption
Source and Fuel [GJ/yr/household]

Type NN Model CDA Model |Engineering Model
Electricity 21 19 21

Natural Gas 32 33 30
Propane 31 37 33

These figures show that the NN Model, together with the CDA and the
Engineering Models, is capable of capturing the difference in the DHW heating energy

consumption of the households using natural gas, propane, and electricity.
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5.4 SH Energy Consumption

5.4.1 Households with Energy Billing Data

The prediction performance of the NN, CDA, and Engineering Models was assessed by
comparing the estimates of the models with actual energy consumption data from the 307
households in the SH NN testing dataset. The results are presented in Table 5.8. As seen
from Table 5.8, the CDA and the Engineering Models have lower R* and higher CV
values than the NN Model, which shows that the CDA and the Engineering Models have

a lower prediction performance than the NN Model.

Table 5.8. Prediction performance of the NN, CDA, and Engineering Models- SH

Model R’ CcvV

Engineering Model 0.778 2.877
CDA Model 0.892 2.007
NN Model 0.908 1.871

The estimates of the Engineering, CDA, and NN Models are plotted along with
the actual energy consumption data for the 307 households in the SH NN testing dataset
in Figures 5.7 to 5.9. The SH NN Model, as well as, the Engineering and the CDA
Models, were unable to accurately predict the SH energy consumption of most of the
households with consumption values lower than 30 GJ/yr as seen in Figures 5.7 to 5.9.
When the input data for these households were analyzed, it was found that these
households use electricity for SH. As stated in Section 4.2.3.1, the amount of electricity
consumed in these households for SH was calculated by subtracting the ALC and DHW
heating electricity consumption predicted by the ALC and DHW NN Models from the
total billed electricity consumption. Therefore, the annual SH electricity consumption of

these households contain the cumulative errors from the ALC and DHW NN Models.

When the input units of these households were examined, it was found that based

on the values of the input units these households could not be expected to have such low
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SH energy consumption values. Most of these households are single-detached, located at
areas with HDD values higher than 4,500 °C-day, and have average wall areas. This
shows that there are other factors affecting the SH energy consumption than those
reported in the 1993 SHEU database and represented by the input units in the model (such
as long vacations in winter months) that would decrease SH energy consumption of the

households.
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Figure 5.7. Actual billing data and Engineering Model estimates for SH energy
consumption of the households in the SH NN testing dataset
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Figure 5.8. Actual billing data and CDA Model estimates for SH energy consumption of
the households in the SH NN testing dataset
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Figure 5.9. Actual billing data and NN Model estimates for SH energy consumption of
the households in the SH NN testing dataset
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5.4.2 Households without Energy Billing Data

5.4.2.1 Average Household SH Energy Consumption

The 1993 SHEU database has data on 8,767 households, and data on 1,228 of those were
used to develop the SH NN Model. Out of the 7,439 remaining households, 987 use wood
and 153 use heat pump SH systems. Since these households were not represented in the
SH NN training dataset used in the development of the SH NN Model, they were
removed from further analysis, and the SH energy consumption of the remaining 6,399
households were estimated using the NN and the CDA Models. The weighted average SH
energy consumption estimated by the CDA, Engineering, and NN Models for the 6,399
households, and the average percent deviations calculated using Equations 5.1a and 5.1b
are given in 5.9. As seen in Table 5.9, the SH energy consumption estimated by the CDA
and the Engineering Models are 3.4% and 6.9% lower than the NN Model estimate,

respectively.

Table 5.9. Weighted average SH energy consumption estimated by the CDA,
Engineering, and NN Models for the 6,399 households and average percent

deviations
Model Weighted Average SH Energy | Average Deviation
Consumption [GJ/yr/household] [%)]
NN 80 -
CDA 75 -6.9
Engineering 77 -3.4

The OEE estimated the SH end-use energy consumption in 1993 to be 837 PJ
(OEE, 2002), while the total number of households in 1993 was estimated to be
10,359,216 by Statistics Canada (1993). Therefore, the average household SH energy
consumption in 1993 is 81 GJ/yr/household. As seen in Table 5.9, the NN Model SH

energy consumption estimate is the closest to the estimate by OEE.
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5.4.2.2 SH Energy Consumption Categorized Based on Energy Source and Fuel Type,
Dwelling Type and Age Category, and Wall Area

The weighted average SH energy consumption of the 6,399 households categorized based
on the energy source and fuel type and end-use efficiency of the SH equipment is given in
Table 5.10. As seen in Table 5.10, the weighted average SH energy consumption
increases as the end-use efficiency of the SH equipment decreases. As expected, the NN
Model SH energy consumption estimates increase smoothly as the end-use efficiency of
the SH equipment decreases, whereas the CDA and Engineering Models appear to
overestimate the reduction in end-use energy consumption as a result of using 100%

efficient electric heating instead of high efficiency fossil fuel furnaces.

Table 5.10. Weighted average SH energy consumption of the 6,399 households based on

energy source and fuel type and end-use efficiency of SH equipment

Weighted Average SH Energy Consumption

SH Energy End-use Efficiency [GJ/yr/household]
Source and (%]
Fuel Type ° NN Model | CDA Model |[Engineering Model
Electricity 100 58 40 53
High (90% or higher) 68 81 71

Oil, Natural

1 _7480
Gas, Propane |iedium (80-75%) 89 91 91

Standard (65-50%) 98 92 93

The weighted average SH energy consumption of the 6,399 households based on
dwelling type, dwelling age category, and wall area are given in Tables 5.11 to 5.13,
respectively. As given in Table 5.11, the weighted average SH energy consumption
estimates of all three models for single-detached dwellings are higher than that of single-
attached dwellings. This is a reasonable outcome since a single detached dwelling has
more exposed envelope area compared to a similarly sized single attached dwelling, and

consequently, requires more energy for space heating,.
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Table 5.11. Weighted average SH energy consumption of the 6,399 households based on
dwelling type

Weighted Average SH Energy Consumption [GJ/yr/household]

Dwelling Type

NN Model CDA Model Engineering Model
Single-attached 67 55 61
Single-detached 84 80 82

The weighted average SH energy consumption estimates of the models decrease
as the dwellings get younger, and increase as the wall area of the dwellings increase, as
seen in Table 5.12 and 5.13, respectively. These findings are also in agreement with
expectations. The envelope integrity and insulation levels of newer buildings are higher
than older ones, resulting in less energy consumption in newer residences; and wall area

1s directly proportional with envelope heat loss.

Table 5.12. Weighted average SH energy consumption of the 6,399 households based on

dwelling age category

Year Category Weighted Average SH Energy Consumption [GJ/yr/household]
NN Model CDA Model Engineering Model

1. Before 1941 90 82 98

2. 1941 - 1960 85 77 80

3. 1961 - 1977 82 78 74

4.1978 — 1982 75 69 70

5. 1983 - 1988 63 59 59

6. 1989 or later 62 64 63
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Table 5.13. Weighted average SH energy consumption of the 6,399 households based on

wall area of the dwelling

2
Wall Area [m’] Weighted Average SH Energy Consumption [GJ/yr/household]
NN Model CDA Model Engineering Model
Less than 100 75 61 58
100 - 130 80 72 82
More than 130 84 85 85

These figures show that the SH NN, CDA, and the Engineering Models are all
capable of capturing the differences in the SH energy consumption of households with

different SH equipment efficiencies, wall areas, and dwelling types and ages.

5.5 Household Energy Consumption

The DHW heating and SH energy consumption of 2,096 households in the 1993 SHEU
database could not be estimated by the DHW and SH NN Models due to insufficient data.
The household energy consumption of the remaining 6,671 households in the 1993 SHEU
database were computed by combining the ALC, DHW heating, and SH energy
consumption estimates of the NN and CDA Models. Table 5.14 gives the weighted
average household energy consumption estimates of the NN, CDA, and Engineering
Models, and the average percent deviations calculated using Equations 5.1a and 5.1b. As
seen in Table 5.14, the household energy consumption estimated by the CDA and the
Engineering Models are 5% and 2.8% lower than the NN Model estimate, respectively.
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Table 5.14. Weighted average household energy consumption of the 6,671 households in
the 1993 SHEU database and average percent deviations

Model Weighted Av-erage Household Energy | Average Deviation
Consumption [GJ/yr/household] [%]
NN 139 -
CDA 132 -5.0
Engineering 135 -2.8

The OEE estimated the total household energy consumption in 1993 to be 1,386
PJ (OEE, 2002), while the total number of households in 1993 was estimated to be
10,359,216 by Statistics Canada (1993). Therefore, the average total household energy
consumption in 1993 is 134 GJ/yr/household. As seen in Table 5.14, the estimates by all
three models are close to the estimate by OEE.

5.5.1 Household Energy Consumption Categorized Based on SH Energy
Source and Fuel Type, Dwelling Type and Age Category, and

Province

The household energy consumption of the 6,671 households estimated by the NN, CDA,
and the Engineering Models were categorized based on SH energy source and fuel type,

dwelling type and age category. The results are presented in Tables 5.15 to 5.17.

Dwellings that are electrically heated, single attached, and built after 1988 have
the lowest average weighted household energy consumption according to the NN, CDA,
and Engineering Models estimates, as seen in Tables 5.15 to 5.17. Since, the SH end-use
energy consumption accounts for about 60% of the total household energy consumption
(OEE, 2002), trends similar to the SH energy consumption estimates given in Tables 5.10
to 5.12 are seen in Tables 5.15 to 5.17.
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The CDA Model seem to estimate the energy consumption of the electrical
heated households lower than the NN Model as seen in Table 5.15, similar to the

estimates given in Table 5.10.

Since, the SH end-use energy consumption is a major component of the
household energy consumption, single detached dwellings have higher energy
consumption estimates as seen in Table 5.16. The estimates of all three models for the

single detached dwellings are higher than the ones for single detached dwellings.

Table 5.15. Weighted average household energy consumption of the 6,671 households
based on SH energy source and fuel type

Weighted Average Household Energy Consumption
SH Energy [GJ/yr/household]
Source and
Fuel Type NN Model '| CDA Model | Engineering Model
Electricity 107 89 107
Natural Gas 155 155 150
Oil 145 132 137
Propane 142 147 153

Table 5.16. Weighted average household energy consumption of the 6,671 households

based on dwelling type
Weighted Average Household Energy Consumption
) [GJ/yr/household]
Dwelling Type
NN Model CDA Model Engineering Model
Single-attached 120 99 112
Single-detached 144 140 141
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As seen in Table 5.17, the households built after 1988 have the lowest average
weighted household energy consumption estimates. There is not a smooth decrease in the
household energy consumption estimates as the dwellings get younger, as seen in the SH
estimates in Table 5.12. This is largely due to the differences in the distribution of

dwelling types, wall areas, and energy sources and fuel types in each age category of
households.

Table 5.17. Weighted average household energy consumption of the 6,671 households

based on dwelling age category

Weighted Average Household Energy Consumption
[GJ/yr/household]
Year Category
NN Model CDA Model |Engineering Model
1. Before 1941 141 135 149
2.1941 - 1960 141 131 135
3.1961 - 1977 144 135 135
4.1978 — 1982 141 133 132
5.1983 - 1988 128 127 124
6. 1989 or later 121 120 124

The average household energy consumption in each province was calculated
using the estimates of the NN, CDA, and Engineering Models. The results are presented
in Figure 5.10. As seen in Figure 5.10, the estimates of the three models are in agreement.
The average household energy consumption in Quebec is found to be the lowest, whereas

Alberta and Saskatchewan have the highest household energy consumption.

SH energy consumption accounts for about 60% of the total household energy
consumption. Therefore, factors such as end-use efficiency, and energy source and fuel
type of the SH equipment have significant effects on the total household energy
consumption. Consequently, the trend seen in Figure 5.10 is mainly due to the fact that, in

the 1993 SHEU database, 79% of the households in Quebec, and, respectively, 1% and
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5% of the households in Alberta and Saskatchewan, have electrical SH equipment that
have 100% end-use efficiency. In addition, 66% and 69% of the households in Alberta
and Saskatchewan, respectively, have standard (50-65%) efficiency natural gas, oil, or
propane fueled SH equipment. These explain the high household energy consumption

trends in Alberta and Saskatchewan.

Figure 5.10. NN, CDA, and Engineering Models provincial household energy distribution
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5.6 Assessment of Socio-economic Factors

The effects of the socio-economic factors, such as income, dwelling ownership, size of
area of residence, on the ALC, DHW heating, and SH energy consumption of the
households in the 1993 SHEU database were studied using the NN and CDA Models, and

the results are presented in the following sections.
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5.6.1 Impact of Socio-economic Factors on ALC Energy Consumption

The input dataset of the ALC NN Model contains information on the socio-economic
characteristics of the households; such as household income (in $10,000 increments),
dwelling ownership (rent or own), size of area of residence, dwelling type (single
attached or single detached), and number of children and adults. The CDA Electricity
Model given in Equation 4.28 includes the household income and the number of
occupants as socio-economic factors on ALC electricity consumption. All other socio-
economic factors that were initially included in the CDA EM equation (4.28) were
eliminated as a result of statistical significance and multicollinearity problems as
explained in Section 4.3.1.3. Therefore, the capability of the CDA Model to evaluate the
effects of a large number of socio-economic factors on the ALC energy consumption is

significantly reduced.

The effects of the socio-economic factors on the ALC electricity consumption
were assessed using the NN and CDA Models. The results are plotted in Figures 5.11 and
5.17, respectively.

As seen from Figures 5.11 and 5.12, ALC electricity consumption of the

households varies as follows:

* ALC electricity consumption of households increase with income. This is due to the
fact that as income increases, number of appliances, living area, number of lights, and
space cooling equipment load increase, and, consequently, the ALC electricity
consumption increases. It is interesting to note that at low-income levels, the slope of
the NN Model curve becomes less, indicating that the effect of income on the ALC
electricity consumption is lower. In other words, as income decreases, the ALC energy
consumption reaches a minimum and stays constant. On the other hand, the CDA
Model income estimates form a straight line indicating that ALC electricity
consumption decreases with a constant rate (i.e. with a slope of 0.0064) as income

decreases, and does not stay constant at low income levels.
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= NN Model ALC electricity consumption estimate of a single detached dwelling is
higher than that of a single attached dwelling. This is due to the fact that single
detached dwellings have larger living areas than single attached ones. As living area
increases, the number of lights in the dwelling increases, as well as the space cooling
load increases.

= NN Model ALC electricity consumption estimate of an owner occupied household is
higher than that of a renter occupied household. In the 1993 SHEU database, the
majority of the renter occupied households are single attached. As stated above, single
attached dwellings have smaller living areas; consequently, they have lower ALC
energy consumption.

= NN Model ALC electricity consumption estimate of a household decreases as the
population of the area increases. This is due to the fact that almost all of the
households located in areas with population less than 15,000 are single detached, and
have larger living areas and more outdoor lamps than the single attached dwellings
located at populated areas. Therefore, as the area and the number of lights increase, the
ALC energy consumption increases. .

» ALC electricity consumption of a household increases as the number of children and
adults increase. The increase in the number of adults has a more significant influence
on the ALC energy consumption than the increase due to the number of children. As
the number of adults increases, the number of TVs, VCRs, stereos, and computers
increase; also, the number of bedrooms increases, increasing the living area. However,
the increase in the number of children does not generally increase the number of
appliances and bedrooms. Therefore, the effect of an increase in the number of adults
on the ALC energy consumption is more significant than the increase due to the
increase in the number of children. The CDA Model estimates show a substantially
higher increase in the ALC electricity consumption as the number of children
increases, whereas the estimated effect of the increase in the number of adults is of

similar magnitude for both models.
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Figure 5.11. Effects of socio-economic factors on the ALC energy consumption of the

households estimated by the NN Model
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Figure 5.12. Effects of socio-economic factors on the ALC energy consumption of the

households estimated by the CDA Model

5.6.2 Impact of Socio-economic Factors on DHW Heating Energy

Consumption

The socio-economic factors included in the input dataset of the DHW NN Model are
household income, dwelling type and ownership, and size of area of residence. The only
socio-economic factor affecting the estimation of the DHW heating energy consumption
in the CDA Model is the dwelling type of the households that use natural gas for DHW
heating as seen in the CDA NGM given in Equation 4.36. All other socio-economic
factors that were initially included in the CDA equations were eliminated as a result of
statistical significance and multicollinearity problems as explained in Sections 4.3.1.3,
4.3.2.3, and 4.3.3.3. Thus, the capability of the CDA Model to evaluate the effects of

socio-economic factors is significantly reduced.
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The effects of the socio-economic factors on DHW heating energy consumption

were examined and the results obtained from the NN Model are plotted in Figure 5.13. As

seen from Figure 5.13, the estimated DHW heating energy consumption of the

households varies as follows:

DHW heating energy consumption increases linearly with a slope of 0.00004, as the

income of the household increases.

The average DHW heating energy consumption of a single detached dwelling is
higher than that of a single attached dwelling. This is due to the fact that in the 1993
SHEU database as the number of occupants increases, the living area of the dwellings
increases. As mentioned in Section 5.6.1, single detached dwellings have larger living
areas than single attached ones. Consequently, the number of occupants is higher in
single detached dwellings than in single attached ones, so is the DHW heating energy
consumption.

DHW heating energy consumption of an owner occupied household is higher than
that of a renter occupied household. As mentioned in Section 5.6.1, the majority of the
renter occupied households are single attached. Consequently, the single attached
dwellings have smaller living areas, fewer number of occupants, and lower DHW
heating energy consumption.

DHW heating energy consumption decreases as the population of the area increases.
As mentioned in Section 5.6.1, almost all of the households located in areas with
population less than 15,000 are single detached, and have larger living areas, and
consequently, higher number of occupants than the single attached dwellings located at
populated areas. Therefore, as the number of occupants increases, DHW heating

energy consumption increases.
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Figure 5.13. Effects of socio-economic factors on the DHW heating energy consumption

of the households estimated by the NN Model

Natural gas consumption of single attached and single detached dwellings for
DHW heating were estimated using the CDA NGM to be 11.32 GJ/yr/household and
38.18 GJ/yr/household. This corresponds to a difference of 27 GJ/yr/household, which is
unacceptably high since the average natural gas consumption for DHW heating was
estimated to be 33 GJ/yr/household using the CDA NGM, as given in Table 5.7, and the
dwelling type can not have such a large impact on DHW heating energy consumption. On
the other hand, the difference in the DHW heating natural gas consumption of the single
attached and single detached dwellings was estimated using the NN Model to be 0.6
Gl/yr/household.
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5.6.3 Impact of Socio-economic Factors on SH Energy Consumption

The input dataset of the SH NN Model contains information on the socio-economic

characteristics of the households; such as household income, dwelling ownership, size of

area of residence, and number of children and adults. The effects of the socio-economic

factors on the SH energy consumption were examined, and the results obtained from the

NN Model are plotted in Figure 5.14. As seen from Figure 5.14, SH energy consumption

estimates vary as follows:

SH energy consumption increases as income increases. This is due to the fact that
households with higher income levels have larger dwellings. As the area of the

dwelling increases, SH energy consumption increases linearly with a slope of 0.0001.

SH energy consumption of an owner occupied household is higher than that of a renter
occupied household. As mentioned in Sections 5.6.1 and 5.6.2, majority of the owner
occupied dwellings are single detached, and the SH energy consumption of the single
detached dwellings is higher than the single attached ones, as given in Table 5.11.
Consequently, the SH energy consumption of owner occupied households is higher

than renter occupied ones.

SH energy consumption of a household decreases as the population of the area
increases. As mentioned in Sections 5.6.1 and 5.6.2, almost all of the households
located in areas with population less than 15,000 are single detached, and as given in
Table 5.11, the SH energy consumption of single detached dwellings is higher than
single attached ones. Therefore, SH energy consumption of the households located in
rural areas is higher than those located in urban areas.

SH energy consumption of a household increases as the number of children and adults
increase. This is due to the fact that as the number of occupants increases, the living

area increases, as does the SH energy consumption.
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Figure 5.14. Effects of socio-economic factors on the SH energy consumption of the

households estimated by the NN Model

The CDA EM given in Equation 4.28 includes the household income, and the
CDA NGM given in Equation 4.36 includes the number of adults as socio-economic
factors on the SH energy consumption. All other socio-economic factors that were
initially included in the CDA equations were eliminated as a result of statistical
significance and multicollinearity problems as explained in Sections 4.3.1.3, 4.3.2.3, and
4.3.3.3. Therefore, only household income and number of adults could be evaluated using
the CDA Model. The results from the CDA EM and NGM are plotted in Figure 5.15. For
comparison purposes, the effect of income on electrical heated households, and the effect
of number of adults on natural gas heated households were estimated using the SH NN

Model, and results are plotted in Figure 5.16.
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As shown in Figures 5.15 and 5.16, as the income of the household increases, the
electricity consumption for SH increases in a linear fashion. This is similar to the NN
estimates given in Figure 5.14. However, the slope of the line plotted using the NN Model
estimates is about one third of the one from the CDA EM.

As shown in Figures 5.15 and 5.16, as the number of adults increases, the natural
gas consumption for SH increases, similar to the NN estimates given in Figure 5.14.
Compared to NN SH Model estimates, the CDA NGM estimates show a substantially

higher increase in the natural gas consumption for SH as the number of adults increases.
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Figure 5.15. Effect of income on electrical SH energy consumption and effect of number
of adults on natural gas SH energy consumption estimated by the CDA

Model
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5.7 Closing Remarks

This chapter presents the results of the comparative assessment of the NN, CDA, and
Engineering Models. The detailed information on the development of the NN and the
CDA Models was given in Chapter 4. The Engineering Model was developed by
Farahbakhsh (1997) and Farahbakhsh ez al. (1997, 1998) using the 1993 SHEU database.

In the first section of the chapter, the prediction performance of the models were
compared based on the actual and estimated end-use energy consumption of the
households in the 1993 SHEU database. The prediction performance of the NN Model
was found to be higher than those of the CDA and the Engineering Models.

The weighted average end-use energy consumption of the households without
billing data was estimated by the models, and the average percent deviations between the
estimates of the NN Model, and the CDA and Engineering Models were calculated for
each end-use. The weighted average end-use energy consumption estimates of the models
were found to be close to each other with percent deviations in the range of -6.9 to 2.5.
The end-use estimates by the three models were also close to the estimates by NRCan and

OEE.

The central A/C unit, second refrigerator, and the furnace fan/boiler pump
electricity consumption were successfully estimated using the ALC NN Model, whereas
the NN Model failed to accurately estimate the electricity consumption of appliances with

high saturation values.

The weighted average DHW and SH end-use energy consumption of the
households without billing data were categorized based on end-use energy source and fuel
type, dwelling type and age. It was found that:

— The DHW NN Model, as well as the CDA and the Engineering Models, are capable of
capturing the difference in the DHW heating energy consumption of households using

DHW heating equipment with different efficiencies.
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~ The SH NN Model, together with the CDA and the Engineering Models, are capable
of capturing the differences in the SH energy consumption of the households with

different SH equipment efficiencies, wall areas, and dwelling types and ages.

In the second section of the chapter, the total energy consumption of the
households in the 1993 SHEU database were computed by combining the ALC, DHW
heating, and SH energy consumption estimates of the NN, CDA, and Engineering
Models. The weighted average household energy consumption estimated by the NN,
CDA, and Engineering Models were 139, 132, and 135 GJ/yr/household, respectively.
The estimates of all three models are close to the OEE estimate of 134 GJ/yr/household.

The categorized household energy consumption estimates by all three models
indicate that electrically heated, and single attached dwellings, and dwellings built after
1988 have the lowest average weighted household energy consumption. The provincial
distribution of the household end-use energy consumption estimates demonstrated that
households in Quebec have lower; and households in Alberta and Saskatchewan have
higher end-use energy consumption. This is due to the fact that the majority of the
households in Quebec, and minority of the households in Alberta and Saskatchewan have
electrical SH equipment, which have 100% end-use efficiency. Also more than half of the
households in Alberta and Saskatchewan have standard (50-65%) efficiency natural gas,
oil, or propane fueled SH equipment resulting in high household end-use energy

consumption trends in Alberta and Saskatchewan.

In the last section of the chapter, the effects of the socio-economic factors on the
ALC, DHW heaﬁng, and SH end-use energy consumption of the households in the 1993
SHEU database were assessed by the NN and the CDA Models. It was found that end-use
energy consumption of households increases as the household income, and the number of
adults and children increase, and decreases as the population of the area increases. It was
also found that the end-use energy consumption of single detached dwellings are higher
than that of single attached ones, and owner occupied households have higher end-use

energy consumption than renter-occupied ones.
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The capability of the CDA Model to evaluate the effects of the socio-economic
factors is significantly lower than the NN Model since majority of the socio-economic
factors were excluded from the model equation to develop a model free of insignificant
variables and multicollinearity. However, the NN Model has the capability to evaluate the
effects of the socio-economic factors, which are included in the model. The effects of the
socio-economic factors cannot be evaluated by the Engineering Model since these factors
were not included into the model. However, if sufficient data on socio-economic factors
is available, the Engineering Model can evaluate the effects of socio-economic factors
when they are included into the model in the form of occupancy profiles or preference

profiles.

The comparisons of the model estimates show that the NN Model has a higher
prediction performance than the CDA and the Engineering Models, can estimate the
energy consumption of individual appliances, can successfully evaluate the differences in
end-use and total household energy consumption based on various categories, and has the

capability to evaluate the effects of a large number of socio-economic factors.

In the following chapter, impacts of energy saving measures on DHW and SH

energy consumption are assessed using the NN Model.



Chapter 6

Assessment of Energy Saving Scenarios

6.1 Overview

In this chapter, impacts of various energy saving scenarios on DHW and SH energy
consumption of the households in the 1993 SHEU database are assessed. The analysis
was conducted using the NN Model, and the results are compared with those obtained
using the Engineering Model, and some other studies, where available. The CDA Model
does not contain any of the variables used in the DHW and SH energy saving scenarios,
thus it was not possible to evaluate energy saving scenarios using the CDA Model. The
CDA Model is not suitable to conduct such assessments due to the limited number of

variables the model can accommodate.

To assess the impacts of a wide variety of energy saving measures using the NN
Model, the households that undertake the energy saving measures should be well
represented in the training datasets. On the other hand, the engineering method based
models have significantly higher level of flexibility in evaluating energy conservation

measures, regardless of the number of households in the datasets.

The NN Model consists of three networks, and each one of these networks
estimates a single end-use energy consumption. As stated in Section 1.2, the energy

efficiency measures have complex interrelated effects on the end-use energy
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consumption, e.g. the increase in the lighting efficiency increases the SH energy
consumption. However, the interrelated effects due to energy efficiency measures on end-
uses cannot be evaluated using the NN Model, since each end-use is predicted separately.
On the other hand, the Engineering Model can evaluate the effects of energy efficiency
measures on each end-use, since energy consumption is estimated using thermodynamics

and heat transfer principles.

6.2 DHW Heating Energy Consumption

Three energy saving scenarios evaluated using the DHW NN Model are insulating the hot
water pipes and increasing the end-use efficiency of DHW heating systems. The
estimated reduction in the DHW heating energy consumption for each energy saving

scenario is given in the following sections.

6.2.1 Insulating Hot Water Pipes

The number of households that do not have insulation around hot water pipes is 5,767 in
the DHW prediction dataset of 7,070 households. There is a weighted average DHW
heating energy consumption difference of 0.7 GJ’s between the households with and
without insulation around hot water pipes. In order to examine the effect of adding
insulation around hot water pipes, data on the 5,767 households were modified to reflect
the addition of insulation around hot water pipes. The DHW NN Model was used to
estimate the DHW heating energy consumption of these 5,767 households. Thus, as
shown in Table 6.1, the difference between the predicted DHW heating energy
consumption of the 5,767 households with and without insulation around hot water pipes
provides the magnitude of the effect of insulating hot water pipes on the DHW heating
energy consumption. The average reduction in the DHW heating energy consumption by

adding insulation around the hot water pipes is estimated to be 0.9 GJ/yr/household.
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Table 6.1. Average DHW heating energy consumption of 5,767 households in set of

7,070 households with and without insulation around hot water pipes

Average DHW Heating Energy Consumption
[GJ/yr/household]

5,767 Households without insulation 5

around the hot water pipes 26.

5,767 Households with insulation

around the hot water pipes 25.3

Reduction in the DHW heating 0.9

consumption '

In its present form, the Engineering Model does not address the presence of
insulation around hot water pipes, therefore, the results obtained from the NN Model
were compared with the results of a study conducted by Pontikakis and Ruth (1999). The
authors estimated a reduction of 1.5-1.7 % in the heat loss from hot water pipes due to
insulation, which correspond to a reduction in the DHW heating energy consumption of
about 0.5 GJ/yr/household. The DHW NN model estimate for the reduction in the DHW
heating energy consumption due to the insulation of hot water pipes is about two times

higher than Pontikakis and Ruth’s estimate.

The reason for this over prediction could be the low percentage of households
with hot water pipe insulation in the DHW NN training dataset: only 16% of households
in the DHW NN training dataset had insulation around their hot water pipes.

6.2.2 Increasing the End-use Efficiency of DHW Heating Systems

There are 2,765 households using natural gas or propane heated DHW systems in the
DHW prediction dataset of 7,070 households. These systems were assumed to have an
end-use efficiency of 55.4%. In order to examine the effect of upgrading the DHW
heating system end-use efficiency, a dataset was developed by increasing the end-use

efficiency of natural gas or propane heated DHW systems from 55.4% to 65% in the input
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files of the 2,765 households. The DHW NN Model was used to estimate the DHW
heating energy consumption of these 2,765 households. Thus, as shown in Table 6.2, the
difference between the predicted energy consumption of 2,765 households with an end-
use efficiency of 55.4% and 65% provides the magnitude of the effect of end-use
efficiency increase on the DHW heating energy consumption, which is 3.9
Gl/yr/household. A reduction of 4.5 GI/yr/household was also estimated using the
Engineering Model for the same end-use efficiency improvement. Thus, the DHW NN

model and the Engineering Model estimates are in good agreement.

Table 6.2. Average DHW heating energy consumption of 2,765 households in set of
7,070 households at two different DHW system efficiencies

Average DHW Heating Energy
Consumption [GJ/yr/household]

2,765 Households with an end-use efficiency of 55.4% 31.9
2,765 Households with an end-use efficiency of 65% 28.0
Reduction in the DHW heating consumption 3.9

6.3 SH Energy Consumption

The energy saving scenarios evaluated using the SH NN Model are upgrading the glazing
of the windows and end-use efficiency of the SH equipment, and lowering the overnight
temperature. Other scenarios could not be studied due to the poor representation of the
households that undertake the scenarios in the SH NN training dataset, as mentioned in
Section 6.1. The reduction in the SH energy consumption associated with each energy

saving scenario is given in the following sections.
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6.3.1 Upgrading the Glazing of the Windows

The SH prediction dataset contains 1,157, 6,128, and 6,200 households, respectively, with
single, double, and both types of glazed windows. In order to examine the effects of
upgrading the glazing of the windows, households with single glazed windows were
upgraded to double and triple glazed windows, while those with double glazed windows
were upgraded to triple glazed windows. The SH NN Model was used to estimate the SH
energy consumption of the households with glazing upgrades. Thus, the difference
between the predicted SH energy consumption of the households before and after the
upgrades provides the magnitude of the effect of window glazing upgrade on SH energy

consumption.

Table 6.3 gives the average SH energy consumption of the households before
and after upgrades to their window glazing. The SH energy consumption decreases due to
window glazing upgrades, with the exception of the scenario in which single glazed
windows were upgraded to double glazed windows. The reason for this anomaly could be
the low percentage of households with single glazed windows in the SH NN training
dataset: only 14% of the households in the SH NN training dataset have single glazed
windows. Thus, the reduction in the SH energy consumption of the households due to

single glazed window upgrades cannot be accurately captured by the SH NN Model.

The SH energy consumption reduction due to the upgrade from single to triple
glazed windows is 2 GJ/yr/household, which is significantly small compared to the
reduction of 13.5 GJ/yr/household estimated by Guler et al. (2001) using the Engineering
Model. The reduction estimated by Guler et al. (2001) as a result of upgrading single
glazed windows to double glazed was about 9.8 GJ/yr/household. Another study
conducted for US Department of Energy estimated a reduction of 8.9 GJ/yr/household by
upgrading all single glazed windows to double glazed windows (Conachen, 2001). These
results indicate that the SH NN Model fails to predict the effect of the energy saving
scenarios based on single glazed window upgrades. This is due to the low number of

households with single glazed windows in the SH NN training dataset.
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Table 6.3. Average SH energy consumption of the households before and after window

glazing upgrades
Number of Average SH Energy Consumption
umber o GJ/yr/household
Upgrade Households [G/yr ]
Before After | Difference
Single to double glazed 1,157 84.4 84.8 -0.4
Single to triple glazed 1,157 84.4 82.6 1.8
Double to triple glazed 6,128 80.0 76.4 3.6
Single to double glazed
. . 76.7 3.5
Double to triple glazed 6,200 80.2
Smgle to triple glazed 6,200 80.2 76.2 4.0
Double to triple glazed

On the other hand, the reduction of 3.6 GlJ/year/household due to upgrading
double glazed windows to triple glazed estimated using the SH NN Model is close to the
4.3 Gl/yr/household estimated by Guler et al. (2001) using the Engineering Model. This
indicates that the effect of upgrading double glazed windows can be successfully
predicted by the SH NN Model.

The number of households with both single and double glazed windows is 6,200
in the prediction dataset. The reduction in SH energy consumption estimated using the SH
NN Model as a result of upgrading single glazed windows to double glazed, and double
glazed windows to triple glazed is 3.5 GJ/yr/household, while upgrading both single and
double glazed windows to triple glazed is 4 GJ/yr/household. These estimates are lower
than expected. The reason for this underestimation is likely due to the afore mentioned
inability of the SH NN Model to accurately predict the savings due to upgrading single

glazed windows.
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6.3.2 Upgrading SH Equipment

The number of households with standard and medium efficiency SH equipment in the SH
prediction dataset are 2,350 and 1,327, respectively. In order to examine the effects of
upgrading SH equipment, all standard efficiency SH equipment were replaced with
medium and high efficiency SH equipment, and medium efficiency SH equipment were
replaced with high efficiency equipment. The SH NN Model was used to estimate the SH
energy consumption of the households with end-use efficiency upgrades. Thus, the
difference between the predicted SH energy consumption of the households with and
without SH equipment end-use efficiency upgrades provides the magnitude of the effect
of SH equipment end-use efficiency upgrade on SH energy consumption. Table 6.4 gives
the average SH energy consumption of the households before and after SH equipment
end-use efficiency upgrades. The SH energy consumption of the households using
standard and medium efficiency SH equipment decreases significantly as their SH

equipment are upgraded to medium and high efficiencies.

Table 6.4. Average SH energy consumption of the households before and after SH

equipment end-use efficiency upgrades

Number of Average SH Energy Consumption
umber o

GJ/yr/household
Upgrade Households LGy ]

Before After Difference
Standard to medium efficiency 2,350 97.6 87.1 10.5
Standard to high efficiency 2,350 97.6 67.6 30.0
Medium to high efficiency 1,327 89.0 69.5 19.5
Standard to medium efficiency
. . . , 4. . .

Medium to high efficiency 3,677 24.6 80.8 138
Standard to high efficiency
Medium to high efficiency 3,677 94.6 68.3 263

The SH energy consumption of the households after the SH equipment end-use
efficiency upgrades was also predicted using the Engineering Model. The percent

reductions in the SH energy consumption estimated by the SH NN and Engineering
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Models are given in Table 6.5. The SH energy consumption percent reduction values

from both models are close for each upgrade scenario.

Table 6.5. Average percent reduction in the SH energy consumption estimated by the SH

NN Model and the Engineering Model

Average Percent Reduction in the Estimated SH
Energy Consumption in 1993 per household
Upgrade
SH NN Model Engineering Model

Standard to medium efficiency 11% 11%
Standard to high efficiency 31% 27%
Medium to high efficiency 22% 18%
Standard to medium efficiency o

. 139
Medium to high efficiency 15% 3%
Standard to high efficiency 0 o
Medium to high efficiency 28% 24%

6.3.3 Night Temperature Setback

The overnight temperature of the households in the 1993 SHEU database ranges from
16°C to 24°C. There are 3,190 households in the SH prediction dataset with overnight
temperatures higher than 18°C. The average overnight temperature of these households is
18.7°C. In order to examine the effect of lowering overnight temperatures, a dataset was
developed by setting the overnight temperatures of these 3,190 households to 18°C. The
SH NN Model was used to estimate the SH energy consumption of these 3,190
households with overnight temperature lowered to 18°C. Thus, as shown in Table 6.6 the
difference between the predicted energy consumption of 3,190 households before and
after setting overnight temperatures to 18°C provides the magnitude of the effect of
lowering overnight temperature on SH energy consumption. The average reduction in the
SH energy consumption as a result of lowering overnight temperature of the households

to 18°C was 1.3 GJ/yr.
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Table 6.6. Average SH energy consumption of 3,190 households before and after

lowering their overnight temperatures to 18°C

Average SH Energy Consumption
[GJ/yr/household]
3,190 Households with overnight 81.5
temperatures higher than 18°C
3,190 Households with overnight 80.2
temperatures set to 18°C
Reduction in the SH consumption 1.3

There are, respectively, 1,203 and 4,931 households with overnight temperatures
higher than 20°C and 16°C in the prediction dataset. Using the same procedure described
above, the reduction in their SH energy consumption by lowering overnight temperatures
to 16°C and 20°C were estimated by the SH NN Model. Figure 6.1 shows the reduction in
the SH energy consumption due to lowering overnight temperatures to 16°C, 18°C, and
20°C. As seen from Figure 6.1, as the overnight temperature of households decreases, the

reduction in the SH energy consumption increases.

25

2.0

[GJ/yr/household)

Reduction in SH Energy Consumption

Ovemight Temp Max Overnight Temp Max Overnight Temp Max
20C 18C 16C

Figure 6.1. Reduction in the SH energy consumption due to lowering overnight

temperatures to 20°C, 18°C, and 16°C.
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A study conducted by US Department of Energy suggested a decrease of about
5% to 15% in the annual SH energy consumption if the overnight temperatures were
lowered by 6 to 8°C (EREC, 1997). The study also stated that savings from temperature
setback would be greater for dwellings in milder climates than for those in more severe
climates. Therefore, lowering overnight temperatures by 6 to 8°C in Canadian homes
which are generally located at more severe climates than US homes would provide less

reduction in SH energy consumption than those stated by EREC (1997).

The average percent reduction in SH energy consumption due to lowering
overnight temperature for each degree is given in Table 6.7. The average percent
reduction due to lowering overnight temperature by 6°C is about 4%, which is slightly
lower, as expected, than the figures reported by EREC (1997). These results indicate that
the reduction in the SH energy consumption due to lowering overnight temperatures

estimated by the SH NN Models agree with those reported by EREC (1997).

Table 6.7. Average percent reduction in SH energy consumption due to lowering

overnight temperature for each degree

Reduction in the Percent Reduction in the Estimated SH
Ovemight Temperature | Energy Consumption in 1993 per housechold
1°C 0.7%
2°C 1.3%
3°C 2.0%
4°C 2.6%
5°C 3.2%
6°C 3.9%
7°C 4.6%
8°C 5.3%
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6.4 Closing Remarks

This chapter presents the assessment of various energy savings scenarios conducted using
the NN Model, and a comparison of the reductions estimated by the NN Model with those
from other studies. The number and variety of scenarios were limited by the variabies
included in the NN Model. It was not possible to use the CDA model to evaluate energy
saving scenarios, since the variables included in the CDA Model are limited. Thus, in
terms of the capability of evaluating energy saving scenarios, the NN Model has a limited
capability, while the CDA Model has none. In comparison to NN and CDA Models, the

Engineering Model has a high degree of flexibility in evaluating energy saving scenarios.

The DHW energy saving scenarios evaluated using the NN Model were
insulating hot water pipes and increasing the end-use efficiency of DHW heating systems.
The average DHW energy consumption reduction due to addition of insulation around hot
water pipes was estimated to be 0.9 GJ/yr/household. The estimated energy savings due
to the addition of insulation around hot water pipes was found to be higher than the
estimates of other studies. The reason for the overestimation could be the low number of

households with hot water pipe insulation in the DHW training dataset.

The savings in DHW energy consumption due to increasing the end-use
efficiency of natural gas/propane fuelled DHW heating systems was estimated to be 3.9
GJ/yr/household using the NN Model. This result was found to be in good agreement

with the Engineering Model estimate.

The SH energy saving scenarios conducted using the NN Model were upgrading
the glazing of the windows, upgrading the end-use efficiency of the SH equipment, and
lowering the overnight temperature. The scenarios regarding single glazed windows
upgrades resulted in lower SH energy consumption reductions than those obtained from
the Engineering Model and other studies. The NN Model underestimated the energy
savings because the model was not able to capture the effect of single glazed windows
from a dataset of only 129 households. The amount of reduction in SH energy

consumption due to upgrading double glazed windows to triple glazed was estimated to
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be 3.6 Gl/yr/household, which is in agreement with the Engineering Model estimate of
4.3 GJ/yr/household.

The estimated energy savings due to upgrading SH equipment end-use efficiency
was found to be in good agreement with the Engineering Model estimate. The reduction
in SH energy consumption due to upgrading medium efficiency SH equipment to high
efficiency was estimated to be 22%, which is close to the Engineering Model estimate of
18%. The percent reduction estimated by the NN Model due to lowering overnight
temperature by 6°C was about 4 %, which is close to the value stated by EREC (1997).

The comparisons in this chapter show that the NN Model can estimate the
impacts of the energy savings scenarios, as long as the households that undertake the
scenarios are well represented in the training dataset. However, the NN Model cannot
evaluate the impact of an energy saving scenario on other energy end-uses, since each
end-use is predicted separately. The Engineering Model has significantly higher level of
flexibility in evaluating energy conservation measures, whereas the CDA Model is not
suitable to evaluate energy efficiency measures due to the limited number of variables the

model can accommodate.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This thesis investigates the use of Neural Network (NN) and Conditional Demand
Analysis (CDA) methods for modeling residential end-use energy consumption at the
national and regional levels. In this work, end-use energy consumption models were
developed for the Canadian residential sector using the NN and CDA methods, and the
extensive data available in the 1993 Survey of Household Energy Use (SHEU) database
of Statistics Canada (1993). Although NN's have characteristics suitable for modeling
residential energy consumption at the national and regional levels, no NN based model
had been reported in the literature before the current work. Similarly, the CDA method
had not been used to model residential energy consumption at the national level, although
there are several studies where CDA was used to model energy consumption at the
regional level. Thus, the NN and CDA Models developed in this work are the first of their
kind, and represent original contributions to the state-of-the-knowledge in energy
modeling. Parts of this work have already been published in peer-reviewed open literature
(Aydinalp et al., 2002a; Aydinalp et al., 2002b; Aydinalp et al., 2001a; Aydinalp et al.,
2001b; Aydinalp et al., 2000).
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The NN Model of the residential sector developed in this work consists of three
independent networks (sub-models), each of which predicts the energy consumption for
three major energy end-uses in a household. These three sub-models are: (1) Appliance,
lighting and cooling (ALC) model, (2) Domestic hot water (DHW) heating model, (3)
Space heating model. These three models together make up the overall end-use energy
consumption model of the Canadian residential sector. Each model was developed using
- the Stuttgart Neural Network Simulator (1998) and a systematic approach to identify the
most suitable network architecture and set of variables to be included in the model. The
approach included testing of various activation functions, various datasets scaled to

different intervals and networks with different architectures.

The CDA Model also consists of three components. However, due to the
characteristics and data requirements of the CDA method, these three components are
configured differently than those of the NN Model. Each CDA component predicts the
energy consumption of a household in one of the three predominantly used household
fuels. Thus, the three components of the CDA Model are:

- Electricity Model,

- Natural gas Model,

- 0il Model.

In the development process, all variables that influence the energy consumption for
appliance, lighting and cooling, DHW heating, and space heating were included in the
individual models. During the development process, the variables that were found to be
statistically infeasible were eliminated, and the final set of variables that resulted in
statistically robust models were identified. The regression analysis was conducted using

the SYSTAT software (1998).

The prediction performance of the NN and CDA Models developed in this work
were assessed by comparing their predictions to metered energy consumption data
available for a subset of 2,749 households in the 1993 SHEU database. Since one of the

important purposes of residential energy models is to study the characteristics of energy
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consumption, the capability of the two models to characterise energy consumption, as
well as to study the impacts of socio-economic factors and energy saving measures on

end-use energy consumption were assessed.

The NN and CDA Models developed in this work were also compared with an
engineering model developed earlier by Farahbakhsh (1997) and Farahbakhsh er al.
(1997, 1998) based on the 1993 SHEU database. The predictions of the NN and CDA
Models were compared with those of the Engineering Model to assess the comparative

accuracy, as well as the versatility of the three models.

The comparison of the predictions of the models indicated that all three models
are capable of accurately predicting the energy consumption in the residential sector. The
household and end-use energy consumption estimates of the three models were found to
be close to each other, and also to the estimates reported by NRCan (2002) and OEE
(2002). The accuracy of the predictions, calculated based on the average energy
consumption in the subset of 2,749 SHEU households with metered data is given in Table
7.1. These findings indicate that the NN Model has higher prediction performance than
the CDA and the Engineering Models.

Table 7.1. Accuracy of the predictions of the NN, CDA, and Engineering Models in

terms of fraction of variance (R?) and coefficient of variation (CV)

ALC DHW Heating Space Heating

R? Ccv R® Ccv R cv
NN Model 0.909 2.094 0.871 3.337 0.908 1.871
CDA Model 0.795 3.343 0.814 4.052 0.892 2.007
Engineering Model | 0.780 3.463 0.828 3.898 0.778 2.877

It was also found that the NN Model is capable of accurately predicting the
energy consumption of individual households provided that the input units of these

households are representative of the energy consumption of the households. The NN
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Model was found to be capable of accurately predicting the disaggregated energy

consumption for central air conditioning, second refrigerator and boiler pump/furnace fan.

The NN Model is able to evaluate the effects of several socio-economic factors
on end-use energy consumption. These include household income, dwelling type and
ownership, number of children and adults, and size of area of residence. On the other
hand, although theoretically possible, the CDA Model is unable to evaluate the effects of
some of these socio-economic factors (dwelling ownership and size of area of residence),
since the number of variables included in the CDA Model is limited due to statistical
considerations. None of the socio-economic factors could be evaluated by the
Engineering Model, since due to insufficient data on socio-economic factors in terms of
occupancy and preference profiles in the 1993 SHEU database socio-economic variables
were not included within the model structure of the existing Engineering Model. Thus
from the perspective of assessing the impact of socio-economic factors, the NN Model is

superior to both the CA and the Engineering Models.

In terms of estimating the impacts of the energy savings scenarios, the NN
Model was found to be limited in its scope due to the limited number of variables that are
included in the model. Since the NN Model includes the necessary variables, it can
evaluate the following energy saving scenarios: (1) Insulating the hot water pipes, (2)
Increasing the efficiency of the DHW heating systems, (3) Upgrading the glazing of the
windows, (4) Increasing the efficiency of the SH equipment, (5) Lowering the overnight
temperature. The accuracy of the predictions depends on the quality of information in the
training dataset: as long as the households that undertake the energy saving measures are
well represented in the training dataset, the accuracy is high (such as in the case of
increasing the efficiency of the SH equipment). If however the households that undertake
the energy saving measure are not well represented in the training dataset, the accuracy is
low (such as in the case of upgrading the single glazed windows to double glazed). It
should also be noted that since the NN Model predicts each end-use separately, it cannot

evaluate the impact of an energy saving measure on other energy end-uses.
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The Engineering Model, on the other hand, has a significantly higher level of
flexibility in evaluating energy conservation measures, including the effects of energy
efficiency measures on end-uses other than that is directly affected by the measure. This
is due to the inherent advantage of the Engineering Model since it estimates the energy
consumption using thermodynamics and heat transfer principles. The CDA Model
however is not suitable to assess energy efficiency measures due to the limited number of

variables the model can accommodate.

These results show that the NN method can be used for the following purposes:
— to estimate the end-use energy consumption in the residential sector,
— to categorize the household and end-use energy consumption to help the
understanding of how energy is used in the residential sector,
— to evaluate the effects of (some) socio-economic factors on end-use energy
consumption,
— to evaluate the impacts of (some) energy saving scenarios on end-use energy

consumption.

The CDA Model, while simpler to apply than the NN Model and acceptably
accurate in its overall predictions, is not flexible in evaluating end-uses, socio-economic
factors and energy saving scenarios. Thus, the CDA Model has limited utility for
modeling the energy consumption in the residential sector. The fundamental difference
between the NN Model and the CDA Model is that the NN Model is less transparent to
demonstrate the marginal effects of factors such as having or not having a particular
appliance, DHW or space heating equipment. In comparison, the Engineering Model
provides accurate estimates, has the highest level of flexibility in evaluating the impact of
energy saving measures, but has difficulties with the inclusion of the socio-economic
factors. The three models have their specific advantages and disadvantages. These can be

summarized as shown in Table 7.2.
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Table 7.2. Qualitative comparison of the models

NN Model CDA Model Engineering Model
Prediction performance High Acceptable Acceptable
Evaluation of Socio- Easy Limited Difficult
economic factors
Eva.luatlon .Of energy Limited Poor Excellent
saving scenarios
Ease of use Moderate Easy Requires extensive

user expertise

In conclusion, the objectives set out in Section 1.3 were achieved as follows:

. Two new end-use energy consumption models for the Canadian residential sector
were developed using the 1993 SHEU database; one using the NN approach and the
second using the CDA approach.

. The annual average end-use and total household energy consumption values of the
Canadian housing stock were estimated using the NN and the CDA Models, and the
estimates were categorized based on dwelling type and age, province, and end-use
fuel types.

. The end-use and household energy consumption estimates of the NN and the CDA
Models were compared with those of the Engineering Model and with metered data
to assess the accuracy of the models.

. The impacts of the energy saving scenarios were evaluated using the NN and CDA
Models.

. A comparative assessment of the NN, CDA, and Engineering Models was

conducted.
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7.2 Recommendations for Future Work

The recommendations for future work are as follows:

a) The NN Model was developed using the learning algorithms and the activation
functions of the SNNS software. Other NN softwares with different learning
algorithms and activation functions can be tested to increase the prediction

performance of the model.

b) If a database with a sufficiently large number (e.g. > 5,000) of complete household
data, including energy billing data for all types of fuels become available, energy
consumption of all end-uses can be estimated using just one NN model. This would
improve the capability to evaluate the impact of energy saving measures on all end-
uses. Also, with such data a CDA Model can be developed to disaggregate the energy

consumption of households with all fuel types in one model.

¢) Various mathematical manipulations of the variables used in the CDA Model, such as
taking the power or logarithm of variables, or cross multiplications of the variables,
can be tested to reduce the multicollinearity and the non-constant variance problems

faced in some components of the CDA Model.

d) Tobit regression analysis can handle discrete and continuous variables such as those in
the datasets of the CDA Model. Thus, instead of the ordinary least square method it
can be used to estimate the CDA Model.

e) The flexibility and scope of the models would improve if the size and the quality of the
database of household information were improved. Therefore, a database
representative of the national housing stock with detailed and accurate information on
a large number of households (e.g. >10,000) would be needed if better models were to

be developed.
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f) The Engineering Model estimates the end-use energy consumption based on the
thermodynamic and physical principles. Therefore, it is capable of evaluating the
impact of a wide range of energy saving measures. However, it is difficult to
incorporate the effects of the socio-economic factors into the Engineering Model,
because detailed data are required to develop distribution functions for each socio-
economic factor. On the other hand, the CDA and NN Models can reflect the effects of
the socio-economic factors using the available data. Therefore, it may be possible to
develop a hybrid model that uses the Engineering Model for physical and
thermodynamic modeling and the CDA and NN Models for modeling of socio-

economic factors.



172

References

Aigner, D.J., Sorooshian C., and Kerwin, P., (1984), “Conditional Demand Analysis for
Estimating Residential End-Use Load Profiles”, The Energy Journal, Vol 5, No. 3, pp.
81-97.

AlFuhaid, A.S., El-Sayed, M.A., Mahmoud, M.S., (1997), “Cascaded Artificial Neural
Networks for Short-term Load Forecasting”, IEEE Transactions on Power Systems,
Vol. 12, No. 4, pp. 1524-1529.

Anstett, M., and Kreider, J.F., (1993), “Application of Neural Networking Models to
Predict Energy Use”, ASHRAE Transactions, Vol. 99, Part 1, pp. 505-517.

Aydinalp, M., Fung, A.S., and Ugursal, V.L, (1998), "Regression Analysis for Central Air

Conditioning Data", Canadian Residential Energy End-Use Data and Analysis Centre,
Technical Report, Prepared for NRCan, Halifax, N.S., Canada.

Aydinalp, M., Fung, A.S., and Ugursal, V.I, (2000), “Modeling of Residential Energy
Consumption at the National Level”, The Twelfth International Symposium on
Transport Phenomena, July 16-20, Istanbul, Turkey.

Aydinalp, M., Ugursal, V.1, and Fung, A.S., (2001a), “Modeling of Residential Energy
Consumption at the National Level”, The Intermational Conference on Industry,
Engineering, and Management Systems (IEMS), March 5-7, Cocoa Beach, Florida,
USA.

Aydinalp, M., Ugursal, V.I., and Fung, A.S., (2001b), “Predicting Residential Appliance,
Lighting, and Space Cooling Energy Consumption Using Neural Networks”, Fourth
International Thermal Energy Congress, July 8-12, Izmir, Turkey

Aydinalp, M., Ugursal, V.I., and Fung, A.S., (2002a), “Modeling of the Appliance,
Lighting, and Space Cooling Energy Consumption in the Residential Sector Using
Neural Networks”, Applied Energy, Vol. 71, Issue 2, pp. 87-110.

Aydinalp, M., Ugursal, V.I., and Fung, A.S., (2002b), “The Effects of the Socio-

economic Factors on the Household Appliance, Lighting, and Cooling Energy



173

Consumption”, The Thirteenth International Symposium on Transport Phenomena,
July 14-18, Victoria, B.C., Canada.

Bauwens, L., Fiebig, D., and Steel, M., (1994), “Estimating End-use Demand: A
Bayesian Approach”, Journal of Business and Economic Statistics, Vol. 12, No. 2, pp.
221 - 231.

Bierbaum, T.J., Case, M.A., Waston, P.A., Bush, G.L., and Pham, T., (2000), “Behaviour
Recorder: Software to Record and Analyze Behaviour Data Using SAS and SYSTAT
Statistical Software”, Computers and Electronics in Agriculture, Vol. 29, No. 3, pp.
233 - 241.

Binfet, J., and Wilamowski, B.M., (2001), “Microprocessor implementation of fuzzy
systems and neural networks”, Proceedings of the International Joint Conference on
Neural Networks IJCNN '01, Vol. 1, pp. 234 - 239.

Blaney, J.C., Inglis, M.R., and Janney, A.M., (1994), “Hourly Conditional Demand
Analysis of Residential Electricity Use”, 1994 ACEEE Summer Study on Energy
Efficiency in Buildings, Panel 7, Pacific Grove, California, USA.

Brook, D., (1999), “Energy Note: Buying and Using Water Heaters-", Oregon State

University, Extension Service, Corvallis, Oregon, USA. Available:

http://www.energy.state.or.us/res/appntwht.pdf [2001, 14 November]

Caves, D.W., Herriges, J.A., Train, K.E., and Windle, R.J., (1987), “A Bayesian
Approach to Combining Conditional Demand and Engineering Models of Electric

Usage”, Review of Economics and Statistics, Vol. 69, No. 3, pp. 438 — 448.

Chen, C.S., Tzeng, Y.M., and Hwang, J.C., (1996), “The Application of Artificial Neural
Networks to Substation Load Forecasting”, Electric Power Systems Research, Vol. 38,
No. 2, pp. 153 - 160.

Chen, R.N,, (1999), “The Cumulative q Interval Curve as a Starting Point in Disease
Cluster Investigation”, Statistics in Medicine, Vol. 18, No. 23, pp. 3299-3307.



174

Cohen, D.A., and Krarti, M., (1995), "A Neural Network Modeling Approach Applied to
Energy Conservation Retrofits", Proceedings of the Building Simulation Fourth

International Conference, pp. 423 - 430.

Conachen, J., (2001), “Existing Single-Pane Wood Windows Become Energy Efficient”,
Inventions and Innovations Program, US Department of Energy. Available:
www.oit.doe.gov/inventions/pdfs/portfolio/other/buildings/biglass.pdf [2002, 12

February]

Curtiss, P.S., Shavit, G., and Kreider, J.F., (1996), "Neural Networks Applied to
Buildings- A Tutorial and Case Studies in Prediction and Adaptive Control",
ASHRAE Transactions, Vol. 102, No. 1, pp. 1141-1146.

Del Frate, F., and Schiavon, G., (1995), “Retrieval of Atmospheric Parameters from
Radiometric Measurements Using Neural Networks”, International Geoscience and
Remote Sensing Symposium, IGARSS '95, ‘Quantitative Remote Sensing for Science
and Applications', Vol. 2, pp. 1134,

Dodier, R., and Henze, G., (1996), "Statistical Analysis of Neural Network as Applied to
Building Energy Prediction", Proceedings of the ASME ISEC, San Antonio, TX, USA,
pp. 495 - 506.

El-Fergany, A.A., Yousef, M.T., and El-Alaily, A.A., (2001), “Fault Diagnosis in Power
Systems - Substation Level- Through Hybrid Artificial Neural Networks and Expert
System”, Proceedings of the IEEE Power Engineering Society Transmission and

Distribution Conference and Exposition, IEEE/PES 2001, Vol. 1, pp. 207-211.

Energy Efficiency and Renewable Energy Clearinghouse (EREC), (1997), “Automatic
and Programmable Thermostats”, US Department of Energy, National Renewable
Energy Laboratory, Merrifield, VA, USA. Available:
http://www.eren.doe.gov/erec/factsheets/thermo.pdf [2002, 27 February]

Environment Canada, (1999), “Canadian Climate and Water Information”, Canadian
Meteorological Centre, Ottawa, Ontario, Canada. Available: http://www.msc-

smc.ec.gc.ca/climate/index_e.cfm [1999, 29 June]



175

Environment Canada, (2001), “Greenhouse Gas Emissions”, Greenhouse Gas Division,

Environment Canada, Ottawa, Ontario, Canada. Available:

http://www.ec.gc.ca/pdb/ghg/ghg home_e.cfim [2002, 10 May]

EPRI, (1989), "Residential End-use Energy Consumption: A Survey of Conditional
Demand Analysis", Report No. CU-6487, Palo Alto, CA, USA.
Farahbakhsh, H., (1997), “Residential Energy and Carbon Dioxide Emissions Model for

Canada”, Master Thesis, Technical University of Nova Scotia, Department of
Mechanical Engineering, Halifax, N.S., Canada.
Farahbakhsh, H., Fung, A.S., and Ugursal, V.I., (1997), "Space Heating Thermal

Requirements and Unit Energy Consumption of Canadian Homes in 1993", Canadian

Residential Energy End-Use Data and Analysis Centre, Final Report, Prepared for
NRCan, Halifax, N.S., Canada.

Farahbakhsh, H., Ugursal, V.1, and Fung, A.S., (1998), "A Residential End-use Energy
Consumption Model for Canada", International Journal of Energy Research, Vol. 22,
No.13, pp.1133 -1143.

Fausett, L., (1994), "Fundamentals of Neural Networks", Prentice Hall, Englewoods
Cliffs, N.J., USA.

Feuston, B.P.,, and Thurtell, J.H., (1994), "Generalized Nonlinear Regression with
Ensemble of Neural Nets: The Great Energy Predictor Shootout", ASHRAE
Transactions, Vol. 100, No. 2, pp. 1075-1080.

Fiebig, D.G., Bartels R., and Aigner D.J., (1991), “A Random Coefficient Approach to

the Estimation of Residential End-Use Load Profiles”, Journal of Econometrics, Vol.
50, pp. 297 — 327.

Fung, A.S., Farahbakhsh, H., and Ugursal, V.1, (1997), "Unit Energy Consumption of
Major Household Appliances in Canada”, Canadian Residential Energy End-Use Data

and Analysis Centre, Technical Report, Prepared for NRCan, Halifax, N.S., Canada.

Gemperline, P.J., (2000), “Powerful Statistical Analysis with SYSTAT 9.0”, Analytical
Chemistry, Vol. 72, No. 9, pp. 362A-362A.



176

Gottsche, F.M., and Olesen, F.S., (2001), “Evolution of Neural Networks for Radiative
Transfer Calculations in the Terrestrial Infrared”, Remote Sensing of Environment,

Vol. 80, No. 1, pp. 157 — 164.

Guler, B., Fung, A.S., Aydinalp, M., and Ugursal, V.I., (2001), "Impact of Energy
Efficiency Upgrade Retrofits on the Residential Energy Consumption in Canada",
International Journal of Energy Research, Vol. 25, pp. 785 — 792.

Hairston, J.E., (1995), “Water Quality and Pollution Control Handbook”, Section 1.3:
Conserving Water: Installing Water-Saving Devices, Alabama Cooperative Extension
System, Available: http://www.aces.edu/department/extcomm/publications/ant/anr-
790/WQ1.3.2.pdf [2001, 14 November]

Hassoun, M.H., (1995), "Fundamentals of Artificial Neural Networks", MIT Press,
Cambridge, Massachusetts, USA.

Highley, D.D., and Hilmes, T., (1993), “Load Forecasting by ANN”, IEEE Computer
Applications in Power, pp. 10 — 15.

Hsiao, C., Mountain, D.C., and Illman, K.H., (1995), "Bayesian Integration of End-Use
Metering and Conditional Demand Analysis”, Journal of Business and Economic
Statistics, Vol 13, No. 3, pp. 315-326.

Johnston, J., and DiNardo, J., (1997), “Econometric Methods”, McGraw-Hill. New York,
N.Y., USA.

Kawashima, M., (1994), "Artificial Neural Network Backpropagation Model with Three-
Phase Annealing Developed for the Building Energy Predictor Shootout", ASHRAE
Transactions, Vol. 100, Part. 2, pp. 1095 - 1103.

Kellas, C., (1993), "Conditional Demand Analysis in Manitoba 1993", Canadian

Electrical Association Conference, May 1993, Halifax, Nova Scotia, Canada.

Kiartzis, S.J., Bakirtzis, A.G., and Petridis, V., (1995), "Short-term Forecasting Using
NNs", Electric Power Systems Research, Vol. 33, pp. 1-6.

Kombrot, D., (1999), “Statistical Software for Microcomputers: SYSTAT 8.0”, British
Journal of Mathematical and Statistical Psychology, Vol. 52, pp. 143-145.



177

Krarti, M., Kreider, J.F., Cohen, D., and Curtiss, P., (1998), "Estimation of Energy Saving
for Building Retrofits Using Neural Networks", Journal of Solar Energy Engineering,
Vol. 120, pp. 211-216.

Kreider, J.F., and Wang, X.A., (1991), "Artificial Neural Networks Demonstrations for
Automated Generation of Energy Use Predictors for Commercial Buildings",
ASHRAE Transactions, Vol. 97, Part. 1, pp. 775-779.

Kreider, J.F.,, and Wang, X.A., (1992), "Improved Artificial Neural Networks for
Commercial Building Energy Use Prediction", Solar Engineering, ASM, Vol. 1, pp.
361 - 366.

Kreider, J.F., and Haberl. J.S., (1994), "Predicting Hourly Building Energy Use: The
Great Energy Predictor Shootout- Overview and Discussion of Results”", ASHRAE
Transactions, Vol. 100, Part. 2, pp. 1104-1118.

Kreider J.F., Claridge, D.E., Curtiss, P., Dodier, R., Haberl, J.S., and Krarti, M., (1995),
“Building Energy Use Prediction and System Identification Using Recurrent Neural
Networks”, Journal of Solar Energy Engineering, Vol. 117, pp. 161 — 166.

Lafrance, G., and Perron, D., (1994), “Evolution of Residential Electricity Demand by
End-Use in Quebec 1979-1989: A Conditional Demand Analysis”, Energy Studies
Review, Vol. 6, No. 2, pp. 164-173.

- Leach, C., Freshwater, K., Aldridge, J., and Sunderland, J., (2001), “Analysis of

Repertory Grids in Clinical Practice”, British Journal of Clinical Psychology, Vol. 40,

Part 3, pp. 225 — 248.

McCulloh, W.S. and Pitts, W.H., (1943), "A Logical Calculus of the Ideas Immanent in
Nervous Activity", Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-33.

Miller, W.C., Swensen, T., and Wallace, J.P., (1998), “Derivation of Prediction Equations

for RV in Overweight Men and Women”, Medicine and Science in Sports and
Exercise, Vol. 30, No. 2, pp. 322-327.

Natural Resources Canada (NRCan), (1994), “200-House Audit Project”, Ottawa,

Ontario, Canada.




178

Natural Resources Canada (NRCan), (1995), “EnerGuide Appliance Directory-1994”,

Energy Publications, Ottawa, Ontario, Canada.
Natural Resources Canada, (NRCan), (1996), “HOT2000 Batch V7.13 User Manual”,

Ottawa, Ontario, Canada.
Natural Resources Canada, (NRCan), (2002), “EnerGuide for Houses Rating and Label”,
Natural Resources Canada, Ottawa, Ontario, Canada. Available:

http://oee.nrcan.ge.ca/houses-maisons/english/eS1.cfm#soc [2002, 12 July]

Office of Energy Efficiency (OEE), (2002), “Energy Efficiency Trends- Summary
Tables”, Natural Resources Canada, Ottawa, Ontario, Canada. Available:

http://oeel .nrcan.ge.ca/neud/dpa/summary_tables.cfm [2002, 14 June]

Okon K., Tomaszewska, R., and Stachura, J., (2001), “Application of Neural Networks to
the Classification of Pancreatic Intraductal Proliferative Lesions”, Analytical Cellular

Pathology, Vol. 23, No. 3-4, pp. 129 — 136.

Olofsson, T.; and Andersson, S., (2001), “Long-term Energy Demand Predictions Based
on Short-term Measured Data”, Energy and Buildings, Vol. 33, No. 2, pp. 85 -91.

Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., and Damborg, M.J., (1991),
"Electric Load Forecasting Using an ANN", IEEE Transactions on Power Systems,

Vol. 6, No. 2, pp. 442-449.

Parti, M., and Parti C., (1980), “The Total and Appliance-specific Conditional Demand
for Electricity in the Household Sector”, Bell Journal of Economics, Vol. 11, pp. 309-
321.

Peng, T.M., Hubele, N.F. and Karady, G.G., (1992), "Advancement in the Application of
NN for Short-term Load Forecasting”, IEEE Transactions on Power Systems, Vol. 7,
No. 1, pp. 250-257.

Pontikakis, N., and Ruth, D.W., (1999), “Modeling of Residential Hot Water Systems”,
Transactions of CSME, Vol. 23, No. 1B, pp. 197-212.



179

Riedmiller, M., and Braun, H., (1993), "A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm", The Proceedings of the IEEE
International Conference on Neural Networks, Vol. 1, pp. 586-591.

Rumelhart, D.E., and McClelland, J.L., (1986), "Parallel Distributed Processing", The
MIT Press, Cambridge, Massachusetts, USA.

Scanada Consultants Limited, (1992), “Statistically Representative Housing Stock”, Final
Report, Prepared for Canada Mortgage and Housing Corporation, Ottawa, Ontario,
Canada.

Sindt, M., Stephan, B., Schneider, M., and Mieloszynski, J.L., (2001), “Chemical Shift
Prediction of P-31-NMR Shifts for Dialkyl or Diaryl Phosphonates”, Phosphorous
Sulphur and Silicon and the Related Elements, Vol. 174, pp. 163-175.

SNNS, (1998), “User Manual”, Version 4.2, University of Stuttgart, Stuttgart, Germany.
Available: http://www-ra.informatik.uni-tuebingen.de/SNNS/ [1999, 12 April].

Statistics Canada, (1993), ‘“Microdata User’s Guide”, The Survey of Household Energy

Use, Ottawa, Ontario, Canada.

Stevenson, J.S., (1994), "Using Artificial Neural Nets to Predict Building Energy
Parameters”, ASHRAE Transactions, Vol. 100, No.2, pp.1081-1087

SYSTAT, (1998), “SYSTAT- Statistics”, SPSS Inc., Chicago, Illinois, USA.

Swamy, P.A., (1970), “Efficient Inference in a Random Coefficient Regression Model”,
Econometrica, Vol. 38, No. 2, pp. 311 —323.

Tomlinson, J.J., and Rizy, D.T., (1998), “Bern Clothes Washer Study”, Energy Division
Oak Ridge National Laboratory, Final Report, Prepared for US Department of Energy,
Oak Ridge, Tennessee, USA. Available:

http://www .eren.doe.gov/buildings/emergingtech/pdfs/bernrpt.pdf [2001, 5 November]

Train, K.E., (1992), “An Assessment of the Accuracy of Statistically Adjusted
Engineering (SAE) Models of End-use Load Curves”, Energy Journal, Vol. 17, No. 7,
pp- 713-723.



180

Ugursal, V.I, and Fung, A.S., (1994), "Energy Efficiency Technology Impact —

Appliances, Volume 1, Report Prepared for Canada Mortgage and Housing

Corporation, Ottawa, Ontario, Canada.

Ugursal, V.I, and Fung, A.S., (1996), "Impact of Appliance Efficiency and Fuel
Substitution on Residential End-use Energy Consumption in Canada", Energy and

Buildings, Vol. 24, No.2, pp. 137-146.

Ugursal, V.I,, and Fung, A.S., (1998), “Residential Carbon Dioxide Emissions in Canada:
Impact of Efficiency Improvements and Fuel Substitution”, Global Environmental

Change, Vol. 8, No. 3, pp. 263-273.

Weisberg, S., (1985), “Applied Linear Regression”, Second Edition, John Wiley and
Sons, New York, N.Y., USA.

Wittmann, C., Schmid, R.D., Loffler, S., and Zell, A., (1997), “Application of a Neural
Network for Pattern Recognition of Pesticides in Water Samples by Different
Immunochemical Techniques”, Immunochemical Technology for Environmental

Applications ACS Symposium Series, pp. 343-360.

Zeller, A., (1971), "An Introduction to Bayesian Inference in Econometrics", John
Wiley&Sons, Inc., New York, N.Y., USA.




181

APPENDICES



182

APPENDIX A

NN LEARNING ALGORITHMS



183

1. BACKPROPAGATION ALGORITHMS

The error signal of an output layer neuron is defined by (Rumelhart and McClelland,
1986; Fausett, 1994):

ek = tk - Yk (A.1)
where,

ty : target value

vk : predicted value

The total error is the sum of the square of the error signals for all of the output
units:

E=l i e, (A.2)

23

where,

E : total error or error function

m : number of output units

The factor of 1/2 in Equation A.2 is used for convenience in calculating
derivatives later. Since an arbitrary constant will appear in the final result, the presence of

this factor does not invalidate the derivation (Freeman and Skapura, 1991).

The input of an output layer neuron expressed as:
net, =izjwjk +b, (A3)
j=1
where,
nety : total input of the output layer neuron k
z; : input to the output layer neuron k from hidden layer neuron j
wijk : weight between the hidden layer neuron j and output layer neuron k

by : bias value of the output layer neuron k

p : number of neurons in the hidden layer
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Hence, the output of an output layer neuron becomes:

vk = f(nety) (A.4)

The weights between the hidden layer neurons and output layer neurons are
corrected by applying a weight correction term, Awy, which is proportional to the partial

derivative OE/0wy. By using the chain rule,

0E _ OE e, dy, onet,

= (A.5)
ow;  Oe, Oy, Onet, ow,
Differentiating both sides of Equation A.2 with respect to e;:
% _. (A.6)
Oe,
Differentiating both sides of Equation A.1 with respect to y;:
0
%k . (A.7)
Y,
Differentiating both sides of Equation A.4 with respect to nety:
9y
——— ={"(net A8
net. (net, ) (A.8)
Finally, differentiating both sides of Equation A.3 with respect to wy:
Onet
e _ z, (A.9)
oW
The substitution Equations A.6 to A.9 into Equation A.5 yields:
OE ,
ow =—e, f'(net, )z, (A.10)
A new term called the error information term, &, is defined as:
OE
o, = (A.11)

onet,
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By using Equations A.6 to A.8 and chain rule, ¢ is expressed as:

_OE % %

(A.12)
oe, Oy, Onet,

k=

=e¢, f'(net,)

=(t, —y,)f'(net,)

The calculation of error information terms for the hidden layer neurons is
complicated, since there is no specified desired response for the hidden layer neurons.
Even though hidden layer neurons are not directly accessible, they share responsibility for
any error made at the output of the network. Thus, the error signal for a hidden layer
neuron is determined in terms of the error signals of all the neurons to which the hidden

layer neuron is directly connected. Hence, the error information term can be expressed as:

OE

S =— A.13
! Onet | ( )

_® o
azj 6netj

JE
=—1f" 1.
P (ne J)

J

Differentiating Equation A.2 with respect to the functional signal f(net)) = z;:
LA,
GE _ Y e, =k (A.14)

By using the chain rule for the partial derivative Oei/0zj, Equation A.14 is

rewritten as:

OE & de, Onet,
—_— Zek r——
oz k=1

A.15
onet, 0z; ¢ )

i
The substitution of Equation A.4 into Equation A.1 yields:
ek =tk - Yk (A.16)
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= tx - f(nety)

Hence the partial derivative Oey/Onet, becomes:

Oe,
Onet,

= —f'(net, ) (A.17)

Also, the partial derivative Onet;/0z; can be written by using Equation A.3 as:
Onet,
0z.

}

Wy (A.18)

The substitution of Equations A.17 and A.18 into Equation A.15 yields:

E 3 e f(net,)w, (A.19)
aZj k=1

= ‘z (t, =y Of'(net, )w i
k=1

= ‘Zékw ik
k=1

Finally, the substitution of Equation A.19 into Equation A.13 yields:

8, =1f"(net))» 8, w, (A.20)
k=1

(a) Standard (Plain Vanilla) Backpropagation

For each output neuron, the error information term, &, is computed, and the weights are

adjusted as:

OE

Aw, =-1 (A.21)

jk
=1n(t - yi) f(netx) z;

=1 Ok Z;

7 : learning parameter
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Awix : weight correction term for weights between the hidden units and output

units

The learning parameter specifies the step width of the gradient descent, usually a
small number in the order of 0.05 to 0.25 (SNNS, 1998). The use of the minus sign in
Equation A.21 accounts for gradient descent in weight space, i.e., seeking a direction for

weight change that reduces the value of E.

For the weights to the hidden units:
Avy =ndx; (A.22)

k
=nf‘(netj)xi28kwjk
k=1

where,

Avj; : weight correction term for weights between the input units and hidden units

(b) Enhanced Backpropagation

The weight correction term is computed by using a momentum term and a flat spot

elimination value for the weights to the output units as:

Aij(H‘l) =1 O Zitu Awi(t) (A.23)

For the weights to the hidden units:

Avij(t+1) =1 & x; + p Avy(t) (A.24)
where,

u : constant specifying the influence of the momentum.

The typical values for the momentum term, y, are between zero and one (SNNS,
1998). The flat spot elimination value, ¢, is added to the derivative of the activation

function. For the weights to the output units:

Ok = f'(nety+c) (tk -yk) (A.25)
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For the weight to the hidden units:
8; = (neti+c) (tx -yi) (A.26)
where,

¢ : flat spot elimination value with a typical value of 0.1 (SNNS, 1998).

2. QUICKPROP

The partial derivatives of the error function with respect to the given weight is summed

over all training patterns, and is calculated as:

» OF
S() =) awl.) (A.29)

where,
S(t) : partial derivative of the error function

p : number of training patterns.

For a weight from a hidden unit to an output unit:
p
S () ==2 8¢ Zi (A.30)
p=i
and similarly, for a weight from an input unit to a hidden unit:
P
S(t) = _'Zl 8jpXicp (A.31)
p= .
The initial weight change is calculated by standard (vanilla) backpropagation as:

Aw(0) = -nS(0) (A.32)

The new weight change for weights to the output units is defined to be:

Sy (t)
Sjk(t _1) "Sjk (t)

AW, (t) = A, (t=1) (A.33)
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where,
Awjk(t) : weight correction term for the weights to the output units
Awji(t-1) : previous weight correction term for the weights to the output units
Sik(t) : partial derivative of the error function by wy

Sik(t-1) : previous partial derivative of the error function by wj

The new weight change for weights to the hidden units 1s defined to be:

8, (1)
Sij (t - 1) - Sij (t)

Avy(t) = Avy(t-1)x (A.34)
where,
Avii(t) : weight update value for the weights to the hidden units
Avii(t-1) : previous weight correction term for the weights to the hidden units
Sij(t) : partial derivative of the error function by vj;

Sij(t-1) : previous partial derivative of the error function by vj;

The weight correction term, A4, is used to determine the coefficients of the
polynomial. At the next step of iteration, the weight parameter is moved to the minimum

of the parabola.

If the current slope term is in the same direction as the previous slope, and it has
the same size or larger in magnitude than the previous slope, then the weight change
would be infinite, or the weight would be moved away from the minimum and toward a
maximum of the error (Fausett, 1994). To prevent this, weight change is limited by
multiplying the previous step by the maximum growth parameter, p. The typical values of

maximum growth parameter, p, are between 0.75 and 2.25 (SNNS, 1998).

A further refinement is used when the current slope has the same sign as the
previous one. In this case, the current slope is multiplied by the weight decay term, v, to
prevent the weight changed from being frozen (Fausett, 1994). The typical value of
weight decay term, v, is 0.0001 (SNNS, 1998).



3. RESILIENT PROPAGATION (RPROP)

The update value, g, for each weight is computed as:

jk

where,

ot ¢ if

ik

® ) o (t-1) if

jk

(t=1)

jk

oE " 8 ©
, >0
ik aij
oE ‘P g ©
, <0
6wjk awjk

, else

¢, : update value

(t-1) .
L S

oE Y
ow

oE ©

jk

summed over all training patterns

o : increase/decrease factor with a value of 0 <o < 1< o™

weight wjx summed over all training patterns

previous update value
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(A.35)

: previous partial derivative of the error function of the corresponding

- partial derivative of the error function of the corresponding weight wix

After the update value of each weight is computed, the weight correction term is

calculated as:

W _
Aw}.k =<

-6

-+

k2

k2

0, else

oE @

Woif—— >0
ow

jk

oE

Woif —— <0
ow

Jjk

(A.36)
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The increase and decrease factors are set to fixed values, i.e. a”=0.5 and o” =
1.2, in order to reduce the number of adjustable parameters (Riedmiller and Braun, 1993;

SNNS, 1998).

Weight decay term, f, is introduced to the error function to reduce the size of the
weight:
E=)(t, -y, ) +10*> wj, (A.37)
k=1 k=1
When learning starts, all update values are set to an initial value, @iz, Which
has a typical value of 0.01 (SNNS, 1998). In order to prevent the weights from becoming

too large, the maximum weight step determined by the size of the update value is limited.

The default value for the maximum update value, @y, is 50 (SNNS, 1998).
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ENERGY BILLING DATA

With the permission of the occupants, Statistics Canada obtained the complete year
energy billing data of a subset of 3,341 households in the 1993 SHEU database from their
fuel suppliers and utility companies. There are a total of 5,048 bills in the form of 3,400
electricity, 1,397 natural gas, and 251 oil. However, not all of the billing data appear to be
reliable as explained below. An analysis of the data indicated that out of these 5,048 bills,
a total of 3,298 bills from 2,749 households can be considered reliable. Within these
2,749, there are 2,050 households with electricity bills, 1,012 households with natural gas
bills, and 236 households with oil bills. The number of households with electricity, oil,

and natural gas bills is given in Table B.1.

Table B.1. Number of households with electricity, oil, and natural gas bills

Fuel Type of the Energy Billing Data Number of Households
Electricity 1,502
Natural gas 540
Oil 158
Electricity and natural gas 471
Electricity and oil 77
Natural gas and oil 1

1. Electricity:

e Monthly: Out of 2,398, there are 724 bills with missing data. Thus, the number of
bills reduces to 1,674.

o Bi-monthly: Out of 734, there are 138 bills with missing data. Thus, the number of
bills reduces to 596.

e Annual: There are 238 bills.

e None: There are 29 bills with no information.

The total number of electricity bills becomes 2,508 (1674 + 596 + 238 = 2,508).
Considering the fact that a typical household usually has at least a refrigerator and

lighting, a minimum electricity load comprising average refrigerator and lighting load
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was assumed to be the criterion for discarding the unacceptable billing data. Knowing that
on average a refrigerator consumes about 1,330 kWh/yr, and an average household has a
lighting consumption of about 1,770 kWh/yr (Fung e al., 1997; Ugursal and Fung, 1994),
an annual energy consumption of 3,000 kWh/yr was assumed as the minimum electrical
consumption of a household. After excluding these bills from the analysis, the total

number of bills reduces to 2,341.

Since only single detached and attached dwellings in the 1993 SHEU database is
used in this work, the billing data for apartments and mobile homes are discarded. Thus,

the number of bills is reduced to 2,050.

The electricity consumption in a household consists of space heating, DHW
heating, space cooling, appliance and lighting consumption. The number of households
which use each of the end-uses is given in Table B.2. Thus, there are only 633 households
that use electricity only for lighting and appliances, i.e., these households do not have

cooling and do not use electricity for space or DHW heating.

Table B.2. Electricity bill distribution based on end-use consumption

End-use Consumption Number of Households
Appliance and lighting 633
ALC 355
ALC and space heating 25
ALC and DHW heating 506
ALC, space, and DHW heating 531

The bi-monthly bills are converted to monthly bills by dividing the bi-monthly
consumption into two and combined with the monthly bills. When bills from mobile
homes and apartments are excluded, the number of monthly bills is reduced to 1,891. The
distribution of households with monthly electricity bills for each end-use is given in Table
B.3. Thus, there are only 523 households with monthly electricity bills that use electricity
only for lighting and appliances, i.e., these households do not have cooling and do not use

electricity for space or DHW heating.
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Table B.3. Monthly electricity bill distribution based on end-use consumption

End-use Consumption Number of Households
Appliance and lighting 523
ALC 338
ALC and space heating 21
ALC and DHW heating 484
ALC, space, and DHW heating 525

(a) Natural Gas:

e Monthly: Out of 1,113, there are 321 bills with missing data. Thus, the number of
bills reduces to 792.

¢ Bi-monthly: There are 20 bills.

e Annual: There are 217 bills.

e None: There are 47 bills with no information.

The total number of natural gas bills becomes 1,029 (792 + 20 + 217 = 1,029).
Since only single detached and attached dwellings in the 1993 SHEU database are used in
this work, the billing data for apartments and mobile homes are discarded. Thus, the

number of bills is reduced to 1,012.

The natural gas consumption in a household mainly consists of space and DHW
heating. Natural gas is also used for ranges, clothes dryers, fireplaces, backup furnaces for
heat pumps, supplementary heaters, and pool heaters; but the saturation of the households
using natural gas for these end-uses is very low. Hence, in this work natural gas
consumpti(;n for space and DHW heating are considered. There are seven households
with natural gas bills but do not have natural gas space or DHW heating, thus the number
of households with natural gas bills reduces to 1,005. The distribution of households for
each end-use are given in Table B.4. Thus, there are 63 households that use natural gas
for only space heating, 27 households using natural gas for only DHW heating, and 915
households using natural gas for both space and DHW heating.
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Table B.4. Natural gas bill distribution based on end-use consumption

End-use Consumption Number of Households
Space heating 63
DHW heating 27
DHW and space heating 915

The bi-monthly bills are converted to monthly bills by dividing the bi-monthly
consumption into two and combined with the monthly bills. When bills from mobile
homes and apartments are excluded, the number of monthly bills is reduced to 791. The
distribution of households with monthly natural gas bills for each end-use is given in
Table B.5. Thus, there are 35 households with monthly bills that use natural gas for only
space heating, 11 households using natural gas for only DHW heating, and 745
households using natural gas for both space and DHW heating.

Table B.5. Monthly natural gas bill distribution based on end-use consumption

End-use Consumption Number of Households
Space heating 35
DHW heating 11
DHW and space heating 745

(b) Oil:

o Separate deliveries full season: There are 95 bills.
o Total only: There are 152 bills.

e None: There are 4 bills with no information.

The total number of oil bills becomes 247 (95 +152 = 247). Since only single
detached and attached dwellings in the 1993 SHEU database are used in this work, the
billing data for apartments and mobile homes are discarded. Thus, the number of bills is

reduced to 236.
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The oil consumption in a household mainly consists of space and DHW heating.
QOil is also used for ranges, backup furnaces for heat pumps, supplementary heaters, and
pool heaters; but the saturation of the households using oil for these end-uses is very low.
Hence, in this work oil consumption for space and DHW heating are considered. There
are six households with oil bills but do not use oil as the fuel for space or DHW heating,
thus the number of households with oil bills reduces to 230. The distribution of
households for each end-use are given in Table B.6. Thus, there are 90 households that
use oil for only space heating, three households using oil for only DHW heating, and 137
households using oil for both space and DHW heating.

Table B.6. Oil bill distribution based on end-use consumption

End-use Consumption Number of Households
Space heating 90
DHW heating 3
DHW and space heating 137
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APPENDIX C

DEVELOPMENT OF THE DHW NETWORK DATASET
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DHW NETWORK DATASET

Billing data obtained from fuel suppliers and utility companies were available for a subset
of 3,341 households in the 1993 SHEU database. As shown in Appendix B, a total of
3,298 bills from 2,749 households were considered reliable. Out of these 2,749
households, there are 2,050 households with electricity bills, 1,012 households with
natural gas bills, and 236 households with oil bills. The screening processes used in the
selection of the households with the billing data for the development of the DHW

network dataset are presented in the following sections.

1. Households with Electricity Bills

There are 2,050 households with electricity bills. The distribution of these households
based on their end-use electricity consumption is given in Table B.2 of Appendix B. As
seen in Table B.2 of Appendix B, there are 506 households using electricity for ALC and
DHW heating, and 531 households using electricity for ALC, DHW, and SH.

The electricity consumption data for the 506 households using electricity for

ALC and DHW heating were screened as follows:

1. The ALC electricity consumption estimated by the ALC NN model was deducted
from the annual electricity consumption of the 506 households, and 94 households
were found to have negative values. This shows that these households consumed less
energy for ALC and DHW heating than the estimated values. This could be due to the
vacancy of the dwellings for long periods of time or an error associated with the billing

data. Thus, these 94 households were excluded from the analysis.

2. The minimum likely annual electricity consumption, Oy, (MJ/yr), of a household for

DHW heating was estimated using Equation C.1 assuming that:

- the household has one occupant,
- DHW heating system efficiency is 0.96,

- average annual ground temperature is 12 °C (285K).
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mcAT
= (C.1)
Qmm EF
where m : annual DHW consumption, kg/yr
c: 4.184 10™ MJ/kgK

AT: [318 K — Average annual ground temperature, K]'
EF: efficiency of the DHW heating system

The annual DHW consumption (m) of a household can be estimated from Equation
C.2 (NRCan, 1996).

m (kg/d) = [85 1/d + (35 1/d-people * no. people)] * 365 d/yr * 0.997 kg/l (C.2)

Using Equations C.1 and C.2, the minimum likely annual electricity consumption of a
household for DHW heating was calculated as 6,280.7 MJ/yr = 1,745 kWh/yr. There
were 71 households with DHW heating consumption values less than 1,745 kWh.

These 71 households were therefore excluded from the analysis.

Thus, the number of households with electricity bills and using electricity for
ALC and DHW heating was reduced to 341 after excluding the 165 (= 94 + 71)

households as shown above.

There are 531 households using electricity for ALC, and DHW and SH in the
billing dataset. The ALC electricity consumption of these households was estimated by
the ALC NN model. To include these households in the dataset used for the development
of the DHW network, the amount of electricity consumed for SH by these households

should be estimated.

Assuming that the monthly ALC electricity consumption of these households
was constant throughout the year, the annual ALC electricity consumption estimated by

the ALC NN model for these households was divided by twelve and deducted from the

! It was assumed that the DHW was distributed at 45°C (318K) in the households. Therefore, AT used in
Equation C.1 is 318K- 285K = 33K.
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monthly electricity consumption. Therefore, the remaining monthly electricity

consumption of these households accounted for DHW and SH electricity consumption.

It was assumed that during summer months (i.e. June, July, and August), the
electricity consumption of these households accounted only for DHW heating, and there
was not any electricity consumption for SH. The minimum monthly electricity
consumption in these summer months can be taken as the household’s monthly DHW
heating electricity consumption. Therefore, the annual DHW heating electricity
consumption can be calculated by multiplying this monthly electricity consumption by

12. This method is termed as “Summer Months Method (SMM)”.

It was assumed that the monthly DHW consumption is constant throughout the
year. Thus, the month-to-month variation in the DHW heating energy consumption would
be due to the month-to-month change in the average ground temperature. It was also
assumed that the DHW temperature is maintained at 318 K (45°C). For example, the
DHW heating energy consumption (Q) of a household in January and in August would
be:

Quan = m[kg] * c[MI/kgK] * (318 - GTyMK])
Quuc = mikg] * c[MJ/kgK] * (318 - GT4u[K])

where GT is the average annual ground temperature in K. The ratio of the DHW heating

energy consumption in January to that in August is:

QJAN — 318'GTJAN = AT.IAN
QAUG 318’GTAUG ATAUG

If the household’s electricity consumption in August was the minimum monthly
electricity consumption within summer months, i.e. there was no electricity consumption
for SH in August, and electricity consumption in this month accounted for ALC and
DHW heating. Then, the DHW heating energy consumption in January can be calculated
applying the SMM as:

- Ut

= *
Qv = Qave 318-GT g AT
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Therefore, the SMM can be formulized as:

0,
=—L AT, C3
Q=3 7, A (C.3)
where Q is the monthly electricity consumption, AT is the temperature difference (i.e. 318

— GT ), i represents the months other than the month with the minimum electricity

consumption, and j represents the month with the minimum electricity consumption.

The monthly electricity consumption information of the 531 households was
required to apply the SMM. Out of 531 households, 525 of them had monthly electricity
bills as given in Table B.3 of Appendix B. The average monthly ground temperatures
were available only for 22 cities in 1993 from Environment Canada (Environment
Canada, 1999). The cities, in which these 525 households with monthly electricity bills
were located, were matched with the closest cities with the average monthly ground

temperature data.

The electricity consumption data of the 525 households using electricity for

DHW and SH were screened before applying the SMM.

1. There were 75 households with A/C units in the set of 525 households with monthly
electricity bills. The A/C unit increases the electricity consumption in the summer

months, therefore these 75 households were excluded from the analysis.

2. The monthly electricity consumption values of each of the remaining 450 (=525-75)
households were plotted to check if the minimum electricity consumption occurred
in one of the three summer months and if the household had a “reasonable” annual
electricity consumption pattern. An electricity consumption pattern was deemed
reasonable if the peak consumption occurs in winter months and the minimum
occurs in summer months. The monthly electricity consumption of a sample
household using electricity for ALC, and DHW and SH with a “reasonable” annual
electricity consumption pattern, and the monthly average ground temperature at the
region the household was located are given in Figure C.1. As seen in Figure C.1, the

household had a “reasonable” annual electricity consumption pattern, which
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gradually increases in winter months and decreases in summer months. It was found
that 294 households did not have ‘“reasonable” electricity consumption patterns;
such as minimum electricity consumption occurring in one of the winter months, or
maximum electricity consumption occurring in one of the summer months, or
sudden increase or decrease in consumption occurring in-between seasons. Thus,

these 294 households were excluded from the analysis.
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Figure C.1. Monthly electricity consumption and average monthly ground temperature of

a sample household using electricity for DHW and SH

The annual ALC electricity consumption estimated by the ALC NN model for
these households was divided by twelve and deducted from each month’s electricity
consumption of the remaining 156 (= 450-294) households. Then, the SMM was applied
to the each of 156 households as follows:

- Electricity consumption of each month was divided by the monthly temperature

difference of that month, i.e. AT in Equation C.3 (= 318 — monthly GT).
0

- The monthly electricity consumption with the minimum T value was taken as the

month in which there was no electricity consumption for SH, and the household
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electricity consumption accounted only for DHW heating. This value was then
multiplied by the monthly temperature difference of each of the remaining eleven
months.

- The summation of computed Q values of the eleven months and the electricity

0

- consumption of the month with minimum N value represented the annual DHW

heating electricity consumption.

The annual DHW heating electricity consumption values of the 156 households

estimated by the SMM were analyzed, and it was found that:

1. There were 40 households with negative DHW heating electricity consumption

values. Thus, these 40 households were excluded from the analysis.

2. There were also 26 households with DHW heating consumption values less than

1,745 kWh. These 26 households were excluded from the analysis.

Thus, the number of households with electricity bills and using electricity for
ALC, and space and DHW heating reduced to 90 after excluding the 66 (= 40 + 26)

households as given above.

As a total, 431 (= 341 + 90) households with electricity bills remained in the
dataset. An additional screening process was applied to the remaining 436 households by

examining their daily DHW consumption values.

As the number of occupants increases, the daily DHW consumption increases.
The household with the maximum number of occupants in the 1993 SHEU database have
eleven occupants. Therefore, this household would likely have the maximum daily DHW
consumption amongst the households in the 1993 SHEU database. Using Equation C.2, it
was found that the daily DHW consumption of this household was 470 1/day.

The maximum number of weekly dishwasher and clothes washer loads reported
in the 1993 SHEU database was 15 loads per week. It was stated by Tomlimson and Rizy
(1998) that average clothes washer DHW consumption was 25 liters per load in a study

covering 103 households in USA. The average dishwasher DHW consumption was
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reported in EnerGuide- 1994 (NRCan, 1994) as 40 liters for one load. Therefore, daily
dishwasher and clothes washer DHW consumption of a household with 15 loads per week

would be about 140 liters.

Thus, the maximum likely daily DHW consumption for the households in the
1993 SHEU database would be 610 /day. Therefore, the daily DHW consumption values

of the remaining 431 households with electricity bills should be lower than this value.

The DHW consumption values of the remaining 431 households were calculated

using Equation C.4.

- O*EF
365[d/yr]* c* AT *p

(C.4)

where m:  daily DHW consumption, L/day
Q: DHW heating energy consumption, MJ/yr
EF: efficiency (0.96 for tankless systems and 0.824 for systems with tanks)
c:  4.18410° MJ/kgK
AT: 318 K - Average annual ground temperature, K
p: water density, kg/L = 0.997 kg/L

It was found that there were 43 households with DHW consumption values
higher than 610 L/day. These 43 households were excluded from the analysis, and the
remaining 388 (= 431 — 43) households with electricity bills were deemed to have reliable
electricity consumption data to be used in the dataset for the development of the DHW

network.

2. Households with Natural Gas Bills

There are 1,012 households with natural gas bills. The distribution of these households
based on their end-use natural gas consumption is given in Table B.4 of Appendix B. As
seen in Table B.4 of Appendix B, there are 27 households using natural gas only for
DHW heating, and 915 households using natural gas for DHW and SH. There are seven
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households with natural gas bills, but the data indicate that they do not use natural gas

fueled space or DHW heating equipment, or any other natural gas fueled appliances.

Out of 915 households using natural gas for space and DHW heating, 745 of
them had monthly natural gas bills as given in Table B.5 of Appendix B. Therefore, the
annual DHW heating natural gas consumption of these 745 households with monthly
natural gas bills could be estimated using the SMM. Before applying the SMM, some

screening processes were applied to these 745 households:

1. The monthly natural gas consumption of each of the 745 households was examined if
the minimum monthly natural gas consumption occurred in the summer months (i.e.
June, July, and August). It was found that 488 households had minimum monthly
natural gas consumption in January, February, March, April, May, September,
October, November, or December. Thus, these 488 households were excluded from

the analysis.

2. The minimum likely annual DHW heating natural gas consumption was calculated
using Equation C.1 and C.2, and assuming that:
- the household has one occupant, |
- DHW heating system efficiency is 0.80,

- average annual ground temperature is 12 °C (285K).

With these assumptions, the minimum likely annual DHW heating natural gas
consumption was calculated as 7,536.8 MJ/yr ~ 202 m*/yr ~ 17 m*/month. There were
three households with monthly DHW heating consumption values less than 17 m’.

These three households were excluded from the analysis.

3. There might be other sources of natural gas consumption in the households other than
the natural gas fueled space and DHW heating systems. The natural gas fueled
appliances reported in the 1993 SHEU database that would contribute to the natural
gas consumption of a household are:

- Oven/stove

- Dryer
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- Pool heater
- Fire place

- Supplementary heater

There were 59 households with monthly natural gas bills using one or more of the
above natural gas fueled appliances. Thus, these 59 households were excluded from

the analysis.

4. The monthly natural gas consumption values of each of the remaining 195 (= 745 -
488 — 3 — 59) households were plotted to check if the household had a “reasonable”
annual natural gas consumption pattern, which gradually increases in winter months
and decreases in summer months. It was found that 26 households did not have
“reasonable” monthly natural gas consumption patterns. Thus, these 26 households

were excluded from the analysis.

Thus, the number of households with monthly natural gas bills reduced to 169
after excluding the 576 (488+3+59+26) households as given above. The SMM was
applied to these remaining 169 households, and their annual DHW heating natural gas

consumption was estimated.

There were 27 households using natural gas only for DHW heating, 19 of these
households had natural gas consumption values either less than 200 m® or more than 2000
m’. Thus, 19 households with unacceptable DHW heating energy consumption values
were excluded from the analysis. Therefore, only eight of these 27 households were

deemed to have acceptable natural gas DHW heating consumption values.

As a total, 177 (= 169 + 8) households with natural gas bills were left in the
analysis. An additional screening process was applied to the remaining 177 households by
examining their daily DHW consumption values. The daily DHW consumption values of
these 177 households were calculated using Equation C.4. Two households with daily
DHW consumption values higher than 610 L/day were excluded from the analysis.

Finally, remaining 175 (= 177 - 2) households with natural bills were deemed to have
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reliable natural gas consumption data used to be used in the dataset for the development

of the DHW network.

3. Households with Qil Bills

There are 236 households with oil bills. The distribution of these households based on
their end-use consumption is given in Table B.6 of Appendix B. As seen in Table B.6 of
Appendix B, there are three households using oil only for DHW heating and 137
households using oil for DHW and SH. There are six households with oil bills, but the
data indicate that they do not use oil fueled space or DHW heating equipment, or any

other oil fueled appliances.

The billing data of the 230 households with oil bills were all in the annual form.
Since there was no household with monthly oil bills, the SMM could not be applied to the
households with oil bills and using oil for space and DHW heating.

There were three households with oil bills and using oil only for DHW heating.
The annual oil consumption values of these three households were all higher than 2700 L.
The maximum likely annual oil consumption for DHW heating was calculated using
Equation C.1 and C.2, and assuming that:
- the household has eleven occupants (maximum number of occupants reported in the

1993 SHEU database),

- DHW heating system efficiency is 0.50,
- average annual ground temperature is 5 °C (278K, minimum average annual ground

temperature in Canada in 1993).

With these assumptions, the maximum likely annual DHW heating oil
consumption was calculated as 57,250 MJ/yr ~ 1500 L/yr. Therefore, the DHW heating
oil consumption values of these three households were found unacceptably high. Thus,
none of the 230 households oil bills were found reliable to be used in the dataset for the

development of the DHW network.
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APPENDIX D

DEVELOPMENT OF THE SH NETWORK DATASET
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SH NETWORK DATASET

Billing data obtained from fuel suppliers and utility companies were available for a subset
of 3,341 households in the 1993 SHEU database. As shown in Appendix B, a total of
3,298 bills from 2,749 households were considered reliable. Out of these 2,749
households, there are 2,050 households with electricity bills, 1,012 households with
natural gas bills, and 236 households with oil bills. The screening processes used in the
selection of the households with the billing data for the development of the SH network

dataset are presented in the following sections.

1. Households with Electricity Bills

There are 2,050 households with electricity bills. The distribution of these households
based on their end-use electricity consumption is given in Table B.2 of Appendix B. As
seen in Table B.2 of Appendix B, there are 25 households using electricity for ALC and
SH, and 531 households using electricity for ALC, DHW, and SH.

The ALC electricity consumption estimated by the ALC NN model was
deducted from the annual electricity consumption of the 25 households which use
electricity for ALC and SH, and 12 households were found to have negative values. Thus,

these 12 households were excluded from the analysis.

There are 531 households using electricity for ALC, DHW, and SH in the billing
dataset. The ALC and DHW NN models were used to estimate the ALC and DHW
heating electricity consumption of these households, respectively. The SH electricity
consumption of the 531 households were calculated by deducting the ALC and DHW
heating electricity consumption estimates from the annual electricity consumption. From
this calculation, 55 households were found to have negative values. Thus, these 55

households were excluded from the analysis.
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The number of households with electricity bills reduced to 489 after excluding
67 (= 55 + 12) households as explained above. The distribution of the electricity billing
data of the 489 households is given in Figure D.1.
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Figure D.1. Distribution of the electricity billing data of the 489 households

As seen from Figure D.1, the annual electricity consumption values of the 489
households are mostly between 5,000 kWh and 35,000 kWh. Thus, the 72 households
with billing data less than 5,000 kWh or more than 35,000 kWh were excluded from the
analysis. This left 417 households with electricity billing data in the analysis.

2. Households with Natural Gas Bills

There are 1,012 households with natural gas bills. The distribution of these households
based on their end-use natural gas consumption is given in Table B.4 of Appendix B. As
seen in Table B.4 of Appendix B, there are 63 households using natural gas only for SH,

and there are 915 households using natural gas for DHW and SH. There are seven
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households with natural gas bills, but the data indicate that they do not use natural gas

fueled space or DHW heating equipment, or any other natural gas fueled appliances.

There might be other sources of natural gas consumption in the households with
natural gas bills other than the natural gas fueled space and DHW heating systems. The
natural gas fueled appliances reported in the 1993 SHEU database that would contribute

to the natural gas consumption of a household are:

- Oven/stove
- Dryer

- Pool heater
- Fire place

- Supplementary heater

There were 165 households with natural gas bills using one or more of the above natural
gas fueled appliances. Thus, these 165 households were excluded from the analysis. This
reduced the number of households with natural gas bills to 813: 53 of them use natural

gas only for SH and 760 of them use natural gas for DHW and SH.

The DHW heating natural gas consumption of the 760 households was estimated
by the DHW NN model. The SH natural gas consumption of these 760 households were
calculated by deducting the DHW heating natural gas consumption estimates from the
annual natural gas consumption. The distribution of the natural gas billing data of the 813

households is given in Figure D.2.

As seen from Figure D.2, the annual natural gas consumption values of the 813
households are mostly between 700 m® and 5,000 m’. Thus, the 29 households with
billing data less than 700 m> or more than 5,000 m’ were excluded from the analysis. This

left 784 households with natural gas billing data in the analysis.
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Figure D.2. Distribution of the natural gas billing data of the 813 households

3. Households with Qil Bills

There are 236 households with oil bills. The distribution of these households based on
their end-use consumption is given in Table B.6 of Appendix B. As seen in Table B.6 of
Appendix B, there are 90 households using oil only for SH and 137 households using oil
for DHW and SH. There are six households with oil bills, but the data indicate that they
do not use oil fueled space or DHW heating equipment, or any other oil fueled

appliances.

The DHW heating energy consumption of the households using oil were not
estimated by the DHW NN model, since the households using oil for DHW heating were
not included in the dataset used to develop the DHW NN model. Therefore, the 137
households using oil for space and DHW could not be included in the dataset since their

oil consumption for DHW heating were not estimated.
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There might be other sources of oil consumption in the 90 households with oil
bills other than the oil fueled SH systems. The oil fueled appliances reported in the 1993

SHEU database that would contribute to the oil consumption of a household are:

- QOven/stove
- Pool heater
- Fire place

- Supplementary heater

There were three households with oil bills using one or more of the above oil
fueled appliances. Thus, these three households were excluded from the analysis. This
reduced the number of households with oil bills to 87. The distribution of the oil billing

data of the 87 households is given in Figure D.3.
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As seen from Figure D.3, the annual oil consumption values of the 87
households are mostly between 700 L and 4,500 L. Thus, the six households with billing
data less than 700 L or more than 4,500 L were excluded from the analysis. This left 81

households with oil billing data in the analysis.

4. Final SH NN Model Dataset

These exclusions left 1,282 households in the analysis: 417 with electricity bills, 784 with
natural gas bills, and 81 with oil bills. During the input unit selection step, it was found
that 43 households in the dataset have missing information for the chosen input units in

the 1993 SHEU database. Thus, these 43 households were excluded from the analysis.

A few number of households in the database use heat pump systems as their SH
equipment. Due to the small number of households with these systems and lack of
information on the coefficient of performance values of these systems, eleven households
that use heat pump systems in the dataset were excluded from the analysis. Thus, the
number of households left in the dataset is 1,228 (1282 - 43 —11): 396 with electricity
bills, 755 with natural gas bills, and 77 with oil bills.
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APPENDIX E

CONFIGURATION OF THE NN MODEL
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1. ALC NN MODEL

The NN model developed to estimate the ALC energy consumption has 55 input layer
units, nine units in each of the three hidden layers, and one output layer unit. As shown in
Figure E.1, the units from one to 55 represent the input layer units, units from 56 to 82

represent the hidden layer units, and units 83 is the output layer unit.
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Figure E.1. Architectural configuration of the ALC NN Model
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The unit definition section of the SNNS output for the ALC NN Model is given
in Figure E.2. The bias values of the hidden and output layer units are given in the third

column.

No. | Name | Bias Type | Activation F.|
B o] REEEE e EPS e e |
1 | Main Refrigerator input | |
2 | Secondary Refri. input |
3 | stove input |
4 | Dishwasher input |
5 | Main Freezer | input |
6 | Secondary Freezer | input
7 | Clothes Washer | input |
8 Clothes Dryer input
9 Microwave input
10 Color TV input
11 BW TV input
12 Furnace Fan input
i3 Boiler Pump input
14 Supplementary Ht. input
15 VCR input
16 CD Player input
17 Stereo input
18 Computer input
19 Electric Blanket input
20 Water Bed input
21 Humidifier input
22 Dehumidifier input
23 | Car Block | input
24 | Car Warmer | input |
25 | Water Cooler | input
26 | Fish Tank | input |
27 | Bath. Exh. Fan | | input
28 | Kitch. Exh. Fan | input |
29 | Central Air Filter | input | |
30 | Central Humidifi. | input |
31 | Central Dehumidif. | input |
32 | Central Air Exch. | input
33 | HRV input
34 | Central Vacuum input
35 Sump Pump input
36 Water Softener input
37 Jacuzzi input
38 | Sauna | input
39 | Ceiling Fan | input
40 Portable Fan input
41 Central A/C input
42 Window A/C input
43 Halogen input
44 Fluorescent input
45 Incandescent input
46 HDD input
47 CDD input
48 Area input
49 Income input
S0 Dwelling Type input

Figure E.2. Unit definition of the ALC NN Model
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51 | Ownership input | |
52 Population input | |
53 | No. of Children input | |
54 | No. of Adults | | input | |
55 | Employment Ratio | | input | |
56 -0.03352 | hidden | Logistic |
57 0.43477 | hidden | Logistic |
58 | 0.54654 | hidden | Logistic i
59 | -0.14504 | hidden | Logistic ]
60 | -0.58060 | hidden | Logistic |
61 | -0.99884 | hidden | Logistic |
62 0.98134 | hidden | Logistic |
63 | -0.89134 | hidden | Logistic |
64 | -1.36429 | hidden | Logistic |
65 -0.77716 | hidden Logistic |
€6 0.10899 | hidden Logistic |
67 -0.62399 | hidden Logistic |
68 | 0.85723 | hidden Logistic |
69 | | 0.93863 | hidden Logistic |
70 0.09220 | hidden Logistic |
71 -0.59255 | hidden Logistic |
72 -0.74478 | hidden Logistic |
73 -1.17445 | hidden Logistic |
74 -0.77444 | hidden Logistic |
75 -0.07289 | hidden Logistic |
76 0.28001 | hidden Logistic |
77 0.03338 | hidden Logistic |
78 -0.24248 | hidden | Logistic |
79 0.00637 | hidden | Logistic |
80 -0.53576 | hidden Logistic |
81 -0.72210 | hidden Logistic |
82 -0.59786 | hidden Logistic |
83 | | -0.29669 | output Identity |
Rl B | -momeee e R Tl R EE |

Figure E.2. (continued) Unit definition of the ALC NN Model

The values of the weights between the units of the ALC NN Model are given in
Figure E.3.
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The output of the ALC NN Model can be calculated by applying Equations E.1
to E.4. Since the hidden layer activation function was chosen to be the logistic function
(Equation 2.2), the outputs of the hidden layer units are calculated using the logistic
function. Identity function (Equation 2.4) was chosen for the output layer unit, thus the

output of the unit at the output layer is calculated using the identity function.

The output of each first hidden layer unit is calculated as follows:

1
Z;= (E.1)

J 55
- .ZXiVij +bj
1+e \i=l

Similarly, the outputs of each second and third hidden layer units are calculated

using Equations E.2 and E.3, respectively.

1
up = E.2
I 64 (E-2)
— z stjl +b1
1+e \J=%
= 1 E3
I = = E3)
-| Zuptg+by
1+e \I=65
The output of the network is calculated as follows:
82
Ym = XTcWkm *+bm (E4)
k=74

where,
x;:  input to the first hidden layer unit j from input layer unit i
z;:  output of the first hidden layer unit j / input to the second hidden layer unit
1 from first hidden layer unit j



u;:

Ik:

Si1-

tik:

b|2
ka

— e

g 7
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output of the second hidden layer unit 1 / input to the third hidden layer unit
k from second hidden layer unit I

output of the third hidden layer unit k / input to the output layer unit m
from third hidden layer unit k

weight between the input layer unit i and first hidden layer unit j

weight between the first hidden layer unit j and second hidden layer unit 1
weight between the second hidden layer unit 1 and third hidden layer unit k
weight between the third hidden layer unit k and output layer unit m

bias of the first hidden layer unit j

bias of the second hidden layer unit 1

bias of the third hidden layer unit k

bias of the output layer unit m

number of input layer units (1 to 55)

number of first hidden layer units (56 to 64)

number of second hidden layer units (65 to 73)

number of third hidden layer units (74 to 82)

output layer unit (83)
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2. DHW NN MODEL

The NN model developed to estimate the DHW heating energy consumption has 18 input
layer units, 29 hidden layer, and one output layer unit. As shown in Figure E.4, the units
from one to 18 represent the input layer units, units from 19 to 47 represent the hidden

layer units, and units 48 is the output layer unit.

Input Layer Units

Output Layer Unit

Figure E.4. Architectural configuration of the DHW NN Model
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The unit definition section of the SNNS output for the DHW NN Model is given

in Figure E.5. The bias values of the hidden and output layer units are given in the third

column.
No Name Bias | Type Activation F. |
B B SRl EEREE R |
1 | Shared System | input
2 | No. of Tanks | input | |
3 | Tank Age | input | |
4 | Tank Size | input |
5 | Tank Blanket input |
6 Pipe Insulation input |
7 | Low Flow Showers input
8 | Aerators | input |
9 System Efficiency | input |
10 | Ground Temp. input |
11 | Clothes Washer Loads input
12 | Dishwasher Loads input |
13 | No. of Children input | |
14 | No. of Adults input | |
15 | Income input |
16 | Dwelling type input |
17 | Ownership input [
18 Population input !
19 0.43783 | hidden Logistic |
20 -0.19880 | hidden Logistic |
21 0.47309 | hidden Logistic
22 0.26038 | hidden Logistic |
23 -0.54827 | hidden | Logistic |
24 0.45152 | hidden | Logistic |
25 | 0.53175 | hidden Logistic |
26 | -0.27679 | hidden Logistic |
27 0.34231 | hidden Logistic
28 0.46766 | hidden Logistic
29 | 0.87066 | hidden Logistic
30 | 0.56837 | hidden Logistic
31 | | 0.06767 | hidden Logistic
32 | | 0.27738 | hidden Logistic
33 | 0.06953 | hidden | Logistic
34 | -0.50163 | hidden | Logistic
35 | 0.14777 | hidden Logistic
36 | 0.76758 | hidden Logistic
37 | -0.75195 | hidden Logistic
38 | -0.62799 | hidden Logistic
39 | -0.81846 | hidden Logistic
40 | -0.18931 | hidden Logistic
41 | 0.19161 | hidden Logistic
42 | 0.65300 | hidden Logistic
43 | 0.50905 | hidden Logistic
44 | 0.76856 | hidden Logistic
45 | 0.53077 | hidden Logistic
46 | -0.83590 | hidden Logistic
47 | -0.42768 hidden Logistic
48 | 0.08354 output Logistic
T [ I

Figure E.5. Unit definition of the DHW NN Model

The values of the weights between the units of the DHW NN Model are given in
Figure E.6.
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The output of the DHW NN Model can be calculated by applying Equations E.5

and E.6. Since the hidden and output layer activation functions were chosen to be the

logistic function (Equation 2.2), the outputs of the hidden and output layer units are

calculated using the logistic function.

where,

The output of each hidden layer unit is calculated as follows:

1
Z;= (E.5)

J 18
- 'invij +b_)
1+e \i=l

The output of the network is calculated as follows:

1

Ym= 47
- z ijjm +bm
14+e =1

(E.6)

Xi:  input to the hidden layer unit j from input layer unit i

z;:  output of the hidden layer unit j / input to the output layer unit m from
hidden layer unit j

vij:  weight between the input layer unit i and hidden layer unit j

Wim: Wweight between the hidden layer unit j and output layer unit m

bj:  bias of the hidden layer unit j

bm: Dbias of the output layer unit m

i number of input layer units (1 to 18)

iE number of hidden layer units (19 to 47)

m: output layer unit (48)
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3. SH NN MODEL

The NN model developed to estimate the SH energy consumption has 28 input layer
units, two hidden layer, and one output layer unit. As shown in Figure E.4, the units from
one to 28 represent the input layer units, units from 29 and 30 are the hidden layer units,

and units 31 is the output layer unit.

Input Layer Units

den Layer Units
\\ @ Output Layer Unit

Figure E.7. Architectural configuration of the SH NN Model
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The unit definition section of the SNNS output for the SH NN Model is given in
Figure E.8. The bias values of the hidden and output layer units are given in the third

column.
No. | Name | Bias | Type | Activation F. |
T Ll EEEERE e | -ommmmme e |
1 | Dwelling Type 0.20707 | input |
2 | No. of Doors -0.68097 | input |
3 | No. of Triple Windows 0.29333 | input |
4 | No. of Double Windows 0.10683 | input | |
5 | No. of Single Windows 0.36261 | input | |
6 | Main Wall Area | -0.77286 | input | |
7 | Floor Area | 0.96883 | input | |
8 | Basement Wall Area -0.16818 | input |
9 | Basement Floor Area 0.68126 | input | |
10 | Roof Area 0.23257 | input |
11 | Heated Basement -0.38201 | input | |
12 | Heated Garage 0.88228 input
13 | Dwelling Age Cat. -0.79971 | input
14 | Wall Age Cat. | 0.67291 | input
15 | Roof Age Cat. 0.68186 | input
16 | Basement Wall Age Cat. -0.06613 input
17 | Basement Floor Age Cat. -0.20829 input
18 | System Efficiency -0.16540 input
19 | HRV 0.46006 | input |
20 | Thermostats 0.21904 | input
21 | Indoor Temperature 0.41320 | input
22 | HDD -0.48475 | input
23 | Owner 0.40295 | input
24 | Income 0.84892 | input
25 | No. of Children 0.19003 | input
26 | No. of Adults | -0.71476 input
27 | Daytime Occupancy -0.88394 input
28 | Population -0.32566 | input |
29 | -0.56311 | hidden | Identity
30 | 0.89065 | hidden | Identity
31 | | 0.08948 | output | Logistic
S| R R

Figure E.8. Unit definition of the SH NN Model

The values of the weights between the units of the SH NN Model are given in
Figure E.9.
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The output of the SH NN Model can be calculated by applying Equations E.7
and E.8. Since the hidden layer activation function was chosen to be the identity function
(Equation 2.4), the outputs of the hidden layer units are calculated using the identity
function. Logistic function (Equation 2.2) was chosen for the output layer unit, thus the

output of the unit at the output layer is calculated using the logistic function.
The output of each hidden layer unit is calculated as follows:
28

zj= .leivij + b_] (E.7)
1=

The output of the network is calculated as follows:

1

Ym = 0
-—( Z Zjom+bmj
l+e

(E.8)
j=29

where,
Xi:  input to the hidden layer unit j from input layer unit 1
z;: output of the hidden layer unit j / input to the output layer unit m from
hidden layer unit j
vii:  weight between the input layer unit i and hidden layer unit j
wim: weight between the hidden layer unit j and output layer unit m
b;:  bias of the hidden layer unit j
bm:  bias of the output layer unit m
1 number of input layer units (1 to 28)
J: number of hidden layer units (29 to 30)

m: output layer unit (31)
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APPENDIX F

CDA MODEL REGRESSION ANALYSIS
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1. CDA ELECTRICITY MODEL

The SYSTAT commands for the regression analysis of the CDA EM are given in Figure
F.1.

REGRESS
USE "D:\Merih\Networks\CDA\ELECTRICITY\ELECTRICITY.SYD"
LET WINDOW TRIPLE + DOUBLE + SINGLE

LET HHSIZE CHILD + ADULT
LET LIGHTS = HALO + FLOU + INCA

LET PROGT1 = SH * PROGT
LET HRV1 SH * HRV

LET AIT1 = SH * AIT

LET DTYPE1l = SH * DTYPE
LET AREAl = SH * AREA

LET AGECAT1 = SH * AGECAT
LET BSMNT1 = SH * BSMNT
LET GARAGEl = SH * GARAGE
LET ATTIC1 = SH * ATTIC
LET TRIPLEl SH * TRIPLE
LET DOUBLEl1l = SH * DOUBLE
LET SINGLEl = SH * SINGLE
LET DOOR1 = SH * DOOR

LET HDD1 = SH * HDD

LET OWNER1 = SH * OWNER
LET INCOMEl = SH * INCOME
LET CHILD1 = SH * CHILD
LET ADULT1 = SH * ADULT
LET DAYTIME1l = SH * DAYTIME
LET POPUL1 = SH * POPUL
LET WINDOW1 = SH * WINDOW
LET HHSIZEl1l = SH * HHSIZE

LET AREA2= SSH * AREA

LET HDD2 = SSH * HDD

LET AIT2 = SSH * AIT

LET CHILD2 = SSH * CHILD

LET ADULT2 = SSH * ADULT

LET DAYTIME2 = SSH * DAYTIME
LET HHSIZE2 = SSH * HHSIZE

Figure F.1 SYSTAT commands for the CDA EM regression analysis
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LET TANK3 = DHW * TANK
LET SYSAGE3 = DHW * SYSAGE

LET BLANKET3 = DHW * BLANKET
LET PIPEINS3 = DHW * PIPEINS
LET LOWFLOW3 = DHW * LOWFLOW
LET AERATOR3 = DHW * AERATOR

LET GT3 = DHW * GT

LET CWLOAD3 = DHW * CWLOAD
LET DWLOAD3 = DHW * DWLOAD
LET DTYPE3 = DHW * DTYPE
LET OWNER3 = DHW * OWNER
LET INCOME3 = DHW * INCOME
LET ADULT3 = DHW * ADULT
LET CHILD3 = DHW * CHILD
LET HHSIZE3 = DHW * HHSIZE

LET CACUSE4 = CAC * CACUSE
LET DTYPE4 = CAC * DTYPE
LET AREA4 = CAC * AREA

LET AGECAT4 = CAC * AGECAT
LET ATTIC4 = CAC * ATTIC
LET TRIPLE4 = CAC * TRIPLE
LET DOUBLE4 = CAC * DOUBLE
LET SINGLE4 = CAC * SINGLE
LET DOOR4 = CAC * DOOR

LET CDD4 = CAC * CDD

LET OWNER4 = CAC * OWNER
LET INCOME4 = CAC * INCOME
LET CHILD4 CAC * CHILD
LET ADULT4 = CAC * ADULT
LET DAYTIME4 = CAC * DAYTIME
LET WINDOW4 = CAC * WINDOW
LET HHSIZE4 = CAC * HHSIZE

LET WACUSES WAC * WACUSE
LET AREA5 = WAC * AREA

LET AGECAT5 = WAC * AGECAT
LET CDD5 = WAC * CDD

LET INCOME5 = WAC * INCOME
LET CHILD5 = WAC * CHILD

LET ADULTS5 = WAC * ADULT

LET DAYTIME5 = WAC * DAYTIME

LET INCOME6 = REF1l * INCOME
LET HHSIZE6 = REF1 * HHSIZE
LET INCOME7 = REF2 * INCOME
LET HHSIZE7 = REF2 * HHSIZE

Figure F.1 (continued ) SYSTAT commands for the CDA EM regression analysis




236

LET
LET
LET
LET

LET
LET

LET
LET

LET
LET

LET
LET
LET

LET

INCOMES
HHSIZES
INCOMES
HHSIZE9

HHSIZE10
MICROWZ2

AREA6 =

= FREZ1 * INCOME
= FREZ1 * HHSIZE
= FREZ2 * INCOME
= FREZ2 * HHSIZE
= COOK * HHSIZE
= COOK * MICROW
FF * AREA

HDD6é = FF * HDD

AREA7 =
HDD7 = B

HHSIZE1l1l
HHSIZE12
HHSIZE13

HHSIZEl4

PRINT=LONG

MODEL HEC =

BP * AREA
P * HDD

MICROW * HHSIZE
CTV * HHSIZE
BWTV * HHSIZE

il

VCR * HHSIZE

CONSTANT + SH + PROGT1 + HRV1 + AIT1 + DTYPEl + AREAl + ,
AGECAT1 + BSMNT1 + GARAGEl + ATTIC1 + TRIPLE1l + DOUBLE1l +,
SINGLEl + DOOR1 + HDD1l + OWNER1l + INCOMEl1l + CHILD1l + ,
ADULT1 + DAYTIME1l + POPUL1 + ,

SSH + AREA2 + HDD2 + AIT2 + CHILD2 + ADULT2 + DAYTIME2 +,
DHW + TANK3 + SYSAGE3 + BLANKET3 + PIPEINS3 + LOWFLOW3 + ,
AERATOR3 + GT3 + CWLOAD3 + DWLOAD3 + DTYPE3 + OWNER3 + ,
INCOME3 + CHILD3 + ADULT3 + ,

CAC + CACUSE4 + DTYPE4 + AREA4 + AGECAT4 + ATTIC4 + ,
TRIPLE4 + DOUBLE4 + SINGLE4 + DOOR4 + CDD4 + OWNER4 + ,
INCOME4 + CHILD4 + ADULT4 + DAYTIME4 + ,

WAC + WACUSES + AREA5 + AGECATS5 + CDD5 + INCOMES + ,
CHILDS5 + ADULTS5 + DAYTIMES + ,

REF1 + VOLR1 + FROSTR1 + INCOME6 + HHSIZE6 + REF2 + ,
VOLR2 + FROSTR2 + INCOME7 + HHSIZE7 + FREZ1 + VOLF1l + ,
INCOMES8 + HHSIZES8 + FREZ2 + VOLF2 + INCOME® + HHSIZE9 +,
COOK + HHSIZE10 + MICROW2 + DISH + DWLOAD + CLOTH + ,
CWLOAD + DRYER + CDLOAD + FF + AREA6 + HDD6 + BP + ,

AREA7 + HDD7 + MICROW + HHSIZEll + CTV + HHSIZEl2 + ,
BWTV + HHSIZE1l3 + VCR + HHSIZEl14 + HALO + FLOU + INCA

Figure F.1 (continued ) SYSTAT commands for the CDA EM regression analysis
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The results of the regression analysis of the CDA EM (Equation 4.28) are given
in Figure F.2.

Dep Var: HEC N: 2039 Multiple R: 0.813 Squared multiple R: 0.660
Adjusted squared multiple R: 0.657 Standard error of estimate: 5533.031
Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 2128.647 508.485 0.000 . 4.186 0.000
HDD1 1.585 0.177 0.392 0.089 9.036 0.000
HRV1 -2516.011 1077.603 -0.032 0.922 -2.335 0.020
DTYPE1 1891.746 722.629 0.085 0.160 2.618 0.009
AREAl 12.666 5.341 0.077 0.160 2.372 0.018
AGECAT1 -785.396 173.621 -0.133 0.196 -4.524 0.000
INCOME1 78.142 12.795 0.168 0.223 6.107 0.000
AREA2 8.126 2.473 0.051 0.694 3.286 0.001
CHILD2 569.330 248.449 0.037 0.659 2.292 0.022
TANK3 16.860 2.842 0.179 0.184 5.932 0.000
LOWFLOW3 -691.340 305.421 -0.034 0.732 -2.264 0.024
DWLOAD3 215.042 69.005 0.050 0.656 3.116 0.002
ADULT3 752.825 199.481 0.105 0.218 3.774 0.000
CACUSE4 1.274 0.737 0.024 0.887 1.728 0.084
FROSTR1 1030.230 357.785 0.038 0.953 2.879 0.004
FROSTR2 1636.477 579.324 0.043 0.714 2.825 0.005
INCOME7 28.235 7.695 0.060 0.634 3.669 0.000
VOLF1 1.495 0.611 0.033 0.928 2.447 0.014
HHSIZE10 421.249 106.811 0.065 0.620 3.944 0.000
CDLOAD 303.606 40.751 0.113 0.738 7.450 0.000
LIGHTS 50.175 8.876 0.088 0.694 5.653 0.000
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
Regression 1.20051E+11 20 6.00253E+09 196.069 0.000
Residual 6.17799E+10 2018 3.06144E+07

Figure F.2. Regression analysis of the CDA EM

The eigenvalues of the X"X matrix and the condition indices of the variables of
the CDA EM are given in Figure F.3.
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Eigenvalues of X'X

1 2 3 4 5
9.808 2.913 1.415 1.069 0.967
6 7 8 9 10
0.899 0.776 0.568 0.476 0.438
11 12 13 14 15
0.369 0.284 0.215 0.153 0.133
16 17 18 19 20
0.129 0.124 0.103 0.074 0.049
21

0.039

Condition indices

1 2 3 4 5
1.000 1.835 2.632 3.030 3.185
6 7 8 9 10
3.302 3.555 4.156 4.540 4.734
11 12 13 14 15
5.154 5.881 6.749 8.017 8.596
16 17 18 19 20
8.721 8.907 9.739 11.551 14.199
21

15.865

Figure F.3. Eigenvalues of the X'X matrix and the condition indices of the variables of
the CDA EM
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2. CDA NATURAL GAS MODEL

The SYSTAT commands for the regression analysis of the CDA NGM are given in
Figure F.4.

REGRESS
USE "D:\Merih\Networks\CDA\NATURALGAS\NATURALGAS.SYD"
LET WINDOW TRIPLE + DOUBLE + SINGLE

LET HHSIZE CHILD + ADULT
LET LIGHTS = HALO + FLOU + INCA

LET EFFl= SH * EFF

LET SHAGEl = SH * SHAGE
LET PROGT1 = SH * PROGT
LET AIT1 = SH * AIT

LET DTYPE1l = SH * DTYPE
LET AREAl = SH * AREA

LET AGECAT1 = SH * AGECAT
LET BSMNT1 = SH * BSMNT
LET GARAGEl = SH * GARAGE
LET ATTIC1 = SH * ATTIC
LET TRIPLEl1l = SH * TRIPLE
LET DOUBLEl1l = SH * DOUBLE
LET SINGLEl1l = SH * SINGLE
LET DOOR1 = SH * DOOR

LET HDD1 = SH * HDD

LET OWNER1 = SH * OWNER
LET INCOMEl1l = SH * INCOME
LET CHILD1 SH * CHILD
LET ADULT1 = SH * ADULT
LET DAYTIMEl = SH * DAYTIME
LET POPUL1 = SH * POPUL
LET WINDOW1 SH * WINDOW
LET HHSIZEl = SH * HHSIZE

LET AREA2= SSH * AREA

LET HDD2 = SSH * HDD

LET AIT2 = SSH * AIT

LET CHILD2 = SSH * CHILD

LET ADULT2 = SSH * ADULT

LET DAYTIME2 = SSH * DAYTIME
LET HHSIZE2 = SSH * HHSIZE

Figure F.4. SYSTAT commands for the CDA NGM regression analysis
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LET TANK3 = DHW * TANK
LET SYSAGE3 = DHW * SYSAGE

LET BLANKET3 = DHW * BLANKET
LET PIPEINS3 = DHW * PIPEINS
LET LOWFLOW3 = DHW * LOWFLOW
LET AERATOR3 = DHW * AERATOR

LET GT3 = DHW * GT

LET CWLOAD3 = DHW * CWLOAD
LET DWLOAD3 = DHW * DWLOAD
LET DTYPE3 = DHW * DTYPE
LET OWNER3 = DHW * OWNER
LET INCOME3 = DHW * INCOME
LET ADULT3 = DHW * ADULT
LET CHILD3 = DHW * CHILD
LET HHSIZE3 = DHW * HHSIZE

LET HHSIZE4 = COOK * HHSIZE
LET MICROW4 = COOK * MICROW
LET CDLOAD5 = DRYER * CDLOAD
LET INCOME6 = POOL * INCOME

[PRINT=LONG

MODEL HEC = SH + EFF1 + SHAGEl1l + PROGT1 + AIT1 + DTYPEl + AREAl + ,
AGECAT1 + BSMNT1 + GARAGE1l + ATTIC + TRIPLE1l + DOUBLEl + ,
SINGLEl + DOOR1 + HDD1l + OWNER1 + INCOME1l + CHILD1 + ,
ADULT1 + DAYTIMEl + POPULAl +,
SSH + AIT2 + AREA2 + HDD2 + CHILD2 + ADULT2 + DAYTIME2 + ,
DHW + TANK3 + SYSAGE3 + BLANKET3 + PIPEINS3 + LOWFLOW3 + ,
AERATOR3 + GT3 + CWLOAD3 + DWLOAD3 + DTYPE3 + OWNER3 + ,
INCOME3 + CHILD3 + ADULT3 +,
COOK + HHSIZE4 + MICROW4 + DRYER + CDLOADS +,
POOL + INCOME6

ESTIMATE

Figure F.4. (continued) SYSTAT commands for the CDA NGM regression analysis

The results of the regression analysis of the CDA NGM (Equation 4.36) are

given in Figure F.5.
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Dep Var: HEC N: 1003 Multiple R: 0.961 Squared multiple R: 0.923

Adjusted squared multiple R: 0.923 Standard error of estimate: 984.001

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
PROGT1 -207.752 79.078 -0.026 0.778 -2.627 0.009
DOOR1 129.839 30.318 0.097 0.150 4.283 0.000
WINDOW1 26.302 5.505 0.102 0.168 4.778 0.000
SHAGE1 46.033 4.063 0.195 0.261 11.330 0.000
GARAGE1 437.688 111.559 0.037 0.884 3.923 0.000
AREA1l 6.614 0.743 0.238 0.108 8.903 0.000
ADULT1 181.605 40.264 0.121 0.108 4.510 0.000
SYSAGE3 13.209 6.088 0.033 0.326 2.170 0.030
HHSIZE3 70.774 26.693 0.062 0.141 2.651 0.008
DTYPE3 720.967 85.233 0.184 0.164 8.459 0.000
HHSIZE4 94.039 53.298 0.016 0.919 1.764 0.078
CDLOADS 35.910 21.770 0.015 0.903 1.650 0.099
POOL 969.555 377.900 0.023 0.969 2.566 0.010

Analysis of Variance

Source Sum-of -Squares df Mean-Square F-ratio P
Regression 1.15628E+10 13 8.89443E+08 918.600 0.000
Residual 9.58576E+08 990 968258.515

Figure F.5. Regression analysis of CDA NGM

The eigenvalues of the X' X matrix and the condition indices of the variables of
the CDA NGM are given in Figure F.6.
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Eigenvalues of unit scaled X'X

1 2 3 4 5
7.073 1.1l64 1.020 0.878 0.785
6 7 8 9 10
0.744 0.407 0.282 0.205 0.161
11 12 13

0.124 0.091 0.067

Condition indices

1 2 3 4 5
1.000 2.465 2.634 2.839 3.002
6 7 8 9 10
3.083 4.170 5.007 5.873 6.638
11 12 13

7.558 8.819 10.270

Figure F.6. Eigenvalues of the X"X matrix and the condition indices of the variables of

the CDA NGM

3. CDA OIL MODEL

The SYSTAT commands for the regression analysis of the CDA OM are given in Figure
F.7.
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REGRESS

USE "D:\Merih\Networks\CDA\OIL\OIL.SYD"
LET WINDOW = TRIPLE + DOUBLE + SINGLE
LET HHSIZE = CHILD + ADULT
LET LIGHTS = HALO + FLOU + INCA
LET EFFl= SH * EFF

LET SHAGEl = SH * SHAGE

LET PROGT1 = SH * PROGT

LET AIT1 = SH * AIT

LET DTYPEl1l = SH * DTYPE

LET AREAl = SH * AREA

LET AGECAT1 = SH * AGECAT
LET BSMNT1 = SH * BSMNT

LET GARAGEl = SH * GARAGE
LET ATTIC1 = SH * ATTIC

LET TRIPLEl = SH * TRIPLE
LET DOUBLEl1l = SH * DOUBLE
LET SINGLEl = SH * SINGLE
LET DOOR1 = SH * DOOR

LET HDD1 = SH * HDD

LET OWNER1 = SH * OWNER

LET INCOMEl = SH * INCOME
LET CHILD1l = SH * CHILD

LET ADULT1 = SH * ADULT

LET DAYTIMEl = SH * DAYTIME
LET POPUL1 = SH * POPUL

LET WINDOW1l = SH * WINDOW
LET HHSIZEl = SH * HHSIZE
LET TANK3 = DHW * TANK

LET SYSAGE3 = DHW * SYSAGE
LET BLANKET3 = DHW * BLANKET
LET PIPEINS3 = DHW * PIPEINS
LET LOWFLOW3 = DHW * LOWFLOW
LET AERATOR3 = DHW * AERATOR
LET GT3 = DHW * GT

LET CWLOAD3 = DHW * CWLOAD
LET DWLOAD3 = DHW * DWLOAD
LET DTYPE3 = DHW * DTYPE

LET OWNER3 = DHW * OWNER

LET INCOME3 = DHW * INCOME
LET ADULT3 = DHW * ADULT

LET CHILD3 = DHW * CHILD

LET HHSIZE3 = DHW * HHSIZE

Figure F.7. SYSTAT commands for the CDA OM regression analysis
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PRINT=LONG

MODEL HEC = SH + EFF1l + SHAGEl1l + PROGT1 + AIT1 + DTYPEl + AREAl + ,
AGECAT1 + BSMNT1 + GARAGEl + ATTIC + TRIPLE1l + DOUBLEl + ,
SINGLE1l + DOOR1 + HDD1 + OWNER1 + INCOMEl1l + CHILD1 + ,
ADULT1 + DAYTIMEl + POPULAl +,
DHW + TANK3 + SYSAGE3 + BLANKET3 + PIPEINS3 + LOWFLOW3 + ,
AERATOR3 + GT3 + CWLOAD3 + DWLOAD3 + DTYPE3 + OWNER3 + ,
INCOME3 + CHILD3 + ADULT3

ESTIMATE

Figure F.7. (continued) SYSTAT commands for the CDA OM regression analysis

The results of the regression analysis of the CDA OM (Equation 4.40) are given
in Figure F.8.

Dep Var: HEC N: 231 Multiple R: 0.935 Squared multiple R: 0.875

Adjusted squared multiple R: 0.872 Standard error of estimate: 1095.544

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
SHAGE1 40.046 8.384 0.206 0.300 4.777 0.000
AREA1l 4.949 1.265 0.217 0.181 3.911 0.000
WINDOW1 41.681 10.282 0.205 0.219 4.054 0.000
DTYPE1 471.210 150.320 0.145 0.162 2.476 0.014
TANK3 5.277 0.814 0.246 0.388 6.480 0.000
DWLOAD3 50.907 29.073 0.050 0.682 1.751 0.081

Analysis of Variance

Source Sum-of -Squares df Mean-Square F-ratio P
Regression 1.88179E+09 6 3.13632E+08 261.313 0.000
Residual 2.70049E+08 225 1200217.528

Figure F.8. Regression analysis of the CDA OM



245

The eigenvalues of the X"X matrix and the condition indices of the variables of
the CDA Oil Model are given in Figure F.7.

1
4.318

6
0.122

1
1.000

5.946

2
0.822

Condition indices

2
2.292

Model contains no constant

Eigenvalues of unit scaled X'X

3
0.340

3.564

0.259

4.081

0.139

5.568

Figure F.9. Eigenvalues of the X'X matrix and the condition indices of the variables of

the CDA OM



246

APPENDIX G

DERIVATIONS FOR THE COEFFICIENTS OF THE CDA
MODEL VARIABLES
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UNBIASED COEFFICIENTS FOR THE VARIABLES

The multivariable regression model can be shown in matrix notation as follows (Johnston

and DiNardo, 1997):
y=Xp+u (G.1)

where,

y: dependent variable # x1 vector

X: independent variables n x k vector, the first column is for the intercept and is
a column of ones

B: coefficients of the variables &£ x1 vector

u: disturbance n x1 vector

n: number of data points

k: number of independent variables

When the vector S is unknown, it is replaced by estimate b, and the unknown
residual vector e is defined as
e=y-Xb (G.2)
The least square principle is used to determine b so the SSE (ie. e'e) is
minimized:
SSE=¢'e
=(y-Xb)' (y-Xb)
=y y-bTXTy-y"Xb+b"X"Xb
=yTy+2bTXTy+b"X"Xb (G.3)

The first order derivation of Equation G.3 with respect to b is as follows:

é%i—@ =2XTy+2XTXb=0

which gives the below so called “normal equation”:

X'X)b=X"y
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b=X"X)" X"y (G.4)
Substituting Equation G.1 into Equation G.4 gives:
b=X"X)' X" XB+u)

=p+X'X)" X u (G.5)
Taking the expectations of the variables in Equation G.5 would give E(b) = p.

This indicates that the coefficients of the variables are unbiased regardless of the

multicollinearity problem.





