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Abstract

Everything that can be said, can be said clearly.

-Ludwig Wittgenstein

This thesis focuses on reducibility and triangularizability of collections of linear trans-
formations on a vector space over a general field as well as compact operators on a real or
complex Banach space. It consists of three parts.

In part one, we extend triangularization results due to Levitzki, Kolchin, and others. For
a given n > 1, we characterize all fields F such that Burnside’s Theorem holds in M, (F).
We consider irreducible semigroups and F-algebras of matrices in M,(K) with traces in
a subfield F. We prove Wedderburn-Artin type theorems for such F-algebras of matrices.
We use our main results to generalize some other classical triangularization results, e.g.,
those due to Guralnick, Kaplansky, McCoy, and others, and present applications in finite
dimensions over a general field. We also consider semigroups and F-algebras of compact
operators on an arbitrary Banach space and €, class operators on an arbitrary Hilbert space.
We present new proofs of certain classical theorems as well as some new triangularization
results in this infinite-dimensional setting.

In part two, we show that triangularizability is stable under certain limit operations.
This is then used to prove an invariant subspace theorem for certain bounded operators. We
also prove that in finite dimensions reducibility remains intact under these limit operations
provided the underlying space is complex or it is real with odd dimension.

In part three, we are interested in extending the triangularization theory to collections
of matrices on division rings. We give a new proof of a well-known Theorem of Levitzki and
prove an analogue of one of the main results of part one on division rings. We define the
concept of permutability of trace on a collection of matrices over a division ring and prove
that under a slight condition on the characteristic of the division ring, every irreducible

family on which trace is permutable is commutative.

IX



Chapter 1
Introduction

But leave the Wise to wrangle, and with me
‘The Quarrel of the Universe let be:
And, in some corner of the Hubbub coucht,
Make game of that which makes as much of thee.
~Khayyam, the Persian Mathematician. Astronomer, Philosopher, and Poet.

Rendered into English verse by Edward Fitzgerald.

This thesis deals with triangularization and reducibility results on operator semi-
groups. We are particularly interested in reducibility and triangularizability results
on collections of linear transformations on finite-dimensional vector spaces over gen-
eral fields and compact operators on real or complex Banach spaces, and also their
applications. Reducibility and triangularizability results in some sense shed light on
the structure of linear transformations. They also have applications in other areas of
mathematics such as representation theory of groups, semigroups and algebras (e.g..
Theorem 2.4.1 and Theorem 2.4.2). We refer the reader to [RR] page 25 and 189

respectively for historical comments on both finite- and infinite-dimensional triangu-
larization theory.

1.1 Some basic concepts and lemmas

We commence by recalling some definitions and standard notations. Throughout



nNo

this thesis, unless otherwise stated, X stands for a separable real or complex Banach
space. As is usual, by F we mean R or C. The terms subspace and operator or linear
operator will, respectively, be used to describe a closed subspace of a Banach space X
and a bounded linear operator on X. The subspaces {0} and X are called the trivial
subspaces of X.

If F is a field and V is a finite-dimensional vector space over F, then we use the
term linear transformation to describe a vector space homomorphism on V; and we
use L(V) to denote the set (in fact the algebra) of linear transformations on V. We
use B(X) to denote the set (in fact the algebra) of bounded operators on X; Bo(X) is
used to denote the set (in fact the ideal) of compact operators on X, Bgo(X) is used
to denote the set (in fact the ideal) of finite-rank operators on X. We note that if X
is a finite-dimensional real or complex Banach space, then L(X) = B(X) = Bo(X),
and that every linear subspace of X is necessarily closed.

By a subalgebra A in B(X) (resp. L(V), M.(F)), we mean a subring of B(X)
(resp. L(V), M,(F)) that is closed under scalar multiplication by the elements of F
(resp. of the field F). Note that a subalgebra of B(X) (resp. L(V), M.(F)) is not
necessarily unital.

For a collection F of operators on X (resp. transformations on V), the symbol F is
used to denote the commutant of F, i.e., the set of all operators (resp. transformations)
that commute with all elements of F (more precisely, ' := {T € B(X) (resp. T €
L(V)) : ST =TS for all S € F}). It is plain that F' is a unital subalgebra of B(X)
(resp. £(V)). A subspace M is invariant for a collection F of bounded operators (resp.
linear transformations) if TM C M for all T € F; M is hyperinvariant for a collection
F of bounded operators if TM C M for all T € FUF. A collection F of bounded
operators (resp. linear transformations) on a space of dimension greater than one is
called reducible if it has a nontrivial invariant subspace. In case the dimension of the
underlying space is one, then the collection F is called reducible if ¥ = {0}. This
definition is slightly unconventional, but it simplifies most of the statements in what
follows. A collection F of bounded operators on X (resp. linear transformations on
finite-dimensional V) is called transitive if the set {Tz : T € F} is dense in X (resp.
is equal to V) whenever z € X (resp. z € V) is a nonzero vector. It is easily seen
that for an algebra of operators (resp. linear transformations) the two concepts of



transitivity and irreducibility coincide. For a collection € of vectors, the symbol (€)
denotes the (not necessarily closed) linear manifold spanned by C.

A collection F of operators (resp. linear transformations) is called simultaneously
triangularizable or simply triangularizable if there exists a maximal chain of subspaces
of X each of which is invariant for F. In case the underlying space is finite-dimensional,
it is easily seen that triangularizability of a family of linear transformation is equiv-
alent to the existence of a basis for the vector space such that all transformations in
the family have upper triangular matrix representation with respect to that basis.

It is plain that a family F of linear operators (resp. linear transformations) is
triangularizable iff Sem(F), the semigroup generated by ¥, is triangularizable; or iff
Alg(F), the algebra generated by F, is triangularizable.

Also we note that for every family F of bounded operators (resp. linear transfor-
mations)

F = (Alg(F)) = (Sem(F))".

Thus F has a non-trivial hyperinvariant subspace iff Sem(F) does, or iff Alg(F) does.

It is known that if F C Bo(X) is a triangularizable family of compact operators,
then AB — BA is quasinilpotent for all A, B € Alg(F). Recall that an operator T is
called quasinilpotent if o(T) = {0} where o(T) denotes the spectrum of T.

A collection F of linear transformations in L(V) is called absolutely irreducible if
Alg(F) = L(V). It is plain that an absolutely irreducible family of transformations in
L(V) is irreducible and its commutant consists of scalars. In view of Theorem 2.2.21
below, the two concepts of irreducibility and absolute irreducibility are the same for
collections of linear transformations in L(V) if and only if for each k dividing dim 'V
with & > 1 there is no irreducible polynomial of degree k over the ground field F'. In
particular, a collection F in M, (F) (n > 1) is absolutely irreducible if and only if it is
irreducible as a collection in M, (F) where F denotes the algebraic closure of F'. Note
that if dimV = 1, then a collection F of linear transformations in L(V) irreducible if
and only if it is absolutely irreducible.

We start off with an elementary lemma.



Lemma 1.1.1. Let V be an n-dimensional vector space over a field F, and let T €
L(V). The following are equivalent.

(i) The transformation T is irreducible.

(it) Every nonzero a € V is a cyclic vector for T'.

(iii) The characteristic polynomial of T is irreducible over F'.

(iv) The algebra

n—l1

FT={> aT':c e T’ =1}

i=0
is an n-dimensional extension field of F. In particular, F[T| = F(T).
Furthermore, if any of the above conditions holds, then S € {T} iff S is a poly-
nomial in T'.

Proof. “(i)==> (ii)” It follows from the Cayley-Hamilton Theorem that

n—1
FIT ={) eT':c: € FT°:=1}
i=0
is a subalgebra of £(V). Suppose that a € V is nonzero. Obviously, W := F[T]« is a
nonzero invariant subspace for the irreducible transformation 7. So W = V. That is
{a,Ta, ..., T""'a} spans the n-dimensional vector space V. Thus {a, Ta...., T" 'a}
is a basis for V. i.e., a is a cyclic vector for T'.

“(ij)==> (iii)” Suppose not. Thus the characteristic polynomial of T, ch(T’), is
reducible over F. So there are polynomials f and g, of degree at least one, such that
ch(T) = fg. It follows from the Cayley-Hamilton Theorem that f(T')g(T) = 0. We
note that f(T") =0 or g(T') = 0 contradicts the hypothesis that {a, Ta, ..., T 'a} isa
basis, hence an independent set, for every nonzero a.. So f(T') # 0 and g(T) # 0. Now
f(T)g(T) = 0 implies that either f(T) or g(T) is not invertible. So without loss of
generality we may assume that f(7T') is not invertible and that f(T') # 0. This plainly
implies that ker(f(T")) is a nontrivial invariant subspace for T. So every nonzero
element of ker(f(T')) cannot be a cyclic vector for T', contradicting the hypothesis.

“(iii)=> (iv)” Again it follows from the Cayley-Hamilton Theorem that F[T] is
indeed an algebra. First we note that the hypothesis that ch(T) is irreducible over F’



along with the Cayley-Hamilton Theorem implies that ch(T") = mr where mr denotes
that minimal polynomial of T. This obviously in turn implies that {I, T, ..., T '} is
independent. We only need to show that every nonzero element of F[T] is invertible
and that the inverse is indeed in F[T]. To see this, let f(T) = fo+ fiT+...+ famr T
be an arbitrary nonzero element of F[T]. Since ch(T) = mr, we conclude that
f(T) # 0, for deg(f) < deg(mr) = n. Thus ker(f(T)) # V. On the other hand,
ker(f(T)) is an invariant subspace for T. So if ker(f(T)) # 0, then ch(T|ker(s(ry))
divides ch(T") which contradicts the hypothesis that ch(T) is irreducible over F'. So
ker(f(T)) = 0, and hence f(T) is invertible. That the inverse of f(T) is in F[T]
follows from the fact that the inverse of any linear transformation is a polynomial in
that transformation. We have shown that F[T] = F(T') is an n-dimensional extension
field of F.

“(iv)== (i)” Suppose not. Let M be a nontrivial invariant subspace for T". It is
plain that ch(T|y) = f divides ch(T). So there is a polynomial g with deg(g) = 1
such that ch(T) = fg. Now it follows from the Cayley-Hamilton Theorem that
Ff(T)g(T) = 0. This is impossible, for f(T) and g(T') are nonzero elements of F[T] =
F(T). Therefore, T is irreducible.

To see the rest, it suffices to show that if S € {T'}', then S is a polynomial in
T. To this end, suppose that S € {T} and that 0 # a € V is a cyclic vector for T
Hence {a,Ta,...,T""'a} is a basis for V. Therefore, we can write

Sa = coa + ... + cn1 T,
where ¢; € F for each ¢ = 0, ...,n — 1. Hence
(S —(col + o+ ot T ) =0.
Now since S € {T}' we can write
(S = (col + ... + Cat T" 1)) T*a = TH(S — (col + --- + T ))a =0,

foreach k=0, ...,n—1. As {a, Ta,...,T" 'a} is a basis for V, we see that S —(col +
et a1 TV =0. ie., S =col + ... + ¢, T™%, finishing the proof. a



If 8 is a multiplicative semigroup, a subset J of 8 is called a semigroup ideal of 8
if JS,SJ € J whenever J € J and S € 8. In what follows, we make frequent use of
the elementary well-known lemma below.

Lemma 1.1.2. (i) Let V be a finite-dimensional vector space over a field F, and § a
semigroup in L(V). If8 is (absolutely) irreducible, then so is every nonzero semigroup
ideal of S.

(it) Let X be a real or complez Banach space, and 8 a semigroup in B(X). If 8 is
irreducible, then so is every nonzero semigroup tideal of S.

Proof. (i) If dimV = 1, then the assertion trivially holds. So we may assume,
with no loss of generality, that dimV > 1. Let J be a nonzero semigroup ideal of the
semigroup S.

First suppose that 8 is irreducible. To show that J is irreducible, use contradiction.
So assume that M is a nontrivial invariant subspace for the nonzero ideal J. Define

M= (M), Mo :=[)kerJ.

Jed
As J is a semigroup ideal of 8 we easily see that both M, and M, are invariant
under the whole semigroup. Two cases to consider: If M; # 0, then M; would be a
nontrivial subspace since M, € M, a contradiction. If M, = 0, then M, would be
nonzero and, on the other hand, M, is proper for g is nonzero. So M, would be a
nontrivial invariant subspace for 8, a contradiction again (See [RR], Lemma 2.1.10.
page 29).

Next suppose that 8 is absolutely irreducible. We need to show that Alg(d) =
L(V) = Alg(8). This is obvious for Alg(J) is a nonzero ideal of Alg(8) = L(V) (here
we have used a theorem from elementary algebra that L(V) is a simple ring).

(ii) The proof is identical to that of (i) except that

M =({M), My:= ﬂ ker J,
Jed

where (JM) denotes the closure of (JM) (See [RR], Lemma 8.2.1, page 200). |



Another elementary lemma which we use very frequently is “The Triangularization
Lemma” (See [RR], Lemma 1.1.4 and Lemma 7.1.11).

Lemma 1.1.3 (The Triangularization Lemma). Let P be a set of properties of
families of linear operators (resp. linear transformations) each of which is inherited
by quotients. If every family of operators (resp. transformations) satisfying P on a
space of dimension greater than one is reducible, then every family satisfying P s
triangularizable.

Proof. See [RR}, Lemma 1.1.4 and Lemma 7.1.11. O



Chapter 2

On semigroups with traces and

spectra in a subfield

With them the seed of Wisdom I did sow,
And with my own hand labour’d it to grow;
And this was all the Harvest that I reap’d-
I came like Water, and like wind I go.
-Khayyam, the Persian Mathematician, Astronomer, Philosopher, and Poet.

Rendered into English verse by Edward Fitzgerald.

2.1 Introduction

In this chapter we consider semigroups of linear transformations acting on finite-
dimensional vector spaces over a general field K with traces in a subfield F. We extend
a celebrated theorem of Burnside and prove a block matrix representation theorem
for irreducible F-algebras of matrices in M,,(K) with traces in F. We generalize some
other classical triangularization results and present applications in finite dimensions
over a general field. We extend our main result to semigroups of €, class operators
on a real or complex Hilbert space as well as semigroups of finite-rank operators on
a real or complex Banach space. We present new proofs of certain classical theorems
as well as some new triangularization results in this infinite-dimensional setting.



2.2 Some Preliminary and Basic Results

Motivated by Lemma 2.1.12 of [RR] we start off with the following lemma.

Lemma 2.2.1. Let V be a finite-dimensional vector space over a field F, 8 a semi-
group in L(V), and T a nonzero linear transformation in L(V). If 8 is irreducible,
then so is TS| where R =TV is the range of T'.

Proof. If dimV = 1, then the assertion trivially holds. So we may assume, with no
loss of generality, that dimV > 1. There are two cases to consider.

(a) rank(T) = 1.

To prove the assertion by contradiction suppose T'8|x is reducible. SincedimR =1
in this case, it follows from definition that T8|x = {0}. Therefore, TST = {0}. Pick
a nonzero x € V such that Tz # 0. Now either 8Tz = {0} in which case (T'z) is a
nontrivial invariant subspace for 8, or else (§T'z) is a nontrivial invariant subspace

for S, because TST = {0} and 8 is a semigroup. This contradicts the hypothesis that
8 is irreducible.

(b) rank(T) > 1.

First note that a semigroup 8 is irreducible iff the algebra A generated by the
semigroup is irreducible. That being noted, it suffices to prove that T'A|x is irreducible
because every invariant subspace of 78|z is invariant for TA|x as well. To prove that
TA|x is irreducible, we use contradiction. Suppose that T'A[z is reducible. So there
exists a nontrivial subspace M of R = T'V such that TAM € M. Choose a nonzero
z € M and note that TAz € M. The subspace Az is an invariant subspace of A.
Furthermore it is proper, for TAz € M C R. If Az = 0 then (z) is a nontrivial
invariant subspace for A, otherwise Az will be a nontrivial invariant subspace for A.
So in any event we conclude that A is reducible, a contradiction. O

Lemma 2.2.2. Let V be a finite-dimensional vector space over a field F, 8 a semi-
group in L(V), and T a monzero linear transformation in L(V). If S is absolutely
irreducible, then so is TS| where R =TV is the range of T-
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Proof. Let A denote the algebra generated by the semigroup 8. From definition we
have A = L(V). In particular, T € A = (8). It is now easily seen that

L(R) 2 Alg(T8|z) 2 TA|r = TL(V)|r = L(R),
completing the proof. O

Recall that a linear transformation 7" in L (V) is called idempotent if 7% = T. The

corollary below is a quick consequence of the preceding two lemmas.

Corollary 2.2.3. Let V be a finite-dimensional vector space over a field F', § a semi-
group in L(V), and T a nonzero idempotent in L(V). If 8 is (absolutely) irreducible,
then so is TST |rv.

Proof. Lemma 2.2.1 and 2.2.2.

Different versions of the following lemma are well-known.

Lemma 2.2.4. Let K be a field with ch(K) =0 or > n where n €N, F a subfield of
K, and A € M,(K). Then the characteristic polynomial of A, denoted by ca, is in
F[X] iff tr(A¥) e F for alll <k <n.

Proof. “==" Suppose that A\¢ (1 < k < n) are the eigenvalues of A in the algebraic
closure of K. Foreach k = 1, ..., n, let S denote the elementary symmetric polynomial
in Ay, ..., \n of degree k, i.e., Sy = A\; + .-« + Any -y Sn = AL An; and let T denote
the sum of the k-th power of \’s, i.e., T = A¥ + ... + Ak It is well known that

T — Tt Sy + ooee + (-1)k-1T15k_1 + (—l)kkSk =0 (*)

for all for & = 1, ....n. This identity together with the hypothesis that ch(K) = 0 or >
n enables us to determine each T} in terms of the S;’s and vice versa. It is also well
known that tr(A*) = Ty for all £ € N and that

Ca = "t — Sj_zn_l +...+ (“l)nSn (*’)
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Now suppose c4 € F[X]. It follows from (*’) that Sy € F for all k =1,...,n. This
fact in turn accompanied by (*) implies that tr(A*) = T € F for all k = 1,...,n.
(As a matter of fact, using the Cayley-Hamilton Theorem, one can conclude that
tr(A¥) =T, € F for all k € N).

“e=" Suppose that tr(A¥) = T}, € F for all k = 1, ...,n. It follows from (x) that
S, € F forall k=1, ...,n, and thus by (), c4 € F[X]. a

It is worth mentioning that Lemma 2.2.5 and Lemma 2.2.6 below are slight gen-
eralizations of Lemma 2.1.15 and Theorem 2.1.16 of [RR].

Lemma 2.2.5. (i) Let F be a field, and {Mi1, ..., Nini }, {City 1 Cin,} (i € Nyi =
1,2) subsets of F' consisting of distinct nonzero elements and nonzero elements of F
respectively and such that

ny na
Z clj/\'fj = Z cg,-,\é'j,
j=1 j=1
for each k = m,m + 1,....,m + (n, + ns — 1) where m is a given integer. Then
ny = ns = n and there is a permutation o on n letters such that ca; = Cia(j) and
Aaj = Aio(j) forallj=1,.,n.
(ii) Let F be a field with ch(F) =0 or>n, {\i, - div;} (N €N, Vi <n.i=1,2
subsets of F'\ {0} such that
M N2
Z ’\,fj = Z ’\gf’
j=L j=1
for each k =m,m+1,...,m+ (n, +no — 1) where m is a given integer and n; is the
number of distinct elements of {\i1, ---, Ain;} (¢ =1,2). Thenn; =ny, Ny =Ny = N
and there is a permutation o on N letters such that Aoj = Aig(j) for allj=1,.,N.
(iii) Let F be a field with ch(F) =0 or > n, {\i, .-, A} (n € N,i=1,2) subsets

of F such that
ko k
D=2 X
for each k = m,m+1, ...,m+(n; +na—1) where m is a given member of NU{0} and
n; is the number of distinct nonzero elements of {\i1, ..., Ain} (: =1,2). Thenn; =mny



and there is a permutation o on n letters such that Aoj = Aio(;) for all j =1,..,n.

Proof. (i) We prove the assertion by induction on n; +ns. lf ny +n2 = 2, the
assertion is easily verified. Suppose that the assertion holds for n; +ns < n, we prove
the assertion for n; +no =n > 2. We have

ny ne
D ey =D e =0,
i=1 i=t
for all k =m,...,m + (n; +na — 1) where m € Z. That is the nonzero column vector

(C11y --s Clys —C21, ---y —Cany) is in the kernel of the following (ny + na) x (n; + na)
matrix.

T N AR
/\m+(n1+n3—l) \m+(n1+n2— L) /\m—i-(n.l-i-ng—l) \m-{-(n[-{-ng—-l)
1 s Mmy 21 ser 2na

Using the fact that each {\;y, ..., Ain, } (i=1, 2) consists of distinct nonzero elements, if
necessary after renaming \;;’s, it follows from Vandermonde’s Determinant Formula

that A\;; = \o;. We claim that ¢, = cs;- Suppose not, then ¢;; —cg; # 0, and we can
write

ny na

Z C],j/\fj = (Cu - 621)/\§l -+ Z ng/\gj,

j=2 =2

foreach k=m,m+1,...,m+ (n, + na — 1). Since (ny —1) +np < ny +na =7, it
follows from the induction hypothesis that n; — 1 = no and that in particular there
exists 2 < jo < mp such that A\;; = Aoy = Ayj, contradicting the assumption that
{11, - Aln, } consists of distinct elements of F. Therefore ¢y = c21- Now we can

write
nt na
k __ k
E C[j/\lj—E C2J'A2j’

7 =2 7 =2

for each k=m,m+1,...,m+(n, +ns —1). Since (ny — 1)+ (n2—1) <ny+ns =n,
the induction hypothesis establishes the proof.
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(ii) Plainly, due to the characteristic condition on F, the proof is a quick conse-
quence of (i).

(iii) It easily follows from (ii) that n; = n,. Then again the assertion easily follows
from (ii). a

Lemma 2.2.6. Let F be a field with ch(F) = 0 or > n, and {\y, ..., \n} C K where
K is a field extension of F.

(i) If
DL LA O Ve S D L §

for all k =m +1,...,m +n where m is a given member of NU {0} and c € F, then
AMi=0orc forali=1,..n.

(i) If
Mie +M=C
for all k = m, ...,m +n where m is a given member of NU {0} and C € F, then C
is an integer and \; =0 or 1 foralli=1,...,n.
(iii) Let A € M,(F) and m € NU {0}. Then A is nilpotent iff

tr(A¥) =0,

foreachk=m+1,....m+n.

Proof. (i) We prove the assertion by induction on n. If n =1, the proof is obvious.
Suppose that the assertion holds for all k < n. Let {A, ..., A} C K be a given subset
as described in the statement of the theorem. If c=0o0r 3, AT* =0, then A\; =0
for all i = 1, ...,n by Lemma 2.2.5(iii), and that settles the assertion in this case. So

we may assume that ¢ # 0 and Y_;_, AT # 0. Let Si’s be as in the proof of Lemma
2.2.4. We obviously have

2" = ST e+ (1S, = (&~ M) = Do) )

Thus
Antm _ G AL+ (—1)S AT =0,
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for each i = 1, ...,n. Adding up the preceding equations we get

n

Soartm s i ATFm=L 4 (=1)S, Z A" =0.
i=1

i=1 =1

So using the hypothesis we can write

c"(zn“‘ AT) — Syt Z AT+ (—1)"sn(zn: AT =
i=l =1

=1

n n

Yoartm -5 3T A 4 4 (<), Z A" =0,

i=1 i=1 i=l

Thus i
(SN = Sic™! 4 oo+ (=1)"S4) =0,
i=1
implying

=S+ + (-1)"S, =0.

So it follows from (*) that ¢ = \; for some j = L, ..., n. Now obviously the induction
hypothesis can be applied to the set {\y, ..., Ao} \ {¢} C F and the proof is complete.
(ii) Take ¢ =1 in (i).
(iii) Necessity, in fact on any field, easily follows from the proof of Lemma 2.2.4
and the Cayley-Hamilton Theorem. To see sufficiency, let A, ..., An be eigenvalues of
A in the algebraic closure of F. It follows from the hypothesis that

A+ .+ A5 =0,

for each k = m +1,...,m +n. Applying (i) with ¢ = 0 (or Lemma 2.2.5(iii)) we
conclude that \; = 0 for each ¢ = 1, ..., n. Therefore A is nilpotent again by the proof
of Lemma 2.2.4 and the Cayley-Hamilton Theorem. a

Recall that if V is a vector space over a field, then the dual space of V, denoted
by V*, is the vector space of all linear functionals on V. Inspired by the Halperin-
Rosenthal proof of Burnside’s Theorem (See [HR] or Theorem 1.2.2 of [RR]), we give
new proofs of Levitzki’s results.
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Theorem 2.2.7. Let V be a finite-dimensional vector space over a field F'. Then

every algebra of nilpotent transformations in L(V) is triangularizable.

Proof. The assertion trivially holds if dimV = 1. So we may assume, with no
loss of generality, that dimV > 1. Let A be an algebra of nilpotent transforma-
tions. Since nilpotency is inherited by quotients, so, in light of the Triangularization
Lemma (Lemma 1.1.3), it suffices to show that A is reducible. We prove this by con-
tradiction. Suppose that A is irreducible. First we show that A contains a rank-one
transformation. To this end, suppose that T is a nonzero element of A with minimal
rank. We must show that rank(T) = 1. Suppose not. Hence there exist z,,z2 € V
such that {T'z,, Tz} is linearly independent. Since T'z, # 0 and A is irreducible,
it follows that ATz, = V. This in turn implies that there exists A € A such that
ATz, = z». Note that by hypothesis TA € A is nilpotent. and that obviously T'V is
invariant under TA. Thus the restriction of TA to TV is also nilpotent, and hence
not invertible. Therefore, the range of TAT is properly contained in that of T. On
the other hand, we have TAT # 0 for TATz), = Tz2 # 0. In other words, we have
TAT # 0 and rank(TAT) < rank(T) contradicting the minimality of the rank of T'.
Hence rank(T) = 1. Now choose a nonzero vector yo in the range of T. So there
exists a nonzero functional ¢g € V* such that T = ¢g ® Yo, i-e., Tz = ¢do(z)yo for all
zeV.

Now by proving that A = L(V) we obviously get a contradiction, finishing the
proof (e.g., note that the identity transformation on V is not nilpotent). To see this,
since every rank-one linear transformation on V is of the form ¢ @ y for some linear
functional ¢ € V* and y € V, and since every linear transformation on V is a sum
of rank-one linear transformations, it suffices to show that é ® y € A for all linear
functionals € V* andy € V.

Now suppose that y € V and ¢ € V* are given. Since A is an algebra and
T = ¢o @ yo € A, it follows that

BTC = ¢oC ® Byo €A,

for all B,C € A. Plainly the sets {¢oC : C € A} and {Byo : B € A} are subspaces
of V* and V respectively. Since yo # 0 and A is irreducible, it follows that there
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exists By € A such that Byyo = y. We claim that {¢C : C € A} = V*. Suppose
not. Since, by Theorem IV.4.12 of [H], finite-dimensional vector spaces over division
rings are reflexive, it follows that there would exist a nonzero zo € V such that
$oCzo = ¢o(Czo) = O for all C € A. But irreducibility of A along with the fact
that 0 % zo € V implies that {Czo : C € A} = V. Hence we must have ¢o =0, a
contradiction. Therefore {¢oC : C € A} = V*. Now pick Cp € A such that ¢poCo = 9.
We can write @ ® ¥y = ¢oCo ® Boyo = BoTCy € A which is what we wanted. a

Remark. By the second and the third paragraph of the proof above, we conclude

that an irreducible subalgebra A of L(V) is equal to L(V) iff A contains a rank-one
linear transformation.

Theorem 2.2.7 implies the following well-known result which shows that triangu-

larizability of a collection of triangularizable matrices does not depend on the ground
field.

Corollary 2.2.8. Let F be a field, K a field extension of F, and F a family of
triangularizable matrices in M,,(F) where n € N. Then ¥ is triangularizable over F
iff F is triangularizable over K.

Proof. We may assume, with no loss of generality, that n > L. The “only if” part
is obvious. To see the “if” part, suppose that F C M,(F) is a family of triangu-
larizable matrices, and that F is triangularizable over K, we need to show that F
is triangularizable over F. Suppose that M C N are two invariant subspaces for ¥
with dim % > 1, it suffices to show that F, the set of all quotient transformations
Aon %’-t (A € F), is reducible. Since, by hypothesis, every A € ¥ is triangularizable
over F, so is every quotient transformation A on %‘E— where A € F. Therefore if F
is commutative, then reducibility easily follows. So we may assume that there are
A, B € F such that AB # BA. By proving that A, the algebra generated by F,is
reducible we settle the proof. Let A denote the algebra generated by F over F'. Note
that since ¥ is triangularizable over K, it is easily seen that the ideal J generated by
AB — BA in A is an ideal of nilpotent matrices in A. Hence the corresponding set

of quotient transformations J is indeed an ideal of nilpotent quotient transformations
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in A. The ideal J is nonzero for 0 # AB — BA €3. On the other hand, the ideal J is
in particular an algebra of nilpotent transformations on % with dim % > 1. Hence,
it follows from Theorem 2.2.7 that J is triangularizable, and hence reducible, over
F. Now reducibility of A follows from that of the nonzero ideal J in light of Lemma

1.1.2(i), completing the proof. a

Theorem 2.2.9 (Levitzki’s Theorem). Let F be a field, and n € N. Then every
semigroup § of nilpotent matrices in M,(F') is triangularizable.

Proof. Since every nilpotent matrix in M,,(F’) is triangularizable, in view of Corollary
2.2.8, without loss of generality we may assume that the ground field F' is algebraically
closed. Now since nilpotency is inherited by quotients, it suffices to prove that every
semigroup S of nilpotent matrices in M, (F) is reducible. To this end, let A denote
the algebra generated by $. Plainly trace is zero on A, therefore reducibility of A,

oo o e

ground field F is algebraically closed. a

Remark. In Chapter 4, we use the noncommutative version of Lemma 2.2.1 to give
a new proof of Levitzki’s Theorem on division rings.

The following theorem is a finite-dimensional version of Theorem 5 of [Y1] over
general fields.

Theorem 2.2.10. Let V be a finite-dimensional vector space over a field F', F a non-

scalar triangularizable family of linear transformations on V. Then F has a nontrivial
hyperinvariant subspace.

Proof. We note that for every family F of linear transformations
F = (Alg(F)) = (Sem(F))".

Thus F has a nontrivial hyperinvariant subspace iff Alg(F) does, or iff Sem(F) does.
Thus it suffices to prove the assertion for any nonscalar triangularizable algebra, say
A, of linear transformations.



18

Now either the algebra A is commutative or not. If it is a commutative algebra,
note that by hypothesis there exists A € A that is not scalar. That is, the trans-
formation A is not a multiple of identity. So let A be any eigenvalue of A, and M
the corresponding eigenspace of A. Since A is commutative, for all B € AU A and
z € M we have

ABz = BAz = \Bz,

i.e., Bx € M, so M is invariant under AU A’. Now if the algebra A is not commuta-

tive, then there exist A, B € A such that AB — BA # 0. Set Ko = AB — BA. Then

K, is a nonzero nilpotent transformation in A for A is assumed to be triangularizable.
Define A; ;== A" + A * A where

k
AxA =) AA:keN, AicA, AleA, 1<i<k)}

=1

Clearly, in view of the fact that A’ is a unital subalgebra of L(V), we see that A, is
a subalgebra of £(V) which contains both A and A’. It suffices to prove that A, has
a nontrivial invariant subspace.

For the nonzero nilpotent transformation K, € A, first we claim that A, Ko, and
hence A; KgA,, the semigroup ideal generated by Kj in A, consists of nilpotents. To
this end, let Ap = A’ + Y% | A;A} € A, with A; € A, where A, A€ A", (1 <i<
k,k € N) are arbitrary. We prove that AgKp is nilpotent: first of all we notice that
AoKo = A' Ko+ Zf___l A; AL where A,y = A;Kp € A. Let n =dimV. Set

S:={AcA:A" =0}

Since A is triangularizable it follows that S is a nonzero semigroup ideal of A consisting
of nilpotent transformations (note that 0 # Ky € 8).

The set SA is indeed a semigroup consisting of nilpotents because for all A €
A,A € A we have AA’ = A’A and that 8§ is a semigroup of nilpotents. Thus
Levitzki’s Theorem (Theorem 2.2.9) shows that SA’ is triangularizable. Therefore
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Alg(SA’), the algebra generated by SA’, consists of nilpotents. We have

k
AcKo = KoA' + ) Ay A
i=l
where A;, = A;Ko € A. In fact A;, = AiKj € 8, for Ky € 8 and A is triangularizable.
Now clearly A’Ky = KA’ € SA” and A; A: € SA'. Therefore AgKjp € Alg(SA’) and
hence AgKj is a nilpotent transformation. Thus A, KoA, is a nonzero semigroup ideal
of A, consisting of nilpotents which must be triangularizable, and hence reducible,

by Levitzki’s Theorem. Now reducibility of the nonzero ideal A KA, implies that
of A in light of Lemma 1.1.2(i). O

Here is a finite-dimensional extension of a result due to V.S. Shulman to general
fields (see [S] or [Y1]).

Corollary 2.2.11. Let V be a finite-dimensional vector space over a field F. Then

every nonzero semigroup S of nilpotent linear transformations in L(V) has a nontrivial
hyperinvariant subspace.

Proof. Since every such semigroup § is triangularizable by Levitzki’s Theorem,
Theorem 2.2.10 applies. O

Theorem 2.2.10 immediately implies the following corollary which is a finite-

dimensional version of a result due to Yu.V. Turovskii on general fields (see [ST]
or [Y1]).

Corollary 2.2.12. Let V be a finite-dimensional vector space over a field F, M and

N triangularizable sets of linear transformations in L(V) such that N C M. Then
MUN is triangularizable.

Proof. In view of The Triangularization Lemma (Lemma 1.1.3) we just need to
show that M U N is reducible. Without loss of generality we may assume that M is
nonscalar; otherwise we have nothing to prove. Since MUN C MU M, the assertion
is a quick consequence of Theorem 2.2.10. O



For m € N, and a collection F of matrices by ™ we mean the set of products of
the members of F of “length” m, i.e.,

I = {Ay..Am: A € Fi=1,..,m}.

The following theorem extends Levitzki’s Theorem.

Theorem 2.2.13. (i) Let n € N, F a field, and 8 a semigroup in M,(F) such that
every S € 8 can be written as a linear combination of nilpotent elements from the
algebra generated by 8. Then the semigroup § is triangularizable and 8" = {0}. In
particular, § is a semigroup of nilpotents.

(ii) Let n € N, F a field, A an algebra in M,(F). If the algebra A is generated by
nilpotents as a vector subspace of M,(F), then the algebra A is triangularizable and
A" = {0}. In particular, A is an algebra of nilpotents.

Proof. It suffices to prove (i).

(i) The assertion trivially holds if n = 1. So suppose that n > 1. Since nilpotency
does not depend on the ground field, we may assume, without loss of generality,
that the ground field F is algebraically closed. First we show that the semigroup
$ is triangularizable. Suppose that M C N are two invariant subspaces for 8 with
dim %it > 1, it suffices to show that 3, the set of all quotient transformations Son %
(S € 8), is reducible. It easily follows from the hypothesis that every S € 8§ can be
written as a linear combination of nilpotent elements from the algebra generated by S.
Thus, tr(8) = {0}. Since the ground field F is algebraically closed, from Burnside’s
Theorem (see Theorem 2.2.21 below), we see that § is reducible, as desired. Therefore,
the semigroup § is triangularizable. That is, there is a maximal chain of subspaces
each of which is invariant for 8 as follows.

{0} =MeCcM; C..CM,=F",

where dim itM:T =1 for each 7 = 1, ..., n. Now since dim %: =1foreachi=1,..,n
and that every quotient transformations S; on STy (S € 8) is a linear combination
of nilpotent elements from the algebra generated by S;, we see that S; = 0 for all



S € 8. In other words, there exists a basis for the vector space F™ such that every

S € 8§ has strictly upper triangular matrix representation with respect to that basis.
This obviously yields 8® = 0, completing the proof. U

Remarks.

1. Let F be a field, and A an irreducible algebra in M,(F) where n € N. Then
A cannot be generated by nilpotents as a subspace of M,(F), for otherwise by the
preceding theorem A would be triangularizable, and hence reducible, a contradiction.

2. In view of Theorem 2.2.7, the proof of the preceding theorem provides a second
proof for Levitzki’s Theorem.

3. Let D be a division ring whose center is a field F. By an F-algebra A in M, (D),
we mean a subring of M,,(D) that is closed under scalar multiplication by the elements
of the field F. Let A be an F-algebra in M, (D) where n € N. We conjecture that
the F-algebra A is nilpotent, more precisely A" = 0, if and only if A is spanned by
its nilpotents as a vector space over F. This conjecture, if true, immediately extends

Levitzki’s Theorem, Kolchin’s Theorem (Corollary 2.2.15 below), and Theorem 2.3.2
below to division rings.

The following extends a well-known theorem of Kolchin.

Corollary 2.2.14. (i) Let n € N, F a field, and F a family of matrices in M.(F)
with the following properties: (a) every A in F can be written as a linear combination
of nilpotent elements from the algebra generated by F; (b) if A and B are in F, then
AB+ A+ B isin F. Then F is triangularizable, and F* = {0}.

(ii) Let n € N, F a field, and F a family of matrices in M,(F) such that every
A in F can be written as a linear combination of nilpotent elements from the algebra
generated by F. Then every semigroup of matrices of the form I + N with N in F
is triangularizable. Therefore, such a semigroup of matrices is indeed a semigroup of
unipotents (i.e., of the form I + N with N nilpotent).

Proof. (i) Let 8 denote the semigroup generated by F. Note that every S € 8 is
a product of a length m in F (i.e., S = A;..A,, with A; in F foreach 7 =1, ..., m).
Using induction on the length m, in view of (a) and (b), it is easily seen that every
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S € 8 can be written as a linear combination of nilpotent elements from the algebra
generated by 8. So the assertion follows from the preceding theorem.

(ii) Let S be a semigroup of matrices of the form I + N with F as described in
the hypothesis. Then the family F obviously satisfies (a) and (b) of part (i). So (i)
applies, completing the proof. O

Corollary 2.2.15 (Kolchin’s Theorem). (i) Let V be a finite-dimensional vector
space over a field F. Let N be a set of nilpotent linear transformations with the
following property: if A and B are in N, then AB + A+ B is in N. Then N is
triangularizable.

(ii) Let'V be a finite-dimensional vector space over a field F'. Then every semigroup
S of unipotent linear transformations in L(V) is triangularizable.

Proof. Corollary 2.2.14. O

Corollary 2.2.16 (Kaplansky). Let n € N, F a field. Then every semigroup 8 of
matrices in M,(F) of the form al +N with a € F and N nilpotent is triangularizable.
In other words, every semigroup of n X n matrices over a field whose spectra are
singletons s triangularizable.

Proof. Without loss of generality, we may also assume that F'S C 8. In light of the

Triangularization Lemma (Lemma 1.1.3) it suffices to prove that § is reducible. We
recognize two cases.

(i) The semigroup § contains a nonzero nilpotent.
We show that the set of nilpotents in § forms a semigroup ideal of 8. To this end,

suppose that N € § is nilpotent and al + N’ € 8 where a € F and N’ is nilpotent.
It follows from hypothesis that

N(al +N')=d I+ N”",

where o’ € F and N” is nilpotent. It suffices to show that o’ = 0. Suppose not.
Therefore o/ + N" is invertible, hence so is N(al+ N') and hence N, a contradiction.



Thus N(al + N') = N” is nilpotent. Similarly (el + N')N is nilpotent. So we have
shown that set of nilpotents in 8§ forms a nonzero semigroup ideal of §. Now Levitzki’s
Theorem along with Lemma 1.1.2(i) proves the reducibility of § in this case.

(ii) The semigroup 8 contains no nonzero nilpotent.

In this case, it is plain that every element of 8 is of the form al+ N with0 # a € F

and N nilpotent. Thus the semigroup § is reducible iff the semigroup 8 C § is
reducible where

§={I+N:al+aN eS8, forsome0#acF & N" =0}.

But &' is indeed triangularizable, hence reducible, by Corollary 2.2.15, finishing the
proof. d

In what follows, we will make free use of the Jacobson radical theory as well as some
classical theorems of the structure of rings such as the Wedderburn-Artin Theorem
and its consequences (see Chapter IX of [H] for a nice exposition of the classical
theorems on the structure of rings). Recall that Burnside’s Theorem asserts that the
only irreducible algebra in M,(F) (n > 1) is M,(F) provided that F is algebraically
closed. We wish to characterize all fields F' such that Burnside’s Theorem holds in
M, (F) (n > 1). To do so, we need the following lemma.

Lemma 2.2.17. Let F be a field, and A an irreducible algebra in M,(F). Then A is
semisimple both as a subring and as a subalgebra of M,,(F'). Furthermore, the algebra
A is unital, its identity element equals the identity matriz, and A is simple.

Proof. In light of Theorem IX.5.2(ii) of [H], it suffices to show that A is semisimple
as a subalgebra of M, (F). To this end, note that A is an algebraic algebra. Therefore,
it follows from Exercise IX.5.6 of [H] (or Theorem 14 on page 89 of [K1]) that the
Jacobson radical of the algebra A, denoted by Rad(A), is nil (i.e., every element of
Rad(A) is nilpotent). Now Levitzki’s Theorem together with Lemma 1.1.2(i) yields
Rad(A) = {0}. That is, A is semisimple as a subalgebra, and hence as a subring, of
M,(F). That A is unital follows from Theorem IX.5.4 of [H]. Let I and [, denote the
identity element of A and M, (F') respectively. We need to show that I = I,. To this



end, by contradiction, suppose I # I,. Obviously, I is not zero and I* = I, hence
I(I — I,) = 0. This in turn, in view of the contradiction hypothesis, implies that
ker(I — I,) is a nontrivial subspace which is invariant under {I} D A, contradicting
the hypothesis that A is irreducible. Thus I = I, as desired. To see that A is
simple, suppose J is a nonzero ideal of A. We show that J = A. Since the algebra A
is irreducible, it follows from Lemma 1.1.2(i) that the nonzero ideal J is an irreducible
algebra in M,(F). Hence, the ideal J is unital and its unit equals I,. Therefore,
J = A, completing the proof. a

Remark. Let F be a field, n > 1, $ an irreducible semigroup in M,(F), and J a
nonzero ideal of 8. It is easily verified that the trace functional is permutable (resp.
zero) on § if and only if it is permutable (resp. zero) on Alg(8). That being noted,
in view of the preceding lemma, we see that the trace functional is permutable (resp.
zero) on $ if and only if it is permutable (resp. zero) on J, for Alg(8) = Alg(J).

Theorem 2.2.18. Let F be a field, and § an irreducible semigroup in M,(F) where
n € N. Let r € N be the smallest nonzero rank present in Alg(S). Then

(i) After a similarity, Alg(8) contains an idempotent E = I, @ 0, where [, is
the identity matriz of size r and 0,_. is the zero matriz of size n — .

(ii) The integer r divides n. and after a similarity EAlg(S)E = D, @ 0, where
D, is an irreducible division algebra in M,.(F). Furthermore, the minimal polynomial
of every D € D,, denoted by mp, is irreducible over F and deg(mp) divides r.

(iti) Alg(S) = M,(F) iffr=1.

Proof. (i) The assertion trivially holds if n = 1. So suppose that n > 1. Set
A := Alg(8). It is plain that A is an irreducible subalgebra of M,(F'). So it follows
from the preceding lemma that A is semisimple both as a subring and as a subalgebra
of M,(F) and that the algebra A contains I,, the identity matrix.

Let r be the smallest nonzero rank present in A. If 7 = n, we have nothing to
prove since the algebra A contains I,,. So suppose that 7 < n. We can assume that
there exists a nonzero element T of A with minimal rank, i.e., rank(T") = r, such that
mr = z° f where f € F[X], deg(f) > 1, and f(0) # 0 (in fact it will turn out that
no = 1). Such a T exists because otherwise the set of T’s whose ranks are r or {



forms a nonzero semigroup ideal J of nilpotent matrices (whose index of nilpotency is
in fact 2 by minimality of r) of the algebra, hence semigroup, \A. Thus it follows from
Levitzki’s Theorem that the nil ideal J is triangularizable, contradicting irreducibility
of A by Lemma 1.1.2(i). Now it follows from the Primary Decomposition Theorem
(Theorem 6.8.12 of [HK]) that there exist complementary T-invariant subspaces M
and N such that F* = M@ N, T =T, ® T, where T} = Tz, To = T, mp, = f,
mp, = z"°, (thus 7} is invertible for f(0) # 0). Now since T has minimal rank it
follows that T = Oy, for otherwise rank(75) > 0 and

rank(7T™°) = rank(T7° ® T5°) = rank(T}® @ On) = rank(77°)

= rank(T}) < rank(7}) + rank(7Tz) = rank(T) =,

contradicting the minimality of r. Thus T> = Oy, yielding no = 1 for z = mo, =
mr, = ™. Since mp, = f and f(0) # 0, it follows that there exists a polynomial
p = —(f — f(0))/f(0) such that p(T}) = I[5. So we have p(T) = In ® O € A.
Therefore, after a similarity A contains the desired idempotent £ = [, & 0,_,.

(ii) Find £ = I, ® 0, as described in (i). It is easily seen that one can write
EAE =D, ®0,_, where D,. C M.(F). That D, is an algebra in M,.(F) is trivial. If
r > 2, then D, is an irreducible division algebra by Corollary 2.2.3 and minimality
of r; if r = 1, this is trivial (in fact by part (iii) of the theorem we have r = 1 iff
A = M,(F)). So it remains to show that r divides n. To this end, use induction
onn. If n = 1, we have nothing to prove. Suppose that the assertion holds for
all irreducible semigroups of matrices of size less than n. For a given irreducible
semigroup 8§ of matrices in M, (F), set A := Alg(S) and find F = [, ® 0, as
described in (i). If 7 = 1, we have nothing to prove. So without loss of generality
assume that ~ > 2 and E € A (note that rank is invariant under similarity). Thus
n—r>2since —-Ec€A. From[—-E=([&,_.)— (®0,-.) =08, itis
easily seen that

A:=(I—-FE)A(I[—-E)=0.8 A,

where A, € M,_.(F). Since A is an irreducible algebra in M,(F'), it follows from
Corollary 2.2.3 that so is A, in M,,_.(F). Let r’ be the smallest nonzero rank present
in A, € M,,_(F). We conclude from the induction hypothesis that 7’ divides n —r.



So to prove that r divides n, it suffices to show that ' = r. The fact that 0, ® A, =
(I — EYA(I — E) C A, implies that 7 < 7/. To see ' < r, first we claim that
(I - E)AE #0. Suppose (I —E)AE = 0. It is evident that M := EF™ is a nontrivial
subspace of F™. We have

AM = AEF" = (E + (I — E))AEF"

— EAEF"™ + ([ — E)AEF™ = EAEF" C EF* =M.

Therefore, AM C M. That is, A is reducible, a contradiction. So there exists A € A
such that (I — E)AE # 0. Note that A is an irreducible subalgebra in M,(F) and
0 # (I — E)AE € A. Hence, Lemma 2.2.17 together with Exercise IX.2.5(i) of
[H] implies that there exists B € A such that (/ — E)?AEB = (I — E)AEB is not
nilpotent. Therefore, (I — E)AEB(I — E) is not nilpotent either which in turn implies
that (I — E)AEB(I — E) # 0. It is now plain that

0 <rank((f — E)AEB([ — E)) <rank(E) =T7.
Since 0 # AEB € A, we conclude that

' < rank((I — E)AEB(I — E)) <.

So r < r, hence r = 7/, finishing the proof. Finally, since D, is a division algebra
in M,.(F), the minimal polynomial mp of every D € D, is irreducible over F', imply-
ing that deg(mp) divides r by the Rational Canonical Form Theorem (see Theorem
VIL.4.2(i) and Theorem VIL4.6(i) of [H]).

(iii) The assertion follows from the remark following Theorem 2.2.7, for Alg(8) is
an irreducible subalgebra of M, (F') which contains a rank-one matrix. a

Recall that a field F is called perfect if every algebraic extension field of F is
separable over F, or equivalently, either ch(F) =0 orch(F) =pand F = {e® :a € F'}

(see Ex. 5.6.13 on page 289 of [H]), e.g., finite fields and algebraically closed fields
are perfect.



Theorem 2.2.19. Let F be a field, n > 1, 8 an irreducible semigroup in M,(F), J
a nonzero semigroup ideal of 8 such that tr(3) = {c} for some c € F'. Then trace is
zero on 8, hence ¢ = 0. Also the field F is not perfect, and ch(F) is nonzero and
divides r, hence n, where v € N is the smallest nonzero rank in Alg(8).

Proof. Set A := Alg(8). Plainly, the algebra A is irreducible, and hence simple in
view of Lemma 2.2.18. Thus A = Alg(J), for Alg(J) is a nonzero ideal of A. We can
write .
A={d aSi:keN, ¢eF Si€l, 1<i<k}
=1

To show that ¢ = 0, we use contradiction. Suppose that ¢ # 0. There are two cases
to consider.

(a) {S. S’} is linearly dependent forall S,S" €3.

Fix S € J; it follows that for every S’ € J we have S’ = fS for some f € F. Taking
trace of both sides yields tr(S’) = ftr(S). Hence ¢ = fc implying f = 1. Therefore,
we have J = {S} and this in turn implies S* = S, for J is a semigroup. From this we
obviously see that J is reducible, a contradiction in light of Lemma 1.1.2(i).

(b) {S,S'} is linearly independent for some S, S’ €J.

Since the set {3, S’} (S, S’ € J) is linearly independent, we see that the set J =
{A € A : tr(A) = 0} is nonzero. It follows from constancy of trace on J that g
is an ideal of the irreducible algebra A. Therefore, J = A since A is simple. This
yields ¢ = 0, a contradiction. Therefore, ¢ = 0. Now let 7 and D, be as in Theorem
2.2.18. Since tr(A) = {0}, from Theorem 2.2.18 we see that r divides n and that
tr(D,) = {0}. In particular, we have tr(I.) = 0. Therefore, ch(F’) is nonzero and
divides r. Finally, the fact that the field 7 is not perfect follows from Theorem 2.5
of [FGG]. a

Remarks.

1. It will turn out that every semigroup in M,(F') with constant trace is indeed
triangularizable provided that ch(F) > n (see Corollary 2.4.10 below).



2. Let n > 1, F a field that is perfect or its characteristic does not divide n. It
follows from the preceding theorem that every semigroup of matrices in M,(F') with
constant trace is reducible.

Recall that a matrix A in M,(F) is called reducible if A as a linear transfor-
mation on F™" is reducible, i.e., it has a nontrivial invariant subspace. As we saw
in Lemma 1.1.1, it follows from the Cayley-Hamilton Theorem that: a matrix A
in M,(F) is irreducible if and only if the characteristic polynomial for A is irre-
ducible over F; if and only if every nonzero z in F™ is a cyclic vector for A, i.e.,
{z, Az, ..., A"~ 'z} spans F". Furthermore,

{A} = F[A] = {f(A) : f € F[X] with deg(f) <n —1},

where {A}’ denotes the commutant of A. In contrast to Lemma 1.1.1, we prove the
following.

Lemma 2.2.20. Let F be a field and n > 1. A matriz A in M,(F) has no nontrivial
hyperinvariant subspace if and only if the minimal polynomial for A is irreducible over
F. Furthermore, after a similarity {A} = M= (F[C]) where r = deg(m,) (divides n )
and C = C(m,) in M,.(F) denotes the companion matriz of the minimal polynomial
of A.

Proof. The “only if” part of the assertion is easy. To prove it by contradiction
suppose m,, the minimal polynomial of A, is reducible over F. So there exists a
polynomial f € F[X] different from m, that divides m,. It is now easily seen
that ker(f(A)) is a nontrivial hyperinvariant subspace for A, a contradiction. To see
the “if” part, suppose that m, is irreducible over F. From the Rational Canonical
Form Theorem (see Theorem VII.4.2(i) and Theorem VIL4.6(i) of [H]), we see that
r = deg(m.,) divides n and that A is similar to a direct sum of copies of the companion
matrix of m,. More precisely, A is similar to C®...&C € M= (F[C]) where C denotes
the the companion matrix of m,. With no loss of generality we may assume that
A=C®..®C € M=z(F[C]). In view of the aforementioned elementary exercise,
a straightforward calculation shows that {A} = M= (F[C]). Since m, is irreducible



over F, we conclude that F[C] is an irreducible algebra in M.(F) which in turn
implies the irreducibility of the algebra {A} = M=(F[C]) in M,(F). That is, the
matrix A has no nontrivial hyperinvariant subspace. O

For a given field F and k € N with & > 1, we say that F'is k-closed if every
polynomial of degree k over F is reducible over F. It is plain that a field F is
algebraically closed iff F is k-closed for all £ € N with £ > 1. It can be shown
that finite fields are not k-closed for all £ € N with & > 1. Recall that a collection
F in M,(F) (n > 1) is absolutely irreducible if Alg(F) = M,(F). It follows from
the following theorem that a collection F in M,(F') is absolutely irreducible iff it is
irreducible as a collection in M,(F) where F denotes the algebraic closure of F.

We are now in a position to extend Burnside’s Theorem as follows.

Theorem 2.2.21. Let F be a field and n > 1. The following are equivalent.
(i) The only irreducible algebra in M,(F) is M,(I).
(ii) Every irreducible family of matrices in M,(F) is absolutely irreducible.
(i) The commutant of every irreducible family of matrices in M, (F) consists of
scalars.
(iv) Every nonscalar matriz in M,(F) has a nontrivial hyperinvariant subspace.
(v) The field F is k-closed for all k dividing n with k > 1.

Proof. “(z) == (iz)” Obvious.

“(#t) == (#i7)” Let F be an irreducible family of matrices in M,(F’) and A denote
the algebra generated by F. It is plain that ¥ = A’. On the other hand, by the
hypothesis we must have A = M, (F). Therefore, F¥ = A’ = M,(F) = {cl,:c€ F},
proving the assertion.

“(44i) = (iv)” Use contradiction. Suppose that the nonscalar matrix A in M,(F)
has no nontrivial hyperinvariant subspace. Therefore, {A}" must be an irreducible
family, in fact algebra, of matrices in M,(F). Since A € ({A})', it follows from the
hypothesis that A is scalar, a contradiction.

“(iv) == (v)” Use contradiction again. Suppose that there exists an irreducible
polynomial f over F such that degf = r > 1 divides n. Let C € M, (F’) denote the
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companion matrix for f. Set A= C & ... ® C € M=(F[C]). It is plain that A is
nonscalar and that m, = f. Now irreducibility of m, contradicts the hypothesis in
view of Lemma 2.2.20.

“(v) = ()" Let A be an irreducible algebra in M,(F’). Let r and D, be as in
Theorem 2.2.18. In light of Theorem 2.2.18(ii), it is evident that r = 1 and D, = F.
It now follows from Theorem 2.2.18(iii) that A = M,(F), as desired. a

Remarks.

1. Since the field of real numbers is k-closed whenever k is an odd number, a quick
consequence of the preceding theorem is what we can call Burnside’s Theorem for
real vector spaces: Let n € N be an odd number. Then the only irreducible algebra
of linear transformations on an n-dimensional real vector space V is the algebra of all
linear transformations on V.

2. Let n > 1, and F a field that is k-closed for all £ dividing n with & > L. In

if it is absolutely irreducible; if and only if it is irreducible as a collection in M, (K)
where K is any extension field of F'.

Let F be a field, and F an irreducible family of matrices in M,(F) (n > 1). We
say that F is trivially irreducible if F C F[A] where A € F is an irreducible matrix in
M,(F), ie., the matrix A has no nontrivial invariant subspace or, equivalently, the
characteristic polynomial of A is irreducible over F'.

Theorem 2.2.22. (i) Let n > 1, F a field with ch(F) = 0 or > n/2, and A an
algebra in M, (F) on which the trace is zero. Then either the algebra A is reducible,
or else ch(F) = n, every nonscalar A € A is irreducible in M (F'), and A = F[A].
(i) Let F be a field with ch(F) =0 or > n/2 wheren > 1, and 8 a semigroup in
M, (F) on which trace is constant. Then either the semigroup 8 is reducible, or else

ch(F) = n, trace is zero on 8, every nonscalar A € Alg(8) is irreducible in Mn(F ),
and 8§ C F[A].

Proof. (i) If the algebra A is reducible we have nothing to prove. So suppose that
the algebra A is irreducible. Let r and D, be as in Theorem 2.2.18. From Theorem
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2.2.19 we see that ch(F) is nonzero and that ch(F') divides r. Hence r > ch(F) > n/2.
Since ch(F) divides 7 and r divides n, we conclude that ch(F) =7 =n. Fromr =n
and the hypothesis that the algebra A is irreducible we see that A is an irreducible
division algebra on which trace is zero. Now since ch(F') = n = r, from the proof of
Lemma 2.2.5(i) it is easily seen that every A in A is of the form al, + N € M, (F)
where F denotes the algebraic closure of F and NV nilpotent. Thus, we conclude form
Corollary 2.2.16 that the algebra A is triangularizable on F. This along with the fact
that A is a division algebra implies that the algebra A is commutative, for AB — BA
must be nilpotent, hence 0, for all A,B € A. The minimal polynomial for every
A € A is irreducible over F because A is a division algebra in M,(F’) (equivalently
r =n). That being noted, let A be any nonscalar matrix in A. Using Exercise V.6.6
of [H] and the fact that ch(F) = n = r, the characteristic polynomial of A, say f,
equals the minimal polynomial of A and we have f = 2" —a for some a € F. Now
since f is irreducible over F, we see that the matrix A is irreducible as an element of
M,(F). Finally, irreducibility of the matrix A together with the fact that the algebra
A is commutative easily yields A = F[A], as desired.

(ii) Suppose that the semigroup § is irreducible. Set A := Alg(S). The algebra A
is irreducible and hence it is simple in view of Lemma 2.2.17. We can write

k
A={cSi:keN, ceFSe8 1<i<k}
i=l
Since $ is irreducible, it follows from the proof of Theorem 2.2.13 that there exist
S,S' € 8 such that {S, S} is linearly independent. This in turn implies that the set
J:={A € A: tr(A) = 0} is a nonzero ideal of the simple algebra A. Hence, J = A
for A is simple. Now (i) completes the proof. O

Remarks.

1. Under the hypotheses of the preceding theorem, the semigroup § would be
reducible provided that § is not trivially irreducible, or noncommutative, or contains
a reducible matrix that is not scalar, or n is not a prime number.

2. Let Z, be the field of integers modulo 2, Z5[X] denote the ring of polynomials
over Z,, and F := Z,(X) denote the quotient field of Z5[X] (note that Zy[X] is an



integral domain and that ch(F) = 2). It is easily seen that the matrix A € Ms(F)

defined by
1 a:\
A=
11)
is irreducible in M>(F), and that trace is zero on the irreducible algebra A :=
Alg(A) = F[A].

2.3 Main Results

Let K be a field and F a subfield of K. By an F-algebra A in M,(K), we mean
a subring of M, (K) that is closed under scalar multiplication by the elements of the

subfield F. For a semigroup 8 in M, (K), let Algz(8) denote the F-algebra generated
by §, i.e.,

k
Algp(8) :={D aSi:keN o € F.S; € 8}.
i=1

By Alg(8) we simply mean Alg,(8). If m € N, we use 8™ to denote the semigroup
ideal of 8 consisting of products of the members of § of “apparent length” m, i.e.,

§" ={S)..Sm:S;€8.i=1,..,m}.

A semigroup ideal J of § is called an absorbing semigroup ideal of 8 if there exists
m € N such that 8™ C J. Note that 8™ is an absorbing semigroup ideal of 8 for each
m € N.

For a given T € M,,(F), we use &(T) to denote the spectrum of T' in the algebraic
closure of F. Note that, by the proof of Lemma 2.2.4 and the Cayley-Hamilton
Theorem, &(T) = {0} iff T is nilpotent.

In what follows the following three theorems are crucial.

Theorem 2.3.1. Letn € N, F a field, $ an irreducible semigroup in M,(F) on which
trace is not identically zero, and J a nonzero semigroup ideal of 8. Then



33

{A € Alg(S U {I}) - tr(AT) = {0}} = {0}.

Proof. Denote the left hand side of the asserted identity by J. Set A := Alg(8).
The algebras A and Alg(J) are irreducible algebras in M,(F') since § is an irreducible
semigroup in M, (F) and J is a nonzero semigroup ideal of 8. Note that Alg(J) is a
nonzero ideal of A because J a nonzero semigroup ideal of § and that A is the linear
span of 8. Therefore, A = Alg(J), for the algebra A is simple by Lemma 2.2.17.
Again from Lemma 2.2.17, we see that A = Alg(8) = Alg(S U {I}). Due to linearity
of the trace functional and the fact that A = Alg(J) is unital, it is not difficult to see
that

d={A € Alg(8) : tr(AJ) = {0}} = {4 € A : tr(AA) = {0}}

is an ideal of the simple algebra A consisting of matrices with traces zero. Thus
g = {0}, for otherwise § = A, and hence tr(A) = {0}, contradicting the hypothesis
that trace is not identically zero on S. O

Remarks.

1. Let n € N, F a field, $ an irreducible semigroup in M,(F), and J a nonzero
semigroup ideal of 8. From irreducibility of 8, in view of Lemma 1.1.2 and Lemma
2.2.17, we obviously have Alg(J) = Alg(J%). This in turn implies that

{A € Alg(SU {I}) : tr(AJ) = {0}} = {A € Alg(S U {[}) : tr(JAT) = {0}}-
Therefore, either trace is identically zero on the irreducible semigroup 8, or else
{A € Alg(8 U {I}) : tr(JAT) = {0}} = {0}.

2. In the preceding theorem if n > 1 and the ground field F' happens to be perfect,
or the field F is such that ch(F) = 0 or ch(F) does not divide 7, then, in view of
Theorem 2.2.19, it follows that the hypothesis that trace is not identically zero on §
is redundant.

3. In light of Theorem 2.2.22, it is easily seen that if F is a field with ch(F') =
0 or > n/2 where n > 1, 8§ an irreducible semigroup in M,(F), and J a nonzero
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semigroup ideal of 8, then either the conclusion of the theorem above holds or ch(F) =
n, trace is zero on S, every nonscalar A € Alg(8) is irreducible in M,,(F), and Alg(8) =
F[A]. Therefore, the preceding theorem holds provided ch(F) =0 or > n/2 and that
$ is a nontrivial irreducible semigroup in M,(F). This also shows that there are
irreducible semigroups on which trace is identically zero.

4. Let F and A € M,(F) be as in the remark following Theorem 2.2.22. Note
that ch(F) = 2, the field F is not perfect nor is it 2-closed. Set A = F[A] and let
S = J = A. Trace is zero on the irreducible algebra .A. This gives an explicit example
of an irreducible semigroup with zero trace.

5. It is worth mentioning that the equality in the preceding theorem does not imply
irreducibility of the semigroup S. For instance the equality holds for the diagonal
semigroup 8 := {diag(d, ...,d) : d; € F, i =1, ...,n} wheren > 1.

6. In Chapter 4, we prove an analogue of the above theorem for division rings.

In the preceding theorem the asserted identity holds with “G” replacing “tr” and
with no condition imposed on the ground field F nor on the irreducible semigroup in

terms of trace. More precisely, we have the following theorem.

Theorem 2.3.2. Let n € N, F a field, S an irreducible semigroup in M,(F), and ]
a nonzero semigroup ideal of S. Then
(i)
{A € Alg(8U {I}) : 5(JAT) = {0}} = {0}
(%)
{A € Alg(8 U {I}) : 5(A7) = {0}} = {0}

Proof. It suffices to prove (i).

(i) Denote the left hand side of the asserted identity by J. We prove that § = {o}.
To this end, let A € J be arbitrary, we show that A = 0. Plainly the set JAJ =
{J1AJ - Jy, Jo €7} is a subset of Alg(J) consisting of nilpotents. The algebra Alg(7)
is irreducible in M,,(F), for 8 is an irreducible semigroup in M,(F’) and J is a nonzero
semigroup ideal of 8. It is easily seen that Alg(JAJ) is an ideal of the irreducible,
hence simple, algebra Alg(J). We note that Alg(JAJ) # Alg(J), for otherwise the
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irreducible algebra Alg(J) would be generated by nilpotents as a vector subspace of
M, (F) which is a contradiction in view of Remark 1 following Theorem 2.2.13. Hence
Alg(JAJ) = {0}. Therefore, JAJ = {0}, and hence A =0, for Alg(J) = (J) is unital
by Lemma 2.2.17. O

Remark. If F =R or C, we may write p instead of & in (i) and (ii) where p stands
for the spectral radius.

If the ground field happens to be k-closed for each k dividing n with k > 1, then
in Theorem 2.3.1 not only the condition that trace is not identically zero on 8 can be
dropped, but also a lot more can be said. More precisely, we have:

Theorem 2.3.3. Let n > 1, F a field that is k-closed for each k dividing n with
k> 1 (resp. F be a field) , 8 an irreducible (resp. absolutely irreducible) semigroup
in M,(F), and J a nonzero semigroup ideal of 8. Then M,(F) = Alg(8) = Alg(SU
{I}) = Alg(3), moreover
(i)
{A € M,(F) : tr(AJ) = {0}} = {0}.
(ii)
{A € M,(F):5(ATJ) = {0}} = {0}.

Proof. First we note that in view of Lemma 1.1.2(i), irreducibility (resp. absolutely
irreducibility) of 8§ implies that of the nonzero ideal J. Thus it follows from Theorem
2.2.21 (resp. the definition) that M,(F) = Alg(8) = Alg(S U {[}) = Alg(J). It is
evident that it suffices to prove (i).

(i) Denote the left hand side of the asserted identity by J. Let J € J be given. Since
M, (F) = Alg(J), linearity of trace yields tr(JM,(F)) = {0}. It is now easily seen that
J is indeed a two-sided ideal of the ring M, (F). It follows from elementary algebra
that § = {0} or § = M,(F)- On the other hand, the fact that tr(JM,(F)) = {0}
implies tr(J) = {0} and so J # M,(F). Hence J = {0}. O

Remark. Under the hypotheses of the preceding theorem we indeed have

{A € M,(F) : tz(JAT) = {0}} = {0}
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Part (i) of the following corollary characterizes all irreducible families of matrices

over a field on which trace is permutable. Part (iii) is a special case of a result in
[R2].

Corollary 2.3.4. (i) Let n > 1, F a field, and F an irreducible subset of M,(F)
on which trace is permutable. Then either tr(Alg(F)) = {0} or else Alg(F) is an
extension field of F'.

(i) Let n > 1, F be a field that is perfect or such that ch(F') does not divide n,
and F an irreducible collection of matrices in M,(F) on which trace is permutable.
Then there ezists an irreducible matriz A in Alg(F) such that F C F[A]. Therefore,
such a collection F C M, (F) exzists iff there ezists an irreducible polynomial of degree
n over F.

(iii) Let n > 1, F a field with ch(F) = 0 or > n. Then a collection F of trian-
gularizable matrices in M,(F) is triangularizable if and only if trace is permutable
on F. In particular, the assertion holds for any collection F of matrices in M.(F) if

the underlying field F is algebraically closed or, more generally, is k-closed for each
k=2,..,n.

Proof. (i) Suppose that trace is not identically zero on A := Alg(F), we first show
that F, hence Alg(¥), is commutative. To this end, let A,B € F be arbitrary.
Since trace is permutable on F, it follows that tr((AB — BA)Alg(F)) = {0}. and
hence AB = BA by Theorem 2.3.1. So we have proved that Alg(F) is commutative.
From this together with irreducibility of Alg(F) we see that every nonzero element of
Alg(F) is invertible because the kernel of every element of Alg(F) is invariant under
F. Therefore, Alg(F) is indeed an extension field of F, completing the proof.

(ii) The hypothesis together with the second remark following Theorem 2.2.19
implies that trace cannot be identically zero on Alg(F). So it follows from part (i)
that Alg(¥) is an extension field of F'. If F is perfect, the assertion is obvious in view
of the Primitive Element Theorem (Proposition V.6.15 of [H]). If F is a field such
that ch(F) does not divide n, then ch(F’) does not divide dimg Alg(F) either. To
see this, use contradiction. If ch(F) divides dimp Alg(F), then ch(F') divides n® for
dimg Alg(F) divides dimp M, (F) = n? by Lemma 7.4 of [D]. Hence ch(F’) divides
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n because ch(F) is a prime number, a contradiction. Thus, ch(F’) does not divide
dimg Alg(F). Now the assertion follows from Exercise V.6.8 of [H] and the Primitive
Element Theorem, finishing the proof.

(iii) If the collection F is triangularizable, it is not hard to see that trace is
permutable on F. So it remains to prove the “if part” of the assertion. To this end,
suppose that trace is permutable. Using permutability of trace and induction on £,
it is not hard to show that tr(A;...A, — A;1..4,)f =0forallkeN, 4,,... A, €T,
and all permutations o on n letters. In other words A,...A, — Ag...Agn is nilpotent
(here we have used the characteristic condition on F'). This in turn implies that the
property of permutability of trace is inherited by quotients. Thus to show that ¥ is
triangularizable we only need to show that F is reducible. If ¥ is commutative, then
it is easily seen that F is reducible. So suppose that ¥ is not commutative. Hence
there are A, B € F with AB — BA # 0. Now let 8 be the semigroup generated by
F. Note that F is reducible iff § is. Note that 0 # AB — BA € Algg(S) and, by
permutability of trace on F, we have tr((AB — BA)C) = 0 for all C € §. That is
0 # AB — BA € Algp(8) and tr((AB — BA)S) = 0. Therefore, Theorem 2.3.1 (with
J = 8) implies that 8, and hence &, is reducible, finishing the proof. a

Remarks.

1. The conclusion of Corollary 2.3.4(iii) holds for any collection &F of matrices that
contains a matrix whose eigenspaces are all one-dimensional. Note that no condition
on other members of F is imposed.

2. If the underlying field F is k-closed for each k dividing n with & > 1 (no
condition on ch(F) is imposed), then permutability of trace on a collection F of
matrices in M,,(F) implies reducibility of the collection.

3. As shown in [R2], the conclusion of Corollary 2.3.4(iii) holds true under the
weaker hypothesis that ch(F) =0 or > n/2.

4. Let p be a prime number, and F a field. In view of Corollary I1.8.17 of [M],
and the proof of Theorem 2.2.22, it is not difficult to see that if trace is permutable
on an irreducible family F in M,(F’), then there exists a matrix A € Alg(F) such
that Alg(F) = F[A]. Therefore, an irreducible family of matrices in M,(F’) on which
trace is permutable is a subset of F[A] where A is an irreducible matrix in the algebra
generated by the family.
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Corollary 2.3.5. (i) Letn > 1, F a field, 8 a semigroup in M,(F') on which trace is
not identically zero, and J a nonzero semigroup ideal of 8. If there ezists a nonzero
functional f on M,(F) defined by f(X) := tr(AX) where A € Alg(SU{I}) such that
f is zero on J, then 8 is reducible.

(it) Let n > 1, F a field with ch(F) = 0 or > n, m € N, and F a family of
triangularizable matrices in M,(F). Then ¥F is triangularizable iff tr((AB—BA)8™) =
0 for all A, B € F where 8 denotes the semigroup generated by F.

(iii) Letn > 1, F a field with ch(F) =0 or > n, m €N, and A, B triangularizable
matrices in M,(F). Then {A, B} is triangularizable iff tr((AB — BA)S) = 0 for all
words S in A and B of length at least m.

(iv) Let n > 1, F a field with ch(F) = 0 or > n, m € N, 8§ a semigroup of
triangularizable matrices in M,(F). Then § is triangularizable iff tr((AB—BA)C) =
0 forall A,BeS,Ced8™.

(v) Let n > 1, F a field, and A a ring of matrices in M,(F). Then A is triangu-
larizable iff {A, B} is triangularizable for all A, B € A.

Proof. (i) Theorem 2.3.1.

(ii) Necessity follows from the Spectral Mapping Theorem (Theorem 1.1.8 of [RR]).
To prove sufficiency, first we note that the property that tr((AB — BA)S™) =0 is
inherited by quotients. To see this we simply note that if A, B € ¥ and § € 8™, then

((AB —~ BA)S)t = (AB — BA)C,

for some C € Alg(8™). This in turn, along with the hypothesis, implies that tr(((AB—
BA)S)*) =0forallk €N, A,B€ ¥, and S € 8™. Hence (AB — BA)3™ is nilpotent
for every A,B € F. Therefore, the property that tr((AB — BA)8™) = 0 for all
A, B € ¥ is inherited by quotients. So in view of the Triangularization Lemma
(Lemma 1.1.3) it suffices to prove reducibility of F. If AB = BAforall A,B € F,
then reducibility easily follows. If AB # BA for some A, B € F, then AB—BA#0
and we would have tr((AB — BA)S™) = 0. Now reducibility follows from part (i) or
from Theorem 2.3.1, completing the proof.

(iii) This is a special case of (ii) where F is a pair {4, B} of triangularizable
matrices over F'.
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(iv) This is a special case of (ii) where ¥ = § is in fact a semigroup of triangular-
izable matrices.

(v) In light of Corollary 2.2.8 without loss of generality we may assume that the
ground field F is algebraically closed. Plainly it suffices to prove sufficiency. To this
end, again in view of the Triangularization Lemma (Lemma 1.1.3) it suffices to prove
reducibility of A. If AB = BA for all A, B € A, then reducibility easily follows.
If AB # BA for some A, B € A, then 0 # AB — BA € A and {4, B} would be
a triangularizable pair of matrices. Now let C € A be arbitrary. It follows from
the hypothesis that the pair {AB — BA,C} is triangularizable. Since AB — BA is
nilpotent, it follows from the Spectral Mapping Theorem that so is (AB — BA)C.
In particular, we would have tr((AB — BA)C) = 0. That is tr((AB — BA)A) = 0.
Hence reducibility follows from Theorem 2.3.3 with 8§ = A. (I

Remarks.

1. Corollary 2.3.5(ii), Corollary 2.3.5(iii), and Corollary 2.3.5(iv) are generaliza-
tions of results due to Guralnick, McCoy, and Radjavi respectively.

2. The conclusion of Corollary 2.3.5(ii) (resp. Corollary 2.3.5(iv), Corollary
2.3.5(v)) holds for any collection F (resp. semigroup 8, subring A) of matrices that
contains a matrix whose eigenspaces are all one-dimensional.

Corollary 2.3.6. (i) Let F be a field that is k-closed for each k dividingn with k> 1
where n € N is > 1, and 8 a semigroup in M,(F), and J a nonzero semigroup ideal
of 8. If there ezists a nonzero functional f on M,(F) defined by f(X) := tr(AX)
where A € M,(F) such that f is zero on ], then § is reducible.

(ii) Let F be a field, n,m € N, and F a family of triangularizable matrices in
M,(F). Then F is triangularizable iff (AB — BA)S™ is nilpotent for all A,B € ¥
where S denotes the semigroup generated by F.

(iii) Let F be a field, n,m € N, and A, B triangularizable matrices in M, (F).
Then {A, B} is triangularizable iff (AB — BA)S is nilpotent where S is any word in
A and B of length at least m.

(iv) Let F be a field, n,m € N, 8 a semigroup of triangularizable matrices in

M,(F). Then S is triangularizable iff (AB — BA)C is nilpotent for all A,B € 8 ,
Cesm
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Proof. Note that, in view of Corollary 2.2.8, in (ii)-(iv) without loss of generality
we may assume that F is algebraically closed for all matrices are assumed to be
individually triangularizable over F. That being noted, the proof is similar to that

of Corollary 2.3.5 except that we need to use Theorem 2.3.3. We omit the proof for
the sake of brevity. |

For a subset C C K, the symbol (C)r is used to denote the linear manifold
spanned by C over F. Suppose that K is a field, F a subfield of K, and § a semigroup
S in M,(K). It is easily verified that Algg(8) = (8)F.

Lemma 2.3.7. Letn > 1, K a field, F a subfield of K, 8 an irreducible semigroup
in M,(K) such that {0} # tr(8) C F. Suppose that {Si, ..., Sm} is a subset of 8 that
is linearly independent over F. If A € Algp(8 U {[}) and A = ¢;S1 + ... + cmSm
wherec; € K foralli =1,...,m, thenc; € F for alli =1,...,m. Therefore, a subset
{Si,.... Sm} of 8 is linearly independent over F if and only if it is linearly independent
over K.

Remark. Although we shall soon see that Alg(S8 U {I}) = Algg(S), at this point
we need the above lemma in its current form.

Proof. By the hypothesis we have
A=cpSm+ ... + 1Sy, (*)

where ¢; € K forall 1 < i < m. Set ¢nyr := 1 € F. By proving that ¢; €
(Cjs1; --rCm, 1) F for each j = 1,...,m, we show that ¢; € F for all 1 <5 <m. First
note that ¢; € (ca, ..., ¢m, 1) p- To see this, since 0 # S € § C Alg(8U{[}), it follows
from Theorem 2.3.1 that there exists S € S such that tr(5;S) # 0. Multiplying () by
S from the right, then taking trace of both sides, and dividing by tr(S,S), we conclude
that ¢; € (ca, ..., Cm, 1)F- Let jo be the largest j for which ¢; € {(Citts---s Cms 1) for
i=1,..,j. If jo =m, we are done. Suppose, otherwise, that jo < m, we show that
Cjo+1 € (Cjo+2s - Cm» 1) F, contradicting the fact that jo is the largest index having the
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aforementioned property. It is plain that

c € (cjo-{-].y ooy Cms l)Fr

forall 1 <7< jo. So for each 7 = 1, ..., jo we can write
C; = TiCjo+1 + T4
where 1; € F, n; € (Cjo+2; -+ Cm, 1)F © K. Thus we can write
A=cpSm+...+cS

= CmSm + Cn—1Sm—1 + --- + cjo+LSjo+l + ..+ 1Sy
= mSm + Cm-1Sm-1 + - + o1 (Sjo1 + T5oSjo + - + T1S1)
+njosjo + ... + 1157,

We have 0 # Sjo41 + TjoSjo + - + 7151 == B € Algp(8) for {Si,.... Sm} C Mn(K) is
independent over F. So from Theorem 2.3.1 we see that there exists S’ € 8 such that
tr(BS’') # 0. By multiplying both sides of () by S’ from the right we can write

AS' =

CmSmS’ + Cn—15, _LS, + ...+ Cjo+1(BS') + njDS,»OS' + ..+ nISlS',

Taking trace of both sides and dividing by tr(BS’) € F', we conclude that cjo+1 €

(Cjo+2s --s €ms 1) F, & contradiction. Therefore, jo =m and so ¢; € F’ foralll <i<m,
finishing the proof. O

Corollary 2.3.8. Letn > 1, K a field, F a subfield of K, § an irreducible semigroup
in M,(K) such that {0} # tr(8) C F. Then Algp(SU {I}) = Algg(8), the minimal
polynomial of every element of Algp(8) is in F[X], and Algg(8) is semisimple both
as as a ring and an F-algebra.

Proof. To prove Algz(S U {I}) = Algg(8), it suffices to show that I € Algg(S)-



To this end, first note that Alg(8) = (8) is an irreducible algebra in M,(K). By
Lemma 2.2.17, I € (8). Now this together with the fact that I € Algp(8 U {I})
vields I € (8)r = Algg(8) in view of the preceding lemma. To prove the rest of the
assertion, set Ap := Algp(8) and let A € Ap be given. From the hypothesis we easily
see that Ap is an irreducible F-algebra and tr(Ag) € F. Suppose that

m=1z" —mp_1z° ' — ... —miz —mo

with k& < n is the minimal polynomial of the given A. We need to show that m; € F
for each ¢ =0, ...,k — 1. We have

A = mpo ARV L m A+ mol. (%)

By minimality of m, the set {A*~!, ..., A, I} C A is independent over K, hence over
the subfield F. On the other hand, A*¥ € Ap. This together with (*) shows that
m; € F for each i = 0,...,k — 1 in light of the preceding lemma. Finally, since the
minimal polynomial of every element of the F-algebra Algg(8) is in F[X], it follows
that Algp(8) is an algebraic F-algebra. From the proof of Lemma 2.2.17 we conclude

that Algp(8) is semisimple as an F-algebra, hence as a ring for Algp(S) is unital,
completing the proof. d

Corollary 2.3.9. Let n > 1, K a field, F a subfield of K, and A an irreducible
F-algebra in M, (K) such that {0} # tr(A) C F. Then the F-algebra A is unital, the

minimal polynomial of every element of A is in F[X], and A is semisimple both as
as a ring and an F-algebra.

Proof. Corollary 2.3.8. 0

Remark. Let n > 1, K a field that is k-closed for each k dividing n with k > 1,
and F a subfield of K. Then every irreducible F-algebra A in M,(K) with traces
in F is central, i.e., the center of A consists of cI,’s where ¢ € F. To see this, by
Theorem 2.2.21, A’ = {cI, : ¢ € K}. As well, trace is not identically zero on the
F-algebra A by Theorem 2.3.3. So, due to the fact that the F-algebra A is unital by
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the preceding corollary, it suffices to show that if ¢I, € A for some nonzero ¢ € K,
then ¢ € F. To prove this, from Theorem 2.3.3 we see that there exists Aq € A such

that tr(cl,Aq) = ctr(Ag) # 0. Therefore, tr(Ao) and ctr(Ay) are nonzero elements of
F. Hence ¢ € F as desired.

Corollary 2.3.10. Letn > 1, K a field, F a subfield of K, 8 an irreducible semigroup
in M,(K) such that {0} # tr(8) € F. Then, Algp(8) is a finite-dimensional F'-
algebra and

dimr Algp(8) = dimg Algg(S).

Proof. It suffices to prove the equality. We note that Alg,(8) = (8)x and Algg(8) =
(8)F for 8 is a semigroup. Let {5, ..., Sm} C 8 be a basis for (8) . It suffices to show
that {Si, ..., Sm} is a basis for (8)F as well. The subset {Si,..., S} is linearly inde-
pendent over the subfield F for it is independent over K. To show that {Sy,.... Sm}
spans (8)r, suppose that A € (S)r is given. Since (8)r C (8)x, we can write

A=c¢ 5 +.... +cnSm,

for some ¢; € K (1 < i < m). By Corollary 2.3.7 we obtain ¢; € F for 1 <i¢ < m,
completing the proof. O

Motivated by Theorem 4 of [ORR] and Theorem 3.4 of [RRa] we were able to
prove the following theorem which is a generalization of Theorem 4 of [ORR]. The-
orem 2.3.12 below, and its consequences as explained in the remarks following the
theorem, can be regarded as Wedderburn-Artin type theorems as follows: (a) for
irreducible F-algebras of matrices in M, (K) with traces in the subfield F' but not
identically zero, (b) for irreducible algebras of matrices in M, (K') with zero trace, and
(c) for irreducible algebras of matrices in M,(K). Recall that by the Wedderburn-
Artin Theorem every simple algebra A of matrices is isomorphic to Mp,(D) where
m is a unique integer and D is a division algebra that is unique up to isomorphism.
However, the theorem does not say how m and D are related to the simple algebra
A. In comparison to the Wedderburn-Artin Theorem, Theorem 2.3.12 below and
its consequences give a more precise description of irreducible (F-)algebras of types
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(a), (b), and (c).To be more precise, by Theorem 2.3.12 below and its consequences
every irreducible (F-)algebra A in M,(K) of types (a), (b), and (c) is, up to a sim-
ilarity, equal to My;-(D,). Here r is the smallest nonzero rank in A and divides n,
D, @I, . C A, and D, is an irreducible division (F-)algebra in M,.(K) of types (a),
(b), and (c) respectively.

Theorem 2.3.11. Let n € N, K a field, F a subfield of K, and A an irreducible
F-algebra in M, (K) such that {0} # tr(A) C F. Let v € N be the smallest nonzero
rank present in A. Then

(i) After a similarity, A contains an idempotent E = [, ® On_, where I, is the
identity matriz of size r and 0, is the zero matriz of sizen — 7.

(ii) The integer r divides n and after a similarity EAE = D, & 0, where D,
is an irreducible division F-algebra in M.(K) with {0} # tr(D,) € F. Furthermore,
the minimal polynomial of every D € D,, which is an element of F[X], is irreducible
over F'.

(iii) After a similarity, A = M,;-(D,) where D, is the irreducible division F-
algebra of (ii). Therefore, A is simple as a ring. Conversely, let K be an arbitrary
field, and F o subfield of K. If A € M,(K) is similar to My;.(D;) where D, is an
irreducible division F-algebra in M.(K) with tr(D,) C F, then A is an irreducible
unital F-algebra in M, (K) with tr(A) C F andr is the smallest nonzero rank present
in A.

(iv) After a similarity, A = M,(F) iff r=1.

Proof. (i) First note that by Corollary 2.3.9, the minimal polynomial of every T' € A,
denoted by mr, is in F[X]. If r = n we have nothing to prove for A is unital by

Corollary 2.3.9. So suppose that 7 < n. From this point on the proof is identical to
that of Theorem 2.2.18(i).

(ii) The proof is very much like that of Theorem 2.2.18(ii), we however include
the proof for the sake of completeness. Find E = I ® 0,_, as described in (). It is
easily seen that one can write EAE = D, & 0,_, where D, C M, (K). That D, is
an F-algebra in M,(K) follows from the fact that A is an F-algebra in M,(K), and
that tr(D,) C F follows from the fact that D, &0, = EAE C A. Since FeAand
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E # 0, from Theorem 2.3.1 we see that there exists B € A such that tr(EB) # 0.
We can write

tr(EBE) = tr(E*B) = tr(EB) # 0.

Therefore, {0} # tr(D,) C F. If r > 2, then D, is an irreducible division F-algebra
by Corollary 2.2.3 and minimality of r; if r = 1, this is trivial (in fact it follows from
part (iii) of the theorem that r = 1 iff after a similarity A = M,(F')). So it remains
to show that r divides n. To this end, use induction on n. If n = 1, we have nothing
to prove. Suppose that the assertion holds for all irreducible F-algebras of matrices
of size less than n with traces in F' but not identically zero. For a given irreducible
F-algebra A of matrices in M,(K) with {0} # tr(A) C F, find E = [, & 0, as
described in (i). If » = 1 we have nothing to prove. So without loss of generality
assume that © > 2 and E € A (note that rank is invariant under similarity). Thus
n—r>2since[ —E€A. From [ —E=([,® i) —([;®0h) =08 [, it s
easily seen that
A=(I-FE)A(I-E)=08A,,

where A, € M,_.(K). Since A is an irreducible F-algebra in M,(K), it follows
from from Corollary 2.2.3 that indeed A, is an irreducible F-algebra in M,_.(K).
Since trace is not identically zero on A, I — E € A and [ — E # 0, in light of
Theorem 2.3.1 we conclude that {0} # tr(A,) € F. Now let r’ be the smallest
nonzero rank present in A, € M,_-(K). It follows from the induction hypothesis
that v’ divides n — . So to prove that r divides n, it suffices to show that ' = r.
Since 0, @ A, = (I — E)A(I — E) C A, it follows that » < 1’. To see v’ <, first we
claim that (I — E)AE # 0. Suppose (I — E)AE = 0. It is evident that M := EK"
is a nontrivial subspace of K™. We have

AM = AEK" = (E + (I — E))AEK"

= EAEK™ + (I — E)AEK™ = EAEK™ C EK™ =M.

Therefore AM C M. That is, A is reducible, a contradiction. So there exists A€ A
such that (I — E)AE # 0. Note that 0 # (I — E)AE € A, and A is irreducible, so it
follows from Theorem 2.3.1 that there exists B € A such that tr((I — E)AEB) #0.
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We can write

te((I — E)AEB(I — E)) = tr((I — E)*AEB) = tr((I — E)AEB) #0.

Hence (I — E)AEB(I — E) # 0. It is now plain that

0 < rank((I — E)AEB(I — E)) <rank(E) =r.
Since 0 # AEB € A, we conclude that

r' < rank((I — E)AEB(I —E)) <r.

So r’ < r, hence r = r’, finishing the proof. Finally, since D, is a division F-algebra
in M,(K) with {0} # tr(D,) C F, the minimal polynomial of every D € D.. which
is in F[X], is irreducible over F.

(iii) We prove the assertion by induction on n. If n = I, we have nothing to
prove. Suppose that the assertion holds for all F-algebras of matrices of size less than
n with traces in F. We prove the assertion for all F-algebras of matrices of size n
with traces in F. Let an irreducible F-algebra A in M, (K) with {0} # tr(A) C F
be given. Applying (i) and (ii) after a similarity we can write

EAE =D, ®0,_,, (I —E)AI —E)=0,@A,,

where E = I, ® 0,.—, € A, and D, C M, (K), A C M,_.(K) are, respectively, an
irreducible division F-algebra and an irreducible F-algebra with traces in F’ but not
identically zero. By the proof of (ii) the smallest nonzero rank present in A, is r.
Since n —r < n, it follows from the induction hypothesis that after a similarity of the
form T7!(.)T, with T, € M,—.(K), we have A, = Mx=c(D}) where D, & M.(K) is
an irreducible division F-algebra with traces in F but not identically zero. Applying
the similarity I & T, to A we may assume that

EAE=D,®0,.,CA, [—E)JA(I -E)=0,®A,CA, (%)
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where E = I, ®0,_, € A, A, = Ma—-(D.) and D, D), A, are as described above.
Note that every element of A € A c;m be represented in the block form, i.e., A =
(aij)$x§ where the blocks, i.e., a;;’s, are matrices of size 7 over K. For A = (a;;) € A,
Aij € M=z(M.(K)) is used to denote the block matrix with a;; € M. (K) in the ¢j
place and 0, € M,(K) elsewhere. Let E;; € M=(M.(K)) denote the block matrix
with the identity I, € M, (K) in the ij place and 0, € M,.(K) elsewhere. It follows
from () that E;; € Afori=j =1and forall 2 <47 < % Thus if A € A, then
A =E AE;j,Au = EzAE) € Aforall 1 <14, < T.

As we saw in the proof of (ii), it follows from irreducibility of A that (I, —
F1)AE; # 0 (note that in fact Eyy = E = I @ 0, € A). Since [, — E, =
Eo + ... + Eg;, it follows that there exists 2 < ip < 2 such that Ei;pAEY # 0.
That is, there exists A € A such that 0 # A;, = EiicAEL € A. This along with
minimality of » implies that a;,) € M, (K) is invertible (note that A = (a;) € A).
Similarly, it follows from irreducibility of A that E\ A([, — Ey) # 0, and therefore
there exists 2 < jo < 2 such that EyAEjy;, # 0. That is, there exists A’ € A such
that 0 # A}, = EnA'Ejyj, € A. This together with minimality of r implies that
al;, € M(K) is invertible (note that A’ = (aj;) € A).

We claim that after applying the similarity T = diag(l-,a,....,a) € M,(K) to
A where a := a;,; € M,.(K) we have A’ := T—Y*AT = M,;-(D,) where D, is the
irreducible division F-algebra. of (ii) and this would finish the proof. To this end, first
it is easily verified that

T-'BT =
Ir Or 0, bll b12 - b]_:‘,: [r 0- 0-
0, a! .. 0. ) b_% 0- a oo 0
0. . 0, a7! b%l e e b&é 0 ... 00 a
b1y biea ... biza
a-]‘bgl 6-16220. .en a—lbgga
a”lb%], a.“lb%ga. - a‘Lb%%a

From the preceding block matrix identity we see that E;; € A’ whenever i =j=1or
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2<4,j< 2 Thisin particular implies that if C = (¢;;) € A’ thenCy; = EzCEj; € A’
forall 1 <i,j <2

Since 0 # A1 = EyicAE1 € A (note that Az, in its block matrix representation,
has ai,, € M,(K) in the 451 place and 0, € M, (K) elsewhere), again it follows from
the block matrix identity above that E;,; = T7'A;,,T € A’. Having

Eiy = EyEy1, Eig, Eiq1 €A,

forall 2 <4 < 2, we conclude that E;; € A’ forall 2 <7 < 2. In particular, Ej,, € A’
where 7p is as in the above.

Recall that 0 # A{; = E\ A'Ejyj, € A. So by the block matrix identity above,
we see that Byj, == T“A’UOT € A’, that Byj,, in its block matrix representation,
has by, = a};@ = @;,a;,1 € M:(K) in the 1j place and 0, € M,.(K) elsewhere.
Let B}, = (bl;) € M2(M.(K)) denote the block matrix with b, = bsz € M.(K)
and 0, € M,(K) otherwise. As B\, Ejo1, Eii € A’ forall 1 <¢ < % and A’ is an
F-algebra, we can write

C:= Bljo + Ejol + Z E; e A

JoFi=2
Now it is a matter of a straightforward calculation to see that

n

C'=Bj +Eyj,+ Y Ea
JoFi=2

Since A’ is an irreducible F-algebra with {0} # tr(A’) C F and C € A, it follows from
Corollary 2.3.9 that the minimal polynomial for C is in F[X] and hence C™' € A'.
This in turn implies that

E]_jo . ELIC—lEJ—OJ—O e -A',

for E;; € A’ for all 1 <7 < 2. Now since Eyj, Ej1 € A’, we conclude that

E'ij = EijoEjolEljoEjoj e A’,
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for all 1 < 4,7 < 2. It is now easy to see that we in fact have A’ = My, (D,) where
D, is the irreducible division F-algebra of (ii). It is evident that if S = (s;;) € A',
then s;, € D,. Suppose that S = (s;;) € A’ is given. Since E;E;SE;;E; € A,
it follows from the preceding remark that s;; € D,. Thus A’ C M,;-(D,). On the
other hand, let S = (si;) € M,/-(D,) be an arbitrary element. Since s; € D, and
D, ®0,_, C A, it follows that S;; = E;i(sij ® 0n—r)E1; € A’ and hence

S = S{j cA.

N

i,j=1

This yields M,,-(D;) € A’, finishing the proof.

For the converse, since D, is a division F-algebra with tr(D,) C F, it easily
follows that M,/-(D;) is a unital F-algebra with tr(M,;-(D,)) € F whose smallest
nonzero rank is r. Therefore, if after a similarity A = M,;-(D,), then A is a unital F-
algebra with traces in F’ whose smallest nonzero rank is 7. So it suffices to show that
M- (Dy) is irreducible in M,(K). To see this, it suffices to show that the K-algebra
generated by M,,-(D,) is irreducible or equivalently transitive. That is, we need to
show that every nonzero vector of K™ is a cyclic vector for the K-algebra generated
by M,;-(D,). Suppose that X,Y € K" are given where X is nonzero. We need to
show that there exists A in the K-algebra generated by M,/ -(D,) such that AX =Y.
It is plain that one can write X = (zy,...,zz), Y = (y1, ..., y») where z;,y; € K" for
each i = 1,...,2 and z; # 0 for some 1 < j < +. Since D, is irreducible in M,.(K)
by hypothesis, it follows that the K-algebra generated by D, is transitive. Therefore,
for z;,y; € K™ where 1 <1 < 7, there exists

a;; = Z Qe € Algg(Dy),
k=1

such that ai;T; = Yi where Qi € K, dijk € D,, and ng; € N. Let Aij, Dijk €
M= (M (K)) denote the block matrix with a;,dise in ij’s place and 0, elsewhere
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respectively. Note that D;j € M=(D;) and hence

= ..
r

A= z’: Ay = ZZ ijiDijic € Algge(Mz(Dy))-

i=1 i=] k=1
It is now straightforward to see that we have

nij

AX = ; A X = ; ; aiixDij X =Y.

Therefore the K-algebra generated by M=(D,) is transitive, hence irreducible. Thus
M= (D,) is also irreducible, finishing the proof.

(iv) The “only if” part trivially holds. To see the “if” part, it is plain that if
r =1, then D, = F, and hence after a similarity A = M,(F). a

Theorem 2.3.12. Let n € N, K a field, F a subfield of K, and 8 an irreducible
semigroup in M,(K) with {0} # tr(8) € F. Let r € N be the smallest nonzero rank
present in Algp(S). Then

(i) After a similarity, Algp(8) contains an idempotent E = I. @ On_ where I, is
the identity matriz of size r and 0, is the zero matriz of sizemn —r.

(ii) The integer r divides n and after a similarity EAlgp(8)E = D, ® O0n—, where
D, is an irreducible division F-algebra in M. (K) with {0} # tr(D,) C F. Further-
more, the minimal polynomial of every D € D,, which is an element of F[X], is
irreducible over F'.

(iii) After a similarity Algp(8) = M,/ (D.) where D, is the irreducible division
F-algebra of (ii). Therefore, Algp(8) is simple as a ring. Conversely, let K be an
arbitrary field, and F a subfield of K. If $ is a semigroup in M,(K) and after
a similarity Algp(8) = M,/ (D,) where D, is an irreducible division F-algebra in
M, (K) with tr(D,) C F, then 8 is an irreducible semigroup in M,(K) with tr(8) C F
and r is the smallest nonzero rank present in Algp(S).

(iv) After a similarity Algp(S) = M,.(F) iff r=1.



51

Proof. Since A := Algp(8) is an irreducible F-algebra in M,(K) with traces in the
subfield F, Theorem 2.3.11 applies. ]

Remarks.

1. In light of Theorem 2.2.18, it is easily seen that if K = F, then the conclusions
of Theorem 2.3.11 (resp. Theorem 2.3.12) hold and no condition on the irreducible
algebra A (resp. semigroup 8) in terms of trace is needed. That being noted, it is
also clear from the proof of Theorem 2.3.11 (resp. Theorem 2.3.12) that for every
irreducible algebra A (resp. irreducible semigroup §) on which trace is zero, up to
a similarity, we have A = M,/ .(D,) (resp. Alg(8) = M,/(Dr)) where r is as in
Theorem 2.3.11 (resp. Theorem 2.3.12) and D, is an irreducible division algebra in
M_.(F) on which trace is zero.

2. Let n > 1, K be a field, and F a subfield of K. If the ground field K is perfect;
or ch(K) is not a divisor of n; or is k-closed for each k dividing n with k& > 1, then in
light of Theorem 2.2.19 and Theorem 2.3.3, we see that the trace functional cannot
be identically zero on an irreducible semigroup in M,(K'). Therefore the conclusions
of Lemma 2.3.7-Corollary 2.3.14 below (together with those results that are stated as
remarks) hold for every irreducible semigroup or F-algebra with traces in the subfield
F provided that the ground field K is perfect; or ch(R) is not a divisor of n; or the
field K is k-closed for each k dividing n with £ > 1.

3. Let F be a field and F C M,(F) an irreducible family of matrices in M, (F’).
In light of the preceding remark and Theorem 2.3.11, we conclude that if the small-
est nonzero rank in Alg(F) is 1, then Alg(F) = M, (F) and hence F is absolutely

irreducible and
F ={cl[:ce F}.

4. In light of Lemma 1.1.2(i), Corollary 2.2.3, and Theorem 2.3.3, if the semi-
group or the F-algebra in Lemma 2.3.7-Theorem 2.3.12 happens to be absolutely
irreducible, then the same arguments shows that, with no condition imposed on the
field K, similar conclusions hold except that everywhere “irreducible” would be re-
placed by “absolutely irreducible”. As well, in some of the results to follow one may
assume absolutely irreducibility to get similar results. For the sake of brevity we
avoid mentioning these similar results in detail.



5. Let D, be as in Theorem 2.3.11 (resp. Theorem 2.3.12). By Corollary 2.3.10,
we have

(ﬁmp fD,- = dimK Ang(:Dr) = climK('D,.) K-

Since D, is irreducible in M,(K), it follows that Algx(D,) = (Dr)k is a simple
subalgebra of M,(K) by Lemma 2.2.17. So from Lemma 7.4 of [D] we see that
dimp D, = dimg (D, )k is a divisor of 2, hence a divisor of n?.

In case the subfield F happens to be finite, we can give a more precise description

of irreducible (F-)algebras of types (a), (b), and (c) as described on page 43 following
Corollary 2.3.10. The following two results serve this purpose.

Lemma 2.3.13. Letn > 1, K a field, F a finite subfield of K, and D an irreducible
division F-algebra in M,(K) with {0} # tr(D) C F. Then D is a field and there
exists a K -irreducible matriz A € M,(F) such that after a similarity D = F[A].
Therefore, D is indeed a simple extension field of F'.

Proof. Let {I,, D\, ..., D,} be a basis in D for (D), the linear manifold spanned by
D over K. By Corollary 2.3.10 we have D = (I, Dy, ..., Dp)r- As F' is a finite field,
we see that D is a finite division ring. Now by Wedderburn’s Theorem (see Corollary
IX.6.9 of [H]). D must be a field. The fact that D = (In, Dy, ..., Dp)r implies that D
is a finite-dimensional extension field of F. Since F is finite, we conclude that F' is
a perfect field. Thus, there exists a matrix B € M,(K) such that after a similarity
D = F[B]. The irreducibility of D yields that of the matrix B in M,(K). It is now
plain that the characteristic polynomial of the matrix B € M,(K) equals its minimal
polynomial which is an element of F[X] by Corollary 2.3.9. Therefore, there exists
a K-irreducible A € M, (F) such that after a similarity D = F[4] (in fact A can be
taken as the companion matrix of B). a

Remark. In the preceding lemma if K happens to be k-closed for each k dividing
n with k£ > 1 (ch(K) # 0), then it follows from the proof of the lemma that there is
no irreducible division F-algebra D in M,(K) with tr(D) C F. Therefore, under the
above hypothesis, there is no irreducible division ring on which trace is zero. To see
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this, note that such an irreducible division ring is in particular an irreducible division
F-algebra in M,,(K) with zero trace, hence in the prime subfield F' that is finite.

The following result is a quick consequence of Theorem 2.3.12 and Lemma 2.3.13.

Corollary 2.3.14. Letn > 1, K a field, F a finite subfield of K, and 8 an irreducible
semigroup in M,(K) with {0} # tr(8) C F. Let r € N be the smallest nonzero rank
present in Algp(8). Then r divides n and

(i) if r = 1, then after a similarity Algp(S) = M,(F).

(ii) if > 1, then there ezists a K-irreducible matriz A € M.(F) such that after
a similarity Algp(8) = M,,-(F[A]).

Therefore, in any case Algp(8) is indeed a finite irreducible F-algebra in M,(K).
Furthermore, after a similarity, the commutant of Algp(8) in M,(K), which is the
same as that of § in M, (K), is equal to F[A]® ... ® F[A].

Proof. Theorem 2.3.12 together with Lemma 2.3.13 easily settles the proof. a

Remark. In Corollary 2.3.14, if K happens to be k-closed for each k dividing n
with & > 1 (ch()) # 0), then r = 1 by the proof of Lemma 2.3.13. Hence, after a
similarity, we would have Algp(8) = M,(F). In particular, it follows that up to a
similarity the only irreducible F-algebra in M, (K) with traces in F is M,(F) and

that every irreducible F-algebra in M, (K) with traces in F is central, i.e., its center
consists of ¢/ wherece F'.

2.4 Some Applications in Finite Dimensions

For a collection C C M, (K), where K is a field, we say that € is defined over a
subfield F of K if there exists an invertible S € M,,(K) such that S™'CS C M,(F)-
For instance suppose that A and 8 are as in Theorem 2.3.11 and Theorem 2.3.12
respectively, then A and S are defined over F if 7 = 1. The following question was



o4

asked in [RRa]. As pointed out there, an affirmative answer to the following question

would be a sweeping generalization of a celebrated theorem of Brauer.

Question. Letting 8 be any irreducible semigroup in M,(K) with 5(8) C F where
F is a subfield of K, must 8§ be defined on F? In other words, does there ezist an
invertible matriz T € M,(K) such that T~'ST C M,(F)?

By proving that every such semigroup 8 in the above question is absolutely irre-
ducible, one may assume, with no loss of generality, that the field K is algebraically
closed. We have not yet been able to prove or disprove this for irreducible semigroups
with spectra in a subfield F. However, as shown in the following theorem, this is
indeed the case for irreducible F-algebras of matrices in M, (K) with spectra in the
subfield F. The theorem below not only gives an affirmative answer to the above
question for irreducible F-algebras of matrices in M,(K) with spectra in the subfield
F. but it also characterizes all subfields F' as well as irreducible F-algebras of matrices
in M, (K) with spectra in F. It is also worth noting that the following theorem, in
some sense, is a generalization of Burnside’s Theorem.

Theorem 2.4.1. Let K be a field, F a subfield of K, n > 1, and A an irreducible
F-algebra in M,(K) such that 3(A) C F. Then after a similarity A = M.(F).
Therefore, A is defined over F, A is absolutely irreducible, and the subfield F is
k-closed for each k =2, ...,n.

Proof. Plainly the minimal polynomial of every A € A is in F[X]. Therefore, A is an
algebraic algebra over F. This together with irreducibility of A, in view of Theorem
14 on page 89 of [K1], implies that the Jacobson radical of the F-algebra A consists
of nilpotents. Therefore, the Jacobson radical of A is zero, for otherwise A would be
reducible in light of Levitzki’s Theorem and Lemma 1.1.2(i). That being noted, in
view of the hypothesis that 7(A) C F, a proof identical to those of Theorem 2.2.18(i)
and Theorem 2.2.18(ii) shows that the smallest nonzero rank in A is 1. Now adjusting
the proof of Theorem 2.3.11(iii), we conclude that after a similarity A = M,(F). The
rest easily follows from A = M,,(F) and the hypothesis that G(A) C F'. a
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We now give an affirmative answer to the Brauer type question above under the
weaker hypothesis that the semigroup in the question has traces in the subfield F
provided the subfield F is k-closed for each k dividing n with k£ > 1, or it is finite.

Theorem 2.4.2. (i) Letn > 1, K a field, F a subfield of K that is k-closed for each
k dividing n with k > 1, and § an irreducible semigroup in M,(K) such that {0} #
tr(8) C F. Then after a similarity Algp(8) = M,(F'), and hence § is defined over F.
In particular, if F is algebraically closed, then after a similarity Algp(8) = M, (F')
and so 8 is defined over F.

(ii) Let n > 1, K a field, F a finite subfield of K, and 8 an irreducible semigroup
in M,(K) such that {0} #tr(8) C F. Then $ is finite and is defined over F'.

Proof. (i) Let A := Algp(8) denote the F-algebra generated by 8, and let 7 and D,
be as in Theorem 2.3.12. It suffices to show that r = 1. To prove it by contradiction,
suppose r > 1. First we show that Z(D,) = {cI : ¢ € F} where Z(D,) denotes the
center of D,.. To this end, suppose that D € Z(D,) C D,. By Theorem 2.3.12(ii), the
minimal polynomial for D, denoted by mp, is an irreducible polynomial in F[X]. On
the other hand, since D € Z(D,) and D, is irreducible in M,.(K), it follows that mp is
irreducible over K, for otherwise by Lemma 2.2.20 the matrix D € Z(D,) would have a
nontrivial hyperinvariant subspace, contradicting irreducibility of D, in M,.(K). Now
since mp is irreducible over K, it follows from the Rational Canonical Form Theorem
(see Theorem VII.4.2(i) and Theorem VII.4.6(i) of [H]) that deg(mp) divides r. This
yields deg(mp) = 1, for otherwise mp € F[X] would be an irreducible polynomial
whose degree divides r > 1, hence n, contradicting the hypothesis that F is k-closed
for all k£ dividing n with & > 1. Therefore, deg(mp) = 1 and so D = cI for some
¢ € F because mp is the minimal polynomial of D, mp € F[X], and deg(mp) = 1.
Thus, Z(D,) = {cI : ¢c € F}. Now let F}, denote a maximal subfield of D, (such a
maximal subfield exists by Exercise IX.6.4 of [H]). The maximal subfield F;, contains
the center of D,, namely F, for otherwise F}, and F generate a subfield of D, properly
containing Fj,, a contradiction. Since F is indeed the center of D,, it follows from
Theorem IX.6.6 of [H] that dimszD, = (dimg F;,)2. By showing that Fi, = F we
complete the proof. Plainly Alg;(D,) = (D.)x and Algp(D,) = (D,)r = D,. That
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being noted, by Corollary 2.3.10, we have dimg (D, )k = dimg(D,)r = dimp D,. Set
A={A®..0Ac M(K): A (D)x € M (K)}.

Since the algebra (D,)k is irreducible in M, (K), it follows from the remark following
Theorem 2.3.12 that (D, )k is simple as a ring. Therefore, so is A in M,(K). It is
also evident that dimg A = dimg (D, ) k. That being noted, since F and A are simple
subrings of M,(K), in view of Lemma 7.4 of [D], we can write

n? = dimyg M,(K)

= [Mn(K) : ALJA : K] = [Mo(K) : A]dimg A
= [Mn(K) : Al dimg(D,) i = [Mn(K) : A]dime(D,)F
= [Mn(K) : A]dimp D, = [M,(K) : A](dimp F.)*.

Therefore, (dimp F,)? divides n* and so dimg F},, divides n. Now since F, is an
extension field of F, we conclude that the minimal polynomial of every D € F, is
irreducible over F'. On the other hand, we can write

dimp Fy = [Fm : F] = [Fin : F[D].[F(D] : F].

But [F[D] : F] = deg(mp). Therefore, deg(mp) divides dimp Fi,. Thus deg(mp)
divides n, for, as we just saw, dimg F}, divides n. From this we obtain deg(mp) =1
for otherwise, due to the fact that mp € F[X] is irreducible over F and the hypothesis
that F is k-closed for all k£ dividing n with & > 1, we obtain a contradiction. So we
have shown that the minimal polynomial for every D € F, has degree one. That is,
F,. = F so dimr D, = (dimp F}»)? = 1, a contradiction.

(ii) The proof is a quick consequence of Corollary 2.3.14 and the remark following
the corollary. O
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Remarks.

1. Let A in M(C) be the following representation of quaternions as an R-algebra

A= {( i‘ = ) € Ms(C) : 2,2 €C}.
2 2
The R-algebra A is irreducible in M5(C) for dim¢(A)c = 4. It is easily seen that A is
a division algebra and has traces in R. Therefore, the R-algebra A is not defined on
R for dimg A = dimc{A)c = 4. This shows that the hypothesis that “F' is k-closed
for each k dividing n with £ > 1” cannot be dropped.

2. Let Z, be the field of integers modulo 2, let Z- denote the algebraic closure
of Z,, Z[X] the ring of polynomials over Z,, and F := Z,(X) the quotient field of
Zo|X] (note that Z»[X] is an integral domain). The field F' is not perfect nor it is
2-closed, and we have ch(F) = 2. It is easily seen that the matrix A € M>(F’) defined

A:=(1 :1:)
11

is irreducible in M>(F) and that the irreducible algebra A := Alg(A) = F[A] has
traces zero, hence in the subfield Zo which is algebraically closed. The algebra A,
however, is not defined on Z,, for otherwise the characteristic polynomial for the
matrix A would be in Z,[X], a contradiction. Therefore, the irreducible algebra A
is not defined on Z, either. Therefore, in both parts of the preceding theorem the
hypothesis that trace in not identically zero on the semigroup cannot be dropped.
3. In the preceding theorem if the ground field K satisfies one of the following
conditions: (a) ch(K) = 0 or ch(K) does not divide n, (b) K is a perfect feld, (c)
K is k-closed for each k dividing n with & > 1, then the hypothesis that trace is not
identically zero on the irreducible semigroup 8 is easily seen to be redundant.

o

Theorem 2.4.3. Let n > 1, K a field, F a subfield of K that is not k-closed for
some 2 < k < n, and A an F-algebra in M,(K) such that 5(A) C F. Then A is
reducible. Conversely, let a subfield F of K be given. If every F-algebra A in M,(K)
with (A) C F is reducible, then F is not k-closed for some 2 < k < n.
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Proof. The first assertion is a quick consequence of Theorem 2.4.1.
For the converse, we use contradiction. Suppose that F is k-closed forall2 < k£ <
n. This hypothesis easily implies that the irreducible F-algebra A := M, (F) has the

property that (A) C F. On the other hand, A must be reducible by hypothesis, a
contradiction. a

Remark. In Chapter 3, we give a second, as well as a simpler, proof for Theorem
2.4.3, and Corollary 2.4.4(ii) below in the special case F' = K.

Let K be a field, F a subfield of K, and V a vector space over K. We use the
symbol V¢ to denote the vector space V having the subfield F as its field of scalars.

Corollary 2.4.4. (Generalized Burnside Theorem) Let n > 1, and let K be a
field, F a subfield of K, and V an n-dimensional vector space over K.

(i) If F is k-closed for each k dividing n with k > 1, then up to a similarity the
only irreducible F-algebra of linear transformations on V with traces in F but not
identically zero is the F-algebra of all linear transformations on Vg.

(i) If there exists an irreducible F-algebra A of linear transformations on 'V with
F(A) C F, then F is k-closed for each k = 2,..,n. Therefore, after a similarity
A=L(VEg).

(iii) If up to a similarity the only irreducible F-algebra of linear transformations
on V with traces in F is the F-algebra of all linear transformations on Vg, then for
each k dividing n with k > 1 every polynomial f € F[X] of degree k is reducible over
K. In particular, if F = K and the conclusion of Burnside’s Theorem holds, then F'
is k-closed for each k dividing n where k > 1.

Proof. (i) Fix a basis for V. Relative to that basis we end up dealing with F-algebras
of matrices with traces in the subfield F. Thus it suffices to prove the matrix version
of the assertion. Namely, we need to prove that up to a similarity the only irreducible
F-algebra in M,,(K) on which trace is not identically zero and with traces in F’ is the
F-algebra M, (F). This is an immediate consequence of Theorem 2.4.2(i).

(ii) This easily follows from Theorem 2.4.1.
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(iii) Fixing a basis for V, it suffices to prove the matrix version of the assertion.
Use contradiction: Suppose there exists a polynomial f € F[X] of degree r dividing n
with 7 > 1 that is irreducible over K. Let A € M,.(F) denote the companion matrix
of f. It follows from elementary algebra that D, := F[A] is indeed an irreducible
commutative division F-algebra in M, (K) with traces in F. By the proof of the
converse part of Theorem 2.3.11(iii), we see that A := M,,-(D;) is an irreducible
F-algebra in M, (K) with traces in F which is not similar to M,(F’) for the smallest

nonzero rank in A := M,;-(D,) is 7 > 1 (note that the smallest nonzero rank in
M, (F) is 1), contradicting the hypothesis. O

Remarks.

1. The irreducible Z,-algebra A in the second remark following Theorem 2.4.2
shows that the converse of Corollary 2.4.4(iii) is not true. It is however worth men-
tioning that if K = F, then the converse holds by Theorem 2.2.21. In other words. if
K = F then the only irreducible algebra of linear transformations on 'V is the algebra
of all linear transformations on V if and only if F is k-closed for each k dividing n
with £ > 1 where n > 1 is the dimension of the underlying space V.

2. In view of the remark following Corollary 2.3.14, we see that the Generalized
Burnside Theorem above holds whenever the field K is k-closed for all k£ dividing n
with £ > 1 and the subfield F finite.

The first part of the following corollary gives a new proof of a special case of a
result of Guralnick (see [G]). Part (ii) gives a new proof of a special case of the
finite-dimensional version of Theorem 9.2.10 of [RR] on general fields.

Corollary 2.4.5. Let K be a field, F a subfield of K, andV an n-dimensional vector
space over K. Let A be an F-algebra of linear transformations with G(A) C F.
(i) The F-algebra A is triangularizable iff AB—BA is nilpotent for each A, B € A.

(ii) If rank(AB — BA) < 1 for each A,B € A, then the F-algebra A is triangu-
larizable.

Proof. (i) Necessity is obvious. So we need to prove sufficiency. Since every A € A is
triangularizable, in view of Corollary 2.2.8, we may assume, without loss of generality
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that K is algebraically closed. In light of the Triangularization Lemma (Lemma 1.1.3)
we need to prove reducibility. Suppose otherwise. So A is an irreducible F-algebra of
linear transformations with 3(A) C F. It follows from Corollary 2.4.4(ii) that after a
similarity A = L(Vg) which obviously does not satisfy the condition that AB — BA
is nilpotent for each A, B € A = L(Vp).

(ii) It follows from the Cayley-Hamilton Theorem that every rank-one transfor-
mation with trace zero is nilpotent. That being noted, since rank(AB —BA) < 1 and
tr(AB — BA) = 0, we conclude that AB — BA is nilpotent for each A, B € A. Thus
(i) applies. |

Let R be a subring of a field K. We say that a matrix A € M,(K) is triangulariz-
able over R if (A) C R. The following result gives a criterion for triangularizability of
F-algebras of matrices with spectra in the subfield F provided that F' is not 2-closed.

Theorem 2.4.6. Let K be a field, F a subfield of K that is not 2-closed, and A an
F-algebra in M,(K) with o(A) C F. Then A is triangularizable iff every A € A is
triangularizable. Conversely, let a subfield F of K be given. If every F-algebra A in
M,(K) with (A) C F is triangularizable, then F is not 2-closed.

Proof. It suffices to prove the “if part” of the assertion. To this end, suppose
that every A € A is triangularizable over F' or equivalently 6(A) C F. Now since
every A € A is triangularizable, without loss of generality we may assume that K
is algebraically closed. In view of the Triangularization Lemma (Lemma 1.1.3), it
suffices to show that A is reducible. But A is reducible by Theorem 2.4.3, finishing
the proof.

For the converse, we use contradiction. Suppose that F' is 2-closed. This hypothe-
sis easily implies that the nontriangularizable F-algebra A := diag(Ma(F'), 0,-2) has
the property that 5(A) € F. On the other hand, A must be triangularizable by
hypothesis, a contradiction. O

Corollary 2.4.7. Let K be a field, the subfield F a finite-dimensional extension of
the prime field of K, and A an F-algebra in M, (K) with o(A) C F. Then A is
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triangularizable iff every A € A is triangularizable. In particular, the assertion holds
when F is the prime field of K.

Proof. In view of Theorem 2.4.6, it suffices to show that the subfield F is not 2-
closed. There are three cases to consider; ch(K) = 0, ch(K) = 2, and ch(K) = p with
p > 2. If ch(K) = 0, Lemma V.2.8 together with Exercise V.3.16(c) of [H] implies
that F is not 2-closed. If ch(K) = 2, the F would be a finite subfield of K. On the
other hand, since @ # 1 —a but a>+a = (1—a)?>+(1—a) foralla € F, it follows that
there exists ¢ € F such that the polynomial 2> + = — ¢ is irreducible over F. That
is, F is not 2-closed in this case. Finally, if ch(K) = p with p > 2, again F would be
a finite subfield of K. Now, since a # —a but a®> = (—a)? for all nonzero elements a
of F, it follows that there exists ¢ € F such that the polynomial z? — ¢ is irreducible
over F. That is, F is not 2-closed in this case as well. |

Remarks.

1. Note that the conclusion of the preceding corollary holds whenever F is a finite
subfield of K.

2. In the case of characteristic zero, it is not difficult to see that the corollary
above still holds for any Z-algebra in M,(K) where Z is the subring of integers in I,
i.e., Z =7Z1. As a matter of fact we have the following theorem.

Theorem 2.4.8. Let K be a field, R a subring of K whose field of quotients, denoted
by F, is not 2-closed, and A an R-algebra in M,(K) with o(A) C R. Then A is
triangularizable iff every A € A s triangularizable over R. Conversely, let a subring
R of K be given, and let R be a UFD as a ring. If every R-algebra A in M,(K) with
5(A) C R is triangularizable, then the field of quotients of R, i.e., F, is not 2-closed.

Proof. It suffices to prove the “if” part of the assertion. To this end, suppose that
every A € A is triangularizable over R or equivalently 5(A) C R. Let A, denote the
F-algebra generated by A where F' is the field of quotients of R. It is easily seen that
#(A,) C F. Thus A, is triangularizable by Theorem 2.4.6, and hence so is A.

As for the converse, again we use contradiction. Suppose that F' is 2-closed. This
hypothesis implies that the nontriangularizable R-algebra A := diag(M2(R), 0n—2)



has the property that &(A) C R (here we have used the Gauss Lemma which implies
that a monic polynomial f € R[X] of positive degree is reducible over R iff it is
reducible over F, e.g., see Lemma 6.6.13 of [H]). On the other hand, A must be
triangularizable by hypothesis, a contradiction. |

Corollary 2.4.9. Let V be a finite-dimensional vector space over R or C, and A an
R-algebra of linear transformations in B(V) whose spectra are subsets of R. Then A
is triangularizable iff every element of A is triangularizable.

Proof. The field of reals has zero characteristic and is not 2-closed, so Theorem 2.4.6
applies. O

Corollary 2.4.10 (Kaplansky’s Theorem). Let n > 1, K be a field with ch(K) =
0 or > n. Then every semigroup S8 of matrices in M,(K) with constant trace is
triangularizable. Furthermore, every diagonal entry in a triangularization of such a
semigroup is either constantly 0 or constantly 1.

Proof. Let F be the prime field of K and A be the F-algebra generated by 8. In
view of Corollary 2.4.7, it suffices to show that every A € A is triangularizable over F.
Suppose that tr(8) = {C} for some C € K. Suppose that A =¢1S; + ... +cSr €A
where k €N, ¢; € F, S; € S for each j = 1....,k is given. Since tr(S) = {C}, it is
easily seen that tr(A47) = C(c, + ... + &) for all j € N. If ¢; + ... + ¢ = 0 it follows
from Lemma 2.2.5(iii) that A is nilpotent and hence is triangularizable over F'. If
¢ = ci+...+ck # 0, then tr(4)7 = C for all j € N. So it follows from Lemma 2.2.6(ii),
C is an integer, i.e., C € F, and that 5(2) C {0,1}. Hence 5(A) C {0,c} where
A=c;S1+...4+cxSk € Aand ¢ := ¢ +...+cx € F (In particular, 5(S) C {0, 1} for ail
S € 8). Thus A, and hence 8, is triangularizable over F. Since &(S) C {0, 1} for all
S € 8, in any triangularization of 8, the diagonal zero entries of any S, T € 8 do occur
at the same position, for otherwise we would have tr(ST) # tr(S), contradicting the
constancy of the trace functional on § (see Corollary 2.2.3 of [RR]). a

Remark. We would like to point out that Kaplansky’s Theorem is a quick conse-

quence of Corollary 2.3.4(iii) above because, in view of the proof above, each member
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of such a semigroup is triangularizable over F; indeed 5(S) C {0,1} for all S € S.
The detailed proof above is given here not only because of its independent interest,
but also because the same proof will be used again in infinite dimensions.

2.5 Some Applications in Infinite Dimensions

We start this section with an infinite-dimensional analogue of Lemma 2.2.1 and
its consequences. The proof of the following lemma is very much like Lemma 2.2.1.
However, we include the proof for the sake of completeness.

Lemma 2.5.1. Let X be a real or complex Banach space, 8 a semigroup in B(X),
and T @ nonzero linear operator in B(X). If 8 is irreducible, then so is T'S|x where
R =TX is the closure of the range of T.

Proof. Just as in Lemma 2.2.1, if dimX = 1, then the assertion trivially holds. So

we may assume, with no loss of generality, that dim X > 1. There are two cases to
consider.

(a) rank(T) = 1.

To prove the assertion by contradiction suppose T'8|x is reducible. Since dimR =1
in this case, it follows from definition that TS|z = {0}. Therefore, TST = {0}. Pick
a nonzero = € X such that Tz # 0. Now either STz = {0} in which case (T'z) is a
nontrivial invariant subspace for 8, or else (STxz) is a nontrivial invariant subspace
for 8, because TST = {0} and that § is a semigroup. This contradicts the hypothesis

that 8 is irreducible.
(b) rank(T) > 1.

First note that a semigroup 8 is frreducible iff the algebra A generated by the
semigroup is irreducible. That being noted, it suffices to show that that TA|z is
irreducible because every invariant subspace of T'S|z is invariant for T'A|x as well. To
prove that T'A|x is irreducible, we use contradiction. Suppose that T'A|z is reducible.
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So there exists a nontrivial subspace M of R = TX such that TAM C M. Choose a
nonzero £ € M and note that T/Az C M. The subspace Az is an invariant subspace
of A. Furthermore, it is proper, for TAz C M cC R. If Az = 0 then (z) is a nontrivial
invariant subspace for A, otherwise Az will be a nontrivial invariant subspace for A.
So in any event we conclude that A is reducible, a contradiction. O

Recall that an operator T in B(X) is called idempotent if 7% = T. The corollary
below is a quick consequence of the preceding corollary.

Corollary 2.5.2. Let X be a real or complex Banach space, 8 a semigroup in B(X),
and T a nonzero idempotent in B(X). If 8 is irreducible, then so is TST |7=.

Proof. Lemma 2.5.1. d

Let X be a complex (resp. real) Banach space, and S a subset of C (resp. R).
By an S-semigroup 8§ of B(X), we mean a multiplicative semigroup § of bounded
operators that is closed under scalar multiplication by the elements of S.

Lemma 2.5.3. Let X be a complex (resp. real) Banach space and 8 a uniformly
closed R*-semigroup of compact (resp. compact triangularizable) operators on X
where RY denotes the set of positive real numbers. If 8 contains an operator that

is not quasinilpotent, then S contains a nonzero finite-rank operator that is either
idempotent or nilpotent.

Proof. If X is a complex Banach space, then the proof is the same as that of Lemma
7.4.5 of [RR]; in case X is a real Banach space, then the idea of proof is identical.
First note that, multiplying by an appropriate sequence of positive reals, we can
assume that there is a K € 8 of spectral radius 1. Since o(K) C R (note that K is
triangularizable over the real Banach space X), it follows that K has either one or two
eigenvalues of absolute value 1, namely 1 or —1. If necessary, by repeated application
of Corollary 6.4.13 of [RR], one can conclude that there are complementary invariant
subspaces N and R of K such that N is finite dimensional, § # o(K|x) € {-1,1},
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and p(K|z) < 1. From this point on, the proof is identical to that of Lemma 7.4.5 of
[RR]. O

Theorem 2.5.4. Let X be a real or complex Banach space of dimension greater
than 1, F a subfield of R, and A < Bo(X) an F-algebra of triangularizable compact
operators whose spectrum is in F. Then A is reducible.

Proof. It suffices to show that A, the uniform closure of A, is reducible. First note
that A is an R-algebra in Bo(X) with &(A) C R. To see this, note that F' = R because
Q € F C R. Now it follows from the hypothesis and Lemma 5 on page 1091 of [DS]
that 5(A) € R. To prove reducibility of A, we use contradiction. If A is a Volterra
R-algebra, i.e., an R-algebra of quasinilpotent operators, then A is triangularizable,
hence reducible, by Turovskii’s Theorem (Theorem 8.1.11 of [RR] or see [T]) which
is a contradiction (note that every Volterra R-algebra is in particular a Volterra
semigroup). So suppose that A contains an operator that is not quasinilpotent. It
follows from the preceding lemma that A then contains a nonzero finite-rank operator
T that is either idempotent or nilpotent. Since A is assumed to be irreducible, without
loss of generality we may assume that rank(T) > 1. Let R denote the range of T’
by Lemma 2.5.1 the R-algebra T'A|x, on the finite-dimensional space R over R or C
of dimension greater than 1, is irreducible. On the other hand, by Corollary 2.4.9
the R-algebra T'A|x is triangularizable, hence reducible, for TAlx is an R-algebra of
triangularizable linear transformations on the finite-dimensional vector space R over
F with ¢(T'A|z) C R. This contradiction proves the assertion. d

Corollary 2.5.5. Let X be a real or complez Banach space of dimension greater
than 1, R a subring of R, and A < Bo(X) an R-algebra of triangularizable compact
operators whose spectra are subsets of R. Then A is reducible.

Proof. Let F denote the field of quotients of R, and Af be the F-algebra generated
by A. It is plain that F is a subfield of R, and that Ar < Bo(X) is an F-algebra
of triangularizable compact operators whose spectrum is in F'. Now it follows from
Theorem 2.5.4 that A is reducible and so is A C Ap, finishing the proof. O
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Corollary 2.5.6. Let X be a real or complex Banach space, R a subring of R, and A <
Bo(X) an R-algebra of compact operators with spectra in R. Then A is triangularizable
iff every element of A is triangularizable.

Proof. The “only if” part trivially holds. So it suffices to prove the “if” part. The

proof of the “if” part is established by the Triangularization Lemma (Lemma 1.1.3)
and Corollary 2.5.5. O

Now we plan to establish analogues of Theorem 2.3.1 for irreducible semigroups of
@, operators. First we start with an analogue of Lemma 2.2.5 and 2.2.6. It is worth
mentioning that Lemma 2.5.7(i) below is taken from [R1] and that Lemma 2.5.7(ii)

and Lemma 2.5.8(ii) are slight generalizations of an observation made in the proof of
Theorem 5 of [R1].

Lemma 2.5.7. (i) Let 3.2, a; be an absolutely convergent series in C with |a;| <1

for alli € N. Then
lim z ai =0.
i=1

(ii) Let a; € C with |a;] =1 (1 < ¢ < m) be such that lim, S af = c where
ceC. Thenc=manda; =1 foralll1 <i<m.

(iii) Let ai,b; € C with la;| = [bjl =1 (1 <7 <m,1 < j < n) be such that
lim (3T, af =377, b5) = 0. Then m = n and there is a permutation o on m letters
such that b; = @@y foralll <i<m.

Proof. (i) Since S_%, a; is absolutely convergent, it follows that there exists NV &€ N

such that -
Z [afl <1
i=N+1

We can write

oo oo N oo
1Y e <N ladm =D lad™ + > lad”

i=l1 i=1 i=1 i=N+1

N oo
<N lad" +( Y lad)

i=1 i=N+1
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Letting n — oo completes the proof.

(ii) First we claim there is a subsequence k; such that lim; i =1foralll <i<m.
To see this, we use induction on m. If m = 1 the assertion is obvious. Suppose the
assertion holds for m — 1, we prove the assertion for m. By the induction hypothesis
there exists a subsequence k; such that hmla =1lforall <i<m-1 If
necessary, by taking a subsequence of n; with no loss of generality we may assume
that hm,a =1lforalll <i < m-—1and lima® = b, for some b,, € C with
|bm| = 1. Define

= {(a}, - am-1,0) sk €N},

and let A’ denote the set of limit points of A. It is now plain that
(1,....1,b65) e A,

for all & € N. Since there is a subsequence £} such that lim; bt = L, it fol-
lows that (1,...,1,1) € (A’) < A’. Thus there exists a subsequence k, such that
lim,(at, ...,afr_ |, a%) = (1,..,1,1) and hence lim, ai» =1foralll <i<m,com-
pleting the proof of the claim.

Now using the hypothesis we can write

m
. kn+l
lim Y~ af" =,

i=1

where g € N is arbitrary. Since lim, af* =1 for all 1 < i < m, we conclude that

for each ¢ € N. Applying Lemma 2.2.6(ii) we conclude that a; = 1 for each ¢ =
1,...,m. Therefore ¢ = m and the proof is complete.

(iii) It follows from the proof of (ii) that there is a subsequence k; such that
limy, af‘ =1, lim; b;f‘ =1forall 1 <i<m,1l<j<n. Now using the hypothesis we
can write

hm(z a(kl-H.)q Z b(kl+1)q )

i=1
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where ¢ € N is arbitrary. Hence

i=1

iag—zﬂ:b‘; =0,
j=1

for each g € N. Applying Lemma 2.2.5(ii) we conclude that m = n and that there
is a permutation o on m letters such that b; = as(;) for all 1 < i < m, finishing the
proof. |

Lemma 2.5.8. Let 3 22| \; and Y72 iy be two absolutely convergent series in C,
and let m € N be given.

(i) If A\j, n; € C\ {0} for all j €N, and

oQ

x

S =S

Jj=1 Jj=1

for all k € N with k > m, then there is a permutation o on N such that p; = Ao(j)-
(ii) If for some C € C

[= ]

Y M=c,

j=1
for all k € N with k > m, then C is a nonnegative integer and A\; = 0 or 1 for all
jEeN.
(iii) If for someceC - -
PIRHEa PP VLR
=1 j=1
for all k € N with k > m, then \; =0 or c for all j € N.
(iv) Let 3 be a real or complex Hilbert space, and A € €y(H). Then A is
quasinilpotent iff
tr(A*) =0,

for each k € N with k > m where m € N with m > p.
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Proof. (i) Without loss of generality we may assume that

Al = = Dol > Pt = o = Pl >
> Pyl = o = Pongyal > -

al = e = L] > ltmt] = e = il > o
> tmgt] = o = timgaal > -

We prove that n; = m,; and that there is a permutation o, on n; letters such that
ki = Aoy(j) for all 1 < j < n,. Using the same argument the assertion follows by
induction on 7 finishing the proof. First we claim that |\;| = |u|. To see this we use
contradiction. So without loss of generality suppose that |\, < |x,]. We can write

A /.L_-, K k
b (Z‘m 3 (m Z( F Y (*)

Pt ILL Pl lml
for all £ € N with £ > m. By Lemma 2.5.7(i)

(e =]

hm Z (‘ ll E [#1[ '

j=n1+l j=my

On the other hand it is plain that

N
|’° OIZ(IAI) | <

=1

Therefore limy Z]_l lml)k = 0. So it follows from Lemma 2.5.7(ii) that my =0, a
contradiction. Hence |\;| = |u1|- This along with (*) and Lemma 2.5.7(i) implies

that
z(m -3

et o lm I
Now it follows from Lemma 2.5.7(iii) that n; = m,; and that there is a permutation
oy on n,; letters such that p; = Ag(;) for all 1 < j < n;, completing the proof.

(ii) there are two cases to consider.
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(a) C =0

We show that \; = 0 for all i € N. To see this we use contradiction. By rearranging
\i's we may assume that for some n € N

0 # I)\ll = e = I/\n| > lAn-f—l‘ > I/\n-i-?.l > .

Set pi; := \i/|\1| for each i € N. Plainly |u;| =1 for alli € N with 1 <7< n and
|ui] < 1 for all i € N with 7 > n. Also

for all £ € N with £ > m. We have

n o
doui+ > pE=0,

j=1 j=n+1

for all k € N with k > m. Letting k — oo and using the fact that limg Y oo | pf =0
(by Lemma 2.5.7(i)) we conclude that

li{:niu;f =0.

j=1

Now since |p;| = 1 for all 1 <7 < n it follows from Lemma 2.5.7(ii) that n = 0, a
contradiction.

(b)y C#0
Without loss of generality we may assume that

Al = oo = [An] > Ansi] 2 Ang2] 2 -

We show that \; =1 for all 1 <7 < n and that \; =0 for ¢ € N with i > n, finishing
the proof.

First we show that |[A;| = 1. Use contradiction.



If |\;| > 1, then we would have

}:#, + 3w =/,

j=n+l

for all kK € N with & > m where pu;’s are as in (a). Again letting & — oo and using
the fact that limg 5o .., u¥ =0 (by Lemma 2.5.7(i)) we conclude that

h{nZu'; =0.

j=1

Now since |u;] = 1 for all 1 < i < n, it follows from Lemma 2.5.7(ii) that n =0, a
contradiction.

If |\i] < 1, then we would have

[A |"(§:u + i u =C,

j=1 j=n+l

for all £ € N with k > m. On the other hand limg |[\[* = 0, | 37_, pf| < n, and

limy. Z‘fm 1 /_z;‘? = 0. Thus letting k — oo, it follows that C = 0, a contradiction.
Therefore |\;| = 1. So we can write

S+ > =0
j=1 j=n+l
for all £k € N with £ > m. Once again letting £ — oo, we conclude that
. k_
lim D A =
J=

Now since |\;| = 1 for all 1 < j < n, it follows from Lemma 2.5.7(ii) that A; =1 for
all 1 < j < n and therefore C =n.



Since \; =1 for all 1 £ j <n and C =n, we can write

[o o]

> A =0,

j=n+l

for all £ € N with £ > m. Now it follows from (a) that \; = 0 for all j > n, finishing
the proof.

(iii) If ¢ = 0, then (ii) applies with C = 0. If ¢ # 0, again (ii) applies to the series
Z?ﬂ()‘j/c) with C = ZEL(’\j/C)m»

(iv) Necessity easily follows from Lidskii’s Theorem (Theorem XI.9.19 of [DS],
page 1104). To see sufficiency, let (\;)2, be the eigenvalues of A in C (counting
multiplicities). It is known that A* € €, for all k € N with & > p (see Lemma
XI1.9.9(c) of [DS]). So it follows from the hypothesis that

o0

> M=o,

=l

for all £ € N with & > m. Now applying (iii) with ¢ = 0 we conclude that \; =0
for all i € N. Thus A is quasinilpotent, finishing the proof. It is worth mentioning

that if A had only finitely many eigenvalues the assertion would follow from Lemma
2.2.6(i) with ¢=0. O

Recall that a semigroup (resp. algebra) of compact quasinilpotent operators on
a Banach space is called a Volterra semigroup (resp. Volterra algebra). As usual,
by F we mean R or C. The following well-known lemma which extends Kaplansky’s
Theorem (Corollary 2.4.10) to trace class operators is proved in [R1].

Lemma 2.5.9. Let H be a real or complexr Hilbert space, 8 a semigroup in C; on
which trace is constant. Then the semigroup 8 is triangularizable. In particular, if

trace is zero on a semigroup S in Cy, then the algebra generated by S is a Volterra
algebra of C; operators.

Proof. In view of Corollary 2.5.6 and Lemma 2.5.8, the proof of the first assertion
is identical to that of Corollary 2.4.10. For the rest, in view of the preceding lemma,
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it is easily seen that the algebra A generated by 8 is indeed a Volterra algebra of €,
operators. O

Remarks.

1. In view of Lemma 2.5.8, it follows from the proof Corollary 2.4.10 that if trace
is constant on a semigroup $ of trace class operators, then the constant is indeed an
integer and that 3(c; Sy + ... +¢.Sn) C {0,c1 + ...+ ¢, } where ¢;'s are scalars and S;'s
are in 8.

2. A quick consequence of the second part of the preceding lemma is that if an
algebra A of C, operators is generated by quasinilpotents as a vector subspace of C,
then the algebra A is a Volterra algebra of C, operators, and therefore the algebra A
is triangularizable. This suggests the following conjecture.

Conjecture. Let X be a real or complex Banach space of infinite dimension, and
S a semigroup in Bo(X). If every S in 8 can be written as a linear combination of
quasinilpotent operators from the algebra generated by S, then the algebra generated

by 8 is a Volterra algebra, and therefore the semigroup § is triangularizable.

The above conjecture, if true, immediately extends Turovskii’s Theorem (Theorem
8.1.11 of [RR]), Kolchin’s Theorem, and Theorem 2.5.11 below for compact operators
on a real or complex Banach space.

Theorem 2.5.10. Let 3 be a real or complex Hilbert space, § an irreducible semni-
group of €, operators, and J a semigroup ideal of 8. Then

(i)

{A € Algg(8 U {I}) : tr(A7) = {0}} = {0}.
(it)

{A € Algg(S U {I}) : p(AT) = {0}} = {0}.

Proof. It suffices to prove (i).

(i) Without loss of generality we may assume that J is infinite-dimensional. De-
note the left hand side of the asserted identity by . We prove that J = {0}. To this
end, let A € J be arbitrary, we show that A = 0. Plainly the set JAJ = {L A :
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Ji.Jo € 7} is a subset of Alg(J) consisting of quasinilpotents by Lemma 2.5.8(iv).
The algebra Alg(J) is irreducible for 8 is an irreducible semigroup of €, operators and
7 is a nonzero semigroup ideal of 8. It is easily seen that Alg(JAJ) is an ideal of the
irreducible algebra Alg(J). We note that Alg(JAJ) = {0}, for otherwise the algebra
Alg(JAJ) would be generated by quasinilpotents as a vector subspace of €, which is
a contradiction in view of the preceding theorem. Hence Alg(JAJ) = {0}. Therefore,
JAJ = {0}, and hence A =0, for Alg(J) is transitive. ]

Remark. Let 3, S, and J be as in the preceding theorem. It is clear from the proof
above that

{A € Algg(SU {I}) : tr(JAT) = {0}} = {0}.

Theorem 2.5.11. Let H be a real or complex Hilbert space, S an irreducible semi-
group of €, operators with p > 1, and J a semigroup ideal of S. Then
(i)
{A € Algg(SU {I}) : p(JAT) = 0} = {0}
(iz)
{A € Algg(8U {I}) : (A7) = 0} = {0}

Proof. It suffices to prove (i).

(i) Note that Algg(S U {I})I™ C €, for each integer m with m > p. That being
noted, the proof is similar to that of the preceding Theorem. Fix an integer m
with m > p. Again denote the left hand side of the asserted identity by J. We
prove that § = {0}. To this end, let A € J be arbitrary, we show that A = 0.
Plainly the set ImAI™ = {J1AJ, : J1, J2 € I™} is a subset of Alg(J™) consisting of
quasinilpotents. The algebra Alg(J™) is irreducible, for 8 is an irreducible semigroup
of @, operators and J, hence J™, is a nonzero semigroup ideal of S. It is easily
seen that Alg(J™AJ™) is an ideal of the irreducible algebra Alg(J™). We note that
Alg(J™AJ™) = {0}, for otherwise the algebra Alg(J™AJ™) would be generated by
quasinilpotents as a vector subspace of C; which is a contradiction in view of Lemma
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25.9. Hence Alg(J™AJ™) = {0}. Therefore, J"AJ™ = {0}, and hence A = 0 for
Alg(J™) is a transitive algebra. O

Having proved the €, version of Theorem 2.3.1 and Theorem 2.3.2, namely The-
orem 2.5.10 and Theorem 2.5.11, one can prove analogues of Corollary 2.3.4(iii),
and Corollary 2.3.5 for @, class operators acting on a real or complex Hilbert space.
To establish this, one follows the line of argument deducing Corollary 2.3.4(iii) and
Corollary 2.3.5 from Theorem 2.3.1. It is worth mentioning that G, class operators
can naturally be defined on any real or complex Banach space that is isomorphic
to a real or complex Hilbert space respectively. As well, as pointed out in [KR], it
is shown by Ko6nig and others that on arbitrary Banach spaces there exist ideals of
compact operators (denoted by SL(X) and II3(X), see [K&]) on which trace is well-
defined as the continuous linear extensions of the trace of finite-rank operators and
that Lidskii's Theorem holds on these ideals. Similarly, one can prove analogues of
Corollary 2.3.4(iii), and Corollary 2.3.5 for €, class operators acting on such a real
or complex Banach space as well as for semigroups in S;(X) and [13(X) on arbitrary

Banach spaces. For the sake of brevity we omit the details of proofs.

In infinite dimensions Corollary 2.2.16 (Kaplansky) can be strengthened as follows.
It is worth mentioning that this stronger result is due to Nordgren-Radjavi-Rosenthal
(see Theorem 8.6.13 of [RR] or [NRR]) and that it does not hold in finite dimensions
(e.g., if n > 1, and F is a field such that ch(F) = 0 or ch(F’) is not a divisor of n,

then every matrix in M,(F) can be written as o/ + N where N is a matrix with
tr(N) = 0).

Corollary 2.5.12. Let H be an infinite-dimensional real or complex Hilbert space.
Then every semigroup 8 of operators of the form ol + N where N is a trace class
operator with tr(N) =0 and with a €F is triangularizable.

Proof. Since the underlying space is infinite-dimensional, a straightforward induction
shows that trace is zero on the semigroup generated by N’s as described in the
statement of the theorem. Now since trace is zero on the semigroup generated by
the N’s, it follows from Lemma 2.2.8(iv) that the algebra generated by the N’sisa



76

Volterra algebra and hence triangularizable. So is the semigroup 8, completing the
proof. O

Recall that we use Boo(X) to denote the ideal of finite-rank operators on a Banach
space X. Note that the trace on Bgo(X) is defined by the finite sum of the spectrum
over C, counting multiplicities. It can be shown that trace, defined this way, is
indeed a continuous linear functional on Bgo(X) having all the basic properties of the
finite-dimensional trace functional that one expects. That being noted, here is the

infinite-dimensional version of Theorem 2.3.1 for finite-rank operators acting on a real
or complex Banach space.

Theorem 2.5.13. Let X be a real or complex Banach space, 8§ an irreducible semi-

group of finite-rank operators on X, and J a semigroup ideal of 8. Then all the
assertions of Theorem 2.5.10 hold.

Proof. The proof is almost identical to that of Theorem 2.5.10. O

We can now present the infinite-dimensional version of Corollary 2.3.4(iii) above

for collections of triangularizable finite-rank operators acting on a real or complex
Banach space.

Theorem 2.5.14. Let X be a real or complex Banach space. Then a collection F of

triangularizable finite-rank operators is triangularizable iff trace is permutable on F.

Proof. In light of Theorem 2.5.13, the proof is identical to that of Corollary 2.3.4(iii).
O

Again having proved the infinite-dimensional version of Theorem 2.3.1 and Corol-
lary 2.3.4 for collections of triangularizable finite-rank operators, one can prove the
infinite-dimensional version of Corollary 2.3.5, and Lemma 2.3.7 and its consequences
for collections of triangularizable finite-rank operators on every real or complex Ba-
nach space. As well, again in view of Corollary 2.5.6 and Lemma 2.5.8 it is possible to
prove Corollary 2.4.10 (Kaplansky’s Theorem) for collections of finite-rank operators
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acting on a real or complex Banach space. It is worth noting that the Corollary 2.5.12
remains true for semigroups of the form al + N where N is a finite-rank operator
acting on an infinite-dimensional real or complex Banach space with tr(V) = 0 and
a € F. Again for the sake of brevity we omit the details.



Chapter 3
Near triangularizability

AH, my beloved, fill the cup that clears
To-day of past Regrets and future fears—
To-Morrow? -Why, To-morrow I may be
Muyself with Yesterday’s Sev’n Thousand Years.
—Khayyam, the Persian Mathematician, Astronomer, Philosopher. and Poet.

Rendered into English verse by Edward Fitzgerald.

3.1 Introduction

This chapter is devoted to collections of compact operators on a real or complex
Banach space including linear operators on finite-dimensional vector spaces over R or
C. We show that such a collection is simultaneously triangularizable if and only if it is
arbitrarily close to a simultaneously triangularizable collection of compact operators.
Nearness is measured by the Hausdorff metric induced by the operator norm. We
also prove analogous results for €, class operators. As an application of these results
we obtain an invariant subspace theorem for certain bounded operators. We further
prove that in finite dimensions near reducibility implies reducibility if the ground field
is C or if the ground field is R and the dimension of the underlying space is odd.

78
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3.2 Near triangularizability in finite dimensions

We start off with a well-known theorem due to O. Perron (See [RR}, Theorem
1.6.2).

Theorem 3.2.1 (O. Perron). If A is the algebra of n X n upper triangular matrices
onF (F is R or C), relative to a given basis, then for every e > 0 there is an invertible
matriz S = diag(n, ...,n") where n = n(e) depends cn € such that

1S ASe — D(A)|| < €l Al

for all A € A and where D(A) is the diagonal matriz with the same entries as A on
its main diagonal.

Perron’s Theorem immediately implies the following

Corollary 3.2.2. Let F = {A, : a € A} be a norm bounded triangularizable family
of linear transformations on F (i.e., on R orC). Then there is a diagonalizable, thus
commutative, family {Da : o € A} (relative to the triangularizing basis for F) such

that for every € > 0 there is an invertible transformation T satisfying
IT AT — Dall < e,

foralla e A

Proof. Triangularize F by a similarity T". Set
D, =D(T'AT); T. = TS it

where M = sup{||A.|| : « € A}. O

Motivated by Theorem 1.6.4 of [RR] and its proof, due to A.A. Jafarian, H.
Radjavi, P. Rosenthal, and A.R. Sourour, we were able to prove the following gener-
alization.



80

Theorem 3.2.3 (Near Triangularizability Theorem). Let F be a family of linear
transformations on a finite-dimensional vector space V over C with the following
property: for each finite subfamily {Aj, ..., A} of F, there is a constant K > 0 such
that for every e > 0 there ezist a triangularizable family {T\, ..., T}, and an invertible
transformation S = S, satisfying

IT5l < K, IS7"A;8 = Tjll <,
for every 1 < j < m. Then F is triangularizable.

Proof. First, we note that if F is a singleton, then we have nothing to prove, so we
may assume that |F| > 1. Secondly, it is plain that without loss of generality we may
assume that F contains the identity transformation. Let A be the algebra generated
by F. In view of Theorem 1.5.4(iv) of [RR], it suffices to show that the trace of
(BC—-CB)?is0forall Band CinA. Given B.C € A, thereare A; € F,(1 < i <m),
and noncommutative polynomials p and ¢ such that

B = p(A17 -evy Am)7 C = Q(Alx ey Am)-

Since all norms on B(V) are equivalent (for B(V) is a finite-dimensional vector space,
see Theorem 3.3.1 of [C] on page 69), without loss of generality we may assume that

Il.ll = II-]l: with respect to a fixed basis of the space. So in particular for every
T € B(V) we have:

lex(T)| < TN,
where “tr’” means the trace linear functional. Let K > 0 be the appropriate constant
for {Aj, ..., An}. Define: h : B(V)™ — B(V) by

h(Xl.? cey S m.) =

O(X1, s Xem)A(X1s oory Xim) — @ X1y ooes Xin)P(X s oory X))

We observe that A is a noncommutative polynomial in m linear transformations. It is
easily seen that every such h is a uniformly continuous function of its arguments on
any bounded set in (B(V)™, ||.|lec) Where ||(X1, s Xim)lloo = max{||Xq]|, -, | Xmll}-
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In particular, for every n > 0, there is a positive § with 0 < ¢ < 1 such that
1A(X1, s Xm) = A(Yi, oo Vi) | < 1,

whenever || X; — Y|l <4, | XGl| S K+1, |[Yjl| < K+1lforalll<j<m. Now fora
given n > 0, find the corresponding § with 0 < § < 1. By hypothesis, for this J, there
exists a triangularizable family {T7, ..., T;x}, and an invertible transformation S = S5
satisfying

1T < K, IS7"A4;S - T3]l <6,

for every 1 < j < m. So we can write

ITill < K+1, |STIASI <0 +Thll < L+ K,
for every 1 < j < m. Hence we get

1571 4;8 = Tl < 6, IS7'A;SI < K+ LT < K + 1,

for every 1 < j < m. It follows from uniform continuity of A that

|R(S™ ALS, ..., ST ARS) = A(T, oo, Tl < -
We note that tr(h(T}, ..., Tm)) =0 for

h(Ty; oo Tom) = @(T1s ooor T)@(T1s ey Tom) = @(T1s oons T)P(T1s s Ton)),
and {T}, ..., T,n} is triangularizable. So we can write
|te(A(AL, -y Am))| = [t2(S T h(AL, -, Am)S)]

= [tr(R(S7*A4S, ..., ST ARS))]
= [tr(R(S7*ALS, ..., STLALS)) — tr(A(TL, - Ton))
= [tr(h(ST1ALS, ..., STEARS) — A(Ty, -, T))|-



On the other hand, as we mentioned before
lec(T)| < (Tl
for every T € B(V). So we can write
ltr(h(AL, - Am))| S [|R(STIALS, o, STHARS) = AT, . Tl < -
Thus |tr(h(A}, .., Am))] < 7. Since n > 0 was arbitrary, it follows that
tr(h(Ay, .., An)) = 0.

That is, tr((BC — CB)?) = 0. Thus A, and therefore F, is triangularizable by
Theorem 1.5.4(iv) of [RR]. a

Remark. Using the same argument one can prove that the Near Triangularizability
Theorem above holds for families of linear transformations on a finite-dimensional
vector space over an algebraically closed complete field F' with a nontrivial absolute
value. (See Chapter XII of [L] for a nice exposition of fields with absolute values).

We recall that the Hausdorff metric D of a metric space (X, d) is defined, on the
collection H of all nonempty closed bounded subsets of (X, d), as follows:

D(A,B) = eT&B{diSt(a'B)’diSt(A’ b)}.

where dist(a, B) = inf{d(a,b) : b € B}. It can be shown that if (X, d) is a complete
metric sfce, so is (3, D). It can also be shown that D is a pseudometric on the
collection B of all nonempty bounded subsets of (X,d). We note, however, that
D(A, B) may be defined and be finite even for unbounded subsets of a metric space
(X,d). Using the definition, it is easy to see that if F; (i € N) are nonempty bounded
subsets of a normed space (X, ||.||), and if F; — F in the Hausdorff metric D induced
by |I-|l, then Fi’s and F are uniformly bounded, i.e., there exists K > 0 such that
lz|| < K for all z € (UienF:) UTF.

We are now ready to prove that for a collection F of linear transformations near
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triagularizability implies triangularizability where nearness is measured by the Haus-
dorff metric induced by any norm on B(V).

Corollary 3.2.4. Let F;,F (i € N) be nonempty families of linear transformations
on a finite-dimensional complex vector space V satisfying (i) or (ii) below.

(i) Each family F, (n € N) is triangularizable and lim, dist(F,, f) = 0 for all
feF.

(ii) Each family F, (n € N) is triangularizeble and F; — F in the Hausdorff
metric D induced by any norm on B(V).

Then F is triangularizable.

Proof. (i) We use Theorem 3.2.3. Suppose that {A, ..., An} := G is a finite subfamily
of F. Let 1/n > 0 (n € N) be given. There exists N, € N such that dist(Fi, 4;) <1 /n
for all i > N, and 1 < j < m. In particular, dist(Fy,,4;) <1l/nforalll < j < m.
So it follows from the definition that

(B IIT = 44ll < 1/n,

for all 1 < j < m. Thus for every 1 < j < m, there exists Tjn, € Fu, such that
| T;n,, — Ajll < 1/n. Set Gn := {Tin,, - Tmn, }- Plainly §. € Fy, and so each G, is
simultaneously triangularizable by hypothesis. It is easily seen that |z|| < K = M +1
for all z € (UienG:)US where M = max{]|A1]], ..., [|Amll}. Now for given € > 0 choose
n € N such that 1/n < e. Find the triangularizable set G, = {T1x,, ---, Ty, } and let
S = I where I denotes the identity transformation, and K = 1+max{||4,[], .... | Aml[}
we obviously have

“TJ'Nn" <K, “Af - Tan“ < 1/77' <E¢

for all 1 < j < m. That is, we have shown that the hypotheses of Theorem 3.2.3 are
met, so F is triangularizable by Theorem 3.2.3.

(ii) It is easily seen that if F; — F in the Hausdorff metric D induced by any
norm on B(V), then lim,, dist(F,, f) =0 for all f € F. Therefore (i) applies. ]

We need the following lemma.
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Lemma 3.2.5. Let A be a linear transformation on a real or complex finite-
dimensional vector space. Let (Dy)nen be a sequence of simultaneously diagonalizable
linear transformations and (Sp)nen a sequence of invertible linear transformations
such that lim, ||S;'AS, — D,|| =0, then (Dn)nen is bounded.

Proof. Diagonalize (D,)nen by a similarity T'. Set
N,=T7"'D,T; S, =8S,.T.

We note that (IV,)nen is a sequence of diagonal, hence normal, linear transformations.
We can write

lim ||S'AS!, — No|| = ||T7'S;LAS.T — T7' D, T||

S IT-IITN im | ST ASn — Dall =0

So lim, ||S/"'AS" — N,|| = 0. Now it follows from Lemma 1.6.5 of [RR] that (V.)nen
is bounded. This implies that (D,).en is bounded. O

Corollary 3.2.6. Let F be a collection of linear transformations on a complez finite-
dimensional vector space V. Then the following assertions are equivalent:

(i) The collection F is triangularizable.

(ii) There is a basis B for the space such that for each finite subset {Ay, ..., An} of
F, there exists a diagonalizable, hence commutative, set { D, ..., D}, relative to B, of
linear transformations such that for every € > 0 there is an invertible transformation
S = S, satisfying

IS4, — Dyl <&,

foralll <j<m.

(iii) There is a basis B for the space such that for each finite subset {Ay, -, An}

of F and every € > 0, there ezists a diagonalizable, hence commutative, set of linear

transformations { Dy, ..., D}, relative to B, and an invertible linear transformation
S = S. such that

IS7'A;S — Djll <
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foralll <j<m.
(iv) For each finite subfamily {A\. ..., Am} of F, there is a constant K > 0 such

that for every € > O there exist a triangularizable family {T\, ..., Tm}, and an invertible
transformation S = S, satisfying

IT;ll < K, IS7"A;8 —Tjll <,

foreveryl <j<m.

(u) There ezist triangularizable families F, (n € N) of linear transformations on
V such that lim, dist(F,, f) =0 forall f€ F.

(vi) There ezist triangularizable families F, (n € N) of linear transformations on
V such F; — F in the Hausdorff metric D induced by any norm on B(V). i.e.,
the collection F is, in the Hausdorff metric, arbitrarily close to a triangularizable
collection of linear transformations on V.

Proof. Obviously Corollary 3.2.2 shows that (i) implies (ii). That (ii) implies (iii)
is obvious. That (iii) implies (iv) follows from Lemma 3.2.5. Taking € = 1/n in (iii),
we get a diagonalizable set {Dpy, ..., Dnm} of linear transformations, relative to B,
and an invertible linear transformation S, such that ||S;;*A;S, — Dn;ll < 1/n for all
1 < j < m. Hence lim, ||S;'A;S, — D,;|| =0 forall 1 < j < m. So Lemma 3.2.5
implies that {||Dn;||}nen is bounded for all 1 < j < m. Thus there exists 0 < K € R
such that ||D,;|| < K foralli € N, 1 < j < m. Now it is obvious that (iii) implies
(iv). That (iv) implies (i) is nothing but Theorem 3.2.3. Finally, (i) obviously implies
(v) and (vi). That (v) or (vi) implies (i) is a quick consequence of Corollary 3.2.4. a

In order to prove the Near Triangularizability Theorem, i.e., Theorem 3.2.3, for
real vector spaces, we basically need a criterion for triangularizability of an algebra of
linear transformations on real vector spaces. It is known that an algebra A of linear
transformations on a finite-dimensional complex vector space is triangularizable iff
AB — BA is nilpotent for all A, B € A, iff each pair {4, B} is triangularizable (see
Corollary 3.2.8 below). The criterion for triangularizability of an algebra of linear
transformations over reals is rather surprising. In fact it follows from Theorem 2.4.6
that individual triangularizability of the members of an algebra of transformations
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implies triangularizability of the algebra provided the ground field F' is not 2-closed
(e.g., F =R). Below we will give a simpler proof of this fact.

Recall that if V is a finite-dimensional vector space over a field F', then a linear
transformation T on V is triangularizable iff the characteristic polynomial for T is
a product of linear polynomials over F' (use The Triangularization Lemma, Lemma
1.1.3, or see Theorem 6.4.5 of [HK]), or equivalently &(T") C F where &(T') denotes
the spectrum of T in the algebraic closure of F. Therefore there exists a nontriangu-
larizable linear transformation in L (V) iff the underlying field F is not k-closed for
some 1 < k < dimV, i.e., there is a monic polynomial f € F[X] of degree k with
1 < k < dimV that is irreducible over F'.

As promised in the remark following Theorem 2.4.3, we present a simpler proof
of a special case of that theorem as well as Theorem 2.4.1, Corollary 2.4.5, Theorem
2.4.6, and Corollary 2.4.9.

Theorem 3.2.7. (i) Let V be a finite-dimensional vector space over a field F of
dimension greater than 1. Suppose that F is not k-closed for some 2 < k < dim'V,
and A is an algebra in L(V) such that 5(A) C F. Then A is reducible. Conversely,
let V be as before. If every F-algebra A in L(V) with 6(A) C F is reducible, then F
is not k-closed for some 2 < k < dim'V.

(ii) If there ezists an irreducible algebra A of linear transformations with 5(A)
F, then F is k-closed for each k = 2, ...,n, and therefore A = L(V). In particular,
Burnside’s Theorem holds in L(V).

Proof. (i) The proof is almost identical to that of Burnside’s Theorem due to I.
Halperin and P. Rosenthal (see Theorem 1.2.2 of [RR], or [HR]): Use contradiction.
Assume irreducibility and show that the mirimal nonzero rank of the elements of
A is 1; from there again use irreducibility to show that A contains all rank-one
transformations and thus A = L(V), for every linear transformation on a finite-
dimensional vector space is a sum of rank-one linear transformations in L(V). Hence
every linear transformation on V is triangularizable. On the other hand since F is
not k-closed for some 2 < k < dimV, it follows that there is a non-triangularizable



87

transformation in L(V), by the comment preceding ‘Theorem 3.2.7, a contradiction.
Thus A is reducible.

For the converse, we again use contradiction. Suppose that F' is k-closed for all
2 < k < dimV. This hypothesis easily implies that the irreducible algebra A :=
L(V) has the property that 7(A) € F. On the other hand A must be reducible by
hypothesis, a contradiction.

(ii) This easily follows from (i). a

The preceding theorem implies the following which is a special case of Corollary
2.4.5.

Corollary 3.2.8. Let F be a field, and let V be an n-dimensional vector space over
F withn > 1. Let A be an algebra of linear transformations in L(V) with G(A) C F'.
(i) The algebra A is triangularizable iff AB — BA is nilpotent for each A,B € A.
(ii) If rank(AB — BA) < 1 for each A, B € A, then the algebra A is triangulariz-
able.

Proof. In view of the preceding theorem the proof is identical to that of Corollary
2.4.5. d

Theorem 3.2.7 implies the following. Later on, we will use part (ii) of the following
theorem to prove the Near Triangularizability Theorem on real vector spaces.

Theorem 3.2.9. (i) Let F be a field that is not 2-closed, and V an n-dimensional
vector space over F withn > 1. Let A be an algebra in L(V). Then A is triangular-
izable iff every A € A is triangularizable. Conversely, let a field F' be given. If every
algebra A in L(V) with (A) C F is triangularizable, then F is not 2-closed.

(ii) Let V be a finite-dimensional vector space over R, and let A < B(V) be a

subalgebra of linear transformations. Then A is triangularizable iff every element of
A is triangularizable.

Proof. (i) “==" Obvious.
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“e=" The proof is just a quick consequence of Theorem 3.2.7 together with the
Triangularization Lemma (Lemma 1.1.3).

As for the converse, fixing a basis for V we need to prove the matrix version
of the assertion. Again we use contradiction. Suppose that F' is 2-closed. This
hypothesis easily implies that the nontriangularizable algebra A := diag(Ma(F), 0,-2)
has the property that 3(A) € F. On the other hand, A must be triangularizable by
hypothesis, for 5(A) C F, a contradiction.

(ii) This is a quick consequence of (i), for R is not 2-closed. O

Corollary 3.2.10. Let V be a finite-dimensional vector space over R, and let A <

B(V) be a subalgebra of triangularizable linear transformations. Then BC — CB is
nilpotent for all B,C in A.

Proof. The proof is evident by Theorem 3.2.9(ii) and the Spectral Mapping Theorem
(See Theorem 1.1.8 of [RR]). a

Now we are going to use Theorem 3.2.9(ii) to prove the Near Triangularizability
Theorem for families of linear transformations on a finite-dimensional real vector
space. We would however like to point out that the Near Triangularizability Theorem
below holds for families of linear transformations on a finite-dimensional vector space
over a complete field F' with a nontrivial absolute value provided that F' is not 2-

closed, i.e., there is an irreducible polynomial f of degree 2 over F'.

Theorem 3.2.11. Let F be a family of linear transformations on a finite-dimensional
vector space V over R with the following property: for each finite subfamily {Ay, ..., An}
of F, there is a constant K > 0 such that for every € > O there exist a triangularizable
family {T\, ..., T} of transformations, and an invertible linear transformation S = Se
with [|STH|IS|| < K satisfying

I < K, ISTA;S —Till <e.

for every 1 < j <m. Then F is triangularizable.
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Proof. Let A be the algebra generated by F. In view of Theorem 3.2.9(ii), it
suffices to show that every element of A is triangularizable. Given A € A, there are
A; € F,(1 <i<m,m € N), and noncommutative polynomial p such that

A= p(A]_, ooy Am).

Let K > 0 be the appropriate constant for {A,, ..., A, }. As we mentioned before, it

is easily seen that every such p is a uniformly continuous function of its arguments on
any bounded set in ((B(V))™, ||-llo) where [|(X1, ..., Xm)lleo = max{[|Xi[l, -, [| Xmll},
and where ||.|| is any norm on B(V) (note that all norms on B(V) are equivalent). In
particular, for every n > 0, there is a d, with 0 < d, < 1 such that

1

“p(-"(h seey "Ym) - p(Yl.y ey Ym)“ < mv (*)

whenever

I1X; =Yl <én IS K+, Y| <K +1

forall1<j7<m.

Now by the hypothesis for this J, there is a triangularizable family {T,,, ---, Toum} of
linear transformations, and an invertible linear transformation S, with ||S;![S.ll <
K satisfying

ITosll < K, 1157480 — Tosl| < b,

for every 1 < j < m. Clearly,
“S;l“ljs'l” < K+ 1, “TnJ“ < K + 1, “S,TIA]S,,, —Tnj“ < Jm

for every 1 < j < m. Thus it follows from () that

1

—1 —1 _ - -
lp(S, " A1Sn, ---s Sy AmSn) = p(Tats - Tom)|l < n(K—}-l)-

Plainly
p(Sr:LAISn-’ ceer Sr—z.lA""'-Sn) = Sr-:lp(AI.? seey A‘m)Sn~
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So we can write
“p(AL, ooy Am) - Snp(TnIy bt Tnm)Sr_z_L”
= [1Sa(S7 (AL, s Am)Sn — P(Tat, s Tam)) 1

< ISIIA(ST ALS, ... ST ARS) — A(T1, - TSI

o S = <2
n(K+1) " n(K+1) n

< lIS.llllSz

Thus
1

Ip(AL -or Am) = Tall < =
where T, = S,p(Thni, -.-, Tnm) St Obviously T, is a triangularizable transformation,
for {Tn1, ..., Tam} is a triangularizable family of linear transformations. In particular
o(T,) € R, n € N. So we have p(Ay,...,An) = lim, T, and o(T,) C R, n € N;
hence it follows from Lemma 3.1.2 of [RR] that o(p(Ay, ..., An)) € R. Therefore
A=p(A,,.., A,) is triangularizable by the remark preceding Theorem 3.2.7. O

Remark. Having proved the Near Triangularizability Theorem for real vector spaces.
one can prove an analogue of Corollary 3.2.4 for collections of linear transformations

on finite-dimensional vector spaces over R. The proof is similar to that of Corollary
3.2.4 using Theorem 3.2.3.

We now prove a near reducibility theorem.

Theorem 3.2.12 (Near Reducibility Theorem). Let F be a family of linear
transformations on a finite-dimensional vector space V over C with the following
property: for each finite subfamily {Ay, ..., Am} of F, there is a constant K > 0 such
that for every € > 0 there exist a reducible family {11, ..., T} satisfying

1Tl < K, 14— Tl <e

for every 1 < j < m. Then F is reducible.

Proof. Let {A;, ..., An} be a basis for (F) < L(V), the subspace generated by F. It
suffices to show that the algebra generated by {Aj, ..., A}, denoted by A, is reducible.
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Suppose not. It follows from Burnside’s Theorem that A = L(V). Let n = dim V.
Therefore, there are noncommutative polynomials pi(zi, ..., Tm) (¢ = 1, .., n?) such
that {p;(AL, ..., Am)}1<icn2 i a basis for L(V). Since L(V) is finite-dimensional and
{pi(AL, ..., Am) }1<i<n? is a basis for L(V), it follows that there exists € > 0 with the
property that: If B; € L(V) (¢ = 1,...,n?) and ||p:(Ay, .., Am) — Bil| < € for each
i = 1,...,n% then {B;}i<icn2 is linearly independent, hence a basis for £(V). Let
K > 0 be the appropriate constant for {4, ..., An}-

We observe that each p; : B(V)™ — B(V) (i = 1,...,n?) is a noncommutative
polynomial in m linear transformations. We note that every such p; is a uniformly
continuous function of its arguments on any bounded set in (B(V)™, ||.[|) Where

1(X1s wees Xim)lloo = max{| Xl -os [| Xom 1}

In particular, for every n > 0, there is a positive § with 0 < ¢ < 1 such that

“pi("Ylv seey ‘X’m) - Pi(YL: (2223 Ym)” < 7, (*)

whenever || X; =Y <6, Xl S K+ 1, |Vl < K+lforalll<j<m and
1<i<n?
Now for € > 0 with the aforementioned property, find the corresponding § with
0 < § < 1. By the hypothesis, for this &, there exists a reducible family {7, .... Trm}
satisfying
1T < K, |A4; - Tl <6,

for every 1 < 5 <m. So we can write
IT5 < K+1, |4 <o+ T <1+ K,
for every 1 < j <m. Hence we get

14; =Tl <& 4l S K+ LTl < K +1,



for every 1 < j < m. It follows from (*) that

”pi(Al: weey Am) - pi(Th 7Tm)” <E§

for all 1 < i < n? Now it follows from the aforementioned property of € > 0 that
{pi(T1, ---» Trm) }1<i<n? is a basis for L(V) which contradicts the fact that {71, ..., Tm}
is reducible. This contradiction completes the proof. a

Remarks.
1. Using the same argument one can prove that the near reducibility theorem
above holds for families of linear transformations on a finite-dimensional vector space

over a an algebraically closed complete field F' with a nontrivial absolute value.

dimensional vector spaces over R whose dimensions are odd. Therefore, the same
proof shows that the Near Reducibility Theorem above holds on finite-dimensional
vector spaces over R whose dimensions are odd.

3. Having proved the above Near Reducibility Theorem, one can prove an analogue
of Corollary 3.2.4 for reducible collections of transformations on a complex vector
space or a real vector space of odd dimension. To establish this, one follows the
line of argument deducing Corollary 3.2.4 from Theorem 3.2.3. More precisely, one
can prove: Let V be a finite-dimensional complez vector space or a finite-dimensional
real vector space whose dimension is odd, F;,F (i € N) nonempty families of linear
transformations on 'V satisfying one of the following conditions.

(i) Each family F, (n € N) is reducible and lim, dist(F,, f) =0 for all f € F.

(ii) Each family F, (n € N) is reducible and F; — F in the Hausdorff metric D
induced by any norm on B(V).

Then F is reductble.

3.3 Near triangularizability in infinite dimensions

In this section we prove the infinite-dimensional version of near triangularizability.
First we show that Theorem 3.2.3 holds for C; operators on a Hilbert space.
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Theorem 3.3.1. Let F be family of €, operators on a complex Hilbert space with
the following property: for each finite subfamily {Ay, ..., Am} of F, there is a constant
K > 0 such that for every € > O there exist a triangularizable family {T\,...,Tn} of
@, operators, and an invertible linear operator S = S satisfying

T3l < K, IS7'A;8 = Thllu <,

for every 1 < j < m. Then F is triangularizable.

Proof. First we note that if F is a singleton, then we have nothing to prove for every
@, operator is compact and hence triangularizable. So we may assume that |[F| > 1.
By Lemma 2.5.8(iv) a trace class operator A is quasinilpotent iff tr(A") = 0 for all
n € N, and |tr(4)] < ||A||, for all A € €, (see Corollary 6.5.13 of [RR]). Let A be
the algebra generated by JF.

In view of Theorem 7.6.1 of [RR], it suffices to prove that each commutator BC —
C'B is quasinilpotent for all B and C in A. To do so, we need to show that the trace
of (BC —CB)" is 0 for all B and C in A and all n € N. From this point on, the
proof is almost identical to that of Theorem 3.2.3. Here is a sketch:

Given B, C € A, there are A; € F, (1 < ¢ < m), and noncommutative polynomials
p and ¢ such that

B =p(Al.1 .y Am)v C= Q(‘Alv ~emy Am)~
Let K > 0 be the appropriate constant for {A,, ..., A,}. Define: h, : (€)™ — C
by
h‘n.(le sy "Ym)

= (P(Xh “eey Xm)Q(Xh e ) Xm) - Q("Ylv ey me)p(Xh seey o’Ym))n~

We observe that h,, n € N is a noncommutative polynomial in m trace class (i.e.,
@,) operators. It is easily seen that every such h, is a uniformly continuous func-
tion of its arguments on any bounded set in ((C;)™, ||.|lec) Where ||[(X1, .-r; Xim)llo =
max{||Xi|l1, .-, | Xmll1}- In particular, for every n > 0, there is a § with 0 < <1
such that

(X1, -y Xin) — Bn (Y1, s Yo) It < 7,
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whenever || X; — Y|l <6, | Xj. < K+1, |V <K +1lforalll <j<m. The
rest of proof is identical to that of Theorem 3.2.3 except that instead of ||.|| we have
the €, norm i.e., ||.||, and instead of h we have h,. So just as in the proof of Theorem
3.2.3, we can conclude that tr(h,(Ay, ..., An)) = 0 where n € N is arbitrary. That is
tr((BC — CB)*) =0 for all n € N. Hence BC — CB is quasinilpotent. Thus A, and
therefore F, is triangularizable by Theorem 7.6.1 of [RR]. a

Remark. The preceding argument provides a second proof for Theorem 3.2.3.
It is not hard to extend Theorem 3.3.1 to C, operators (1 < p € R) on a complex

Hilbert space. To do so, we need the following lemma.

Lemma 3.3.2. Let p € N and let h(z, ..., Tm) be a noncommutative polynomial in
m variables with compler coefficients whose constant coefficient is 0, and such that

every monomial in h(zy, ..., Tr,) is of degree greater than or equal to p. Then

Rz (€)™, lllloo) — (Cus -l

defines a function that is uniformly continuous on bounded subsets of {(Cp)™, ||-lloo)
where [|(X1, ---» Xm)llo = max{[|Xillp, - | Ximllp} for (X1, .., Xm) € (€)™

Proof. We present a sketch of the proof. Since a finite sum of uniformly continuous
functions is a uniformly continuous function, it suffices to prove the assertion for the
case when h is a monomial. We recall that by Lemma 14(c) on page 1098 of [DS] we
know: if pl‘ + .+ an =1 and A; € €,,, then A,...A, € €;; moreover,

lA1..-Anllr < |Atllp -l Anllpn-

Also we have

Al = inf{||A — F|| : rankF < 0} =s1(4) < (3 s7(A))7.

=1

Hence [|A|| < ||A||, forall A € €, 1 < p € R (see Lemma 6.5.15. of [RR]). So if
Ay, ..., An € €, where m > p, then, in view of Lemma X1.9.9(d) on page 1093 of [DS]
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and the comments above, we can write

”Al-»Am”L = ”AL—-»Ap-l(Ap»-Am)Hl

< N Adllp gl Ap-r-Amllp < AU A llo Ul Apllpll Apsr-Aml)
< 1Al Apt ol Aplla( Apa -1 Al

< | Aullp-- 1 Ap-illp | Apllal| Apsillp---l| Amllp
Thus
[A1-Anll < | ALl Amllp-

Now, using induction, it is a matter of a straightforward calculation to see that every

monomial h : ((€,)™. |l.llc) = (€1, ]lll1) is a uniformly continuous function of its
arguments on every bounded subset of ((C,)™, ||-/|eo)- O

Theorem 3.3.3. Let 1 < p € R be given, and let F be a family of C, operators
on a complex Hilbert space with the following property: for each finite subfamily
{AL, ..., A} of F, there is a constant K > 0 such that for every € > 0 there exist a
triangularizable family {T\, ...,Tn} of C, operators, and an invertible linear operator
S = S, satisfying

1T5ll, < K, “S—IAJ'S ~Tillp <

for every 1 < j < m. Then ¥F is triangularizable.

Proof. By Lemma 9(a) on pags 1092 of [DS], €, C €, if p < p’ and ||A[|, decreases
as p increases. Thus, if necessary, by changing p to [p]| + 1, where |p| denotes the
integer part of p, we may assume that p € N. Again let A be the algebra generated
by F.

We note, as before, that if F is a singleton, then we have nothing to prove, for
every €, operator is compact and hence triangularizable. So we may assume that
|F| > 1. In view of Theorem 7.6.1 of [RR], it suffices to prove that each commutator
BC — CB is quasinilpotent for all B and C in A.

To do so, we will show that (BC — CB)P? is quasinilpotent. To see this, it suffices



96

to show that the trace of (BC —CB)P is 0 for all B and C in A and alln € N. The
proof is similar to that of Theorem 3.2.3 or Theorem 3.3.1.

Given B,C € A, there are A; € F, (1 < i < m), and noncommutative polynomials
p and q such that

B = p(Ab eey Am)x C= Q(Aly cory Am)-

Let K > 0 be the appropriate constant for {Ay, ..., A,,}. Define

h‘n(zh veoy fL’m) = (P(l'ly ey xM)Q(xlv ey Im) - Q(xly vesy xm)p(Ilt eory xm))yn'

It is plain that h,, n € N is a polynomial function from ((Cp,)™, ||.llec} into (€i, |-}}1)-
By Lemma 3.3.2

hn 2 (€)™ ll-lleo) — (€, Il

is a uniformly continuous function of its arguments on every bounded subset of
(€)™ [llloo) where [[(X1, ooy Xm)lloo = max{[|Xillps s [ Xomllp} for (Xi,.oos Xm) €
(€)™

In particular, for every n > 0, there is a § with 0 < < 1 such that
“h'n(Xlr emey "Ym) - h'n(},h eeey Ym)”l <nn,

whenever || X; —Yjll, <d. I X;ll, < K+1, [V, SK+1forall<j<m. Byan
argument similar to that used in the proof of Theorem 3.2.3, we can conclude that
tr(hn(AL, ..., Am)) = 0 where n € N is arbitrary. That is, tr((BC — CB)P") = 0 for
all n € N. Therefore (BC — CB)P, and hence BC — CB, is quasinilpotent. Thus A,
and hence 7, is triangularizable by Theorem 7.6.1 of [RR]. a

Here is the Near Triangularizability Theorem for arbitrary collections of compact
operators on a real or complex Banach space.

Theorem 3.3.4. Let F be a family of compact operators on a real or complez Banach
space with the following property: for each finite subfamily {Ay, ..., Am} of F, there
is a constant K > 0 such that for every € > 0 there ezist a triangularizable fam-
ily {T1, ..., T'n} of compact operators, and an invertible linear operator S = S, with



97

IIS~HIISIE < K satisfying
Tl < K, |IS7'A4;S — Till <,

for every 1 < j < m. Then F is triangularizable.

Proof. We present the proof for the case when the underlying space is a complex
Banach space. The proof for the real case is similar to that of Theorem 3.2.11 using
Corollary 2.5.6 and Lemma 5 on page 1091 of [DS]. As before, we note that if ¥ is
a singleton, then we have nothing to prove, for every compact operator is triangular-
izable. So we may assume that |F| > 1. Let A be the algebra generated by F. In
view of Theorem 7.6.1 of [RR], it suffices to prove that each commutator BC' — CB
is quasinilpotent for all B and C in A.

To do so, we will show that p(BC' —C B) = 0 where “p” denotes the spectral radius.
As before, given B,C € A, there are 4; € F,(1 < i < m), and noncommutative
polynomials p and g such that

B = p(Al.r sy Am)'r C = (I(-Alx sy Am)-

Let K > 0 be the appropriate constant for {A,, ..., An}. Define:

R(Z1, ooy Tm) = P(T1s coes Tm)Q(TLy oo Tm) — Q(TLs ooy T )P(TL, ooy Tim)-

Since the spectral radius is continuous at h(Aj, ..., Am), for A(Ay,..., An) is a com-
pact operator, it follows that for a given € > 0, there is a § = d(¢) > 0 such that
lo(h(Ay, ..., An)) — p(A)] < € whenever [|h(AL, ..., Am) — A]| <.
Now, for this § = d(€) > 0 there is an n with 0 <7 < 1 such that
]

(X1, ooy Xin) = (Y1, - Y) |l < 1 (*)

whenever
1X; =Yl <n IXGl<K+1, |Vl <K+1

for all 1 < 7 < m. By the hypothesis, for this 0 < n < 1 there is a triangularizable
family {T1,..., T} of compact operators, and an invertible linear operator S = S,
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with [|SH[||S]| < K satisfying
I3l < K, 1S~ 4,8 = Tyl <,
for every 1 < j < m. Clearly,
IST'A;SI < K +1, Il S K+1, [|ST' A4S =Tl <,

for every 1 < 5 < m. Thus it follows from (*) that

)

-1 -1 _
IA(SHALS, .., S AmS) = A(Th, o Tl < T

Plainly
h(ST'ALS,....S7TIALS) = ST R(AL, ... AR)S.

We can write
”h‘(AI.: -ee Am) - Sh’(Tl' s=ey Tm)S—lll

=1S(S™ A(AL, <y Am)S = R(TL, ... Tw))S M|

< [ISIIA(S T ALS, -y ST AmS) = R(T1, ... TS|

J K5<6

<UISIIS ™l oy S g8 <O

Thus
A(Ay, oy Am) — Sh(T, ..., Tm)S‘lll <.

Now it follows from the continuity of spectral radius at h(A,, ..., Ax) that

lo(R(AL, -y Am)) — p(SA(T1, .. Tm)S™H)| <.

It is plain that
p(Sh(TY, ..., Tn)S™') = p(A(T, - Trm)-

But p(h(T, ..., Tin)) =0, for {1}, ..., Trn} is triangularizable. Thus we conclude that

lo(h(Ay, .., Am))| <&,
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for all ¢ > 0. Hence, p(BC — CB) = p(h(Ay,...,An)) = 0 for each commutator
BC —CB, B,C € A. Therefore, BC — CB is quasinilpotent for all B,C € A. U

Corollary 3.3.5. Let p € R withp > 1 be given, and let F be a family of C, operators
on a real or complex Hilbert space with the following property: for each finite subfamily
{AL,...,An} of F, there is a constant K > 0 such that for every e > 0 there exist a
triangularizable family {T\, ...,Tn} of €, operators, and an invertible linear operator
S = S, with |[|STH|||S|| < K satisfying

IT5ll, < K, 11S74;5 = Tyllp <

for every 1 < j < m. Then F is triangularizable.

Proof. Theorem 3.3.4 applies because ||A|| < ||A]|l, for each €, operator A. a

Remarks.

1. Having proved the above Near Triangularizability Theorem, one can prove an
analogue of Corollary 3.2.4 for collections of compact operators on a real or complex
Banach space where nearness is measured by the operator norm. To accomplish this,
one follows the line of argument deducing Corollary 3.2.4 from Theorem 3.2.3.

2. It is worth mentioning that €, class operators can naturally be defined on any
real or complex Banach space that is isomorphic to a real or complex Hilbert space
respectively. Similarly, one can prove analogues of Theorem 3.3.1, and Theorem 3.3.3

and Corollary 3.3.5 for G, class operators acting on such a real or complex Banach
space.

3.4 A Reducibility Result

In this section we use the Near Triangularizability Theorem to prove a rather
surprising reducibility result. Let X be a real or complex Banach space, and A,, A €
B(X). Bys-lim, A, = A we mean A is the limit of A,,’s in the strong operator topology
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on B(X), ie., lim, ||A,z — Az|| = 0 for all z € X. To present our reducibility result,
we need the following two results.

Lemma 3.4.1. Let X be a real or complez Banach space, A,, A € B(X), and K,,, K €
Boo(X) (n € N). Ifslim, A, = A and lim, K, = K, then lim, A, K, = AK.

Proof. We give the proof in three stages.
(i) Ifs-lim, A, = A, then lim, A, F = AF for all F € Boo(X)-

Since F is a finite-rank operator, it follows that we can write

m
F = Z ¢i ® T,
i=1
where me N, ¢; € X*, z; € X (1 <i <m), and ¢; @ z; is the rank-one operator
defined on X by ¢; ®@ z;(z) = ¢:(z)z;. It is easily seen that AF = > 7, ¢: ® Az;.
Therefore, we can write

|AF — AF| =|(An — A)F|| = Sup [(An — A)F ()l

lyll=1

= sup || ) ¢:(y)(Anz: — Az)|l.

”‘!l|[=1 i=1
On the other hand, since s-lim, A, = A, it follows that lim, A,z; = Az; for each
i=1,...,m. Hence, for given € > 0, there exists N € N such that

€
”AniL‘i — A:L‘i” < m,
foralln > N and 1 < i < m where M = maXj<i<m ||#:||- So for all n > N we can

write

I40F = AFT < 3101 vz = Azl < 301 s =5 <e

That is, lim, A,F = AF'.
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(ii) If s-lim, A, = A and lim, F, = K where F, € Bo(X) (n € N), then
lim, A, K = AK.

Since s-lim, A, = A, it follows from the Principle of Uniform Boundedness (The-
orem III.14.1 of [C]) that there exists M > 0 such that [|A],||A.]| £ M for each
n € N. We have lim, F, = K. Therefore, for a given € > 0 there exists Ny > 0 such
that

. €
|F — K[| < 3L+1)

for all n > N;. We can write
A K — AK|| < ||AnK — AnFy,|| + ||AnFy, — AFw || + [|AFN, — AK]|

< NAlK = P |l + | AnFyv, — AF || + [|All][Fav, = K]

On the other hand, (i) implies that lim, [|A,Fy, — AFx,|| = 0. Hence there exists
No > 0 such that

€
HA'nE\ﬁ - AFNt” < :3'7
for all n > N>. Now for all n > max(N,, N2) we can write

€

”.‘ln[( —AK” < ZV[m

€
-+ M .
+3+z[ )<e

€
3(M +1

That is lim, ||A.K — AK]|| = 0. In other words, lim,(A,K — AK) = 0 which is what
we wanted.

(iii) We now prove the general statement.

Again in view of the Principle of Uniform Boundedness, it is easily seen that
there exists M > 0 such that |[A]|, ||Axl]: |K]|,||Kxl] < M for each n € N. Since
lim, K, = K, we conclude that for a given € > 0 there exists N; > 0 such that

€

[[Kn — K| < L+ D)’

for all n > N;. The fact that K € Bgo(X) along with (ii) implies that lim, |[4. K —



AK|| = 0. Thus, there exists Na > 0 such that

1AK — AK]| <

b

| m

for all n > N,. Now for all n > max(V;, V) we can write

_ € L€
2(M +1) 2

That is, lim, ||A. K, — AK|| = 0. In other words, lim, A, K, = AK which is what
we wanted. a

< Al |1 Kn — K|l + ||AK — AK]| < M <e

Theorem 3.4.2. Let X be a real or complex Banach space of dimension greater than
one, § a semigroup of operators in B(X), and B € B(X) a bounded operator with
rank(B) > 2. If 8B is triangularizable, then 8§ has a nontrivial invariant subspace.

Proof. Let A denote the algebra generated by the semigroup 8. We note that
A = (8). That being noted, it suffices to prove the assertion for an algebra A of
operators in B(X). Let € be a maximal chain of subspaces each of which is invariant
for AB. Let X_:= Uxxyee9. We now distinguish two cases.

(a) X_=X.

Obviously, there exists a Y € € with Y # X, and a yo € Y such that Byo # 0.
Define M := AByo. If M = {0}, then (Byo) is a nontrivial invariant subspace for A.
If M # {0}, then we would have 0 # M = AByo € Y # X. So M would then be a
nontrivial invariant subspace for A.

(b) X_#X.

Since € is maximal, is follows that X_ € € is a closed subspace of X of codimension
one, i.e., dlm-ix: = 1. Since rank(B) > 2, it follows that there exists zo € X_such
that Bzo # 0. Again define M := ABzo. If M = {0} , then (Bxzo) is a nontrivial
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invariant subspace for A. If M # {0}, then we would have 0 # M = ABzo C X_# X.
So M would then be a nontrivial invariant subspace for A. O

Remarks.

1. In the preceding theorem, if the triangularizing chain, say €, for B happens
to have the property that X_ =X, e.g., any continuous chain, then, by case (a) of the
proof above, the assertion holds under the weaker hypothesis that B is nonzero.

2. By adjusting case (b) of the proof above, it is easily seen that the preceding
theorem holds on finite-dimensional vector spaces over general fields. It is worth
noting that in the preceding theorem the hypothesis that rank(B) > 2 cannot be
weakened. To see this, let F' be a field and n > 1. Note that M.(F) is irreducible
whereas M, (F)E,, is triangularizable where En, is the standard matrix with one in
the (n,n)th place and zero elsewhere.

3. It is not difficult to see that in the preceding theorem if the operator B happens
to be 1-1, then reducibility of 8B implies that of 8. (See the remarks following
Theorem 2.3 of [Y?2].)

Here is the main theorem of this section.

Theorem 3.4.3. Let X be a real or complez Banach space, An, A € B(X), and
K. K € Bo(X) (n € N) with rank(K) > 2. Ifslim, Ax = 4, lim, K, = K,
and {An, K.} is triangularizable for each n € N, then A has a nontrivial invariant
subspace.

Proof. Let S denote the semigroup generated by A. In light of Theorem 3.4.2, it
suffices to show that SK is triangularizable. That is, we need to show that the collec-
tion {A*K}&, is triangularizable. In view of Theorem 3.3.4, it suffices to show that
{A'K}$2, satisfies the hypotheses of Theorem 3.3.4. Suppose that a finite subfamily
{A™K, ..., A" K} is given. Since s-lim; A; = A, it easily follows that s-lim; AV =A™
for each j = 1,..,m. Now since lim; K; = K, it follows from Lemma 3.4.1 that
lim; A7 K; = AYK for each j = 1,..,m. By the Principle of Uniform Convergence
there exists M; > 0 such that

AL (AL KL KN < My,
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for all i € N. Set n := max;<j<m(nj) + 1 and M := maxi<icn{M}}. Now let € >0
be given. Since {A;, K;} is triangularizable, it follows that so is {A7' K, ..., A{™ K;}
for each i € N. We also have ||A"K;|| < M for each j = 1,..,m and 7 € N. Since
lim; A?j K; = A™ K for each 7 = 1,..,m, we conclude that for i large enough

AV K; — ANK|| <,

for each 7 = 1,..,m. Therefore, the collection {A*K}2, is triangularizable, finishing
the proof. O

Corollary 3.4.4. (i) Let X be a real or complez Banach space, A,, A € B(X), and
K e m (n € N) with rank(K) > 2. Ifs-lim, A, = A, and {An, K} is triangu-
larizable for each n € N, then A has a nontrivial invariant subspace.

(i) Let H be a real or complex Hilbert space, (cvi)ien be an orthonormal basis
for K, and A,, A € B(K). Ifs-lim, A, = A, and for each n € N there ezists a
permutation m, on N such that (x.(;))ien is a triangularizing chain for A,, then A
has a nontrivial invariant subspace.

Proof. (i) This is a special case of Theorem 3.4.3 when K, = K foralln € N.

(ii) Let K be the compact (and in fact normal) operator defined by diag(1/7)72,
relative to the orthonormal basis (o;);:en for the space H. Note that K € m, for
Boo(H) = Bo(H). The hypothesis implies that {A,, K} is triangularizable for each
n € N. So (i) applies. O



Chapter 4

Simultaneous triangularization

over division rings

AH, make the most of what we yet may spend,
Before we too into the Dust descend;
Dust into dust, and under dust to lie,
Sans Wine, sans Song, sans Singer, and -sans End!
—Khayyam, the Persian Mathematician, Astronomer, Philosopher, and Poet.

Rendered into English verse by Edward Fitzgerald.

4.1 Introduction

In this chapter we study semigroups of linear transformations on (left) finite-
dimensional vector spaces over division rings. We give a new proof of a well-known
theorem of Levitzki about triangularizability of semigroups of nilpotent transforma-
tions on finite-dimensional vector spaces over division rings. It is emphasized that a
result of Radjavi, which extends Engel’s Theorem and as well as Jacobson’s Theo-
rem, also holds on finite-dimensional vector spaces over division rings. We define the
concept of permutability of trace on a collection of matrices over a division ring and
we use our main theorem to prove that with a slight condition on the characteristic

of the underlying division ring an irreducible collection of matrices on which trace is

105
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permutable is commutative.

We start off with the noncommutative analogues of the definitions and notations
we recalled in Chapter 1. Unless otherwise stated, D is used to denote a division ring,
F the center of D, and V a (left) finite-dimensional vector space over D. We use the
term linear transformation to describe a left vector space homomorphism on V. We
use L(V) to denote the set (in fact the ring) of linear transformations on V. Recall
that by Theorem VII.1.4 of [H], if V is an n-dimensional vector space over D, then
there is a ring isomorphism L (V) & M, (D) where D is the opposite ring of D (i.e.,
D has the same set of elements as D, same addition, and reversed multiplication).
In order to avoid D, we may view M, (D) as a ring of linear transformations acting
on the right of D™ where D" is the vector space of n-tuple rows viewed as a left vector
space over D. For instance, we can write

(X)A=A(z ’J)(Z 3)=(,\I ,\y)<‘: Z)

= ( Aza + A\yc \zb + A\yd ) = A ( za +yc zb+yd ) = \NXA4),

where the entries are in D. This shows that AA viewed as a linear transformation
does not have the property that X(AA) = A(XA) unless A is in the center of the
division ring D. That being noted, we see that, unlike the commutative case, the
matrix ring M, (D) viewed as a left vector space over D is not compatible with
M, (D) as a ring of linear transformations as described above. However the matrix
ring M, (D) may be viewed as an F-algebra of linear transformations acting on a
left vector space as described above where F is the center of the division ring D.
Recall that by an F-algebra A in M, (D) we mean a subring of M, (D) that is closed
under scalar multiplication by the elements of F. The concepts of reducibility and
triangularizability can naturally be defined for collections of linear transformations on
left finite-dimensional spaces (resp. matrices over division rings). Fixing a basis for
V, we can identify £ (V) with the matrix ring M, (D) (see Theorem II.4.2 of [J]). Just
as in the commutative case, the matrices of linear transformations with respect to two
bases correspond to two similar matrices. We conclude that, to prove a reducibility
(resp. triangularizability) result, it suffices to prove either the matrix version or linear
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transformation version of that result.

Just as in the commutative case, the following lemma is crucial in what follows.

Lemma 4.1.1. Let V be a finite-dimensional vector space over a division ring D,
and $ a semigroup in L(V). If § is irreducible, then so is every nonzero semigroup
ideal of 8.

Proof. The proof is identical to that of Lemma 1.1.2. a

4.2 Some Preliminary Results

The following lemma is the counterpart of Lemma 2.2.1. Its proof is almost

identical to the corresponding proof in the commutative case. However we include its
proof for the sake of completeness.

Lemma 4.2.1. Let V be a finite-dimensional vector space over a division ring D,
S a semigroup in L(V), and T a nonzero linear transformation in L(V). IfS is
irreducible, then so is TS|z where R =TV is the range of T'.

Proof. If dimV = 1, then the assertion trivially holds. So we may assume, with no
loss of generality, that dim V > 1. There are two cases to consider.

(a) rank(T") = 1.

To prove the assertion by contradiction suppose T'8|x is reducible. Since dimR =1
in this case, it follows from definition that TS|z = {0}. Therefore, TST = {0}.
Pick a nonzero z € V such that Tz # 0. Now either STz = {0} in which case
(Tz) = {Tdz : d € D} is a nontrivial invariant subspace for 8, or else

k

(8Tz) = {d_STz::keN,S;€8,z: € (z) 1 <P <k)}

=1
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is a nontrivial invariant subspace for S, because TST = {0} and 8 is a semigroup.
This contradicts the hypothesis that 8 is irreducible.

(b) rank(T) > 1.

To prove that TS|x is irreducible we use contradiction. Suppose that TS|z is
reducible. So there exists a nontrivial subspace M of R = TV such that T8M C M.
Choose a nonzero = € M and note that T8(z) € M where (z) = {dz : d € D}. The
subspace

k
(8z) = {)_Sim:i:keN,S; €8,z € (z) 1 <i<h)}
i=l
is an invariant subspace of S. Furthermore, it is proper, for T8(x) € M C R. If
8z = 0, then (z) is a nontrivial invariant subspace for 8, otherwise (8z) would be a

nontrivial invariant subspace for $. So in any event we conclude that 8 is reducible,
a contradiction. O

Recall that a linear transformation T in £(V) is called idempotent if T2 = T. The
corollary below is a quick consequence of the preceding lemma.

Corollary 4.2.2. Let V be a finite-dimensional vector space over a division ring D,

8 a semigroup in L(V), and T a nonzero idempotent in L(V). If 8 is irreducible, then
so is T8T |rv.

Proof. Lemma 4.2.1. a

As already mentioned in the remark following Theorem 2.2.9, we are going to use
the preceding lemma to give a second proof of Levitzki’s Theorem over division rings.

Corollary 4.2.3 (Levitzki’s Theorem). Let V be a finite-dimensional vector space

over a division ring D. Then every semigroup of nilpotent transformations in L(V)
is triangularizable.
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Proof. In light of the Triangularization Lemma (Lemma 1.1.3) for collections of
transformations over a division ring, it suffices to show that § is reducible whenever
dimV > 1. We prove reducibility by induction on n =dimV. If n = 1, then we have
nothing to prove. Suppose that the assertion holds for every semigroup of nilpotent
transformations on spaces of dimension less than n. Now suppose that dimV = n;
and let 8 be a semigroup of nilpotent transformations in L(V). To show that § is
reducible, we distinguish the following two cases and in each case we prove reducibility

of S.
(a) rank(8) < 1.

We claim that T8T = {0} for all T € 8. To this end, suppose T, S € § are given.
We must show that TST = 0. Note that by the hypothesis TS € § is nilpotent, and
it is plain that TV is invariant under T'S. Thus the restriction of T'S to T'V is also
nilpotent, and hence not invertible. Since dim7TV < 1, it follows that T'S lrv = 0.
That is, TST =0 for all S,T € 8. If § = {0}, then the assertion trivially holds. If

$ # {0}, then just as we saw in case (a) of the proof of Lemma 4.2.1, we conclude
that S is reducible.

(b) rank(T") > 2 for some T € 8.

First note that by hypothesis and nilpotency of T', we would have 2 < rank(T') <
n = dim V. Define R := T'V. Therefore, in light of Lemma 4.2.1, reducibility of the
semigroup T'S|x, implies that of the semigroup 8. Note that T'8|x is a semigroup of
nilpotent transformations on the vector space R whose dimension is less than n. Thus
TS| must be reducible by the induction hypothesis. O

Remarks.

1. We would like to point out that the following theorem due to Radjavi (see
Theorem 1.7.3 of [RR]) with the same proof also holds over division rings. It is worth
mentioning that this result extends the celebrated result of Engel about triangular-
ization of Lie algebras of nilpotent transformations (Corollary 1.7.6 of [RR]) as well as
Jacobson’s Theorem (Corollary 1.7.4 of [RR]) to finite-dimensional vector spaces over
division rings. Here is the theorem: Let V be a finite-dimensional vector space over
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a division ring D. A set N of nilpotent transformations in L(V) is triangularizable
if it has the property that whenever A and B are in N, there is a noncommutative
polynomial p such that AB + p(A, B)A is in N. (the proof is identical to that of
Theorem 1.7.3 of [RR]).

2. It can be shown that the following statement, if true, extends the well-known
results of Kolchin, Kaplansky, McCoy, as well as Theorem 2.3.2 to finite-dimensional
vector spaces over division rings (see Corollary 2.2.15, Corollary 2.2.16, and Corollary
2.3.6(ii)). Let n > 1, D a division ring D, F the center of D, and A an F-algebra in
M,(D). Then, A is nilpotent if it is spanned by nilpotents as a linear space over F'.

The following theorem is the counterpart of Theorem 2.2.10. Although its proof is
almost identical to its counterpart, we include the proof for the sake of completeness.

Theorem 4.2.4. Let D be a division ring, F its center, V a finite-dimensional vector
space with dimension greater than one over D, and F a triangularizable family of
linear transformations in L(V) such that the F-algebra generated by F contains a

nonzero nilpotent transformation. Then F has a nontrivial hyperinvariant subspace.

Proof. We note that for every family F of linear transformations
F = (Algp(F)) = (Sem(¥))".

Thus F has a nontrivial hyperinvariant subspace iff Alg(F) does, or iff Sem(F) does.
So it suffices to prove the assertion for any triangularizable F-algebra, say A, of
linear transformations that contains a nonzero nilpotent transformation. Suppose A

is such an F-algebra and that Kj is a nonzero nilpotent transformation in A. Define
A=A +AxA where

k
AxA ={> AAi:keN, AcA AeA, 1<i<k}
i=1

Clearly, A, is an F-algebra in £ (V) which contains both A and A’. It suffices to prove
that A; has a nontrivial invariant subspace. For the nonzero nilpotent transformation
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Ky € A, first we claim that A, Ky, and hence A, KoA,, the semigroup ideal generated
by Kp in A;, consists of nilpotents. To this end, let Ag = A’ + ZLL A AL € Ay
with 4; € A, A A, € A, 1 < i < k,k € N) be arbitrary. We prove that
AgKy is nilpotent: first of all we notice that AgKy = A'Kp + Zi-;l A; AL where
A, = A Ky € A. Set

§:={AcA:A"=0}.

Since A is triangularizable, it follows that § is a nonzero semigroup ideal of A con-
sisting of nilpotent transformations (note that 0 # Kj € §).

The set SA' is indeed a semigroup consisting of nilpotents because for all A €
A A € A we have AA = A’A and that § is a semigroup of nilpotents. Thus
Levitzki’s Theorem (Theorem 4.2.3) shows that SA’ is triangularizable. Therefore,
Algz(SA"), the F-algebra generated by SA’, consists of nilpotents. We have

k
AcKo = KoA' + ) Ay A}
i=1
where A;, = A;Ko € A. In fact A;; = A;Ko € 8, for Ko € 8 and A is triangularizable.
Now clearly A'Ky = KoA’' € SA" and A; A} € SA". Therefore, AgKy € Algg(SA'),
and hence AgKjp is a nilpotent transformation. Thus A;KoA, is a nonzero semi-
group ideal of A, consisting of nilpotents which must be triangularizable, and hence
reducible, by Levitzki’s Theorem. Now reducibility of the nonzero ideal A;KoA
implies that of A; in light of Lemma 4.1.1, finishing the proof. a

Remark. Let V be an n-dimensional vector space over a division ring D. Then
A € L(V) is nilpotent (i.e., some power of A is zero) iff A® = 0. Necessity is
trivial. To see sufficiency, suppose that A is nilpotent. Since nilpotency is inherited
by quotients, it follows from the Triangularization Lemma that A is triangularizable.
So A can be put in triangular form. This along with the fact that A is nilpotent and

that D is a division ring implies that A can be put in strict triangular form, yielding
Ar=0.

Corollary 4.2.5. Let V be a finite-dimensional vector space over a division Ting
D. Then every nonzero semigroup S of nilpotent linear transformations on 'V has a



nontrivial hyperinvariant subspace.

Proof. Corollary 4.2.3 and Theorem 4.2.4. O

Lemma 4.2.6. Let D be a division ring with ch(D) = 0 or > n wheren € N,
A € M,(D), and m € N. Then A is nilpotent if

tr(S7tA'S) =0,
for all invertible matrices S € M,,(D), and all i € N with i > m.

Proof. We prove the assertion by induction on n. If n = 1, then the assertion trivially
holds. Assuming that the assertion holds for matrices of size less than n, we prove the
assertion for matrices of size n. Since M,(D) is a finite-dimensional vector space over
D, it follows that there exists a monic polynomial f = z* + fi_1z*"' +...+ fiz+ fo €
D[X] of minimal degree such that

Af + fo AR L LA fol =0. (%)

Let mo be the smallest positive integer for which tr(A’) = 0 for all ¢ € N with
i > mg. We note that if mg = 1, then by the characteristic condition on D we have
tr(Amo—1) = tr([) # 0. Multiplying both sides of () by A™~! from the right, taking
trace of both sides, and then dividing by tr(A™ 1) # 0 from the right, we conclude
that fo = 0. Hence (A*! + fi_1A*2 + ...+ fi)A = 0. This together with the fact
that f is the minimal polynomial of A implies that A is not invertible. Therefore,
there exists e; € D" such that Ae; = 0. It is obvious that after a similarity we can

write
a=(0%
0 A

for some A € M,_(D) and X € M, ,_1(D). Plainly it follows from the hypothesis
and the above matrix representation that

tr(§AIS) =0,



113

for all 7 € N with 7 > m and for all invertible matrices Se M,_1(D). Now it follows
from the induction hypothesis that A is nilpotent, hence so is A, finishing the proof.
a

Remark. The trace of a nilpotent matrix on a division ring is not necessarily zero.
To see this, let H denote the division ring of real quaternions. Let A € M,(H) be the

matrix defined by X
1 i\ (0 k 1 i
il 00 j 1)

Plainly A% = 0. It is just a matter of a straightforward calculation to see that

AL -i-i —1+k).
2\ —1—-k —i+j

4

Thus, tr(A) = —i.

The following theorem is crucial in the proof of our main theorem below.

Theorem 4.2.7. Let D be a division Ting with ch(D) = 0 or > n with n > 1,
T € M,(D), and 8 a semigroup in M,(D). If

tr(S~'8S) = {tr(S~'TS)},

for all invertible matrices S € M,(D), then § is reductble.

Proof. Let $ be a semigroup in M, (D) satisfying the above condition. Iftr(S~'TS) =
0 for all invertible matrices S € M,(D), then it follows from Lemma 4.2.6 that S is a
semigroup of nilpotent matrices which would be triangularizable, hence reducible, by
Levitzki’s Theorem. So we may assume that cg := tr(Sg T Sp) # 0 for some invertible
matrix Sy € M,(D) . Now we recognize two cases.

(2) {S5'SS0, Sg1S'Sp} is linearly dependent for all S, S’ € §.

Pick S €8, it follows that for every S’ € 8 we have S;'5'Sy = dS; 'S S, for some
d € D. Taking trace of both sides yields tr(Sy1S’So) = dtr(Sy'SSo). Hence co = deco
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implying d = 1. Therefore we have 8§ = {S} and this in turn implies S> = S for § is
a semigroup. It is now plain that 8 is reducible.

(b) {S5'5S0,S5"S'So} is linearly independent for some S, S’ € 8.

Define A := Algp(8) where F is the center of D. Suppose that A = ¢;S1 + ... +
cxSi € A wherekeN,¢; € F, S; €S (j=1,...,k) is given. Set cs := tr(S™ITS).
Since tr(S~18S) = {cs}, it is easily scen that tr(S™'A7S) = cs(cy + ... +cx) forall
j € N and for all invertible matrices S € M,(D). So if ¢, +...+cx = 0, it follows from
Lemma 4.2.6 that A is nilpotent. In particular 0 # S’ — S € A would be nilpotent.
Now the trace condition on $ easily implies that the set of A =¢S5} + ... +aS € A
with ¢; + ... + ¢ = 0 in A is indeed a nonzero semigroup ideal of A consisting of
nilpotents. Therefore by Levitzki’s Theorem and Lemma 4.1.1 reducibility of A, and
hence that of S, follows. O

4.3 Main Results

Let D be a division ring, and F the center of D. For a semigroup 8 in M,(D),
let Algr(8) denote the F-algebra generated by §, i.e.,

k
Algp(8) = {d_a:Si:keN,o; € F, S; € 8}.

i=l

If m € N, we use 8™ to denote the semigroup ideal of 8 consisting of words in 8 of
“apparent length” m, i.e.,

8§™ = {SL...Sm :5;€8,i=1, ..., m}.

Recall that a semigroup ideal J of S is called an absorbing semigroup ideal of § if
there exists m € N such that 8™ C J. Plainly 8™ is an absorbing semigroup ideal
of 8 for each m € N. We use GL,(D) to denote the group of invertible matrices in

M, (D). The following result can be considered as an analogue of Theorem 2.3.1 over
division rings.
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Theorem 4.3.1. Let D be a division ring with ch(D) =0 or > n, F' the center of D,

S an irreducible semigroup in M,(D), and J an absorbing semigroup ideal of S. Then

{A e Algp(SU {I}) : te(T"'JAIT) = {0} for all T € GL,(D)} = {0}.

Proof. First we note that since J is an absorbing semigroup ideal of S, there exists
m € N such that 8™ C J. Denote the left hand side of the asserted identity by J;.
To show that J; = {0}, we use contradiction. Suppose that J, # {0}. Indeed J, is an
ideal of the F-algebra, hence semigroup, Alg(SU{I}). To see this, note that due to
linearity of the trace functional and the fact that J is a semigroup ideal of § we can
write

tr(T S, BAS:T) = 0; tr(T~'S;ABS,T) =0,

for a given B € Algp(SU{[}), A € J, and for all §,,5> € J, and T € GL.(D).
That is BA,AB € J, for all B € Alge(S8 U {[}), A € J,, ie, J, is an ideal of
Algp(8 U {I}). So irreducibility of J; follows from that of Algp(S U {I}) in light
of Lemma 4.1.1 (note that irreducibility of Algz(8 U {I}) follows from that of §).
Now we note that if A € J; N Algg(8), then A is nilpotent. To see this, since
A € J,NAlgp(8) and trace is linear, it follows that tr(T-'A™AA*+™=IT) =0, for all
T € GL,(D), and k € N (note that A**™~! is in the F-algebra generated by §™ CJ
for all k& € N). In other words tr(T ' A**®"T) =0 forall T € GL,(D),and k€ N. It
follows from Lemma 4.2.6 that A is nilpotent. Now it is easily seen that J; N Algx(8)
is indeed an ideal of Algr(S U {[}). On the other hand, J, N Algg(8) consists of
nilpotent matrices. Therefore it follows from Levitzki’s Theorem (Corollary 4.2.3 or
see Theorem 35 of [K1], page 135) and Lemma 4.1.1 that J; N Algp(8) = {0}. Now
define the subsemigroup g of J; as follows

J =Tn (I —Algg(8))-

We have J # 0 for J; # 0. Plainly irreducibility of J follows from that of J, and the
fact that J, N Algp(8) = {0}. Next we show that J is a singleton. Suppose otherwise.
Then there are I — A, ] —B &€ J such that B—A#0. Since  —A, I-BeJC,
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it follows that B — A = (I — A) — (I — B) € J;. On the other hand, we have
B — A € Algp(8) hence, 0 # B — A € J; N Algg(8), contradicting the fact that
7, N Algp(8) = {0}. Thus § = {J} where J = I — A € J, and A € Alg(8). By
showing that J, equivalently J, is reducible we obtain a contradiction, finishing the
proof. Since J =1 — A € J; and A € Algp(8), it follows from linearity of the trace
functional that tr(T—'A™([ — A)A**™~IT) = 0 for all T € GL,(D), and k € N.
Thus tr(T'A¥2"T) = to(T-LAF+2m-1T) for all T € GL.(D), and k € N. Note
that {A'};>om is a semigroup ideal of the semigroup {A*}ien. On the other hand, we
have tr(T—LA4*+2™T) = tr(T~*A>"T) for all T € GL,(D), and k € N. Hence the
semigroup {A%}i>a is reducible by Theorem 4.2.7. Now it follows from Lemma 4.1.1
that reducibility of {A*};>om implies that of {A%}:en and hence that of § = {I — A},
a contradiction. |

Remark. It is worth mentioning that the conclusion of the preceding theorem does
not imply irreducibility of the semigroup 8. For instance, the conclusion holds for the
diagonal semigroup 8 := {diag(d,...,dn) : d; € F, i=1,.., n} where F is the center
of D.

Let D be a division ring. We say trace is permutable on a collection F C M, (D)
if forallm €N, all T € GL.(D), all A,,...,A, € F, and all permutations ¢ on m
letters, we have

tr(T~ Aoy AaemyT) = te(T ™ AL A T)

The following theorem is an extension of a result due to Radjavi to matrices over
division rings (see [R2]).

Theorem 4.3.2. Let D be a division ring with ch(D) =0 or > n wheren €N, F C

M,(D) an irreducible family on which trace is permutable. Then F is commautative.

Proof. We use contradiction. Suppose that F is not commutative. Hence there are
A, B € F with AB — BA # 0. Now let S be the semigroup generated by F. Note
that F is reducible iff § is. Also note that 0 # AB — BA € Algp(S) where F is the
center of D and, by permutability of trace on F, we have tr(T~'C1(AB —BA)C.T) =
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0 for all C;,C> € 8, and T € GL,(D). That is 0 # AB — BA € Algg(S) and
tr(T-'S(AB — BA)ST) = 0 for all T € GL,(D). Therefore, Theorem 4.3.1 (with
J = 8) implies that 8, and hence F, is reducible, a contradiction. O
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