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Abstract

We study variations of the pursuit and evasion game Cops and Robber [23, 25| in
which one or both of the opposing sides play with constraints.

Both the cops and the robber traditionally play with perfect information. We
consider the game when the cops play with only partial information. This partial
information is provided first via selected edges of a graph and then via selected ver-
tices. When the partial information includes the robber’s direction in addition to his
position, we are able to bound the amount of information required by a cop to win
on a copwin graph. When the partial information includes only the robber’s position,
we give bounds on the amount of information required by a cop to win on a tree.

We take steps toward the characterization of graphs with copnumber 2. We con-
sider tandem-win graphs in an attempt to generalize the notion of a copwin graph.
We present a recognition theorem for tandem-win graphs, and a characterization of
triangle-free tandem-win graphs.

We also consider the game when the cops are restricted to moving on assigned
subgraphs. We bound the copnumbers of powers of graphs under a variety of prod-
ucts, and show that in many cases, our results are asymptotically exact. Finally we
translate several problems into games where the movements of both the cops and the

robber are restricted, and the cop side is reduced to a single cop.
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Chapter 1

Pursuit and Evasion Games

1.1 Introduction

In this thesis, the pursuit and evasion game Cops and Robber is considered. When
the game was first introduced, the opposing sides, the cops and the robber, were free
to move among all of the vertices of the graph as the cops attempted to apprehend
the robber. In addition, both sides played with perfect information and thus were
always aware of the position of the opponent. Several variations of the game will be
introduced in which one or both of the opposing sides play with constraints.

In this first chapter, we look at the historical development of the Cops and Robber
game, as well as some strategies that prove useful in the remainder of the thesis. We
also introduce the related game, searching which will be considered as a variation of
Cops and Robber where the cops take on the role of the searchers.

The motivation for introducing the searching game is that the cops in this game
play with no information which is in sharp contrast to the Cops and Robber game.
In the second chapter, we propose several variations of Cops and Robber in which
the cops play with partial information. The robber continues to play with perfect
information. In the first variation, the partial information is provided by sensing
devices called photo radar which are placed on edges of the graph. Photo radar

provide the cops with information regarding the robber’s position, as well as the

1



(3]

direction in which he is moving. In the second variation, the partial information is
provided by video cameras which are placed on vertices of the graph. Like photo radar,
video cameras provide the cops with information regarding the robber’s position and
the direction in which he is moving. However video cameras are more powerful than
photo radar. In the third variation, the partial information is provided by alarms.
Like video cameras, alarms are placed on vertices of the graph, and provide the
cops with information regarding the robber’s position. They do not, however give
any indication of the direction in which the robber is moving. Finally in the fourth
variation, the partial information is provided by alarms placed on edges of the graph.
Again the alarms provide the cops with information regarding the robber’s position,
but do give any indication of the direction in which the robber is moving.

In the third chapter, the cops are restricted to moving on assigned subgraphs. If
each such subgraph is a copwin graph and also a retract, then the number of subgraphs
needed to cover the vertices of the graph on which the game is being played bounds
the copnumber of this graph. In particular, we consider covering the vertices of a
graph with isometric paths, complete graphs and finally, special copwin graphs. The
graphs considered in this chapter are graph products.

The cops’ movements are again restricted in the fourth chapter. The cops are
required to move in tandems, meaning that the cops are partnered and the cops in
every pair, or tandem, must be located on adjacent vertices after every move. If the
cop side is composed of just one tandem and these cops can win on a particular graph,
then the graph has copnumber at most 2. OQuterplanar graphs are also considered in
this chapter as another step toward the characterization of copnumber 2 graphs.

The final chapter presents problems for further research, and translates several
problems into games where the movements of both the robber and the cops are
restricted, and the cop side is reduced to a single cop.

All graphs considered are finite and simple unless otherwise noted. If two distinct
vertices, z and y of a graph G are joined by an edge, the vertices are said to be

adjacent. This is denoted z ~ y. If z is either adjacent or equal to y, then we



write £ =~ y. Otherwise, z and y are said to be non-adjacent. This is denoted
r 1 y. A walkin G is a sequence of vertices {vg, vy, ..., v} such that v; ~ v, for
i=0,1,...,k—1. A path is a walk with no repeated vertex. A path with n vertices
is denoted P, and has length n — 1. A cycle is a set of vertices {vg, vy, ..., v} such
that v; ~ vy for i =0,1,...,k — 1 and v ~ vx. A cycle with n vertices is denoted
Cr. A complete graph is a graph in which every pair of vertices forms an edge. A
complete graph with n vertices is denoted K. For other terms see [29)].

All results included in the thesis and not referenced are those of the author.

1.2 Cops and Robber

1.2.1 Rules of the Game

This is a standard introduction as can be found in [7]. The game of Cops and
Robber is a pursuit game played on a reflexive graph G; that is, a graph with loops
at every vertex. This game was introduced by Nowakowski and Winkler [23] and
independently, by Quilliot [25]. The game is played by two opposing sides; the cop
side is composed of a set of £ > 0 cops and the robber side is composed of a single
robber. Both sides play with perfect information; that is, each side is aware of the
position of the other at each stage of the game. The rules require that the cops begin
the game by each choosing a vertex to occupy. These vertices do not have to be
distinct. The robber must then also choose a vertex to occupy. The opponents move
alternately where a move is to slide along an edge. The loops are a technical device
which allows any subset of the cops and the robber to pass and remain stationary
during a turn. The cops win if at least one of them occupies the same vertex as
the robber after a finite number of moves. The robber wins if this situation can be
avoided forever. We note that in this game, unlike searching [24] discussed in the
next section, the players are always assumed to be located on vertices.

Suppose the game is played on a loopless graph. The passive game allows players

on both sides to pass during a turn. In the active game, the robber and a nonempty



subset of the cops must move during their respective turns. It has been shown by
Neufeld [17] that if k& cops have a winning strategy on a graph G in the passive game,
then the number of cops, k&’ needed in the active game must satisfy ¥’ < k < k&’ + 1.

When all graphs considered are reflexive graphs, the passive and active versions
are equivalent. Throughout the thesis, we assume that the passive game is being

played on simple graphs.

1.2.2 Characterization of Copwin Graphs

When the game was originally proposed, it was played with a single cop and a robber.
Any graph could be characterized as either copwin or robber-win depending on the

outcome of the game. Copwin graphs were completely characterized in [23] and [25].

Example. Each member of the set {T; : T; is a finite tree} is copwin. To see this,
consider the vertex occupied by the cop at any stage. The robber is unable to move
past the cop because there is just a single path joining any two vertices. Hence the
tree is partitioned into two parts by the cop, and the robber is restricted to moving
within one of those parts. As the cop moves toward the robber, that part of the graph
that is inaccessible to the robber strictly increases as the robber’s portion becomes

smaller. Hence after a finite number of moves, the robber is apprehended.

Example. Let C be the family of cycles of length greater than three. Each member
of this family is robber-win since after his move, the robber can always stay at least

two vertices away from the cop.

Definition 1.2.1 Let G and H be reflexive graphs. A mapping f : V(G) — V(H) is
said to be edge preserving (or a homomorphism) if it preserves adjacencies; that
is, if z,y € V(G) and = ~ y, then f(z) = f(y).

Definition 1.2.2 Let G be a reflezive graph and let H be a (labelled) induced subgraph
of G. It is said that H is a retract of G if there is an edge preserving map f from
G to H such that the restriction of f to H is the identity map on H.



The style of argument used in the proof of the theorem that follows is used many

times and so is reproduced here.

Theorem 1.2.1 (Nowakowski and Winkler [23]) Any retract H of a copwin

graph G is also a copwin graph.

Proof. Let G be a copwin graph and let H be a retract of G. Further let f be a
retraction map from G to H. Since G is copwin, the cop has a winning strategy on
G. This strategy can be modified and used on the subgraph H. The cop simply plays
the image under f of his winning strategy on G. Using this strategy, the cop captures
the image of the robber on H. Since the robber is actually playing on H and f is the
identity map on H, the robber’s image coincides with his actual position. Hence the

robber is apprehended on H and therefore, H is a copwin graph. Q

Notice that it is not necessarily true that an induced subgraph H of a copwin
graph G is copwin. To see this, consider the graphs G and H shown in Figure 1.1.
The graph G is copwin. The cop begins on the central vertex and is able to win after
the robber’s first move. However the graph H is robber-win since after his move, the

robber can always remain two vertices away from the cop.

7 1)

G H

Figure 1.1: The induced subgraph H of the graph G is robber-win even though G is
copwin.

Definition 1.2.3 Let G be a graph and let w € V(G). The neighborhood of v,
denoted N(v), is the set of vertices adjacent to v in G. The closed neighborhood of
v, denoted N[v], is defined as N(v) U {v}.

Definition 1.2.4 A vertez d of a graph G is said to dominate another vertez v if

d is adjacent to each of the vertices in the closed neighborhood of v.



Suppose a given graph G is copwin. To determine the properties that characterize
such a graph, it is useful to consider the last move made by the robber before he is
apprehended. Let the position of the robber before this last move be denoted v. There
are three options open to the robber. He can choose to pass and remain on vertex v,
he can move onto the vertex occupied by the cop, or he can move to a vertex adjacent
to the cop’s position. Since all of these options must lead to the immediate capture
of the robber, it must be true that the vertex u occupied by the cop is adjacent to
v and also to every vertex that is adjacent to v; that is, u dominates v. The vertex
v will be referred to as a corner since the robber has no means of escape once he is
forced to move onto this vertex.

Clearly a graph without a corner cannot be copwin. Suppose a graph G has a
corner. The robber will only move onto the corner if he is forced to do so. This is
because any robber-win strategy that uses v can be modified to use u. Hence the
question becomes whether or not the cop can force the robber onto the corner. This
can be determined by removing the corner and determining if the resulting graph
is copwin. Intuitively, the successive removal of corners from a copwin graph will
result in a single vertex. This is the idea used by Nowakowski and Winkler [23] to
characterize copwin graphs.

Again, approaches similar to the one taken in the proof of the next theorem are
used with tandem-win graphs in Chapter 4, and so it is useful to reproduce the

argument here. Tandem-win graphs use a variation on the notion of corner.

Theorem 1.2.2 (Nowakowski and Winkler [23]) Let G be a graph and let ¢ be
a corner of G. Let G' =G\ {c}. Then G is copwin if and only if G' is copwin.

Proof. Let G be a graph and let c be a corner of G. Let G’ = G \ {c}. Further let d
be a vertex that dominates the corner c. Now G’ is a retract of G with a retraction
map f defined as follows: f(c) =d and Vv € V(G'), f(v) = v. Suppose G is copwin.
By Theorem 1.2.1, G’ is copwin.

Conversely suppose G’ is copwin, and thus the cop has a winning strategy on G'.

Since the game is actually being played on G, the cop’s winning strategy on G’ can be



thought of as catching the image of the robber. Now suppose this image is caught on
vertex u. If u # d, then the robber’s image on G’ corresponds to his actual position
on G as f is the identity map on G’. Hence the robber is apprehended. Otherwise, the
robber’s image is apprehended on vertex d. Since it is known that f(c) = f(d) = d,
the robber is on vertex c or vertex d in the graph G. If he is on d, his actual position
corresponds to his image and he is caught. If he is on ¢ then he will be caught on
the cop’s next move. This is because the cop is on vertex d and it is known that d

dominates c. O

We proceed with some needed definitions.

Definition 1.2.5 Let G be a graph and let v € V(G). Suppose there ezists a vertez
u € V(G) such that N[v] C N[u]. Then v is said to be irreducible. The vertez v is

also known as a corner or pitfall.

Definition 1.2.6 A graph G is said to be dismantlable if there is an ordering
{vi,v2, ..., .} of the vertices of G such that for each i < n, v; is irreducible in the

subgraph induced by {v;, Vit1,---,Un}-

We now give the the main theorem in this section which is due to Nowakowski
and Winkler [23].

A finite graph is copwin if and only if it is dismantlable.

The ordering of the vertices of the graph G referred to in Definition 1.2.6 is known

as a copwin ordering.

Example. This example refers to Figure 1.2. The circled vertices represent corners
at each of the stages. Also, at each stage it does not matter in which order the corners

are removed. The original graph is copwin.

There are copwin graphs that are not finite, so Nowakowski and Winkler [23] ex-

tended their characterization to obtain a complete characterization of copwin graphs.
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Figure 1.2: An illustration of dismantling. The original graph is copwin.

Define for each ordinal a a binary relation <, on the set V(G) of an arbitrary
graph G. Let = < y if and only if z =y, and for each @ > 0 set z <, v if and only
if for all u € N(z), there exists a v € N(y) such that u <, v for some g < a. Finally
let o' be the least ordinal such that <, =<.,; and define < to be <.

G is a copwin graph if and only if the relation < described above is trivial;

that is, x <y for every z,y € V(G).

1.2.3 Strategy for a Copwin Graph

Suppose {z1,z3,...,z,} is a copwin ordering of the vertices of a graph G. We know
that the cop must have a winning strategy on G. But this strategy has not been
made explicit. The goal of this section is to describe a strategy that can be used by
the cop to win, and to prove that this strategy is effective in capturing the robber.



Copwin Strategy (Clarke and Nowakowski (7, 9]) Let {z1,s,...,z,} be a
copwin ordering of the vertices of a graph G. Define the induced subgraphs G; =
Gi—1 \ {zi—1} where Gy = G, and let f; : G; = G;4, be the retraction map from G; to
Gi+1 which maps z; onto a vertex that dominates z; in G;. Further if the robber is
on vertex z, define Fi(z) = fi_j0 fipo---0 foo fi(z) so that F;(z) can be considered
as the robber’s image or shadow on G;. The robber is always thought to be playing
on the graph G. However the cop initially moves on the subgraph G,, beginning on
vertex z,, the vertex on which the cop’s position coincides with the robber’s image
under the mapping fn._1 0 fa—20---0 fo o fi(z). Now suppose the cop is occupying
the robber’s image in the subgraph G; under the mapping f;_j 0 fi_a0---0 foao fi(z).
The cop then moves onto the image of the robber in G;_;.

After at most n moves, the robber is apprehended, and this is proven in the next

theorem.

Theorem 1.2.3 (Clarke and Nowakowski [9]) Let G be a copwin graph with
|V(G)| =n. Playing the Copwin Strategy, a cop will capture the robber on G after at

most n moves.

Proof. First note that for all 4, f; is an edge preserving map. Hence when the robber
moves from z to y it follows that for all j, Fj(z) = Fj(y) or Fj(z) ~ Fj(y). Also
note that since the retraction maps are one-point retractions then for any i, Fi(z)
and Fiy;(z) are either on the same vertex or are on adjacent vertices.

We prove the result by induction and consider the situation after the cop has
moved. The cop begins on vertex z,, the vertex on which the cop’s position coincides
with the robber’s image under the mapping f,_; o fra 0 ---0 fy o fi(z); that is,
the cop begins on the same vertex as F,(z) and so the cop can pass. Suppose for
some ¢ < n the cop has captured F;(y), where y is the robber’s position on G, and
it is the robber’s turn to move. Suppose he moves to vertex z. We need to show
that Fi(y) ~ F;_{(2) for then the cop can move to immediately capture the image
in G;_;. There are two cases. If Fi(y) = Fi—1(y) then F;_;(2) ~ F;(y). Otherwise
Fi(y) ~ Fi_1(y)- But then F;_,(y) is the corner that is removed from G;_; to obtain
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Gi and so N{F;_i(y)] C N[F;(y)] and therefore Fi(y) ~ F;_;(z). Thus in all cases,
the robber’s image can be caught in one move in the larger graph.
Since there are only a finite number n of graphs G;, the robber’s image will coincide

with his actual position after at most n moves. m

It has been shown that if the cop is playing in the subgraph G;, and is occupying
the robber’s image under the mapping f;—) o fi—20---0 fo o fi, then the cop is able
to move onto the robber’s image in G;_; under f; 20 fi_z0---0 foo f. If the cop is
playing in the subgraph G;, the robber can never move to a vertex in this subgraph
without being apprehended by the cop; that is, the robber cannot get ‘behind’ the
cop. This is the reason that in [9], the Copwin Strategy is known as a no-backtrack
strategy.

Theorem 1.2.4 (Clarke and Nowakowski [7]) Suppose the cop is playing the
Copwin Strategy in the subgraph G;, and is occupying the robber’s image under the
mapping f;—10 fi_o0---0 fao fi. The robber can never move to a verter of G; without

the cop immediately landing on the same vertez.

Proof. Suppose the cop is playing in the subgraph G;, and is occupying the robber’s
image under the mapping f;—) o fi_o 0 ---0 fa o fi. The cop is able to move so as
to always stay with the image of the robber on this subgraph. Now the mapping
fi—10 fi—go0---0 foo f is the identity on G;. Hence if the robber moves to a vertex of

G;, his image will correspond to his actual position and he will be apprehended. O

1.2.4 A Variety

Now that copwin graphs have been characterized, a property of such graphs will be
explored. This is a foretaste of Chapter 3.

Definition 1.2.7 The strong product of a set of graphs {G; : ¢ = 1,2,...,k} is
the graph RE_ | G; whose vertex set is the Cartesian product of the sets {V(G;) : i =
1,2,...,k}, and there is an edge between @ = (a1,as,.--.,ax) and b = (by, by, ..., bx)

if and only if a; is adjacent or equal to b; for alli =1,2,...,k.
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Definition 1.2.8 A variety of graphs is a class of graphs which is closed under

finite products and retracts.

The technique used in the proof of the next theorem is useful in Chapter 4 when we
consider the strong product of a copwin graph and a tandem-win graph, and also the

strong product of two clique-win graphs, a generalization of tandem-win graphs.

Theorem 1.2.5 (Nowakowski and Winkler [23]) Let {G;:i=1,2,...,k} bea

finite collection of copwin graphs. The strong product of these graphs is also copwin.

Proof. Let {G; : i = 1,2,...,k} be a finite collection of copwin graphs. Let G =
&%, G; be the strong product of these graphs. We wish to show that G is copwin.
There is an edge-preserving projection of G onto each of the graphs G;. Hence
the cop and robber can be projected onto each of the original graphs and a game
can take place there. Consider one such projection onto the graph G;. Now G; is
copwin, and so the cop has a winning strategy and is able to apprehend the robber. In
terms of the larger graph G, the cop has apprehended the projection of the robber on
G:. The cop stays with this projection for the remainder of the game as he similarly
captures the other projections of the robber on the graphs G, ..., Gi-1,Git1, ..., Gk
Since the collection of graphs is finite, the robber will be apprehended on each of the
projections after a finite number of moves. At this time, the robber is apprehended
on G. It should be noted that on G the cop has played the composition of his winning
strategies on each of the graphs G;. m]

Example. The previous theorem tells us that the product of a finite collection
of copwin graphs is copwin. This example illustrates why the theorem cannot be
extended to infinite collections of copwin graphs.

Define a path P, = {0,1,2,...,n — 1}. Now P, is copwin. Consider the product
of an infinite collection of such paths ®2, P;. This graph is not copwin since the
vertices (0,0,0,...) and (0,1,2,...) are not connected by a finite path.
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The next theorem can be found in papers by Aigner and Fromme [1], and by
Nowakowski and Winkler [23]. It follows immediately from Theorem 1.2.1 and The-

orem 1.2.5.

The class of copwin graphs is a variety.

1.2.5 Bridged Graphs

Let G be a graph and let H be a subgraph of G. The graph H is said to be isometric
if the distance between any pair of vertices in H is the same as that in G. Clearly an
isometric subgraph of a graph G must be an induced subgraph. Isometric subgraphs
will be considered in detail in Chapter 3.

Definition 1.2.9 A graph G is said to be bridged if all isometric cycles of G have
length 3.

Example. See Figure 1.3 for examples of these graphs. The graph H is an isometric
subgraph of G but not of I. The graph J is bridged.

H [ G J

Figure 1.3: The graph H is an isometric subgraph of G but not of I.

Retracts are necessarily isometric since walks are mapped to walks but note that
in Figure 1.1, H is an isometric subgraph of G but not a retract.

In effect, Definition 1.2.9 says that if C is any cycle with length greater than three
in a bridged graph G, then there is a ‘shortcut’ between a pair of vertices on the
cycle.

Anstee and Farber [2] published a paper concerning bridged graphs and copwin
graphs. The paper begins by proving that every nontrivial bridged graph contains a

corner, and goes on to prove the next theorem.
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Theorem 1.2.6 (Anstee and Farber [2]) Let G be a bridged graph. There exists
a vertex u € V(G) such that G\ {u} is bridged.

Proof. Let G be a bridged graph. Choose a pair of vertices u,v € V(G) such that
Nfu} € N[v]. Let P be a shortest path in G that contains u but in which u is not a
leaf. Now u can be replaced by v in this path. Hence G\ {u} is an isometric subgraph
of G. It is noted that a cycle C is isometric in G\ {u} if and only if it is isometric in
G. Therefore G\ {u} is also a bridged graph. O

In the proof of the theorem, the vertex u was taken to be a corner. Hence the
theorem actually tells us that the removal of a corner from a bridged graph results in
another bridged graph.

Let us review the information given by several theorems. First, it is known that
every bridged graph contains a corner, and that its removal results in another bridged
graph. It is also known that a copwin graph is one in which the successive removal
of corners results in a single vertex. Hence we are able to conclude, as Anstee and

Farber [2] did, that every bridged graph is copwin. This result follows.
Let G be a bridged graph. Then G is copwin.

An algorithmic proof of this theorem has been given by Chepoi ([5]. He has shown
that every ordering of the vertices of a bridged graph produced by a breadth first
search is a copwin ordering as defined by Nowakowski and Winkler [23].

The relationship between generalizations of both bridged graphs and copwin graphs

is considered in Chapter 4.

1.2.6 Cops and Robber with & Cops

It is evident that there are many graphs which are not copwin. A natural question
to pose when considering such a graph G is how many cops are needed to apprehend
the robber.
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Definition 1.2.10 Let G be a graph. The minimum number of cops needed to ap-

prehend a robber on G is known as the copnumber of G and is denoted ¢(G).

It is clear that for a finite graph this number exists since a cop on every vertex would
suffice.

Shortly after the introduction of the game by Nowakowski and Winkler, Aigner
and Fromme [1] introduced the notion of copnumber, along with several results im-
portant to further study.

Aigner and Fromme [1] were able to prove that there exists an n-regular graph
without 3- or 4-cycles for every natural number n. Using this result, they showed

that there are graphs which require an arbitrary number of cops as stated below.

Let G be a graph with minimum degree 6(G) > n which has no 3- or
4-cycles. Then ¢(G) > n.

The most interesting result presented here involves planar graphs. The previous
theorem shows that there are graphs which require an arbitrary number of cops to
apprehend a robber. The next theorem addresses an opposing question. It is desirable
to identify a class of graphs for which a bound can be placed on the copnumber. It is
known that a 3-cycle or a 4-cycle is contained in every planar graph whose minimum
degree is greater than or equal to four. This relation led Aigner and Fromme [1] to
prove the following result.

Let G be a planar graph. Then ¢(G) < 3.

Example. This example refers to Figure 1.4. The graph G shown has minimum
degree §(G) = 3. The smallest cycle contained in G is of length 5. Hence ¢(G) > 3.
Since G is a planar graph, ¢(G) < 3 and hence ¢(G) = 3.

Copnumbers of graphs have also been considered by Berarducci and Intrigila [3]

using retracts. The first result is an easy extension of Theorem 1.2.1.
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Figure 1.4: An illustration of theorems due to Aigner and Fromme [1].

Theorem 1.2.7 (Berarducci and Intrigila [3]) Let G be a graph and let H be a
retract of G. Then c(H) < c¢(G).

Proof. Let H be a retract of the graph G, and let f be a retraction map from G onto
H. Now ¢(G) cops have a winning strategy on G. Through the map f, the cops are

able to translate this winning strategy onto H. Hence the copnumber of H is at most
c(G). m]

Berarducci and Intrigila pursued the idea used in the previous theorem, and proved

the next result.

Theorem 1.2.8 (Berarducci and Intrigila [3]) Let G be a graph and let H be a
retract of G. Suppose c(H) cops are playing on H. After a finite number of moves,

the robber will be immediately apprehended if he moves onto H.

Theorem 3.2.1 proven in Section 3.2 is a special case of this result, and Theorem 3.2.1

is useful in motivating Chapter 3.

1.3 Searching

Again what follows is a standard introduction as can be found in [7]. A pursuit
and evasion game known as searching was introduced by T. D. Parsons [24]. This

game can be thought of as a modification of Cops and Robber in which the cops
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have no information about the robber’s position, both the cops and the robber move
continuously and the robber moves infinitely fast. In keeping with the remainder of
the thesis, we will think of this game in terms of the robber. To differentiate this
infinitely fast robber from the robber we have been considering up to now, this robber
will be referred to as an f-robber. We note that the f-robber can be located on edges
of the graph. This is because the original idea of the game was to search for people
in caverns.

The game is played on a finite, connected graph G that may be assumed to be
embedded in R®. Thus the vertices of G are represented by distinct points, and the
edges of G intersect only at vertices of G.

Given such a graph G, the main objective arising out of the searching game is
to determine the minimum number of searchers required to apprehend the f-robber.
This number will be referred to as the search number of G and is denoted s(G).
Suppose s(G) = k. The k searchers have an efficient strategy or way of searching the
graph for the f-robber. Define searcher i’s strategy as the path he follows on the graph
G. It will be useful to think of this strategy as a continuous function f; : [0,00) —» G
where f;(t) is the position of the ith searcher at time t. The set {f; : 1 < i < k}
is the collective strategy of the k£ cops. Similarly, define the f-robber’s position at
time ¢ as e(t). Clearly the search is over when f;(t*) = e(t*) for some i € {1,2,...,k}
and some t* € [0,00). Here the search number can be thought of as the minimum
cardinality of all such collective strategies.

We begin with an intuitive and useful result due to Parsons [24] that bounds the

search number of a subgraph in terms of the search number of the larger graph.

Let G be a graph and let H be a connected subgraph of G. Then s(H) <
s(G).

Recall from Section 1.2.2 that a similar relationship does not hold for copnumbers.
It is straightforward to obtain an upper bound for the required number of searchers
of any graph. Suppose the graph G, has n vertices. Then n searchers can position

themselves on the vertices of G,,, one searcher to a vertex. One additional searcher
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is needed to search the edges of G,. Hence s(G,) < n + 1. It is often possible to do
much better than that which is suggested by this particular upper bound as shown
in the next example.

Example: Consider the graph, G,7 shown in Figure 1.5.

Figure 1.5: The graph G;;.

Clearly two searchers are sufficient to search this graph. One searcher remains sta-
tionary on the root (indicated by a double circle) while the second searches each of the
branches of the tree. The stationary searcher prevents the f-robber from moving into

a previously searched area. The upper bound obtained previously gives s(G,7) < 18.

Although particular searching strategies are not considered in depth here, this
example can help provide insight into the kinds of strategies that are needed by the
searchers. The example indicates that the search number of a graph depends upon the
searchers being able to prevent the f-robber from moving into an area that has already
been searched. A similar notion arises as a consequence of the Copwin Strategy. See
Theorem 1.2.4. These ideas prove useful in Chapter 2.

For a simple graph G = (V, E) with n vertices let f: V — {1,...,n} be a one-to-

one function on V—a linear layout—and let
S;=|[{v:v eV, f(v) <1, and 3 an edge (v,u) such that f(u) > i}|

for 1 <7 < n. For a given G = (V, E), with [V| =n, and given f € F, where F is
the set of all possible linear layouts on V, the vertex separation number of a graph
is vs(G) = minfer max;<icn Si(G, f). Ellis, Sudborough, and Turner [11] bound the

search number of a graph in terms of the vertex separation number.
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Let G be a graph with search number s(G) and vertez separation number
vs$(G). Then s(G) <vs(G) + 1.

This result also places a bound on the copnumber of a graph G. This is because the
games of Cops and Robber and searching differ in the amount of information available
to the cops or searchers. Surely cops with information concerning the robber’s position
will be able to apprehend the robber at least as efficiently as those with no information,

and therefore ¢(G) < s(G). Hence vs(G)+1 is also an upper bound for the copnumber
of G.



Chapter 2

Cops with only Partial Information

In the game of Cops and Robber, the cops play with perfect information, and in the
game of searching, the cops (searchers) play with no information. In this chapter, we
propose four variations of the Cops and Robber game in which the cops play with
partial information. The robber continues to play with perfect information.

In the first variation, the cops have partial information provided by sensing devices
called photo radar. Photo radar units are located on selected edges of a graph. If
the robber moves along an edge with a photo radar unit, the unit alerts the cops to
the robber’s position as well as the direction in which he is moving. One metaphor
here is for the edges to be thought to represent roads, with the cops and the robber
traveling in cars.

In the second variation, the cops get partial information from video cameras.
Video cameras are located on selected vertices of a graph. If the robber moves onto a
vertex with a video camera, the camera provides the cops with the robber’s position
as well as his direction when he leaves the vertex.

In the third variation, the partial information is provided to the cops through
alarms located on selected vertices of a graph. If the robber moves onto a vertex with
an alarm, his position is known to the cops. Unlike photo radar and video cameras,
alarms do not give the cops an indication of the robber’s direction when he leaves

a vertex with an alarm. Video cameras and alarms can be thought to be located in
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buildings, with the vertices representing particular rooms.

A fourth variation has the partial information being provided to the cops through
alarms located on selected edges of a graph. If the robber moves along an edge with
an alarm, the cops are aware of the movement of the robber but they do not know
the direction in which he is moving. In this variation, the vertices can be thought to
represent rooms in a building, and the edges the doors between rooms. If the robber
moves along an edge with an alarm, the cops are aware that he has gone through
the corresponding door, but they do not know which of the adjoining rooms he has
entered and which he has exited. This problem is considered briefly at the end of the

chapter, but is left largely as an open question.

2.1 Photo Radar

In [7] and (8], the photo radar version of the Cops and Robber game is introduced.
The cops have partial information provided by sensing devices called photo radar.
Suppose the game is being played on a graph G. Photo radar units are placed on the
edges of G. These units alert the cops if the robber moves along an edge equipped
with a photo radar unit. The units also indicate the direction in which the robber
is moving. The minimum number of photo radar units required by a single cop to
guarantee the capture of the robber on G will be referred to as the photo radar
number of G, and will be denoted pr(G). In general, one can ask for the least
number of photo radar units, pr.(G) needed if there are k cops.

It would appear that all but one of the edges incident with any vertex v of a
copwin graph G require photo radar for a single cop to win. It will be shown that this
is not always the case. Note however that the subgraphs of G without photo radar
must have search number 1.

Lemma 2.1.1 (Clarke and Nowakowski [8]) Let T} be the tree shown in Fig-
ure 2.1. A single cop playing without photo radar cannot guarantee the capture of a

robber on Ti.
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c

Figure 2.1: The tree T;.

Proof. The tree T}, given in Figure 2.1, has three branches. Once the cop has searched
down a branch and returned to the root, he has a choice of taking one of two branches.
In the four moves that it takes to search this branch and return to the root the robber
has the time to move between the other two branches. The cop is again faced with
deciding which of two branches to search. Thus there is no guaranteed win by the

cop. 0

Note that a single cop playing without video cameras or alternately, without
alarms cannot guarantee the capture of a robber on T7.
In Sections 2.2 and 2.3, theorems similar to Theorem 2.1.1 are proven in like

fashion.

Theorem 2.1.1 (Clarke and Nowakowski [8]) For all finite, positive integers n,
there ezists a graph G such that pr(G) > n.

Proof. Consider a tree similar to T} shown in Figure 2.1 with n + 3 branches rather
than 3. No matter how n photo radar units are placed there is still a subgraph with
three branches and no photo radar units. The robber restricts himself to playing on
this subgraph and by Lemma 2.1.1 there is no guaranteed win by the cop. a

Consider a tree T with n vertices. Now, pr(T) < n —1 since the photo radar units
can be placed one to an edge. If the robber doesn’t move then visiting all the vertices
ensures a win by the cop. If the robber moves, the game is equivalent to Cop and
Robber since the cop will always know the location of the robber. This bound can

be improved.
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Let G be a graph. An edge is free if it has no photo radar and a path P of G is
said to be a freepath if every edge of P is free. Analogous concepts for video cameras
and alarms are defined in Sections 2.2, 2.3 and 2.4.

Let T be a tree. Let T, be the tree T rooted at vertex a. An a-branch of T, is
a path of T with a as one end vertex. We define k(T,) as the minimum number of
edges having photo radar such that the free edges form freepaths and each maximal
freepath is on an a-branch. Let T = T\ {{ € V(T) : lis a leaf} and set kr =
min{k(T;) : a € V(T")}. (See Figures 2.2 and 2.3, and the accompanying example.)

Theorem 2.1.2 (Clarke and Nowakowski [8]) Let T be a finite tree. Then
pr(T) < kr.

Proof. Let T be a tree and let a be a vertex for which k(T!) = kr. Draw a
planar representation of T' with a as the root vertex at the top and all edges directed
downward. Also since every vertex is incident with at most two edges of a freepath
in 7", we can assume that any edge of a freepath of 7" emanating from a vertex is
the leftmost edge. We can also place any leaves so as to be the next edges (in a
counterclockwise direction) incident with the same vertex as the free edge. We refer
to a freepath together with adjacent leaves as a free area.

There are two phases to the strategy. Firstly, suppose the robber never moves
along an edge with a photo radar unit. The cop does a depth first search of 7" except
when he comes to a vertex v, he visits any leaves adjacent to v. The robber cannot
move to v at this stage without being caught on the cop’s next move. The cop always
enters at one end of a freepath (never in the middle) and exits at the bottom without
leaving the freepath, except for leaves. The robber can never move past the cop, thus
once a free area has been searched by the cop, he is assured that the only way a
robber could be on that free area is if he has used an edge with a photo radar unit.
Thus if the robber stays on the free area then he will be caught in this phase. If he
does move off then he will be detected by a photo radar unit and the cop will always
know the free area in which the robber is located.
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The second phase starts when the robber is detected by a photo radar unit. The
cop moves up the tree until he is on a vertex which lies above the free area on which the
robber is currently located. Assuming that the robber is not caught in this maneuver,
the cop then starts down the a-branch that contains the robber until he enters the
same free area as the robber. (Note that the robber can move to a different free area
but this move will be detected by the photo radar units and the cop will always move
so as to be above the robber.) By moving down the freepath and visiting adjacent
leaves, the cop will either catch the robber or force him to leave the freepath moving
down the tree and below the cop. The robber will eventually be caught on a leaf if

not sooner. (]

Example. Consider the graph T shown in Figure 2.2. If there is only one photo
radar unit and it is not on the dashed edge then there will be a subtree isomorphic
to T so one cop will not suffice. If the unit is on the dashed edge then the cop can
force the robber to move across this edge. So the cop knows in which portion of T
the robber is located. However, the cop still has a choice of two branches to search.
In the four moves it takes to search one branch, the robber has time to move to the
other side of T3 along the edge with a photo radar unit. This can continue indefinitely
with the result that the robber is not caught. So pr(T3) > 1.

a
b

Figure 2.2: The graph T5.
Note: k(Ty) = 2, and k(T?) = 3 as shown in Figure 2.3, and therefore kr = 2; so
indeed pr(T3) =2.

The strategy used in the proof of Theorem 2.1.2 is used again in Sections 2.2, 2.3

and 2.4 to prove similar results concerning video cameras and alarms.
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Figure 2.3: The edges with photo radar units are indicated by dashed lines.

We wish to extend this strategy so that it can be used on a copwin graph. This
is the subject of Theorem 2.1.3. However, first recall the characterization of copwin
graphs given in Chapter 1.

Consider a finite copwin graph G with copwin ordering {v;,vs,...,v,}. Define
the induced subgraphs Gy = G;\ {v;} where G, = G, and let f; : G; — G4, be the
retraction map from G; to G;.;. We note that f; is a one-point retraction. We define
Fi=fi10figo0---0 f.

Fix a copwin ordering of G, and construct a spanning tree S of G as follows. The
root of the spanning tree is the start vertex of the copwin ordering, and for vertices
zy, 22 € V(G), 122 € E(S) if and only if f;(z,) = z; or fj(z2) = z, for some j. We
say that z) = x5 if Fi(x2) = z, for some 7 and z, > z, if ; # z2. (See Figure 2.4.)

This spanning tree shall be referred to as a copwin spanning tree.
f 4
2 6 6_4_. 5 2 6
NN
N
1 4 ¢ 3 I 3 5
3

G S

4

Figure 2.4: A copwin ordering with corresponding copwin spanning tree S;.
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The problem with mimicing the proof of Theorem 2.1.2 here is that the robber
can move from one a-branch to another by using an edge not in the tree. The next
two lemmas allow us to deal with that problem when it arises in Theorem 2.1.3, and

again in Theorem 2.2.5.

Lemma 2.1.2 (Clarke and Nowakowski [8]) Let G be a copwin graph with copwin
spanning tree S,, and let A and B be two v-branches of S,. If there exists vertices

T € A andy € B, z >~ y then for all a = z there exists b = y such that a ~ b.

Proof. For every f;, a vertex and its image lie on the same v-branch of S,. Let j be the
least index such that Fj(z) = a, note that F;(y) isstill on B and so a = Fj(z) ~ F;(y),
proving the lemma. a

Let A and B be two distinct v-branches of a copwin spanning tree S,. Suppose
a € A and a is adjacent to some vertices of B. We take b € B to be the lowest vertex
(with respect to the < ordering of S,) in B that is adjacent to a and write a — b.

Under most circumstances, the cop will move from a to b.

Lemma 2.1.3 (Clarke and Nowakowski [8]) Let G be a copwin graph with copwin
spanning tree S,, and let A and B be two v-branches of S,. Leta,z € A and b,y € B

with x < a, z ~y and a — b, then eithery < b ory ~ a.

Proof. If y < b then we are finished. Suppose now y > b. Let @’ € A such that @’ ~ a
in S, and a’ < a. Let k be the greatest index such that Fy.(z) = a’; then Fr.4(z) = a.
If Fiy1(b) X y then Fi1(y) =y and so y = Fry1(y) ~ Frp1(z) = a, that is y ~ a.
If Fiy1(b) > y, then since Fyy1(a) = a,a ~ Fi(b) for all i = 1,2,...,k + 1; that is,
a ~y = F;(b) for some j < k+1. a

Corollary 2.1.1 (Clarke and Nowakowski [8]) Let G be a copwin graph with
copwin spanning tree S,. If both the cop and the robber are on a v-branch A with
the cop above the robber in the < ordering, and the robber moves to another v-branch
then the cop can move to the same v-branch still above or on the same vertezr as the

robber-.



26

Proof. Suppose that the cop is above the robber on the same v-branch. Lemma
2.1.2 shows that if the robber moves from one v-branch, A to another, B the cop can
also move to the same v-branch. Lemma 2.1.3 shows that the cop will either capture
the robber when moving from wv-branch to v-branch or stay above him on the new

v-branch. a

Hence we need only consider the robber moving from z to y with the cop on a
where a > z, b > y and a — b. Let G be a copwin graph, and let S = {S, :
Sy is a copwin spanning tree with root v}. We define K¢ = ming, {k(S,) : S, € §}.

Theorem 2.1.3 (Clarke and Nowakowski [8]) Let G be a finite copwin graph.
Then

pr(G) < |E(G)| - [(n — 1) — Kq]-

Proof. Let S, be a copwin spanning tree at which K¢ is attained. The cop begins on
the start vertex v. Draw the tree as in Theorem 2.1.2, however we do not worry about
the leaves. Notice that photo radar units are placed on all of the edges of G \ S,.

The cop traverses the tree in a depth first search so as to visit all vertices of G as
in the proof of Theorem 2.1.2. If the robber never moves off a freepath then he will
be caught during this phase. If the robber moves off a freepath, he will be detected
by a photo radar unit. The cop moves to the lowest vertex in S, which is above the
freepath containing the robber. (Since the robber can still move off this freepath, the
cop may end up at v.)

The cop descends the v-branch leading to the freepath containing the robber. If
the robber does not leave this path, he will be caught. If he does leave, then either he
descends down the tree and the cop continues his descent toward the robber, or the
robber moves to another v-branch and the cop, by Corollary 2.1.1, can always move
to the same v-branch. Lemma 2.1.3 shows that the robber can never get above the
cop so it remains to show that the robber cannot force repetitions of positions. Note
that Fi(z) = Fiy,(z) except for the vertex v; € G; \ Giyy.-

Let A;,7=1,2,...,n bedistinct v-branches of S,. Assume that the cop has moved
above the robber and the cop knows which freepath the robber is on. Consider the
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consecutive corresponding moves z,Zs,...,Z,+ and ¢;,Cs,...,Chy1 by the robber
and cop, respectively where ¢;,z; € A; fori =1,2,...,n, ¢uy1, Tns1 € Ay, and ¢ > z;
for all <. Also note that ¢; — ¢;4; and z; ~ 2441, © = 1,2,...,n. (See Figure 2.5.)
Since z; < ¢; then for all 7, there exists ¢} ~ ¢; with ¢} < ¢;. Let j; be the greatest
index such that Fj(z;) = c. Since ¢; — ¢;41, it follows that Fj,(z:y1) > ciy) since
Fjni(z:) = ¢i. Thus Fj41(zip1) = Fj(zi1) since f; is a one-point retraction on

branch A;. Consequently j; > ji41 so j, < ji- (Recall z, < ¢, by Lemma 2.1.2.)

1 2 n
Cl C2 . Cn
xl x2 xn

Figure 2.5: The consecutive moves.

Suppose c,1 = ¢ and T, X ¢|. Then Fj (zn41) X Fj,(z1) = ¢|. But then
Fj,+1(za) = ¢, by the definition of j,, Fj, +1(Zn+1) = Fj,(Tns1) = ¢ and Fj, (zpe1) ~
cn since Fj, +1(Tn+1) ~ Fj.+1(zn). This contradicts ¢, — c,q1-

The one remaining case is ¢; =X Zn41 =X cpt1- (If 2,41 = cuy1, the robber will
be caught on the next move by Lemma 2.1.3.) Since F} (z1) = ¢} it follows that
F;, (Tn41) = Tne1. But we have F; 1 (z,) = ¢, since F;, (z,) =, and F;, +1(Tns1) =
F;, (zn41) ~ F; +1(zn) = cn. This contradicts ¢, — cny-

So whenever the cop moves to a v-branch, he is on the same v-branch as the
robber, but he is strictly lower than his last position on the v-branch. Therefore since

the graph is finite, the robber is eventually caught. m|

A similar result is proven for video cameras in the next section. See Theorem 2.2.5.

However as shown in Section 2.3, a similar result does not hold for alarms.
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2.2 Video Cameras

Suppose again that the cops have only partial information, but that this information
comes from video cameras rather than photo radar. Video cameras are placed on the
vertices of G. If the robber moves onto a vertex v equipped with a video camera,
his position is known to the cops. In addition, the video cameras show the direction
taken by the robber when he moves off such a vertex; that is, the edge by which the
robber leaves vertex v is known to the cops. The minimum number of video cameras
required by a single cop to guarantee the capture of the robber on G will be referred
to as the video camera number of G, and will be denoted vc¢(G). In general, one
can ask for the least number of video cameras, vci(G) needed if there are k cops.
Video cameras are more powerful than photo radar since one video camera at a
vertex z could replace any photo radar emanating from that vertex. This observation
gives the following result since a cop needs at most perfect information to win on a

copwin graph.

Lemma 2.2.1 Let G be a copwin graph, let VC = {z € V(G)|z has a video camera},
and let PR = {e € E(G)|e has a photo radar unit }. Then

> deg@) + 3 1< |EG).

zevVC e€PR
Again note that each subgraph without video cameras must have search number 1.

We know from Lemma 2.1.1 that a cop playing with no information on the tree

T in Figure 2.1 cannot guarantee the capture of the robber. However a single video
camera placed on the root vertex a is enough to guarantee a win for the cop. To see
this suppose the cop begins on vertex ¢ and then proceeds to search each of the other
two branches. If the video camera does not capture footage of the robber, the cop
wins during this maneuver. Otherwise, the cop knows on which branch the robber is

located and will capture him in at most four moves. The next theorem follows easily.

Theorem 2.2.1 Let G be a star with at least three branches of length at least two.
Then ve(G) = 1.
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Proof. The cop places a video camera on the central vertex of the star. He then
proceeds to search down each of the branches and return to the root. If the video
camera does not capture footage of the robber, the cop wins during this maneuver.
Otherwise, the video camera captures footage of the robber and thus the cop knows

on which branch the robber is located. The robber will be apprehended in a finite
number of moves. a

Theorem 2.2.2 For all finite, positive integers n, there exists a graph G such that
ve(G) > n.

Proof. Consider the tree containing n + 1 copies of T} (shown in Figure 2.1) as
subtrees as shown in Figure 2.6. We note that there are n + 1 vertices corresponding
to the root a of T}. If a subtree has no camera, then the robber can restrict himself

to that subtree and win. Hence each subtree requires a camera. a

AR A

n+1 copies of T:

Figure 2.6: The vertices with video cameras are indicated.

Consider a copwin graph G with n vertices. Now vc(G) < n since the cameras
can be placed one to a vertex making the game equivalent to Cop and Robber. This
bound can be improved. We begin with a result for trees that follows directly from
Theorem 2.1.2, and then consider two results for general copwin graphs.

Let T be a tree, and T, the tree rooted at vertex a. Recall from Section 2.1 that
kr = min{k(T}) : a € V(T")} where k(T},) is the minimum number of edges having
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photo radar such that the free edges form freepaths and each maximal freepath is on
an a-branch, and TV =T \ {e € V(T) : a is a leaf}.

Theorem 2.2.3 Let T be a finite tree. Then ve(T) < kr.

Proof. Let T be a tree and let a be a vertex for which k(T.) = kr. Let zy € E(T)
with z < y be an edge of T with photo radar. This photo radar unit can be replaced
by a video camera on vertex y. The cop wins by following the strategy given in the

proof of Theorem 2.1.2. a

An independent set of a graph G is a set of pairwise nonadjacent vertices of
G. The independence number of G, denoted a(G) is the maximum size of an

independent set in G.
Theorem 2.2.4 Let G be a copwin graph. Then ve(G) < |V(G)| — a(G).

Proof. Let S be an independent set of G that realizes a(G). Video cameras are
placed on the vertices of G — S, a vertex cover of G. We will show that the cop has
a winning strategy.

If the robber moves entirely on vertices of G — S, the cop wins by following the
Copwin Strategy since the robber’s position is always known.

If the robber never moves onto a vertex of G — S, the cop wins by searching the
vertices of S. Since S is an independent set, the robber cannot move among the
vertices in S, and hence he cannot move onto vertices previously searched by the cop.

So suppose the robber uses vertices both in S and in G — S. Once the robber
moves onto a vertex in G — S, his position is known to the cop for the remainder of
the game. This is because when the robber moves from a vertex v in G—S to a vertex
in S, the video camera located on v indicates to the cop to which of the vertices in S
the robber has moved. We again note that the robber cannot move among vertices
in S, and so his next move must be to return to a vertex in G — S. Such a move will

be known to the cop since all vertices in G — S have video cameras. a
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Let G be a copwin graph. A path P of G is said to be a freepath if no vertex of
P has a video camera. Two freepaths P and Q are said to be independent freepaths
if for all z € V(P) and for all y € V(Q), z L y.

Let S, be a copwin spanning tree of G rooted at vertex v, the start vertex of
a copwin ordering of G, and let {P;}, be a set of independent freepaths of S,.
Define ik(S,) = max(p}{| UL, P;| : P; are independent freepaths}, and IKg =

maxs, {2k(S,) : Sy is a copwin spanning tree with root v}.
Theorem 2.2.5 Let G be a finite copwin graph. Then ve(G) < |V(G)| - [Kg.

Proof. Let S, be a copwin spanning tree at which I K¢ is attained. The cop begins
on the start vertex v. Draw the tree as in the proof of Theorem 2.1.3. The proof here
follows the proof of Theorem 2.1.3.

The cop traverses the tree in a depth first search so as to visit all vertices of G
without video cameras and force the robber to move to avoid capture. Once the
robber moves off a freepath, he will be detected by a video camera. The cop moves
to the lowest vertex in S, which is above the freepath containing the robber. (Since
the robber can still move off this freepath, the cop may end up at v.)

The cop descends the v-branch leading to the freepath containing the robber. If
the robber does not leave this path, he will be caught. If he does leave, then either he
descends down the tree and the cop continues his descent toward the robber, or the
robber moves to another v-branch and the cop, by Corollary 2.1.1, can always move
to the same v-branch. Lemma 2.1.3 shows that the robber can never get above the
cop. Note that because the cop knows which edge the robber has taken, the proof of

Theorem 2.1.3 shows that the robber cannot force repetitions of positions. a

Example. Consider the graph P; ® P, as shown in Figure 2.7. A copwin spanning
tree of Py ® P; is indicated by bold lines in the figure. Now a(P; & P;) = 4 and
hence Theorem 2.2.4 gives vce(Py ® P;) < 12. As indicated by the circled vertices in
the Figure, IK(P; ® P,;) > 6, and hence vc(Py; ® P;) < 10.
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Figure 2.7: Two independent freepaths of P; ® P, are indicated by circled vertices.
2.3 Alarms on Vertices

Suppose again that the cops have only partial information, but that this information
comes from alarms rather than photo radar or video cameras. Alarms are placed
on the vertices of G. These units alert the cops if the robber moves onto a vertex
equipped with an alarm. However, the alarms do not indicate the direction in which
the robber is moving. Since there is no directional signal, the strategies presented
here will often require alarms on adjacent vertices as a method of indicating direction.
The minimum number of alarms required by a single cop to guarantee the capture of
the robber on G will be referred to as the alarm number of G, and will be denoted
A(G). In general, one can ask for the least number of alarms, Ax(G) needed if there
are k cops. Again, for one cop, each unalarmed subgraph S cannot have s(S) > 1,
but even this does not guarantee a win for the cop. For example, consider the graph
T3 shown in Figure 2.2. If an alarm is placed on vertex ¢, then for each unalarmed
subgraph S, s(S) = 1. However there is no guaranteed win by the cop.

We know from Lemma 2.1.1 that a cop playing with no information on the tree
Ti in Figure 2.1 cannot guarantee the capture of the robber. However a single alarm
placed on vertex b is enough to guarantee a win for the cop. (Note: an alarm placed
on vertex a is not to the cop’s benefit.) To see this, suppose the cop begins on vertex
c and then proceeds to search each of the other two branches. If the alarm does not
sound, the cop wins during this maneuver. If the alarm sounds, the robber is one
move away from vertex a, the cop is at most two moves from a and it is the cop’s

move. Hence the cop either captures the robber on a or else arrives at a before the
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robber, and the cop can proceed down the branch with the alarm on which the robber

is located.

Theorem 2.3.1 For all finite, positive integers n, there exists a graph G such that
A(G) >n.

Proof. Consider a tree similar to T; shown in Figure 2.1 with n + 3 branches rather
than 3. Even if the cop places an alarm on each of n branches (and not on the
root), there still remains a subgraph with three branches and no alarms. The robber
restricts himself to playing on this subgraph and there is no guaranteed win by the
cop. =]

Consider a copwin graph G with n vertices. Now A(G) < n since an alarm can
be placed on all but one of the vertices of G making the game equivalent to Cop and

Robber. This bound can be improved for trees.

Theorem 2.3.2 Let G be a star with k branches of length I; > 4, i = 1,2,... k.
Then A(G) =k —1.

Proof. Suppose A(G) < k — 1. If there is a subtree isomorphic to T} with either
no alarms or one alarm placed on the root, then the robber can restrict himself to
playing on that subtree and win. Otherwise there is a rooted subtree isomorphic to

1, shown in Figure 2.8, with at most one alarm.

d
c
b

a

Figure 2.8: The tree T7.

If the alarm is on a or b, there is a subtree isomorphic to 7} with no alarms and the

robber can win. So suppose the alarm is on c or d. The cop can force the robber to
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sound the alarm to avoid capture. However the cop may require up to four moves
to reach the root while the robber requires at most two moves. Thus once the cop
reaches the root, he has a choice of two branches to search. In the eight moves it
takes to search one branch, the robber has time to move between the other two.

We must show that the cop can win with k£ — 1 alarms. The cop places an alarm
on the root and on each of k£ — 2 adjacent vertices so that each of k — 2 branches
has an alarm in addition to the one on the root. (See Figure 2.9 when k = 8 and
I = 4.) These two consecutive alarms provide a directional signal to the cop. The
cop begins on a leaf of a branch with a second alarm, then proceeds to search each
of the other branches with a second alarm, and finally searches each of the remaining
two branches. If none of the alarms sound, the robber is captured during this phase

of the search. Otherwise an alarm sounds. There are two possibilities.

Figure 2.9: The case k = 8, [ = 4. The alarms are represented by the circled vertices.

Suppose first that the cop is located on one of the two branches without a second
alarm. The alarm that has sounded must be the alarm on the root since the cop has
already searched all of the branches with a second alarm. Once the robber moves
again, the cop either knows on which branch he is located, or the cop can deduce that
the robber is on one of the two branches without a second alarm. In this case, the
cop moves up the branch he is on and then searches down the other branch without
a second alarm.

Alternately, suppose the cop is located on a branch with a second alarm. After
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two moves by the robber, the cop knows the branch on which he is located or can
deduce that the robber is on one of the two branches without a second alarm. The
cop proceeds to search one such branch and then the other. If no alarms sound, the
robber is caught in this portion of the search. Otherwise an alarm sounds and we

return to the first case. O

We consider a result similar to Theorem 2.1.2, and then give two theorems that
improve upon this result.

Let T be a tree. A path P of T is said to be a freepath if no vertex of P has an
alarm. A set of freepaths {P;}}_, is a packing of freepaths if for all a,b,c € V(T)
witha~b~c, ifa € P; and b,c ¢ P; then b and c are alarmed. We would like to be
able to mimic Theorems 2.1.3 and 2.2.5 here, and conclude that the alarm number
of a copwin graph G is at most the cardinality of a packing of freepaths of a copwin
spanning tree S, of G. However this is not the case. Let us examine the problem
that arises here. Suppose the spanning tree S, is rooted at vertex v, and the cop is
above the robber on a particular v-branch. The robber can choose to move from one
v-branch to another during his turn. Although the cop can always move to the same
v-branch, remaining above the robber as in the proofs of Lemmas 2.1.2 and 2.1.3, the
cop is unable to prevent the robber from forcing repetitions of positions when moving
to a freepath.

As an example, consider the copwin graph shown in Figure 2.10. The diagonal lines
between two branches indicate that every vertex of one of the branches is adjacent to
each of the vertices of the other. The freepaths are indicated by dashed lines. The
first and last branches (1 and 6) are connected in the same way as branches 2 and
3, 3 and 4, and 5 and 6. Every time the robber moves onto a branch that has a
freepath, the cop must move to the topmost unalarmed vertex of that freepath if he
is to ensure that he remains above the robber. The game can continue indefinitely in
this way. If the cop tries to vary this strategy, the robber moves from branch 1 to 2
to 3 to 4 to 5 to 6, and every time he moves to 2 and 5, it may be assumed that he

has moved to the bigger subpath formed when the freepath is bisected by the cop.
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Figure 2.10: A copwin graph which illustrates how the robber is able to force repeti-
tions of positions.

If the robber is prevented from moving between any two v-branches of G, then
a result similar to Theorem 2.1.2 holds. Let T be a tree, and T, the tree rooted at
vertex a. Define pk(T,) as the maximum cardinality of a packing of freepaths on T},.
Let 7" =T\ {a: a is a leaf} and set pkr = max{pk(T.) : a € V(T)}. It can be shown
as in the proof of Theorem 2.1.2 that A(T) < |V(T")| — pkr.

For full, complete binary trees, a packing of freepaths requires that for every vertex
on a freepath, one child along with its children are alarmed. So essentially three of
every four vertices are alarmed, disregarding the leaves which remain unalarmed.
Thus if T is a binary tree then the ratio of alarms to vertices is

AT) _ (z:;‘_o 2~ 2n) 3

V@)~ )

This result can be improved.

Let T be a tree. A vertex is free if it has no alarm. Again let 7, be the tree rooted
at vertex a. A vertex v # a is potentially free if it has distance at most four from
any of its descendents that are leaves. We define {(T},) as the minimum number of
vertices having alarms such that exactly one potentially free child of each vertex is
not alarmed, and all other vertices are alarmed. Let 7" =T\ {l € V(T) : | is a leaf}
and set Iy = min{{(T}) : a € V(T")}.

Theorem 2.3.3 Let T be a finite tree. Then A(T) <lr.
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Proof. Let T be a tree and let a be a vertex for which [(T!) = lr. Draw a planar
representation of T with a as the root vertex at the top and all edges directed down-
ward. Also since every vertex has at most one child that is free (and not a leaf), we
can assume that any free vertex of a parent is the leftmost vertex.

There are two phases to the strategy. The cop begins on the rightmost leaf and
does a depth first search of 7" except that he travels from right to left and when
he comes to a stem v, he visits any leaves adjacent to v after searching all other
subtrees rooted at v. At any stage in this phase, the robber cannot move onto a
vertex previously searched by the cop without sounding an alarm. Hence if no alarm
sounds, the robber will be caught in this phase.

The second phase begins when the robber sounds an alarm. If the robber is below
the cop on the same branch, the cop moves toward him. So we assume that the
robber must be located on a branch to the left of the cop, or above the cop on the
same branch. The cop moves up the tree until he is located above the robber on the
same branch. We must consider the cop’s strategy for choosing a direction when he
comes to a parent, v from a child, u. There are three potentially troublesome cases.

(1) There are two unalarmed vertices in N(v) but the locations of other alarms
that have sounded indicate the direction in which the cop should move, and he does
sO.

(2) There are two unalarmed vertices but the robber hasn’t had enough moves to
reach this juncture since an alarm last sounded. For example, suppose in Figure 2.11
the cop is located on C and the robber sounds the alarm on R. The cop moves up
the tree to v which takes two moves. Assuming no further alarms have sounded (and
thus we have returned to a previous case), the cop must choose whether to move onto
vy or vp. But the robber could not have reached v and then v; in two moves, and so
the cop moves to vs.

(3) There are two unalarmed vertices, v, and v, but all vertices in the set N(v;)—v
have alarms. Hence the cop visits v;. If the robber is not caught there and no further

alarms have sounded, the cop returns to v and then moves to v,. If another alarm
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has sounded, the cop moves in the direction of that alarm.

Once the cop is above the robber on the same branch, the cop will know which
direction to choose at any juncture since all but one of the vertices representing
possible directions has an alarm. If one of these alarms has sounded, the cop moves to
that vertex. Otherwise he moves to the unalarmed vertex. The robber will eventually

be caught on a leaf if not sooner. O

Example. Consider the binary tree shown in Figure 2.11. Theorem 2.3.3 gives
A(T) < 16.

(¥

Y2 ) ® & ®)
ORX FOX FORROXJORFOR FOX XC)

Figure 2.11: The alarms are represented by the circled vertices.

Corollary 2.3.1 Let T, be a full, complete k-ary tree rooted at vertex a. If for all
leaves v, d(a,v) =n > 5, a constant, then the ratio of alarms to vertices on T, that

will guarantee a win for the cop is approzimately (k* — 2k + 1) /k>.

Proof. Using the strategy of Theorem 2.3.3, the number of vertices without alarms
is K™ + k"2 + k"3 + k"1 + k™5 since none of the k" leaves receive alarms, and 1/k
of the k"1 4+ k"2 + k™3 4 k"4 vertices at distances one through four from a leaf do

not receive alarms. So the number of alarmed vertices is
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AT) £ Y K — (K" + k"2 + k7% 4k 4 k)
=0
n-5
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= KPR -k +1) -1

Hence the ratio of alarms to vertices is given by

A(T,) < k*S(k® —kt4+1) -1

V(Ta)l — A=l
kK -2k + 1)
- kntt —1
kK =2k+1
¥ T

|

Example. Consider the binary tree shown in Figure 2.11. Theorem 2.3.1 gives an
approximate upper bound of 1/4 for A(G)/|V(G)|.

The bound given by Theorem 2.3.3 becomes increasingly inefficient as n becomes
larger. The condition that every vertex at distance at least 5 from the leaves be
alarmed is very strong, and can be relaxed for k-ary trees. We know that vertices at
distance 5 must be alarmed to guarantee a win for the cop by preventing the robber
from moving onto unalarmed vertices that have been previously searched by the cop.
But it is unnecessary to alarm all vertices above these.

Scheme. By alarming all vertices at distance d = 0(mod 5) from the leaves (with
the exception of the leaves which receive no alarms), and requiring that vertices at
distance d = i(mod 5),% # 1 from the leaves have exactly one unalarmed child (again
with the exception of vertices at distance 1 from the leaves whose children all remain

unalarmed), we obtain a tighter bound.
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Theorem 2.3.4 If G is a full, complete k-ary tree rooted at vertex a, then
kn—l(k—s(L%J-l) -1)

k-1
where n is such that for all leaves l, d(a,l) = n.

AG) <kt -

Proof. Let G be an k-ary tree rooted at vertex a such that for all leaves [, d(a,l) = n.
We alarm vertices as indicated in the scheme given in the preamble to the theorem and
show that the cop has a winning strategy. Thus all vertices at distance d = 0(mod 5)
from the leaves receive alarms (with the exception of the leaves), and vertices at
distance d = i(mod 5),% # 1 from the leaves have exactly one unalarmed child (again
with the exception of vertices at distance 1 from the leaves).

There are two phases to the strategy. The cop begins on the rightmost leaf and
does a depth first search of G except that he travels from right to left. The robber
cannot move onto a vertex previously searched by the cop without sounding an alarm.
Hence if no alarm sounds, the robber will be caught in this phase.

The second phase begins when the robber sounds an alarm. Suppose the alarm
that has sounded is located on a branch to the left of the cop, below the cop on the
same branch, or above the cop on the same branch. If the alarm is below the cop
on the same branch, the cop moves toward it. Otherwise, the cop moves up the tree
until he is above the robber on the same branch. As in the proof of Theorem 2.3.3, we
must consider the cop’s strategy for choosing a direction when he comes to a parent,
v’ from a child, u’. There are three potentially troublesome cases.

(1) There are two unalarmed vertices but the locations of other alarms that have
sounded indicate the direction in which the cop should move, and he does so.

(2) There are two unalarmed vertices but the robber hasn’t had enough moves to
reach this juncture since an alarm last sounded. Hence the cop knows to which of
these unalarmed vertices he should move, and he does so.

(3) There are two unalarmed vertices, v; and v, but all vertices in the set N(v;)—v’
have alarms. Hence the cop visits v;. If the robber is not caught there and no further
alarms have sounded, the cop returns to v' and then moves to vo. If another alarm

has sounded, the cop moves in the direction of that alarm.
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Once the cop is above the robber on the same branch, the cop will know which
direction to choose at any juncture since all but one of the vertices representing
possible directions has an alarm. If one of these alarms has sounded, the cop moves to

that vertex. Otherwise he moves to the unalarmed vertex. The robber will eventually

()
’O
® 0‘0

.
VJ'C)
:

Figure 2.12: A portion of a binary tree. The alarms are represented by the circled
vertices.

be caught on a leaf if not sooner in this case.

Now suppose the alarm that has sounded is located on a branch to the right of
the cop; that is, the alarm is located on a vertex that has been previously searched by
the cop. See vertex v in Figure 2.12 when k& = 2 for example. The cop is located on
the bold portion of the tree, and we assume that no further alarms sound. Otherwise
the cop moves until he is above the robber on the same branch and then proceeds as
in the previous case. When the cop reaches the leftmost branch, he has two choices.
The robber could be located on a vertex previously unsearched by the cop (i.e. the
robber moved to w and then onto the bold portion of the tree) or he could be located
on one of at most four vertices that have been previously searched as indicated by the

boxed vertices in Figure 2.12 when k = 2. (Note that in this case there are only two
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boxed vertices. It is possible to have four since only every fifth level has all vertices
alarmed.) Assuming no further alarms sound, the cop continues his search except
that he doesn’t search any vertices on or below the nearest row in which all vertices
are alarmed. If the robber is not caught in this phase then the cop proceeds to search
the boxed vertices where the robber must be located. Note that if an alarm sounds,
we have again returned to a previous case. Hence the robber is apprehended after a
finite number of moves.
It only remains to be shown that the number of alarms used in this strategy is
kn—l(k—S(L%J—l) -1)
kS —1 ’

Ignoring leaves, the number of vertices with alarms if all but one child of a stem are

alarmed is &% » k*. But this doesn’t count % of the vertices that are also alarmed

kn— 1

in rows at distance d = 0(mod 5),d # 0 from the leaves, nor does it count the root
vertex. Thus we have 1+ ¢ ZL—E{-I k™~% additional alarmed vertices. Hence the total

number of alarmed vertices used in the strategy presented here is

f_ HR
< i, - n—5j
AG) £ 14— gk +k§k

lgl-1 .
.k 1
= =X (5)

j=

s—1
=)
et _ kn=l(k-SU5]-D — 1)
kS —1 ’

a

Corollary 2.3.2 If G is a full, complete k-ary tree rooted at vertex a, then the ratio
of alarms to vertices that will guarantee a win for the cop is approzimately

1 1 (k — 1)(k~531-1 — 1)
k k2 k7
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where n is such that for all leaves I, d(a,l) = n.

Proof. Using the strategy of Theorem 2.3.4, the ratio of alarms to vertices that will

guarantee a win for the cop is given by

AG) ket e

vVe)| ~ hrelL
(k=1 (k" — g8k 80EI-D — 1)
~ e+l
11 (k=1)(k5UE-D 1)
Tk k2 k7 :

a

Example. Consider the binary tree shown in Figure 2.11. Theorem 2.3.4 gives an
approximate upper bound of 1/4 as did Theorem 2.3.1. As n gets larger however, the
bound given by Theorem 2.3.4 becomes increasingly more efficient as compared with

the bound given by Theorem 2.3.1.

We would like to improve upon the bound given for the alarm number of an
arbitrary copwin graph. However a scheme very different from those used in the
proofs of Theorems 2.1.3 and 2.2.5 is needed because of the lack of a directional

signal given by the alarms.

2.4 Alarms on Edges

Suppose again that the cops have partial information provided by alarms. However
suppose now that the alarms are located on selected edges of a graph G. As before, the
alarms alert the cops if the robber moves along an edge equipped with an alarm, but
do not indicate the direction in which the robber is moving. The minimum number
of alarms on edges required by a single cop to guarantee the capture of the robber on
G will be referred to as the edge-alarm number of G, and will be denoted A*(G).



44

In general, one can ask for the least number of alarms, A}(G) needed if there are k
cops. Again for one cop, each unalarmed subgraph, S cannot have s(S) > 1.

Since photo radar are more powerful than alarms on edges, the proof of Theo-
rem 2.1.1 shows that for all finite, positive integers n, there exists a graph G such
that A*(G) > n. We will prove a result similar to Theorem 2.1.2.

Let T be a tree, and T, the tree rooted at vertex a. Recall that an a-branch of T, is
a path of T with a as one end vertex. A path P of T is said to be a freepath if no edge
of P has an alarm. Define k*(T,) as the minimum number of edges having alarms such
that the unalarmed edges form freepaths and each maximal freepath is on an a-branch.
Againlet " =T\ {l € V(T) : | is a leaf} and set k% = min{k*(T}) : a € V(T")}.

Theorem 2.4.1 Let T be a finite tree. Then A*(T) < k..

Proof. Let a be a vertex for which £*(T) = k%. Draw the tree T, as in the proof of
Theorem 2.1.2. As in the proof of Theorem 2.1.2, there are two phases to the cop’s
strategy. Firstly, suppose the robber never moves along an edge with an alarm. The
cop does a depth first search of 7" except when he comes to a vertex v, he visits any
leaves adjacent to v. The cop always enters at one end of a freepath and exits at the
bottom without leaving the freepath, except for leaves. This phase of the strategy
forces the robber to move to avoid capture.

Once the robber is detected by an alarm, the second phase of the cop’s strategy
begins. The cop moves up the tree until he is on a vertex which lies above the freepath
on which the robber is currently located. Assuming that the robber is not caught
in this maneuver, the cop then starts down the a-branch that contains the robber
until he enters the same freepath as the robber. (Note that the robber can move to
a different freepath but this move will be detected by the alarms and the cop will
always move so as to be above the robber.) By moving down the freepath and visiting
adjacent leaves, the cop will either catch the robber or force him to leave the freepath
moving down the tree and below the cop. The robber will eventually be caught on a
leaf if not sooner. a



Chapter 3

Cops Restricted to Subgraphs

3.1 Graph Products

A graph product is a binary operation such that the vertex set of the resulting
graph is the Cartesian product of the vertex sets of the factors, and the edges of the
resulting graph are determined only by the adjacency relations of the factors. We will
use ® to denote an arbitrary graph product.

Graph products with two factors can be represented by 3 x 3 matrices called edge
matrices as introduced by Imrich & Izbicki [16]. The rows and columns correspond
to the first and second factors respectively. The rows and columns each receive one
of three labels: E indicating adjacency of the vertices of the corresponding factor, N
indicating nonadjacency, and A indicating that the vertex is the same. The entries
of the matrix are also E, N, and A representing the adjacency relations between the
vertices of the product. It should be noted that if the relationship in both factors is

A the corresponding matrix entry is also A since the two vertices are the same.

E A N

g
|
b
l
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We can also consider complementary products since a graph can be defined in
terms of its non-edges. Let G be the complement of the graph G. Then the com-
pPlementary product ®° to the product ® is G ®° H = (G°® H®)".

We now define ten graph products in terms of their edge matrices. These products

are presented as complementary pairs.

E N N E FE FE
Categorical: G x H N A N |; CoCategorica: GXx*H | E A E
N N N E E N
N E N E FEF FE
Cartesian: Go H E A N|; Co-Cartesian: Go°H E A N
N N N E N FE
E E N E E FE
Strong: G & H E A N |; Disjunctionn GR°H | E A N
N N N E N N
E E N N E FE
Equivalence: G®@H | E A N | ; Symmetric Difference: GVH | E A N
N N E E N N

E E E
Lexicographic: GeH | E A N |; Co-Lexicographic: Ge°H | E
N N N

g
22 =
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Categorical Cartesian

Strong
Lexicographic Co-Lexicographic
N7 N
Disjunction Symmetric Difference Equivalence

Figure 3.1: The edges of the product of P; with itself.

Co-Cartesian

Co-Categorical

Figure 3.2: The non-edges of the product of P; with itself.
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These products can be ordered by inclusion; that is & < ® if E(G®H) C E(G®H)
for all graphs G and H. The suborder of the ten products we consider is shown in

Figure 3.3.

Co-Cartesian (] © Co-Categorical X°

Disjunction X ©

Lexicographic
Equivalence @

Co-Lexicographic

[
o Symmetric Difference \Y%

Categorical X

Cartesian [}

Figure 3.3: A partial order of products under inclusion of the edge sets.

The eccentricity of a vertex is the maximum of the distances to other vertices.
The diameter of a graph G, denoted diam(G), is the maximum of the eccentricities
of its vertices. Table 3.1 gives the diameter of the product of two arbitrary connected
graphs G and H under many of the products defined here and can be found in [21].

A dominating set in a graph G is a set S such that every vertex in G belongs
to S or is adjacent to a vertex in S. The minimum cardinality of a dominating set in
a graph G is the domination number of G and is denoted (G).

The equivalence and symmetric difference products have not been included in
Table 3.1 because the diameters were given incorrectly in [21]. Results needed for

these products follow. We begin with the equivalence product.

Theorem 3.1.1 Let G and H be connected graphs with ¥v(G) = 1 and v(H) = 1.
Then diam(G @ H) < 2.
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® diam(G ® H)

o = diam(G) + diam(H)

® | = max{diam(G),diam(H)}

x | 2> max{diam(G), diam(H)}

. <2 fG=2K,
diam(G) otherwise

R€ <2

x¢ <2

a¢ <2

Table 3.1: The diameters of the products of two arbitrary connected graphs.

Proof. Consider vertices a,c € V(G) and b,d € V(H). fa~cand b~dorifa L ¢
and b L d then (a,b) ~ (c,d) and so d((a,b), (c,d)) < 1.

Suppose @ =~ ¢ and b L d. Since y(H) = 1, diam(H) < 2 and so there exists
a vertex e € V(H) such that b ~ e ~ d. Hence (a,b) ~ (a,e) ~ (c,d) and so
d((a,b), (c,d)) < 2.

Similarly suppose @ L c and b > d. Since ¥(G) = 1, diam(G) < 2 and so there
exists a vertex f € V(G) such that a ~ f ~ c. Hence (a,b) ~ (f,d) ~ (c,d) and so
d((a, b), (¢,d)) < 2.

Since d((a,b),(c,d)) < 2 for all vertices a,c € V(G) and bd € V(H),
diam(G @ H) < 2. m]

Theorem 3.1.2 Let G and H be connected graphs with v(G) > 1 and v(H) > 1.
Then diam(G@ H) < 3.

Proof. Consider vertices a,c € V(G) and b,d € V(H). Ifa~cand b~dorifa L ¢
and b L d then (a,b) ~ (c,d) and so d((a,b), (c,d)) < 1.

Suppose a ~ c and b L d. If d(b,d) =2 in H then there exists a vertex e € V(H)
such that b ~ e ~ d. So (a,b) ~ (a,e) ~ (c,d) and so d((a,b), (c,d)) < 2.

If d(b,d) = 3 in H then there exist vertices e, f € V(H) such that b~ e~ f ~ d.
So (a,b) ~ (c,e) ~ (¢, f) ~ (c,d) and so d((a,b), (c,d)) < 3.
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So suppose d(b,d) = k > 3 in H. Then there exists an isometric path of length
k, {b,u1,va,...,uk—1,d} in H. If there exists a vertex v € V(G) such that a L v
and ¢ L v then (a,b) ~ (v,vrg]) ~ (c,d) and so d((a,b),(c,d)) < 2. Otherwise
since v(G) > 1, there exists a vertex u € V(G) such that u is adjacent to exactly
one of a and c¢. We assume a L u and ¢ ~ u. The other case is similar. So
(a,b) ~ (u,vk—1) ~ (c,d) and so d((a,b), (c,d)) < 2.

The case when a L ¢ and b ~ d is similar.

Since d((a,b),(c,d)) < 3 for all vertices a,c € V(G) and b,d € V(H),
diam(G @ H) <3. m|

Theorem 3.1.3 Let G and H be connected graphs with v(G) > 1 and v(H) = 1.
Then diam(G @ H) < diam(G).

Proof. Since @ > & in the partial order of products, £(G & H) C E(G® H) and
hence diam(G @ H) < diam(G ® H) = max{diam(G), diam(H)} = diam(G). m}

Note. This upper bound is achieved whenever H = K,,, m > 1. Consider P; ®K;.
Now diam(P; @ K3) = 4 = diam(Ps). See Figure 3.4.
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Figure 3.4: The upper bound given in Theorem 3.1.3 is achieved.
We now consider the symmetric difference of two connected graphs G and H. Note
that if |V(G)| =1, then diam(GVH) = diam(H) since GVH = H.

Theorem 3.1.4 Let G and H be connected graphs such that |V(G)| > 2 and |V (H)| >
2. Then diam(GVH) < 2.
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Proof. Consider vertices a,c € V(G) and b,d € V(H). If a ~ c and b L d, then
(a,b) ~ (c,d) by definition. Suppose a = ¢ and b ~ d. Then (a,b) ~ (a,d) = (c, d)
and so d((a, b), (¢, d)) < 2.

Suppose a = c and b L d. Since |V(G)| > 2 and G is connected, there exists
a vertex v € V(G) such that a ~ v. Then (a,b) ~ (v,d) =~ (a,d) = (¢,d) and so
d((a,b),(c,d)) < 2.

Finally suppose a 1 cand b L d. If d(a, c) = 2 then there exists a vertex e € V(G)
such that a ~ e ~ c. Hence (a,b) ~ (e,b) ~ (c,d) and so d((a,b),(c,d)) < 2. The
case when d(b,d) = 2 is similar.

If d(a,c) = k > 3 and d(b,d) = | > 3 then there exists an isometric path of
length k, {a,u,us,...,uk_1,c} in G and there exists an isometric path of length I,
{b,v1,v,...,u-1,d} in H. Hence (a,b) ~ (u1,v~) ~ (c,d) and so d((a,b), (c,d)) <
2

-~

Since d((a, b), (c,d)) < 2 for all vertices a,c € V(G) and b,d € V(H), diam(GVH)
<2 ]

We denote the nth power of a graph G under the product ® by Gg. We will now
give an upper bound for diam(G2) and hence for diam(G?%). This may be known
but is not common knowledge. We note that if all of the constituent graphs of a
categorical product are connected and at least one of them is not bipartite, then the
product is also connected. We begin with several lemmas.

Let G be a graph and let W = {vo,v1,...,%;,...,0j,...,un} be a walk of length
n in G. We say that there is a shortcut between vertices v; and v; if there exist
vertices ug,u1,...,um € V(G) such that {v;,uo,uy,...,uUm,v;} is a walk joining v;

andvjand m < j—7—1.

Lemma 3.1.1 Let G be a connected graph with diam(G) =d. Then each walk W of
G of length 2d + 1 has an even shortcut.

Proof. Let W = {ag, a1, ...,a2+1} be a walk of length 2d+1 in G. If for any indices
J» k with j # k, a; = ax, then there is a shortcut of length 0. So assume this does not
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occur.
Since d(ao, @a+1) < d, there is a shortcut, S from ag to agy, of length at most d.
If S is even, we are done. So assume S is odd. Then aqy; U S is an even shortcut

from ag to a4; of length less than d + 2. m|

Theorem 3.1.5 Let G be a connected graph such that x(G) > 3 and diam(G) = d.
Then diam(G%) < 2diam(G).

Proof. Let {(ao,bo),(a1,b1), ..., (a2d+1,b24+1)} be a path of length 2d + 1 between
vertices (ao,bo) and (agat1,baq+1) in G%. We will show that this path contains a
shorter path between (ag, bo) and (asa+1, b2a+1), and hence diam(G?%) < 2d.

Notice that W, = {ao,a,,...,a241} and Wo = {bo, b, ...,baas1} are walks of
length 2d + 1 in G. Lemma 3.1.1 tells us that these walks have even shortcuts.
Suppose W has shortcut {a;, ¢y, c2,. .., ¢k, a;} between a; and a;, and W, has short-
cut {bm,d1,do,...,d;,b,} between b,, and b, with | — k = 2p. So we have walks

Wi = {ao,a1,...,ai,c1,...,60,05,...,02a41} = {uo,uy,...,us} with s < 2d + 1,
and Wi = {bo,b1,...,bm,d1,...,d1,bn, ..., 02441} = {vo,v1,..., 0} with t < 2d +1
and t —s = 2p. Then {(ao,bo) = (uo,v0), (u1,v1),--., (Us, Vt—2p), (Us—1, Ve—2ps1),
(Us) Ve—2p+2), (Usm1s Vt—2p43)s (Us, Vem2pta); - - - s (Usm1, Vemt)y (Usy V) = (@odp1, boas1)} iS
a walk of length ¢t < 2d + 1 between vertices (ag, bo) and (asq+1,b2q+1) in G%. Hence
diam(G%) < 2diam(G). a

Corollary 3.1.1 Let G be a connected graph such that x(G) > 3 and diam(G) =d.
Then diam(G7%) < 2diam(G).

Proof. Let W = {wo, vy, ..., v2a41}, ¥ = (i1, Vi2, - - ., Vin) be a path of length 2d + 1
in G%. We will show that this path contains a shorter path between vy and weqy1,
and hence diam(G%) < 2diam(G).

Notice that for all j,7 = 1,2,...,n, W; = {ve;,v1j,...,Vaas1)j} is a walk of
length 2d +1 in G. Lemma 3.1.1 tells us that these n walks have even shortcuts,
S;,7 =1,2,...,n. So we have walks W} obtained from W; by incorporating these
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shortcuts. Let W] = {vo; = cjo, ¢ju1, - - -, Cjk; = V(aa1);} Where k;j =2d+1—|S;|+1 =
2(d+1) —|S;l.

Suppose [Sp| > |S;| for all j so that W, has the even shortcut of longest
length. We construct a walk W' = {uo,uy,...,ur.}, wi = (U1, %i2,...,uin) of
length k. < 2d + 1 as follows. The mth coordinates of the vertices u; are (in or-
der) ¢no,Cmi;-- -+ Cmk,,- For all | # m, the [th coordinates of the vertices u; are (in

order) Clo: Ci1s - - - 3 Cl(hy—1) Clhy s Cl(ky—1) s Clkys Clhy—=1)s » - - 3 Clky - a

We update Table 3.1 below.

® diam(G ® H)
o = diam(G) + diam(H)
® | = max{diam(G),diam(H)}
x | 2 max{diam(G), diam(H)}
< 2diam(G) if H = G
. <2 if G =K,
diam(G) otherwise
® <2 if both v(G),v(H) =1
<3 if both v(G),v(H) > 1
< max{diam(G),diam(H)} otherwise
v <2 if [V(G)| 2 2,|V(H)| 22
= diam(H) if [ V(G)| =1
= diam(G) if [V(H)|=1
= <2
x¢ <2
a¢ <2

Table 3.2: The diameters of the products of two arbitrary connected graphs (up-
dated).

3.2 Introduction

In [13], Fitzpatrick introduces a variation of Cops and Robber known as the precinct

version of the game. Each cop’s movements are restricted to an assigned “beat”
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or subgraph. If each subgraph is a copwin graph and a retract, then the minimum
number of cops needed to capture the robber on a graph G is bounded by the minimum
number of subgraphs needed to cover the vertices of G. A set of subgraphs is said to

cover G if every vertex of G lies in at least one subgraph of the set.

The following theorem is a special case of Theorem 1.2.8.

Theorem 3.2.1 Let {G;,i =1,2,...,k} be a set of copwin subgraphs of a graph G.
If UL \V(G:) = V(G) and each G; is a retract of G then c(G) < k.

Proof. For all 4, let f; : G — G; be a retraction map from G to the copwin subgraph
G:. Suppose a single cop C; is playing on G;. Using the Copwin Strategy, the cop
is able to capture the robber’s image under f; on G; in a finite number of moves.
Since f; is the identity map on G;, should the robber move onto G;, he would be
immediately apprehended. The result follows since the copwin subgraphs cover G

and thus the robber is on one of the subgraphs. a

If H is a retract of G then it follows that H is an isometric subgraph of G.
The converse holds only for some specific classes of graphs. Graphs which are re-
tracts whenever they are isometric subgraphs are said to be absolute retracts.

Nowakowski and Rival [22] showed that paths are absolute retracts.
If P is an isometric path of a graph G then P is a retract of G.

To see this, let P = {0,1,...k} be an isometric path and consider z € V(G) with
d(z,0) = j. The function f : G — P which maps z to 7 whenever j < k and to k&
otherwise is a retraction map from G to P.

Let z € V(G)- It is also true that the subgraph S of G induced by N(z] is a
retract of G. The retraction map f : G — S takes all vertices y € V(G) \ N(z) to
the central vertex z. In particular,

Cliques are absolute retracts.

Cliques are discussed in Section 3.4.
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3.3 Isometric Paths

Recall that an isometric path P of a graph G is a subgraph such that for all z,y €
V(P), dp(z,y) = dg(z,y). The length of an isometric path is the number of edges in
the path, and hence one less than the number of vertices in the path.

If each beat in the precinct game is an isometric path, then the minimum number
of cops needed to capture the robber on a graph G is at most the minimum number of
isometric paths needed to cover the vertices of G. The minimum number of isometric
paths required to cover the vertices of a graph G is the isometric path number of
G and will be denoted p(G).

Example. Any cycle C, can be covered by two isometric paths as shown in Figure
3.5 when n = 6. Hence p(C,) = 2.

’
/7

\-.

Figure 3.5: A graph Cs with isometric path number 2. The isometric paths are
indicated by solid lines. The dashed edges are those of Cs not included in either of
the isometric paths.

We would like to consider the isometric path number of G} as n gets large. Since

this parameter will likely go to infinity, we must consider a normalization. Define

... p(G3)
p(G,®) = lim VT

provided the limit exists. In subsequent sections, we are able to determine p(G, ®)
exactly in most cases, and so the desired limit clearly exists in these cases. In other
cases we show that p(Gg™) < vp(GR), v = |V(G)| and thus that the desired limit
exists. Finally when ® € {x,e, e}, it is not clear that the limit exists. Difficulties

with the lexicographic and co-lexicographic products are encountered in the next
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section as well as in Section 3.3.8. The categorical product is problematic since the
product of two connected graphs may not even be connected. Consider the categorical
product of two bipartite graphs, for example. However we conjecture that the limit,

and hence p(G, ®) exists for each of these three products.

Lemma 3.3.1 (Fitzpatrick [13]) Let G be any connected graph with vertez set
V(G). Then p(G) > l'dl'V(G)I =]

am(G)+1

Proof. The diameter of a graph G is simply the length of the longest isometric path

in G. Hence an isometric path in G has at most diam(G) + 1 vertices. a

Theorem 3.3.1 Let G be any connected graph with vertezx set V(G). Then
p(G,®) = W'

Proof. From Lemma 3.3.1, we have that p(G) > raTa{VH(%I)_:L] Hence

el v 1
fam(Gp)+1 lam(Gy)+1

> =

P(G.®) 2 —giany 2 V()] -~ dem(Ga) T 1

3.3.1 Fractional Approach

Introduction

This section serves as an introduction to fractional graph theory which attempts to
modify concepts from graph theory so that parameters may assume rational values
rather than just integer values, and thereby efficiency is increased.

As an example, let us consider the chromatic number of a graph G. A similar
example is given in [26]. An independent set of a graph G is a set of pairwise
nonadjacent vertices of G. A k-coloring of G is a partition of the vertex set of G
into k independent sets. If G has a k-coloring then G is said to be k-colorable. The
chromatic number, x(G) is the smallest k£ such that G is k-colorable.



o7

The notion of graph coloring can be applied to scheduling problems. Suppose
committee meetings must be scheduled for a variety of groups. Clearly any two groups
with a common member cannot meet at the same time. The objective is to minimize
the total time required for the meetings. A graph G can be drawn with a vertex
representing each group, and with an edge joining two vertices if the corresponding
groups have a common member. Thus groups corresponding to vertices that receive
the same color can meet at the same time, and so the chromatic number of G would
appear to be the solution to this scheduling problem.

However a coloring of G with x(G) colors is optimal only if the meeting times
cannot be broken into smaller intervals. Consider the graph C; with x(C7) = 3 as

shown in Figure 3.6.

5 4

Figure 3.6: A 3-coloring of C5.

If each meeting is scheduled for an hour, then the 7 committee meetings can be
scheduled in x(C7) = 3 hours as shown in Figure 3.7.

However if the committees are willing to meet for two one half hour periods rather
than a single one hour period, the schedule can be improved so that all 7 meetings
take place in a 2 1/2 hour period as shown in Figure 3.8.

A graph concept can be thought of as an integer program. The fractional form of
the concept can then be thought of as the linear program relaxation, or LP relaxation

of this integer program.
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committee

1 2 3 45 6 7
89 V1 74 7
9-10 i YA U
10-11 W
%,

Figure 3.7: A schedule for the 7 committee meetings in x(C7) = 3 hours.

committee
1 2 3 4 5§ 6 17
7 7,
9-10 %%

D

10-11 A

o /i

Figure 3.8: A schedule for the 7 committee meetings in 2.5 hours.
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An integer program is an optimization problem of the form
maximize c‘x subject to Ax < b.

Here b is a vector of length m, c a vector of length n, A an m x n matrix, and x
varies over vectors of length n with integer values. The LP relaxation of an integer
program allows the constraint that the entries of x be integers to be relaxed so that
the entries are simply nonnegative.

The real numbers resulting from the LP relaxation of an integer program rep-
resenting a graph concept are almost always rational. In the following section, we
assume rational solutions. Otherwise a rational solution arbitrarily close to the real

solution can be considered.

Return to Isometric Paths

We can refer to the problem of covering a graph G with isometric paths as the
0-1 integer programming problem since an isometric path P of G receives one of two
weights: 1 if P is included in the covering and 0 otherwise. In this section, we consider
the LP relaxation of the 0-1 problem. In this relaxation of the problem, P can receive
a weighting w whose value is a real number which lies in the interval [0, 1]. Thus for
all isometric paths P of G, we assign a weight w : P — R2°. This is known as a
fractional weighting of the isometric paths P of G. Just as we wish to minimize the
number of isometric paths included in a covering of G in the 0-1 problem, we now
wish to minimize the sum of the weights w subject to the restriction that for any
z € V(G), the sum of the weights of the paths to which z belongs is at least 1. That
is, if P is a set of isometric paths of G then we must find a weighting w : P — R2°

of these isometric paths such that

>_pep W(P) is minimized subject to the constraint that for all z € V(G),
2 pzevipy W(P) 2 1.

Such a weighting will be a feasible solution to the fractional problem. It should be

noted that such a weighting exists since a solution to the 0-1 problem is a solution to
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the LP relaxation. See Figure 3.12 for a fractional weighting of the isometric paths
of the graph G shown in Figure 3.9.

We can pose the fractional problem for a graph G in terms of the 0-1 problem for
a graph Ge K,,. Let @ = {Qj,j € J} be a set of isometric paths that cover G ¢ K,
such that no induced subpath of type {(z, a), (v, b), (z,c)} is used, where z,y € V(G),
a,b,c € V(K,), and = # y,a # c . See Figure 3.14 for an example of this type of
excluded path. The same problem regarding paths of length 2 will appear again in
Section 3.3.8. Define a projection map f : @ — P such that if f(Q) = P then
|Q| = |P| and we write Q | P. We define a weighting w : P — R2% of the isometric
paths P of G as follows:

wp) = Q@ =P
It follows that

1. if z € V(G) and a € V(¥,,) so that (z,a) € G @ K, then there exists Q, € Q
such that (z,a) € Q, (that is, every vertex in G e K,, belongs to an isometric
path), and

2. ifa,b € V(K,) and b # a, then for each z € V(G), there exist paths Q,,Q, € Q
such that Q, and @, are distinct (that is, there are distinct paths Q, and Q,
for all a # b).

Hence

_vHef@="r} 1 _ 1 \_
Yo o wP) =) >= l==(n)=1

PlzeV(P) zeP n n (z,a),aeV(Kn)

We wish to minimize ) pp w(P).

Consider first the fractional problem on G. Let w = {w;,7 € I} be a fractional
weighting of the isometric paths P = {P;,i € I} of G. Define F,, = Y, wi(F)
and ¢ = min, F,,. Finally given such a solution, let d be the lowest common
denominator of the weights w; of the isometric paths P; of G. For any integer k£ > 1,

consider now the problem of covering G e K with isometric paths. (Recall that paths
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of type {(z,a), (y,b), (z,c)} are not permitted.) This is a modified 0-1 problem. Let
Q = {Qj,7 € J} be the isometric paths of G e K, and define I,(G|Q) = ", w'(Q;)
where w'(Q;) = 1 if @; is included in the isometric path cover of Ge K and w'(Q;) =0
otherwise, and

I;: = min, {Ix(G|Q)} so that I is the minimum number of isometric paths
required to cover G o K. provided paths of type {(z, a), (,b), (z,c)} are
not permitted.

Notice that I, > p(G e Kj}.), the isometric path number of G e Ky, and that I, =
p(G e Ky) if no {(z,a), (y,b), (z,c)} paths exist.

Comment. It appears that graphs which are largely a clique are the problematic
graphs because they must use paths of length two to be efficient. (See Example * at

the end of this section.) A similar problem arises in Subsection 3.3.8.
Theorem 3.3.2 Let G be a graph. Thend - Fg = I,.

Proof. For fixed k and an isometric path cover, C of G e K, let Q = {Q;,j € J} be
the isometric paths of G ¢ K. with w'(Q;) = 1 if Q; is included in C and w' (Q;) =0
otherwise. Let P = {P;,7 € I} be the isometric paths of G. Given the weighting w’

of Q, define a weighting w of P as follows:

w(P) =7 3 w(Q)

Q;iP;

that is, P; is assigned a weight of £ of the number of paths Q; that project onto P;.

Zw(P)— =) W@y —-Ik(GIQ).

T QilP:
And so £I(G|Q) is a feasible solution to the fractional problem. Since F¢ is the

< &R and so Fo < L. Since this

Now

minimum of all fractional solutions, Fg

inequality holds for all k, Fg < ming %
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Consider now d - F, where F,, is a solution to the fractional problem. We will
show that this quantity d - F,, is a solution to the 0-1 problem of covering the graph
G e K, with isometric paths. For each isometric path P;, ¢ € I, take dw(P;) copies
of P, in G e K4, taking new uncovered vertices if there are any remaining in G e K4.
Let V(K4) = {1,2,...,d}. If P, = {z1,22,...,7;} then the next copy of P, in Ge K,
is {(zi,4z,)l = 1,2,...,d} where i, is the least numbered vertex such that (z;,iz,) is
not in a previously defined path. If no such vertex exists then take (z;, d).

We claim that every vertex of K, @ G is covered by a path. Consider z € V(G)
and the set {P;|lz € P;}. Now

> w(p) 21
zeP;
and so
4y w(p) 2 d;
zeP;
that is
> dw(P)2d
zEP;
and so any vertex (z,%), 7 =1,2,...,d is used at least once. Equivalently each path

P; uses dw(P;) new copies of z in G @ K4. Since Fg = miny, F,,, d - F¢ is a feasible
solution. Hence d - F¢ > I4(G) and so Fg > [“fiﬁ > %‘ > ming %
We have thus shown that Fg = mmk% and miny % = -’g. Hence F¢ = %‘ or

equivalently d - F¢ = I,. m}

Example. We wish to find F¢ where G is the graph shown in Figure 3.9.

Figure 3.9: The graph G.

Let us consider the graph G e K as shown in Figure 3.10.
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| —eo——9o o

Figure 3.10: The graph G e K,.

This graph can be covered with three isometric paths as shown in Figure 3.11. Notice
that for all z € V(G), there exists an isometric path Q, such that (z,a) € Q. and an
isometric path @, such that (z,b) € Q, and Q. # Q».

Figure 3.11: 0-1 problem for G ¢ K.

The weighting w defined in this section assigns weight 1/2 to three isometric paths

/N
112

of G as shown in Figure 3.12.

Figure 3.12: A fractional weighting of the isometric paths of G.

Hence Fe =3(3) = % and (G) =3 =2(2) =d- Fg, and so Fg = 3.

* Example. Consider the graph Cs;. As shown in Figure 3.13, C3 ¢ K, can be
covered by three isometric paths corresponding to a fractional solution for Cs of %
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Yet C3e K, can be covered by two isometric paths if paths of type {(z, a), (y,b), (z,¢)}
are permitted. See Figure 3.14.

Figure 3.14: An alternate covering of C3 ® K, with isometric paths.

3.3.2 Strong Product

Theorem 3.3.3 Let G be a graph. Then p(G, &) > m.
Proof. The result follows directly from Theorem 3.3.1 since diam(G™) = diam(G). O

Consider a graph G and suppose an isometric path cover of G includes m(G) disjoint
paths of length diam(G). Further suppose that k vertices of G are not covered by the
m(G) disjoint paths so that k = [V(G)| —m(G)(diam(G)+1). It should be noted that
the proof of Lemma 3.3.2 does not depend on the isometric paths of length diam(G)

being disjoint. However disjointness is necessary in the proof of the main theorem.
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Lemma 3.3.2 Let G be a connected graph with v vertices and an isometric path cover

that includes m(G) paths of length diam(G) and k singletons. Then p(G, 8) < %(:Gk—)

Proof. For ease of notation, we denote the nth power of a graph G under the strong
product by G™. Consider G™ as G & G*~!. Intuitively G™ is a copy of G with each
of its vertices replaced by a copy of G*~!. These copies of G*! will be denoted
z; - G* ! for z; € V(G),i = 1,2,...,v. Forz; ~ z; in G, if a and b € V(G™!),
then vertices (z;,a) and (z;,b) in z; - G*~! and z; - G*!, respectively are adjacent
whenever a >~ b. We denote the vertices of z; - G™! by i1, yia, . - -, Yin, and we let fi
be the isomorphism from z;-G™~! to zi.-G™~! defined by fu(vi;) = ¥rj 7 = 1,2,...,v.

We consider two types of isometric paths: those within z; - G®*~!, and those that
include vertices from more than one copy of G*~!. The former shall be called internal
paths, and the latter external paths.

We define a function f(n) recursively by describing a method of covering the
vertices of the graph G™ with f(n) disjoint isometric paths. These paths include only
singletons and paths of length diam(G). Clearly f(n) will serve as an upper bound
for p(G™).

By definition, m(G) paths of length diam(G) and k singletons can cover G. So
f() =m(G) +k.

Consider now G™, and suppose that G™*~! has been covered by f(n — 1) isometric
paths, where k"~! of these paths are singletons; that is, in G*~! there is a set of paths
{P;jls =1,2,..., f(n — 1)} which are disjoint and cover G*~!. For each ¢, z; - G*!
is covered by the paths {z; - P;|j = 1,2,..., f(n — 1)}. Note that f(n — 1) — k"'
of these paths are of length diam(G). This gives in total v(f(n — 1) — k™7!) internal
paths of length diam(G). In each copy of G®~1, there are k™! vertices remaining that
have not been covered. Let the set of these vertices be Z; = {z;,7 =1,2,..., k" 1}.
These vertices will be covered by external paths. For all 7 and for each z; € Z;, the
subgraph induced by {(z:, z;)[t = 1,2,...v} is isomorphic to G. Each of these k™!
copies of G can be covered by m(G) paths of length diam(G) and k singletons. So we
have k"~'m(G) external paths of length diam(G) and k" singletons. Hence the total
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number of paths covering G™ is f(n) = v(f(n — 1) — k") + k»'m(G) + k", k™ of
which are singletons.

So recursively we have shown that
f(n) = v(f(n—-1)—k*1) + k" 'm(G) + k"
= vf(n—1)+ k"' (m(G) —v) + k",
where f(1) = m(G) + k. Solving this recurrence, we find that

+ k(m(G) + k — v)v™! + (v —m(G) - Ic)k"-

f(n) = (m(G) + ko™~ — -

Now p(G™) < f(n) and so

p(Ci") < m(G) + k N k(m(G) + k —v) LU= m(G) — k(k)n_

v v v(v—k) v—k v

m(G)+k + k(m(G)+k—v) __ m(G)
v v(v—k) = u-k

]

As n — oo, (¥)» — 0 since k < v. Hence p(G, ®) <

Theorem 3.3.4 Let G be a connected graph with v vertices. Then p(G, 8) = m.

Proof. Suppose an isometric path cover of G includes m(G) disjoint paths of length

diam(G) and k singletons. By Lemma 3.3.2, p(G, ®) < -’:—(_% By definition, v =

(diam(G) + 1)m(G) + k, or equivalently m(G) = Eha_rl;l-(kc)ﬁ Hence p(G, 8) <

1 - - >
amE)iL Now Theorem 3.3.3 gives the reverse inequality, and so p(G, ®)
1
diam(G)+1°

O

3.3.3 Co-Cartesian Product

Theorem 3.3.5 Suppose G is a connected graph that is not complete. Then
p(G,0°) = L.

Proof. Table 3.1 shows for n > 2 that diam(Gp.) < 2. Hence the isometric paths
covering Gpj. are singletons and paths of length one and two. Now Gg. = ((G%)g)°.

So for ease of description, we consider the non-edges; that is, we consider (G)&-
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Singletons in G correspond to singletons in (G°)g. Similarly, a path of length
one corresponds to a pair of singletons, and a path of length two corresponds to
an edge and a singleton. So we can think of covering Gfj. with isometric paths in
terms of covering (G)g with singletons, S* referred to as type 1 subgraphs; pairs of
singletons, N* referred to as type 2 subgraphs; and subgraphs composed of an edge
and a singleton, T referred to as type 3 subgraphs. Since we wish to minimize the
number of subgraphs, we first select subgraphs of type 3, then of type 2, and finally
of type 1. Note that we choose these subgraphs to be disjoint.

Let T'(n) be the number of subgraphs of type 3 in (G°)3, N(n) the number of
subgraphs of type 2, and S(n) the number of subgraphs of type 1. We assume
T'(1) > 0 since otherwise G is isomorphic to K, and also S(1) < v since otherwise G
is completely disconnected. We now consider what happens when these substructures
are multiplied using the Cartesian product. Clearly a subgraph of type 7,7 € {1, 2,3}
multiplied with a singleton will result in a single subgraph of type . Now let’s consider
a subgraph of type 2. When multiplied with a subgraph of type 2 or 3, the result is
two copies of the subgraph of type 2 or 3 respectively as shown, vertices grouped by
the ovals, in Figure 3.15.

o« _o—>»

o &_o—»

[:]lo —e
(b)

Figure 3.15: (a) The product of two type 2 subgraphs, (b) the product of a type 2
subgraph and a type 3 subgraph.

Finally we consider multiplying two subgraphs of type 3. The resulting subgraph can
be covered by three subgraphs of type 3 as shown in Figure 3.16.

A summary of the subgraphs that result when the three types of subgraphs are
multiplied is given in Table 3.3.
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Figure 3.16: The product of two type 3 subgraphs.

S* N+ T+
S*|S* N T
N* | N* 2N* 2T+
T | T* 2T* 3T*

Table 3.3: Summary.

Suppose (G°)&~" is covered by T(n — 1) + N(n — 1) + S(n — 1) subgraphs, and
consider (G°) = G°a (G°)™". The number of subgraphs covering (G°)g is T(n) +
N(n) + S(n) where

S(n) = SQ)S(n-—1),

N(m) = 2NQ)N(n—1)+ N(1)S(n —1) + S(1)N(n - 1),

T(n) = 3T(1)T(n—1)+2TQ)N(n—1) +2N0)T(n — 1)+
T(1)S(n — 1) + S(1)T(n — 1).

Solving this system of recurrence relations, noting that v* = 3T(n)+2N(n)+S(n),

we find that
S(n) =S5Q)",

N(n) = 3o = 3T())" — 3(v — 2N (1) — 3T(L))",

and

T(n) = —;:v“ + %(v —3T(1))".

So
p(GR) < S(U)™ + é(v —3T())" — %(v —2N(1) —3T(1))" + %v".



69

Hence

p(G 2) < (5(1 ) %(2———?2@)“—%(1}—2]\[(13 —3T(1))"+§. (3.1)

As we let n approach oo, we find that the first three terms on the right of the inequality
go to 0. To see this, recall that S(1) < v since G is connected, and T(1) > 0 since
otherwise either S(1) = v or G is complete. Thus p(G,0%) < %.

Now p(G,0°) > 1/(diam(Gge) +1) 2 1/(2+ 1) = 1/3. Hence p(G,0°) =% O

Corollary 3.3.1 If G = K, then p(G,0°) = 1.

Proof. If G = K,, then T(1) =0 and N(1) > 0. Hence

p(GD,) S(1).., 1,v—2N(1)

)5(

n o 1
<( " ) +3

As we let n approach oo, we find that the first two terms on the right of the inequality
go to 0. Thus p(G,o°) < 1. Now p(G,o) > 1/(diam(GE.) +1) > 1/(1 +1) = 1/2
since diam(K}') = 1. Hence p(G,c0°) = §. o

3.3.4 Disjunctive Product

Theorem 3.3.6 Suppose G is a connected graph that is not complete. Then
p(G, &) = L.

Proof. The proof is similar to that of Theorem 3.3.5 since for n > 2, diam(G™) < 2.
Again for ease of description we consider the structure of the non-edges. We need
only consider what happens when the three types of substructures, S*, N*, and T*
are multiplied using the strong product. Clearly a subgraph of type ¢, € {1,2,3}
multiplied with a singleton will result in a single subgraph of type i. Now let’s consider
a subgraph of type 2. When multiplied with a subgraph of type 2 or 3, the result is
two copies of the subgraph of type 2 or 3 respectively as shown in Figure 3.17.

Finally we consider multiplying two subgraphs of type 3. The resulting graph can
be covered by three subgraphs of type 3 as shown in Figure 3.18.
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— —>
«__—>
glo —e

(@) (b)

Figure 3.17: (a) The product of two type 2 subgraphs, (b) the product of a type 2
subgraph and a type 3 subgraph.

Figure 3.18: The product of two type 3 subgraphs.

A summary of the subgraphs that result when the three types of subgraphs are
multiplied is given in Table 3.4.

The computation is now the same as in the proof of Theorem 3.3.5. a
Corollary 3.3.2 IfG = K, then p(G, 8°) = 1.

Proof. Similar to that of Corollary 3.3.1. m|

3.3.5 Co-Categorical Product

Theorem 3.3.7 Suppose G is a connected graph. Then p(G, x¢) = i.

Proof. The proof is similar to that of Theorem 3.3.5 since for n > 2, diam(G?%.) < 2.
Again for ease of description we consider the structure of the non-edges. We consider
what happens when the three types of substructures, S*, N*, and T* are multiplied
using the categorical product. Clearly a subgraph of type ¢,7 € {1, 2} multiplied with
a singleton will result in a single subgraph of type ;. When a subgraph of type 3 is
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S* N+ T
S*|S* N* T*
N* | N* 2N* 27"
T | T* 2T* 3T+

Table 3.4: Summary.

elo™

Xlo *—e

Figure 3.19: The product of a type 1 subgraph and a type 3 subgraph.

multiplied with a singleton, the result is one subgraph of type 1 and one of type 2 as
shown in Figure 3.19.

Now let’s consider a subgraph of type 2. When multiplied with a subgraph of type
i,% € {2,3}, the result is ¢ copies of the subgraph of type 2 as shown in Figure 3.20.

(a)

Figure 3.20: (a) The product of two type 2 subgraphs, (b) the product of a type 2
subgraph and a type 3 subgraph.

Finally we consider multiplying two subgraphs of type 3. The resulting graph can
be covered by two subgraphs of type 3, one of type 2 and one of type 1 as shown in
Figure 3.21.

A summary of the subgraphs that result when the three types of subgraphs are
multiplied is given in Table 3.5.

Suppose (G°)%~! is covered by T'(n — 1) + N(n — 1) + S(n — 1) subgraphs, and
consider (G°)% = G x (G°)%~'. The number of subgraphs covering (G°)* is T'(n) +
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Figure 3.21: The product of two type 3 subgraphs.

S* N* T
St St Nt St + Nt
N* N+ 2N~ 3N*

T* | S*+N* 3N* 2T*+ N*+S*

Table 3.5: Summary.

N(n) + S(n) where

S(n) = (SO +TMW)(S(h—-1)+T(n-1)),

N(n) = NA)(S(n—-1)+2Nn-1)+3T(n—-1))+T(1)T(n—-1)
N(n -1)(S(1) +3T(1))+S(1)T(n - 1) +T(1)S(n — 1),

T(n) = 2T()T(n-1).

Solving this system of recurrence relations, noting that v* = 3T'(n)+2N(n)+S(n),
we find that
T(n) =2""'T(1)",

S(n) = (S + TP 570k + T et =58
and
M = BOZ2VON | BEOTON | bEWS kv
where

k = (SQ)+TQ)(v—2N(Q))(v—2N(1) - 2T(L)((S(1) +T(1))?
+2S(1)N(1) +2N(1)T(1) —vS(1) — vT(1)),
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ko= (S(1)* - T(1)*)f ~ S(1) - 2N(1) — 3T(L)]((v — 2N(1))* — 25(1)T(1)),

ke = T(1)(S1)* +T(1)*)(v ~ 2N (1)) (v — 2N (1) — 2T(1)),

ks = %v25(1)3 - gfu%’(l)T(l)2 —v*T(1)° - %vsa)“ — 2vS(1)°N(1) - %vS(l)aT(l)

+ gusa)“-’T(l)? +6uS(NUT(L)? + 2vS(T(L)? + 4uN (LT +2T(1)*
—3S(1)*N(1)T(1)? — 6S(L)N(1)>T(1)? — 5S(1)N(1)T(1)® — 4N(1)2T (1)
+ S(1)*N(1) +2S(1)*N(1)? + S(1)3N(1)T(1) — 2N(1)T(1)4,

and

So

+(SM) +T(1)"

(2ks — K)S(1) + (2ks + K)T(1)
+(2T(1) 2%(S(1) + T(1))
(k +k2)S(1)? — (k — k2)T(1)?

k(S(1)2 —T(1)?)

Notice however, that the expression for k; includes the factor v—S(1)—2N(1)—-3T'(1),

which equals zero. Hence

PCx) 1, (2T(1))n(2k3 — £)S(1) + (2ks + k)T (1)
) v 2k(S(1) + T(1))
S(1) + T(1)\" (k + k2)S(1)? — (k — ka)T(1)2

+( v ) k(S(1Z = T(1)?)

As we let n approach oo, we find that (ﬂ;ﬂ)n and (-‘S:-(-l)—tq-'ﬁ)n goto 0. If G
is complete, then T'(1) = 0 and S(1) < v. Otherwise T(1) > 0 and notice that
2T (1) < v whenever T(1) > 0, and S(1) +T(1) < v since S(1) + 2N(1) +3T(1) =v.
Thus p(G, x°) < 3.
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It has been shown that in G7%, subgraphs of type 3 occur only as the result of
multiplying subgraphs of type 3 in G and G%!. Hence T(n) = 2*~'T(1)". (Re-
call Figure 3.21.) The isometric path number will therefore be smallest when the

remaining v" — 3T'(n) vertices are covered by subgraphs of type 2. Hence

P(GL) 2 T(n)+ 5(v" ~3T(n))

= Lot —2rr()n,

and so

un 2 4
As we let n approach oo, we find that (

p(G’,ﬁc) 1 1 (QT(I) ) n’

n
) goes to 0 as shown previously. Hence
p(G, x¢) 2 4, and so p(G, x°) = L. a

3.3.6 Equivalence

Theorem 3.3.8 Suppose G is a connected graph that is not complete. Then p(G,®@) =
3 if diam(G) =2 and p(G,®) = L otherwise.

Proof. Theorems 3.1.1 and 3.1.2 show for n > 2 that diam(Gg ) < 2if yv(G) =1l and
diam(Gg ) < 3 otherwise. If diam(G% ) < 3, then the isometric paths S*, N*, T* and
F* covering G% are respectively singletons, and paths of length one, two, and three.
We will refer to these as the four ‘types’ of isometric paths with which to cover Go -
Note that if v(G) = 1 then diam(G) = 2 and diam(Gg ) < 2. There are no isometric
paths of length three.

Let F'(n) be the number of isometric paths of length 3 in G%,, T'(n) the number
of paths of length 2, N(n) the number of edges or paths of length 1, and S(n) the
number of singletons or paths of length 0. We assume S(1) < v since otherwise G is
completely disconnected. We now consider what happens when these isometric paths
are multiplied. When a path of length 4,7 € {0,1, 2,3} is multiplied with a path of
length 7, 7 € {0, 1,2,3}, ¢ < j the result can be covered by i+ 1 disjoint copies of the
path of length j. The i + 1 paths of length j can be taken to be the i + 1 rows of
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J + 1 vertices in the product of a path of length ¢ with a path of length j. This is
shown in Figure 3.22 for i =2 and j = 3.

®

Figure 3.22: The product of a path of length 2 and one of length 3.

A summary of the subgraphs that result when the four types of subgraphs are
multiplied is given in Table 3.6.

S* N* T F*
S*|S N T* F*
N* | N* 2N* 2T* 2F*
T |\ T 2T* 3T* 3F*
F*\ F* 2F* 3F* 4F*

Table 3.6: Summary.

Suppose G’é‘l is covered by F(n —1) +T(n—1)+ N(n — 1) + S(n — 1) isometric
paths, and consider G = G @ G’é"l. The number of subgraphs covering Gg is
F(n) +T(n) + N(n) + S(n) where

Sn) = SA)S(n-1),
N(n) SI)N(n—-1)+N(1)S(n—1) +2N(1)N(n — 1),
Tn) = Tn—1)(S(Q)+2NQ)+3T(Q1)+T1)(S(n—1)+2N(n-1)),

and
F(n) = FQ)(S(n—1)+2N(n—-1)+3T(n—1))

+ F(n — 1)(S(1) + 2N(1) + 3T(1) + 4F(1)).
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Solving this system of recurrence relations, noting that v* = 4F(n) + 3T(n) +
2N (n) + S(n), we find that

S(n) = S,
N(n) = 5(S(1) +2N(1))" - 28 (",
T(n) = 5(v ~ 4F(1))" ~ 5(v — 4F (1) — ST()",
and
F(n) = i-v" _ i(v —4P(1)".
So

p(Gg) < iv"-{- -;—S(l)"-i-%(S(l) +2N(1))"+1i2-(v —4F(1))" - %(v —4F(1)-3T(1))".

Hence

p(Ge) _1 1(3(1) 2(5(1 +2N(1)) 12(v~4F(1> 3(v—4F(1)—3T(1))

v""42v v

Suppose v(G) > 1 and F(1) > 0. As we let n approach oo, we find that the last
four terms on the right of the inequality go to 0. To see this, recall that S(1) < v
and so (%”)n goes to 0. Since F(1) > 0, (%(—ll)n and (M)n go to 0.
Finally since v = §(1) +2N(1) +3T(1) +4F(1) and F(1) >0, S(1) +2N(1) < v and
SO (ﬂl—)*’f—m)-)n goes to 0. Thus p(G,®) < 1. Now p(G, @) > 1/(diam(Gg) +1) =
1/(3 +1) = 1/4 since diam(Gg) < 3. Hence p(G,®) =

Suppose v(G) > 1 and F(1) = 0, or v(G) = 1 and hence diam(G) = 2. Since
F(1) =0, recall that T(1) > 0 since otherwise G is isomorphic to K,. The expression
for #:i) becomes

p(G) (1, 1 2(5(1)) 2(5(1)+2N(1))"_31_(w)"_

vt T 4 2 v
As we let n approach oo, we find that the last three terms on the right of the inequality
go to 0. Thus p(G,@) < 1+ 5 =3-
Now p(G ®) = 1/(diam(Gg ) +1) 2 1/(2+1) = 1/3 since diam(G% ) < 2. Hence
p(G,®) = ;. a
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Corollary 3.3.3 IfG = K, then p(G,@) = 1.

Proof. If G = K, then F(1) =0, T(1) =0, and N(1) > 0. Hence
pPGy) 1 1 1 1 1,8(1)
A =R e R e it St A L
un —4+12+2 3+2( v )
If S(1) > 0 then as we let n approach oo, we find that the last term on the right
of the inequality goes to 0. Thus p(G,®) < {1+ 5+ 3 — 3 = 3. Now p(G,@) >

3
1/(diam(Gg ) +1) > 1/(1 + 1) = 1/2 since diam(K}) = 1. Hence p(G,@) =35. O

3.3.7 Symmetric Difference

Theorem 3.3.9 Suppose G is a connected graph with |V(G)| > 2 that is not com-
plete. Then p(G,V) = 3.

Proof. Theorem 3.1.4 shows for n > 2 that diam(Gg) < 2. Thus we need only
consider the structures that result when isometric paths of length at most 2, S*, N*
and T are multiplied. Clearly a path of length ¢,¢ € {0, 1,2} multiplied with a
singleton will result in a single path of length i. Now let’s consider a path of length
1. When multiplied with a path of length 1 or 2, the result is two copies of the path
of length 1 or 2 respectively as shown in Figure 3.23.

= 1!@

(@) (b)

Figure 3.23: (a) The product of two paths of length 1, (b) the product of a path of
length 1 and a path of length 2.

Now let’s consider a path of length 2. When two paths of length 2 are multiplied, the
result is three copies of the path of length 2 as shown in Figure 3.24.



78

Figure 3.24: The product of two paths of length 2.

S* N* T+
S*1 S N T
N* | N* 2N* 2T*
T\ T 2T+ 3T*

Table 3.7: Summary.

A summary of the subgraphs that result when the three types of subgraphs are
multiplied is given in Table 3.7.

Suppose G ! is covered by T(n — 1) + N(n — 1) + S(n — 1) isometric paths, and
consider G% = GVGY™!. The number of paths covering G% is T(n) + N(n) + S(n)

where

S(n) = S(1)S(n-1),
N(n) = SQA)N(n-1)+N(1)S(n—-1)+2N(1)N(n —1),
T(n) = S)T(n—-1)+T1)S(n—~1)+2N1)T(n—1)
+2T(1)N(n —1) +3T(1)T(n —1).
Solving this system of recurrence relations, noting that v™ = 3T (n)+2N(n)+S(n),
we find that
S(n) =S(1)",

N(r) = 5(v = 3T(1)" ~ (v — 2N (1) — 3T(V))",

and
T(n) = %v" + -;-(v —3T(1)"

So
P(GY) < S(U" + £(v —3T(D)" — 5(v — 2N (1) — 3T(L))" + 30"
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Hence

p(G ) < (S(l)) %(v - iT(l))n _ _;_(v —-2N(1) - 3T(1))n

v 3

As we let n approach oo, we find that the first three terms on the right of the inequality

go to 0. To see this, recall that S(1) < v since G is connected, and T(1) > 0 since
otherwise either S(1) =v or G is complete Thus p(G,V) < L.

Now p(G, V) > Eﬁam(lT)-H > 517 = § since diam(G%) < 2. Hence p(G,V) =

Corollary 3.3.4 [fG =K, then $ <p(G,V) < i

Proof. If G = K, then T'(1) =0, and N(1) > 0. Hence
p(GY)

Un.

5(1)) _Le=2N)
2

n. 1
<( . )"+ 5
As we let n approach oo, we find that the first two terms on the right of the inequality
go to 0. Thus p(G, V) < 3. Note that p(G, V) > I as shown in the proof of the main

theorem. a

Note. Suppose K] can be covered by p(K}) isometric paths. For each z € V(K,),
z - K7} can be covered by p(K7}) isometric paths. Hence p(K?**!) < vp(K?T), and so
"(K"’m) < p(K . Thus p(K,, V) exists.

3.3.8 Lexicographic Product

Notice first that G} = G7. for all graphs G, and so results for the lexicographic
product hold for the co-lexicographic product as well.

Let G be a graph. Let P = {P;,¢ € I'} be the set of isometric paths of G. Define
Pr(G) as the minimum of all feasible fractional weightings of the isometric paths of
P. Compare with Subsection 3.3.1.

Theorem 3.3.10 Let G be a graph with |V(G)| =v. Then p(G,e) < BLE),
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Proof. Consider G as a copy of G with each of its vertices replaced by a copy of
G7~!. These copies of G?~! will be denoted z; - G?~! for z; € V(G). Notice that
whenever z; ~ z; in G, each of the vertices of z; - G?~! is adjacent to each of the
vertices of z; - G271

Suppose we have a fractional weighting, w : P — R2° of the isometric paths P of
G which realizes p;(G). We will show that [ ¥ " |kp 7(G) + lp(G) isometric paths will
cover G, where k is the lowest common denominator of the fractions in our weighting
w of the paths in G and [ < k.

For z; € V(G), let the vertices of z; - G}~! be z;;,7 = 1,2,...,v"*"L. For each
5,1 <j5 <o let Gy = {zi;]i =1,2,...,v}. Then each G; is isomorphic to G. Let
v" ' =Ak+1,0 <! < k and let H, = Ug—1)r+1<j<ac Gy for 1 < a < A—1. Note that
H, is isomorphic to Hj for all 1 < a,b < A — 1. subgraphs

Consider one such subgraph H,. For each isometric path P;,i € I, take kw(FP;)
copies of P; in H,. As in the proof of Theorem 3.3.2, we take new uncovered vertices
if there are any remaining in H,. Every vertex of H, is covered by a path in this
way. (Again recall the proof of Theorem 3.3.2.) Hence kps(G) isometric paths cover
the vertices of H,. So for every k vertices in V(G?~') we have kp;(G) paths, and we

have | | groups of k vertices.

This leaves [ < k vertices remaining in each of the copies of GZ~1; that is, [ vertices
remain in z; - G?7! for each z;. For each i, we select one vertex from z; - G 1 to
obtain a set of vertices which induce a graph isomorphic to G. Now G can be covered
by p(G) isometric paths. For each i, we can select a single vertex, z;, from z; - G?~!
to obtain a graph isomorphic to G in this way [ times. Hence these remaining vertices

can be covered by [p(G) paths. Hence

p(G2) < |¥lkps(G) +Ip(G)
L kp (@) +Ip(G)
= v p(G) +Ip(G).

I

And so ”(g:" ) < & E,G) + [”,ff ). Now letting n approach infinity, we find that the last
term goes to zero, and hence p(G,e) < 3@. m]
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Consider a graph G with v vertices. Let D —1 be the length of a longest isometric
path in a cover of G, and let n; be the number of paths that include D —i+1 vertices
not covered by other paths fori =1,2,...,D —2. Let ¢ = z,?;f n; so that q is the

total number of paths of length at least 2, and define Q = Zf}:‘lz n:;(D —i+1) so that

Q is the number of vertices covered in G.

Let T3(n) be the number of isometric paths of length at most 2 in G?.
Lemma 3.3.3 Let G be a graph. Then T3(n) > v*~'T3(1).

Proof. Consider G§ as a copy of G with each of its vertices, z replaced by a copy of
Gyl denoted z - G7~'. Each of these v copies of G?~! contain Ty(n — 1) paths of
length 2, and these are still isometric in G?. Hence the total number of such paths

in G7 is at least vT3(n — 1). The result follows recursively. a

Theorem 3.3.11 Let G be a graph with |V(G)| = v. Then p(G,e) < 2+
(v —Q)Tx(1).

Proof. We consider G} as a copy of G with each of its vertices replaced by a copy of
G7~L. These copies of G¢~! will be denoted z;-G*~! for z; € V(G),i =1,2,...,v. We
denote the vertices of ;-G ™! by ¥i1, yia, - - -, Yiun—1, and we let fix. be the isomorphism
from z; - G~ to zi - G defined by fi(yi;) = x5, 5 =1,2,...,9"" L.

We describe a method of covering the vertices of GT with isometric paths. For each
i € {1,2,...,v}, we choose a vertex y;; from z; - G?~! to obtain a ‘set’ of v vertices
{y1j: Y25, - - -, Yuj}- We obtain v™~! sets in this way, each of which is the vertex set of
a subgraph isomorphic to G. We cover each of these copies of G with the ¢ isometric
paths described in the preamble to Lemma 3.3.3. This gives qu™~! disjoint paths.

Since v —Q vertices in each copy of G are not covered by these paths, there remain
v — @ copies of G?71, z; - G271 with all v™! vertices uncovered. However, we know
that there are T3(n — 1) paths covering vertices in each of these copies of G?~L. This
gives an additional (v — Q)T3(n — 1) paths.
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Hence the total number of paths covering G7 is ™! + (v — Q)T3(n — 1), and
hence

p(Ge) S gt + (v—Q)Ta(n —1).

Applying Lemma 3.3.3, we have

p(G?) < qu™ ' + v (v — Q)T3(1).

And so
1
p(G.0) S 1+ = (v - QT(1).
(]
Example. Consider the graph G shown in Figure 3.25 with vertices z,, z,, z3, and

Ty.

Figure 3.25: A graph G with p(G,e) = 3.

The graph G§ can be thought of as a copy of G with each of its vertices, z; replaced
by a copy of G371, denoted z; - GZ~1. For each i, let the vertices of z; - G2~ be z;j,
j=1,2,...,4"L Forie€ {1,2,3} and fixed k, we select a vertex vy to obtain a set
of three vertices that induce a subgraph isomorphic to a path of length 2, which is
itself isometric. Hence the vertices of z; - G2, x5 - G271, and z3 - G*~! are covered
by 4*~! isometric paths of length 2. There remains a copy of G*!, z, - G*~! whose
vertices have not yet been covered.

Now z,-G7~! can be thought of as a copy of G with each of its vertices, z; replaced
by a copy of G3~2, denoted z; - GZ~2. As before, the vertices of z; - G272, z, - G2,
and z3 - G2 can be covered by 4"~2 isometric paths of length 2. There remains a

copy of G272, z, - G?~? whose vertices have not yet been covered.
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This recursive process continues until 37" 4° = 4°=% isometric paths of length 2

cover all but one of the vertices of G?. So

PE) < T 4L

It is clear that this covering of G§ by isometric paths is best possible since diam(G™) =

2. So
4" — 4
3

p(G]) = +1,

and hence p(G,e) = 1.
Let us compare with the bounds given by Theorems 3.3.10 and 3.3.11. It was
shown in Subsection 3.3.1 that p;(G) = . Hence by Theorem 3.3.10, p(G,e) < 3.

Theorem 3.3.11 also gives p(G,e) < 3.

3.3.9 Cartesian Product

A hypercube Q. is a graph on 2" vertices whose vertices can be thought of as
the set of binary vectors of length n. Two vertices are adjacent if and only if the

corresponding vectors differ in exactly one position.

(0,0,0) (1,0,0)

©,1,0)

©,1,1) (LLD

Figure 3.26: The hypercube Q3.

Lemma 3.3.4 [Fitzpatrick, Nowakowski, Holton, and Caines [14]] For any

integer n > 0, p(Qn) > rﬁ% -
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Proof. Consider an isometric path Py, of Q,. The vertices of such a path are binary
vectors such that any two consecutive vectors differ in exactly one position, and the
vectors corresponding to the first and final vertices differ in exactly m positions. It
follows that m < n, and thus an isometric path in Q, has at most n + 1 vertices.

a
If n = 2¢ — 1 for some positive integer ¢ then p(Q,) > I'22 =] = [2%-t1] = 92 -t-L,

In [14], the authors were able to show that this lower bound is achieved for all positive

integers t.
Ifn+1=2" for some integer t > 1 then p(Q,) = 2%t~

Theorem 3.3.12 For a connected graph H with |V (H)| = vy and a perfect matching,
p(H,0) =0.

Proof. Consider a connected graph H with a perfect matching. The number of edges,
« needed to cover H is %v;{, Thus H{:‘] can be covered by o hypercubes Qg since
ef; = Qq where e is an edge of H. And so HY can be covered by ap(Q,) paths since
each of the o hypercubes can be covered by p(Qq) paths. Now

p(H,o) < hmsup p(Qd)
d—co v

()@
= limsup T
d—oo Ve

= limsup (24)10(624

Suppose d = 2* — 1. Then IV(Qd)[ = 22"-1 and diam(Q4) = 2" — 1. And so
p(Qa) = ﬁf =2l Letd =2"+j—1,0<j < 2"sothat Qv = Qo0 Q;
and p(Qu) = 22" ~"*+127. Hence

92" —n+j~1
p(H,o) < B o
. 1
= n—oo .27
Smcez—n—>0 as n — oo, p(H,0) =0. a

We conjecture that p(H,a) =0 for any connected graph H.
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3.3.10 Categorical Product

Theorem 3.3.13 Let G be a connected graph such that x(G) > 3 and |V(G)| = v.
Then p(G, X) > m_ﬁ.
Proof. Follows directly from Corollary 3.1.1 and Theorem 3.3.1. O

For an arbitrary graph G, let m¢ be the size of a maximum matching in G.

Lemma 3.3.5 Let G be a connected graph with |V(G)| = . Then
p(G%) < p(G)(2v - 2mg).

Proof. Consider an isometric path P of G and a matching edge e of G. The graph

P x e can be covered by two isometric paths of length | P| as shown in Figure 3.27.

e '} o
v : 2

Figure 3.27: Two isometric paths cover P x e.

Consider now a vertex v of G not included in a maximum matching of G. Since G is
connected, there exists an edge € with v € V(e'). As previously shown, P x € can
be covered by two isometric paths.

Hence for each isometric path P of G, P x G can be covered by 2m¢ +2(v —2mg)
isometric paths, two paths for each of the m¢ matching edges and two for each of
the v — 2m¢ remaining vertices of G. We note that these isometric paths are not
necessarily disjoint (unless 2mg = v).

Since G can be covered by p(G) isometric paths, G2 can be covered by

p(G)(2me + 2(v — 2me)) = p(G)(2v — 2m¢) isometric paths. a
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Lemma 3.3.6 Let G be a connected graph with |V(G)| = w. Then
p(G2) < p(G)(2™" — 2mgn-).

Proof. As shown in the proof of Lemma 3.3.5, for each of the isometric paths P of
G%!, P x G can be covered by 2m¢ + 2(v —2mg) = 2v — 2m¢ isometric paths, and
so G%~! x G can be covered by p(G%')(2v — 2mg) isometric paths. Similarly for
each of the isometric paths P’ of G, P’ x G%™! can be covered by 2mgn-1 + 2(v™! —
2mgn-1) = 207! — 2mgn-1 isometric paths, and so G x G%7! can be covered by
p(G)(2v™~! — 2mgn-1) isometric paths.

Recall x is commutative, and so

p(G%) < min{p(G)(2v"! — 2mgn-1), p(G% 1) (2v — 2me)}
< p(G)(2v™ ! — 2mgn-1).

|
Theorem 3.3.14 Let G be a connected graph with |V(G)| =v. Then
2p(G
p(G, x) < —’%—).
Proof. From Lemma 3.3.6, p(G%) < p(G)(2v™! — 2mgn-1), and so
p(!?':;‘( ) S P(G)(2vn-::2mcn—l )

< p(G)(2v" 1)

— 20
which does not depend upon n. a
Example. Suppose G & P,. Then 5'7 < p(G, x) < -2;. Suppose G = K3,. Then
3 < p(G, x) < 1. Finally suppose G 22 Cy,41. Then a7 < (G, x) < 745

3.4 Complete Graphs

A clique of a graph G is a set of vertices that induce a complete subgraph of G; that

is, a subgraph in which every pair of vertices is joined by an edge.



87

If each beat in the precinct game is a clique, then the minimum number of cops
needed to capture the robber on a graph G is bounded by the minimum number of
cliques needed to cover the vertices of G. The minimum number of cliques required
to cover the vertices of G is the clique cover number of G, and is denoted 6(G).

We note that 8(G) = x(G).

Example. A complete bipartite graph K,,,, m < n will have clique cover number
(Kmn) =n.

Figure 3.28: A graph K35 with clique cover number §(K3s5) = 5.

The maximum size of a clique is two, with one vertex coming from each of the two
independent sets. Included in the clique cover of K,,, will be m disjoint cliques of
this size, leaving n — m vertices, each of which must be covered by an additional

clique.

. 0(G3
Define ¢'(G, ®) = limp—co m—c%

Lemma 3.4.1 If @ € {x%0° ®, ®°, @), e, e°} then the product ® of two or more

complete graphs is complete.

Proof. Consider the product of two complete graphs K,, and K,,, m < n. Since
non-edges do not have to be considered, we are interested in just three entries in the
edge matrix of this product. If the entry in row ¢ and column j of the edge matrix is
a;j, then we need only consider the entries a;;,a;12 and as;. If a;; = a1 =agy = E,
then every pair of vertices in the product is joined by an edge, and hence the product
is complete on mn vertices. Inductively the result holds for products of two or more

complete graphs. a



88

Theorem 3.4.1 Let G be a graph that is not completely disconnected, and let ® €
{x4,0°% ®, &% @,e,0°}. Then p'(G,®) =0.

Proof. Let G be any graph with §(G) = m, 1 < m < |[V(G)| and let ® €
{x¢,0% =, 8% @, e, °}. From Lemma 3.4.1, we know that §(G%) < m". Thus

8(Gg) m"

= < =
(G, ®) hm IV(G")I = nl-.oo V(G%) nlir'& (|V(G ) °

since m < |V(G)|. =

Corollary 3.4.1 Let G be a graph that is completely disconnected, and let ®
€ {x°,0°% ®, ®°,@,9,0}. Then p'(G,®) =1.

Proof. 1If G is completely disconnected, then 8(G%) = |V(G%)| and the result follows.
(|

3.4.1 Symmetric Difference and Cartesian Products

Lemma 3.4.2 The symmetric difference and Cartesian products of two complete

graphs K, and K, with m < n have clique cover numbers at most m.

Proof. Let ® € {0,V} and note that ® is commutative. We proceed by giving
a construction for a clique cover of K,, ® K, that includes m cliques and we may
assume m < n.

Again because we are considering the product of two complete graphs K,, ® K,,
it is not necessary to consider the non-edges. If the entry in row 7 and column j of
the edge matrix is a;;, then we need only consider the entries a,1,a;2 and as;. For
both the symmetric difference and Cartesian products, a;; = N, and a1 = a9 = E.
The entry a2 = E indicates that m copies of K, will be present in the product, one
corresponding to each vertex of K,,. Similarly the entry ay; = FE indicates that n
copies of K, will be present in the product, one corresponding to each vertex of K,.

Thus the product can be covered with m cliques K, or alternately, n cliques K.
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Since the clique cover number is the minimum number of cliques required to cover a
graph, (K, ® K,,) < m. a

Lemma 3.4.2 says that if two complete graphs are multiplied using the symmetric
difference or Cartesian product, the resulting graph can be covered with a number of
copies of the larger complete graph equal to the order of the smaller complete graph.

The proof gives a construction for covering the product of two complete graphs with

cliques in this way.

Example. Shown with solid edges is the clique cover of the product of K3 ® K,

® € {o, V} resulting from the construction given in the proof of Lemma 3.4.2.

' \

’ \
n I\
1y IS
I\ 7\
1A Mo
[ A
v A VN
" vy
o net
gy A
Loy ;!
\ [ ) ]
v\t vt
v v’
A} 14
\ /
\ /

Figure 3.29: K3 ® K4, ® € {0, V}.

This construction can be easily generalized to products of finite numbers of complete

graphs.

Lemma 3.4.3 The symmetric difference and Cartesian products of complete graphs

Kn, Knyy - -y Ky, 1y g < -+~ < Ny, have clique cover numbers at most ning - - - Ny -

Proof. Repeated applications of Lemma 3.4.2. a

The upper bound given in the previous lemma is in fact best possible when considering

the Cartesian product. This is the subject of the next theorem.
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Theorem 3.4.2 Let K, ,K,,,..., K,,, be complete graphs withn, <mns < --- < n,.
Then e(Knl a an g---0 K‘nm) = n1n2 °T ’nm—’l’

Proof. Let G = K, 0 Ky, 0 ---a K, .. Because of Lemma 3.4.3, we need only show
that the clique cover number (G) can be no smaller than n;n, - - -n,,—;. But if there
are fewer than n;ns - - -n,,_, cliques then at least one clique must be larger than K,
which is impossible. Hence the construction given in the proofs of Lemmas 3.4.2 and
3.4.3 is best possible and §(K,, 0 K,;,0 ---0 K, ) =ning -+ -Npm_;. o

We now present the main theorem in this section.

Theorem 3.4.3 Suppose G is a graph with v vertices and ® € {o,V}. Further
suppose a clique cover of G includes cliques of order at most k, where k is the smallest
value such that this holds true. Then p'(G,®) < . '

Proof. Let c;(n) be the number of cliques K; of order 7, i = 1,2,...,k included in
a clique cover of G. A summary of the subgraphs that result when the cliques are
multiplied is given in Table 3.8.

Then G§ is covered by Zf=1 c:(n) cliques where

ci(n) = c(l)ci(n—1)+c(De(n —1) +2c2(1)ei(n — 1) + 2¢:(1)co(n — 1)
+ - (@ = Dea(l)a(n — 1) + (@ — De(l)eimi(n — 1) +ici(L)ei(n — 1)
= ci(l)(a(r—=1)+2c(n—=1)+---+ (i — 1)ci=1(n — 1))
+ci(n— 1)(c1(1) +2cp(1) +-- -+ (2 — 1)ei—1 (1) +ici(1)

k
= ()"t ch,(n—l))+c,(n—1)(v- Z 7ei(1))

fori =1,2,...,k. To see this, note that v* = fo:l jeci(n) and recall the proofs of
Lemmas 3.4.2 and 3.4.3 which tell us that a clique K; is included in the clique cover
only when multiplied by cliques of smaller order.

Solving the system of recurrence relations, we find that

ci(n) = -(v -~ E je ()" — -(v - ZJCJ(I

j=i+l
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Kl K2 K3 oo I(k——l I{k
K. K. K, K: .. K Rx
Ky | Ko 2Ko 2Kz ... 2K, 2K
Kis | Ks 2Ky 3Ks ... 3K, 3K
Kioy | Koy 2Ky 3Kioy ... (k—1)Kiew (k—1)Ke
Ke | K 2K. 3Kp ... (k—1)K: kK

Table 3.8: Summary.

Hence

<Z( Yoo 3 deyta) —-(v-ZacJ(l))“)

i=l j=i4l

and

0(G®) < Z( ( ZJ—H-[]C.?(]- ) ('U - Z,—;Jcs(l)) )

Note that 0 < z:]:=i+ljc_j(1) < v and also 0 < Zg‘fﬁjcj(l) < v except when ¢ = &
and 37, je;(1) = 0.

Hence as we let n approach infinity, the only nonzero term in the sum on the right
side of the expression for #,:‘i)- occurs when ¢ = k. And so p'(G,®) < 1. o
Note. Let G be a graph with [V(G)| = v, and suppose Gg can be covered by
8(Gg) cliques. For each z € V(G), = - G can be covered by 6(G3) cliques. Hence
8(Ga™) < v8(G3), and so (—n;%) < 2(70:&). Thus ¢'(G, ®) exists.

Corollary 3.4.2 Suppose G is a graph with v vertices and any clique cover of G
includes cliques of order at most k. Further suppose k is the smallest value such that

this holds true, so that k is the mazimum order of a clique in G. Then p'(G,o0) =L

Proof. Theorem 3.4.2 guarantees that the upper bounds for §(Gg) and G(G") given
by inequalities 3.3 and 3.4 in the proof of Theorem 3.4.3 are in fact best p0551ble.
O



92

3.4.2 Categorical Product

Lemma 3.4.4 The categorical product of complete graphs Ky, Kny, ..., Ky, 11 <

ng < -+ ,nm has clique cover number 8(Kp, X Ky, X -+-x Ky, ) =ng -ng -+ -npy.

Proof. We assume n; < n; < --- < n,, since the categorical product is both commu-
tative and associative. The categorical product of the complete graphs K,,,, Kn,, ...,
K, hasedge set E(K, xKp,%---x K, ) = {(vii, vai, .. ., Umi) (V1 Vag, - - -y Umj) [Vt ~
vy for all [ € {1,2,...,m}}. A clique in the product K,, x K,, X --- x K, can in-
clude at most one vertex whose m-tuple has ith coordinate vy, k € {1,2,...,n:}.
Hence a clique in the product can have at most n; vertices. So a best possible clique
cover would include only cliques of order n; and would include each vertex of the
product in the cover exactly once. So a best possible clique cover would be composed
of ny - n3---n,, cliques of order n;.

We proceed by showing that it is always possible to arrange the n; possible ith
coordinates such that each appears at most once in a clique, and any m-tuple of
coordinates appears at most once in the set of cliques.

Clearly the vertices in the following set form a clique in the product:
{(Uu, U22,V33, - - -y Umm), (vi2, Vo3, Va4, - - -, Um,m+1); (13, V24, V35, - - - Um,m+2)s - - - »
(V1 V2,041, U3y 42: - - - Umng+m—1) }- We can obtain (ng - ng - ‘N,) — 1 additional
cliques in the following way. For each coordinate 7, i € {2,3,...,m} of the m-tuples
corresponding to vertices in the given clique, add j modulo n;, 7 € {1,2,...,n;}
for each vertex in the given clique. This will produce (nong---nm,) — 1 cliques. Of
course when all subscripts are left fixed, the original clique is obtained for a total of

nang3 - - - Ny, cliques. Hence (K, X K, X --- X K,,,)) =ng -ng -~y m]

When m = 2, Lemma 3.4.4 says that if two complete graphs are multiplied using
the categorical product, the resulting graph can be covered with a number of copies
of the smaller complete graph equal to the order of the larger complete graph. The
proof gives a construction for covering the product of complete graphs with cliques

in this way.
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Example. Let K3 have vertices vy, v12, v13, and let K have vertices voy, V2o, Uag, Uag.
The clique cover construction given in the proof of Lemma 3.4.4 gives the following
clique cover of size 4 for K3 x Ky: {(v11, va2), (v12, v23), (V13, v24) }, {(v11, v23), (v12, V24),

(vi3,v21)}, { (i1, v24), (Vi2, v21), (Vi3 v22) }, {(v11, V21), (W12, Va2), (13, v23) }. The clique

cover is also shown in Figure 3.30.

V13V24 VirVar
!;3»:3
Vi3%23 o= 77 ! ,'§““,! VitVa
\ ! ! 7
\ I L
Y2 @< Y ! VS e VY3
i

@ e s
VI3V2, \ X )\,,\\, ’ 11724
’l, Y [ ,,
LTy S
vy ® A Y
12724 " Y 12721
[
v V,, V.

Figure 3.30: A clique cover of size 4 for K3 x Kj.

We now present the main theorem in this section.

Theorem 3.4.4 Suppose G is a graph with v vertices, and let C = {C;,i € I} be
the set of all clique covers of G. Let k; be the minimum order of a clique in C;, and

define k = max;er ki. Then p'(G, x) = ¢.

Proof. Let c;(n) be the number of cliques K; of order ¢, i = k,k+1, ..., included in
a clique cover of Gg. Then Gy is covered by Zi.:kc,-(n) cliques where

i1 i
ai(n) = ()" =Y _jei(n ~ 1) +aln — 1)(v =Y _ je;(1))
=k i=k
fori=k,k+1,...,l. To see this, note that v™ = Z:‘:k jcij(n) and recall the proof of
Lemma 3.4.4 which tells us that a clique K; is included in the clique cover only when
multiplied by cliques of larger order.
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Solving the system of recurrence relations, we find that

i—1

a(n) = (v - Zaqa))" -2 S e

j=k
Hence
oGy =3 (G —Zac]a) - 5" ie(1) ")
i=k =k
e L 1o = Sinkde) Ziesit)
8(Gg) ]_L]c, 1) v—) . .Jjci(l)
G)_ 3 (4 Bdety 1o Einislly
Note that 0 < Z -« Jci(l) <vand also 0 < E'-l jcj(1l) < v except when i =k and
2j=k.7c.7(1) =

Hence as we let n approach infinity, the only nonzero term in the sum on the right

side of the expression for ?(—(';"ﬂ)- occurs when i = k. And so p'(G,®) = L. a
v P k

3.5 Copwin Graphs

The number of copwin graphs required to cover the vertices of a graph G is the

copwin number of G and will be denoted cpw(G).

Lemma 3.5.1 Let G be a graph. Then cpw(G) < p(G).

Proof. An isometric path is a copwin graph. O
Lemma 3.5.2 Let G be a graph. Then cpw(G) < 0(G).

Proof. A complete graph is a copwin graph. a

Theorem 3.5.1 Let G be a graph and let @ € {x°,0% ®, 8,3, e,0°}. Then
cpw(Gg) < 0(G)".
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Proof. Lemma 3.4.1 guarantees that the product of two or more complete graphs is

complete. 0

Recall that a dominating set in a graph G is a set S such that every vertex in G
belongs to S or is adjacent to a vertex in S. The minimum cardinality of a dominating

set in a graph G is the domination number of G and is denoted v(G).
Theorem 3.5.2 Let G be an arbitrary graph. Then cpw(G) < v(G).

Proof. Let G be a graph and suppose v(G) = 1. Then there exists v € V(G) such
that v ~ u for all v € V(G). So for u € V(G) — v, u can be retracted onto v.
Hence G is copwin and cpw(G) = 1 = v(G). Now suppose v(G) > 1, and let D be
a dominating set of G that realizes v(G). For each =z € D, the subgraph induced by
N(z] is copwin, and U,epN(z] = G. It follows that cpw(G) < v(G). 0

A graph product ® is said to be dominating multiplicative if for any two
graphs G and H and any two dominating sets A C V(G) and B C V(H), the set
A x B is a dominating set in G® H.

Lemma 3.5.3 [Nowakowski and Rall [20]] Let ® be a graph product. If @ > ®

then ® is dominating multiplicative.

Proof. Let G and H be any two graphs with dominating sets A € V(G) and
B C V(H). We must show that the set A x B is a dominating set in G ® H where
® 2 \.

Consider vertices v € V(G) and u € V(H). Suppose v € A and u € B. Then
(v,u) € Ax B. Suppose v € A and u € V(H) \ B. Since B is a dominating set
in H, there must exist y € B such that y ~ u. Hence (v,u) ~ (v,y). Similarly
suppose v € V(G) \ A and u € B. Since A is a dominating set in G, there must exist
z € A such that z ~ v. Hence (v,u) ~ (z,u). Finally suppose v € V(G) \ A and
u € V(H)\ B. Then (v,u) ~ (z,y).- Hence A x B is a dominating set in G ® H where
® 2 =’. d
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Theorem 3.5.3 Let G and H be arbitrary graphs and let ® € {e, ¢, ®, &, @,0°, x°}.
The cpw(G ® H) < v(G)v(H)-

Proof. By Theorem 3.5.2, cpw(G® H) < v(G® H). By Lemma 3.5.3, y(G® H) <
Y(G)v(H). o

For the disjunction and co-categorical products, the results of this section are the

best available.

3.5.1 Lexicographic Product

Notice that Ge H = H ¢°G for graphs G and H, and so results similar to those given
here for the lexicographic product hold for the co-lexicographic product.

Let G and H be copwin graphs and consider G @ H. We begin by showing that if
z is a corner in H with dominating vertex y and a is a corner in G with dominating
vertex b, then it is not necessarily true that (a, z) is a corner in Ge H with dominating

vertex (b,y).

Consider P; e P; as shown in Figure 3.31.

we
T RRR
] ° *——o—o
a b c d

Figure 3.31: The graph P; e P;.

Now (a, z) ~ (b,w) but (b,y) L (b,w) and so it is not true that N[(a,z)] C N[(b, w)].
Hence (a,z) is not a corner in P, e P, with dominating vertex (b,y). It is also clear

that no other vertex becomes a corner in this way.
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Hence to ensure that the product of a corner z in H (with dominating vertex y)
and a corner in G will be a corner in Ge H, we require that y is adjacent to all vertices
of H. Since it is the vertices of G  H that we are interested in covering, we can take

y to be the central vertex of a star with all leaves at distance 1 from y.

Let Ng[a] be the closed neighbourhood of vertex a in the graph G.

Lemma 3.5.4 Let G be a copwin graph and let H be a star with all leaves at dis-
tance 1 from the central vertex y. Suppose Ngla] C Ng[b]. Then Ngeu((a,z)] C
NGOH[(bv y)] s

Proof. Define (z,N[y]) = {(z,w)lw € N[y]} and (N(z),N[y]) = {(z,w)|z €
N(z),w € N[y|}. Now

Ngen[(a,z)] = (e, N[z]) U (N(a),V(H))

{(a,2), (a,y)} U (N(a), N[y])

since N[y| = V(H)

{(a,z),(a,y)} U (b, N[y]) U (N(a) - b, N[y])
(a, Nly]) U (b, N[y]) U (N(b) —a, N[y])
since y € N[y] and N(a) —b C N(b) —a
(Nb], Ny])

Nger[(b,y)]-

N

a

Lemma 3.5.5 The lexicographic product of a copwin graph G and a star H with all

leaves at distance 1 from the central vertez is copwin.

Proof. Let y be the central vertex of H. By Lemma 3.5.4, if a is a corner in G with
dominating vertex b, then for all z € V(H), (a,z) is dominated by (b,y). Therefore
G e H is dismantlable. a

Theorem 3.5.4 Let G and H be arbitrary graphs. Then cpw(GeH) < v(H)-cpw(G).
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Proof. The graph H can be covered by v(H) stars (such that each star has all of

its leaves at distance 1 from the central vertex), and the graph G can be covered by

cpw(G) copwin graphs. ]

Theorem 3.5.4 is an improvement over Theorem 3.5.3 since cpw(G) < ¥(G) for all
graphs G.

3.5.2 Strong Product

Theorem 3.5.5 LetGy,i=1,2,...,n be a finite collection of arbitrary graphs. Then
cpw( g:’l=1Gi) S H?=l CplU(G,),

Proof. By Theorem 1.2.5, the strong product of a finite collection of copwin graphs

is copwin. O

3.5.3 Equivalence

Lemma 3.5.6 Let G be a graph with v(G) > 1. Then there ezists a subset A C V(G)
such that

(1) for all a € A there exists b € A such thata L b, and

(2) for all z € N(A) \ A there exists y € A such thaty L z.

Proof. Since v(G) > 1, G does not have a dominating vertex. Hence V(G) is the

required set. a

In this subsection, we are interested in defining a subset B of V(G) such that
B @ B dominates G @ G. We will show that any set satisfying conditions (1) and
(2) of Lemma 3.5.6 is such a subset. Since Lemma 3.5.6 shows that such a subset
exists provided y(G) > 1, we will be interested in finding the smallest such subset.

We make a more formal definition below.

Let G be a graph and let S¢ C V(G) such that
for all a € S¢ there exists b € Sg such that a L b, and
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for all z € N(Sg) \ S there exists y € Sg such that y L z.
Define A¢ to be such a subset Sg of smallest cardinality.

Example. Consider Cs as shown in Figure 3.32. A set Sg, is {1,4} and A¢g, = 2.

l 2

5 4

Figure 3.32: The graph Cs with A¢, = 2.

Theorem 3.5.6 Let G be a graph with v(G) > 1. Then cpw(G @G) < |Ac|®.

Proof. Partition V'(G) into three sets of vertices: Ag, N(A¢g)\ Ag, and V(G)\ N[Ag]
as shown in Figure 3.33. We must show that A¢ @ Ag dominates G ®G.

' !
1 !
' !

V(G)-N[AG] 4 t 5 t 3
! '
1 1
i 1

SR e R

1 I
1 1

Na)-A; 1 : 2 : 5
1 1

S S [ lme e e e e =

! [
1 t
1 t

Ac 1 1 t 4
t t
t i
t i

Ac . N(AG)~A6 ; VIG) »N[AG[

Figure 3.33: An illustration to accompany the proof of Theorem 3.5.6.
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We will show that for all (z,y) € G @G, (z,y) ~ (a,b) for some (a,b) € Az @ Ac.
Suppose z € Ag and y € N(Ag)\ Ag. Since y € N(Ag)\ Ag, y ~ z for some z € Ag.
Hence (z,y) ~ (z,z). Similarly (y,z) ~ (z,z). The groups of vertices dominated by
Ac ® Ag in this way are indicated by 1’s in Figure 3.33.

Suppose z,y € N(A¢g) \ Agc. Then z ~ w for some w € Ag and y ~ z for some
z € Ag. Hence (z,y) ~ (w, z). The vertices dominated by A¢ ® Ag in this way are
indicated by a 2 in Figure 3.33.

Suppose z,y € V(G)\ N[A¢]. Then (z,y) ~ (w, z) for all w, z € Ag. The vertices
dominated by Ac @ A¢ in this way are indicated by a 3 in Figure 3.33.

Suppose z € Ag and y € V(G) \ N[Ag|. Then by the definition of Ag there
exists z € Ag such that z L 2. Hence (z,y) ~ (z,w) for all w € Ag. Similarly
(Y, z) ~ (w, z) for all w € Ag. The vertices dominated by Ag @ Ag in this way are
indicated by 4’s in Figure 3.33.

Finally suppose z € N(Ac)\ A¢ and y € V(G)\ N[Ag]. Then there exists z € A¢
such that z L z. Hence (z,y) ~ (z,w) for all w € Ag. Similarly (y,z) ~ (w, z) for
all w € Ag. The vertices dominated by Ag @ Ac in this way are indicated by 5's in
Figure 3.33.

Since all vertices of G@G are adjacent to at least one vertex of Ac @Ag, Ac@®Ac
dominates G @G and so v(G @G) < |Ag|?. Hence cpw(G ®G) < |Acg|® 0

Corollary 3.5.1 Let G be a graph with diam(G) > 2. Then cpw(G @G) < 4.
Proof. Since diam(G) > 2, there exist vertices z and y in G such that d(z,y) > 3.

Thus |A¢| < |{z,y} = 2.

3.5.4 Co-Cartesian Product

Lemma 3.5.7 Let G be a graph that is not complete. Then there ezists a subset
A C V(G) such that for all a € A there exists b € A such that a L b.

Proof. If G is not complete, then G has an independent set of size 2 which is the
required set. a
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In this subsection, we are interested in finding a subset B of V(G) such that BacB
dominates G o °G. We will show that any set as defined in Lemma 3.5.7 is such a
subset. Since we have shown that such a subset B exists provided G is not complete,

we will be interested in finding the smallest such subset. We make a more formal

definition below.

Let G be a graph and let S¢ C V(G) such that for all a € S¢ there exists b € Sg
such that a L b. Define Ag to be such a subset Sg of smallest cardinality.

Notice that if G is not complete, then Ag = 2.
Theorem 3.5.7 Let G be a graph. Then cpw(Go<G) < 4.

Proof. If G is complete, then G is copwin. So suppose G is not complete. Partition
V(G) into three sets of vertices: Ag, N(Ag) \ Ag, and V(G) \ N[Ag] as shown in
Figure 3.34. We must show that Aco°Ag dominates G o °G.

1 I
t 4
i !

VIG)-N[A ] A
e I t
i 4

] _I -
_—— e boeee o e

§ t
1 4

NMA)-A; 1 Coo vl
t I
! ]

-—— b - — - | S,

! 4
§ !
! t

As 1 1 0 2
! t
H t
| '

A | MA-A_ | VIG)-N[A]

Figure 3.34: An illustration to accompany the proof of Theorem 3.5.7.

We will show that for all (z,y) € Go°G,(z,y) ~ (a,b) for some (a,b) € AguAc.
Suppose z € Ag and y € N(A¢g) \ A¢. Sincey € N(Ag)\ Ag, y ~ z for some z € Ag.
Hence (z,y) ~ (z, 2). Similarly (y,z) ~ (z,z).
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Suppose z,y € N(Ag) \ Ac. Then z ~ w for some w € Ag and y ~ z for some
z € Ag. Hence (z,y) ~ (w, 2).

Suppose z,y € V(G) \ N[Ag]. Then (z,y) ~ (w, z) for all w, z € Ag.

Suppose z € N(A¢g) \ Ac and y € V(G) \ N[Ag]. Then there exists z € A¢ such
that z ~ 2. Hence (z,y) ~ (2,w) for all w € Ag. Similarly (y,z) ~ (w, 2) for all
w € Ag.

Notice that the cases considered thus far are indicated by 1's in Figure 3.34. The
fact that the vertices considered are dominated by at least one vertex of AgoAc
follows from the definition of the co-Cartesian product. The definition of the set Aq
is needed only for the remaining case that follows.

Suppose z € Ag and y € V(G) \ N[A¢]. Then by the definition of Ag there
exists z € Ag such that z L 2. Hence (z,y) ~ (z,w) for all w € Ag. Similarly
(y,z) ~ (w, 2) for all w € Ag.

Since all vertices of Go°G are adjacent to at least one vertex of Ago®Ag, Aco®Ac
dominates G o °G and so v(Go °G) < |A¢|®. Hence cpw(Go°G) < |Ag|? =4. a

3.5.5 Symmetric Difference

Let G be a graph. Define 7(G) as a set of smallest cardinality which dominates both
G and G“.

Theorem 3.5.8 Let G and H be graphs. Then cpw(GVH) < min{y(G)7(H),
Y(H)F(G)}.

Proof. Let A C V(G) be a set which realizes 7(G) and let B C V(H) be a set which
realizes v(H). We must show that AV B dominates GV H; that is, we will show that
for all (z,y) € V(GVH), there exists (a,b) € V(AVB) such that (z,y) ~ (a,b).

Suppose £ € A and y € B°. Since B dominates H, there exists b € B such that
y ~ b. Hence (z,y) ~ (z,b). Similarly suppose z € A°and y € B. There exists a € A
such that z ~ a. Hence (z,y) ~ (a,y).
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Finally suppose € A° and y € B°. Since B dominates H, there exists b € B
such that y ~ b. Since A dominates G°, there exists a € A such that £ ~ a in G°.
But then z L a in G. Hence (z,y) ~ (a,b). a

A total dominating set [10] in a graph G is a set of vertices, S such that every vertex
in G is adjacent to a vertex in S. The minimum cardinality of a total dominating set
is denoted 7,(G). Notice that a total dominating set is a dominating set S such that

each of the vertices of S is adjacent to another vertex of S.

Theorem 3.5.9 Let G and H be graphs. Then cpw(GVH) < min{y,(G)7.(H¢),
Ye(H)7(G)}-

Proof. Let A C V(G) be a set which realizes v,(G) and let B € V(H) be a set which
realizes ,(H¢). We must show that AVB dominates GV H; that is, we must show
that for all (z,y) € V(GVH), there exists (a,b) € V(AVB) such that (z,y) ~ (a,b).

Suppose z € A° and y € B. Since A is a total dominating set in G, there exists
a € A such that z ~ a. Hence (z,y) ~ (a,y).

Suppose z € A and y € B®. Since A is a total dominating set in G, there exists
a € A such that z ~ a. Since B is a total dominating set in H¢, there exists b € B
such that y ~ b in H°. But then y L b in H. Hence (z,y) ~ (a,b).

Finally suppose 2 € A° and y € B°. Since A is a total dominating set in G, there
exists a € A such that  ~ a. Since B is a total dominating set in H¢, there exists
b € B such that y ~ b in H°. But then y L b in H. Hence (z,y) ~ (a,b). O

3.5.6 Categorical Product

Let G and H be copwin graphs and consider G x H. We begin by showing that if z is
a corner in H with dominating vertex y and a is a corner in G with dominating vertex
b, then it is not necessarily true that (a,z) is a corner in G x H with dominating
vertex (b,y). If c € N(a) then (a,z) ~ (c,y) but (b,y) L (c,y)- Similarly if z € N(z)
then (a,z) ~ (b, 2z) but (b,y) L (b, z). Hence it is not true that N{(a,z)] C N[(b,)]-

And so (a,z) is not a corner in G x H with dominating vertex (b, y).
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We have shown that the categorical product of two copwin graphs need not be

copwin. In fact such a product of graphs need not even be connected.

Example. Consider P3 x P; as shown in Figure 3.35.

x *—eo—o

Figure 3.35: The graph P3 x P;.

The product has two components, the edges of the first indicated by solid lines and
the edges of the second indicated by dashed lines.

However recall from Lemma 3.4.4 that the graph K, x K,,, m < n can be covered

by n complete graphs of order m.

Theorem 3.5.10 Let G be a graph with v vertices and a clique cover that includes
¢; cliques K; of order i, i <m. Then
m 4 il 1 i .
(@) <3 (30— D ie) = (=3 jey)").

i=l j=1 i=1

Proof. The proof of Theorem 3.4.4 gives

m i—-1 i
1 - L, . \n
6G3) < 3 (G =2 de)" = 7w =3 ).
=1 j=1 j=l
Lemma 3.5.2 gives cpw(G%) < 0(G%L). =i

Recall the notion of a total dominating set.

Theorem 3.5.11 Let G and H be graphs. Then cpw(G x H) < 7(G)v.(H).
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Proof. Let A C V(G) be a set which realizes v,(G) and let B C V(H) be a set which
realizes v,(H). We must show that A x B dominates G x H; that is, we will show
that for all (z,y) € V(G x H), there exists (a,b) € V(A x B) such that (z,y) ~ (a,b).

Suppose z € A and y € B€. Since A is a total dominating set in G, there exists
a € A such that x ~ a. Since B is a total dominating set in H, there exists b € B
such that y ~ b. Hence (z,y) ~ (a,b). The cases when z € A° and y € B, and when
z € A° and y € B¢ are similar. a

If the product ® € {x,e,0°% ®, ®,@,0°% x°} then a similar result holds for
cpw(G @ H); that is, cpw(G ® H) < %(G)y.(H) for arbitrary graphs G and H.
This follows from Theorem 3.5.2 because a total dominating set is a dominating set,
and Nowakowski and Rall [20] proved that if ® > x in the partial order given by
Figure 3.3, then v,(G®H) < 7(G)v.(H), or equivalently that ® is total dominating
multiplicative. This result is not included at the beginning of Section 3.5 because for
products ® > x other than the categorical product, the result is not an improvement

over Theorem 3.5.3.

3.5.7 Cartesian Product

Let G and H be copwin graphs and consider Ga H. Suppose z is a corner in H
with dominating vertex y and a is a corner in G with dominating vertex b. Now
(a,z) L (b,y) in Go H. Hence it is not true that N{(a,z)] € N[(b,y)]- And so (a,z)
is not a corner in Go H with dominating vertex (b, y).

We have shown that Cartesian product of two copwin graphs need not be copwin.
However recall from Theorem 3.4.2 that the graph K, o K,,, m < n can be covered
by m complete graphs of order n.

Theorem 3.5.12 Let G be a graph with v vertices and a clique cover that includes
¢; cliques K; of orderi, it < m. Then

(@) <3 (Fo- 3 dal — 30— o).

i=l =i+l



106

Proof. The proof of Corollary 3.4.2 gives
. m 1 m ) . 1 m ) .
6 =3 (00— Y de)r = 2w = je)).
i=1 =i+l Jj=i

Lemma 3.5.2 gives cpw(Gg) < 6(GR). ]

A grid Gn,,n is the Cartesian product of a path P, of length m — 1 and a path P, of
length n—1. Recall that p(G ) is the isometric path number of such a grid. In [12],
Fisher and Fitzpatrick prove the following result which gives p(G,,.,.) exactly for all

integers m,n > 2.

If G is an m x n grid for some integers m,n > 2 then

2(Gmn) = (g(m = Vi “mn ).

Lemma 3.5.8 Let G be a graph with v vertices that can be covered by Y i- c; iso-
metric paths, where c; is the number of paths P; of length i — 1, i < m. Then
m m 2
P(GR) S Y Ycig|Sli+i— VA= +77)|.
i=1 j=1
Proof. The product of an isometric path P, and an isometric path P,, can be covered
by p(Gm,n) isometric paths. Hence if a graph G can be covered by - c; isometric
paths P;, 7 < m, then G§ can be covered by >_7; 3°™" | cic;p(G;;) isometric paths.
Equivalently
m m
2. . T
P(GH) <3 Y a3 +i—VE—G +79).
=1 j=1
0

Theorem 3.5.13 Let G be a graph with v vertices that can be covered by > i c;

tsometric paths, where c; is the number of paths P; of lengthi — 1, i < m. Then

Pu(GE) <33 a3 +5~ VE—G T 7)-

=l j=1
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Proof. Lemma 3.5.1 gives cpw(Gg) < p(Gg). w

Example. Consider the complete graph Kj,. By Theorem 3.5.13, cpw(K,0 Ka) <
2n2. However by Theorems 3.4.2 and 3.5.12, cpw (K2, © Ka,) = 2n.



Chapter 4

Graphs with Copnumber 2

Recall from Chapter 1 that copwin graphs have been completely characterized [23]
and that there is an explicit strategy that can be used by the cops to win on such
graphs. (See the Copwin Strategy in Section 1.5.) No such characterization is known
for graphs with copnumber 2 (or copnumber k, k£ > 2). In this chapter, we discuss
outerplanar graphs and tandem-win graphs, both of which are included in the class
of graphs with copnumber < 2. Hence we take steps toward the characterization of

copnumber 2 graphs.

4.1 Owuterplanar Graphs

Recall that Aigner and Fromme [1] were able to show that if G is a planar graph
then the copnumber of G is at most 3. One question is to characterize graphs with

copnumber 2. So let us consider outerplanar graphs.

An embedding of a graph G is a mapping of G into a surface such that the images of
its edges do not intersect except for shared endpoints. A face is a closed, connected
region of an embedding. A graph G is said to be outerplanar if it has an embedding
in the plane such that every vertex lies on the unbounded face. We may assume

that the embedding has all the vertices being on a circle. We can label the vertices

108
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clockwise around the circle ag, a,,...,a,. Also we may assume that all of the edges

lie outside the circle.
Theorem 4.1.1 If G is a connected outerplanar graph, then ¢(G) < 2.

Proof. Let G be a connected outerplanar graph. Suppose cops C, and C, are on
the vertices z and y of an edge zy as shown in Figure 4.1. (A) Further suppose the
robber is covered by this edge; that is, the robber is located on a vertex between z
and y as indicated by R; in the Figure. We assume that the subgraph H induced by
the vertices strictly between z and y in a clockwise direction is connected to both z
and y, and is itself connected. Otherwise if H is connected only at y then C, moves
to the anticlockwise most vertex z of H, and is still anticlockwise from the robber
at the end of this series of moves. This is because C, moves along the shortest path
from z to z. The robber cannot move past C,. Henceforth we will assume that all
such subgraphs H are connected at z and y. If not, then the cops can perform this
maneuver. Now C; moves clockwise until he is on an edge that covers the robber,
but is no longer with C;. Then C| moves to the other end of this covering edge. This
procedure repeats until no further such edges exist, at which time the robber is on a

cycle or path and C; moves to capture him.

Figure 4.1: An outerplanar graph G.

(B) Otherwise the robber is outside as indicated by R; in the Figure. Now C; remains
stationary and C; moves clockwise along the edges of the unbounded face towards



110

the robber, moving in this way until he is on an edge that covers the robber if such an
edge exists. Otherwise C; moves until he is adjacent to the robber. Notice that the
robber cannot pass C>. Now C, remains stationary and C; moves along the edges of
the unbounded face towards the robber until he is on an edge that covers the robber
or until he is adjacent to the robber. The cops continue in this way until situation

(A) occurs or the robber is captured. a

The converse does not hold. Consider the graph G shown in Figure 4.2. Since for all

u € V(G), u can be retracted onto v, ¢(G) = 1. However G is not outerplanar.

Figure 4.2: A planar copwin graph G that is not outerplanar.

4.2 Tandem-win Graphs

In this section, we propose a variation of Cops and Robber. Recall the discussion
regarding copwin graphs in Chapter 1. A vertex v € V(G) is irreducible in a graph
G if there exists a vertex u € V(G) such that N[v] C N[u]. This is the notion that
led to the characterization of copwin graphs. Suppose we substitute the concept of
a closed neighborhood in this definition with the concept of an open neighborhood
and say that a vertex v € V(G) is nearly irreducible in a graph G if there exists

a vertex u € V(G) such that N(v) C N(u). The vertex u nearly dominates the
vertex v.
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u

Figure 4.3: A nearly irreducible vertex v and its nearly dominating vertex u.

Let us consider what happens if the cop side consists of two cops, cop 1 and cop 2
say, and the robber moves onto a nearly irreducible vertex v as shown in Figure 4.3.
The cops move onto the nearly dominating vertex u. There are two options available
to the robber. If the robber moves to an adjacent vertex then the cops can immediately
move onto the same vertex and capture the robber since N(v) C N(u). So let’s assume
the robber passes. Cop 1 then moves to a vertex in the common neighborhood of u
and v and cop 2 remains on vertex u. If the robber then passes, cop 1 can move onto v
and capture the robber while cop 2 moves to a vertex in the common neighbourhood
of u and v. If the robber moves to an adjacent vertex then cop 2 (who is on vertex
©) can immediately move onto the same vertex and capture the robber. Cop 1 moves
to one of u and v. Hence two cops can guarantee the capture of the robber once he
moves onto v in at most two moves. Notice that the cops were able to remain at
distance at most one from each other after every move.

This leads us to propose a variation of the game in which the cop side consists
of two cops. The cops must stay within distance one of each other during the game.
A graph on which two cops playing in tandem in this way can win is said to be
tandem-win. Since the movements of the two cops have been restricted in this
version, the class of tandem-win graphs will be contained in the class of graphs with
copnumber < 2. Hence we are taking a step toward the characterization of graphs
with copnumber 2. Note that although the cops must be on adjacent vertices after
any move, they are permitted to be at distance greater than one from each other
during a move. For example, consider the graph Cy. Cops C; and C, are permitted

to move to vertices x and y, respectively as indicated in Figure 4.4.
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(1)

Figure 4.4: A permissible move.
We begin with some useful theorems.
Lemma 4.2.1 A copwin graph G is tandem-win.

Proof. One cop follows the Copwin Strategy; the other follows along. a
Theorem 4.2.1 Any retract H of a tandem-win graph G is also tandem-win.

Proof. Let G be a tandem-win graph and let H be a retract of G. Further let f
be a retraction map from G to H. Since G is tandem-win, the cops have a winning
strategy on G. We will indicate how this strategy can be modified and used on the
subgraph H. The cops simply play the image under f of their winning strategy on
G. Note that since f is a retraction map, if a,b € V(G) and a =~ b then f(a) =~ f(b)
where f(a), f(b) € V(H) so that the cops will be within distance one on H as well.
Using this strategy, the cops capture the image of the robber on H. Since the robber
is actually playing on H and f is the identity map on H, the robber’s image coincides

with his actual position. Hence the robber is apprehended on H and therefore, H is
a tandem-win graph. a

Notice that it is not necessarily true that an isometric subgraph H of a tandem-
win graph G is tandem-win. To see this, consider the graphs G and H shown in
Figure 4.5. The graph G is copwin and thus tandem-win. However the graph H is
not tandem-win since after his move, the robber can always remain two vertices away
from both cops.

From the analysis at the beginning of this section, we know that two cops playing

in tandem can guarantee a win if the robber moves onto a nearly irreducible vertex.
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G H

Figure 4.5: The isometric subgraph H of the graph G is not tandem-win even though
G is tandem-win.

Therefore we conclude that the robber will not move onto such a vertex unless he is
forced to do so. This is because any robber-win strategy that uses v can be modified
to use u. Hence we must determine if the cops can force the robber to move onto
a nearly irreducible vertex. To do this, we remove this vertex from the graph and
play on the resulting subgraph. The next theorem tells us that this subgraph will be

tandem-win if and only if the original graph is tandem-win.

Theorem 4.2.2 Let G be a graph and let ¢ be a nearly irreducible vertex of G. Let
G' =G\ {c}. Then G is tandem-win if and only if G' is tandem-win.

Proof. Let d be a vertex that nearly dominates c. Now G’ is a retract of G with a
retraction map f defined as follows: f(c) =d and Vv € V(G’), f(v) = v. Suppose G
is tandem-win. Then G’ is tandem-win by Theorem 4.2.1.

Conversely suppose G’ is tandem-win, and thus the cops have a winning strategy
on G'. Since the game is actually being played on G, the winning strategy on G’
can be thought of as catching the image of the robber. Now suppose this image is
caught on vertex u. If u # d, then the robber’s image on G’ corresponds to his actual
position on G since f is the identity map on G’. Hence the robber is apprehended.
Otherwise, the robber’s image is apprehended on vertex d. Since it is known that
f(c) = f(d) = d, the robber is on vertex c or vertex d in the graph G. If he is on d,
his actual position corresponds to his image and he is caught. If he is on ¢ then he
can be caught in at most two moves by the cops. This is because at least one of the

cops is on vertex d and d nearly dominates c. |

This leads us to a main theorem in this section.
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Theorem 4.2.3 Let G be a graph. Suppose there is an ordering {vi,vs,...,v,} of
the vertices of G such that for each i < n, v; is irreducible or nearly irreducible in the

subgraph induced by the vertices in the set {v;,viy1,...,vn}. Then G is tandem-win.

Proof. Let G be a graph. It has been shown in Theorem 4.2.2 that if c is a nearly
irreducible vertex of G then G\ {c} is tandem-win if and only if G is tandem-win.
A similar result holds for irreducible vertices by Theorem 1.2.2. Inductively then, if
m — 1 irreducible vertices and n — m nearly irreducible vertices can be removed from

G, then G is tandem-win. a

This decomposition is not a characterization of tandem-win graphs. Consider
the graph shown in Figure 4.6. None of the seven vertices are nearly irreducible or
irreducible, yet the graph is tandem-win. The cops begin on the vertices indicated
by 1’s. The robber begins on vertex R (or is captured on the cops’ next move). The
cops move to the vertices indicated by 2's, and the robber is captured on the cops’

next move.

1
2
Figure 4.6: A tandem-win graph with no nearly irreducible vertices.

For a graph G, the ordering {v1,vs,-..,v,}, if it exists, in Theorem 4.2.3 will be
referred to as a tandem-win ordering with start vertex v,.

Fix a tandem-win ordering of G, and construct a tree S of G such that V(S) =
V(G), the root of the tree is the start vertex of the tandem-win ordering, and for
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vertices z; and z2 € V(G), z1z2 € E(S) if and only if f;j(z;) = 2 or fj(z2) = z, for
some j. This tree shall be referred to as a tandem-win decomposition tree. We
say that x; > =z, if z; is eventually retracted onto z; and z; > z, if £; # z,. This
concept is analogous to that of a copwin spanning tree introduced in the previous
chapter. Note that here a vertex may be retracted onto a nonadjacent vertex, and

hence the decomposition tree may contain edges that are not in the original graph.

Example. This example refers to Figure 4.7. In (a), the circled vertices represent
nearly irreducible or irreducible vertices at each of the stages. Also, at each stage,
it does not matter in which order the nearly irreducible vertices are removed. The
original graph is tandem-win.

If the vertices are labeled as shown in (b), then one tandem-win ordering is {9,
12, 10, 13, 8, 11, 2, 3, 4, 5, 6, 7, 1}. The corresponding tandem-win decomposition
tree is shown.

Suppose we have a tandem-win ordering of the vertices of a graph G. We know that
two cops playing in tandem have a winning strategy on G, but this strategy has not
yet been made explicit. We now describe a strategy that can be used by the cops to

win, and prove that this strategy is effective in capturing the robber.

Tandem-win Strategy. Let {z|,z2,...,z,} be a tandem-win ordering of the ver-
tices of a graph G. Define the induced subgraphs G; = G;_; \ {z:—1} where G; =G,
and let f; : G; — Giyq be the retraction map from G; to Giy,. Further if the robber
is on vertex z, define Fi(z) = fi—1 0 fieao---0 foo fi(z) so that F;(z) is the robber’s
image or shadow on G;. The robber is always thought to be playing on the graph G.
However, the cops initially move on the subgraph G,. The cops begin on vertex z,,
the vertex on which the cops’ position coincides with the robber’s image under the
mapping fn,_10 fr-20---0 fyo fi(z). Now suppose at least one of the cops is occupying
the robber’s image in the subgraph G; under the mapping f;—; o fi20---0 fo0 fi(z)
(and the second cop is at most one move away). The cops move so as to capture the

image of the robber in G;_;.
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Figure 4.7: (a) An illustration of Theorem 4.2.3. The original graph is tandem-win.
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Figure 4.8: (b) The original graph and its tandem-win decomposition tree.

Theorem 4.2.4 The Tandem-win Strategy is effective in capturing the robber.

Proof. First note that for all ¢, f; is an edge preserving map. Hence when the robber
moves from z to y it follows that for all j, either Fj(z) = F;(y) or Fj(z) ~ Fj(y).
Also note that if the robber is on vertex z then for any i, Fi(z) and Fi;,(z) are either
on the same vertex, adjacent vertices, or vertices distance two apart.

We prove the result by induction and consider the situation after the cops have
moved. Cop 1 begins on vertex z,, the vertex on which the cops’ position coincides
with the robber’s image under the mapping f,—; 0 fa20---0 foo fi; that is, cop 1
begins on the same vertex as F;,(z) (cop 2 begins on any adjacent vertex) and so the
cops can pass. Suppose for some ¢ < n the cop has captured F;(y), where y is the
robber’s position, and it is the robber’s turn to move. Suppose he moves to vertex z.
(Assume cop 1 is on F;(y) and cop 2 is on an adjacent vertex.)

If Fi(y) = Fi_1(y) then F;_;(z) ~ Fi(y) and cop 1 can move immediately to
capture the image in G;—;. Cop 2 moves to F;(y) = Fi_1(y).
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If Fi(y) ~ Fi_1(y) then F;_(y) is an irreducible vertex that is removed from G;_;
to obtain G; and so N[Fi_;(y)] C N[Fi(y)] and therefore Fi(y) ~ F;_;(z). Again cop
1 can move immediately to capture the image in G;_;. Cop 2 can move to F;(y) to
maintain distance at most one from cop 1.

If d(Fi(y), Fi—1(y)) = 2 then F;_,(y) is a nearly irreducible vertex that is removed
from Gi-, to obtain G; and so N(Fi_;(y)) € N(Fi(y)). If Fi_,(y) and F;_;(z) are
distinct then Fi(y) ~ F;_;(z). Again cop 1 can move immediately to capture the
image in G;_;. Cop 2 can move to F;(y) to maintain distance at most one from cop 1.
If F;_i(y) = F;_1(z) then the robber’s image is on a nearly irreducible vertex in G;_,,
cop 1 is on Fi(y) (a nearly dominating vertex here), cop 2 is adjacent to cop 1, and it
is the cops’ move. Cop 1 moves to any w € N(F;(y))NN(F;-1(y)) and cop 2 moves to
Fi(y) (cop 1's previous position). As shown in the preamble at the beginning of this
section, the cops will capture the robber’s image F;_, after the robber’s next move.

Thus, in all cases, the robber’s image can be caught in at most two moves in the
larger graph.

Since there are only a finite number of subgraphs G;, the robber’s image will
coincide with his actual position after a finite number of moves. Hence the strategy

presented here will result in a win for the cops in a finite number of moves. ]

It has been shown that if the cops are playing on the subgraph G;, and are
occupying the robber’s image under the mapping F;, then the cops are able to move
onto the robber’s image in G;_; under F;_;. If the cops are playing on the subgraph
G, the robber can never move to a vertex in this subgraph without being immediately
apprehended or apprehended on the next move by the cops. Equivalently, the robber

cannot avoid capture by moving onto vertices used previously by the cops.

Theorem 4.2.5 Suppose the cops are playing the Tandem-win Strategy in the sub-
graph G;, and are occupying the robber’s image under the mapping F;. The robber
can never move to a vertex of G; without one of the cops being on or immediately

landing on the same vertexz.
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Proof. Suppose the cops are playing on the subgraph G;, and are occupying the
robber’s image under the mapping F;. The cops are able to move so as to stay with
the image of the robber on this subgraph. Now the mapping F; is the identity on G;.
Hence if the robber moves to a vertex of G;, his image will correspond to his actual

position and he will be apprehended. a

As mentioned earlier, not all tandem-win graphs have a tandem-win tree decom-

position. We now investigate a class of graphs that does.

A graph G is said to be triangle-free if it does not have K3 as a subgraph. We have

one characterization of triangle-free tandem-win graphs.

Theorem 4.2.6 Let G be a triangle-free graph. Then G is tandem-win if and only
if there is an ordering {vy,vs, ..., Un} of the vertices of G such that for each i < n, v;
is irreducible or nearly irreducible in the subgraph induced by the vertices in the set

{Ui, Vigly-- - 'Un}»

Proof. If there is a tandem-win ordering of G then G is tandem-win by Theo-
rem 4.2.3. So we need only prove the converse. Note that no retraction introduces
a triangle. Consider the final move in a game played on a tandem-win graph G as
shown in Figure 4.9. Since the robber is captured during the cops’ next move if he
passes, the robber’s position R must be adjacent to exactly one of cop 1’s position, C;
and cop 2’s position, Cs. Note that if R is adjacent to both C; and Cs, then C;, Cs,
and R form a triangle in G. We assume R is adjacent to C;. Since the robber is
captured during the cops’ next move if he moves, N(R) C N(C5). Note that N(C,)
could be {C\} so that R is on a leaf and C> nearly dominates R. (If the robber moves
to Ci, he is immediately captured.) Note also that if z € N(R) — C, then = 1L C;
since otherwise C}, R, and z form a triangle in G. Hence R is a nearly irreducible
vertex with nearly dominating vertex Cs. Theorem 4.2.2 guarantees that G — R is
tandem-win. Again note that G — R is triangle-free. The result follows recursively.

Notice that all of the vertices v; of G are nearly irreducible in the subgraph induced
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by {vi, Vit1, - -, v} with the exception of v,_; which is adjacent to v, and irreducible

in the subgraph induced by {vn.—1,v.}. a

G DO MRIG

Figure 4.9: The final move in a game played on a triangle-free tandem-win graph.
More can be deduced about the structure of triangle-free tandem-win graphs.

Lemma 4.2.2 Let G be a triangle-free graph. If there is an odd cycle in G then
retraction of a nearly irreducible vertex onto a nearly dominating verter leaves an odd

cycle.

Proof. Let u be a nearly irreducible vertex in G with nearly dominating ver-
tex v. Suppose an odd cycle C includes u but not v, C = {cj,c¢a,...,¢i, U, Cit1,
...yCn,C1} say. Then after retracting u onto v, there remains an odd cycle C' =

{ci,e2,-- 05600, C000y - - -, Cny €1} since N(u) C N(v). See Figure 4.10.

Figure 4.10: A portion of the cycle C’ is indicated by bold lines. The dashed lines
indicate the change from the cycle C after retraction of u onto v.
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Suppose now an odd cycle C includes both « and v, C = C,UCoU {u} where C, is a
cycle including both v and z, C; is a cycle including both v and y, and z,y € N(u).
(Recall that N(u) = N(u) N N(v).) Since C is odd, one of C; and C,, say C; must
be odd. Then after retracting u onto v, there remains an odd cycle C,. Note that

this cycle cannot be a triangle. See Figure 4.11.

Figure 4.11: The cycle C is indicated by bold lines. The potential shortcuts are
indicated by dashed lines.

Theorem 4.2.7 Let G be a triangle-free tandem-win graph. Then G is bipartite.

Proof. Consider the last subgraph in the tandem-win decomposition tree of G with
an odd cycle. But if there exists an odd cycle, then retraction of a nearly irreducible
vertex leaves an odd cycle. Hence G contains no odd cycles and is therefore bipartite.

a

The ordering (vy,vs,...,v,) of the vertex.set of a graph G is an elimination or-
dering [4, 6] satisfying property P if for all ¢ € {1,2,...,n}, the vertex v; has
property P in the subgraph induced by the vertices {v;,¥it1,...,Un}- A vertex
ordering (vi,va,...,¥s) is a domination elimination ordering [4, 6] if for all
it € {1,2,...,n — 1}, there is a j < 7 such that the vertex v; is dominated by v;
in Gy; that is, Ni(v;) C N;[v;].

Notice that tandem-win orderings are domination-elimination orderings, as are

copwin orderings with the added restriction that v; ~ v; in G;.
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There is considerable discussion of elimination orderings in the literature. See for
example [4] and [6]. However none of these orderings provide a characterization of
tandem-win graphs.

Recall that a graph is bridged if all isometric cycles have length 3. A chord in a
graph is an edge joining two nonconsecutive vertices of a path or cycle. A graph is
said to be chordal if it has no induced cycles of length at least 4. Finally a graph
is said to be chordal bipartite if it is bipartite and any induced cycle of length at
least 6 has a chord.

Recall from Section 1.2.5 that bridged graphs are copwin, but the converse does
not hold. Because of the close relationship between bridged graphs, chordal graphs
and chordal bipartite graphs, it is natural to question whether tandem-win graphs
are chordal bipartite. However this is not the case. Consider the graph G shown
in Figure 4.12 with tandem-win ordering {1,3,2,8,9,7,10,4,5,11,6}. Now G is not
chordal bipartite since the outer 8-cycle does not have a chord. We have not yet

determined if the converse holds.

Figure 4.12: A tandem-win graph that is not chordal bipartite.

A house H is a 5-cycle with a chord as shown in Figure 4.13. A graph is house-free

is if contains no subgraph isomorphic to a house.

Many elimination orderings considered in the literature are for house-free graphs.
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Figure 4.13: A house.

See for example [6]. But a house is itself tandem-win. The graph shown in Figure 4.9

has also been shown to be tandem-win, yet is not house-free.

We define a tandem of cops as a pair of cops playing in tandem, and the tandem
number of a graph G, T(G) as the number of tandems required to guarantee a win

on G. Hence if H is a tandem-win graph, then T(H) = 1.

In [18] the authors give several results concerning the strong, Cartesian and cat-
egorical products of copwin graphs. We present some results regarding tandem-
win graphs and these three products. Compare with the results of Neufeld and
Nowakowski [18].

Recall from Theorem 1.2.5 that the strong product of a finite number of copwin

graphs is copwin.

Theorem 4.2.8 The strong product of a copwin graph G and a tandem-win graph H

is tandem-win.

Proof. Let G be a copwin graph and let H be a tandem-win graph. We will show
that G ® H is tandem-win. Let h be the projection map from G ® H onto H, and
let g be the projection map from G ® H onto G. For all z € V(G), let = - H be
the subgraph of G ® H whose vertices have first coordinate z. Thus if both cops are
located on z - H, then they project to the same image, £ under the map g. So the
cops first play on G ® H so that after each move their positions project to the same
image on G. Since G is copwin, the image of the robber is captured by both cops
on G using the Copwin Strategy. The cops then play a composition of moves so that

they stay with the image of the robber under g and play the Tandem-win Strategy
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on H under h. Since two cops playing in tandem have a winning strategy, G = H is

tandem-win. a

Example. This example refers to Figure 4.14. For j € {0,1,2, 3}, the corner (0, 5)
can be retracted onto the dominating vertex (1, ), and then the corner (1,5) can
be retracted onto the dominating vertex (2, j). This leaves the 4-cycle given by the
vertices (2, k), k € {0, 1,2, 3} which we know is tandem-win.

(0,0 ©.1)
0@
0 1
I ] X -
3 2
20

0,3) (0.4)

Figure 4.14: An illustration of Theorem 4.2.8.

Note that the strong product of a tandem-win graph and a finite collection of copwin

graphs is tandem-win due to Theorem 1.2.5.

T&si¢ [28] proved that if G and H are graphs with copnumbers ¢(G) and c(H)
then ¢(Go H) < ¢(G) + c(H). It follows that c(@?,G;) < 37, ¢(G:). Neufeld and
Nowakowski [18] proved that if G =o,C; and H =a? T; where Cy,C,,...,C, are
cycles of length at least 4 and T1, T, . . ., Ti, are trees, then ¢(Go H) =n + I"—"—;'—I'[

Theorem 4.2.9 The Cartesian product of a tree T and a copwin graph G is tandem-

win.
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Proof. We show that two cops playing in tandem have a winning strategy on T'a G.
This strategy has two phases. During the first phase, the cops move to capture the
robber’s image on T - v, for some v € V(G). Consider the second phase. (a) If the
robber moves from a vertex in T - u to a vertex in T - u, u € V(G) and the result of
this move is that at least one of the cops is no longer on the robber’s image, then the
cops move so as to capture the image. (b) If the robber moves from a vertex in T - u
to a vertex in T' - u and at least one of the cops remains on the robber’s image, then
the cops are able to move according to their winning strategy in G. (c) Finally if the
robber moves from T - u to T - w, u,w € V(G) then the cops remain on the robber’s
image and are then able to move according to their winning strategy in G.

Note that the robber can play a move of type (a) only a finite number of consec-
utive times since he will eventually come to a leaf. If the robber only plays moves
of type (c), he will be captured by the Copwin Strategy on G. If the robber plays
a move of type (b), he has passed on G and given the cops a free move on G. The
robber can then play finitely many moves of type (a), all passes in G for the cops,

before having to play a move of type (b) or (c), a resumption of the game on G. O

In [18] it is proven that the copnumber of the categorical product of two copwin
graphs is at most 3, and more generally, if G and H are connected, non-bipartite
graphs with ¢(H) > ¢(G) and c(H) > 2, then ¢(G x H) < 2¢(G) + c(H) — 1.

Let G and H be triangle-free tandem-win graphs, each having at least one cycle.
Suppose there exists a ‘special’ tandem-win decomposition by nearly-irreducible ver-
tices such that (1) any leaves appear at the beginning of the tandem-win ordering,
and only then (2) the nearly-irreducible vertices are retracted.

Note that (a) this decomposition does not introduce any leaves and (b) the sub-

graph formed by the last four vertices in the decomposition is a 4-cycle.

Lemma 4.2.3 Let G be a triangle-free tandem-win graph with at least one cycle. If
G has a ‘special’ tandem-win decomposition then the subgraph formed by the last four

vertices in this decomposition is a 4-cycle.
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Proof. If not, consider the retraction from a subgraph G’ in the tandem-win decom-
position to a subgraph G” in the decomposition which resulted in a tree. Let the
nearly irreducible vertex be z with nearly dominating vertex y. By (1) and (a), there
are no leaves. So G’ contains a cycle but G” does not. Now any cycle in G’ must
include z since G” is a tree. Therefore G’ is isomorphic to Ka,,, m > 2. Suppose
the independent sets are {1,2} and {¢;,¢cs,...,cn}. We can alter the decomposition
to first eliminate members of the set {¢1,cy,...,cn} until a subgraph isomorphic to

K, remains. (See Figure 4.15 when m = 6.) o

K~ R~ R~ R~

Figure 4.15: K¢ reduces to Ko o.

Let V(G) = {a1, a2, ...,a4+4} have the special decomposition ending in a 4-cycle
so that G = a Uaa U---Ua, UC,. Similarly H = b Uby U --- U b, U Cy where
V(H) = {by,ba, ...,brq} has the special decomposition ending in a 4-cycle.

Lemma 4.2.4 Let G and H be triangle-free tandem-win graphs, each having at least
one cycle. If y nearly dominates = in H (y L z) and G has the special tandem-win
decomposition, then G x H reduces to G x (H —z) by retraction of nearly-irreducible

vertices.

Proof. Inductively suppose a; is nearly dominated by ¢; € G \ Ujcie;. If (b, 2) €
N((ai,z)), then b ~ a; and z ~ z. It follows that b ~ ¢; and z ~ y. Thus (b,z) ~
(ciy) or equivalently N((a; z)) € N((c:,y)) in (G \ Ujia;) x H. =



Theorem 4.2.10 Let G and H be triangle-free tandem-win graphs, each having at

least one cycle. If G and H have special tandem-win decompositions then T(G x H) =
2.

Proof. Apply Lemma 4.2.4 to the graph G x H to obtain G x Cy, and again to obtain

Cy x Cy. Now Cy x Cy reduces to e x Cy, where e € E(G) with another application.
Finally notice e x C; = 2C;. O

It has been shown in Theorem 1.2.5 that the strong product of a finite collection
of copwin graphs is also copwin. An analogous result for the copnumbers of graphs
due to Neufeld and Nowakowski [18] bounds the copnumber of the strong product of

two graphs in terms of the individual copnumbers of these graphs.
Let G and H be graphs. Then c((GR H) < ¢(G) +c(H) —1.

Theorem 4.2.11 LetG;,i=1,2,...,n be a finite collection of graphs with T(G;) =
1 for alli. Then T(®™:,G;) <2 L.

i=1

Proof. Consider the projections of ®2 ,G; onto the G;, i = 1,2,...,n and we will

i=1
assign the cops’ positions so that the projections of all the cops lie on a single edge
in each G;.

Consider the following assignments. The cops’ positions in ®’E,G; are (¢, Coir1),
i=0,1,...,2""1 —1, the 2"~! tandems. We will represent (cz, C2:+1) by ((2%)2, (2)2)
where (2¢); = bybo - - -b, is the base 2 representation of 24, (2i); is the complement
of (24)2, and leading zeros are permitted. Note that the (2i), are distinct as are the
(27)2. Hence (2i), and (24)2, i =1,...,2""1 — 1 exhaust all of the integers m where
1 <m < 2" —1. We consider (cg,c1) = (00---0,11---1) as a reference pair.

Thus if in (22) = biby - - - by, b; = 0 then cy; is projected to the same position on
Gj as cp. Otherwise cy; is projected to the same position on G; as c;.

The cops follow the robber on each projection until he is captured on all n pro-

jections. It must be shown that the robber has been captured on ®%,G;.
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Consider the binary number R = z,z; - - - z,,, again with leading zeros permitted,
with z; = 0 if the projection of the robber on G; is captured by cop ¢y and z; = 1
otherwise. Consider now the pair (¢, ¢3:41) which has (2i); = z1z5... 2, or m =
T1ZTo - Tp.

Suppose first (2i); = zz2---z,. If z; = 0 then R projects onto ¢y but ¢y; is
on ¢p in Gj. If z; = 1 then R projects onto c¢; but cy; is on ¢; in G;. Hence cp;
captures the robber on ®L,G;. Similarly co;y; captures the robber on &% G; if

instead (2i)o = z1z5---z,. o

Example. When n =3, T(®2,G;) < 2*~! = 4. In Table 4.1, the cops’ positions
are shown in pairs, or tandems along with the corresponding base 2 representations.

The projections onto each of G, G, and Gj are also indicated.

projection
onto
G G2 Gs
Ll
o0 0 O
c 1 1 1
C2 01 0
C3 1 0 1
Cq 1 0 0
Cs 01 1
Cg 1 1 0
Cr 0 0 1

Table 4.1: T(®}_,G;) < 4.

Consider G; 2 Cy for j =1,2,...,2n . We will show T(&2%,C;) > n. Suppose n
tandems of cops choose their vertices. The robber then chooses a vertex so that on
Gj, the robber’s projection is two away from the projection of cop c;. In one move, no
cop can capture the robber on all the projections and thus not on ®2%,C,. Thereafter,
the robber moves to maintain these distances. Hence n < T(&%*,C,;) < 221, See
Figure 4.16.
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C.
i

Figure 4.16: The robber is not captured on &27,C;.

The notion of a tandem of cops can be generalized to a clique of cops so that
instead of two cops who are required to be adjacent, or on a clique K> after each
move, the cops are required to be on a clique after each move. -

Define a clique of cops on a graph G as a group of k cops occupying a subgraph
K, of G where k > n. The cops can change position from a clique C; to a clique C,
if for all z € C), there exists y € C, such that z ~ y. That is, the cops move from
one clique to another and expand to cover the vertices of the new clique.

A graph on which a clique of cops is sufficient to win is said to be clique-win.

If one wishes to generalize the notion of a copwin graph, what is needed is the
notion of a clique-win graph. The proof of Theorem 1.2.1 can then be generalized to
show that a retract of a clique-win graph is clique-win, and the proof of Theorem 1.2.5
can be generalized to show that the strong product of a finite number of clique-win

graphs is clique-win. It then follows that the class of clique-win graphs is a variety.



Chapter 5

Restrictions on the Robber and a

Summary of Open Questions

In the first several sections of this chapter, we are again considering graphs with
copnumber greater than 1. Here the movements of the robber are restricted. Com-
pare with Chapter 3 where the cops are restricted to moving on assigned beats or
subgraphs. The final section discusses future work.

Let cr(G; H, K) denote the copnumber of the graph G when the cops are restricted
to moving on a subgraph H of G and the robber is restricted to moving on a subgraph
K of G. As mentioned, this restricted version of the game has a flavour similar to
that of the precinct version introduced previously. As well, in [19], Neufeld and
Nowakowski investigate the game of Cops and Robber when the opposing sides move
on disjoint sets of edges. They consider two situations. The first has the cops playing
on the edges of a given graph G and the robber playing on the complementary edges;
that is H = G and K = G. The second has the opponents restricted to playing
on disjoint subsets of edges which are defined in terms of Cartesian and categorical
products of graphs.

This chapter has two main sections and a section of open questions at the end.
In the first, we consider a translation of the problem of determining if a graph has

copnumber k for £k > 2. In the second, we consider a translation of the problem of
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determining if a graph is tandem-win. Both translations reduce the cop side to a

single cop.

5.1 Graphs with Copnumber at Least 2

Suppose a game is played on an arbitrary graph G with |V(G)| = v. Now suppose
¢(G) = 2 so that two cops, cop 1 and cop 2 say, playing on G have a winning strategy
in n moves. We would like to be able to translate this strategy so that a single cop
playing on G% can use it to guarantee a win. If the positions of cops 1 and 2 on G
are z; and y;, © € {1,2,...,n} then the position of the cop on G% is (zi,y:;). We must
first determine which edges must be included in the product ®.

Consider the robber’s sequence of moves on G, ry,79,...,Ta—1, say. We associate
these moves with the moves (r{,71), (r2,72),..., (Th—1,Tn—1) ON Gé. Hence to ensure
that the robber is able to play this sequence of moves in G’% under this association,
we require that ® > x. Recall the partial order on the products from Section 3.1.
See Figure 3.3.

Suppose that on G, cop 1 moves from z; to z; and cop 2 from y; to y;. On G2,
we would like the cop to be able to move from (z;,y;) to (z;,y;). Note that since a
cop is permitted to pass during a turn, z; and z;, and y; and y; need not be distinct.
Hence to guarantee that such a move is possible on G%, we require that ® > ®.

Consider now the final moves made by cops 1 and 2 on G. Recall that only one
of the cops must occupy the same vertex r,_; as the robber to win. Suppose cop 1
captures the robber so that cop 1’s final move is from z,_; to r,_;. To ensure that
the cop playing on G3 is able to capture the robber there, we require that (z,_, ¥n-1)
is adjacent to (7,—1,7»—1). Hence we require that ® > ®°. But notice that the cop
playing on G% only uses edges e € E[(G ®°G) \ (G ® G)] during his final move. All
other moves are made along edges of G ® G. This leads to the following definition of

a restricted game.

Restrictions R: Suppose a game is played on G ®°G where G is an arbitrary graph
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with |V(G)| = v. The robber is restricted to moving on the subgraph induced by
the diagonal or equivalently the vertices (z;,z;), i = 1,2,...,v. The cops are free to
move among any of the vertices. However they can only move along edges included

in G ® G except during a move that immediately results in the robber’s capture.

Recall that cp(G) is the copnumber of the graph G under the restrictions R.

Theorem 5.1.1 Let G be a graph. Then ¢(G) = 2 if and only if cr(G 8°G) =1

where R is the set of restrictions indicated in the preamble to the theorem.

Proof. Let f; : V(G ®°G) — V(G) be the map defined by fi((z,y)) = z, and
f2: V(G 8°G) — V(G) by fa((z,y)) = y; that is, f, and f, are the projection maps.
Suppose ¢(G) = 2. Then two cops have a winning strategy on G. The positions
of the two cops on move ¢ are z; for cop 1 and y; for cop 2. The robber is on 7;_;.
The single cop on G 8°G is on (z:,%:). When the robber moves on the diagonal on
G ®°G to (r;,1;), this translates to moving on G from 7;_; to ;. A move for the cops
on G to z;y) and y;, | respectively translates on G ®¢G to moving to (Tiy1,¥i+1) On
the edges of G ® G. When one of the cops actually captures the robber on G, say z;
and y; = r;_, then the winning move on G ®°G is from (z;_1,y;-1) to (¥;,¥;)-
Suppose cr(G 8°G) = 1. Then the projection maps give the moves for the two
cops on G except for the winning move. Let this move be (z;-1,y;-1) to (y;,¥;),

Yj =Tj-1, Yj ~ Yj—1- Then the moves on G are z;_; to z;_; and y;—; to y; =r;—;. O

It is clear that this result can be generalized so that if G is a graph then ¢(G) = k if
and only if cp( ®°G¥) = 1 where R is the set of restrictions indicated in the preamble
to Theorem 5.1.1.

5.2 Tandem-win Graphs

Suppose a game is played on an arbitrary graph G and consider the question of

whether the given graph is tandem-win. We introduce a translation of the problem



133

so that we need only consider whether one cop, whose movements are restricted, can
win on a related graph G*.

The idea here is that since two cops playing in tandem must always be located
on adjacent vertices, we can transform the graph G to a graph G* where these edges
become vertices. Then a single cop can replace the tandem of cops, and is restricted
to playing on these vertices except to move to capture the robber. The new graph
also retains the vertices of G, and the robber is restricted to playing on these vertices
of G in G*.

More formally, consider a graph G and define a new graph G* = (V(G*), E(G*))
where V(G*) = V(G) U E(G) and (p,q) € E(G*) if any of the following hold:

(a) p,q € V(G) and p ~ g,

(b) p,q € E(G) and p and q share a common endpoint,

(¢) p,q € E(G) and the subgraph induced by the endpoints of p and q is a 4-cycle,

(d) p=pip2 € E(G), g € V(G), and g ~ p) or g ~ p,.

4 p p. P _»p
p q I I
1 q
(a) (b) © (d)

Figure 5.1: Illustrations of conditions (a), (b), (c), and (d).

Restrictions R: On the graph G*, the robber is restricted to moving on V(G) and
the cop is restricted to moving on E(G) except for a move that immediately results
in the robber’s capture. The graph G* is shown in Figure 5.2. We have proven the
following result.

Theorem 5.2.1 Let G be a graph with corresponding transformed graph G*. Then
T(G) =1 if and only if cr(G*) = 1.

Example. A graph G and the transformed graph G* are shown in Figure 5.3.
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edges resulting from

EG ¢ D } conditions (b) and (c)

I l [ I | } edges resulting from

condition(d)
V(G) ® edges resulting from
condition(a)
G*

Figure 5.2: The transformed graph G*.

5
¢/ \J

1
d b
2

c

L 2 3 4 5
G

Figure 5.3: A graph G and the transformed graph G*.
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5.3 Open Questions

1) In Chapter 2, bounds were placed on the photo radar number and video camera
number of a copwin graph. Bounds were also placed on the alarm number and
edge-alarm number of a tree. As mentioned at the end of Section 2.3, we would
like to bound the alarm number, as well as the edge-alarm number of an arbitrary
copwin graph. However, schemes very different from those used in the proofs of
Theorems 2.1.3 and 2.2.5 are needed because of the lack of a directional signal given

by the alarms.

Find similar bounds for tandem-win graphs and, in general, for graphs with copnum-
ber £ > 2.

2) Suppose the number of photo radar units, video cameras, or alarms is fixed. How

many cops are required to guarantee a win on an arbitrary graph G?

3) In Chapter 3, we have attempted to determine p(G, ®) for ® € {x, x°,0,0°, o,6°, ®
=€, @, V}. For the products @ € {x, e, e}, we have only bounded p(G, ®) and thus

the problem of determining exact values, if they exist, remains open. As well for all

1

v, the value of p(K,, V) has not yet been determined exactly.

For arbitrary graphs G and H, we have bounded the copwin number of G ® H for
® € {x,x%n,0%e,e° &, 8, @, V}. The problem of determining exact values for

G ® H remains open.

4) Although we have taken steps toward the characterization of copnumber 2 graphs,
the problem remains open. With regard to tandem-win graphs, we have been able to
characterize triangle-free tandem-win graphs. However there is more work to be done,
in particular with generalizations of chordal bipartite graphs and with elimination

orderings on graphs with houses.

5) It is known from the Tandem-win Strategy that a finite number of moves are re-
quired to catch the robber on a triangle-free tandem-win graph. How many tandems/

cops are required to catch the robber in time ¢? (There would be a fixed resource,
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such as gas, for the chase.) We would like to answer this question for an arbitrary
graph G.

6) Determine the copnumber cg(G; H, K) of a graph G when the cops are restricted
to moving on a subgraph H of G and the robber is restricted to moving on a subgraph
K of G. Two such restricted games are introduced in this chapter. Some results when

the opposing sides are restricted to moving on disjoint sets of edges are given in [19].
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