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ABSTRACT

The objective of this thesis was to develop a novel methodology capable of modeling,
optimizing, and analyzing the steady-state characteristics of a distributed feedback laser
operating in a region above its threshold injection current. Considerations that include
the existence of non-linear behaviors such as gain margin reduction at higher injection
currents, wavelength stability with changes in injection current, and maximizing the
flatness of light energy along the laser’s cavity provided the general motivation for this
work.

This new approach involved integration of the transfer matrix method with global
optimization strategies to address the difficult numerical challenges associated with
modeling the behavioral characteristics of a distributed feedback laser operating in the
non-linear above-threshold region. The standard practice has been to first design for a
desired steady-state characteristic at the threshold injection current, then to conduct an
above-threshold validation to ensure that the characteristic remains. The principle
advantage of this new methodology is that it offers the potential of allowing one to
directly design for, and model a desired characteristic at the injection current of interest.
This capability and the general nature of the methodology offer the potential to form the
basis of a flexible and robust laser design tool.

A successful validation of the methodology’s basic principles was carried out using a
quarter-wave shifted, distributed coupling coefficient, index-coupled, distributed
feedback laser. The problem was formulated in terms of an objective function whose
value considered both the boundary condition error of the laser’s internal light field
solution, and the “flatness” of the internal light field. Global optimization was then used
to iteratively select optimized values of sectional coupling coefficient and/or inter-
sectional phase shift structural parameters so that the laser’s internal light field
approached a state of maximum flatness within the given problem’s parameter
constraints. Throughout the range of injection currents considered, optimized light field
flatness values were more than 90% reduced over the light field flatness value of an un-
optimized reference quarter-wave shifted distributed feedback laser. This was a
successful result, verifying the effectiveness of the methodology and opening the way for
other types of above-threshold design optimizations. Further analysis of the data
revealed evidence that multiple near-optimal light field flatness solutions existed over the
range of injection currents evaluated. This was a new and unexpected result.

In summary, the original contribution of this work consisted of the development and
validation of a new methodology to solve and optimize the steady-state characteristics of
a distributed feedback laser structure at the injection current of interest. The fundamental
difference in this new methodology over the classical approach is that it is not limited to
threshold design considerations. Finally, the evidence of multiple near-optimal solutions
observed during the validation process is a new result and is also considered an original
contribution.

Xiv



1. INTRODUCTION

1.1 Thesis Objectives and Methodology

The objective of this thesis was to research, develop, and test the methodology that will
form the basis for a novel, general-purpose, distributed feedback (DFB) laser
optimization and design tool. A key advantage of this new methodology is its ability to

address above-threshold laser design and optimization problems.

It was deemed of interest to build an optimization and design tool with above-threshold
modeling and analysis capabilities because of the existence of non-linear laser
performance characteristics including gain margin reduction at higher injection currents,
wavelength stability with varying injection currents, as well as, considerations that

involve maximizing the flatness of light energy along the laser’s cavity.

The classical modeling approach is to first design and optimize for a desired performance
characteristics at the laser’s threshold injection current. This step results in a set of
structural parameter values (solution variables) which represents the optimal solution for
a given design constraint, such as field flatness at threshold. (Throughout this work,
when the term “field” is used, it means “electric field”, which is also considered as the
“light”, or “optical field”). Using these solution parameters, the next step is to test that the
desired performance is still maintained in the above-threshold regime or at the target
above-threshold injection current [Ghafouri-Shiraz and Lo, 1996], [Yokoyama and
Sekino, 1998].

This approach has its advantages in that the threshold computational effort is easily
managed, and for certain design considerations, threshold solutions have been adequate.
If, for example, one wishes to improve the above-threshold gain margin of a quarter-
wave shift (QWS) DFB laser, a threshold optimization (reduction) of the non-uniformity
of the laser cavity field has been shown to accomplish this. Based on an understanding of

the physical processes involved it is also sometimes possible to make very good
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predictions as to the general above-threshold behavior of certain designs developed at

threshold; however, it may be difficult to efficiently achieve specific target results in this

manner.

In addition to addressing this potential limitation in the current methodology, a new tool
with above-threshold optimization capabilities would provide a completely different
approach to the problem of laser design, possibly revealing new and useful phenomenon.
Any time an existing problem is looked at in a different way, this action typically creates

the potential to discover something new.

Thus it was postulated there might be advantages to performing such design
optimizations at the particular injection current of interest. However, in order to
investigate this possibility a new methodology was needed, one that would be capable of
considering multiple non-linear design constraints in the process of obtaining an

optimized solution.

The approach used to achieve this objective was to integrate the transfer matrix modeling
method with the general-purpose non-linear global optimization solver system, LGO
[Pintér, 2000]. This combination provided the basis for a new tool that offers the
potential to deal with above-threshold non-linear problems consisting of many degrees of
freedom (solution variables) and imposed solution (physical or manufacturability)

constraints, and represents a new and original contribution by the author.

The new methodology was tested and validated by a successful application to the difficult
problem of optimizing the internal field flatness of a QWS DFB laser operating in its
above-threshold regime [Isenor, Pintér, and Cada, 2001a], [Isenor, Pintér, and Cada,
2002c]. Although it was anticipated that field flattening optimizations performed near
(at) threshold could not be substantially improved upon in the sense that the fields could

not be made substantially flatter by optimizing at the injection current of interest, the real



3

value of this problem was its ability to provide a reasonable and comparative benchmark

test for the new approach.

Optimally flattened field solutions were obtained over the considered range of above-
threshold injections currents and found to be comparable to the anticipated results. This
successfully verified the effectiveness of the methodology and indicated that other types

of above-threshold design optimizations should also be possible.

In the process of obtaining optimally flattened above-threshold field solutions, evidence
was found for the existence of multiple near-optimal solutions. This was an unexpected
and new finding of potential interest to laser designers and also represents an original

contribution by the author.

1.2 Layout and Scope of Thesis

Following this subsection is a brief discussion of the basic theory of laser operation. Also
included is an introduction to DFB lasers and consideration of the important issue of
longitudinal spatial hole-burming (LSHB) reduction. Beginning with Section 2, the
necessary supporting background theory for the new methodology is presented. Field
propagation within the laser cavity is described in terms of coupled wave theory, and in

Section 3, the transfer matrix method’s basic concepts are outlined.

In Section 4 the new methodology is presented and validated by considering in detail the
important issue of maximizing the field flatness of a QWS DFB laser operating in a
region above its threshold injection current, (thus minimizing the effects of LSHB). The
problem was formulated in terms of an objective function that considered both the
boundary condition error associated with the laser’s internal field solution, and a field
“flatness” parameter that corresponded to the non-uniformity of the field. Global
optimization strategies were then applied to find a steady state field solution for the DFB

laser that minimized the objective function for a given above-threshold injection current,
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and in so doing, both an optimal match with the boundary condition and a maximally flat

field were obtained within the parameter constraints of the problem.

In order to demonstrate the efficacy of the methodology, various numerical examples
were considered. First, the sectional coupling coefficient profile associated with a six
(equal-length) section, index-coupled, QWS DFB laser was optimized such that
maximized field flatness was obtained for a range of above-threshold injection currents.
Following this, phase shifts were introduced between the six laser sections. The effect of
optimizing the phase shift profile to obtain maximum field flatness was investigated first
independently then in combination with optimization of the sectional coupling coefficient
profile. Section S continues the analysis, where the behavioral charactenstics that
resulted from an investigation of (fixed) optimized sectional coupling coefficient and/or
inter-sectional phase shift profiles over the full range of injection currents, are presented.
Also examined were threshold injection current and single longitudinal mode stability

considerations. Finally, discussion and conclusions follow in Section 6.

1.3  Background and Laser Basics

This subsection presents a brief introduction to lasers and their theory of operation. For
additional information, the reader may wish to consult the following excellent books:
[Agrawal, 1992], [Ghafouri-Shiraz and Lo, 1996], [Green, 1993], [Kawaguchi, 1994],
[Keiser, 1993], [Tamir, 1988], [Van Etten and Van der Plaats, 1991], and [Yariv, 1991].

The history of the laser dates back to the 1958 work of Schawlow and Townes, where
they proposed a method to synchronize the radiation resulting from a large number of
excited atoms by stimulating the exited atoms to emit radiation within a special type of
resonant cavity. This was followed in 1960 by the first solid-state ruby laser and helium
neon (He-Ne) gas laser. Concurrent research resulted in the 1962 discovery of lasing
behavior in semiconductor material and since that time lasers have found increasingly

widespread usage. A short and by no means comprehensive list of applications would
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include communication systems, laser radars, military weapons guidance systems, range

finding, medicine, holography, manufacturing, and home entertainment systems.

The structure and size of a laser varies greatly. Lasers can be as small as the head of a
pin to room size, and lasing media can consist of various gases, crystals, liquids, and
semiconductor materials. Optical communication systems require a small compact
monochromatic (single frequency) laser source, and semiconductor lasers are the choice
for this application. However, unless carefully designed, these lasers are not strictly
monochromatic. Achievement of an efficient monochromatic source from a
semiconductor laser has been an ongoing research goal. Much of the design effort
involves numerical modeling of the laser behavior, including the internal field
distribution and intensity. A partial list of references would include the work of
[Ghafouri-Shiraz and Lo, 1996], [Kogelnik, 1969], [Kogelnik and Shank, 1972],
[Makino, 1991], [Makino and Glinski, 1988], [Sargent, Swantner, and Thomas, 1980],
[Wang, 1974], and [Yariv, 1973]. Such field solutions must satisfy an increasingly non-
linear set of relations as the laser’s optical power increases. The solution space in turn is
non-linear and multi-extremal.  Analysis is extremely complicated and design of
optimized laser structures has been a challenging task. In the succeeding sections this
challenge will be addressed in a new way, by introducing for the first time a novel and
robust numerical method that integrates the transfer matrix method (TMM) and global
optimization (GO) strategies. It will be demonstrated that by applying this approach it
was possible to both obtain and optimize the DFB laser field solution for maximum

flatness over varying levels of optical power (injection current).

All types of lasers operate using the same basic principles, which involve the following
three processes: photon absorption, spontaneous emission, and stimulated emission. For
illustrative purposes consider a simple two-state system, with energy levels denoted as E;
and E,. The lasing medium’s electrons will normally exist in their lowest energy or
ground energy state, £,. If an incoming photon has an energy level of hv,> - E; - E},

(where A is Planck’s constant and v is frequency), an electron in the ground state can
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absorb the photon’s energy and be promoted to the excited state, £>. This is an unstable

energy state for the electron and in a short time it will spontaneously return to its ground
state, while emitting a photon of energy Av;>. This process occurs at random and does
not rely on an external stimulus. Photons produced in this way are not in phase and

assume random polarizations and directions within :he lasing medium.

Stimulated emission occurs when an electron in the excited state, E>, is externally
induced to make the transition to its ground energy state. This occurs when a photon of
energy, hv; interacts with the excited electron. The stimulated photon produced when
the electron drops to its ground state is also of energy Av; ., but unlike the case of
spontaneous emission, this photon is in phase (coherent) with the stimulating photon and

has the same polarization.

injection current

metallic contact

bias voltage =

N / laser output

-«— heat sink

metallic contact

cleaved end facet

Figure 1.1 Semiconductor Laser Diode

Normally the level of stimulated emission is negligible unless a condition known as
population inversion is achieved. This occurs when the number of electrons occupying
the excited state is greater than the number of electrons in the ground state. In this
situation stimulated emission may dominate over both absorption and spontaneous

emission, and a net optical gain will result. In order to achieve this condition the laser
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medium is “pumped”;, depending on the type of laser this is done either optically (by an
external light source), or electrically (by applying a current or voltage to the lasing

medium).

Figure 1.1 shows a typical semiconductor laser design. Its approximate dimensions
would be in the order of length = 300 som, width = 200 g, and thickness =100 gom. It
consists of a higher refractive index active medium sandwiched between heavily p- and
n- doped cladding layers with lower refractive indices. Placing the doped semiconductor
materials together in the manner depicted in figure 1.1 achieves two important results.
Firstly, because of the electrical properties associated with the doping i.e. different band-
gap energies, the electron-hole pairs injected from the electrical current source will be
confined to the active region only. This means that when recombination takes place the
optical gain is also confined to this region. Secondly, the refractive index difference
between the layers acts to confine the field transversely and guide it longitudinally.
Therefore in the process of the lasing action, the semiconductor laser medium is pumped
by application of an injection current at the device’s metallic contacts. This process fills
the energy states of the conduction and the valence bands associated with the laser’s p-n
junction. Spontaneous and stimulated emissions involve the transition of electrons from
the conduction band to the valance band thus annihilating electron-hole pairs, which is
analogous to the E; to E; energy level transition of the two state system previously
introduced. (The reader may wish to consult one of the suggested references for a

detailed discussion of these mechanisms.)

Once pumping occurs, all that remains to initiate laser action is to establish a mechanism
of optical feedback. In order to set up this situation, the pumped active medium is placed
within the confines of an optical resonant cavity. The resonant condition can be achieved
in several ways; however, in the case of semiconductor lasers, the earliest methods
employed reflective facets at the cavity ends. In very simple terms, as the light bounces
back and forth between the reflecting end facets it interacts with the pumped active

medium stimulating the emission of photons as the electron-hole pairs recombine. A
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longitudinal field builds until internal optical losses are exceeded and the laser begins to
exhibit a self—sustained oscillation. This is known as the threshold condition and it is the
point that the laser is just “turning on”. Less than 100% reflectivity allows a portion of

the light to escape through the end facets.

Lasers that employ cavity end reflectivity, whether using reflective facets or external
mirrors, are referred to as Fabry—Perot lasers. A semiconductor Fabry-Perot laser has a
wide gain spectrum and exhibits multimode longitudinal oscillations. Unlike the simple
two-level, single-frequency energy transition model previously discussed, this means that
the active medium is capable of emitting radiation across a broad range of frequencies.
Because a cavity with facet reflectivity will support oscillations at multiple frequencies,
the laser will emit more than one lasing frequency. This makes the Fabry-Perot laser
useful, for example, in applications such as a CD player, but undesirable for use in optical

communication systems.

A single longitudinal mode oscillation resulting in a monochromatic output can be
achieved by changing the nature of the cavity feedback. Removing the mechanism of
feedback from the cavity ends and distributing it over the entire length of the cavity in the
form of a periodic index variation will accomplish this. A semiconductor laser
employing this type of distributed feedback mechanism is known as a distributed
feedback (DFB) laser. Refer to figure 1.2 for a simplified schematic of a DFB laser

structure.

14 DFB Lasers

DFB laser structures are planar and composed of semiconductor materials such as indium
gallium arsenide phosphide (InGaAsP) waveguide and active layers as well as n- and p-
doped indium phosphide (InP) buffer and substrate layers. Typical dimensions of a DFB
laser’s active layer are a length of 500 um, a width of 1.5 wom, and a depth of 0.12 um.

The grating is formed using an etching process. These methods are very precise and
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result in an accurate grating depth, pitch, and period, parameters that determine the

feedback and operational characteristics of the laser.

l Injection Current

Butfer Laver // Bragg Grating
Light Light
Waveguide Laver
ns — Buffer Laver ¥~ Active Layer
N4 Substrate Laver
ns - ! ——
- Length -

N1.23.4.5 = Index of Refraction K15 < T < N4 < N2<N3

Figure 1.2 Index-Coupled Distributed Feedback Laser

This longitudinal periodic index distribution is known as a Bragg grating and the
mechanism of feedback is by Bragg diffraction. A wave that is incident on the Bragg
grating will result in reflected wavelets at each grating corrugation. If the phase
difference between reflecting wavelets is an integer of 27, constructive interference will
take place. This provides the mechanism for longitudinal mode selectivity. Only the

modes with a wavelength, A5, which satisfies a condition
A=m(4,/2n,) [1-1]

where A is the grating period, m is a non-zero integer, and . is the effective refractive
index of the mode, will couple constructively. The examples considered in this work
used a first order grating, where m =1. Optical feedback generated in this manner results
in two counter-propagating electromagnetic (optical) waves, where the right-traveling

wave couples energy into a left-traveling wave, while at the same time the left-traveling
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wave couples energy into the right-traveling wave. The strength of this coupling is
governed by the coupling coefficient, K, a parameter that is determined by the grating

pitch, depth, period, and position relative to the active layer.

When the coupling is restricted to a grating that consists of a periodic index perturbation
only, this is referred to as index-coupling. Other classes of coupling include mixed or
gain-coupling. The mixed-coupled structure has its corrugation layer fabricated on the
upper portion of the active layer. Index-coupling is induced through the periodic
vanation in the refractive index associated with the corrugation layer; however, the active
layer thickness is also modulated by the presence of the corrugation. This in turn results
in a longitudinal modulation of the amplitude gain, which induces the gain-coupling
effect. Pure gain-coupling is achieved by fabricating a second grating layer on top of the
mixed-coupling grating structure. This second grating employs an inverse phase
corrugation, which acts to cancel the index-coupling effects of the original grating.
These various coupling classes, index, mixed, and gain-coupling, are reflected in K

values that are respectively either purely real, complex, or purely imaginary.

Although the forthcoming methods could be applied equally well to the other classes of
coupling, the index-coupled DFB laser is extensively used, and for the purpose of this

work consideration was restricted to this structure with no obvious loss of generality.

1.5 Longitudinal Spatial Hole-burning

The DFB laser’s ability to produce a single longitudinal mode oscillation resulting in a
monochromatic output is of fundamental importance in optical communications
applications. Much work has gone into the design of such devices in the effort to achieve
narrow spectral linewidths, reduced longitudinal spatial hole-burning (LSHB), low
threshold (turn-on) current, and efficient power utilization. The introduction of a quarter-
wave phase shift at the laser cavity mid-point eliminated a major problem associated with

DFB lasers, that of low power mode-degeneracy. This is the appearance of unwanted
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side modes at an injection current level that is above, but still close to the threshold
injection current. This characteristic is due to insufficient gain margin at the low power
level. Unfortunately, addition of the quarter-wave phase shift also resulted in a highly
concentrated field at the phase shift plane causing LSHB. At this point the intense field
of a QWS DFB structure locally depletes the carrier density, and as the laser power
increases, this effect ultimately results in mode-degeneracy now occurring at higher

operating powers.

DFB laser design, including the reduction of LSHB, has been the target of intensive
research. A partial list of references includes the works of [Fang, Hsu, Chuang, Tanbun-
Ek, and Sergent, 1997], [Fessant, 1997], [Morthier and Baets, 1991], [Morthier, David,
Vankwikelberge, and Baets, 1990], and [Rabinovitch and Fieldman, 1989]. Recent
research by [Wang, Cada, and Makino, 1998], [Wang, Cada, and Sun, 1999}, and [Wang
and Cada, 2000] has resuited in the development of a novel coupled-power technique,
which has also been successfully used to investigate the behavior and the LSHB
reduction of a DFB laser.

One method used to reduce LSHB is to introduce a longitudinally distributed coupling
coefficient (DCC). The DCC is typically length-normalized and is referred to as the
Kappa-L product (KL). By optimally choosing a KL distribution, the field maximum that
occurs at the laser cavity midpoint in a QWS structure for a uniform KL is reduced,
thereby reducing the LSHB effects. The question then is, given a finite number of (fixed)
KL sections, is it possible to select the KL distribution so that the internal field is

optimally flattened, or at least approaches a uniform state.

It is also possible to achieve a reduction in the field intensity non-uniformity by moving
away from the QWS structure and longitudinally distributing the phase shift (PS) profile.

This method may be used alone or in combination with a DCC.



12
Because these approaches have been investigated using designs at threshold power, (see
[Ghafouri-Shiraz and Lo, 1996], and [Yokoyama and Sekino, 1998]), this problem
provided a useful benchmark to validate the new proposed methodology which
conversely entailed designing for maximum field flatness at the threshold current of
interest. In other words, for a fixed above-threshold injection current, how does one
optimize the KL and/or PS parameters such that the DFB laser’s internal field is optimally

flattened?

Based on the known above-threshold performance characteristics of the benchmark
threshold designs, a substantial improvement in field flatness was not anticipated by
using the new methodology, but the advantage of this expected result was that it provided
a required reasonable standard for validation purposes. Therefore, it was considered
logical to expect that confirmation of the new methodology’s capabilities would depend
on achieving field optimization results that were at least comparable to the benchmark
results. This established the rationale for using this problem to test and substantiate the
performance capabilities of the new methodology. As an additional benefit, there also
remained the possibility to gain alternate insights into this problem by approaching it

from a new direction.

So to summarize, what has been lacking so far in the literature is a comprehensive
optimal design methodology for DFB lasers, particularly when directly tackling non-
linear above-threshold considerations such as minimization of LSHB at the specific
injection current of interest. This thesis proposes a new methodology that uses global
optimization in conjunction with the transfer matrix method above-threshold solution

technique as one step towards achieving this objective.
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2. COUPLED WAVE THEORY

2.1 The Scalar Wave Equation

The pioneering work of [Kogelnik and Shank, 1972] provided the first theoretical
explanation of the operation of a DFB laser structure in terms of the coupled wave theory.
Methods based on coupled wave analysis have since been used extensively to model the
steady state characteristics of DFB lasers. Coupled wave theory necessarily forms the
basis of the TMM as applied to the threshold and above-threshold analysis of DFB lasers

and as such will be discussed in this section.

Lateral and transverse field confinement imposed by the structural constraints of the DFB
laser necessitates that any longitudinal field solution must satisfy the following one-

dimensional time-independent scalar wave equation.

d*E(z)

K (ER) =0, [2-1]

where z represents the direction of electric field propagation or longitudinal direction of
the laser and 4(z) is the wave propagation constant. £(z) is the complex amplitude of a
time-harmonic electric field and is considered to be independent of the x (width) and y

(thickness or transverse) directions of the laser.

Consider the general case where the Bragg grating consists of both a periodic refractive
index and gain variation. Then, using a first order approximation, the index n(z), and

gain a(z) profiles are written as

n(z) =n+n,cos(2B,z), [2-2a]
a(z)=a+a,cos(2p,z2) . [2-2b]

The parameters » and a, are average values while 7, and a; are the maximum amplitudes

of the periodic variations in laser medium refractive index and gain, respectively. f, is
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the Bragg propagation constant. The wave propagation constant, k, for a wave
propagating in a complex dielectric where the radiation frequency close to the resonance

frequency is defined as

k* =k} n’ (z{l+j;c;((z))] [2-3]

where &, is the free space propagation constant. Assuming the perturbations in gain and
index are much smaller than their average values (n;,<<n, ;<< a) and substituting

equation [2-2a] and [2-2b] into equation [2-3] result in the following expression for &:

k* = kin?(2)+ j2k m(2)a(z)+ ak nlz J —i—’} cos(2,z). [2-4]

Since K is defined as

k=" ;% [2-5]

by replacing k1(z) with B, equation [2-5] can be rewritten in the following form
k* = B% + j2Pa(z)+ 40K cos(2,z). [2-6]
Substitution of this expression into equation [2-1] yields

d*E(z)

- +[B? + j2Pa(z)+4BK cos(28,2)1E(z) = 0. [2-7]
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2.2  The Coupled Wave Equations

A necessary condition for coupling and propagation is that the Bragg condition must be
nearly satisfied. This means that the actual propagation constant f must be sufficiently
close to the Bragg propagation constant £, such that the absolute difference between them
is much less than the Bragg propagation constant or | f-f,| << fi,. With this considered,
the solution to equation [2-7] is the total complex electric field amplitude along the
grating and results from a linear superposition of two counter-propagating waves (electric

fields). The expression is written as
E(z) = R(z)e % + S(z)e’? . [2-8]

Equation [2-8] is the trial solution to the scalar wave equation, and is used to construct a
general solution by substitution into equation [2-7]. The electric field solutions vary
slowly in amplitude allowing second order derivatives in the complex amplitude terms
R(z) and S(z) to be neglected. Similarly because | f-8./<< f,, rapidly changing phase
terms such as exp(x j3B,z) can be ignored. It is common practice in the coupled wave
theory to neglect the higher order terms because there is no coupling between third order

traveling waves.

Finally the following approximation is made

%Bizﬂ—ﬂozn(w—wo)/c=5, [2-9]

where c is the speed of light in vacuum, @ and @, are the longitudinal mode and Bragg
frequencies, respectively, and the parameter J is known as the detuning coefficient. It is
a measure of the difference between the Bragg propagation constant and the actual

propagation constant of the longitudinal mode. When the terms containing similar
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exponents are grouped together, the general solution, which consists of the following pair

of coupled wave equations, is obtained

—E‘-’%ﬁ»(ao - JO)R(z) = JKS(2) [2-10a]
BC) | (@, - j5)S(z) = JKR(). [2-10b]

-

Expressing the trial solution to the coupled wave equations in terms of the complex

propagation constant, y, the following relations are obtained
R(z)=Re”" +R,e™ [2-11a]
S(z)=S,e” +S,e™", [2-11Db]

where R;, Rz, S;, and S, are complex coefficients that depend on the boundary conditions
that the field encounters at the left-and right-hand facets. These boundary conditions in
turn depend on facet reflectivities, which are understood to be zero as a simplifying but in
no way limiting assumption for the purpose of this analysis. The dispersion relation

determines the complex propagation constant, y, with
v =K +(a-jo) . [2-12]

In the case of zero facet reflectivity, the exact solutions to the coupled wave equations are

written as

R(z)=sinh y(z + -;—L) , [2-13a]

S(z) =sinh y(z —%L) : [2-13b]
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where L is the longitudinal dimension (length) of the DFB laser. Equation [2-1], the
scalar wave equation, is classified as a two-point linear homogeneous boundary problem.
The non-trivial solutions to equation [2-1] are expressed in terms of eigenvalues and
corresponding eigenfunctions. In this case, equations [2-13a], and [2-13b] form a set of
eigenfunctions with corresponding eigenvalues y, which determine the oscillation modes

of the laser as a function of L and K.

2.3  Threshold Oscillation Condition
The threshold equation for zero facet reflectivities is written as [Ghafouri-Shiraz and Lo,
(1996)]

jiL = +KLsinh(yL). [2-14]

For a fixed value of the length-normalized coupling coefficient, KL, it is possible to solve
equation [2-14] for the various oscillation modes of the DFB laser. These modes are
expressed in terms of the detuning parameter, J, and the threshold gain, & Typically
these parameters are also normalized relative to the length of the DFB laser and are

written as 6L and al.

Equation [1-1] and equations [2-1] to [2-14] form the basis on which to describe the
oscillating mode characteristics and resultant field profiles of a DFB laser at threshold,
i.e. the point where the laser is just turning on. At threshold the number of stimulated
photons are considered negligible. As the injection current increases, so does the
dynamic range of the laser’s longitudinal carrier density and the stimulated photon
density profiles. This interrelationship is also reflected by an increase in the dynamic
range of the laser’s internal electric field intensity profile. The non-linear interactions
between these profiles must now be considered because of their effects on the laser’s
oscillating mode characteristics. The next section will illustrate how the transfer matrix

method is used to address the above-threshold problem.
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3. TRANSFER MATRIX METHOD

3.1 Transfer Matrix Method and Global Optimization

The concept presented in this section uses as its starting point the above-threshold
transfer matrix methodology originally proposed by [Ghafouri-Shiraz and Lo, 1996].
Starting at the left-hand facet, and using sectional transfer matrices, the DFB laser’s
internal electric field is longitudinally propagated through the structure until the right-
hand facet is reached. Using their approach, the oscillation mode characteristics of the
laser, for an above-threshold injection current, are obtained by matching the internal
field’s right-hand boundary condition (RBC). This is done iteratively where, based on
the RBC error in the previous iteration, new potential solution values are selected and
evaluated by re-propagating the electric field. Their heuristic strategy utilizes an
adaptable numerical grid over the solution space to select each new set of potential
solution values. This method, which is dependent on the result of the previous iteration,
“walks around” the solution space until the RBC error is minimized. Because of the
multi-extremal nature of the error function, one has to carefully select a starting point
when solving the problem at a given injection current. Solutions are obtained for
increasing injection current by using a previous lower injection current result as a starting
point. These increases must be sufficiently small to avoid ending up in a local minimum

of the error function, which would represent a non-physical field solution.

By integrating this above-threshold transfer matrix method with the robust global
optimization strategies as implemented by the LGO software [Pintér, 2000}, to globally
search the entire solution space and select the solution that minimizes the RBC error, it
was possible to directly and rapidly solve for injection currents that varied from 1.1 to 5
times the threshold injection current. [Ghafouri-Shiraz and Lo, 1996] selected this range
of injection currents to explore the behavior of a bulk semiconductor lasing around 1550
nm. This range was chosen primarily because it covered a sufficient span to permit the
material saturation effects to fully mature. In order to obtain a valid comparison with the
new methodology, identical laser structural and material parameters, as well as the same

injection current range, were used in this work.
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Using the new methodology, the simplest possible case was first considered [Isenor,
Pintér, and Cada, 2001b). This consisted of finding the valid internal field solutions for
the QWS DFB laser in terms of the optimal values of the lasing wavelength, 4, and the
dimensionless coefficient, C,, a parameter which relates the normalized electric field to
the actual total electric field. The solutions were obtained over a range of selected
injection currents, initially without the requirement to optimize the flatness of the laser’s
internal field. Encouragingly, these results compared very favorably to the referenced

results achieved by Ghafouri-Shiraz and Lo.

This represented an initial success, however, the most important realization was that no
inherent limit existed on the number of solution variables this process was theoretically
capable of dealing with, although practical limits based on the computational load
obviously existed. By defining the error function (objective function) to include a field
flatness parameter and by expanding the solution space to include the structural
parameters that affect field flatness, it became possible to simultaneously obtain an
optimally flattened field while achieving the boundary match condition required for a

valid field solution.

3.2  Transfer Matrix Method Theory
The TMM approach requires dividing the DFB laser into a large number of equal-length

sections while within each section all physical parameters are considered constant.

E(z) — —t}— EG.)

Efz,) -— +—t Efz,.)

~ <«—— Active Layer

m m+1

N 44—
(3]

Figure 3.1 DFB Section of a Semiconductor Laser Diode
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This is the key to the method. In the case of the DFB laser’s electric field distribution, it

allows a simple 2x2 matrix relationship to be developed between the input and the output

electric fields for any section. Refer to figure 3.1 for a schematic of an arbitrary (m"’)

section of a DFB semiconductor laser diode.

For any laser section of the type described, it is possible to rewrite the trial solutions,

equations [2-11a] and [2-11b], in such a fashion that the input and the output electric

fields are related by a matrix equation of the form

l:Er Gma )jl - I:’u P } ) |:Er(zm ):I
E:(zmq) ’Zl 122 E: (:m)
where the matrix elements, 7, are written as

t“ = (E - sz‘l )_e'.lﬁo(-.-d_:. )/(‘l —_ pz)

t,=—p (E_E-l )_e-Jﬁq(z..n—-'.)/(l_p-’-)

ty = plE~E" ) e oe) [~ p?)

t, = _(plE_E—l)_ejﬁo(:..x--'.)/(l_pz),

with
JjK
p=r—"",
(@-js+y)

and

E= eY(-’..x-Z.) E—l = e—r(:...—:.) '

[3-1]

[3-2a]

[3-2b]

[3-2¢]

[3-2d]

[3-3]

[3-4]
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The matrix product of the individual section transfer matrices, written in the following

manner

Y(z, ()z)=TY - T ... T2 T, [3-5]

forms the complete transfer matrix, Y, for a DFB laser of M sections.

This overall matrix fully describes the propagation characteristics of the right-and
left-traveling waves for the entire DFB laser. The initial numerical example considered
in the next section used a quarter-wave phase shift (QWS) section positioned at the
midpoint of the laser to ensure single longitudinal mode stability. In a QWS structure,
input and output electric fields are considered continuous, encountering only a shift in

phase as they travel through this section.

The quarter-wave phase shift section can be described by a matrix

p=l¢* O | [3-6]

Any (mid-point) phase shift section is easily incorporated into equation [3-5] in the

following manner

M

M
Y(z.tlol'zl)= ™ .T¥'...T? L P.T2...T>.T". [3-7]

This expression gives the complete transfer matrix representation of a QWS DFB laser.
In order to ensure symmetry, an even number of equal-length sections is chosen, allowing
the phase shift section to be placed at exactly the midpoint of the DFB laser. This

consideration is reflected in equation [3-7]. In the forthcoming numerical examples, M
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was chosen to be 5000, and the phase shift section was placed after the section 2500. The

midpoint QWS section is a plane of quarter-wave phase transition for the longitudinal
electric fields. Because this transition takes place over one corrugation period, which is
three orders of magnitude less than the length of the laser, the actual physical length of
the transition can reasonably be neglected. Using equation [3-7], it is now possible to
relate the electric fields that appear at the right-hand facet of a QWS DFB to the electric

fields at the left-hand facet by the following matrix equation

E (zy.) E (z))
s =Yz, |20 ) . 3-8
[E:(ZAIH )] ( ' | ) [E:(:l )} [ ]

It should be noted that equation [3-7] reflects an ideal QWS DFB laser structure with
zero facet reflectivities at both facets as well as no residual grating phase at either facet.
Non-zero residual grating phases at the facets as well as facet reflectivities would
necessarily be accounted for in the transfer matrix formulations and could easily be
incorporated into equation [3-7] and equation [3-8] if needed. However, for the purpose

of this work these considerations are an unnecessary complexity.

3.3 Laser Threshold Condition Using the TMM

A laser at threshold is an optical oscillator. Applying coupled wave theory means that at
threshold the right-traveling electric field with a value of zero at the left-hand facet would
grow in intensity as it travels to the right through the laser until it reaches the right-hand
facet. The same consideration would, of course, equally apply to the left-traveling electric
field. In order for this to occur, the transmission gain of both the left-and right-traveling

fields must be theoretically infinite.
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Using equation [3-8] the following relationship is obtained for the transmission gain, 4,,

of the left-traveling field

_ Es(zl—) 1

r - = > [3'9]
E (z3.4) Vx (z.u-l |:1 )

where

z)=0. [3-10]

Yu\Sya

When equation [3-9] approaches zero, the transmission gain for the left traveling-field
approaches infinity and the cavity becomes resonant. Solving equation [3-9] is analogous
to solving equation [2-14], and results in the oscillation mode parameters of the laser at
threshold, again expressed in terms of the detuning parameter, J, and the threshold

gain, &
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4. ABOVE-THRESHOLD OPTIMIZATION

4.1 Theory and Methodology

Any study of the above-threshold behavior of a DFB laser must incorporate the non-
linear interactions between the longitudinally varying parameters of electric field
intensity distribution, carrier density, photon density, and refractive index for a given
injection current. Because the physical parameters in any given laser section are assumed
to be homogeneous, it is possible to obtain the electric field intensity, carrier density,
photon density, and refractive index for that section, and by using a large enough number
of transfer matrix sections, it is also possible to numerically extend the localized results

to a continuous distribution.

This investigation considered the field flatness optimization of a QWS DFB laser
consisting of six equal length sections symmetrically arranged about the laser’s midpoint.
A schematic of this structure is presented in figure 4.1. Associated with each section
were length-normalized coupling coefficients, KL/ to KL6, while phase shift planes, PS/
to PS5, separated each section Given the problem symmetry, the following
simplifications were possible: KL/ equals KL6, KL2 equals KL5, KL3 equals KL+, PS/
equals PS5, and PS2 equals PS+. The plane of symmetry was PS3, the laser’s midpoint.
This arrangement reduced the numerical complexity by three variables with coupling
coefficient only optimization, and by five variables when both phase and coupling
coefficient optimization were considered simultaneously.

Quarter Wave Shift (QWS)
PS3 =90 degrees

PS1 PS2 PS3 PS4 PSS

KL1 l KL2 l KL3 l KL4 l KLS5 l KL6

UuUuUpuUuyUpuUUUTUvUuUUUOuUuU UL

Figure 4.1 Schematic of DFB Laser Structure
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As a matter of clarification the following convention with respect to sectional coupling
coefficient and phase shift sections was adopted. The parameter KL refers to the overall
sectional coupling coefficient profile, KL/ to KL6, and similarly the phase shift profile
parameter, PS, refers to the collection of phase shifts, PS/ to PS5, which separate the

various coupling coefficient sections. This is also illustrated in figure 4.1.

The primary objective was to apply global optimization methodology to minimize the
objective function derived from the above-threshold TMM, and in so doing, to select the
KL and PS design parameters as well as the lasing wavelength, 4, and the dimensionless
coefficient, C,, such that the field flatness was maximized. C,, relates the actual total

electric field, £, to the normalized total electric field, £, in the following manner

E(z)=C,E(x)=C,[E.(2)+E,(2)] [4-1]

There are fundamentally two conditions that must be simultaneously considered when
solving the above problem. The first condition is the requirement that the field solution
must match the right-hand facet boundary condition. TMM field propagation is chosen to
start from the left-hand facet and moves through the laser structure section by section
until the right-hand facet is reached. Providing the laser structure is symmetric, and the
facets are anti-reflective, at this point the normalized left-traveling field intensity should
be zero and the normalized right-traveling field intensity should be one. Under these
considerations the right-hand boundary condition is met if equation [3-10] is satisfied,
[Ghafouri-Shiraz and Lo, 1996]. One may use this fact directly in the iterative process to
find the best solution or opt to consider the actual left-traveling field intensity’s
requirement to be zero at the right-hand facet. The latter approach was considered in this
investigation. It should be noted that with either approach equation [3-10] is still directly

or indirectly minimized.

Finding the above-threshold field solution for fixed KL and PS profiles involves the

iterative selection of the 4 and C, that results in the best field boundary condition match
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at the right-hand facet. This in itself is an optimization problem where the objective or

merit function to be minimized is the boundary condition error.

The second condition is maximizing the actual field flatness. KL and PS values have to
be optimized such that the field is maximally flattened while at the same time the
boundary condition constraint must be met. Utilizing the problem definition capabilities
of the LGO software and constructing an objective function that incorporates both
requirements simultaneously accomplish this. To the best of the author’s knowledge this

approach has not been used before and as such represents an original contribution.

The field flatness function F is defined as
1 Sar.1 2
F=r ; 1(z)-1,,) @, [4-2]

and the objective function becomes

Objf = F + scal x RBC error , [4-3]

where /(z) is the sectional field intensity, /.., is the average field intensity over the laser
length, RBCerror is the right-hand boundary condition error, and scal is a suitable scaling
(penalty) parameter. This represents (one of) the simplest possible objective functions
for this problem. The design of the objective function depends on the problem
complexity and the relationships between the solution parameters. If additional
considerations are required such as inclusion of a residual phase corrugation and non-zero
end facet reflectivities, it may become necessary to redesign the objective function to
better reflect the ensuing solution parameter dependencies. However, for the purposes of
this work, equation [4-3] provided a reasonable starting point and yielded acceptable
results. Based on the outcome of several trial runs using a selection of scaling
parameters, a value of scal = 1000 was selected and used in the evaluation of the

succeeding numerical examples.
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Observe that it is necessary to constrain the solution such that minimization of RBCerror
takes precedence over maximizing the field flatness. This is accomplished by also
specifying RBCerror as an explicit independent constraint, which ensures that the
boundary condition criterion at the right-hand facet is met and the field solution, however
optimally flattened, is a valid solution (reference Appendix E, page 109). LGO uses its
combination of global and local search strategies on the defined parameter space to seek a
minimized objective function. With LGO’s selection of each new set of KL and PS
values, as well as 4 and C,, the internal parameters of each transfer matrix section are

subsequently modified.

The carrier rate equation must be included to consider the relationship between the
injection current, i, the carrier density, N, the stimulated photon density, S, and the net
(material) gain, g, in each laser section and is expressed as

i N

v gs
N BV N+ 2
gy 1+0oS

(4-4]
The volume, V), is determined from the geometry of the active region. The parameter o
accounts for saturation effects at high photon densities. The remaining equation
parameters consist of the bimolecular recombination coefficient, B, the Auger
recombination coefficient, C, the linear recombination lifetime, t, and the group velocity

at the Bragg wavelength, v;.

The amplitude gain and detuning in each matrix section depend on the carrier density and

are written as

a= (rg - alaxs )/ 2 ’ [4-5]
27
5= n-Te(a_2)-Z, [4-6]
A AAg A
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where " is the optical confinement coefficient, a;,ss is the internal cavity loss, 77 is the
effective index, 7, is the group refractive index, 4z is the Bragg wavelength, and 4 is the
lasing wavelength. The effective index dependence on the carner density is defined as

n=n, +l"-alN [4-7]
cN

where n. is the effective refractive index at zero injection current, and the term Jn ON is

the differential index.

The stimulated photon density in each laser section, §:, is given by the following

expression

25n( )n

CZIE GY + )] [4-8]

where ¢, is the permittivity of free space, 4 is Planck’s constant, and c is the speed of
light in vacuum. C, is the dimensionless normalization coefficient. Both 4 and C, need to
be determined in the calculation such that the corresponding field profile matches the
boundary conditions at the laser facets. Finally, the following parabolic gain model is

used to characterize the active medium’s gain
g=A4,(N-N,)-4h-@2, - 4,(N-N,)}. [4-9]
At the transparency carrier density, N,, this expression reduces to
A, =4,+A,(N,-N,). [4-10]
The wavelength 4, is the wavelength at which the material gain is zero, at the

transparency carrier density, and is defined as the peak gain wavelength at zero gain

transparency. In the above expression, 4, is the differential gain, and the parameters 4,
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and A, are associated with the width of the gain spectrum and changes in gain,

respectively, that result from shifts in the peak wavelength.

The flow chart depicted in figure 4.2 illustrates the use of the LGO global optimization
software in the solution methodology for obtaining a DFB laser’s above-threshold
optimized field solution. Consult [Pintér, 2000] for a complete description of the LGO
software system, and [Pintér, 1996] discusses the theory behind LGO. Note that LGO
can be used in both global and local search modes and that both were applied in this

study.
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From the preceding description it is clear that the problem solution entails optimization of
the behavior of a highly non-linear “black box” (complicated) system. In such cases,
there is no guarantee of convexity in the model structure, therefore the “traditional”
repertoire of (convex non-linear) optimization is insufficient per se, and a genuine global
scope optimization methodology is required to solve the optimal laser design problem

discussed.

The calculation proceeds by first obtaining the laser’s threshold condition, a; and O,
from equation [3-10]. Following this, equation [4-1] and equations [4-4] to [4-10]
determine all other threshold parameters, N, M, 4o, A, and iy , which are used to
initialize each sectional transfer matrix. The normalized field is propagated through each
laser section, starting at the left-hand facet, until the right-hand facet is reached. The
final self-consistent field solution is obtained iteratively such that with each left-to-right
pass through a laser section its effective index is updated to reflect the revised sectional
carrier density. Because of the complex non-linear interrelationship between the
longitudinal field, the longitudinal carrier density, the refractive index, and the photon
density profiles, structural iterations must continue until there are no changes in the
profiles with each subsequent pass. In so doing, the field solution quickly stabilizes for a
given set of KL, PS, 7, and C, values. Once the profiles have stabilized, the model
function values are evaluated by LGO and based on the search technique employed, LGO

selects new KL, PS, /4, and C, values.

Using the objective function equation [4-3], and the boundary match constraint,
RBCerror = 0, the global optimization method, as implemented by the LGO software,
searches the entire solution space and selects the solution that minimizes the objective
function for a given injection current. This process continues until either the iteration
limit set by the user has been exceeded or the numerical optimization criteria have been
met. Once this occurs, the KL1, KL2, KL3, PSI, PS2, PS3, 4, and C,, values as well as
the associated longitudinal profiles that correspond to the smallest objective function
value are accepted as the solution. The reader may wish to refer to Appendix A for a

detailed step-by-step description of the complete calculation process.
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4.2 Numerical Examples
In order to evaluate and validate the effectiveness of the new methodology, as well as
investigate the characteristics of performing above-threshold field flatness optimizations,
three cases were separately considered and compared. Field optimizations were
performed using first variations in the coupling coefficient only, then in the phase only,
and finally in the coupling coefficient and in the phase. The optimized laser’s relative
characteristics for the three cases were then compared to each other and to the
characteristics of an un-optimized QWS structure with an overall normalized coupling
coefficient value of two. All results presented were based on a 500-um long DFB laser
with its model parameters listed in table 4.1. The injection current was normalized
relative to the threshold current, i, and values ranging from 1.1 times i, to S times i

were considered.

Therefore, in order to meaningfully compare the new methodology’s optimization results
to the reference structure’s field characteristics, as a starting point for the optimization
process, all six equal-length KL sections KL/ to KL6, as illustrated in figure 4.1, were
also initialized to the value of two. This meant the overall normalized coupling
coefficient for the entire structure to be optimized by the new methodology initially

matched that of the reference.

The first requirement in the optimization process is to determine the structure’s threshold
lasing parameters. These values are required to initialize the structural transfer matrices
prior to starting the field propagation iterations. In the case of the coupling coefficient
only optimization threshold conditions were determined from the indicated QWS
structure (with PS3 = 90 degrees). All the remaining phase shifts were considered zero.
In effect the laser remained a QWS structure throughout the entire optimization process.
In the other two cases evaluated, the five phase shift planes, PS/ to PS5, were assumed to
each have an initial value of 36 degrees each while each of the six KL sections were
initialized to the normalized (sectional) coupling coefficient value of two, once again

matching the reference.
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Because of the symmetry conditions previously discussed, (Section 4.1), the first and the
second cases resulted in a problem with five degrees of freedom (optimization
parameters) whereas the third case, with the combination of both the phase shift and the

coupling coefficient optimization parameters, had eight degrees of freedom.

Feasible solutions with objective function minimizations on the order of 10° were
obtained for the various injection currents using a global search termination criterion
parameter of 10,000 and 20,000 iterations or model function evaluations. The relatively
long runtimes of five to ten hours dictated the restriction of function evaluations to
0(10%) for the purposes of this work; however, satisfactory solution accuracy was still

reliably achieved while keeping within this range.

The model was coded using Lahey Fortran LF95, from Lahey Computer Systems Inc.
[2000], and implemented together with LGO on an 800 MHz personal computer.
Examples of the problem Fortran code are presented in Appendix E. Numerical solutions
were obtained in under five hours with a 10,000 iteration run. According to the extensive
numerical experience gained with LGO, the use of 10,000 (20,000) function evaluations
in the global scope search (before switching over to standard search techniques) was

sufficient for the five to eight variable global optimizations performed in this work.
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Table 4.1 Model Parameters
Parameter Symbol Value Unit
Material Parameters
Spontaneous emission rate r! 2.5x10° st
Bimolecular recombination coefficient B 1 x10"° m’/s
Auger recombination coefficient C 3x10™ m’/s
Differential gain Ao 27x107%° m’
Gain curvature A 0.15 x 10 m”
Differential peak wavelength A> 2.7x 1_0"2 m
Internal cavity loss Qloss 4x10° m’
Refractive index at zero injection n, 3.41351524 i
Carrier concentration at transparency N, 1.5x10* m”
Carrier concentration at threshold N m”
Differential index ay -1.8x 107 m’
ON
Group velocity at Bragg wavelength Ve 3x10%3.7 m/s
Nonlinear gain coefficient o 1.5x 105 m’
Peak gain wavelength at transparency Ao 1.63 x10° m
Lasing wavelength A m
Lasing wavelength at threshold Ak m
Structural Parameters
Active layer width d 1.2x 107 m
Active layer thickness w 1.5x10° m
Coupling coefficient K 4x10° m’
Laser cavity length L 500 x 10°° m
Optical confinement factor r 0.35
Grating period A 2.27039x 107 m
Bragg wavelength Azg=2An, 1.55x 10° m
Threshold current fin A
Injection current i A

The parameters listed in table 4.1 have been used extensively [Ghafouri-Shiraz and Lo,
1996] in the threshold and the above-threshold analysis of a bulk semiconductor DFB

laser, and are considered to be valid for such a device lasing around 1550 nm.
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4.2.1 Coupling Coefficient Optimization

Results of the coupling coefficient only optimization are presented in this subsection.
Starting with a QWS structure based on the parameters defined in table 4.1, field intensity
profile optimizations were carried out for injection current values ranging from 1.1 to 5
times the threshold current. In this case the threshold injection current was determined to
be 19.82 mA. Figure 4.3 graphically illustrates the results achieved at the various
normalized injection currents relative to un-optimized QWS profiles for 10,000 iteration
runs. (Similar results were produced with 20,000 iteration runs.) For clarity only the
QWS profiles at the injection current extremes are presented in the graph. (The remaining

QWS profiles would populate the space between these two extremes.)
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Figure 4.3 Coupling Coefficient Optimization versus Un-optimized QWS Structure:
Normalized Longitudinal Field Intensities (10,000 Iterations)
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The first fact that is immediately obvious from figure 4.3 is that the longitudinal field

intensity profiles were drastically reduced from those of the un-optimized QWS structure
for the complete range of injection currents evaluated. This is extremely significant as it
clearly indicates that the optimization process worked successfully in the above-threshold
region of the laser operation, and resulted in significantly flattened profiles. It is also of
importance to note that only minor differences existed between the optimized profiles
regardless of the value of the injection current at which the optimization was carried out.
In other words, the optimized normalized field intensity profile of the laser operating at
1.1 times the threshold current denoted by 1.1 x i, was virtually identical to the
normalized field intensity profile of the laser operating at any other injection current up to

and including 5 X iy,

Normalized intensity, carrier density, refractive index, and photon density profiles are
presented in figures 4.4 to 4.7 for an injection current value of 3 x iy, Similar

characteristics were observed for all the remaining injection currents evaluated.

These results, obtained from 10,000 and 20,000 iteration runs respectively, were
compared against the un-optimized QWS DFB laser with a fixed KL of two. Most
significantly, there was a marked reduction in the peak field intensity at the midpoint of
the laser, which was slightly improved from 10,000 to 20,000 iterations. This reduction
was reflected in a corresponding decrease in the depletion of carriers at the laser
midpoint. LSHB was thus reduced significantly compared to the un-optimized structure.
A decrease in the photon density at the midpoint followed from the decrease in the field
intensity, and the refractive index also decreased as a result of the increase in the carrier

density.
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The next set of figures summarizes the operational characteristics for various normalized

(i/is) injection levels above-threshold. Field flatness is compared in figure 4.8.
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Figure 4.8  Field Intensity Flatness (KL Optimization)

Both the 10,000 and 20,000 iteration runs indicated a significant reduction in field
flatness over the un-optimized structure, with the greatest improvement at the lower
injection currents. This was expected as the relative normalized field intensity profile of
a QWS structure with a constant KL tends to flatten at higher injection currents. There
was an average of a 90% improvement in flatness across the range of injection currents
evaluated. Little difference was seen between the 10,000 and 20,000 iteration flatness

results indicating a near optimum solution.

The coupling coefficient optimized solution values obtained are presented in table 4.2a
and table 4.2b. Examination of these results revealed interesting differences between the
corresponding 10,000 and 20,000 iteration KL values. In some cases there were
significant differences yet the intensity profile solutions as well as the corresponding field

intensity flatness showed only minor variations. This behavior is thought to be reflective



of more than one “almost optimal” solution.

designer faced with constraints imposed by a fabrication process.

Table 4.2a  Optimized KL Parameters (10,000 iterations)

Injection
Current
1.1x I}h
1.5x i,h
2x igh
3x J};,

4 X i

S X i

Table 4.2b  Optimized KL Parameters ( 20,000 iterations)

Injection
Current
1.1 X iy
15 X i(h
2x i,h
3x i,},
4x i,;,
Sx l}h

KLI

2.22
2.12
2.00
1.85
1.89
1.96

KL1

211
2.21
1.97
2.21
1.93
2.01

KL2

0.75
1.00
1.36
1.65
1.62
1.47
Overall

KL2

1.12
0.91
1.37
1.30
1.56
1.27

Overall Average =

KL3

1.18
0.84
0.61
0.60
0.64
0.55

Average

KL3

0.74
0.88
0.85
0.11
0.56
0.85

Average KL

P
W W WwWWwwww
WV W00 QNN oo

Average KL

1.32
1.33
1.40
1.21
1.35
1.38
1.33
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This fact may prove very useful to a

Figure 4.9 shows that the for both iteration counts, the average KL over the range of

injection currents for the optimized structure remained constant at approximately

KL e = 1.34, which is reduced from KL = 2 corresponding to the un-optimized structure.

There is little change (0.02) in the average KL between both iteration counts, which is

interesting in light of the results presented in tables 4.2a and 4.2b. Again this behavior is

thought to be representative of more than one near-optimal solution and may also be

indicative of an underlying (unknown) relationship between sectional coupling

coefficient values and an optimal solution.
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It should be noted that KL... slightly exceeded 4/3, which is considered as a practical
upper limit for overall average coupling; however, at no time did a sectional KL value
exceed the considered practical limit of 2.5, [Yokoyama, Sekino, 1998]. Using the new

methodology, which incorporates LGO, it would be a simple matter to constrain KLavg to

remain below 4/3.

The lasing wavelength of the optimized structure was observed to blue-shift by
approximately 0.1 n»m from the un-optimized structure’s wavelength, (see figure 4.10).

Again, no significant change was apparent between the 10,000 and 20,000 iteration

41

optimization runs with the optimized structure’s wavelength remaining constant over the

full range of injection currents.
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Typically, similar DCC QWS DFB laser structures with fixed coupling coefficient
parameters exhibit a blue-shift in the order of 0.05 to 0.1 rmm over the range of injection
currents studied, with the greatest change being at the lower injection currents. Other
than the initial wavelength blue-shift from the average wavelength of the un-optimized
structure, there was no observable change with increasing injection current. One possible
explanation for this behavior is that with optimization, a more uniform field flatness is
obtained over the range of injection currents. The optimally flattened field has an
associated optimally flattened carrier density distribution. This characteristic, through the
relationship established by equation [4-7], leads to an average refractive index value that
shows less of an overall change with injection current than observed for the un-optimized
QWS structure. The uniformity is present even though there is an observed minor
variation between both optimization runs (see figure 4.11). This in turn results in
uniform wavelength versus injection current behavior. It is worthwhile noting that this
behavior is in marked contrast with the average refractive index of the un-optimized

structure, which exhibits a rapid decrease with increasing injection current and has the
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largest change at the lower current values. Because the variation in the average refractive
index with the injection current was minimal, it followed that the change in the lasing
wavelength was also minimal. This behavior may prove beneficial in the reduction of the
so-called chirping effect, i.e. a wavelength variation with the injection current; this is also

a system limitation in high-speed optical communications networks.
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Figure 4.11 Average Refractive Index (KL Optimization)

The average normalized (Bragg) detuning coefficient and average normalized amplitude
gain results are presented in figure 4.12 and figure 4.13. With optimization, both the
detuning and the amplitude gain resulted in slightly less variation with increasing
injection current over the un-optimized structure. Because the wavelength did not change
appreciably with the increasing injection current, changes in detuning were also minimal

over the range of injection currents.
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The highly non-linear nature of the objective function associated with the DCC QWS

DFB laser is clearly revealed for the first time by figure 4.14 (Appendix B figure B1).

Objective Fumction vs. KLL1, KL2
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The image is scaled by mininal and maxinal (or cutofl) function values.
The prejected locatien of the solution estimate is denoted by the dot.

Figure 4.14  Objective Function versus KL/, KL2 (KL Optimization at 3 X i)

Please refer to Appendix B, figures Bl to B8 for the complete set of objective function
visualizations. These figures are optimal solution sub-space projections for several of the
laser’s independent solution parameters. In figure B7 and figure B8 the objective
function cut-off value was reduced from 200 to 20, thus revealing some of the non-
linearities’ finer details. The ‘“blue dot” indicates the position of the optimal solution

estimate.

It appears from figure B1, (figure 4.14), and figure B2 that the objective function was
highly sensitive to the behavior of KL/, and less influenced by KL2 and KL3. Note that
the KL! (and KLG6) sections were at the extreme ends of the laser, and included the end
facet boundaries. Although the exact mechanism is unclear, one possible explanation for
the sensitivity may be related to the fact that the field profiles must accurately satisfy the

facet boundary conditions associated with these sections. This behavior was also
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observed in figure B4 to figure B6 and indicated the same objective function sensitivities

when coupling coefficients and the lasing wavelength were considered. Figures Bl to B8
(generated interactively by LGO) visually demonstrated the numerical difficulty of the

laser model parameterization issue explored in this work.

4.2.2 Phase Optimization

Using a fixed KL profile of two for all coupling coefficient sectional values, phase shift
planes with initial nominal values of 36 degrees were introduced between the six
coupling coefficient sections resulting in a total starting phase shift of 180 degrees.
Although in this study no attempt was made to design for single longitudinal mode
(SLM) operation by maximizing the threshold gain difference, threshold studies
performed by [Ghafouri-Shiraz and Lo, 1996] indicated that a total phase shift of 180
degrees over three phase shift sections (60 degrees per phase shift) appeared to offer the
largest threshold gain difference relative to other values of total phase shift. Based on
this fact it was reasoned that the total phase shift of 180 degrees over five sections (36
degrees per phase shift) might also result in an adequate threshold gain difference, and as
such provide reasonable nominal values for the optimization process. In reality this
assumption turned out not to be valid (section 4.3); however, by using the new
methodology, drastic field flatness optimizations were still achieved from this initial

nominal phase shift profile.

Figure 4.15 reveals the same general field flatness optimization behavior as observed in
the case of coupling coefficient only optimization. (Again, similar results were produced
with the 20,000 iteration runs.) Careful examination of the obtained profiles indicated
slightly more variability in the profile shape with the various levels of the injection

current evaluated.
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Figure 4.15 Phase Optimization versus Un-optimized QWS Structure:

Normalized Longitudinal Field Intensities (10,000 Iterations)
The normalized intensity, the carrier density, the refractive index, and photon density
profiles for phase optimization are presented in Appendices C1 to C4 for an injection
current value of 3 x i As with the case of coupling coefficient optimization only, similar

characteristics were observed for all the remaining injection currents evaluated.

A marked reduction in the peak field intensity at the midpoint of the laser was again
observed, as well as a slight improvement from 10,000 to 20,000 iterations. In a similar
fashion as the coupling coefficient optimization, this reduction was reflected in a
corresponding decrease in the depletion of carriers at the laser midpoint; LSHB was thus
reduced significantly from the un-optimized structure. A decrease in the photon density
at the midpoint followed from the decrease in the field intensity, and the refractive index

also decreased as a result of the increase in the carrier density.
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Figure CS5 indicates that the reductions in field flatness achieved with phase only
optimization were equivalent to the coupling coefficient results of the previous section,

with little variation again seen between the 10,000 and 20,000 iteration runs.

Significant differences in corresponding phase shift values PS/, PS2, and PS3 were
observed between the 10,000 and 20,000 iteration runs (table 4.3a, and 4.3b), yet the
overall average optimized phase shift showed little change (< 3 %). The previous results
revealed that the overall average optimized coupling coefficient exhibited an analogous

behavior.

Table 4.3a  Optimized PS Parameters (10,000 iterations)

Injection PS1 PS2 PS3 Average PS

Current (deg.) (deg) (deg) (deg.)

1.1 X i 37.61 34.93 19.12 32.84

1.5 X i 39.36 16.57 2533 27.44

2 X i 22.26 37.64 36.36 31.23

3 Xin 35.05 28.83 39.62 33.48

4 X i 26.67 2419 30.80 26.50

5 X im 21.37 29.19 31.05 26.43
Overall Average = 29.65

Table 4.3b  Optimized PS Parameters (20,000 iterations)

Injection PS1I PS2 PS3 Average PS
Current (deg.) (deg.) (deg) (deg.)
1.1 xip 41.68 44.18 33.12 40.97
1.5 X i 19.37 29.17 36.44 26.70
2X i 35.66 25.96 17.91 28.23
3 X i 19.65 31.95 27.72 26.18
4 X iy 17.66 40.55 22.43 27.77
5 X i 2022 2912 30.13 25.76

Overall Average=  29.27

This is interesting in light of the fact that the average phase shift values versus the
injection current (table 4.3a and 4.3b) in some cases showed ten times the percentage
variability between the 10,000 and the 20,000 iteration runs than did the reasonably
constant, average KL percentage variability between the 10,000 and the 20,000 iteration
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runs of the previous case, indicated in table 4.2 and figure 4.9. These results coupled
with the negligible difference in field flatness observed in figure CS are thought to lend

further strength to the argument for the existence of multiple near-optimal solutions.

Phase shift only optimization produced an initial approximate 0.2 n»m blue-shift in the
lasing wavelength relative to the lasing wavelength of the un-optimized QWS DFB
structure, in comparison to the 0.1 »m shift observed with coupling coefficient
optimization. This behavior is illustrated in figure C6. The observed wavelength shift
occurred at the lowest value of the injection current evaluated, 1.1 x 7, but as the current
increased, the lasing wavelength tended on average to gradually red-shift such that by 5 x
i, the difference between the un-optimized QWS DFB’s lasing wavelength and the
lasing wavelength of the phase-shift optimized DFB was on the order of 0.05 nm. This
trend plus the noticeable wavelength variability were thought to be related to a stronger
manifestation of multiple near-optimal solution effects, first observed in the case of KL

only optimization.

This increased wavelength variability, as expected, was reflected in the average refractive
index, the average detuning, and the average amplitude gain behaviors of the optimized

laser, and may be observed in the figures C7, C8, and C9, respectively.

4.2.3 Combined Coupling CoefTicient and Phase Optimization

The results obtained from the combined coupling coefficient and phase optimization are
presented in this section. Starting with the nominal initial values for the sectional
coupling coefficient and the phase used in the previous two sections, 10,000 and 20,000
iteration numerical studies were performed. Both previous optimizations considered a
problem with five degrees of freedom (optimization variables); however, with the
combination of the coupling coefficient and the phase, the problem expanded to eight

degrees of freedom.
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The normalized intensity profiles for the various injection currents studied are presented

in figure 4.16. The complete set of longitudinal profiles obtained for the 3 x i injection
current level are presented in Appendix D, figures D1 to D4.
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Figure 4.16 Coupling Coefficient Plus Phase Optimization versus Un-optimized QWS
Structure: Normalized Longitudinal Field Intensities (10,000 Iterations)

These intensity profile results are comparable to the results obtained for both previous
cases. Figure DS indicated that the reductions in the field non-uniformity were of a
similar magnitude across the spectrum of injection currents evaluated. The representative
3 x i longitudinal profiles also showed little deviation from the previous results, other
than that slightly smaller solution variability was observed between the 10,000 and
20,000 iteration runs when compared to the variability observed for the case of the phase

optimization only.

Optimized sectional coupling coefficient and phase solution values are presented in table
4.4a and 4.4b. Again, a significant variability between the 10,000 and 20,000 iteration

results was evident for both individual and average KL and PS values for given injection
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currents, yet as with the previous two cases, the overall average values of KL and PS

differed by less than 3%.

Table 4.4a  Optimized Combined KL and PS Parameters (10,000 iterations)

Injection KL1 KL2 KL3 Average KL
Current

1.1 Xim 1.34 1.79 1.70 1.61

1.5 x i 1.44 2.31 1.81 1.86

2Xinm 1.84 1.56 0.75 1.38

3 X i 1.67 1.59 1.54 1.60

4Xip 1.18 1.56 0.38 1.04

S5Xin 2.10 1.08 0.87 1.35

Overall Average = 1.47

Injection PS1 PS2 PS3 Average PS
Current (deg.) (deg) (deg.) (deg.)
1.1 X ipn 21.49 34095 24.26 27.42
1.5 X i 3692 29.63 27.27 32.07
2 X im 31.13 2751 32.10 29.88
3Xin 32.12 2765 29.79 29.87
4 X iy 13.26 1948 18.45 16.79
S X iy 29.71 39.44 17.16 31.09

Overall Average = 27.85

Table 4.4b  Optimized Combined KL and PS Parameters (20,000 iterations)

Injection KL1 KL2 KL3 Average KL
Current

1.1 X i 1.18 1.81 1.10 1.36

1.5 X i 1.62 0.97 1.52 1.37

2 X Iy 2.05 1.26 2.06 1.79

3Xip 1.50 2.01 1.14 1.55

4 X i 1.06 2.21 1.28 1.52

SXinm 1.83 1.06 1.12 1.34

Overall Average= 1.49
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Table 4.4b (continued)
Injection PS1 PS2 PS3 Average PS
Current (deg.) (deg.) (deg.) (deg.)
1.1 X i 14.52 28.14 33.81 23.83
1.5 X i 14.03 30.37 23.62 22.49
2 Xip 33.33 35.84 35.84 34.54
3Xiy 31.44 31.44 30.40 28.52
4 X i 2094 2921 32.89 26.64
S Xim 27.90 19.86 3943 26.99

Overall Average = 27.17

Following an initial blue-shift of approximately 0.25 nmm from the 1.1 x ix injection
current un-optimized QWS DFB results, combined coupling coefficient and phase
optimization produced a flat wavelength response with an increasing injection current. A
negligible variability was also observed between the 10,000 and 20,000 iteration runs.

This behavior is presented in figure D6.

Interestingly enough, the average refractive index, the average detuning, and the average
amplitude gain behaviors of the combined coupling coefficient and phase optimized laser,
showed a significant variability over the full spectrum of the injection current studied,
with little difference indicated between the 10,000 and 20,000 iteration runs. These
results are illustrated in figures D7, D8, and D9 respectively; however, in contrast to the
previous case of phase only optimization, this variability was not reflected in the
wavelength behavior. Typically the suppression of spatial hole-burning by field intensity
optimization is anticipated to produce a refractive index that does not change
significantly over the considered range of injection currents. This in turn should result in
an almost constant wavelength over the same range of injection currents. If one assumes
the opposite must also be true, it is surprising in this case that the wavelength apparently
did not reflect the observed refractive index variability suggesting some other unknown

relationship was at work influencing the wavelength behavior.
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4.3 Summary of Optimization Effects
Utilizing the previously described above-threshold TMM and global optimization
methodologies, maximally flattened above-threshold field intensity profiles were
obtained with sectional coupling coefficient and/or phase shift optimization for
normalized injection currents that ranged from 1.1 X is to 5 X ix. In the case of coupling
coefficient only optimization, a /2 phase shift was maintained at the laser’s midpoint
ensuring that the fully optimized laser still remained a QWS structure. In the case of
phase or combined coupling coefficient and phase optimization, a phase shift of /5
between each coupling coefficient section was employed as the initial distribution. In all
cases, a normalized sectional coupling coefficient value of two was used for each laser

section as the starting coupling coefficient profile distribution (XL/, KL2, and KL3 = 2).

At the lowest injection current evaluated, 1.1 x i, the lasing frequency in all three cases
considered exhibited an initial blue-shift from the lasing frequency of the reference QWS
DFB laser. The coupling coefficient only optimization produced a lasing wavelength
blue-shift of ~ 0.1 nm and the coupling coefficient plus phase shift optimization resulted
in an initial blue-shift of ~ 0.2 nm when compared with the reference QWS DFB laser’s
wavelength. In both cases the shifted wavelength remained (basically) unchanged over
the full range of injection currents. The phase shift only optimization also produced an
initial blue-shift of ~ 0.2 nm, but in this case an average gradual red-shift of ~ 0.1 nm
back towards the QWS DFB laser’s wavelength was seen over the range of injection
currents. In addition to this the phase shift only optimization produced a higher degree of
variability in the blue-shifted wavelength over the range of injection currents than did
either the coupling coefficient only or the coupling coefficient plus phase optimizations.

The reason for these differences is presently unknown.

A negligible variation in field flatness was observed across the range of injection currents
as well as combinations of coupling coefficient and phase shift parameters employed
indicating no practical restrictions over the range studied. In all cases it was possible to

obtain a maximally flattened field.
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Results from optimizations carried out using the coupling coefficient and/or phase shift
variables show strong evidence for the existence of multiple near-optimal solutions. This
is reflected in the differences in specific and average optimization parameter (KL and PS)
values between the 10,000 and 20,000 iteration runs for any given injection current.
More importantly, the average of these (average) values over the range of injection
currents, i.e. the overall average, shows almost no variation between the two iteration
runs. This is suggestive of the anticipated result: that the value of the injection current
makes very little difference in the outcome of the optimization process. In other words if
the laser is optimized for an injection current of 1.1 x /i such that a maximally flattened
field profile is obtained, then holding the resulting KL and/or PS parameters fixed, it
should be possible to find an equivalent optimally flattened field intensity solution at all
other injection current values over the range studied. This assertion is further explored in
section 5.1, along with the threshold injection current and the single mode stability

behavior as a function of the optimization process.
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s. FURTHER ANALYSIS OF OPTIMIZED PROFILES

§.3  Optimized Profile Flatness Behavior

In the preceding section, the effectiveness of using the transfer matrix method combined
with global optimization in reducing a DFB laser’s internal field non-uniformity was
clearly demonstrated. Maximally flattened field profiles were obtained for all values of
injection currents investigated, using variable coupling coefficient and/or phase shift
parameters. The results indicated that it was possible to optimize a DFB laser at any of
the given above-threshold injection currents. The optimization process would in turn
produce a set of KL and PS values that corresponded to a near-optimally flattened field.
Marked variability of the solution parameters between the 10,000 and 20,000 iteration
runs over the range of injection currents contrasted sharply with an equally marked
insensitivity in the behavior of the optimized value of field flatness. This behavior was
thought to be indicative of the presence of multiple near-optimal solutions across the
spectrum of the injection currents evaluated, and also raised the question as to whether or
not there actually was a particular advantage to optimize the laser’s KL and/or PS
parameters for each specific injection current. In other words, if one seeks to operate a
laser at 3 x i with a maximally flattened field profile, is it necessary to perform the
optimization at 3 x i, or, as anticipated, would a near-threshold optimization suffice?
Stated another way, would an optimization performed at a given injection current still
result in optimally flattened fields if the same KL and PS solution parameters were now
used in obtaining the laser’s field solutions at all the other given injection currents. (In
the second case, only the 4 and C, parameters would be permitted to vary in order to
obtain the necessary boundary condition match at the right-hand facet.). With the results

of the previous section this question could now be explored in more detail.

In order to further investigate these issues, an additional series of numerical studies were
performed where field solutions at all the given threshold currents were obtained using
(fixed) optimized solution parameters resulting from optimizations performed at 1.1 x iy,
and 3 x i». In this study both coupling coefficient and phase shift optimizations were

investigated. (Based on the results obtained it was reasonable to assume that the
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combined coupling coefficient and phase shift optimization solution parameters would
have produced similar behavior; therefore, to avoid redundancy, this combination was not
included.)

Using data from 10,000 iteration runs, the normalized field flatness versus injection
current results are presented in figure 5.1, where field flatness behaviors resulting from
the fixed solution parameters obtained through optimizations performed at 1.1 x i, and 3
X i were compared to the field flatness results from coupling coefficient and phase

optimizations performed at each of the given threshold currents.
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Figure 5.1 Field Flatness — Fixed Solution Profiles (1.1 x iy, and 3 X i)

In the legend of figure 5.1, the terms “KL Optimization™ and “PS Optimization” refer to
coupling coefficient (KL) optimizations or phase shift (PS) optimizations, respectively,
that were performed at each value of the injection current resulting in different sets of KL

and PS solution parameters, which of course are the Section 4.2.1 and 4.2.2 results. (Also
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see figures 4.8 and C5.) The next term in the legend, “KL Optimization at 1.1 x
Threshold Current”, corresponds to the case where the structural coupling coefficient
profile was obtained through an optimization carried out at 1.1 x /. This profile was
held fixed, and above-threshold field solutions were obtained for all the other values of
injection currents. The field flatness parameters corresponding to these field solutions
are presented in the figure. The remaining three terms in the legend are to be similarly

interpreted.

As a matter of observation, intersections between the fully-optimized QWS DFB laser
flatness results and the corresponding fixed (optimized at 1.1 x i and 3 x i) KL and PS
parameter results were seen to occur at 1.1 x iy, and 3 x /. This was anticipated and it
confirmed that the solution procedure was consistent. The most significant result
revealed in figure 5.1 is that all flatness values across the range of injection currents are
of the same magnitude, remaining better than 90% reduced relative to the flatness
behavior of the un-optimized QWS DFB laser. (In order to maintain a reasonable scale,

the un-optimized QWS DFB laser’s flatness results were omitted from figure 5.1).

These results provide reasonable evidence that an optimization carried out at or near-
threshold, or for that matter at any other fixed injection current in the given range, is
sufficient and will produce a (near) optimally flattened field intensity over the full range
of injection currents. In light of this fact there appears to be no particular advantage to
performing multiple above-threshold optimizations if achieving a maximally flattened
field is the sole aim. Again, this was an anticipated result that both confirmed both the
validity and consistency of the new methodology, and of performing the (computationally

simpler) threshold optimizations.

It is also interesting to note that the field flatness values resulting from optimizations
conducted using the fixed XL and PS structural parameters, showed less variability over
the range of injection currents than the field flatness values obtained by optimizing at

each injection current. This was attributed to the fact that the numerical process now
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consisted of only two degrees of freedom, 4 and C,, whose values were iteratively
determined such that the right-hand facet field boundary condition was optimally
matched. One possible explanation for this behavior is that by reducing the number of
degrees of freedom to just two, the hypothesized multiple near-optimal solution effect

was also reduced (or eliminated).

In addition to the reduction in variability it was also observed that the field flatness
behavior resulting from the fixed XL or PS field solutions showed in general a decrease
in flatness value over the range of injection currents, with the greatest decrease at the low
injection current. This is easily explained by the fact that the resulting field profiles are
only optimally flattened at the injection current for which the original optimization was
carried out. At any other value the field is slightly non-optimally flattened and will
exhibit the same type of flatness versus injection current behavior as a non-optimized

QWS DFB laser except to a much lesser extent.

Finally, the field flatness values over the range of injection currents evaluated, were
observed to be smaller if the 1.1 x i, optimized values for KL or PS were used to produce
the field solutions across this range, instead of the 3 x i, optimized values for KL or PS.
This suggests that there may actually be a slight overall advantage to performing the field

flattening optimization at or near the threshold injection current.

Other than the primary result, which indicates that optimization at any injection current
will produce a near-optimally flattened field at all other injection currents, the remainder
of the above results produced effects that are thought to be too small to be of much
immediate practical significance. However, the effects were consistent with expected
behavior and as such they further support the validity and consistency of the optimization

methodology used.
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§.2  Optimized Profile Wavelength Behavior
Using data from 10,000 iteration runs, the lasing wavelength versus injection current
results are presented in figure 5.2, where wavelength behaviors resulting from the fixed
solution (KL or PS) parameters obtained through optimizations performed at 1.1 x iy, and
3 x i, are compared to the wavelength results from coupling coefficient (KL) and phase

(PS) optimizations performed at each given injection current.
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Figure 5.2 Lasing Wavelength — Fixed Solution Profiles (1.1 x 7» and 3 X /1)

Consistent with the results presented in figure 5.1, and as expected, intersections between
the fully optimized QWS DFB laser wavelength results and the corresponding fixed
(optimized at 1.1 x i, and 3 x i;y) KL and PS parameter results were again seen to occur at
1.1 x irn and 3 x s It was also observed that wavelength values resulting from the field
solutions derived from the fixed (optimized) KZ and PS structural parameters showed less
variability over the range of injection currents evaluated than the cases of KL or PS

optimizations performed at every injection current. As with the previous section the
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reason for this was attributed to the reduction in the number of degrees of freedom and
consequently the reduction of the effects from the hypothetical muitiple near-optimal

solutions.

Two interesting observations resulted from the data presented in figure 5.2. The first
significant behavior was that by using the 1.1 x i or 3 x iy optimized KL structural
parameters, a noticeable improvement in the overall wavelength change with injection
current (wavelength chirp) was achieved relative to the wavelength chirp of the reference
un-optimized QWS DFB laser. Although there was evidence of improvement in the
wavelength chirp when using the 1.1 x i optimized PS structural parameters, some
wavelength variability was seen over the range of injection currents used. The reason for
this variability is not known. Wavelength chirp improvement also occurred at the
injection current of 3 x iy for the optimized PS structural parameters, but to a much
smaller extent. Therefore, in all cases, using either the KL or the PS structural parameters
associated with the field flattening optimizations carried out at 1.1 or 3 x i, some
improvement in wavelength chirp was realized. This behavior’s apparent (unknown)
relationship to field flatness and the structural parameters used in the field flattening
optimizations, may potentially lead to a method to control and minimize the wavelength

chirp in a DFB laser.

The second interesting observation made from the data presented in figure 5.2 was the
presence of the overall wavelength blue-shifts of approximately 0.15 to 0.2 nm relative to
the wavelength of the reference un-optimized QWS DFB laser. These blue-shifts
occurred to varying degrees with either the KL or the PS field flattening optimizations. In
all the cases except one, the shifted wavelength remained relatively constant over the full
range of injection currents evaluated. The exception was the case where a PS
optimization was carried out at each of the considered injection currents. This behavior
was first observed and discussed in Section 4.2.2. Displaying this wavelength data in
figure 5.2 illustrates its enhanced variability over the full range of injection currents as

compared to the relatively trivial to non-existent wavelength variability associated with
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the remaining optimization results. With PS only field flattening optimizations

conducted at each threshold current, a wavelength varability of approximately 0.1 nm
occurred over the full range of injection currents. This variability, as discussed in Section
4.2.2, was attributed to a stronger manifestation of the effects from multiple near-optimal

solutions.

Although the mechanism remains unclear, the important point here is that in all cases the
amount of blue-shift observed was apparently related in some unknown and complicated
way to the process of field flattening optimization as well as to the appearance of
multiple near-optimal solutions. This behavior may offer the potential to tune a DFB laser
over a range of at least 0.2 nm by using an appropriately constrained optimization
process, one where an optimally flattened field would not necessarily be the target

objective.

53 Threshold Current

Figure 5.3 details the behavior of the threshold current with the various combinations of
optimization parameters evaluated. It is apparent from the data that the un-optimized
QWS DFB laser had the lowest overall threshold injection current, which increased
depending on the type of optimization used. This was an expected result and is related to
the increase in the associated number of the coupling coefficient and/or the phase shift
discontinuities with the various optimizations performed. As more coupling coefficient
and/or phase shift discontinuities were introduced into the structure, the threshold
injection current increased. The largest overall values were associated with the combined
KL plus PS optimization, where a total of ten overall transitions in the coupling
coefficient and the phase were present in the optimized structure. This compared to five
transitions in either the KL or PS optimized structure, or one in the case of the QWS un-
optimized structure. Any discontinuity, whether associated with a change in the sectional

coupling coefficient or the phase, increases spontaneous emission. This results in the
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need for a larger injection current; clearly there is a tradeoff if one wishes to optimize a

DFB structure.
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Figure 5.3  Threshold Current — Optimized Solutions

The variability observed in the threshold injection current, especially for S, and KL plus
PS optimization, is fully congruent with the earlier hypothesis that multiple near-optimal

solutions exist.

5.4 Single Longitudinal Mode Stability

Up to this point the effect of optimization on side modes has been largely ignored. In
order for a DFB laser to maintain a single longitudinal mode, i.e., a single wavelength
output, it is necessary that the side modes remain non-lasing. Typically, the normalized
gain margin between the lasing and the most probable non-lasing side modes should be at

least 0.25 in order to guarantee single longitudinal mode (SLM) oscillation. The most
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probable side modes are usually closest (but not always) to the lasing mode. As the
injection current increases, the amplitude gain of the lasing mode moves from its
threshold gain value, relative to the amplitude gains of the side modes, which also move
accordingly. Thus, the normalized gain margins change in a complicated way with
increasing injection current. If at some injection current the normalized gain margin
between a side mode and the lasing mode drops below 0.25, mode competition can occur

resulting in multi-modal oscillation.

[Ghafouri-Shiraz and Lo, 1996] proposed a method of evaluating the normalized gain
margin by using a transfer matrix approach that introduced a complex wavelength to
mathematically suppress the dominant lasing mode. The real part of the imaginary
wavelength was interpreted to be the actual side mode wavelength and the imaginary part
provided the additional (mathematical) gain the side mode would need to reach its
threshold value. In this way the side mode’s amplitude gain as well as the dominant
lasing mode’s amplitude gain, and hence normalized gain margins, could be found for
any injection current. Although mathematically this approach provides answers, the
physical interpretation of what is actually taking place is not obvious. Rather than
rigorously applying this type of analysis to the resulting optimized profiles, the
simplifying assumption was made that if a sufficient gain margin existed at threshold
(0.25 plus 20%) then it was reasonable to assume that as the injection current increased,
any reduction in gain margin would still be insufficient to initiate a multi-mode
oscillation. At the very least it was assumed that the onset of multi-modal oscillation
should be delayed until the higher injection currents were reached. If however, there were
not sufficient gain margin at threshold, then there would be little chance of maintaining

SLM oscillation as the injection current was increased.

With this in mind, the lasing and the £ 1 mode amplitude threshold gain values were
determined by a threshold evaluation of equation [3-10], the results of which are
presented in tables 5.1a, 5.1b, and 5.1c. Also refer to Appendix F for a listing of the
Lahey Fortran 95 code used in the threshold mode calculations.



Table S.1a  Normalized Gain Margin at Threshold — K. Optimized Profiles

KL Optimization Injection Current +1 Mode Gain -1 Mode Gain
Margin Margin
1.1 0.38 0.38
1.5 0.38 0.38
2 0.40 0.40
3 0.46 0.46
4 0.46 0.46
5 0.42 0.42

Table 5.1b  Normalized Gain Margin at Threshold — PS Optimized Profiles

PS Optimization Injection Current +1 Mode Gain -1 Mode Gain
Margin Margin
1.1 -0.06 0.64
1.5 -0.16 0.76
2 0.34 0.60
3 0.12 0.72
4 012 0.72
5 0.24 0.66

Table S.1c  Normalized Gain Margin at Threshold — KZ plus PS Optimized Profiles

KL Plus PS Injection Current +1 Mode Gain -1 Mode Gain
Optimization Margin Margin

1.1 0.22 0.74

1.5 -0.04 1.02

2 0.10 0.58

3 0.06 0.68

4 0.14 0.76

5 0.08 0.34
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It is evident from the results presented in table 5.1a that KL optimization alone provided
the best chance of maintaining SLM oscillation in the numerical examples studied.
Evaluation of the amplitude gains from the KL profiles resulting from optimizations
carried out over the full range of injection currents resulted in normalized gain margins at
least 20% greater than the required 0.25. As expected the upper and lower mode gain
margin values were equivalent. This is characteristic of the behavior both at threshold and
above-threshold for a QWS structure. Although optimized for the given injection
currents, with K/ optimization alone, the = 2 phase shift was still held fixed at the laser’s
midpoint, hence throughout the optimization process the DFB laser remained a QWS
structure. It was evident that the SLM characteristics inhereat to a QWS structure were
apparently maintained when the structure was optimized to achieve maximum field

flatness.

The converse was seen to be true for PS, and KL plus PS optimizations. Results presented
in tables 5.1b and 5.1c showed normalized gain margin values below the 0.25 minimum
threshold value for the upper modes, and indicated a high probability of multi-mode
oscillation between the lasing mode and the +1 mode with the increasing injection current
for all cases except with the PS optimization carried out at 2 x iy In this particular
instance, there appeared to be a sufficient gain margin to support SLM oscillation. The
reason for this behavior was not obvious. This appears to be an anomaly and may

warrant future investigation.

In the cases where the sign of the gain margin was observed to be negative, the +1 mode
would have been already oscillating. In these instances, the optimized structure profile
resulted in the gain margin asymmetry between upper and lower modes to such a degree

that the +1 mode had the lowest threshold amplitude gain value.

From these results it appeared that the advantages derived from the introduction of a
quarter-wave shift at the DFB laser’s midpoint were not lost under the optimization

process. Although the preceding analysis was limited to a specific DFB laser, it is
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reasonable to assume that if both an optimally flattened field and SLM oscillation are

design requirements, then an optimization process that preserves the QWS structure

would offer a reasonable chance of success.
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6. DISCUSSION AND CONCLUSIONS
6.1 Results Summary
The primary objective of this work was to research and develop the underlying principles
for a novel laser modeling and design methodology with optimization capabilities and the
potential to address above-threshold, non-linear laser design problems. As a requirement
the new methodology had to be capable of dealing with multiple degrees of freedom
(model parameters) and imposed solution (physical or manufacturability) constraints.
This was successfully achieved through the integration of the above-threshold transfer
matrix method with LGO implemented global optimization strategies and represents a

new advancement in the approach to laser modeling.

The new methodology’s principles were validated by its application to the problem of
reducing the longitudinal field non-uniformity of a QWS DFB laser over a given range of
above-threshold injection currents. Results obtained from performing the field flattening
optimizations at the various target injection currents compared favorably to the reference
optimally flattened field profile results, which were derived from extrapolating near-

threshold optimizations over the full range of the injection currents studied.

Relative to the field flatness of the un-optimized reference QWS DFB laser, more than
90% reduced field flatness values were consistently achieved by carrying out
optimizations using various combinations of sectional coupling coefficients and/or phase
shifts for normalized injection currents that ranged from 1.1 X ix to 5 X irr.  Within the
given constraints, in all cases it was possible to obtain, with only minor differences, near

maximally flattened fields.

Analysis of the optimized KL and/or PS solution parameters revealed significant
variations with the different values of injection currents evaluated, and between 10,000
and 20,000 iteration runs, yet the changes in field flatness were minimal. This result was
not anticipated and strongly supported the possibility of the existence of multiple near-

optimal solutions.
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Investigating this further, selected above-threshold optimized solutions with their
corresponding optimized KL or PS profiles were evaluated across the full range of
injection currents. In these cases the optimized (solution) KL or PS profiles were held
fixed and field solutions, now only in terms of 4 and C,, were sought at each injection
current. Note that further field flattening optimizations were not being carried out at this
stage. Field solutions were obtained by iteratively selecting 4 and C, such that the field
boundary conditions were matched at the laser’s facets. In all cases, except for minor

differences, the field profiles obtained remained near-optimally flattened.

Ill-conditioning of the problem may provide some insight into this behavior. Ill-
conditioning points out where one must be very precise, and also where there may be
some flexibility in the selection of solution (design) parameters. Changes in the
“insensitive” solution parameters have a minimal effect on the objective function and
hence the field flatness value and associated field profile solution. Examination of the
objective function visualization presented in figure 4.14 reveals some of the complexity
of the various sensitivities. It can be seen that along a particular “direction” in the KL/ —
KL2 “solution space”, the objective function was relatively insensitive to the values of the
solution parameters, while highly sensitive in other directions. Further evidence of this
behavior is also seen in the remainder of the objective function visualizations presented
in Appendix A. Although additional study is needed, these results further support the

argument for the existence of multiple near-optimal solutions.

By using the KL and/or PS parameters obtained from optimizations performed near-
threshold (1.1 x i), or above-threshold (3 x iy), it was possible to produce equivalently
flattened field profiles across the full range of injection currents. This was an anticipated
result based on the original work of [Ghafouri-Shiraz, and Lo, (1996)]. This behavior
also validated the principles of the new methodology and confirmed that a DFB laser
optimized for maximum field flatness at or just above-threshold will also produce a
similarly flattened field as the injection current increases and saturation affects become

dominant. This is both a consequence of ill-conditioning and important from a
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computational point of view in so far as it is much easier to solve the boundary

value/optimization problem if the non-linear effects resulting from the carrier rate
equation are minimal and can be ignored. At the threshold condition the problem is
considered linear because there are essentially no stimulated photons. This allows the
longitudinal refractive index to be considered as constant, i.e. not appreciably modified
by the weak optical field. The requirement for multiple iterations is therefore eliminated

allowing a quick and straight-forward solution of the internal optical field.

In all cases the optimization produced an initial blue-shift from the lasing wavelength of
the reference un-optimized QWS DFB structure, which varied from 0.1 to 0.2 nm
depending on the parameters being considered in the optimization process. Once shifted,
the wavelength, again depending on the optimization parameters used, displayed differing
degrees of variability over the range of injection currents evaluated. This behavior was in
part attributed to the existence of multiple near-optimal solutions. These results may
offer a method to precisely tune the laser’s wavelength while still optimizing its physical
parameters to obtain maximum field flatness under this constraint. If muitiple solutions
exist, as the evidence seemed to indicate, then in theory by absolutely constraining the
wavelength to a specific value, it may be possible to optimize the DFB laser structure to
achieve a significantly flattened field profile while at the same time solve for a specific
target operating wavelength. Exploring the potential of this approach is considered a

topic for possible future study.

The threshold current value, as anticipated, was found to relate to the number of degrees
of freedom, i.e. to the number of model parameters used in the optimization process.
The more transitions resulting from discontinuities between the sections of differing
coupling coefficient values, as well as inter-sectional phase shifts, the higher the
threshold current. Clearly a tradeoff was seen to exist, but an excellent degree of field
flattening was produced by applying the optimization method to a DFB laser with a
conservative number of sectional coupling coefficient and/or phase transitions, which

varied from six to ten depending on the optimization parameters used. Based on this, by
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keeping the number of sectional transitions at a minimum, it should be possible to obtain
excellent field flatness design results while still maintaining the threshold current at an

acceptable level.

The following statements thus summarize the main results achieved in this work. Firstly,
the primary objective has been completed, i.e. a new above-threshold modeling and
optimization methodology for the DFB laser has been developed and its principal
functionality has been validated. Secondly, by using the new methodology to re-examine
the problem of minimizing the internal field non-uniformity of a QWS DFB laser,
evidence was observed indicating the possibility of the existence of multiple near-optimal
field flatness solutions. The discovery of these new results, which only became evident
by performing the field flattening optimizations in the above-threshold region, served to

highlight one facet of the new methodology’s potential.

6.2 Sensitivity Considerations

The introduction of any modeling and design methodology would not be complete
without recognizing and addressing solution sensitivity concerns in at least a cursory
manner. The question of how a given solution behaves within the constraints of the laser
device’s parameter manufacturability tolerances needs to be understood. It is not a
simple matter to determine how the “optimal” solution (vector) varies relative to changes

in the model parameter values. Two possible approaches follow.

The first approach, a direct sensitivity analysis, entails obtaining the optimal solution
vector based on “nominal” or “average” model parameter values. Following this, the
parameter value to be studied is selected and varied as per its defined probability
distribution function. The optimization process is repeated while holding the remaining
parameters at their original values, and a new solution vector is obtained. In this way it is
possible to establish the solution vector’s sensitivity to variations in any given model

parameter value, in the form of an empirically derived probability distribution function
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for each of the vector elements (solution variables). It is also possible to extend this

approach to combinations of model parameter values.

The second approach, an indirect sensitivity analysis, involves establishing the model
parameters directly from their defined probability distribution functions, i.e. a “joint
instance”. Multiple optimization runs based on model parameters determined in this way
result in an empirically derived probability distribution function for each of the solution
vector’s variables that collectively are based on the model parameters’ probability

distribution functions.

It is possible to investigate the problem of determining real life tolerances in this manner;
however, these or similar approaches are computationally intensive and need detailed
study, which includes development of the appropriate probability distribution function

models.

6.3  Non-linear Considerations

Any solution of a non-linear differential equation, whether obtained through analytical or
numerical means, requires close scrutiny. The differential equation numerically solved in
this work is considered non-linear because its solution, which consists of a pair of
counter-directional, coupled, traveling waves, act by their presence, to modify in a
complicated, non-linear fashion, the propagation characteristics of the medium in which
they exist. Unlike a linear differential equation, even if a solution to a non-linear
differential equation is achieved, it is usually very difficult, if not practically impossible,
to say with certainty that it is unique. Because there is no way, in general, to obtain the
exact analytic solutions of non-linear differential equations, iterative numerical methods
become very important, however, solutions that are obtained in this manner may still be
unstable or non-physical in nature. Therefore, it is necessary to examine any solution
relative to the physical constraints of the non-linear problem and to ask the question: does

the solution represent physical reality?
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The above-threshold, optimally flattened field solutions obtained during this work

exhibited clear physical relationships to corresponding optimally flattened field solutions
similarly obtained near-threshold, where the non-linear effects were minimal. In
addition to this, the above-threshold, optimally flattened field solutions displayed a
gradual and predictable evolution with the increasing injection current relative to the
near-threshold solutions, with no evidence of solution instability. Therefore, based on the
stated observations, it was reasoned that these solutions could be considered as physically
real.

6.4 Suggestions for Future Research

The optimization analysis in this work focused on an index-coupled DBF laser with bulk
device characteristics. One possible direction of future research would be to extend the
new methodology to multiple quantum well (MQW) devices. If the bulk model equations
that deal with parameters such as the material gain and the optical confinement factor are
replaced with those appropriate to an MQW structure, it should be possible to define and
solve for an objective function that similarly minimizes the facet boundary condition
error while incorporating a term that maximizes the field flatness. Other than these

changes, the remainder of the solution methodology should remain the same.

It should also be a straightforward process to extend the new methodology to gain-
coupled and partly gain-coupled devices. Gain-coupling is known to enhance the gain
margin and promote single longitudinal mode (SLM) oscillation. It is possible to
incorporate gain-coupling into the TMM portion of the optimization model by
introducing an imaginary term to the coupling coefficient. Construction of the objective
function and application of the global optimization methodology would remain exactly

the same.

Up to this point the physical parameters have been allowed to vary within set limits with
no thought as to the manufacturability of the optimized devices. Optimized KL and PS
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parameters producing near maximally flattened fields were obtained within a set of “box’
constraints. Based on the potential limitations in the ability to fabricate structures that
completely reflect the (theoretical) optimized parameters, additional manufacturability
constraints may have to be imposed on the optimization process. This should not pose a
problem, as the LGO implemented optimization component of the new methodology is
theoretically capable of handling multiple constraints that restrict the solution space to

such particular criteria.

6.5 Concluding Comments

The original contribution of this work consists of the successful integration of the above-
threshold transfer matrix method with LGO implemented global optimization strategies
resulting in a new methodology for DFB laser modeling and design. As a first validation
of its novel optimization capabilities, it provided a robust and efficient technique to
address the difficult numerical challenges associated with finding optimally flattened
internal field solutions for a QWS DFB laser operating in the above-threshold regime.

It should be noted that the success achieved with the new methodology was in part
dependent on the capabilities of a sophisticated global optimizer, in this case LGO. With
a less sophisticated optimization or solution methodology that involves the use of some
form of fixed or adaptable numerical grid to select the solution values, unless the initial
guess is very close to the actual globally best solution, the probability of ending up in a
local minimum exists. This problem becomes even more significant with higher injection
currents necessitating first obtaining a near-threshold solution and then incrementally
increasing the injection current to gradually step up to the higher optical power solutions.
The iterative process uses the previous solution parameters as the starting point for the
next injection current increment. This process must be continued until the desired
injection current is finally reached. In practice these increments are quite small, typically

around 0.2 times 7.
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In addition, the techniques that use numerical grids to determine the globally best
solution would become quickly impractical beyond a few degrees of freedom (solution
variables). This results from the fact that the dimensionality of the numerical (solution)
grid has to expand to match the dimensionality of the solution space. Assuming that a
5x5 numerical grid is utilized in the case of a problem with two-degrees of freedom (two-
solution variables), then for n-degrees of freedom, 5" evaluations would be necessary to
determine the next location for the grid in the process of “walking” the grid around the
solution space, searching for the globally best solution. Clearly a more sophisticated

approach is called for.

With the integration of a genuine global optimization approach, these considerations were
largely unnecessary. A proper global solver will eventually find the globally approximate
correct solution. The presented solutions were obtained directly, by immediately solving
the optimization problem at the desired injection current, eliminating the need for
incremental solutions with gradually increasing injection current. Robust global
optimization strategies as implemented by the LGO software, were used to globally
search the entire solution space, and select the solution that was constrained to minimize
the RBC error, and at the same time achieved maximum field flatness. This approach did
not need a starting point, making it possible to directly and rapidly solve for injection
currents that varied from 1.1 to S times the threshold injection current. LGO directly
interfaced to the associated model code and rapidly converged to a global minimum. In
the numerical examples presented, optimum KL, PS, 4, and C, values were obtained for
the given range of injection currents that in all cases resulted in a significant reduction in

the longitudinal field non-uniformity and associated LSHB effects.

In conclusion, the presented work has revealed the general need for using a methodology
that incorporates a true global optimization approach, and its potential for solving many
of the highly non-linear problems associated with above-threshold laser modeling and
design. The fundamental result of this work and original contribution by the author is a

novel above-threshold modeling and optimization methodology that includes these
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characteristics, is easily adapted and is one step towards developing a practical tool for
the above-threshold design and analysis of DFB lasers. Evidence observed for the
possible existence of multiple near-optimal solutions when optimizing the internal field
flatness of QWS DFB lasers is the second major result of this work and also considered
an original contribution by the author, revealing what is thought to be hitherto unknown
behavior. Finally, based on the validation results and using LGO’s ability to constrain
the solution space to physically realizable parameters, it should be possible to extend the
new methodology’s principles and techniques beyond the optimization examples
presented in this work, to address difficult issues such as designing for maximum above-
threshold gain-margin, and to include advanced multiple quantum-well (MQW) and gain-

coupled devices.
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APPENDIX A

SOLUTION METHODOLOGY

The following is a step-by-step description of the integrated transfer matrix, global

optimization numerical procedure used to optimize the example DFB laser’s above-

threshold field solution profiles for maximum field flatness.

Step 1.

Step 2.

Step 3.

Step 4.

Solving the optimization problem at a given above-threshold injection current
involves first determining the threshold conditions of the DFB laser. Using
equation [3-10], threshold values for a, and J are determined. Solution of
equation [3-10] gives the various oscillation modes of the laser and the mode
corresponding to the smallest a will be the first to oscillate at threshold. This

value is chosen as a,, along with its corresponding .
The Bragg wavelength is next evaluated as

Ay =2An,, [A1]

where equation [A1] is simply equation [1-1] for the first order Bragg grating,

and the parameter ». is the mode’s effective refractive index with zero injection

current.

Using ay, arrived at in Step 1, the threshold carrier density, Nis, can be found as

N, =N, +(a,, +2a,)/TA,. [A2]

Having obtained N, the threshold index, n., is found using the following

expression

n, =n, +F2Nﬂ., [A3]
cN



Step S.

Step 6.
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which defines how the effective refractive index of the laser depends on the
carrier density. The term, on/0N, is the differential index and I' is the optical

confinement factor (refer to table 4.1).
The detuning coefficient for the first order Bragg grating is determined as

2
27, (,1—/13)-%, [A4]

5=2
A A,

where 2 is the effective refractive index for the corresponding wavelength
A.Substitution of J, and n,, obtained in Steps 1 and 4, into equation [A4]
results in the following expression for i, the threshold wavelength or the
longitudinal mode oscillation wavelength of the DFB laser when it is just

turning on:

27A, (n,,, + ng)

th = . [AS]
Opls +2mm, + Agm/ A

The parameter n, is the group refractive index, which is defined for a given
mode propagating in a medium of refractive index », as the velocity of light in

vacuum divided by the group velocity of the mode.

Starting with the parabolic gain model used to characterize the active medium
gain

g=4,WN-N)-4[1-(,-4,(N-N,)F, [A6]

the peak gain wavelength at zero gain transparency, 4,, is obtained by setting the
gain, g, equal to zero and N to N,. The material gain of a bulk medium is
dependent on both the carrier density and the wavelength. When this gain is

zero, the medium is considered transparent. The wavelength 4, at which the
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material gain is zero, at the transparency carrier density, N,, is defined as the
peak gain wavelength at zero gain transparency. In the above expression, 4 is
the differential gain, and the parameters A, and A4; are associated with the width
of the gain spectrum and changes in gain that result from shifts in the peak
wavelength. With these substitutions, equation [A6] reduces to the expression

for the zero gain transparency wavelength given as

}"o = Arh + AZ(le - No) . [A7]

Finally, the threshold injection current, iy, is determined from the steady state

carrier rate equation

L, =R+R,, [A8-a]
ql
where
N , 3
R=—+BN"+CN [A8-b]
T
and
S
.= V& i [A8-c]
1+085

This equation relates the injection current, i, the carrier density, N, and the
stimulated photon density, S. Equation [A8-a] equates the injected charge
density to the sum of Ry, the stimulated emission rate per unit volume (equation
[A8-c] ), and R, the rate of other non-coherent charge recombination per unit
volume (equation [A8-b]). The volume V is determined from the geometry of
the active region, and ¢ is the electronic charge. The other parameters used are
defined in table 4.1. The parameter o accounts for saturation effects at high
photon densities. At threshold, the numbers of coherent photons are minimal;
hence the photon density, S, is considered as zero. Setting the carrier density

N = Nu, it is then a straightforward process to obtain iy.



Step 8.

Step 9.

At this point the search domain is specified for LGO, the global optimizer. The
maximum, the minimum, as well as nominal values are chosen for KL, and/or
PS, 7, and C, parameters. Typically these values are selected somewhere close
to the midpoint of the search domain. Now the laser is divided into a
sufficiently large number of matrix sections such that the concatenation of all
the sections will accurately approximate a smooth longitudinal variation of the
laser parameters. For this example 5000 transfer matrix sections were found to

yield acceptable results.

Field propagation is initiated by first determining the photon density, §, at the
inside surface of the left facet. Initially, the refractive index at this point is
unknown so the threshold refractive index, ny, is used as a starting
approximation. This approximation is subsequently applied to all 5000 of the

laser sections.

Starting with the normalized electric field intensity at the left-hand facet, the
photon density at this point is evaluated for the first TMM section from

S, = 25—""}(-'%-@3 IE )Y +|E, (z]Z], [A9]
C

where ¢, is the permittivity of free space. The values of 4 and C, used in this
calculation are the first values provided by LGO following initialization. Once
the photon density has been determined, the carrier density, N, is determined by
solving equation [A8], the carrier rate equation. Using the following

relationship, the amplitude gain coefficient, a, is expressed as

a=Ig-a,.)/2, [A10]
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Step 11.

Step 12.

Step 13.
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and the detuning coefficient, J, is determined from equation [A4]. It is now
possible, using equations [A17], [A18], and [A19], to determine all of the
parameters for the first transfer matrix section. In addition to this, the section
refractive index, n, is revised using equation [A3], where the threshold carrier
density, N, is replaced with the newly determined carrier density. This value is

stored for the next iterative pass through the section.

Once this is accomplished using equation [A22], the field is propagated towards
the right-hand facet of the first transfer matrix section and becomes the input
field to the second transfer matrix section. The parameters a and J are again
determined along with the second section’s transfer matrix values, and the fields
are propagated to the right-hand facet of the third transfer matrix section. The
process outlined in Step 9 and this step is continued until the right-hand facet of

the entire structure is reached.

At this point the entire longitudinal refractive index profile has been redefined
by the stored values in Step 9. Using the same values of KL, PS, 4 and C,, it is
necessary to repeat Steps 9 and 10 until the refractive index profile no longer

changes significantly with each pass down the laser.

Once the refractive index profile stabilizes, the field profile will also stabilize.
Now the right-hand boundary error is determined. Minimization of this error is
both an imposed explicit constraint, and coupled with the field flatness
parameter comprises the objective function, which itself is also minimized
(equations [4-2] and [4-3]). LGO stores the objective function value and

proceeds to select new KL, PS, / and C, parameters for the next iterative cycle.

Using these new values, Steps 9 through 12 are again repeated with the process
continuing until the objective function (and the right-hand boundary condition

error) has been minimized to the desired tolerance set in LGO. Now the final
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solutions of the field intensity, carrier density, refractive index, and photon

density profiles for the laser are obtained.

Step 14. With a final pass through the structure, the average amplitude gain coefficient
and the average detuning coefficient are determined from the following

expressions

I M

a, = a,/M [All]
m=1

- M

5, =26,/M, [A12]
m=1

where M is the total number of transfer matrix sections.
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APPENDIX B

OBJECTIVE FUNCTION VISUALIZATIONS
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Figure B1 Objective Function versus KL/, KL2 (KL Optimization at 3 X i)
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APPENDIX B (Continued)

OBJECTIVE FUNCTION VISUALIZATIONS

Ob jective Fumction vs. KL1, KL3
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Figure B2  Objective Function versus KL/, KL3 (KL Optimization at 3 X i)
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OBJECTIVE FUNCTION VISUALIZATIONS

Ob jective Fumction vs. K12, KL3
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Figure B3 Objective Function versus KL2, KL3 (KL Optimization at 3 X ir)
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APPENDIX B (Continued)
OBJECTIVE FUNCTION VISUALIZATIONS

Objective Function vs. KL1, Wavelength
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APPENDIX B (Continued)

OBJECTIVE FUNCTION VISUALIZATIONS

Objective Function vs. KL2, Wavdength
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OBJECTIVE FUNCTION VISUALIZATIONS

Objective Fumction vs. KL3, Wavelength
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Figure B6 Objective Function versus K3, Wavelength (KL Optimization at 3 x ;)
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APPENDIX B (Continued)

OBJECTIVE FUNCTION VISUALIZATIONS

Objective Function vs. KL1, KL3 (maximsem function value = 20)

3 x Thresheld Current - 10,000 iter stions

f_max = 20.6000000000

1.5

{_min = 0.0123667890 0.0S
1.5 KL1 3.0

The image is scaled by minimal and maximal (or cutefl) function values.
The projected location of the selution estimate is deneted by the dot.

Figure B7  Objective Function versus KL/, KL3 with maximum function value = 20
(KL Optimization at 3 X i)
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OBJECTIVE FUNCTION VISUALIZATIONS

Objective Fumctien v3. KL2, Wavelength (maxinum function value = 20)
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APPENDIX D

COUPLING COEFFICIENT PLUS PHASE OPTIMIZATION GRAPHS
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APPENDIX E

OPTIMIZATION CODE LISTING
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DFB1F.FOR

This code listing contains the subroutine USER_FCT, which is called by the LGO solver
system. USER_FCT in turn calls subroutine RBC_Out, the code that defines the objective
function to be minimized by the optimization process.

[eNeNeNeNe!

9]

- sm sm s

. tm tw tee sem tem tem sem cmm rem s bem i

Program DFB1F.FOR

Optimizes both sectional coupling coefficients and intra-sectional
phase shifts to achieve maximum internal field profile flatness while
minimizing the right hand facet boundary condition error of a

6 section DFB laser.

SUBROUTINE USER_FCT Called From LGO

DFB1F.FOR —--

This is the function segment template, to be prepared (adapted) by LGO
users. The use of all included statements is (minimally) necessary.
Additional user statements - related to problem description, further
reporting options, calls, etc. - can also be included or connected.

Please retain an original copy of this segment for further reference
Save your own USERFCT.FOR file in text format

SUBROUTINE USER_FCT (x,objf, objname, ctype, con, conname)

implicit real*8 (a-h,o-z)
Please define all (real) variables and operations in double precision,
in order to attain higher numerical accuracy

The following statement is needed only in Windows DLL program versions
DLL_EXPORT USER_FCT

Notation:
b4 - vector of decision variables (maximal dimension: maxdim)
objf - scalar objective function value (to be minimized)

(maximization problems are standardized, multiplying objf by -1)
objname - (optional) name for objective function; max. 20 characters
ctype - vector of constraint function types (maximal dimension: maxcon)

for constraints of the form con(i).eq.0 set ctype(i)= 0

for constraints of the form con(i).le.0 set ctype(i)=-1

(con(i).ge.0 type constraints are standardized, multiplying the
constraint by -1)
con - vector of constraint function values (maximal dimension: maxcon)
conname - vector of (optional) names for individual constraints; max. 20
characters for each constraint (maximal dimension: maxcon)

Please note that the dimension settings given below are specific to

your present LGO version, and they can not be modified. Please contact
Pinter Consulting Services, if a larger LGO configuration is needed.
parameter (maxdim=50, maxcon=52) ! maxcon includes two extra work entries
dimension x(maxdim), ctype(maxcon), con{(maxcon), conname(maxcon)
character*20 conname, objname

integer*2 ctype



000

QA0 = =

——————————————————— User problem definitions begin --—------

Note: for the given demonstration problem class, the unique
solution is the zero vector.

Auxiliary terms
real*8 KL1l, KL2, KL3, LAMSTART, LAMC, DPSl, DPs2, DPS3,
c RBCerror, FLATNESS, AVGALPHA, AVGLDELTA, PSTOTAL

LAMC=1.546d0

KL1=x(1)

KL2=x(2)

KL3=x(3)
LAMSTART=(1.d-6) * (x(4)+LAMC)
Co=(1.d5)*x(5)

DPS1=x(6)

DPS2=x(7)

DPS3=x(8)

--- Objective function (to be minimized) ---

call RBC_Out (KL1,KL2,KL3, LAMSTART,
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¢ Co,DPS1,DPS2,DPS3,RBCerror, FLATNESS, AVGLALPHA, AVGLDELTA, PSTOTAL)

scal=1000.d0
objf=FLATNESS+scal*RBCerror
objname='Flatness Function'

--- Constraint types and functions ---

Note: explicit box constraint handling is done separately by LGO;
therefore only the additional constraints need to be declared here.

Boundary Condition Constraint
I R R R R R RRRREER R R RS RS2SR R 2 2 21

con(l)=scal*RBCerror
ctype (1)=0
conname (1)='RBC Error'

Constraints on AVGLALPHA

EZZ SR EEEZEEEE S S S SRR S RSN

con(2)=(0.6D0-AVGLALPHA)
ctype(2)=-1
conname (2)='AVGLALPHA lower boundary'

con(3)=(AVGLALPHA-1.5D0)
ctype(3)=-1
conname (3)='AVGLALPHA upper boundary'
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Fundamental mode constraints on AVGLDELTA
*t****f'ttit*ttttt*iﬁi*i"*tﬁt*'ttttiif'ti

- 000

o000

con(2)=((-1.00d0)-AVGLDELTA)
ctype (2)=-1
conname (2)='AVGLDELTA lower boundary'

con (3)=(AVGLDELTA-(1.00D0)})
ctype(3)=-1
conname (3)='AVGLDELTA upper boundary'

-1 Mode constraints on AVGLDELTA

PR R R R R 2R EZRZE2222222 2 R 2R R R AR R R SR RN S

con(4)=(~-1.0d0-AVGLDELTA)
ctype(4)=-1
conname (4)="AVGLDELTA lower boundary'

con (5)=(AVGLDELTA-1.0DQ)
ctype(5)=-1
conname (5)='AVGLDELTA upper boundary'

Total Phase shift Constraint

I R R AL R Z2ZZZ 22 2R R R R 2 & & & 5

con(6)=(0.0D0-PSTOTAL)
ctype(6)=-1
conname (6)='Minimum phase shift’

con(7)=(PSTCTAL-180.0D0)
ctype (7)=-1
conname (7)="'Maximum phase shift'

Mid Point Field Constraint

I R R R R R R R R E R SRR R R R SRR 2R 2 & & 4
con(2)=1000.0d0* (1.0d0-MPFC)

ctype (2)=-1

conname (2)='Mid point field constraint'

constraints can also be scaled (to objf), if deemed necessary
one-by-one scaling of constraints is also possible, to guarantee that the
order of constraints and objective function are approximately identical
scalc=1.d0
do i=1,5

con(i)=scalc*con(i)

end do
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return
end

SUBROUTINE RBC_oOut (KL1, KL2,KL3, LAMSTART,

c Co,DPSl,DPSZ,DPS3,RBCerror,FLATNESS,AVGLALPHA,AVGLDELTA,PSTOTAL)

Glenn Isenor; December 2, 2000

Program searches for an above threshold

optimized solution for varicus injection currents.
An overall merit function is used that minimizes
RHB error as well as maximizes the field flatness.
Minimal RHB error is a constraint.

implicit real*8 (a-h,o-2)

common /Clinput/ Cl t read Cl from file, then pass it into RBC_out
Cl1 THRESHOLD CURRENT FACTOR (Cl*ITH)

L LENGTH OF LASER (m)

D ACTIVE LAYER THICEKNESS (m)

w ACTIVE LAYER WIDTH (m)

B BIMOLECULAR RECOMBINATION COEFFICIENT (m**3/s)
c AUGER RECOMBINATION COEFFICIENT (m**6/s)
TAO (TAO**-1) SPONTANEOUS EMISSION RATE (1/s)

v ACTIVE LAYER VOLUMN (m**3)

Q ELECTRONIC CHARGE (c¢)

RTH RATE OF OTHER NONCOHERENT RECOMBINATIONS
ITH THRESHOLD CURRENT

ALPHATH AMPLITUDE THRESHOLD GAIN (1/m)

DELTATH THRESHOLD DETUNING COEFFICIENT ()

NNTH THRESHOLD CARRIER CONCENTRATION (1/m**3)
ALPHALOSS INTERNAL CAVITY LOSS (1/m)

NNo CARRIER CONCENTRATION AT TRANSPARENCY (1/m**3)
GAM OPTICAIL CONFINEMENT FACTOR (DIMENSIONLESS)
Ao DIFFERENTIAL GAIN (m**2)

Al GAIN CURVATURE

nTH THRESHOLD INDEX (DIMENSIONLESS)

nINI EFFECTIVE REFRACTIVE INDEX AT 0 CARRIER CONC
R DIFFERENTIAL INDEX (m**3)

LALPHATH NORMALIZED ALPHATH

LDELTATH NORMALIZED DELTATH

K COUPLING COEFFICIENT

G BRAGG GRATING (m)

LAMTH THRESHOLD WAVELENGTH (m)

LAMB BRAGG WAVELENGTH

LAMo PEAK GAIN WAVELENGTH AT O TRANSPARANCY

nG REFRACTIVE INDEX AT 0 GAIN INJECTON CURRENT
A2 DIFFERENTIAL PEAK WAVELENGTH (m**3)

LLAM OPERATING WAVELENGTH

Co DIMENSIONLESS PARAMETER

LAM WAVELENGTH GUESSES (5 PER GRID CALL)
MATGAIN MATERIAL GAIN COEFFICIENT

epsil NONLINEAR GAIN COEFFICIENT

EPSILo FREE SPACE PERMITTIVITY

S LOCAL PHOTON DENSITY

vg GROUP VELOCITY AT BRAGG WAVELENGTH

h PLANK'S CONSTANT

CLIGHT

SPEED OF LIGHT IN VACUUM

111



oa0nn

(9]

SECTMAX NUMBER OF LASER SECTIONS

MPFC

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

INTEGE

COMPLE
COMPLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOURBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

Initia
KLl =
KL2
KL3
KL4
KLS
KL6

MID POINT FIELD CONSTRAINT

PRECISION ALPHATH, DELTATH,NNTH, ALPHALOSS, NNo, GAM
PRECISION Ac,Al,nTH,nINI,R, LALPHATH, LDELTATH, K, G, PI
PRECISION LAMTH, LAMB, nG,LAMo,A2,L,D,W,B,C,TAO,V,Q,RTH,ITH
PRECISION BETAO

PRECISION LAM,Co,S(5000),vg,epsil,LS,NN1

PRECISION ALPHA, DELTA, MGAIN

R SECTMAX, SECTNUM, PCOUNT, maxcount

X leftER,leftES, rightER, rightES, ERend, ESend
X leftER, leftES, rightER, rightES
PRECISION SECTINDEX (5000),SECTCONC(5000)
PRECISION h,cLIGHT,EPSILo,Cl, INTENSITY(5000),IES,IER
PRECISION NEWSECTINDEX (5000),MATGAIN(5000)
PRECISION NEWSECTINDEX (5000), LAMSTART, FLATNESS
PRECISION AVGLALPHA,AVGLDELTA, AALPHA (5000) ,DDELTA(5000)
PRECISION FPWR
PRECISION KL1,KL2,KL3,KL4, KL5,KL6,AVGKL, NLam, NCo
PRECISION DPS1,DPS2,DPS3
PRECISION RPS1,RPS2,RPS3,MPFC, PSTOTAL

lizations (see table 6.1 Shiraz and Lo P164)
2.0D0

2.0D0

2.0D0

KL3

KL2

KL1

AVGKL = 2.0d0* (KL1*850+KL2*825+KL3*825) /5000

LALPHATH = 0.9796D0
LDELTATH = 0.42DO

Cl = 1.1D0
SECTMAX = 5000

D = 1.2D-7

W = 1.5D-6

B = 1.0D-16

c = 3.0D-41
TAO = 4.0D-9

Q = 1.602D-19
G = 2.27039D-7
K = 4.0D3

L = 500.0D-6
A2 = 2.7D-32
ALPHALOSS = 4.0D3

NNo = 1.5D24
GAM = 0.35D0

Ao = 2.7D-20
Al = 0.15D-20

nINT

3.41351524D0
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a0

noao

4]

nOn

R = -1.8D-26

PI = 3.1415926535898D0
nG = 3.7D0

vg = 8.108108D7

Convert phase shift from degrees to radians

RPS1 = 2.0D0*PI*(DPS1/360.0D0)
RPS2 = 2.0DO*PI*{DPS2/360.0D0)
RPS3 = 2.0DO*PI* (DPS3/360.0D0)

When Using LGO ensure the following
series of statements are commented out.

1.1Xith
LAMSTART = 0.154695384303690283D-05
Co = 171440.469342084689
1.5Xith
LAMSTART = 0.154693052379082748D-05
Co = 408067.291920556338
2Xith
LAMSTART = 0.154691435934087471D-05
Co = 602960.530241662753
3Xith
LAMSTART = 0.154690071799906363D-05
Co = 885113.525866291136
4Xith
LAMSTART = 0.154689498330103411D-05
Co = 1103874.92251847917
5Xith
LAMSTART = 0.154689321319027050D-05
Co = 1290804.58423460647
epsil = 1.5E-23
EPSILo = 8.854E-12
h = 6.6256D-34
cLIGHT = 2.998ES8

Number of iterations chosen to obtain a stable sol'n
for a given LAM, Co combination
maxcount = 15

OPEN (UNIT=14,FILE='DFBlFP', STATUS='UNKNOWN')
REWIND 14

Determine actual threshold alpha and delta from
normalized values

ALPHATH = LALPHATH/L
DELTATH = LDELTATH/L

I'YSREEAEZ R 2SS 2R 2 RS 8 8

Calculate BETAO
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BETAO=PI/G

CALCULATE THRESHOLD CONDITIONS GIVEN (ALPHATH,DELTATH)

Threshold conditions (NNTH,nTH, LAMTH, LAMo, ITH)

Bragg Wavelength (2.4.8)

2.0*nINI*G

:

Threshold Carrier Concentration (6.2.17)

Threshold Index (6.2.18)

nTH = nINI+GAM*R*NNTH
PRINT*, "LAMB = ",LAMB," NNTH = ",NNTH," nTH = ",nTH
WRITE (14,*) "LAMB = ",LAMB," NNTH = ",NNTH," nTH = ",nTH

Threshold Wavelength (6.2.19)

Peak gain wavelength at 0 transparancy (6.2.20)

WRITE (14,*) "LAMTH = ",LAMTH," ","LAMo = ",LAMo

Active region volume

Calculate threshold current ITH (6.2.10,11)

= NNTH/TAO+B*NNTH**2+C*NNTH**3
= RTH*Q*V

H X
=3+
e e ¥
[

All threshold conditions have now been determined
we have (NNTH,nTH, LAMTH, LAMo, ITH)

LS=L/SECTMAX

Make Initial guess at (Co LAM)

LAM = LAMSTART
Co is provided in initial parameters

First Initialize refractive index profile to threshold value
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C
Cc

NN1=NNTH
DO 20 SECTNUM=1, SECTMAX
SECTINDEX (SECTNUM) =nTH

CONTINUE

START MATRIX PROPAGATION

On each complete propagation, the index profile RINDEX (k)
is saved for each subsection k. (There are M subsections)

Do 150 i=1,maxcount

Set the left side Boundary Conditions

leftER=(0.0,0.0)
leftEs=(1.0,0.0)

START OF TMM SECTION PROPAGATION DO LOOP

Propagates field through each matrix section (SECTMAX)

DO 100 SECTNUM=1, SECTMAX

I. Calculate photon concentration at left facet

S (SECTNUM) =( (2.0*EPSILo*SECTINDEX (SECTNUM) *nG*LAM)
/ (h*cLIGHT) ) *Co**2* (1eftER*CONJG (leftER) +1leftES*
CONJG(leftES))

II. Solve for Carrier Density inner left facet
CALL CUBIC(NN1l,B,C,S(SECTNUM),vyg,epsil,Cl,
ITH,Q,V, TAO, SECTNUM, Ao, NNo,Al, A2, LAMo, LAM)

SECTCONC (SECTNUM) =NN1

(store new index for next iteration)
NEWSECTINDEX (SECTNUM) =nINI+GAM*R*SECTCONC (SECTNUM)

III. Solve for ALPHA and DELTA

MGAIN = Ao* (SECTCONC (SECTNUM) -NNo) -Al*
(LAM- (LAMo-A2* (SECTCONC (SECTNUM) ~-NNo) } ) **2
ALPHA = (GAM*MGAIN-ALPHALOSS)/2.0

DELTA = (2.0*PI/LAM) *SECTINDEX (SECTNUM) -
((2.0*PI*nG)/ (LAM*LAMB) ) * (LAM-LAMB) -PI/G

AALPHA (SECTNUM)
DDELTA (SECTNUM)

ALPHA
DELTA

IV. Propagate fields

IF (SECTNUM.GE.1.AND.SECTNUM.LT.833) THEN
K=KL1/L

ELSE IF(SECTNUM.GE.833.AND.SECTNUM.LT.1667) THEN
K=KL2/L
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ELSE IF (SECTNUM.GE.1667.AND.SECTNUM.LT.2500) THEN
K=KL3/L

ELSE IF(SECTNUM.GE.2500.AND.SECTNUM.LT.3333)THEN
K=KL4/L

ELSE IF(SECTNUM.GE.3333.AND.SECTNUM.LT.4166)THEN
K=KL5/L

ELSE IF(SECTNUM.GE.4166) THEN
K=KL6/L

ELSE

ENDIF

CALL MATRIX (SECTNUM, LS, leftER, leftES, ALPHA, DELTA, K,
BETAo, rightER, rightES,RPS1,RPS2,RPS3)

INTENSITY (SECTNUM) =rightER*CONJG (rightER) +
rightES*CONJG(rightES)

Go to next TMM section

leftER=rightER

leftES=rightES

(redefine index for next iteration)
SECTINDEX (SECTNUM) =NEWSECTINDEX (SECTNUM)

END OF TMM SECTION PROPAGATION DO LOOP
you have transversed 1 TMM section

CONTINUE

C*'*‘.iti***ti*****t***ti****Qﬁ*ti**i*t****tﬁﬁt*i*i*'t*i*'ﬁ*i*

c
od

O aan

530

YOU ARE NOW AT THE RIGHT HAND FACET AND HAVE
TRANSVERSED "SECTMAX" TMM SECTIONS

IER=rightER*CONJG (rightER)
IES=rightES*CONJG(rightESs)

Test for Right Hand B.C. Error

Select arbitrarily large starting value
RBCerror=IES

Output the results
Calculate average AVGLALPHA AND AVGLDELTA
i.e. normalized average ALPHA and DELTA

AVGLALPHA = 0.0
AVGLDELTA = 0.0
Do 530 SECTNUM = 1, SECTMAX
AVGLALPHA = AVGLALPHA + AALPHA (SECTNUM)
AVGLDELTA = AVGLDELTA + DDELTA (SECTNUM)
CONTINUE
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AVGLALPHA

(AVGLALPHA / SECTMAX) *
AVGLDELTA *

L
(AVGLDELTA / SECTMAX) L

Calculate Facet Output Power
FPWR = ((D*W)/GAM) *vg* ( (h*cLIGHT)/Lam) *S(5000)

NLam = (Lam/1.0D-6) - 1.546d0
NCo = Co/100000.0d0

Calculate total phase shift PSTOTAL
PSTOTAL = 2.0D0* (RPS1+RPS2)+RPS3

Output ongoing results

WRITE(14,*) " "

WRITE(14,*) " THRESHOLD CURENT = ", ITH

WRITE(14,*) " INJECTION CURRENT = ",Cl

WRITE(14,*) " Wavelength = ",Lam

WRITE(14,*) " Co = ",Co

WRITE(14,*) " Normalized Wavelength = ", NLAM

WRITE(14,*) " Normalized Co = ", NCo

WRITE(14,*) " LALPHA Average = ", AVGLALPHA

WRITE(14,*) " LDELTA Average = " ,AVGLDELTA

WRITE(14,*) " RBCerror = ",RBCerror

WRITE(14,*) " IER = ",IER

WRITE(14,*) " IES = ",IES

WRITE (14, *) " Facet Power = ", FPWR

WRITE(14,*) " KLl = ",KL1

WRITE(14,*) " KL2 = ",KL2

WRITE(14,*) " KL3 = ",KL3

WRITE(14,*) " DPS1 = ",(RPSl*360.0D0)/(2.0DO*PI)," Deg"

WRITE(14,*) " DPS2 = ",(RPSZ‘BG0.0DO)/(Z.ODO*PI)," Deg"

WRITE(14,*) " DPS3 = ",(RP53*360.0D0)/(Z.ODO*PI)," Deg"”

WRITE(14,*) " PSTOTAL = ", (PSTOTAL*360.0D0)/
(2.0DO*PI)," Deg”

WRITE(14,*) " Average KL = ",AVGKL

Calculate the flatness function value:
Y 2 R 2 R RZS SRR R YRR R R RS 2SR A A A A S AL SN A
IF (1.EQ.maxcount) THEN
CALL FLAT(L,LS,SECTMAX, INTENSITY, FLATNESS)
WRITE (14, *) " FLATNESS = ",FLATNESS
ELSE
ENDIF

Define Mid Point Field Constraint MPFC:
tﬁf‘*itﬁt*tt*tfit*******tt*t&ifi***t**ﬁ

MPFC = INTENSITY (2500)

WRITE(14,*) " Mid Point Field Constraint (MPFC) = ",MPFC

PCOUNT = 1
WRITE(14,7) PCOUNT, INTENSITY (PCOUNT},
SECTCONC (PCOUNT) , SECTINDEX (PCOUNT) , S (PCOUNT)
DO 710 SECTNUM = 1,SECTMAX
IF (PCOUNT.EQ.250) THEN
PCOUNT=1
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150

81

82

83

00N

Cc

C

WRITE (14,7) SECTNUM, INTENSITY (SECTNUM),
SECTCONC (SECTNUM) , SECTINDEX (SECTNUM) , S (SECTNUM)
FORMAT (1I6,2X,4E18.10)

ELSE
PCOUNT=PCOUNT+1

ENDIF

continue

Repeat this loop maxcount times with the
current values of Lam and Co to allow
index to stabilize
continue
Calculate the flatness function value:
CALL FLAT(L,LS,SECTMAX, INTENSITY, FLATNESS)
WRITE(14,*) " FLATNESS = ",FLATNESS

WRITE(l16,81) RBCerror

FORMAT (" RBCerror = ",e25.12)
WRITE(16,82) FLATNESS
FORMAT (" FLATNESS = ",e25.12)
WRITE(16,83) AVGKL

FORMAT (" Average KL =",e25.12)
REWIND 14

STOP

return

END

IR R R Z R R RRERE R R R R R R R R RRRRR AR R S R A Rt R Rl RS s
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SUBROUTINE MATRIX (SECTNUM, LS, leftER, leftES,ALPHA,
DELTA, K, BETAo, rightER, rightES,RPS1, RPS2,RPS3)

implicit real*8 (a-h,o-z)

COMPLEX leftER,leftES, rightER, rightES

DOUBLE PRECISION ALPHA,DELTA, K, BETAo

DOUBLE PRECISION 21,22,LS,theta,PI,RPS1l,RPS2,RPS3
COMPLEX RHO, gamma, T11,T12,T21,T22,El,E2

INTEGER SECTNUM

PI=3.1415926535898D0

IF (SECTNUM.EQ.833.0R.SECTNUM.EQ.4166) THEN
theta=RPS1
theta=0.0
ELSE IF (SECTNUM.EQ.1667.0R.SECTNUM.EQ.3333)THEN
theta=RPS2
theta=0.0
ELSE IF(SECTNUM.EQ.2500) THEN
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theta=PI/2.0d0
theta=RPS3
ELSE
theta=0
END IF

SECTNUM starts at 1 .. for the 1lst section

21=(SECTNUM-1) *LS
22=21+LS

gamma=SQRT ( (cmplx (ALPHA, -DELTA) ) **2+K**2)
RHO=cmplx (0.0, K)/ (cmplx (ALPHA, -DELTA) +gamma)

El=exp (gamma*LS)
E2=exp(-gamma*LSs)

T1ll=((E1-RHO**2*E2) *exp (cmplx (0.0, -BETAO*LS) ) *
exp (cmplx (0.0, theta)) )}/ (1.0-RHO**2)
T12={~RHO* (E1-E2) *exp(cmplx (0.0, -BETAo* (22+21)))"*
. exp(cmplx(0.0,-theta)))/(1.0-RHO**2)
T21=(RHO* (E1-E2) *exp (cmplx(0.0,BETA0* (22+21) ) ) *
. exp({cmplx(0.0,theta)))}/ (1.0-RHO**2)
T22=(-(RHO**2*E1-E2) *exp (cmplx (0.0, BETAO*LS) ) *
exp (cmplx (0.0, -theta)) )/ (1.0~-RHO**2)

TT=T11*T22-T12*T21

rightER=T11l*leftER+T12*1leftES
rightES=T21*leftER+T22*1leftES

RETURN
END

SUBROUTINE CUBIC(NN1,B,C,S,vqg,epsil,Cl,ITH,Q,
c V,TAO,SECTNUM, Ao, NNo,Al,A2, LAMo, LAM1)

implicit real*8 (a-h,o-2)

Solves for section carrier concentration using
Bisection Method
LB = Lower Bound
UB Upper Bound

DOUBLE PRECISION B,C,S,vg,qg,epsil,Cl,ITH,Q
DOUBLE PRECISION V,TAO, NN1,NNo,Al,A2, LAMo, LAM1
DOUBLE PRECISION TOL,F,Ao0,LB,UB,P,Fl,F2,FF
INTEGER I,MAXCOUNT, SECTNUM

UB=3.5e24
LB=1.0e24

TOL=1.0E10
MAXCOUNT = 200
DO 20, I=1,MAXCOUNT
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P=LB+ (UB-LB) /2.0

g=Ao‘(P—NNo)—Al*(LAMl-(LAMO-AZ*(P—NNO)))**2
F=P/TAO+B*P**24C*P**3+ (vg*g*S/

(1.0+epsil*s))-(C1*ITH)/(Q*V)
IF((UB-LB)/2.0.LT.TOL.OR.F.EQ.0.0) THEN
GO TO 30
ELSE
F2=F

g=Ao* (LB~NNo) -Al*
(LAM1- (LAMo-A2* (LB-NNo) ) ) **2
F=LB/TAQ+B*LB**24+C*LB**3+ (vg*g*S/
(1.0+epsil*S))-(C1*ITH)/(Q*V)

Fl=F

FF=F1*F2
END IF

IF(FF.GT.0.0) THEN
LB=P

ELSE
UB=P

END IF

IF(I.EQ.MAXCOUNT) THEN
Print*, "Process failed ..Max iterations exceeded"
Print*,"I = ",I,"SECTNUM = ",6K SECTNUM
Print*, " "

ELSE

END IF

CONTINUE

SUBROUTINE FLAT (L, LS, SECTMAX, INTENSITY, FLATNESS)
implicit real*8 (a-h,o-z)

subroutine calculates flatness of field profile
return value (FLATNESS)

First Calculate the Average Field Intensity IAV
IAV = Average Intensity

INTEGER SECTMAX, SECTNUM
DOUBLE PRECISION L,LS, INTENSITY (SECTMAX), FLATNESS
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DOUBLE PRECISION IAV,ITOT, FSUM

ITOT = 0.0DO

Test Loop

DO 10 SECTNUM = 1,SECTMAX
IF (SECTNUM.LE.2500) THEN
INTENSITY (SECTNUM) = 4
ELSE
INTENSITY (SECTNUM) = 2
ENDIF
CONTINUE

DO 20 SECTNUM = 1,SECTMAX
ITOT = ITOT + INTENSITY(SECTNUM)
CONTINUE

Add the RHS (1st node) Normalization wvalue 1.0
ITOT = ITOT + 1.0DO

There is 1 more node than sections therefore
add 1 to SECTMAX to get the correct number of
nodes.
IAV = ITOT/ (1+SECTMAX)
WRITE (*,*) " IAV = ",IAV
Now calculate the flatness function
FSUM = 0.0DO
DO 30 SECTNUM = 1,SECTMAX
FSUM = FSUM + ((INTENSITY(SECTNUM)-IAV)**2)*LS
CONTINUE
FLATNESS = FSUM / L

RETURN
END
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DFBIM.FOR

This program activates the LGO solver system as well as opens the various input and
output files.

124

DFBIM.FOR ---

This is a program template, to be prepared (adapted) by LGO users.
The use of all included statements is (minimally} necessary.
Additional user operations - related to problem description, further
reporting options, additional program/system calls, etc. - can also
be included or connected, at corresponding points (segments) below.

Usage:

USER_MAIN: mandatory usage - calls the LGO solver system (via
LGO_RUN_SHELL)

USER_FILES: mandatory usage - gives names to user I/O files units

Please retain an original copy of this file for further reference
Save your own USERMAIN.FOR file in text format

PROGRAM USER_MAIN

USE WINTERACTER
WINTER.F90 contains numerous Windows features needed (WiSK version)

implicit real* 8 (a-h,o-z)

The following statement is needed (only) in Windows DLL program versions
DLL_IMPORT LGO_RUN_SHELL

common /Clinput/ C1 ! read Cl from file, then pass it into RBC_out
open(l1l23,file='Cl.1in’', status="unknown')

rewind (123)

read(123,124) C1

format (£20.10)

cl=3.0d0

Activate LGO optimization (solver) system

call LGO_RUN_SHELL

stop
end

SUBROUTINE USER_FILES

This routine serves to give names to three user 1/0 files (units)

Note: the logical unit numbers 8,9,10,11,12 and 13 are fixed (mandatory)
They could be changed only by modifying the optimization program system
(the latter being provided as an object file)

implicit real* 8 (a-h,o-2)
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Please define all (real) variables and operations in double precision,
in order to attain higher numerical accuracy

The following statement is needed (only) in Windows DLL program versions
DLL_EXPORT USER_FILES

--- User filename definitions ---
Please modify the file names given below, to suit user model

OPEN (8, FILE='DFB1.IN',6STATUS="'0OLD")

This file serves for parameterizing the LGO program system.

Note that the input parameterization is problem-dependent:;
please see the *_IN file, and check the comments on pm settings.

OPEN (9, FILE='DFB1.0UT', STATUS="'UNKNOWN')

This file serves for (optional) post-run analysis: it provides the
principal information describing the problem, and the process log
obtained during the optimization procedure.

OPEN (10, FILE='DFB1.SUM', STATUS='UNKNOWN' )
This file contains a brief summary of the run results.

open (unit=16, file='DFB1l_ck', status='unknown’)
RBCerror FLATNESS Total KL

return
end



DFBI1.IN

This code listing is the program input file, providing the range of solution variables (box
constraint) plus nominal values. Solution convergence and termination criteria are also
set in this file.

DFB1.IN FILE --- 8-variable 3-constraint

Input data to LGO program system.

NOTE TO USERS: Please retain a copy of this file for further reference;
save your own file in text format. The given structure is to be followed
exactly; keep all comment lines and the given *** input data formats.
Numerous parameters are automatically defined in the LGO object files;
the parameter values provided below can be changed by the user.

----------------- PROBLEM SIZE AND VARIABLE DEFINITIONS -—---=====———=—=———————=

NUMBER OF CONSTRAINTS: 3 **+ jnput format: 22x, il12
NUMBER OF VARIABLES : 8 *+** jnput format: 22x, 112
VARIABLE NAMES | LOWER BOCUND | NOMINAL SOLUTION | UPPER BOUND
Format: 20x | £20.10 | £20.10 | £20.10

Arbitrary nominal values can be set between the lower and upper bounds.

KL1 0.1 2.0 3.0
KL2 0.1 2.0 3.0
KL3 0.1 2.0 3.0
LAMSTART_ delt 0.00066 0.00068 0.00070
Co 0.5 6.0 10.0
DPS1 10.00 36.0 45.0
DPS2 10.00 36.0 45.0
DPS3 10.00 36.0 45.0

——————————————— GLOBAL SEARCH PHASE (OPTIMIZATION) PARAMETERS ——---=-===——=—=——=-

ACC_TR global search termination criterion parameter: global phase ends, if
the overall merit function value found in global search is less than ACC_TR.
The merit function is the sum of the objective function and the violated
constraints (if present). In the global search phase, the latter are added
to the objective, applying unit penalty multiplier factors (set within LGO) .
ACC_TR = 0.01 **+ jnput format: 16x, £20.10

G_MAXFCT global search termination criterion parameter: global scope search

ends, if the number of merit function evaluations (approximately) attains

G_MAXFCT. For G_MAXFCT=0 local search starts from the given nominal solution.
G_MAXFCT =10000 **+ jnput format: 16x, il2

MAX NOSUC global search termination criterion parameter: global search phase
ends, if the current best solution did not improve during {(at least) the last
MAXNOSUC subsequent merit function evaluations.

MAX_NOSUC= 100000 ***x jnput format: 1l6x, il2

FCT_CUT merit function cutoff value, used only to improve visualization:
this value should be larger, than the optimum value, to be found by LGO.
The usage of some 'huge' value is safe, but may give less visual details.



FCT_Cur = 200. *** input format: 16x, £20.10

———————————————— LOCAL SEARCH PHASE (OPTIMIZATION) PARAMETERS —-——-—--———------

FI_TOL local search termination criterion parameter: first local search phase

ends, if the merit function improvement is less, than FI_TOL.
FI_TOL = 1.0d4-6 *#++* input format: 16x, £20.10

FCT_TRG target objective function value in local search; partial stopping

criterion in second local search phase.

If unknown, then can be set to 'safe' lower bound, in order to skip criterion.
FCT_TRG = 1.d-6 *** input format: 16x, £20.10

CON_TOL maximal constraint violation tolerance in local search; partial
stopping critericn in second local search phase.
CON_TOL = 1.d-6 *** input format: 16x, £20.10

KT_TOL: tolerance in satisfying the Kuhn-Tucker local optimality conditions;
stopping criterion in third local search phase.
KT_TOL = 1.d-6 **+* jnput format: 16x, £20.10

NOTE TO USERS: the parameters listed above are problem-dependent - please check
your own LGO model runs and modify them, if thought necessary.
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APPENDIX F

THRESHOLD MODES CODE LISTING
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MODESOLVE.FOR

This code is used to solve for the threshold modes of a 6 section DFB laser given the
sectional coupling coefficient and inter-sectional phase shift profiles.

c Last change: GI 20 Mar 2001 11:04 pm
PROGRAM MODESOLVE

C SUBROUTINE MODESOLVE (LALPHA, LDELTA, ERROR, LALPC, LDELC)
! Glenn Isenor 01/01/25

! Solves for the threshold oscillation modes of a DFB laser
! with 6 TMM sections

! TMAX = Number of TMM sections (max = 6)
! SECTMAX = Number of sections Laser is divided into (5000)

6 Section laser
QWS: P4 = PI/2

' P W *_k * ok *_*
! II T1 II T2 I I T3 I I T4 I I ... etc.
' ko P, * ok ok *_x

' P1 P2 P3 P4 PS5

! MIDPOINT

1

!

! Order of matrix multiplication T1*P1=Cl, T2*P2*Cl=C2, etc

implicit real*8 (a-h,o-z)

DOUBLE PRECISION L,LSECT, BETAo

DOUBLE PRECISION Z(6),KL(6),PS(6),K(6),PI,GPERIOD

DOUBLE PRECISION ALPHAL, DELTAL, INCALPHAL, MAXALPHAL, MINALPHAL
DOUBLE PRECISION INCDELTAL,MAXDELTAL,MINDELTAL, FUNCTMIN
DOUBLE PRECISION SMALPHAL, SMDELTAL, SMFUNCTMIN

DOUBLE COMPLEX Y (2,2)

INTEGER SECTMAX, TNUM, TMAX, GRIDMAX, DLGRIDNUM, ALGRIDNUM
INTEGER 2Z(6)

! Define laser length L (meters) and # of TMM sections TMAX

L=500.0D-6

SECTMAX=5000
TMAX=6

PI=3.1415926535898D0
GPERIOD=2.27039D-7

! Initialize variables at an arbitrary + ive value
' ———e
SMFUNCTMIN=500.0DO
SMALPHAL=500.0D0
SMDELTAL=500.0D0

! Define section length ZZ IN # OF SECTIONS
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Note that SECTMAX would represent the number of TMM sections
in the above threshold analysis but at threshold the number
of TMM sections is significantly reduced and determined by

the number of KL sections. Each threshold TMM section consists
of a number cf the smaller sections. 2Z represents the size

of a threshold TMM section.

OPEN (UNIT=14, FILE='MODEV1OUT',6 STATUS='unknown')
REWIND 14

AR SR E SRR AR R AR SRR R R 222t RS iSRSt A R RSN R RRERERS;]

* START USER CONFIGURABLE PARAMETERS *

I E A SRR ER SRR AR RS R R R RRR 22222 2 2t ittt sttt R R R

ALPHAL and DELTAL search Parameters

GRIDMAX = 100

MINALPHAL= 0.5D0
MAXALPHAL= 2.5DO0

MINDELTAL= -1.00DO
MAXDELTAL= 1.00DO

MINDELTAL= -5.00DO0
MAXDELTAL= -1.00DO

MINDELTAL= 5.00D0
MAXDELTAL= 7.00DO

Size of each KL (TMM) Section (in small laser sections)

2Z2(1)=834
2Z(2)=833
22(3)=833

2Z2(4 TO 6) are determined from symmetry
Define KL values for each TMM section

KL(1) = 2.0
KL(2) = 2.0
KL(3) = 2.0

KL(4 TO 6) ~re determined from symmetry

Define PS (DEG) wvalues between each TMM section

Note: Always set PS(l) =0
PS(1) = 0.0DO

Ps(2) = 21.36551

PS(3) = 29.19348

[}

PS (4) 31.04674
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* END USER CONFIGURABLE PARAMETERS *

LA AR A RS R R AR AR R E RS R R R R R R R P P Y R R R R R R R 4

Define remaining 2Z, KL and PS parameters using symmetry

2Z2(4)y = 2Z(3)
2zZ(S) = 22(2)
2Z2(6) = 2Z(1)
KL(4) = KL(3)
KL(5) = KL(2)
KL(6) = KL(1)
PS(5) = PS(3)
PS(6) = PS(2)

Calculate BETAo

BETAo=PI/GPERIOD

Calculate Length Z(0 to L) (m) and K(SECTNUM)

Calculate LSECT - the length of each small section (m)
LSECT=L/SECTMAX

Calculate all remaining TMM section distances (m) from
the left hand facet.

Z2(l) = 22 (1) *LSECT

DO 2C TNUM=2, TMAX
Z (TNUM) =Z (TNUM-1) +22 (TNUM) *LSECT
PRINT*, "2 ",TNUM," ",Z(TNUM)
CONTINUE

Calculate the Y matrix and determine Y22 for a search grid

INCALPHAL= (MAXALPHAL-MINALPHAL) /GRIDMAX
INCDELTAL= (MAXDELTAL-MINDELTAL) /GRIDMAX

ALPHAL=MINALPHAL
DELTAL=MINDELTAL

DO 40 DLGRIDNUM=1,GRIDMAX+1
DO 30 ALGRIDNUM=1,GRIDMAX+1
WRITE(14,*) " ALPHAL =", ALPHAL," DELTAL =",DELTAL
CALL MATRIX(BETAo,L, LSECT, 2,22, PS, KL, TMAX, ALPHAL, DELTAL, Y)
FUNCTMIN = Y(2,2)*CONJG(Y(2,2))

CALL SORT (ALPHAL, DELTAL, FUNCTMIN, SMALPHAL, SMDELTAL,
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40

c SMFUNCTMIN)

[

c

WRITE(14,*) " ALPHAL =",ALPHAL," DELTAL =", DELTAL,
c " FUNCTMIN =", FUNCTMIN

ALPHAL=ALPHAL+INCALPHAL
CONTINUE
ALPHAL=MINALPHAL
DELTAL=DELTAL+INCDELTAL
CONTINUE

WRITE (14, *) " ALPHAL =", SMALPHAL," DELTAL =", SMDELTAL,

" FUNCTMIN =", SMFUNCTMIN
PRINT*, " ALPHAL =", SMALPHAL," DELTAL =",SMDELTAL,
" FUNCTMIN =", SMFUNCTMIN
STOP
END
T Y S L 22 R R RN e R R R R RS 2 A
* SUBROUTINES *

'**i**ﬁﬁt**tt"it'ﬁ*t***i*ﬁ*iﬁ*i'fl*ttiiiﬁi*i'kiiti*t*ttﬁiﬁ**ﬁtﬁ

SUBROUTINE MATRIX (BETAo,L,LSECT, 2,22, PS, KL, TMAX, ALPHAL, DELTAL, Y)
This subroutine computes the overall Y matrix

implicit real*8 (a-h,o-2)

DOUBLE PRECISION 2Z1,22,ZDIFF,2SUM,L,LSECT, BETAO
DOUBLE PRECISION Z(6),PS(6),K(6),KL(6)

DOUBLE PRECISION THETA, PI,ALPHA,DELTA,ALPHAL, DELTAL
INTEGER TMAX,TNUM, 22 (6)

DOUBLE COMPLEX RHO,GAMMA,T(Z,Z),Y(Z,Z),C(2,2),El,E2

PI=3.1415926535898D0

Initialize C Matrix to the Identity Matrix

= (1.0D0,0.0D0)
c(1,2) = (0.0D0,0.0D0)
c(2,1) = (0.0D0,0.0D0)
c(2,2) = (1.0D0,0.0D0)
T(l1,1) = (0.0D0,0.0DO)
T(l,2) = (0.0D0,0.0DO)
T(2,1) = (0.0D0,0.0D0)
T(2,2) = (0.0D0,0.0DO0O)
Y(1,1) = (0.0D0,0.0D0)
Y(1,2) = (0.0p0,0.0D0)
¥Y(2,1) = (0.0D0,0.0D0Q)
Y(2,2) = (0.0D0,0.0D0)

Un-normalize ALPHAL, DELTAL

ALPHA=ALPHAL/L
DELTA=DELTAL/L
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Un-normalize KL
DO 20 TNUM=1, TMAX
K (TNUM) =KL (TNUM) /L
CONTINUE

Compute the Y matrix

ZsuM=0.0D0
DO 30 TNUM=1, TMAX

GAMMA=SQRT (K (TNUM) **2+ (ALPHA-DCMPLX (0.0DO, DELTA) ) **2)
RHO= (DCMPLX (0.0, K(TNUM) ) ) / (GAMMA+ALPHA-DCMPLX (0.0DO0O, DELTA) )

WRITE(14,*) "GAMMA = ",GAMMA," RHO = ", RHO

GAMMA=SQRT { (cmplx (ALPHA, ~-DELTA) ) **2+K(TNUM) **2)
RHO= (cmplx (0.0, K(TNUM) ) )/ (cmplx (ALPHA, -DELTA) +GAMMA)

ZDIFF=22 (TNUM) *LSECT

ZSUM=2 (TNUM) ~ZDIFF+Z (TNUM)

WRITE(14,*) "TNUM ",TNUM,"2Z2 = ",Z(TNUM)," 2SUM = ",ZSUM,

c "ZDIFF = ",ZDIFF

El=exp (GAMMA*ZDIFF)
E2=exp (-GAMMA* ZDIFF)
THETA=PS (TNUM) *2.0D0*PI1/360.0D0

T(1,1)=((E1-RHO**2*E2) *exp (cmplx (0.0, -BETA0*ZDIFF)) *
exp (cmplx (0.0, THETA)) )/ (1.0-RHO**2)

T(1l,2)=(-RHO* (E1-E2) *exp(cmplx (0.0, -BETAo* (ZSUM) ) ) *

exp (cmplx (0.0, -THETA)))/ (1.0-RHO**2)

T(2,1)=(RHO* (E1-E2) *exp(cmplx (0.0, BETAo* (ZSUM) ) ) *

exp (cmplx (0.0, THETA)) )/ (1.0-RHO**2)
T(2,2)=(-(RHO**2*E1-E2) *exp (cmplx (0.0,BETAC*ZDIFF))*
exp (cmplx(0.0,-THETA)))/ (1.0-RHO**2)

Y(1,1)=T(1,1)*C(1,1)+T(1,2)*C(2,1)
Y(1,2)=T(1,1)*C(1,2)+T(1,2)*C(2,2)
Y(2,1)=T(2,1)*C(1,1)+T(2,2)*C(2,1)
Y(2,2)=T(2,1)*C(1,2)+T(2,2)*C(2,2)

C(1,1)=Y(1,1)
C(1,2)=Y(1,2)
Cc(2,1)=Y(2,1)
c(2,2)=Y(2,2)
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20 CONTINUE

RETURN
END

SUBROUTINE SORT (ALPHAL, DELTAL, FUNCTMIN, SMALPHAL, SMDELTAL,
c SMFUNCTMIN)

! This Subroutine finds the smallest "FUNCTMIN" from the grid
! search and returns this value with the corresponding
! ALPHAL, and DELTAL

implicit real*8 (a-h,o-z}
DOUBLE PRECISION ALPHAL,DELTAL, FUNCTMIN, SMALPHAL, SMDELTAL
DOUBLE PRECISION SMFUNCTMIN

IF (FUNCTMIN.LT.SMFUNCTMIN) THEN
SMFUNCTMIN=FUNCTMIN
SMALPHAL=ALPHAL
SMDELTAL=DELTAL

ELSE

END IF

RETURN
END





