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Abstract

Meta-analysis is sometimes defined narrowly as the combination of summary statistics
from different studies. Here we consider cases where the raw data from each study are
available, and explore hierarchical modeling approaches to meta-analysis. Any statisti-
cal analysis may present hazards—such as model misspecification and overly influential
observations—and meta-analysis is particularly susceptible. One approach to this problem
is through the use of graphical methods for diagnosing deviations from our assumptions.
In this work we develop several new displays for meta-analysis, including the raindrop
plot for displaying information from many studies simultaneously. Approaches to the es-
timation of linear and nonlinear mixed effects model are reviewed and generalizations of
a segmented regression model are developed for use in mixed model analyses. A different
way of dealing with the pitfalls of meta-analysis is through the use of robust statistics. Hug-
gins and Richardson previously developed methods for robust estimation of linear mixed
effects models. Nonlinear mixed effects models present additional challenges. Based on
the approach of Huggins, we propose modifications to robustify two algorithms for esti-
mating nonlinear mixed effects models. Our methods are illustrated using data on ulcer
studies, wolf populations, and coho salmon populations.
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List of Symbols

Because this thesis involves several different fields of research, the notation can be for-
midable. So that the symbols don’t obscure the meaning, I have tried to keep it simple,
for example eschewing the use of boldface notation to distinguish vectors from scalars, as
this should be clear from the context. The transpose of a vector (or matrix) x is denoted
xT. T use k to denote a generic index, f to denote a generic function, and / to denote
the identity matrix. If f is a vector-valued function of a vector argument x, then f'(z)
denotes df/dx” | .. If f is scalar-valued then f”(z) denotes 9> f/dxdx” | ... Capital letters
generally denote matrices. The following is a partial list of the most important symbols

used in the thesis, grouped by topic.
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Chapter 1
Introduction

A fundamental goal of science is synthesis—diverse natural phenomena are regarded as
manifestations of an underlying structure. It is therefore ironic that investigators com-
monly focus on one data set at a time. For example, in fisheries management, data on a
single population, or stock, are often analyzed independently of data on related stocks. Of
course, any one data set may exhibit tremendous complexity, and much can be learned from
carefully studying it in isolation. Yet there seems something perverse in ignoring related
data.

Quantitative methods for combining data from different sources have a long history
(Stigler 1936), but only in the mid-1970’s did they become recognized as a distinct field,
under the rubric of meta-analysis. Proponents of meta-analysis have pointed to the many
benefits of combining information: increased power, understanding of effect modifiers,
resolution of apparently contradictory findings, etc.

Yet there remains considerable skepticism and controversy about meta-analysis: psy-
chologist H. J. Eysenck (1978) called it “an exercise in mega-siiliness.” Concerns have
been raised that meta-analysis “mixes good studies with bad,” that studies may in fact be
measuring different things, that unknown factors may make combination of results invalid,
that a single study may “drive” the results of a meta-analysis, and that “publication bias”
may hide non-significant research findings and thereby bias meta-analytic summaries. A
number of graphical methods have been developed to assess the likely import of the various
hazards listed above. For example, an early attempt to diagnose the presence of publica-
tion bias was the funnel plot—a scatter plot of study estimates versus sample size—and it



remains useful today.

Of course any statistical analysis presents hazards, and graphical diagnosis of devia-
tions from assumptions has become a major theme of recent study. A different approach
has been the development of robust statistics. The goal has been to develop statistical
procedures that are not overly sensitive to slight deviations from their assumptions, with-
out paying a high price in terms of bias or efficiency. Many robust procedures effectively
downweight outlying observations, and thus provide a diagnostic component. Robustness
issues are plainly important in meta-analysis, although relatively little work has directly
addressed this.

Another controversy in meta-cnalysis concerns the use of fixed versus random effects
models. Fixed effects models assume that all studies are estimating the same unknown
quantity. Random effects models instead assume that the “true effect” being estimated by
each study comes from a distribution. In meta-analyses where only summary statistics
(typically with standard errors and/or confidence intervals) are combined, the choice is es-
sentially limited to fixed or random effects models. In other cases, however, raw data from
each study may be available, and a broader array of modeling choices may be considered.
For example, mixed effects models can have both fixed and random effects. Recently hier-
archical models, which generalize mixed effects models, have become very popular. With
improvements in computing power and Markov Chain Monte Carlo (MCMC) methods,
Bayesian approaches to hierarchical modeling have been widely applied, in meta-analysis
among other areas. Concerns remain, however, about adequacy of assumptions and other
dangers.

This thesis concerns the use of nonlinear mixed effects models in meta-analysis, with a
particular focus on robustness and graphical methods. I begin by introducing three data sets
that will be used throughout the thesis. The practical questions of interest are as follows:
(1) Are wolf populations in Québec declining? (2) Are ulcer treatments effective? and (3)
What is the maximum reproductive rate of coho salmon? Answers to these questions are
of considerable importance, however the broader goal of this thesis is to investigate and
develop methodology.



1.1 Example 1: Wolves in Québec

Over the last 100 years, the geographical range of gray wolves (Canis lupus) has been
greatly reduced (Lariviere, Jolicoeur, and Créte 2000). During the 1970’s, the province
of Québec established a network of wildlife reserves where the harvest of game species,
including wolves, became controlled by a system of registered traplines and a quota on
hunting licenses. Recently, Lariviére, Jolicoeur, and Créte (2000) reported on wolf popu-
lation trends during the last 15 years in 9 reserves located in southern Québec. They used
data from questionnaires distributed to moose hunters and an equation linking the ques-
tionnaire data to radio-tracking data. In one of the reserves, Ashuapmushuan, a different
management scheme was used, and we omit the data from this reserve. Figure 1.1 displays
the data from the remaining 8 reserves.
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Figure 1.1: Log population numbers of wolves in 8 reserves in southern Québec. The 1997
observation in the Laurentides reserve is plotted as an open circle because the management
scheme that year was changed.

Note that the 1989 observation in the Mastigouche reserve seems unusual: it the lowest
observation and deviates from the overall trend. Because it is not at either extreme, it



might not be expected to be very influential on estimates of the slope in a linear regression,
however it would be expected to influence the estimate of the intercept, and to inflate the
variance estimate.

There is a prior reason for treating the 1997 observation in the Laurentides reserve with
caution: the management scheme that year was changed as an experiment.

To estimate long-term trends in wolf densities in each reserve, Lariviére, Jolicoeur,
and Créte (2000) performed a simple linear regression of density versus year, and con-
cluded that, over the last 15 years, in 7 of the 9 reserves, wolf populations have been rela-
tively stable, with the remaining 2 reserves showing declines. This approach—determining
the proportion of studies for which a test exhibits statistical significance in the prescribed
direction—is known as “vote counting” in the meta-analysis literature, and is inherently
flawed (Hedges and Olkin 1985). Hedges and Olkin (1980) showed that as the number
of studies becomes large, the proportion of studies yielding significant results is approxi-
mately equal to the average power of the test. Rather that providing inferences about the
wolf populations, the procedure may in fact be providing information about the chosen test!

1.2 Example 2: Ulcer studies

Treatments for bleeding peptic ulcers have been investigated in a number of randomized
control trials, but questions remain about their effectiveness. To attempt to answer these
questions, Sacks et al. (1990) applied conventional meta-analytic methods to data from a
number of ulcer trials. Using data from 41 studies obtained from the paper of Sacks et
al., Efron (1996) applied a novel meta-analytic approach involving combination of like-
lihoods in an empirical Bayes framework. Morris (1996) noted several discrepancies be-
tween Efron’s data set and that of Sacks et al.; we use that of Efron (1996) for comparability.

Each study was a randomized clinical trial whose outcomes may be written as a 2 x 2
table (Table 1.1). The ith trial can be denoted (a;, b;, ¢;,d;), where a; and b; are the numbers
of failures and successes in the treatment group and c; and d; are the numbers of failures
and successes in the control group. The elements a;, b;, ¢;, and d; are sometimes called the
cells of the table.



Failure Success
Treatment a; b;
Control Ci d;

Table 1.1: Two-by-two table for outcomes of a randomized clinical trial.

The data from all 41 studies are shown in Table 1.2.

i a; b,' Ci d,' 1 a; b,' Ci d,' i a; b,‘ Ci di
1 7 8 11 2 15 3 22 11 21 29 0 22 8§ 16
2 8 11 8 8 16 4 7 6 4 30 2 16 10 11
3 5 29 4 35 17 2 8 8 2 31 1 14 7 6
4 7 29 4 27 18 1 30 4 23 32 8 16 15 12
5 3.9 0 12 19 4 24 15 16 33. 6 6 7 2
6 4 3 4 O 20 7 36 16 27 34 0 20 5 18
7 4 13 13 11 21 6 34 13 8 35 4 13 2 14
8§ 1 15 13 3 22 4 14 5 34 36 10 30 12 8
9 3 11 7 15 23 14 54 13 6l 37 3 13 2 14
10 2 36 12 20 24 6 15 8 13 3834 30 5 14
116 6 8 0 25 0 6 6 O 39 7 31 15 22
12 2 5 7 2 26 1 9 5 10 40 0 34 34

13 9 12 7 17 27 5 12 5 10 41 0 9 0 16
14 7 14 5 20 28 0 10 12 2

Table 1.2: Data from 41 studies on treatment of peptic ulcers listed by Efron (1996) from a
meta-analysis by Sacks et al. (1990). For study i, (a;, b;) = (failures,successes) in treatment
group, and (c;,d;) = (failures,successes) in control group.

Note that there are some fairly striking differences between the studies. For example,
study number 6 had just 11 subjects, whereas study number 23 had 142. Some studies have
zero-cells, indicating that subjects in either the treatment or control group had either no



successes or no failures.
It is often desired to estimate the log odds ratio of the ith table,

8 =1 P,-(FailurelTreatment)P,-(SuccessIControl))
a P;(Success|Treatment) P;(Failure|Control) / -

We may also wish to estimate a summary measure—e.g., the mean log odds ratio—over all
of the studies.

1.3 Example 3: Coho salmon spawner-recruitment data

In recent years there have been alarming declines in coho salmon (Oncorhynchus kisutch)
populations on the west coast of North America. A population dynamics approach may
help to explain why this is happening and provide guidance for management.

Adult coho spawn in streams and rivers. About 1.5 years later, their offspring—known
as smolts at this life stage—migrate to the sea. Another 1.5 years later, the survivors return
to spawn (Figure 1.2).

Adults migrate Smolts Adults migrate
to streams, migrate to streams,
spawn, & die to sea Fishing spawn, & die

l i K.

fe— 1.5 yrs —>la—— | 5yrs —»]

river survival ocean survival

- time

Figure 1.2: Coho salmon life history.

The goal of the analysis that will be developed in this thesis is to model the freshwater
proportion of the life-history, so that this information can be combined with independent
data on survival at sea to produce improved management models. For example, in South-
ern British Columbia coho salmon catches and escapements have declined in the last 20
years, and there has been considerable disagreements on the causes of these declines (Wal-
ters 1993; Walters and Ward 1998; Beamish, Mcfarlane, and Thomson 1999). However,
it is clear that the survival at sea has greatly declined in recent years (Bradford, Myers,



and Irvine 2000). Our analysis of the freshwater survival can produce estimates of the
mean and variation among stocks of the freshwater portion of the survival, which can then
be combined with the long term data on survival at sea. Furthermore, we will produce
population-specific optimal estimates for individual rivers.

Let S;; represent the quantity of spawners from cohort j in population i, measured as
the number of spawning females per kilometre of river, and let R;; represent the quantity
of “recruits” produced by those spawners, measured as the number of female smolts per
kilometre of river. We consider data on 14 coho populations (Figure 1.3). An in-depth
analysis of these and related data is in Bradford, Myers, and Irvine (2000).



R (number of female smolts per kilometre of river)

Big Beef Ck, WA Bingham Ck, WA
g 1000 {—
1200 . + a0l .
800 .o s 600 1+, ° & .
" . 4001~ . °
400 o 200
0 0
0 20 40 60 0 50 150 250
Carnation Creek, BC Deer Creek, OR
800 4 * 600 * .
600 n"," 400 .,
a0 * e 0] )
200 07 .
0L 0
0 20 40 0 5 10 20
Flynn Creek, OR Hooknose Creek, BC
¢ 600 . ¢
400 IR
30{ " .. 400 { , .o .
200 1+ ° . : o
w00 ° 200
0 0
0 10 20 30 40 0 10 30 50
Needle Branch Creek, OR Nile Creek, BC
250 : —
200 ‘. . 400
150 ‘ . . . o
1001 ° o 200
50 1.
0 A — 0
05 15 25 0 10 20 30

S. Fk. Skykomish River, WA

Snow Creek, WA

2000 g 5 :
1500 » . | 600 ©
1000 { o * ° 400 1 PR *
500 200
0+ v (VR T
0 50 100 150 0 20 40 60

1500 1

1000
500

1200
800
400

600
400
200

3000
2000
1000

Black Creek, BC

0 20 40 60 80

Deschutes River, WA

CJ
0 20 60
Hunt's Creek, BC
0 20 60

Qualicum River, BC

S (number of spawning females per kilometre of river)

Figure 1.3: Coho salmon spawner-recruitment data.
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Borrowing the words of Thomas Hobbes (1651), spawner-recruitment data can be char-
acterized as “nasty, brutish, and short.” The longest spawner-recruitment series in Fig-
ure 1.3 has 24 observations (Carnation Creek, BC), and the series show tremendous vari-

ability (e.g., Hunt’s Creek, BC). When there are no spawners there can be no recruitment,
and the series generally show increasing recruitment with increasing spawner quantity. We

will seek spawner-recruitment models that exhibit this behaviour.
Outright errors often find their way into spawner-recruitment data. My initial analyses

of the coho salmon data were flawed due to a data-entry error: the length of Hunt’s Creek,

BC, had been incorrectly entered as 1.4 km instead of the correct value of 5.4 km. (The
source of the error is unclear.) In many applications, this type of “gross error” in data is not
uncommon: Hampel et al. (1986, p. 28) suggest that “1-10% gross errors in routine data

seem to be more the rule rather than the exception.”

1.3.1 Spawner-recruitment models
Several parametric models for spawner-recruitment data have been proposed; three are

shown in Figure 1.4. Simple biological justifications for each model have been proposed.
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Figure 1.4: Typical shapes of three spawner-recruitment curves
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Spawner-recruitment models are generally nonlinear. The Beverton-Holt model (also
known as the Michaelis-Menten model in enzyme kinetics) is

R:: = S'“
Y7 1o+ 8ij /R

(1.1)

Since Beverton-Holt curves are nondecreasing and approach a horizontal asymptote, they
seem to have roughly the behaviour we need to model coho salmon data. The parameters o;
and R are both positive and have the following interpretations. Geometrically, a; is the
slope of the curve at the origin. It is interpreted biologically as the number of recruits per
spawner at low spawner levels, or in the case of the coho salmon data, the number of female
smolts per female spawner. Geometrically, R is the asymptotic level of recruitment. It
is interpreted biologically as the carrying capacity of a river, or in the case of the coho
salmon data, the maximum number of female smolts per kilometre of river.

A brief comment on the units of measurement is in order. Careful consideration of
the units of parameters is of fundamental importance in meta-analysis. For combination
of results to be meaningful, estimates must be measured on the same scale or be dimen-
sionless. In the wolf example, the rate of decline (or increase) may be measured on the
same scale (log number of wolves per 100 square kilometre per year) in each reserve. In
the ulcer example, the log odds ratio is dimensionless. Returning to the coho salmon data,
recall that S;; and R;; were defined as the quantity of spawners and recruits per kilometre
of river. This standardization by river length is important because it allows comparison of
R across rivers. Note however, that comparison of @; across rivers requires no standard-
ization. In general, for other species groups, recruitment should be standardized by the size
of the habitat. For coho salmon, river length is a proxy for habitat size since coho reside
primarily along the edge of a river.

Another spawner-recruitment model is the Ricker model,

Rij = (liS,'je_BiS‘i. (1.2)

The Ricker model has the convenient property that it can be transformed to obtain a linear
model,

R..
log—L = loga; — BiSi;,
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for which estimation tends to be relatively easy. However, the Ricker is not a good model
for the overall dynamics of coho salmon, since it exhibits overcompensation, i.e., recruit-
ment is not an increasing function of the spawner quantity. This does not seem to match
the behaviour shown in Figure 1.3. Nevertheless, Barrowman and Myers (2000) showed
that for a single stock, the Ricker model often gives more reasonable estimates of the slope
at the origin than does the Beverton-Holt. Barrowman and Myers (2000) and Bradford,
Myers, and Irvine (2000} aiso proposed the hockey-stick model,

o;S;; ifS;j < S}

. (1.3)
o;S; ifS;j>S;.

R,'j = aimin(S,-j,S,-‘), = {
and showed that it typically gives reasonable estimates of the slope at the origin as well as
matching the population dynamics of coho salmon. Later on we will introduce two families
of generalized hockey stick models that smooth the abrupt transition of the ordinary hockey
stick.

The parameter a; has dimensions of recruitment per spawner and, in all of the models
considered here, gives the slope of the function at §;; = 0. It is crucial in setting the limits
of overfishing (Mace 1994; Myers and Mertz 1998). It is particularly easy to see why this is
the case for species like coho salmon, which die after reproduction. For a given population
of coho salmon, suppose that o; = 50 female smolts per female spawner, and assume there
is 90% mortality during the ocean stage of the coho life cycle followed by 80% mortality
from fishing. This would, on average, result in a stable population (Figure 1.5).
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A female Coho

/ lays eggs & dies \‘
Avg. of 50
80% are fished female smolts
Avg. of | remains resull

\ 90% die in
the ocean

Avg. of 5 remain

Figure 1.5: Schematic depiction of a stable population of coho salmon, assuming o; = 50
female smolts per female spawner, 90% ocean mortality, and 80% fishing mortality.

We will examine the fits for the above models simultaneously for the 14 rivers; we thus
need to consider the patterns of deviations of the observations of recruitment from the mean
behaviour model across stocks. Previous work has shown that in the marine environment,
recruitment deviations are correlated at separations of roughly 500 km (Myers, Mertz, and
Barrowman 1995; Myers, Mertz, and Bridson 1997) compared to less than 50 kilometers
in the freshwater environment (Myers, Mertz, and Bridson 1997). These results apply for
coho salmon, for which freshwater survival is almost independent among years for stocks
greater tnan 20 kilometers apart, but marine survival is correlated at a much greater spatial
scale (Bradford 1999). As described above, the spawner-recruitment data considered here
concerns the freshwater part of the life cycle, thus we will assume in what follows that
deviations from the spawner-recruitment relationship are independent among stocks.

We will also assume that within a stock there is no autocorrelation in the recruitment
residuals among years (Bradford 1999). Myers, Bowen, and Barrowman (1999) considered
linear mixed effects models for spawner-recruitment data allowing for autocorrelation.

1.4 Conventional approaches to meta-analysis

For the purposes of this thesis we define meta-analysis as quantitative methods for com-
bining evidence across studies (Hedges and Olkin 1985, p. 13). Note that meta-analysis
is often defined more broadly to include non-statistical considerations. These can be of



14

critical importance, but they are not the subject of the present work. For a broad-ranging
survey of statistical and non-statistical aspects of meta-analysis see Cooper and Hedges
(1994). For a shorter but very comprehensive tutorial see Normand (1999).

In a different respect, meta-analysis is often defined more narrowly: combination of
raw data is excluded, and only the combination of summary statistics, such as standardized
mean differences and correlations, is considered. We begin by discussing standard meta-
analytic approaches in this narrow context.

1.4.1 Fixed effects meta-analysis: weighted means

Denote the parameter of interest by B and suppose there are m studies. Let¢y,... ,t, be
independent estimates with common mean B and variances vy, ... .v,. For now, assume
that the ¢; are normally distributed. Following Cox (1982), let y; = t;/,/v; and note that
Var(y;) = 1. Since £(y;) = B/,/vi we can write

1 .
yi= B+£i7 l=l7"’7m1
Vi

7

where E(g;) =0andg,... &y, are i.i.d. This is a simple linear regression with no intercept,
and from the usual formulas, the least squares estimate of B is

SXY _ Z:-"___lt,'/v;
SXX  ¥™ 1/v

= iwiti/iwi’ (1.4)
i=1 i=1

i
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where w; = 1/v;. This is just a weighted mean of the estimates, with weights inversely
proportional to the variances. To obtain a standard error for ﬁ note that

m m

-2
Var(B) = (ZW:‘) w7 Var(t;)

i=1 i=1

-2
m m
Lwi| YLw
i=1 i=1

-1
= (): w,-) : (1.5)
i=1

A check on the validity of our assumptions may be obtained by examining the residual

sum of squares

SSE = SYY - g):_ = Ztiz/vi_ (Z(:l[l/vl)
i=1

SXX i 1/vi
i ) (Z:n—l W'iti)2
= witf — —=———— (1.6)
i; o i wi

and since Var(y;) = 1, it follows that SSE ~ x2_,. We shall call SSE the chi-squared
homogeneity statistic; too large a value of SSE suggests that the assumptions are in error.
For example, the estimates may not in fact have a common mean, or the variances may not
be correctly specified.

Of course, we rarely know the variances v;, and must use estimated weights in (1.4—1.6).

1.4.2 Random effects meta-analysis

Suppose that ¢y, ...,y are actually estimating different quantities 6y,...,0,, i.e., condi-
tional on 6;, t; has mean 6; and variance v;, fori = 1,... ,m. Write 8; = B+ u;. It may
be possible to model the «; in terms of explanatory variables. Alternatively, the u; may be
taken as random. For example, suppose the u; are i.i.d. normal with zero mean and vari-
ance 62. Then, marginally, ¢; is normally distributed with mean B and variance 62 + v;, for
i=1,...,m. Wecall 0‘5 the random effects variance and v; the estimation variance. Pro-
vided both 62 and the v; are known, the weighted mean (1.4) with weights w; = (62 +v;) ™!
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can be used to estimate [3.
We can write this as a hierarchical model:

t10;,vi ~ N(6;,v) (1.7)

Alternatively, we can write the model as

i = PBHuite;
LY (0,62) independent of
& '~ N(O,v)
i o= l,....m (1.9)

Ui

1.4.3 Empirical Bayes estimation

Though the focus of meta-analysis is usually to estimate P, it is sometimes of interest to
obtain the *best” estimate of the effect for a particular study. Let us denote the study of
interest as study O (normally one of the m studies) with estimate ¢y and estimation variance
vo. In the context of model (1.9), suppose we wish to estimate the realized value of 6y, the
parameter specific to study 0. A reasonable estimator is the mean of 8 given ry. If vg, B,
and 0’5 are all known, then the distribution of 8¢ conditional on g is normal with mean

BoP + (1 —Bo)to (1.10)

and variance
VO( I- BO) ’

where By = vg/(vo +62). Note that 0 < By < 1. When By = 0, vg is negligible compared
to cﬁ, and our estimate (1.10) of O is simply the observed value fg. On the other hand,
when By = 1, oﬁ is negligible compared to vp, and the estimate of 0g is “shrunk” from
the observed value 7y to B. For values of By between zero and one, the result is partial
“shrinkage” of the observed value fy towards B. For this reason, By is called the shrinkage
factor for study 0.
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If we consider the distribution of (1.8) to be a prior distribution for 8g, then the distri-
bution of 8y conditional on #q is the posterior distribution of 8p. The posterior mean (1.10)
is a weighted mean of the estimate f and the grand mean B, and the shrinkage of g towards
B incorporates our prior knowledge.

Since we do not know B and 62, and perhaps not vy either, one strategy is to replace
them by estimates in (1.10). This is the parametric empirical Bayes approach and it incor-
porates all the data into the estimate for a single study. This is sometimes called “borrowing
strength” from other studies: when the information contained in an individual study is rel-
atively weak (so that vg is large), the information contained in all of the other studies is
“borrowed” to obtain better estimates.

For example, if we knew 62 and v, but not B, we might estimate the realized value 6
by

Bof + (1 = Bo)ro, (L.11)

where B is an estimate of f based on 1y, ... ,1,,.

1.4.4 Mixed effects meta-analysis

Model (1.9) is called a random effects model because all terms, except for the grand mean,
B, are random effects. We may wish to include fixed effects in the model, however, by
defining

ei=B|+B2xi2+"'+quiq+ui9 (112)

where x;),...,x; are characteristics of study i. The model (1.12) is known as a mixed
effects model since it has both random effects and fixed effects (in addition to B;). In
the remainder of this work, when mixed effects models are mentioned, they should be
understood to include random effects models as a special case.

If we coliect the fixed effects into a vector B = (B4, ... ,Bq)T, we can write (1.12) as

6; =x] B+u;,

where x; = (1,xp,... ,x,-q)T. In Chapter 4, we will generalize this further to give the general
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linear mixed effects models for repeated measures data Laird and Ware (1982).

Mixed effects models are a type of hierarchical model: in the model given by (1.7) and
(1.8), the hierarchy has two levels. As discussed above, we typically do not know f and
o2 and one way to proceed is to treat them as fixed unknown values to be estimated, as
in the empirical Bayes approach. Alternatively we can place prior distributions on these
parameters, which is to say add another level to the hierarchy, and then proceed using
Bayesian inference.

1.5 Meta-analysis of raw data

When only summary statistics are available, analysis is usually limited to the methodolo-
gies discussed above, and the estimated effect sizes, t;, are generally assumed to be ap-
proximately normal. In Chapter 2 it will be shown that there are cases where the normality
approximation is dubious, and, where possible, it is advisable to use the raw data instead.
This thesis focuses on this broader context, and the richer variety of models that may be
entertained.

Summary statistics, or individual estimates as we will call them, are nevertheless of
considerable value. In conducting a meta-analysis it is important to be cautious in several
respects. Summary statistics provide an indication of what the individual studies are telling
us, without the intermediary of a possibly complex statistical model. Another way to be
cautious is by using robust statistical procedures; Chapter 2 includes a discussion of one
approach to robust estimation for regression models, namely M-estimation.

Modeling may be greatly simplified when we have single-parameter likelihoods, and
Chapter 2 also features a review of the elimination of nuisance parameters. Single-pa-
rameter likelihoods are also exploited in Chapter 2 to develop a new graphical display
for meta-analysis called the “raindrop plot”. The raindrop plot provides a compact and
informative way of displaying the information provided by groups of studies, particularly
in cases with small sample sizes and nonlinear models where individual likelihoods may
exhibit deviations from normality.
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1.5.1 Repeated measures data

In the examples considered in this work, the data have a repeated measures structure in
which several observations are available from each study. Suppose the observation vector
for study i is of length n;. In the wolf data, there are m = 8 studies (reserves) with obser-
vation vectors of length 14, 13, 12, 8, 14, 15, 8, and 13. The ulcer data consists of m = 41
studies whose 2 x 2 table structure means that the observation vectors for each study are
of length 4. In the coho salmon data, there are m = 14 studies (rivers) with observation
vectors of lengths 17, 14, 12,24, 13,16, 13, 13, 11, 12,5, 11,9, and 15.

In this thesis we will use the term “studies” generically. In the literature, other terms
such as clusters, groups, units, individuals, and subjects are commonly used.

One type of repeated measures data is longitudinal data, where the observations in each
study are ordered, typically by time. The wolf and coho salmon data are longitudinal, while
the ulcer data are not.

1.5.2 Hierarchical models for raw-data meta-analysis

Chapter 3 provides an overview of hierarchical models for meta-analysis, with special em-
phasis on the connections between frequentist, empirical Bayes, and fully Bayes inference.
This provides a broad framework for the mixed effects models discussed in subsequent
chapters. Efron (1996) proposed an empirical Bayes approach to combining likelihoods
and illustrated it using the ulcer data. We review his approach in Chapter 3 and use raindrop
plots to display some of his results. We also consider the application of Efron’s approach
to meta-analysis of the coho salmon data.

One of the simplest cases of raw data meta-analysis occurs when we wish to model
linear relationships in several studies. The wolf data provide a simple example of this. The
Ricker spawner-recruitment model, upon transformation, provides another example. Chap-
ter 4 introduces linear mixed effects models and reviews methods for parameter estimation
and inference, as well as approaches to robust estimation.

Except for the Ricker model, the spawner-recruitment models introduced in section 1.3.1
are nonlinear, and in Chapter 5 nonlinear mixed effects models are introduced and methods
for parameter estimation and inference are reviewed. Approaches to robust estimation of
nonlinear mixed models are discussed, and two methods proposed.



Chapter 2
Individual estimates

A cautious approach to modeling dictates that before we consider combining data from sev-
eral studies, we should carefully examine the individual data sets, and estimates obtained
from each one. We follow Davidian and Giltinan (1995) in referring to these as individual
estimates. Of course, if the studies in fact concern related phenomena, then this approach
will be inefficient. But it protects us from hasty judgements—there may be much to be
gained from combining information, but we should not lose sight of the hazards.

We begin, in sections 2.1-2.3, by returning to our examples to illustrate how individual
estimates are obtained in different contexts. In section 2.4, we consider robust estimation
for individual data sets, and illustrate the diagnostic use of observation-weights obtained
from a robust analysis using a new type of graphical display. In multi-parameter problems,
the focus of interest may be a single parameter. In section 2.5, we review methods for
the elimination of so-called “nuisance” parameters, with illustrations involving the ulcer
data and the salmon data. In nonlinear problems, particularly with small sample sizes,
conventional methods for displaying individual estimates may be misleading or inadequate.
In section 2.6, we introduce the raindrop plot, a new graphical display for meta-analysis
that circumvents the problems with conventional methods.

We use the following generic notation for our data. There are assumed to be m studies,
with n; observations in study i. In study i, we denote the jth observation by y;; and let
Vi = (Vitye-- s y,-,,,.)r denote the entire vector of observations for that study. Finally the
observations for all studies are collected into one vectory = (y[, ... ,yI)T.

20
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2.1 Example: Wolves in Québec

For the ith wolf population, let y; denote the vector of log numbers of wolves per 100 square
km and let x; denote the associated vector of years. Lariviére, Jolicoeur, and Créte (2000)

performed linear regressions on each of the data sets individually. For the ith data set, the
model is

yi = 0i1 +0,2x; +€;, 2.1)

where 6;; is the intercept, 8;; is the slope, and &; ~ N (O,c,.zl ). Figure 2.1 shows the indi-
vidual regressions.
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Figure 2.1: Log population numbers of wolves in 8 reserves in southern Québec with fitted
least squares regression lines. The 1997 observation in the Laurentides reserve is plotted
as an open circle because the management scheme that year was changed. The dashed line
shows the regression excluding that point.

Only two of the reserves give slopes significantly different from zero at the 95% confi-
dence level—Rouge Mattawin, and Saint Maurice—and both show declines. Two of the re-
serves show apparent (but non-significant) increases: Papineau-Labelle and Sept-Iles/Port
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Cartier.

Olkin (1999) encourages the meta-analyst to “Plot, plot, plot whenever and whatever
you can.” A standard display used in meta-analysis consists of a sequence of point estimates
and confidence intervals from individual studies followed by a meta-analytic summary, typ-
ically a combined estimate with a confidence interval (Light et al. 1994, Galbraith 1988).
This has also been called a forest plot (Bijnens et al. 1996). In subsequent chapters of
this work, we will consider meta-analytic summaries, but for now, the focus is on individ-
ual estimates. Figure 2.2 shows a display of the individual estimates of the slopes of the
regression lines in Figure 2.1.
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Figure 2.2: Point estimate and 95% confidence interval for each reserve for the slope of the
least squares regression of log numbers of wolves versus year.

Figures 2.2 and 2.1 show completely independent reserve-specific estimates. In partic-
ular, the error variances, 67, are assumed to be unrelated. As Figure 2.1 shows, the error
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variances differ between reserves. For example, the error variance for the La Vérendrye
reserve is clearly much smaller than that for the Saint-Maurice reserve. It may be that the
true error variances differ between studies solely because of differences in the effective
sample size underlying each observation from the various reserves. Approximate effec-
tive sample sizes, n;, for observations from each reserve were obtained by multiplying the
number of moose hunting zones by the number of hunting periods (since the estimates of
wolf densities were obtained from moose hunters) and are shown in Table 2.1.

Reserve Effective sample size, n;
La Vérendrye 378
Laurentides 355
Mastigouche 168
Papineau-Labelle 198
Portneuf 100
Rouge-Mattawin 130
Sept-iles/Port-Cartier 48
Saini-iMaurice 66

Table 2.1: Effective sample sizes for observations from each reserve.

If we assume that the error variance for each reserve is given by 62/ n;, then we can
estimate a single variance parameter, 62, thereby linking the 8 regressions. The result-
ing slope estimates are no longer “individual estimates” in the sense used above, but the
assumption is relatively weak, and is unlikely to distort our conclusions seriously.

2.2 Example: Ulcer studies

Recall that the data for trial i are in the form of a 2 x 2 table (a;, b;,c;,d;), where a; and
b; are the numbers of failures and successes in the treatment group and c; and d; are the
numbers of failures and successes in the control group. It is often desired to estimate the
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log odds ratio of the ith table,

0. =1 P;(Failure|Treatment) P;(Success|Control) )
'_ P;(Success|Treatment) P;(Failure|Control) / -

The ith sample log odds ratio is given by

é,- = log (Z—:‘j—") , 2.2)
with approximate asymptotic standard error
1
SE(8;) = (Z:I+'l:!}+cl.-+lil7> ) (2.3)

(Agresti 1990). However when at least one of the cells is zero, é,- does not exist, and the
alternative estimator

5 (ai+ 3)(di + 3)
= = = 4
%= log ((b,-+§)(c,-+%)) @4

is often used, together with standard error

1

- 1 1 1 1 \°
SE(9;) = + + + 2.5)
() (a,-+% b,‘-l*% Ci+% d,“f'%)

(Agresti 1990). Both 6; and 6; are asymptotically normal, but for small sample sizes their
sampling distributions are highly skewed, and use of the standard display of point estimate
plus or minus two standard errors (Figure 2.3) may be misleading. In studies with zero
cells this is particularly acute. Study number 5, for example, hasa=3,b=9, ¢ =0, and
d = 12. In other words, there were no failures in the control group. Therefore, 6; = oo,
which suggests that the true log odds ratio is arbitrarily large. The alternative estimator
gives 6; = 2.22 with an approximate 95% confidence interval of (—0.86,5.3). But this is
rather arbitrary, and could be very misieading if the control really were much better than
the treatment.
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Figure 2.3: Point estimate and 95% confidence interval for the log odds ratio in each ulcer

study. When none of the cells of the 2 x 2 table for a study are zero, expressions (2.2) and

(2.3) are used. When at least one of the cells is zero, expressions (2.4) and (2.5) are used.
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2.3 Example: Coho salmon

We begin by considering fits to the coho salmon spawner-recruitment data using the Bever-
ton-Holt model. The Beverton-Holt model with multiplicative lognormal error is

S,'j €
R:: = i
o l/a,~+S,-,~/R;““"e

where the €;; are i.i.d. normal with mean zero and variance G%, and where o, > 0 is the
slope at the origin and RT™ > 0 is the asymptotic level of recruitment. Dividing both sides
by §;; and taking the logarithm gives

yij = —log (1/0; +8;;/R™) + &, (2.6)

where y;; = log(R;;/Si;). To interpret y;;, note that in fish reproduction the quantity of eggs
produced is typically proportional to the quantity of spawners S;;. The ratio R;;/S;; is thus
an index of survival from the egg stage to the smclt stage, and we typically refer to y;; as
log survival.

Equation (2.6) specifies a nonlinear regression model. Maximizing the likelihood for
this model is equivalent to minimizing the sum of squares

i

Y [vij+log (/i +8ij/RM™)] . (2.7)

j=1

Maximum likelihood Beverton-Holt fits to the coho salmon data are shown in Figure 2.4.
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Figure 2.4: Coho salmon data with superimposed median recruitment curves from individ-
ual maximum likelihood fits of the Beverton-Holt model assuming a lognormal recruitment
distribution. Note that for Bingham Creek, WA, and Qualicum River, BC, no fitted curves
are shown because the likelihood is not maximized by a finite slope at the origin.
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For two rivers, Bingham Creek and Qualicum River, the data suggest that the slope at
the origin is arbitrarily large, i.e., a; = = or equivalently 1/a; = 0. Let &; = 1/a;, so that
the sum of squares (2.7) is

i: [)’ij+10g (1t,-+S,~,-/R;-“‘”‘)]2. (2.8)
j=1

Let ft; and R}““" be the least squares estimates of ®; and R"*. Equating the derivative of
(2.8) with respect to R™ to zero, we have

" S
): yij +log (i + Si;/RI™)] Rl"“"(ftiﬁg“" +Si)) -7
= ' '

When #; = 0, this reduces to
nilogRT™ =Y yij+ Y logSi;.

But since y;; = log(R;;/S;;), we have

the geometric mean of the observed recruitments, which we denote R;. Equating the deriva-
tive of (2.8) with respect to T; to zero, we have

n; . . .
Zl [y,-j-i—log (fti+S,-,-/R;-““")] / [1!,’+S,'j/R;-mx] =0.
j=

When #; = 0, this reduces to

n;
Z yij +log(S:j/Ri)] /Sij =0.
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Again, substituting y;; = log(R;;/S;;), this becomes
n;
: llog(Rij/Ri)/Sij=0-
j=
But ft; = 0 is a boundary of the region of admissible values for &t;, and so for ft; =0 to be a
least squares estimate, it is necessary that
ni
. llog(Rij/ Ri)/Sij > 0.
j=
Indeed this condition does hold for Bingham Creek and Qualicum River. Furthermore, in
both of these cases, when @ is not constrained to be positive, a numerical optimizer con-
verges to a negative estimate. We conclude that for these cases, the likelihood is maximized
by an infinite slope at the origin. But this is not credible, because there cannot be more fe-
male smolts than the number of eggs produced by a female spawner, which though large
(approximately 3570 (Hutchings and Morris 1985)), is finite.

Referring once again to Figure 2.4, we see that some of the individual estimates of
the slope at the origin, a;, are quite reasonable and well determined. For example, for
Black Creek, the slope at the origin is estimated to be roughly 60 female smolts per female
spawner. In cases such as Hooknose Creek, however, extremely high estimates are obtained
with poor precision. The difficulty is that precise determination of the slope at the origin
depends on observations at low levels of S, which tend to be sparse.

Alternative spawner-recruitment models (Figure 1.4, p. 10) can give quite different
estimates of the slope at the origin, ;. To understand why, we express the Ricker model
(1.2) and hockey-stick model (1.3) in terms of log survival y;; = log(R;;/S;;). For the
Ricker model, we have

yij = loga; — BiS;j,

which is linear. For the hockey-stick model, note that ;S; is the maximum recruitment,
and we therefore write RT"™ = a;S7. We therefore have

o loga,- ifs,'j <S;
g log(R{™/Sij) if Sij > §;.
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Barrowman and Myers (2000) compared fits of the three spawner-recruitment models us-
ing an unstandardized version of the coho salmon dataset. (The units of spawners and

recruitment were not divided by river length.) Figure 2.5 shows fits for three of the coho
populations.
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Figure 2.5: Coho salmon spawner-recruitment data for three populations (rows) with su-
perimposed median recruitment curves from individual maximum likelihood fits of the
Beverton-Holt model (solid line), the Ricker model (dashed line), and the hockey-stick
model (dotted line) assuming a lognormal recruitment distribution. The first column shows
R versus §; the second shows log(R/S) (log survival) versus S with fitted curves on this
scale; the third column shows the derivative of R with respect to S versus S for the fitted
curves.

Examination of the log(R/S) versus § panels in Figure 2.5 shows why the estimates of o;
are so different. Note that when S;; = 0, we have y;; = log;, so that on this scale, the
y-intercept gives loga;. The different models give very different extrapolations as § | 0.
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The hockey-stick model predicts that log survival remains at observed levels (i.e. a hori-
zontal extrapolation), while the Ricker model predicts that the linear trend in log survival
continues (i.e. a linear extrapolation). The Beverton-Holt model, however, predicts a sharp
increase in log survival as § | 0. We typically have

OlBeverton-Holt 2> QlRicker ~ ahockcy-slick-

The choice of spawner-recruitment model for the coho salmon data is therefore not an
easy one. The Ricker model seems to give reasonable estimates of o but does not match
the spawner-recruitment dynamics of coho salmon for larger values of S. The hockey-stick
model also seems to give reasonable (though different) estimates of o, and is predicted by
a simple biological model (Barrowman and Myers 2000). However its abrupt bend seems
implausible and can lead to estimation difficulties. In particular the likelihood surface may
feature flat areas and multiple local maxima. Whereas standard nonlinear optimization
procedures can be used to fit Ricker or Beverton-Holt models, a grid search is required
for the hockey-stick model (Lerman 1980). The Beverton-Holt model is also predicted
by a simple biological model and its smoothness seems plausible, however it makes a very
strong extrapolation of log survival at low spawner levels and can result in infinite estimates
of a.

Alternatively, a formal model selection criterion can be used to choose the “best”
model. The Akaike Information Criterion (AIC) is commonly used for this purpose. Since
each of the three models has the same number of parameters (two), choosing the model
with the largest log likelihood is equivalent to using the AIC for model selection. The max-
imized individual log likelihood for each of the coho salmon populations using each model
are given in Table 2.2.
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Ricker Beverton-Holt Hockey stick

Big Beef Ck, WA -4.6 4.2 4.2
Bingham Ck, WA -7.2 0.3 0.3
Black Creek, BC -53 4.9 4.4
Carnation Creek, BC -124 -8.9 -5.6
Deer Creek, OR 35 2.5 7.6
Deschutes River, WA 4.3 -3.8 -4.7
Flynn Creek, OR -12.1 -9.7 -10.2
Hooknose Creek, BC -0.8 1.0 1.1
Hunt’s Creek, BC -8.9 -8.2 -8.5
Needle Branch Creek, OR -34 -2.1 -1.1
Nile Creek, BC 21 3.6 35
Qualicum River, BC -8.1 4.5 4.5
S. Fk. Skykomish River, WA 54 73 5.7
Snow Creek, WA 49 4.5 -34
sum -60.5 -363 -28.6

Table 2.2: Maximized log likelihoods for each of the coho salmon populations using the
Ricker, Beverton-Holt, or hockey-stick models. The final row of the table shows the sum
of the individual maximized log likelihoods for each model.

In only one case (Deer Creek), is the maximized log likelihood for the Ricker model larger
than that for the Beverton-Holt model. Summing the individual maximized likelihoods
(last line of Table 2.2) shows that the Beverton-Holt model provides much better fitting of
the data. The comparison between the Beverton-Holt and the hockey-stick model is more
equivocal. The AIC favours the Beverton-Holt for seven of the populations and the hockey
stick for the other seven. For several populations, however, the maximized likelihood for
the hockey stick is considerably larger than that for the Beverton-Holt, so that the sum of
the maximized likelihoods for the hockey-stick model is larger than for the Beverton-Hoit.
On the basis of these results we focus on the Beverton-Holt and hockey-stick models in this

work.
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2.4 Approaches to robust estimation

We have seen in the examples that the presence of “gross errors” and deviant observations
is of considerable concern. If our estimators are overly sensitive to the presence of such
flaws, our inferences may be distorted. The approaches to estimation in this thesis are
likelihood-based, and as Hilborn and Mangel (1997) note, quoting David Fournier,

“ ‘The problem with likelihood is that some observations are just too un-
likely. That is, some outliers will dominate the likelihood, and the fitting
procedures often go to great lengths to make predictions closer to the outlier
so that the total likelihood will not be too low.”

A number of different approaches to robust estimation have been developed during the
past 30 years; for an introduction, see Staudte and Sheather (1990). In our context, we
would like to modify likelihood-based estimation procedures to make them more robust.
One way to do this is using M-estimators. a generalization of maximum likelihood esti-
mators introduced below. We concentrate on M-estimators in this thesis, using the wolf
and coho salmon data for illustration. In this section, we first introduce M-estimators in a
general context, and then specialize to the regression case required for the wolf and salmon
data sets.

For a single study, i, the M-estimator 8; of the study parameter 8; solves an equation of
the form

Y w(yi,8) =0, (2.9)
j=1

for some function . For example, if y;; Y fo;» j=1,... ,n;, then the log likelihood for ;
can be written

£:0) = ¥ log o, i),
j=1

An estimating equation may be obtained by differentiating £;(8;) with respect to 8; and
equating with zero at ; = é,-, i.e.

66:) =Y v(;,6,) =0,
=
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where y(y;;, ;) = dlog fo, (vi;)/38;.

A simple example helps to illustrate these concepts. Suppose f, is the normal distri-
bution with known variance 62 and mean 6; = y;. Then we have V(yij,mi) = (yij — mi)/0.
Denoting the jth scaled residual by r;; = (yij — ui) /0, we have Y(y;;.p;) = rij. In other
words, the likelihood depends on the data and parameters only through the residuals, i.e.
we have a location/scale invariance. Extreme values of r;; will have a strong influence on
the estimate of y;. With a small abuse of notation, we can write y(y;;,6;) = y(r;;) where
y(r) = ris the identity function, which is unbounded in r.

One way to assess the robustness of an estimator is by considering its influence function.
Suppose we have a functional T (F,,) where F, is the empirical distribution and the goal is
to obtain an estimate of T(F) where F is the unknown data-generating distribution. The
influence function of T measures the infinitesimal behaviour of the functional in response to
contamination of the distribution. To formalize this, let A, denote a point mass distribution
at y, and consider the mixture distribution Fy,¢ = (1 —€&)F +€A,. Sampling from F, ¢ models
contamination: with probability 1 — €, we obtain a “good” observation (from F), and with
probability €, we obtain a “bad” observation (at y). The influence function of T at F is
defined for each y by

IF(y) = leff?

The influence function IF(y) is a directional derivative of T at F in the direction of A, — F.
For robustness, we wish to have the influence function bounded in y. For M-estimates of

€

(TG0 -TE)]

the general form (2.9), it can be shown that the influence function is bounded if and only if
V is bounded.
Two common choices of bounded y are Huber’s function

Y (r) = max(—b, min(r, b)),
and Tukey’s biweight

7" .
r(l—=(r/b)-)" if —=b<r<hp,
%(,.)z{ (1= (r/b)?) <r<
0 otherwise,
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where b is a tuning constant in each of the above functions. The top panel of Figure 2.6
shows these two y-functions.

2 .

1 .

Figure 2.6: Top panel: Tukey’s y-function with b = 4 (solid) and Huber’s y-function
with b = 2 (dashed). Bottom panel: Tukey’s p-function with b = 4 (solid) and Huber’s
p-function with b = 2 (dashed).

The Tukey w-function is said to be redescending: near the origin y is nondecreasing
but far from the origin W decreases toward the axis. Later on, we will see why this is an
important property.
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We will see that it is also useful to consider the antiderivatives of y-functions, called
p-functions. That is, we define y(r) = p’(r). The p functions corresponding to the Huber
and Tukey y-functions are shown in the bottom panel of Figure 2.6.

We now consider M-estimators for regression models. Consider a linear regression
model

yi = Xi0; + &;.

Model (2.1) has this form with X; = (1,, x;), where 1, is an n;-dimensional vector of 1’s,
and 8; = (6,1,02)7. Relaxing the assumption of normal errors, we assume that

ia 1 . [&j
E€i:~ v — —
* c,-f(o,- '

for some pdf f. Given x;, the y;;’s are independent with density
lf yij — (Xi6:)
c G; !

where (X;8;); is the jth row of X;8;. The likelihood is thus

ol,'f;[l ()’u (Xi8; )),

l

giving log likelihood
yij = (Xi6i)
—-n; lOgC, +]¥ lng (-——6‘——-— .

Differentiating this equation with respect to 8; and equating to zero gives

v 1 -f (y,-,- (X8

j-——zla,i f )(Xl)jk-o

l

where f' is the derivative of f, :}ﬂ(r) = f'(r)/ f(r), 8; is an estimate of 6;, G; is an estimate
of 6;, and (X;) jx is the (j,k)th element of X;. Writing y(r) = :fﬂ(r), we can simplify this
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to obtain
n; (X0,
Z \V (ylj (.X‘el)]) (Xi)jk =0. (210)
= O

When f is the standard normal distribution, we have y(r) = r. Given an estimate &; of the
scale parameter G; and for a particular choice of , (2.10) defines an M-estimate of ;. Note

that these M-estimators are not robust against the effects of leverage, i.e. unusual design
points.

2.4.1 Weights as diagneostics

A convenient algorithm for solving (2.10) can be obtained as follows. Write (2.10) as

m (i
Y wiry) rij(Xi)jx =0,
j=1 Fij

where ri; = (yij — (Xi6:) ;) /6:. Then define w; j = Y(rij)/rij, to obtain

n;
wijrij(Xi) jk = 0, Q.11
j=1
which is the kth normal equation for a weighted least squares regression. Because the
weights, w;;, depend on the regression parameter estimates 6;, an iterative algorithm must
be used to solve (2.11). When the algorithm has converged, the observation-weights, w; j
will be of considerable interest, since they tell us which observations from each study
appear to be unusual. The converged parameter estimates fit the bulk of the data and the
weights identify unusual observations.

2.4.2 Example: Wolves in Québec

As noted earlier there is at least one suspicious observation: the 1989 observation at
Mastigouche. A robust regression procedure applied to these data can be helpful in assess-
ing the sensitivity of the individual regression estimates, and in identifying unusual obser-
vations. To display the weights, we propose a new type of display called a whisker-weight
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scatterplot. The usual scatterplot with fitted regression lines is augmented with “whiskers”
in the margins, displaying the robust weights. Full-length whiskers indicate that no down-
weighting has occurred; shorter whiskers indicate the presence of down-weighting. An
alternative is to use variable-size points in the scatterplot, however this can be distracting.
For the wolf data, the observations are equally spaced in time and we display the whiskers
on the top margin of the plot (Figure 2.7). More generally, we might wish to use whiskers
in both margins; this duplicates information, but can be helpful when the scatter makes
visual association of weights and observations difficult.
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Figure 2.7: Log population numbers of wolves in 8 reserves in southern Québec with fitted
least squares regression lines (solid) and robust regression lines (dotted). Along the top of
each panel short vertical lines (“whiskers”) indicate the weight for each observation from
the robust regression. The 1997 observation in the Laurentides reserve is plotted as an open
circle because the management scheme that year was changed.

When an observation is completely downweighted, no vertical line is visible. Note that the



42

1989 observation at Mastigouche has been entirely eliminated from the analysis. Together
with the downweighting of several other points for this reserve, the result is a substan-
tial change in the estimated slope. Several observations at other reserves are also strongly
downweighted, e.g. the 1997 observation at Laurentides (which we have a prior reason
to reject) and the 1992 observation at Papineau-Labelle. Two points, 1991 and 1995, are
downweighted in the Sept-Iles/Port Cartier data, resulting in a substantial change in slope.
For such small data sets, it is not clear whether to accept the results from the robust re-
gression. Nevertheless, it helps to highlight unusual observations and sensitivity in our
estimates.

It may be argued that simply displaying residual plots conveys similar information to
the whiskers, however the whisker-weight scatterplot provides a compact display of data
and information about unusual points. What is more, the whiskers show the extent of
downweighting by a particular robust procedure, which may vary depending on the choice
of tuning constant, p-function, etc.

2.5 Elimination of nuisance parameters

For the ulcer data, we saw that for studies with zero cells, point estimates of the log odds
ratio are problematic: the sample log odds ratio is not finite while the estimator based on
adding % to each cell gives rather arbitrary values. Even when there are no zero cells, the
standard errors may be misleading. An alternative approach is to try to obtain a *“likelihood”
which would contain all of the information from a study concerning the log odds ratio.

Denote the full parameter vector for study i by t; and the associated likelihood function
by Li(t;). Given data from a single study, the likelihood principle dictates that inferences
about T; should depend on the data, y;, only through L;(t;). In each of our three examples,
the full parameter vector T; can be decomposed into a univariate parameter of interest 6;
and a (possibly multi-variate) nuisance parameter v;, i.e., T; = (0;, ;).

Example: Wolves in Québec

For each wolf reserve, the slopes of the regression line is of primary interest, and the inter-
cept is a nuisance parameter—it must be estimated in order to estimate the slope.
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Example: Coho salmon

For each coho salmon population, our primary interest is in the slope at the origin of the
spawner-recruitment curve, i.e., the number of female smolts per female spawner. Other
parameters of the spawner-recruitment curve, e.g., the asymptotic level of recruitment of
the Beverton-Holt, are of secondary importance.

Example: Ulcer studies

For the ulcer studies, our interest is in the log odds ratios, rather than the baseline risks in
the control or treatment groups. Denoting

pi = Pi(Success|Treatment) and g; = P;(Success|Control),

the log odds ratio of the ith study is

(l-pi)q.-) : :
0; =log | ————— )} = logitg; — logitp;.
] g(P;(l—q,) gtql g pl

Solving for g;, we have

qi = qi(8;, pi) = logit™ ' (8; + logitp;).

In the general notation of this section, the nuisance parameter is v; = p;, so that the full
parameter vector for the ith study is T; = (8;, p;). For each study, we treat the size of the
treatment group, r; = a; + b;, and the size of the control group, s; = ¢; + d;, as being fixed
and we model the outcomes in the treatment and control groups as being independent.
Finally, we assume that

b; ~ Binomial(p;,r;), and d; ~ Binomial(g;,s;).

The likelihood for the ith study is thus

a;+ b; ) | ci+d; ) )
Li®,py= " " )e-p® T | @8 p)% (1 - qi(8s, pi)]C.
bi di



Study-specific real-valued parameters of interest

In each of the above examples there is a study-specific real-valued parameter of inter-
est. For each study, we would therefore like to “eliminate” the nuisance parameters from
the likelihood in order to focus attention on the parameter of interest. Berger, Liseo, and
Wolpert (1999) review several methods for eliminating nuisance parameters and give re-
lated references. We consider three of them below.

2.5.1 Conditional likelihood

In some situations, the conditional distribution of the data, y;, given some statistic z; = z(y;),
does not depend on the nuisance parameter v;. In this case, we call the conditional pdf (or
pmf, for discrete data) the conditional likelihood for 6;. By an abuse of notation, we denote
the conditional likelihood by simply L;(6;).

Example: Ulcer studies

Treating the margins of the ith 2 x 2 table as fixed, the conditional likelihood for 6; is given
by

a; Ci

Li(ei) - ( ai+bi ) ( Ci'*idi )eeiag/si(ei)’ (2.12)

where §;(8;) is the sum of the numerator above over the allowable choices of a; subject to
the marginal constraints of the table.

Denote the log conditional likelihood by £;(8;), and let 8MLE be the conditional MLE of
;. A likelihood-ratio based 95% confidence interval for 6; is given by

{0:: 2[6:(8Y"™F) — £:(8:)] < x1(0.95)]},
or, setting £;(8ME) = 0 and since %3(0.95)/2 = 1.92,

{6i: €:(6;) > —1.92}.
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As an example, consider dataa =1, b =10, ¢ = 15, d = 10. Figure 2.8 shows the condi-
tional likelihood for 6; based on these data, along with two other approximate likelihoods.
In this case the estimated log odds given by (2.2) is very close to the MLE. However the
likelithood is asymmetric about its maximum: the 95% confidence interval based on the
normal approximation and the standard error given by (2.3) is (—4.91,-0.50), whereas the
likelihood-ratio based interval is substantially different: (—5.65, —0.85).
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Figure 2.8: Three approximate likelihoods for the log odds ratio, based ondataa =1, b =
10, ¢ =15, d = 10, normalized to integrate to 1 over the range of the graph. The dotted
curve is the conditional likelihood; the light curve is the uniform-integrated likelihood; the
heavy curve is the profile likelihood. Note that the maximum of the profile likelihood gives
the unconditional MLE of the log odds ratio.
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2.5.2 Integrated likelihood

Berger, Liseo, and Wolpert (1999) focus on integrated likelihoods for eliminating nuisance
parameters. In Bayesian inference, the integrated likelihood is given by

17(6) = [ L(@i,vi)p(vi6i)dvi

where p(v;|6;) is the conditional prior of v; given 8;. Berger, Liseo, and Wolpert (1999)
state that

“Even if one is not willing to entertain subjective Bayesian analysis, we feel
that use of integrated likelihood is to be encouraged. The integration must then
be with respect to default or noninformative priors.”

For example, the uniform-integrated likelihood is
L/ @) = [ L@, viav,

which is the same as the Bayesian integrated likelihood using a uniform (improper “flat’”)
prior, p(vi|8;) = 1. However, in some problems where there are ridges in L;(6;,v;), the
uniform-integrated likelihood may not exist.

Example: Ulcer studies

The uniform-integrated likelihood is

LY (8;) = /Li(ei’Pi)dPi»

The uniform-integrated likelihood for the example dataset (@ =1, b= 10, c =15, d = 10)
is shown in Figure 2.8.

2.5.3 Profile likelihood

The profile likelihood replaces integration by maximization:

Li(ﬁi) = supL,(O,-,v,-).
Vi
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Later on in this thesis, we will see several variations on this theme.

Particularly when there are large numbers of nuisance parameters or the likelihood sur-
face has sharp ridges, the profile likelihood can give misleading behaviour (Berger, Liseo,
and Wolpert 1999) and several corrections have been proposed, e.g. the modified profile
likelihood of Barndorff-Nielsen (1983).

Example: Ulcer studies

For an ulcer study, the profile likelihood is

Li(8;) = supL(8;, p;).
pi
The profile likelihood for the example dataset (a= 1, b= 10, ¢ = 15, d = 10) is shown in
Figure 2.8. Platt (1998) has evaluated the use of the modified profile likelihood for the log
odds ratio of 2 x 2 tables.

2.6 Raindrop plots

To assist with meta-analysis, in this section we propose the raindrop plot for displaying
individual estimates from many studies simultaneously. In later chapters we will repeatedly
make use of the raindrop plot, and introduce an extension of the raindrop plot for use in
hierarchical modeling.

The conventional plot showing a point estimate of a parameter with confidence limits
is often not adequate to display the information contained in studies where the likelihood
is not approximately normal, as can occur with small sample sizes or nonlinear models.
Furthermore, these plots are sometimes misinterpreted by users as implying that all val-
ues within a confidence interval are equally plausible. Since the likelihood ratio provides
a gauge of the relative plausibility of different values of 8; and allows for asymmetry, a
graphical display of the likelihood ratio would be desirable. An extra dimension is needed
to represent the likelihood ratio. The principles of graph construction and the paradigm of
graphical perception developed by Cleveland (1985) provide a guide to designing an appro-
priate display. To display likelihood ratios, we introduce a new kind of display, the raindrop
plot, so called because the visual effect is reminiscent of raindrops streaking across a car
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window. Figure 2.9 shows how a “raindrop” shape is obtained for the example data set of
section 2.5.1, using the conditional log likelihood.

Log conditional likelihood
)

Log odds ratio

Figure 2.9: Conditional log likelihood for the log odds ratio, based on dataa = 1, b =
10, ¢ =15, d = 10, showing how the raindrop shape is obtained. The log conditional like-
lihood (solid curve) has been graphed with its maximum (indicated by the dotted vertical
line) equal to 0. A drop in the log likelihood of 1.92 (indicated by the horizontal line) is
significant at an approximate 95% level. The corresponding approximate 95% confidence
interval for the log odds ratio is (—5.65,—0.85). By reflecting the part of the curve above
—1.92 about the horizontal line, we obtain a symmetric region (shaded in the figure). The
height of the region at a particular value of the log odds ratio relative to the maximum
height gauges the relative plausibility of that value. The vertical dashed lines on the left
and right hand sides are the lower and upper 95% confidence limits based on the normal
approximation and the standard error given by (2.5).

The reason for reflecting the curve and shading the resulting region is to produce a
visually appealing symmetry and facilitate comparisons among several raindrops. An al-
ternative would be simply to use the top half of the raindrop, however this would result in
vertical asymmetry, which is of no interest. Instead, the raindrop plot lets the viewer con-
centrate on any horizontal asymmetry which may be present. Similar approaches have been
used by Lee and Tu (1997) and Hintze and Nelson (1998). In many cases, the likelihood is
asymptotically normal. A normal likelihood has a quadratic log likelihood and in this case
the raindrop has a reflected parabola shape.
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In the example above, it could be argued that a point estimate with non-symmetric
error bars would suffice. However, consider the data seta=3,b5=9,¢c=0,d =12
(Figure 2.10b). The zero cell results in a “ramped” likelihood, i.e. as 8; decreases, the like-
lihood increases monotonically. There is thus no unique maximum likelihood. The normal
approximation (the point estimate and error bars in Fig. 2.10a) is woefully inadequate.
For example, the 95% confidence interval based on the normal approximation contains O,
whereas the raindrop does not come close to 0. For 2 x 2 tables this is not a great surprise,
and any investigator would be wary of zero cells. However, in more complex situations,
such as the nonlinear models discussed later in this paper, ramped likelihoods are not al-
ways apparent in conventional analyses.
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Figure 2.10: Four different ways of displaying information on the log odds ratio based on
dataa=3,b=9, c=0,d = 12. (a) Point estimate with approximate 95% confidence
interval based on the normal approximation and the standard error given by (2.5). (b)
Raindrop plot. The dashed vertical line shows the upper limit of the associated likelihood-
based confidence interval. (c) Raindrop-type plot using the conditional likelihood. (d)
Raindrop-type plot using the p-value function. For display purposes it might be best to
truncate (c) and (d) at the dashed vertical line.

Figure 2.10 also shows two alternative raindrop-type plots. Figure 2.10c is based on
the conditional likelihood, rather than the log conditional likelihood. Figure 2.10d is based
on the “confidence curve” (Bimbaum 1961), which depicts the 100(1 — &t)% confidence
intervals for all @ € [0, 1). In the present context, a 100(1 — )% confidence interval for 6;
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is given by
1
{8:4:(8) 2 —5x}(1 - @)}
Because of the correspondence between hypothesis testing and interval estimation, the con-
fidence curve is also known as the “p-value function” (Miettinen 1985): the one-sided
p-value for testing the hypothesis Hp : 0; = 0 is given by

p=3l1-Ci(~26(0)),

where C| (-) is the cdf for a chi-square random variable with | d.f. The p-value function has
infinite extent and so we might consider truncating it at p = 0.025 (i.e. at the 95% confi-
dence level). By reflecting the p-value function about p = 0, we obtain a figure comparable
to the raindrop plot (Fig. 2.10d). While Figure 2.10c and Figure 2.10d show the curves for
all parameter values, in practice it is very hard to distinguish small differences in heights,
particularly when many such plots are displayed. Also, the interpretation will depend upon
the widths of the lines plotted.

There are cases when one might wish to use any one of the above three types of plots.
Here we concentrate on the raindrop plot because of its direct confidence-interval interpre-
tation, because its simple reflected-parabola shape under normality facilitates detection of
non-normality.

2.6.1 Construction of the raindrop plot

Modern graphical data analysis environments, such as S-PLUS, make producing such fig-
ures very easy. For example, if theta and 1 are two vectors containing values of 6; and
£;(8;) respectively, the following S-PLUS commands produce a 95% raindrop:

cutoff <- -1.92

select <- 1 > cutoff

THETA <- theta[select]

L <- 1l[select]

thickness <- 1-L/cutoff

plot (0, xlim=range(theta),ylim=c(-1,1),type="n", xlab="theta",ylab="")
polygon (c (THETA, rev (THETA) ) ,c (-thickness, rev (thickness)))



52

2.6.2 Example: Ulcer studies

Figure 2.11 uses raindrops to display the log conditional likelihoods for the log odds ratio
in the ulcer studies.
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Figure 2.11: Raindrop plot of log odds ratios for studies of ulcer treatments. For each study,

95% raindrops (shaded) are superimposed on 99% raindrops (unshaded).

Note that nine of the studies have zeros in at least one cell. The resulting likelihoods

do not have peaks: except for study number 41 (which has a zero marginal total and hence
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a completely flat likelihood), the likelihoods are ramped. Such likelihoods are sometimes
excluded from analyses, yet they clearly contain information. However, the point estimates
and confidence intervals from (2.4) and the normal approximation using (2.5) are of dubi-
ous quality. The raindrop plot allows the meta-analyst to display the information provided
by these types of data sets, without resorting to questionable approximations.

2.6.3 Example: Coho salmon Beverton-Holt model

We now consider a more complex example. Estimates of the parameters of population dy-
namics models like the Beverton-Holt are of central importance for fisheries management,
estimation of extinction rates, and predictions concerning the recovery of over-exploited
populations. Whereas in the 2 x 2 table case, an explicit form was available for the con-
ditional likelihood for the log odds ratio, in this case no such convenience is available.
Instead, we use profile likelihoods in constructing the raindrops.

We typically assume that recruitment is lognormally distributed. Under this assump-
tion, the spawner-recruitment models we will consider can be expressea in the form

Rij = 0ifo(Sij)e®i, j=1,....m, (2.13)

where the &; (j = 1,...,n;) are i.i.d. normal and f(S) is a function of S and additional
parameters @. The logarithm of (2.13) is

logR;; = loga,; + log fo(Si;) +&ij,

and maximum likelihood estimation for this model is identical to least squares, i.e., the

objective function is
n;

Z [logR;; — logat; — log fo(Si))] 2,
j=l1

Because loga; enters linearly, it is easily profiled out of the likelihood. For a given trial
estimate of @, the least squares estimate of log ¢; is
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The profile log likelihood for @ is given by
n n; — 2
—Elog Z [logR,-j—loga,- —logf(p(S,-j)] .
=

The profile log likelihood for a; must be obtained numerically. Figure 2.12 shows side-by-
side raindrop plots for a; and R"™ based on profile likelihoods.



56

Slope at the origin Asymptote
(female smoilts / female spawner) (female smolts per km)
10 20 50 100 200 500 1000 100 1000 10000

Big Beef Ck, WA
Bingham Ck, WA

Black Creek, BC
Carnation Creek, BC
Deer Creek, OR
Deschutes River, WA
Flynn Creek, OR
Hooknose Creek, BC
Hunt's Creek, BC

Needle Branch Creek, OR
Nile Creek, BC 1

Qualicum River, BC

S. Fk. Skykomish River, WA
Snow Creek, WA

Log slope at the origin Log asymptote

Figure 2.12: Side-by-side 95% raindrop plots for the parameters of the Beverton-Holt
model for the 14 coho salmon populations. The left panel shows raindrops for the slope
at the origin o;, while the right panel shows raindrops for the asymptotic level of recruit-
ment, R{". The superimposed dots and error bars on the individual population raindrops
are the maximum likelihood estimates obtained by nonlinear regression and approximate
asymptotic 95% confidence intervals (based on nonlinear least squares theory).
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Note that for two populations convergence of the nonlinear least squares algorithm was
not obtained because of “ramping” behavior in the likelihood surface. It appears that the
asymptotics on which the least squares estimates and standard errors are based are often
poor in that the asymptotic confidence interval often does not match the profile-likelihood-
based interval well.

Figure 2.12 clearly shows the difficulties of estimation for these data sets. For example,
the Bingham Creek data determine the asymptote well, however the slope at the origin is
poorly determined and the nonlinear regression algorithm did not converge in this case.
In the case of the Deschutes River data, estimates and standard errors are available from
nonlinear regression, but the asymptote is poorly determined, and its standard error is of
dubious quality. Both the slope at the origin and the asymptote are poorly determined for
the Nile Creek data; the 95% likelihood intervals both have lower limits, but no upper
limits. However the raindrops reveal an interesting difference in the shapes of the two
profile likelihoods.

Discussion

Raindrop plots are a compact and informative way of displaying the information provided
by groups of studies.

An alternative is to superimpose graphs of the individual likelihoods (e.g. (Efron 1996;
van Houwelingen and Zwinderman 1993)). However, judgments involving superimposed
curves are difficult (Cleveland 1985, p. 271) and if there are more than, say, 5 studies
involved, the result is hard to decipher. Furthermore, individual confidence intervals are
not easily detected.

Another alternative is simply to display the point estimates with error bars representing
a likelihood-based confidence interval. This is adequate if the log likelihood is close to
being quadratic, but fails completely in many real examples, e.g. Figures 2.1C and 2.12.
In such cases, a second dimension is required: raindrop plots effectively communicate the
relative plausibility of different parameter values.

The raindrop plot is based on reflecting the log likelihood, however alternative ap-
proaches are possible, using e.g., the likelihood or the p-value function. We argue that
the raindrop’s simple shape under normality—a reflected parabola—facilitates detection of
non-normality.
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With small sample sizes and nonlinear models, likelihoods may exhibit asymmetry and
“ramping” behavior that complicate plotting. In such cases raindrop plots may provide a
useful tool.

Bates and Watts (1988) suggest several related profiling techniques for parameters of
nonlinear regression models, which are useful for individual data sets. It should also be
noted that in some problems likelihood surfaces are not smooth and may have multiple
local maxima. An example of this is for the hockey stick spawner-recruitment model.

2.6.4 Example: Coho salmon hockey-stick models

Figure 2.13 shows the hockey-stick model raindrop for the slope at the origin, a, for the
coho salmon population in Flynn Creek, Oregon.

alpha

10 20 50 100 200

2 3 4 5 6

log(aipha)

Figure 2.13: Raindrop for the slope at the origin for the coho salmon population in Flynn
Creek, Oregon.

There is a local maximum in the profile likelihood near loga = 3.7, but the profile like-
lihood is globally maximized for larger values of loga (in fact, the profile likelihood is
constant for values of loga greater than about 5). For likelihoods with multiple maxima,
raindrops may consist of more than one piece. In other words the likelihood ratio procedure
may give confidence sets rather than confidence intervals.

The raindrop plot illustrates how badly-behaved segmented regression models like the
hockey stick can be: not only is there a iocal maximum in the profile likelihood, there is
also a completely flat region in the likelihood surface.
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Because of the irregular likelihood surfaces that the hockey-stick model can give, Bar-
rowman and Myers (2000) investigated ways to generalize the hockey-stick model. The
goal was to find a spawner-recruitment function that gives the hockey-stick model as one
limiting case and behaviour similar to the Beverton-Holt model as another limiting case. In
fact, two generalized hockey stick models were developed.

The quadratic hockey stick

A simple approach is to retain the hockey-stick model except in a region close to §*, and
allow a smooth transition between the two parts of the hockey stick. We define this region
of transition to be between S* — ® and S* + ®, where 0 < ® < S*. It would be reasonable
to require a curve with continuous first derivatives at all points. The piecewise polynomial
approach (Tishler and Zang 1981) can produce a curve with the desired properties. The
resulting equation is

as ifS< S -0
R={ a(s-8=329) ifs —w<S<S+0
as* ifS>§5+o.

We have found it convenient to reparametrize the above equation in terms of a smoothness
parameter 8 = @/S*, so that 0 < § < 1. The above equations become

oS if § < §*(1-98)
R=q a(s—S=TL0) jfs(1-8) <5 <§(1+38) 2.14)
os* if S > 8*(1+9),

which we call the quadratic hockey stick. The simplest way to think about the quadratic
hockey stick is the two pieces of a hockey stick connected by a parabolic curve, with all the
right attributes (continuity and continuity of the first derivative), at the ends of the parabolic
curve. Note, however, that even with 8 = 1, the quadratic hockey stick does not reproduce
the Beverton-Holt.

Figure 2.14 illustrates the quadratic hockey stick and another generalized hockey-stick
model, the logistic hockey stick.
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Figure 2.14: Generalized hockey-stick models (solid, dotted, and dashed lines) compared
with a Beverton-Holt model (dot-dash line). The left-hand column shows logistic hockey
sticks with = 0 (solid line), 0.2 (dotted line) and 100 (dashed line). The right-hand column
shows quadratic hockey sticks with y = 0 (solid line), 0.5 (dotted line), and 1 (dashed line).
Each column shows recruits versus spawners (top panel), log survival versus spawners
(middle panel), and the derivative of recruitment versus spawners (bottom panel).
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The Logistic Hockey Stick

An alternative approach is to define the spawner-recruitment model in terms of the deriva-
tive of recruitment with respect to spawner abundance. For the hockey stick we have

(2.15)

dR | a ifS<S°
ds ) 0 ifS>S".

We need a generalization of the above model such that the slope at the origin, @, remains
comparable in the generalization, and it includes the above model as a special case.

Equation (2.15) is easily expressed in terms of the limiting case of any of several stan-
dard cumulative distribution functions, e.g. the normal or the logistic. We will use the
logistic because it has a simple analytic form, and will call the model the “logistic hockey
stick.” A preliminary version of our generalization is defined by

dR _ . !
dS T l+exp{(S—-u)/(w)}’

(2.16)

where u is the inflection point of spawner abundance and the product yu is the scale pa-
rameter of the logistic, an analog of the standard deviation parameter in the normal. We
parameterize the model in terms of the smoothness parameter ¥, an analog of the coefficient
of variation of the normal, because it provides a more appropriate tuning parameter. It is
easy to see that as Y — 0, the hockey-stick model is recovered.

This model has the right behaviour since dR/dS is monotonically decreasing and as
§ — o, dR/dS — 0. However, limg|gdR/dS # & except in the limit as u | 0. To ensure
that lims;odR/dS = o we multiply by 1+ e~'/Y and (2.16) becomes

d—R-—a 1+e /Y
dS — 1+exp{(S—u)/(Ww)}

Integrating this expression with respect to S, and setting the integration constant so that

R =0 when § =0 gives

s 1+ e(S-/ ()
- -y = - -
R=oayu(l+e™ /") (Y.U log( = . Q.17
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Note that an application of I’Hopital’s rule gives
lim R = ayu(1 +e~'/7) l-+-log(l+e'l/") .
S—oo Y

Note, however, that like the quadratic hockey stick, the logistic hockey stick cannot repro-
duce the behaviour of the Beverton-Holt.



Chapter 3
Hierarchical models for meta-analysis

The models considered in this work fall into the category of conditionally independent hi-
erarchical models (CIHMs) (Kass and Steffey 1989). These are two-stage models of the
kind used in parametric empirical Bayes methodology. The CIHM framework, introduced
in Section 3.1, allows us to see the connections between several different approaches to
estimation and modeling. In Sections 3.2 and 3.3, parametric empirical Bayes and hierar-
chical Bayes approaches are placed in this framework, following Efron (1996). It is well
known that in some situations, the parametric empirical Bayes and hierarchical Bayes so-
lutions may give similar results; this is discussed in Section 3.4. Recently, Efron (1996)
proposed an empirical Bayes approach for combining likelihoods, which he illustrated with
the ulcer data. This is discussed in Section 3.5 and the raindrop plots of Section 2.6 are
extended to display results from Efron’s methods. Efron’s method is also applied to pro-
file likelihoods for spawner-recruitment model parameters and a simulation conducted to
examine the performance of the methods in this case.

3.1 Conditionally independent hierarchical models

In what follows, I will use the generic notation p(-|-) to indicate the probability density of
the first argument given the second. The resulting loss of precision is more than made up
for in simplicity of notation.

In general, a two-stage hierarchical model for a random vector y specifies a density for
y conditional on parameters 8 and A, p(y|8,), and a density for 8 conditional on A, p(6|A).
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Note that 8 and A may each be vector valued.

Here we suppose that y is composed of observation vectors yy,...,yn collected from
m studies, i.e., y = (y7,...,yF)7. Because there is usually variability both within and
between studies, a two-stage hierarchical model is natural. Associated with study i is an
unobservable study-specific parameter 6;, and we define 6 = (Glr, ...,07)T. The parameter
A is taken to be associated with all studies, and may be called the common parameter,
although for reasons to be discussed later, we often call it the hyperparameter.

Now suppose that we observe data yp from an additional study and we would like to
make inference about its study-specific parameter 8g. We call yg the direct data that con-
tains information about 8. However, because of the link provided by A, the supplementary
data, y, also contains information about 6q.

The complete formulation of a CIHM is given below:

Conditionally Independent Hierarchical Model

Stage 1 Conditional on (8g,0,...,0,) and A, the vectors y; are indepen-
dent with densities p(y;|6;,A), i = 1,...,m. Note that the densities
may have different forms for different studies.

Stage 2 Conditional on A, the vectors 6; are i.i.d. with densities p(6;])),
i=1,...,m.

From a Bayesian viewpoint, the second-stage densities p(8;|A) are known as prior distri-
butions, whereas from a mixed model viewpoint they are known as random effect distribu-

tions.

Results are simplified when the sampling densities do not depend on A, i.e. when

p(yil8:,A) = p(i6;). (3.1

For example, for the ulcer data, the conditional likelihood L;(8;) of (2.12) does not depend
on any common parameters. In the notation used here, L;(8;) = p(y;|6;) taken as a function
of 6; rather than y;.
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From the assumed conditional independence structure,
m

p(y18,2) = [ p(ril8:A),
i=1

and

p(8I) = f[lp(e.-m

so that the joint distribution of the data and the study-specific parameters is given by

P(y,6[A) = p(y/8,A)p(62). (3.2)

Therefore, the marginal density of the data is given by

pOR) = [ P16, Mp(eR)de
/ [il’_EIIP(MGhM] [ﬁp(eim] de, ---d6y,
= [TIrvienpt@ine

[T/ p0iiein)p(ein)de,

i=1

= [Iptiv, (3.3)
i=1

which also shows that the y;’s are marginally independent given A.

3.2 Parametric empirical Bayes inference

In parametric empirical Bayes inference, we treat p(8|A) as a prior distribution for 8 with
a fixed but unknown parameter A. The observed marginal distribution of the data provides
information that can be used to obtain an estimate of A. For example, the MLE, A, of A is
obtained by maximizing the marginal likelihood p(y|A) (treated as a function of A rather
than y):

A = argmax, p(y[A).
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Consider the posterior density for 89 based on yq conditional on A, p(8¢|yo,A). By Bayes’
rule,

p(8olyo, ) o< p(y0|60,A)p(Bo|A).

Substituting A for A gives what Efron (1996) terms the MLE posterior for 8q:

P(8olyo, 1) < p(yo|€0, 1) p(Bo|4).

The mean or mode of the MLE posterior can then be used as an empirical Bayes point
estimate of 8g. Efron (1996) calls p(Ooli.) the MLE prior for 6g. In the special case that
the sampling distributions are independent of A (equation (3.1)), we have

P(8olyo, ) = p(y0/80)p(Bo|A). (3.4)

Changing notation slightly shows that this is Bayes’ rule using the MLE prior as if it were
a true prior:

P3.(8olyo) = p(y0|80) 3 (80)-

The parametric empirical Bayes strategy is thus to substitute an estimate of the parameters
of the prior into the usual Bayesian calculations. The principal disadvantage of this ap-
proach is that it ignores our uncertainty about A. A fully Bayes approach, discussed in the
next section, allows for this uncertainty, but with the cost of specifying a prior distribution
for A.

One fine point should be noted. In our exposition, the estimate of the common param-
eter, A, was based on the supplementary data y = (y7,...,yT)T. As Efron (1996) points
out, it would be reasonable also to include the direct data y in the estimation of A. For-
mally excluding yo makes the connection between empirical Bayes and hierarchical Bayes
somewhat more direct, although in practice yg would typically be included.

3.3 Hierarchical Bayes inference

Since A is unknown, the Bayesian approach is to place a prior on A. Since this is a prior
on the parameters of a prior, it is sometimes called a hyperprior. Then the posterior for 8
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based on all of the data is

p(8olyo,y) = / p(80,Alyo,y)dA

= [ p(8olhy0,9)p(Myo0, )M

But conditional on A and yy, 6 is independent of y (Deely and Lindley 1981)!. Thus, we
have

P(8olyo.y) = [ p(Bolh, 0)p(Myo,)d. 33

Note that by Bayes’ rule,

p(8olA,y0) o< p(yo|80,A) p(8o[A).

In the special case that the sampling distributions are independent of A, we have p(yo|60,A) =
p(¥0|80). so that (3.5) becomes:

P(80ly0.) < p(x0l8o) [ p(BolA)p(Myo.y)dh.

Note that p(Alyo,¥) =< p(A]y), so we can write this as

P(8oly0,) < P(30/60) | p(B0[A)p(hly)dh. 36

Also, as noted earlier, given A, 89 is independent of y, so that p(6g|A) = p(6g|A,y), and so
we can write

P(®olyoy) < p(roleo) [ p(Bol,)p(hiy)dh
= p(y0|60)p(80ly), (3.7
!To see this, note that by Bayes’ rule,
p(e()llvy()vy) o< P()’Oleo,lv)’)P(eonv)')-

Neither term on the right hand side depends on y since, by the assumed conditional independence structure,
given 89 and A, yq is independent of y, and given A, 6y is independent of y.
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where p(6ply) is the predictive distribution for 8, termed the induced prior by Efron
(1996). As Deely and Lindley point out, (3.7) neatly separates the role of the direct and
supplementary data in inference about 6q. Figure 3.1, adapted from Efron (1996), shows
the structure of the hierarchical Bayes model.

induced prior
(predictive

distribution)

parameter
of interest

1
[
1
1
1
1
1
1
1

l

p(Yol 0y

l

direct data ———=y,

|
[y

0, -

l
pP(Y:l0) «

l

Yi o e

data

hyperprior
density

hyper-
parameter

prior density

unobserved
parameters

individual
sampling
densities
individual
data sets

Figure 3.1: The hierarchical Bayes model, following Efron (1996).

3.4 Comparing empirical Bayes and hierarchical Bayes

For simplicity, in this section we will assume that the sampling distributions are indepen-
dent of A (equation (3.1)). Comparing (3.4) and (3.7) shows the difference between the
empirical Bayes and hierarchical Bayes solutions. In particular, the empirical Bayes solu-
tion substitutes the MLE prior p(8g|4) for the induced prior p(6g|y). From (3.6) and (3.7),
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we see that the induced prior is given by

p(®oly) = [ p(BolA)p(My)a.

The two strategies are thus to maximize out A or to integrate out A, which is reminiscent
of the choice in Chapter 2 between integrated likelihood and profile likelihood for the
elimination of nuisance parameters.

Applying Bayes’ rule to p(A|y) gives

p(Aly) = p(y|A)p(A).

If p(A) is relatively uninformative, then the posterior for the hyperparameter p(Aly) is ap-
proximately equal to the marginal likelihood for the hyperparameter p(y|A). In addition, if
p(y|A) is relatively sharply peaked, then the induced prior p(8gly) is approximately equal
to the MLE prior p(8o|A) (Smith 1983). These relationships are depicted in Figure 3.2.

o\ marginal
p“‘l'y) ~pUIM likelihood
induced prior
icti o MLE
digl:rriet;jdfigs—’ P8l y) = P(8ol A) == prior
parameter é
of interest 0 x ~
| I CAPAARSE A o
P(¥ol8p) -~ | |
l posterior for MLE posterior
parameter of
direct data ———=y, interest

Figure 3.2: Connection between empirical Bayes and hierarchical Bayes. Compare with
left hand side of Figure 3.1.

Suppose the mean of the MLE posterior, E (Golyg,i), is used as an empirical Bayes
point estimate. Denote the expectation and variance with respect to p(Aly) by Ej}, and

Vary,. Kass and Steffey (1989) show that Ey, [E (eolyo,i)] = E(89ly), so that the mean
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of the MLE posterior is an approximate fully Bayes posterior mean. However the variance
of the MLE posterior generally underestimates the fully Bayes posterior variance. To see
this, note that

Varyy(80|y) = Eyjy [Var(8o|yo,A)] + Vary, (E (80]yo0, )] -

The variance of the MLE posterior, Var(6q|yo, A), approximates only the first term above
and the second term is non-negative. Several methods for inflating estimates of the uncer-
tainty of empirical Bayes estimates have therefore been proposed, e.g., (Laird and Louis
1987; Carlin and Gelfand 1990). This is also described as empirical Bayes bias correction
or calibration, since the goal is to match a fully Bayes analysis based on an uninformative
hyperprior p(A). Similar corrections are made for profile likelihoods.

Except for the use of improper flat priors, this thesis does not make use of the fully
Bayes approach. This is not because of a lack of appreciation of its virtues. The fully
Bayes approach allows for complete specification of prior knowledge instead of feigned ig-
norance, and consequently allows valid posterior probability statements that accurately re-
flect all remaining uncertainty. Furthemore, modern Markov Chain Monte Carlo (MCMC)
methods make Bayesian calculations relatively straightforward.

However, Bayesian methods do have their disadvantages. The choice of informative
prior distributions may be controversial. Noninformative priors would seem to avoid this
difficulty, but in some situations it is not clear what constitutes a noninformative prior. For
example, noninformative priors for variances remain a topic of current research; we shall
return to this point in Chapter 4. MCMC methods may be computationally intensive and
assessment of convergence is a topic of ongoing research. Another point of concern is that
for improper priors the posterior may not be proper and this may not be detected when
using MCMC (Hobert and Casella 1996).

In any case, as Breslow and Clayton (1993) suggest,

“There is still room for simple, approximate methods both for exploratory
analyses and to provide starting values for use with other, more exact pro-
cedures.”
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3.5 Empirical Bayes methods for combining likelihoods

We now consider an interesting illustration of the hierarchical modeling approach intro-
duced in this chapter. Efron (1996) proposed an empirical Bayes methodology for “the
practical solution of hierarchical Bayes problems”. In this section, we describe Efron’s
approach and display some of his results using an extension of the raindrop plots of Sec-
tion 2.6. We then consider the application of his approach to the meta-analysis of the coho
salmon data.

Efron began by reducing the individual data sets to approximate single-parameter like-
lihoods for the study-specific parameters. Section 2.5 reviewed three methods for eliminat-
ing nuisance parameters which can be used to obtain single-parameter likelihoods; Efron
(1996) gives references for several others. With single-parameter likelihoods, the hierarchi-
cal model calculations introduced in this chapter are relatively straightforward. Often, hier-
archical models use analytically tractable probability distributions. For example, traditional
mixed models use normal random effects and normal errors, giving the so-called normal-
normal hierarchical model. Another example is the beta-binomial model, often used to
describe observed proportions that exhibit overdispersion. In order to flexibly model the
prior densities p(8;|A), Efron used specially designed exponential families of distributions
and carried out the calculations using numerical integrals. Efron also proposed schemes
for preventing overshrinkage and for empirical Bayes bias correction, although we shail
not examine them here.

3.5.1 Example: Ulcer studies

The ulcer data were used by Efron to illustrate his approach. The conditional likelihood
L;(8) of (2.12) provides a single-parameter likelihood. Efron only considered 8 € (-8, 5)
because most of the 41 likelihood functions were concentrated in that range. The exponen-
tial family of prior densities used by Efron has the form

p(B]A) = ' 1@~9M g0 (),

where t(0) is the sufficient vector, depending on 8—e.g., t(8) = (8,02)—gq(8) is the car-
rier density, and ¢(1) is chosen so that the prior density integrates to 1. For the ulcer data,
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Efron used the average normalized likelihood for the carrier density, i.e.,

m 5
g0(8) = %;L,-(e) / /_ SL;(O)de.

Using the exponential family of priors based on this carrier density, with a numerical es-
timation algorithm, Efron obtained an MLE prior p(OIi.) for the log odds ratio. (He also
obtained a bias-corrected version of the MLE prior, which had slightly heavier tails, but we
shall not consider it here.)

A modification of the scheme for producing raindrop shapes can be used to display the
MLE prior or any other probability density. In place of the log likelihood, we use the log
probability density, with a cutoff corresponding to a probability of 0.95. In other words, we
use a raindrop based on the log density over the highest density region, or HDR (Hyndman
1996). We therefore call this an HDR-raindrop, and as a visual cue, use darker shading for
HDR-raindrops than for ordinary raindrops. Note that the HDR-raindrop provides more
information than the interval or region defined by any single highest density region. Fig-
ure 3.3 shows a raindrop plot for the ulcer data, together with meta-analytic summaries
from Efron’s analysis.
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Figure 3.3: Raindrop plot of log odds ratios and meta-analytic summaries for studies of
ulcer treatments from the analysis of Efron (1996). For each study, 95% raindrops (shaded)
are superimposed on 99% raindrops (unshaded).

Two meta-analytic summaries from Efron (1996) are shown in Figure 3.3: a normal
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95% raindrop for the mean (based on a point estimate and jackknife standard error reported
by Efron) and a 95% HDR-raindrop for the MLE prior (shaded darker to emphasize that
its interpretation is different). The MLE-prior raindrop shows a somewhat subtle deviation
from normality. One of the strengths of the raindrop plot is its ability to display such
deviations in a compact format. Note that Efron’s analysis excluded study number 40
(which was judged to be an overly influential outlier) and study number 41 (which has a
flat likelihood).

From a mixed model viewpoint, the MLE-prior raindrop is our “best” estimate of the
random effect distribution for the log odds ratio, i.e., the distribution from which log odds
ratios O; are generated. This gives very different information from the raindrop labeled
“Efron’s mean”, which shows the point estimate of the mean log odds ratio together with
a confidence interval, which is conventionally shown in meta-analysis plots. We believe
that both pieces of information are important and in the mixed model methods explored in
subsequent chapters, we will generally show both.

From an empirical Bayes viewpoint, the MLE-prior raindrop is an approximation to
the predictive distribution for the log odds ratio of an as-yet unobserved study. From the
discussion in Section 3.4, we expect that, as an approximation to the predictive distribution,
the MLE prior does not have enough spread. However, in practice the required correction
may not be very large. Corrections to posteriors for individual studies may be substantial,
however (Efron 1996).

The summary raindrops at the bottom of Figure 3.3 are reminiscent of the diamond-
shaped summary symbols often used in meta-analytic plots. However, unlike the diamonds,
the second dimension of the raindrops is informative.

The same approach can be used for Bayesian posterior or predictive distributions.
HDR-raindrops are related to the violin plots of Hintze and Nelson (1998), although the
violin plot was designed for investigating data samples rather than distributions per se and
uses the density instead of the log density.

3.5.2 Example: Coho salmon

To study the characteristics of Efron’s approach for this type of data, a simulation was
designed. The goal was to simulate data roughly similar to the coho salmon data. In the
simulation, groups of 14 spawner-recruitment data sets were generated, with each data set
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consisting of 15 spawner-recruitment pairs. To generate the data, a Beverton-Holt model
with fixed K = R™* /a (K = 0.5) and random loga., sampled from N(0,1), was used.
For each data set a set of fixed spawner values were chosen. Figure 2.12 revealed that
6 of the 14 coho salmon data sets gave rise to “ramped” likelihoods, i.e., they contain
relatively little information about a, typically due to a lack of observations at low levels
of spawner abundance. To mimic this, our simulated groups of 14 data sets had 6 with
spawner observations only at relatively high levels, and the remainder with observations at
lower levels. Figure 3.4 shows an example of each type of data set.

Well determined Poorly determined
1.5 1
0.10 A
0.08 | ) ] .
. ® 1.0 4 e o ° o
0.04 05 1
0.02 1
0.0 1 0.0 { N :
0.0 0.4 0.8 00 05 10 15 20
S S

Figure 3.4: Two simulated spawner-recruitment data sets. The superimposed curves are the
true median recruitment curves used to generate the data. The left-hand data set determines
a fairly well, due to spawner observations at the lower limb of the curve. The right-hand
data set determines a quite poorly, due to an absence of spawner observations at the lower
limb of the curve.

For each § value, an R value was randomly generated from a normal distribution with
mean loga — log S — log(1 + S/K) and standard deviation ¢ = 0.4. The value of 0.4 was
chosen by trial and error to give data sets whose scatter plots and raindrop plots (Figure 3.5)
appeared similar to those of the real data.
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Data set number

log alpha

Figure 3.5: Raindrop plots for log & for one group of simulated data sets. (Compare with
raindrop plot based on actual data shown in Figure 2.12.) Note that the true mean of log a
is zero. Data sets 1-8 were assigned spawner observations at relatively low levels so that ot
would be “well determined”, whereas data sets 9-14 were assigned spawner observations
only at higher levels so that & would be “poorly determined”. However the configuration
of spawner observations is not the only determinant of whether o is well determined: data
sets 2, 5, 7, and 8 have “ramped” profile likelihoods, indicating that a is poorly determined
and for data set 9, a is relatively well determined.

The simulation described above was performed 30 times. In one of the cases, Efron’s
method failed to converge. The mean estimate of the standard deviation of loga was 1.04,
only slightly different from its true value of 1. The mean estimate of the mean of loga was
0.5, which differs substantially from its true value of 0.

Based on these results, we conclude that the approximate likelihood for loga loses too
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much information about the data. In Chapters 4 and 5, we consider linear and nonlinear
mixed effects models that do not reduce the data to a single-parameter likelihood. Unlike
Efron’s approach, these models have traditionally been restricted to normal-normal hierar-
chies.

In the literature on nonlinear mixed effects models, a number of rwo-stage methods
have been proposed (Davidian and Giltinan 1995, Chapter 5). These are methods in which
individual estimates are obtained first and then combined in some way to estimate the
model parameters. Some schemes, such as the global two-stage method (Steimer et al.
1984), incorporate the uncertainty in the individual estimates, based on estimated asymp-
totic variances. In simulations, Sheiner and Beal (1980) found that a two-stage approach
produced good fixed effects estimates, but biased and imprecise estimates of variability
among individuals.

In any case, conventional two-stage approaches are problematic when individual esti-
mates are not available for all studies, as with the coho salmon data (e.g., see Figure 2.4).
The application of Efron’s method in this context avoids this difficulty and allows the use of
better approximations (e.g. profile likelihoods). However, the simulation described above
suggests that bias remains.



Chapter 4
Linear mixed effects models

In the previous chapter we considered the general framework of conditionally independent
hierarchical models. Here we consider one of the first such models to be widely used:
the linear mixed effects model. Much of the chapter reviews well-known methods and
results, however some novel graphical displays are introduced in the context of the example
datasets. Furthermore, the material covered here lays the groundwork for the nonlinear
mixed effects models introduced in Chapter 5.

In Section 4.1 we introduce the general version of the linear mixed effects model. We
show how the mixed model equations are obtained and how they lead to estimators of the
fixed effects and predictors of the random effects. In Section 4.2.1 we return to the random
effects model for meta-analysis of Section 1.4.2, and show that it fits into this framework
and, as for the fixed effects model, leads to an estimator that is a weighted mean of indi-
vidual estimates. We consider the estimation of variance-covariance components in Sec-
tion 4.2.2. For the meta-analytic data considered in this work, linear mixed effects models
have a special structure; in Section 4.3 we introduce linear mixed effects models for re-
peated measured data. Asymptotic properties for linear mixed effects models are a subject
of continuing research and in Section 4.5 we review the available results. Approaches to
robust estimation of linear mixed effects models are the subject of Section 4.6. The meth-
ods in this chapter are illustrated using the three example datasets with a particular focus
on the wolf data.

78
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4.1 General linear mixed effects model

The general linear mixed effects model can be written
y=XP+Zu+e, 4.1)

where X is an n x q design matrix, B is a g-dimensional fixed effects vector, Z is an n x
m(c — 1) design matrix, u is an m(c — 1)-dimensional random effects vector with mean 0
and variance-covariance matrix D, and € is an n-dimensional error vector with mean 0 and
variance-covariance matrix R. The errors € and random effects u are assumed independent.

A good introduction to linear mixed effects models is given by Searle, Casella, and
McCulloch (1992).

4.2 Estimation

Estimation of linear mixed effects models has long been a topic of research interest. A com-
prehensive review of maximum likelihood and restricted maximum likelihood approaches
was given by Harville (1977).

The observation vector y has mean X and variance-covariance matrix

V = Var(y) = ZDZ" +R. 4.2)

If V is known up to a multiplicative constant, f may be estimated using generalized least
squares. The generalized least squares (GLS) estimator of f is given by

B=(xTvix)"'xTvly, 4.3)

Derivation of the GLS estimator requires only assumptions on the first two moments of
y. Traditionally, however, the errors and random effects are both assumed to be normally
distributed. For now let us assume that D and R are both known up to a multiplicative
constant. Let us consider the distribution of u to be a prior distribution, and place an
improper flat prior on B, i.e., p(B) = 1, independent of u. Then the posterior distribution
of B and u based on y is proportional to the joint distribution of y and u, i.e., from (3.2) on
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page 65,
(zn)*("”“')/2|R|"/2|D|"/2exp{-—;-[(y—xﬁ —Zu)'R ' (y—XB—Zu)+ urﬁ"lu]} .
4.4)

To obtain the mode of the posterior, we differentiate the log of (4.4) with respect to B and
u and equate to zero. This leads to the mixed-model equations of Henderson et al. (1959):

XTR"'X  X"R™'z Bl | xR Yy “5)
ZTR-'X D '+Z'R"'z || a ZTR 'Yy |’ )
Alternatively, the terms in (4.4) that depend on B and u can be written

(v—=XB—-Zu)TR™ ' (y—XB—2Zu) +u"D'u

= [R"'/z(y—XB—Zu)]T [R‘Vz(y—XIS—Zu)] + [D’l/zu]r [D"'/Zu]

= éle,

where
; _ | BPo-xB-2zw
- D~y
[ Ry R™12XB+R~"2Zu
- | 0 D~'/2y
= y-Xg, (4.6)
with
) R——I/Zy . R—I/ZX R—I/ZZ B :
y_[ O b} X_ 0 D_l/z ? §= " 3 andeNN(()?I)‘

Rewriting (4.6), we have
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which is known as a “pseudo-data” regression model (Lindstrom and Bates 1990; Davidian
and Giltinan 1995). Defining
:_| B
&= [ -~ |
a

the normal equations for this regression model are
(XTX)E =Xy,

which are simply the mixed model equations (4.5). Solving them for B gives (4.3) (i.e.,
B= ﬁ the generalized least squares estimator), and solving for i gives

i=DZTv-(y-XB), 4.7

which is the best linear unbiased predictor of u, denoted BLUP(«). The BLUP is linear in
the sense that it is a linear function of y, unbiased in the sense that E(it) = E(u) =0, and
best in the sense that it has minimum mean squared error within the class of linear unbiased
predictors (Robinson 1991). In practice we may not know D and R (and hence V) and may
substitute estimates of them in (4.7) giving the empirical BLUP.

4.2.1 Random effects meta-analysis

As a special case of (4.1), consider model (1.9) for random effects meta-analysis (page 16).
Here the data vectoris y = (¢y,... ,t,,.)T. In this case there is just one fixed effect, B (i.e. g =
1) and the X matrix is a vector of 1’s and the Z matrix is an identity matrix. The model has
¢ = 2 random components and the variance-covariance matrices are R = diag(vy, ..., V)
and D = diag(62, ... ,62). Therefore V = diag(v| +G2,... ,vm+62). The generalized least
squares estimator of B is

a~

B — (er—lx)—lxrv—ly

m m

-1
- (Borar) Eorair

i=1 i=1

m m
Z Wili / Z Wi,
i=1 i=l
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where w; = (v;+62)~!. This is the same as the estimate of P (1.4) in the fixed effects
model for meta-analysis except that the weights have a contribution from 62. In particular,
if 62 = 0, we recover (1.4). From (4.7), the BLUP of 6; = B + u; is

B+BLUP(;) = PB+o2(vi+02)~'(—B)
= Bf+(1-B),

where B; = v;/(v; + 62), which is the same as the empirical Bayes estimate of (1.11).

Example: Analysis of ulcer data using conventional fixed effects meta-analysis

As noted above, when 62 = 0, the estimate of P used in conventional fixed effects meta-
analysis is recovered. To apply this to the ulcer data, we use the point estimates and stan-
dard errors from Section 2.2, treating the standard errors as if they were known without
uncertainty. The result is shown in Figure 4.1.
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Figure 4.1: Point estimate and 95% confidence interval for the log odds ratio in each ulcer
study, together with a meta-analytic summary. The summary, shown at the bottom, is the
weighted mean with 95% confidence interval from a fixed effect analysis.

The chi-squared homogeneity statistic of Section 1.4.1 for this fixed effects analysis is 99.0
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on 39 degrees of freedom, which is highly significant. This suggests that the fixed effects
analysis is not adequate, i.e., there is substantially more variation than we would expect. A
random effects model provides one way to account for this extra variation.

4.2.2 Variance-covariance components estimation

As noted above, we typically do not know the variance-covariance matrices D and R. The
elements of D and R are known as variance-covariance components. Various structures for
D and R may be considered. For example, in variance components models, the covariance
components are assumed to be zero (i.e. D is diagonal) and only the variance components
need to be estimated. We denote the parameters that determine D and R by &.

Various methods for estimating variance-covariance components have been proposed
(Searle, Casella, and McCulloch 1992). We concentrate here on likelihood-based ap-
proaches together with robust modifications.

We begin by assuming that the errors and random effects are both normally distributed.
In the general notation of Chapter 3, our model is

y|8,A ~ N(6,R)
8A ~ N(XP,zDZT),

with A = (B7,£7)T and 8 = XPB + Zu. From (3.3), the marginal density of the data is

POt = [ pOIB M) PO,

where
pO10.4) = (2m) V2RI exp{ -3y~ R y-0)]}

and

p(8A) = (21:)-“""/2|2D2T1-‘/2exp{—%[(G—XB)T(ZDZT)-‘(G —Xﬁ)l}-
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Therefore, integrating out 0,

POIN) = (m) AV exp{ -3 [- X8V 0= XD}, @

i.e., y is marginally normally distributed with mean X and variance-covariance matrix V.
The log likelihood is thus given by

(.8 =3 [~ XBV™" (s~ XB) +logIV]]. @9)

Maximum likelihood (ML) estimators of f and { are obtained by maximizing (4.9). For
known {, the ML estimate of B is the generalized least squares estimator (4.3).

Even without assuming normality, we may consider estimators that maximize (4.9), or
equivalently minimize

(y-XB)TV-!(y-XB)+log|V|. (4.10)

This approach was called extended least squares (ELS) by Beal (1984), and we will return
to it in Chapter S.

For finite sample sizes, ML estimators for the variance components are biased. In-
tuitively, the bias occurs because the ML estimators do not take into account the loss in
degrees of freedom from the estimation of B. The restricted maximum likelihood (REML)
approach corrects for this bias by estimating variance components based on residuals after
estimating the fixed effects by least squares. It may be shown (see, e.g., Verbyla (1990),
Searle, Casella, and McCulloch (1992)) that this is equivalent to maximizing the likeli-
hood based on n — g linearly independent error contrasts of y. The vector KTy represents
n — q linearly independent contrasts if K is a known, full rank n x (n — q) matrix such that
KTX = 0. For any such matrix K, the log likelihood based on KTy may be written

(3.5 = —-;—[(y—XB)Tv-‘<y—XB)+log|V|+log|xTV"X|]-

~ 1
= e(ﬁ,c)-§10g|va-'X|. @.11)

This is the reduced or restricted log-likelihood introduced by Patterson and Thompson
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(1971) and Patterson and Thompson (1974). We shall refer to it as the REML log likeli-
hood. Note that (4.11) is written in terms of ﬁ whereas (4.9) is written in terms of §, which
highlights the previously mentioned point that the REML likelihood is based on residuals
after estimating the fixed effects, B. Note that the REML log likelihood can also be written

R(B,5) = —% [ Py+log|V|+log|XTV='X]], 4.12)

where P=V~! —v-IX(XTv-1x)-!1XTv-! Harville (1974) showed that the REML like-
lihood may also be derived by considering the marginal distribution of y when an improper
flat prior is placed on B, i.e.,

POIO = [ pOI8,M)p(8I)p(BIAB dB, @13)
with p(B) = 1.

Example: Analysis of ulcer data using conventional random effects meta-analysis

To illustrate the estimation of variance components, we perform a conventional random
effects meta-analysis of the ulcer data, using REML. As for the fixed effects analysis, we
use the point estimates and standard errors from Section 2.2, treating the standard errors as
if they were known with no uncertainty. The result is shown in Figure 4.2.
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Figure 4.2: Point estimate and 95% confidence interval (CI) for the log odds ratio in each
ulcer study, together with three meta-analytic summaries. The summaries, shown at the bot-
tom, include the weighted mean from the fixed effect analysis (with 95% CI), the weighted
mean from the REML random effect analysis (with 95% CI), and the 95% highest-density
interval for the estimated distribution of a log odds ratio.
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The estimated mean log odds ratio from the random effect analysis is slightly more in
favour of the treatment than in the fixed effect analysis. As expected, the 95% confidence
interval is wider than in the fixed effect analysis since it incorporates inter-study variation.
The “REML distribution” interval in Figure 4.2 is a 95% highest-density interval. It indi-
cates where most of the mass of the estimated random effect distribution is located, and is
important because it conveys to the user of the graph the typical inter-study variability.

4.3 Linear mixed effects model for repeated measures data

The data considered in this work have a repeated measures structure, i.e. several obser-
vations are available from each of the m studies. So we partition the data vector y into
)T

individual study data vectors y; of length n;, i.e., y = (y7 ,... ,y7)T andn= Y™ n;, and we

correspondingly partition X, Z, u, and € as

X Z uj €
X = : , Z= , U= : , and €= : . 4.14)

Xm Zn Um Em

where X; is an n; x g matrix, Z; is an n; X (c — 1) matrix, u; is a (c — 1)-dimensional vector,
and ¢€; is a n;-dimensional vector. This gives

yi = XiB+Ziu; + €. (4.15)

Laird and Ware (1982) used this model.

4.4 Estimation

We assume that the error vectors are mutually independent with Var(g;) = R;, so that
R = diag(R),...,Rn). Similarly, we assume that the random effects vectors are mutu-
ally independent with Var(;) = D, so that D = diag(D, ... , D). The ith observation vector
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y; has mean X;pB and variance-covariance matrix
V; = Var(y;) = ZDZ +R;, (4.16)

so that V = diag(V},... ,Vis), i.e. V is block diagonal. The y;’s are marginally independent,
as shown by (3.3). The log likelihood can thus be written

¢B.8) =

NI

-5 5 [0r= X870~ )+ oglvi]. @)

The REML log likelihood cannot be written as a sum because the matrix P in (4.12) is not
block diagonal. This complicates the asymptotic theory for REML estimation, however
Richardson and Welsh (1995) have shown that without assuming normality of the data and
under fairly general conditions, REML estimates are consistent and asymptotically normal.

4.4.1 Example: Linear mixed effects models for spawner-recruitment
data

Most of the spawner-recruitment models introduced so far are nonlinear. However, as we
have noted, the Ricker model

Rij = a,-S;je‘B"s"i,
can be transformed to obtain R
log S—U = loga; — BiSi;
ij

which is linear. As discussed in Chapter 1, the Ricker model is not suitable for modeling
coho salmon because it “bends over” at high spawner levels, i.e., recruitment is not an
increasing function of spawner quantity. For many other species, however, the Ricker
model seems quite reasonable.

Recall from Chapter 1 that the o;’s are positive and all have the same units, i.e., recruits
per spawner. It may therefore be reasonable to treat the loga;’s as normally distributed
random effects. If we assume additive normal error on the transformed response, i.e.,

R..
log E'i = loga; — BiSij +&ij,
ij



with g;; ~ N(0,6?), then back-transforming shows that this is equivalent to assuming mul-
tiplicative lognormal error in the recruitment R;;, a fairly reasonable model.

With these assumptions, the model can be written in the form of a linear mixed effects
model y; = X;B+ Ziu; +€;. Using a database of spawner-recruitment series for over 500 fish
populations, Myers, Bowen, and Barrowman (1999) applied linear mixed effects models to
obtain estimates of loga; and its variance for a variety of species and families (groups
of species). They treated the B;’s as population-specific nuisance parameters. This was
necessary because Myers, Bowen, and Barrowman (1999) did not attempt to standardize
the B;’s: the units of the B;’s vary from population to population.

4.4.2 Example: Linear mixed effects analysis of the wolf data

Recall model (2.1) for the wolf populations:
yi = 0i1 +0px; + €,

where ;1 is the intercept, 8 is the slope, and €; ~ N(0,6?1). The rate of change of the pop-
ulation in each reserve may reflect large-scale phenomena such as climate or management
policies. The population trends in the 8 reserves are viewed as realizations from a larger
conceptual “superpopulation™ of possible population trends for wolf populations given the
existing large-scale conditions. Therefore we model the slope for each reserve as a random
effect, i.e.,

8i2 =By +ui,

where B is the mean slope, and u; ~ N(0,62). Treating the reserve-specific slopes as
random effects is a reflection of a prior belief that the population trends in the 8 reserves are
not completely unrelated. The intercept for each reserve determines the initial population
density. Note that the reserves vary in size and density of wildlife, which can be thought
of as intrinsic to each reserve, and unrelated to any other reserves. We therefore treat the
intercepts as reserve-specific fixed effects, i.e.,

0i1 = Bi+1,
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where B;4; is the fixed intercept for the ith reserve. We collect the f;’s together into a
vector B of length ¢ = m+ 1. The model can then be written in the form y; = X;B + Z;u; +¢&;
where Z; = x; and X; is an n; x (m+ 1) matrix whose first column is the x; vector, and whose
remaining columns are zero’s except for the (i + 1)th column which is all ones. Figure 4.3
shows fits from a REML analysis of the wolf data using this model. The dashed lines in
each panel are the BLUPs, i.e.,
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Figure 4.3: Log population numbers of wolves in 8 reserves in southern Québec with fitted
least squares regression lines (solid) and BLUPs (dashed).

A conventional meta-analytic plot is shown in Figure 4.4.
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Figure 4.4: Point estimate and 95% confidence interval for each reserve for the slope of the

least squares regression of log numbers of wolves versus year together with a meta-analytic
summary.

The estimate of the inter-reserve variance of the slope, &2, is tiny, approximately 10~4.
In other words, the model-estimates of the reserve-specific slopes are essentially identical.
This suggests that a model with reserve-specific fixed effects would suffer from an excess
of parameters with an associated loss of power to discriminate population declines.

Note that the model specifies a separate variance for each reserve. However, recall
from Section 2.1 that we actually have some additional information, namely estimates of
the effective sample sizes for observations from each reserve. Table 4.1 shows these sample
sizes together with estimates of the within-reserve variances 67 from our model:
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Reserve Effective Model estimate
sample size, n} of 6?
La Vérendrye 378 012
Laurentides 355 032
Mastigouche 168 187
Papineau-Labelle 198 045
Portneuf 100 .088
Rouge-Mattawin 130 089
Sept-iles/Port-Cartier 48 062
Saint-Maurice 66 197

Table 4.1: Effective sample sizes for observations from each reserve together with estimate
of within-reserve variances from REML fit of linear mixed effects model.

To reduce the number of parameters to estimate, we now change our model so that 67 =
o2 /n;. The revised model results in an estimate of zero for the inter-reserve variance of the
slope. The mean slope is estimated to be —0.026 with a standard error of 0.009. Using
those point estimates suggests that none of the slopes could in fact be positive. However,
this is a misleading conclusion, since it ignores the uncertainty in the estimates. Figure 4.5
is a graphical display of the range of plausible values of the mean and the standard deviation
of the slope, with the associated probabilities of a positive slope. The “mushroom”-shaped
contour is the joint 95% likelihood-based confidence interval for the mean and standard
deviation of the slope. In the upper right portion of the mushroom, the mean and standard

deviation are both relatively large. The probability of a positive slope is then up to about
0.4.
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Figure 4.5: Approximate joint 95% confidence interval for logo? and logP; (heavy line)
with superimposed contours of constant probability (lighter lines), showing the probability
of a positive slope given a normal distribution with mean B, and variance 62. The dotted
vertical line indicates a mean slope of zero.

A hierarchical Bayesian approach to this problem would make use of prior distributions
for the mean and variance of the slope. But the choice of prior distributions for variances
is quite difficult and in small samples “noninformative” priors may in fact be informative
(Daniels 1999). Note first that the boundary value 62 = 0 is supported by non-negligible
likelihood since it is possible that there is no between-study variance (cite DuMouchel).
The standard noninformative prior is p(62) « 1/62 (Box and Tiao 1973), however this
has an asymptote at zero, which can lead to an improper posterior. Smith, Spiegelhalter,
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and Thomas (1995) argue that a reasonable approach is to search for a proper prior for
the inter-study variance and provide an example in the context of a meta-analysis of 2 x 2
tables. However their reasoning is not entirely convincing since it relies on questionable
assumptions about expected ranges of effect sizes.

Figure 4.6 shows how little information the likelihood contains about the standard de-
viation of the slope, G,, in the present case. A likelihood ratio test suggests that values of
G, up to about 0.025 are plausible. For values in this range, up to about 20% of the mass of
the distribution of the slope is positive. In practical terms this means that 20% of the wolf
populations may in fact be increasing.
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Figure 4.6: Top panel: Profile log likelihood for G, the standard deviation of the slope
random effect. The horizontal line depicts a decrease in the log likelihood of 2, which
corresponds to a likelihood ratio test at an approximate 95% level. Bottom panel: Positive
mass of the distribution of slope as a function of o,,.

4.5 Asymptotics

Standard asymptotic theory for ML estimators cannot be applied to linear mixed effects
models because the observations are not independent. Under the assumption of normality,
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Hartley and Rao (1967) and Miller (1977) obtained the asymptotic distribution of the ML
estimator for mixed effects ANOVA models. Pinheiro (1994) extended their results to
the more general linear mixed effects model (4.1). Recently Cressie and Lahiri (1993)
obtained the asymptotic distribution of the REML estimator, again under the assumption
of normality.

In practice we can never be sure that data are normally distributed, much less the unob-
servable random effects. Following work by Westfall (1986), Richardson and Welsh (1994)
derived the asymptotic distribution of the ML and REML estimators for a class of linear
mixed effects models in which y can be partitioned into independent sub-vectors without
the assumption that the data are either normally or spherically symmetrically distributed.

For the models considered by Richardson and Welsh (1994), the Z matrix is assumed to
have a special structure, and they make assumptions so that as the number of observations
increases, the structure is preserved. For these models, the observations y can be partitioned
into independent sub-vectors.

For such models, Welsh and Richardson (1997) summarize asymptotic results for a
general class of estimators that are solutions to estimating equations of the form

i%m=a
i=1

For example, the maximum likelihood estimator is of this form, and the REML estimator is
asymptotically of this form. An estimator A, that satisfies the above equation is estimating
aroot, Ay, of

Y E¥(h) =0.
=1

The information matrix is given by

1 & d¥';
an- E(——‘l ).

i=1

The variance of the normalized score function is

F,= %ilz‘ (Pi(he)Pi(Aw)T).
i=l
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Welsh and Richardson (1997) assume that m — wasn - o< asthat G, - Gand F,, = F.
With additional assumptions about bounded moments, bounded norms of the X; matrices,
and nonsingularity of the variance-covariance matrices, they show that

n~2A=1) B N(0,G'FG!), asn— .

4.6 Approaches to robust estimation

The methods in this thesis were all developed starting from normality assumptions. One
approach is to assume that the errors and random effects are normally distributed. For the
linear mixed effects model, it then follows that marginally the observations y are normally
distributed; see (4.8). (In the next chapter, we will see that this does not hold for the nonlin-
ear mixed effects model, making estimation more difficult.) Alternatively, the assumption
of marginal normality can be made without assuming normality of the errors and random
effects. Even without assuming normality, estimators developed for the normal marginal
distribution may be used; see (4.10). We will call the distributional assumptions under
which we are operating the model distribution. Whatever our assumptions, deviations from
the model distribution can be detrimental to our inferences, and we seek distributionally
robust methods.

A very useful account of approaches to robust estimation was provided by Stahel and
Welsh (1997) in the simple case of a balanced one-way analysis of variance model. Stahel
and Welsh found that nonrobust methods can be extremely inefficient when the assumption
of normality is violated.

Welsh and Richardson (1997) provide a comprehensive review of approaches to robust
estimation of linear mixed effects models. They note that deviations from the model dis-
tribution can arise from contamination of the errors or any of the random effects. This
is an important point from a meta-analytic perspective because we can conceive of out-
lying observations within studies as well as outlying studies. A common criticism of a
meta-analysis is that it “combines apples and oranges”, i.e. that the studies are measuring
different things. The notion of “outlying studies” is one way to formalize this, and robust
methods may provide some protection or at least diagnosis of the problem.

We adopt the approach of Huggins (1993b); see also (Huggins 1993a). Richardson and
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Welsh (1995) extended the approach of Huggins (1993b), which they called Robust ML L.
They worked within a class of linear mixed effects models in which y can be partitioned
into independent sub-vectors. To obtain the Robust ML I estimator we start with the log
likelihood (4.17) for a normal marginal distribution:

m

=3 & | 0v=XB)TY 0= XiB) +log Vi

NI'—‘

-

Now let V,._l/2 be a square root of V;~! (i.e., setting V,-_l/?' = A, we have AAT = V7!), s0
we can write the log likelihood as

—%:{[ Ty xB)] [V - x,-ﬁ)]+log|m}.

Letr; =V, "(y; — X;B) be the vector of standardized residuals for study i and let r; ; be the
Jjth element of r;. Then we can write the log likelihood as

(): +log|V|)

If any of the standardized residuals r;; is large, it will have considerable influence on the
likelihood. A natural strategy is to replace r2 above by a less rapidly growing function
p(rij). This modification will result in a systematic bias when the data actually have a
normal marginal distribution, and a consistency correction is required. With these modifi-
cations, the objective is to minimize

)'f: (): p(rij)+= log|V|)

=1 \ j=I

where K is the consistency correction determined by our choice of p. When p(r) = r*/2,
we recover the negative log likelihood by setting x = 1. To streamline the presentation,
we make use of a slight abuse of notation and let p(r;) = Z'}":l p(rij), so that the objective
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function can be written
m
_ X
Y (¢ [v"20i-x8)] + S 10g ). (4.18)
i=1 2

Huggins (1993b) proposed using Tukey’s bisquare p-function (see Figure 2.6, p. 37).
Welsh and Richardson (1997) note that in the linear mixed effects model context, we require
both y(r) and ry(r) to be bounded for robustness. To see why this is so, note that the
estimating equations obtained by equating the derivatives of (4.18) to zero are

m

Y X7V Py [V i xp)| =0
i=1

for the fixed effects, and

1/2
wmTy-t2 Y 12 To=12 var] _l(av,-)] _

k

[ e
'MS

i

for the kth variance component o‘,f. We see that the estimating equation for the fixed ef-
fects controls the effects of extreme observations provided y(r) is bounded. However, the
estimating equation for the variance components does not control the effects of extreme ob-
servations unless ry(r) is bounded. Huber’s y-function does not have this property, how-
ever redescending y-functions such as Tukey’s biweight do. Unfortunately, redescending
y-functions may lead to multiple solutions (Staudte and Sheather 1990, p. 118).

To avoid the use of redescending y-functions, Richardson and Welsh (1995) proposed
the Robust ML II estimator, which is based on modifying the maximum likelihood esti-
mating equations, rather than the likelihood. The Robust ML II estimating equation for the
variance components features two (possibly different) y-functions. I will not pursue the
Robust ML II approach here because my approach involves directly optimizing a robusti-
fied likelihood, rather than using estimating equations. In the models used by Welsh and
Richardson (1997), the necessary derivatives are obtained analytically, but this is not the
case for linear mixed effects models having regression structure, much less for the nonlin-
ear mixed effects models discussed later on.
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4.6.1 Robust estimation of realized random effects

Fellner (1986) suggested using analogues of the BLUPs to robustly estimate realized ran-
dom effects. These were a natural by-product of his algorithm for robust estimation of
linear mixed effects models. Fellner’s algorithm is based on the Henderson-Harville algo-
rithm (Henderson 1963; Henderson 1973; Harville 1977) for variance components estima-
tion, which involves iterative solution of the mixed model equations (4.5). In the present
context, we simply use the empirical BLUP formula (4.7), i = DZTV-(y - X [3), using the
robust estimates from Robust ML I. Let 6; = X,-fi + Z;i; be the BLUP of 6;.
When we refer to empirical Bayes fits for the wolf data we mean lines defined by

Yi= 3i+1 +0,x;.
When we refer to marginal mean fits for the wolf data we mean lines defined by
¥i = Biv1 + Pixi.

4.6.2 Example: Wolves

We implemented Robust ML I for the wolf data using the Huber y-function with a tuning
constant of 2. This follows the approach of Welsh and Richardson (1997). As discussed
above, this does not ensure robustness of the estimates, however it avoids numerical diffi-
culties associated with redescending y-functions.

The estimation algorithm was based on the estimating equation approach of Richardson
and Welsh (1995). Richardson’s algorithm had to be modified because in the ANOVA mod-
els she used, the variance matrix V; has a special form for which a symmetric square root
V., '/2 and its derivatives with respect to variance components may be obtained explicitly.
Because of the regression structure of the wolf data, there is no such convenience. Instead
we used a Choleski decomposition for the square root, and numerical derivatives. Richard-
son’s algorithm also required modification to incorporate the sample size weighting.

The parameter estimates were very similar to the nonrobust fits. The variance of the
slope random effect is estimated to be very close to zero. Figure 4.7 shows the fits with
observation weights.
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Figure 4.7: Robust mixed model empirical Bayes fits (solid) and marginal mean fit (dotted)
to log numbers of wolves. The whiskers along the top margin show the weights from the
robust fit, with a horizontal line to help discriminate downweighted observations.

Unlike the individual robust fits shown in Figure 2.7 (p. 41), there is little downweight-
ing in the mixed model fits. Only the highly unusual point from Mastigouche is slightly
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downweighted. In a mixed model analysis, the downweighting of individual points seems
to be less critical. For example, the 1992 observation in the Papineau-Labelle wolf reserve
appears to be quite unusual in the analysis of the individual data set. The whisker for this
observation in the mixed model analysis suggests that it is not at all unusual.



Chapter §
Nonlinear mixed effects models

The linear mixed effects models of the previous chapter are useful and have been widely
applied. We have seen that these models may be applied to the wolf data and that Ricker dy-
namics for multiple fish populations may be estimated using this framework upon applying
a simple 0. Similarly, the Beverton-Holt spawner-recruitment model (1.1) is transformably
linear: its reciprocal is

1 1 ]

Rj — R™ o8
= 0; +0px;; .1

where 6;) = 1/Rf™, 8 = 1/w;, and x;; = 1/S;;. However as Bates and Watts (1988, p. 34)
point out, transformation of a model affects the distributional assumptions we are making.
In the linear mixed effects model (4.15), errors are assumed to be additive normal. While
(5.1) is linear, we may not wish to assume additive normal errors on this scale, since this
would allow negative values of 1/R;;, which is not meaningful. Some models are not
even transformably linear, for example the hockey-stick spawner-recruitment model. For
these reasons we must move beyond linear mixed effects models, and the subject of this
chapter is a class of nonlinear mixed effects models. A comprehensive account of methods
of inference for nonlinear mixed effects models up to 1995 is provided by Davidian and
Giltinan (1995).

It is noteworthy that one of the earliest methods for estimation of nonlinear mixed
effects models (Sheiner and Beal 1980) was illustrated using the Michaelis-Menten model,

105
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as the Beverton-Holt is known in pharmacokinetics.

In Section 5.1, we introduce a nonlinear mixed effects model for repeated measures
data. This is followed, in Section 5.2, by an account of some methods of estimation, illus-
trated by application to the salmon data. The two methods of primary interest are those of
Lindstrom and Bates (1990) and Nuiiez (1998). To reduce variability, we propose a minor
maodification of the method of Nuiniez (1998). Little has been published on robust estima-
tion of nonlinear mixed effects models. In Section 5.3 we propose two methods for robust
estimation, and discuss their properties.

5.1 Nonlinear mixed effects model for repeated measures
data

The linear mixed effects models previously considered generalize in a straightforward way
to the nonlinear case. For the ith study, let

yi =MNi(6;) +&;, (5.2)
and
6; = A + Biui, (5.3)

where 7;(+) is an n;-dimensional vector-valued nonlinear function, 6; is an r-dimensional
vector, A; is an r x g design matrix, and B; is an r x (c — 1) design matrix. As before,
v; is an n;-dimensional observation vector, €; is an n;-dimensional vector of errors with
mean 0 and variance-covariance matrix R;, B is a g-dimensional vector of fixed effects, and
u; is a (¢ — 1)-dimensional vector of random effects with mean 0 and variance-covariance
matrix D. The errors €; are assumed mutually independent and the random effects u; are
assumed mutually independent. Finally the errors and the random effects are assumed
independent of each other. As for linear mixed effects models, the errors and random
effects are typically assumed to be normally distributed.

This model has been used by Lindstrom and Bates (1990) and others. A more general
version of this model was used by Nuiiez (1998). Because this model is fairly new, there is
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some variation in terminology in the literature. Some authors reserve the term “nonlinear
mixed effects models” for models in which 1;(8;) is linear in the random effects u;, which
affords some simplifications. Ramos and Pantula (1995) prefer the term nonlinear random
coefficients model for models in which 1;(8;) has a more general form.

5.1.1 Example: Beverton-Holt spawner-recruitment model

We will now show that the Beverton-Holt model for multiple fish populations can be for-
mulated as a nonlinear mixed model. From Section 2.3 (p. 27), the Beverton-Holt model
can be written

yij = —log (1/t; + S;;/R™)

where y;; = log(R;;/Sij). As discussed in Section 4.4.1 (p. 89), an assumption of additive
normal error on this scale seems fairly reasonable. Recruitment is a non-negative quantity,
and this error assumption implies that recruitment must be positive. Positivity constraints
for the parameters o; and R{"™ must also be incorporated into the model. One way to do
this is by writing

o; =% and R™ = S,

for unconstrained parameters 6;; and 68;>. To put this into a mixed model framework, let us
write 8;; = B + b; and 8;; = B, + f; with B; and B, fixed and

(3) =) %)l

As usual, we group the elements 6;; and 6;; into a vector 6; = (9,-1,9,2)T. Thus we can
write our model as

yi =Ni(6;) +¢;,
where
—log (e7% +5;e7%2)
ni(6;) = : ,
—log (7% + S;,e792)
and
8; =B +u,
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with B = (B1,B2)T and u; = (b, f;)T. Thus 6; = A;f + B;u; withA; = [ and B; = I.

5.1.2 Related models

A number of different models are closely related to the nonlinear mixed effects model. An
increasingly popular class of models is generalized linear mixed models (GLMMs) for re-
peated measures data. In these models the random effects u; are again normally distributed,
but the distribution of the observations conditional on the random effects belongs to an
exponential family with mean

E(yilu;) = k™ (XiB + Zuwy),

for a specified monotone link function h. Compared to the nonlinear mixed effects model,
the GLMM allows a more general conditional distribution but restricts the conditional mean
function.

The ulcer data, analyzed by Efron (1996) using empirical Bayes methods for combin-
ing likelihoods (Chapter 3), were re-analyzed by Platt et al. (1999) using a non-central
hypergeometric GLMM.

At first sight, the GLMM framework seems suitable for the Beverton-Holt spawner-
recruitment model. In the introduction to this chapter we saw that taking the reciprocal of
the Beverton-Holt gives a linear model. A natural approach would appear to be to use a
GLMM with an inverse link and 6;; = 1/R™* and 6, = 1/0; as in (5.1). The canonical
distribution for an inverse link is the gamma, which would constrain the recruitment to be
positive, as it must be. The parameters R{"™ and a; must also be positive, however the
GLMM requires that 6;; = 1/R™* and 6;; = 1/a; be normally distributed, which allows
negative values. With sufficient data, this might not be a problem, however the assumption
that 1/R™*, for instance, is normally distributed seems unacceptable. In a nonlinear mixed
effects model, it is always possible to choose a parameterization that constrains the param-
eters of interest in a suitable way. The restrictive structure of the conditional mean function
in the GLMM is thus apparent.

A related approach for the analysis of longitudinal data was developed by Liang and
Zeger (1986). In their approach, the marginal distribution of the data is modeled using
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generalized linear models and estimates are obtained using generalized estimating equa-

tions which take the correlation of repeated measurements into account. The correlation

is regarded essentially as a nuisance parameter and estimates are interpreted in terms of

the average over the population of studies. In contrast, the nonlinear mixed effects model

considered here gives study-specific estimates and the variance-covariance components are

themselves of interest.

5.1.3 General nonlinear mixed effects model

More generally, nonlinear mixed effects models may not assume a repeated measures de-

sign. As in the previous chapter, a general notation may be used to write our model in terms

of the entire observation vector y = (y,...,y7)T. If we define

8 n:(61) £
e=1| : |, n®)= : , and e=| @ |,
Om MNm(6m) €m

then we can write (5.2) as

y=n(6)+e.
If we also define
Ay B, uy
A= E y B = “.. ] and u= E L)
Ap Bm Um
then we can write (5.3) as
0 =APB+Bu.

(54

(5.5)

As in the previous chapter, we define R = Var(€) = diag(R,,...,Rn) and D = Var(u) =

diag(D,...,D), and we define  to be the parameters that determine R and D.
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5.2 Estimation

The fact that the random effects u enter our model nonlinearly makes estimation consider-
ably more difficult than in the linear case. This is because there is, in general, no closed
form expression for the likelihood. Furthermore, it is not clear how to define a restricted
likelihood for nonlinear mixed effects models. Estimation algorithms have been proposed
by, among others, Sheiner and Beal (1980), Lindstrom and Bates (1990), Pinheiro and
Bates (1995), and Nuiiez (1998). In this section we consider several different approaches
to estimation for the nonlinear mixed effects model.

We begin by considering the marginal distribution of y. Because the normal random
effects enter the model through an arbitrarily complex nonlinear function, the marginal
distribution of y will in general be non-standard. However, Vonesh and Carter (1992) con-
sidered models where the random effects enter linearly, i.e.,

ni(8:) = fi(B) + Zius,
and in this case, y; ~ N(u;,V;), where
ui=E(y:) = £i(B) and V;= Var(y;) =ZDZ +R:.
If y is normally distributed, then the log likelihood is

[(y—w)TV= (y — ) +log|V]]

i — )TV, (i — i) + log |Vil, (5.6)

9] — ) —

Ms

where u = E(y) and V = Var(y). Note that u and V are functions of  and &, and as long
as they can be computed, the likelihood can be maximized. The resuits of Hoadley (1971)
show that under regularity conditions, these estimators are consistent and asymptotically
normal. As in the previous chapter, even without assuming normality, we may consider
estimators that maximize (5.6), or equivalently, minimize

-u)TV=' (y—u) +1log|V]. 5.7
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Beal (1984) called these extended least squares (ELS) estimators and showed that under
regularity conditions, such estimators are consistent and asymptotically normal. As noted
above, however, for nonlinear mixed effects models there is in general no explicit form for
the mean

u=E(y) = E[(AB+ Bu)]

and the variance-covariance matrix
V = Var(y) = Var[n(Ap + Bu)] +R.

We will return to this later, but for now turn to an approach similar to the one used for linear
mixed effects models.

Suppose instead that 4 and € are normally distributed, and suppose that their variance
covariance matrices, D and R, are both known up to a multiplicative constant. As in the
previous chapter, let us consider the distribution of u to be a prior distribution, and place an
improper flat prior on B, i.e., p(B) = 1, independent of u. Then the posterior distribution
of B and u based on y is proportional to the joint distribution of y and «, i.e., from (3.2) on
page 65:

(2m) n+c—l)|R| s|D| "exp{——[(y N(AB + Bu))"R™' (y = n(AB + Bu)) + u" D~ u]}.
(5.8

Following the pseudo-data approach of the previous chapter, the terms in (5.8) that depend
on B and u can be written

(y—n(AB+Bu)) R~ (y—n(AB+Bu)) +u D™ u
= [ ~12(y-q AB'*'B“))] [ _Ilz(y—n(AB-i-Bu))] + [D"l/zu]r [D‘I/Zu]
e’

e,

where € = j — 1) (AP + Bu), with

d &~ N(0,1).

D~Y2y

-1/2
= [R . ’], fi(AB + Bu) =

R~/2(AB + Bu) ] .
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As in the previous chapter, let & = (B7,u”)T. The posterior mode & = (B7,a”)7 may be
obtained by solving the nonlinear least squares problem

¥ = (AB + Bu) + ¢, (5.9)

i.e., minimizing the sum of squares &7 ¢ in B and «. Note that

o =—2(3%)Lv'—ﬁ(AB+Bu)].

Denote 31]
X==x| =n'(AB+Ba)A
ap” B.a
and aTl
Z=—= =n'(AB+Bi)B.
ou” B
Then

i [R-I/ZX R-\/27
agT - | 0 D—l/?.

At the posterior mode, d¢7 é/9€ = 0, so that

[XTR—I/l ZTR-1/2

R (y—n(AB+Bu)) | _
b-'\/? 0 -D~'2y o
Defining
w=y—n(AB+ Bi) + XB + Za,
we have

XTR-'X XTR-Z
ZTR-'% Z2TR-'Z+ D!

ﬁ XTR'w
=1 . , 5.10
[ 7 ZTR 'w ©-10)
which are the mixed model equations for a linear mixed effects model with response w and
design matrices X and Z. Solving for ﬁ and 4 gives

B=RTV-'%)"'®TV"'w, and i =D2TV~"(w-Xp), (5.11)
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where
V =2D2" +R.
Since w, X, and Z depend on P and 4, these must be solved iteratively.

A result that will prove useful later on can be obtained by considering the second deriva-
tive of the sum of squares:

25T 5 =T ~T -
2[5 pem] () (B) e
The square brackets in the first term on the right hand side serve to highlight the fact that
this product is not an ordinary matrix multiplication. The term g—;%'é is not a matrix, but
an array of dimension g x m(c — 1) x m(c —1). The product is a matrix of dimension
m(c—1)xm(c—1).
The second derivative (5.12) is required for the quadratic approximation used by the
Newton-Raphson algorithm for nonlinear least squares estimation. The Gauss-Newton al-
gorithm replaces the term —2 [%%1&;-] [i -(AB+ Bu)] by zero, which is its expectation.

This is also known as Fisher scoring. Evaluating this approximation at & = (B7,a7)7 gives

el e

| XTR'X XTR'Z

sa | ZTRTR ZTRIZ4+D |

which is twice the matrix on the left hand side of the mixed model equations (5.10).
We have seen that the estimation of the fixed and random effects is relatively straight-

forward given the parameters { that determine D and R. The more difficult part of the
problem is the estimation of £. In the general notation of Chapter 3, our model is

y|6,A ~ NM(8),R]
8. ~ N(AB,BDBT),

with A = (B7,¢T)T and © = AB + Bu. From (3.3), the marginal density of the data is

PO = [ P18, M)p(6IR)d, (5.14
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where

P10, A = 1) "R Pexp{ =3 [b-n@) & O-n@)] | 519

and
p(OA) = (2m)~1/218DBT |2 exp{ - [(0- AB)T (BDB) (0 AB)) |.

Unfortunately, because of the presence of the nonlinear function 1 in (5.15), there is no
closed-form expression for this integral. Consequently a number of analytical and numeri-
cal approximations to it have been proposed. Pinheiro and Bates (1995) examined several
of these approximations and compared their computational and statistical properties. They
concluded that the approximation used by Lindstrom and Bates (1990) is reasonably accu-
rate and computationally efficient. We now consider this approach.

5.2.1 Lindstrom and Bates’ algorithm

Lindstrom and Bates (1990) proposed linearizing 1(AB + Bu) in (5.15) around estimates B
and & of B and 4, i.e.,

N(AB + Bu) ~ (AP + Bit) + X(B— B) + Z(u— ).

Note that although ﬁ and & are statistics (i.e., functions of y), we now treat them as if they
were constants. Substituting the above approximation into (5.15), we have

ylu&N(n(Aﬁ-i-Bﬁ)+)?(|3—[§)+Z(u—ﬁ),k), (5.16)
so that the integral (5.14) can be evaluated to give an approximate marginal distribution of
y~N (n(aB+Ba) + X(B-B) - 24,V). (5.17)

As before, letting w = y — (AP + Ba) + X + Zii, we can rewrite (5.16) and (5.17) as

wlu~ N (XB+Zu,R),
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and
w~N (XB,V).

These are the conditional and marginal distributions of a linear mixed effects model. The
associated approximate marginal log likelihood is

15(8,0) =~ [(w—XB)T V=" (w—£B) +log| 7] (5.18)

By analogy with the REML likelihood for the linear mixed effects model, (4.11), Lindstrom
and Bates (1990) defined an approximate REML log likelihood

res(B8) = —5 [(w—xB)TV“‘(w-xB) +log|V| +|og|x7v-‘xl] . (5.19)

Lindstrom and Bates (1990) proposed the following alternating two-step algorithm for
approximate maximum-likelihood estimation. Given the kth estimate of , denoted {(¥),
perform the following steps:

Step 1. Pseudo-data step. With § = {¥), solve the nonlinear least squares
problem (5.9) to obtain B*) and u*). Byproducts of this will be X(*) and

-

AL

Step 2. Linear mixed effects step. With B =B, 4= u®, X = X® and
Z = 78, maximize (5.18) to obtain B**+1) and {(*+1),

The approximate REML version of their algorithm maximizes (5.19) instead of (5.18).

Example: Coho salmon Beverton-Holt mixed model

Using the model of Section 5.1.1, we have a; = €% and R"™* = % with 8;; = B, + b; and
8;> = B2 + fi. The parameters 8, and [, are treated as fixed effects and b; and f; as normally
distributed random effects. Since there is no biological reason for suspecting that o; and
R™ would be correlated, we set 6,5 = 0, so that

bi ~ N(0,07) independent of f; ~ N(0,67).
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The errors €;; are treated as i.i.d. N(0,6?)

The Lindstrom and Bates algorithm is available in S-PLUS in the nlme function. Esti-
mates for the Beverton-Holt model using the approximate maximum likelihood version of
the algorithm are shown at the bottom of Figure 5.1.



117

Slope at the origin Asymptote
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QualicumRiver,8C | - - -1 | @ @ ®
S. Fk. Skykomish River, WA | - - - - < - | | - - - - - - ®
Snow Creek, WA - - -
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random effects distribution
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Log slope at the origin Log asymptote

Figure 5.1: Side-by-side 95% raindrop plots for the parameters of the Beverton-Holt model
for the 14 coho salmon populations with meta-analytic summaries at the bottom. The su-
perimposed dots and error bars on the individual population raindrops are the maximum
likelihood estimates obtained by individual nonlinear regression and approximate asymp-
totic 95% confidence intervals (based on nonlinear least squares theory). The meta-analytic
summaries are from the approximate maximum likelihood version of the Lindstrom and
Bates algorithm. The summary raindrops are shown doubly tall for emphasis.
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In Figure 5.1, the “Mixed model mean” raindrops summarize the information from the
mixed effects model concerning the two parameters. The “Mixed model estimated random
effects distribution” raindrops are shaded darker to emphasize that they are HDR-raindrops
(Section 3.5.1, p. 71) representing distributions rather than log likelihoods.

As discussed in the previous chapters, estimation of mixed effects models provides
not only estimates of the fixed effects and variance components, but also estimates of the
realized values of the random effects (empirical Bayes estimates). As shown in Figure 2.4
(p. 28), for two of the stocks there is no individual maximum likelihood fit: the slope at the
origin is apparently arbitrarily large, a biological impossibility.

Let 6;; and 8;; be the empirical Bayes estimates of 8;; and 6,,. Then empirical Bayes
spawner-recruitment curves are given by

R= S
exp( —én ) + Sexp(—éa) '

Figure 5.2 shows individual maximum likelihood curves and empirical Bayes curves.
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Figure 5.2: Coho salmon spawner-recruitment data with superimposed fitted Beverton-

Holt curves. Solid lines are individual maximum likelihood fits; dashed lines are empirical

Bayes curves from the parameter estimates obtained using the Lindstrom and Bates algo-

rithm.

From Figure 5.2 we see that when an individual data set determines the fit well (e.g. for Big
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Beef Creek), the empirical Bayes curve is very close to the individual maximum likelihood
fit. For the two stocks with no individual maximum likelihood fits, the empirical Bayes
curves seem quite reasonable. In cases where the data are relatively uninformative (e.g.
for Hooknose Creek, where the slope at the origin is poorly determined, or for Deschutes
River, where the asymptotic level is poorly determined), the empirical Bayes curves provide
plausible fits by borrowing strength from the other stocks.

5.2.2 Wolfinger’s derivation of an approximate REML likelihood

Recall from Chapter 4 that the REML likelihood for a linear mixed effects model can be
derived by placing a flat prior on  and obtaining the marginal density of the data:

pOIE) = [ plyiu B R)p(uID)p(B)du dB, (520

with p(B) = 1. Using this approach, Wolfinger (1993) showed that the REML version of
the Lindstrom-Bates algorithm can also be derived using Laplace’s approximation to the
above integral:

[ Ode = 2n/mp - )2 O (1 +-0(1/m)),

where & is a p-dimensional vector and & maximizes ¢*/5). Note that Laplace’s approxima-
tion replaces integration by maximization, a strategy we have previously seen in two other
contexts. One was in the elimination of nuisance parameters in Chapter 2, where profile
likelihood may be used instead of integrated likelihood. The second was in the empirical
Bayes strategy of replacing integration over the posterior distribution of the hyperparameter
by substitution of the maximum likelihood estimate of the hyperparameter.

Here § = (BT, u”)T and /) = p(y|u, B, R) p(u| D), which is the joint distribution of y
and u«, as in (5.8). Thus & is the posterior mode (B,ﬁ). Using the Gauss-Newton approxi-
mation (5.13) followed by some matrix manipulations,

- XTR-1X  RTR'Z
I—f’(g)l ~ ST p—1v 5T p—153 ~_1
Z'R™'X Z'R'Z+D

= |KTV-1%|.
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Hence

—2logp(y|g) =~ log|V|+(y—n(AB+Bi)) R~ (y—n(AB+Ba)) +
log|XTV=1X| +a" D'+ (n—q)log2n+ (g +c— 1)logn.

Substituting the expressions (5.11) for [3 and # gives

logp(y|{) =~ [(W—XB)Tv-'(w-XB)+log|V|+|og|XT‘7-')?|+

!
2
(n—q)log2n+(q+c— l)logn],

Up to an additive constant, this is the same as the approximate REML log likelihood in
(5.19).

5.2.3 Another Laplacian approximation

Pinheiro and Bates (1995) obtained an approximate log likelihood using Laplace’s approx-
imation. Independently Vonesh (1996) obtained the same approximation. Their approach
differs from that of Wolfinger (1993) in that B is not integrated out of the likelihood, i.e.,
the integrand is expanded only around 4. For the purposes of this section, we redefine Z so
that it is evaluated at B instead of B, i.e.,

an

Z=—

7| =W(AB+Bi)B

B.a

and as before V = ZDZT + R. The approximate log likelihood is

logpOIB,Y) ~ —3[(w—n(AB+Ba))TV™" (w—n(AB +Ba)) +1og|V| +

nlog 21t] )

with w redefined as w = y + Zb.
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5.2.4 Asymptotic results

Vonesh (1996) examined the asymptotic properties of approximate maximum likelihood
estimates obtained using the Laplacian approximation of Section 5.2.3. He found that the
estimates are consistent to order

0, [max {m“/z,min(n,-)‘l }] .

In other words, the order of accuracy depends both on the number of studies, m, and on
the number of observations per study, n;. Intuitively, the dependence on the n; comes about
because for the ith study, we only have n; observations providing information about the
realized values of the random effects ;. For small n;, the estimate i; may be poor, so that
Laplace’s approximation may not work well. Vonesh’s result tells us that for consistency,
we must have both n; — o for each i, and m — . For meta-analysis, this may be con-
ceptually problematic. While we can imagine accumulating information from more and
more studies, the smallest number of observations per study may always be limited. In real
examples we often have both a small number of studies and a small number of observations
per study. Sometimes our desire is explicitly to combine information from large and small
studies.

5.2.5 Nuiiez’s approach (SPML)

A quite different approach to estimation for nonlinear mixed effects models has been pro-
posed by Nuiiez (1998). It has its origins in methods of simulated-based inference (Mc-
Fadden 1989; Gourieroux and Monfort 1993) and pseudo-likelihood (Gourieroux, Mon-
fort, and Trognon 1984) developed in the econometrics literature. Recall from the start of
Section 5.2 that the ELS estimator minimizes

-V (y-u)+log|v|, (5.21)

where p = E(y) and V = Var(y). When y is normally distributed, (5.21) is the kernel of the
log likelihood function, but in general we do not expect y to be normal. The ELS estimator
is an example of a pseudo maximum likelihood estimator, i.e., one obtained by maximizing
a likelihood function associated with a family of probability distributions which does not
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necessarily contain the data generating distribution (White 1982; Gourieroux, Monfort, and
Trognon 1984). White (1982) notes that “in many (if not most) circumstances, one may not
have complete confidence” that one’s parametric probability model is correctly specified,
or as Box (1979) pointed out “All Models Are Wrong But Some Are Useful.” This means
that almost any application of maximum likelihood estimation is in fact pseudo maximum
likelihood.

The Kullback-Leibler Information Criterion

We now formalize these ideas, following White (1994, Section 2.3). The presentation is
quite general here; details more specific to the estimation of nonlinear mixed effects models
are subsequently developed.

In statistical modeling, a key idea is that of approximating the data generating distri-
bution as closely as possible. This requires some criterion for evaluating the discrepancy
between probability distributions. One such criterion is the Kullback-Leibler Information
Criterion (KLIC). If f and g are probability densities, the KLIC is

1(f:8) = Ef [log ﬂ ,

where E; denotes the expectation with respect to f. An important property of the KLIC is
known as the information inequality: I(f :g) >0and I(f : g) =0if and only if f = g almost
everywhere. From an information-theoretic perspective, the KLIC can be interpreted as the
surprise experienced on average when we believe that g describes a given phenomenon and
we are then informed that in fact the phenomenon is described by f.

Suppose y; ~ f; independently for i = 1,...,m and consider a family of distributions
{p(yilA) : A € A}. Note that the family of distributions is generally chosen to make com-
putations feasible. Let f™ =[], fi. The pseudo likelihood p™ = [T7L, p(yilA) (called a
quasi likelihood by White) can be viewed as an approximation to f™. One way to measure
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the adequacy of the approximation is by using the KLIC,

I(f":p™A) = Epm [log p{""(li)l;)u)] .

_ "0 m

= [ 1ol ()" ()dy— [ 108l ORI )y

Choosing A to minimize I is equivalent to choosing A to maximize the second term on the
right hand side, which is

Epmlog p™(y|M)]. (5.22)

When p™(y|A) is correctly specified in the sense that p™(y|Ag) = f™(y) for a unique vector
Ao in A, then choosing A to maximize (5.22) yields Ag by the information inequality.

In practice, however, A cannot be chosen in this way because the expectation in (5.22)
cannot be evaluated without knowing the data generating distribution /™. Instead, by ap-
proximating the expectation using sample information, an approximate solution may be
obtained. Note that maximizing (5.22) is equivalent to maximizing

1
Egm [; logp’"(ylk)] -
Also, note that the pseudo likelihood is given by
~ 1 m 1 &
{(A) = —logp™(y[A) = — ¥ log p(yilM).
m m 2

Provided that a law of large numbers applies to the sums on the right hand side, it follows
that for sufficiently large m, m~! E[log p™(y|A)] will be well approximated by #(A). Hence
the value of A that provides the best approximation to f™ might be well approximated by
the value A which maximizes £(\). We now return to our parametric model, to illustrate
these ideas in the specific context of interest.
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Pseudo maximum likelihood for the nonlinear mixed effects model

We will suppose that A* is a value of A = (B7,£7)7 such that

Egm(y) =p(A") and Varg(y) =V(L").

In other words, at A* our model matches the first two moments of the observations. Con-
sider the ELS criterion (5.21), expressed in terms of the m studies:

1 m
em(M) = — 3 ci(A) (5.23)
i=1

where
ci(h) = [yi = m(W)] Vi(R) ~ Iyi — ()] + log (Vi)
with ;(A) = Ej (yi) and V;(A) = Vary(y;). Note that

Bilen(M)= 5, 1 B (i~ (b +logIVW) .

But because [y; — ui(A)]7Vi(A) ™' [y; — w:(X)] is a quadratic function, its expectation depends
only on the first two moments of y;. Therefore

Exe {yi — M) Vi(A) ™ [yi — mi(R)] +log [Vi(A) |} = / log[d(yi, M) )& (yi, A" )dy;,

where ¢(y;,A) denotes the multivariate normal pdf with mean y;(A) and variance-covariance
matrix V;(A). But from the information inequality,

[ 1ogi00i, M) 100iA")dyi > [ 1080001, A" 100 A" i

Therefore,
E-[6n(M)] 2 Eps[em(A7)]- (5.24)

In other words, the expected ELS criterion is minimized by A*.
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The difficulty remains that there are no explicit forms for the means
pi(A) = Ex(yi) = Ex[Mi(Ai + Biui)]
and the variance-covariance matrices
Vi(A) = Vary (yi) = Vary[n:(A;B + Biu:)] + Ri(A)

Simulated pseudo maximum likelihood

Nuiiez (1998) proposed approximating u;(A) and V;(A) by the Monte-Carlo sums

Big(A) = Z ni(A; B+Bluk)

and
1 ¢ - B - T
Vig) = =3 L. [i(AB + Bud) = g 0] [ B+ Bish) g V)] + D)

where uf = D'/2¢* and the ¢ are drawn independently from N(0,7). The simulated objec-
tive function is thus

¥ ) (5.25)

1
ml=|

where
A) = [yi — Big(W)] Vig(A) ™ [yi — i g(\)] +log Vi g(A)]-

Nuiiez calls the estimator that minimizes (5.25) the simulated pseudo maximum likelihood
(SPML) estimator.

Under a number of assumptions, Nufiez proved that, almost surely,
(L) — Ex.[€m(A)] — 0, as m — = and g — o uniformly on A. (5.26)

This (strong) uniform convergence is a critical step in Nufiez’s argument: it shows that
with large enough m and g, the simulated objective function gets arbitrarily close to the
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expectation of the non-simulated objective function we are trying to approximate (with
probability 1). There are in fact two parts to this: one part shows that for large enough g, it
does not matter that we are actually simalating the objective function; the other part shows
that for large enough m the objective function approaches its expectation. The required
assumptions are that A* is an interior point of a compact metric space, that the observed
vectors y; are uniformly bounded, that the first four moments of c§(A) are finite for all g,
and that the 1; are almost surely twice continuously differentiable and square integrable.

The above assumptions are fairly reasonable in general and should be satisfied, for ex-
ample, in the case of the Beverton-Holt spawner-recruitment model. Note however that
the derivative of the hockey stick spawner-recruitment model is not continuous. Even for
a single stock, estimation of the hockey stick model is problematic (Barrowman and My-
ers 2000). Difficulties encountered with fitting nonlinear mixed effects models using the
hockey stick were one of the motivations for developing the generalized hockey stick mod-
els (Chapter 2). The quadratic hockey stick (2.14, p. 59) has a continuous first derivative,
however its second derivative is discontinuous, thus Nuiiez’s asymptotics do not apply. On
the other hand, the logistic hockey stick (2.17, p. 61) has all derivatives continuous. This
is important, not just for asymptotic reasons: smoothness is essential in order to avoid
numerical difficulties.

Denote the value of A that minimizes & (1) by AS,. To prove strong consistency, Nufiez
made an additional assumption of second-order identifiability, i.e.,

ui(A*) = ui(A) — A=2t
Vi(A') =Vi(A)

With this additional assumption, (5.24) and (5.26) allowed Nuiiez to prove that iﬂ is
strongly consistent for A*.

Finally, to prove asymptotic normality, Nuiiez made a further assumption that the gradi-
ent of c§ (A*) satisfies the Liapounov condition. This condition is required in order to apply
the Central Limit Theorem in cases where the summands are not identically distributed;
for example Richardson and Welsh (1994) showed that this condition follows from their
assumptions in order to prove asymptotic normality of REML estimators for linear mixed
effects models. With this assumption, Nuiiez proved that A%, is asymptotically normal (pro-
vided that m'/2/g — 0 as m and g tend to infinity).
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Comparison with the algorithm of Lindstrom and Bates

In Section 5.2.4, we noted that the asymptotic properties of algorithms based on using
Laplace’s approximation may be of concern. The algorithm of Lindstrom and Bates (1990)
is closely related to methods involving the Laplace approximation. Since Lindstrom and
Bates’ algorithm involves estimation of realized values of the study-specific random effects,
the number of observations per study, n;, will strongly affect the accuracy of the estimates,
so that the quality of the approximation to the marginal likelihood may be limited. The
asymptotic properties of SPML seem preferable because there is no dependence on the
study sizes n;.

Nuiiez and Concordet (2000) conducted simulations to compare the performance of
several estimation methods for some simple nonlinear mixed effects models. SPML con-
sistently outperformed that of Lindstrom and Bates.

SPML does have several drawbacks compared to that of Lindstrom and Bates. It is com-
putationally intensive since each iteration requires recomputing mean vectors and variance-
covariance matrices. For example, for the 14 populations in the coho salmon dataset, a typ-
ical population has 15 observations, so we need to compute a 15 x 15 variance-covariance
matrix based on, say, 500 simulated response vectors. This imposes a substantial computa-
tional burden.

Second, unlike SPML, Lindstrom and Bates’ algorithm provides approximate BLUPs
as a natural by-product of the estimation procedure. One possible approach to obtaining
approximate BLUPs from SPML would be to substitute parameter estimates into the ap-
proximate BLUP formula i = DZTV~!(w— Xp) from the Lindstrom and Bates algorithm.

Finally, the Lindstrom and Bates algorithm leads to a natural definition of an approxi-
mate REML likelihood. It is not clear how to define REML estimation using SPML.

Example: Coho salmon

In Section 5.2.1, we illustrated the Lindstrom and Bates algorithm by fitting a Beverton-
Holt nonlinear mixed effects model to the coho salmon data. We now try fitting the same
model using SPML. As the number of simulated values, g, increases, we expect to see
convergence of the parameter estimates. We call a graph of the parameter estimate versus
g a convergence profile. Convergence profiles for each parameter in the model are shown
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in Figure 5.3.
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Figure 5.3: Convergence profiles for each parameter in a Beverton-Holt nonlinear mixed
effects model for the coho salmon data.

Note that the parameters seem to be converging, though perhaps a little slowly. In one of
the models considered by Nuiiez and Concordet (2000), they find that a value of g = 250
provides acceptable accuracy. In Figure 5.3, we see that even for g =~ 500, there is some
variability in the estimates. The explanation for this is that each data point represents a
separate estimate using different simulated random numbers. The estimation algorithm
therefore injects additional variability into the estimates, which is undesirable.
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5.2.6 A modification of SPML: Stylized normal samples

To remove the additional variability we saw in the estimates in Figure 5.3, we propose
the use of stylized normal samples instead of simulated normal samples. In the one-
dimensional case, a stylized normal sample is the set of normal quantiles that are used
in quantile-quantile plots. The kth element of a stylized normal sample of size g is

q)_l k —a
g+1—-2xa)’
where & is the cdf of the standard normal distribution, and a is a continuity correction

commonly taken as § or 3.

For the Beverton-Holt model, we have two random effects, and therefore need to gen-
eralize the notion of stylized normal samples to the bivariate case. To this end, suppose
X and Y are random variables whose joint distribution is standard bivariate normal. Their
density is

l 9 9
_ 1 @ 5
fxr(x,y) e (5.27)

Switching to polar coordinates by defining X = Rcos(®) and ¥ = Rsin(®), the random
variables R and © have joint density

1 5
fre(r,0) = Ere"‘/ 2, (5.28)

Thus R and © are independent, © is uniformly distributed on [0, 2%}, and R has the Rayleigh
density

fe(r)=re 712, (5.29)
The cdf of R is

Fr(r) = /(; e du=1-e"2, (5.30)
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The inverse of the cdf of R is obtained by solving
p=1-e"/ (5.31)
for r, giving
Fg''(p) = \/-2log(1 - p). (5.32)

A stylized bivariate normal sample with g = > elements may thus be obtained by selecting
t angles

0=—, k=1,...,1, (5.33)
and for each angle, spacing points along a radial line from the origin, with spacings
l—a 2-a t—a
-1 -1 < -1
— | ,F, —_—,..., — . 34
Fr <t+l—2*a>’ R (r+l—2*a)’ Fa (t+l—2*a) (5:34)
We call the points along a radial line “arms” and refer to this as the radial approach.

The stylized bivariate normal sample with a = % for t = 10 (i.e. g = 100) is shown in
Figure 5.4, together with a normal probability plot of the x-component of the sample.
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Figure 5.4: Left panel: Stylized bivariate normal sample of size 100. Points lie on ten
radial lines emanating from the origin. Along each line the points are spaced according
to the quantiles of a Rayleigh distribution. Right panel: Normal probability plot of the
x-component of the stylized sample shown in the left panel.

The normal probability plot shows that marginally the stylized sample is not quite right:
there is a vertical gap at O and slightly erratic behaviour in the tails. It seems that the
stylized bivariate normal sample doesn’t cover the plane *“evenly enough.” To improve this,
I also tried generating “spiraling” arms by smoothly changing the angle along each arm.
That is, the angle for the pth point along the kth arm would be

_ 2n(k+ p/t)
—

0

The result is shown in Figure §5.5.
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Figure 5.5: Left panel: Alternative stylized bivariate normal sample of size 100. Points lie
on ten radial curves emanating from the origin. Along each curve the points are spaced
according to the quantiles of a Rayleigh distribution. Right panel: Normal probability plot
of the x-component of the stylized sample shown in the left panel.

For small g, the alternative approach seems to consistently give more linear marginal nor-
mal probability plots. For large g, both approaches result in “shoulders” at the extremes.

Example: Coho salmon

Using the stylized bivariate normal samples discussed above, SPML shows much less vari-
ability. Convergence profiles for each parameter in the model are shown in Figure 5.6.
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Figure 5.6: Convergence profiles for each parameter in a Beverton-Holt nonlinear mixed
effects model for the coho salmon data. The vertical scale in each panel is the same as in

Figure 5.3.

5.2.7 Uncertainty estimates

Asymptotic theory for SPML provides estimates of standard errors for the parameter esti-
mates. Approximate standard errors are also available in the Lindstrom and Bates algorithm
using the Hessian of the approximate likelihood function. Lindstrom and Bates (1990) note,
however, that these uncertainty estimates can be quite inaccurate. Furthermore, uncertainty
estimates for the robust methods developed later in this chapter may be difficult to obtain.
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We therefore propose to use resampling methods to estimate standard errors.

Parametric bootstrap

A simple approach is to use a parametric bootstrap procedure: we take the independent
variables (e.g. for the coho salmon data, the observed spawner quantities) as fixed, and
build “pseudo observations” by repeatedly sampling from the model distribution using the
parameter estimates as the “true” values. In our context, the model distribution involves
variation at both the between-studies and the within-studies levels. The parametric boot-
strap approach provides a rough assessment of the uncertainty in our parameter estimates,
but depends on the model assumptions, e.g., that the random effects and errors are normally
distributed. Nonparametric resampling approaches therefore seem more attractive.

Nonparametric resampling approaches

Davison and Hinkley (1997) discuss nonparametric resampling approaches for repeated
measures data using the simple example of a balanced one-way ANOVA model. They note
that it may be important to take careful account of the two (or more) sources of varia-
tion when setting up a resampling scheme.” Paraphrasing their approach in meta-analytic
language, they suggest first resampling studies and then resampling observations within
studies either with or without replacement. Consideration of the first two moments of the
resampled data leads Davison and Hinkley to conclude that resampling of observations
within studies should be performed without replacement to best reproduce within-study
correlations. Simulations performed by Wong (1999), however, suggest that there may
be little to choose between the two procedures. For more complex datasets, e.g. in our
context, unbalanced longitudinal nonlinear regression data, such multi-level resampling is
more complex and little has been published on the subject. Das and Krishen (1999) discuss
nonparametric resampling approaches for estimating standard errors in nonlinear mixed
effects models for repeated measures data, however they do not deal with the issue of mul-
tiple sources of variation. Below are outlined several nonparametric resampling approaches
that may be considered.
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Jackknife

The earliest resampling method is the jackknife, proposed by Quenouille (1949), in which
observations are dropped one at a time from the dataset, and the parameter estimates re-
computed using each deleted dataset in turn. Efron (1996) used the jackknife to estimate
standard errors in his empirical Bayes approach (Chapter 3), noting that this “amounts to
thinking of the cases ... as being randomly sampled from some superpopulation.” In a
meta-analytic context, the cases are studies, and the superpopulation is all “similar” stud-
ies that we can imagine having been performed. However this approach only deals with
variability at the between-studies level.

Multi-halver jackknife

Generalizations of the jackknife that involve multiple case deletion have also been pro-
posed. For example, half-sampling methods (McCarthy 1969) are based on taking struc-
tured sub-samples (blocks) of data sets. Tukey (1987) has advocated the use of these meth-
ods, calling them the multihalver jackknife. The idea is that if the data can be divided into
blocks of two observations each then a subsample may be formed by leaving out one of
the observations in each pair. For example consider a data set consisting of 8 observations
occuring in pairs, denoted
(AB)(CD)(EF)(GH).

The subsample ADEG has one observation from each pair. By taking the other observation
from each pair, we obtain the subsample BCFH. We call ADEG the left-hand half and
BCFH the right hand half. This halving can be represented by the sequence

+—++

where “+” means take the first observation in a pair in the left-hand half and the second
observation in a pair in the right-hand half, and “—" means the converse. Instead of using
all possible halvings, Tukey suggests using orthogonal sequences of +’s and —’s, e.g. the
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four rows

have the property that any two rows agree in two positions and disagree in two positions.
Jackknife formulas based on this approach can be used to estimate uncertainty of parameter
estimates. For longitudinal studies such as the wolf and salmon datasets, this seems a
reasonable approach to resampling while preserving the structure of the data.

Marginal bootstrap

In the jackknife approaches described above, the observed data are resampled in a struc-
tured way. An attractive alternative is to resample residuals rather than observed data.
However, in the mixed model setting the definition of residuals is not entirely clear. Recall
that our model for the ith study is

yi =ni(6:) +&;,
with 6; depending on fixed and random effects:
0; = A;B+ Biu;.
The marginal mean and variance-covariance of y; is
ui(A) = Ex(yi) = E[i(Aif + Bius))

and
Vi(A) = Vary(yi) = Var[n:(Af + Biw;)] +R;.
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Using the SPML algorithm, we can obtain an estimate, A, of A. Denote ji; = p;(i) and

Vi=Vi(A).
For the ith study, an naive way to define a residual vector is

& =yi— [

These residuals can be bootstrapped as follows. Within each study, sample the elements in
€; with replacement to obtain 3{. Then compute the bootstrap sample for that study as

yi =hi+8&.
However, this approach is logically flawed. To see this, note that
& =yi— i = Ni(AiB + Biui) — i + &,

so these residuals include both random effect variability (from the ;’s) and error variabil-
ity (from the g;’s). Resampling these residuals ignores their marginal variance-covariance
structure.

The solution is to define a standardized marginal residual vector

a~_1/2 .
& = V7P (i — i),
which is an estimate of
-1/2
o =V, (yi— ).

i
Note that the marginal expectation of wy; is zero and the marginal variance-covariance of @;
is the identity matrix.

A nonparametric bootstrap procedure can be formulated as follows. Within each study,
sample the elements in @; with replacement to obtain ®;. Then compute the bootstrap
sample for that study as

yi =i+ V6.

Note that since V; is the marginal variance-covariance, it incorporates both within-study
and between-study variation. We refer to it as a “marginal” bootstrap since it uses the
estimated marginal moments of the data.
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A modification of the above procedure would be to pool the @;’s across the studies to
obtain @ and then resample the ®;’s from @. It is not clear whether this would be preferable.

A different modification of the above procedure is to incorporate resampling of studies
as well as within-study residuals. Each bootstrap sample is obtained by first sampling with
replacement from the studies and then within each selected study, resampling the standard-
ized marginal residuals as described above. Resampling the studies treats the configuration
of each study (including factors such as sample size and covariates) as coming from a distri-
bution rather than being fixed. Depending on the context, this “type-II marginal bootstrap”
might be more appropriate.

Resampling approaches for the Coho salmon models

Following the discussion above, we propose to assess the uncertainty of parameter esti-
mates for the Coho salmon models using five different approaches: (1) a parametric boot-
strap approach; (2) a jackknife approach in which studies are left out one at a time; (3) a
multi-halver jackknife approach in which the data are repeatedly halved; (4) a marginal
bootstrap approach in which standardized marginal residuals are resampled; and (5) a
“type-II"” marginal bootstrap approach which also resamples rivers. Though none of these
approaches may be ideal, together they should give some indication of the uncertainty of
the estimates. We now comment on each of these approaches in the context of the coho
salmon data, commenting on some of their shortcomings.

In each step of the parametric bootstrap procedure, for each stock, random effects are
sampled from their estimated distribution. Next, a vector of errors is sampled from their
estimated distributicn. The spawner observations are held fixed and simulated recruitments
are constructed from the sampled random effects and errors. As discussed above, this is
strongly model-dependent. For robust estimation, this approach is logically flawed in that
we do not believe that the model distribution holds exactly.

In each step of the jackknife approach, a different study is left out of the complete data
set, so that in all 14 different sets of parameter estimates are obtained, from which standard
errors may be computed using jackknife formulas. This procedure ignores within-stock
variability, however.

Within a stock, the issue of how to perform nonparametric resampling is a special case
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of the problem of nonparametric resampling for regression models. For an ordinary regres-
sion model, one approach is to pair the dependent and independent variables and bootstrap
these observations. This is the approach applied with the multi-halver jackknife, since it
preserves the structure of the data. We apply the multi-halver jackknife across stocks by
treating the data on the 14 stocks as a single data set with a total of 185 observations. There
are 128 possible pairs of orthogonal halvings. This approach ignores the between-stock
variability.

The other approach for nonparametric resampling for regression models is to obtain
residuals from a fitted regression, resample these residuals, and reconstruct pseudo obser-
vations. This is the approach applied in the marginal bootstraps described above. The
marginal bootstraps seem the most satisfactory from a theoretical perspective since they
incorporate both the within-stock and between-stock sources of variability.

A final approach, not implemented here, is nevertheless of interest. Given empirical
Bayes estimates of stock-specific parameters, such as are naturally output by the Lindstrom
and Bates algorithm, we can define “empirical Bayes” residuals. These residuals could be
resampled and added to the empirical Bayes estimates to form pseudo-observations. In
contrast to the “marginal” bootstraps described above, this might be termed a “conditional”
bootstrap.

A careful simulation study would be required to determine which procedures are most
satisfactory—and under what conditions. In the present work, we simply compare results
for the observed data.

5.2.8 Example: Coho salmon Beverton-Holt mixed model

For the Beverton-Holt model, SPML gave very similar results to Lindstrom and Bates’
algorithm.
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Algorithm ﬁ| ﬂz o] (¢]) Oy
Lindstrom & Bates 427 658 040 043 0.64
(.18) (.18)

SPML 427 6.61 040 041 0.64
parametric bootstrap (.18) (.19) (02) (24) (.19
jackknife (.20) (.20) (.04) (.15) (.16)
multi-halver (17) (08) (04) (.18) (.06)
marginal bootstrap (.13) (09 (03) (.18) (.09

type-Il marginal bootstrap (.14) (.15) (.04) (.21) (.13)

Table 5.1: Point estimates (and standard errors in parentheses) for Beverton-Holt nonlinear
mixed effects model for coho salmon. The estimates and standard errors for the Lindstrom
& Bates algorithm were obtained from the Splus function nlme. Note that nlme does
not report standard errors for the variance components. For SPML standard errors are
reported from: a parametric bootstrap procedure with 100 replications; a leave-out-one-
study jackknife procedure; a multi-halver jackknife procedure; a marginal bootstrap; and a
“type-II" marginal bootstrap in which populations and residuals were resampled.

The similarity of the parameter estimates from the Lindstrom and Bates algorithm and
the SPML algorithm provides some reassurance that, at least in this case, the approxi-
mations underlying the two algorithms have a similar effect. The standard errors from the
different resampling approaches are roughly similar, although the multihalver and marginal
bootstrap standard errors are generally smaller than the others.

The leave-one-out estimates on which the jackknife standard errors are based are of
interest in themselves, since they tell us something about the influence of individual data
sets.



Population omitted Bp P © 6, Of
none 427 661 040 041 0.64
Big Beef Ck, Washington 426 659 041 043 0.67
Bingham Ck, Washington 420 6.62 041 0.36 0.69
Black Creek, BC 431 654 039 048 0.63
Carnation Creek, BC 418 6.62 042 0.35 0.68
Deer Creek, Oregon 424 6.60 041 042 0.67
Deschutes River, Washington 4.38 6.52 040 0.36 0.64
Flynn Creek, Oregon 425 6.70 038 046 0.61
Hooknose Creek, BC 421 6.64 041 038 0.68
Hunt’s Creek, BC 432 6.63 038 047 0.67
Needle Branch Creek, Oregon 4.25 6.72 040 042 0.5l1
Nile Creek, BC 428 6.64 040 042 0.66
Qualicum River, BC 424 6.55 039 042 063
S. Fork Skykomish River, WA 4.23 6.54 0.41 040 0.6l
Snow Creek, Washington 436 6.59 040 034 0.68

Table 5.2: Leave-one-out SPML parameter estimates for the coho salmon data.
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Examination of Table 5.2 reveals that the leave-one-out effects are sometimes substantial:

for example, leaving out the Deschutes River data boosts the estimated mean slope at the

origin by 12%. The Flynn Creek and Hunt’s Creek data sets seem to affect the estimate of

o, these are data sets exhibiting a large amount of recruitment variability, so that omitting

them lowers the estimate of 6. The Needle Branch Creek data set seems to affect the

estimate of Gy, this data set exhibits a very low asymptotic level (e.g. see Figure 2.12 on p.

56), so that omitting it lowers the estimated variability in the asymptotic level.

Sensitivity of estimates

Since one of the goals of this work is to consider methods for robust estimation of nonlinear

mixed effects models, it is important to consider the sensitivity of parameter estimates to

unusual or outlying data. As discussed earlier, it is important to consider the effects of both

outlying studies (data sets) and outlying observations within studies.
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We begin by considering the sensitivity of estimates to outlying studies (data sets). A
realistic example is furnished by the data entry error mentioned in the Introduction (Sec-
tion 1.3, p. 10). Recall that the river length for the Hunt’s Creek data set was originally
entered as 1.4 km instead of the correct value of 5.4 km. Considering this data set alone,
this mistake would inflate the estimate of the asymptotic recruitment level by a factor of
5.4/1.4 = 3.9, but the estimate of the slope at the origin would be unaffected. Table 5.3
shows the effect of this error on estimates of the nonlinear mixed effects model.

Dataset B, B o O, Oy

Correct 4.27 6.61 040 041 064
Incorrect 4.27 6.72 040 041 0.70

Table 5.3: SPML parameter estimates for the correct data and for the incorrect data (with
the river length for the Hunt’s Creek data set equal to 1.4 km instead of 5.4 km).

Relative to the standard errors reported in Table 5.1, the changes in the parameter estimates
are not large. Nevertheless, the estimate of B, has increased by 0.11, corresponding to an
increase in the estimated mean asymptotic level of 12% and the standard deviation compo-
nent Gy has been inflated. The effect of such an error might have been more pronounced
if it had occurred for a different stock. Examination of the raindrop plot of Figure 2.12 (p.
56) shows that the asymptotic-level raindrop for Hunt’s Creek is roughly in the middle of
the other raindrops. Scaling it up by a factor of 5.4/1.4 =~ 3.9 (which is a shift of 1.4 on a
log scale) still keeps it near the other raindrops.

Suppose instead that the Deschutes River data set had been incorrectly scaled by the
same factor (i.e. 3.9). Table 5.4 shows the effect such an error would have.
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Dataset P, B2 o 6, Of

Correct 4.27 6.61 040 041 0.64
Incorrect 4.21 6.83 041 037 0.85

Table 5.4: SPML parameter estimates for the correct data and for incorrect data in which
the Deschutes River data set is scaled up by a factor of 3.9.

The effects are considerably more pronounced than was the case for Hunt’s Creek because
the modification pushes the Deschutes River raindrop away from the other raindrops. The
estimate of 6 in particular reflects this.

Next, we consider the sensitivity of estimates to outlying observations within data sets.
Consider the Qualicum River data set. The largest observed spawner quantity also happens
to correspond to the largest observed recruitment, 3000 female smolts per kilometre of
river. Suppose that due to a data entry error this was recorded as 30000 instead of 3000.
Table 5.5 shows the effect of this on the parameter estimates.

Dataset B; B2 o 6, Oy

Correct 427 6.61 040 041 0.64
Incorrect 4.17 6.68 046 0.32 0.69

Table 5.5: SPML parameter estimates for the correct data and for data with the largest
recruitment for Qualicum River incorrectly recorded as 30000.

This single data-entry error has resulted in substantial changes in the parameter estimates.
For example, the B, parameter has decreased by 0.10, corresponding to a 10% decrease
in the estimated mean slope at the origin. The estimated variance components have also



145

changed considerably. A single spurious observation can have drastic effects on parameter
estimates.

The sensitivity of estimates of nonlinear mixed effects models to outlying observations
and/or studies provides motivation for the development of estimation methods that are ro-
bust to contamination of the assumed distributions of the random effects and the errors. We
return to this in Section 5.3, but for now we move on to consider another model for the
coho data.

5.2.9 Example: Coho salmon hockey-stick mixed model

Recall from the Introduction, the hockey stick spawner-recruitment model:

a,-S,-,- ifS,’j < S,t

R; ; = a;min(S;;,S?),=
J = imin(Si, 5;) {a,-s;.' if S;; > S°.

Note that o;§; is the maximum recruitment, and we therefore write R = a;S7. The
model of Section 5.1.1 (p. 107) is easily adapted for the hockey stick model. Letting y;; =
log(Ri;/Sij). we have
_ loga; if S,‘j < SF
Yi= { log(R™*/Sy;) if S;j > ST

As for the Beverton-Holt model, we set o; = €% and R™ = ¢% with 6;; = B, + b; and

02 = B2+ fi. Thus

0; if S;; < S}

ni(@) =4 " U

62 —logsS;; ifSij >S;.
We adopt the same distributional assumptions we made for the Beverton-Holt mixed model.
As noted in Section 2.6.3, the hockey stick model can lead to problems because the like-
lihood surface is not smooth and may have multiple local maxima. Particularly with the
Lindstrom & Bates algorithm we noted some difficulties with starting values for this model.
Parameter estimates are given in Table 5.6.
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Algorithm B, B2 c Gy of

Lindstrom 3.71 6.28 040 0.22 0.66
& Bates  (.22) (.66)

SPML 401 637 040 029 0.78
(.14) (36) (.05) (.14) (.28)

Table 5.6: Point estimates (and standard errors) for hockey-stick nonlinear mixed effects
model for coho salmon. The estimates and standard errors for the Lindstrom & Bates
algorithm were obtained from the Splus function nlme. Note that nlme does not report
standard errors for the variance components . The standard errors reported for SPML were
computed using a parametric bootstrap procedure with 50 replications.

Comparing these results with those of Table 5.1, we see that the hockey-stick model gener-
ally gives lower estimates of the slope at the origin that the Beverton-Holt model. Barrow-
man and Myers (2000) studied the hockey-stick and its generalizations in a fixed effects
context. They showed that as S | 0 the Beverton-Holt model extrapolates the survival R/S
above observed levels.

5.3 Approaches to robust estimation

There do not seem to be any proposals for robust estimation of nonlinear mixed effects
models in the literature. That this is the case is hardly surprising. Robust estimation of
linear mixed effects models has been a fairly recent development, and the structure of
those models makes robustification relatively straightforward. For example, as described in
Chapter 4, Huggins (1993b) replaced the marginal likelihood of y with an objective function
that is less sensitive to extreme observations. In contrast, for the nonlinear model we have
no closed-form expression for the marginal likelihood or even for the mean u = E(y) and
variance V = Var(y).
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We therefore consider modifications to two of the estimation algorithms that we de-
scribed above.

5.3.1 Modifying Lindstrom and Bates’ algorithm

One fairly obvious approach is to try to robustify each of the two steps in the Lindstrom
and Bates (1990) algorithm. Recall that the pseudo-data step was based on maximizing the
joint probability density of y and « in B and «. This distribution may be interpreted as being
proportional to the posterior for § and u. The terms that depend on B and u are

(y=n(AB+Bu))" R~ (y —n(AB + Bu)) +u D~ 'u
= [F'2o-n@p+8a)] [R20-n(ap-+8a)] +

[D"/Zu] r [D-'/Zu] : (5.35)

and thus maximizing the joint density is equivalent to solving a nonlinear least squares
problem. A straightforward approach to robustifying this replaces each of the two sum of
squares terms in (5.35) by a less rapidly growing function. Thus we replace (5.35) by

o1 [R"/z(y—-n(AB—i—Bu))] +p2 [f)"/zu] : (5.36)

where, as in the previous chapter, we abuse notation slightly so that p, (r;) = Z'}i:l pi(rij),
and similarly for p2. We refer to this robustified version of Lindstrom and Bates’ pseudo-
data step as the joint step in our algorithm.

There is an interesting connection between this approach and the algorithm proposed by
Fellner (1986) for robust estimation of linear mixed effects models. We mentioned Fellner’s
approach to robust estimation of realized random effects in Section 4.6.1 (p. 102). As noted
there, Fellner’s algorithm is based on the Henderson-Harville algorithm (Henderson 1963;
Henderson 1973; Harville 1977) for variance components estimation. The Henderson-
Harville algorithm uses a by-now-familiar tactic: replacing integration by maximization
via solution of the mixed model equations (4.5). Welsh and Richardson (1997) show that
equations similar to (5.36) are closely related to Fellner’s algorithm.

To robustify the linear mixed effects step of Lindstrom and Bates’ algorithm, we start
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with the approximate marginal log likelihood (5.18):

5 (o= ZB)T V=" (w—£B) +logl7]].

We then robustify this as in Robust ML 1

m
Y (o[ 0i=%8)] + 3 log1%). (537
f 2
We refer to this robustified version of Lindstrom and Bates’ linear mixed effects step as the
marginal step in our algorithm.

We thus have an alternating two-step algorithm defined by the choice of functions pj,
P2, and p, together with consistency correction k. Given the kth estimate of {, denoted {*),
perform the following steps:

Step 1. Joint step. With § = {*), minimize (5.36) to obtain %) and u(%).

Step 2. Marginal step. With f=BW, 4 =u®), X =X®) and Z =20,
minimize (5.37) to obtain B(*+1) and {k+1),

There are disadvantages to basing an estimation algorithm on the algorithm of Lind-
strom and Bates (1990). First, as noted on page 5.2.5, the asymptotics may be compro-
mised. Our proposed algorithm also features three different p-functions and a consistency
correction term. Presumably the different p-functions provide control over different as-
pects of the sensitivity of the estimator to outlying values. However, it is not clear how
to choose the p functions and how to set the consistency correction term. Finally, the
asymptotic properties of the proposed algorithm may not be easy to determine. A more
straightforward approach may be to modify Nuiiez’s SPML method, and we will focus on
this method. Nevertheless, we do report on some results from the robustified Lindstrom
and Bates algorithm below.

Weights corresponding to a robust fit

In Section 2.4.1 (p. 39), we defined weights for robust fits as w;; = y(r;;)/rij, where r;j
are residuals from a robust fit. Here we have directly optimized the robustified objective
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function, so an appropriate definition of weights is

p(rij)
1

Wij =

When p(rij) = 3r5, we have w;j = 1.

5.3.2 Example: Coho salmon Beverton-Holt mixed model

The robustified Lindstrom and Bates algorithm was implemented in order to obtain some
empirical evidence of its performance. Following Huggins (1993b), Tukey’s p-function
was used with a tuning constant of 4 and a consistency correction of 0.6835546. It is not
clear that this consistency correction is appropriate. Square roots of the V; matrix were
performed using Cholesky decompositions.

We note that the robust fit gave an increased estimate of the mean of loga of 4.40
instead of 4.27. While this is not significant (according to the approximate standard errors),
it is suggestive.

Figure 5.7 shows empirical Bayes curves based on the robust fit on a log survival scale
for two of the coho salmon populations. The whisker-weight scatterplot of Section 2.4.2 is
used to display the robust weights in these cases.
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Figure 5.7: Log survival versus spawners for two of the coko salmon populations. Super-
imposed on each plot are Beverton-Holt log survival curves obtained from the individual
fits (solid), the empirical Bayes curve from the Lindstrom and Bates algorithm (dashed),
and the empirical Bayes curve from the robustified Lindstrom and Bates algorithm (dotted).
On the top margins of each panel are whiskers representing the individual weights from the
robust fit. The whiskers are repeated on the right-hand margin to help distinguish weights
of nearby points.

The Flynn Creek fits are essentially unaffected by the robust modification. The Hunt’s
Creek fit shows the strongest effect of the robust modification. Note, however, that as we
saw for the wolf data in the previous chapter, the mixed effects model seems to deal with
the unusual observation to some extent.

5.3.3 Modifying SPML

Once again, recall thai the ELS estimator minimizes

m
Y Oi =)V (i — i) +log Vi, (5.38)
=1



151

where y; = E(y;) and V; = Var(y;). If we could compute these moments, a natural candi-
date for a robust estimator would be an analogue of the Robust ML I estimator, i.e., the

minimizer of m L 3
Y (p[W " 0i—m)] + Slog i)

i=1
Of course we cannot, in general, compute the y;’s and the V;’s. However, SPML provides
an approximation to (5.38), namely

m

Y i — g (W] Vig (M) ™' [vi = i g (V)] + log Vi g (M),

i=1
where f1; ¢(A) and V; ¢(A) are Monte Carlo estimates of y; and V; based on the parameter
vector A. Therefore a computable analogue of the Robust ML I estimator is the minimizer
of

m

- _ K -
Y (P [Vig®) ™20~ migh)] + 3 log Vig(M]) (5.39)
i=1 =
which we call “robust SPML” or RSPML. In notation compatible with what we used for
SPML, we can write a normalized version of this simulated objective function as

1 m

a8 ) = - Y ()

i=1

where

d$(N) =29 [Vig(M) ™" /2(3i - g ()] + Klog Vg ).

When p(r;j) = 5r} (with, as before, p(r;) = Lo, p(rij)) and x = 1, we have dq(A) =
ém(M), the SPML objective function.

Of course the robustness of RSPML depends on the choice of a suitable p-function.
As for the linear mixed effects model in the previous chapter, for the influence function to
be bounded, the terms in the estimating equations must be bounded. To obtain estimating
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equations, we equate the derivatives of (5.39) to zero:
m a _ ) _ )
)2 { =7 [Vig W)™ 20 = Big (M) | w [ Via W) ™72 (0= g ()]

i=1
+ gu[vi,g(x)-'(%)]}ﬂ-

For robustness, the summand above must be bounded in y;. As for the linear mixed effects
model, this means that not only must y(r) be bounded but also ry(r) must be bounded. A
redescending y function will thus guarantee the robustness of RSPML.

Asymptotic properties of RSPML

If we knew the marginal variances V;(A) and means y;(A), then we would not need to use
simulation to compute the objective function di(A). Instead, we could optimize

3= L)

where
ei(%) =29 [Vi() ™20~ (1)) + xlog V().

We will call this RPML (Robust Pseudo Maximum Likelihood). In this section we consider
the asymptotic properties of RPML. In practice we use RSPML, but the number of simula-
tions, g, can be made arbitrarily large so that y;(A) and V;(A) can be estimated to arbitrary
precision.

In order to obtain asymptotic results in a mixed effects model context, we need to ac-
count for the fact that although the observation vectors y; are assumed independent, they
are not identically distributed. We abbreviate this i.n.i.d. For example, Hoadley (1971)
obtained results for maximum likelihood estimates in the i.n.i.d. case. Beal (1984) gener-
alized Hoadley’s results for estimators obtained by minimizing an objective function. We
will obtain sufficient conditions for consistency and asymptotic normality of RPML by
showing that they satisfy Beal’s conditions.

In Section 5.2.5, we saw that SPML estimates of A are consistent for A*, the parameter
vector that minimizes the KLIC, which is also the value of A for which the model matches
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the first two moments of the observations. While RPML estimates of A can be shown to
be consistent for A*, this A* does not have the attractive moment-matching property. For
this reason, we may wish to consider some form of bias correction. One way to do this is
through the choice of the consistency correction, x.

Consistency

We begin with some notation following Beal and Hoadley, but with modifications where

necessary to reduce conflict with our notation. Define the following extended random
variables:

Ri(A) = { ei(A*) —ei(}), ifei(A") < oo

0 otherwise.
Ri(hq) =sup{Ri(t) : [l — Al < 4}
Wi(r) = s:p{Rf(k) M >}
Let ri(A) = E[Ri(M)], ri(X,q) = E[Ri(A,q)], and w(r) = E [Wi(r)]. Let Fu(X) = £ Eri(R),

and Wwm(r) = L L wi(r).

Beal’s conditions for consistency (expressed in our notation) are:
Cl. A € A, aclosed subset of R”.
C2. e;(A) is almost surely an upper semicontinuous function, uniformly in i.
C3’. There exists g* =¢q(A) >0, r > 0, and K > 0 for which
(i) E[Ri(A,q)?] <Kforalliand0< q< q".
(i) E [Wi(r)?*] <K foralli.
C4'. (i) limFn(A) <O, A #A*.

(ii) limwy,(r) <O.

@)
(¥ ]}

(i) Ri(A,q) is a measurable function of y;.

(ii) Wi(r) is a measurable function of y;.
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Beal points out that if A is assumed to be compact then conditions C3'(ii), C4'(ii), and
C5(ii) are unnecessary.

Beal’s primary interest was in extended least squares estimation of nonlinear mixed
effects models. In this context, he provided conditions under which the above conditions
for consistency are satisfied. I will adapt Beal’s conditions and argument for my case.

The critical condition for consistency is C3'(i). In our case, the presence of a bounded
p-function (e.g., Tukey’s p) simplifies the task of showing that C3/(i) holds. We still need
to bound the determinants |V;(A)| and to that end, we now introduce some notation. We
begin with a notational device that is required because the number of observations, n;, (and
hence the dimension of V}) varies from study to study. Let s = max{n,,...,n,} be the
maximum number of observations on a study, assumed bounded. Let f € {1,...,s}. For
any sequence {X;}, define a subsequence {X;} as being all terms X; such that n; = f. For
conformable matrices A and B, we write B > A (or A < B) if B— A is positive definite.

To prove consistency in our case, we adopt the following assumptions:

Al. Ais compact.
A2. y; and V; are both continuous functions uniformly in i.
A3. p is continuous and bounded, i.e. for any z, p(z) < c.

A4. For each A, there exists a sequence (A;,By),...,(As,Bs) such that for each f €
{1,...,s},
(i) Ay and By are positive definite matrices
(i) Ay < Vg < By foreach k.

Theorem 1. If conditions A1-A4 and condition C4/(i) are satisfied, then A —pA*asm—

oo,

Proof. C2 is satisfied by A2 and A3. C1 is satisfied by Al. Also by Al, conditions C3'(ii),
C4'(ii), and C5(ii) are unnecessary, so we need only show C3/(i), and C5(i). To show C3/(i),
first note that by A4, for all i, |V;(A)| > d = mins|As(A)|. Then, by the continuity of V;,
which is uniform in {, we have for some g* > 0, for all ¢ < ¢*, and for all i,

sup {—log|Vi(r)| : ||r - Al| < g} < —logd.
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Also by A4, forall i, |V;(A)| < e = max,|Bs(A*)| < e. Hence for all ¢ < ¢* and for all i,
Ri(A,q) < xlog(e/d) +2c.

By a similar argument,
Ri(.q) > xlog(g/h) —2c,

where g = minys|A(A*)| and h = max|Bs(A)|. Therefore
Ri(h.q)’ < [xlog(e/d) +2c]* + [klog(g/h) ~ 2c]?

Therefore for each A, E[R;(A,q)*] < K foralliand 0 < g < ¢*, satisfying C3'(i).

To satisfy C5(i), by A2, A3, and Lemma 2 of Jennrich (1969), there exists a Borel-
measurable function, A, on R® into A such that R;(A,q) = Ri(A(y;)). By A2 and A3, the
function defined on R®, given by y — €;(y,A*) — ¢;(y, A(y)) is Borel-measurable. Therefore
C5() holds.

Q.E.D.

Condition C4/(i) defines A*, the parameter value for which our estimator is consistent.
Beal (1984) provided a scenario under which A* is defined in “finite terms.” The idea is
as follows: for a given data set (e.g., spawner-recruitment data for a set of rivers), we
call {(n1,11,V1)y-.- s (Mmytim, Vin) } the “explanatory sequence” of the data set. One may
then define a point, A, as the unique minimizer of E(éx(A)). If we imagine an infinite
number of data sets with identical explanatory sequences, then concatenating these data sets
and concatenating their explanatory sequences gives “an infinite sequence of observations
whose associated infinite explanatory sequences have a repeating character.” Condition
C4/(i) is then satisfied with A* = A.

Asymptotic normality

For consistency with the notation of Beal (and in turn Hoadley), we define

Di(yi,A) = —ei().
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Also, let
aze,'
AT
Beal’s conditions for asymptotic normality (expressed in our notation) are:

‘bi(Yi,l)=-é; and ®;(y;,A) =

N1. A* is an interior point of A.
N2. A —p A,
N3. &;(y;,A) and ®;(y;,A) exist almost surely.

N4. &;(y;,-) is a continuous function uniformly in i, almost surely, and &;(-, ) is a mea-
surable function.

N5. (i) m = E [&i(y;,A")] exists.
(i) m?Rpy=m~'2Lm; > =.
N6. (i) [i(A) = —E [®i(yi,)] exists.
(i) Ai = E [(Di(yi, A*) — ) (Di(yi, A*) — 1) 7] exists.
N7. (i) Dm(h) =m—'ETi() = E(A).
(i) Aw=m~'LA; = A, and A is positive definite.
N8'. There exists K > 0 such that E [|d; x(yi,A") — %ix|*] < K forall i.k.

N9. There exists K > 0, 8 > 0, and € > 0 and random variables, B; j(y:) such that

(i) sup {|®iji(yi,t)] : |l = 2*|| <&} < By ju(vi)-
(ii) E|Bi jx(yi)|'*® < K for all i, j, k.

To determine sufficient conditions for asymptotic normality in our case, we need to
examine the first and second derivatives of the e;’s. For the kth element of the derivative of
e;, we have

ae,'

S = 26 [0 20— W)+ V)

'ﬁ] (5.40)

I\
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where

b = 9 {V-l"/z — () }_ v l)-l/Za“"_*_aLi_lﬁ( — (X))
'k—é-l_k- i(A) i —mi(A)) p = =Vi( 3Tk oA Yi —Hi\/))-

It is useful here to recall that provided that a matrix A is invertible, the derivative of A exists
if and only if the derivative of A~ exists, and that the following relationship holds:

0A~!
ox ox

For the (k,£)th element of the second derivative of e;, we have

e _ oty 120 — ] b
S = 2RV [V 200 - ()] b+

-12 -1/2 -1/2
,[aln? vz WL ol v v

“ | neng e ohy o ang HOiHN)

v Vi)™ (- m(a))] +
L v v
+ —_—
I oA;  OA

Ktr [V,-(k) (5.41)

In the context of extended least squares estimation, Beal provided conditions under
which the above general conditions for asymptotic normality are satisfied. In addition to
A1-A4, we shall require the following conditions:

A5. A* is an interior point of A.
A6. p;(A) and Vi(A) are both twice continuously differentiable uniformly in i.
A7. p is twice continuously differentiable.

A8. All third order moments of y; exist and are bounded.

Theorem 2. If conditions A1-A8, condition C4'(i), and conditions N5(ii) and N7-N9 are
satisfied, and provided I" is non-singular,

m'2(A—1*) =»p N (', T1AT).
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Proof. We need to show that conditions N1-N4, N5(i) and N6 are satisfied. Condition N1
is satisfied by AS. Condition N2 is satisfied by Theorem 1. Conditions N3 and N4 follow
from A6 and A7 and equations (5.40) and (5.41). Conditions N5(i) and N6 follow from A8
and equations (5.40) and (5.41).

Q.E.D.

Comments. As noted above, A* may not be the parameter value we seek, and some form
of bias correction may be necessary. In the robustness literature, perhaps the most common
approach to this is to ensure Fisher consistency, i.e. to ensure that t; =0 fori=1,...,m,
typically by careful choice of x, the consistency correction. We will thus assume Fisher
consistency, satisfying condition N5(ii).

Recall from page 5.3.3 that A* can be defined in finite terms by envisioning infinite
repetitions of an experiment. Under this scenario, condition N7 will be satisfied.

We now comment on the applicability of the remaining conditions for asymptotic nor-
mality for the spawner-recruitment data and models. Condition AS is a standard assump-
tion that requires that we are not close to a boundary of the parameter space. This does not
appear to be a concern for the spawner-recruitment models considered here, although we
have observed boundary estimates for some three-parameter models. Tukey’s p-function is
twice continuously differentiable, satisfying condition A7.

Condition A6 is satisfied for suitably smooth nonlinear functions 1. To see this, con-
sider

%%{j = aixk / N:;(8:)9:(6)26;, (5.42)
where ¢; is the multivariate normal pdf with mean vector A;p and variance-covariance ma-
trix B;DBT . We wish to show that ?ff is well behaved. To this end we wish to exchange the
order of differentiation and integration in (5.42). By Lebesgue’s Dominated Convergence
Theorem and the mean value theorem, we can do this provided that there exists a function
8(8;,A¢) and a constant 8¢ = 89(A¢) > 0 such that

d
mﬂ:‘j(&)ﬁ’i(ei)hk:x; < 8(8;,A) for all A, such that |A; — | < 8o
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with
f 2(8;, A4)d8; < oo.
Note that 3 36:(6))
é‘i;nij(ei)q)i(ei) = nij(ei)_ﬁk—'

Consider our Beverton-Holt model, where
n,-,-(e,-) = -—log(e'e” +S.‘je'9"~’)

and ¢; has mean (By,B2)" and variance-covariance matrix diag(3,67), so that

9i(8;) = (2m0,Gy) ™' exp ("% {81 —B1)*/o} + (82— Bz)z/o'%}) :

For example,
M = —0:(6;)(8i1 — B1) /03
B

0000 = e 55670 (252 o0

Provided 0,’; > 0, the above expression is bounded by an integrable function, as required.
Thus the derivative with respect to B; can be taken inside the integral, and

ou: :
i = [ logle™™ +.e7%%) ( 220 a0a0 (543)
1
This derivative is thus continuous. Next, consider the second derivative
Puij
op?

Once again, to take the derivative inside the integral, we need to show that the derivative of
the integral is bounded by an integrable function. The absolute value of the derivative of
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the integrand in (5.43) is

log(e~® +5je~2) [(9,-1 —Bl) B 1/0',2,]

3
S}

6:(6;).

Again, provided GZ > 0, the above expression is bounded by an integrable function. The
derivative can be taken inside the integral sign, and we conclude that the second derivative
is also continuous. In a similar way, we can show that all of the first and second derivatives
of the moments are continuous.

Condition A8 (existence and boundedness of third moments) holds for coho salmon
spawner-recruitment data provided recruitment is strictly positive. To see this, recall from
Section 2.3 that y;; can be interpreted as log survival, and is thus bounded above. Further-
more, since unstandardized recruitment observations are non-zero counts, and the rivers are
of finite length, y;; is bounded below. Since y;; is bounded above and below, its third mo-
ments must exist and be bounded. (Note that since y;; is in fact bounded above and below,
our model of additive normal errors is only a convenient approximation.) The boundedness
of y;; also shows, together with (5.40), that N8’ holds and together with (5.41) and A6 that
N9 holds.

5.3.4 Example: Coho salmon Beverton-Holt mixed model

We ran RSPML for the coho salmon Beverton-Holt mixed model using Huber’s p-function
with a tuning constant of 2; the results were virtually identical using Tukey’s p-function
with a tuning constant of 8. The results are given in Table 5.7 together with the SPML
results for comparison.
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Algorithm f, B2 G Gy Gy

SPML 427 6.61 040 041 0.64
(.18) (.19) (02) (.24) (.15

RSPML 441 659 036 040 0.59
(21) (20) (.05) (20) (.16)

Table 5.7: Point estimates (and standard errors) for Beverton-Holt nonlinear mixed effects
model for coho salmon estimated using SPML and RSPML using Huber’s p-function with
a tuning constant of 2. The reported standard errors were computed using a parametric
bootstrap procedure with 100 replications.

As for the estimates from the robustified Lindstrom and Bates algorithm, the mean of log a,
B1. is estimated to be higher than in the nonrobust fit. In fact, the RSPML estimates were
virtually identical to those from the robustified Lindstrom and Bates algorithm.

Sensitivity of estimates

We now return to the examples used to assess the sensitivity of SPML results for the coho
salmon Beverton-Holt case, to see how RSPML performs. The first example considered
sensitivity to outlying studies (data sets) using an actual data entry error: the error in record-
ing the river length for Hunt’s Creek. Table 5.8 shows the effect of this error on RSPML
estimates.
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Data set Bl ﬁz (o] Gy Of

Correct 4.41 6.59 036 040 0.59
Incorrect 441 6.70 036 042 0.62

Table 5.8: Point estimates for Beverton-Holt nonlinear mixed effects model for coho
salmon estimated using RSPML using Huber’s p-function with a tuning constant of 2 for
the correct data and for the incorrect data (with the river length for the Hunt’s Creek data
set equal to 1.4 km instead of 5.4 km).

RSPML seems to be no less sensitive than SPML to this error. This is perhaps not too
surprising. We have just 14 stocks and a robust procedure cannot be expected to perform
very well in the case of a relatively modest deviation affecting an entire stock. However,
when much larger changes (e.g. by a factor of 50) were introduced, RSPML showed less
sensitivity than SPML.

The second example considered sensitivity of estimates to outlying observations within
data sets. A modification of a single observation in the Qualicum River data set (changing a
recruitment from 3000 to 30000) produced fairly substantial changes in the SPML param-
eter estimates. Table 5.9 shows the effect of this modification on the RSPML estimates.

Data set B[ [32 (s Cp Of

Correct 441 659 036 040 0.59
Incorrect 4.37 6.60 0.38 038 0.60

Table 5.9: Point estimates for Beverton-Holt nonlinear mixed effects model for coho
salmon estimated using RSPML using Huber’s p-function with a tuning constant of 2 for
the correct data and for data with the largest recruitment for Qualicum River incorrectly
recorded as 30000.
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The RSPML estimates moved considerably less than the SPML estimates did in the same
situation (Table 5.5). For example, the §; parameter decreased by 0.04, corresponding to a
4% decrease in the estimated mean slope at the origin instead of the 10% decrease observed
for SPML. Table 5.10 shows the percentage change in the estimate of each parameter for
SPML and RSPML.

Percentage change in estimates
Algorithm E(a) E(R™) © o, Oy

SPML -10 7 15 =22 8
RSPML -4 1 6 -5 2

Table 5.10: Percentage change in estimates due to altering the largest recruitment for
Qualicum River from 3000 to 30000 for SPML and RSPML.. (From Tables 5.5 and 5.9.)

5.3.5 Comparison of the two proposals for robust estimation

The RSPML approach to robust estimation of nonlinear mixed effects models seems prefer-
able to the modification of Lindstrom and Bates’ algorithm for several reasons. First, as
noted on page 5.2.5, the asymptotics of the Lindstrom and Bates algorithm may be compro-
mised. Second, our proposed modification of the Lindstrom and Bates algorithm includes
three different p-functions and a consistency correction term. Presumably the different
p-functions provide control over different aspects of the sensitivity of the estimator to out-
lying values. However, it is not clear how to choose the p functions and how to set the
consistency correction term. Nor is it clear what the convergence properties of such an
algorithm might be.

The robustification of SPML is conceptually more straightforward. First of all, the al-
gorithm consists of simply optimizing a nonlinear function—albeit a complex one. Second,
the SPML objective function resembles the likelihood of a linear mixed effects model, for
which careful work on robust estimation has been published.

Nevertheless, preliminary results suggest that, at least in some situtations, the perfor-
mance of the two algorithms may be similar. Further comparison of the two procedures
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Chapter 6
Conclusions

This thesis has explored a number of topics in hierarchical modeling from a meta-analytic
perspective. In Section 6.1, we review the new methods developed here. Questions in-
volving spawner-recruitment modeling motivated this work, and in Section 6.2 we discuss
the context of our methods in conservation biology and fisheries management. Finally, in
Section 6.3, we discuss some interesting avenues of future inquiry.

6.1 Summary

In this work, we have investigated hierarchical models for raw-data meta-analysis. Since
meta-analysis introduces an additional level of modeling, the hazards are many and a cau-
tious approach is called for. Our focus has therefore been on graphical and robust methods.

6.1.1 Graphical methods

Graphical methods can help orient the user and reveal structures in the data that may be of
central importance. The raindrop plot, introduced in Section 2.6, is a generalization of the
usual meta-analytic plot showing study-specific point estimates and error bars. As we have
seen, in some cases, individual point estimates may not exist. Even if they do, the normal
theory that often underlies confidence intervals may be a poor approximation. Raindrop
plots overcome these difficulties and provide a compact, informative display. An exten-
sion of the raindrop plot may be used to display probability distributions such as random
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effect distributions, posterior and predictive distributions, and bootstrap distributions. For
multi-parameter problems, raindrop plots for the parameter of interest may be based on
approximate likelihoods with nuisance parameters eliminated, as discussed in Section 2.5.
However, approximate likelihoods remain a topic of research, and in some cases may be
quite misleading. In two-dimensional problems, for example, joint likelihood contours may
be preferable.

Several other novel graphical displays were also introduced. The whisker-weights dis-
play of weights (e.g., from a robust regression analysis) in the margins of a scatter plot is,
as far as I know, a new idea. An alternative is to plot variable-size points to indicate the
relative weights, however this may distract the viewer from the relationship in the scatter
plot.

The “mushroom plot” of Figure 4.5 is a novel way of considering the consequences of
parametric estimates of random effect distributions.

6.1.2 Robust methods

Statistical models are just that: models; we do not expect that our assumptions will be met
exactly. For this reason, good statistical procedures should not be highly sensitive to slight
deviations from assumptions. Robust approaches to estimation for linear mixed effects
models have recently been developed. In this work, we tried to extend these approaches to
nonlinear mixed effects models. There is much still to be done in this area, however the two
proposed approaches seem promising. The conceptually simpler approach is our proposed
modification to Nufiez’s SPML for estimating nonlinear mixed effects models. Incorporat-
ing of a p-function in the pseudo likelihood may result in an asymptotic bias of unknown
magnitude. However the results of (admittedly limited) simulations suggest that this is not
a large problem. The Lindstrom and Bates algorithm and variants are widely implemented
and less computationally intensive than SPML. However the asymptotic properties of this
approach and related approaches based on Laplace approximations may be of concern.
Our proposed robustification of their alternating two-stage algorithm involves three differ-
ent p-functions and a consistency correction. Choice of these functions is a concern and
properties of the resulting estimates unclear.



167

6.1.3 Other contributions

We have made two other contributions in this work. One is the developments of generaliza-
tions of the “hockey stick” segmented regression model for spawner-recruitment modeling.
The abrupt bend in the ordinary hockey stick is problematic in several respects. First, it is
hard to believe that a natural population would actually follow so abrupt a relationship. Sec-
ond, the bend can cause numerical difficulties in estimation, such as multiple local maxima
in the likelihood surface. Third, the abruptness of the bend makes the hockey-stick model
highly nonlinear, and seems to cause difficulties for the Lindstrom and Bates algorithm. We
proposed two *“generalized hockey sticks™: the quadratic hockey stick, which has a simple
form, and the logistic hockey stick, which is smoother but less easily interpreted.

Another contribution is our proposed modification of Nuiiez’s algorithm, namely the
use of stylized normal samples in place of simulated normal samples. As intended, this
reduces the variability in the estimates.

6.2 Mixed effects models for spawner-recruitment data

Our use of mixed effects models for raw-data meta-analysis was originally motivated by in-
terest in fish population dynamics and the possibility to investigate previously unanswered
questions using the large spawner-recruitment database compiled by Myers, Bridson, and
Barrowman (1995).

Our main conclusion is that appropriate statistical methods can use information from
other studies to estimate spawner-recruitment parameters in local situations where these
are poorly defined. In the coho salmon example, this method allows spawner-recruitment
parameters to be fitted for a given stock even though the data for that stock by itself give
implausible estimates. The empirical Bayes estimates are clearly superior in these cases to
the individual fits, but it is possible that they may shrink the estimates too close to the mean
in some cases. In other words, too much weight may be given to the population estimate
for the random effect, and not enough weight to the individual stock estimate. Nonethe-
less, this finding should be useful when designing management strategies for stocks whose
population dynamics are too variable to allow reliable resolution of spawner-recruitment
curves.

We view the statistical methodology as part of a process, the endpoint of which is a
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scientific or management decision. For example, the output of the statistical component
may be used as input to a risk assessment. Here we briefly consider the application of
results obtained using our methods to extinction and management models.

6.2.1 Application to extinction models

Considerable effort has been devoted to the development of both analytical and simulation
models that estimate extinction probabilities of natural populations, (Lande 1993; Ludwig
1996; Fagan, Meir, and Moore 1999). On the whole, these models suffer from the lack of
plausible parameter values, as there is often very little data available. Instead, parameters
are drawn from arbitrary distributions and the conclusions remain broad (Foley 1994; Johst
and Wissel 1997). This problem is particularly acute for parameters that describe popula-
tion dynamics at low population sizes. Moreover, it is the dynamics at low sizes that are of
greatest import when estimating extinction risk.

Meta-analytic techniques provide a way to obtain estimates for populations where little
is known. In the case of the coho salmon, I was able to obtain estimates of a, the maximum
reproductive rate at low population size (and thus critical to predicting extinction) for each
stream, as well as an estimate of the variance of a. This information could be incorporated
directly into an extinction model, thus overcoming the difficulties highlighted by Routledge
and Irvine (1999) about imprecise predictions.

6.2.2 Application to management models

Recent international and national management regimes rely heavily on the goal of fish-
ing such that the biomass (i.e. the quantity of spawners) is at or above the level needed
to produce maximum sustainable yield—the maximum harvest that can be removed from
a population on a sustainable basis. For example, the UN Convention of Straddling Fish
Stocks and Highly Migratory Fish Stocks requires states that sign the agreement to rebuild
stocks to the “biomass that would produce maximum sustainable yield.” Similar language
is in the Sustainable Fisheries Act passed by the US Congress. It thus becomes crucial to
estimate the biomass level at which maximum yield can be sustained, and thus the capac-
ity of ecosystems to produce fish, in the case of the coho salmon, the R for a stream.
Traditional methods that rely on oversimplified models that apply to only single stocks
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usually produce very unreliable, and uncertain estimates (Hilborn and Walters 1992). The
approach described here allows much improved estimates of R and a which are needed
to estimate maximum sustainable yield.

Our analysis also provides estimates of the maximum reproductive rate, o, which forms
the basis of most calculations of management reference points (Mace and Doonan 1988;
Mace 1994; Hilborn and Walters 1992). These estimates are certainly far superior to the
individual point estimates, but it remains to be seen if they are generally superior to the
estimates obtained from a meta-analysis using the Ricker model (Myers, Bowen, and Bar-
rowman 1999). Simulation studies are required to determine this.

6.3 Future research

This work raises a considerable number of questions of both a statistical and a biological
nature.

The graphical methods we have introduced deserve further study. For example, several
variants of the raindrop plot were suggested; it is not clear which is preferable, or whether
another method might be better.

An interesting feature was observed in the analysis of both the wolf data and the coho
salmon data: observations that appear to be quite unusual in fits to individual studies seem
much less so in a mixed effects model. The proposed robust procedures for fitting linear
and nonlinear mixed effects models resulted in very mild downweighting of such observa-
tions. It appears that in addition to the well-known advantage of shrinkage, mixed models
seem to avoid “overfitting” individual studies, thereby mitigating the effects of unusual ob-
servations. This certainly deserves further study. A related question is how best to obtain
robust estimates of realized random effects.

Our use of stylized normal samples instead of simulated normal samples in Nuiiez’s
algorithm raises some questions. First, is there an optimal way to generate stylized bivariate
normal samples? The spiral approach of Figure 5.5 (p. 133) seemed to outperform the radial
approach, but both were somewhat ad hoc.

In Section 5.2.7, we briefly described several resampling methods that could be used to
estimate standard errors for parameter estimates in nonlinear mixed effects models for re-
peated measures data. In practice we used five procedures: a parametric bootstrap, a simple
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jackknife in which each study in turn was left out, a multihalver jackknife method, and two
types of “marginal” bootstraps. Little has been published concerning resampling methods
for hierarchical data and an investigation of the performance of the various methods would
be very useful.

Another topic of interest is model building for nonlinear mixed effects models. This
includes issues like how to select covariates, whether to use correlated or uncorrelated
random effects, and so forth. Another question concerns whether study-specific effects
should be fixed or random. Kiefer and Wolfowitz (1956) showed that the use of random
effects instead of study-specific fixed effects is generally preferable. Jiang (1996) showed
that the asymptotic properties of estimates for models with study-specific fixed effects are
very different from the usual asymptotics.

Our proposed robust modifications to algorithms for estimation of nonlinear mixed ef-
fects models raise a number of questions. For example, the asymptotic properties of the
proposed modifications deserve more attention. From a practical standpoint, it would be
useful to obtain bias corrections.

Other questions concern analogues of REML estimators for nonlinear mixed effects
models. Lindstrom and Bates defined approximate REML estimators for nonlinear mixed
effects models. Richardson and Welsh (1995) developed Robust REML methods (I and II)
for linear mixed effects models. It would be interesting to try to adapt these robust REML
methods to the Lindstrom and Bates algorithm.

In this work, I did not consider robustness against the effect of leverage points. Richard-
son (1997) developed estimation methods for linear mixed effects models that provide ro-
bustness against leverage points and it would be useful to adapt these methods to nonlinear
mixed effects models.

In addition to the statistical issues raised by this work, there are a number of interest-
ing biological questions. As is well known, statistically significant results are not always
biologically important. For example, fits to two spawner recruitment models may be sig-
nificantly different but have essentially identical management consequences. Conversely,
fits may be quite similar but have radically different management consequences.

One extension of the spawner-recruitment models considered in this thesis is the intro-
duction of depensation, a decrease in recruitment per spawner at low levels of spawners.
Depensation is predicted by several biological models and could have drastic consequences
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for populations reduced to low levels by overfishing. Myers, Barrowman, Hutchings, and
Rosenberg (1995) performed a fixed-effects raw-data meta-analysis of spawner-recruitment
datasets for 128 fish populations using a modified Beverton-Holt model and found little evi-
dence of depensation. However, a mixed model analysis seems more appropriate and recent
work suggests there may be depensation, albeit to a fairly limited extent.
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