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Glossary

Abductor Pollicis Brevis (APB) The muscle that causes adduction of the thumb
and flexes the MCP joint.

Abductor Pollicis Longus (APL) The muscle that causes abduction and flexion of
the first metacarpal bone.

Adductor Pollicis (AP) A muscle that causes adduction of the thumb.

Aponeurosis Any one of the thicker and denser of the deep fasciae that cover, invest,
and terminate and attach many muscles. They often differ from tendons only in being
flat and thin.

Articulated Figure An articulated figure is a structure that consists of a series of
rigid links connected at rotary joints.

Degrees of Freedom (DOF) The number of degrees of freedom of an articulated
structure is the number of independent position variables necessary to specify the state

of a structure.

Distal Interphalangeal Joint (DIP) The joint located between the distal and proxi-
mal phalanges in the fingers.

End Effector Most industrial manipulations are so-called open chains and the free
end of such a chain of links is called the end effector. In a human model, an end ef-
fector may be the hand or a foot.

Epicondyle A projection on the inner side of the distal end of the numerus.
Extensor Digitorum Communis (EDC) The muscle that allows a finger to extend.

Extensor Pollicis Brevis (EPB) A thumb muscle that produces extension at the
proximal joint and is the true abductor of the thumb.

Extensor Pollicis Longus (EPL) A thumb muscle that extends the proximal pha-
lanx.



Glossary (continued...)

Flexor Digiti Minimi (FDM) A flexor muscle located in the pinky.

Flexor Digitorum Profundus (FDP) Primarily a muscle that produces flexion of
the DIP joint in the fingers.

Flexor Digitorum Sublimis (FDS) Primarily a muscle that produces flexion of the
PIP joint in the fingers.

Flexor Pollicis Brevis (FPB) Primarily a muscle that produces flexion and adduc-
tion of the thumb.

Flexor Pollicis Longus (FPL) Primarily a muscle that produces flexion at the IP
joint in the thumb.

Interphalangeal Joint (IP) A term that relates to the DIP and PIP joints.

Metacarpophalangeal Joint (MCP) The joint between the proximal phalanx and
the metacarpal bone in the fingers.

Proximal Interphalangeal Joint (PIP) The joint located between the middle and
proximal phalanges in the fingers.
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Abstract

Adding virtual humans into virtual reality environments requires expensive
hardware and, for the animator, time-consuming tasks. An ideal situation in populat-
ing virtual worlds would be to create an artificially intelligent virtual human (AIVH)
that is capable of moving and interacting in its environment with little intervention
from the animator. This research focuses on the preliminary developments of creating
such an AIVH. Before an AIVH can move completely, an AIVH needs to learn how to
move its body. Thus, the body needs to be divided into separate areas and the AIVH
needs to learn about movements in these areas.

This thesis focuses on free hand motion, and more specificially on thumb and
finger postures. The author incorporates the use of feedforward artificial neural net-
works (ANNs) to manipulate an underlying model in real time and determine postures
of the thumb and fingers to allow for dynamic hand animation. The underlying
model of the computerized human hand is based on a biological model involving ten-
dons. The ANNs trigger any tendons that need to be manipulated to achieve an ani-
mated goal. The prescribed animated goals involve different flexion, extension, abduc-
tion, and adduction movements. There are several drawbacks associated with using a
multilayer feedforward network. First, since the architecture is designed by
trial-and-error, it is very difficuit to create an effective ‘a priori’ architecture. Secondly,
ANNs are not trained on an entire input space, but there is a supposition that the
ANN will work correctly when presented with any possible input within this problem
space.

In this ongoing research, the ability for ANNs to determine tendon control in
the thumb and fingers has been developed and tested, producing positive results. Now
that ANINs are seen to be successfully applied to hands, the next step is to apply this
technique to other parts of the body.



1. Introduction

The beginning is the most important
part of the work.
- Plato

An ideal virtual world would be filled with people, animals, nature, and many
other objects that we encounter in our real world. Real actors can enter a virtual world
and can suspend reality for a few moments since they immerse themselves completely
into that world. In order for a person to feel that they are immersed in a different real-
ity, the person must not suspect that the virtual actors are computer generated. A vir-
tual actor must produce the desired motion effect, whether this is in movement,
speech, or behaviour. Thus, the main goal of computer animation is to synthesize the
desired motion effect by mixing natural phenomena, perception, and imagination. An
animator needs different tools to create a virtual world populated with many objects.
An animator designs an object’s dynamic behaviour based on the animator's interpre-
tation of reality within the simulated environment. Thus, an animation system has to
provide an animator with motion control tools such that the animator can create their
virtual world easily. Computer animation methods may also help to understand physi-
cal laws by adding motion control to data in order to show their evolution over time.

In the next generation of animation systems, motion control will tend to be per-
formed automatically using artificial intelligence, and motion will be planned at a task

level and computed using physical laws.

1.1 Problem Statement

Films such as Rendezvous a Montréal (Thalmann et al. [1987]) were created
from the desire to use human beings as synthetic actors in 3D computer animation.
The difference between film and virtual reality is the dynamic behaviour required for
the synthetic or virtual human. Cavazza et al. [1998] indicated some current research
directions in virtual humans and their control. Some of these directions include: gen-
erating and controlling virtual humans in real time; creating characters with individu-
ality and personality who react to and interact with other real or virtual people; and
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enabling virtual humans to perform complex tasks. Controlling body motion involves
animating a skeleton that consists of connected segments corresponding to limbs and
joints. Animators control the skeleton locally and define it in terms of coordinates,
angles, velocities, and accelerations. Motion control techniques from computer anima-
tion can be applied to virtual humans. Magnenat-Thalmann et al. [1996] proposed
such a classification scheme based on three motion control methods: geometric; physi-
cal; and behavioural. Geometric methods correspond to methods driven by geometric
data, and some of these techniques are performance animation, keyframing, and in-
verse kinematics. Physical methods control an object’'s motion by describing the be-
haviour of the object in terms of the interaction of internal and external forces, and
one of these techniques is dynamic analysis. In dynamic analysis, an animator calcu-
lates the forces and torques acting upon masses to predict motion. Dynamic analysis
has two main disadvantages: it is necessary to first determine the torques and forces
required to produce a particular human motion; and the amount of computer time
required to calculate human motion is based on the complexity of the model. Behav-
ioural methods drive motion based on relationships between objects. A problem with
this approach is the need to define the behavioural model completely for all types of
interaction between objects. Reynolds [1987] uses a distributed behavioural model
simulating interaction within flocks of birds, herds of land animals, and schools of fish.
Several of the techniques in these methods are time consuming and not accept-
able when applying them to artificially intelligent virtual humans (AIVHs). A method
is needed to create motion in real time such that a virtual human can react to its envi-
ronment dynamically. In this thesis we propose the application of artificial neural net-
works to allow control of animated human thumb and fingers. A biological model
uses tendon tensions to control hand movements; however, in this research, artificial
neural networks (ANNSs) manipulate tendon lengths to determine hand postures.

1.2 Goal

This thesis develops a first step in creating one aspect of an AIVH. Animating
human movement has usually been divided into animation of three separate body sec-
tions: the face; the hands; and the rest of the body. This thesis focuses on determining
hand postures in real time to allow for dynamic human hand animation. Since a



complex model of the thumb and fingers of an animated hand was developed based
on tendon control (Kuchar [1996]), back-propagation neural networks were created to
learn how to manipulate the tendons to achieve thumb and finger postures. A data-
base of finger end-positions was created on which to train and test the neural net-
works. Once the networks had been trained, they were incorporated into an animation
system for visual verification of finger postures, since humans are better at detecting
problems visually. The neural networks were able to manipulate the tendons success-

fully to allow for real-time motion.

1.3 Organization

This thesis is organized into several chapters. Chapter 2 summarizes some of
the important information required for this thesis: motion control in articulated figure
animation; ANNSs; and muscle control. Chapter 3 provides the rationale for this thesis
and its application within VR. Chapter 4 describes the underlying tendon model and
the corresponding computer implementation that is used in this thesis. Chapter 5 de-
scribes the creation of back-propagation neural networks to manipulate an animated
human hand based on tendon control, including the corresponding computer imple-
mentation. Chapter 6 completes this thesis with conclusions and future work.

1.4 Summary

Virtual human modelling must include the structure needed for virtual human
animation. When linking modelling and animation, human figure animation is com-
plex because the human body is capable of making vast and innumerable combina-
tions of shape positions and interacting with its environment in many different ways.
A computer model for a synthetic character could emulate a human by creating ANNs
that are trained to accomplish a movement. The hypothesis of this research is to cre-
ate ANNSs to control tendons in an animated human hand. The hand model devel-
oped is based on muscle control for the thumb and fingers of a human hand. Using
this model, back-propagation neural networks were successfully developed and trained
to manipulate thumb and finger postures. Since ANNs were applied to an intricate
part of the body, such as hands, then in theory this technique can be applied to the
entire body. Thus, ANNs may be an important aspect in the future creation of AIVHs.



2. Background

Study the past if you would
divine the future.
- Confuctus

Adding virtual humans into virtual reality environments requires expensive
hardware and, for the animator, time-consuming tasks. An ideal situation in populat-
ing virtual worlds would be to create an artificially intelligent virtual human (AIVH)
that is capable of moving and interacting in its environment with little intervention
from the animator. As a first step in understanding the development of an AIVH,
background research in several areas must be considered: computer animation; artifi-
cial neural networks; and muscle control. This chapter gives a brief overview of these

areas as related to this thesis.

2.1 Computer Animation

Zeltzer [1985] classifies animation systems as being either:

guiding systems: behaviour of animated objects is explicitly de-
scribed.

animator-level systems: behaviour of animated objects is algorith-
mically specified.

task-level systems: behaviour of animated objects is specified in
terms of events and relationships.

Guiding and animator-level systems are described in detail in Thalmann [1990]. Gen-
eral purpose task-level systems are not available now, but HUMANOID (Boulic et al.
[1995]) and JACK (Badler et al. [1993]) are steps towards task-level animation.

This thesis research is based on the application of a new motion control
method for animating human hands; thus when involving synthetic actors, a classifica-
tion of computer animation scenes according to motion control methods would be
more appropriate. Magnenat-Thalmann et al. [1991] proposed such a classification
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scheme based on three motion control methods: geometric; physical; and behavioural.
Each of these categories is described in the following sections.

2.1.1 Geometric Methods

Geometric methods correspond to methods driven by geometric data. Objects
are locally controlled. For example, if an animated object is a human finger and an
animator is using a geometric method, then the finger's motion is described at every
joint. The animator provides detailed geometric data corresponding to a local defini-
tion of the motion. Motion may be defined in terms of coordinates, angles, and other
shape characteristics, or it may be specified using velocities and accelerations, but no
forces are involved. A detailed description of geometric methods can be found in
Delaney {1998] and Magnenat-Thalmann et al. [1996]. The following section de-
scribes briefly some geometric techniques, such as performance animation, keyframing,
inverse kinematics, and procedural animation.

2.1.1.1 Performance Animation and Motion Capture

Performance animation or motion capture consists of measuring and recording
motions and applying those motions to animate different characters. For example, the
people strolling on the sun deck in the 1998 movie Titanic were created in part using
motion capture techniques (Delaney [1998]). Traditional cell animation requires the
animator to animate different characters frame-by-frame for a particular scene. Motion
capture helps to lessen the rigors of traditional cell animation, and thus reduces the
time needed for animation development.

There are three kinds of motion capture systems: mechanical; magnetic; and
optical. Mechanical systems or digital puppetry require the use of one or more
real-time input devices, such as a mouse, a joystick, or datagloves, to be able to animate
3D characters. The information provided by these devices is used to control the varia-
tion of parameters over time for every animated feature of the character.

Magnetic motion capture systems require a real actor to wear a set of receivers.
One or more transmitters, located in the room with the actors, generate three orthogo-
nal electromagnetic fields each. When the receivers pick up the signals, the computer
determines the distance from the transmitters by the time elapsed and the orientation



6

of the receiver by the changes in the signal caused by the tilting of the magnetic fields.
The position and orientation of each receiver is then used to drive an animated char-
acter. One difficulty is the need for synchronizing receivers. As noted in Mag-
nenat-Thalmann et al. [1996], human body motion generally requires eleven receivers:
one on the head; one on each upper arm; one on each hand; one in the center of the
chest; one on the lower back; one on each ankle; and one on each foot. Inverse kine-
matics is used to calculate the remainder of the information. The two most popular
magnetic systems are Polhemus Fastrak® (Polhemus [1997]) and Ascension Flock of
Birds® (Ascension Technology Corporation [1998]). The benefits of using magnetic
motion capture systems can be attained by animators who do not require high accu-
racy in motion, since the motion data can be applied to animated characters in real
time. For example, if we use data gathered from the eleven receivers indicated for hu-
man body motion, the resultant coarse motion may be acceptable for an animated hu-
man that is far in the background of an animated scene since small peculiarities can-
not be easily detected; however, if this data was applied to an animated human whose
hand motion was forming an American Sign Language letter, then obviously the mo-
tion data provided would not be of sufficient resolution. These systems are fast at pro-
viding data to use in animation at the cost of accuracy in motion. The disadvantage of
using magnetic motion capture systems for hand movements is that a hand has a
small surface area and a vast amount of dexterity. Depending on the size of the receiv-
ers placed on each finger, a real hand would become cumbersome to move, and full
dexterity would not be accomplished.

Optical motion capture systems are based on cameras visually tracking small
reflective markers attached to real performers at key points. Freedom of movement is
the main advantage of this method over most magnetic systems that are hardwired
with wires attached from the real actors to a host computer. For motion with lots of
action, wires limit the range of motion and, if more than one real actor is being tracked
(such as a dancing couple), the wires could become entangled. The two main disad-
vantages of optical motion capture systems are occlusion and inter-reflection. First,
occlusion occurs when there is missing data resulting from hidden markers. For ex-
ample, an animator requires motion data for a human to get out of bed. Some of the
markers on a real actor will be placed on the actor’s back, but when an actor lies on



his/her back the optical motion capture system cannot track this sensor since it is
blocked by the actor. Secondly, when markers are too close to each other during mo-
tion, inter-reflection causes a problem for optical motion capturing systems. For ex-
ample, when two real actors are dancing together in a tango, some markers between
the two actors will be very close to each other and the capturing system will not be
able to distinguish which marker is on which actor. These problems may be mini-
mized by adding more cameras, but result in higher production costs since more
equipment and sophisticated software are required. Generally, most optical systems
operate with four or six cameras, as is exemplified by the VICON® system (Vicon
[1998)).

Overall, motion capture systems provide good motion data that comes directly
from reality; however, for every new motion, it is necessary to record that motion data
again, directly from reality. Humans produce a wide variety of movements, and to
store motion data for all possible movements would be intractable. Motion capture is
not appropriate in real-time simulations since the accuracy needed for motion data
would require greater sampling and processing time for a computer, and a contempo-
rary computer would not be able to derive the necessary motion for these simulations.
Even for a small, but dextrous part of a human body like a hand, capturing all pos-
sible hand movements would be impractical, if not impossible.

2.1.1.2 Keyframing

Keyframing is still one of the most common interactive motion control meth-
ods. The method for keyframing involves an animator specifying a sequence of posi-
tions and the times when they occur, and a computer interpolates between these posi-
tions to produce the animation. The advantage to keyframing is that an animator can
see the total configuration of the system at certain given times. The disadvantages are
that keyframing is a low level control method that requires an animator to specifically
control the motion of each degree of freedom, and does not allow easy visualization of

the motion between keyframes.



2.1.1.3 Inverse Kinematics

Inverse kinematics requires an animator to define only the position of the end
effectors, such as a hand or leg. The skeleton of an animated human is defined as a
hierarchical structure in which each level is affected from above and responds to feed-
back from levels below. Inverse kinematics determines the position and the orientation
of all joints in the hierarchy that lead to the end effector. In inverse kinematics, as the
number of limbs in an articulated figure increases, the problem of finding a solution
for a given position of the end effector becomes undefined. To avoid this problem,
animators use constraints, such as energy minimization and momentum conservation,
to limit the number of possible solutions. Inverse kinematics, or goal-directed motion,
is used for such tasks as animating human walking since an animator may require an
animated human to move within a scene to attain a goal. A more intense study of
goal-directed motion is described in Korein et al. [1982].

2.1.1.4 Procedural Animation

Procedural animation corresponds to the generation of motion using a series of
preprogrammed instructions (procedures) with minimal user input concerning actual
motion. The user may suggest parameters controlling the algorithm, but does not con-
trol the specific motion of individual degrees of freedom. Simple algorithmic control
is mainly applied to such rigid objects as spinning cubes and planets following ellipti-
cal orbits, rather than human motion. Procedural animation is used when a motion is
well-defined and can be incorporated into an algorithm. For example, animating hu-
man walking may involve: lift left foot; swing left leg; place left foot. The Extensible
Director-Oriented Systemns MIRANIM (Magnenat-Thalman et al. [1990)) is an ex-
ample of procedural animation in an interactive system.

2.1.2 Physical Methods

Physical methods control an object’s motion by describing the behaviour of the
object in terms of the interaction of internal and external forces. For example, a de-
scription of the shape of a rubber ball bouncing on a wooden floor is obtained by con-
sidering the gravitational effect on the rubber ball and the interaction between the ball
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and the floor. The following section describes briefly one physical method — dynamic
analysis.

2.1.2.1 Dynamic Analysis

An approach to animating human motion is dynamic analysis; it gives greater
physical reality to the animation by simulating the effects of forces and torques acting
upon masses to predict motion. Human motion is governed by forces and torques ap-
plied to the limbs. Some of these forces are generated by muscles or by interaction of
objects within the environment. An example of dynamics in animating articulated fig-
ures are crash studies that include dynamic simulations involving animated humans.
In these studies, the environmental effects of the forces and torques being applied to
the crash dummy during a crash test are simulated.

The dynamics equations for articulated bodies are complex. In order to pro-
vide greater realism, each segment of the articulated body would be described by dy-
namics equations. Since the connected segments interact with each other, dynamics
equations are coupled and must be solved as a system of simultaneous equations, one
equation for each degree of freedom. As an animated human model becomes more
complex, a dynamic analysis system must solve a larger number of simultaneous equa-
tions. Some forces and torques for certain types of complex motion, such as falling,
striking the floor, or bouncing against other objects, can be automatically calculated
and realistically rendered with no user input. When forces and torques cannot be au-
tomatically calculated, an animator must explicitly describe them in an animation.
This is a problem since producing controlled, coordinated motion described in terms
of force and torque control is nonintuitive. Dynamic analysis has two main disadvan-
tages: it is necessary to first determine the torques and forces required to produce a
particular human motion; and the amount of computer time required to calculate hu-
man motion is based on the complexity of the model. A more detailed study of dy-

namic analysis is given in Wilhelms [1987].

2.1.3 Behavioural Methods
Behavioural methods drive motion based on relationships between objects. Be-
havioural motion control methods drive the behaviour of objects by providing high-
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level directives indicating a specific behaviour without any other stimulus. For ex-
ample, if an animated human hand is required to make a fist, the command FIST
would be an appropriate high-level directive to indicate the required behaviour. The
following section describes briefly two examples of behavioural methods: task-level

animation; and artificial life.

2.1.3.1 Task-level Animation

In task-level animation, an action is specified only by its effects on objects.
Task-level commands are translated into low-level instructions, such as a script for al-
gorithmic animation. For example, when an animated hand is given the command
FIST, this command would be translated into a script that closes all the fingers.

Task-level animation has been used for animating grasping hands. Mag-
nenat-Thalmann et al. [1988] describe a system that facilitates the task of animating
human interaction with an environment; however, an animator has to position a hand
and determine the contact points between the hand and the object to be grasped. A
method for producing an automatic grasp was developed by Rijpkema et al. [1991].
These authors give a full description of a grasping system and approximate objects in
an environment with simple primitives. A knowledge database is constructed that con-
tains the mechanisms to grasp all known primitives in the environment. Recently, Mas
et al. [1994] have presented a hand control and automatic grasping system that can
decide to use a pinch when the object is too small to be grasped by more than two fin-
gers, or to use a two-handed grasp when the object is too large to be grasped by one
hand. The disadvantage of task-level animation applied to virtual animated humans is

the lack of dynamic interaction with an environment.

2.1.3.2 Artificial and Virtual Life

Research from artificial intelligence has been applied to behavioural animation.
Reynolds [1987] simulated flocks of birds, herds of land animals, and schools of fish
using a distributed behavioural model. For example, flocking behaviour in birds con-
sists of two opposing factors: a desire for the birds to stay close to the flock; and a de-
sire for the birds to avoid collisions within the flock. This flocking behaviour was

implemented as a set of rules with decreasing precedence:
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1. collision avoidance: avoid collisions with nearby flock-
mates.

2. velocity matching: attempt to match the velocity of nearby
flockmates.

3. JSlock centering: attempt to stay close to nearby flockmates.

The simulated flock is based on particle systems (Hearn et al. [1994]), with the birds
simulated as particles. The animator can control global parameters by adjusting the
"importance" or weights of the rules mentioned above, and can change the maximum
velocity, maximum acceleration, and minimum distance between the birds.

One of the problems of using artificial intelligence for animated humans is that
the rules or equations of motion cannot be explicitly defined since the equations are
complex and cannot be determined absolutely. For example, when a human rises
from a chair, many muscles coordinate in the back, legs, and other areas to create this
motion. To define explicitly all of these relationships and dependencies amongst the
muscles cannot be done since researchers in biomechanics and physiology still have
not determined all coordination of movements.

2.1.4 Computer Animation Summary

Motion control for animating humans has been a main research area in com-
puter graphics. A wide variety of techniques are used and combined to produce re-
quired animated movements. As human models increase in complexity, new motion
control algorithms will be created to attain realistic human movement. The goal of
realistic human movement is hard to achieve in animation, but the goal of realistic
real-time animated human simulations is even harder to achieve and more work is re-

quired in this area.

2.2 Artificial Intelligence and Neural Networks

Artificial intelligence is a research area in computer science where scientists try
to emulate human cognitive skills through the design and implementation of com-
puter programs. Within the area of artificial intelligence, artificial neural networks
(ANNSs) provide an alternative approach to many problems, such as pattern recogni-
tion, optimization, and control. As noted in section 2.1.3, artificial intelligence has
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been applied in behavioural methods. For example, artificial neural networks that
guide lower-level motor skills have been proposed by Ridsdale [1990] to determine
animated handball serves. The main focus of this thesis is on applying ANNSs to ani-
mating human finger movements. In order to understand the work accomplished in
this thesis, an overview of ANNSs is provided in this section, including a biological neu-
ron, an artificial neuron, and ANN architectures.

2.2.1 Biological Neural Networks

The human brain is a complex non-linear parallel computer. It has the capa-
bility of organizing neurons to process certain tasks. A neuron, or nerve cell, is de-
picted in Figure 2-1 and is the fundamental cellular unit of the brain’s nervous system.
The function of the neuron is to process information. Neurons are constructed from
the same basic parts, independent of their size and shape. These are the soma, the
dendrites, and the axon. The soma is the cell body; it has a nucleus that contains in-
formation about hereditary traits and a plasma that holds the molecular equipment for
producing material needed by the neuron. A neuron receives and combines signals
from other neurons through input paths called dendrites and transmits signals along
its output path called the axon. Neurons do not perform identically since different
neurons can give different responses. Each neuron has an activation function that dic-
tates whether the neuron is excited or inhibited. The axon branches and connects to
other dendrites of other neurons through synapses. Synapses are junctions that con-
tain neurotransmitter fluid. This fluid mitigates the flow of electrical signals. The
strength or conductance of the synaptic junction is modified as the brain learns. The
synapse's effectiveness can be adjusted by the signals passing through it so that the
synapses can learn from the activities in which they participate. This dependence on
history acts as a memory that may be responsible for human memory.
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Nucleus

Figure 2-1. A biological neuron. Adapted from Jain et al. [1996).

2.2.2 ANNs Definition

The computer model of a biological neural network takes the form of an ANN
that contains artificial neurons, and is depicted in Figure 2-2. An artificial neural sys-
temn models the neural network and contains algorithms for cognitive tasks, such as
learning and optimization, modelled in mathematical terms. Miiller et al. [1995] de-
scribe an ANN model in mathematical terms as a directed graph with the following

properties:
1. A state variable n, is associated with each node i.
2. A real-valued weight w, is associated with each link (ik) between
two nodes i and k.
3. A real-valued bias v, is associated with each node i.
4, A transfer function f[n,, w,, v,, (k#1)] is defined for each node i,

that determines the state of the node as a function of its bias,
of the weights of its incoming links, and of the states of the
nodes connected to it by these links.

To associate the biological neuron with the artificial neuron, the nodes of the ANN are
called neurons, the links are called synapses, and the bias is known as the activation
threshold. The transfer function is either a discontinuous step function or a sigmoidal
function. Nodes without links toward them are called input neurons; nodes without
links leading away from them are called output neurons. A neuron can have many
inputs, analogous to the dendrites, and can combine the values of the inputs. The out-
put of the neuron can branch to many other neurons, analogous to the axon. The out-
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put is then modified by connection weights that correspond to the synaptic strength of
the neural connections before being input to the receiving neuron.
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Figure 2-2. Computer model of a biological neuron. Adapted from Uhrig [1995].

2.2.3 Neural Network Architectures

An ANN consists of many nodes joined with an adjustable weighting function
for each input. The nodes are usually organized into a series of layers that may con-
tain full or random connections between them. There are at least three layers in an
ANN: an input layer; one or more hidden layers; and an output layer.

There exist many different types of ANNS, as depicted in Figure 2-3. ANNs
can be grouped into two categories based on their connection pattern: feedforward
neural networks; and recurrent or feedback neural networks. A feedforward network is
a graph with no loops whereas a recurrent neural network is a graph with loops.

Different connectivities result in different network behaviours. Feedforward
networks are static for they only produce one set of output values, and are thus
memory-less for they are not dependent on the state of the network. Recurrent neural
networks are dynamic since they have loops due to the feedback connections, and thus
the inputs to each neuron are modified leading the network to enter a new state.

One of the major advantages of ANNS is their ability to learn. The operation
of an ANN involves the two processes of learning and recall. Learning is the process
of adapting connection weights in response to input values. The neural network
"learns" based on a learning rule that governs how the connection weights are modi-
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fied as a result of the input values. Recall is the process of taking the input and pro-
ducing a response based on what the network has learned.

I Neural networks I
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Figure 2-3. A taxonomy of feedforward and recurrent network architectures.
Adapted from Jain et al. [1996].

There are three main learning paradigms: supervised; unsupervised; and hy-
brid. Supervised learning is the most common and an ANN is provided with a correct
output for every input pattern. It uses a corrective algorithm to convert the difference
between the output patterns of the neural network and the desired output into an ad-
justment of the connection weights. Unsupervised learning tries to deduce correlations
between patterns in the data and then organizes these correlations into categories with-
out providing information about the actual categories. Hybrid learning combines the
two learning algorithms, where part of the weights is determined through supervised
learning.

The common leamning algorithms are: Hebbian learning; Delta-rule learning;
and competitive learning. The Hebbian learning algorithm increments weights if both
the input and the desired output are high; it is analogous to the biological process in
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that a neural pathway is strengthened each time it is used. The Delta-rule learning
algorithm modifies the weights based on the difference between the desired output
and actual output by minimizing this difference using a least-squares process. The
competitive learning algorithm modifies the weights of the neuron that gives the stron-
gest response to a given input by calculating the difference between the input values
and these weights. The final value of the weights constitutes the "memory" of the net-

work.

2.2.4 Why Neural Networks?

ANNSs are powerful because they are distributed in a parallel structure, and
they can learn and generalize based on their learning algorithms. Their ability to gen-
eralize makes it possible for ANNs to solve complex problems. Some other features of

ANNs are:

Nonlinearity: An ANN is a non-linear, distributed net-
work. Nonlinearity is an important property, for the
underlying physical mechanism responsible for the
generation of an input signal is inherently non-linear.

Input-Output Mapping: As noted from section 2.2.3, an
ANN learns the relationships between the input val-
ues and the output values.

Adaptivity: As noted from section 2.2.3, an ANN can
adapt its weights based on the learning algorithm,
and these weights can be modified in real time. An
ANN trained to operate in a specific environment can
be easily retrained to deal with minor changes in the
operating environmental conditions.

Evidential Response. An ANN can be designed to provide
information about the confidence in a decision that it
made regarding a selected pattern.

Contextual Information: Every neuron in an ANN can be
affected by the global activity of all other neurons in
the network, and thus contextual information is dealt
with naturally.
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Fault Tolerance: An important advantage of ANNSs is their
high degree of error resistivity. A normal computer
may completely fail in its operation if only a single bit
of stored information or a single programme state-
ment is incorrect. In contrast, the operation of an
ANN often remains almost unaffected if a single neu-
ron fails, or if a few synaptic connections collapse.

2.2.5 Further Readings

Section 2.2 provided an overview of both biological and artificial neural net-
works, architectures, and learning algorithms. For further detailed information, the
reader is directed to the following textbooks on ANNs: Miiller et al. [1995]; Haykin
[1994]; and Zurada [1992].

2.3 ANNSs and Muscle Control

Another aspect of this thesis is applying tendon control to animated human
fingers, with ANNs manipulating the tendons. Only recently have ANNs been applied
to predict muscle activity. As stated by Nussbaum et al. [1997}, accurate prediction of
muscle activity, and an understanding of the systems responsible for coordinating
these activities, remain open problems. Work accomplished by Nussbaum et al. [1995]
and Sepulveda et al. [1993] required a set of known electromyographic (EMG) pat-
terns to be able to generalize and predict muscle activity and apply ANNs to derive a
mapping function from an external moment to a set of muscle activations given an
existing database. The database of EMG patterns did not exist and thus had to be
created by the authors; however, Nussbaum et al. [1997] presented a model that could
be developed without a specific database by having elements representing specific
muscle groups placed ‘within’ the model, and their behaviour emerged through a
training process requiring moment equilibrium. Also, new elements representing com-
petitive (inhibitory) interactions among the muscles were incorporated, their values de-
termined by comparing model output with a pre-existing EMG data set, and are hy-
pothesized to reflect interactions that occur within a motor control system. These ele-
ments are nodes in a back-propagation neural network model used by Nussbaum et al.
[1997]. As depicted in Figure 2-4, this architecture included an ANN that would re-
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ceive as input the magnitudes of applied right lateral, left lateral, flexion, and extension
moments. The eight output nodes correspond to four pairs of muscles and the ANN
would predict normalized muscle activity for each muscle. The ANN architecture was
composed of a multilayer, fully connected, feedforward network and the authors used
error back-propagation for training the ANN. The training algorithm used a gradient
descent technique to traverse the error surface by moving downhill in the steepest di-
rection. The training varied from 20,000 to 44,000 cycles, depending on the number
of hidden nodes incorporated into the ANN. This model was compared to two opti-
mization-based muscle force prediction models. The first optimization model (Bean et
al. [1988)) is a two-step linear programme that minimizes first the maximum muscle
intensity and second the spinal compressive force. The second optimization model
(Hughes [1991] and Crowninshield et al. [1981]) is a nonlinear programme that mini-
mizes the sum of the cubes of muscle force intensities. Once trained, the ANN model
predictions were better correlated with observed data than the two optimization-based

models.
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Figure 2-4. Architecture for using a neural network to predict lumbar muscle activ-
ity. Adapted from Nussbaum et al. [1997].
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2.4 Chapter Summary

This background chapter summarizes some of the important information re-
quired for this thesis: motion control in articulated figure animation; ANNs; and
muscle control. A wide variety of motion control techniques are described in section
2.1. These techniques are used and combined to produce required animated move-
ments. As human models increase in complexity, new motion control algorithms will
be created to attain realistic human movement. Section 2.2 provides an overview of
ANNSs. ANNSs are an alternative approach to solving many problems and may be able
to provide a new approach in animation motion control. Section 2.3 provides an over-
view of how ANNs have been applied for muscle activity, indicating that an ANN
could learn to predict muscle activity for certain movements. These are the three main
areas that apply to this thesis research, and are combined to create a new approach

that is described in the next chapter.
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3. Thesis Scope and Motivation

The only limit to our realization of tomorrow
will be our doubts of today.
- Franklin D. Roosevelt

Many advances in virtual reality (VR) have occurred during the past ten years,
in different research areas and on focused topics, such as multiresolution techniques
for displaying millions of polygons (Foley et al. [1990]), and the use of robotics hard-
ware as force-feedback interfaces (Rosenblum et al. {1997]). Within these different re-
search areas, one of the focused topics deals with creating and populating virtual
worlds. Chapter 2 provided an overview of animation techniques and artificial neural
networks; two disciplines that have the potential to create artificially intelligent virtual
humans. This chapter describes the focused area of virtual human motion control ad-
dressed by this thesis, and its place and importance in VR research.

3.1 Virtual Reality: A Hierarchy

VR incorporates difficult research problems involving many disciplines since
VR requires synthesizing numerous techniques in both software and hardware devel-
opment. Sometimes, the next advance in VR depends on progress by non-VR re-
searchers, such as a new robotics device or a new natural language technique. This
thesis research lies within the scope of the first aspect —~ software development.

Researchers have explored new models that are required in a virtual world to
realistically emulate a broad variety of living and non-living things, such as rivers,
houses, plants, animals, and humans. Typically, these models inhabiting the virtual
worlds are modelled using physical law-based modelling techniques. As VR hardware
develops, graphics researchers create animated worlds that are filled with objects that
exhibit greater complexity than is typically accessible through physical modelling
alone — objects that are alive (animated plants, animals, and humans). Artificial life
transcends the traditional boundaries of engineering, computer science, and biological
science, and the natural synergy between computer graphics and artificial life can be
potentially beneficial to both disciplines. Animated living objects must simulate many
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of the natural processes that uniquely characterize living systems, such as birth and
death, growth, natural selection, evolution, perception, locomotion, manipulation, adap-
tive behaviour, intelligence, and learning. The challenge in graphics research is to de-
velop sophisticated graphics models that are self-replicating, self-evolving,
self-controlling, and self-animating, by simulating the natural mechanisms fundamen-
tal to life.

There are several areas in computer graphics that have started to incorporate
artificial life phenomena, such as:

artifical plants: Modelling the response of plants to its
environment, including light, nutrients, pruning, and
mechanical obstacles.

artificial animals: Modelling involves a physics-based
model of an animal in its world, the animal’s use of
physics for locomotion, and its ability to link percep-
tion to action through adaptive behaviour.

interactive synthetic characters: Modelling full-body inter-
action between human participants and graphical
worlds inhabited by artificial life forms that people
find interesting. These life forms have their own
goals, and can sense and interpret the actions of real
actors and respond to them in real time.

artificial life of virtual humans: Modelling human beings
that include perception, and tactile and auditory sen-
sors. These sensors provide inforraation to support
human behaviour, such as visually directed locomo-
tion, manipulation of objects, and response to sounds
and utterances. This area also includes communica-
tion between virtual humans, behaviour of crowds of
virtual humans, and communication between real and
virtual humans.

Each of the above areas contain complex research problems in both animation and
VR. The author is specifically interested in the last area — artificial life of virtual hu-
mans.

Animated human beings require a complex model that contains human senses,
behaviour, communication, and movement. Each of these is a major research topic,
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and thus the scope of this thesis was narrowed to modelling human movement. Mod-
elling and deformation of 3D human bodies during the animation process is an im-
portant but difficult problem. Researchers have devoted significant effort to the repre-
sentation and deformation of the human body shape, resulting in two body model cat-
egories: the surface model; and the multi-layered model. The surface model proposed
by Thalmann et al. [1987] contains a skeleton and outer skin layer. The skin layer is
composed of planar or curved patches. There are two main problems with this model.
First, this model requires a detailed surface mesh to approximate skin. Secondly, in
this model it is hard to control the realistic deformations of the surface across joints.
Surface singularities or anomalies can easily be produced, but simple observation of
human skin in motion reveals that the deformation of the skin results from many other
factors besides the skeleton configuration, such as muscle and fat tissue. The multi-
layered model proposed by Chadwick et al. [1989] contains a skeleton layer, intermedi-
ate layers, and a skin layer. The intermediate layers may consist of muscle, fat tissue,
and other physical attributes since deformation of the skin layer is influenced by such
structures of the intermediate layer. The key advantage of the layered model is that
once the layered character is constructed, only the underlying skeleton needs to be
scripted for an animation and the skin deformations are generated automatically.

This thesis is concerned with the underlying skeleton that needs to be manipu-
lated to allow for real-time human movement. Improving motion realism requires
many degrees of freedom (DOF) in the body linkages and that increases the difficulty
of control. The variability and complexity of human movement requires complex
adaptive motion generation algorithms for animating such movement. Even though
algorithms have addressed greater animation power with kinematics, dynamics, inverse
kinematics, available torque, locomotion, gestural and directional control, the human
models themselves tended to be rather simplified versions of a real human. Increased
realism in the human models would demand more accurate and complicated motion
control. A virtual character must move convincingly enough for a real actor to believe
that they are interacting with another real human in VR. Virtual characters need to
respond dynamically to their environment, and facilitating interesting and engaging
responses that reflect the way real humans behave, in real time, remains a major chal-

lenge in the animation field.
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3.2 Human Hand Movement

As indicated in the previous section, this thesis is concerned with manipulating
an underlying skeleton to allow for real-time human movement. Animating human
movement has usually been divided into animation of three separate body sections:
the head; the hands; and the rest of the body. This is mainly due to the differences in
modelling and animation applied to these different sections.

Hands represent a very small part of the whole body, but they are the most flex-
ible part of the body and they are essential in our dealings with the environment.
Hand positioning varies greatly and allows the hand to compose many different move-
ments. Hands are capable of conforming to the shape of objects to be grasped or stud-
ied, and of emphasizing an idea being expressed. This is accomplished because of the
unique structure of human hands, consisting of 19 bones, 17 articulations, and 19
muscles situated entirely within the hand, and about the same number of tendons acti-
vated by the forearm muscles. Each hand contains a sum of many relative DOF, and
the hand's importance and particularities require a dedicated model. The hand is the
most difficult part of the human body to model because of its complex structure, and
therefore the hand requires a complex motion algorithm. As noted in Kuchar [1996),
a complex model of the thumb and fingers of a human hand includes the bones, mo-
tor muscles, and tendons. Kuchar [1996] proposed a hand-simulation model well
suited for real-time animation, to be used in conjunction with traditional approaches.

3.3 Applying Artificial Neural Networks to Hand
Animation

Humans move their hands using a biological neural network that has learned
to manipulate the fingers. A synthetic character could use an artificial neural network
(ANN) that has been trained to manipulate the synthetic fingers. A survey of recent
technical journals in ANNs and computer graphics suggests that ANNs have not yet
been applied to movement animation of synthetic actors in virtual environments.

Virtual human modelling must include the structure needed for virtual human
animation. When linking modelling and animation, human figure animation is com-
plex because the human body is capable of achieving vast and innumerable combina-
tions of shape positions and interacts with its environment in many different ways. A
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computer model for a synthetic character could try to mimic a human by creating
ANNS that are trained to accomplish a particular movement. In robotics, ANNs have
been developed that have learned such behaviour patterns as walking and grasping.
For example, Rao et al. [1996] used a single stage recurrent neural network to simulate
a central pattern generator that produces rhythmic motion for actions such as locomo-
tion and respiration. Another example is found in Srinivasan et al. [1992] where a
modified Jordan's sequential network was used to generate several bipedal gaits at dif-
ferent frequencies. A final example is found in Tascillo et al. [1993] where a modified
genetic back-propagation neural network controller was used to determine a best first
grasp for a robotic hand. Since ANNs have been successful in controlling robotic ma-
nipulators, a natural progression would be to apply ANNSs to control animated virtual
manipulators.

This thesis develops a first step in creating an artificially intelligent virtual hu-
man. As stated in section 3.2, animating human movement has usually been divided
into animation of three separate body sections; this thesis focuses on animation of hu-
man hands. Since the complex model of the thumb and fingers of an animated hand
was developed based on tendon control (Kuchar [1996]), back-propagation neural net-
works were created to learn how to manipulate the tendons to control the postures of
the thumb and fingers. A database of end positions was created on which to train and
test the neural networks. Once the networks had been trained, they were incorporated
into an animation system for visual verification of finger postures, since humans are
better at detecting problems visually. The neural networks were able to manipulate
the tendons successfully to allow for dynamic hand animation.

3.4 Chapter Summary

This chapter provides the rationale for this thesis and its application within VR.
The purpose of this thesis is to determine end positions of animated human hand mo-
tions in real time using ANNs. The remainder of this thesis describes the application
of the ANNS to tendon control of an animated human hand.
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4. Hand Control Subsystem

A journey of a thousand miles begins
with a single step.
- Confucius

The human hand is a complex mechanical structure comprised of bones, liga-
ments loosely connecting bones, muscles serving as tension controllers, tendons acting
as cables connecting muscles to bone, and a covering of protective soft tissue and skin.
The human hand is an articulated structure with a sum of about 30 relative degrees of
freedom (DOF) and changes shape in various ways as a result of its joint movements.
The bones are linked at the joints and do not change in size. There are many muscles
and tendons in the hand, but only a subset apply to movement. This chapter de-
scribes the bones and joints of the hand, the muscles and tendons that produce move-
ment in the thumb and fingers, the underlying mathematical model applied to the
muscle effect on the fingers, and the hand-muscle programme that allows the user to
manually manipulate the muscles and tendons of the thumb and fingers.

4.1 A General Overview of the Bones of the Hand

The skeleton of the hand consists of three segments: the carpal bones; the
bones of the palm; and the bones of the fingers (phalanges). The carpal bones are ar-
ranged in two rows. The row closest to the ulna and radius includes the pisiform, tri-
quetral, lunate, and scaphoid. The distal row is arranged with the hamate, capitate,
trapezoid, and trapezium. A diagram of the carpal hand is shown in Figure 4-1.
There are five metacarpal bones in the palm of the hand, numbered from the thumb
side as I through V. As depicted in Figure 4-2, each finger has three phalanges - a
proximal, a middle, and a distal. The thumb has only two phalanges.

4.2 Description of Joint Movements

The movement of a particular segment of the hand is produced by rotations of
the bone around one or more of three mutually orthogonal axes. A joint can be de-
scribed as uniaxial, biaxial, and triaxial. When a movement of a bone at a joint is lim-
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ited to rotation about a single axis, the joint is termed uniaxial and it possesses one
DOF, such as a knee joint. When completely independent movements can occur
around two axes, the joint is termed biaxial and it possesses two DOF, such as a
metacarpophalangeal (MCP) joint. When completely independent movements can
occur around three axes, the joint is termed triaxial and it possesses three DOF, such

as a shoulder joint. A closer examination of joint classification can be found in War-
wick et al. [1973].

Figure 4-1. A coronal section of the dorsal right hand through the distal ends of the
radius and ulna, the carpus and the proximal ends of the metacarpals,
showing the general form of the articular surfaces, synovial cavities, in-
terosseous ligaments, and fibrocartilages. Adapted from Warwick et al.
[1973].
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Figure 4-2 depicts the hand model. Each finger (Il - V) has a sum of four rela-
tive DOF: two DOF at the MCP joint; one DOF at the proximal interphalangeal (PIP)
joint; and one DOF at the distal interphalangeal (DIP) joint. Similarly, the thumb (I)
has a sum of five relative DOF: two DOF at the carpometacarpal (CMC) joint; two
DOF at the MCP joint; and one DOF at the interphalangeal (IP) joint. The wrist's
movements have not been included in this model.

Figure 4-2. A right hand skeleton observed from the palmar side. Adapted from
Lee et al. [1995].

Angular movement refers to the change in the angle between adjoining bones.
Two common angular movements occur around axes set at right angles to each other

and are named:

1. flexion (bending), with extension (straightening) as its opposite.
2. abduction (movement away from the midline of the body), with
adduction (towards the midline of the body) as its opposite.

Limitation of movement is effected by a number of different factors, of which
the tension of ligaments is very important. In life, however, the tension of the muscles
that are antagonistic to the movement is equally important as a limiting factor. The
latter involves both the passive elastic component of the muscles, including other soft
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tissues surrounding the joint, and the reflex contraction of the appropriate muscula-
ture that occurs in the tissues. In synovial joints, where the bones concerned are con-
nected by ligaments and muscles only, the articular surfaces are in constant opposition

in all positions of the joint.

4.2.1 The Metacarpophalangeal Joints

The MCP joints are biaxial ellipsoid joints. The heads of the metacarpals, fit-
ting into shallow concavities on the bases of the proximal phalanges, are not regularly
convex since they are partially divided on their palmar aspect to resemble condyles.

The active movements of the MCP joints are flexion, extension, adduction, ab-
duction, circumduction (derived compounded movement of flexion, extension, abduc-
tion, and adduction), and some limited rotation.

As noted by Warwick et al. [1973), flexion is freer than extension since indi-
vidual joint manipulation is greater in flexion than in extension, and both movements
are limited by the tension of the opposing muscles. Abduction and adduction are less
free and cannot be performed actively when the fingers are flexed. The flexion and
extension of the MCP joint of the thumb seldom exceed 60° (Seireg et al. [1989]). The
side-to-side movements of the thumb are very much restricted at the MCP joint.

The range of active flexion and extension varies between humans. The range
of flexion is nearly 90° for the index finger, but increases progressively to the fifth fin-
ger. Flexion of the middle finger is limited by tension developed in the deep trans-
verse ligaments of the palm. The range of flexion can reach 30°to 40°

Since the insertion of the collateral ligaments into the metacarpal head is
slightly posterior to its centre of curvature, they become lax in extension and taut in
flexion. Thus, abduction and adduction become difficult, if not impossible, when the
MCP joint is flexed. When the MCP joint is extended, abduction and adduction are
easier and their range is 20° to 30° on either side of the finger midline (Seireg et al.
[1989)). Of all the fingers, except the thumb, the index finger has the greatest range of

side-to-side movements (30°).
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4.2.2 The Interphalangeal Joints

The IP joints are uniaxial hinge joints. The only active movements in the IP
joints are flexion and extension. The movements of the IP joints are greater in range
between the proximal and middle phalanges than between the middle and distal pha-
langes. The amount of flexion is very considerable, but extension is limited by the ten-
sion of the digital flexors and by the palmar ligaments. Finally, during finger flexion
and extension, the movements are accompanied by a small amount of conjunct rota-
tion. During flexion, as noted in Warwick et al. [1973], the rotation turns the pulp of a
finger slightly laterally to face more fully the pulp of the opposed thumb. An opposite
rotation occurs during finger extension.

The range of flexion in the PIP joints is greater than 90°, so that in flexion the
proximal phalanx and the middle phalanx form an acute angle. As in the case of the
MCP joints, flexion increases in range from the second to the fifth finger to reach a
maximum of 135° with the latter. In Figure 4-3 the phalanges are seen obliquely from
the side so that the angles appear obtuse.

Figure 4-3. The range of flexion in the PIP joints. Adapted from Kapandji [1970].
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The range of flexion at the DIP joints is slightly less than 90° so that the angle
between the middle phalanx and the distal phalanx remains obtuse. As with the PIP
joints, the range increases from the second to the fifth finger to attain a maximum of
90° with the latter. Figure 4-4 depicts the range of flexion at the DIP joints.

Figure 4-4. The range of flexion in the DIP joints. Adapted from Kapandji [1970].

Flexion of the index moves in a sagittal plane (P) towards the base of the th-
enar eminence (long white arrow shown in Figure 4-5). The axes of the fingers during
flexion all converge to a point corresponding to the radial pulse. This can only occur
if the other fingers are flexed in an increasingly oblique plane. The pinky shows
maximal obliquity to the plane of flexion (small white arrow shown in Figure 4-5).
The significance of this oblique flexion lies in the fact that it allows not only the index

to oppose the thumb, but all other fingers also.
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Figure 4-5. Plane of movement of flexion of the four fingers. Adapted from Ka-
pandji {1970).

4.3 Model of the Hand

There are many muscles and tendons in the hand, but only a subset apply to
movement. More information on muscle physiology can be found in Sherwood
[1992]. The following sections will examine the muscles and tendons that produce
movement in the thumb and fingers.

For this research, the thumb and fingers were modelled. The model includes
19 bones and the muscles that produce movements of these bones. Table 4-1 summa-
rizes some of the muscles and tendons of the thumb and fingers and their functions.
Since the tendons of the thumb and finger muscles usually are inserted into the distal
end of the ulna-radius, an alternate location for the origins of these muscles is selected
for the implementation. The new origin is established at the base of the metacarpal
bone since, in reality, most tendons must pass through this point and our model of the
thumb and fingers begins at the metacarpal bone. The muscles and tendons are, in
general, modelled by lines joining suitable origin points to the corresponding insertion

points on the phalanges.
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Table 4-1. Summary of Modelled Muscles and their Functions.

Abbreviation
FDS

FDP

FPL

FPB

EDC

EPL

EPB

AP

ADM

APB

APL

Name
Flexor Digitorum Superficialis
Fiexor Digitorum Profundus

Flexor Digiti Minimi

Flexor Pollicis Longus

Flexor Pollicis Brevis

Extensor Digitorum Communis
Extensor Indicis
Extensor Digiti Minimi

Extensor Pollicis Longus

Extensor Pollicis Brevis

Adductor Pollicis

Abductor Digiti Minimi

Abductor Pollicis Brevis

Abductor Pollicis Longus

Function

flexes the fingers
flexes the fingers

located in the pinky
flexion of the MCP joint

located in the thumb
flexes at the IP joint

located in the thumb
flexes, adducts

extends the fingers
extends the index
extends the pinky

located in the thumb
extends the distal phalanx

located in the thumb

extends the proximal phalanx
abducts the hand

adducts the thumb

abducts the pinky
flexes the proximal phalanx

adduction of the thumb
flexes the MCP joint

abducts the thumb
flexes the metacarpal bone
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4.3.1 Muscles Producing Movement at the MCP Joints

The muscles that produce the flexion of the MCP joint are the Flexor Digi-
torum Superficialis (FDS) and the Flexor Digitorum Profundus (FDP). The Flexor
Digiti Minimi produces flexion of the MCP joint in the pinky. The thumb muscles
that produce flexion of the MCP joint are the Flexor Pollicis Longus (FPL) and the
Flexor Pollicis Brevis (FPB), along with the first palmar interosseous. Slight lateral
rotation accompanies finger flexion.

The muscle that produces the extension of the MCP joint in the third and ring
fingers is the Extensor Digitorum Communis (EDC), assisted, in the index and pinky,
by Extensor Indicis and Extensor Digiti Minimi respectively. In the thumb, the Exten-
sor Pollicis Longus (EPL) and Pollicis Brevis (EPB) affect the MCP joint.

The muscles that produce adduction are the palmar interossei. During flexion
the long flexors of the fingers play the principal part The slight degree of this move-
ment in the thumb is attributable to the Adductor Pollicis (AP) and the first palmar
interosseous.

The muscles that produce abduction are the dorsal interossei, assisted by the
long extensors, except in the case of the middle finger. In the pinky, the Abductor
Digiti Minimi (ADM) produces abduction. The Abductor Pollicis Brevis (APB) pro-
duces the slight movement possible in the thumb that contributes towards opposition.
When the fingers are in the flexed position, abduction cannot be performed actively.
The inability to perform abduction actively in this position may be because the dorsal
interossei and the ADM are so shortened by flexion that they are unable to function.

4.3.2 Muscles Producing Movement at the IP Joints

Flexion of the PIP joint is produced by the FDS and FDP. Flexion of the DIP
joint is produced by the FDP only. At the IP joint of the thumb, the FPL is the only
flexor. Extension of the IP joints is accomplished by the EDC and the EPL.

The combined movements of flexion at the MCP joint and extension at the IP
joints can be carried out simultaneously, and are of importance in such fine move-
ments of writing, drawing, and threading a needle. When the lumbricales and in-
terossei flex the MCP joints, the balance between the tone of the digital flexors and
extensors is altered in favor of the extensors, and this factor alone is responsible for the
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extension of the IP joints. However, both the lumbricales and interossei can individu-
ally extend these joints.

4.4 Description of the Motor Muscles and the
Modelled Counterpart

In the next section, only the muscles that help in producing movement of the
thumb and fingers are explained in detail, along with a description of how the muscles

were incorporated into the programme.

4.4.1 Tendons of the Flexors

There are two flexors in each finger: the FDS and the FDP. The fleshy bellies
of the digital flexors lie in the anterior compartment of the forearm and so can be con-
sidered as extrinsic muscles. The course of the flexors across the wrist and the palm

of the hand, including their insertions and actions will be described in the following

section.

4.4.1.1 Flexor Digitorum Sublimis

The FDS muscle arises from three heads of origin — humeral, ulnar, and ra-
dial, and divides into two planes of muscular fibers — the superficial plane carrying
tendons for insertion into the middle and ring fingers, and the deep plane carrying
tendons for insertion into the index and pinky finger. The FDS has its insertion
proximal to that of the FDP muscle, thus the FDS splits into two slips. The two slips
reunite and finally insert into the sides around the middle of the second phalanx. The
tendons, during their course of insertion, enter into the fibrous tendon sheaths begin-
ning proximally over the heads of the metacarpal bones, which prevent their
“bowstringing". It is assumed that the tendons are held to the digits by the fibrous
sheaths at approximately the middle of each segment. The muscle therefore can be
modelled by four components — each component responsible for the flexion of an in-
dividual finger. The flexor is then inserted into the middle phalanx on the palmar
side as shown in Figure 4-6.
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The action of the FDS flexes the PIP joint as depicted in Figure 4-7. It has no
effect on the DIP joint and is a weak flexor of the MCP joint, and only when the PIP

joint is fully flexed.

4.4.1.2 Flexor Digitorum Profundus

The FDP arises from the ulna and ends in four tendons that pass through the
openings in the tendons of the FDS and insert into the base of the distal phalanges.
The model of this muscle is therefore similar to that of the FDS — four components,
each going to an individual finger. Each component is modelled by a line similar to
the FDS with the line connecting the middle phalanx to the distal phalanx to repre-
sent the final insertion on that segment, as shown in Figure 4-8.

m. Flexor
Digitorum
Sublimis

fibrous
sheath

Figure 4-6. The muscle model for the Flexor Digitorum Sublimis. Adapted from
Seireg et al. [1989].
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Figure 4-7. The Flexor Digitorum Sublimis. Adapted from Kapandji [1970).

As depicted in Figure 4-9, the FDP is primarily a flexor of the DIP joint but
flexion of this joint is soon followed by flexion of the PIP joint, which has no special
extensor to antagonize this action. When the MCP and PIP joints are flexed passively
to 90° the FDP cannot flex the DIP joint because it has become too slack for any use-
ful contraction.

m. Flexor Digitorum
Profundus

fibrous sheath

Figure 4-8. The muscle model for the Flexor Digitorum Profundus. Adapted from
Seireg et al. [1989]
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Figure 4-9. The Flexor Digitorum Profundus. Adapted from Kapandji [1970].

4.4.2 Tendons of the Extensor
The extensor is also an extrinsic muscle of the hand and is described in the

following section.

4.4.2.1 Extensor Digitorum Communis

The EDC originates on the lateral epicondyle of the humerus, passes across the
wrist and divides into four tendons that insert into the second and third phalanges of
the fingers. The manner of insertion of the tendons is rather complex, forming the
extensor apparatus for each finger as shown in Figure 4-10. After crossing the MCP
articulation the tendon is joined by the tendons of the interossei and lumbricales,
spreading into a broad aponeurosis covering the dorsal surface of the first phalanx.
Opposite the first IP joint, this aponeurosis divides into three bands. The central band
is inserted into the base of the second phalanx, while the two collateral bands continue
onward along the side of the second phalanx, unite across the DIP and insert into the
dorsal surface of the distal phalanx. When the fingers are flexed, the tendon will wrap
around the digits and consequently the muscle is modelled by several lines, with ap-
propriate reactions at assumed points of contact.

The muscle model for the EDC consists of four major parts, each part repre-
senting the part of the muscle responsible for the extension of an individual finger.
Each part in turn consists of three components to represent the three bands — the cen-
tral, the medial and the lateral that form the individual extensor mechanism. Hence,
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the central band of the extensor apparatus of each finger consists of a line connecting
the base of the metacarpal to a point on the dorsal surface of the proximal phalanx.
The collateral bands (medial and lateral) are modelled as lines connecting from the
middle of the proximal phalanx and attaching to the midpoint of the middle and dis-

tal phalanges simulating the appropriate moverment.

Figure 4-10. The model of the extensor apparatus. Adapted from Seireg et al. [1989].

Functionally, the EDC is essentially an extensor of the MCP joint. The EDC
is a powerful extensor and active in all positions of the wrist. The EDC action of the
PIP joint, by means of the medial band (number 2 on Figure 4-11) and on the DIP
joint, by means of the two lateral bands (number 3 on Figure 4-11), depends on the
amount of tension in the tendon and on the position of the wrist.
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Figure 4-11. The extensor expansion. (1) tendon has been partially resected to
show the deep expansion. (2) median band. (3) lateral band.
(4) aponeurosis. Adapted from Kapandji [1970].

The action of the EDC on the DIP and PIP joints depends on the amount of
tension in the digital flexors. If the digital flexors are taut because the wrist or the
MCP joint is extended, the EDC by itself cannot extend these interphalangeal joints.
If the flexors are relaxed by flexion of the wrist or the MCP joint or are sectioned, the
EDC can easily extend these IP joints.

There has been debate among researchers about finger extension and the role
of the EDC and intrinsic muscles. Long et al. [1964] stated that the interossei rein-
force the function of the lumbricales when the EDC cannot assist the lumbricales in
extension of the distal joints. The EDC always seems to cooperate with the lumbri-
cales when extending interphalangeal extension. Long et al. [1964] based these con-
clusions on hand experiments performed using EMG signals. Tubiana et al. [1996]
stated that the interosseous muscles are dependent on the position of the MCP joint
when extending the interphalangeal joints. Tubiana et al. [1996] also stated that the
lumbrical muscles are able to extend the two distal phalanges whether the MCP joint
is in extension or flexion. This debate is on-going because the interossei and the lum-
brical muscles are connected with the middle band of the EDC, and it is difficult to
determine their functions independently. The intrinsic muscles will be discussed in

greater detail in section 4.4.3.
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4.4.2.2 Extensor Indicis Proprius and Extensor Digiti Minimi

The tendons of the Extensor Indicis and Extensor Digiti Minimi behave in the
same way as those of the EDC with which they blend. They allow the index and
pinky finger to be extended singly. These muscles are not modelled as extra muscles
since they only add to the flexibility and power of the finger.

4.4.3 The Intrinsic Muscles

The intrinsic muscles are composed of the interossei and lumbricales. The in-
terossei have two actions: adduction and abduction; and flexion and extension. There
are two different interossei: dorsal and palmar. The lumbricales flex the MCP joint
and extend the IP joints. These muscles are described in this section.

4.4.3.1 Dorsal Interosseous

The four dorsal interosseous occupy the spaces between the metacarpal bones,
depicted in Figure 4-12a. The dorsal interosseous originates by two heads from the
adjacent sides of the metacarpal bones. The dorsal interosseous inserts into the bases
of the proximal phalanges and into the lateral bands of the aponeurosis of the tendons
of the extensor digitorum. Thus, the four dorsal interossei are:

1. The first dorsal interosseous is located between MCI and
MCII and arises from the same two bones, and inserts
into the base of PPII and into the lateral band (radial)
of the extensor apparatus of the index finger.

2. The second dorsal interosseous arises from the MCII and
MCIII and inserts into the base of the PPIII and into
the lateral band of the extensor apparatus of the
middle finger.

3. The third dorsal interosseous arises from the MCIII and
MCIV and inserts into the base of the PPIII and into
the medial band (ulna) of the extensor apparatus of
the middle finger.

4, The fourth interosseous arises from the MCIV and MCV
and inserts in to the base of the PPIV and into the
medial band of the extensor apparatus of the ring fin-
ger.
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Each of the four dorsal interossei is modelled by two components — one that
inserts directly into the proximal phalanx and the other that represents the insertion
into the medial or the lateral bands of the extensor apparatus. The latter are modelled
similar to the bands described in the EDC model.

4.4.3.2 Palmar Interosseous

The three palmar interossei (Figure 4-12b) lie on the palmar surfaces of the
metacarpal bones. The palmar interossei arise from the metacarpal bone. The in-
terossei insert into the side of the base of the first phalanx and into the lateral band of
the aponeurosis of the tendon of the EDC. Each of the three interossei thus can be
modelled by a line connecting the metacarpal bone of the finger to the proximal pha-

lanx of the same finger.

Figure 4-12. The Interosseous. (a) Dorsal Interosseous. (b) Palmar Interosseous.
Adapted from Kapandji [1970].
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4.4.3.3 Lumbricales

The lumbricales are four small fleshy muscles associated with the FDP and the
EDC. The lumbrical muscles give the balance between the flexors and extensors. Tu-
biana [1981] stated that the motor function of the lumbricales remains ill understood.
Generally, the lumbricales extend the interphalangeal joints, do not interact in flexion
of the MCP joint, and are partially involved in side-to-side and rotation movements of
the fingers. The lumbrical muscle was included in the programme but as a part of the
modelled intrinsic muscle that supports extension of the interphalangeal joints. Thus,
these muscles are modelled similarly to the collateral bands of the EDC.

4.4.4 Muscles in the Thumb

The thumb is unique because there are nine motor muscles located in the
thumb. The thumb motor muscles are grouped as extrinsic (long) and intrinsic (short)
muscles. The motor muscles of the thumb are described in this section.

4.4.4.1 Extrinsic Muscles
The extrinsic muscles are the long muscles of the thumb. There are four ex-

trinsic muscles: Abductor Pollicis Longus (APL), Extensor Pollicis Brevis (EPB), Ex-
tensor Pollicis Longus (EPL), and Flexor Pollicis Longus (FPL).

4.44.1.1 Abductor Pollicis Longus

The APL tendon arises from the dorsal surface of the ulna and the radius and
from the interosseous membrane between them. The APL tendon passes through a
groove on the lateral side of the distal end of the radius. The APL tendon inserts into
the radial side of the base of the first metacarpal bone. The tendon can be modelled
by a line connecting to a point on the base of the first metacarpal bone. The APL ab-
ducts and flexes the first metacarpal bone as depicted in Figure 4-13.
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Figure 4-13. The muscle model for the Abductor Pollicis Longus. Adapted from
Chase [1973].

4.4.4.1.2 Extensor Pollicis Brevis

This muscle arises from the radius and the interosseous membrane and inserts
into the base of the first phalanx of the thumb, as depicted in Figure 4-14. It is there-
fore modelled as a line connecting the base of the metacarpal bone to an insertion
point on the proximal phalanx of the thumb. This muscle is modelled similar to the
FDS. The EPB extends the MCP and abducts the first metacarpal bone.

4.4.4.1.3 Extensor Pollicis Longus

The EPL arises from the ulna and from the interosseous membrane, and in-
serts into the base of the last phalanx of the thumb. The muscle can be modelled by a
similar line as the FDP that inserts into the distal phalanx. The EPL extends the IP
joint and the MCP joint. The EPL also adducts the first metacarpal bone.
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Figure 4-14. The muscle model for the Extensor Pollicis Brevis. Adapted from
Chase [1973].

4.4.4.14 Flexor Pollicis Longus

The FPL has its origin on the radius, the interosseous membrane, and the me-
dial epicondyle of the humerus. The FPL fibers converge into a flattened tendon that
passes under the flexor retinaculum, enters into an osseo-aponeurotic tunnel similar to
those for the flexor tensors of the fingers, and finally inserts into the base on the distal
phalanx of the thumb. It is assumed that the restraint to bowstringing provided by the
fibrous sheaths is at the center of the phalanx. The muscle is modelled similar to the
FDP. The FPL primarily flexes the IP joint and secondarily flexes the MCP joint.

4.4.4.2 Intrinsic Muscles

The intrinsic muscles are the muscles lying within the thenar eminence and
first interosseous space. There are five extrinsic muscles: Flexor Pollicis Brevis (FPB);
Abductor Pollicis Brevis (APB); Adductor Pollicis (AP); Opponens Pollicis (OP); and
the first interosseous. The FPB, APB, AP, and OP are described in this section. The
first interosseous is modelled similarly to the other interossei described in section
443.1.
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4.4.4.2.1 Flexor Pollicis Brevis

The FPB arises from the flexor retinaculum and the distal part of the ridge on
the trapezium, and inserts into the base of the proximal phalanx of the thumb. The
muscle is modelled similarly to the FDS. The FPB is primarily an adductor and
brings the ball of the thumb into opposition to the last two digits.

4.4.4.2.2 Abductor Pollicis Brevis

The APB originates on the scaphoid and the trapezium and inserts into the
radial side of the base of the first phalanx of the thumb, as shown in Figure 4-15. The
muscle is modelled by a line connecting a point on the metacarpal to a point on the
base of the proximal with a reaction on the head of the first metacarpal. The APB ad-
ducts the first metacarpal bone while flexing the MCP joint.

Figure 4-15. The muscle model for the Abductor Pollicis Brevis. Adapted from
Chase [1973).

4.4.4.2.3 Adductor Pollicis

The AP has two main parts —- an oblique part and a transverse part. The ob-
lique head arises from the capitate bone and the bases of the second and third metac-
arpal bones; the transverse head arises from the palmar surface of the third metacar-
pal bone. Both heads converge towards the thumb to insert into the ulnar side of the
base of the proximal phalanx. The muscle is modelled by four lines — from the capi-
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tum; the base of index metacarpal bone; the base of the third metacarpal bone; and the
palmar surface of the third metacarpal bone; all inserting into the proximal phalanx of
the thumb. The AP adducts the thumb toward the palm.

4.4.4.2.4 Opponens Pollicis

The OP originates on the anterior surface of the flexor retinaculum, deep to the
fibers of the APB and proximal to the origins of the superficial head of the FPB. The
OP inserts into the lateral border of the shaft of the first metacarpal and into the lat-
eral aspect of its neck. The OP has three actions: flexion of the first CMC; adduction
(the first metacarpal is drawn towards the second metacarpal); and axial rotation
(pronation). This muscle is essential for opposition of the thumb with the fingers.

4.5 Mathematical Model

As discussed in the previous section, several muscles were modelled according
to their original counterparts. This section gives a flavour for the underlying math-
ematical model (presented in Kuchar [1996]) applied to the muscle effect on the fin-
gers. Only one example of the mathematical model is provided — the FDP tendon.
Other examples of the mathematical model can be found in Kuchar [1996].

4.5.1 The Basic Finger Model

The finger model is shown in Figure 4-16. The finger is reduced to a line
structure with four segments and three joints that correspond to the bones and joints
of a human finger. A "puppet string" is used to represent a tendon. The puppet string
is attached to the bone segment similar to the original tendon insertion. The puppet
string is the only part of the model that the user manipulates with the sliders in the
graphical interface. The sliders are described in section 4.6.5.

DIP middle PIP proximal MCP metacarpat CP  xy-plane
distal - —s ®

NAILe”

z-axis

Figure 4-16. The Finger Model.
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4.5.2 The FDP Mathematical Model

The FDP is primarily a flexor of the DIP joint but flexion of this joint is soon
followed by flexion of the PIP joint, which has no special extensor to antagonize this
action. As stated in section 4.4.1.2, the FDP tendon is modelled by a line that connects
the base of the metacarpal bone to the middle of the distal phalanx. For computa-
tional reasons, the middle of the distal phalanx was chosen instead of the base of the

distal phalanx.
Since a tendon affects all joints that it passes, the FDP affects the DIP, PIP, and

MCP joints. When modelling the effects of the FDP tendon on the joints, three cases

occur:

1. The DIP joint is flexed by the pull of the puppet string.
If this joint is flexed past the maximum constraint
limit of the DIP angle specified for the finger, then
the DIP joint is placed at the maximum angle and
flexion of the PIP joint begins.

2. The PIP joint is flexed by the pull of the puppet string.
In this case, the DIP joint has been fully flexed. If the
PIP joint is flexed past the maximum limit of the
angle specified for the finger, then this joint is placed
at the maximum constraint angle and flexion of the
MCP joint begins.

3. The MCP joint is flexed by the pull of the puppet string.
In this case, the IP joints have been fully flexed. If the
MCP joint is flexed past the maximum limit of the
angle specified for the finger, then this joint is placed
at the maximum angle and the finger is fully flexed.

Each case mentioned above is described by the accompanying mathematical model.

CASE 1: Flexion at the DIP Joint
The algorithm that calculates the angle at the DIP joint, indicated as ¢ in Fig-

ure 4-17, is now presented.
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Figure 4-17. DIP joint is flexed.
The following constraints exist in this algorithm:

1. p is the slider value passed from the interface to the FDP
procedure. p is the current length of the puppet
string.

2. b is one-half the length of the distal phalanx.

The algorithm to calculate ¢ is:

1. Calculate B.
Calculate a as the remainder of the puppet string
when the lengths of the middle, proximal, and metac-
arpal bones are subtracted from p. Thus, B is calcu-
lated as the arcsine of (a / b).

2. Calculate .
First, point E needs to be determined. The (x, y) val-
ues of E are obtained using the (%, y) coordinates of
the DIP joint; however, the z coordinate needs to be
calculated. Thus, using the Pythagorean theory, the
variables a and & can be used to calculate 2. The z
coordinate of E is (-4). Secondly, a vector e is con-
structed from the points E and the DIP joint.
Thirdly, a vector f is constructed to the base of the
metacarpal bone from the current flexing joint. Fi-
nally, ® can be calculated using the dot product of
the two vectors e and £



3. Calculate ¢.
To calculate ¢, the angle at the DIP joint, subtract the
sum of B and ® from 180°. This is the flexion of the
finger at the DIP joint. If @ is flexed past the maxi-
mum constraint limit of the angle specified in the in-
put file for the finger, then @ is placed at the maxi-
mum angle and flexion of the PIP joint begins.

CASE 2: Flexion at the PIP Joint
The algorithm that calculates the angle at the PIP joint, indicated as vy in Fig-

ure 4-18, is now presented.
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Figure 4-18. PIP joint is flexed.

origin

The following constraints exist in this algorithm:

1. p is the slider value passed from the interface to the FDP
procedure. p is the current length of the puppet
string.

2. B is the constant length between the midpoint of the dis-
tal phalanx to the PIP joint.

3. @ is the maximum angle of the DIP joint from case 1.

The algorithm to calculate vy is:

1. Calculate .
Calculate a as the remainder of the puppet string
when the lengths of the proximal and metacarpal
bones are subtracted from p. Thus, B is calculated as
the arcsine of (a / b).
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2. Calculate .
First, point E needs to be determined. The (x, y) val-
ues of E are obtained using the (x, y) coordinates of
the PIP joint; however, the z coordinate needs to be
calculated. Thus, using the Pythagorean theory, the
variables a and & can be used to calculate A. The z
coordinate of E is (-4). Secondly, a vector e is con-
structed from the points E and the PIP joint. Thirdly,
a vector f is constructed to the base of the metacarpal
bone from the current flexing joint. Finally, @ can be
calculated using the dot product of the two vectors e
and f.

3. Calculate o
First determine two vectors b and ¢. Vector b is con-
structed from the PIP joint to the midpoint of the dis-
tal phalanx. Vector ¢ is constructed to the DIP joint
from the PIP joint. Thus o is calculated using the dot
product of b and c.

4. Calculate .
To calculate v, the angle at the PIP joint, subtract the
sum of ¢, B, and o from 180° This is the flexion of
the finger at the PIP joint. If vy is flexed past the maxi-
mum constraint limit of the angle specified in the in-
put file for the finger, then v is placed at the maxi-
mum angle and flexion of the MCP joint begins.

CASE 3: Flexion at the MCP Joint
The algorithm that calculates the angle at the MCP joint, indicated as 6 in Fig-

ure 4-19, is now presented.
MCP f CP

P
\ origin

Figure 4-19. MCP joint is flexed.



The following constraints exist in this algorithm:

1. p is the slider value passed from the interface to the FDP
procedure. p is the current length of the puppet

string.

2. B is the constant length between the midpoint of the dis-
tal phalanx to the MCP joint.

3. ¢ is the maximum angle of the DIP joint from case 1.

4, v is the maximum angle of the PIP joint from case 2.

The algorithm to calculate 6 is:

1. Calculate B.
Calculate a as the remainder of the puppet string
when the length of the metacarpal bone is subtracted
from p. Thus, B is calculated as the arcsine of (a / ).

2. Calculate o.
First, point E needs to be determined. The (x, y) val-
ues of E are obtained using the (x, y) coordinates of
the MCP joint; however, the z coordinate needs to be
calculated. Thus, using the Pythagorean theory, the
variables a and 4 can be used to calculate . The z
coordinate of E is (-h). Secondly, a vector e is con-
structed from the points E and the MCP joint.
Thirdly, a vector f is constructed to the base of the
metacarpal bone from the current flexing joint. Fi-
nally, ® can be calculated using the dot product of
the two vectors e and £

3. Calculate o
First determine two vectors b and ¢. Vector b is con-
structed from the MCP joint to the midpoint of the
distal phalanx. Vector ¢ is constructed to the PIP
joint from the MCP joint. Thus a is calculated using
the dot product of b and ¢.
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4. Calculate 6.
To calculate 6, the angle at the MCP joint, subtract
the sum of @, B, and ® from 180° This is the flexion
of the finger at the MCP joint. If 8 is flexed past the
maximum constraint limit of the angle specified in
the input file for the finger, then 7y is placed at the
maximum angle and the finger is fully flexed.

The corresponding computer procedure for the FDP tendon is located in Appendix A.

4.6 Computer Implementation

Several programmes were developed for this thesis. The first programme is a
hand muscle interface that allows the user to manipulate tendons manually. This sec-
tion describes the finger movement interface and the rationale for the interface.

4.6.1 The Input File

A file can be created to contain data specific to a hand or data to a generic
hand. This file is used as input to the programme, and a sample file is shown in
Table 4-2.

Table 4-2. A Sample Input File.

Dis. Mid. Prox. Carp. DIP PIP MCP Dor.

Index 23.5 26.0 39.0 55.0 63.3 102.0 71.2 41.9

Third 26.0 28.5 43.5 55.0 55.0 100.0 53.6 33/32

Ring 25.2 27.0 37.5 55.0 71.0 ©96.0 76.8 32.0

Pinky 21.0 20.0 32.0 45.0 52.7 94.9 87.9 42.0

Thumb 25.0 40.0 35.0 95.0 80.5 21.2

The format of the file is as follows:

1. four measurements for the distal phalanx, middle phalanx,
proximal phalanx, and carpal bones measured in millimeters.

2. three angle measurements which give the maximum flexion of
the DIP, PIP, and MCP joints measured in degrees.

3. one angle measurement which gives the maximum abduction of

the finger measured in degrees.



53

The information for the hand is entered in the following sequence: index; third; ring;
pinky; and thumb. The thumb has a different format from the above since it has a
different structure. The following is the description of the input for the thumb:

1. three measurements for the distal phalanx, proximal phalanx,
and carpal bones measured in millimeters.

2. three angle measurements which give the maximum flexion of
the DIP, PIP, and MCP joints measured in degrees.

3. one angle measurement which gives the maximum abduction of

the thumb measured in degrees.

4.6.2 Start-up Screen

As the programme begins executing, an interface appears in which the user
can manipulate the fingers. The initial screen is shown Figure 4-20. A hand is gener-
ated on the left side of the screen. The hand can be rotated in the 3D environment

using the mouse buttons for x-axis, y-axis, and z-axis rotation. Section 4.6.4 describes

the mouse buttons and movements in greater detail.

Figure 4-20. Initial screen of the muscle programme.
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The largest area of the interface contains the buttons and sliders for manipulat-
ing the fingers. At the top of this area, the user may select which finger to manipulate.
The sliders which represent the different tendons and muscles in the fingers are set
appropriately for each finger. If a tendon or muscle does not exist for that finger, then
the slider is de-activated. The slider value indicates the current length of the tendon.

To the right of the user interface is a log which keeps track of all the sliders
and fingers which are manipulated during the session. This helps the user recognize
how a finger reaches its final state, since moving tendons in different orders create a
different end position for the finger.

There are three buttons at the bottom of the user interface: reset finger; reset
hand; and quit. The reset finger button resets the currently selected finger to a straight
finger. The reset hand button resets all of the fingers simultaneously. The quit button

terminates the programme.

4.6.3 Mouse Movements and Rotations

The hand can be rotated in the 3D environment using the mouse buttons for
x-axis, y-axis, and z-axis rotation. The rotations are done around 3 orthogonal-axes
corresponding to the right-hand coordinate system. For the user to rotate the hand,
the user presses and holds one of the mouse buttons while moving the mouse pointer
horizontally across the view area. The effects of the rotation are shown on the left side
of the interface. For x-axis rotations, the user must press and hold the left mouse but-
ton. Similarly for y-axis and z-axis rotations, the user must press and hold the middle
and right mouse buttons respectively.

The rotations of the hand in the view area are advantageous to the user. The
ability for the user to rotate the hand may provide the user with a better view of the
finger movement that is being accomplished.

4.6.4 The Sliders

The sliders that are present in the interface relate to the muscles and tendons
described previously in this chapter. The values for the sliders are calculated based on
the length of the phalanges and on the insertion point of the tendon or muscle. As an
example, the maximum value of the FDP slider indicates that the finger is fully ex-
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tended. As noted in section 4.4.1.2, the FDP inserts into the middle of the distal pha-
lanx. The maximum length of the FDP is then calculated from this middle position
on the distal phalanx to the end of the finger at the base of the carpal bone. The fin-
ger is then placed in the flexed position for each phalanx based on the angular con-
straints for the finger's joints. The minimum length of the FDP is calculated as the
distance from the middle of the distal phalanx to the end of the finger at the base of
the carpal bone. A similar approach is followed to calculate the other sliders’ mini-
mum and maximum values for each tendon associated with the finger. All of this data

is then stored in a linked-list structure.

4.7 Chapter Summary

This chapter described the bones and joints of the hand, the muscles and ten-
dons that produce movement in the thumb and fingers, the underlying mathematical
model applied to the muscle effect on the fingers, and the hand-muscle programme
that allows the user to manually manipulate the muscles and tendons of the thumb
and fingers. Before any artificial neural network could be developed for controlling
tendons, this underlying tendon model needed to be developed, implemented, and

tested.
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5. Artificial Neural Networks Controlling
Tendons in an Animated Hand

Practically all great artists accept the information of others.

But.. the artist with vision sees his material, chooses, changes, and by integrating

what he has learned with his own experiments, finally molds something distinctly personal
- Romare Howard Bearden

Humans move their hands using a biological neural network that has learned
to manipulate the fingers. A synthetic character could use an artificial neural network
(ANN) that has been trained to manipulate the synthetic fingers. In chapter 4, the un-
derlying tendon model for a hand was described and implemented. In the hand-
muscle programme, an animator could manually manipulate the thumb and fingers
by controlling the tendons. In this chapter, ANNs are developed and tested for con-
trolling tendons in the hand to achieve the desired motion.

5.1 Hierarchical Hand Movement Control Scheme

Virtual human modelling must include the structure needed for virtual human
animation. Section 4.6 describes a hand-muscle programme that allows an animator
to manually manipulate the thumb and fingers by controlling the tendons. A virtual
human would require the knowledge of how to move its thumb and fingers by learn-
ing to control the tendons in its hands. The goal of this thesis is to develop ANNSs that
control the tendons described in chapter 4.

The human's biological network triggers the appropriate tendons to create the
desired motion. For example, if a human wants to make a fist, a human has learned
that a fist is created by fully flexing all fingers and then flexing the thumb. Applying
this idealogy to virtual humans, several aspects needed to be created: a database of
hand commands such as FIST; a database of finger commands such as
CLOSE_INDEX; a database of normalized tendon values for a finger; a hand neural
network; and an underlying animation control system. Each of these aspects is de-
scribed in detail in the remainder of this chapter.
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5.2 Hand Movements

An understanding of hand movements was needed before developing ANNSs to
control thumb and finger postures. This section describes a classification of hand
movements and the databases developed here for these movements.

5.2.1 Classification of Hand Movements

Tubiana [1981] stated that for basic kinesiologic descriptions, it is possible to
classify most hand motions in an inclusive system. Once such a system has been de-
fined, any complex motions of the hand are combinations of the basic motions classi-
fied in the inclusive system. This thesis deals with free motion. In free motion, the
hand moves freely in space, unencumbered by external resistance without significant
compression of the digits against each other or against the palm. The basic free mo-

tions possible to the hand are:

open: fully extending the thumb and the fingers until the
hand is fully open.

close: fully flexing the thumb and the fingers until the
hand is closed in a fist with the thumb overlapping
the index and middle fingers.

claw: the movement that reaches the terminal position of
MCP extension and IP flexion.

reciprocal: the movement that reaches a terminal position
of MCP flexion and IP extensions.

Twelve variations of these motions are observed if the terminal position of each mo-
tion is the starting point of each other motion. For example, from the open position
the hand can move into closing, clawing, or reciprocal motions. Landsmeer et al.
[1965] and Long et al. [1964] used such categories to classify finger control, and de-
duced fourteen patterns of finger motion:

1. Movement from a fully-flexed finger, keeping the IP joints
flexed, to the position of MCP extension.

2. Movement from the position of IP joints flexed and MCP
joints extended to the position of all-joint extension.



10.

11.

12.

13.

14.
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Movement of IP joints into flexion from the position of
all-joint extension, while MCP joints are held straight.

Movement from the position of IP flexion, MCP exten-
sion to the position of all-joint flexion.

Movement from the position of all-joint flexion to the po-
sition of IP extension with the MCP joint held in flex-
icn.

Movement from the position of MCP joint flexed and 1P
joints extended to MCP joint extended and IP joints
extended, keeping IP joints extended throughout the
motion.

Movement from the position of alljoint extension to the
position of all-joint flexion.

Movement from the position of all-joint flexion to the po-
sition of all-joint extension.

Movement from the position of all-joint extension to the
position of MCP flexion, IP extension, keeping the IP
joints extended throughout the motion.

Movement from the position of IP extension and MCP
flexion to the position of IP flexion and MCP exten-
sion.

Moverment from the position of IP flexion and MCP ex-
tension to the position of IP extension and MCP flex-
ion.

Movement from the position of IP extension and MCP
flexion to the position of all-joint flexion.

Movement from all-joint extension to the position of PIP
and MCP flexion, keeping the DIP extended through-
out the motion.

Movement from the position of PIP and MCP flexion to
the position of all-joint extension.

Table 5-1 depicts all possible finger movement combinations. The first 14 cases de-
picted in Table 5-1 were created using the above classification of finger control as a
guide. The table incorporates only six different starting and finishing positions, spe-

cifically:

CLOSE ( 1): fully flexed finger;
OPEN ( ): fully extended finger;




Table 5-1. 25 cases of finger flexion and extension.

CASE POSITION | POSITION [ ACTIVE
NUMBER CHANGE | CHANGE TENDON
FROM TO
1 .| —] EDC
2 —] S INTR
3 —— — FDP
4 — 1 FDP
5 ] T INTR
6 T — EDC
7 — ] FDP
8 —1 — | EDC+INTR
9 — 7 DOR
10 T —] EDC+FDP
11 — 7 DOR+INTR
12 T S| FDP
13 —_— — FDS
14 —] ———— | EDC+INTR
15 —1 1 INTR
16 B — FDS
17 — — EDC
18 —7 — FDS
19 — 1 FDP
20 — — INTR
21 N — FDS
22 — — ] FDP
23 T — EDC+FDS
24 —1 —] EDC+FDP
25 —7 7 DOR+INTR
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FF-DIP-STR ( ] ): fully flexed finger with the DIP
joint remaining extended;

HOOK ( ™ ] ): fully flexed finger with the MCP joint
fully extended;

V-SHAPE (T /) fully flexed finger with the DIP and
MCP joints fully extended;

POINT-DOWN ( 7 ): fully extended finger with the
MCP joint fully flexed.

30 variations of the above positions can be created if the terminal position of each fin-
ger is the starting point of each other position. Five cases have been eliminated by the
author after an in-depth study of human finger movements from Tubiana [1981], Ka-
pandiji [1970], and Seireg et al. [1989]:

From CLOSE to FF-DIP-EXT;
From CLOSE to V-SHAPE;
From HOOK to FF-DIP-EXT;
From HOOK to V-SHAPE,
From FF-DIP-EXT to CLOSE.

The first four cases were eliminated because no tendon exists in the finger that can
extend the DIP joint before the PIP joint. The last case was eliminated because when
the MCP and PIP joints are flexed to 90°, the FDP cannot flex the DIP joint for it has
become too slack for any useful contraction, as noted in Kapandiji [1970]. The fourth
column in Table 5-1 indicates which tendons are required to be triggered from the
starting position to create the desired finishing position.

The cases in Table 5-1 depict finger flexion and extension; however, the finger
also abducts and adducts. Two cases were included to reflect these movements:

ABDUCT: a finger is moved away from the midline;
ADDUCT: a finger is moved towards the midline.

These two cases are depicted in Table 5-2.



Table 5-2. Two cases of finger abduction and adduction.

Case Position | Position Active
Number Change Change Tendon
From To
26 ——— DI
27 el PI

5.2.2 Databases

Based on hand motion classification and finger motion patterns, there were
three databases developed for this research: a Hand Commands Database; a Finger
Commands Database; and a Finger Tendon-Length Database.

The first database mentioned was the Hand Commands Database. As noted in
section 5.1, any complex motions of the hand are combinations of the basic motions
classified in the inclusive system. Since the hand motions are described as combina-
tions of finger commands, this database is dynamic for an animator can edit this data-
base to define new postures as required in terms of finger commands. Currently, this
database only contains the following hand motions: flat; fist; claw; spread; hook; and a
subset of the American Sign Language.

The second database mentioned was the Finger Commands Database. Each
hand command can be described in terms of finger commands. For example, a hand
command FIST would require the following finger commands: CLOSE_INDEX,
CLOSE_THIRD; CLOSE_RING; CLOSE_PINKY; and CLOSE_THUMGB. The finger
commands are the eight positions described in section 5.1: CLOSE; OPEN;
FF-DIP-STR; HOOK; V-SHAPE; POINT-DOWN; ABDUCT; and ADDUCT. The
specific finger that this command is modifying is appended as an argument to the fin-
ger command. An excerpt from the Finger Commands Database is depicted in Table
5-3.

The third database mentioned was the Finger Tendon-Length Database. This
database describes the eight finger commands in terms of normalized tendon lengths.
To develop this database, the author used the hand-muscle programme described in
section 4.6 to determine the length of all tendons to create the specified finger com-
mand. These lengths were normalized to provide generality to the tendons in all fin-
gers. When a tendon is at its rest position (open hand), the length value is 100%; when
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a tendon is completely taut, the length value is 0%. For example, a command CLOSE
would require the following tendon lengths: FDP at 49%; FDS at 0%; DOR at 0%;
EDC at 49%; and INTR at 4.9%. Noting that the FDP, EDC, and INTR lengths are
set to 4.9% because the range on the sliders was increased to accommodate the
FDS-only flexion which would set the slider for the FDP to 0%. Using this interface
(see Figure 4-20), the author fully flexed a finger (by setting the slider value to the
FDP minimum) and recorded the lengths indicated by the sliders for each tendon. An
excerpt from the finger tendon-length database is depicted in Table 5-4.

Table 5-3. Excerpt from the Finger Commands Database.

HAND COMMAND FINGER COMMANDS

FIST CLOSE_INDEX, CLOSE_MIDDLE,
CLOSE_RING, CLOSE_PINKY,
CLOSE_THUMB

POINT OPEN_INDEX, CLOSE_MIDDLE,
CLOSE_RING, CLOSE_PINKY,
CLOSE_THUMB

PEACE CLOSE_RING, CLOSE_PINKY,
CLOSE_THUMB, OPEN_INDEX,
OPEN_MIDDLE, ABD_INDEX,
|JABD_MIDDLE

Table 5-4. Excerpt from the Finger Tendon-Length Database.

FINGER COMMAND FINGER TENDON LENGTHS
CLOSE_INDEX 0.0490 0.0 0.0 0.0490
0.0490
OPEN_INDEX 1.01.0 1.0 1.0 1.0

5.3 Artificial Neural Networks in this Research

There were several ANNs developed and tested within this research. This sec-
tion provides a general overview of the type of ANNs adopted, and the training algo-
rithm applied to these ANNS.

5.3.1 Artificial Neural Network Architecture

As discussed in section 2.2.3, there exist many different types of ANNs. The
ANNSs developed for this research are feedforward neural networks. A feedforward
network is a graph with no loops. Feedforward networks are static for they only pro-
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duce one set of output values, and are memory-less for they are not dependent on the
state of the network. This architecture was chosen based on several reasons:

Masters [1993] states that the multilayer feedforward neu-
ral network is a universal function approximator and
can thus, theoretically at least, teach anything learn-
able to the network;

Masters [1993] states that if real-time processing is
needed, a multilayer feedforward network may be the
only practical choice for its execution speed is among
the fastest of all models currently in use;

Ridsdale [1990] stated that a feedforward ANN is thought
by many to be a good model for how learning actually
takes place in the nervous system.

A disadvantage of a multilayer feedforward network is the lack of a fast and reliable
training algorithm. The error back-propagation learning algorithm presented in the
next section usually converges to the nearest minimum, but still can be slow. There is
no guarantee that the achieved minimum is global. While the learning algorithm can
be slow during training, it does not affect execution performance during operation. In
general, the training time is orders of magnitude less than the projected operation time,
and can thus be considered negligible.

Once a feedforward ANN architecture is chosen, a difficulty arises in finding a
good match between an ANN layout and the corresponding research problem. Re-
searchers are still trying to develop a general-purpose ANN architecture (Barhen et al.
[1989] and McClelland et al. [1988]). The most commonly used general-purpose lay-
out is called the back-propagation ANN. This network is composed of three layers:
an input layer; zero or more hidden layers; and an output layer. Neurons in one layer
receive input from all the neurons in the previous layer, and send their outputs to all
the neurons in the next layer. All the neurons in the back-propagation ANN have the
same activation function.

The purpose of a back-propagation ANN is to learn to generate an arbitrary
function given a set of examples. The first step in designing a back-propagation ANN
is to determine the form of the function to be learned; thus, the number of inputs and
the number of outputs needs to be determined. The input layer has one element for
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each input; the output layer has one element for each output. The number of hidden
layers, and the number of elements in these layers, both depend on the complexity of
the function to be learned. In general, more layers with more elements will allow the
ANN to learn a more complex function to a desired degree of accuracy. More layers
with more elements also cause slower learning and slower retrieval. Beyond these gen-
eralizations, little is yet known. In practice, considerable experimentation is needed to
find the optimal layout.

There are several drawbacks associated with using an ANN. First, given the
specifications of a problem, it is very difficult to specify an effective ‘a priori’ architec-
ture. Secondly, after an ANN has been trained, intuitive understanding of how it
works may be difficult. Thirdly, there is a supposition that the ANN will work cor-
rectly when presented with any possible input within a problem space. Techniques
for strict mathematical verification of an ANN's performance are still being developed
by many researchers. An ANN that has been well trained for a specific task and veri-
fied with a reasonable testing set will perform well in practice. Performance quality is

simply difficult to prove at this time.

5.3.2 Error Back-propagation Training Algorithm

The operation of an ANN involves two processes: learning and recall. Learn-
ing is the process of adapting the connection weights in response to the input values.
The ANN "learns" based on a learning rule that governs how the connection weights
(w) are modified because of the input values (z) (see section 2.2). Recall is the process
of taking an input and producing a response based on what the ANN learned.

The learning algorithm applied in this research is a general delta-rule learning
algorithm, also known as the error back-propagation training algorithm (Rumelhart et
al. [1986]). Training involves multiple cycles through the training data during which
the weights are modified to reduce the error between the ANN output and the desired
output. The cumulative error is calculated using a squared-error cost function, and
this function is defined as the difference been the desired output and actual output,
squared and summed over all patterns. The standard error back-propagation training

algorithm can be summarized as follows:
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1. One pattern is presented from the training data to the
ANN and the ANN computes the output.

2. The output from the ANN is compared to the desired
output.

3. An error signal is calculated using a negative gradient
descent technique.

4, The error signal is propagated to both the input and hid-
den layers, and connection weights are modified.

In this research, the author modified the standard error back-propagation algorithm by
dividing the last part into two steps:

4, The error signal is propagated to the input layer and con-
nection weights are modified.
5. Parts 1-3 are repeated for the same pattern, and the error

signal is propagated to the hidden weight layer and
connection weights are modified.

As noted in Samad [1988] and tested on a set of ANN architectures in this research,
this method speeds convergence greatly. Since the essence of the learning algorithm is
to evaluate the contribution of each particular weight to the output error, the above
modification allows the algorithm to approximate the contribution of the layers sepa-
rately. This modification decreases the total number of passes through all the cases.
Once all cases have been presented to the ANN, a cycle has been completed
and the summed error generated by this cycle is compared to the user's desired maxi-
mum error. If the summed error is still greater than the desired error, the ANN con-
tinues to cycle through the training data until the desired error is attained. The corre-

sponding computer procedure is located in Appendix B.

5.4 Artificial Hand Neural Network

Once the databases had been developed, attention centered towards creating
and testing ANNs to control tendons. The artificial hand neural network (AHNN)
was divided into two ANNS: a finger flexion and extension neural network (FFENN);
and a finger abduction and adduction neural network (FAANN). This section de-
scribes in detail these neural networks, including current results.



66
5.4.1 Finger Flexion and Extension Neural Network

The FFENN controls finger flexion and extension. To create a specified move-
ment or animated goal, the output of the FFENN calculates which tendon(s) must be
activated, and the amount of tendon-length change needed by the flexors and exten-
sors in the finger model. The development, training, and testing of the FFENN is de-
scribed next.

5.4.1.1 FFENN Architecture

The FFENN is a multilayer feedforward, fully connected network consisting of
a set of neurons that are arranged into three layers consisting of: ten neurons in the
input layer corresponding to two sets of input data; nine neurons in the hidden layer;
and five neurons in the output layer. Figure 5-1 depicts the FFENN. The first set of
the input data corresponds to the desired resultant tendon lengths of the FDP, FDS,
DOR, EDC, and INTR when the movement will have been completed (Table 5-4).
The second set of the input data corresponds to the current tendon lengths of the
FDP, FDS, DOR, EDC, and INTR at the time of the requested command. The hid-
den layer, consisting of nine neurons not directly corresponding to any tendons, is re-
quired for the FFENN to make the necessary correlations between the input and de-
sired output of the FFENN. Several configurations ranging from 6 to 15 hidden
nodes were tested to determine an optimal size. If the ANN fails to converge to a solu-
tion, then more hidden nodes would be required. If the ANN does converge, fewer
hidden nodes should be tested for they may suffice for convergence. The output layer
consists of five neurons and corresponds to the tendon activation layer. The activation
function used was a modified unipolar continuous function:

F (net) = 1.02 / (1 + e™)

where net = Zwizi (see section 2.2). The activation function was modified because it
was noted during testing that the FFENN had problems reaching either end of the
unipolar continuous range of (0, 1) within an acceptable limit. Thus for FFENN to
reach (0, 1) within an acceptable range, the activation function was increased to a
range of (0, 1.02). A sigmoidal activation function was chosen to ensure a desirable
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normalization, since the output layer computed the amount of tendon-length change
as a percentage. In Zurada [1992], the unipolar continuous activation function con-
tains a steepness factor A. A was choosen to be linear and set equal to 1.0 since the
range of the desired outputs of the ANN are evenly distributed in finger postures rang-
ing from fully flexed to fully open.

Resultant Current
Tendon Lengths Tendon Lengthz Input Layer

Hidden Laysr

Output Layer

Figure 5-1. Finger flexion and extension artificial neural network.

5.4.1.2 Input-Output Data

Finger flexion and extension cases, listed in Table 5-1, were used to train the
FFENN. Two batches of input-output sets were created. The first input-output set for
the FFENN only included cases 1-7, 9, 12-13, and 15-22 because these were the cases
where only one specific tendon trigger was required for a specified movement. The
other cases (8, 10, 14, 23-25) were not included in either the training or testing sets
since these cases can be derived from a combination of two or more other cases. Once
the FFENN was trained and tested with this input-output set, it was noted by the au-
thor that the FFENN could not create certain finger end-positions that required op-
posing tendons to be manipulated. Thus, a second input-output set was created to
include all cases listed in Table 5-1 since some of these cases required manipulating
opposing tendons simultaneously. The gathering of empirical data for cases where
more than one tendon is required for a specified movement was problematic. Since
one tendon affects all other tendons, it was difficult to measure the amount of ten-
don-length change in just one tendon in isolation. An assumption was made that re-
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quires flexors always to move before extensors, and thus resolves the difficulties of
gathering empirical data when opposing tendons are involved.

The FFENN's inputs and outputs have been normalized between 0.0 and 1.0
to allow for the normalized manipulation of different finger lengths. The hand-muscle
programme described in section 4.6 was modified to aid in gathering data based on
the cases listed in Table 5-1. The author used the hand-muscle programme to place
fingers in postures denoted under the Position Change From column; the automated
process was then used to gather tendon-length information on different postures be-
tween this position and the posture denoted under the Position Change To column in
Table 5-1. This allowed for an automated process of data collection for the training
and testing sets; however, once the data was collected, the author imported this data
into a spreadsheet programme to reformat the data according to the specifications of
the FFENN. Current tendon lengths were gathered from the automated process of the
hand-muscle programme based on case number. The resultant lengths were repli-
cated for each current tendon length, and the desired output of the FFENN was calcu-
lated. The desired output included which tendon(s) must be activated, and the
amount of length change needed by the flexors and extensors in the finger model.
Once the FFENN data was in the appropriate format, duplicate patterns were elimi-
nated from the testing data. From the testing data, patterns were chosen to create the
training data. The first set of input-output data contains 826 testing patterns, of which
317 patterns comprised the training data. The second set of input-output data con-
tains 1634 patterns, of which 756 patterns comprised the training data. Appendix C1

depicts an excerpt from the input-output data set.

5.4.1.3 Training the FFENN

All data may be used to train the FFENN; however, a small subset is often all
that is needed to train a network successfully. The previous section discussed the cre-
ation of the training and testing data. The testing data is used to verify the training of
the FFENN on input data that it may not have processed during training. The train-
ing data should cover the entire expected input space. The training data used for the
FFENN contains 317 patterns for flexion and extension of an animated finger.
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Weights were initialized to random values between -0.5 and +0.5. An error
back-propagation training algorithm was implemented as stated in section 5.3.2.

5.4.1.4 FFENN Results

There are three variables needed in the training of the FFENN: the number of
nodes in the hidden layer (H); the learning rate parameter (N); and the maximum er-
ror desired by the trainer (EMAX). The number of nodes in the hidden layer must be
set in constructing the FFENN. As noted previously (Section 5.4.1.1), a hidden layer
of nine nodes performed efficiently.

The selection of a value for the learning rate parameter affects the network per-
formance. Experiments to determine a range for N were conducted on the FFENN,
and it was found that N should be a number between 0.01 and 0.2 to ensure that the
network will converge to a solution. A small value of N means that the network may
have to make a large number of iterations, and any large N value may prevent the
FFENN from converging. From the experiments, smaller values of N resulted in a
convergent performance, noting that N=0.1 seemed efficient. As noted by Zurada
[1992], N may be modified during training to speed convergence of the ANN; however,
in this training algorithm, N remainded constant.

Finally, the maximum error desired by the trainer was set to 0.002 since an er-
ror of 0.2% in the extension or flexion of a finger cannot be visually detected during
animation and the FFENN converged to this error.

5.4.1.5 Test Data Performance

The error between the desired and actual output was computed for all patterns
in the testing data, and the errors were plotted in histograms depicted in Figure 5-2.
Figure 5-2a represents the overall performance error on the training data. The
FFENN computed the proper tendon-length change for 307 patterns (from a total of
317 patterns) within an error range of £1%. All 317 patterns fell inside the 3% error
range. Figure 5-2b represents the overall performance error on the test data. The
FFENN computed the proper tendon length change for 527 patterns (from a total of
826 patterns) within an error range of +1%. Only four patterns were beyond the +3%
error range, but were within the +5% error range.
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5.4.1.6 Discussion and Future Direction

From Figure 5-2, we were able to attain information on the accuracy of the
FFENN on both training and testing data. The testing set allowed the author to no-
tice certain input patterns with which the network had difficulties and to address those
problems individually. Such problems included finger patterns that required manipu-
lations of opposing tendons. The author wanted to be able to recognize what the
FFENN still could not solve. Usually, this required adding the problematic finger pat-
terns into the training set.

5.4.2 Finger Abduction and Adduction Neural Network

The FAANN controls finger abduction and adduction. To create a specified
movement or animated goal, the output of the FAANN calculates which tendon must
be activated, and the amount of length change needed by the palmar and dorsal in-
teroseous in the finger model. This section describes the development, training, and
testing of the FAANN.

5.4.2.1 FAANN Architecture

The FAANN architecture is similar to the FFENN architecture discussed in
section 5.4.1.1. The FAANN is a multilayer feedforward, fully connected network con-
sisting of a set of neurons that are arranged into three layers, consisting of: four neu-
rons in the input layer corresponding to two sets of input data; five neurons in the hid-
den layer; and two neurons in the output layer. Figure 5-3 depicts the FAANN. The
first set of the input data corresponds to the desired resultant tendon lengths of the PI
and DI when the movement will have been completed (T'able 5-2). The second set of
the input data corresponds to the current tendon lengths of the PI and DI at the time
of the requested command. The hidden layer, consisting of five neurons not directly
corresponding to any tendons, is required for the FAANN to make the necessary corre-
lations between the input and desired output of the FAANN. Similar to the FFENN,
several experiments were conducted to evaluate the size of the hidden layer and ex-
periments of hidden nodes ranging in number from 2 to 7 were conducted to deter-
mine an acceptable size of the hidden layer. The output layer consists of two neurons
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and corresponds to the tendon activation layer. The activation function used was a
modified unipolar continuous function discussed in section 5.4.1.1.

Resultant Current
Tendon Lengths Tendon Lengths Input Layer

Hidden Layer

Qutput Layer

DI PI

Figure 5-3. Finger abduction and adduction artificial neural network.

5.4.2.2 Input-Output Data

Similar to the input-output data sets that were created for the FFENN, data
sets were also created for the FAANN in a comparable manner as discussed in section
5.4.1.2. Finger abduction and adduction cases, listed in Table 5-2, were used to train
FAANN. The input-output set for the FAANN contains 1308 testing patterns, of
which 328 patterns comprised the training data. Appendix C2 depicts an excerpt
from the input-output data set.

5.4.2.3 Training the FAANN

Similar to the training data for the FFENN, the training data for the FAANN
should cover the entire expected input space. The training data used for the FAANN
contains 328 patterns for abduction and adduction of an animated finger. Weights
were initialized to random values between -0.5 and +0.5. An error back-propagation

training algorithm was implemented as stated in section 5.3.2.

5.4.2.4 FAANN Results

There are three variables in training the FAANN: the number of nodes in the
hidden layer (H); the learning rate parameter (N); and the maximum error desired by
the trainer (EMAX). These variables were discussed in section 5.4.1.4. For the
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FAANN, these variables were set to the following values: H = 5; N = 0.1; and
EMAX=0.001. EMAX was set to 0.1% since an error of this size in the abduction or
adduction of a finger cannot be visually detected during animation, and the FAANN
was able to train to a lower error rate than the FFENN in the same length of time.

5.4.2.5 Test Data Performance

The error between the desired and actual output was computed for all patterns
in the testing data, and the errors were plotted in histograms depicted in Figure 5-4.
Figure 5-4a represents the overall performance error on the training data. The
FAANN computed the proper tendon-length change for 322 patterns (from a total of
328 patterns) within an error range of +1%. All 328 patterns fell inside the £3% error
range. Figure 5-4b represents the overall performance error on the testing data. The
FAANN computed the proper tendon length change for 1294 patterns (from a total of
1308 patterns) within an error range of +1%. No patterns were outside the 3% error

range.

5.4.2.6 Discussion and Future Direction

From Figure 5-4, we were able to attain information on the accuracy of the
FAANN on both training and testing data. The testing set allowed the author to no-
tice certain input patterns with which the network had difficulties and to address those
problems individually. No such difficulties occurred in the FAANN as in the FFENN.
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5.4.3 Summary of the AHNN

In this section, the FFENN and FAANN were developed for finger movement.
Once these neural networks were trained and tested, they were reproduced for each
finger and placed within a large hierarchy, as depicted in Figure 5-5.

'Hund Command {e.g. FIS'X‘)I

IFAnq-r Command {e.g. CwsE_INDE()l

IFAANNI IFFENNIIPWNI IPFBI'NI FAANN

Figure 5-5. Architecture of the Artificial Hand Neural Network.

5.5 Computer Implementation

Two computer programmes were created to incorporate the AHNN. The first
computer programme is a modified version of the hand-muscle programme described
in section 4.6. This modified programme allowed the author to test more finger pat-
terns that can be processed by the FFENN and FAANN, since the testing data only
contained a subset of the entire expected input space. The second computer pro-
gramme incorporates an animated hand that has learned a subset of the American
Sign Language. Both of these programmes are described in the following section.

5.5.1 Modified Hand-Muscle Programme

A testing set should cover the entire input space, but for the FFENN and
FAANN this is impossible since the input space is vast. Thus to test more situations
and visually detect problems with the networks, the AHNN was incorporated into an
animation programme to view the end-position results. When problems were detected
(as mentioned in sections 5.4.1.6 and 5.4.2.6), the input patterns were incorporated into
both training and testing data. Once these new problematic patterns have been incor-
porated into the training data, the networks were retrained and tested to note if the
networks improved in their performance on these patterns.
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A menu option was created to allow a user to send individual hand and finger
commands to the AHNN. The animator could manually manipulate the tendons as
depicted in section 4.6.5 and then send either a hand command or finger command to
the AHNN. This allows the animator to test visually the results of the AHNN for a
vast number of finger tendon lengths. An example screen shot of this programme is

depicted in Figure 5-6.

Figure 5-6. Screenshot of the modified hand-muscle programme.
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5.5.2 Signing Programme

The ability for an ANN to manipulate the muscles and tendons of the human
hand is a very important step in the development process of dynamically displaying
finger movements. As a simple example, the author has presented an American Sign
Language (signing fingers) demonstration displaying the capabilities of the AHNN in
determining the end positions of the thumb and fingers.

As the programme begins executing, an initial screen appears as shown in Fig-
ure 5-7. The hand is generated in the top part of the screen. The scene can be rotated
in the 3D environment using the mouse buttons for x-axis, y-axis, and z-axis rotation.
Mouse movements and rotations were described in detail in section 4.6.4.

The user can type letters in the input space provided at the bottom of the
screen. Upon pressing the return key, the letters that were typed by the user will be
signed by the fingers.

Figure 5-7. The initial screen of the ASL program.
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5.6 Chapter Summary

In this research, an approach for creating ANNs to manipulate an animated
human hand based on tendon control is described and tested. Three databases were
created: a Hand Commands Database; a Finger Commands Database; and a Finger
Tendon-Length Database. The Hand Commands Database is a dynamic database
that contains hand commands. The Finger Commands Database contains the eight
positions described in section 5.1: CLOSE; OPEN; FF-DIP-STR; HOOK; V-SHAPE;
POINT-DOWN; ABDUCT; and ADDUCT. The Finger Tendon-Length Database
describes the eight finger commands in terms of normalized tendon lengths. The
AHNN contains five sets of ANNs, with each set containing a FFENN and a FAANN.
The FFENN was developed and tested to flex and extend an animated finger. The
FAANN was developed and tested to abduct and adduct an animated finger. The re-
sults of these ANNs produced correct tendon control and this could be viewed in our
animation programme. Using the cases described in Table 5-1 and Table 5-2, entire
hand motion can be achieved and this is an important step in AIVH development.
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6. Conclusions and Future Work

He who chooses the beginning of a road chooses the place it
leads to. It is the means that determines the end.
- Harry Emerson Fosdick

In this research, the ability for artificial neural networks (ANNs) to determine
tendon control in the hand has been developed and tested, producing positive results.
Feedforward ANNs manipulated an underlying tendon hand model in real time and
determined end positions of the thumb and fingers to allow for free hand animation.

A wide variety of motion control techniques were described in section 2.1.
These techniques are used and combined to produce required animated movements.
As human models increase in complexity, new motion control algorithms will be cre-
ated to attain realistic human movement. Section 2.2 provided an overview of ANNSs.
ANNs provide an alternative approach to solving many problems and may be able to
provide a new approach in animation motion control. Section 2.3 provided an over-
view of how ANNs have been applied for muscle activity, indicating that an ANN
could learn how to trigger tendons and muscles to produce certain movements. In this
research, the author applied ANNs to trigger tendons to allow for animation of the
thumb and finger movements.

As discussed in the first part of chapter 2, a classification scheme based on mo-
tion control methods was presented, and included the following categories: geometric;
physical; and behavioural. The model created in this thesis would be included in the
behavioural methods category, and the model also would be included in the task-level
method since an action is specified only by its effects on objects, in this case the
thumb and fingers. For example, when an animated hand is given the command
FIST, this command is translated into low-level instructions. These instructions corre-
spond to finger commands, such as CLOSE_INDEX, CLOSE_THIRD, CLOSE_RING,
CLOSE_PINKY, and CLOSE_THUMB. Each of these commands is further translated
into tendon control.

As discussed in the second part of chapter 2, ANNs provide an alternative ap-
proach to many problems and may be able to provide a new approach in animation
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motion control. ANNSs were incorporated into an animation programme to determine
in real time the final positions of human hand postures. ANNs have not been applied
to animate human movement, but their potential is promising in this area.

As discussed in the last part of chapter 2, ANNs have been applied for muscle
activity, indicating that an ANN could learn to predict muscle activity for certain
movements. In this thesis, ANNs were trained to control tendons of an animated
hand.

In chapter 4, a detailed description of a human hand was given. There are
many muscles and tendons in a hand; however, only a subset of these muscles were
modelled. These motor muscles were implemented in a programme (section 4.6) for a
user to manually manipulate, but there are other muscles that were implemented
within the programme code that the user does not manipulate. Also provided in this
chapter is a flavour of the mathematical calculations required to appropriately affect
the joints of the thumb and fingers.

Once the underlying tendon model was developed and tested, ANNSs could be
created to manipulate tendon control. This is the main focus of chapter 5 and the
goal of this thesis. An understanding of hand movements was needed before develop-
ing ANNSs to control the thumb and fingers, resulting in Table 5-1. The first 14 cases
depicted in this table were extracted from work done by Landsmeer et al. [1965] and
Long et al. [1964]. The remainder of the cases in Table 5-1 and the two cases in
Table 5-2 were determined by the author to complete all possible finger movement
combinations. Based on hand motion classification and finger motion patterns, there
were three databases developed for this research: a Hand Commands Database; a Fin-
ger Commands Database; and a Finger Tendon-Length Database. These databases
were created by the author since such databases do not exist in other related works or
research areas. In particular, the Finger Tendon-Length Database that describes the
eight finger commands in terms of normalized tendon lengths was important in allow-
ing ANNSs to determine tendon control. Using the modified hand-muscle programme
described in section 4.6 and 5.5.1, finger patterns were created on which to train and
test the neural networks. Once the networks had been trained, they were incorporated
into an animation system for further visual verification of finger postures, since hu-
mans are better at detecting problems visually. The results of the networks produced
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appropriate end positions. In chapter 5, a demonstration of an American Sign Lan-
guage programme was created to exhibit the neural networks’ ability to manipulate the
tendons successfully that could allow for real-time motion and would display finger
rmovements.

There are several accomplishments in this thesis. First, the most complex and
versatile part of the human body was modelled and controlled. Secondly, ANNs were
developed, trained, and tested to learn the correlation between finger postures and ten-
don activations. This allows ANNs to manipulate in real time the animated thumb
and fingers. Now that ANNs are seen to be successfully applied to hands, then the
next step is to apply this technique to the entire body. The aspect of applying ANNSs
is new to the field of computer animation, but promising results can be obtained by
applying ANNSs in this field. Thirdly, this research points to further developments in
fields of biomechanics, orthopedics, and medicine. In biomechanics and orthopedics,
this research can be applied as a tool for developing and testing of robotic manipula-
tors and prosthetics. In the field of medicine, researchers can use this approach as a
basis to question human motion problems. Finally, this model can be integrated with
existing models for animated human movement. Since it manipulates an underlying
skeleton model, it can be integrated into existing hand animations that also manipu-
late a skeleton model. The execution speed of ANNs can be increased if the ANNs
are integrated into hardware components, thus real-time performance in virtual reality
environments can be achieved.

In general, sophisticated animation techniques are required to create and con-
trol virtual humans. Virtual human modelling must include the structure needed for
virtual human animation. When linking modelling and animation, human figure ani-
mation is complex because the human body is capable of making vast and innumer-
able combinations of shape positions and interacts with its environment in many dif-
ferent ways. A computer model for a synthetic character could try to mimic a human
by creating ANNSs that are trained to accomplish a set of movements. The goal of this
research was to create ANNs to control tendons in an animated human hand. The
hand model developed is based on a human hand, and the movement control of the
thumb and fingers is based on muscle control. Using this model, back-propagation
neural networks were successfully developed and trained to manipulate free thumb
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and finger patterns, and this is an important step in AIVH development.

This research is an ongoing endeavour. The next step to take within this area
is to create an ANN that can learn the relationships between the hand commands and
the finger commands, thus eliminating the need for these databases as stated in section
5.2.2. This idea would be used for an AIVH to interact with its environment in such
ways as touching or grasping. The next logical step would be to include resisted mo-
tion, such as power gripping, precision handling, and pinching. This step involves
many different aspects of computer animation, such as collision detection, object iden-

tification, and environment awareness.
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8. Appendices

These appendices provide code and data fragments for this thesis. All pro-
grammes in this thesis were written in the C language. All programmes execute on a
DEC ALPHA, using Motif for the user interface and Mesa for the computer graphics.
This annex contains the following appendices:

A Code fragment for the FDP tendon;

B. Code fragment for the error back-propagation training
algorithm.

C. Excerpts from the input-output data sets for:
C1. Finger Flexion and Extension Neural Network
C2. Finger Abduction and Adduction Neural Network
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Appendix A

Flexor Digitorum Profundus Program Module

void FDP_tension (double new_length, int fin_ num)
{
/* calculate the angles at the joints for the tension given
(new_length) */
int i; /* counter for joint */

double opp, hyp, alpha, beta, theta, omega, height;
/* opp - opposite in a triangle; hyp ~ hypotenuse, angles - alpha,
beta, theta, omega; height - height of triangle */

struct Vector distal_midpt, middle_midpt, temp, templ, temp2,
temp3;
/* distal_midpt - midpoint on distal phalanx; middle_midpt -
mid-point on middle phalanx, temporary variable - temp, templ,
temp2, temp3 */

int axis; /* axis of rotation */
double sag_angle; /* saggital plane */
int MCPflex = FALSE; /* flag for flexion of the MCP joint */

if (fin_num == THUMB)

axis = 3; /* different rotation than the fingers */
else

axis = 2;

for (i=deg_DIP; i<=deg_MCP; i++)
{
if (finger[fin_num].joints[i].curr_angle !=
finger[fin_num].joints([i] .max_angle)
{
if ({(i == deg_DIP) &&
(finger(fin_num)] .joints[deg_PIP] .curr_angle >= 90.0)
&&
(fingexr{fin_num].joints[deg_MCP] .curr_angle >= 90.0))
{
/* cannot flex DIP if PIP and MCP joints are
flexed */
fprintf(stderr, "NOT flex DIP if PIP and MCP are
bigger than 90\n");
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else
break;
} /* if curr_angle != max_angle */
} /* for */

if ((i <= deg_MCP) &&
(new_length < finger[fin_num].fdp.max_tension)&&
(new_length < finger[fin_num].fdp.tension))

if (fin_num != THUMB)

{
/* check if finger is in it'’s saggital plane */
sag_angle = sag_plane(fin_num);

/* move finger to saggital plane */
if (sag_angle != 0.0)
change_duct (fin_num, sag_angle);

}

/* f£ind hypotenuese */
switch (i)
{

case deg_DIP:

{
hyp = finger[fin_num].phalanx_length[DISTAL] / 2;

/* midpt of distal */
alpha = 0.0;

/* calculate the length of the opposite */
opp = new_length -
((finger {fin_num] .curr_pos [PIP] .x -
finger[fin_num].curr_pos[DIP] .x) +
(finger [fin_num] .curr_pos[MCP] .x -
finger[fin_num].curr_pos[PIP].x) +
(finger{fin_num] .curr_pos[CP].x -
finger[fin_num].curr_pos[MCP] .x));

/* calculate the height */
height = sqrt{(hyp*hyp) - (opp*opp));

finger [fin_num] .curr_pos[DIP].Xx;

finger [fin_num] .curr_pos[DIP].y;

finger [fin_num] .curr_pos[DIP].z -
height;

temp3.x
temp3 .y
temp3.z



templ

temp2

break;

}
case deg_PIP:

{

vsub (temp3,

finger [fin_num].curr_pos[DIP]):;

vsub(finger [fin_num] .curr_pos[PIP],

finger[fin_num] .curr_pos[DIP]);

/* find midpt of distal */

distal_m
midpt (£1

idpt =
nger [fin_num] .curr_pos[NAIL],
finger[fin_num].curr_pos[DIP]);

/* f£ind length of hypotenuese */

temp = vsub(finger[fin_num).curr_pos|[PIP],
distal_midpt);
hyp = mag(temp);
/* f£find alpha */
templ = vsub(finger[fin_num] .curr_pos[DIP],
finger [fin_num] .curr_pos[PIP]);
temp2 = vsub(distal_midpt,

finger{fin_num] .curr_pos[PIP]) ;

alpha =

/* calcu
opp = ne

joint_angle(templ, temp2);

late the length of the opposite */
w_length -

((finger [fin_num] .curr_pos[MCP] .x -
finger [fin_num) .curr_pos([PIP].x) +
(finger [fin_num] .curr_pos([CP].x -
finger[fin_num] .curr_pos[MCP] .x));

/* calculate the height */

height =

/* calculate
temp3.x
temp3.y
temp3.z

templ

temp2

break;

sqgrt( (hyp*hyp) - (opp*opp)):;

omega variables */

= finger([fin_num].curr_pos[PIP].x;

= finger[fin_num] .curr_pos[PIP].y:

finger[fin_num] .curr_pos|[PIP].z -
height;

vsub (temp3,
finger [fin_num] .curxr_pos[PIP});
vsub(finger[fin_num] .curr_pos[MCP],
finger[fin_num].curr_pos[PIP]);
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case deg_MCP:
{
/* find midpt of distal */
distal_midpt =
midpt (finger [£in_num] .curx_pos [NAIL],
finger [fin_num] .curr_pos[DIP]);

/* find length of hypotenuese */
temp = vsub(finger{fin_num].curr_pos[MCP],
distal_midpt);
hyp = mag(temp) ;

/* find alpha */
templ = vsub(finger[fin_num).curr_pos{PIP],
finger [fin_num] .curr_pos [MCP]) ;

temp2 = vsub(distal_midpt,
finger (fin_num] .curr_pos[MCP]);
alpha = joint_angle(templ, temp2);

opp = new_length -
finger [fin_num] .phalanx_length [CARPO] ;

/* calculate the height */
height = sqrt((hyp*hyp) - (opp*opp));

/* calculate variables for omega */
temp3.x = finger([fin_num].curr_pos[MCP] .x;
temp3.y = fingexr[fin_num].curr_pos[MCP].y;

temp3.z = finger[fin_num].curr_pos[MCP].z -
height;
templ = vsub(temp3,

finger {fin_num] .curr_pos[MCP]}};
vsub(finger[fin_num] .curr_pos|[CP],
finger [fin_num] .curr_pos[MCP]);

temp2

/* note that the MCP is going to flex */
MCPflex = TRUE;

break;

}
} /* switch */

/* step 2: calculate omega */
omega = joint_angle(templ, temp2);
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/* step 3: calculate beta */
beta = ((double) (opp))/hyp;

if ((beta <= 1.0) && (beta >= -1.0))
{

beta = (asin(beta)) * 180 / PI;

/* step 4: calculate theta */

theta = 180.0 - (alpha + beta + omega) ;
} /% if */

else
theta = 180.0;

/* check the constraints on angles */
if (theta > finger([fin_num].joints(i].max_angle)
{
/* change the phalanx position counterclockwise */
change_phalanx (fin_num, i,
—(finger[fin_num] .joints[i] .max_angle -
finger[fin_num].joints[i].curr_angle), axis);

/* position this angle at max and recalculate */
finger [fin_num] .joints[i].curr_angle =
finger [fin_num]}.joints[i] .max_angle;

/* move finger back if necessary */
if (sag_angle != 0.0)
change_duct(fin_num, -sag_angle);

/* call this routine again */
FDP_tension(new_length, fin_num) ;

/* need continue with this version of the procedure */
/* check if finger is in it'’'s saggital plane */
sag_angle = sag_plane(fin_num);

/* move finger to saggital plane */
if (sag_angle != 0.0)
change_duct (fin_num, sag_angle);
} /* beta >= max */
else

/* need change phalanx position counterclockwise */
change_phalanx (fin_num, i,
~{theta-finger[fin_num].joints[i] .curr_angle),
axis);

/* current angle set to new angle */
finger{fin_num].joints[i].curr_angle = theta;
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/* need to reset the current muscle tension */
distal_midpt = midpt(finger(fin_num].curr_pos [NAIL],
finger [fin_num] .curr_pos|[DIP]);
finger[fin_num] .fdp.tension =
finger[fin_num] .curr_pos[CP].x - distal_midpt.x;

/* EDC muscle is proporational to FDP */
finger[fin_num) .edc.tension = finger[fin_num].£fdp.tension;

/* need to reset the FDS muscle tension */
middle_midpt = midpt(finger[fin_num].curr_pos [DIP],
finger [fin_num] .curr_pos({PIP]);
finger[fin_num] .fds.tension =
finger{fin_num] .curr_pos([CP)].x - middle_midpt.x;

if (fin_num != THUMB)
{
/* EDL muscle is proporational to FDS */
finger [fin_num]} .edl.tension =
finger [fin_num] . fdp.tension;

/* reset the IO dorsal flexor */

middle_midpt = midpt(finger[fin_num].curr_pos|[PIP],
finger [fin_num].curr_pos[MCP]);

finger [fin_num] .io.d.tension =
finger {fin_num] .curr_pos[CP].x - middle_midpt.x;

/* move finger back if necessary */
if (sag_angle != 0.0)
change_duct(fin_num, -sag_angle);

/* if flexed MCP, abduct the finger by a percentage */
if (MCPflex)
ligament_mod(fin_num) ;

}

if (fin_num == THUMB)
{
/* need to reset the EPB muscle tension */
finger [£in_num] .epb.tension =
finger [fin_num] . fds.tension;

/* need to reset the APL muscle tension */
distal_midpt = midpt(finger[fin_num].curr_pos[PIP],
finger [fin_num] .curr_pos [MCP]) ;
finger [£in_num] .apl.tension =
finger [fin_num] .curr_pos[CP].x - distal_midpt.x;

}

/* if */



}

return;
/* FDP_tension */
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Appendix B

Error Back-propagation Training Algorithm

/* This is the file for the activation function and its derivative.
The function has been tailored to give answers between (0, 1.02).
The derivative of the activation function was calculated by hand.

*/

double func_cont (double lambda, double net)
{

return (1.02 / (1.0 + exp(-1.0 * lambda * net)));
}

double func_cont_der (double lambda, double net)
{
return ((1.02 * lambda * exp(-1.0 * lambda * net)) /
((1.0 + exp(-1.0 * lambda * net)) *
(1.0 + exp(-1.0 * lambda * net)))):

/* This is the program that implements an error back-propagation
training algorithm. The modifications are:

1. calculating the errors - first do hidden weights, then
recalculate the output of the neural network, then modify
input weights.

2. activation function is tailored for (0, 1.02)

*x/

void feedforward (double lambda)
{

int i, k; /* counters */

/* output of hidden layer */
for (i = 0; i < J; i++)
{
for (k = 0, nethid[i] = 0.0; k < I; k++)
nethid{i] += (V[i]l([k] * =z[k]);



}
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/* apply the activation function */

Y{i] = func_cont (lambda, nethid[i]):;
}
/* output of output layer */
for (i = 0; 1 < K; i++)
{

for (k = 0, netout{il] = 0.0; k < J; k++)
netout[i] += (W[i] (k] * Y[k]):

/* apply the activation function */

O[i] = func_cont {lambda, netoutl[i]);

return;
/* feedforward */

void main (int argc, char *argvl[])

{

double Emax, N, ESFO[ARRAY_SIZE], ESFH[ARRAY_SIZE];

double minW[ARRAY_ SIZE] [ARRAY_SIZE], minV[ARRAY_SIZE] [ARRAY_SIZE];
double E, d[ARRAY_SIZE], temp, lambda;

double PATT[NUM_PATTERNS]{15];

int p, P;

int i, j., k;

FILE *ow, *hw, *infile;

unsigned long int g, COUNT=0;

double min_error;

char filehid[20], fileout[20]), cathid[]l="-hid.weights",

catout[]="-out.weights";
int changed = FALSE, min_COUNT=0;

/* change for input/output redirection */
if ((arge < 3))

{
printf ("The program must be started with:\ntrain <training file>

<case name> <OPTIONAL initial weights file>\n");
return;

}

/* STEP 0 - Get all user-defined values */

/* get the values for P, I, J, K, N, and Emax */
printf ("Please enter the number of training patterns.\n");

scanf ("%d", &P);
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printf("Please enter I (number of inputs), J (number of hidden
nodes), and K (numer of outputs) wvalues for a single hidden layer
network.\n");

scanf("%d %d %4", &I, &J, &K);

printf("Please enter the learning constant\n");

scanf("$1f", &N);

/* make sure that n is > 0 */
while (N <= 0)
{

printf ("Learning constant must be greater than 0. Please re-enter
the learning constant.\n");
scanf ("%$1f", &N);
}

printf(“"Please enter the maximum error value.\n");
scanf("%1f", &Emax);

printf("Please enter the value for lambda for the continuous bipolar

function.\n");
scanf("%1lf", &lambda);

/* STEP 1 - initialize W, V, g, p, E */
/* If more than 3 arguements in the startup line, then no randomize

weights */

if (argec == 4)

{
/* read from initial weights file */
ow = fopen(argv([3], "r");

for (i = 0; i < K; i++)
for (j = 0; 3 < J; j++)
fscanf(ow, "$%$1f", &WI[i]([j1);

for (i = 0; i < J; i++)
for (j = 0; j < I; J++)
fscanf (ow, "%1f", &VI[i]I[j1):

printf("\nAll done with reading weights.\n");:

fclose(ow) ;
} /* read weights */
else
{
for (i = 0; i < K; i++)
for (3 = 0; j < J; J++)
W[i][j] = (double) ({(rand() % 11) - 5 ) / 10.0;
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for (i = 0; i < J; i++)
for (j = 0; j < I; j++)
VI[il[j] = (double) ((rand() % 11) - S5 ) / 10.0;

printf("\nAll done with randomizing weights.\n");
} /* else randomize */

/* make outfile names */
strcpy (filehid, argv(2}]);
strcpy (fileout, argv{2l):
strcat (filehid, cathid);
strcat (fileout, catout);

printf ("OUTPUT FILE NAMES: %s %s\n", filehid, fileout);

/* initialize variables */
q=0; p=20;

E = 0.0;

min_error = 100000.0;

/* get all the patterns */

infile = fopen(argv([(l], "r");
if ((infile == NULL) || (P > NUM_PATTERNS))
{
printf("Can’t open file OR\nNumber of training patterns is
greater than %d!\n", NUM_PATTERNS) ;
return;
}
else
{
for (i = 0; i < P; i++)

for (j = 0; j < (I + K); j++)
fscanf (infile, "%1f", &PATTI[i]([j]):

printf("First pattern is:\n");
for (j = 0; 3 < 15; j++)

printf("%f ", PATT{O0][J]):
printf("\n");

/* all done reading patterns */
fclose(infile);

}

while (p < P)

{

+
+

P 1;
a 1;
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/* STEP 2 - training starts here */
/* get z and 4 for this training case p */

for (i = 0; i < I; i++)
z[i] = PATT(p-11[i];

for (i = 0; 1 < K; i++)
d[(i] = PATTI[p-1][i+I];

/* process the pattern through the neural network */
feedforward(lambda) ;

/* STEP 3 - compute error (don’t need this until second
pass-through) */

/* STEP 4 - error signal vectors of both layers are computed */
for (i = 0; i < K; i++)
{

ESFO[i] = (4[il - oOfi]) *

func_cont_der (lambda, netout(i]);
}

for (i = 0; 1 < J; i++)
{
for (k = 0, temp = 0.0; k < K; k++)
temp += (ESFO[k] * W[k]([1i]);
ESFH[i] = func_cont_der(lambda, nethid[i]) * temp;

/* This is where we changed steps 5 and 6 from Zurada:
do step 6 first, then rerun the network, compute
erroxr signals, and then change the output layer
weights. This is to speed convergence of the
network.

*/

/* STEP 6 - hidden layer weights are adjusted */
for (j = 0; 3 < J; j++)
{

for (i = 0; i < I; i++)

V[jl[i] += (N * ESFH[j] * z[il);

}
/* now rerun the network, computer errors */
feedforward(lambda) ;
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/* STEP 3 - now compute error */
for (i = 0; i < K; i++)

{
E += (0.5 * ((d[i}] - O[i]) * (d[i] - Ofi1)));
}
/* STEP 4 - error signal vector computed for output layer only */
for (i = 0; i < K; i++)
{

ESFO[(i] = (d[i] - OI[i]) ~*
func_cont_der (lambda, netout[il]):;
}

/* STEP 5 - output layer weights are adjusted */
for (k = 0; k < K; k++)
{
for (3 = 0; 7 < J; Jj++)
{
W[kl [j] += (N * ESFO[k] * Y([j]);
}

/* STEP 7 - if p < P then p++, g++ and go back to step 2;
otherwise, go to step 8 */

/* STEP 8 - training cycle is complete. */
if (p >= P)

COUNT++;
printf("Training cycle %1d had ERRCR %1f\n", COUNT, E);

/* 1f exrror decreases, then temp values need to be updated */
if (min_error > E)
{
/* update temp weights */
for (i = 0; i < K; i++)
{
for (j = 0; j < J; Jj++)
{
minW[i] [j] = W(i]l[3];
} /* for j */
} /* for i */
for (i = 0; 1 < J; i++)
{
for (j = 0; j < I; j++)
{
minv([i][j] = VI[i]I3jl;
} /* for j */
} /* foxr i */



/* weights have been changed and so has
changed = TRUE;
min_COUNT = COUNT;

/* update minerror */
min_error = E;

} /* min_error */

if (((COUNT % CYCLE_NUM) == 0) &&

{
printf ("TEMP Print output layer weights

ow = fopen(fileout, "w"):
if (ow != NULL)
{
fprintf(ow, “TEMP\n\n");
fprintf(ow, "COUNT = %$1d and ERROR =

min_error) ;

(changed) &&
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mincount*/

(E >= Emax))
to %s:\n", fileout);
%$1f\n\n", min_COUNT,

for (i = 0; 1 < K; i++)
{
for (j = 0; Jj < J; j++)
fprintf(ow, "$f ", minW[i][3j]);
fprintf(ow, "\n");
}
fclose(ow) ;
Yy /* if */
printf ("\n\nTEMP Print hidden layer weights to %s:\n",
filehid);
hw = fopen(filehid, "w");
if (hw != NULL)
{
for (i = 0; 1 < J; 1i++)
{
for (j = 0; J < I; Jj++)
fprintf(hw, "$%£ ", minvI[i]l[3]);

fprintf (hw, "\n");

}

fclose (hw) ;
Yy /* 1E */
changed = FALSE;

} /* temp out */
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if (E < Emax)
{
printf ("Print output layer weights to %s:\n", fileout);

ow = fopen(fileout, "w");

if {(ow != NULL)

{
fprintf({(ow, "COUNT = %1d and ERROR = %1f\n\n", COUNT, E);
for (i = 0; i < K; i++)
{

for (3 = 0; j < J; J++)
fprintf(ow, "$f ", W[i]([3])}:
fprintf(ow, "\n");
}
fclose(ow) ;
Yy /* if */
else
{
printf("File %s could NOT be opened for writing!!\n",
fileout);
printf ("Output to screen.\n");

for (i = 0; 1 < K; i++)
{
for (j = 0; j < J; j++)
printf("$£f ", W[il[j1):
printf("\n");
}
} /* else */

printf ("\n\nPrint hidden layer weights to %s:\n", filehid);:

hw = fopen(filehid, "w");
if (hw != NULL)
{
for (i = 0; 1 < J; i++)
{
for (j = 0; 3 < I; j++)
fprintf(hw, "$f ", V{il(3]);
fprintf (hw, "\n");
}
fciose (hw) ;
Yy /% if */
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else
{
printf("File %s could NOT be opened for writing!!\n",
filehid);
printf ("Output to screen.\n");
for (i = 0; i < J; i++)
{
for (7 = 0; J < I; J++)
printf("$£f ", V[i1{j]);
printf("\n");
}
} /* else */
printf("\n\n g = %14 E = %1f\n", g, E);
break;
} /% if */
else
{
/* initiate new training cycle */
E = 0.0;
p = 0;
}

} /* if p >= P */
} /* while */
} /* main */
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Appendix C

Excerpts from the input-output data sets for:
C1.  Finger Flexion and Extension Neural Network
C2.  Finger Abduction and Adduction Neural Network
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C2.
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Adduction Neural Network
Tendon Lengths
Resultant Current
DI PI DI PI
.000000000 0.000000000 0.225115000 0.270541000
.000000000 1.000000000 0.635528000 0.727455000
.000000000 0.000000000 0.702910000 0.7955%91000
.000000000 1.000000000 0.341501000 0.406814000
.000000000 1.000000000 0.751914000 0.841683000
.000000000 0.000000000 0.733538000 0.823647000
.000000000 1.000000000 0.078101000 0.096192000
.000000000 1.000000000 0.139357000 0.168337000
.000000000 0.000000000 0.010720000 0.014028000
.000000000 1.000000000 0.151608000 0.184369000
.000000000 1.000000000 0.555896000 0.645291000
.000000000 0.000000000 0.947933000 0.985972000
.000000000 1.000000000 0.574273000 0.665331000
.000000000 0.000000000 0.249617000 0.300601000
.000000000 0.000000000 0.059724000 0.072144000
.000000000 0.000000000 0.114855000 0.140281000
.000000000 1.000000000 0.837672000 0.913828000
.000000000 0.000000000 0.194487000 0.234465000
.000000000 1.000000000 0.445636000 0.525050000
.000000000 0.000000000 0.604900000 0.697395000
.000000000 1.000000000 0.996937000 1.000000000
.000000000 1.000000000 0.402757000 0.476954000
.000000000 1.000000000 0.004594000 0.006012000
.000000000 1.000000000 0.892802000 0.953%908000
.000000000 1.000000000 0.537519000 0.625251000
.000000000 0.000000000 0.837672000 0.913828000
.000000000 1.000000000 0.274119000 0.328657000
.000000000 0.000000000 0.482389000 0.565130000
.000000000 1.000000000 0.304747000 0.364729000
.000000000 1.000000000 0.176110000 0.212425000
.000000000 0.000000000 0.182236000 0.220441000
.000000000 0.000000000 0.917305000 0.969940000
.000000000 1.000000000 0.114855000 0.140281000
.000000000 1.000000000 0.010720000 0.014028000
.000000000 1.000000000 0.415008000 0.490982000
.000000000 0.000000000 0.898928000 0.957916000
.000000000 0.000000000 0.984686000 0.997996000
.000000000 0.000000000 0.745789000 0.835671000
.000000000 0.000000000 0.200613000 0.242485000
.000000000 0.000000000 0.886677000 0.949900000
.000000000 1.000000000 0.476263000 0.559118000
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Excerpt from the Input-output Data Set for the Finger Abduction and

Desired ANN Output

DI
0.225115000
0.000000000
0.702910000
0.000000000
0.000000000
0.733538000
0.000000000
0.000000000
0.010720000
0.000000000
0.000000000
0.947933000
0.000000000
0.249617000
0.059724000
0.114855000
0.000000000
0.194487000
0.000000000
0.604900000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.837672000
0.000000000
0.482389000
0.000000000
0.000000000
0.182236000
0.917305000
0.000000000
0.000000000
0.000000000
0.898928000
0.984686000
0.745789000
0.200613000
0.886677000
0.000000000

PI

0.000000000
0.272545000
0.000000000
0.593186000
0.158317000
0.000000000
0.903808000
0.831663000
0.000000000
0.815631000
0.354709000
0.000000000
0.334669000
0.000000000
0.000000000
0.000000000
0.086172000
0.000000000
0.474950000
0.000000000
0.
0
0
0
0
0
0
0]
0
0
0
0
0
0
(o]
0
0
0
0
0
0

000000000

.523046000
.983988000
.046092000
.374749000
.000000000
.671343000
.000000000
.635271000
.787575000
.000000000
.000000000
.859719000
.985972000
.509018000
.000000000
.000000000
.000000000
.000000000
.000000000
.440882000





