INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

A TABU SEARCH METHOD FOR A

TACTICAL FOREST PLANNING PROBLEM

BY

EVELYN WINNIFRED RICHARDS

A Thesis Submitted to the
Faculty of Engineering
In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Industrial Engineering

Dr. Michel Gekdreau —

TECHNICAL UNIVERSITY OF NOVA SCOTIA
Halifax, Nova Scotia 1997

ivl

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Weilington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your filg Votre reférence
Our file Notre reéférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-31532-0

Canadia

TECHNICAL UNIVERSITY OF NOVA SCOTIA LIBRARY

"AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS"

TITLE

A Tabu Search Method for a Tactical Forest Planning Problem

The above library may make available. or authorize another library to make available,

individual photo/microfilm copies of this thesis without restrictions.

Full Name of Author: Evelyn Winnifred Richards
_J/l ’ /'/,‘ / /

Date:

i1

DEDICATION

This thesis is dedicated to Gerald Bance

iii

TABLE OF CONTENTS

Table Page
LIST OF FIGURES XIv
LIST OF TABLES XvHal
LIST OF ABBREVIATIONS XIx
ACKNOWLEDGMENTS XX
ABSTRACT XX1
CHAPTER1 INTRODUCTION 1
.1 THE PLANNING PROBLEM AND MODELceeeeeeteeeeeeeee e eee oo see s e 1
1.2. THESIS ORGANIZATIONceeiiecietieeneeereeeeneresesessessesonssssessessssseemsessesssssssssssnsseenssemessssnns 6
CHAPTER 2 OVERVIEW OF FOREST MANAGEMENT ISSUES 8
2.1 ECONOMIC AND SOCIAL IMPORTANCE OF FORESTS...cuveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesene s esennes 8
22 MULTIPLE OWNERS. DECISION-MAKERS AND GOALS.....uveeemeeeeeeeeeeeeeeoeeeeeeeeeeeeeesoveeens 9
2.3 CHARACTERISTICS OF FOREST MANAGEMENT MODELS........ooeeeeeeeeeeeeeeeeeeenveeeeessesssssens 12
2.3.1. Forest inventories and GIS SYSIEMSc.ooeoeeeemeeeeeeeeeeeeeeeeeeeeeesssens 13
2.3.2. Growth Models: Predicting Future Inventory..................oooeoooveeeeeeeeeeeraenn, 16
24. HIERARCHICAL PLANNINGuuueeteeeercrecennnnnns rerereretreetaennseresenesesnsannenas 18
2.4.1. Forest Management Hierarchyo.oooeeeoeeeeeeeeeeeeeeeeeeeeeeeeeon 19
2.4.2, Hierarchy of Planning Models........................ooooeooemooeeeeeeeeeeeeeeeeeeeen 21

v

242.1. Strata-Based Models 22

2422, Spatially Explicit Models for Tactical Planning 25
2.5. COHESION BETWEEN STRATEGIC AND TACTICAL MODELS. .29
CHAPTER3 TACTICAL PLANNING MODELS AND SOLUTION METHODS............... 31
3.1 SOLVING TACTICAL PLANNING MODELS......cuoeeeieteeeeeeeeeeee e v eeeeeneeeeeae s 32
3.2, SPATIAL DECISION UNITS......ooerrrerieerenecnsrnenscsesneeeseeeneseesesenens .34
3.3, ADIJACENCY CONSTRAINTScoriuimimiinteentosnsnesssaesesesesssessssesessensosesesessnsensssasomsmsmsssmsssson 36
3.3.1. Strong Valid Inequalities and Cutting Planes Algorithmscoco......... 38
3.3.2. The Adjacency Problem: Node Packing.....................ccoooeveeereeeoreeeeeeeeeeseennen. 40
3.3.2.0. Clique Inequalities..... 41
3.3.2.2 Odd Hole, Odd Anti-Hole Inequalities . . 41
3.4, GENERATING CLIQUE CONSTRAINTS c.couvintitietieeeceeseeeeeeeeeeneesssesessseesessesansessesssssesesnsssses 42
3.4.1 Generation Procedure......................eoueueueeeeneeeeeeeeeeeeeeeeeeeeee e 42
3.4.2. BLOEDEL FARM CASE STUDY ..cuvereremeereeeeneteeeeeeeneseeeeennenns [43
CHAPTER 4 47
TABU SEARCH 47
4.1. BASIC TABU SEARCH ALGORITHM «_.ecunueuieerertetceeceeeeeneeeeseeeeseessssssseesoeesasessesessesessassnns 47
4.1.1. Strict and Fixed TS, Tabu Tenure.........................ococoeeeueeeereeeeeeeeeeeeeeeereen. 49
4.1.2. ASDIrQHON CrTLETIAcoeoieeieeeeeeenev e reeaeesen e enesne e st es et seeae s 50
4.1.3. Summary of the Basic TS Structure...................oooeeeeeeeeeeeeeeeeeeereeeeerereserann. 51
4.2 REDUCED NEIGHBORHOOD SEARCHucuveeieinreecneeeeeeveereseeeseessesessssssssssssssssssmsssssssssssmssns 52
43, MOVE EVALUATION, INTENSIFICATION, DIVERSIFICATIONooeeuiemeeeeseeeeserveseeemeennseens 52
4.4, DYNAMIC RULES FOR EVALUATION AND PROHIBITION.......oomeueeemeencereceaceeneenennes 55

4.5. REACTIVE TABU SEARCH. eereerierteabanstannaarenarneanens 57

4.6. STRATEGIC OSCILLATION c....ceeecreceecturecremeenerenseessasssasesnesasssessnnssssessesssnsnssssnssssessssssssns 59

CHAPTER S HARVEST SCHEDULING AND

ROAD BUILDING PROBLEM (HSRBP) 61
5.1. MODEL ASSUMPTIONS .61
5.2. STANDS AND OPENINGS...ccvuereemenereretetrereiisscanenssesessaesesesessrsssssesesstscssessnssassesesssessasssens 64
5.3. LOST VOLUME PENALTY68
5.4. HARVEST VOLUME RESTRICTIONSeeeeuiuiticnreerecssieenseenssecsssssessssssssmomsemsasansessssssssssesssnns 71
CHAPTER 6 ROADING NETWORKS 74
6.1. CREATING THE PROPOSED ROAD NETWORKoovrevemirenrenreneeceerenerenesssessenesessssseemsemeemens 74
6.2. GRAPH REPRESENTATION OF THE ROADING NETWORKveeeeerueerreremereereeieeeceseseesessnenennns 76
6.3. INTEGER PROGRAMMING FORMULATION FOR RNP(X) cerereecsetterenacenissneananssnnnns 78
6.4. EQUIVALENCY TO STEINER TREE PROBLEM toresvseessnsorsessnsssease 80
6.4.1. The Steiner Tree Problem on Graphs.................cccoccoceeecomeenenimmecnereeseereneenns 81
6.4.2. RNP(x) as a Steiner Tree Problem......................ccccoeueieconninnounrenecreeceereenennns 82
6.4.3. Solving Steiner Tree Problemscccoomeeeceeuiicciiininiinivicnneeieeieereceeeenes 83
6.4.4. Differences berween SRNP(X) GNd RNP(X)oooeeeeeeeeereeeereeeeeeeeeeeeeeeaeeenes 85

6.5. SOLVING RNP(x) 86

6.5.1. POUR HEUFISHICeeeeeeeeeeeeeeeeeeeeeeeeeee et eeese s aaeeeesesessneeessesasessesneseesaenannae 87
6.5.2. Computational Complexilty...................coueuoeeeeeirecenesieeeeneeiesenereeseseressesersessen 88
6.5.3. NUMEPICAI RESULLS..............eeeeeeeeeeeeneeeeeeeeeeeeeeeeeeeeeeereeseeaeeeeesssesssssressssseesssnmnns 89
CHAPTER 7 TABU SEARCH ALGORITHMS FOR HSRBP 92
7.1. SEARCH ALGORITHM STRUCTURE 93

vi

7.2. MOVES AND NEIGHBOURHOOD SEARCH - 96

7.2.1 MOVE TYDES ...t cte et eae et e s s ses et ss e e e e e 96
7.2.2 Tabu Status and ASPiration Criteriaceeeeeeeeeeeeeemeeeeeeeeeeeeeeeennaeens 97
7.2.3 Calculating Change in Objective Function.......................ccoooeeemeeevueeeanenen.. 97
72.3.1. Loss Penalty 98
7.2.3.2. Roading Cost 98
7.2.3.3. Deviation from Maximum Opening Size 100
7.2.3.4. Add Move. 100
7.23.5. Delete Move. 101
7.2.3.6. Swap Move. 103
7.2.3.7. Harvest Target Deviations 103
7.3. SPECIAL DIVERSIFYING MOVES......ittitittreeneeettaeeeeeesceseesacasasssstosssssrssssssssansesasasassnes 103
7.4. FIXED TABU SEARCH ALGORITHM (FTS) ceeereeceenrancenas . 106
7.5. OSCILLATING TABU SEARCH ALGORITHM (OTS) ..ccuuiiirirnircceranecneseerccsenccsnenereeeeennns 106
7.6. REACTIVE TABU SEARCH ALGORITHMS (RTS) evere e a e aeeans .107
7.6.1. RTS Data Structures and Cycle Detection.....................eeeeeeeeecoceeerneeeeereeereennne 107
7.6.2. Hashing Address Computation.......................cooereeeeeevncinvserreenncenreneeeeennes 109
7.7. OSCILLATING REACTIVE TABU SEARCH ALGORITHM (ORTS)...eevecreceeeeecreecireeeneeennee 110
CHAPTER 8 EMPIRICAL RESULTS: SHULKELL STUDY REGIONioeenceee 113
8.1. STUDY REGION AND MODEL ...eciiiiiiiieicccineniereesaessessersscssssanmmacsssessscestasatassenasssanns 113
8.1.1 Characteristics of the Forested Stands..................cveeeeeeeeneccmneecaeernearersriseinns 114
8.1.2. Alernate DALASELSooeoeeeonieeieeeeeeeentre et seenencsesssae st essns 116
8.1.3. RoAdING NetWork................cooviviominiiieenienteeeeeesiee s e nesssacsestsae st snns 117
8.1.4. Model Parameterseeoeinmeieneeeneireieesereceenecsieseessseeseesasstesesesneas 118

vii

8.2. THE ALGORITHMS ceeerunnesesecassterenresenaneriranes 119

82.1 Fixed Tabu Search...................eoueeeoneeeeeeeeeeeeeeeeeeeeeeeeeemee e e 119
8.2.2. Fixed Tabu Search with Random Diversification Moves (FTSESC)................ 120
8.2.3. Reactive Tabuu S€Arch (RTS).......eeeeeeeneeereennan 121
8.24. Oscillating Tabu Search (OTS)ouoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 122
825 Oscillating Reactive Tabu Searchu..oeeoeeeeeeeneeeeeeeeeeeeeeeeeennns 123
8.3. TRADEOFF ANALYSIS . 127
CHAPTER Y9 DISCUSSION 129
9.1. SUMMARY 129
9.2 DIRECTIONS FOR FURTHER RESEARCHecceumineietrreeceteeteenneeeescensees s snseesssesaesesaesoessesanas 130
9.2.1. Integer Programming Formulationsoeeeeeeeeeeeeeeeeeeeeeanenns 131
9.2.2. Stand tvpes and GIS Management..........................ccooooememmeeeomeieeeeeeeriinnnn 132
9.2.3 Productivity LoSS FURCHONSoooeeeeeeeeeeeiceeeeee e 133
9.24. Incorporating Different Goals or Constraints....................ccccoeeeeeeeeceeeueaennnnns 133
9.2.5 Other Tvpes Of Intervention and Road Network Extensions............................ 134
REFERENCES 136
APPENDIX A FLOWCHARTS 147
APPENDIX B DATASETS 154
APPENDIX C FORTRAN CODE 162
COMMON BLOCKS 162
Parameters and CONSIANLSooeneeeeeeeeeeereeeeeeeeee s e sssssssssssersensesessenssessserenens 162
BESI_MOVE ...ttt ettt st n et n e enon 162

viii

DOSE_SOI ettt et et e et aen 163

SIANA_INfOFMALIONcoeeeeoeineent e sene e ste e e aas s e s st temssnsses it tee s senene 163
MQLCUTVES ...ttt et et e s et st e e st e e e s e s at e e eat e asasnsssestennsssesmen s essane 163
HASRING TADBIeo..ooeeoneeeeeeeeeeeee e eeteteae et e e seesss et e e eseoeeeee e eeee 164
MOVe Datacocooimie ettt et r et eeeteeene 164
OPENING DAL ...t ete s e e ae s e eseme s se e sese s st s e e oenne 164
RIS DAIA ...ttt ettt sttt en et st es e s sssssansen st esrsennns 164
TADU LISt oot tee ettt et eae s e e st et e ae b s e enns 165
ROGA NEIWOTK.............coeoomaeiieeeireeteete e eeneetsssetsac s e et e e e e e e et s s e sesess s s sanssesee 165
CUITENE SOULION ...ttt ettt s st sescent e st e ae st ne s s asasanasasenanen 165
INEEEAL SOMLION............c.covoeoeiiiicceteeee ettt s e sae st s e st s s seesestane 166
SOAFCH SIALUS ...ttt e e et et ae s e s e s es e en e e s e cesseseatt e sanemsans 166
ORTS MAIN PROGRAM ... 166
INITIAL SOLUTION ceieeiceevecennnescsneneestessssenessnessnssssesasssnes 170
subroutine mcario_rand_feas(iCOUNL)ouecneeeeueeeieereeeeeeeeeeneeeereennsessesssesasesessessene 170
subroutine mcarlo_rand7(iCOUNL)eeeeeeeneeereieeeeeeeeeeeeeceeeeteir e s eseeeesss e emenes 171
HASHING SUBROUTINES NN 172
subroutine RASAMRUMEPEAQ)ccuoeeeeeeeeeeereeeeeeirereeeeeeeeeneeesessssesesssssesessesesessseessoen 172
subroutine clean _hash_table....................oooeeeeomnemeneeeeeeeeeeeeeeeeeeet et ene s 172
subroutine init_Rash_table.......................c.coooeioeemvecianeciiiiictcit e e 172
OPENINGS AND GRAPHS ...c.uceioiemrnreecccencsessssteseaassssssessssessesensassessnsseesasssssssacsassessosssasesesensonsssnee 173
subroutine del_one_OPER(OP _NO)............uuooeoeeeeeeeeeeeeeeeeeaearenesesteseesseeesee st sssessns 173
SUDTOULINE MAKE_OPENS2 ...ttt saeae et eae et tenss s sesssne 174
subroutine del_stand2(S1QNA)couueereeveeeeerererereereenssssesssssesssssessssesesssrsresesssssssssenes 175
subroutine dfs_build2 (vert,numon,o_period)......................cccouevevuvecueceeunesenincnnceneeirrenssnnns 175

ix

subroutine merge_opens2(open_list.a_count.stand,0_period)..........................oncneeeeeenne..... 178

subroutine make_new_open2(stand,period,o_period)ccoconeoorconnoeaeeaaaanen. 179
subroutine add_stand2(stand.period............................cccccceconimiieniemnmnieeeeeeeeeeie e 179
subroutine findadj(viook.o_adj.vadjval,...................ccoooooiiiiinineeeeeeeeeeann 180
MOVE CALCULATIONS coeeeeiiiteieeteectceeencessntasnssesssesanesssnsensssssasssssessssrenseessssrssensssensssesssssnnssen 181
subroutine calc_full nbRoodo........................ccoooeioeiiiaeeeeieeeeeeee e 181
subroutine calc_0bj CRANGES................ oot ee e e eeeas s saeeenens 183
subroutine calc_ass_penaltv(stand,period,ass_penalty)c..ccoveueeeeeeemeeeeerannn. 185
subroutine calc_unass_penalty(unass penaliy)..................c.oooeeeeueeveneeoneeeeeeeeeeeeeeeeeeeeans 185
subroutine calc_volume(stand.period,volume,.........................c.coommoeomeomeoeeeeeeeeeeeeeeeerenn 186
SUDTOULINE CAIC_OBJECIIVE...........c.coeoeeeeeeee e ee et n s 187
SUDTOULING CAlC_BASE_IOSS...............coeuomoieeeieeeeeeeeeeee ettt e 188
subroutine calc_dev_fr_maxopen(stand,period,type)oceeeeveeeeeoeeeeeeeeeeeesreeeenenn 188
subroutine calc_add_stand(stand,period,dev_penalty,......................cooueeoeoeeeeeeeeeeeeasvaenn 189
subroutine calc_new_open(stand,open_no,dev_value)......................cocuuueeeceuoooceoeenneann. 189
subroutine calc_rem_stand(stand,opening,dev_penalty)cooouoeemeeeecreeveercreerine 189
subroutine calc_opens(test_dev_fr_maxopen)ccooecueeeeevrecrmemmeeeeeeeeeeseeeeeeerenanann 189
subroutine calc_feas_for_maxopen(stand,period,tvpe).................coeeeeeeeeeemeeeeeeeeereereereeanns 189
subroutine calc_r_cost_sngl(ilink,cost.l_period)ccoucuucueecmmeeoeeeeeieeeceeeereennnns 189
SUBrouting calc_ro@d_CoOStueeeenceiiceceee ettt e 189
MOVE IMPLEMENTATIONoociiiiieiieirireeerennereseanessessssssesssssessssessnssssssssasssssstesassesssssssssesssssanass 189
subroutine implement_best_MOvVe?.....................ueeeeeeeeeeeeeeeireeeesiererereseeeeeseeseseeeseseeseeesaes 189
subroutine implement_Stand_moOve?oueueeeeeeeeereeeeieeieeinneeeeeeeeeeeeeseeeesssesseseesene 189
SUbrouting do_tRis_MOVe?.....................eeeeueeeeeeeeneeeesesesesssesessessssesassssssssssesssessesens 189
SUDrOULIne UPAALE_FOQUSoooeeoeeeeeeeeeeeeeeeeeeee e eee e eve e e e e seenaesenee 189

SUDIOULINE Te_LIMe...............oceonionieeeeiiiii et e e a e 189

subroutine get I p SIQNAS................c.oooaueoeoeiniieiieeeteeeeieeeeent e et 189
subroutine get_I_p prev(link_to_change,link_period _prev)cccovuueeeveescnroeeneunnnen. 189
subroutine get_prev_path(link_to_change.p_link.path_period)ccccovuveeuenucnrun.... 189
subroutine get_all_links(ilink,link _list,link_len)................c.coccoouevemmeurommiceinreieeeeaeereenee 189
subroutine s1and_escape_FOULINe...................ceeieeoveemeeceeeeeneeerieeeseesenctsesssarasstasesenssnasne 189
SUDPOULING UDAQALE _BESL................oomeeiiininiinievereeeeeercee et 189
subroutine ris_escape_FOULINEDc.cvceeceemmmnecccieeieeeeenetssess e sersasas e seesesanes 189
subroutine choose_a_link(ilink.iperiod)...........................cccvummmmmmmmninnieiieee e 189
SUbroutine new _escape_FOULINEc..ccueeoeereeeceeeeeeeeseceeeessen s ssnn et seecsnn s sesas s 189
SUDFOULINE lINK_@SCAPEeooeeneiiiiiieiciteee et e ss e ene 189
UTILITY ROUTINES AND FUNCTIONS.....ccoiiriiirninccceecnenssessnsnns ceeeesnresetrieeennnernnteetasnsnens 189
SUDFOULING FEINSIALoooioeemiiiiniicceiee e em e rre e e e st st en e e eanne e 189
SUDrOULine WITLE_SOI(ICOUNL)cccueoerciniieeeteeieeeccnaneene et e re e nas 189
subroutine write_data_riS(ICOURNL)oeeeueueverceeecaceceeieeeeeerieeeean e nsenn e 189
Subroutine save_Init_Sol....................ccooccoueciiiireoniiaiieeeceetee et 189
SUDIOULINe Zet_INIL_SOL.........c.coouoeeeiiiiiniicee ettt seb e et en 189
SUDFOULINE INIL_DESt_VAIUEScoeneeoieitieieeeee ettt ettt s 189
SUDFOULINE WETHE Kc..ooeonneereeteenreneeereeree e eestess e s sesssbest st sss s seasemea e saennns 189
SUDrOULINE INIT_MOVE_COUNLEIS2o.ccoeeeeereeerereteeeeeeesssennssinsesssere s ssasasssssasssssnsans 189
subroutine update _move_COUNLEIS2..................oeocomeeeeeeeiesieesisreesnses s seiss s asenes 189
subroutine update_0B] COELJ2ouucmioieieeeeieeceeecetee et 189
SUDPOULINE IMIE_X..........oeooneiviciiiiieniiinin et cecnecsacssese s e ae e s e s b se s anmnans 189
SUDFOULINE IMIE_SIANScccuoeeeeeneonineeceieee ettt et e be ettt ean 189
SUDIroULing INit_OPENSccceimiiemiiniiiiiccecceee s sesese e ss st b s b enae 189

subroutine get_data(dataset)..........................oocoueeueieneemieieeeenneeeseseeeereeatee e e s ensaneas 189

Subroutine calc_parametersccoceommiimiuimecaeeeceteeeee e seveeesae st eeaeenaan 189
subroutine init_move_valuescccccoivuiuiiiemeeeeeeeeeeace e neeneeae 189
subroutine init_Search_paramsccccccooomummoimeeceirieeceeeeevenneeseeee e s 189
SUDFOULINE INIt_OBJECIIVE ..ot en e ne s e eenaerneenaesaeean 189
SUDFOULINE SAVE_SOLcccccveoiieeinainniiiianiceecieeeee et eeee e s snees s e s nseeae s s e e besnsaonan 189
subroutine clear SOIUMION.........................ccccovueviiiiiimiceneeenceeeeeeeeccssse e s e caesesaenas 189
subroutine time_stats(elapsed)co.o.cccvcucciireninrnenieneeneeieeeeeeereteeeenaees e 189
SUDroutine reQd_Growthccouovcovecomonieieeeeeeetetetseeeeeeee et e st s et st neas s nanan 189
ROAD SUBROUTINES 189
SUDFOULINE TNEL_FOAUScmeneeeeeeeeeee et eae et en s et te e enensesna 189
SUDPOULING DUIIA _TOAUS...............ceoeeeeeeeeeeeeee ettt een s s neeanas 189
subroutine make_st_list(link_point.stand_list)................ou..oeeceeeemereeeeeeeeereeeeeeeneene e 189
subroutine read road.........................covemeeueuieinnieeteeee ettt ettt st s s enaen 189
Subroutine const_road _Reapccccoceruinimmeneeieeeeteeee et cnaes et 189
subroutine pqdownReap(K)cc.ooccoieeoeeueeieeeeeeeeeeeeteetee et esee e e sreetete e nnenanas 189
SUDIOULINE PQremOVeE(k)...............ooeneeeeeeeeeeeeeeeeeeeceeeeieeeeeeeeeeeeeseesseenseseasaseeaeasnseansseanssassennas 189
subroutine pgchange(t,new _Pr)..............cccccccovviuiimiicimicneeeccreeemesecsiessne e s ssenessiens 189
Subroutine pQUPREAD(K)................ccooveiiceiiiiiiaeieaeeeetetee et ee e et benan 189
subroutine calc_retime_cost(link_to_change)cccccevevinreceenuivienrnrneneennriennnnn 189
RTS SUBROUTINES cocieeieiecccocieenemeesceeesaceesneaeeacsssneascesnannsssseassasssmsssennessasonsansesasassssessasasn 189
subroutine check_for reps(eSCape).................ecueecnuereeerueneeeereneceessreesereesseessessessassssessssons 189
SUDTOULINE INEL_TEACHIVE...........c...ceoneeeeaeeieereeeececeeeeietesasuesssssessasssasessase s setsenresasesassasseres 189
SUbroutine del_0ne_linkccouoeceeimeeeeeeereeeeseeeaereee e esesssssse s e sessesesesnssaesersaes 189
TABU SUBROUTINES cooeeeecceceneeencesaeseseseessessssssessessessesessssssnassessnsesssssssesssnsane 189

SUDTOULINE EMUIL_LADU_TTIS ..ottt ettt eeeae e e e e eneesmeeseresaneseeeessenan 189

subroutine get_asPirQliON2(ASP)cc.eeeuuneeeeemeeeeeeueneereeeeereeeseesaessssssseseemesesaessasrsseesneesseeen 189

subroutine check_tabu(tabu) Imove tabu? eeeeemeeeeeeoreeaeaasa e ansaeernaeenaaennn 189

subroutine tabu_add(S1and)oooeeeeeoeeeeeeeeeeeeeeeereee e e e e s e 189
APPENDIX D NUMERICAL RESULTS 189

Xiil

LIST OF FIGURES

Page
FIGURE I.1. HIERARCHICAL CONTEXT OF THE PLANNING PROBLEM erereeeeset e et s eatneen 2
FIGURE 1.2. LOow ROAD COST SOLUTION. 4
FIGURE 1.3. HIGH ROAD COST SOLUTION. . 4
FIGURE 1.4. EFFICIENT FRONTIER ..ccurueueurueetureereremnsasssseesssssessesestacsssnesstasssssemssesesestnasssnsestenssssssnsasssssesnsssesens 5
FIGURE 2.1. USING GIS IN FORESTRY rereeeneneeenenencenes 14
FIGURE 2.2. RELATIONAL DATABASE QUERY. . 15
FIGURE 2.3. SPATIAL ANALYSIS USING ARCVIEWT™ o remeeemreeemreesesesaeesesesesessssesessesssssasssnnes 16
FIGURE 2.4. HIERARCHY OF FOREST PLANNINGeuveueeracenrcenesenesessnsesesensssssssasssssssessrssssessssssssssasesaseas 19
FIGURE 2.5 STRATA-BASED MODELcccoerurumnnen. reeerseeutue s et st an st et s et e e et e e st s ananen 22
FIGURE 2.6 FORPLAN MODELcccovimiiimeemriereeseaseeececesesccesacessssasssnstssssessssssnsstosnsensestesencnssusnsasnsasssnsasns 24
FIGURE 2.7. MODEL II FORMULATION ...c.covrmimitetrneecenenecstesrmsceseaesssssenssessasensnssessasaseseseensostsenensnsasnrssssenens 25
FIGURE 2.8 TACTICAL PLANNING FRAMEWORKcccccereceecunnunene cetereeetesrn ettt seens 26
FIGURE 2.9. ADJACENCY REQUIREMENTociuimiiecceestinmeseisestertestsinees et sesasnceacsnmossessnssssssssnsansssesiassnenes 28
FIGURE 3.1. ADJACENCY GRAPHeorvcereirrrrereceeancereeneen rteseenretreeee et e s e as e s aessrans40
FIGURE 3.2. ODD HOLE AND ANTI-HOLEccoovemrrrrecencnennene. etetetereaeteseteteresesenr et teseaaseeteresnaeas 42
FIGURE 3.3 ALGORITHM TO GENERATE ALL CLIQUES IN A SPARSE GRAPHc.cceerrueuecenererereessnenecninsaeaenens 43
FIGURE 4.1. TABU SEARCH ALGORITHM...c.ucurunererencnnencenissssestossosssncsestassessesessssssencssassessssssnsmsseressssenssssneses 51
FIGURE 5.1. MULTI-PERIOD OPENINGScueoeterurrerereencrcrsscsesensenscessessssasssssssssssessassesssssssessessseneessnsssssasasases 67
FIGURE 5.2. MEAN ANNUAL INCREMENTS.....cucueteeereenercrsssssesssssssnssentonssssssensasstssansaesssssssencsasmesssnessssssasnsasass 70
FIGURE 5.3. LOST VOLUME FUNCTION, GROWING STANDScceveuerermrererenrresserssssesencssessesssesesesesssssassossnssnss 70
FIGURE 5.4. LOST VOLUME FUNCTION, DEAD STANDScocerimtreereeuemnrnnsesesemsesressassassessesssssssssansesstsssansns 71

Xiv

FIGURE 6.1. STANDS AND ROADING NETWORK

76

FIGURE 6.2. GRAPH REPRESENTATION OF ROAD NETWORKv.evemerenieenecsneseeeeeeesesenessseeseseneenes 77
FIGURE 6.3. GRIDDED ROAD DESIGN 78
FIGURE 6.4. EQUIVALENT STEINER NETWORK.. 84
FIGURE 6.5. MULTI-PERIOD VS SINGLE-PERIOD SOLUTIONcn.eeemrrececeeeeencceceemeeneeeeeeesemseeseseemesaseseessas 85
FIGURE 6.6 PRIM'S ALGORITHM FOR SHORTEST PATH NETWORKvueeeeemeeecmemeeeneeeeemeeeseeeenennen 86
FIGURE 6.7. PATH HEURISTICoomeeeeecieecncncceetsssesenessssessasassssssesnsesn s ssssssassnssnssassmmenen s senemsenemsmsnsns 87
FIGURE 6.8. LINK RE-TIMING PROCEDURE -89
FIGURE 6.9. PH PERFORMANCE FOR SINGLE-PERIOD PROBLEM, RANDOMLY GENERATED STANDS.............. 90
FIGURE 6.10. SRNP(X) DEVIATION FROM OPTIMAL BY NUMBER OF REQUIRED LINKS.......ccooeevememeeemncnennnne. 90
FIGURE 6.11. PATH HEURISTIC MULTI-PERIOD RESULTS ...eucueueeririesremremesessesrsesessseesesesensssssessssssasssesasens 91
FIGURE 7.1. SEARCH ALGORITHM STRUCTURE.......ccurveuemeeerrersesssesessasssssesssassssssseasessessssenssesssensesssnssrsesesmeres 94
FIGURE 7.2. MOVE TYPES ...ccututrueuraenereecestseessssessessasesessssesssssessssssasssssnsassssesnssesnsssssnsesnssssssessesessssnsssnssssesns 96
FIGURE 7.3. DEFINITION OF OBJECTIVE FUNCTION TERMSecuvmvetereeeureeseiereenessssessssesssnssesesesessesessassssesasens 98
FIGURE 7.4. RE-TIMING LINKS IN A PATH ... eeeccieceeeeest e s esses et s ae s s ses s s s e s enssens 99
FIGURE 7.5. CALCULATING INCREMENTAL ROAD COST ...uvvemrmrmenrerererreerereserseencassessasnesessasssasesesesssnsssssessons 100
FIGURE 7.6. CALCULATING MAXOPEN PENALTY FROM ADD MOVEcououemmreeeeeneeeseeensseeesecesenssesessesanes 101
FIGURE 7.7. MERGING ADJACENT OPENINGS.....cceceeeternmrveereserenscsssesssenssssesesnsssssssasassessssssosnsessssnsssonssssesssns 101
FIGURE 7.8. CALCULATING MAXOPEN PENALTY FROM DELETE MOVE.........cuoouceeececemecececncnreseseessssenanne 102
FIGURE 7.9. SPLITTING AN OPENING........couuiurerrererercsresesesensssesesnsesessssessssssssssmesssnsastasssmsnsssosssnsmsssasessmssmee 102
FIGURE 7.10. REDUCING AN OPENINGccvvturrerrerererersesessensessesssessssessssssessssssssssssssssssssnssssasasesenssasssnsoses 102
FIGURE 7.11. ESCAPE2 LINK SELECTION......ccceeesuerraenssesasersesesesesssssssesssesssscssnssssssssssensassessesesessssssesesessse 104
FIGURE 7.12. UPDATE RTS STRUCTURES w...ceoevereerenrerereeesereeresesessenesssssssesssssassessssssnsonsssssssossssesssasssesssenne 109
FIGURE 7.13. ORTS ALGORITHM 112
FIGURE 8.1. IMAGE OF SHULKELL STUDY AREA...c..coocueueeeeneuecncenssesnsassssessssssnsssssessesesesesesssssnssassesssasessess 114

XV

FIGURE 8.2. SHULKELL AREA ROAD NETWORK

FIGURE 8.3. OTS SOLUTION TRAJECTORY
FIGURE 8.4. EFFICIENT FRONTIER FOR SHULKELL DATASET.

FIGURE A.l. GENERATING AN INITIAL SOLUTION

FIGURE A.2. NEIGHBOURHOOD SEARCH

FIGURE A.3. ESCAPE] FLOWCHART

FIGURE A.4. ESCAPE2 FLOWCHART

FIGURE A.5. ESCAPE3 FLOWCHART

FIGURE A.6 OTS ALGORITHM

FIGURE B.l. ALTERNATE DATASET |

FIGURE B.2. ALTERNATE DATASET 2

....................

FIGURE B.3. ALTERNATE DATASET 3 ..

..........

FIGURE B.4. ALTERNATE DATASET 4

FIGURE B.5. ALTERNATE DATASET S5

FIGURE B.6. SHULKELL DATASET..

FIGURE B.7. STAND COUNTS BY AGECLASSveeeeereeeeeeeeeeseeeneeeeneenesnesseennens

FIGURE B.8. FULLY STOCKED ACRES BY AGECLASS

FIGURE D.1. SOLUTIONS FOR SHULKELL DATASET..................

FIGURE D.2. SOLUTIONS FOR DATASET I...

FIGURE D.3. SOLUTIONS FOR DATASET 2....ooueeieeeeeeeneeeesseiieeeneeeessseressssssessssmsnsssssmssssssssesssmssssssssesnssessnenss

FIGURE D.4. SOLUTIONS FOR DATASET 3........ovceveereereecnnee

FIGURE D.5. SOLUTIONS FOR DATASET 4

FIGURE D.6. SOLUTIONS FOR DATASET S........ccvvvveerennnene.

FIGURE D.7. ZERO ROADING COST SOLUTION

FIGURE D.8. Low ROADING COST SOLUTION

XVl

151

152

153

155

156

157

158

159

160

161

161

FIGURE D. 9 MEDIUM-LOW ROADING COST SOLUTION

FIGURE D.10. MEDIUM ROADING COST SOLUTION.

FIGURE D.11. HIGH ROADING COST SOLUTION

ROAD COST $ 105,419, LOST VOLUME 315,782

FIGURE D.12. OPENINGS, PERIODS I AND 3. SOLUTION D.10

FIGURE D.13. OPENINGS, PERIODS 2 AND 4, SOLUTION D.10

XVil

.189

189

.. 189

LIST OF TABLES

TABLE 3.1. BLOEDEL PROBLEM RESULTS......cuiiueueceeereeeeeeeeeceascueesessasasasssesssssassessassessesssensasessessessnssessseres 46
TABLE 8.1 SHULKELL REGION LAND TYPES ...o.ueeecvvceeceeeceiceceeseceeemessnenetase e sessesesssssessnssssasmssssesssnsans 126
TABLE 8.2. DISTRIBUTION OF FORESTED STANDS BY AGE AND MERCHENTABLE VOLUMEc.ccceeeeucecen.. 115
TABLE 8.3. STANDS BY COVER TYPE eoteeeete et s as et re e s e e e an s e nt e e naes 116
TABLE 8.4. SHULKELL STANDS BY STAND TYPE 116
TABLE 8.5 MODEL PARAMETERS . 126
TABLE 8.6. FTS SOLUTIONSecvreueieeacenieseastemrensiesssesassssessessssssstseseusasasssssassansassesssmessstensasenteseassssasasnte 120
TABLE 8.7. FTSESC SOLUTIONS 121
TABLE 8.8. PERCENTAGE DIFFERENCE IN FTS OVER FTSESC....ouioeiriereirneteeeneesesensseeesesceeseacensenesesanas 121
TABLE 8.9. REACTIVE TABU SEARCH RESULTS eeeetereneaet ettt s e e e st e s st st n et e se st naearaen 122
TABLE 8.10. OTS STATISTICS.....cieeeeeeecceeeererrcntrareereesessessssssnsassarsseonssstsssssessssesssssessassesssesssanssssssssssasssansses 124
TABLE 8.11. ORTS ALGORITHM FEATURES eeerteeetetatet s n s s s as et s s ns et e e s s eat s e anns 125
TABLE 8.12. ORTS SAMPLE RESULTS...... ceereeensessnrentsarnannnent 126
TABLE 8.13. COEFFICIENT OF VARIATIONuiuiiiicereieaceeeneeseeeseserseecsnsessasssssssssssasescessenssstanssmssssasasssns 126
TABLE D.1. STATISTICS FOR SHULKELL DATASET......c.ciuieieeeercetrneceneaeresssasseesemesaseesasassscsasesessesns 189
TABLE D.2. STATISTICS FOR DATASET I .cceeieiiiiiieerereeneeecceceneene rerreseeere et ans s s bt b e s bnsaass 189
TABLE D.3. STATISTICS FOR DATASET 2 ..ottt seeeeseacestenensstsaessssascnsaesssesssesessssssessessessssssencasassnenen 189
TABLE D.4. STATISTICS FOR DATASET 3 ..ot eres e seecesecese e escsesesms e cssee s s eme e e st sasesasesmensaes 189
TABLE D.5. STATISTICS FOR DATASET 4oomicecccecsctessnsnsasestaesesssssesesessssssesnsssnsensansnsinssensas 189
TABLE D.6. STATISTICS FOR DATASET S ...ceertieicrereecrnecseecccrenerensssasstsstssesessensssssescsasssasssossssssssssssassssasne 189

Xviil

LIST OF ABBREVIATIONS

ac. acre
dbh diameter breast height

ft. feet

ft’ cubic feet

GIS Geographic Information System(s)

ha hectare

HSRBP Harvest Scheduling and Road Building Problem
P Integer Program

IRPM Integrated Resource Planning Model

km kilometre

LP Linear Program

m. metre

m’ cubic metre

mai mean annual increment

MCIP Monte Carlo Integer Programming

MIP Mixed Integer Program

PH Path Heuristic

RISC Reduced Instruction Set Computer

RNP Road Network Problem

SA Simulated Annealing

SAWS Strategic Analysis of Wood Supply
SRNP Steiner Road Network Problem

TS Tabu Search

USDA United States Department of Agriculture
VRP Vehicle Routing Problem

WHR Wildlife Habitat Relationship

ACKNOWLEDGMENTS

This work would not have been possible without the contributions of many people.
I was fortunate to have abundant sources of inspiration, and significant levels of financial
and spiritual support. I would like to acknowledge the Nova Scotia Lands and Forests
staff, especially Colleen Bowers (Truro office), for providing the GIS coverage of
Cumberland county. Thanks are also due to Eric Robson for his assistance in
interpreting the growth models, and to the Bible Hill office staff for helping to create the
roading network. Financial support from the National Sciences and Engineering
Research Council of Canada and the Province of New Brunswick Women's Doctoral
Scholarship program, is gratefully acknowledged.

Thanks are due to my reading committee and external advisor for reading and
criticizing the thesis. The faculty and graduate students of the Industrial Engineering
department at TUNS have created a spirited, productive and congenial research
environment which is very conducive to developing ideas and pursuing academic
research, and I am indebted to all of them. I especially thank my supervisor, Dr. Eldon
Gunn, for his intellectual inspiration and guidance, as well as his patience and diligence.

Finally, I will never forget that my family and many friends made it possible for
me to complete this work by giving me emotional support and constant encouragement

throughout the past four years.

ABSTRACT

At the tactical level of forest planning, decision support systems must deal
explicitly with spatial and temporal restrictions on clearcuts and the design of road access
to the forest. Formulating and solving optimization models which provide useful
decision choices in this context is a serious challenge.

This thesis advances a new model formulation for the harvest scheduling and road
building optimization problem. The tactical planning problem is treated in the context of
a hierarchical planning system, where a strategic planning process has been first
executed. The strategic plan goals of sustainable harvest are inputs to the tactical
planning process, where the object is to produce a spatially and temporally explicit
schedule of harvesting and road building. The model is designed to produce harvest
schedules which minimize both biological productivity losses due to sub-optimal timing
of harvests, and the costs of road construction. The objective function to be minimized
is a weighted sum of these two opposing cost factors. Solving the optimization problem
for a range of weightings produces a spectrum of solutions, from which non-dominated
solutions are selected to produce an efficient frontier of roading cost versus lost
productivity.

The model uses forest stands as spatial decision units for harvest scheduling, thus
avoiding the reduction of the solution space which occurs when stands are pre-blocked.
The model produces schedules which are compliant with maximum opening size and
adjacency delay requirements, without restricting adjacency delay to one planning
period. The configuration of the road system is not restricted to be a tree structure, in
that multiple access points and cycles in the proposed network are permitted. As a result,

this model can address a wider range of practical road network designs than other models

in the literature. An heuristic algorithm was developed to solve the multi-period road
network optimization problem. This algorithm was shown to provide solutions which
consistently fall within a small percentage of the optimum solution, and which are
optimal in the majority of cases.

Topographical adjacency relationships between stands are represented by a general
undirected graph. Openings which are created by harvesting are connected sub-graphs of
this forest graph. These sub-graphs are dynamically created throughout the solution
process. Spatial feasibility of a proposed schedule is determined by utilizing depth first
search and articulation point searches on these sub-graphs.

The combined harvest and road building problem is solved using a tabu search
metaheuristic. The search algorithm has a dynamic feedback mechanism to set tabu
tenure, and a strategic oscillation strategy to smooth transitions throughout the feasible
region. These features of the algorithm essential to ensure solution quality over many
problem instances. Computational studies were carried out on a forested region in
Cumberland County, Nova Scotia. The study results demonstrate consistent results over
the original dataset and five additional datasets. Tradeoff curves which are produced
from these solutions provide valuable information, clearly showing the relationship
between road building budgets and the range of harvest timing choices available to the
decision maker. Thus, this model and solution algorithm represent a significant

contribution to the tactical forest management problem.

XX1i

CHAPTER 1

INTRODUCTION

Forests are a valuable resource. In addition to wood and mineral products which
are economically consequential, forests provide habitat for a multitude of animal and
plant species, 'facilities’ for recreational and sporting activity, and are a carbon sink and a
source of oxygen,essential to balance these elements of the earth's atmosphere. Scientific
management of our forest resources is an important endeavour, and has in recent years
become the focus of operations research activities, aimed at developing better models
and solution methods to represent the diverse requirements and concerns of all decision-

makers and owners.

1.1. The Planning Problem and Model

This thesis addresses the optimization of harvest and road building schedules in
decision support systems for forest management. The problem, a component of the
tactical level of the hierarchical planning framework, is to produce an optimal, or near-
optimal, and spatially explicit plan that is consistent with management goals derived
from a strategic planning process. The optimization model is formulated to determine
minimal cost schedules that implement elements of strategic planning (such as harvest
levels), and that are in compliance with environmental regulations. Costs include
economic factors, such as the expenditures required for road construction. They also
include factors which penalize inappropriate timing of harvests, which will negatively
impact the future productivity of the forest.

In this hierarchical context, it is assumed that the strategic planning exercise has

used a long planning horizon and, amongst other goals, has enforced the requirement that

production levels be consistent with sustained yield. One result of such a process is the
recommendation of achievable levels of sustainable wood harvest over some longer
planning horizon. The tactical planning problem is to produce a spatially explicit
schedule of stand harvests and road building (Figure 1.1). This schedule must meet the
strategic goals on volumes. It is further constrained to meet maximum opening size

restrictions and adjacency delay constraints.

| Strategic Planning Proc%

v

Spatial Constraints Harvest Targets Proposed

.\ % Roading Design
1.
i
i

Tactical Planning\
¢
* .. /

7

. é/

Tradeoff Analysis

L J
i
* Road Building Schedule
* Harvest Schedule

Figure 1.1. Hierarchical Context of the Planning Problem
[n many tactical planning optimization models in the literature, the objective
function to be maximized is the net present value accruing from the periodic flows of
wood products. A different approach is used in this model. It is known that harvest
levels, which meet strategic goals, have already been determined in the aspatial model
subject to suitable constraints. Thus, levels of production are already optimized. The
objective of this model is then restricted to minimizing the costs of road construction and

negative impacts on forest productivity due to timing of harvests, while being

constrained to meet the recommended production levels for each period. This approach
provides new information to the decision-maker which is not obtained by other models.
Costs in future productivity are induced by harvesting stands at other than their
period of peak biological productivity. Roads must be built to gain access to stands and
transport timber to main roads. The objective function is a penalty function, comprised
of two weighted penalty terms, lost volume penalty and roading cost. The lost volume
penalty assesses a cost for timing the harvest of stands at other than their peak
productivity. The roading cost estimates the cost to access stands scheduled for harvest
on a pre-designed set of road links. Clearly, roading costs and lost productivity costs are
in opposition: reducing lost productivity involves increasing the cost of road building
(See Figures 1.2 and 1.3). Moreover, the units of measure are incompatible. This
precludes formulating any one cost function that is meaningful across different problem
sets and decision makers. The model objective function is a parameterized sum of the
two cost factors, and varying the parameter influences the system to produce solutions
across a range of road building costs. The non-dominated solutions then are recorded in
two-dimensional attribute space to produce an efficient frontier of choices between road
building costs and lost productivity costs. This trade-off curve quantifies the real trade-

off relationship between road cost and productivity cost (Figure 1.4).

= Scheduled for construction Stands to be Harvested
- Not scheduled for construction

e Main Roads

Figure 1.2. Low Road Cost Solution.
RC is $24, 840 and lost volume 563,444 fi3-

~—= Scheduled for construction
- Not scheduled for construction Stands to be Harvested

emme Main Roads

Figure 1.3. High Road Cost Solution.
RC is $99,132 and lost volume 306,526 ft3-

Both stand adjacency relationships and road network feasibility are modeled using

graphs. The road network model incorporates multiple access points and a general graph
which is not restricted to have a tree structure. Maximum opening size and adjacency
delay requirements are represented as conditions on certain specially defined subgraphs
of the forest adjacency graph. The combined harvesting and road building model is
solved using a Tabu Search metaheuristic method. The road network problem is a sub-
problem in the algorithm, and is solved at each step using a custom heuristic method.

An ancillary component of this thesis is the clarification of some issues in integer
programming model formulations of the block-based harvest scheduling problem. An
algorithm for generating constraints to tighten Linear Programming relaxations for this

problem is given, and some empirical results on a well known dataset are reported.

Road Cost
180,000 -

164 Efficient
Frontier |

140,000 -

120000 -

100,000 -

80,000 -

60.000

40,000

20,000 -

0 200.000 400,000 600,000 800,000 1,000,000

Lost volume

Figure 1.4. Efficient Frontier

1.2. Thesis Organization

To set the context for this work and introduce terminology and relevant
technologies, Chapter 2 is an overview of modern forest management planning systems.
Some of the unique characteristics of modern forest management planning processes are
described. The fitness of forest management for hierarchical organization is well
accepted, and this context is assumed in this thesis. Strategic and tactical processes, their
inputs and outputs and some of the well-known optimization models for these systems
are described in section 2.4. The nature of the feedforward and feedback systems
between these two levels is a matter of much concemn; these issues are covered in the
final section.

Chapter 3 concentrates on tactical planning systems, and particularly on modeling
issues which arise when the planning problem is both spatially and temporally specified.
Optimization models for forest tactical planning problems are notoriously difficult to
solve, hence various heuristic strategies and specialized solution procedures have been
developed. The choice of spatial decision units is a well-discussed issue amongst
planners and modelers. For models which produce harvest block- or polygon-based
schedules, a considerable effort has been made by many researchers to simplify the
methods used to specify adjacency constraints. Sections 3.3 is a discussion of the
implications of adjacency constraint specification on the solution of such models by
branch and bound and cutting planes algorithms. A simple method of specifying some
strong inequalities is given in section 3.4, and computational results on a well-known
dataset are used to emphasize the usefulness of this formulation.

The model which is proposed in this thesis is solved using a Tabu Search
procedure. Accordingly, chapter 4 is devoted to a detailed account of the Tabu Search

metaheuristic method, its known successes and some of its more sophisticated

implementations.

Chapter 5 describes the harvest scheduling model. Graph structures are used to
model adjacency and maximum opening restrictions. The lost volume penalty function
which measures the negative effects of some harvest timing choices is described, and the
harvest model parameters and constraints are specified.

The forest road network design problem is documented in Chapter 6. Its
mathematical model is based on graphs, and it is shown to be NP-hard by demonstrating
equivalency to the Steiner problem in graphs. The Path Heuristic which is used to solve
the roading problem is then developed. This heuristic is shown to produce near optimal

solutions on some specialized graphs.

Chapter 7 describes the tabu search algorithm for solving the combined harvest
scheduling and road building problem. Several tabu search procedures were tested and
compared. Chapter 8 contains details of the study area and empirical results. Finally,
chapter 9 contains a discussion of the implications of this thesis and some

recommendations for further work.

CHAPTER 2

OVERVIEW OF FOREST MANAGEMENT ISSUES

The purpose of this chapter is to provide background in forest management issues
to set the context for the tactical planning model of this thesis. The significance of forests
and forestry for our society is discussed, and some emerging trends in forest management
that encompass the needs and goals of multiple decision makers and forest owners are
presented. Technologies which are important in their support of the forest management
decision making process include Geographic Information Systems (GIS), growth and
yield modeling and simulation. The hierarchical planning system context for forest
management is introduced, with an overview of the types of modeling issues which arise
in strategic and tactical planning. Finally, a summary of some of the connectivity issues

relating to these models is given.
2.1. Economic and Social Importance of Forests

The forest products industries are a cornerstone of the Canadian economy. In
1994, forestry generated $48 billion in shipments, $32 billion of which were exports. In
fact, Canada is the world's largest exporter of forest products, having an 18% share of
world trade. Forest industries account for 14% of Canadian manufacturing gross
domestic product, and are the major or sole employer in more than 350 rural
communities [Industry Canada 1996a]. In the maritime provinces, forestry is the most
economically consequential sector. Forest industries account for one job in twelve in

New Brunswick, and one in twenty-four in Nova Scotia [Industry Canada 1996b, 1996c].

Forests are much more than a source of supply for wood and paper products.
Canadian forests account for almost 10% of the earth's forests, which are a vital part of
our planet's life support system [Murphy et al 1993]. Forests are the habitat of a
multitude of animal and plant species. Healthy forests are required in maintaining a
clean water supply. They provide "facilities" for recreational and sporting activity and a
carbon sink for the earth's atmosphere.

Continued improvements in technology have increased the efficiency with which
forest products are produced, and some recent attention to re-cycling paper products will
no doubt result in decreased pressure on raw materials. However, demands for paper and
wood products are increasing with a world population that is growing in both size and
sophistication. It seems unlikely that improvements in manufacturing technologies will
be sufficient to meet the future demand for forest products, without seriously depleting
the resource or compromising the environment. Effective management of forest
resources is critical to avoid making environmentally or economically catastrophic
decisions.

New knowledge of the impact of human actions in forests on the global
environment is gained daily. Synthesis of this knowledge into management practices,
however, is a much slower and more difficult process. The development of intelligent

systems to manage forests so that both economic and ecological goals are achieved with

any degree of certainty is in its infancy.
2.2. Multiple Owners, Decision-Makers and Goals

A distinguishing and complicating feature in forest management is the existence of
multiple "owners" of the forest. In Canada, 91% of the forest area is publicly owned and

controlled. The remainder is owned by several hundred thousand private woodlot

10

owners [Murphy et al 1993]. On public lands, control! lies in the jurisdiction of
Provincial Governments, although private enterprise may propose and carry out
management of these resources [NBGOVT 1994]. In effect, governments act as stewards
of the resource for the Canadian people. These governments lose their jurisdiction at
national borders; the care and nurturing of the earth does not segregate at these artificial
boundaries. Considering the vital importance of forests to the planet's ecological health,
one may say that all living species of the earth have title to its forests, and that the
management of forest ecosystems is a matter of public trust, regardless of ownership
[Davis and Barrett 1992].

Thus, the register of potential participants in forest management ranges from large
governmental agencies (national and international) and forest products industries to
individual woodlot owners; from communities which depend on the local mill for their
economic viability to scientific and environmental advocates for species habitat; from
organized industrial lobbies to individual hikers, hunters and campers. The goals and
desires of these participants are defined within different frames of reference and are often
in conflict. Forest management decision-making processes must be capable of integrating
these diverse groups of decision makers with their often conflicting objectives
[Weintraub and Davis 1996].

Forest products industries must be economically viable, and thus have a dominant
goal which is to maximize profits. Thus, they plan to extract products from the forest to
meet their markets and to minimize their operational costs. Governments recognize that
local economies may depend on the forest products industry. To maintain a degree of
social equilibrium, it is desirable that the industry operate in a sustainable fashion, so that
communities are not disrupted by swift depletion of forest resources. This objective has

been expressed as the requirement for non-declining yield (harvest in any period must be

11

at least equal to that from the previous period) and as a reserve margin (a percentage of
the final period harvest remaining in inventory). This concept of sustainable forestry is
now being expanded or changed to address the sustainability of forest ecosystems
[Thompson and Welsh 1993, Booth et al 1993, Dewhurst et al 1995].

Ecological considerations include biodiversity, green cover requirements and water
quality and supply. Achieving and maintaining a diverse wildlife population is
dependent on, amongst other factors, the availability of forest habitat to support a broad
spectrum of plant and animal species. Habitats that are suitable for nesting and breeding,
foraging and migration must be available to support wildlife. The choice of interventions
(such as clearcutting, shelterwood cutting, thinnings and cleanings), as well as the level
and location of such activities, have an obvious impact on habitat. Clearcuts remove
mature forest stands, and create edge-type habitat. The spatial arrangement of
interventions is important in preserving existing habitat and in creating a diverse
environment [Booth et al 1993]. Thus, legislators have initiated restrictions on cutting,
such as the maximum opening size and adjacency delay, which are intended to both
preserve mature areas and to create new openings which are necessary for foraging and
breeding. Appropriate management of waterways and watersheds must be included in
planning so as to safeguard the future water supply. Road building causes sedimentation
and must therefore be carefully managed so as to preserve the quality of streams and

brooks.

Recreational users require hiking and climbing areas, fishing and hunting areas and
scenic areas. This is usually achieved by setting aside regions of the forest for
recreational use. "Set-asides" are also specified when a particular type of habitat, such as
deer wintering yards or old-growth forest, are to be specifically preserved The choice of

what area and how much area to allocate to recreational use and to preservation is a

continuing source of conflict between recreational users, environmental advocates and

commercial users.

2.3. Characteristics of Forest Management Models

Scientific management of our forest resources is crucial, and has in recent years
become the focus of operations research activities, aimed at developing better models
and solution methods to represent the diverse requirements and concerns of all owners of
our planet's forests. The forest management problem has many dimensions. Users have
diverse and sometimes conflicting goals, ranging from extraction of wood products to
preservation of wildlife habitats. Biological scientists strive to understand forest growth
and the life patterns of its inhabitants, and to define measures of desirable forest states
such as biodiversity. The prediction of forest growth is further complicated by the
occurrence of natural events such as fire, pest infestation and disease. Decision makers
may be federal, provincial or municipal governments, or individuals who own land.
Planning takes place at strategic, tactical and operational levels, requiring telescoping
degrees of spatial resolution and detail in planning models.

Early forest management mathematical models concentrated on producing
recommendations for harvest levels that would maximize yield while maintaining long-
term sustainability of the resource. More comprehensive management models are now
needed to address the requirements of all users -- the forest products industry,
recreational users, and environmentalists. This presents a significant challenge to
researchers to define appropriate model formulations, and to develop new methods of
solving these complex models. The availability of a comprehensive and accessible forest

inventory is one key to the success of modern management systems.

13

2.3.1. Forest inventories and GIS Systems

The forest inventory consists of several levels of information. Biological data
regarding the forested areas, the location of waterways, roads, and ownership boundaries
are all required data for forest management.

The basic spatial unit for forested areas is the szand, which is a contiguous region
that is homogeneous in species composition and future expected growth characteristics.
Stands may be delineated by age; thus "even-aged" stands are also homogeneous in age-
class or diameter-breast-height (dbh). "Uneven-aged" stands, inhomogeneous in age-
class, are further specified by calculating the distribution of ageclasses (dbh class or basal
area class) of trees in the stand area.

A Geographic Information System (GIS) is a spatially referenced database
management system. Information is stored as a collection of thematic layers which are
geographically referenced [Environmental Systems Research Institute]1997]. Forest
management has a critical geographic dimension: management choices include not only
what action is selected but where (and when) it is to be implemented [Jordan 1993).
Thus, a GIS is a natural choice for gathering, maintaining, updating and displaying
inventory for the forest management process. (Figure 2.1) GIS, a relatively new
technology, has had a real impact on forest management in improving the speed,

flexibility and accuracy with which such data can be stored and manipulated.

14

Rood Plonning
Figure 2.1. Using GIS in Forestry (Figure courtesy of ESRI Inc.)

A GIS includes a set of generic tools which can be customized for forest
management purposes [Jordan 1993]. Relational database functionality allows selection
and grouping of spatial features by attributes which are stored in tables. For example,
Figure 2.2 shows the distribution of budworm damaged stands in a forested area. This
figure was generated by querying a forestry GIS for stands matching this classification.
Spatial analysis, such as proximity analysis, allows the user to extract information on
stands based on their spatial relationship to other features. As an example, Figure 2.3
shows stands which are adjacent to main roads, and was generated using ARCVIEW™'s
spatial analysis capability. Use of the database and analysis tools ranges from simple
"point and click" usage to complex programmed algorithms.

GIS has had a large impact on forestry planning because of its visual nature:
mapped "what - if" management scenarios or their predicted results provide a common

meeting point for decision-makers from widely varying backgrounds. Thus, GIS systems

15

allow disparate groups of users to communicate effectively and, for that reason alone, are
advantageous to the planning process.

Forest management is having to adapt to radically different groups of decision
makers, new goals and an evolving science. Moreover, GIS is a relatively new
technology. Thus there are of course some challenges in implementing GIS technology.
First, the effort in generating the initial database is enormous. Second, the database must
be well designed so as to be comprehensive, flexible and extensible, since the nature of
future demands on the system for information are not known in advance. Finally, a well
managed system of updates is critical, since forest interventions are almost continuously

changing the landscape.

IRA T Tk .
4 F Y ' ‘e’
o pla N
QR M e
o
3/ 20
= 13 T
+
S

$7%
;-:;'.V’i".‘,é-_:‘

Figure 2.2. Relational Database Query. Dark areas are Budworm Damaged Stands
(ARCVIEW™ Image Source: Nova Scotia Dept. Lands & Forests GIS Database)

16

A3
f’r/'"'

£
e > -

Figure 2.3. Spatial Analysis Using ARCVIEW™
Selection of Stands Adjacent to Main Roads
(Source: Nova Scotia Dept. Lands & Forests GIS Database)

Despite some problems, it is fair to say that GIS has had a major positive impact on
forest planning systems and has removed several impediments to modern forestry
management endeavours. It has provided the capability to develop a comprehensive
spatially referenced database, an excellent communications tool and significantly

increased analysis functionality [Davis and Barrett 1992, Ball 1994, Dewhurst et al
1993].

2.3.2. Growth Models: Predicting Future Inventory.

Models which predict the growth of trees are essential to forest management
[Brack 1996a]. The goal of growth modeling is to predict the future condition of a stand
using the current composition (i.e. the species, age, and stocking or density), any
previous or planned silvicultural treatments and a measure of site capability or site
quality. Due to the length of crop rotations in forestry, these predictions must be made

decades into the future [Province of Nova Scotia 1993]. The value of a growth and yield

17

model lies in its ability to provide the best possible prediction of the relative outcomes of
various management alternatives [Edwards and Christie 1981]. Data for growth and
yield models may come from permanent sample plots, temporary sample plots and stem
analysis [Brack 1996a]. Growth and yield models are thus location specific, since
climate, soil and topology strongly affect forest growth. In Nova Scotia, the Department
of Lands and Forests has developed growth and yield models for first and second rotation
unmanaged stands and for managed stands. Data have been obtained from hundreds of
permanent and temporary sample plots in plantations, pre-commercial thinnings,
commercial thinnings, shelterwoods and unmanaged stands [Province of Nova Scotia
1993]. The future inventory is predicted in terms of total, merchantable and sawlog
stand averages for each diameter, height and basal area class. The model is limited to
eight softwood species: mixedwood and hardwood stand predictions are calculated as for
softwood growth and are adjusted by volume factors.

The growth and yield model forms the basis for growth simulation, which is used
to evaluate the effect of different management scenarios on the forest. In Nova Scotia,
for example, the Strategic Analysis of Wood Supply (SAWS) system is a simulation
model of even-aged forest management [Gunn 1994b]. Inputs to the simulation are the
current inventory, levels for each potential treatment (including harvesting and
silvicultural activities), as well as ending period inventory restrictions, the number of
planning periods and the discount rate. The spatially explicit stand-based inventory is
aggregated into "macro-stands", thus losing geographic representation in order to reduce
the number of decision variables to a manageable size. The outputs from SAWS are the
number of acres which were assigned to each treatment, and the volumes of

merchantable hardwood and softwood which are thus extracted in each planning period.

18

Thus, SAWS is a strategic planning tool, intended for use on large areas without being

spatially explicit.

2.4. Hierarchical Planning

Forest management has all the classical elements of a hierarchical problem --
differing levels of decision making, elements of uncertainty in forecasts, and a rolling
planning horizon [Hax and Golovin 1978, Gunn and Rai 1987]. It has become
established practice to adopt a hierarchical planning framework for forest management,
and to structure decision support systems or mathematical models to conform to the
requirements of each phase [Vertinsky et al 1994, Gunn and Rai 1987, Barros and
Weintraub 1982, Weintraub and Cholaky 1991]. The hierarchical framework is
appropriate to integrate groups of decision makers, with different and often conflicting
objectives, at different hierarchical levels into decision making processes [Weintraub and

Davis 1996].

2.4.1. Forest Management Hierarchy

An example of a forest management hierarchy is illustrated in Figure 2.4.

19

Strategic Planning

@ Aggregated Stand Data
= Potential Management
Policies

Horizon: 70-100 years
GOALS:
Sustained Yield
Preserve/Create Habitat
Protect Ecosystems

ACTIVITIES

Growth Simulation
Linear Programming
Negotiation

= Spatial Mapping

= Stand Data

= Proposed Roads

a Growth Projections

Detailed Mapping
Budgets

u...

|

Aspatial
Treatment/ Sensitivity to Spatial
Harvest Constraints
Plan
r Tactical Planning]
Horizon: 10-30 years ACTIVITIES:
GOALS: Analyze Costs
Preserve Specific Sites. Make Tradeoff
Minimize Fixed Costs. Decisions
Meet Product Demands. Optimization
Stand Treatment
Schedule
Road Building Sensitivity to
Plan Operational Constraints

Operational Planning

ACTIVITIES:

Build Roads
Harvest Stands
Deliver Product

Horizon: | year.
Schedule Crews | GOALS:

Meet Demands
Preserve Waterways
Minimize Impacts
Carry out Harvesting.

Figure 2.4. Hierarchy of Forest Planning

Hierarchical decision support systems for forest management must resolve multiple

and often conflicting objectives of decision makers. Different levels of spatial detail are

required at strategic, tactical and operational planning stages, and appropriately designed

feedforward and feedback mechanisms must link models at each level. Each planning

level demands appropriately designed mathematical models to support the decision-

20

making process. These models differ in the planning horizon used, the level of decision-
maker to be "satisfied", and the refinement of spatial detail in the inputs and output of the
model.

Strategic planning addresses the allocation of forest resources amongst multiple
and competing demands [Weintraub and Cholaky 1991]. At this stage, the planning
horizon is long, encompassing at least one crop rotation. Examples of strategic goals are
the creation or preservation of habitat and ensurance of a perpetual supply of timber
products. Large forests may be divided into zones, stands are aggregated into "macro-
stands" or strata and recommendations for interventions are developed. These
recommendations include an estimate of the amount of timber product that may be
extracted (annual allowable cut) and levels (acreage, volume) of silvicultural activities
that are required to sustain the annual allowable cut. The strategic planning horizon
usually encompasses more than one crop rotation. The aspatial outputs of the strategic
planning phase are input goals or constraints to the tactical planning phase.

The overall goal of the tactical planning process is to produce a spatially and
temporally viable schedule of activities. In this phase a shorter horizon, usually less than
or equal to one rotation, and shorter time periods are used. For example, in New
Brunswick, the tactical planning horizon is thirty-five years, with five year planning
periods. [NBGOVT 1994] One critical feature of tactical planning is the requirement to
produce spatially explicit recommendations. Decisions become discrete (whether or not
to cut a given stand) rather than continuous (the percentage of a given stand-type to be
assigned to a particular activity). This introduces non-linearities into the models, and
increases the difficulty of solving them to optimality [Weintraub and Davis 1996]. The
output of tactical planning is a mapped schedule of interventions (harvesting,

silvicultural activities) on stands or blocks of stands, and schedules of other activities

21

such as road building, setting aside special areas for special habitats (deer wintering,
shelterwood, water and stream buffers, wildlife corridors etc.).

In the operational planning phase, a tactical plan for one period is implemented in
the best possible way. This phase of "on-the-ground” planning requires fine levels of
detail in constructing roads, scheduling personnel and equipment. Operational planning
horizons are typically very short - for example, a one year horizon with bi-weekly

planning periods may be suitable for planning the detail of "on-the-ground" operations.

2.4.2. Hierarchy of Planning Models

In forest management, the difficulties in solving models which span the strategic
and tactical planning phases has, to some extent, motivated the pursuit of hierarchical
planning [Weintraub and Cholaky 1991]. The structure of forest harvest/treatment
models in the literature may be broadly categorized into two types, strata-based models
and area-based or spatial models, depending on whether the stands are aggregated
aspatially by type or not. This delineation coincides with the strategic and tactical phases
of the hierarchical planning process.

Strata-based models are amenable to Linear Programming methods, since decision
variables are continuous. Area-based or spatial models are not, since decisions to chose
from management options or road building projects require binary or integer decision
variables. There is considerable debate over the value of Mixed Integer formulations due
to the considerable computational burden which occurs when problems of realistic size
are dealt with. Some methods of improving formulations by adding inequalities which
tighten the LP relaxation of the integer program have been applied to this problem
[Barahona, Weintraub and Epstein 1992]. In many cases, however, researchers have

turned to heuristic and metaheuristic methods to solve area-based models.

24.2.1. Strata-Based Models

Strata-based models are used to develop long term plans for forest industries and
governments. They are used to determine the potential harvest of forest products from
large areas over long time frames, perhaps encompassing several rotations. These are
strategic planning models, in which the goal is usually to determine the level of periodic
product flows which are sustainable. Constraints on the levels of harvest in these models
are designed to ensure the sustainability of the resource. These constraints may include
the non-declining yield requirement and an ending reserve margin. In addition to
sustainability issues, environmental considerations such as the maintenance of a diverse
age composition of the forest, or the creation of a given age-class structure in the forest,
are appropriate in these strategic planning models The strata model will develop a
capacity plan subject to corporate strategy, but may not provide spatially feasible

solutions [Nelson. Brodie and Sessions 1991].

® Treatment Schedule

GIS DATA
. (Areaof each
Aggtega;_ed by Stand Strategic Model macrostand type)
4 @ Harvest Schedule

{Macrostands)

(Volume per Period)

Figure 2.5 Strata-Based Model
Linear Programming is especially suitable for formulating and solving strata-based
plans when stochastic effects are ignored. Decision variables such as the volume or area
to harvest (or treat) from a stand type are continuous and constraints are easily specified.
Timber RAM [Navon 1971] has been used extensively in the1970s in the United States
for strata-based planning. FORPLAN (FORest PLANning), developed for the US Forest
Service, is a well-known LP model for forest wide harvest scheduling and has served as

the primary analysis system for the USDA Forest Service Land Management Planning.

LP strata-based models may be further classified as Model I [Navon 1971] and
Model II [Johnson and Scheurman 1977] formulations. In the Model I formulation,
candidate schedules of potential treatments over the planning horizon are enumerated for
each stand type. Each sequence differs from the others in the number of harvests over
the time horizon and/or the age at time of harvest, and will produce a different pattern of
outputs (wood products) over time [Johnson and Scheurman 1977, Gunn and Rai 1987].
The decision variables X[q are the amount (area) of each stand type / to be assigned to
each possible schedule of treatments g. This formulation removes time variables from
the model equations, at the expense of the specification and computation of the
coefficients for a large number of treatment schedules. In the Model II formulation,
treatment schedules over time are not pre-specified for each stand type. Rather, the
decision variables are linked to the periods in the planning horizon. TimberRAM
[Navon 1971] is a well-known modeling system that is based on Model I formulation.
FORPLAN is a Model I formulation, and both FORPLAN and Musyc systems can
accommodate Model II-type decision variables [Field 1984].

In the basic FORPLAN model, land is allocated to general management
objectives and treatments and product flows are scheduled. The following description of
the FORPLAN model was taken from Field [1984].In this model, the decision variables
xjq are the number of acres of land type / to be assigned to management strategy q.
Given T land types, S; possible management strategies for land type /, NV planning periods
and M possible inputs outputs and other responses. 4, is the number of acres in land type
[, Djq is the discounted net value per acre of land type / under management strategy g,
Pjgjf the response level k (per acre) in time period j, land type / and management
strategy q. Vigj the timber harvest volume. Bjg is the desired level of input, output or

response in period j. The LP model is then

24

T S
Max) > D, x,
I=l ¢=I
subject to
S;
Z.th = A, [=1,.,T Area constraints
q;l S, T S
DD VXy =2 O Vi, SO j=1, .., N-1 Nondeclining timber harvest
I;l q;l I=1 g=i
ZZ Pyjxxy =2 B, Jj=L.,N,k=1,.,M Input, output and response
1=1 g=1
x,20 vl,q Non — negativity

Figure 2.6 FORPLAN Model
Recently, the Ecosystem Management Analysis center (Fort Collins, Co.) has
developed a more comprehensive modeling system (SPECTRUM) which, building on
FORPLAN capability, provides a Graphic User Interface to define decision variables,
constraints and objectives. In SPECTRUM, goal programming models allow the user to
address conflicting multiple use objectives. SPECTRUM is foremost a linear
programming system, although some integer variables are used in defining cost functions
[Schuster, Leefers and Thompson 1993].

Figure 2.7 shows the Model II formulation, as taken from [Gunn and Rai 1987]. In
this formulation, in contrast to Model L. decision variables x; andw,, represent both the
timing and magnitude of harvest choices for each stand type at each period. Gunn and
Rai [1987] observed that Model II can be formulated as an acyclic network, where the
nodes correspond to initial regeneration periods and planning horizon periods (i = -
M....0and i = 1, ..., N) and arcs represent the flow of products from a regeneration
period to a harvest period. At each period in the horizon, stand types (i.e. age-classes)

are aggregated and the initial delineation of the forest into stand types (by age-class) is

lost.

25

Max), > Dyx; + 3 EyWiy
i i

Subjectto

inj +w, =4,i=—-M,0

J
DX+ W =2,/ =LN
i j

where

x; ha regenerated in period i and regeneration harvested in period j
Wy ha regenerated in period i and left as ending inventory in period N
A ha in period I that were regenerated in period i (i = -M,0)

M age of the oldest age - class present in period |

D, .E; Discounted net revenue coefficients

Figure 2.7. Model II Formulation

In summary, strata-based optimization models typically have an objective function
which is to maximize the net present value of product flows over time. The models are
aspatial, since stands are aggregated into strata or macro-stands. These models are
relatively easy to formulate as linear programs, and although there may be many
variables, are computationally tractable. The aspatial model output is usually a schedule
of harvest levels (in area or volume) and possibly a schedule of silvicultural treatments
over the planning horizon. These outputs are the inputs to the tactical planning problem.
24.2.2. Spatially Explicit Models for Tactical Planning

Area-based models address the tactical issues in medium range planning horizons,
(usually less than one crop rotation), while attempting to achieve harvest levels as
specified in the long range plan. Transportation requirements (road networks) and spatial
concerns such as access over time, adjacency over time, habitat dispersion and
fragmentation, requirements for habitat and riparian corridors are normally addressed in
area based models [Brodie and Sessions 1991]. Area-based models provide input to the

short term operational planning systems and may be used to provide feedback to the

strata-based strategic model . The output from these models is a mapped schedule of

forest treatments, and possibly road-building, for each period in the tactical planning

horizon (Figure 2.8).

m Treatment Schedule by
stand.
@ Harvest Schedule by

& GIS Data (stands)
@ Strategic Planning

Forecasts Tactical Model stand
Envi tal)
. R:;:;Tan:jr:::) Rogd Construction /
Maintenance Schedule

s Roading Projec

Figure 2.8 Tactical Planning Framework

Decisions regarding the choice of resource projects include both the type of project
(silvicultural activity, harvest) and the timing. Transportation issues such as
construction, maintenance, upgrading or removing roads must be dealt with in the
tactical model, since a large proportion of management costs is spent on road
construction or upgrading, especially in natural forests. One strategy of modeling access
to forested areas is to pre-select a limited number of routes to be considered. This
strategy not only requires preliminary work but results in a model in which there is no
guarantee of optimality since the best route may not have been included. In order to
determine the best (i.e. cheapest) routes for accessing stands and transporting products to
market, road construction decisions must be represented explicitly in the optimization
model along with timber resource management options [Weintraub and Navon 1986]. In
a mathematical program, this results in the inclusion of integer decision variables for
road projects, and can significantly increase solution difficulties.

The Integrated Resource Planning Model (IRPM) is a well known mixed integer

model that simultaneously considers land allocation and scheduling with a transportation

27

network model. Land is divided into areas (polygons) on which fractions of resource
projects are allocated. The model was developed by Kirby and others [Kirby et al 1980,
Kirby, Hager and Wong 1986], and combines resource project selection with a
transportation network subject to road capacity constraints. Many others have used
variants of the [RPM model.

Protection of habitat, preservation of or convergence to an age-class structure,
insuring of water quality -- these are some of the many expressions of environmental
requirements in forest management. The most commonly specified environmental
constraints are the maximum opening size and adjacency delay requirements. The
maximum opening size constraint limits the area of any clearcut. In New Brunswick at
this time this limit is 100 ha. [NBGOVT 1994], in Nova Scotia 50 ha. [Province of Nova
Scotia 1990]. Adjacency delay constraints specify that area bordering clearcuts may not
be scheduled for harvest for a fixed length of time, say 10 or 20 years. The effect of
adjacency delay is to allow a "green-up" period for the stand which has been clearcut. In
the case of an even-aged forest, this would prevent the execution of a progressive
clearcut, which would cause a forced migration of the large animals out of their habitat
with no likely means to return. Adjacency delay means (roughly) that a harvest pattern
such as Figure 2.9(a) is appropriate, but Figure 2.9(b) is not. Another regulation which
has been imposed to avoid this effect is the requirement for wildlife corridors -- strips of
forest of a prescribed minimum width which allow animals to travel "through" cut over
areas. These goals may be found in LP, [P, MIP and non-linear mathematical models as
constraints, or as terms in objective functions of goal programming and heuristic search

formulations.

Period 2B Period 3|

Figure 2.9. Adjacency Requirement

Harvest Period

Special habitat protection is often a requirement. For example, in New Brunswick,
designated land areas are set aside from harvesting to provide deer wintering yards. Other
pre-specified "set-asides" may occur when a particular species is deemed to be in danger
of extinction due to loss of habitat, or when an area is to be reserved for a recreational
use such as a park. These restrictions remove the affected stands from consideration for
clearcut harvesting, although other methods such as shelterwood cutting may be allowed
[Province of Nova Scotia 1990, NBGOVT 199%4].

In an effort to directly include the objectives of diversity and habitat availability,
Hof and Joyce [1992] present a non-linear model to optimize two types of wildlife
habitat, edge-type and dense-type, combined with forest harvest optimization. This is
further developed by Hof and Joyce [1993] to model edge effects, fragmentation effects
and habitat area threshold with integer variables. In Hof and Rafael [1993], approaches
for finding optimum allocation of forest age-classes to meet multi-species conservation
objectives are investigated.

Davis and Barrett (1992) have developed a model to examine the long-term effects
of forest practice on habitats. The model predicts the effect on habitat of even-aged
management by large clear-cuts, small group selection planting, selection cutting,

hardwood type conversions to conifer management, shelterwood and reserves. The

California Wildlife Habitat Relationship (WHR) system is used to measure the suitability
of habitat type for different species. This "measurement"” includes expert scoring of the
each suitability of each WHR cover type for reproduction, food and shelter for each
vertebrate species (Davis and Barrett 1992). The first phase (a linear program) produces
a prediction of economic outputs (revenues, costs, net present worth) based on an aspatial
allocation of different forest management practices (an assignment of areas of each WHR
type to different management prescriptions). This aggregate plan is then allocated
spatially, manually allocating ("by expert judgment") areas using the GIS. The model
then "grows" the GIS polygons into the future, and evaluates each future state of the

forest in terms wildlife habitat suitability for three vertebrate species.

2.5. Cohesion Between Strategic And Tactical Models.

Some of the technical and philosophical issues with regard to these mathematical
models are the effects of aggregation and disaggregation on treatment schedule
feasibility, the choice of appropriate measures to feed sensitivity information upwards in
the hierarchy, and the choice of spatial decision units. For example, the output of the
strategic phase, the aspatial treatment schedule, may not be attainable when constrained
by spatial restrictions such as adjacency delay.

Whether or not a "gap" exists between the level of timber harvests produced by the
strategic and tactical phase has been discussed in Daust and Nelson [1993], Nelson and
Finn [1990], Nelson and Errico [1993], Yoshimoto1994, Yoshimoto and Brodie [1994].
If there is indeed a gap, it is important to identify the tactical level factors which cause

the discrepancy, and to feed this sensitivity information back to the strategic planning

process.

30

At tactical planning, the existence or the perception of the existence of significant
setup and capitalization costs has encouraged planners to group stands into harvest
blocks of a minimum size [Clements, Dallain and Jamnick 1990, Jamnick and Walters
1993, 1991, Hokans 1984]. This has the effect of reducing the number of decision
variables and thus making models more computationally tractable. It has the negative
effect of limiting the set of scheduling choices and thus potentially excluding better
schedules. (This issue is discussed in more detail in Chapter 3.) This is a relevant factor
in considering the so-called gap between the aspatial and spatial forecasts. The
significant effects observed by Nelson and Finn [1990], Daust and Nelson [1993],
Yoshimoto [1994] and Yoshimoto and Brodie [1994] are estimated using blocked stands,
and these may in some measure be due to the blocking as well as to real impacts of
spatial constraints. Observe for example, in Lockwood and Moore [1992], that the
spatially constrained tactical schedule produced harvest volumes that had less than one
percent deviation from the strata-based (aspatial) solution.

An additional complication to the process of determining the cost of spatial
constraints is the fact that the magnitude of the effect of adjacency delay and maximum
opening size is definitely location dependent -- there will obviously be a larger impact in

forests that contain large homogeneous tracts of land. Thus, these case studies should be

carefully examined in this respect.

31

CHAPTER3

TACTICAL PLANNING MODELS AND SOLUTION METHODS

The framework for forest management tactical planning models was outlined in
chapter 2. The desired output of these models is a good or optimal schedule of
harvesting and road building. These problems are characterized by the requirement for
discrete decision variables, and a complicated constraint structure due to spatial and
temporal constraints on harvesting. Hence, the models are difficult to solve exactly
using integer programming methods, and, although some efforts in that direction have
been made, there has been a considerable direction of energy towards heuristic and
metaheuristic methods of solution.

Tactical planning models are constrained spatially and temporally to meet
environmental regulations which limit the size of clearcuts and prescribe adjacency
conditions on areas near to clearcuts. Road networks are based on a pre-determined set
of potential road links which give full access to the forested area. In this thesis, several
modeling issues will be addressed. These include the design of an appropriate objective
function, the selection of spatial decision units, and the inclusion of a more general road
network. The model which is proposed will be solved using a metaheuristic method;
however some attention to the solution methods employed by other researchers on other
models is appropriate to set the context for the new model.

The first section of this chapter contains a summary of some of the methods which
have been used to solve tactical planning models. Section 3.2 deals with the choice of

spatial decision units, and section 3.3 the issues in modeling adjacency constraints. An

32

improved formulation for adjacency constraints is presented, and in section 3.4 results

from implementing the improved formulation on a small study area in BC are given.

3.1. Solving Tactical Planning Models

Integer and mixed integer programming (MIP), Monte Carlo Integer Programming
(MCIP), dynamic programming, heuristic and metaheuristic methods have been used to
solve tactical forest management problems. Adjacency and road building requirements,
requiring discrete decision variables, create the main difficulty in solving these polygon-
based models using linear programming with branch-and-bound techniques. For
example, Murray and Church [1995] solved a 431-block problem (excluding roading) on
a 486/50 personal computer, but the solution time exceeded 24 hours. [Also, see Nelson
and Brodie 1990.] Although some efforts have been made to solve such models exactly
[see Weintraub et al 1994, Barahona, Weintraub and Epstein 1992, Guignard, Zhu and
Chajakis 1995], it is not surprising that heuristic and simulation methods have been the
tools of choice for large problems. The disadvantage of using heuristics, of course, is
that optimality of the solution is not known or expected and only probabilistic measures
of deviation from true optimum can be presented. However, given the lack of exactness
in forest growth simulation, and the hierarchical nature of the management setting, the
ability to provide several good solutions in reasonable time is very useful [Gunn and Rai
1987].

Integer and mixed integer programming models simultaneously consider roading
decisions and land use decisions. These models are generally variations on the IRPM
model [Kirby et al 1980], where binary decision variables are used to model land use
decisions and road construction decisions. Some improvements on the formulation of

the traffic capacity constraints in IRPM have been reported in Guignard et al [1995].

33

Monte Carlo Integer Programming (MCIP) has been used to solve area-based
models including adjacency constraints [Nelson and Brodie 1990, Nelson, Brodie and
Sessions 1991]. In this method, acceptable schedules are produced by generating harvest
patterns over blocks randomly, then discarding those that do not meet adjacency
requirements. MCIP has the advantage of simplicity, and the ability to generate a large
number of feasible schedules easily for consideration by planners. Its disadvantage is
that it is inefficient compared to other random heuristic search methods such as
interchange, simulated annealing and Tabu Search [Murray and Church 1995].

Specialized heuristic methods have been developed for this problem. Weintraub,
Jones and others [1994] describe a heuristic system for solving the IRPM model of Kirby
[Kirby, et al 1980, Kirby et al1986]. Weintraub et al [1991] used simulation techniques
combined with heuristic scheduling rules to solve a truck scheduling and short term
timber cutting problem. The PASS system [Tanke 1985] is a tool for analyzing
alternative harvest schedules under alternative road networks. This is essentially a data
management system where harvest schedules are exogenously supplied.

Lockwood and Moore [1992] used Simulated Annealing (SA) to solve a harvest
scheduling problem, based on a stand-based model. They produced spatially explicit
harvest schedules on test data of 6148 and 27,548 stands, which conformed to maximum
and minimum opening restrictions, 20 year adjacency delays, and met even-flow harvest
targets over minimum area. This is the only stand-based model in the literature which
addresses all of the above constraints. The authors used a penalty function method to
impose constraints and to drive the solution towards the desired harvest characteristics.
Harvest blocks were formed at each stage of the procedure using a depth first graph
search method. The model did not include any roading considerations. The main

difficulty in the solution procedure appears to be in the specification of the penalty

34

functions. The shape of the functions was easily determined from the nature of the
constraint that they represented. However, experimentation with several runs was
necessary to adjust coefficients so that no one function dominated over others early in the
SA procedure, yet the "hard" adjacency and opening size constraints were satisfied in the
final solution.

Murray and Church [1994] developed a Tabu Search (TS) method to solve the
operational planning formulation based on that of Nelson and Brodie [1990]. Their TS
method achieved near optimal solutions in relatively short computing times. The model
included road building and adjacency constraints, with stands pre-blocked. This study
was relatively small, consisting of 45 blocks and 52 road links. With an improved IP
formulation, this problem can be solved to optimality in reasonable time. This is

discussed fully in section 3.4.
3.2. Spatial Decision Units

A basic concern in tactical model formulation is the choice of spatial decision
units. From a spatial and biological perspective, the stand is the logical decision unit.
This is because the stand represents a contiguous area which is homogeneous in terms of
its current state and future growth potential. Stands which are too large may be sub-
divided without losing this homogeneity. Results of decisions based on stands may be
mapped using a GIS, and thus present a "picture" of the model results which is
meaningful to the decision maker. On the other hand, stands tend to vary widely in size,
and there may be many small stands. This makes problems awkward to formulate, and in
the case of integer programming, exponentially harder to solve.

Aside from modeling issues, economic reasons may influence the decision to

create aggregated blocks of stands for decision units. A minimum opening size (harvest

35

block) has been imposed in many models [Wightman and Baskent 1994, Baskent and
Jordan 1991, Lockwood and Moore 1992]. In cases where large fixed costs of harvest
are of concern, (for example, where hillside terrain is being harvested as is common in
British Columbia), a large production volume is required to make the operation
economically viable. High capital costs may dictate maximizing utilization of harvesting
equipment. This may require a minimum block size to reduce time spent in moving and
setting up equipment. Other considerations, apart from polygon area, influence the
design of blocks. In some situations, an economically suitable block has a minimum
value of merchantable timber product. Block shape can have an impact on harvesting
costs — long, thin wedge shaped areas are often more expensive to work. The ratio of
perimeter to area can be used to evaluate the quality of a block shape.

Most of the models proposed in the literature [Barahona, Weintraub and Epstein
1992, Barros and Weintraub 1982, Jones et al 1991, Nelson et al 1991, Weintraub and
Cholaky 1991,Yoshimoto et al 1994] assume pre-defined harvest blocks as spatial
decision units. Others [Baskent and Jordan 1991, Jamnick and Walters 1993, Jordan and
Baskent 1992] form blocks or neighborhoods by random seed search methods combined
with block formation rules. BLOCK [Clements, Dallain and Jamnick 1990] and
CRYSTAL [Jamnick and Walters 1993] are examples of such systems for forming
harvest blocks. Hokans [1984] proposes the use of artificial intelligence to select stands
for harvest by constructing a discriminart function that simulates the spatial criteria used
by experienced foresters. The computer support system speeds the process by
calculating important measures such as distance to roads and recency of harvest of
adjacent areas. Their proposed "expert" system would "learn" the rules that experts use

to select cutting units.

36

There are some distinct disadvantages to using blocks as decision units. First,
there is some effort involved in creating these blocks. Pre-blocking implies a reduction
in the number of stand-harvest timing choices that are available, and may eliminate many
good solutions from consideration. Aggregating stands of different ageclass or growth
potential means that some stands will be scheduled at other than their peak production
period. Thus, blocking may be expected to lead to less than optimal solutions since the
feasible solution space of the problem has been restricted.

Solving stand-based models is not always too difficult. Lockwood and Moore
[1992] successfully solved a problem of significant size using stands as input units
without pre-blocking, using simulated annealing (SA). Blocks were dynamically created
as the procedure progressed, using a cost function to penalize clusters of stands (that are
assigned harvest in the same period) which are either too small or too large. Thus, within
the limitations of the simulated annealing procedure, their model addresses all possible
configurations of stands into harvest blocks. This thesis presents a similar "dynamic"
blocking algorithm using graph structures, and a solution method which produces good

solutions in reasonable computation time.

3.3. Adjacency Constraints

This section deals with effective formulation of adjacency constraints for tactical
planning models based on pre-aggregated polygons or blocks. Let xg = I (0) be the
decision variable representing harvest (not harvest) polygon s. The most obvious
formulation for adjacency constraints is the dis-aggregated form: x; + x; <1 for each pair
of adjacent polygons / andj. The number of such constraints can be large (one for each
pair of adjacent polygons and for each planning period) however, and this has led several

researchers to investigate methods of aggregating these constraints.

37

Various attempts at aggregating these pair-wise adjacencies into a smaller set of
constraints have been made. These are generally based on recognizing that different
patterns of adjacent polygons can be identified, and that constraints can be derived which
cover several adjacent polygon pairs. [See Jones, Meneghin and Kirby 1991, Murray and
Church 1996a and 1996b, Torres-Rojo and Brodie 1990] The difficulty with these
aggregations is that although a smaller constraint set may be generated, they may not be
the best formulations for models which are to be solved using integer programming
methods. Murray and Church [1996] noted this problem, and recognize the importance
of identifying cliques (a set of mutually adjacent polygons). The Type I constraints of
Jones et al [1991] in fact identify such cliques of cardinality 2, 3 and 4, although they did
not recognize these as clique constraints in a general graph theoretic framework.
Moreover, they stated that cliques of order 5 or more are a physical impossibility. This is
not true when adjacency is defined by polygons being a minimum distance apart as
opposed to the stricter condition of sharing a common edge. They then went on to
aggregate these "Type I" constraints into further aggregated Type II constraints. Torres-
Rojo and Brodie [1990] provide heuristic rules to create one adjacency constraint for
each polygon (the T-B method) and produce a different set of constraints than do Jones,
Meneghin and Kirby [1991]. In Yoshimoto and Brodie [1994], a third method which
utilizes matrix algebra produces yet another set of adjacency constraints.

Better formulations, which involve less constraints and which sharpen the bound
achieved by the Linear Programming relaxation of integer programs, are possible.
Moreover, in the sparse adjacency graphs for these forest planning problems, it is
relatively easy to generate the set of clique constraints which are known to represent a
tight LP formulation [Padberg 1973, Nemhauser and Wolsey 1988, Nemhauser and

Trotter 1974]. To explore this concept, some integer programming results are required.

38

The next sub-section summarizes the fundamental theory of strong valid inequalities and
cutting planes methods for solving integer programs. For a comprehensive description,

see Nemhauser and Wolsey [1988].

3.3.1. Strong Valid Inequalities and Cutting Planes Algorithms

Given the discrete (binary) integer programming problem

[P: rnax{cx:Ax <b,xe Bf} , with feasible region S = B" N P, where
P= {x €R!:Ax<b0<x; < l} . The linear programming relaxation of /P, ILP, is
max{cx:x € P}. This is the problem obtained by relaxing the integrality constraints. In
other words, the binary variables x; are replaced by continuous bounded real variables
0<x, <1. The feasible region of /LP, P, contains S, and the optimal solution to ILP is
greater than or equal to that of /P. A valid inequality for /LP, ax < mt, is one which
satisfied at all points in S. In theory, the integer program /P can be reduced to a linear
program wherein a system of valid inequalities completely defines conv(S), the convex
hull of S. Thus, the integer programming problem can be replaced by a linear
programming problem. Although in theory this can always be done, the problem of
finding such an inequality system for conv(S) is hard.

For an integer problem /P and its relaxation /LP, let Zip be the optimal solution to
[P and zjjp, the optimal solution to /LP. The cutting planes method is to find valid
inequalities which reduce the gap between z;p, and zjJp, sharpening the bound Z;j;, and,
consequently, forcing variables to attain integral values in /LP. Strong valid inequalities
are those which define facets or high order faces of the polyhedron conv(S). The idea is
to start with the inequality system {4x < 5,0 <x, < 1} and, if this does not define conv(S),
then to progressively construct stronger valid inequalities to create a more complete

description of conv(S). Ifit is practical to complete this process, a linear program which

39

is equivalent to the integer program is defined, meaning that the optimal solution to the
linear program is also the optimal solution to the integer program. Alternately, one can
generate enough inequalities so that the "gap" |z, — z,p] is small, and then use branch
and bound from that point forward to find the optimal integer solution.

It is not always necessary to generate the complete inequality system which
describes conv(S) to solve /P. Also, from a problem-solving practical point of view, at
some point the effort involved in locating further inequalities may outweigh the effort in
completing the solution using branch and bound. Thus, the cutting planes algorithms

involve an iterative procedure as follows:

1. Solve ILP with minimal formulation. If the solution is
integer, the optimum solution to conv(S) has been found.
Otherwise,

2. Find a set of (strong) valid inequality which is violated by
the current fractional solution. (This is called the separation
problem). Add these inequalities to the current problem
and goto 1.

Many hard integer problems have been successfully approached with this method.
Bretthauer and Cabot [1994], Clark and Armentano [1995], Corberan and Sanchis
[1994], Dijkhuizen and Faigle [1993], Magnanti, Mirchandani and Vachani [1995],
Pochet and Wolsey [1991 and 1986] and Weintraub and Vera [1991] are only a few
examples. Nemhauser and Sigismondi [1992] have developed a cutting planes algorithm
for the node packing problem which is of direct relevance to this work. See also
Barahona, Weintraub and Epstein [1992], and Weintraub, Barahona and Epstein [1994],
wherein these methods are used to solve the adjacency problem as part of a column

generation algorithm for solving forest planning problems.

3.3.2. The Adjacency Problem: Node Packing

For simplicity of notation, omit the time dimension. Let A(i) be the list of

40

polygons which are adjacent to polygon i, and x; = / if stand / is scheduled for harvest.

Definition I: The adjacency graph of the forest AG(V,E) is a simple graph (a graph with
no loops) with one node v for each polygon and one edge e={v,w} for each pair of
adjacent polygons v and w. See figure 3.1.

Definition 2: A node packing (stable set, independent set, vertex packing) in a graph
G=(V.E) is a subset S of ¥ such that the subgraph induced by S has no edges. (The
subgraph induced by § is the graph with node set S and the edges of E which have both
their end nodes in S.) In a weighted graph, the maximal independent set is one of
maximum weight.

Figure 3.1. Adjacency Graph
A harvest solution is feasible with respect to adjacency rules if X = {i: X, = l} cV
is an independent set or node packing in the graph AG. For example, in figure 3.1, two
feasible solutions are {1,3,7,10} and {2, 5, 6,9}. The problem of finding node packings
of maximum weight is an NP-hard problem [Garey and Johnson 1979, Nemhauser and
Wolsey 1988]. Nonetheless, recognition of the nature of the adjacency constraints as
node packing conditions leads immediately to some known strong valid inequalities

which define facets for the node packing problem. These inequalities significantly

41

strengthen the disaggregated representation of the adjacency constraints. Although a
complete description of the node packing polytope is not known, the maximal clique,
odd hole, odd anti-hole and web (claw) facet-defining inequalities are very strong in
sharpening the LP bound for this problem [Nemhauser and Trotter 1974].
3.3.2.1. Clique Inequalities

A clique in a graph is a complete subgraph -- that is, each node is joined by an edge
to every other node. A maximal clique is a clique which is not a proper subset of any
other clique, and clique, when unqualified, will mean maximal clique in this discussion.
Clearly, the constraint Zt,, <1, where C is a clique in 4G, is a valid inequality for this

ieC

problem. In fact, this is a facet-defining inequality for the node packing problem
[Nemhauser and Trotter 1974]. In figure 3.1, there are several cliques of cardinality 3.
(For example {1,2,3}, {1,4,5}.) For some graphs, called perfect graphs, clique
inequalities give a complete description of the node packing integer polytope. In general,
however, other inequalities are needed. These are the (lifted) odd hole constraints, odd
anti-hole constraints and web or claw constraints [Nemhauser and Trotter 1974].
3.3.2.2. Odd Hole, Odd Anti-Hole Inequalities

An odd hole in a graph is, by definition, a chordless cycle of odd length. The
existence of an odd hole # gives rise to the valid inequality 3" x, < %[IH] —1]. This
1eH

inequality can be /ifted to form a stronger inequality > x, + > ax; < 21[|H] -1] by

ieH jeNtH)
considering all nodes which are adjacent to A (those in N(H)) [Nemhauser and Trotter
1974]. Both clique and odd hole inequalities were used by Barahona et al [1992] in their
column generation algorithm. In Figure 3.1, {4,6,9,8,5} is an odd hole, and its inequality
IS x, + X4 + Xy + X + x5 < 2. This is "lifted" by including node 7 (and finding the largest

possible value of a; to be 2) to derive the inequality x, +x, +x, + x, + x, +2x, < 2.

42

A anti-hole is the edge complement of a hole. That is, an anti-hole of cardinality n
is a graph which is formed by removing the edges of an n-hole from K, the complete
graph on n nodes. Odd holes and anti-holes are illustrated in Figure 3.2. If a graph
contains an odd anti-hole G, then the inequality Z x, <2 is a facet defining inequality

16G

for the node packing problem.

(1 K

Figure 3.2. Odd hole and Anti-Hole

3.4. Generating Clique Constraints

The number of cliques in a given graph can be very large, and hence difficult to
enumerate completely [Bron and Kerbosch 1973]. However, for these adjacency
problems, the graphs are of low density, resulting in a small number of cliques of
cardinality greater than three. The following procedure was developed to locate cliques

in a graph. It is suitable for sparse graphs.

3.4.1. Generation Procedure

Let A= {a,.,.l(i,j) eEsa, =1 } be the adjacency matrix of G=(V,E), and

calculate the degree of each node, deg(i) = Za,.j . and the maximum degree
7

M = max(deg(i).i €V'). Observe that a node i can be an element of a clique of order n
only if deg(i)= n. Then, the procedure is to build cliques of order (n+1) from cliques of

order n. Denote by n-clique a clique of cardinality n. First, the 2-cliques are identified

directly from A4 and stored as ordered pairs {a,.l. 'a,.j =1,j>i } . Then, higher order cliques

43

are built successively, discarding the lower cardinality dominated cliques as new ones are
found. See Figure 3.3.

This algorithm is relatively efficient since the degree of the nodes is used to
exclude many of the cliques from consideration. Also, each sub-clique is automatically
discarded in step (3) and only the non-dominated or maximal cliques are output at the
end in step (5). The computational effort in generating these maximal cliques should be

no greater than that spent in aggregating constraints into other, less efficient forms.

Forn=3toM (1)
For each clique k={k, k..., ky} of order n 2)
If deg(k,).deg(k,). ..., deg(k,) > (n+ 1) then:
Forb=1to|V]
Ifa, =a,, =ay, =..=a,, =1 then
Mark clique » dominated 3)
Endif
If b > ky, then
Store new clique {k,,k.,....k,,b} 4)
Endif
Next b
Endif
Next clique
Next n
Output each maximal clique which is not marked dominated. (5)

Figure 3.3 Algorithm to Generate all Cliques in a Sparse Graph

3.4.2. Bloedel Farm Case Study

The MacMillan Bloedel tree farm in Vancouver, British Columbia consists of 45
forest polygons. A potential road network of 52 links has been defined for the area
[Nelson and Brodie 1990]. The planning problem is taken from Murray and Church
[1994], who based it on the work of Nelson and Brodie [1990]. There are 3 planning
periods, and the planning problem is to schedule harvests on the given polygons which

meet upper and lower bounds on harvest in each time period, and undiscounted revenue

bounds for each period. Adjacency delay of one period is imposed on adjoining
polygons. The potential road network is a tree structure -- that is, it contains no cycles.
Thus, the road network feasibility constraints are relatively simple to specify since each
link either requires one predecessor in the tree or none at all. Each stand has a set of road
links, one of which is required if that stand is to be harvested. Decision variables x;; are
to harvest polygon i in period ¢ and Zjg to build link j in period ¢. Discounted and
undiscounted revenues from harvesting polygon / in period ¢ are a;; and &, and
discounted (.respectively undiscounted) costs to build each road link are ¢,; and ¢,. M,
is the set of links from which one must be built if link r is built, and S; is the set of road
links from which one must be built if stand / is to be harvested. (Note that each M,. has
only one element for this road network, since it contains no cycles.)

The IP formulation of the problem used by Murray and Church [1994] is:

max Z Z a,x, — Z Z €2, Discounted revenues - discounted road costs
Subje;:t t'o : o
Z x, <1 for each i Harvest each polvgon at most once.
Z z, <1 for each r Build each link at most once.
z, < Z zy Jorallrt k eM, Road Connectivity

=
x, < Z 2 z, forallit Link required to harvest stand i

reS, I=l
z v.x, 2L, forallt Lower bound on volume
i v,x, <U, forallt Upper bound on volume
iﬁ,, x, - ZE.: z, 2 LR, forallt Bound on undiscounted profit
n',.x,,, + Zx:, <n, Jorall it Adjacency Requirements

rew,

X,.2, € {0,1} alli, t, r Binary Variables

The optimal solution to this problem is 5,953.20 [Murray and Church 1995]. Note

45

that the adjacency requirements are expressed in aggregated form of Torres and Brodie
[1990], where V; is the set of polygons adjacent to i. This problem is suitable for pre-
generating clique constraints since it is a relatively small study area. To illustrate the
effectiveness of generating maximal clique constraints, three formulations are solved.
The first (DISAGG) is with the disaggregated form of clique constraints
x, +x,, <1, for each pair of adjacent polygons i, jand t=1,2,3.

The second (MURRAY) is the above formulation with aggregated adjacency constraints.
The third (MAXCLIQ) is the above problem with the aggregated adjacency constraints
replaced by maximal clique constraints. Table 3.1 summarizes results from
implementing these three formulations, using LINDO on a 486/33 personal computer.

The maximum cardinality of the cliques was 4, and there were no maximal 2-
cliques, 20 3-cliques and 17 4-cliques. Thus, with three time periods, this resulted in 111
clique constraints in MAXCLIQ. There are 112 adjacent pairs which resulted in 336
constraints in DISSAG. MURRAY used 135 constraints to specify adjacency. Thus,
MAXCLIQ is efficient in reducing the number of clique constraints. The constraints
were generated using a QBASIC program, which took less than 2 seconds (elapsed) time
to compute the maximal cliques.

Running the program in LINDO with the disaggregated cliques was unsuccessful.
The program ran for more than 24 hours and terminated when the pivot limit of 1210599

was exceeded. This formulation was included to underline the importance of generating

tight constraints for the problem.

46

Table 3.1. Bloedel Problem Results

LP OPTIMUM Number of Time to Solution Number of

Branches (HR:MIN:SEC) Adjacency

Constraints
DISSAG 6767.596 >4842 >24 hrs 336
MURRAY 6394.120 1227 1:16:37.53 135
MAXCLIQ 6076.102 533 0:17:42.04 111

Although it is dangerous to infer a lot from one case study, this does show that it is
easy to generate clique constraints for small problems, and that the clique representation
is relatively compact. Since it has been proven that the maximal clique constraints form
facets of the node packing problem, they are a logical choice to represent the adjacency

requirements in these problems.

For large problems, it may be impractical to generate all the maximal cliques in the
adjacency graph. In this case, a cutting planes algorithm which finds violated clique and
other (odd hole, odd anti-hole, web) violated strong inequalities [Nemhauser and

Sigismondi 1992] for this problem could be used.

47

CHAPTER 4

TABU SEARCH

A Tabu Search strategy was chosen to solve the tactical forest planning problem
because of its record of success on hard optimization problems. Since the algorithms
presented in chapter 7 of this thesis are based on this metaheuristic, this chapter is
devoted to describing the principle ideas behind the tabu search method, the basic
algorithm and some of its more sophisticated variants. Amongst the more advanced
implementations of tabu search, those algorithms which use dynamic parameter
assignments and the self-tuning, feedback-based Reactive Tabu Search method (R-
TABU) [Battiti and Tecchiolli1994] are especially important in the context of this thesis.

Tabu search (TS) belongs to the metaheuristic class of algorithms, where local
optimization (local neighbourhood search) is enhanced with strategies which enable the
search process to go beyond local minima. Simulated annealing, genetic algorithms and
evolutionary algorithms are also included in this category. (See Reeves [1996] for a
comprehensive description of these and other metaheuristic methods.) The seminal ideas
behind tabu search were first developed by Glover [1986], and independently by [Hansen
1986]. Tabu search is a history-based or memory-based strategy; information from

previous phases of the search is used to direct future phases.

4.1. Basic Tabu Search Algorithm

Consider an optimization problem P, which is to find a solution x which minimizes

48

some function z(x); P: min z(x)[x e Fc X . Ifxis a solution to P, and if a set of moves

M which perturb x to form new solutions in X can be defined, then the neighbourhood of
x is the set of these perturbed solutions. That is, denoting the set of all allowed moves by
M, Nx)= {x' eX Ix' =x@®m. me M . In constrained optimization problems, moves
which produce an infeasible solution x’'¢ F are called infeasible moves, and
neighbourhoods may or may not be restricted to the feasible region F.

Moves are relatively simple operators on the current solution, that is, those which
perturb the solution slightly. For example, in a job shop scheduling problem, a solution
is a sequencing of n jobs x(j,)=1¢,, ¢, e[l,n]. A move can be defined as a swap of the
ordering of two jobs kand /, x(j,) x(j,), thus permuting the previous solution. In
this case, the neighbourhood of a solution is the set of all permutations of x obtained by
swapping any two elements of x. As another example, in the Vehicle Routing Problem
[Gendreau, Hertz and Laporte 1994], a commonly used move is the insertion of a city
into a route. The neighbourhood of a given route is the set of all new routes formed by
all possible insertions into the current route. As a third example, in solving the
Maximum Clique problem using tabu search, moves are to add or drop vertices from the
current clique solution [Battiti and Protasi 1995, see also Gendreau, Soriano and Salvail
1993].

Tabu search is based on neighbourhood or local search, where, starting with an
initial solution, each possible move is evaluated and the best improving move chosen.
Local search ceases when no improving move can be found; that is, local search stops
when a local optimum is found. In tabu search, when no improving moves can be found,
a best non-improving move is selected. This serves to lead the search away from the
current local optimum, to where a different neighbourhood has new possibilities for

improving on the current best solution.

49

4.1.1. Strict and Fixed TS, Tabu Tenure

Used without restriction, the inclusion of non-improving moves in local search
could result in endless cycling back to the same local optima. Thus, TS incorporates a
prohibition strategy to avoid returning to previously encountered solutions. The
prohibition scheme can be to explicitly forbid moves which lead to previously
encountered solutions, the so-called strict tabu search. An indirect method, the tabu
tenure or move prohibition approach, is to forbid the reversal of recently taken moves.
Strict tabu search explicitly rejects the repetition of previous solutions at all phases of the
search, while move prohibition is temporal in nature, and may allow the search to
progress back to a previous solution in time.

Strict tabu search requires the ability to determine whether a move would in fact
give rise to repetition of a previous solution. The difficulty with testing for this condition
directly is that storage and indexing to all solutions which have been encountered in the
search is, computationally, both time and memory intensive. A common strategy is to
store only a list of the moves which have been taken, the reverse elimination method
[Dammeyer and Voss 1993, Glover 1990a and 1990b]. As each candidate move is
evaluated in the neighbourhood search, the sequence of previous moves is traced in
reverse order to determine whether the candidate move should be prohibited. This
method avoids the large storage and indexing costs to access previous solutions, but
incurs an increasing computational cost as the search progresses. Recently, data
structures for storing past solutions which are efficient in terms of both space and
computational effort have been investigated [Battiti 1996, Woodruff 1993]. However,
most work in the literature has focused on the second prohibition strategy, the move
prohibition method, since it is simple in concept and is relatively trivial in computational

effort to implement.

50

The major issue in developing algorithms which use move prohibition to direct the
search process is to define appropriate rules to restrict or forbid a small sub-set of moves,
the so-called tabu moves. The length of time (number of iterations of neighbourhood
search) for which a move is forbidden is called the tabu tenure or prohibition period.
Tabu tenure is often referred to as the rabu list size; this expression is derived from a
common implementation of tabu status as a list of forbidden moves. The most basic of
the TS rules is to exogenously determine the tabu tenure. This is called fixed tabu search,
since, once a move is taken, its reversal is forbidden for a fixed number of iterations.
There is no universal "good" value for tabu tenure, although some empirically
determined guidelines for certain problem types have been published [Glover 1989].
Thus, if a fixed tabu search algorithm is to be attempted on a given problem, an
experimentation phase to determine an effective setting for tabu tenure is usually
required. This empirical investigation will often involve "expert" feedback from the
algorithm designer. Thus, this investigation, in addition to being costly, may be difficult
to reproduce, and may be instance-specific. That is, the choice of tabu tenure which is
arrived at through experimentation on one problem instance may not be a good choice for

other cases of the same problem [Battiti 1995].

4.1.2. Aspiration Criteria

In addition to tabu considerations, moves are accepted or rejected with regard to
aspiration criteria. An aspiration can over-ride the tabu status of a move -- when this
happens, the move is said to be aspirated. While a suite of aspirations may be defined
for any given problem, most TS algorithms include the aspiration by default, which is to
choose the "least tabu" move when all possible moves are tabu. This ensures that the

process does not terminate arbitrarily. Aspiration by objective is always included. This

51

aspiration over-rides tabu status for any move which yields a solution better than any

encountered thus far in the search, ensuring that optimum solution, if it is encountered, is

not lost.

4.1.3. Summary of the Basic TS Structure

Denote by z(x,H) the move evaluation function. (The notation (x,A) means that
this evaluation function may change throughout the course of the search algorithm as a
function of the recorded history of the search, H. See section 4.3.) The TS algorithm

may be outlined as follows:

1. Initialization
1.1 Find a solution cur_sol = x
1.2 Set best_sol = x
Set best_z = z(x)
2. Neighbourhood Search
2.1 For each move m, evaluate z(x', H),where x'=x®m.
22 Choose best_move = miz(x®m,H) is minimized
Set x’ = x@®best _move
3. Update and save best solution

3.1 Set cur_sol = x’
3.2 Update tabu status of moves and z(x,H)
3.3 if (z(x)< best_z) then

best_z=z(x)

best_sol = x'
endif

4. Termination
If stopping condition is not met, go to Step 1. Otherwise, terminate and report

results.

Figure 4.3. Tabu Search Algorithm
The cost function z and constraints defining the feasible region can be non-linear,
discontinuous and even stochastic. Thus, tabu search provides a framework which is
flexible in that it can be applied to a wide variety of problems. For many problems, the

method has an inherent computational efficiency since only the incremental change to

values of the objective function z need be calculated at each iteration. Tabu search has
been applied successfully to many hard combinatorial optimization problems [Barnes
and Laguna 1993, Barnes, Laguna and Glover 1995, Costa 1995, Friden 1990, Garcia
1993, Gendreau et al 1996a and 1996b, Gendreau, Soriano and Salvail 1993, Glover
1990, Hertz and de Werra 1987, Hertz, Laporte and Mittaz 1997. Laguna and Glover
1993, Sharaiha et al 1997, Widmer 1993]. To date, only one application to the forest
harvesting problem has been reported, that of Murray and Church [1995].

4.2. Reduced Neighborhood Search

For large problems, evaluation of every possible move in the neighbourhood may
be computationally prohibitive. In this case, a suitable subset of the neighbourhood must
be identified for move evaluation. Candidate list strategies [Glover et al 1974,
Frendewey 1983] are used to create the reduced neighbourhood.

The reduced neighbourhood may be chosen by drawing a random sample of moves
from M. If the result, i.e. the quality or composition of new solutions attained by
executing these moves, is unsatisfactory, the process can be repeated. Another candidate
list strategy is to decompose the neighbourhood into "critical” subsets. This method
requires a system of "remembering" which subsets have been used in the past, so as to
systematically cover all different critical sub-regions during the search process. Another
random sampling method is to draw a small random sample of moves for most iterations,

yet periodically evaluating a much larger sample of moves.

4.3. Move Evaluation, Intensification, Diversification

In a simplistic algorithm, tabu moves are those which would reverse recently taken
moves, while the evaluation function is the original objective function z. The essence of

Tabu search is to add principles of intelligent problem solving to the basic search

53

mechanism. TS enhances the subsequent stages of the search by acting on the
information gleaned from the results of the search so far. Tabu schemes are based on
knowledge of the history of the search, A, and a set of rules or principles which act on
that knowledge to determine tabu status, aspiration conditions and move evaluation
functions. Thus, the move evaluation function is denoted by z(x,H). Differing
evaluations of moves may be done at different phases of the search, depending on
whether intensification or diversification is required.

Intensification means to search for better solutions near a known good solution. To
effect intensification in the neighbourhood of a solution, the best improving moves are
chosen until a local optimum is found. Intensification is also achieved by searching
about solutions with known good attributes. In this case, the evaluation function z(x,H)
is changed to favour solutions with these characteristics over those which lack them.

Diversification means to move the search trajectory away from the current
solution, that is, to change the structure of the current solution so that the new
neighbourhood search leads to exploration of a different region of the search space.
Diversification is necessary when an intensification phase fails to further improve the
solution, that is, when intensification finds a local optimum. In memoryless search
algorithms such as pure local search, diversification is effected by re-starting the process
with a new randomly generated initial solution. In contrast, tabu search uses its memory
of previous solutions and moves to create diversification in a systematic and largely
deterministic manner.

Thus, diversifying moves are (usually non-improving) moves that lead away from
a current local minimizer, or moves which specifically change the structure of the current
solution. For example, in the packing problem, the goal is to place unequally weighted

objects into boxes so that the total weight is distributed evenly across the boxes. In this

54

problem, a diversifying move is to swap two objects which are very different in weight,
thus significantly changing the composition of two of the boxes’ contents. [Dowsland and
Dowsland1992, Dowsland 1993] In the harvesting and road building problem for forest
planning, (Chapter 7 of this thesis), choosing moves which reduce the number of road
links required effects one type of diversification.

The basic method for achieving diversification in tabu search is the enforcement of
tabu tenure, creating a restricted neighbourhood derived from the set of allowed moves.
This forces the process to look for moves which do not reverse recently taken moves,
thus leading the search to new feasible regions. Because tabu tenure is typically small,
the imposition of tabu status is often referred to the use of short-term memory, or
recency-based memory. In the medium to long-term phases of the search, diversification
can be implemented by discouraging or penalizing moves which have occurred
frequently in the past. This is often accomplished by augmenting the cost function with a
penalty term which is proportional to the frequency of the move, for example:

z2(x®m, H) =z(x)+£1t:—;"-,where

t= current iteration
F,, = number of times move m has been chosen
a= a suitable constant

Stochastic diversification schemes may be designed by selecting a series of random
moves -- this is akin to a random re-start method. The choice of the number of random
moves may be a free parameter (i.e. fixed but determined prior to search) or may be
determined dynamically by examining the history of the search [Battiti 1995]. Stochastic
diversification adds robustness to the algorithm, and is thus desirable, especially when

the solution space is highly non-convex or discontinuous.

55

Intensification and diversification strategies interact and oppose each other to form
the fundamental cornerstones of longer term memory in tabu search. [Glover 1991a] At
each stage of the search, an appropriate choice of intensification or diversification is
made by examining the state of the search. For example, at the initial or startup phase,
intensification is required. Once a local minimizer is found, diversification by tabu status
(short term memory) is used to force the search into new areas, hopefully finding new
minimizers. In the mid-range and later stages of the search, diversification which
encourages moving to new local minima by changing the solution structure is
appropriate. These are long-term memory processes, and often involve penalizing
frequently taken moves or solutions with key elements that have occurred frequently in
the past. Thus, the design of tabu search algorithms that effectively balance
intensification and diversification is a major challenge to researchers. The most effective
schemes use dynamic rules to modify tabu tenure and z(x,4) throughout the search

duration. [Glover, Taillard and de Werra 1993, Soriano and Gendreau 1996

4.4. Dynamic Rules for Evaluation and Prohibition

Tabu search algorithms in which the evaluation function is not changed and the
tabu tenure is fixed have been classified as fixed tabu search in Battiti [1995]. Fixed TS
has been found to be quite successful in getting good solutions to many hard problems.
The difficulty with fixed TS is in determining a good value for tabu tenure. Its
magnitude determines the effectiveness of the algorithm in escaping from the "attraction
basin" of a local minimizer [Battiti 1995]. If tenure is too small, not enough moves are
prohibited and the search will return again and again to the same minimum point. If the
tenure is too large, the search is over-constrained and is likely to miss other good

minimizers.

56

Often, an extensive period of experimentation with problem instances is required to
find a good value for tabu tenure. Since this is an empirical determination, the value
found may be dependent on problem instance -- that is, it may depend on the magnitude
(or relative magnitude) of cost function coefficients, or on the constraint structure. This
experimentation period can constitute a lengthy trial and error process, sometimes with
intervention by the designer of the algorithm. Moreover, if the statistical properties of
the search space vary widely in different regions, a tabu tenure that is suitable for one
region may be unsuitable for another [Battiti and Protasi 1995].

In the quest for more robust and more generally applicable TS procedures,
researchers have developed methodologies and data structures to incorporate dynamic
rules for move evaluation. These rules include modifying parameters which define the
extent to which the search history H is used in move evaluation, and the introduction of
different move selection rules at different stages in the search progression. In addition to
deterministic rules, randomness is often incorporated into the algorithm, in a controlled
way, to increase the robustness of the algorithm. For example, researchers have found
that a relatively straightforward modification of fixed TS which is to vary tabu tenure
randomly within a range improves the search performance for some problems
[Dell"Amico and Trubian 1993, Gendreau et al 1994].

Intelligent dynamic choice rules have been used by Gendreau et al [1994, 1992] to
solve vehicle routing and traveling salesman problems. They chose a tabu tenure 6,
drawn randomly from the interval [5,10]. Others [for example, Dell'Amico and Trubian
1993] allow tabu tenure to vary on an interval [t,,,,.?,., |, and then invoke diversification
and intensification strategies by increasing (respectively, decreasing) ¢, and ¢,__.
Woodruff and Spearman [1992] studied TS formulations with varying levels of diversity,

and found that better results were always found when some level of diversity is

57

incorporated. Mooney and Rardin (1992) postulated that relatively high diversification is
a necessary condition for finding good solutions using TS for complex problems. Battiti
and Tecchiolli [1995] have gone even farther in determining the appropriate tabu tenure
dynamically as the tendency of the search process to cycle back to known solutions is

detected. Their self-tuning framework for tabu search is called the Reactive Tabu

Search.
4.5. Reactive Tabu Search

A group of researchers at Trento University in [taly, led by Dr. Roberto Battiti,
have developed the Reactive Tabu Search framework. The system is described in detail
in [Battiti and Tecchiolli 1994, 1995]. This section summarizes the main ideas of
reactive tabu search.

Reactive Tabu Search (R-TABU) is a self-tuning heuristic, integrating simple
feedback schemes to determine the value of tabu tenure at each iteration. R-TABU is
aimed at providing a framework which is applicable to a wide range of discrete
optimization problems, while avoiding the trial and error adjustment of tabu tenure. The
R-TABU process uses the past history of the search to dynamically tune parameters (tabu
tenure), and to automate the balance of diversification and intensification in the search
process. Let L be the number of possible moves, and denote by 7'/ the tabu tenure at
iteration ¢. The search trajectory at iteration ¢ is the set of visited solutions

{x".x?x"}. R-TABU is based on detecting the repetition of previously visited
solutions in the search trajectory.

In R-TABU, tabu tenure T is always less than (L-2), ensuring that at least two
moves are allowed at each iteration. The level of diversification is controlled by T: the

larger T is, the longer the distance (i.e. the length of the search trajectory) must be before

58

the trajectory will cycle back to a previously visited solution, and hence the greater the
diversity. In some applications, the minimum cycle length can be determined from L and
T. For example, in the case where the solution space is the set of binary strings of length
L, and moves are to complement one entry in the string, the minimum repetition interval
is 2(T+1). Thatis, x**"’ =x"" =>r>22(T+1).

In R-TABU, T is set equal to one at the beginning of the search. If solutions are
repeated, T is increased to an amount proportional to the moving average of the length of
short cycles. After an increase has been made, if no repetitions occur for a sufficiently
long period, T is decreased by a constant factor. This scheme is designed to "break"
short cycles. Long cycles, for example those longer than 2L in the binary string problem,
are not prevented by this mechanism. Battiti [1995] also recognizes that the search
trajectory may be trapped in a restricted region of the solution space even though no limit
cycle exists. In analogy with the chaotic attractors of dynamical systems, this type of
behaviour is called chaotic cycling, and also is not prevented by the above scheme. To
break long cycles, exit from a "chaotic attractor" and to increase robustness, R-TABU
uses an "escape" mechanism, which is to execute a random number of randomly selected
moves. The escape system is triggered when too many solutions are repeated too often,
indicating that chaotic cycling has occurred.

The ability to detect the repetition of previous solutions easily is essential to the R-
TABU framework. Cycling is checked at each iteration, and thus it is critical that a time
and space efficient method be available to include this information in the search history.
The reverse elimination method, used in strict tabu search, is space efficient but
excessively taxing computationally. In R-TABU [Battiti and Tecchiollli 1995], hashing
vectors and digital tree structures are used to store the incidence of solutions. In Battiti

[1996], persistent dynamic sets implemented on red-black trees are proposed to store

59

previous solutions, using hashing techniques [Knuth 1973, Woodruff and Zemel 1993] to
provide search indexes. This method is efficient with respect to computation time (O(L)
in the worst case) and space (O(1)).

The authors have shown that R-TABU outperforms other algorithms for the
Quadratic Assignment problem [Battiti and Tecchiolli 1995] and the Maximal Clique
problem [Battiti and Protasi 1995]. R-TABU, augmented with strategic oscillation,
forms the basis of the algorithm presented in this thesis to solve the forest harvest

scheduling problem.

4.6. Strategic Oscillation

A substantial proportion of the reported TS algorithms restrict the neighbourhood
of a solution to the feasible region. However, complex constraint structures may tend to
trap the search trajectory in a subspace of the feasible region. That is, it is not obvious
how to select a sequence of feasible moves that cause the search to transition from one
region to another. Glover [1990a] proposed the idea of "strategic oscillation", where the
search trajectory is first moved away from a certain solution, then drawn back towards it.
This concept is applied to oscillating through the boundaries of the feasible region. The
concept is that allowing infeasible moves may result in the search process more quickly
transitionning to new local minima. The infeasible move or moves become a "stepping
stone" to a previously unexplored feasible region. [Woodruff and Spearman 1992,
Glover 1990a, Mooney and Rardin 1992, Gendreau et al 1991].

If the moves and the structure of the problem P are such that we can categorize
moves that lead into and out of the infeasible region, oscillation can be achieved by
executing a series of such moves. For example, in the knapsack problem, the constraint

is an upper bound on the total weight or cost of the items placed in the knapsack. Moves

60

which add items "push” the solution into the infeasible region, and moves which delete
items will lead the solution back to the feasible region.

For more complex problems with more complicated constraints, specifying
oscillating by defining move type sequences may not be possible. One way to achieve
oscillating behaviour (on any problem) is to add penalty terms to the evaluation function,
with coefficients that are dynamically updated depending on the feasibility of a recent set
of accepted solutions. Specifically, suppose that there are m constraint sets in the
problem to define the feasible region X. We add m penalty terms F, (x) to z(x), each of
which measures the deviation of a solution from the feasible region with respect to that
constraint set. Each penalty term is multiplied by a positive coefficient p , , and each
F,(x) is non-negative.

z(x,H) =z(x) + i p,;F;(x),p, >0,and
=

F.(x =0 forxe X
! >0 forxegX

The coefficients p ; are modified throughout the search to encourage the
acceptance of a mixture of feasible and infeasible solutions. If feasible solutions are to
be encouraged, the coefficients are increased. Otherwise, if infeasible solutions are
required, the coefficients are decreased. In this way, a systematic oscillation through
boundaries of the feasible region is effected. Gendreau et al [1991] used this approach in
solving the vehicle routing problem. They showed that, for the VRP, their penalty
function approach was far superior to tabu search methods which maintained feasibility
at each step. This method is used in the TS algorithm for solving the forest harvesting
problem (Chapter 7).

61

CHAPTER 5

HARVEST SCHEDULING AND ROAD BUILDING PROBLEM
(HSRBP)

In this chapter, definitions and data structures to formulate the tactical harvest
scheduling and road building problem ASRBP are developed. This model can be used to
analyze the tradeoffs between lost biological productivity and the costs of road building,
while meeting timber volume goals and conforming to environmental restrictions.

Section 5.1 is a general description of the purpose of the model and the
assumptions on which it is based. In section 5.2 the spatial decision units, stands and
openings, are defined. In section 5.3, the lost volume function which is used to penalize
inappropriate timing of harvests is described. Section 5.4 describes the harvest volume

constraints which originate in the strategic planning process.

5.1. Model Assumptions

Assume a hierarchical planning structure such as the one described in chapter 1,
where a strategic planning process has been completed. The model is intended for
tactical planning horizons of approximately fifteen to twenty-five years, with planning
periods of length in the order of five years. Although many different tactical level goals
are worth considering, this work will be restricted to minimizing negative impacts on
forest productivity caused by timing of harvests, and minimizing the costs of road
construction. The model is then constrained to meet harvest volume bounds for each
planning period and for the total harvest, these target bounds having been derived from

the strategic planning process. These bounds represent a harvesting goal which is

consistent with long-term sustained yield requirements, where the objective was to
maximize the economic benefits of timber harvesting. Thus, unlike most of the tactical
models in the literature, this model does not have an objective to maximize volumes or
net present value of timber products. The model is further constrained to meet spatial
and temporal environmental restrictions for green-up periods and maximum clearcut size.

Harvest decision units for this model are the forest stands, that is, contiguous areas
of the forest which are homogeneous in cover type, age and expected future growth
potential. Only one method of harvest is employed (clearcutting), and other silvicultural
activities are not considered. Negative effects of the timing of harvests on forest
productivity are measured by the Lost Volume Function as described in Section 5.2.

Both stand scheduling and road building are required elements of tactical harvest
planning problems. A network of road links that covers the area has been designed and
represents the input to the road network selection problem, discussed in detail in Chapter
6, section 6.1. For the purpose of defining the model generally, it is sufficient to note
that the road building costs are assumed to constitute the major costs of accessing stands
in the forest. Other costs, such as skidding/hauling costs are omitted, as are any
restrictions on transportation flows over the road network. The management of the forest
stands is assumed to be under a single "owner", such as a provincial government, for
which road maintenance is an on-going activity. Thus, road maintenance costs are not a
cost factor in the model and the roads are permanent for the duration of the tactical
planning horizon. No upper limit was placed on the amount of road construction which
may be scheduled for any period, and any effects on wood volumes or opening sizes due
to road construction are ignored.

The primary decision variables in this model are the stand harvest decisions. The

model treats road building as a consequence of a harvest schedule. There are (at least)

63

two other ways to look at this problem. First, it is conceivable that roading and harvest
decisions be considered simultaneously. The implication of using such a model is that,
when a search algorithm is used, moves could be taken which render the road network
infeasible with respect to its own connectivity and with respect to covering access to all
stands scheduled. Thus this strategy was discarded, and it was decided that a model
which separated roading decisions from harvest decisions was more likely to be
successful. Since the roading sub-problem can easily be made feasible for any harvest, it
was decided to have roading be a consequence of harvest decisions.

There is no commensurable unit of measure for the lost volume penalty and the
costs of road construction. Lost volume represents a loss of productivity, the difference
between the volume which could be obtained under best timing for each stand and that
which is expected under the proposed schedule. Road link construction costs are
estimated in dollars, depending on the length of the road link and, possibly, topological
factors. This cost is discounted across the planning horizon to include a "hedge" against
uncertainty. It is not at all clear that a sensible method of assigning dollar values to lost
volume could be derived. Even if a conversion factor or method was clearly indicated,
the question of the appropriate way to discount the "lost volume dollars” arises. Yet,
clearly, the cost of roading and the cost of harvest timing are opposing factors in HSRBP.
For these reasons, a tradeoff analysis to compare the effects of different weightings of the
two cost factors is recommended.

To summarize, the ASRBP is to generate a schedule of stand harvests and road

construction that;

Minimizes: Lost Volume Costs + Road Building Costs

Subject to:
Harvest volumes being within bounds for each period;

Total harvest volume being within bounds for the planning
horizon;

Maximum clearcut sizes and green-up period requirements
being met;

Road Network feasibility (operational feasibility).

5.2. Stands and Openings

Stand characteristics include the species composition, age of trees, stocking and

site capability classification. Geographically, stands have defined boundaries and known

area.

Definition 5.1 A stand is a contiguous area of the forest which is homogeneous in cover
type, age of trees and site capability.

Suppose that the forest area under consideration is composed of S stands, and that

the planning horizon consists of J periods.

Definition 5.2 A harvest schedule is a vector x with elements
x,=j,s=L..,8J e[O,J+ l], where the value assigned to each element of x is the

harvest period for that stand.

Stands which begin period 1 in a clearcut state are assigned x, = 0; stands which

are not scheduled for harvest within the planning horizon are assigned period j=J+1.

Definition 5.3 The forest adjacency graph or forest graph FG=(S,E) is a set of nodes S,
one for each stand, and an edge e in E for each pair of stands which share a common

boundary.
The forest graph may consist of a set of connected subgraphs. This happens when

the region under consideration includes non-forested areas which then "disconnect" the
forest graph. It is also worth noting that adjacency may, in some jurisdictions, be defined

by the proximity of one stand to another. That is, stands are deemed to be adjacent if

65

they are within a minimum distance of each other. The adjacency graph has the same
definition regardless of which method is used to define stand to stand adjacency, but the
"proximity" definition of adjacency results in a denser adjacency graph.

An opening in the forest is a contiguous area which has been clearcut and not
regenerated. Most jurisdictions impose a maximum acreage on the size of openings
(maxopen), and require that areas adjacent to openings be left forested for a period
known as the "green-up" period. Openings are determined by the harvest schedule x, the

adjacency delay time, and the forest adjacency graph FG.

Definition 5.4 The adjacency delay time ADT is the number of planning periods for
which green-up period is required on adjacent openings.

In many jurisdictions, ADT is set at 10 years, or 2 planning periods in the context
of this tactical model. The NS Forest/Wildlife Guidelines specify adjacency delay and
maximum opening restrictions as "Where total area would exceed 50 hectares (125 acres)
avoid clearcutting stands adjoining a clearcut area, until the regeneration in the original
clearcut is at least two metres (six feet) or else provide appropriate wildlife corridors."
[Province of Nova Scotia 1990] For most stands in Nova Scotia, this translates to an
adjacency delay of approximately ten years.

Now, if stands are pre-blocked so that the combined acreage of any two stands is
greater than maxopen, the imposition of the maximum opening and adjacency delay
requirements is effected by prohibiting harvest of adjacent blocks in consecutive periods.
Since this model is stand based, requiring adjacency delay on neighbouring stands
imposes a more restrictive condition than that specified in the guidelines, since most
stands are significantly smaller than maxopen. These guidelines can be interpreted to
mean that openings can be increased to the maximum size over the number of periods in

the adjacency delay time. Since openings are not pre-blocked, a different method of

66

specifying these conditions is needed. This is done by first defining multi-period

openings, and then imposing conditions on these openings.

Definition 5.5 The set of stands which, under schedule x, would be clearcut within one
green-up interval ending at period pis S,(x) = {s]x, € {p — ADT +1,..., p} .

Definition 5.6 E ,(x) is the set of edges of E with both end-nodes in S ,(x).

Definition 5.7 F,(x) = (S,(x).E ,(x)) is the subgraph of FG induced by S ,(x) and
E (x).
14

Definition 5.8 The opening period p is the maximum of the periods assigned to nodes in
an opening.

Definition 5.9 An opening with opening period p O/ (x)is a connected subgraph of
F (x).
P

Thus, openings are induced by a harvest schedule and the adjacency delay time,
and each stand in an opening of period p is assigned to a harvest period within the
adjacency delay time window terminating at period p. For example, if the number of
planning periods is four and the adjacency delay time is two, openings of period one
include stands already clearcut and those scheduled for period one, period two those
scheduled for periods one or two, and so on. Thus, each stand which is scheduled for
harvest may be a member of as many as two openings. Figure 5.1 illustrates multi-
period openings for an ADT of two periods.

With this definition of openings, both the adjacency delay and maximum opening
size constraints are imposed by the condition that every opening (as defined above) be of

size not exceeding maxopen. Thus the spatial constraints on the harvest schedule are

given by :
] 1)
Z a, < maxopen,k = 1,..,K?(x), p=1,...,J
:eOf(x)

67

Since openings are derived from a given harvest schedule x, there is no convenient

method of specifying these constraints in an integer programming formulation.

Enumeration of all potential openings which could cause a maxopen violation is possible,

but not practical since the number of possible openings is exponential in the number of

stands. However, the computational complexity of graph searches to calculate these

openings is rather trivial in this application, since the forest graph will be sparse. Thus,

although this is not a useful model for integer programming methods, it will prove to be

workable for our heuristic search methods.

Harvest
Schedule

%
aad ;
-

Openings, Period 1

/

-~

0

Opening, Period 2

\
L 4
2

Opening, Period 3

Figure 5.1. Multi-period Openings

68

5.3. Lost Volume Penalty

Appropriate timing of stand harvests is of major importance in realizing long-term
sustainablity of the forest resource and in maximizing its productivity. In this model, a
lost volume penalty function is used to differentiate between effective and ineffective
timing of harvests. This penalty function, as a factor in the objective function to be
minimized, also favours solutions that attempt to recover from existing inefficient
conditions (over abundance of old stands and dead stands). It also discourages those
solutions which would incur losses in the future, i.e. outside the planning horizon for

which the model is solved.

Definition 5.10 The mean annual increment, mai(g), of a stand at age g is the average
wood volume increase per unit area per year at full stocking.

Mai depends on the existing covertype, age and site capability of the stand [Gunn
1994b]. Figure 5.2 shows mai curves for stands of site index 3 - 8 for Nova Scotia
softwoods (a higher numbered site index indicates better growth potential). If the
biological production potential of the forest is to be maximized, then stands should be
scheduled for harvest when they have reached their maximum mai. The lost volume
penalty function was developed to form a proxy measure for negative effects on potential
productivity which can be attributed to decisions made within the planning horizon. The
lost volume penalty induced from harvesting stand s in period ; is a function of the stand
size, age, stocking, mai and its current growth state (growing or moribund). For growing
stands the contribution to lost volume from assigning stand s to harvest in period ; is :

LV ping (8:7) = [mai_max(s) - mai(s, j)] x a_x age(j)x stocking (2)
If stand s is harvested at its period of maximum productivity, mai_max_age(s), the

penalty is zero. Suppose that a stand is harvested at period j, before its peak productivity

period. Then, the incurred penalty is equal to the difference between the volume which

69

is achieved at that harvest and the maximum volume which could be achieved by
harvesting at mai_max_age(s). If the stand has reached its peak productivity at some
period £ in the planning horizon or prior to the inception of the first planning period, then
a decision to delay harvest of that stand results in the land being kept in a declining state
of productivity. Suppose that the stand is eventually harvested at period j. Then, the
penalty is derived from observing that, for age(j) years, the land has been occupied by a
stand producing at the rate mai(s,j), which is less than mai_max(s). Assuming that the
next rotation harvest for the stand occurs at maximum productivity, the appropriate
penalty is the volume corresponding to the difference in mai_max(s) and
mai(s,min[jJ+1]). The lost volume penalty, being the sum of all stand penalties, will
evaluate to zero only if the scheduling of all stands is such that productivity has not been
harmed. Therefore, minimizing the lost volume penalty is a sensible proxy for
maximizing forest productivity.

In figure 5.3, the stand is at ageclass 7 in period 1 of the planning horizon, and
reaches maximum mai at ageclass 10. The figure illustrates the penalties for harvest in
period 1 (early) and in period 5 (late).

For stands which have a significant amount of dead timber, the lost volume
function is defined differently. The presumption is that the stand will resume normal
growth after the inhibiting deadwood is removed and some remedial silvicultural action
taken. Thus, for dead stands, the penalty is based on the number of periods into the

planning horizon that no intervention is taken.

(o ifj=1
LVdead(S,.])=

. : Do €))
mai_max(s)x(j-1)xa, xstocking if je [2,J +1]

Thus, if the stand is cleared in the first planning period, no penalty is applied, since

this is the best action that can be taken. Otherwise, the delay to future periods incurs a

70

penalty calculated from the stand's expected future growth at maximum mai (Figure 5.4

illustrates this penalty for waiting until period 4 of the planning horizon.).

Nova Scotia Softwoods
Site Classes 3-8

80 . ' 3
5 70 -
g e S
o 50.
< 40. z 3 —e—5
s 9 LT M‘*- —— 6
s 20 . AT & -)
6 10 2 7 /:/ ./ 7
- /'—" v ————
OE—M
—_ ~

S = n
-—

17
19

—

Ageclass (5 years)

Figure 5.2. Mean Annual Increments

| Harvest at ageclass 12. after peak mai

Harvest at ageclass 7, before peak mai

[}
o

Peak mai

50k
. g
240
-
< 30
L
(¢
5 20
=]
&)
10
0
TNeSsLoOor2-od2IT2er222 g Y
Ageclass

Figure 5.3. Lost Volume Function, Growing Stands

71

LV(s,4) Maximum mai

H
o

N
(=

Cubic FV/Acre/Year
(98]
=)

—
o

0 o

— N M T UV O M~ D DO - N TN O OO
-~ - e = = = (N N

" Agedass

N
N

Figure 5.4. Lost Volume Function, Dead Stands

5.4. Harvest Volume Restrictions

Target harvest volumes for each period and for the overall harvest are derived from
a strategic planning process. For the tactical model, periodic volumes and total volume
are allowed to deviate from target values by a percentage of the target. A larger
percentage deviation is allowed on periodic harvests than on total.

Unlike many other tactical harvest scheduling models, this model does not attempt
to maximize harvest volumes or net present value of timber. The premise is that the
harvest targets have been derived from a strategic model, where maximization of timber
product value is done under sustainability constraints over long planning horizons.
Actual harvest targets (often called annual allowable cut) produced by a strategic
optimization model over this longer horizon with a non-declining yield constraint, will
be attained by "harvesting" stands at ages near their peak biological productivity in most
cases. Thus, this tactical scheduling model will maintain consistency with the strategic

plan by also scheduling the stands at the "best" times where possible. Re-optimizing for

72

volume in the tactical planning phase is not useful in this hierarchical framework, and
may tend to favour schedules which are inconsistent with the upper level strategic
planning model assumptions. Thus, within the tactical horizon, the goal is to implement
the strategic plan while minimizing costs and meeting spatial requirements.

Define parameters:
5 volume from harvesting stand s in period j (ft’)
TV Total volume target (ft°)
dTV Percentage Deviation allowed from Total volume target
PV, Periodic Volume Target, periodj (ft°)
dPV Percentage Deviation allowed from Periodic harvest target
and indicator variables
1 if stand s is scheduled for harvest in period j
0 otherwise

Then, the harvest constraints are:

TV(1-dTV) <)) V.x < TV(1+dTV) Total Target (4)

PV,(1-dPV)<Y V. x <PV (1+dPV) j=1..J Periodic Targets

Z x, <1 s=1..,§ One harvest/ stand
i

The model is then summarized:

miniiLV(s, J)x; +P RC (x)

J=t 5=l
Subject to:
Spatial Constraints (1)
Harvest Constraints (4)
and operational feasibility for the road network.

RC(x) is the cost of constructing road links so that all stands are accessed. These

are determined by solving RVP(x), the road building problem which is induced by a

harvest schedule x. The parameter p is increased (,respectively decreased) to drive the
search algorithm to produce solutions with lower (, respectivly higher) roading costs.
The road network problem and the heuristic procedure for solving RNP(x) are fully

described in Chapter 6.

73

74

CHAPTER 6

ROADING NETWORKS

In the previous chapter, the harvest scheduling component of HSRBP was defined.
This chapter deals with the road building optimization problem. Each harvest schedule x
induces a road network design problem RNP(x). This problem is to select from a pre-
specified set of road links a minimal cost set which is operationally feasible for x.
Multiple access points and cycles in the network are allowed, and in this sense this model
deals with more general road networks than those which have been treated to date in the
literature.

[n this chapter, a graph structure and an integer programming formulation for
RNP(x) are first developed. A solution to the discounted, multi-period road building
problem is a directed spanning graph of the road network. It is shown that RNP(x) is
NP-complete by transforming the single-period, undiscounted road design problem to a
Steiner problem on graphs. A heuristic solution procedure, the Path Heuristic, PH, is
developed, and is shown to produce near-optimal solutions to RNP(x) with optimal
solutions in many cases. In addition, PH is especially suitable for use in the tabu search
algorithms described in the succeeding chapter. This is because the initial solution to the
roading problem, a set of shortest directed paths, is easily used to compute incremental

costs of road building when moves are implemented in the tabu search algorithm.

6.1. Creating the Proposed Road Network

A roading system is required to analyze the cost of gaining access to stands

75

assigned to be harvested in any schedule. If no road network, or only a partial network,
exists for the area under study, a proposed system must be created. Its development
occurs in two phases. They are the spatial definition of suitable road links and the
mathematical definition of the graph representing the road network and the stand/road
requirements.

The essential requirement for the proposed roading system is that it defines a
connection from every stand in the area to a main road. That is, the network model of the
roads must contain at least one path from each stand to one of the existing main roads.
Apart from conforming to this connectivity requirement, the network must be designed
with sufficient care that it provide a fair representation of the problem at hand. The role
of the road model is to approximate the real costs of road building which would be
incurred in accessing stands in the forest interior. Thus, the design requirements are that
the network be connected, that it make topological sense, and that there be links defined
within a minimum distance of each stand .

The proposed links are sketched on a map of the forested area, using the major
topological features (e.g., rivers, streams, existing main roads) to determine link
placement. If a GIS system and mapped coverage of the area is available, the road
design process is considerably enhanced by utilizing the system's spatial analysis
capabilities to calculate link lengths, verify connectivity and coverage of the area and
assign link identifiers. The effort expended in adding the road network to the GIS will be
returned "with interest” when proposed solutions are represented graphically. Once all
road links have been created, the stand to road link relationships are defined by assigning
the nearest link to each stand. (Stands which are already accessible by main road are
assigned a null link value.) Again, this process is less awkward when a GIS system is

available The example network in Figure 6.1 has three existing main roads and sixteen

proposed links.
Stands Requiring Stands Requiring
Link 14 Link 16 Stands Accessible
from Main Road
Main Road { ToIg K
. 15
1]
at - 4f 5 l &
2 6 :
e Ho
3 /
10 -
12
11
Main Road &
Figure 6.1. Stands and Roading Network
6.2. Graph Representation of the Roading Network

76

The network is represented as a weighted graph RG = (V,R, W), where the edges R

are road links and each weight w). is the cost to build link . The cost, w,, may be the
length of link r, although other factors such as the nature of the terrain, road elevation
and proximity to water buffers may be included in determining the link construction

cost. The graph RG may be non-euclidean when factors other than length are chosen.

The vertices ¥V are end nodes of the links, which are indexed in any unique

fashion, with the proviso that only one node index is used to indicate that a link accesses

amain road. That is, all existing main roads are "collapsed" into one node . The

network in figure 6.1 has five links which are connected to access roads (1,8,11,12,16).

77

Its graph is V={a.a.b.c.d.e.fg.h.ij.k.l}, R={(a,a). (a.b), (b.c), (af). (fg). (g.e). (e.d),
(h.a), (g h). (c.d), d.a), (c.a), (.0, (i,k), (k.]), (i,a)}, as shown in figure 6.2.

ey 14 g
8 T
S S
11 247" 5
12 2 B
b ¢
) e h
3.7
c,\ S
‘10;-‘d

_Figure 6.2. 5raphiepresentation of Road Network

Some comments on the nature of these graphs are in order. First, several links may
be constructed beginning at a main road, (depending on the length of the road which is
incident to the forest area), and the node a. may represent more than one of these roads.
Thus, the degree of a is expected to be large compared to that of other nodes in the
graph. For nodes other than a, the graph is likely to be relatively sparse. To illustrate
this, consider the design which is an N by N gridding of the forest area, shown in figure
6.3. Each interior node has degree 4, the number of nodes is (N ~1)* + 4(N —1), the

number of edges is (NV-1)N+2(N-1), and thus the average node degree is
(N-DN+2(N-1) N+2
(N=-D*+4N-1) N+3

} . This is arguably the most dense pattern of potential

road links that would be designed, and thus the highest vertex degree we would expect to

find in RG (for nodes other than a) is 4.

78

Figure 6.3. Gridded Road Design

6.3. Integer Programming Formulation for RNP(x)

Denote by RNP(x) the problem of finding a minimum cost road plan for a given
harvest schedule x. To specify RNP(x) as an integer program, some parameters, sets and
variables are required. As well, for each link in RG which is a member of a cycle, paths
from that link to the main roads must be enumerated. This enumeration is practicable on
graphs which are sparse as described above, since only a few possibilities exist for each
link, and not all links will be in a cycle. This is not a generally applicable method, since
too many cycles or a denser graph would render the enumeration unworkable. See
Magnanti and Wolsey [1995] for a description of network design models. Nevertheless,
this enumeration was done for this problem to produce an integer program which was
then used to generate optimal solutions for the road building problem. This section

describes the /P formulation for RNP(x).

79

Parameters

discounted cost to build link r in period t
S Set of stands

J number of planning periods

R Set of road links

Sets
CC ={s € S|x(s) =0} Existing Clearcuts
5 (r)= {1 € R\{r}|l is connected to r} The cutset of r.

D(r) ={1 € 8(r)|l is connected to tin RG(R- (r))}
S, = {5 € S\CClharvest of stand s requires link r}

P. ={Paths which connect link rto o. } Paths fromr to
={R} All Paths
DecisionVariables

“q

_ |V iflinkris built in period j
" 10 otherwise

Indicator Variables
_ |V ifpath pis built in or before period k
* 710 otherwise

Timing and connectivity constraints for this problem must be included to ensure
that, for each link » which is built in period j, some path which links r to a is also built in
period j (or earlier). For links which are members of a sub-tree of RG containing o, the
timing and connectivity requirements are specified by examining the cutset of 7,8(r) and

constructing the set D(r). For these links, at least one of the links in D¢r) must be built

in the same period or in a prior period.

j
z; < Zzur
}:Ll)(r) (6. l)
For links which are members of cycles in RG, indicator variables Y,, and an
enumeration of all paths to o are required. For each link » which lies in a cycle of RG

containing a., the paths P. are enumerated and indicator variables Ypk used to form

constraints (6.2).

80

k
lp|Y, < Z.: Dz, 6.2)
j=\ rep;
k
2, <) DY, (6.3)
Jj=1 pef,

where | p,| is the cardinality (number of edges) of the path p,. Equations 6.1, 6.2 and 6.3
then ensure connectivity of the road network.
For any harvest solution x, the elements of x which are member of S, provide a

bound on the period at which link » must be built. Define

Jmin_(x) = {'nesin{xI }}mod(J + l).

Then the constraints

Jmin,

>z 21,r=1JR (6.4)
Jj=1

ensure that the required link is built prior to harvest.

The optimization problem RNP(x) can be expressed as the following (binary)

integer programming problem:
J R
RNP1: min) Y w,z_
J=1 r=l

Subject to constraints 6.1, 6.2, 6.3, 6.4 and
J

Zza. <Lr=1,

j=l

z; € {O,l} Binaryvariables

R| Construct each link at most once

6.4. Equivalency to Steiner Tree Problem

The set of links which are required to be built during the planning horizon, RL, is
the set {ﬁ Jmin_(x) > 0} A feasible solution to RNP(x) is a directed connected subgraph

S (¥, R") of RG such that, for each r in RL, there is a directed path in S,
P.={rr, .1, ,r, } from the required link rin RL to c.. That is, the ending link in this

81

path, 7, , has one node equal to o Each link in each path is assigned a construction
period, a mapping Q2:R' — [I,J + 1|Q(r,,.)SQr,)< ~LY(r,) < Q(r)]. An optimal
solution is one of minimum weight, i.e. one that minimizes the discounted costs of road

w
building —— =~ (d is the discount rate).
rﬂ%g (1 +d)n()

This network design problem has two special features: the requirement for timing
the road link construction and the existence of required links. The second observation
leads to a comparison of RVP(x) with the classic Steiner Tree problem.

If timing of road construction is dropped from the problem, (i.e., let /=1), RNP(x)

is reminiscent of the Steiner tree problem on graphs.

6.4.1. The Steiner Tree Problem on Graphs

The Steiner tree problem (STP) on a weighted undirected graph G=(V,E) is to
find a minimum cost connected subgraph of G which contains some subset T of V. The
nodes T are called "Terminal" or "Special” nodes. The optimal solution to STP is always
a tree of G (a connected subgraph of G with no cycles), which contains all of the terminal
nodes 7 and possibly some other nodes in ¥\T. These "extra" nodes are called Sreiner
nodes. If T is equal to V, the problem reduces to the minimum spanning tree problem
and is solved in polynomial time using Dijkstra's labeling algorithm, or some variant
such as Prim's or Kruskal's algorithm. Other special cases are also solvable in
polynomial time, but in general the Steiner tree problem is NP-complete.[Garey and
Johnson 1979]

STP arises in many network design problems. For example, suppose that the
problem at hand is to install a minimum cost fibre optic network that connects a set of
customers (nodes). Any optimal solution must be a minimum spanning tree on the graph

of customers (nodes) and possible connections (edges). If, however, not all customers

must be connected, and other nodes can be used to complete the network, the problem
becomes a Steiner tree problem, where the terminal nodes T are the "essential”
customers. In VLSI design, components (chips) must be connected along horizontal and
vertical channels using the least amount of wire. Terminal nodes are those locating the
chips, and intermediate nodes are the intersections of the horizontal and vertical
channels. This problem is referred to as the rectilinear Steiner tree problem since edge
costs are measured using the rectilinear norm. [Magnanti and Wolsey 1995, Hwang and

Richards 1992].

6.4.2. RNP(x) as a Steiner Tree Problem

Denote by SRVP(x) the single period road design problem induced by the harvest
schedule x. In this road network design problem, instead of a subset of required nodes, a
set of links are required. Also, node a must be in the solution. In contrast to solutions to
STP which are always trees, the solution to this network problem may contain cycles.
An obvious example is where a set of required links forms a cycle. (In figure 6.2, if a
given harvest requires links 1, 2, 3 and 12, this cycle will be in the solution.) Closer
investigation of SRNP(x) reveals that it is in fact equivalent to the following STP, and

therefore also NP complete.

83

Given RG = (V, R, W), the road graph, with RL < R, the set of required links
Define the Steiner Road Graph SRG(SV,SL, W) as follows :
Set RLV (Required Link Vertices) = {a }
For each edge (v,w)in RL
Replace (v, w) with a vertex vw. Set RLV = RLV U {vw}
If either v or w isa, add a zero - length edge between vw and a
Re - label all edges in the cutset of (v,w) : (u,v) = (u, vw) and (u, W) = (u, vw)
Set V = V- {fu}, {wh}
End processing RL
SV=VURLV
andSL=R -RL

Then, SRNP(x) is equivalent to the Steiner Tree Problem on SRG with Terminal

nodes RLV. The cost of the solution is the total cost of building the required links, plus
the cost of the additional links required to connect all Terminal nodes in SRG to a.

As an example, consider the network shown in Figure 6.4a. Links 4 and 9 are
required. The transformed graph is shown in Figure 6.4b, where the Terminal nodes are
cd and eh. Edge 2 is now (b,cd), edge 3 (b.cd), edge 6 is (feh) and so on. Note that in
this case the "Terminal Link" (c.d) originally formed a cycle with edges 2 and 3, with
only one possibility (link 1) to complete the tree. Thus, the minimum cost Steiner tree
will include the shortest of links 2 and 3. This path is shown in boldface in Figure 6.4b
in the case that link 2 is of lesser cost than link 3. Figure 6.4c shows the actual road path

on the original graph.

6.4.3. Solving Steiner Tree Problems

A number of exponential time exact algorithms have been proposed to solve STP.
Aneja [1980] formulated the STP as a set covering problem in a 0-1 integer program, and
uses a row generation procedure in the solution. Beasley [1989] and Balakrishnan and

Patel [1987] identified reduction schemes which exploit the special structure of Steiner

84

trees and improve the basic integer formulation. Beasley's algorithm is a branch and
bound scheme which uses Lagrangean relaxation techniques to sharpen bounds;
Balakrishnan and Patel generate a series of spanning trees of increasing weight.
Although these efforts have provided encouraging improvements in solution time (see
Beasley 1989 where graphs of thousands of vertices are solved), there is of course still
the possibility that that, in solving any instance of STP, the solution time will be

exponential in the number of variables.

L f
6 7
3 e
d 9 8 g
h
— Built . . Not built
Figure 6.4c

Figure 6.4. Equivalent Steiner Network
A class of heuristic algorithms for STP based on shortest path graphs has been
shown to provide solutions close to optimal with reasonable computational times. [Wu et

al 1986, Widmayer 1986 and Melhom 1988, Takahashi and Matsuyam 1980, Kou 1990,

85

Kou and Maki 1987]. The most computationally efficient of these is Melhorn's
algorithm [Melhorn 1988], which is of order (E + ¥ logV’), where E is the number of

edges and V the number of vertices) in G. Other heuristics for Steiner tree problems and
their variants include simulated annealing methods, edge insertion methods and tabu
search methods. For a comprehensive discussion of the Steiner tree problem, see Hwang

and Richards [1992].

6.4.4. Differences between SRNP(x) and RNP(x)

Consider RNP(x), the multi-period problem, which is NP-complete since SRVP(x)
is NP-complete. An optimal solution to SRVP(x) is not necessarily optimal for RNP(x).
To illustrate this, consider the problem in figure 6.5. Links / and RL are required, z is the
length of the shortest path from a to RL and x is the length of the shortest path from a to
RL. Ifx is greater than z, then the optimal solution for the undiscounted (single - period)
problem is to build path P/ and link /, with cost equal to (y+z). For the multiple-period
problem, suppose that RL is required in period 1 and / is required in period p > 1. Then,

if x+ # < y + z, the minimum cost solution is to build link / and path P2. For
(t+ay

example, if p = 2 and the discount rate is .10, the longer path P2 will be optimal
whenever x is less than (z + .0909y). Note also that, as the discount rate is increased, the

likelihood of finding a cheaper but longer path is increased.

P2 (Min Path to RL)

Figure 6.5. Multi-Period vs Single-Period Solution

86

6.5. Solving RNP(x)

An optimal solution to RNP(x) can be obtained by formulating and solving the
integer program RNP1. Developing RNP1 requires a considerable effort in enumeration
of connectivity constraints, and may result in a large number of indicator variables and
connectivity constraints. The solution of the integer program is computationally
prohibitive (Solution times for the Shulkell problem exceeded 30 minutes). Since
RNP(x) must be solved a great many times in the tabu search algorithm, an effective
heuristic to solve RVP(x) was developed.

The path heuristic (PH) is based on the well-known class of "label-correcting”
algorithms which include Dijkstra's algorithm for shortest paths, Prim's algorithm for
minimum spanning tree and others [Ahuja et al 1993]. For convenience, Prim's
algorithm [Tarjan 1983, Ahuja et al1993] for constructing the shortest path spanning tree

of a graph is outlined in figure 6.6.

Prim's Algorithm
1. Assign weight W(v)=cw for all vertices v.
2. Begin with an arbitrary vertex k. Set V=W\{k}. Set dad(k)=0.
3. Process all nodes ¢ which are adjacent to &
For each ¢

if W(t)>(W(k) + length of (¢,k))
Assign W(1) = W(k) + length of (1,k)
Assigndad(t) =k
4. If Vis not empty, choose the vertex & in ¥ with smallest weight W(k), set V=V\k and
go to step 3.

Figure 6.6 Prim’s Algorithm for Shortest Path Network
The weight W(z) is a tentative distance label for vertex ¢. This label is updated
whenever a better (i.e., shorter) path is found between ¢ and k. The algorithm begins with
a "singleton"” tree, and builds on that tree by examining adjacent nodes in a breadth first

search. When complete, a directed spanning tree rooted at & is created, in which each

87

node is contained in a shortest path to the root. The directed tree is stored using the

"dad" structure, in which each node is assigned a predecessor ("father") node in the tree.

6.5.1. Path Heuristic

If the first vertex chosen is the main road vertex a, Prim's algorithm will produce a
shortest path spanning tree between all nodes in RG and «. The difficulty is that these
paths will not necessarily include all of (or even any of) the links which are required for
the harvest schedule x. This motivates changing Prim's algorithm in the following way:
attempt to include the required links by reducing the weighting of paths which contain

any element of RL. The Path Heuristic (PH) is as follows:
Path Heuristic
1. Assign weight W(v)=c for all vertices v in V.
2. Begin with a. Set F=Na. Label k=a
3. Process all nodes ¢ in V that are adjacent to k&
For each r;
If(k.¢) is a required link,
assign W(1)=0
Otherwise,
if W(t)>(W(k)+length of (1,k))
assign W(t)=W(k)+length of (1,k)
assign dad(¢)=k
End processing edges (k,?)
4. If Vis not empty, choose the vertex k in ¥ with smallest weight W(), set V=W\k, and
go to step 3.
5. If any required links is not a member of some path, it must form a cycle with two
paths. Assign the link to the shortest of these.
6. For each path, assign the earliest required period to each link, and calculate the cost
of the road project.

Figure 6.7. Path Heuristic
Clearly, the search begins with node a,since the object is to build paths to the main
road access. The difference between PH and Prim's algorithm is that, when a required
link adjacent to ¢ is encountered in step 2, a weight of 0 (highest priority) is assigned to .

This forces required links into the solution. After completion of steps 1-3, a tree has

88

been created which connects each node in RG to a.If any required links are missing from
this tree, they must then form a cycle with two paths in the tree. Step 4 then adds these
links to the shortest of the paths in which the cycle occurs. Finally, step 5 assigns the
earliest required harvest period to each link in each path.

One might observe that this heuristic in fact calculates more paths than are
necessary to solve RNP(x). This is true, since it is only strictly necessary to calculate
paths until all required links have been included. The extra iterations of Step 3 could be
removed by stopping the algorithm when ¥ contains no more vertices incident to
required links. The complete set of paths produced by PH will be used to quickly
calculate the (approximate) incremental roading costs for moves in the tabu search

algorithm. So, the algorithm will be used in this form.

6.5.2. Computational Complexity

The running time of Prim's algorithm is O(V'||R]). When implemented with a
priority queue effected by a binary heap data structure, this complexity is reduced to
O(WV!+{Rllog{V']) [Ahuja et al 1993, Tarjan 1983, Sedgewick 1983]. In the Path
Heuristic. some extra computational cost is incurred by adding any missing required
links (Step 4) and re-timing the links in each path (Step 5). Step 4 computation effort is
O(|RL|). typically <<O(|R]), since only those required links which form a cycle in the
graph will be left missing from the path network. Step 5 computations require at most
O(IR|) comparisons to set the timing of the links. This is easily seen by examining the
search method used to assign the timing of the links. (Figure 6.8). The re-timing
algorithm makes use of two variables: period(r) and c_period(r). Period(r) is the period
Jminy(x) determined by the stand assignments and c_period(r) is the period assigned for

construction of link .

89

Set period(r)= jmin_(x), c_period(r)=(J+1) for r = I.R.
For each link r :
If r is a leaf (i.e. it has no successors):
Set ¢_period(r) = period(r)
do while {(dad(r)<> 0) and c_period(dad(r))>c_period(r))}
¢_period(dad(r))=c_period(r)
r=dad(r)
end do
End if

Figure 6.8. Link Re-Timing Procedure

The re-timing loop is executed once for each » which is a leaf in the shortest path
spanning tree. The first time a path is encountered in this procedure, it is processed
entirely (since c_period is set to (J+/) initially). If the leaves are processed in an
unordered way, path segments would be re-processed each time a new leaf incident to
that path is encountered. This inefficiency is avoided by first sorting the leaves in
increasing order of period. The timing of all road links requires 2R steps to set initial
values, L steps to begin processing each path (L is the number of leaves), R steps to make
the assignments and O(LlogL) steps to sort the leaves (for example, using a binary heap

sorting algorithm [Sedgewick 1983]). Since the number of leaves is dominated by the
number of vertices, the running time of PH is O(|V'| +|R|(1 + log]¥])).

6.5.3. Numerical Results

A sample of 300 harvest solutions x was generated to evaluate the performance of
the Path Heuristic on the Shulkell study area. These solutions were generated by
randomly assigning each stand a harvest period in [1,20]. The first four periods were
used for the tactical planning horizon, with the remaining stands categorized as
unassigned. Optimal solutions to SRNP(x) were obtained by implementing the integer
formulation RNP1 in LINDO™[Schrage 1988]. 41.41% of the PH solutions were

90

optimal, the worst case deviation from optimal was 2.81% and the average deviation was
0.43%. (Figure 6.9)

Figure 6.10 compares PH results to optimal solutions for samples (size 100) which
vary the number of required road links. For smaller numbers of required links, more
heuristic solutions are optimal, but the maximum percentage deviation from optimal on
the sample tends to be higher. Nevertheless, the PH performance is again very good,
with average deviation from optimal of less than 1.5% in all cases. These experiments

show that the path heuristic performed very well on the single-period problem.

Deviation from Optimal

160 - - - - 100.00%
140 . P - 90.00%
120 l o - 80.00%
e - 70.00%

2 100 . « - 60.00%
3 8. - 50.00%
2 . . 40.00%
0 . CTT - 30.00%
- - 20.00%

20 . - 10.00%

0. _ [— 0.00%

0.00% 0.50% 1.00% 1.50% 2.00% 250% 3.00%
Percentage

Figure 6.9. PH Performance for Single-Period Problem, Randomly Generated Stands

Required| Maximum | Average |% Optimal
Links | Deviation| Deviation
10 11.94% 1.26% 79%
20 14.69% 0.99% 82%
30 9.64% 1.40% 56%
40 6.66% 1.02% 54%
50 5.19% 0.63% 67%

Figure 6.10. SRNP(x) Deviation from Optimal by Number of Required Links

91

Sixty-four instances of the multiperiod problem (with discount rate 10%) were
solved to optimality using LINDO™. The left half column in Figure 6.11 compares path
heuristic results with the optimal solution. In seven of the sixty-four runs, the Path
Heuristic found an optimal solution. The worst case deviation from optimal was 10.48
%, with average deviation of 1.95%. Thus, the heuristic performed very well for the
multi-period problem, at this discount rate. The right hand side of Figure 6.11
documents the differences between the discounted multi-period solution and its optimal
single-period solution. In twenty-five percent of the cases (16), the optimal single-period
solution and the optimal multi-period solution were identical. There was a maximum
observed increase in the total length of road links of 3.21%, and an average difference of

0.61%.

Percentage Deviation from Optimal Length Increase over Single Period

Mean 1.95% Mean 0.61%
Minimum 0.00% Minimum 0.00%
Maximum 10.48% Maximum 321%
Sample Size 64 Sample Size 64
OPTIMAL 7 Multi=Single 16
Solutions

Figure 6.11. Path Heuristic Multi-Period Results

CHAPTER 7
TABU SEARCH ALGORITHMS FOR HSRBP

In chapter 4, the tabu search method and some of its important variants was
described. It was shown that there is a wide range of sophistication in TS algorithms,
and that researchers have spent considerable effort in choosing appropriate TS structures
that work well on given problems. The problem here is to choose a solution
methodology for the harvest scheduling and road building problem HSRBP.

First, a heuristic search method is evidently required. HSRBP has a constraint
structure that is complex, its decision variables are integer and practical problem
instances have a large number of variables. Moreover, exact formulations of the
adjacency constraints are not possible. The neighbourhood structure for this problem can
be designed so that moves are easily evaluated; thus a search algorithm is appropriate.
Amongst the well known metaheuristic search strategies, TS was chosen because of its
considerable record of success in solving hard optimization problems.

A number of TS methods were tested, which varied in complexity from the simple
fixed tabu search to algorithms with complicated dynamic search strategies. Given the
difficult nature of the problem, it is not surprising that straightforward implementations
of fixed tabu search were found to be ineffective in consistently obtaining good solutions
to HSRBP. The best results were obtained from using an algorithm which combines
reactive tabu search self-tuning principles, a strategic oscillation through constraint
barriers effected by means of a modified objective function, and stochastic diversification

IMOVES.

This chapter describes the details of the TS algorithms that were designed to solve

93

HSRBP. The following chapter documents the empirical studies which were done to

compare the algorithm variants.

7.1. Search Algorithm Structure

Figure 7.1 is top-level flowchart of the search algorithm structure. Each TS
algorithm implements the same neighbourhood search and move. The main differences
lie in the methods employed to determine tabu tenure, the inclusion/exclusion and choice
of stochastic diversification strategies and the inclusion or exclusion of infeasible
moves. [nputs to the model are the discount rate, harvest targets, allowed deviations, the
maximum opening size and adjacency delay time, the planning periods to be considered
and the stand and road data. The road data consists of an adjacency list (nodes) and a cost
for each link in the proposed road network. Stand characteristics are the cover type, site
capability, current age, stocking, a list of adjacent stands, and the road link required to
access the stand.

The first phase is pre-processing of the input data. Mean annual increments for the
planning periods are determined (using the Nova Scotia Growth and Yield model) and
projected harvest volumes for the planning periods are calculated. For each stand, the
lost volume penalties accruing from each possible harvest assignment are calculated and
stored in the stand data structure. A linked list of stands which require each road link is
calculated and stored. Finally, the openings (graphs) of period 1 are constructed for all
stands which have been clearcut in the period immediately preceding the first planning

period.

Pre-Processing

v

Initial Solution
¥

Update Data Structures
Save Best Solution

3

Stopping Rule True ?

J

Diversification Rule True?

¥

Neighbourhood Search

L

Implement Best
Mowe Found

Diwversification
Routine

Figure 7.1. Search Algorithm Structure

The second stage of the algorithm is to generate a starting solution. This is done

using a Monte Carlo procedure. Stands which border on a main road are randomly

94

selected and assigned to each period in turn until the periodic harvest target is achieved.

For algorithms which do not allow infeasible solutions (FTS, RTS), assignments which

violate opening size constraints are rejected, and the solution is also required to be

feasible with respect to total harvest target. The result of the process is an initial solution

which requires no roading. If it is not possible to meet total harvest without building

roads, the initial solution either may be made feasible by constructing some small set of

roads, or an infeasible starting solution may be accepted. The algorithm A road network

is then constructed, using the Path Heuristic. This initial network is in fact a shortest

path network on the nodes of the road graph. At this stage, the solution incurs a large

95

lost volume penalty and no roading costs. See Appendix A, Figure A.1.

The third stage is the tabu search algorithm. Moves, which perturb the current
solution, change the harvest assignment of one stand. The evaluation function for
neighbourhood search is the sum of lost volume and roading costs. This function is
augmented with terms which penalize infeasibilities with respect to each constraint set
for the oscillating search algorithms (OTS, ORTS). In all cases, the full neighbourhood
of the current solution is searched, and the best move is chosen.

This best move is implemented by making the stand assignment, updating the
opening graph structure and updating the roading network if necessary. If the move
improves on the best solution to date, the solution (i.e. all stand assignments and the
roading network assignments) is saved. The tabu status of the stand chosen is set by
storing the current move count in the stand data.

Once the move has been implemented, search status counters are updated. These
include counters for the number of moves taken (move_count) and the number of moves
since improvement (moves_since_improve) in the objective function. A diversification
strategy may be invoked if moves_since_improve exceeds a pre-set limit. In RTS and
ORTS, data structures which store the hashed value of the current solution are updated,
and search status counters which measure cycling to previous solutions are updated.
Based on these counters, tabu tenure may be increased or decreased, and a chaotic
cycling indicator may be set to true, which then will cause a diversification routine to be
executed.

Finally, the stopping rule is tested. The algorithm is terminated when the number
of moves taken is greater than a specified maximum (maxiters) and no feasible
improving move has been found for a specified number of iterations

(max_non_improving). This second condition ensures that the neighbourhood of the last

96

improving move is thoroughly investigated.
7.2. Moves and Neighbourhood Search

Recall that a harvest solution x is an S-vector whose elements are the harvest
period assigned to each stand, where harvest periods are integers in the range [0.J+/].
Assignment of (J+/) indicates that the stand is not scheduled to be harvested, and stands
which have been clearcut previously are assigned period 0. Neighbourhood search

details are shown in figure A.2.

7.2.1. Move Types

Given a solution x, the moves which lead to a new solution are a re-assignment of
any component of x. That is, moves change the harvest assignment of one stand. These
moves can be classified as add, swap and delete moves, in that the stand is added to the
harvest schedule, has its harvest period swapped from one period to another in [/,J], or is
removed from the harvest schedule. Note that existing clearcuts are of course not

candidates for any move.

Definition 7.1 The moves m=(s,k) which define the neighborhood N(x) of a solution are
x:jok ke[lLJ+1] k=j se[l.S]x #0.

Move Type Condition
Add j=J+1
Delete k=J+1
Swap JksJ

Figure 7.2. Move Types
All algorithms employ a full neighbourhood search. For larger datasets (more
stands), implementation of a candidate list strategy (see section 4.2) would be

appropriate.

97

7.2.2. Tabu Status and Aspiration Criteria

Once a move x,: j — k is taken, the stand s is made tabu for tabu_tenure moves.
This is effected by storing the current move counter in the stand's data. Checking tabu
status is done by comparing the current move counter to this value and tabu_tenure. The
duration of tabu_tenure is fixed throughout the algorithm in the FTS and OTS methods,
and is dynamically varying in RTS and ORTS. Note that the tabu status forbids all non-
aspirated moves involving stand s. It is a strong condition that may exclude a total of J
moves.

Only one aspiration criterion, aspiration by objective, was used. The tabu status of
a move is disregarded if executing the move would result in a feasible solution which is

better than any solution encountered thus far in the search .

7.2.3. Calculating Change in Objective Function

In neighbourhood search, each potential move is evaluated by calculating the
change in objective function which would result from implementing the move. The

evaluation function for these algorithms is

2'(x)= LV + p RNP(x)+ a Dev_total + f Dev_ per + y Dev_maxopen

This function consists of two cost factors, L¥ and RC, and three penalty terms
Dev_total, Dev_per and Dev_maxopen, which measure the amount of deviation of the
solution from the feasible region for each corresponding constraint boundary.
(Parameters a, B and y are used in the oscillating search method to guide the solution into
and out of feasible regions, while p is used to examine the tradeoff between road cost and
lost volume.) Using indicator variables Xgj and zyj which are 1 (true) if stand s is to be

harvested (respectively, link r to be built) in period j, each term is defined as follows:

98

Term
LV(x)

RC(x)

Dev_total(x)

Dev_periodic(x)

Dev_maxopen(x) deviations from maxopen.

Description
Lost Volume

Road Cost

Deviation from total
harvest target

Sum of deviations from
periodic harvest targets

Sum of opening size

Definition

J-l

S
> > LV(s.j)x,

- PV, ‘ dPVxPV/.]

ez) o]

seOf

Figure 7.3. Definition of Objective Function Terms

In full neighbourhood search, all possible moves m are evaluated by calculating

z(x ® m). In the following sub-sections, the calculations required for each term in z’ are

detailed.

7.2.3.1.

Loss Penalty

The incremental change in lost volume from a move (s.4) is the lost volume

induced by the proposed assignment less the lost volume from the current stand

assignment. Thus, the new loss penalty is easily computed

LV(x®m)=LV(x)+ LV(s,k)-LV(s,j)

7.2.3.2.

Roading Cost

Recall that, in the generation of the initial solution, the roading network is

calculated by the Path Heuristic, resulting in a directed shortest path network on the

nodes of the road network, with each link in the network assigned a period 1, [, J +1].

Initially, the network consists of a minimum cost directed spanning tree with all links

assigned to (J+1/). As stands are added to the harvest solution, the roading network is

99

made feasible by re-timing (i.e. assigning an earlier construction period to) each link that
is required to access the stands (See Figure 7.4). If the stand to be added requires a link
which is not in the current path network, the incremental cost to add this link is estimated

by calculating the cost to insert that link into the shortest adjacent path.

Sons(l) / Path 2
at

Path1 Choose Cheapest of
Path | and Path 2

oL

« Path to be re-timed

oL

Figure 7.4. Re-Timing Links in a Path
Each stand s is either assigned a link (/ink(s)) in the road network (if road building
is required to access that stand), or is assigned a "dummy" link O if the stand is accessible
by main road. For each road link /, the set S, is the set of stands requiring link /. Figure
7.5 shows the calculations which determine the incremental roading cost for a move.
Note that in the case that a link is re-assigned to a later period, the incremental costs will

be negative, thus decreasing the total roading cost RC(x).

100

Calculation:
1. If link(s)=0,
road cost change is 0. END
Otherwise, set I = link(s)
2. If / is not included in a path, add / to the cheapest of the two possible paths.
3. Set x, =k
Calculate smin = gleigl(xm), the earliest period required by all stands, and
rmin = min “(rm). the earliest period required by preceding links. Then
p =min(smin,rmin) is the period required for this link.
If r, = p, road cost change is 0.0 END

4. Otherwise, calculate the re-timing cost

5. Cost =w, —w,, !cost of re-timing the link

6. Do until /=0
[= father()) 'next link in path
p=min(r,,p) 'new assignment
Cost=cost+w,, —w,, !cost to re-time

End do
7. - Re-setx, =j
END of Calculation

Figure 7.5. Calculating Incremental Road Cost
7.2.3.3. Deviation from Maximum Opening Size
For simplicity in describing these calculations, assume an adjacency delay time of
two planning periods. Thus, each stand may belong to at most two openings. Further

notation for these calculations is as follows:

a, size in acres of stand s

Osize, Size of opening k

open_dev, [Osize,, - maxopen]*

move _dev_open change in Dev_maxopen if the move is implemented
7.2.3.4. Add Move.

In this case the stand may add to the acreage of existing openings if there are any
adjacent to the stand. More specifically, the stand adds to any adjacent openings which

are of opening period k or (k+1) , since ADT is two periods. If the stand is adjacent to

101

more than one opening, the move results in a merging of those openings. Thus, to
calculate Dev_maxopen, the adjacency list of stand s is searched for adjacent openings.

If there are no adjacent openings of period k or (k+1), then the move incurs no additional
maxopen penalty. Otherwise, the size of the merged openings is calculated, compared
with maxopen, and any additional penalty incurred by the move is calculated. Figure 7.6

shows these calculations.

Let Q= {ol" 105 5eecs0F }, P =k,k+1 be the set of n adjacent openings for
each opening period. If Q is empty, the penalty is 0.0. Otherwise,
1. Set move_dev_open = 0.0
2. For each opening O7 in Q, subtract the existing deviation, if any.
move_dev_open = move_dev_open - open_ dev ,

3. For each opening period p,

n
Osize, = a, + Z Osize, , size of merged open for period p
7=l ’

Move_dev_open = Move_dev_open -»‘-[Osizep - maxopen]*
Figure 7.6. Calculating Maxopen Penalty from Add Move

ﬁ

Figure 7.7. Merging Adjacent Openings
7.2.3.5. Delete Move.
If the openings in which the stand is a member are smaller than maxopen, deleting
the stand induces no change in Dev_maxopen. Otherwise, the delete move will either
reduce the current deviation penalty accruing from these openings, or remove it entirely.

To determine the size of affected openings, we observe that removing stand s will

102

disconnect the opening graph if s is an articulation point of the graph [Sedgewick 1983].
Thus, the effect of deleting stand s is calculated as shown in figure 7.8.

Set move_dev_open = 0.0
For each opening o in which s is a member:
1. If Osize, —a, < maxopen, then
move_dev _open = move_dev_open —Open_dev,
2. Otherwise, if s is an articulation point of the opening, (Figure 7.8)
Using depth first search, find the set V of connected subgraphs of
O, =0,\s. Foreach v in V, calculate the deviation penalty. Then,

move_dev_open = ZOpen dev , -Open_dev,

3. Ifsisnotan artxculatlon point of the opening o, (Figure 7.6)

move_dev_open = [osueo -a, - maxopen] - Open_dev,
Figure 7.8. Calculating Maxopen Penalty from Delete Move

Existing Opening Resultant Openings

Stand s

Figure 7.9. Splitting an Opening
Existing Opening Resultant Openings

Stand s

9

Figure 7.10. Reducing an Opening

103

7.2.3.6. Swap Move.

In this case, the total change in deviation from maxopen is the change incurred by
deleting the stand from period j and that of adding it to period . In the case where the
move is to shift the stand assignment by one period, some efficiency can be gained by
not calculating openings that do not change. For example, if a stand is to be moved from
period 1 to period 2, it will be removed from openings of period 1 and added to openings
of period 3.
7.2.3.7. Harvest Target Deviations

Deviations from periodic and total harvest targets are determined from the current
harvest and the volume which would be added or deleted to or from each period by the
move. Denote by H(j) the total volume harvested in period j, and by TH the total harvest
for the current solution. Then, for the move which changes the assignment of stand s

from period ; to period k,

H(j)=H(j)-V, Je[LJ]
H(k)=H(k)+V, k e[l.J]
TH=TH-V, +V, jk €[1,J]

and the resulting deviations are
dev_total =[|[TH - TV|-dTV x TV |

dev_ periodic = i[’H(j)— PVj[—dPV x PV(j)]?

J=1

7.3. Special Diversifying Moves

In the RTS and ORTS algorithms, a set of special diversifying moves (called
ESCAPES) is invoked when the search history indicates that the trajectory is cycling
"chaotically " [Battiti and Tecchiolli 1995]. These "escapes" are also used to diversify

the search when no improvement has been observed for a sufficiently long time.

104

These diversification schemes serve two purposes. First, they increase the
flexibility of the algorithm in "escaping" from a local optimum or in "jumping” to a new
area of the solution space. Secondly, the stochastic nature of the moves increases the
robustness of the algorithm. This effect was indicated in empirical tests by a reduced
variance in samples from algorithms which included ESCAPES. (See Chapter 8).

Two types of diversification moves were tested. The first, ESCAPEI, selects a
random sample of stands and either deletes them from or adds them to the harvest,
according to whether or not a stand is currently in or not in the harvest solution (figure
A.3). As in the R-Tabu [Battiti and Tecchiolli 1995] algorithm, the size of the sample is
chosen to be proportional to the moving average of detected cycle length: (For OTS and
FTS, a constant number of random moves, proportional to the number of stands, was
chosen.)

{ {sample _Size = |— rxmoving _ average-L reU [0,1]} }.

The second strategy, ESCAPE?2, is to randomly select a road link in the solution
and remove it, and every preceding link in its path, from the solution. This is done by
executing delete moves for each stand that are in the current solution and which require
any element of the path. The road network is then re-calculated using PH. In the

example in Figure 7.11, if link / is selected, stands which require links i,j,k,/ and m must

all be deleted.

Figure 7.11. ESCAPE2 Link Selection

105

The motivation for this type of escape routine comes from considering the
relationship between stands and road links. One road link may serve many stands, but
one stand requires at most one link. Thus, evaluation of single stand moves is not
effective in directing the search towards solutions that have different roading structure.
Add moves favour adding road links when the loss penalty would be reduced by more
than the road cost incurred. Once a link is in the solution, subsequent add moves incur
no further roading costs. Thus, it is unlikely that a sequence of moves that would cause a
link to be deleted (assigned to period J+) or re-timed (moved from current assignment
to a later one) will be chosen. This is because there is no direct mechanism in the stand-
based move evaluation to predict the objective function change would occur by removing
or re-timing road links. For this reason, the diversifying escape moves are based on
choosing a link and removing it, and all stands requiring it, from the solution. As in
ESCAPEI, the tabu status of each stand is set after it is deleted. ESCAPE? is outlined in
figure A 4.

This type of diversification was not used in algorithms FTS and O7TS since it is
difficult to choose link deletion moves that maintain feasibility. For ORTS and R7S, the
ESCAPE? strategy worked less well than expected. Further investigation of the
algorithm performance led to changing the method. Instead of selecting any link in the
road network, the procedure was changed to select the link that is a leaf of the road
network graph, and which contributes the greatest reduction in roading costs if it is re-
timed. This leaf link was then re-timed one period forward from & to period (k+/). That
is, for each stand associated with the link, its harvest assignment was set to the larger of
its current assignment and (k+/). This diversification produced better results on the
datasets which were tested.

The final diversification strategy, ESCAPE3, is a combination of ESCAPE! and

106

ESCAPE?2. If the number of links in the current road network is less than 10% of total,
the stand escape routine ESCAPE is chosen, otherwise ESCAPE? is chosen. See figure

AS.
7.4. Fixed Tabu Search Algorithm (FTS)

As described in Chapter 3, the fixed tabu search method has a fixed tabu tenure
tabu_tenure, and moves are restricted to those which produce feasible outcomes. The
objective function is the sum of the lost volume penalty and the roading cost,
z=LV+RC. This method was tested for various settings of tabu_tenure. The trend was
that larger values of tabu_tenure gave better results, but of course as tabu_tenure grows,
the system eventually runs out of feasible moves. Although FTS was not expected to
perform well here due to the complex nature of the maxopen constraints, and the
restrictive nature of the harvest target constraints, experimentation with this relatively
straightforward TS method was included to provide a baseline against which to compare

the more sophisticated algorithms [Barr et al 1995].

7.5. Oscillating Tabu Search Algorithm (OTS)

This is an implementation of the principle of strategic oscillation [Glover 1990a,
Kelly, Golden and Assad 1992]. The method of dynamic penalty parameters, as reported
by Gendreau et al [1991] for the vehicle routing problem, was used to control the search
trajectory.

Recall that the objective function with penalty terms is

Z'(x)= LV + p RC(x)+ a Dev_total + B Dev_per+y Dev_maxopen
The best move chosen in neighbourhood search is that with the lowest value of z’. For
feasible solutions xfeas, z’(xfeas) = z(xfeas), while for infeasible solutions, one or more

of the penalty terms is positive. Initially, a,B and y are set to a large value,

107

upper_bound. After each move m, a counter is incremented for each penalty term that is
zero in z'(x@®m). After check_interval steps have been taken, each penalty parameter is
increased (doubled) if its counter is equal check_interval, or decreased (halved) if its
counter is zero. This has the effect of increasing the weighting on constraints which have
not been satisfied for the last check_interval iterations and decreasing the weighting on
constraints which have been violated for all steps. Thus, the penalty parameters pull the
solution in and out of the feasible region systematically.

The interaction between the special diversification moves and the best setting for
the penalty parameters was studied, and it was determined empirically that best results
were achieved when a,B, and y were set to 1.0 after a diversification required by chaotic
cycling, and set to maximum value after a diversification implemented due to no
improvement. This is an experimental result only; however it is logical. Setting penalty
parameters to 1.0 gently pulls the solution back to the feasible region. Setting parameters

to upper_bound radically (more quickly) yanks the solution back to the feasible region.

7.6. Reactive Tabu Search Algorithms (RTS)

The flowchart in figure 7.12 outlines the methodology used to track cycling to
previously found solutions, and to use this search history information to dynamically set
tabu_tenure. This procedure is the same basic method as in Battiti and Tecchiolli
[1995], except that it was extended to use the solution value (z = LV + RC) to detect

collisions, and use linear probing to resolve the hashing address in the case of collisions.

7.6.1. RTS Data Structures and Cycle Detection

The RTS structures are a hashing table of fixed size table_size, a configuration
table with entries z=LV + RC; the solution value, num_reps; the number of times that

solution has been repeated and time_last_found; the time of the last repetition. At each

108

iteration of the algorithm, a hash address for the solution x is calculated. If this address
has been used previously, the current solution z(x) is compared with the solution value
stored for that hash address. If they are equal, then this is assumed to be a repeated
solution, and the cycle length is calculated. Cycle length is the number of steps in the
solution trajectory since the solution was last encountered. If this cycle length is less
than the parameter cyvcle_max, the moving average of cycle length is updated, and tabu
tenure is increased by a factor of 1.1. The effect of the exponential increase in
tabu_tenure is to "break" the cycling to previous solutions, thus promoting search
diversification.

When a new solution is found, its hashing table entry is updated (with a pointer)
and the solution value and move_count stored If the number of iterations since
tabu_tenure has been changed (counted in variable steps_since_size_change) is greater
than the moving average of cycle length, the tabu tenure is decreased by a constant
factor. Thus, the search trajectory is less constrained when a suitable number of steps
have been taken without returning to a previous solution, and thus may be intensified in
the new search region.

If the neighbourhood search finds no non-tabu moves, tabu tenure is decreased.

Thus, the RTS algorithms do not terminate on finding that all moves are tabu.

109

ESCAPE=FALSE

Comgpaae
HASHIx)

HASH_TABLE(HASHX)=CONFIG_POINT
TIME_LAST_FOUND(CONFIG_POINT)=MOVE_COUNT
SOL_VALLE(CONFIG_POINT)=CLR_SOL

T
NUM_REPS(P) .
REP? CHAOS=CHACS +1
STEPS_SINCE_SIZE_
CHANGE >
MOVING_AVERAGE? LENGTH-MOVE COUNT-
TIME_LAST_FOUND(P) a
CHAOTIC?
T
TABU_TENURE=

TABL_TENURE® DECREASE ESCAPE=TRLE

TABU_TEVURE=
TABU_TENURE®INCREASE
MOVING_AVERAGE=
9°MOVING_AVERAGE + .1°* LENGTH

Figure 7.12. Update RTS Structures

7.6.2. Hashing Address Computation

The hashing function is a mapping from a solution x to an integer in the range

[0,table_size]. It is determined by the following computation:

110

Denote by Is(l) a left cyclic bit shift of the integer |
H, =x,

H =Is(H, |)xx,; n=2S§

H(x)= H; mod table_size

That is, the hash function iteratively computes the product modulo w of each x,,
first left shifting the previous product. (w is the word size of the integer /1) Then, the
hash address is the result of these products taken modulo table_size. This is a
recommended method for dealing with hashing of vectors with multiple identical entries
[Knuth 1973]. In this problem, the solution vector x will have entries in the range
[0.J+1], thus only J+2 possibilities. There are likely to be a preponderance of entries
equal to (J+/). Thus, the hashing table size was chosen so that it is a prime number
which does not divide (J +2)* +a for small values of k and a. That is, table_size is
chosen to be prime so that (J +2)* is not congruent to a modulo table_size. For the
Shulkell study area, table_size was chosen to be 50027. A small study was done to
estimate the number of collisions (cases where the hashed address for a new solution is
equal to that of a previously encountered solution) that would be expected with this size
of table. 5000 randomly generated solutions yielded 234 collisions. Although this
number is small (approx. 4.68%), it was decided to include collision resolution by linear
probing. The key used for collision resolution is the solution value. Thus, if A(x) is
already used, and its associated z does not match that of the solution x, the table H(x) is
linearly searched for unused slots. The expected cost of collision resolution is small

(See Knuth 1973 for a comprehensive description of hashing.).

7.7. Oscillating Reactive Tabu Search Algorithm (ORTS)

This algorithm combines the feedback parameter tuning of RTS and strategic

oscillation through boundaries of the feasible region of OTS. The ORTS method

111

produced solutions that were better or comparable to OTS, but with a reduced variance in
solution quality in samples obtained from a set of random initial solutions. Moreover, no
experimentation is required to determine an appropriate duration for tabu tenure. Thus,
this is the recommended algorithm and the one which was used to produce tradeoff
curves for the datasets. The ORTS algorithm in its final form is outlined in figure 7.13.
This algorithm uses the ESCAPE3 diversification strategy in two places. The first
when either the chaotic variable indicates that the solution trajectory has returned too
many times to the same solutions. When the diversification moves have been taken, the
penalty parameters are each set to 1.0. This causes the search trajectory to be drawn
smoothly to the feasible region. The second instance where diversification is invoked is
when no improvement in the solution has been found for 300 moves. After effecting the

diversification, penalty parameters are set to their maximum value upper bound.

1. Preprocessing and Initial Solution
2. Initialize Data Structures
3. Repeat RTS for check_interval iterations
RTS:
3.1 Implement move and update best solution found.
3.2 Compute Hashing address H(x) for current solution.

3.2.1 If H(x) is used, then this is a repeated solution.

Update number of repetitions for this move, and calculate

the cycle length.
If the cycle length is less than cycle max:

Calculate the moving average of cycle length.

Increase tabu tenure.

[f the number of repetitions for this solution has reached

3, add one to the chaotic counter.

If the chaotic counter has reached 3, return escape =

.true.

3.2.2 Otherwise, this is a new solution:
Store new solution H(x) and z in hash_table.
If the number of moves since tabu tenure has been
changed is greater than moving average: decrease
tabu_tenure
Return escape=.false.

3.3 If escape is true:
Call Diversification Routine
Set penalty parameters to 1.0
3.4 Neighbourhood Search.
3.5 If no move is found:
Decrease tabu tenure
Goto Neighbourhood Search
END RTS
4. Update penalty coefficients.
5. If diversification is required
Call diversification routine
Set penalty parameters to upper _bound.
6. If Stopping rule is true
Report solution and Stop
7. Go to Step 3.

Figure 7.13. ORTS Algorithm

113

CHAPTER 8

EMPIRICAL RESULTS: SHULKELL STUDY REGION

This chapter documents numerical results of several experiments which were
carried out to compare the tabu search algorithms that were described in Chapter 7. The
data for these tests is based on the GIS coverage of a region of Cumberland County in
Nova Scotia, Canada. This data was then manipulated to produce five additional
datasets. Baselines were produced using FTS, OTS and RTS algorithms. The ORTS
method, which combines the dynamic penalty parameter evaluation function of OTS and
the reactive search methods of RTS, was then compared to the baseline results. With
ORTS, the best form of the starting solution and the best diversification strategy was
determined. This algorithm was then used to produce tradeoff curves for all datasets.

This chapter is organized as follows. First, the study region characteristics and
datasets used to validate the algorithms are described. Then, a comparison of different
algorithms based on solution quality and range of solutions is given. The ORTS
algorithm variants are described and the results of comparative analysis presented.

Tradeoff curves for each dataset are then shown, and discussed.

8.1. Study Region and Model

A seciion of the Chignecto Management Unit, in Cumberland County, Nova
Scotia, consisting of crown lands on map sheets D21H10T2 and D21H10T4, was chosen
to test the algorithms. (Figure 8.1) The Shulie and Kelly rivers are the major waterways
in the area, and hence the name SHULKELL was coined for this portion of the

114

management unit. There are several main roads (the Aub Brown, Bucktogen, Goodwin,
Tipping and Meadow Brook roads) which crisscross an area of 5239 hectares. 4493

hectares are in 1039 forested stands, the remainder being barren, swamp or bog (Table

8.1).

GRRRAN
I\
Ny

U
b..
4

Pt
‘)\“Fb?‘. .

8.1.1. Characteristics of the Forested Stands

Nearly half of the SHULKELL area is in stands of age 41-60 years, accounting for
65% of the merchantable volume (Table 8.2). Stands of age 61-80 years represent 9.6%
of the area and contribute 23.5% of the merchantable volume, while only three stands are

of age greater than 80 years.
61% of the area is in softwood stands, 36.5% in hardwood stands and 2.5% in

115

mixedwood stands (Table 8.3). The majority of the area (59.4%) is comprised of
natural, untreated and unmanaged stands. 4% of the area has been recently clearcut and
4% is in managed plantations. The remaining 32% is classified as "dead", meaning that
evidence of dead material (standing or fallen) was found. Sub-classifications dead, dead-
1 and dead-2 further categorize dead stands as to the amount of live residual material on
the stand (less than 25%, 26-50% and 51-75% of crown closure respectively) [Province

of Nova Scotia 1992]. These dead stands are the shaded areas in figure 8.1.

Table 8.1. Shulkell Region Land Types

Non-Forested Forested

Land Type Hectares |Land Type Hectares
Bog 341.38|Natural 2,669.52
Brush I11.81|Dead 1,466.46
Barren 70.771Plantation 182.00
Alders 199.51|Clearcut 175.28

arsh/Swamps 20.37
Miscellaneous 2.00
Total Non-Forested | 743.84 |Total Forested |4,493.235

Table 8.2. Distribution of Forested Stands by Age and Merchentable Volume

Age |Stand Area % of Merch. Vol. | % of Total
Range [Count|(Hectares){Total Area|{(Cubic Metres)| Merch. Vol
0-20 162 1,138.0 25.33% 104.3 0.03%
21-40 198 749.8 16.69% 22,471.6 7.28%
41-60 540 2,044.9 45.51% 201,248.8 65.20%
61-80 103 429.6 9.56% 72,396.4 23.46%
81-100 3 18.5 0.41% 24114 0.78%
All Aged 33 112.5 2.50% 10,020.1 3.25%

Table 8.3. Stands by Cover Type

116

Covertype | Merch. Vol. Merch Vol. Area Area Stand
(m®) (% of Total) | (Hectares) | (% of Total) | Count
Unclassified 0 0.00 764 17.00 94
Softwood 188,411 61.00 2,546 56.70 651
Mixedwood 7,629 2.50 144 3.20 38
Hardwood 112,312 36.50 1,039 23.10 256
Table 8.4. Shulkell Stands by Stand Type
Stand Class| Merch. | % of Total | Hectares | % of Total| Number
Vol. Merch. Vol. Hectares of
(m3) Stands
Natural 256,429 83.1% 2,670 59.4% 722
Dead 79 0.0% 594 13.2% 73
Dead-1 31,764 10.3% 716 15.9% 153
Dead-2 20,380 6.6% 157 3.5% 44
Plantation 0 0.0% 182 4.1% 23
Clearcut 0 0.0% 175 3.9% 24
Totals 308,653 100.0% 4,493 100.0% 1,039

8.1.2. Alternate Datasets

Alternate datasets were generated from the Shulkell data to test robustness of the

algorithms. The datasets were produced by manipulating the age of all stands except

those classified as dead or clearcut. To maintain the distribution of stands across age-

classes, a discrete probability distribution for ageclass was created from the Shulkell

dataset. Then, the new ages were generated by drawing a random sample of ages from

the empirically determined distribution. Five new datasets were generated Images of all

datasets are in Appendix B, Figures B.1 to B.6. Figures B.7 and B.8 show the relative

distribution of stands by ageclass in these alternate datasets.

117

8.1.3. Roading Network

Existing main roads and the proposed road network are shown in Figure 8.2. The
proposed road network has 135 links (edges) and 125 nodes representing a total of 68.7
kilometres of potential road building. The roading network was developed with some
assistance from Nova Scotia Dept. Lands and Forests personnel. This was then mapped
onto the GIS coverage of the forest area using ARCVIEW ™. Each stand which extended
further than .5 km from a main road was assigned the road link which was nearest. This
stand to road link assignment was performed manually, with the assistance of the
ARCVIEW™ software. 274 of the stands are accessible by main road. The remainder

(765 stands) require the construction of at least one road link if they are to be harvested.

L

Existing e
Proposed
Figure 8.2. Shulkell Area Road Network

118

8.1.4. Model Parameters

The planning horizon is a total of 20 years in four S-year periods. Adjacency delay
and maximum opening sizes were determined from the Province of Nova Scotia [1990]
Forest/Wildlife Guidelines and Standards. The maximum opening size is 50 hectares,
except for openings which include dead stands. In this case, the acreage contributed by a
dead stand is weighted by a factor of 0.5. This is to represent the decreased insistence on
a maximum opening size in the spirit of the guidelines [Province of Nova Scotia 1990].
The total harvest volume target of two million (solid) cubic feet was determined by using
the SAWS simulation and optimization program [Gunn 1994b]. Model parameters are

shown in Table 8.5.
Table 8.5. Model Parameters

Planning Period Length 5 years
Planning Horizon 4 periods
Total Volume Target 2,000,000 cubic feet
Periodic Volume Target 500,000 cubic feet
Percentage Deviation from Total 2%
Percentage Deviation from Periodic 4%
Adjacency Delay Time 2 periods
Maximum Opening Size 50 hectares
Maxopen factor on Dead stands 50%
Cost/Km of Road Construction $5,000
Annual Discount Rate 10%

The Revised Growth and yield tables for Nova Scotia Softwoods [Province of
Nova Scotia 1993] were used to provide the mai curves for the datasets. For this study,
the softwood covertype was arbitrarily assigned to all stands, and the second-rotation,
natural stand growth model was used. Thus, the dataset represents the area in the spatial

configuration of stands, but growth and volume data are not necessarily true values.

119

8.2. The Algorithms

Fixed Tabu Search, Reactive Tabu Search with and without random diversification,
Oscillating Tabu Search and Oscillating Reactive Tabu search algorithms were tested.
All results reported in this section are based on an equal weighting of road cost and lost

volume factors in the objective function, and were produced using the SHULKELL

dataset.

8.2.1. Fixed Tabu Search

The Fixed Tabu Search (FTS) algorithm (as described in the previous chapter)
allows only feasible moves, and its only free parameter is tabu_tenure. Samples (size
30) of solutions were generated for nine settings of tabu_tenure. The search was
terminated after S000 iterations (neighbourhood searches) or if no feasible non-tabu
move was found. Table 8.6 shows the sample mean, best (minimum) solution, standard
deviation, average number of steps taken (Mean T), number of steps to reach the best
solution and exit status for the run which achieved the best solution.

First, observe that as tenure is increased to 360 and 410, the program exits with no
feasible moves found. Secondly, as tabu tenure is increased, a general decrease in
standard deviation occurs, until tenure reaches 310. The search appears to be inefficient
for larger values of tabu tenure, since the best move is found very early in the search.
This indicates either an over-constrained search trajectory or a lack of diversification in
the search, with the trajectory being "stuck" at the local optimum found. By observation,
the quality of the solution obtained and the standard deviation of the sample varies
significantly with the value of tabu_tenure which is chosen. (See table 8.6) The best

observed solution for this instance is 494,293; it is found for tabu_tenure equal to 310.

Table 8.6. FTS Solutions

Tenure | Mean Z | BestZ Std. |Mean T | Time Exit Status
Dev. of
Best

10 589,963{ 562,467 17,212 1,345| 4107|Max iterations reached
60 571,098f 542,240| 17,017 2,862| 2102{Max iterations reached
110 561,668 538,072| 14,305| 2,046{ 1109|Max iterations reached
160 556,369 536,441| 13,286 1,921 1010|Max iterations reached
210 544,288 519,543| 13,257] 1,587| 1429|Max iterations reached
260 533,619| 512,293} 12,907} 1,553| 1042|Max iterations reached
310 530,876{ 494,293] 16,006 1,015] 1179{Max iterations reached
360 536,122 509,467| 16,461 646f 932{No Move Found
410 539,866f 524,106| 12,572 530] 521|No Move Found

8.2.2. Fixed Tabu Search with Random Diversification Moves (FTSESC)

Next, the FTS algorithm was augmented with random diversification moves. As
described in chapter 7, these moves are a random selection of stands which are then
added or deleted from the harvest. All moves, including the diversification moves, must
be feasible. These random moves were invoked whenever the search had executed 200
iterations without finding an improved best solution. The search was terminated when
5000 iterations were completed and at least 500 iterations since the last execution of
diversification moves had been taken. This enhancement was tested on the same thirty
initial solutions as was done for FTS (Table 8.7).

To compare FTSESC and FTS, percentage difference in solution value found and
standard deviation for each tabu tenure were calculated (Table 8.8). Average solution
value was better or nearly the same for all selections of tabu tenure. The standard
deviation for FTSESC was significantly lower for some cases (tenure = 10, 60, 160, 260,
310) The best solution obtained by FTSESC was less than that of FTS in all but the case
where tabu tenure = 310, yet the percentage difference was at most 5.14%. Thus,

although these diversification moves improved the algorithm in some cases, the

dependency on tabu_tenure still affects results.

Table 8.7. FTSESC Solutions

Tenure Mean z Best z Standard Deviation

10 573927.3 533580.4 15797.32

60 562187.8 541226.3 13891.18

110 552213.8 525635.7 15053.7

160 547635.6 527543.6 10042.51
210 540197 5133374 2542.267
260 535001.5 5113719 9270.136
310 534384.3 502723.8 14480.9

Table 8.8. Percentage difference in FTS over FTSESC

Tenure Mean Best Standard
Deviation

10 2.79% 5.41% 8.96%

60 1.58% 0.19% 22.50%

110 1.71% 2.37% -4.97%

160 1.59% 1.69% 32.30%

210 0.76% 1.21% 4.28%

260 -0.26% 0.18% 39.23%

310 -0.66% -1.68% 10.53%

8.2.3. Reactive Tabu Search (RTS)

This algorithm is a straightforward implementation of R-Tabu [Battiti and
Tecchiolli 1995]. The search is confined to the feasible region, and tabu_tenure is varied
as cycles are detected. The hashing function H(x) is as described in section 7.6.2 with
linear probing to resolve collisions. Cycles of length less than or equal to fifty moves are
used in calculating the moving average of cycle length, and tabu tenure is increased upon
detection of a repeated solution. Tabu tenure is decreased by a factor of 0.9 after a
number of moves (equal to moving_average) have been executed without repeating a

solution. If three solutions have been repeated three times, the system is assumed to be

122

chaotically cycling and the ESCAPE1 diversification sequence is executed.

Two versions of RTS were tested. The first, RTSI, follows the R-Tabu algorithm
as described above. The second, RTS2, is augmented by diversification moves (as in
FIXEDESC) when a large number of steps have been taken without improvement in the
best solution. RTS2 produced slightly better results than RTS1, and standard deviation
of the sample for RTS2 was significantly lower (15.96%). Surprisingly, RTS did not find

better solutions than FTS. The reasons for this were not made apparent by the

experiments.
RTS1 RTS2 100(RTS2-RTS1) /RTSI1
Mean 586,292} 582,893 -0.58%
Best 552,214 551,724 -0.09%
Worst 618,664 614,001 -0.75%
Std. Dev. 18,062 15,182 -15.95%

Table 8.9. Reactive Tabu Search Results

8.2.4. Oscillating Tabu Search (OTS)

Oscillating tabu search, as described in Chapter 7, guides the search trajectory in
and out of the feasible region. There are three constraint sets, (restrictions on total and
periodic harvests and maximum opening size constraints) for which penalty parameters
o, B and y are defined. Thus, (recall that p is used only to examine tradeoffs), the

objective function z'(x) = LV (x)+ p RC(x) is replaced with

Z'(x)= LV + p RC(x)+a Dev_total + f Dev_per + y Dev_maxopen
Parameters a, $ and y are initially set to their upper bound, and are increased
(doubled) or decreased (halved) according to the feasibility of the previous set of ten

solutions with respect to each penalty term. Tabu_tenure is the only free parameter. The

stopping rule terminates the algorithm at a maximum number of iterations (maxiters)

with no improvement in the last 300 iterations. Figure 8.3 shows a sample OTS solution

trajectory.

OTS Solution Trajectory

¢ T

0 1000 2000 3000 4000 5000

Move Count

------ Current ———— Best

Figure 8.3. OTS Solution Trajectory
The OTS algorithm out-performs FTS, FTSESC, RTS1 and RTS2 with
consistently better average and best solutions (See table 8.10). As for determining a
value of tabu tenure that is "best", these results are somewhat inconclusive. The best
solution was found with tabu_tenure at 40, the lowest sample average solution was for

tabu_tenure equal to 70, and the tightest range of solutions was found with tenure equal

to 50.

8.2.5. Oscillating Reactive Tabu Search

Oscillating Reactive Tabu Search (ORTS) is a hybrid of the reactive tabu search
and strategic oscillation methods. ORTS includes the expanded neighbourhood of OTS,
and eliminates the need to pre-set rabu_tenure by implementing the R-Tabu feedback
mechanisms.

Several variant algorithms were examined. Some minor algorithm design issues

are setting RTS parameters for cvcle_max, increase, decrease, and determining the best

124

method for modifying penalty coefficients a, B, and y. No significant differences were
found by modifying the factors increase, decrease and cycle_max. Thus these

parameters were set to 1.1, 0.9 and 50 respectively.
Table 8.10. OTS Statistics

Tenure [Maxiter | Mean Best Worst [Std. Dev,
I0 5000 466,4601] 426,962 494,487 18,093
10 8000 461.,4 426,962 494,487 19,075
20 5000 457,806 424,731 492,361 14,895
20 3000 449,631 415,225 478,257 16,402
30 5000 450,222 423,815 474,724 13,367
30 3000 444 9601 416,515 474.274] 14,707
40 5000 449, 415,3471 486,525 15,843
40 8000 | 439,590| 407,128 476,982] 16,704
50 5000 440,02 413,195 472,798] 15,220

50 8000 | 430,477| 413,195 455,075 10,692
60 3000 | 444.664| 414,692 494333 18,431
60 8000 | 436,171 313,019 482,642 15,858
70 3000 | 436,307] 413,103 468319 13,951
70 8000 | 428,906] 410,387| 467,525| 12,588
R0 3000 | 437,960 413,360 475,529] 17,258
R0 8000 | 432,034 410,721 475,529 17,300
30 3000 | 438,284 411317 484,410 17,296
90 8000 | 429,619 411,317| 453,426 10,945
100 3000 | 433,571 416,943 481,330| 13,569
T00 8000 -| 431,492 412,453 480,716] 14,331

The major design issues are to produce an effective diversification strategy and to
integrate this strategy with strategic oscillation. Amongst diversification strategies, the
ESCAPE3 method, which uses a combined stand and link based strategy (section 7.3)
was found to be the best. This section documents results from comparisons of five
ORTS algorithms (Table 8.11). It was found that, for this problem, it was important to
start with a feasible solution, and that the ESCAPES3 diversification mechanism was the

most effective. Table 8.12 contains statistics from a sample of thirty different starting

solutions on the SHULKELL dataset. ORTS outperformed the other schemes with the
best solution and lowest sample average. The sample standard deviation was higher than
ORTSBI and ORTSB2, but not significantly so. Thus it was concluded that this ORTS
algorithm was the best found so far. It remained to determine robustness of the
algorithm across different datasets and the differing cost coefficients which occur when p
is varied.

Evidence that ORTS is a robust algorithm is presented in Table 8.13. ORTS was
run on each dataset for values of p ranging from 0.1 to 20. Thus, it was tested on 114
problem instances. Tables D.1 to D.6 contain sample statistics for each dataset and each
value of p. Each instance was repeated for thirty different starting solutions. Table 8.13
shows the coefficient of variation for each sample. The worst case is on SHULKELL for

p equal to 0.1 and 0.2 where standard deviation is less than five percent of the mean.

Table 8.11. ORTS Algorithm Features

ORTSAI Starting Solution may not be feasible to
maxopen.
ESCAPEI diversification.

ORTSBI Starting Solution may not be feasible to
maxopen.
ESCAPE2 diversification

ORTSA2 Starting Solution feasible to maxopen.
ESCAPEI! diversification

ORTSB2 Starting Solution feasible to maxopen.
ESCAPE2 diversification

ORTS Starting Solution feasible to maxopen.

ESCAPES3 diversification

Table 8.12. ORTS Sample Results

126

COMPARISON OF ORTS VARIANTS ON SHULKELL DATASET
ORTSAIL ORITSBI | ORTSA2 | ORTSB2 ORTS
ean 427,647 427,031 425,306 425,011 416,191
Standard Deviation 5,277 462 5,429 4,195 4907
Variance 27,849,815] 21,406,897] 29,469,198 17,602,006] 24,078,967
ange 18,77 16,610 22,067 18,161 16,656
Minimum 419,463 419,050 415,831 414,865 406,96¢
Maximum 438,239 435,661 437,898 433,026 423,622
Table 8.13. Coefficient of Variation
p SHULKELL SETI1 SET2 SET 3 SET 4 SET S
0.10 494% 2.88% 2.39% 2.41% 1.68% 1.62%
0.20 4.61% 3.65% 2.35% 3.00% 2.32% 2.53%
0.30 245% 246% 2.13% 2.32% 2.12% 1.61%
0.40 251% 3.23% 2.95% 2.96% 1.77% 2.20%
0.50 1.70% 2.30% 1.97% 1.90% 1.35% 1.48%
0.60 1.92% 2.45% 2.98% 1.85% 1.57% 2.24%
0.70 222% 2.04% 1.97% 1.48% 1.21% 1.32%
0.80 1.48% 2.20% 1.49% 2.06% 1.08% 1.42%
0.90 239% 1.71% 1.73% 2.12% 0.83% 1.51%
1.00 1.17% 3.00% 3.08% 2.57% 1.08% 1.19%
2.00 092% 1.80% 1.91% 1.09% 1.02% 1.13%
3.00 0.78% 0.93% 1.17% 1.11% 0.97% 0.98%
4.00 1.25% 1.03% 1.48% 0.96% 0.55% 1.65%
5.00 1.I13% 1.29% 0.64% 1.26% 0.51% 1.51%
6.00 1.20% 1.98% 1.12% 1.27% 0.78% 1.34%
7.00 0.86% 1.13% 0.98% 0.81% 0.66% 0.99%
8.00 1.14% 0.94% 0.87% 0.41% 0.75% 0.84%
9.00 1.31% 0.97% 1.09% 0.48% 1.82% 2.32%
10.00 221% 0.87% 2.09% 1.94% 1.78% 1.74%
11.00 3.36% 3.52% 2.07% 2.57% 1.99% 2.52%
12.00 2.78% 2.69% 1.87% 2.80% 1.97% 2.62%
13.00 244% 3.07% 1.82% 2.73% 1.58% 2.17%
14.00 253% 3.09% 1.78% 2.66% 1.60% 2.00%
15.00 217% 293% 1.75% 1.96% 1.62% 1.84%
16.00 1.77% 2.75% 2.02% 1.60% 1.75% 1.87%
17.00 1.45% 2.11% 1.49% 2.17% 1.99% 1.66%
18.00 1.00% 1.93% 1.89% 1.73% 2.07% 1.75%
19.00 1.25% 1.53% 1.56% 1.89% 1.96% 1.67%
20.00 1.25% 1.29% 1.62% 1.36% 1.67% 1.67%

127

8.3. Tradeoff Analysis

Recall the objective function

Z'(x)= LV + p RC(x)+ a Dev_total + f Dev__per+ y Dev_maxopen

The coefficient of road cost, p, is a weighting factor. The unweighted roading costs are
in thousands of dollars, and are discounted at 10% per year. When p is increased,
solutions with lower roading costs are favoured by the algorithm. Similarly, decreasing
p leads to solutions which allow more road building costs so as to reduce the lost volume
penalty. The tradeoff curve is the efficient frontier for the two attributes, minimum road
cost and minimum lost productivity.

Tradeoff curves were produced by varying p from 0.1 to 20, and running ORTS for
30 different starting solutions. Figures D.1 - D.6 are charts of these solutions. The
tradeoff curve for the Shulkell dataset is in Figure 8.4. At the extremes, it "costs"
950,000 cubic feet of lost volume to spend nothing on road building. At the other
extreme, spending $175,000 on road building (at $5000 per km) drives the lost volume to
approx. 300,000. More importantly, increasing investment in road building to $40,000
can reduce the lost volume to approximately 425,000 ft’, a reduction of nearly 55%.
Furthermore, the curve shows that there is very little point in increasing road spending to

more than $80,000 since the returns on reducing lost volume are small.

128

Road Cost
180,000 -

164 Efficient
Frontier

140,000 -~

120,000 -

100,000 -

80000 ~ " ° T

60.000 -

40,000 -

20,000 -

0 200,000 400,000 600,000 800,000 1,000.000

Lost volume

Figure 8.4. Efficient frontier for Shulkell Dataset.
Figures D.7 to D.11 show several harvest schedules, with road building costs
ranging from no cost to those which incur $105,419 in road construction costs. Figures

D.12 and D.13 show opening configurations for one of these solutions.

CHAPTER9

DISCUSSION

9.1. Summary

This model and tabu search solution methodology provide a flexible framework for
posing and solving forest planning problems. The model is the first to successfully deal
with defining adjacency constraints on stands, with no restrictions on the number of
planning periods in the adjacency delay time. The model also allows for general roading
networks with multiple access points and cycles. The objective function lost volume
penalty function is a very different concept from any in the forest management literature.
This work has shown that it is possible to design and solve mathematical models to
support the analysis of tradeoffs between competing factors such as lost production and
capital cost of road building. This capability adds significantly to the decision making
process -- no assumptions are made regarding the manager's tolerance for lost
productivity nor his/her roading budget. Thus, the information can be used to freely
analyze the substitution effects without bias.

It has been shown that tabu search methods can be used to solve this problem. The
most important feature of the TS algorithm is the strategic oscillation through the
feasible region boundaries. This feature is essential in obtaining good solutions --
without it all methods failed. The algorithm is enhanced with a reactive feedback

mechanism to automatically set tabu tenure. This eliminates the need for a pre-solution

130

experiment to determine a good value of tabu tenure. It was also shown that
diversification with stochastic elements is useful to narrow the range of solutions
produced, and to improve overall solutions. This problem has two very clear sub-
structures. The harvest scheduling portion is like a bin-packing problem, and the roading
network is like a fixed-charge problem. These make for a complicated solution space and
difficulties in designing a suitable move evaluation function. These barriers were
addressed in the diversification strategies, by choosing moves which diversify while
selectively increasing or decreasing the road network.

Successful tabu search algorithms require efficient methods to evaluate moves.
This problem, which has a complex constraint structure, was successfully attacked by
using some basic graph methods to deal with openings and an efficient heuristic method
for calculating near-optimal road networks. The algorithm was implemented in
FORTRAN, and no claims are made as to the efficiency of the coding. In fact, the
program is not especially fast. It requires approximately one minute of CPU time per
thousand neighbourhood searches (using an IBM R6000 Model 43P-132 computer). It is
workable, however, and the importance of the information produced offsets the
magnitude of computing costs.

A major design objective for the model and algorithm is portability to different
problem instances. Hence, the emphasis on self-tuning for penalty parameters, tabu
tenure and history-based detection of the need for search diversification. This algorithm

is a framework which can be adapted to other problems.
9.2. Directions for Further Research

Some areas where further research is indicated are integer programming

formulations, managing GIS systems and stand characteristics, the form of productivity

131

loss functions and the incorporation of different goals and objectives into the model.
Extensions of the model to allow for more intervention types and for an expanded

definition of stand access could prove to be useful.

9.2.1. Integer Programming Formulations

In Integer Programming formulations of adjacency, the clique constraints are the
most important inequalities. For small problems. it has been shown (Chapter 3) that it is
feasible to produce all of the maximal clique constraints and significantly reduce the
running time of the branch and bound solution method. The number of variables in a
problem formulation increases with the number of polygons, the number of intervention
types and the number of periods. As problem size increases, generating all the maximal
clique constraints becomes unworkable. In addition, it can be shown that there are a
large number of lifted odd hole inequalities for these problems, yet experience has been
that few of them are violated in LP solutions [Weintraub, Barahona and Epstein 1994].
Thus, a cutting planes algorithm, in which violated inequalities are identified and added
systematically to the simplex tableau, is needed. Significant work has already been done
in this area, but it has not been applied, in any great extent, to forest planning problems.
Nemhauser and Sigismondi [1992] have developed a modular LP/branch-and-bound
system for the node packing problem. They augment the inequality system by
identifying violated maximal clique and lifted odd hole inequalities. Weintraub,
Barahona and Epstein [1994] used a similar strategy in solving the node packing sub-
problem to generate columns for the master problem in their algorithm. (They also used
some other facet-defining inequalities of the node packing problem.)

The node packing problem is only one component of the harvest and road

construction scheduling problem, however. What is not known is what other strong

inequalities, which relate the road network to adjacency constraints, are appropriate to
further sharpen the LP relaxation of these models.
Thus it is suggested that sharpening the LP formulations for forest planning

problems be approached from the existing foundations in cutting planes algorithms.

9.2.2. Stand types and GIS Management

This thesis proposes the use of the forest stand for the basic spatial decision unit.
The reasoning is that the stand is the smallest unit which is uniform in age and future
growth, and therefore must be the best choice from a biological productivity perspective.
There are some problems with this choice, and some thought as to other implications of
the spatial unit choice would be helpful. The first problem which was observed through
the course of this work is the adjacency definitions. The practice in New Brunswick and
Nova Scotia has been to define stands to be adjacent when they share a common
boundary, which in the GIS is a shared arc. The GIS coverage data has, in both
provinces, been "buffered”. This has resulted in stands being split by road buffers,
creating artificial boundaries between stands which are, in reality, adjacent or the same
stand. Thus, using the GIS data in this way to define adjacency is somewhat suspect. An
obvious and simple solution to this difficulty is to use a distance criterion to determine
adjacency. The second problem with stands is that they are often too large, and
sometimes are too small to be meaningful management choices for harvest or treatment.
For example, one stand may be larger than the maximum opening size. This size
difficulty can be alleviated by pre-processing the GIS data, splitting any large stands, and
aggregating small and artificially fragmented stands. The third problem with stands is
their shape. Areas of very irregular perimeter may be unsuitable for operational

planning. (For examples of some extremely irregular shapes, see the solutions shown in

133

Appendix D for the Shulkell area.) This suggests that the area should be "gridded",
producing regular shapes that are of a reasonable area and which are, within a tolerance
level, uniform in coverage and growth. The drawback is that gridding could create more
decision units (although it might in some cases reduce the set).

One point which should be noted is that this model ignores any effects on wood
flow and openings resulting from road building. A possible enhancement to the model is
to treat road links as special stands, which contribute volume to harvests and which also
contribute to openings. This would imply that road links be analyzed, using the GIS, for
forest cover and for acreage in order to calculate the wood flows from clearing a road
link.

All of these considerations are issues that can be solved with appropriate
management of GIS systems and appropriate attention to the impact of spatial unit

choices on models, their solution, and the quality of the information they can produce.

9.2.3. Productivity Loss Functions

In this work, a lost volume penalty function has been proposed. The form of this
function merits some study. For example, the function should reflect the desire of the
decision-maker to access different areas in the forest, as well as deal with lost potential
productivity. Thus, different forms of the lost volume function for dead stands may be
designed to reflect lower or higher priority in accessing these stands.

The function proposed in this thesis uses an unweighted estimate of total lost
volume to penalized less than optimal harvest scheduling. Forms which are differently

weighted, or which are non-linear may be appropriate.

9.2.4. Incorporating Different Goals or Constraints.

The model framework, where all constraints are dealt with as penalty terms, is

134

amenable to modification to include other goals or restrictions. For example, if an end
period age-class distribution for the planning area is required, this could be incorporated
as another penalty term in the objective. The effect of adding more penalty terms is to
increase the complexity of the oscillation procedure; although it appears that this is
easily incorporated, the solution algorithm may need to be modified to effect appropriate

parameter changes and to include appropriate memory structures to detect the need for

diversification.

9.2.5 Other Types Of Intervention and Road Network Extensions

The model considers only one type of intervention in the forest, the clearcut. A
useful extension would be to include other types of harvests, such as selective cutting or
shelterwood cutting and silvicultural treatments, such as thinnings. These activities
generate the same sort of requirements for roading access. No stand would be eligible
for both thinning and harvesting within the tactical planning horizon, and thus only one
decision variable per stand need be considered The model would need to be adjusted to
deal with differences in contributions to volume and conditions for evaluating eligibility
of a stand for thinning.

Contributions to volume from thinnings and selection cuttings can be estimated in
the same manner that is done in the aspatial simulation [Gunn1994b]. It can be expected
that the strategic plan specify a desired (aspatial) level of silvicultural activity. Also,
suitability of a stand for a thinning activity could be measured with a penalty function.
The objective function of this extended model would then have another penalty term, and
there would be additional constraints (or penalty terms) to ensure feasibility with respect
to the silviculture level targets.

Road maintenance costs could be added to this model. Each road link that is

135

constructed on one period and required in later periods would require maintenance.
These costs would be added to the roading cost portion of the objective function, and
they could be calculated in much the same way that the link timing is done in this model.
The road network model is quite general in that it allows for multiple main road
access points and for cycles in the graph representing the proposed set of links. It does
not allow the condition that one stand may be equally well accessed by more than one

road link. This limitation should be addressed in future work.

10.

1.

12.

136

REFERENCES

Ahuja, Ravindra K., Thomas L. Magnanti and James B. Orlin (1993). Network
Flows. Prentice-Hall Inc., New Jersey.

Aneja, Y. P. (1980). An integer linear programming approach to the Steiner problem
in graphs. Networks. Vol. 10, pp. 167-178.

Balakrishnan, A. and N. R. Patel (1987). Problem reduction methods and a tree
generation algorithm for the Steiner network problem. Networks. Vol. 17, pp. 65-85.

Ball, George L. (1994). Ecosystem modeling with GIS. Environmental Management.
Vol. 18, No. 3, pp. 345-349.

Barahona, Francisco, A. Weintraub and Rafail Epstein (1992). Habitat dispersion in
forest planning and the stable set problem. Operations Research. Vol. 40, No. S1, pp.
S14-S21.

Barnes, J. W., M. Laguna and F. Glover (1995). An overview of tabu search
approaches to production scheduling problems. In "Intelligent Scheduling Systems",
D. E. Brown and W. T. Scherer (Eds.), pp. 101-127, Kluwer Academic Publishers,
Netherlands.

Bames, J. W. and M. Laguna (1993). Solving the multiple-machine weighted flow
time problem using tabu search. IIE Transactions. Vol. 25, No. 2, pp. 121-128.

Barr, Richard S., Bruce L. Golden, James P. Kelly, Mauricio Resende and William R.
Stewart, Jr. (1995). Designing and reporting on computational experiments with
heuristic methods. Journal of Heuristics. Vol. 1, pp. 9-32.

Barros, Oscar and A. Weintraub (1982). Planning for a vertically integrated forest
industry. Operations Research. Vol. 30, No. 6, pp. 1168-1182.

Baskent, E. Z. and G. A. Jordan (1991). Spatial wood supply simulation modeling.
The Forestry Chronicle. Vol. 67, No. 6, pp. 610-621.

Battiti, R.and M. Protasi (1995). Reactive local search for the maximum clique

problem. Technical Report TR-95-052, International Computer Science Institute,
Berkeley, Ca.

Battiti, R. (1996). Time and space-efficient data structures for history-based

heuristics. UTM 478 Gennaio Dipartimento di Matematica, Universita degli Studi di
Trento, Italia.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

137

Battiti, R. (1995). Reactive Search: Toward Self-tuning Heuristics. In "Modern
Heuristic Search Methods", V. J. Rayward-Smith, I. H. Osman, C. Reeves and G. D.
Smith (Eds.). 1996 John Wiley & Sons Ltd., New York.

Battiti, R. and G. Tecchiolli (1995). Local search with memory: Benchmarking RTS.
Operations Research Spektrum. Vol. 17, No. 2/3, pp. 67-86.

Battiti. R. and G. Tecchiolli (1994). The reactive tabu search. ORSA Journal on
Computing. Vol. 6, No. 2, pp. 126-140.

Beasley, J. E. (1989). An SST-based algorithm for the Steiner problem on graphs.
Networks. Vol. 19, pp. 1-16.

Booth, D. L., D. W. K. Boulter, D. J. Neave, A. A. Rotherham and D. A. Welsh
(1993). Natural forest landscape management: A strategy for Canada. The Forestry
Chronicle. Vol. 69, No. 2, pp. 141-146.

Brack, Chris. (Ed.) (1996a,February). Stand Growth.
http://online.anu.edu.au/Forestry/mensuration/S_GROWTH.HTML, pp. 1-8.

Brack, Chris. (Ed.) (1996b,September). Quantifying Site.
http://online.anu.edu.au/Forestry/mensuration/SITE HTML, pp. 1-10.

Bretthauer, K. and A. Cabot (1994). A composite branch and bound, cutting plane
algorithm for concave minimization over a polyhedron. Computers and Operations
Research. Vol: 21, No.7, pp. 777-78S.

Brodie, J. D. and J. Sessions (1991). The evolution of analytic approaches to spatial
harvest scheduling. Proceedings of the 1991 Symposium on Systems Analysis in
Forest Resources, pp. 187-191.

Bron, C. and J. Kerbosch (1973). Finding all cliques of an undirected graph.
Communications of the ACM. Vol. 16, pp. 575-577.

Clark, A. R. and V. A. Armentano (1995). The application of valid inequaliteis to the
multi-stage lot-sizing problem. Computers and Operations Research. Vol. 22, No. 7,
pp. 669-680.

Clements, S. E., P. L. Dallain, and M. S. Jamnick (1990). An operational spatially
constrained harvest scheduling model. Canadian Journal of Forest Research. Vol. 20,

pp. 1438-1447.

Corberan, A. and J. M. Sanchis (1994). A polyhedral approach to the rural postman
problem. European Journal of Operational Research. Vol. 79, No.1, pp. 95-114.

Costa, Daniel (1995). An evolutionary tabu search algorithm and the NHL
scheduling problem. INFOR. Vol. 33, No. 3, pp. 161-178.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

138

Dammeyer, F. and Stefan Voss (1993). Dynamic tabu list management using the
reverse elimination method. Annals of Operations Research. Vol. 41, pp. 31-46.

Daust, David K., John D. Nelson (1993). Spatial reduction factors for strata-based
harvest schedules. Forest Science. Vol. 39, No. 1, pp. 152-165.

Davis, Lawrence S. and Reginald H. Barrett (1992). Spatial integration of wildlife
habitat analysis with long-term forest planning over multiple owner landscapes.
Proceedings: Workshop on modeling sustainable forest ecosystems, Washington DC,
Nov. 18-20, 1992.

Dell'Amico, M. and M. Trubian (1993). Applying tabu search to the job-shop
scheduling problem. Annals of Operations Research. Vol. 41, pp. 231-252.

Dewhurst, Stephen M., W.W. Covington, and D. B. Wood (1995). Developing a
model for adaptive ecosystem management. Journal of Forestry. DEC 1995, pp. 35-

40.

Dijkhuizen, G. and U. Faigle (1993). A cutting-plane approach to the edge weighted
maximal clique problem. European Journal of Operations Research. Vol. 69, pp. 121-
130.

Dowsland, Kathryn A. (1993). Some experiments with simulated annealing
techniques for packing problems. European Journal of Operations Research. Vol. 68,

pp. 389-399.

Dowsland, Kathryn A. and William B. Dowsland (1992). Packing problems.
European Journal of Operations Research. Vol. 56, No. 1, pp. 2-14.

Edwards, P,. N. and J. M. Christie (1981). Yield models for forest management.
Forestry Commission: Alice Holt Lodge, Famham, Surrey, Scotland.

Environmental Systems Research Institute, Inc. (1997, March). How GIS Works.
http://www.esri.com/base/gis/abtgis/gis_wrk.html.

Field, Richard C. (1984). National forest planning is promoting US forest service
acceptance of operations research. INTERFACES. Vol. 14, No. 5, pp. 67-76.

Frendewey, J. (1983). Candidate list strategies for BN and Simplex SON methods.
Graduate School of Business and Administration, University of Colorado at Boulder.

Friden, C., A. Hertz and D. de Werra (1990). TABARIS: An exact algorithm based
on tabu search for finding a maximum independent set in a graph. Computers and
Operations Research. Vol. 17, No. 5, pp. 437-445.

Garcia, Bruno-Lambert, Jean-Y ves Potvin, Jean-Marc Rousseau (1993). A parallel
Tabu Search for the vehicle routing problem with time windows. Computers and
Operations Research. Vol 21, No. 9, pp. 1025 - 1034

41.

42.

43.

45.

46.

47.

48.
49.

50.

51

52.

53.

54.

139

Garey, Michael R. and David S. Johnson (1979). Computers and intractability: A
guide to the theory of NP-Completeness. Bell Telephone Laboratories, Inc. W. H.
Freeman and Company, New York.

Gendreau, Michel, Francois Guertin, Jean-Yves Potvin and Eric Taillard (1996).
Tabu search for real-time vehicle routing and dispatching. Centre de recherche sur les
transports, Universite de Montreal - CRT-96-47.

Gendreau, Michel, Jean-Francois Larochelle and Brunilde Sanso (1996). A tabu
search heuristic for the Steiner tree problem in graphs. Centre de recherche sur les
transports, Universite de Montreal - CRT-96-05.

. Gendreau, Michel, P. Soriano and L. Salvail (1993). Solving the maximum clique

problem using a tabu search approach. Annals of Operations Research. Vol. 41, No.
1-4, pp. 385-404.

Gendreau, Michel, Alain Hertz and Gilbert Laporte (1992). New insertion and
postoptimization procedures for the traveling salesman problem. Operations
Research. Vol. 40, No. 6, pp. 1086-1094.

Gendreau, Michel, A. Hertz and G. Laporte (1994). A tabu search heuristic for the
vehicle routing problem. Management Science. Vol. 40, pp. 1276-1290.

Glover, Fred (1992). Tabu Search. In "Modern Heuristic Techniques for
Combinatorial Problems", pp. 70-141. C. Reeves (Ed.), Blackwell Scientific
Publishing, Oxford.

Glover, Fred (1990a). Tabu Search: A tutorial. Interfaces. Vol. 20, No. 4, pp. 74-94.

Glover, Fred (1990b). Tabu search - part ii. ORSA Journal on Computing. Vol. 2,
No. 1, pp. 4-32.

Glover, Fred and Robert E. Markland (1990). Artificial intelligence, heuristic
frameworks and Tabu Search: Commentary. Managerial and Decision Economics.
Vol. 11, No. §, pp. 365-378.

Glover, Fred and Harvey J. Greenberg (1989). New approaches for heuristic search:
A bilateral linkage with artificial intelligence. European Journal of Operational
Research. Vol. 39, No. 2, pp. 119-130.

Glover, Fred (1989). Tabu Search - part i. ORSA Journal on Computing. Vol. 1, No.
3 pp- 190-260.

Glover, Fred (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research. Vol. 5, pp. 553-549.

Glover, Fred, D. Kamney, D. Klingman and A. Napier (1974). A computational study
on start procedures, basis change criteria, and solution algorithms for transportation
problems. Management Science. Vol. 20, No. 5, pp. 793-813.

5S.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

140

Guignard, Monique, Shunping Zhu and Emmanuel Chajakis (1995). A hybrid
lagrangian method applied to forest management. The Wharton School of the
University of Pennsylvania, Report 95-04-02.

Gunn, Eldon A. (1996). Hierarchical planning processes in forestry: A stochastic
programming - Decision Analytic Perspective. Proceedings of a Workshop on
Hierarchical Approaches to Forest Management in Public and Private Organizations,

Canadian Forest Service Report PI-X-124.

Gunn, Eldon A. (1994a). Harvest re-allocation to attain maximum, non-declining
sustainable yield. Working paper, Dept. Industrial Engineering, Technical University
of Nova Scotia.

Gunn, Eldon A. (1994b). An overview of the SAWS wood supply model. Working
Document, Nova Scotia Department of Natural Resources.

Gunn, Eldon A. and Ajith K. Rai (1987). Modeling and decomposition for planning
long-term forest harvesting in an integrated industry structure. Canadian Journal of
Forest Research. Vol. 17, pp. 1507-1518.

Hansen, Pierre (1986). The steepest ascent mildest descent heuristic for combinatorial
programming. Congress on Numerical Methods in Combinatorial Optimization,
Capri, Italy.

Hax, A. C. and J. Golovin (1978). Hierarchical production planning systems. In
Studies in Operational Management, A. C. Hax, ed. North-Holland, Netherlands.

Hertz, A., G. Laporte and M. Mittaz (1997). A tabu search heuristic for the
capacitated arc routing problem. Centre de recherche sur les transports, Universite de
Montreal - CRT-97-03.

Hertz, A. and D. de Werra (1987). Using tabu search techniques for graph coloring.
Computing. Vol. 29, pp. 345-351.

Hof, J. G. and L. A. Joyce (1993). A mixed integer linear programming approach for
spatially optimizing wildlife and timber in managed forest ecosystems. Forest
Science. Vol. 39, No. 4, pp. 816-834.

Hof, J. G. and L. A. Joyce (1992). Spatial optimization for wildlife and timber in
managed forest ecosystems. Forest Science. Vol. 38, No. 3, pp. 489-508.

Hof, J. G. and M. G. Raphael (1993). Some mathematical programming approaches
for optimizing timber age-class distributions to meet multispecies wildlife population
objectives. Canadian Journal of Forest Research. Vol. 23, pp. 828-834.

Hokans, R. H. (1984). An artificial intelligence application to timber harvest schedule
implementation. INTERFACES. Vol. 14, No. 5, pp. 77-84.

68.

69.

141

Hwang, F. K and Dana S. Richards (1992). Steiner tree problems. Networks. Vol. 22,
pp. 55-89.

Industry Canada (1996a). Canada's International Business Strategy: Forest
Industries. (Strategis publication, author Industry Canada).
http://www.dfait-maeci.gc.ca/english/ TRADE/CIBS/english/strategy/18s.html.

70. Industry Canada (1996b). Forest Industries and Building Products: New Brunswick

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Forest Products Industry. (Strategis publication, author Tom Rosser, Industry
Canada). http://strategis.ic.gc.ca/SSG/fb00016e.html.

Industry Canada (1996c). Forest Industries and Building Products: Nova Scotia
Forest Products Industry. (Strategis publication, author Tom Rosser, Industry
Canada). http://strategis.ic.gc.ca/SSG/fb00035e.html.

Jamnick, M. S. and K R. Walters (1993). Spatial and temporal allocation of stratum-
based harvest schedules. Canadian Journal of Forest Research. Vol. 23, pp. 402-413.

Jamnick, M.S. and K R. Walthers (1991). Harvest blocking, adjacency constraints
and timber harvest volumes. Proceedings of the 1991 Symposium on Systems
Analysis in Forest Resources, pp. 255-261.

Johnson, K. N. and Scheurman, H. L. (1977). Techniques for prescribing optimal
timber harvest and investment under different objectives -- discussion and synthesis.
Forest Science Monograph.

Jones, J. Greg, Bruce J. Meneghin and Malcolm W. Kirby (1991). Formulating
adjacency constraints in linear optimization models for scheduling projects in tactical
planning. Forest Science. Vol. 37, No. 5, pp. 1283-1297.

Jordan, G. A. (1993). Forest management and GIS in New Brunswick (1982-1992).
UNB Forestry Focus; a publication of the Faculty of Forestry, University of New
Brunswick.

Jordan, G. A. and E. Z. Baskent (1992). A case study in spatial wood supply analysis.
The Forestry Chronicle. Vol. 68, No. 4, pp. 503-516.

Kelly, J.P., B. L. Golden and A. A. Assad (1993). Large-scale controlled rounding
using tabu search with strategic oscillation. Annals of Operations Research. Vol 41.

Kirby, M. W., W. A. Hager and P. Wong (1986). Simultaneous planning of wildland
management and transportation alternatives. TIMS Studies in the Management
Sciences, Elsevier Science (North-Holland). Vol. 21, pp. 371-387.

Kirby, M. W., P. Wong, W. A. Hager and M.E. Huddleston (1980). Guide to the
integrated resource planning model. U.S. Department of Agriculture, Forest Service,
Management Sciences Staff, Berkely, Ca.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

142

Knuth, Donald E. (1973). The Art of Computer Programming: Sorting and Searching
(Volume 3). Addison-Wesley Publishing Company, Inc., Reading, Mass.

Kou, L. T. (1990). On efficient implementation of an approximation algorithm for the
Steiner tree problem. Acta Informatica. Vol. 27, pp. 269-380.

Kou, L. T. and K. Makki (1987). An even faster approximation algorithm for the
Steiner tree problem in graphs. Congressus Numerantium. Vol. 59, pp. 147-154.

Laguna, M. and Fred Glover (1993). Bandwidth packing: A tabu search approach.
Management Science. Vol. 39, No. 4, pp. 492-500.

Lockwood, Carey and Tom Moore (1992). Harvest scheduling with spatial
constraints: a simulated annealing approach. Canadian Journal of Forest Research.

Vol. 23, pp. 468-478.

Magnanti, T. L. and L. A. Wolsey (1995). Network Models: Optimal Trees.
Handbooks in Operations Research and Management Science (pp. 503-616.). North-
Holland. Elsevier Science B.V., Netherlands.

Melhorn, K. (1988). A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters. Vol. 27, pp. 125-128.

Mooney, E. L. and R. L. Rardin (1993). Tabu search for a class of scheduling
problems. Annals of Operations Research Vol 41, pp. 253-.

Murphy, P. J., A. Rousseau and D. Stewart (1993). Sustainable forests: A Canadian
commitment : National Forest Strategy and Canada Forest Accord Process and
Results. The Forestry Chronicle. Vol. 69, No. 3, pp. 278- 278.

Murray, Alan T. and Richard L. Church (1996a). Analyzing cliques for imposing
adjacency restrictions in forest models. Forest Science. Vol. 42, No. 2, pp. 166-175.

Murray, Alan T. and Richard L.Church (1996b). Constructing and Selecting
Adjacency Constraints. INFOR. Vol. 34, No. 3, pp. 232-247.

Murray, Alan T. and Richard L. Church (1995). Heuristic solution approaches to
operational forest planning problems. OR Spectrum. Vol. 17, pp. 193-203.

Navon, Daniel L. (1971). TimberRAM. A long-range planning method for
commercial timber lands under multiple-use management. USDA Forest Service
Research Paper PNW-70, Pacific Southwest Forest and Range Experiment Station,

Berkeley, California.

NBGOVT (1994). Forest Management Manual For Crown Lands - May 1994. Dept.
Natural Resources and Energy, Province of NB.

143

95. Nelson, John, J. Douglas Brodie and John Sessions (1991). Integrating short-term,
area-based logging plans with long-term harvest schedules. Forest Science. Vol. 37,
No. I pp. 101-122.

96. Nelson, John and J. D. Brodie (1990). Comparison of a random search algorithm and
mixed integer programming for solving area-based forest plans. Canadian Journal of
Forest Research. Vol. 20, pp. 934-942.

97. Nelson, John and S. T. Finn (1990). The influence of cut-block size and adjacency
rules on harvest levels and road networks. Canadian Journal of Forest Research. Vol.
21, pp. 595-600.

98. Nemhauser, G. L. and G. Sigismondi (1992). A strong cutting plane/branch-and-
bound algorithm for node packing. Journal of the Operational Research Society. Vol.
43, No. 5, pp. 443-457.

99. Nemhauser, G. L. and Laurence A. Wolsey (1988). Integer and combinatorial
optimization. John Wiley & Sons, New York.

100. Nembhauser, G. L. and L. E. Trotter, Jr. (1974). Properties of vertex packing and
independence system polyhedra. Mathematical Programming Vol 6, pp. 48-61.

101. NS Dept. of Lands and Forests (1992). Yields of selected older forest plantations
in Nova Scotia. Province of Nova Scotia Forest Research Report. No. 35, pp. 1-26.

102. NS Dept. of Lands and Forests, (1990). Revised Normal Yield Tables for Nova
Scotia Softwoods. Province of Nova Scotia Forest Research Report. No. 22, pp. 1-45.

103. Padberg, M. (1973). On the facial structure of set packing polyhedra.
Mathematical Programming. Vol. 5, pp. 199-215.

104. Pochet, Yves and Laurence A. Wolsey (1991). Solving multi-item lot-sizing
problems using strong cutting planes. Management Science. Vol. 37, No. 1, pp. 53-
67.

105. Pochet, Yves and Laurence A. Wolsey (1986). Lot-size models with backlogging:
strong reformulations and cutting planes. Mathematical Programming. Vol. 46, No.
3, pp. 379-390.

106. Province of Nova Scotia (1993). Nova Scotia softwood growth and yield model -
Version 1.0 User Manual. Province of Nova Scotia Forest Research Report. No. 43,
pp. 1-12.

107. Province of Nova Scotia (1992). Geographic Information System Forestry
Database Specifications. Department of Natural Resources, Forest Resources
Planning and Mensuration Division.

108. Province of Nova Scotia (1990). Forest/Wildlife Guidelines and Standards,
Department of Natural Resources.

144

109. Reeves, Colin. (Ed.) (1993) Modern Heuristic Techniques for Combinatorial
Problems. Blackwell Scientific Publishing, Oxford.

110. Reeves, Colin (1993). Improving the efficiency of tabu search for machine
sequencing problems. Journal of the Operational Research Society. Vol. 44, No. 4,
pp- 375-382.

111. Schrage, L. (1988). User's manual for Linear, Integer and Quadratic Programming
with LINDO, release 5.0. The Scientific Press, San Fransisco, Ca.

112. Schuster, E. G, L. A. Leefers and J. E. Thompson (Eds.) (1993). A guide to
computer-based analytical tools for implementing national forest plans. U.S. Dept.
Agriculture Forest Service General Technical Report INT-296.

113. Sedgewick, Robert (1983). Algorithms. Addison-Wesley, Reading, Mass.

114. Sharaiha, Y., M. Gendreau, and I. Osman (1997). A tabu search algorithm for the
capacitated shortest spanning tree problem. Networks. Vol 29:3, pp. 161-172.

115. Soranio, P. and Michel Gendreau (1996). Diversification strategies in tabu search
algorithms for the maximum clique problem. Annals of Operations Research. Vol. 63
pp. 189-207.

116. Takahashi, H. and A. Matsuyama (1980). An approximate solution for the Steiner
problem in graphs. Mathematica Japonica. Vol. 24, pp. 573-577.

117. Tanke, William C. (1985). PASS--A tool for analyzing alternative harvest
schedules. The 1985 Symposium on Systems Analysis in Forest Resources, Athens,

Georgia, pp. 303-314.

118. Tarjan, Robert Endre (1983). Data Structures and Network Algorithms. Society
for Industrial and Applied Mathematics, New Jersey.

119. Thompson, Ian D. and Daniel A. Welsh (1993). Integrated resource management
in boreal forest ecosystems. The Forestry Chronicle. Vol. 69, No. 1, pp. 32-38.

120. Torres-Rojo, Juan and J. Douglas Brodie (1990). Adjacency constraints in harvest
scheduling: an aggregation heuristic. Canadian Journal of Forest Research. Vol. 20
pp. 978-986.

121. Vertinsky, L., S. Brown, H. Schreier, W. A. Thompson and G. C. van Kooten
(1994). A hierarchical-GIS-based decision model for forest management: The
systems approach. Interfaces. Vol. 24, No. 4 pp. 38-53.

122. Weintraub, A. and L. S. Davis (1996). Hierarchical planning of forest resource
management: Defining the dimensions of the subject area. Proceedings of a
Workshop on Hierarchical Approaches to Forest Management in Public and Private
Organizations, Canadian Forest Service Report PI-X-124.

145

123. Weintraub, A., F. Barahona and R. Epstein (1994). A column generation
algorithm for solving general forest planning problems with adjacency constraints.
Forest Science Vol. 40, pp. 142-161.

124. Weintraub, A., G. Jones, A. Magendzo, M. Meacham and M. Kirby (1994). A
heuristic system to solve mixed integer forest planning models. Operations Research.
Vol. 42, No. 6, pp. 1010-1024.

125. Weintraub, A. and Alejandro Cholaky (1991). A hierarchical approach to forest
planning. Forest Science. Vol. 37, No. 2, pp. 439-460.

126. Weintraub, A. (1991). A cutting plane approach for chance constrained linear
programs. Operations Research. Vol. 39, No. 5, pp. 776-785.

127. Weintraub, A., R. Morales, J. Seron, R. Epstein and P. Traverso (1991).
Managing operations in pine forest industries. Proceedings of the 1991 Symposium
on Systems Analysis in Forest Resources, pp. 31-34.

128. Weintraub, A. and D. Navon (1986). Mathematical programming in large scale
forestry modeling and applications. TIMS Studies the Management Sciences:
Systems Analysis in Forestry and Forest Industries, Kallio, Andersson, Seppala and

Morgon, Eds.

129. Weintraub, A. and D. Navon (1976). A forest management planning model
integrating silvicultural and transportation activities. Management Science. Vol. 22,
pp- 1299-1309.

130. Widmayer, P. (1986). On approximation algorithms for Steiner's problem in
graphs. Graph-Theoretic Concepts in Computer Science [LCNS 246] (G. Tinhofer
and G. Schmidt, Eds.) Springer-Verlag, Berlin, pp. 17-28.

131. Widmer, M. (1993). Job Shop Scheduling with tooling constraints: A tabu search
approach. Journal of the Operational Research Society. Vol. 42, No. 1, pp. 75-82.

132. Wightman, Rick A. and Emin Z. Baskent (1994). Forest neighbourhoods for
timber harvest scheduling. The Forestry Chronicle. Vol. 70, No. 6, pp. 768-772.

133. Woodruff, D. L and E. Zemel (1993). Hashing vectors for tabu search. Annals of
Operations Research. Vol. 41, pp. 123-138.

134. Woodruff, D. L. and M. L. Spearman (1992). Sequencing and batching for two
classes of jobs with deadlines and setup times. Production and Operations
Management. Vol. 1, No. 1, pp. 87-102.

135. Wu, Y. F., P. Widmayer and C. K. Wong (1986). A faster approximation
algorithm for the Steiner problem in graphs. Acta Informatica. Vol. 23, pp. 223-229.

146

136. Yoshimoto, Astsushi and J. Douglas Brodie (1994). Short- and long-term impacts
of spatial restrictions on harvest scheduling with reference to riparian zone planning.
Canadian Journal of Forest Research. Vol. 24, pp. 1617-1628.

137. Yoshimoto, Atsushi, J. Douglas Brodie and John Sessions (1994). A new

heuristic to solve spatially constrained long-term harvest scheduling problems. Forest
Science. Vol. 40, No. 3, pp. 365-396.

138. Yoshimoto, Atshushi and J. Douglas Brodie (1993). Comparative analysis of
algorithms to generate adjacency constraints. Canadian Journal of Forest Research.
Vol. 24, pp. 1277-1288.

147

APPENDIX A

FLOWCHARTS

———P»{ Seed Random Number Generator

BEGIN

Set Harvestj= 0,j=1,J
v
Begin Period j

:

Generate s in ST-LIST(0)

\ 4
S

Not
Feasible

Calculate
Dev_maxopen

Feasibility
Required?

Feasible

s o

Next Period j

Total Harvest

Feasible
l’

. Build Road
Network

Figure A.l. Generating an Initial Solution

148

best_z = -
best_move = none
link=0
Y.
o| Calculate Re-Timing costs for this link
v
k=1
s=next stand for this link

Feasibility
Required?

mowve
feasible?

Calculate z(x.m)

best_z=z(x.m)
best_mowve = (s.,k)

)

List for this
link done?

Figure A.2. Neighbourhood Search

149

150

sin[L.S]

k=J+1

Generate
kin[1,J]

Execute Move

Y

x, =k
Set TABU(s)=TRUE

Sample
Complete ?

Increase tabu_tenure

Figure A.3. ESCAPEI Flowchart

Generate random fink number |

'

Delete each stand in ST_LIST(I)

—> k=dad(I)

'y

Foreachson() =P

Delete each stand in _l
ST_LIST (son(l))

I

Rebuild

F

Delete each Stand in
ST_LIST(k)

2O

Figure A.4. ESCAPE2 Flowchart

151

152

Calculate Num_inks

Num_links
< 10%

Set best_cost=infinity

v

Execute ESCAPE] —P@

For Next leaf (link / with numsons = 0)
and Required by Harvest

v

Set k=Rl+l

v

Calculate Cost to retime link /

Execture ESCAPE2 on

Set best_cost=mnin(best_cost,Cost)
Set Link_chosen =1/

Link_Chosen

=)

Figure A.5. ESCAPE3 Flowchart

153

Tot_count=0. Per_count=0, Open_count=)
Repeat for check_mterval Moves

Nexghbourhood
Search
f nomoe
Implement Best IF Fixed Tenure, Stop
Move If REACTIVE,
decrease tabu_tenure

Move Feasiie and
< than Best_sol

Update Best_sol

Lipdate move

counters

Update
Penaky

F2*20

b=b*20

=20

Update Penaky
Parameters
Escape Moves N | Execute Escape
Required ? Sequence
= YES
Clr_soIOR&st_sol Sea=h=c=
Escape Exccuted MAX

Open_Count =0 c=c*20

RETLRN

Figure A.6 OTS Algorithm

154

APPENDIX B

DATASETS

155

] F B.1. Alternate Dataset |

156

Figure B.2. Alternate Dataset 2

157

Figure B.3. Alternate Dataset 3

158

Figure B.4. Alternate Dataset 4

159

Figure B.S. Alternate Dataset 5

160

Figure B.6. Shulkell Dataset

161

STAND COUNT

COMPARISON OF GENERATED DATASETS

200 .

180

g

140 .
120 .

g

[l SHULKELL = SETI B SET2 8 SET3 T SET4 ~ SETS

Figure B.7. Stand Counts by Ageclass

STOCKING*ACRE

1000

COMPARISON OF GENERATED DATASETS

v Tt

[l SHULKELL ' SETI

Figure B.8. Fully Stocked Acres by Ageclass

162

APPENDIX C

FORTRAN CODE

common blocks

Parameters and Constants

integer*4 numstands,numperiods,numnodes,numroads, ifuture
integer*4 num_opens,maxadj,maxvert

parameter (numstands=1039)

PARAMETER (numperiods=4)
parameter(num_opens=1039,maxvert=440,maxadj=600)
real*4 rmaxopen

PARAMETER(RMAXOPEN=126.5)
parameter(numroads=135)

parameter(numnodes=124)

parameter(ifuture = numperiods+1)

real*8 gamma_upper,lower_bound,upper_bound
parameter(upper_bound=32767.0)
parameter(lower_bound=.0001)

common/sol_param/htarget, ptarget,periodic_all,total_all,cur_alpha,
>cur_beta,cur_gamma,d_factor,r_factor

real"8 htarget,ptarget,periodic_all, total_all,cur_alpha,cur_beta,cur_gamma,d_factor(ifuture)

real*8 r_factor

best move

common/best_move/best_r_cost,
least_objective,
m_best_loss_penalty,
m_best_dev_fr_total,
m_best_dev_fr_periodic,
m_best_dev_fr_maxopen,
m_best_harvest,
best_move_asp,
best_stand,best_period,best_type,
best_link_period,
best_link_period_stands

real*8 best_r_cost,least_objective,

VVVVVVVVVY

163

> m_best_loss_penalty,
> m_best _dev_fr_total,

> m_best_dev_fr_periodic(numperiods),
> m_best_harvest,

> m_best_dev_fr_maxopen
integer*2 best_stand,
best_period,

best_type,
best_link_period,
best_link_period_stands
logical best_move_asp

VVVy

best sol

common/best_sol/x_save,road_save
integer*2 x_save(numstands)
integer*2 road_save(numroads)

stand information

common/data/stand_info,numread
structure /stands/

real*4 unass_penalty

real*4 ass_penalty(numperiods)
real*4 volume(numperiods)
real*4 acres

real"4 stocking

real*4 ivol

integer*2 adj(maxvert)
integer2 link_req

integer*2 opening(2)

integer”2 stand_no

integer*2 dead

integer*2 for_non

integer*2 ageclass

integer*2 site

integer*2 cover_type

integer*2 numadj

end structure
record/stands/stand_info(numstands)
integer*2 numread

mai curves

common/growth/mai,mai_max_age
integer*2 mai_max_age(6)
real*4 mai(6,22)

Hashing Table

common/hash/config_info,hash_table,config_point
parameter(itable_size=50021)

integer*2 hash_table(0:itable_size)

integer*2 config_point

structure /sol_stats/

real*8 sol_value

integer*2 num_rep

integer*2 time_last_found

end structure
record/sol_stats/config_info(0:10000)

Move Data

common/move/ move_harvest, move_loss_penalty, move_road_cost,
>move_dev_fr_periodic, move_dev_fr_total, move_dev_fr_maxopen,
>move_infeasible, r_cost, move_feas, move_asp, move_stand,move_period,move_type
>link_period, link_period_stands

integer*2 move_type,move_stand,move_period,link_period,link_period_stands

real*8 move_harvest

real*8 move_loss_penalty, move_dev_fr_periodic(numperiods),
>move_dev_fr_total, move_infeasible, move_road_cost,
>r_cost(ifuture),move_dev_fr_maxopen

logical move_feas,move_asp

Opening Data

common/openings/opens
common/open_pt/o_avail,o_last,av_list ,0_top
structure/op_info/

real*4 acres

integer*2 operiod

integer'2 numvert

integer*2 numedges

integer*2 v(maxvert) Istore stand list

integer*2 epointer(maxvert) lused to point to adjacent stands
integer*2 e(maxadj) ladjacency list

integer*2 pointer_fwd ! points to next available opening num

integer*2 pointer_back Ipoints to the previous opening
end structure
record/op_info/opens(0:num_opens)
integer*2 av_list(num_opens) !availability list for openings

integer*2 o_avail !points to top of availability list

integer*2 o_last Ipoints to last opening added

integer*2 o_top !points to the top of the opening list
RTS Data

common/reactive/moving_average,increase,decrease,rep,chaotic,chaos,cycle_max

164

165

integer*2 chaotic,chaos,cycle_max
integer*2 rep
real increase,decrease,moving_average

Tabu List

common/tabu/tabu_tenure,tabu_list,steps_since_size_change,link_tenure
integer itabu_len

parameter (itabu_len=numstands)

integer*2 tabu_list(itabu_len)

real tabu_tenure,link_tenure

integer*2 steps_since_size_change

Road Network

common/roads/priority,val,roads,road_heap,heap_size,adj_point,inv,adj,st_list,st_point,link,dad
structure/road_net/
real*4 Igth
integer”2 x
integer*2 y
integer*2 period
integer*2 period_assigned
integer*2 nhops
integer*2 dad_link
integer*2 numsons
integer*2 sons(5)
integer*2 time 'move when link is last selected for diversify
logicai*1 required_by_harvest
logical*1 required_by_connect
end structure
record/road_net/roads(0:numroads)
¢ heap data structure NOTE ARRAY LOWER BOUND OF 0 IS REQUIRED
integer*2 road_heap(0:numnodes+1),heap_size
integer*2 inv(0:numnodes+1)
integer*2 adj_point(numnodes+2),adj(3*numnodes,2)
real*4 priority(0:numnodes+1),val(0:numnodes+1)
c list of stands that are accessed by each road
integer*2 st_list(numstands),st_point(0:numroads+1)
integer*2 link(0:numnodes+1)
integer*2 dad(0:numnodes+1)
integer*2 st_list_all(numstands*3),st_all_point(numroads)

Current Solution

common/solution/min_loss_penalty, hvol, best_sol, cur_sol,cur_loss_penaity,

> best_loss_penalty, cur_dev_fr_periodic,cur_dev_fr_total, cur_dev_fr_maxopen,
> cur_infeasible, best_infeasible,cur_road_cost, best_road_cost,

> cur_feasible, best_feasible, hash_add, x

integer*2 x(numstands)

166

real*8 hvol(numperiods),best_sol,cur_sol,cur_loss _penalty best_loss_penalty,

>cur_dev_fr _periodic(numperiods),cur_dev_fr_total,cur_dev_fr_maxopen

real*s
cur_infeasible.best_infeasibIe,cur_road_cost,best_road_cost.cur_feasibIe,best_feasible

real*8 min_loss_penalty

integer*4 hash_add

Initial Solution

common/init_sol/i_sol
integer®2 i_sol(numstands)

Search Status

common/search_status/ message,reset_value, at_end, num_esc_steps, total_time,
> s_time, etime_struct, maxiters, move_count, moves_since_improve, imp_time,
> feas_count_total, feas_count_per, feas_count_open, infeas_count_total,infeas_count_per,
> infeas_count_open, check_interval,escape_time, no_improve_tol,after_escape_moves
logical at_end
integer*2 maxiters,move_count,moves_since_improve
integer num_esc_steps
integer*2 no_improve_tol,after_escape_moves,feas_count_total,feas_count _per
integer™2 infeas_count_total.infeas_count_per,infeas_count_open,feas_count_open
real total_time,s_time,reset_value
integer*2 imp_time,escape_time,check_interval
TYPE TB_TYPE
SEQUENCE
REAL*4 USRTIME
REAL*4 SYSTIME
END TYPE
TYPE (TB_TYPE) ETIME_STRUCT
character*32 message

Orts Main Program

include ‘params.f
include 'sol_param2.f
include ‘com_open.f
include 'com_data.f
include 'road_com_sol.f
include ‘com_tabu2.f
include 'com_move.f
include ‘search_status.f
include 'road_com.f
include 'best_move.f'
include ‘com_reactive.f'
character*8 mapin

real etime

logical escape

integer icount,istart,numruns

character*12 ofile
character*12 dataset
real seedval

cC init

c get data file and operating parameters
write(*,”) 'Reactive tabu search’
write(*,”) ‘Dynamic penalty Coeff
mapin = 'shuikell’
write(*,”) 'Enter Dataset name'
read(",'(a12)') dataset

40 format(a8)

¢ setup data
call read_growth Iread the mai values
call init_x Iset all x(i)=future
call init_stands linitialize stand structure
call init_opens linit opening structure
call init_roads linit road structures
call get_data(dataset) Iread road,stand and adj data
call calc_base_loss Iget min loss penalty
c set up parameters
call init_reactive linit reactive search parameters
call init_search_params Imaxiters etc
call calc_parameters lalpha,beta,bounds for deviations etc
call make_opens2 lopenings for clearcuts

¢ begin the search
write(*,”) 'Enter start stream,end stream'’
read(”,”) istart,numruns
write(*,”) 'Enter max iters'
read(”,”) maxiters
write(*,”) 'enter increase,decrease,cyclemax’
read(*,*) increase,decrease,cycle_max
write(*,") 'output file *
read(*,'(a12)') ofile
write(*,") ffirst factor’
read(”,”),ifirst
write(*,*) 'last factor '
read(",”) ilast
write(*,”) 'interval’
read(*,") interval
write(*,*) 'enter value to reset parameters to after escape’
read(*,*) reset_value
write(*,*) '‘No improve tolerance,after escape_moves'
read(*,”) no_improve_tol,after_escape_moves
link_tenure = 5.0*float(after_escape_moves)
¢ open files
open (unit=11,status="NEW file=ofile)
open (unit=21 file=ofile//.tr’)
write(11,”) dataset
call write_heading_rts
do icount=istart,numruns Inumber of runs

167

write(*,”) ‘random stream’,icount
call mcarlo_rand_feas(icount)
call save_init_sol

do k=ifirst,ilast,interval
seedval = icount

call srand(seedval)
r_factor = 0.1*float(k)

call init_move_counters2
call init_best_values

call init_hash_table

call init_opens

call make_opens2

call build_roads

call calc_objective

call time_stats(s_time)

call update_best

call save_sol

call init_tabu_rts

at_end = faise.

do while(.not.at_end)

do icheck=1,check_interval

Iget an initial solution
land save it
ifor the range of r_factor

!do this so the solution can be repeated
Iconvert to real
Imove_count=0 etc

Iset best to big numbers
linitialize the hashtable

linit the opening list

Imake the opening graphs
Ibuild the path network
Icalculate the current solution
Iget start time

Isaves the best values

Isave initial solution

linit tabu list and tenure

lloop control

INext solution

IDo a small number of moves

steps_since_size_change=steps_since_size_change+1 bump counter
IRTS structures for the current solution

call check_for_reps(escape)
if(.not.escape)then
call calc_full_nbhood6
if (best_type.ne.0)then
call implement_best_move2
call update_best
call update_move_counters2
else

lif not chaotic cycling

Isearch the neighborhodd for best move
ffound a move

limplement it

lupdate best values and save if necessary

Ibump the move counters
Ino move found

tabu_tenure = max(1.0,int(tabu_tenure*decrease))! decrease tabu tenure

endif
else
escape_time=move_count
call rts_escape_routine2
call clean_hash_table
moving_average = 0.0
exit
endif
end do
if((move_count.gt. maxiters).and.

lescape required due to chaotic cycling
Iset the counter

limplement ESCAPES strategy
!

Inext icheck

> (moves_since_improve.ge.no_improve_tol))then !check stop condition

at_end=.true.

message = '‘Max iterations reached’
exit

endif

if(.not.escape)then

call update_obj_coeff2
eise

cur_alpha = reset_value

lupdate alpha, beta, gamma

lescape was done, set them to 1.0

168

169

cur_beta = reset_value
cur_gamma = reset_value
endif
if((moves_since_improve.ge.no_improve_tol).and. ! long time since improve
> (move_count-escape_time.ge.after_escape_moves))then land intensification phase over
escape_time=move_count
call rts_escape_routine2 !do a diversifying strategy
cur_alpha = upper_bound ! and max out coefficients
cur_beta = upper_bound
cur_gamma = upper_bound
moving_average = 0.0

endif

end do

call time_stats(etime) Iget end time

total_time = etime-s_time land calculate run time
call write_data_rts(icount) Istats for runs

call get_init_sol ! go back to the starting solution
end do !and do the next r_factor
call clear_solution Iclear solution for next run
call init_roads Iclear roads

call init_opens Iclear the openings

call make_opens2 lopenings for clearcuts
end do Inext initial solution
close(unit=11) Iclose files

close(unit=21)

stop
end

Initial Solution

subroutine mcarlo_rand_feas(icount)

include ‘params.f
include 'sol_param2.f
include 'search_status.f
include '‘com_data.f
include 'road_com_sol.f
include 'com_open.f
include ‘com_move.f
include ‘com_growth.f
include 'road_com.f
real*4 open_size
integer icount
integer isize
real seedval
seedval = icount
call srand(seedval)
isize = st_point(1)-1
move_type = 1 lused to update solution
¢ make up an initial solution by randomly assigning
¢ stands that require no roads initially
move_type = 1
do move_period = 1,numperiods
hvol(move_period)=0.0
do while (hvol(move_period).it.(ptarget-periodic_alil))
move_stand = st_list(int(rand()*isize)+1)
if(x(move_stand).eq.ifuture)then Inot in
if(stand_info(move_stand).volume(move_period).ne.0)then
call calc_feas_for_maxopen(move_stand,move_period,move_type)
if (dtrunc(move_dev_fr_maxopen).eq.0.0) then feasible
if(hvol(move_period)+stand_info(move_stand).volume(move_period)
> .le(ptarget+periodic_all))then
if(stand_info(move_stand).link_req.ne.0)then
roads(stand_info(move_stand).link_req).period =
> min0(move_period,roads(stand_info(move_stand).link_req).period)
roads(stand_info(move_stand).link_req).required_by_harvest=
> frue.
endif
call add_stand2(move_stand,move_period)
x(move_stand)=move_period
hvol(move_period)=hvol(move_period)+
> stand_info(move_stand).volume(move_period)
endif
endif
endif
endif
end do

170

171

end do Inext period
return
end

subroutine mcarlo rand7(icount)

¢ This routine generates an initial solution which may be infeasible

(o

include 'params.f
include 'sol_param2.f

include 'search_status.f

include 'com_data.f

include 'road_com_sol.f'

include 'com_open.f

include 'com_move.f

include ‘com_growth.f’

include ‘'road_com.f

real4 open_size

integer icount

integer isize

call srand(s_time) luse start time for the seed
real seedval

seedval = icount

call srand(seedval)

isize = st_point(1)-1

write(*,”) 'isize is *isize

move_type = 1 lused to update solution

¢ make up an initial solution by randomly assigning
¢ stands that require no roads initially

do move_period = 1,numperiods
hvol(move_period)=0.0
do while (hvol(move_period).Ilt.ptarget)
move_stand = st_list(int(rand()*isize)+1)
if(x(move_stand).eq.ifuture)then Inot in
if(stand_info(move_stand).volume(move_period).ne.0)then
if(stand_info(move_stand).link_req.ne.0)then
roads(stand_info(move_stand).link_req).period =
> minO(move_period,roads(stand_info(move_stand).link_req).period)
roads(stand_info(move_stand).link_req).required_by_harvest=
> true.
endif
x(move_stand)=move_period
hvol(move_period)=hvol(move_period)+
> stand_info(move_stand).volume(move_period)
endif
endif
end do
end do Inext period
return
end

Hashing Subroutines

subroutine hashfn(numread)

include ‘params.f’

include 'sol_param2.f

include ‘road_com_sol.f'

include ‘com_hash.f

include 'search_status.f

integer*2 numread

integer*4 temp

hash_add=x(1)

do i=2, numread

temp=x(i)
hash_add=xor(ishftc(hash_add, 1,32),temp)
end do

if (hash_add .1t.0) then
hash_add=-1*hash_add

endif

hash_add = mod(hash_add.,itable_size)
return

end

subroutine clean hash table

include ‘com_hash.f

include ‘search_status.f

do i=0,config_point
config_info(i).num_rep=0

end do

return

end

subroutine init hash table

include ‘params.f

include ‘com_hash.f

config_point =0

do i=0,itable_size

hash_table(i)=-1

end do

do i=0,10000
config_info(i).num_rep=0

172

173

config_info(i).time_last_found=-32766
config_info(i).sol_value =-1.0

end do

return

end

Openings and Graphs

subroutine del_one_open(op no)

c This routine deletes the opening op_no
include 'params.f
include ‘com_open.f
include ‘com_data.f'
integer*2 op_no,period
integer*2 iprev,inext
c get data
period = opens(op_no).operiod
c get pointers
iprev = opens(op_no).pointer_back
inext = opens(op_no).pointer_fwd
¢ update stand info
do k=1,opens(op_no).numvert
doj=1,2
if(stand_info(opens(op_no).v(k)).opening(j).eq.op_no)then
stand_info(opens(op_no).v(k)).opening(j) =0
endif
end do
end do
¢ update pointers
if ((op_no).eq.o_top)then
o_top = (inext)
endif
if (iprev.ne.0) then
opens(iprev).pointer_fwd = inext
endif
if (inext.ne.0) then
opens(inext).pointer_back = iprev
endif
C zero opening data
opens(op_no).operiod=0
opens(op_no).acres=0.0
opens(op_no).numvert=0
opens(op_no).numedges=0
do ii=1,maxvert
opens(op_no).v(ii)=0
opens(op_no).epointer(ii)=0

end do
do ii=1,maxvert

opens(op_no).e(ii)=0
end do
opens(op_no).pointer_fwd=0
opens(op_no).pointer_back=0

C update o_avail

av_list(op_no)=o_avail
o_avail = op_no

if (op_no.eq.o_last) then

o_last = iprev

endif

return

end

subroutine make opens2

¢ this routine makes up all openings from the current settings of x
include ‘params.f
include 'search_status.f'
include ‘com_data.f
include ‘com_open.f
include ‘'road_com_sol.f
integer*2 o_period
integer2 numon
integer*2 vert(maxvert)
¢ given a solution in X(i,j), build all the openings
¢ do for each opening type
c type 1 =harvest 0,1
c type 2 = harvest 1,2
c type 3 = harvest 2,3
c type 4 = harvest 3,4
do o_period = 1,numperiods
c init vertex list
do i=1,maxvert
vert(i)=0
end do
numon=0
do i=1,numread
if ((x(i).eq.o_period).or.(x(i).eq.o_period-1)) then ladd the stand to the list
numon=numon+1
vert(hnumon)=i
endif
end do
¢ now, build the openings for this list of stands
if(numon.gt.0)then
call dfs_build2 (vert,numon,o_period)
endif
C next opening period

174

end do
return
end

subroutine del stand2(stand)

¢ This routine removes stand from harvest
include ‘params.f
include ‘com_data.f
include ‘com_open.f’
include 'road_com_sol.f
integer*2 stand,period,open_no,o_period
integer*2 vert(maxvert),numon

¢ check the openings
do ipos = 1,2
open_no = stand_info(stand).opening(ipos)
o_period=opens(open_no).operiod
stand_info(stand).opening(ipos)=0
if(open_no.ne.O)then
if(opens(open_no).numvert .eq. 1) then
call del_one_open(open_no)

else
¢ build the vertex list
numon =0

do i=1,opens(open_no).numvert

iflopens(open_no).v(i).ne.stand)then
numon=numon+1
vert(numon)=opens(open_no).v(i)

endif

end do

call del_one_open{open_no)

call dfs_build2(vert,numon,o_period)

endif

endif

¢ do the next opening period

end do

return

end

subroutine dfs_build2(vert,numon,o period)

¢ This is a depth first search routine to build all connected components of VERT

include 'params.f’

include ‘com_data.f

include ‘com_open.f

include ‘road_com_sol.f

include 'search_status.f

integer*2 numon,now,viook,o_period

175

integer*2 vert(maxvert),val(maxvert),o_adj(maxvert,maxadj)
integer*2 numadj(maxvert)
integer*2 adj_point (maxvert)
logical endchain
integer*2 vlist(maxvert),vadj,epoint,jj,i,j,k
integer*2 rstack(maxvert) Istack to make the recursion work
integer stack_end
¢ now, the appropriate stands are in array VERT and the adjacencies in o_adj
¢ make up an OPENING adjacency list for each vertex by intersecting
¢ VERT with the stand adjacencies.
¢ Delete the original
¢ and rebuild
c init viist, val
doii =1,numon
val(ii)=0
end do
¢ init ajacency pointers
do ii=1,numon
adj_point(ii) = 1
numadij(ii)=0
end do
¢ build adjacency lists
do i=1,numon
numa=stand_info(vert(i)).numadj
do j=1,numa
do k=1,numon
if(stand_info(vert(i)).adj(j).eq.vert(k))then
numadj(i}=numadj(i)+1
o_adij(i,numadij(i)}=k
exit
endif
end do
end do
end do
endchain = .FALSE.
c start filling up openings, first available is o_avail

do i=1,numon Inumon is the number of Xij=1
now=0 lvisit pointer
do ii=1,numon
viist(ii)=0 ! now used to store pointers to found nodes
end do

stack_end =0
if (val(i).eq.0) then ! node not visited

now=now+1 lincrement visit pointer
val(i)=now Istore visit number
vlist(now)=i Istore node pointer

viook =i

stack_end=stack_end+1
rstack(stack_end)=i !add node to recursion stack
99 call findadj(vlook,o_adj,vadj,val,

176

> adj_point(vlook),numadj(vlook),endchain) !find a node adjacent to vicok
if (.not.endchain) then found one
now=now+1 lupdate visit pointer
val(vadj)=now Istore visit number
viist(now)= vadj !store found node
viook = vadj !next vertex to search in chain
if (adj_point(vadj).le.numadj(vadj)) then
stack end=stack_end+1
rstack (stack_end)=vadj lupdate stack
endif
goto 99
else
¢ end of downward chain
c take last entry off stack
viook=-1
do jj = stack_end,1,-1
if(adj_point(rstack(jj)).le.numadj(rstack(jj)))then
viook = rstack(jj)
exit
endif
end do
if(viook.ne.-1)then
goto 99
else Ir_pointer = 0 thus, done for this connected component
c create the new the opening structure
opens(o_avail).operiod=o_period
opens(o_avail).numvert=now
opens(o_avail).pointer_fwd = 0 !forward pointer
opens(o_avail).pointer_back = o_last !backward pointer
if (o_last.ne.0) then
opens(o_last).pointer_fwd=0_avail !forward pointer,previous opening
endif
do kk=1,now !add the vertex information
opens(o_avait).v(kk)=vert(vlist(kk))
if(x(vert(vlist(kk))).eq.o_period)then
stand_info(vert(vlist(kk))).opening(1)=0_avail
else
stand_info(vert(vlist(kk))).opening(2)=o0_avail
endif
opens(o_avail).acres=opens(o_avail).acres +
> (1.0 - 0.5"stand_info(vert(vlist(kk))).dead)*
> stand_info(vert(vlist(kk))).acres
if(x(vert(vlist(kk))).eq.o_period)then
stand_info(vert(vlist(kk))).opening(1)=0_avail
else
stand_info(vert(vlist(kk))).opening(2)=o_avail
endif
end do
¢ now, add the edge lists
epoint=0

177

do kk=1,now
do jj=1,numadj(viist(kk))
opens(o_avail).e(epoint+jj)=
> (vert(o_adij(vlist(kk).jj)))
end do
opens(o_avail).epointer(kk) = epoint+1
epoint=epoint+numadij(vlist(kk))
end do
¢ add another epointer so that other procedures can find the end of the list
opens (o_avail).epointer(now+1) =
> opens(o_avail).epointer(now)+numadj(vlist(now))
opens(o_avail).numedges = opens(o_avail).epointer(now+1)
o_last=o0_avail Isave last spot
o_avail =av_list(o_avail) Inext available spot
¢ end updating structures
endif
endif
endif
end do
return
end

subroutine merge opens2(open_list,a_count,stand,o period)

¢ This routine merges the openings in open_list

include 'params.f

include ‘com_open.f

include 'com_data.f'

integer"2 stand,o_period

integer*2 open_list(maxvert),a_count

integer*2 vert(maxvert),numon

¢ build the vertex list

numon =0

do i=1,a_count

do j = 1, opens(open_list(i)).numvert
numon=numon-+1
vert(numon)=opens(open_list(i)).v(j)
end do

end do

numon = numon+1

vert(numon)=stand

do i=1,a_count

call del_one_open(open_list(i))

end do

call dfs_build2(vert,numon,o_period)

return

end

178

179

subroutine make new_open2(stand,period,0 period)

¢ make new opening for this stand
include 'params.f
include 'search_status.f
include 'com_open.f
include 'com_data.f
integer*2 stand,period,o_period

if(period.eq.o_period)then
stand_info(stand).opening(1)=0_avail

else

stand_info(stand).opening(2) = o_avail !second position
endif

opens(o_avail).v(1)=stand

opens(o_avail).operiod=o_period

opens(o_avail).numvert=1

opens(o_avail).numedges =0

opens(o_avail).epointer(1)=0

opens(o_avail).pointer_fwd =0 !forward pointer

opens(o_avail).pointer_back = o_last !backward pointer

if (o_last.ne.0) then

opens(o_last).pointer_fwd=o_avail iforward pointer,previous opening

endif

opens(o_avail).acres=(1.0 - 0.5"stand_info(stand).dead)*
> stand_info(stand).acres

o_last=0_avail Isave last spot

o_avail = av_list(o_avail) !next available spot
return
end

subroutine add_stand2(stand,period)

c This routine adds stand in period/
include 'params.f
include ‘com_open.f
include 'com_data.f
include 'road_com_sol.f
integer*2 stand,period,a_count,open_list(maxvert),o_period
integer*2 istart_period,iend_period
logical found
c find adjacent openings
if(period.eq.0)then
istart_period=1
iend_period=1
else if(period.eq.numperiods)then
istart_period=period
iend_period=period
else
istart_period=period

180

iend_period=period+1
endif
do o_period=istart_period,iend_period lone or two possibilities
a_count=0
do i=1,stand_info(stand).numadj
ilook = stand_info(stand).adj(i)
if(x(ilook).eq.o_period) then lin first
=1
else lin second
=2
endif
if(opens(stand_info(ilook).opening(j)).operiod.eq.o_period) then
found = false.
do kk=1,a_count
if(stand_info(ilook).opening(j).eq.open_list(kk)) then
found = _true. lalready found
endif
end do
if (.not.found) then
a_count=a_count+1
open_list(a_count)=stand_info(ilook).opening(j)
endif
endif
end do
if(a_count.gt.0) then
call merge_opens2(open_list,a_count,stand,o_period)
else
call make_new_open2(stand,period,o_period)
endif
end do
return
end

subroutine findadj(viook,o _adj,vadj,val,

> adj_point,numadj,endchain) !find a node adjacent to viook
include ‘params.f

integer*2 vlook,vadj,val(maxvert),o_adj(maxvert,maxadj)
integer*2 adj_point ,numadj,k

logical endchain

logical done

if (adj_point.gt.numadj) then
endchain = .true.
return

endif

done = false.

c adj_point paints to the next adjacency point to look at for this vertex
do k=adj_point,numadij !search through opening adjacency list for stand ilook

vadj=o_adj(vlook,k)
¢ add edge (this is a back-edge if val(vadj) .ne.0
if (val(vadj).eq.0) then Istand not visited before
done = .true.
exit
else Istand visited before, store the back-edge
c insert store back edge here
endif
end do
endchain = .not. done
if (done) then
adj_point=k+1
else
adj_point =k
endif
return
end

Move Calculations

subroutine calc full nbhoodé6

include ‘params.f
include '‘com_data.f
include 'road_com_sol.f
include ‘com_move.f
include ‘com_growth.f
include ‘road_com.f
include ‘best_move.f
logical asp,tabu
real*4 big_number
integer*4 tabu_reject_count
¢ variables for road links
integer*2 link_to_change
integer*2 link_period_prev
logical update
update = .false.
big_number = 2.0E32
least_objective = 2.0E32
tabu_rej_count =0
best_type =0
¢ check the entire neighborhood
¢ but do it by road link to minimize # calcs required
do link_to_change = 0,numroads
link_period_stands = ifuture
link_period_prev = ifuture
if(link_to_change.ne.O)then
call get_|_p_prev(link_to_change,link_period_prev)
call calc_retime_cost(link_to_change)

leach link

Icalc re-time costs

181

182

endif
¢ process each stand that requires this link
¢ i points into the list of stands for this link
do i=st_point(link_to_change),st_point(link_to_change+1)-1
move_stand = st_list(i) Istand to consider
c calculate the min stand assignment for other stands
call get_|_p_stands
do move_period = 1,x(st_list(i)}-1 !all reductions
if(stand_info(move_stand).volume(move_period).ne.0.)then
link_period =
> min0(move_period,link_period_stands,link_period_prev)
call calc_obj_change5
call get_aspiration2(asp)
if(.not.asp) then Iif not aspirated
call check_tabu(tabu)
else
tabu=faise.
endif
if (.not.tabu) then Inot tabu, check values
if (move_infeasible .it. least_objective)then
best_move_asp = asp
best_stand = move_stand
best_period = move_period
best_type = move_type
least_objective = move_infeasible
best_r_cost = r_cost(link_period)
best_link_period = link_period
best_link_period_stands=link_period_stands
m_best_loss_penalty = move_loss_penalty
m_best_dev_fr_total = move_dev_fr_total
do j=1,numperiods
m_best_dev_fr_periodic(j)=move_dev_fr_periodic(j)
end do
m_best_harvest = move_harvest
m_best_dev_fr_maxopen=move_dev_fr_maxopen
endif
else Itabu rejection
tabu_rej_count = tabu_rej_count + 1
endif
endif
end do lend reductions
¢ begin increases in stand assignment
do move_period = x(st_list(i))+1,ifuture !all increases
link_period = min0(link_period_prev link_period_stands,
> move_period)
call calc_obj_change5
call get_aspiration2(asp)
if(.not.asp) then lif not aspirated
call check_tabu(tabu) Imove tabu?
else

tabu = false.
endif
if (.not.tabu) then Inot tabu, check values
if (move_infeasible .It. least_objective)then
best_move_asp = asp
best_stand = move_stand
best_period = move_period
best_type = move_type
least_objective = move_infeasible
best_r_cost = r_cost(link_period)
best_link_period = link_period
best_link_period_stands=link_period_stands
m_best_loss_penalty = move_loss_penaity
m_best_dev_f{r_total = move_dev_fr_total
do j=1,numperiods
m_best_dev_fr_periodic(j)=move_dev_fr_periodic(j)
end do
m_best_harvest = move_harvest
m_best_dev_fr_maxopen=move_dev_fr_maxopen
endif
else !tabu rejection
tabu_rej_count = tabu_rej_count + 1
endif
end do Inext increase
end do Inext stand in list
end do Inext link
return
end

subroutine calc_obj changes

¢ this routine calculates the objective function change that would
¢ occur if the move of stand,period was done
c objective function has four terms
C penalty due to lost volume due to harvest period
C penaity due to deviations from periodic harvest target
C penalty due to deviations from total harvest target
¢ cost of road building
¢ when this routine is called, the proposed move is in com_move.f
¢ existing assignments are in the stand info
include '‘params.f
include 'sol_param2.f
include ‘com_data.f
include ‘com_move.f'
include 'road_com_sol.f
include '‘com_growth.f
real*4 volume,ass_penalty
logical test_move_feas
move_infeasibie = 0.

183

184

do j=1,numperiods
move_dev_fr_periodic(j)=cur_dev_fr_periodic(j)

end do

¢ calculate volume

if(move_period .eq.ifuture)then ldelete
move_type =3

move_harvest =

> stand_info(move_stand).volume(x(move_stand))
move_dev_fr_periodic(x(move_stand))=

> ddim(dabs(hvol(x(move_stand))

> -move_harvest-ptarget),

> periodic_all)

move_dev_fr_total = ddim(dabs(cur_sol-move_harvest-htarget),

> total_all)

move_loss_penalty = stand_info(move_stand).unass_penality

> - stand_info(move_stand).ass_penalty(x(move_stand))

else if (x(move_stand).eq.ifuture)then ladd
move_type = 1

move_harvest = stand_info(move_stand).volume(move_period)
move_dev_fr_periodic(move_period)=

> ddim(dabs(hvol(move_period)

> +move_harvest-ptarget),

> periodic_all)

move_dev_fr_total = ddim(dabs(cur_sol+move_harvest-htarget),

> total_all)

move_loss_penalty =

> stand_info(move_stand).ass_penalty(move_period) -

> stand_info(move_stand).unass_penalty

else Iswap
move_type = 2

move_dev_fr_periodic(x(move_stand))=

> ddim(dabs(hvol(x(move_stand))

> -stand_info(move_stand).volume(x(move_stand))-ptarget),

> periodic_all)

move_dev_fr_periodic(move_period)=

> ddim(dabs(hvol(move_period)

> +stand_info(move_stand).volume(move_period)-ptarget),

> periodic_all)

move_harvest =stand_info(move_stand).volume(move_period)-

> stand_info(move_stand).volume(x(move_stand))
move_loss_penalty =

> stand_info(move_stand).ass_penalty(move_period)

> - stand_info(move_stand).ass_penalty(x(move_stand))
move_dev_fr_total = ddim(dabs(cur_sol+move_harvest-htarget),

> total_all)

endif

call calc_road_cost

call calc_dev_fr_maxopen(move_stand,move_period,move_type)
move_dev_fr_maxopen=move_dev_fr_maxopen+cur_dev_fr_maxopen

c store the total penalty for periodic deviation and total deviation

185

move_loss_penalty = move_loss_penalty + cur_loss_penalty
move_infeasible=cur_beta*move_dev_fr_total+

> cur_gamma*move_dev_fr_maxopen

do j=1,numperiods
move_infeasible=move_infeasible+move_dev_fr_periodic(j)*cur_alpha
end do

move_infeasible = move_infeasible +

> move_loss_penalty + move_road_cost
move_feas=test_move_feas()

return

end

subroutine calc_ass penalty(stand,period,ass penalty)

c this routine calculates the objective function change that would
c occur if the move of stand,period was done
include 'params.f
include 'sol_param2.f
include 'com_data.f
include 'road_com_sol.f
include ‘com_growth.f
integer*2 stand, period
integer*2 site
real*4 ass_penalty
integer*2 cur_ageclass
real*4 cur_mai,max_mai,stock
c get the stand parameters
site = stand_info(stand).site - 2 !have to offset by 2 for the index
cur_ageclass=min0(22,stand_info(stand).ageclass+period-1)
stock = stand_info(stand).stocking
cur_mai = mai(site,cur_ageclass)
max_mai = mai(site,
> mai_max_age(site))
¢ calculate penalty to assign stand to harvest in this period
if(stand_info(stand).dead.eq.0) then !not dead

ass_penalty = abs(5.0" width is 5
> float(cur_ageclass)” lcurrent age
> (max_mai - cur_mai)* Idiff in mai
> stand_info(stand).acres)*stock Istand area*stock
else Istand is dead
ass_penalty = 5.0*(float(period-1))* 1# periods to wait
> stand_info(stand).acres Istand area
> *max_mai*stock Imax loss
endif
return
end

subroutine calc_unass penalty(unass penalty)

include 'params.f’

186

include 'sol_param2.f
include '‘com_data.f
include 'com_move.f
include 'road_com_sol.f
include 'com_growth.f'
real*4 volume
integer*2 site
real*4 ass_penalty,unass_penailty
integer*2 cur_ageclass,age_at_end,age_before
real*4 cur_mai,max_mai,stock
c get the stand parameters
site = stand_info(move_stand).site - 2 !have to offset by 2 for the index
cur_ageclass=min0(22,stand_info(move_stand).ageclass)
stock = stand_info(move_stand).stocking
cur_mai = mai(site,cur_ageclass)
age_at_end = min0
> ((stand_info(move_stand).ageclass+numperiods-1),22)
max_mai = mai(site,
> mai_max_age(site))
age_before = stand_info(move_stand).ageclass -1
if(stand_info(move_stand).dead.eq.0)then !not dead
iffmai_max_age(site).le.age_at_end) then Imax in period or before
unass_penalty =5.0"
> max(age_before,mai_max_age(site))*
> abs(max_mai - mai(site,age_before))* Idiff in mai
> stock"stand_info(move_stand).acres Istock * area
else
unass_penalty = 0.0
endif
else Istand is dead
unass_penalty = 5.0°"max_mai“stand_info(move_stand).acres*numperiods*stock
endif
return
end

subroutine cale_volume(stand,period,volume)

include 'params.f

include ‘com_data.f

include 'com_growth.f

include 'road_com_sol.f’

integer*2 stand,period

real*4 volume

integer*2 ageclass

real*4 acres,cur_mai

if(stand_info(stand).for_non.eq.9960) then !existing clearcut
volume = 0.

else if (stand_info(stand).dead.eq.1) then
volume = stand_info(stand).ivol*stand_info(stand).acres

else

ageclass = min0(22,(stand_info(stand).ageclass+period-1))
cur_mai=mai(stand_info(stand).site-2,ageclass)
acres = stand_info(stand).acres
volume = 5.0*float(ageclass)”

> cur_mai*acres*stand_info(stand).stocking/1000.

endif

return

end

subroutine calc objective

include '‘params.f
include 'sol_param2.f
include ‘com_data.f
include ‘road_com.f
include ‘com_open.f’
include 'road_com_sol.f
integer*2 i
c init to zero
cur_loss_penalty = 0.0
cur_sol =0.0
do j=1,numperiods
cur_dev_fr_periodic(j)=0.0
hvol(j) = 0.0
end do
cur_dev_fr_maxopen = 0.0
cur_dev_fr_total = 0.0
¢ calculate volumes and loss penalty for this solution
do i=1,numread
if(x(i).gt.0)then
if(x(i).eq.ifuture)then
cur_loss_penalty = cur_ioss_penalty + stand_info(i).unass_penalty
else
cur_loss_penalty=cur_loss_penalty+stand_info(i).ass_penalty(x(i))
hvol(x(i))=hvol(x(i))+stand_info(i).volume(x(i))
endif
endif
end do
c subtract the unavoidable loss
cur_loss_penalty = (cur_loss_penalty - min_loss_penality)
¢ add up the volumes
do i=1,numperiods
cur_sol=cur_sol+hvol(i)
end do
¢ calculate dev from maxopen
i=o_top
do while (i.ne.0)
cur_dev_fr_maxopen=cur_dev_fr_maxopen+

187

> dim(opens(i).acres,rmaxopen)
i=opens(i).pointer_fwd
end do
c calculate deviations from total and periodic
do i=1,numperiocds
cur_dev_fr_periodic(i)= ddim(dabs(hvol(i}-ptarget),periodic_all)
end do
cur_dev_fr_total= ddim(dabs(cur_sol-htarget),total_all)
cur_infeasible = cur_loss_penaity+
> cur_road_cost+
> cur_dev_fr_total+
> cur_dev_fr_maxopen
do i=1,numperiods
cur_infeasible=cur_infeasible+cur_dev_fr_periodic(i)
end do
cur_feasible=cur_loss_penalty+cur_road_cost
return
end

subroutine calc base loss

include ‘params.f’
include ‘sol_param2.f

include ‘com_growth.f

include ‘com_data.f

include 'road_com_sol.f

integer*2 stand,ageclass, site, max_age.period
real”4 ass_penaity

min_loss_penalty = 0.0

do stand=1,numread 'for each stand
if(x(stand).gt.0)then

site = stand_info(stand).site - 2

max_age = mai_max_age(site)

if(max_age.It.stand_info(stand).ageclass) then before, put in period 1

period = 1
min_loss_penalty = min_loss_penalty +

> stand_info(stand).ass_penalty(period)
endif

endif

end do

return

end

subroutine calc_dev_fr_maxopen(stand,period,type)

c Calculate deviation from maxopen if move is done
include 'params.f

188

189

include 'com_open.f
include '‘com_data.f
include ‘com_move.f
include 'search_status.f
include ‘road_com_sol.f
integer*2 stand,period,type
real*4 open_size
integer*2 open_list(20),start_period,j,!
logical found
integer numfound
real*4 dev_penalty
integer*2 next_period
¢ calculate the penaity for of openings that would be created by adding this
¢ stand in this period
¢ this is an incremental penalty, for this move only
c set penalty to zero
next_period = period + 1
move_dev_fr_maxopen =0.0
if (type.eq.3) then
call calc_rem_stand
> (stand,stand_info(stand).opening(1),dev_penaity)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
call calc_rem_stand
> (stand,stand_info(stand).opening(2),dev_penality)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty

else if (type.eq.2) then Iswap move
idir = period - x(stand)
if(idir .eq.1) then lincrease by one

call calc_rem_stand

> (stand,stand_info(stand).opening(1),dev_penaity)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penality
call calc_add_stand(stand,next_period,dev_penalty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
else if (idir.eq.-1) then
call calc_rem_stand

> (stand,stand_info(stand).opening(2),dev_penalty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
call calc_add_stand(stand,period,dev_penaity)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
else non-consecutive moves
call calc_rem_stand

> (stand,stand_info(stand).opening(1),dev_penalty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
call calc_rem_stand

> (stand,stand_info(stand).opening(2),dev_penalty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
call calc_add_stand(stand,period,dev_penaity)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penaity
call calc_add_stand(stand,next_period,dev_penailty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty

190

endif Iswap move finished
else if (type .eq.1)then ladd move
call calc_add_stand(stand,period,dev_penality)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penalty
call calc_add_stand(stand.next_period,dev_penalty)
move_dev_fr_maxopen=move_dev_fr_maxopen+dev_penaity
else Ibad move
stop

endif

move_dev_fr_maxopen=(move_dev_{fr_maxopen)

return
end

subroutine calc_add_stand(stand,period,dev_penaity)

include 'params.f
include ‘com_data.f
include 'com_open.f
include ‘com_move.f
include 'search_status.f'
integer*2 stand,period
real*4 dev_penalty,open_size
real*4 dev_now
integer*2 open_list(20)
integer*2 open_no
logical found
numfound=0
dev_penalty=0.0
dev_now = 0.0
if(period .gt.numperiods)return
open_size = (1.0 - 0.5*stand_info(stand).dead)”
> stand_info(stand).acres
do k=1,stand_info(stand).numadj !for each adjacent stand
ilook=stand_info(stand).adj(k)
doi=1,2
open_no=stand_info(ilook).opening(l)
if(open_no.ne.0)then
if (opens(open_no).operiod.eq.period)then
found = false.
do m=1,numfound
ifltopen_list(m).eq.open_no)then
found=.true.
exit
endif
end do
if(.not.found)then
numfound=numfound+1
open_list(numfound)=open_no
open_size = open_size+opens(open_no).acres

191

dev_now = dev_now + dim(opens(open_no).acres,rmaxopen)
exit lonly one to find
endif
endif
endif
end do Inext opening number (1)
end do Inext adjacency
dev_penalty = dim(open_size,rmaxopen)-dev_now
return
end

subroutine calc_new open(stand,open no,dev value)

include 'params.f
include ‘com_open.f
include ‘com_data.f
integer*2 stand,open_no
real*4 dev_value,opensize
integer’2 numon,now,viook,o_period,opening
integer*2 vert(maxvert),val(maxvert),o_adj(maxvert,maxadj)
integer*2 numadj(maxvert)
integer*2 adj_point (maxvert)
logical endchain
integer*2 vlist(maxvert),vadj,epoint,jj.i,j,k
integer*2 rstack(maxvert),stack_end Istack to make the recursion work
c this routine determines whether or not deletion of stand ould split the
¢ opening and the resultant opening sizes
c returns value = 0.0 if resultant openings less than rmaxopen
c otherwise returns dev_value = rmaxopen - opening size - stand acres
¢ o_period points to the opening in stand_inf that is being considered
¢ The opening is currently larger than rmaxopen
dev_value = 0.0
c build the vertex list
numon =0
do i=1,opens(open_no).numvert
iflopens(open_no).v(i).ne.stand)then
numon=numon+1
vert(numon)=opens(open_no).v(i)
endif
end do
¢ now, the appropriate stands are in array VERT
c make up an OPENING adjacency list for each vertex by intersecting
¢ VERT with the stand adjacencies.
c init vlist, val
do ii =1,numon
val(ii)=0
end do
c init ajacency pointers
do ii=1,numon

192

adj_point(ii) = 1
numadi(ii)=0
end do
¢ build adjacency lists
do i=1,numon
numfound=0
numa=stand_info(vert(i)).numadj
do j=1,numa
do k=1,numon
if(stand_info(vert(i)).adj(j).eq.vert(k))then
numadj(i)=numadj(i)+1
o_adj(i,numadj(i))=k
exit
endif
end do
end do
end do
endchain = .FALSE.
c start filling up openings, first available is o_avail
do i=1,numon Inumon is the number of Xij=1

now=0 lvisit pointer
do ii=1,numon

viist(ii)=0 ! now used to store pointers to found nodes
end do

stack_end=0 !empty stack to begin
if (val(i).eq.0) then ! node not visited

now=now+1 lincrement visit pointer
val(i)=now Istore visit number
viist(now)=i Istore node pointer

viook = i

stack_end=stack_end+1
rstack(stack_end)=i !add node to recursion stack
99 call findadj(viook,o_adj,vadj,val,
> adj_point(vlook),numadj(vlook).endchain) !find a node adjacent to viook
if (.not.endchain) then !found one
now=now+1 lupdate visit pointer
val(vadj)=now Istore visit number
viist(now)= vadj Istore found node
viook = vadj !next vertex to search in chain
if(adj_point(vadj).le.numadj(vadj))then
stack_end=stack_end+1
rstack (stack_end)=vadj lupdate stack
endif
goto 99
else
¢ end of downward chain
c take entry off stack
viook = -1
do jj=stack_end,1,-1
if(adj_point(rstack(jj)).le.numadij(rstack(jj))then

193

viook = rstack(jj)
exit
endif
end do
if (viook.ne.-1) then
goto 99
else !thus, done for this connected component
c calculate the size of the opening
opensize = 0.0
do kk=1,now ladd the stands
opensize=opensize+stand_info(vert(viist(kk))).acres *
> (1.0-0.5"stand_info(vert(viist(kk))).dead)
end do
dev_value = dev_value + dim(opensize,rmaxopen)
endif
endif
endif
end do Inext connected component
return
end

subroutine calc_rem_stand(stand,opening,dev penalty)

include ‘params.f
include ‘com_open.f
include 'com_data.f
integer*2 stand,opening
real*4 dev_penalty,dev_now,contrib
dev_penalty=0.0
if (opening.eq.0)return
dev_now = opens(opening).acres - rmaxopen
if(dev_now .le.0.0)return
contrib=dev_now -
> (1.0 - 0.5"stand_info(stand).dead)*
>stand_info(stand).acres
if(contrib.le. 0.0) then
dev_penalty = -1"dev_now Isimple delete ok, return
else Icheck opening structure
call calc_new_open(stand,opening,contrib)
dev_penalty=contrib-dev_now
endif
return
end

subroutine calc_opens(test_dev_fr _maxopen)

include 'params.f
include 'com_open.f'

include 'com_data.f

include ‘road_com_sol.f

real*4 test_dev_fr_maxopen

integer*2 op_no

test_dev_fr_maxopen = 0.0

op_no = o_top

do while(op_no.ne.0)

test_dev_fr_maxopen=test_dev_fr_maxopen+
> dim(opens(op_no).acres,rmaxopen)

op_no=opens(op_no).pointer_fwd

end do

return

end

subroutine calc_feas for_maxopen(stand,period,type)

include ‘params.f
include ‘com_open.f’
include 'com_data.f
include ‘com_move.f
include 'search_status.f
include 'road_com_sol.f
integer*2 stand,period,type
real*4 open_size
integer*2 open_|list(20),start_period,j,!
logical found
integer numfound
real*4 dev_penalty
integer*2 next_period
¢ This routine is to be used for the feasible moves only; assume all moves
c taken prior to this one are feasibie.
¢ Calculate the opening size that would be created by adding this stand
c or swapping the stand
c If the move is to delete, return
if (type.eq.3)return
c set variables
move_dev_fr_maxopen = 0.0
next_period = period + 1
if (type.eq.2) then iswap move
call calc_add_stand(stand,period,dev_penalty)icheck first type
if(trunc(dev_penalty).gt.0.0)then
move_dev_fr_maxopen = dev_penalty
return
endif
if(period.it.numperiods)then
call calc_add_stand(stand,next_period,dev_penalty)icheck second type
move_dev_fr_maxopen=dev_penalty
endif

194

else if (type .eq.1)then ladd move
call calc_add_stand(stand,period,dev_penalty)ifirst type
if(rtrunc(dev_penalty).gt.0.0)then

move_dev_fr_maxopen = dev_penalty

return

endif

if(period.It.numperiods)thenisecond type

cali calc_add_stand(stand,next_period,dev_penalty)
move_dev_fr_maxopen=dev_penalty

endif

endif

return

end

subroutine calc_r_cost_sngi(ilink,cost,l_period)

include ‘params.f
include 'sol_param2.f
include ‘road_com.f
include '‘com_move.f
real*4 cost
integer*2 ilink,l_period,imin,p_link,thelink
logical debug
imin = |_period
p_link = -1
debug=.false.
thelink=ilink
c first check sons of the link to change
do j=1,roads(ilink).numsons
if(roads(ilink).sons(j).ne.p_link)
> imin = min(imin,roads(roads(ilink).sons(j)).period_assigned)
end do
if(imin.eq.roads(ilink).period_assigned)then
cost=0.0
return
else
cost= (roads(ilink).Igth)*
> (d_factor(imin)-d_factor(roads(ilink).period_assigned))
p_link=ilink
ilink=roads(ilink).dad_link
do while ((imin.it.roads(ilink).period).and.(ilink.ne.0))
c first check sons of the link to change
do j=1,roads(ilink).numsons
if(roads(ilink).sons(j).ne.p_link)
> imin = min(imin,roads(roads(ilink).sons(j)).period_assigned)
end do Inow imin is min(imin,sons)
imin=min(imin,roads(ilink).period) !and now min(sons,link)
cost=cost + roads(ilink).igth*
> (d_factor(imin)-d_factor(roads(ilink).period_assigned))
p_link = ilink

195

196

ilink = roads(ilink).dad_link
end do

endif

ilink=thelink

retum

end

subroutine calc road cost

include '‘params.f

include 'sol_param2.f

include ‘com_move.f'

include 'road_com.f'

include road_com_sol.f

include ‘com_data.f

integer*2 link_to_change

if (stand_info(move_stand).link_req.eq.0)then
move_road_cost = cur_road_cost

else

move_road_cost = cur_road_cost +r_cost(link_period)
endif

return

end

Move Implementation

subroutine implement best move2

include 'params.f
include 'search_status.f
include 'sol_param2.f
include 'best_move.f
include 'road_com_sol.f’
include ‘com_data.f
include ‘com_move.f
real”4 volume
call update_roads
¢ calc periodic harvests

if(best_type .eq. 1) then tadd
hvol(best_period)=hvol(best_period)+m_best_harvest
cur_sol = cur_sol + m_best_harvest

else if (best_type.eq.3) then Idelete
hvol(x(best_stand))=

> hvol(x(best_stand))-m_best_harvest

cur_sol = cur_sol - m_best_harvest

else Iswap move
cur_sol=cur_soi+m_best_harvest
hvol(best_period)=hvol(best_period)+

> stand_info(best_stand).volume(best_period)
hvol(x(best_stand))=hvol(x(best_stand))-

> stand_info(best_stand).volume(x(best_stand))
endif

¢ update_roads does current road cost

cur_loss_penalty = m_best_loss_penalty
cur_dev_fr_total = m_best _dev_fr_total
cur_infeasible = least_objective

cur_feasible =cur_loss_penalty + cur_road_cost
do j = 1, numperiods
cur_dev_fr_periodic(j)=m_best_dev_fr_periodic(j)
end do
cur_dev_fr_maxopen=m_best_dev_fr_maxopen
x(best_stand)=best_period

if(best_type.eq.1) then ladd move
call add_stand2(best_stand,best_period)
else if (best_type .eq. 2) then Iswap move

call del_stand2(best_stand)
call ADD_STAND?2 (best_stand,best_period)

else if (best_type.eq.3) then !delete move
call DEL_STAND?2 (best_stand)

endif

call tabu_add(best_stand)

return

end

subroutine implement stand move2

include ‘params.f

include 'search_status.f

include 'sol_param2.f

include 'road_com_sol.f

include ‘com_move.f

include ‘com_data.f

real*4 volume

c this routine implements the move

if(move_type.eq.1)then
hvol(move_period)=hvol(move_period)+move_harvest
cur_sol = cur_sol + move_harvest

else if (move_type.eq.3) then
hvol(x(move_stand))=

> hvol(x(move_stand)}-move_harvest

cur_sol = cur_sol - move_harvest

else
hvol(move_period)=hvol(move_period)+

> stand_info(move_stand).volume(move_period)

ladd

ldelete

Iswap move

cur_sol = cur_sol + stand_info(move_stand).volume(move_period)

hvol(x(move_stand))=
> hvol(x(move_stand))-

197

198

> stand_info(x(move_stand)).volume(x(move_stand))

cur_sol = cur_sol -

> stand_info(x(move_stand)).volume(x(move_stand))

endif

¢ update the solution variables

if((move_type.eq.1).or.(move_type.eq.2)) then ladd or swap
x(move_stand)=move_period

else if (move_type .eq.3) then ldelete
x(move_stand)=ifuture

endif

cur_loss_penalty = move_loss_penalty

cur_dev_fr_total = move_dev_fr_total

do j= 1, numperiods

cur_dev_fr_periodic(j)=move_dev_fr_periodic(j)

end do

cur_dev_fr_maxopen = move_dev_fr_maxopen

cur_infeasible = move_infeasible

cur_feasible = cur_loss_penalty

if(move_type.eq.1) then ladd move
call add_stand2(move_stand,move_period)
else if (move_type .eq. 2) then Iswap move

call del_stand2(move_stand)
call ADD_STAND2 (move_stand,move_period)

else if (move_type.eq.3) then !delete move
call DEL_STAND2 (move_stand)

endif

return

end

subroutine do this move2

include 'params.f
include ‘com_data.f
include 'road_com_sol.f
include ‘com_move.f
include '‘com_growth.f
include 'road_com.f
include 'best_move.f’
c this routine calculates and implements the move in com_move.f
¢ move_stand,move_period,move_type
logical asp,tabu
¢ variables for road links
integer*2 link_to_change
integer*2 link_period_prev
link_to_change = stand_info(move_stand).link_req
link_period_stands = ifuture
link_period_prev = ifuture
if(link_to_change.ne.O)then
call get_i_p_prev(link_to_change,link_period_prev)!prev link period

199

call calc_retime_cost(link_to_change) Icalc re-time costs
c calculate the min stand assignment for other stands
call get_|_p_stands
link_period =
> minO(move_period,link_period_stands,link_period_prev)
endif
call caic_obj_change5
best_stand = move_stand
best_period = move_period
best_type = move_type
least_objective = move_infeasible
best_r_cost = r_cost(link_period)
best_link_period = link_period
best_link_period_stands=link_period_stands
m_best_loss_penalty = move_loss_penality
m_best_dev_fr_total = move_dev_fr_total
do j=1,numperiods
m_best_dev_fr_periodic(j)=move_dev_fr_periodic(j)
end do
m_best_harvest = move_harvest
m_best_dev_fr_maxopen=move_dev_fr_maxopen
call implement_best_move2
return
end

subroutine update roads

c this routine updates roading for best_move.f
c called by implement_best_move
include 'params.f’
include ‘road_com.f
include 'com_data.f
include ‘road_com_sol.f
include 'best_move.f
include 'search_status.f
include 'sol_param2.f
integer*2 link_to_change,old_period
link_to_change = stand_info(best_stand).link_req
if (link_to_change.eq.0) return Inothing to do
roads(link_to_change).period=
> min(best_link_pericd_stands,best_period)
if(best_period.ne.ifuture)then
roads(link_to_change).required_by_harvest= true.
else
roads(link_to_change).required_by_harvest = faise.
endif
call build_roads
return

end

subroutine re time

200

¢ this routine retimes the links in the path as defined by best_mvoe.f

include ‘params.f’

include 'sol_param?2.f

include ‘road_com.f

include ‘road_com_sol.f

include ‘com_data.f

include ‘best_move.f

integer*2 link_to_change

integer*2 imin,p_link,prev_path

link_to_change = stand_info(best_stand).link_req

if((best_link_period.It.1).or.(best_link_period.gt.ifuture))then

write(21,”) ‘error in link_period ‘,best_link_period

write(21,*) best_stand,best_period,best_type,link_to_change

write(21,*) 'stand currently assigned to',x(best_stand)
stop
endif
roads(link_to_change).period=
> min(best_link_period_stands,best_period)
roads(link_to_change).required_by_harvest = .true.
c if the same, return
if (best_link_period .eq.
> roads(link_to_change).period_assigned)return
roads(link_to_change).period_assigned = best_link_period
¢ and retime the path
imin = best_link_period
¢ save this link
p_link = link_to_change
c get next link
link_to_change = roads(link_to_change).dad_link
do while(link_to_change.ne.0)
c if there is another path adjoining at this link,
¢ find min of other path
call get_prev_path(link_to_change,p_link,prev_path)
imin = min(imin,roads(link_to_change).period,prev_path)
roads(link_to_change).period_assigned = imin
p_link = link_to_change
link_to_change = roads(link_to_change).dad_link
end do
return
end

Imin calculated
Imake change

subroutine get 1 p stands

include ‘params.f

include 'road_com_sol.f

include ‘road_com.f

include ‘com_move.f

include ‘com_data.f

link_period_stands = ifuture

if (stand_info(move_stand).link_req.eq.0)return

do k = st_point(stand_info(move_stand).link_req),

> st_point(stand_info(move_stand).link_req+1)-1
if(st_list(k).ne.move_stand) then
link_period_stands = min0(x(st_list(k)),link_period_stands)
endif

end do

return

end

subroutine get 1 p prev(link to_change,link period prev)

include ‘params.f’

include ‘road_com.f

include ‘com_move.f

include 'com_data.f’

include 'road_com_sol.f

integer*2 link_period_prev

integer*2 link_to_change

link_period_prev = ifuture
if(link_to_change.eq.0) return

doj =1, roads(link_to_change).numsons
link_period_prev = min0(link_period_prev,

> roads(roads(link_to_change).sons(j)).period_assigned)
end do

return

end

subroutine get prev_path(link_to_change,p link,path_period)

include 'params.f

include ‘road_com.f

include ‘com_move.f

integer*2 p_link,path_period

integer*2 link_to_change
if(link_to_change.eq.0) return

path_period = ifuture

do j =1, roads(link_to_change).numsons

if (roads(link_to_change).sons(j).ne.p_link)then

202

path_period = minO(path_period,
> roads(roads(link_to_change).sons(j)).period_assigned)
endif
end do
return
end

subroutine get_all links(ilink,link list,link_len)

include '‘params.f

include 'road_com.f

integer*2 ilink,link_list(numroads),link_len

integer*2 now,k,stack_end,stack(numroads)
c simplified search since only backward links are included in sons
¢ and the structure is a tree

now=1

stack_end=0

link_list(now)=ilink
10 continue

do k=1,roads(ilink).numsons

now=now+1

link_list(now)=roads(ilink).sons(k)

stack_end=stack_end+1

stack(stack_end)=link_list(now)

end do

if(stack_end.ne.0)then

ilink=stack(stack_end)

stack_end=stack_end-1

goto 10

endif

link_len=now

return

end

subroutine stand escape routine

include '‘params.f
inciude 'sol_param2.f
include 'search_status.f
include 'road_com_sol.f
include ‘com_data.f
include ‘com_move.f
include 'road_com.f
include ‘com_reactive.f
logical feas

203

num_esc_steps =min(60,int((1+rand())*moving_average))
do i=1,num_esc_steps
10 move_stand = int(rand()*numstands)+1
if(x(move_stand).eq.ifuture)then
move_type = 1
move_period = int(rand()*numperiods)+1
else if (x(move_stand).ne.0) then
move_period = ifuture
move_type =3
else
goto 10
endif
x(move_stand)=move_period
if(move_type.eq.1) then ladd move
call add_stand2(move_stand,move_period)
else
call DEL_STAND2 (move_stand)
endif
call tabu_add(move_stand)
end do
call init_roads
do i=1,numread
if ((x(i).ne.0).and.(stand_info(i).link_req.ne.0))then
roads(stand_info(i).link_req).period=min0(
> roads(stand_info(i).link_req).period,x(i))
endif
end do
do i=1,numroads
if(roads(i).period.lt.ifuture)
> roads(i).required_by harvest = .true.
end do
call build_roads
cur_road_cost=cur_road_cost*r_factor
call calc_objective
call update_best
return
end

subroutine update best

include ‘params.f

include 'search_status.f
include 'com_move.f
include 'road_com_sol.f
include 'best_sol.f

logical test_sol_feas,escape
escape=.false.
move_feas=test_sol_feas()

204

¢ update best solutions
if(.not.move_feas)then linfeasible move
best_infeasible = dmin1(cur_infeasible,best_infeasible)
moves_since_improve = moves_since_improve + 1
else lfeasible move
if(cur_feasible.it.best_feasible)then limproving
imp_time =move_count
best_feasible = cur_feasible
best_loss_penalty = cur_loss_penalty
best_road_cost = cur_road_cost
best_sol = cur_sol
moves_since_improve =0
call save_sol
else lfeasible,non-improving
moves_since_improve = moves_since_improve + 1
endif
endif
return
end

subroutine rts escape routine2

¢ This is the final routine called ESCAPE3
include '‘params.f
include 'sol_param2.f
include 'search_status.f
include ‘'road_com_sol.f
include ‘com_reactive.f
include ‘com_hash.f
include ‘com_data.f
include 'road_com.f
logical done,escape
escape=.true.
¢ calc number of links in road system
num_links =0
do k=1,numroads
if(roads(k).period_assigned.ne.ifuture)num_links=num_links+1
end do
if ((loat(num_links)float(numroads)).gt. .10)then
call new_escape_routine
else
call stand_escape_routine
return
endif
¢ check the final solution and add it to the hash_tabie
done = false.
call hashfn(numread)
do while (.not.done)
if((hash_table(hash_add).eq.-1).or. lempty slot
> (config_info(hash_table(hash_add)).sol_value -

205

> cur_feasible.lt. 0.0001))then Imatch
done = .true.

else
hash_add = mod((hash_add+1),itable_size) llinear probe

endif

end do

c if it is a new configuration, add it
c otherwise, do nothing

if(hash_table(hash_add).eq.-1) then lexisting configuration
config_point=config_point+1
if(config_point.gt.10000)then

write(21,%) *** error "™ config_point > 10000’
write(*,*) ™™ error ™ config_point > 10000’

stop
endif
hash_table(hash_add)=config_point
config_info(config_point).time_last_found = move_count
config_info(config_point).sol_value = cur_feasible

endif

return

end

subroutine choose a link(ilink,iperiod)

¢ Choose link from the leaves in the current road structure
¢ and return the link id and the period to shift the link to.
include '‘params.f
include ‘com_tabu2.f
include ‘road_com.f’
include 'search_status.f
integer*2 ilink,iperiod,|,I_period
real*4 cost,least_cost
least_cost = 999999.0
do i=1,numroads
if((roads(l).required_by_harvest)
> .and.(roads(l).numsons.eq.0)) then !link in road net and is a leaf
if ((move_count-roads(!).time).gt. link_tenure) then !if not tabu
I_period = roads(l).period_assigned + 1
call calc_r_cost_sngl(l,cost,|_period)
if(cost.lt.least_cost)then
least_cost=cost
ilink =1
iperiod = |_period
endif
endif
endif
end do
return
end

subroutine new escape routine

include 'params.f’
include 'search_status.f
include ‘'road_com_sol.f
include ‘com_tabu2.f
include ‘'road_com.f
integer*2 ilink, |_period
if (cur_road_cost.eq.0.0)then
call stand_escape_routine
else
call choose_a_link(ilink,|_period)
if(ilink.eq.-1)then
write(21,%) 'no link found amongst leaves'
message = 'no link found amongst leaves’
at_end = .true.
return
endif
do i=st_point(ilink),st_point(ilink+1)-1
tabu_tenure = tabu_tenure + st_point(ilink+1)-st_point(ilink)
if (x(st_list(i)).t.|_period) then !retime the stand
x(st_list(i))=I_period
if(I_period .eq. ifuture)then
call del_stand2(st_list(i))
else
call del_stand2(st_list(i))
call ADD_STAND2 (st_list(i),|_period)
endif
call tabu_add(st_list(i))
endif
end do
endif
roads(ilink).period = |_period
roads(ilink).time = move_count
if(I_period.eq.ifuture)roads(ilink).required_by_harvest = false.
call build_roads
call calc_objective
return

end

subroutine link escape

¢ This routine deletes links until a large enough set of stands have been deleted

include ‘params.f
include 'sol_param2.f
include ‘road_com.f
include 'com_data.f

207

include ‘road_com_sol.f
include ‘com_move.f
include ‘com_tabu2.f
include 'search_status.f
include ‘com_reactive.f
integer*2 ilink
integer*2 link_list(numroads)
integer*2 link_len
logical test_sol_feas
integer stand_count
num_esc_steps =min(60,int((1+rand())*moving_average)/5.0)
stand_count=0
num_tries=0
10 num_tries=num_tries+1
ilink = int(rand()*numroads)+1
if(roads(ilink).period.eq.ifuture)goto 10
call get_all_links(ilink,link_list,link_len)
¢ now, re-assign all the stands that are involved to ifuture
c for each link in the list
do k =1, link_len
ilink=link_list(k)
do i=st_point(ilink),st_point(ilink+1)-1
if (x(st_list(i)).gt.0.and.x(st_list(i)).lt.ifuture) then
stand_count=stand_count+1
x(st_list(i))=ifuture
call tabu_add(st_{ist(i))
endif
end do
roads(ilink).period = ifuture ! assign the road link
roads(ilink).required_by_harvest = false.
end do
c if not enough stands have been deleted, get another link
if (stand_count.it.num_esc_steps.and.num_tries.It.10) goto 10
call init_opens!re-do the openings
call make_opens2
call build_roads ! re-build the roads
cur_road_cost=cur_road_cost*r_factor
call calc_objective !calculate the objective
move_feas = test_sol_feas()
call update_best
tabu_tenure = tabu_tenure+ float(stand_count)lincrease tabu_tenure
return
end

Utility Routines and Functions

real*4 function rtrunc(rreal_number)
real*4 epsilon
real*4 rreal_number

parameter(epsilon=.01)

if (abs(rreal_number).It.epsilon) then
rtrunc=0.0

else

rtrunc=rreal_number

endif

return

end function rtrunc

real*8 function dtrunc(dreal_number)
real*8 epsilon

real*8 dreal_number
parameter(epsilon=.01)

if (dabs(dreal_number).It.epsilon) then
dtrunc=0.0

else

dtrunc=dreal_number

endif

return

end function dtrunc

subroutine reinstal 'reinstal the best solution found

include '‘params.f’
include 'road_com_sol.f
include 'best_sol.f
include 'road_com.f
include 'com_data.f’
call init_roads
do i=1,numread
x(i)=x_save(i)
if(x(i).gt.0.and.x(i).lt.ifuture)then
if (stand_info(i).link_req.ne.0)then
roads(stand_info(i).link_req).period = min(x(i),
> roads(stand_info(i).link_req).period)
roads(stand_info(i).link_req).required_by_harvest = .true.
endif
endif
end do
call build_roads
call init_opens
call make_opens2
call calc_objective
return
end

subroutine write sol(icount)

208

include ‘params.f
include ‘road_com_sol.f
include 'road_com.f
include 'sol_param2.f
include 'com_data.f
include ‘com_open.f
integer icount

c use best solution
call reinstal

c write out parameters

write(61,*) 'r_factor = ,",r_factor,'stream = ,',icount
write(71,*) 'r_factor = ,',r_factor,’stream = ,',icount
write(81,%) 'r_factor = ,',r_factor,'stream = ,',icount

¢ solution now in current
¢ write out totals to each file

write(61,800)cur_loss_penalty,cur_road_cost,cur_feasible,

> hvol

write(71,800)cur_loss_penailty,cur_road_cost,cur_feasible,

> hvol

write(81,800)cur_loss_penalty,cur_road_cost,cur_feasible,

> hvol
800 format(10(f12.2,"."))
¢ write harvest and openings
do i=1,numread
write(81,1000)stand_info(i).stand_no,
> x(i),stand_info(i).opening(1),
> stand_info(i).opening(2)
end do
do i=1,numread
write(61,1000)stand_info(i).stand_no,x(i)
end do
¢ write roads
do i=1,numroads
write(71,1100) i,roads(i).period_assigned
end do
1000 format(4(i6,","))
1100 format(i4,',",i2)
return
end

subroutine write _data_rts(icount)

include ‘params.f

include 'search_status.f

include 'road_com_sol.f

include ‘com_reactive.f

include 'sol_param2.f

integer icount
write(11,9000)r_factor,best_loss_penaity,

209

>best_road_cost,
>(best_loss_penalty+best_road_cost),
>total_time,

>imp_time,

>move_count,icount,

>message

9000 format (5(f20.2,","),3(i6,",").a30)

return
end

subroutine save init sol

include 'params.f
include ‘road_com_sol.f
include "init_sol.f

include ‘com_data.f’

do i=1,numread
i_sol(i)=x(i)

end do

return

end

subroutine get_init_sol

include 'params.f
include 'road_com_sol.f
include "init_sol.f
include ‘com_data.f
include ‘road_com.f’
call init_roads
do i=1,numread
x(i)=i_sol(i)
if(stand_info(i).link_req.ne.0)then
if(x(i).gt.0)then
roads(stand_info(i).link_req).period=min0(x(i),
> roads(stand_info(i).link_req).period)
if(x(i).It.ifuture)
> roads(stand_info(i).link_req).required_by_harvest=.true.
endif
endif
end do
call init_opens
call make_opens2

return
end

subroutine init best values

include ‘params.f’

include 'road_com_sol.f
best_feasible=999999999.
best_infeasible=999999999.
best_loss_penalty=999999999.
best_road_cost=999999999.
return

end

subroutine write iter

include ‘params.f'
include 'road_com_sol.f’
include 'search_status.f
include ‘com_move.f

write(91,1000)move_count,move_feas,

> cur_loss_penalty,cur_road_cost,
>dtrunc(cur_dev_fr_total),

>(dtrunc(cur_dev_fr_periodic(j)),j=1,numperiods),

>dtrunc(cur_dev_fr_maxopen),
>best_feasible

1000 format(i5,'',14,10(f12.2,","))

return
end

subroutine init move counters2

include '‘params.f

include 'search_status.f
include 'sol_param2.f
cur_alpha=upper_bound
cur_beta=upper_bound
cur_gamma=upper_bound
move_count = 1
moves_since_improve =0
escape_time=0

message = 'No Message'
feas_count_total =0
feas_count_per =0
feas_count_open =0
infeas_count_total = 0
infeas_count_per =0
infeas_count_open =0
return

end

211

212

subroutine update move counters2

include ‘params.f
include 'sol_param2.f’
include 'search_status.f’
include ‘com_move.f
include ‘road_com_sol.f
move_count = move_count + 1
if(move_feas)then llast move was feasible
feas_count_per=feas_count_per+1
feas_count_total=feas_count_total+1
feas_count_open=feas_count_open+1
else
if(dtrunc(cur_dev_fr_total).ne.0.0)then
infeas_count_total=infeas_count_total+1
else
feas_count_total=feas_count_total+1
endif
if(dtrunc(cur_dev_fr_maxopen).ne.0.0)then
infeas_count_open=infeas_count_open+1
else
feas_count_open=feas_count_open+1
endif
if(dtrunc(dabs(cur_infeasible - cur_beta*cur_dev_fr_total -
> cur_gamma*cur_dev_fr_maxopen -
> cur_loss_penalty - cur_road_cost)).ne.0.0)then
infeas_count_per=infeas_count_per+1
else !
feas_count_per=feas_count_per+1
endif
endif
return
end

subroutine update obj coeff2

include 'params.f
include 'search_status.f’
include 'sol_param2.f

if (infeas_count_total .eq. check_interval)then llast 10 infeasible
cur_beta = dmin1(upper_bound,cur_beta*2.0)

eise if (feas_count_total.eq.check_interval) then llast 10 feasible

cur_beta = dmax1(lower_bound,cur_beta/2.0)

endif

if (infeas_count_per .eq. check_interval)then!last 10 infeasible
cur_alpha = dmin1(upper_bound,cur_alpha*2.0)
else if (feas_count_per.eq.check_interval) then llast 10 feasible

cur_alpha = dmax1(lower_bound,cur_alpha/2.0)

endif

if (infeas_count_open .eq. check_interval)then
cur_gamma = dmin1(upper_bound,cur_gamma*2.0)

else if (feas_count_open.eq.check_interval) then

cur_gamma = dmax1(lower_bound,cur_gamma/2.0)

endif
feas_count_total=0
feas_count_per=0
feas_count_open=0
infeas_count_total=0
infeas_count_per=0
infeas_count_open=0
return
end

subroutine init x

include ‘params.f
include 'road_com_sol.f
do i=1,numstands
x(i)=ifuture

end do

return

end

subroutine init stands

include 'params.f'
include 'com_data.f’
do i=1,numstands
stand_info(i).stand_no=0
do j=1,2
stand_info(i).opening(j)=0
end do
stand_info(i).dead=0
stand_info(i).for_non=0
stand_info(i).ageclass=0
stand_info(i).site=0
stand_info(i).numadj=0
stand_info(i).cover_type=0
do j=1,maxvert
stand_info(i).adj(j)=0
end do
stand_info(i).acres=0.0
stand_info(i).stocking=0.0
stand_info(i).ivol=0.0

stand_info(i).unass_penalty = 0.0

llast 10 infeasible

llast 10 feasible

213

stand_info(i).link_req =0

end do

numread=0 !number of stands read
return

end

subroutine init opens

include 'params.f
include ‘com_open.f
include ‘com_data.f
c this routine initializes the opening structures and
c clears all opening numbers from stand info.
do i=1,numread
stand_info(i).opening(2)=0
stand_info(i).opening(1)=0
end do
¢ clear the openings
o_avail=1
o_last=0
o_top=1
do i=1,num_opens
opens(i).operiod=0
opens(i).acres=0.0
opens(i).numvert=0
opens(i).numedges=0
opens(i).pointer_fwd=0
opens(i).pointer_back=0
do j=1,maxvert
opens(i).v(j)=0
opens(i).epointer(j)=0
opens(i).e(j)=0
end do
end do
do i=1,num_opens-1
av_list(i)=i+1
end do
av_list(hnum_opens)=0
return
end

subroutine get data(dataset)

include 'params.f’
include ‘com_data.f
include 'road_com_sol.f
include ‘com_move.f
character*12 dataset

215

integer*2 maxstand
real*4 tot_vol
integer*2 i,j,k,
> INDX(23000),ADJ(NUMSTANDS, ,MAXADJ),numadij
real*4 tot_acres
character*16 species
integer cover_type,for_non,ios
real*4 unass_penalty
character'8 mapin
integer*2 stand_list(O:numroads,300)
integer*2 link_point(0:numroads)
logical good_one
mapin = 'shulkell’
do i=0,numroads
link_point(i)=0
do j=1,300
stand_list(i,j)=0
end do
end do
tot_acres=0.0
tot_vol=0.0
maxstand=0
numread=0
do i=1,23000
indx(i)=0
end do
do i=1,numstands
do j=1,maxadj
adj(i.j)=0
end do
end do
write(*,”) 'reading road data ...’
call read_road
write(*,”) 'opening file’,dataset
open(unit=20,file=dataset)
istart = 1
do 200, i=1,numstands
read (20,10,end=100,iostat=ios) stand_info(i).stand_no,
stand_info(i).ACRES,
stand_info(i).ageclass,
stand_info(i).site,
stand_info(i).stocking,
stand_info(i).ivol,
stand_info(i).cover_type,
stand_info(i).for_non,
stand_info(i).link_req
10 format(i5,f10.2,i4,i4,f6.2,f12.6,i3,i5,i5)
INDX(STAND_info(!).stand_no)=i
tot_acres=tot_acres+stand_info(i).acres
tot_vol=tot_vol+stand_info(i).ivol*stand_info(i).acres

VVVVVVVY

216

if((stand_info(i).for_non.ge.9907).and.
> (stand_info(i).for_non.le.9909))then
stand_info(i).dead=1
else
stand_info(i).dead=0
endif
if(stand_info(i).for_non.eq.9960) then lexisting clearcut
x(i)=0
stand_info(i).unass_penalty = 0.0
else
x(i)=ifuture lunassigned
¢ calculate unass penalty and volumes for the planning periods
¢ and determine whether to add to st_list
good_one = false.
move_stand = i
call calc_unass_penalty(unass_penalty)
stand_info(i).unass_penalty = unass_penalty
do k=1,numperiods
call calc_volume(i,k,stand_info(i).volume(k))
stand_info(i).volume(k)=rtrunc(stand_info(i).volume(k))
if(stand_info(i).volume(k).gt.0.)good_one=.true.
call calc_ass_penalty(i,k,stand_info(i).ass_penalty(k))
end do
if(good_one)then lif volume, add to st_list
link_paint(stand_info(i).link_req)=
> link_point(stand_info(i).link_req)+1
stand_list(stand_info(i).link_req,
> link_point(stand_info(i).link_req))=i
endif
endif
200 continue
100 if(ios.eq.-1) then

numread=i-1

else
numread=numstands
endif
close(20)

write(*,”) 'number of stands read ', numread
maxstand=stand_info(numread).stand_no !since they are in order
¢ make up the stand to road lists
call make_st_list(link_point,stand_list)
¢ Read the adjacency file and update stand adjacency list
open (unit=10,file="’home3/richarewi/thesis/data///mapin//
> 'Tl/mapin/l".adj')
do while (iISTAND.le.MAXstand)
read (10,%,end=300) inum,istand,(ADJ(indx(istand),J),j=1,INUM)
numadj=0 Ipointer to adjacency list members
do k=1,inum
if (adj(indx(istand),k).le.maxstand) then
numadj=numadj+1

>

300

end

stand_info(indx(istand)).adj(numadj)=
indx(adj(indx(istand),k))
endif
end do
stand_info(INDX(iSTAND)).numadj=numadj
do

close(10)
return

end

subroutine calc parameters

include '‘params.f

include 'sol_param2.f

real*4 periodic_per,total_per

c set cost to $5000/km (road lengths stored in meers)
c discount rate is .10

c period is 5 years

d_factor(1)=.7879*5.

d_factor(2)=.4893"5.

d_factor(3)=.3038"5.

d_factor(4)=.1886"5.

d_factor(5)=0.0

ptarget = 500.0 Ithousands of cubic feet
htarget = 2000.0 'thousands of cubic feet
periodic_per = 0.05

total_per =0.02

periodic_all = periodic_per*ptarget

total_all = total_per*htarget

r_factor=1.0

return

end

subroutine init move values

include 'params.f
include 'sol_param2.f
include ‘com_move.f
move_road_cost = 0.0
move_feas = false.
return

end

subroutine init search params

include 'params.f
include 'search_status.f’

c call this routine after data file has been read so that
¢ numread is known

maxiters = 5000

check_interval = 10

return

end

subroutine init objective

include ‘params.f
include 'sol_param2.f
include ‘com_data.f
include ‘road_com_sol.f
cur_sol =0.0 Ino harvest
cur_infeasible = 0.0 !
cur_feasible = 0.0 !
cur_loss_penalty = 0.0 Inone yet
cur_road_cost =0.0
cur_dev_fr_maxopen=0.0
¢ since there is no volume at this point
do j=1,numperiods
cur_dev_fr_periodic(j)=ptarget-periodic_all
cur_infeasible=cur_infeasible+cur_dev_fr_periodic(j)
end do
cur_dev_fr_total=htarget-total_all
cur_infeasible=cur_beta*cur_infeasible+cur_alpha*cur_dev_fr_total
c calculate the unassigned penalty for all stands
do stand=1,numread
cur_loss_penalty=cur_loss_penalty+stand_info(stand).unass_penalty
end do
¢ update the total penaities
cur_infeasible = cur_infeasible+cur_loss_penalty
c reduce the loss penalty by the unavoidable penalty
call calc_base_loss
cur_loss_penalty = cur_loss_penalty - min_loss_penaity
return
end

subroutine save sol

include 'params.f’
include 'road_com_sol.f’
include ‘com_data.f'
include 'search_status.f
include 'best_sol.f
include 'road_com.f
do i=1,numread
x_save(i)=x(i)

218

end do

do i = 1,numroads

road_save(i) = roads(i).period_assigned
end do

return

end

subroutine clear solution

include 'params.f
include ‘com_data.f
include ‘road_com_sol.f
do i=1,numread

if (x(i).ne.0)then

x(i)=ifuture

endif

end do

cur_sol =0.0

do j=1,numperiods
hvol(j) = 0.0

end do

call init_roads
return

end

subroutine time stats(elapsed)

include 'search_status.f

real™4 elapsed

elapsed = etime_(etime_struct)
return

end

subroutine read growth

include ‘com_growth.f'
open (unit=51 file="/home3/richarew/thesis/data/mai.dat’)
do isite = 1,6 !corresponds to index 3-8
read(51,'(i4)') mai_max_age(isite)
read(51,100) (mai(isite,iage),iage = 1,22) 122 age classes
end do
100 format (22f7.2)
close(unit=51)
return
end

logical function test_sol_feas()

include ‘params.f

include 'road_com_sol.f'
test_sol_feas=.false.
if(dtrunc(cur_dev_fr_maxopen).ne.0.0)then
return

else if(dtrunc(cur_dev_fr_total).ne.0.0)then
return

else

do j=1,numperiods
if(dtrunc(cur_dev_fr_periodic(j)).ne.0.0)return
end do

endif

test_sol_feas=.true.

return
end function

logical function test_move_feas()

include ‘params.f’

include 'com_move.f'

test_move_feas=false.
if(dtrunc(move_dev_fr_maxopen).ne.0.0)then
return

else if(dtrunc(move_dev_fr_total).ne.0.0)then
return

else

do j=1,numperiods
if(dtrunc(move_dev_fr_periodic(j)).ne.0.0)return
end do

endif

test_move_feas=.true.

return

end function

Road Subroutines

subroutine init roads

include '‘params.f’

include ‘road_com.f

do i=1,numroads

roads(i).period = ifuture
roads(i).required_by_harvest = false.
roads(i).required_by_connect = .false.
roads(i).time=-32766

220

end do
return
end

subroutine build roads

include 'params.f
include 'sol_param2.f
include 'road_com.f
include 'road_com_sol.f
include ‘search_status.f
include 'best_move.f

integer*2 i,j,k.t,imin local variables

integer*2 ilink

real*4 new_pr lused to put closest node or

real*4 cost_to_add(2) ! to calc min cost path to add link in cycle.
integer*2 knode(2)

do i=1,numnodes+1 linit the val array

val(i) = 9999.0 lindicates whether nodes have been parsed
dad(i)=0

link(i) = -1

end do

call const_road_heap linit the heap

do i=1,numroads Iclear the previous solution

roads(i).period_assigned = ifuture

roads(i).nhops=0

roads(i).dad_link=-1

roads(i).numsons = 0

end do
c compute the shortest path network for the roads
c val(t) stores the length of the shortest path from t to the root
c priority(t) is used to arrange the heap

k = inv(numnodes+1) Iremove the root node
priority(k) = 0.0 Iroot of tree
val(k)=0.0
link(numnodes+1)=0
10 call pgremove(k) Ik will point to the element removed
do ipoint = adj_point(k),adj_point(k+1)-1 Iget all adjacent nodes
t = adj(ipoint,1) ladjacent node
ilink = adj(ipoint,2) llink #
if(inv(t).le.heap_size)then Istill on heap
if(roads(ilink).required_by_harvest)then !required
new_pr=0.0
else
new_pr= priority(k) + roads(ilink).lgth !distance to k
endif
if(priority(t).gt.new_pr)then Ishorter?

call pgchange(t,new_pr) lupdate priority

val(t)=val(k)+roads(ilink).Igth lupdate length of path
dad(t)=k father
link(t)=ilink Isimpler

roads(ilink).dad_link = link(k)
roads(ilink).period_assigned=roads(ilink).period !assign period
roads(ilink).required_by_connect=

> .not.roads(ilink).required_by_harvest Itrue if a steiner link

endif
endif
end do Inext adjacent node
if(heap_size.gt.0)then Inot finished
k=1 Iget top element
goto 10 land continue
else
endif
c fix up the period required
do i=1,numnodes 'all but root node
if(val(i).ne.9999.0)then lin, parse the path
j=i Isave node index
imin = roads(link(i)).period_assigned !period for the last link
do while (dad(j).ne. 0) Iparse all connections
j = dad(j) Ifather
imin = min(imin,roads(link(j)).period_assigned) !min period required
roads(link(j)).period_assigned=imin lupdate
end do
endif
end do Inext node

c find any missing links
do i=1,numroads
if((roads(i).dad_link.eq.-1)
> .and.(roads(i).required_by_harvest))then
roads(i).period_assigned=roads(i).period !assign it to its period
knode(1)=roads(i).x
knode(2)=roads(i).y two directions
doii=1,2 'find the cheapest path
if (roads(i).period .It.
> roads(link(knode(ii))).period_assigned)then
call calc_r_cost_sngl(link(knode(ii)),
> cost_to_add(ii),roads(i).period_assigned)
else
cost_to_add(ii)=val(knode(ii))
endif
end do
costdiff = cost_to_add(1)-cost_to_add(2)
if (costdiff.it.0) then
k=1
else if (costdiff.gt.0.)then
k=2
else ltie
rval=rand()

=int(rval)+1

endif
k = knode(k) 'finally got it!

¢ path chosen, implement

roads(i).dad_link = link(k) ! Assign dad link

imin = roads(i).period_assigned

k = dad(k)

do while((k.ne.0).and.(imin.it.roads(link(k)).period_assigned))
roads(link(k)).period_assigned = imin

k=dad(k)

imin = min(roads(link(k)).period_assigned,imin)
end do
endif
end do Inext link

cur_road_cost =0.0
do i=1,numroads
if(roads(i).period_assigned.ne.ifuture)then
cur_road_cost = cur_road_cost +
> roads(i).Igth * d_factor(roads(i).period_assigned)
endif
end do
cur_road_cost = cur_road_cost*r_factor
¢ find and store the sons for each link
do i =1, numroads
k = roads(i).dad_link
if(k.ne.0)then
roads(k).numsons = roads(k).numsons + 1
roads(k).sons(roads(k).numsons)=i
endif
end do
return
end

subroutine make_st list(link point,stand list)

include ‘params.f’

include 'road_com.f

include ‘com_data.f

integer*2 link_point(0:numroads)

integer*2 stand_list(0:numroads,300)

integer*2 ipoint

ipoint=0

st_point(0)=1

do i=0,numroads
do j=1,link_point(i)
st_list(ipoint+j)=stand_list(i.j)
end do
ipoint=link_point(i)+ipoint

224

st_point(i+1)=ipoint+1
end do
return
end

subroutine read road

include ‘params.f
include ‘road_com.f’
integer*2 adjlist(numnodes+1,300,2),adj_pt(numnodes+1)
do i=1,numnodes +1 linit the adjacency lists
adj_pt(i)=0
end do
open (unit=10,
> file="/home3/richarew/thesis/data/shulkell/roads.txt’) lopen road data file
10 read(10,",end=99)i, roads(i).x,roads(i).y,roads(i).igth
adj_pt(roads(i).x)=adj_pt(roads(i).x)+1
adj_pt(roads(i).y)=adj_pt(roads(i).y)+1
adjlist(roads(i).x,adj_pt(roads(i).x),1)=roads(i).y
adjlist(roads(i).y,adj_pt(roads(i).y), 1)=roads(i).x
adjlist(roads(i).x,adj_pt(roads(i).x),2)=i
adjlist(roads(i).y,adj_pt(roads(i).y),2)=i
roads(i).period = ifuture
roads(i).required_by_harvest = false.
roads(i).required_by_connect = false.
roads(i).period_assigned = ifuture
i=i+1
goto 10
99 close(unit=10)
c build the adjacency list (pack it)
istart =0
do i=1,numnodes+1
adj_point(i)=istart+1
do j=1,adj_pt(i)
adj(istart+j, 1)=adijlist(i,j, 1)
adj(istart+j,2)=adijlist(i,j,2)
end do
istart=adj_pt(i)+istart
end do
adj_point(numnodes+2)=adj_point(numnodes+1)+adj_pt(numnodes+1)
return
end

subroutine const_road heap

c Since all priorities are the same, simply construct the array
include '‘params.f

225

include 'road_com.f
integer*2 i

heap_size = numnodes+1
do i=0.numnodes+1

road_heap(i)=i

inv(i)=i

priority(i)=32767.0

end do

priority(numnodes+1)=0.0 !'ROOT NODE represents mainroad access
priority(0)=-10 Isentinel value for node 0

return

end

subroutine pqgdownheap(k)

include ‘params.f

integer*2 k,j

integer*2 vert

include 'road_com.f'

vert=road_heap(k)

do while (k.le.heap_size/2)

j=k+k
if(j.It.heap_size)then

if(priority(road_heap(j)).gt.priority(road_heap(j+1))) j=j+1

endif
if (priority(vert).le.priority(road_heap(j))) goto 10
road_heap(k)=road_heap(j)
inv(road_heap(j))=k

k=j

end do

10 road_heap(k)=vert

inv(vert)=k

return

end

subroutine pgremove(k)

c remove the kth element of the heap
include 'params.f
integer*2 k,ksave
include 'road_com.f
ksave=road_heap(k)
inv(road_heap(k))=heap_size
road_heap(k)=road_heap(heap_size)
inv(road_heap(heap_size))=k
heap_size=heap_size-1

226

call pqdownheap(k)
k=ksave

return

end

subroutine pqchange(t,new_pr)

¢ change element t to have priority new_pr
include ‘params.f
integer*2 t,k
real*4 new_pr,old_pr
include 'road_com.f
old_pr=priority(t)
priority(t)=new_pr
k = inv(t)
if(new_pr.It.old_pr)then
call pqupheap(k)
else
call pqdownheap(k)
endif
return
end

subroutine pqupheap(k)

include 'params.f

integer*2 vert,k

include 'road_com.f

vert=road_heap(k)

do while (priority(road_heap(int(k/2))).ge.priority(vert))
road_heap(k)=road_heap(int(k/2))
inv(road_heap(k))=k
k=int(k/2)
road_heap(k)=vert
inv(road_heap(k))=k

end do

return

end

subroutine calc_retime cost(link to_change)

include 'params.f
include 'sol_param2.f
include 'road_com.f
include ‘com_move.f

227

integer*2 link_to_change,ilink,|_period,imin,p_link,path_period
integer*2 knode(2)
real*4 cost_to_add(2)
c calculate the re_timing costs for link_to_change,each |_period
c the base cost is the re-timing of the link_to_change
if ((link_to_change.le.0).or.(link_to_change.gt.numroads))then
write(*,”) ‘error in link ‘,link_to_change
stop
endif
do I_period = 1, ifuture
c check to see if the link is in a path

if (roads(link_to_change).dad_link.eq.-1) then llink is not in a path
r_cost(l_period)=roads(link_to_change).igth*
> d_factor(l_period) Icost to build the new link

knode(1)=roads(link_to_change).x
knode(2)=roads(link_to_change).y
do kk=1,2
k=knode(kk)
ilink = link(k)
if(roads(ilink).period_assigned.It.|_period)then
call calc_r_cost_sngl(ilink,cost_to_add(kk),|_period)
else
cost_to_add(kk)=0.0
endif
end do
r_cost(l_period)=r_factor*(r_cost(l_period)+
> min(cost_to_add(1),cost_to_add(2)))
else! just do it
ilink = link_to_change
call calc_r_cost_sngl(ilink,cost_to_add(1),I_period)
r_cost(l_period)=cost_to_add(1)"r_factor
endif
end do
return

end

RTS Subroutines

subroutine check for reps(escape)

include ‘params.f'
include 'road_com_sol.f’
include ‘com_hash.f
include 'com_reactive.f
include 'search_status.f’
include ‘com_tabu2.f
include 'com_data.f

228

logical escape,done
integer*2 length
escape = .false.
done = faise.

call hashfn(numread)
do while (.not.done)

if{(hash_table(hash_add).eq.-1).or. lempty slot
> (config_info(hash_table(hash_add)).sol_value -
> cur_feasible.lt. 0.0001))then 'match
done = .true.
else
hash_add = mod((hash_add+1),itable_size) linear probe
endif
end do
ifthash_table(hash_add).ne.-1) then lexisting configuration

length = move_count -
> config_info(hash_table(hash_add)).time_last_found
config_info(hash_table(hash_add)).num_rep =
> config_info(hash_table(hash_add)).num_rep + 1
config_info(hash_table(hash_add)).time_last_found =
> move_count
if (config_info(hash_table(hash_add)).num_rep
> _gt. rep)then
chaotic=chaotic+1
if(chaotic .gt.chaos)then
chaotic=0
escape = .true.
return
endif
endif
if (length .It. cycle_max) then
if(moving_average .eq. 0.0)then
moving_average = length
else
moving_average = 0.1%length + 0.9°moving_average
endif
tabu_tenure =min(600.0,increase*tabu_tenure)
steps_since_size_change =0

endif
else 'new configuration, instal it
config_point=config_point+1

if(config_point.gt.10000)then
write(21,%) "™ error ™ config_point > 10000’
message="config_point > 10000’
at_end = .true.
endif
hash_table(hash_add)=config_point
config_info(config_point).time_last_found = move_count
config_info(config_point).sol_value = cur_feasible
endif

if (steps_since_size_change .gt.moving_average)then
tabu_tenure = max(tabu_tenure*decrease,1.0)
steps_since_size_change =0

endif

return

end

subroutine init reactive

include ‘params.f
include ‘com_reactive.f
chaotic=0

chaos=3

rep=3

cycle_max=50
increase = 1.1
decrease = 0.9

return

end

subroutine del one link

10

include 'params.f’
include 'sol_param2.f
include 'road_com.f
include '‘com_data.f
include road_com_sol.f'
include ‘com_move.f
include ‘com_tabu2.f
include ‘search_status.f
include ‘com_reactive.f
integer*2 ilink
integer*2 link_list(numroads)
integer®2 link_len
logical test_sol_feas
integer stand_count
num_esc_steps =1
stand_count=0
num_tries=0

ilink = int{rand()*numroads)+1
num_tries=num_tries+1
if(roads(ilink).period.ne.ifuture)then
call get_ali_links(ilink,link_list,link_len)

¢ now, re-assign all the stands that are involved to ifuture

dok =1, link_len
ilink=link_list(k)
do i=st_point(ilink),st_point(ilink+1)-1
if (x(st_list(i)).gt.0.and.x(st_list(i)).lt.ifuture) then

stand_count=stand_count+1
x(st_list(i))=ifuture
call tabu_add(st_list(i))
endif
end do
¢ assign the road link
roads(ilink).period = ifuture
roads(ilink).required_by_harvest = false.
end do
endif
¢ re-do the openings
call init_opens
call make_opens2
c re-build the roads
call build_roads
cur_road_cost=cur_road_cost'r_factor
c calculate the objective
call calc_objective
c update best
move_feas = test_sol_feas()
call update_best

¢ now set tabu_tenure to be equal to tabu_tenure plus number of stands deleted
tabu_tenure = tabu_tenure+ float(stand_count)

return
end

Tabu Subroutines

subroutine init tabu rts

include 'params.f

include ‘com_tabu2.f

include ‘com_reactive.f
tabu_point =0 !points to tabu list
do i=1,itabu_len

tabu_list(i)= -20000.0 1zero tabu list
end do

steps_since_size_change =0
tabu_tenure = 1.0
moving_average=0.0

return

end

subroutine get_aspiration2(asp)

230

include 'params.f

include 'sol_param2.f

include ‘com_move.f

include ‘road_com_sol.f
logical asp,tabu

asp = .false.

¢ check feasibility

if (move_feas) then !feasible

if((move_loss_penalty+move_road_cost).lt.
> (best_feasible))then

asp = .true.

endif

else linfeasible
endif

return

end

subroutine check tabu(tabu) !move tabu?

include ‘params.f
include ‘com_tabu2.f

include ‘com_move.f'

include 'search_status.f
logical tabu
if(tabu_list(move_stand).ge.(move_count-tabu_tenure))then
tabu=.true.

else

tabu = false.

endif

return

end

subroutine tabu add(stand)

include 'params.f

include ‘com_tabu2.f
include 'search_status.f
integer*2 stand
tabu_list(stand)=move_couni
return

end

APPENDIX D

NUMERICAL RESULTS

Table D. 1. Statistics for SHULKELL Dataset

3] Average | Best ‘Worst Av. # Moves | Std. Dev | Coett. Var
0.10 | 310,945] 292,843 372,456 6,675 15,345 494%
0.20 | 326,495] 307,979 385,927 6,978 15,055 4.61%
0.30 | 336,019] 325,392 361,142 6,464 8,245 2.45%
0.40 | 349,632 337,224 373,660 1,233 3,/86 251%
0.50 | 360,851 352,501 374,346 6,/93 6,125 [.70%
0.60 | 374,729] 361,901 388,906 6,758 7,188 1.92%
0.70 | 385,847] 373,681 410,644 0,881 3,951 2.22%
0.30 | 398,580 336,656 410,775 7,191 5914 1.48%
0.90 | 409,719] 399,135 436,416 6,451 9,781 2.395%
1.0O | 415975 406,966 423,622 6,804 4,847 L1T7%
2.00 | 498,386] 488,556 508,032 - 5,214 4,585 0.92%
3.00 T 563,560 556,021 572,178 4,771 4,400 0.78%
4.00 | 624,297] 606,125 646,247 5,053 7,828 1.25%

5.00 | 664,834 655,268 656,107 4,048 1,527 1.13%
6.00 | 715,875] 695,961 743,025 6,035 3,583 1.20%
7.00 | 760,205] 744,499 775,101 5,970 6,551 0.86%
8.00 | 795396 773,852 309,759 6,758 9,077 1.14%
9.00 | 819,104] 800,514 846,428 6,662 10,718 1.31%
10.00] 853,648] 318,568 889,636 3,681 18,839 2.21%
IT.00 [885,892] 840,961 948,920 - 3,052 29,769 3.36%
12.00] 897,555] 854,537 944 427 3,518 24916 2.78%
13.00] 917,688] 881,089 963,015 2,621 22,390 2.44%

14.001 932,470] 895,660 976,755 2,492 23,588 2.533%

15.00] 942,137] 890,176 976,755 2,265 20,408 2.17%

16.00] 947,501 908,036 972,957 1,987 16,742 L.77%

17.00F 9355,875] 917,468 976,167 1,144 13,854 1.45%

18.00] 960,366] 939,916 976,755 1,159 9,577 1.00%

19.00] 960,306] 928,793 977,427 T75 12,006 1.25%

20.001 957,839 927,437 976,755 998 11,938 1.25%

Table D.2. Statistics for Dataset 1

234

P | Average | Best ‘Worst Av. # Moves | Std. Dev | Coeft. Var
0.10 | 360,857 338,366 384,548 6,168 10,382 2.88%
0.20 | 379,005] 360,060 410,944 5,841 13,818 3.65%
0.30 | 393,293] 374,518 410,082 6,814 9,674 2.46%
0.40 | 404,577 381,821 438,954 6,440 13,050 3.23%
0.50 | 415,884] 398,342 434,951 5,497 9,555 2.30%
0.60 | 428,350] 409,974 454,439 6,566 10,479 2.45%

01 441,935] 426,785 466,691 6,604 9,026 2.04%
0.80 | 452,602] 432,697 430,064 6,561 9,970 2.20%
0.90 | 461,269] 446,691 430,184 5,782 7,904 [.7T%
1.00 | 475,363] 459,349 539,950 5,539 14,242 3.00%
2.00 | 562,926] 549,637 597,428 2,520 10,132 1.80%
3.00 [614,589] 606,351 629,500 2,152 5,706 0.93%|
4.00 | 659,084 645,503 671,910 2,768 6,768 1.03%
5.00 | 699,763 683,391 719,396 2,463 9,038 1.29%
6.00 | 746,484 720,503 773,359 2,147 14,786 1.98%
7.00 | 755,519 741,558 780,129 2,757 8,566 1.13%
8.00 | 782,239] 766,783 797,354 3,011 7,355 0.94%
9.00 | 808,379 797,860 837,692 3,179 1,878 0.97%

10.00] 3831,I65] 823,341 364,308 3,043 7,250 0.87%
~11.00] 873,470] 836,711 946,006 3,362 30,789 3.532%,
12.00] 896,640 856,632 943,514 3,529 24,124 2.69%
13.00] 915,713] 868,072 968.5 3,183 28,094 3.07%
14.00] 927,446 878,256 996,90 3,154 28,616 3.09%
15.001 952,331] 886,250 993,704 2,864 27,924 2.93%
16.00 1 958513F 902,042 1,005,713 2,255 26,337 2.75%
17.001 972,134] 914,686 995,357 [,681 20,507 2.1T%
18.00 976,229] 924,221 1,012,702 1,838 18,815 1.93%
19.001 982,175 942,033] 1,001,490 1,359 15,009 1.53%
20.00 [986,732 957,224] 1,005,713 1,025 12,744 1.29%

Table D.3. Statistics for Dataset 2

235

8] Average Best Worst Av. # Moves | Std. Dev | Coett. Var

0.10] 360,857] 338,866 384,548 6,168 10,382 2.88%
0.20] 379,005] 360,060 410,944 5,841 13,818 3.65%
0.30] 393,293] 374,518 410,082 6,814 9,674 2.46%
0.40] 404,577 381,821 438,954 6,440 13,050 3.23%
0.50] 415,884] 398,342 434 981 5,497 9,555 2.30%
0.60| 428,350] 409,974 454,439 6,566 10,479 2.45%
0.70] 441,935] 426,785 466,691 6,604 9,026 2.04%
- 0.80] 452,602 432,697 480,064 6,561 9,970 2.20%
0.90] 461,269 446,691 480,134 3,782 7,904 L.71%
1.00] 475,363 459,349 339,950 3,539 14,242 3.00%
2.00f 562,926] 549,637 597,428 2,520 10,132 [.80%
3.00] 614,589 606,351 629,500 2,1 5,70 0.93%
4.00] 659,084] 645,503 671,910 2,768 6,768 1.03%
5.00] 699,7/63] 683,391 719,396 2,463 9,038 [29%,
6.00f 746,484| 720,503 173,359 2,147 14,756 1.98%
7.001 755,519] 741,558 780,129 2,757 8,566 1.13%
8.00] 782,239] 766,783 197,354 3,011 1,355 0.94%
9.00] 808,379 797,860 837,692 3,179 1,878 0.97%
10.00] 831,165] 823,341 864,305 3,043 7,250 0.87%
11.00] 873,470} 836,711 946,006 3,362 30,789 3.52%
12.00] 896,640 856,632 943,514 3,529 24124 2.69%
13.00] 915,713] 868,072 968,544 3,183 285,094 3.07%
14.00] 927,446| 878,286 996,905 3,154 28,61 3.09%
15.00] 952,331] 886,250 993,704 2,864 27,924 2.93%
16.00] 958,513] 902,042 1,005,713 2,255 26,337 2.75%
I7.001 972,134 914,686 995,357 1,681 20,507 2.11%
18.001 976,229 924,221 1,012,702 1,838 18,815 1.93%
19.001 982,175] 942,033] 1,001,490 1,359 15,009 [.33%
20.00] 986,732 957,224 1,005,713 1,02 12,744 1.29%

Table D.4. Statistics for Dataset 3

236

P Average Best ‘Worst Av. # Moves | Std. Dev | Coetf. Var
0.10] 355,194] 335,891 374,366 5,982 3,544 2.41%
0.20] 371,896] 353,456] 398,6 6,247 11,175 3.00%
0.30] 388,706] 372,072 407,381 6,827 9,012 2.32%)
0.40] 404,450] 378911 432,390 6,97 11,955 2.96%
0.50] 410,688} 392,100 422,212 5,826 7,823 1.50%
0.60] 4225191 410,298 445,33 6,342 7,810 1.55%
0.70] 434,2068| 423,831 450,199 5,938 6,406 1.48%
0.80] 446,268} 432,693 473,403 6,060 9,199 2.06%)|
0.90] 463,583] 448,590 485,551 6,565 9,850 2.12%
1.00] 469,649 449,190 495,752 6,269 12,073 2.57%
2.00] 557,068 543,643 567,350 4674 6,081 1.09%|
3.00] 615,291 602,303 631,406 4,51 6,331 1.11%
4.00] 680,258] 658,974 689,415 4,723 6,538 0.96%
5.001 718,303 702,290 739,007 4,302 9,040 1.26%
6.00] 753,642 737,045 763,181 3,062 9,562 1.27%]
7.00] 764,900 757,288 784,556 5,114 6,206 0.81%
8.00 778,061 771,395 185,279 5,796 3,181 0.41%
9.00} 793,832 787,248 804,584 6,292 3,781 0.48%
10.00] 822,095] 803,073 862,365 3,674] 15,961 1.94%
11.00] 548,080] 821,686 909,755 4233 21,753 2.57%
12.00f 867,672] 835,343 935,164 3,90 24,324 2.80%|
13.00] 891,471 858,850 946,545 3,910 24,294 2.73%
14.00] 903,398] 847,807 953,705 3,995 24,03 2.66%)
15.00] 927,238] 889,962 953,558 2,847 18,175 1.96%
16.00] 937,320 897,69 955,927 2,248 15,002 1.60%
[7.00f 937,979 894,679 982,767 1,603 20,388 2.17%
13.00] 944,940 905,066 989,687 1,062] 16,307 1.73%
19.00] 939,611] 900,463 960,953 959 17,717 1.89%
20.00] 942,897 911,864 961,315 1,018 12,829 1.36%

Table D.5. Statistics for Dataset 4

[§) Average Best ‘Worst Av. # Moves | Std. Dev | Coetl. Var

0.I0] 366,261} 354,364 381,534 6,922 6,160 1.68%
0.20] 384,998] 370,591 414,147 6,313 3,929 2.32%
0.30] 399,396] 381,835 423,952 6,359 8,463 2.12%
0.40] 409,673] 396,506 429,372 6,247 7,255 1.77%
0.50] 422,068| 410,248 437,666 6,846 5,678 1.35%
0.60] 435,168] 420,995 455,677 6,908 6,325 [.37%]
0.70] 449,218| 440,076 462,712 6,621 5,446 1.21%
0.80] 460,658 452,428 470,87 6,602 4,959 1.08%
0.90] 472,336] 464,832 482,635 6,826 3,900 0.83%
1.00] 482,379} 472,545 491,034 5,957 5,205 1.08%
2.00] 567,462| 555,134 579,355 4,044 5,768 1.02%
3.00] 622,883] 615,186 636,696 5,197 6,044 0.97%
4.00] 690,574] 682,609 697,660 5,338 3,807 0.55%
5.00] 728,796 715,991 737,008 4,998 3,727 0.51%
6.00f 763,545 751,860 774,774 5,018 5,965 0.78%
7.001 781,114] 773,313 798,890 4,738 5,171 0.66%
8.001 802,559 794,073 819,313 5,760 5,989 0.75%
9.00] 828,755] 814,255 888,197 5,422 15,123 1.82%
10.00] 852,096] 831,461 901,572 3,410 15,142 1.78%
IT.00] 880,564| 854,286 917,273 4,140 17,559 1.99%
12.00] 905,166] 872,018 934,516 3,170 17,875 1.97%
13.00] 919,062] 881,542 946,337 2,566 14,560 1.58%
14.00] 930,489 908,317 961,527 2,182 14,856 1.60%
15.00] 937,316] 915,160 989,872 2,337 15,224 1.62%
16.00] 953,857] 925,140 989,872 1,528 16,711 1.75%
I7.00] 959,202] 920,233 991,829 [,340 19,110 1.99%
18.00] 958,573] 924,642 1,000,944 999 19,877 2.07%
19.00] 959,642 937,699 993,785 1,065 18,771 1.96%
20.00] 967,168 938,089 989,872 1,104 16,119 1.67%

Table D.6. Statistics for Dataset 5

238

p Average Best ‘Worst Av. # Moves | Std. Dev | Coeft. Var
0.10 | 344,628] 330,192 357913 6,118 3,595 1.62%
0.20 | 36L,575] 341,517 377,259 6,580 9,134 2.53%
0.30 | 375,309] 364,907 390,505 5,644 6,060 1.61%
0.40 | 391,333 370,908 411,908 6,625 8,628 2.20%
0.50 1 399.814] 389,354 415,610 6,706 3,920 1.48%
0.60 | 414,245] 399,905 448,469 6,564 9,267 2.24%
0.70 | 425,136] 417,442 439919 7,086 3,627 1.32%
0.80 | 436,861 426,332 458,270 6,6/8 6,199 1.42%
0.90 | 447,766] 434,661 464,597 5,509 6,745 T.5T%|
1.0 | 454,232] 447,463 467,514 6,444 J,388 1.19%
2.00 | >542,253] 528,390 554,351 4,448 6,135 1.13%
3.00 | 60I1,378] 591,256 615,516 4,491 J,904 0.98%
400 | 664,709] 644,091 679,496 5,129 10,942 1.65%
5.00 | 706,097 685,099 117,748 4418 10,646 1.51%
6.00 | 743,660] 726,986 771,410 5,198 9,934 1.34%

.00 | 772,190] 759,618 795,489 6,262 1,672 0.99%
8.00 | 791,913] 778,900 305,442 5,142 6,660 0.34%
9.00 | 816,544 792,232 901,418 5,812 18,948 2.32%

10.00| 837,555] 822,173 386,514 3,806 14,584 1.74%
11.00] 865,040 330,367 911,879 3,235 21,831 2.52%
12.00] 886,153] 856,992 943,031 3,669 23,247 2.62%
13.001 894,590 846,698 925,418 3,282 19,390 2.17%
14.00 917,359] 879,364 947,761 2,839 18,376 2.00%
15.00] 923,271} 891,688 948,356 2,728 17,017 1.84%
16.00] 932,717 893,634 993,459 2,254 17,470 1.87%
17.00 945,827 921,361 993,459 954 15,662 1.66%

8.001 9422101 907,107 976,215 1,647 16,492 1.75%
19.00 946,440f 923,327 993,459 [,199 15,84 1.67%
20.00] 949,299 925,648 993,459 1,081 15,500 1.67%

LOST VOLUM

SHULKELL

0 20000 40000 60000 80000 100000 120000 140000 160000
ROAD COST

Figure D.1. Solutions for Shulkell Dataset

LOST VOILUME

DAFTEST |

1100000
1000000
900000 '
800000 -
700000 -
600000 .
500000 -
400000 - Swee .
100000 Sachmtpadusasnemnc:
200000 — . . e

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

ROAD COST

Figure D.2. Solutions for Dataset 1.

DATASET 2

LOST VOLUM

S
@
m..%
Mq .
20000 40000 60000 80000 100000 120000 140000 160000 180000
ROAD COST
Figure D.3. Solutions for Dataset 2.

DATASET 3
1000000 -
900000
800000 .
700000
600000
500000 .
: " inenabiggtndng.
300000 . d
200000 - S -

20000

40000 60000 80000 100000 120000 140000 160000 180000
ROAD COST

Figure D.4. Solutions for Dataset 3.

240

LOST VOLUME

DATASET 4

1100000 -

“"M -y

Sttt dniaine o

200000 - — . E—— ———————
0 20000 40000 60000 80000 100000 120000 140000 160000 180000

ROAD COST

Figure D.5. Solutions for Dataset 4.

LLOST VOLUME

DATASET 5

“‘M.

200000 . - - - - . el e
0 20000 40000 60000 80000 100000 120000 140000 160000 180000

ROAD COST

Figure D.6. Solutions for Dataset 5.

241

242

Harvest Periods

P WON-_O

—_——
ol o
N

Figure D.7. Zero Roading Cost Solution
Lost Volume 947, 468.

243

"i

Construction Periods N g

VAV
Harvest Periods
0
1
2
3
4 BMain Roads

Figure D.8. Low Roading Cost Solution
Road Cost $15,062, Lost Volume 674,410.4.

Construction Period Harvest Period

VAVE 0
2 1
-3 ;
VAVA, 3
5 4
Bl Main Road -

Figure D. 9 Medium-low Roading Cost Solution
Roading cost $30,030, Lost Volume 561,148

Construction Period

N1
2

R
N4
L5

Harvest Period

s~ WN 2O

@ Main Roads

Figure D.10. Medium Roading Cost Solution
Cost $54,390, Lost Volume 404,876

245

Construction Period

N1

§ Main Road
N/ 4 =
x'.'x#': 5

Harvest Period

hAWN =0

’
s
< o b
-~
~
- . .
- T .
i e o s v s v o e

o »

Figure D.11. High Roading Cost Solution
Road Cost $ 105,419, Lost volume 315,782

247

Open3.shp
Open1.shp

Roadlink.shp e

N1 ‘
2

A

AA

2 5 -

- Mainroad.shp———--—-———

Figure D.12. Openings, Periods 1 and 3, Solution D.10

248

Opend.shp
Open2.shp
Roadlink.shp

VAVA'
2

/.3
/N4 ~ .
5 TS O\)
Il Mainroad.shp—-----—-— """ @ R

Figure D.13. Openings, Periods 2 and 4, Solution D.10

@a@ Qéo .
RIS \\\//\\/// <
0 ,\@é " /.A.u\\\ \\\ // 4,4.4\
/%\\ S, 2 v EREE ///Aw,\ Y
///\\ J%/\\ A/.\ﬂ \\\ %0
/ ///q
>)
ol).
N B EE T U] mmm w
<h 2333 g ¢l) W___m m_____
4 = m " ____ w.
= Qffl =il w | ;
¢ = B L
S0 = = = 0 ;
N\
Y ly \\MM/% e
\\\&/ \m% /\eo\eeo e »

