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ABSTRACT 

 

Background: Performing a motor task activates the sensorimotor network. 
Functional connectivity (FC) analysis can determine connections between distinct 
neural regions of a network. Graph theory can then be applied to quantify the 
network’s connections. Establishing the network in non-disabled participants can be 
used as a comparator in future neuroimaging research. Purpose: To determine the 
sensorimotor network in a group of non-disabled participants. Methods: Nineteen 
participants were scanned using magnetoencephalography while they performed a 
unilateral upper-limb visuomotor task. FC was compared between rest and task 
conditions to determine significant connections during task only. These connections 
were quantified using graph theory.  
Results: FC significantly increased between 118 node pairs during the task state 
compared to rest. Graph theory quantitatively highlighted 40 nodes as important, 
including regions of the pre-established sensorimotor network (contralateral primary 
motor and somatosensory cortex among others).  This network can be used as a 
template for comparison in future studies. 
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CHAPTER 1: INTRODUCTION 

 Engaging in a motor task results in the activation of multiple, anatomically 

distinct regions of the brain. This collection of regions, including, but not limited to, the 

primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary 

motor area (SMA), collectively form a sensorimotor network. Damage to areas within the 

sensorimotor network resulting from neurological injury, such as stroke, alters the pattern 

of activity within the network, most often resulting in physical impairments. Being able 

to compare a damaged network to a healthy non-disabled network would be useful in 

determining changes resulting from neurological injury. Therefore it is important to 

understand what is happening within a healthy brain before conclusions can be made 

about a damaged or lesioned brain. New techniques in brain imaging have provided ways 

to examine the functional connections between brain regions, which is one method of 

examining differences between networks.  

 The functional connections between distinct brain regions can be inferred by 

determining the coherence between their activations, defined as a measure of the phase 

consistency between the two signals at a given frequency. Functional connectivity (FC) 

analysis is a technique that highlights the synchrony between distinct regions of the brain 

by examining synchronous cortical oscillations over time. Using FC analysis provides 

insight into what regions may be communicating during a given task. Once the functional 

connections are determined, graph theory may be applied to quantify these connections. 

Graph theory is a mathematical approach to analyzing data based on connections between 

points on a graph and it characterizes and provides useful information about a dataset.  

 The goal of the present study was to determine the functional connections 

between anatomically distinct regions of the brain within a group of non-disabled 
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participants and then to quantify these network connections. Participants’ neural activity 

was recorded with magnetoencephalography (MEG) while they were at rest and during 

the performance of a unilateral visuomotor task. Coherence between anatomically 

prescribed cortical and cerebellar regions was then calculated to determine any significant 

functional connections between states (rest vs. task), elucidating the task-positive 

network. Graph theory was then used to quantify these connections. Key regions in the 

task-positive network were identified based on their number of connections within the 

network (termed node degree).  

It was hypothesized that (1) there would be a significantly different pattern of 

functional connectivity during the task than during rest, (2) functional connectivity would 

increase predominantly between nodes of the sensorimotor network that are contralateral 

to the movement, and (3) the SMA would have the highest node degree in the task-related 

network, proving itself to be a hub between separate neural areas involved in a 

visuomotor task.  

 The results of the FC analysis highlighted a significantly different network during 

task than during rest (i.e., the task-positive network). It was found that regions previously 

established as components of the sensorimotor network, including M1, SMA, premotor 

cortex (PMC), and the cerebellum (CB), were functionally connected within this task-

positive network. The graph theory analysis found that these sensorimotor network nodes 

of the contralateral hemisphere, compared to the ipsilateral hemisphere showed a high 

node degree, indicating their importance within the network. Furthermore the 

supplementary motor area proved to be a major component within this network (or a 

hub), based on the fact that it had the highest node degree of 13.   
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 The results of the present study have implications for future research. By 

highlighting the sensorimotor network in a group of non-disabled participants, we have 

established a baseline or template of neural activity to which the results of future studies 

may be compared. The present study is the first phase of a larger study that will utilize 

the same paradigm and analysis procedures to examine network connectivity in a group 

of patients post-stroke. Future comparison of these two distinct networks will highlight 

how network dynamics are altered as a result of stroke, informing stimulation-based 

treatments used in neurorehabilitation.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 An Overview of Neural Communication 

 It was not until the late 1800’s that scientists first proved that nervous tissue is 

composed of discrete units known as ‘neurons’. Using novel cell staining techniques, 

Ramon y Cajal discovered that a mass of nervous tissue is a complex collection of 

discrete units, and not a continuous web (Cajal, 1906). This discovery provided the basis 

of the neuron doctrine which states that the nervous system communicates through 

signaling between individual neurons (Kandel, 2000).   

 Since the formulation of the neuron doctrine, it has been well established that 

neurons communicate through both electrical and chemical signaling. However, up until 

the mid 20th century much remained unknown about how groups of these neurons worked 

together. Work by Donald Hebb (Hebb, 1949) showed that when groups of neurons fire 

together repeatedly over time, they eventually strengthen their connections. Over time, 

via long-term potentiation, co-activation of pre-synaptic and post-synaptic elements of 

neurons leads to a facilitation of chemical transmission which may last for hours, months, 

or even years (Cooke and Bliss, 2006). Hebb postulated that instead of having highly 

specialized ‘cardinal cells’ that are responsive to very specific stimuli (i.e. one cell for 

one person’s face), there are groups called ‘cell assemblies’. These assemblies contain 

neurons that respond to elementary features of our environment, and they work (or ‘fire’) 

together to form a representation as a whole. This synchrony in neural discharge enables 

learning from an early age, as the brain is able to adapt and form novel connections 

between cells, forming new assemblies, as it perceives both new and old stimuli. Having 

massive amounts of cardinal cells to represent every object we see would be highly 

inefficient and would require millions of cells for stimuli that we have not encountered. 
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Therefore the formation of assemblies is more efficient and is a potential solution to the 

‘binding problem’, which questions how relationships between separate neurons leads to 

the integration and representation of complex objects in our environment.  

2.2 Synchronous Neural Firing  

 It has been suggested that distinct neuronal assemblies communicate through 

synchronous firing which in turn leads to the functional integration of neural events 

(Milner, 1974, von der Malsburg, 1981, Singer, 1999). Milner (1974) proposed that 

neurons in the visual cortex that respond to features of the same object should discharge 

in synchrony whereas cells that respond to different objects should discharge 

asynchronously. More specifically, it has been shown that when spatially separate regions 

(i.e., cell assemblies) within the brain are synchronously firing (i.e., oscillating) within 

the same frequency band, they are believed to be communicating with each other (Fries, 

2005). Figure 1 below shows a simple diagram of neural communication through 

synchronous oscillatory activity.  
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Figure 1. Neural Communication through Synchrony. Each circle on the left 

represents a separate neuron or cell assembly. The arrows represent facilitation whereas 

the flat headed lines represent the absence of facilitation. Adjacent to each neuron is a 

waveform representing its membrane potential. The vertical lines represent the neuron 

firing (or an action potential). The red and green neurons are active at the same time and 

with the same frequency. Therefore, communication is facilitated. The black neuron is 

out of phase and not synchronous with the other neurons. Image taken from (Fries, 2005).  

 

 One of the earliest studies to demonstrate neural communication based on neural 

synchrony investigated the visual cortex of the anaesthetized cat (Gray and Singer, 1989). 

The authors conducted multi-unit and local field potential (LFP) recordings from areas 17 

and 18 of the visual cortex while presenting a visual stimulus (optimally aligned light 
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bars). The study authors concluded that local neuron populations in visual cortex engage 

in stimulus specific oscillatory synchronization with a peak frequency near 40 Hz. As a 

control, single and multi-unit recordings were also obtained from the lateral geniculate 

nucleus of the thalamus. The control recording showed no synchronous activity between 

the lateral geniculate nucleus and the visual cortex. The authors state that the neurons 

involved in generating these synchronous oscillations are confined to a small volume of 

cortex, and more specifically confined within a single orientation column. A follow-up 

study (Gray et al., 1989) expanded upon these findings, showing that neurons in spatially 

distinct regions can also synchronize their oscillatory activity. Using cats, the researchers 

located two spatially separated neuronal groups in the visual cortex that responded to one 

long light bar, or two separate, smaller light bars. When the smaller light bars shared the 

same orientation and were moved in the same direction, synchronous oscillatory activity 

between the two spatially distinct regions occurred. However no synchrony was found 

between the two distinct regions when the light bars were moved in different directions. 

Furthermore, the presence of one long light bar enhanced the synchronous oscillatory 

activity between these two groups, indicating the ability of separate neuronal groups to 

synchronize based on the global features of an object such as direction and continuity.  

 Oscillatory activity is generated by large groups of neurons within a dense system 

and is concurrent with, and may support, synchronous neuronal firing. The rhythmic 

activity is generated by neuronal interaction through multiple feedback loops. These 

loops involve a combination of both excitatory and inhibitory potentials resulting from 

excitatory pyramidal neurons, inhibitory interneurons, and long-range interactions along 

the axonal tracts of white matter fibres. Synchronous activity between large groups of 

neurons is the source of oscillatory activity recorded by various neuroimaging modalities, 
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including MEG. More specifically, the signal recorded by MEG is created by the 

summation of the excitatory postsynaptic potentials generated by the dendrites located 

tangentially to the cortical surface. Depending on the type of loop configuration, 

oscillations will occur in different frequency bands such as the alpha (9-12 Hz) or beta 

(15-30 Hz) bands (Bressler, 2002b). Details related to recording neural activity using 

MEG are provided in section 3.5.3. 

2.2.1 The Beta Rhythm is Related to Movement – Motor Unit Synchrony 

 The beta rhythm is a cortical oscillation that occurs roughly in the 15-30 Hz 

frequency range, and can be recorded using modalities such as motor unit recording, 

electroencephalography (EEG) or MEG. It has been established through multiple studies 

that the beta rhythm is linked to the performance of motor tasks and thus muscle 

activation (Baker et al., 1997, Feige et al., 2000, Brovelli et al., 2004, Schoffelen et al., 

2008). A study by Farmer et al. (Farmer et al.) examined this link by studying the 

coherence between the firing of hand muscle motor units in healthy controls, as well as 

patients with central and peripheral neurological lesions. To accomplish this, the 

participants were asked to maintain a weak isometric abduction of the index finger while 

recordings were made from 2 separate motor units in the first dorsal interosseous (1DI) 

muscle of the dominant hand. Using a coherence analysis, the results indicated that there 

was a significant association between motor unit firing in 1DI in the beta band (16-32 Hz) 

for healthy controls. Also, the results from a group of stroke patients indicated that when 

motor unit activity was recorded from the affected 1DI muscle, compared to the healthy 

participants, there was a complete absence of beta-band coherence between motor units. 

The authors concluded that central, rather than peripheral, pre-synaptic inputs into the 

motor neurons might be providing a periodic discharge. They inferred that this central 
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discharge, in turn, is responsible for the discrete synchronous recordings in the motor 

units. 

2.2.2 Central – Peripheral Neural Synchrony 

 Several researchers have studied the idea that rhythmic oscillations are driven by 

central sources and thus have examined the relationship between groups of neurons in the 

central and peripheral nervous system (Murthy and Fetz, 1992, Baker et al., 1997, 

Brovelli et al., 2004). Murthy and Fetz (1992) examined coherence between the motor 

and somatosensory cortices and a peripheral muscle in two awake rhesus monkeys. Using 

microelectrodes they recorded single and extracellular unit activity, and LFPs from 

within the motor and somatosensory cortices, as well as electromyographic (EMG) 

activity from the flexor and extensor muscles of the forearm. They had the monkeys 

engage in a variety of tasks including retrieving food from a Kluver board, retrieving 

food from the hand of an experimenter who was out of the field of view, extending and 

flexing the wrist, and also periods of quiet sitting to observe any spontaneous activity. 

The authors reported that there were synchronous 25-35 Hz oscillations (which includes 

the upper end of the beta-rhythm) in LFPs and unit activity while the monkeys performed 

specific reaching and grasping tasks. Furthermore the authors reported that there was also 

synchronous modulation between the sensorimotor cortex and muscles of the forearm. 

Although cortical oscillations were not consistently related to the bursts of muscle 

activity, cycle-triggered averaging of the EMG signals resulted in synchronous 

modulation between the muscle activity and LFPs. Briefly, averages of the rectified EMG 

signals aligned with averages of LFPs did not reveal any consistencies in their timing, 

due to their spontaneity over time. However, when the cycle-triggered averages were 

aligned with a particular phase of the LFP cycles, correlated oscillatory activity was 
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found, indicating communication between the brain and the muscle, which is referred to 

as cortico-muscular coherence (CMC). This finding provides direct evidence for the link 

between cortical and muscle synchronous oscillations during a behavioral task.  

 Following the work by Murthy and Fetz, Baker et al. (1997), also demonstrated 

that coherence occurs between the cortex and muscle during performance of a precision 

grip task.  In two adult female macaque monkeys, the researchers recorded LFPs as well 

as pyramidal tract neuron discharge from pairs of sites in M1. The discharge of pyramidal 

tract neurons was found by electrically stimulating pyramidal tract fibres in the medullary 

pyramid and recording the antidromic activity at the level of the cortex. 

Electromyographic activity was also recorded from the hand and forearm muscles (7 

muscles total). The recordings were conducted while the monkeys gripped independently 

pivoting bars between their index finger and thumb and had to retain them in a specified 

position for 1 s intervals. It was found that there was significant coherence between 

cortical slow wave signals and EMG activity in all muscles examined for both monkeys. 

The mean peak frequency exhibiting coherence was within the beta band (25.8 Hz). 

Again, these results show that during a motor task there is synchrony between beta band 

oscillations within the motor areas of the brain and the muscles being activated. 

2.2.3 Cortico-Cortical Synchrony 

 A final point, which is most relevant to the present study, is that in addition to 

central-peripheral communication, researchers have also discovered communication 

between cortical regions within the beta frequency related to movement. This 

communication has been termed cortico-cortical coherence (CCC). Using monkeys, 

Brovelli et al. (2004) demonstrated that synchronized beta oscillations in M1 occur 

during contractions of contralateral arm and hand muscles. Through intracranial 
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recordings they were able to show that monkeys performing a one-handed motor task had 

underlying synchronized activity between M1, S1, and inferior posterior parietal cortex 

(IPC). The study by Brovelli and colleagues (2004) has demonstrated a beta-band 

sensorimotor network resulting from maintaining a steady unilateral muscle contraction. 

Several of the studies described above also showed that there is significant coherence 

between cortical neuronal groups. The study by Baker et al. (1997) showed that there was 

significant coherence (in the 20-30Hz range) between LFPs and pyramidal tract neuron 

discharge from pairs of sites separated by a distance of 1.5 mm within M1. Finally, the 

study by Murthy and Fetz (1992), showed coherent LFPs between distinct regions of M1, 

as well as between pre-central and post-central sites, separated by an intracortical 

distance of 20 mm. These findings illustrate both within-region and between-region 

communication in the brain during motor tasks.   

2.2.4 Determining Cortico-Cortical Synchrony with Neuroimaging 

 Although much of the initial research around neuronal communication used 

intracortical recordings to study neural oscillations in primates, studies have since used 

non-invasive imaging modalities such as EEG and MEG, in humans. A key study in this 

area specifically examining beta band coherence between different brain areas in a group 

of healthy controls was done by Schoffelen et al. (Schoffelen et al.). In the study, 18 

healthy participants performed isometric wrist extensions on both the dominant and non-

dominant side (during separate blocks). Extensions were performed against the lever of a 

force meter and kept constant, between 1.1 and 1.5 N, for a variable amount of time 

(average of 7s). Whole-head MEG activity was acquired through a 151-sensor axial 

gradiometer system, and surface EMG was recorded from the right and left extensor carpi 

radialis longus (forearm) muscles.  Coherence was analyzed between both the EMG and 
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cortical sources using a modified spatial filtering algorithm based on the Dynamic 

Imaging of Coherent Sources (Gross et al., 2001). Dynamic Imaging of Coherent Sources 

localizes coherent brain regions using a frequency-based beamformer spatial filter. The 

authors found that there was significant coherence between EMG signals in the forearm 

muscle and the contralateral motor cortex in the beta band (median peak frequency was 

25 Hz for right hand and 25.5 Hz for the left hand). In a second coherence analysis, they 

utilized a double dipole model that allows for coherence to be found between the EMG 

signal and any other regions that may also be correlated, apart from the contralateral M1. 

This analysis revealed that there was also significant coherence between the ipsilateral 

CB and the muscle from which EMG was recorded. As well, the authors measured 

coherence between M1 contralateral to the involved muscle and sources in the rest of the 

brain to estimate CCC. However, no significant coherence patterns were observed with 

this CCC analysis. Therefore, this study has again highlighted CMC during a motor task, 

while failing to demonstrate beta band coherence between cortical regions during a motor 

task. The authors note that the reason for the lack of observed synchronous neural activity 

may be to due to a low signal-to-noise ratio, which impacts the quality of source 

estimates.  

 A more recent study (Bardouille and Boe, 2012) also used MEG to examine beta 

band CCC in a group of non-disabled participants. Their task required participants to 

squeeze two rubber bulbs (held in the left and right hand), to move a cursor toward a 

target. They concluded that CCC increased predominantly in the beta (16-32 Hz) and 

gamma (32-64 Hz) frequency bands during task performance, as compared to a resting 

state. Further, the regions expressing increased coherence with other regions during task 

performance (i.e., task-related synchrony) were areas previously described as being 
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important to movement and somatosensation, motor planning, executive control, and 

vision. Specifically, the authors identified M1, S1, PMC, SMA, CB, prefrontal cortex 

(PFC), and the frontal eye fields (FEF). However, this study used a bilateral task, 

rendering it difficult to differentiate cortical activation in relation to the activated limb 

(i.e., left vs. right). Therefore, further research implementing a unilateral task would be 

useful. Such a study would enable distinction between activation in the hemispheres that 

are contralateral and ipsilateral to movement. Regardless, this study highlights that beta 

band coherence increases between functionally relevant brain regions during the 

performance of a motor task in non-disabled participants.  

2.3 What is a Neural Network? 

 Although the brain is technically one organ, many regions of the brain appear to 

be specialized for specific tasks (e.g., M1 stimulation results in movement). These 

distinct regions and cell populations interact to form neural networks that work together 

to produce cognition and behavior. Therefore the entire brain can be thought of as a 

network, containing a subset of smaller, specialized networks. The notion of different 

brain regions interacting as a network is supported by the evidence outlined above 

showing synchrony between spatially distinct regions of the brain. There are many 

networks within the brain that communicate to support the performance of various 

functions. The present study will focus on the sensorimotor network. This network is the 

combination of brain areas that work in concert to produce movement, including but not 

limited to M1, lateral (PMCl) and dorsal premotor cortex (PMCd), SMA, and the CB 

(Kuhtz-Buschbeck et al., 2008, Bardouille and Boe, 2012, Boe et al., 2012, Cheyne, 

2013).   
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2.4 The Brain Is a Network 

 Due to the complexity of the brain, its biological structure has been compared to 

that of a computer (Hopfield, 1982). Much like a computer or electrical device is 

composed of multiple connections created from smaller parts such as wires, the human 

brain is also composed of multiple connections, on the order of hundreds of billions 

between neurons (Herculano-Houzel, 2009). Information is transferred across this vast 

and dynamic network of connections to support the performance of a variety of tasks. The 

brain has also been described as exhibiting a ‘small-world’ architecture, in that it is both 

highly efficient at information transfer, and segregated into distinct specialized ‘hubs’ of 

densely connected pathways (Achard et al., 2006). It is believed that, over centuries, the 

brain has developed to be more efficient, containing the least amount of white and grey 

matter as possible (Hofman, 2014). This structural evolution enables the brain to transmit 

information over short distances within smaller hubs or networks, and when required, 

information may be transmitted between networks through longer but less numerous 

interconnected pathways.  

 The connections between neurons, or neuronal populations, are commonly 

described in one of two ways: structural or functional connections. Structural 

connectivity (SC) refers to a description of the anatomical or physical connections 

between brain regions (Bullmore and Sporns, 2009). Through these structural 

connections, the brain forms one large neural network, which receives input from, as well 

as provides output to, the rest of the body. As well, these connections are used for the 

transfer of information between brain regions in smaller neural networks. The 

information transfer or communication between two spatially distinct regions of the 
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brain, or between the brain and the peripheral nervous system, is referred to as functional 

connectivity (FC).  

2.5 What is Structural Connectivity? 

 The early method of determining the structural layout of the nervous system was 

to dissect cadavers and document the anatomical configurations. Although this research 

still continues, researchers have since developed novel methods to examine the nervous 

system by using non-invasive imaging modalities. The first complete structural map of a 

nervous system created using such a method was done on a nematode, through 

reconstruction of electron microscopy sections (White et al., 1986). This reconstruction 

was possible due to the simplicity of the organism, which contained 302 neurons, most of 

which were unipolar.  Since this reconstruction, researchers have attempted to map 

segments of more complicated nervous systems. For example, the cortico-thalamic 

system of the cat (Scannell et al., 1999) and the cerebral cortex of the macaque (Young, 

1993) have been mapped.  

More recently, researchers have attempted to non-invasively create a complete 

map of SC in the human brain through the human connectome project (Sporns et al., 

2005). This project uses both diffusion tensor imaging (DTI), as well as diffusion 

spectrum imaging (DSI; Guye, 2008). Diffusion imaging works by measuring and 

determining the magnitude and direction of the way water molecules diffuse through 

biological organs using magnetic resonance imaging (MRI). This diffusion reflects the 

orientation of white matter fibres in the brain (Guye et al., 2008). One study by Hagmann 

and colleagues (Hagmann et al., 2007) mapped the whole-brain of two participants at a 

millimeter scale using DSI, resulting in a 3-dimensional reconstruction which contained 

over 1.5 million fibres. In accordance with previous imaging and retrograde tracing 
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research, they found connections between separate visual areas (e.g., primary visual 

cortex (V1), visual area two (V2), middle temporal visual area (V5)) as well as long-

range connections such as those between the optic radiation and the lateral geniculate 

body, and between V2 and V5. This study, using DSI, was able to non-invasively 

highlight structural pathways within the brain, regardless of their respective functions.  

2.6 What is Functional Connectivity? 

 Functional connectivity refers to the communication between spatially distinct 

regions of the brain, as measured through coherence between oscillatory activity. 

Functional connectivity has been more broadly defined as “the temporal correlation of a 

neurophysiological index measured in different brain areas” (Friston et al., 1993). For the 

purposes of the present study, coherence is defined as a measure of the phase consistency 

between two signals at a given frequency, which is based on a consistent phase shift 

between the signals over repeated measures (Nunez et al., 1997).  Functional connectivity 

along structural connections is an important topic for the present study. Several of the 

studies described above that used multi-unit recordings to measure spike trains of 

activated neuronal groups were actually applying a basic form of FC analysis. By using 

cross-correlational analysis, the researchers determined the synchrony between time 

courses of activation in spatially distinct neuronal populations (Murthy and Fetz, 1992, 

Baker et al., 1997). However, recording directly from specific neuronal populations with 

microelectrodes is impracticable for human studies. As such, many human studies of FC 

focus on brain activity measured non-invasively through modalities such as positron 

emission tomography (PET), MEG, and functional MRI (fMRI).  

2.6.1 Functional Connectivity using PET 
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 One early neuroimaging study that examined FC in a group of healthy controls, 

was done using PET (Friston, 1993). The study consisted of a sample of six participants, 

who underwent 12, 2-minute scans, separated by an interscan interval of 8 minutes, while 

performing a verbal task. All data was spatially normalized (using the Talairach and 

Tournoux system), time-locked to the task and averaged across the group. A recursive 

principal component analysis (PCA) was then conducted on the brain regions that showed 

a significant difference in regional cerebral blood flow (rCBF). Principle component 

analysis extracts components from the dataset that account for the variance within the 

dataset. Regions that were contained in the same principle component were considered to 

be demonstrating FC. The author’s results indicated that several spatially distinct regions 

were functionally connected during the verbal task. These regions were the anterior 

cingulate, the left dorsolateral prefrontal cortex, Broca’s area, the thalamic nuclei, and the 

CB. These regions were in agreement with previous literature about brain areas involved 

in the generation of words and were previously shown to have dense and reciprocal 

structural connections.  

Although PET imaging has been used in the past for doing FC analysis, it is not 

the optimal modality for doing such analyses. By tracing a radioactive agent that is 

injected into the bloodstream, PET images the human brain by determining brain areas in 

which rCBF has changed. It is assumed that changes in rCBF occur because those regions 

are utilizing oxygen due to increased neuronal activation. As such, PET is an indirect 

measure of brain activity. Another important point is that the temporal resolution of PET 

functional imaging is on the order of minutes. Thus, PET is likely to be missing a large 

amount of neural processes that occur on the millisecond time scale. Due to its nature, FC 
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analyzes data over time, therefore it is important to use a high temporal resolution 

modality to capture as much information as possible.  

2.6.2 Functional Connectivity using fMRI 

 Functional MRI has also been used to analyze FC during both task performance 

and at rest. Research has shown that FC can be assessed using fMRI by measuring 

interregional correlations between Blood Oxygen Level Dependent (BOLD) signals over 

time. The underlying assumption is that synchronous BOLD activity in separate brain 

regions is indicative of information transfer between these regions. However, fMRI faces 

the same issues as PET imaging. By recording the BOLD signal, fMRI also indirectly 

measures neural activity (Ogawa et al., 1990). Also, although the temporal resolution is 

not as poor as PET, fMRI can only record the brain’s response on the order of seconds, 

which is not adequate to capture brain activity occurring on the order of milliseconds. 

One study (Honey et al., 2009) attempted to uncover a possible relationship 

between SC and FC within the human brain at rest, as well as to assess the reliability of 

FC across scans (two separate scans) using fMRI. The researchers obtained resting state 

fMRI data on five participants and structural maps using DSI. Resting state FC was 

calculated by finding the Pearson correlation coefficient of the BOLD signal between 998 

regions of interest (ROIs). This study produced several useful results to consider within 

the context of SC and FC research. First, the authors found that it is not possible to infer 

SC from FC. When there was a direct structural connection between the ROIs, there was 

a higher correlation between SC and FC. However, as the distance between regions 

increased, SC tended to decrease while FC often remained. This highlights the major 

differences between SC and FC analyses, and provides evidence that although most 

structurally connected regions are functionally connected, SC does not always predict FC. 
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This is important as it showed the ability of FC analysis to locate non-directly connected, 

spatially distinct regions that are showing synchronous activity over time.   

Furthermore, FC did not exhibit intersession reliability for any of the participants, 

within and across scanning sessions. The authors note that this could be due to a 

reconfiguration of neuronal interactions, the result of signal components of an unknown 

origin, or possibly a combination of the two. These findings are important because they 

pose the possibility that determining FC through fMRI may not be an ideal approach. 

Perhaps a more direct measure of neural communication should be used when performing 

FC analyses? Using an alternate modality that directly records neural activity and 

provides more useful information, such as the frequency of cortical oscillations may 

provide more insight into the underlying neuronal communication.   

2.6.3 Examining FC at Rest: the Default Mode Network 

 Previous research has discovered a resting state network, which is known as the 

“default mode network” (DMN). It is known that regions within this network exhibit 

increased activity when participants have their eyes closed, are at rest and are not 

thinking of anything in particular. Functional connectivity within this network has been 

demonstrated multiple times using a myriad of modalities (for a review see (Broyd et al., 

2009). One particular fMRI study (Greicius et al., 2003) provided insight into how FC in 

the DMN changes between rest and task. The paradigm required 14 healthy participants 

to perform a resting block first, followed by three different tasks: a passive visual 

processing task, a visuospatial working memory task, and a face-processing task (which 

was not included in their analysis). Data from the working memory task and rest block 

were used in conjunction with a random-effects analysis to establish the ROIs with either 

decreased or increased activity during task performance. To determine the ROIs that were 
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functionally connected, the average time series of all voxels in each ROI were used as a 

covariate in a whole-brain, linear regression, statistical parametric analysis. A second 

random-effects analysis was then used to determine which regions showed FC across 

subjects between the resting state and the visual processing task. It is important to note 

however that each analysis was done independently, resulting in two separate task-related 

FC analyses. It was found that both the posterior cingulate cortex (PCC) and the ventral 

anterior cingulate cortex (vACC) were functionally connected during rest and they also 

decreased in activation during the working memory task (as previously shown). 

Interestingly, during the visual-processing task, the FC analysis revealed an identical 

change, proving that PCC and vACC were important components of the DMN. Based on 

the results, this study demonstrates that when the brain moves from rest to performing a 

task, the functional changes within brain networks can be highlighted using non-invasive 

neuroimaging.  

2.6.4 State-Related FC 

 A novel approach to FC analysis, as described in the previous example, is to 

compare neural connectivity between different states, which is referred to as state-related 

FC. By determining FC between multiple brains regions during two different states, 

comparisons can be made concerning any change in synchrony as a function of state. 

State-related FC analysis reveals any significant increase or decrease in connectivity 

based on condition, and has been used to examine the change in FC between a rest and 

task condition, demonstrating what is referred to as the task-positive network. To date 

there has been limited research examining task dependent changes in FC networks. The 

study by Bardouille and Boe (2012) described above utilized a state-related approach. 

Based on MEG data, the CCC between 80 pre-determined regions was calculated during 
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both rest and task. A partial least squares (PLS) analysis was then done to determine any 

significant differences in CCC between states. This method highlighted both a task-

positive and task-negative network. Their results indicated a functionally connected 

sensorimotor network that is significantly more synchronous during task than rest.  

2.7 Functional Connectivity with MEG 

 Much like fMRI and PET, MEG data can be utilized for FC analysis. Several 

studies have demonstrated MEG’s ability to determine coherence between spatially 

distinct regions of the brain within specific frequency bands (Bartolomei et al., 2006, 

Bassett et al., 2006, Bardouille and Boe, 2012). By directly assessing neuronal activity 

within separate regions of the brain on the millisecond time scale, MEG lends itself as the 

perfect modality for performing such analyses, and these benefits will be described 

below.  

2.7.1 Neural Basis of MEG 

 MEG was inspired from studies that recorded the magnetic fields produced by 

organs of the body, such as the heart (magnetocardiography, for a review see (Hart, 

1991). It is from here that researchers began recording components of the magnetic fields 

produced by the brain, as a function of time, termed magnetoencephalograms (Cohen, 

1972). According to Ampere’s law, when current flows through a wire (or in this case a 

neuron), it produces a magnetic field surrounding that wire. When presynaptic neurons 

activate the postsynaptic neuron, they cause postsynaptic potentials, which are 

characterized by a current flowing through the apical dendrites. This effect is amplified 

by a large factor because the white matter tracts in the brain contain millions of neurons 

bundled together, that fire roughly simultaneously. When large groups of neurons that are 

tangential to the skull are activated, the MEG scanner detects the strength and location of 
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these magnetic fields produced based on Faraday’s Law of magnetic induction. The 

magnetic fields produced from the brain, induce a current within the coiled wire in the 

MEG sensors, which is subsequently converted to voltage at each sensor location. The 

recorded field strength is indicative of neural activity. (Cohen, 1972). Figure 2 below 

shows how the magnetic fields produced in the brain project outside of the skull.  

 

 

Figure 2. Sources of magnetic fields from the brain. a) A coronal section of the brain. 

b) Magnified view of the cortex from the coronal section, showing a gyrus and sulcus. 

Current dipoles can be used to model the electrical neuronal activity that is tangential (c) 

or radial (d) to the skull. e) The activity from a tangential current dipole produces a 

magnetic field that projects perpendicular to the surface of the head, which is recorded by 

the MEG sensors. Image from (Vrba and Robinson, 2001). 

2.7.2 MEG Technology 

 Along with its advantages, MEG has several limitations. However as MEG 

technology improves,  so does the quality of the data obtained. One major problem with 

MEG imaging is that the magnetic fields generated by the brain are on the order of 10-

100 fT, which is a billion times smaller than the earth’s magnetic field. Anytime MEG 
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data is being recorded, other magnetic fields produced from sources outside of the head 

are also recorded. In fact, the MEG scanner is capable of recording the current in nearby 

power lines, magnetocardiography and other biomagnetic signals, and moving objects 

such as elevators or cars. In an attempt to reduce these artefacts, several hardware 

improvements have been introduced or improved. The MEG system used in the current 

work consists of triplet sensor arrays composed of two different super conducting sensor 

types: planar gradiometers (2 per location), and magnetometers (1 per location). The 

planar gradiometers are composed of two oppositely wound coils that measure a change 

in magnetic field (or flux) across the coils. In addition to recording sources from the head, 

they also reject any environmental noise, which should theoretically be constant across 

the coils, resulting in a flux of zero, thereby detecting only changes in magnetic field 

strength generated by the head. The magnetometers consist of only one wound coil, and 

are sensitive to deeper sources than the planar gradiometers, albeit they are also prone 

measuring external noise. It is this combination of coils that filters environmental noise 

from the signal and sends changes in magnetic fields to Superconducting QUantum 

Interference Devices (SQUIDs) in the form of electrical current. The SQUIDs then 

convert this current to a voltage and this is how neural activity is recorded. To further try 

and eliminate environmental artefacts, the MEG scanner is housed inside a magnetically 

shielded room (MSR). The MSR is made of multiple layers of mu-metal (a ferromagnetic 

material), copper, and aluminum that passively filters external noise. It also actively 

filters out external noise by creating a current opposite to that of the environment, by 

recording signals that penetrate the MSR using a subset of the magnetometers (Baillet et 

al., 2001).   
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2.7.3 Comparing MEG to Other Modalities 

 As outlined in previous sections there are a number of other commonly used 

modalities for functional neuroimaging in both non-disabled controls and clinical 

populations including PET, MEG, EEG, and fMRI. It is important to note that each 

modality has strengths and weaknesses due to the differences in both the source of neural 

activity they record, and the means in which the signal is recorded. The most important 

benefit of MEG in comparison to EEG is spatial resolution. Both MEG and EEG face the 

difficult problem of identifying neural sources based on signals recorded outside the 

brain, termed the inverse problem (Lamus et al., 2012). Compared to MEG, EEG has a 

lower spatial resolution for an equivalent sensor array density because the thick, 

conductive layer of the skull spatially smears the electric potentials it records. The 

magnetic fields recorded with MEG are not strongly affected by the skull, so sources can 

be localized with greater accuracy. Also, fluctuations in the impedance of EEG electrodes 

over the course of the scan can introduce a potential artefact in the recorded signal 

(Kappenman and Luck, 2010).  

 The main advantage of MEG, as compared to fMRI, is temporal resolution. 

Having the ability to record direct correlates of neural activity with millisecond precision 

gives MEG an advantage in temporal resolution over fMRI, which records a slower (~1s) 

neurovascular response. Many neural responses occur less than 1 second after the 

presentation of a stimulus. In fMRI recordings, these responses are temporally smeared 

together and the “order of operations” cannot be determined. Therefore, it is important to 

be able to record with millisecond temporal resolution. Also it is important to note that 

fMRI measures changes in blood flow to regions of the brain that are active during a 

given task. As such, fMRI is an indirect measure of neural activity (Ogawa et al., 1990). 
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The magnetic fields produced by the brain, however, are directly caused by neuronal 

activation.  

2.8 What is Graph Theory? 
 
 As described above, FC analysis highlights the communication between neural 

regions underlying the performance of a motor task. While determining the synchrony 

between regions is useful there is a need to quantify and characterize network parameters. 

Once functional connections are determined between separate brain areas, within specific 

frequency bands, these connections can be quantified using graph theory, which is a tool 

for characterizing networks. Within the world there exists a large number of diverse and 

complex networks. These may take the form of social networks (e.g., a person’s group of 

friends), artificial networks (e.g., network connections established through the internet), 

and biological systems such as the connections between separate brain regions, among 

many more. On a macroscopic scale, all of these complex systems share key 

organizational principles that can be quantitatively characterized by a set of pre-

established measures or parameters (Bullmore and Sporns, 2009).  These measures are 

based on the mathematical study of networks, known as graph theory. Within graph 

theory, a network is defined as a mathematical representation of a real world network. 

The mathematical representation is composed of vertices called “nodes” that are 

interconnected through “edges” (Rubinov and Sporns, 2010). There are several 

classifications of edges, determined by their direction and weight. An edge may be 

undirected, which is denoted by the presence of one connection between two nodes, 

irrespective of direction of information flow. Alternatively an edge may be directed 

which means that a connection begins at node i (output) and ends at node j (input), and is 

only considered to send information from i to j and not vice versa. An edge may also be 
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weighted meaning that the strength or reliability of the connection is quantified. 

Alternatively, an edge may be unweighted meaning that it is quantified using a binary 

system (i.e., a connection = 1, no connection = 0). Using these measures a neural network 

may be weighted-directed, weighted-undirected, binary-directed or binary-undirected 

(this being the simplest form of a network). It is believed that graph theory originated 

from a problem titled ‘the bridges of Konigsberg’, illustrated by mathematician Leonard 

Euler. In order to prove that one could not traverse the town of Konigsberg by crossing 

each of the seven bridges once, Euler drew a “graph” to represent the city and its multiple 

bridges (Stam and Reijneveld, 2007).   

2.8.1 Complex Networks are Small-World Networks 

 Since the discovery of graphs, they have been analyzed using multiple measures 

and many similarities between networks have emerged. One important discovery was that 

complex networks often exhibit “small-world” characteristics. These networks contain a 

high local clustering of nodes (i.e. nodes have many shared connections), paired with 

short path lengths between nodes, where shorter paths indicate a more efficient network 

(Humphries and Gurney, 2008). The first demonstration of small-world architecture was 

shown experimentally by Milgram (Milgram, 1967). The goal of his experiment was that 

each of his randomly chosen Nebraskan participants (N=160) had to send a letter to a 

specific target person in Boston (everyone had the same target). However the caveat was 

that the letter could only be sent to a person the participant knew on a first name basis 

that they thought might know the target person, or a person closer to the target. Milgram 

then analyzed the data based on chain length, that is the number of intermediate persons 

between the starting person and the target. The results show that the median chain length 

for each letter was five, and had a range from 2-10 intermediates. This result is surprising 
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because as the study predicts, the chance that any two randomly chosen people in the 

United States would know each other is 1 in 200,000 (.0005%). One methodological 

issue was that of the 160 original letters sent, 126 were dropped. Milgram hypothesized 

that some were dropped due to lack of a connection to complete the task as well as failure 

to comply; therefore the average chain length may be longer. Regardless, based on this 

study, it is evident that human social networks are complex, small-world networks.  

2.8.2 What are Specific Network Measures? 

 One of the more useful network measures used in graph theory is determined by 

finding how many connections a given node has with other nodes, termed node degree 

(Figure 3 a). Logically it can be assumed that a node in a network with the highest degree 

can be thought of as having great importance within the network. In the context of 

neuroimaging, a change in node degree within an area of the brain may be indicative of 

neural reorganization after task practice or perhaps after a neurological injury. When a 

node is connected to another node, they are termed neighbors. A cluster is formed when 

the neighbors of a node are also neighbors of each other (Bullmore and Sporns, 2009). 

The clustering coefficient (C, Figure 3 b) is the ratio of the number of connections 

between neighboring nodes (i.e., clusters) to the maximum number of possible 

connections (Watts and Strogatz, 1998). It is expected that a complex network would 

exhibit a high clustering coefficient, whereas a random network should exhibit a low 

clustering coefficient. The mean characteristic path length (L) is the average path length 

across a network, where path length is a measure of the shortest number of edges that 

have to be traversed to reach a given node (Figure 3 c). For example, in the figure, node 

A is connected to node B through two nodes, giving a path length of 3. Network 

efficiency is inversely related to path length (Bullmore and Sporns, 2009).  
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 Another important measure, which has briefly been described above, is the small-

worldness (S) of a network. Small-worldness can be calculated by finding the ratio 

between the C and the L of a network (CN and LN), as compared to values for C and L 

generated from a random network (CRand and LRand) using the following equation; 

(CN/CRand) / (LN/LRand) (Humphries and Gurney, 2008). The definition for a small-world 

network implies that the real network will have a much greater C than the random 

network; CN/CRand >>1, and the real network will have a L no less than that of a random 

network: LN/LRand ≥ 1. Therefore a small-world network should have an S > 1, indicating 

an efficient network composed of clusters of nodes interconnected by short paths (Watts 

and Strogatz, 1998). For example a network with S = 4 would be considered more small-

world than a network with S = 1.  

 

Figure 3. Schematic Diagram of Graph Theory Metrics. A) Node degree. The central 

node on the left of this diagram has a degree of 6, indicated by connections (thick black 

lines) to other nodes. B) Clustering coefficient. The central node in this diagram has 6 

neighbors (connections) indicated by dashed lines, who have a total of 8 connections 
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(solid lines) out of a possible 15. Therefore the central node’s clustering coefficient is 

8/15 = 0.53. C) Path Length and Distance. Between nodes A and B, there are 2 

intermediate nodes, giving a path length of 3 between them. From (Sporns, 2011). 

2.8.3 Converting Neuroimaging Data into a Graph 

 Although the mathematical study of graphs has been ongoing for some time, more 

recently graph theory has been applied to neuroimaging data in an attempt to quantify 

patterns in brain activity. This application will further help us understand the complex 

nature of neural communication. Using data obtained from various neuroimaging 

modalities, nodes can by defined by ROIs, and edges can be defined based on 

connections either structurally (via white matter tracts) or functionally (through temporal 

correlations in activity). The data can then be examined in the context of a graph, and 

network analytical measures can be applied.   

2.8.4 Applying Graph Theory to Neuroimaging Data 

 The first example of a graph theoretical application to neuroimaging data was on 

the anatomical structure of a worm (Watts and Strogatz. 1998). Watts and Strogatz 

converted the worm’s anatomical network into a graph consisting of 282 nodes with an 

average of 14 edges per node. An edge was defined as two neurons being connected by 

either a synapse or gap junction. In order to calculate whether the network was a small-

world network, the authors had to find the L and C of the actual network. They then 

found the L and C of a random network by generating a network with the same number of 

nodes that had a specific probability of edges between node pairs. Although the Lactual 

(2.65) and Lrandom (2.25) were similar, the Cactual (0.28) was much greater than the Crandom 

(0.05). The ratio of C/L produces a value >>1, indicating a small-world network. This 

study was the first that established a neural network as being a small-world network.  
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2.8.5 Graph Theory Applied to Human FC Data 

 Studies have since been conducted on human participants and have applied graph 

theory to FC data. One such study (Bassett et al., 2006) calculated a variety of graph 

theory measures from MEG data obtained from 22 healthy controls. The participants 

were either performing a dominant (right) handed finger tapping task (N=11) or an eyes-

open rest block (N=11). The dataset was divided into six specific frequency bands that 

ranged from delta to gamma (1.1Hz - 75 Hz). They calculated average node degree, C, L, 

and an S value for each band, for both conditions. The results indicate that across all 

frequency bands as well as between conditions the measures are consistent with and 

characteristic of a small-world network. Surprisingly, there were no major differences 

between conditions, apart from the presence of longer paths between frontal and parietal 

regions within the beta and gamma bands during motor task performance. These results 

pose the possibility that both the resting state network as well as the motor network are 

both efficient, small-world networks. Another study that applied graph theory to FC was 

conducted by Bardouille and Boe (2012). Using MEG they determined FC within the 

beta and gamma frequency bands in the sensorimotor network while participants 

performed a bilateral upper limb task. After the functional connections were elucidated, 

graph theory was used and node degree for each region of interest was calculated. The 

results showed that regions of the sensorimotor network such as the SMA and M1 

expressed a high node degree.  

2.8.6 Graph Theory and Clinical Populations  

 Graph theoretical analysis has the potential to be a clinically beneficial tool. By 

quantifying changes in FC via graph theory between two networks, researchers can 

compare networks in healthy non-diseased brains to patient’s brains. One study 
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(Bartolomei et al., 2006) compared the brains of 15 healthy controls to the brains of 17 

patients who had either a left or right hemisphere tumor. One of the major purposes of the 

study was to determine if a tumor results in a decline in the small-world architecture that 

accompanies a complex neural network. Using MEG, neural activity was recorded during 

an eyes-closed no-task state for all participants. The authors used a synchronization 

likelihood measure to determine FC, which statistically determines any interdependencies 

between brain regions during two time series. Using the MEG channels as nodes, they 

then created a binary-undirected matrix representative of any connectivity between 149 

pairs of nodes. The C and L for both participant groups were calculated for the gamma 

(26-60Hz), beta (13-25), alpha (9-12Hz), theta (4-8Hz), and delta (0.5-4Hz) frequency 

bands. Although the results are difficult to interpret as there were differences related to 

the side of the tumor, there was a decline in small-world architecture in the patient group. 

Within the theta and gamma bands, the ratio of C/Crandom was lower for patients with 

right-sided tumors than for controls. Also in the theta band, beta band (for left sided 

tumors) and gamma band (for right sided tumors) there was a decrease in the ratio of 

L/Lrandom, for patients as compared to controls. A random network configuration is 

characterized by low ratios for both the C/Crandom and the L/Lrandom. These results 

demonstrate that FC in the damaged brain is closer to a random network in that it is not as 

highly clustered as the healthy brain’s network and the path lengths are longer. This may 

help explain the fact that patients with brain tumors exhibit deficits not directly related to 

the location of the lesion. There is an overall functional alteration within the brain, 

possibly because its efficiency as a complex network is reduced.   

 Graph theory has also been used to examine the small-world properties of patients 

with schizophrenia. Micheloyannis et al. (Micheloyannis et al., 2006) used the 
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synchronization likelihood measure to determine the FC in healthy controls, and patients 

with schizophrenia who were stable enough to work and currently taking medication. 

Electroencephalography scans were done while patients were either at rest or performing 

a variety of cognitive tasks, including a two-back working memory task. Compared to 

controls, during the working memory task the C/Crandom ratio was lower for the 

schizophrenia group in several frequency bands (alpha, beta, and gamma). Also at rest, 

the L was higher in the schizophrenia group in the alpha band, as compared to the control 

group. Although the results vary between condition and frequency band, the study shows 

that the schizophrenic brain is closer to a random network than the healthy control brain.  

 Combining these two aforementioned studies, we can see that both a tumor and a 

psychological disorder are capable of disrupting the ‘standard’ pattern (as shown by 

healthy controls) of communication within the brain. This in turn changes the functional 

connectivity of the brain, resulting in a neural network that has the tendency to be closer 

to a random network, and not a highly efficient complex small-world network.  

2.9 Imaging the Motor Network – Early Research Into Functional Localization 
 
 One of the major discoveries that helped establish the motor network that has 

been imaged and described above occurred in the 1930s (Penfield, 1937). Over a 10-year 

period, Penfield and Boldrey (1937) conducted microelectrode stimulation on the cortical 

surface of 196 patients who were undergoing neural surgery. While the cortex was 

exposed, they would stimulate various regions adjacent to the central sulcus (along the 

motor and sensorimotor cortex), while increasing the stimulation strength until a positive 

behavioral response was observed. Any response that was reproducible was then marked 

by laying a piece of paper on the brain’s surface at that point. It is important to note that 

this research was focused on only motor and somatosensory responses. Their results 
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indicated a very large number of regions on the cerebral cortex responsible for evoking 

sensation and movement over the entire body, including the tongue, face, feet, and hands. 

This study provided important insight into the role of various cortical regions (most 

importantly M1) and has informed much of neurophysiology literature since that time. 

2.9.1 Imaging the Motor Network – The Importance of the SMA 

 We know the brain is a network so it is important to understand how multiple 

brain areas work together to produce movement or sensation. A large body of 

neuroscience research now shifts its attention from specific focal regions to examining 

FC during somatosensation and movement. As outlined above, using modern 

neuroimaging technology it is possible to have a participant voluntarily perform a 

movement and non-invasively record neural activity at the onset of that movement (i.e., 

an event-related analysis) or throughout the movement (i.e., a state-related analysis). This 

recording ability enables the recording of changes in activity of multiple regions 

simultaneously over a specified time interval. Of the many regions composing the 

sensorimotor cortex, one study highlighted the importance of the SMA in voluntary 

movement using neuroimaging technology (Orgogozo and Larsen, 1979). Using PET 

imaging, the researchers had five participants perform various motor actions such as 

performing complex hand or foot sequences, simple repetitive foot motions, counting 

aloud, and finally counting mentally (no movement condition). They recorded CBF to the 

SMA among other regions and found that during each different motor activity there was 

an increase of CBF to the SMA in addition to the sensorimotor cortex. However, during 

the mental counting task blood flow was not increased to the SMA, highlighting its 

importance to tasks that require movement, irrespective of complexity. Although this 

experiment used patients who experienced focal epileptic seizures, it did use a 
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neuroimaging modality to image the brain during movement and several studies have 

since confirmed the role of the SMA in movement (Roland et al., 1980, Shibasaki et al., 

1993).  

2.9.2 Imaging the Motor Network – The Importance of Laterality 

 Due to the complexity of the brain, it is important to note that different behavioral 

tasks may result in activation in different regions of the brain. For example a task that 

requires moving the lower extremities will elicit different neural activation than a task 

that requires the upper-limbs (ULs) (Kapreli et al., 2006). Activation patterns also depend 

on task complexity (Rao et al., 1993), and on the side of the body performing the 

movement. Many studies have demonstrated that there is a relationship between brain 

activity and the side of the body that moves using modern neuroimaging technology. For 

example, Kim and colleagues (Kim et al., 1993) used a 4T MRI to obtain a higher signal-

to-noise ratio as well as better spatial resolution than PET imaging for mapping the motor 

network. For the study, six participants (five right handed and one ambidextrous) were 

required to make repetitive opposition movements between the thumb and four fingers 

using either hand (separate conditions) or both hands together (bilaterally) while activity 

was recorded from right M1 only. The authors found that the activated region was similar 

for contralateral (left) and bilateral (both) hand movements, but the activated area was 20 

times smaller for ipsilateral (right) hand movements. The intensity of activation for each 

voxel was generated by finding the difference between average baseline and task-induced 

activity, with results showing that the intensity was 2.3 times greater in the contralateral 

condition. Although results of this study were limited in that it only explored a single 

region within one hemisphere, it did highlight the importance of the contralateral M1 in a 

simple behavioral paradigm.     
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 Other studies, including one by Grefkes et al. (Grefkes et al.), have also 

demonstrated the lateralization of neural activity using whole-head imaging. For this 

study, participants (N =14) performed whole-hand fist closing movements at a rate of 1.5 

Hz with either their dominant, non-dominant, or both hands (three separate conditions) 

during imaging with fMRI. Compared to rest, the visually paced hand movements 

activated the extrastriate visual cortex, sensorimotor cortex, SMA, PMC, inferior 

precentral sulcus, the secondary somatosensory cortex (S2), and the thalamus. More 

importantly, the right-handed movements primarily activated left hemispheric areas and 

the left-handed movements primarily activated the right hemisphere. Also, compared to 

unilateralized movements, the bimanual condition significantly increased activation in the 

SMA. Again we see the SMA’s importance in tasks requiring UL movements, as well as 

the predominant contralateral motor network activation. This lateralization provides 

information for researchers to use during experimental design. Depending on the specific 

hypothesis and expected regions of activation, choosing the proper task is of critical 

importance.  

2.9.3 Imaging the Motor Network – Differences Between Unilateral and Bilateral 

Movements 

 As discussed above, the patterns of brain activity change resulting from 

movements from the dominant or non-dominant limb independently. Furthermore, it has 

also been shown that patterns of brain activation significantly change between a unilateral 

and a bilateral task. Specifically, the resulting activity from a bilateral task is not simply 

the superposition of the results of two separate unilateral tasks using each limb (Carson, 

2005). There are underlying complex interactions that involve inter-hemispheric 

excitation and inhibition to successfully perform a given bilateral motor task. As an 
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example of this inter-hemispheric inhibition, research has shown that muscle activity is 

temporally decreased when transcranial magnetic stimulation (TMS) is applied to the 

ipsilateral M1 of participants who are maintaining a tonic contraction (Ferbert et al., 

1992). This inhibitory mechanism between the motor regions ensures that the opposite 

upper-limb does not mirror movements from the active limb. This is also confirmed by 

the finding that during bilateral mirror movements of the wrist, this inhibition is 

suppressed (Stinear and Byblow, 2002). Furthermore, neuroimaging studies have 

revealed differences in neural activation between performing the same task with a single 

limb or both limbs. One study (Sadato et al., 1997) used PET imaging to show 

differences within the SMA and PMC during finger movements. Participants were 

required to perform repetitive index finger abduction-adduction movements during a left 

only, right only, bimanual mirror or bimanual parallel condition. The authors note 

differences in regional activation across all conditions used. The right index finger 

activated the left sensorimotor cortex (composed of the S1 and M1), the SMA and the 

right CB. The left finger movements activated the right sensorimotor cortex, the anterior 

cingulate gyrus, the posterior SMA, left PMCv, and left CB. The bimanual movements 

activated the sensorimotor cortex, basal ganglia, inferior parietal lobe and thalamus 

bilaterally as well as the right prefrontal cortex. Furthermore, the right PMCd and right 

SMA showed significant activation during the parallel movement compared to the mirror 

movement. The authors argue that SMA is required for the synchrony of bimanual 

movements and for the bimanual coordination of parallel movements. They also posit that 

the PMCd is responsible for integrating information responsible for sequential finger 

movements between different limbs. These results highlight the widespread differences in 

neural activation that occur between unilateral and bilateral movements. Another study 
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that examined changes in neural activation during the performance of bilateral and 

unilateral motor task used fMRI to examine changes resulting from a sequential finger-

tapping task (Nair et al., 2003). Subjects performed a sequential finger-tapping task with 

both hands separately (2 conditions) or both hands simultaneously (1 condition). The 

results showed that activity during bilateral movements compared to the left-handed 

movements was greater in the left sensorimotor cortex, bilateral superior parietal lobes, 

SMA, and the bilateral CB. Significant differences were also found between bimanual 

and right-handed finger movements as indicated by enhanced activity in the right 

sensorimotor cortex, SMA, left precuneus and bilateral CB. Furthermore there were 

significant differences in activation between the left and right only conditions. Based on 

these results it is evident that the patterns of brain activation change between bilateral and 

unilateral movements, and more importantly the changes are different depending on the 

limb performing the activity.  

 These aforementioned studies highlight the fact that there are complex 

interactions between brain regions depending on the nature of the task (bilateral vs. 

unilateral). This is an important point to consider when designing neuroimaging 

paradigms. In order to isolate the activation resulting from a single limb on one side of 

the body, the experiment must require the use of that limb only. One cannot measure 

brain activity during a bilateral motor task and segregate limb-specific lateralized activity 

because bilateral movements produce different results than the combination of unilateral 

movements alone.  

2.9.4 Imaging the Motor Network – Neural Changes Based on Varying Grip Task 

 Not only does the side of the body used result in different patterns of neural 

activation, but the type of task performed also produces significantly different activation 
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patterns. To date several studies have examined the changes in brain activity between a 

precision grip task and a power grip task. One such study (Ehrsson et al., 2000) compared 

neural activity using fMRI while non-disabled participants (N=5) performed either a 

precision grip or a power grip task with their dominant (right) hand. A power grip is 

characterized by a palmar opposition grasp where the digits flex around the object for 

stability and force (Napier, 1956, Ehrsson et al., 2000). A precision grip is defined as 

gripping an object between the flexor aspects of the fingers and the opposing thumb 

(Napier, 1956). The authors found that both grips elicited significant activity in the 

primary sensorimotor cortex (defined by Ehrsson et al. (2000) as “the cortical motor areas 

with the exception of the cortex in the depth of the central sulcus”) contralateral to the 

grasping hand, PMd, postcentral sulcus, ventral premotor cortex (PMCv), precentral 

gyrus, cingulate sulcus, contralateral parietal operculum (PO) and left thalamus. Also, 

compared to precision-grip, during power-grip there was significantly stronger activity in 

the contralateral S1, M1 and PO. Another study (Takasawa et al., 2003) used PET 

imaging with a similar paradigm except the participants (N=7) did not squeeze an object 

when gripping. Rather, they only performed the movement. Their results indicated that 

there was no observable difference in neural activity between the two tasks. These mixed 

results then prompted another study (Kuhtz-Buschbeck et al., 2008) that also used fMRI 

and a similar varying grip task. Participants (N=14) were required to repetitively squeeze 

a non-flexible force transducer with their dominant (right) hand using either a power grip 

or a precision grip. The task was further divided into an eyes-closed condition or a visual 

feedback condition that showed percentage of maximum voluntary contraction (MVC). 

During the eyes closed condition, the precision grip task activated the left M1/S1, left 

dorsolateral PMC, the SMA, bilateral CB, and bilateral foci in the insular and opercula 
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cortex. The power grip task activated the same regions as the precision grip as well as the 

thalamus, basal ganglia, and the right supramarginal gyrus bilaterally. The visual 

feedback condition also activated the same regions, as well as bilateral activations of the 

occipital and bilateral posterior parietal areas. There were no brain regions more active 

during the precision condition but the power grip task caused significantly greater 

activation in the left precentral gyrus and the right CB. The authors also report a positive 

linear increase in activity along the left central sulcus and the right CB with increasing 

grip force. Despite previous discrepancies in brain activation between two grip tasks, 

Kuhtz-Buschbeck et al. (2008) have shown in a relatively large sample that there are in 

fact differences in activation dependent on the task used. More related to the present 

study they have also highlighted several areas involved with a unilateral upper-limb 

power grip task.  

 In addition to the literature showing a difference between regions activated 

depending on the task used, studies have also shown that different tasks are associated 

with distinct patterns of neural oscillatory activity. One study used MEG to demonstrate 

that varying degrees of force result in different synchronous oscillations between the 

muscle used and contralateral M1 (Brown et al., 1998). To accomplish this, participants 

performed weak (20-40%) and maximal (100%) voluntary contractions of their right 

wrist and ankle (against a plastic restraint) while EMG (from the active muscle) and 

whole-head MEG were recorded. Coherence and time domain analyses were conducted 

to determine synchrony between the muscle and contralateral Rolandic area of the brain. 

The authors conclude that during weak contractions of both limbs, there is a clear peak in 

CMC within the 20-30 Hz (beta) frequency band. During maximal voluntary contractions 

of both limbs, the peak in coherence moved to the 35-60 Hz range. Notably, this was one 
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of the early MEG studies to provide early evidence of coherence between muscle and 

contralateral MI. A more recent study specifically examined CMC within the gamma 

(>60 Hz) frequency band, using MEG and EMG (Muthukumaraswamy, 2011) while 

participants performed 3 different motor tasks. The first task required simple abduction of 

the index finger, the second task required repetitive abduction of the same finger, and the 

third task required isometric contraction of the 1DI muscle against a medium (3N) or 

large (6N) force. The authors examined contralateral M1 response to each task as well as 

any potential coherence between the muscle’s EMG and contralateral M1. The main 

finding was that although all three experiments resulted in a burst of gamma band activity 

in the contralateral M1, the third experiment, which required greater force than the other 

two, did not result in a CMC pattern within the 30-50 Hz range. The first two 

experiments showed CMC within the 30-50 Hz rhythm as well as cortical activity in the 

gamma and beta frequency band, whereas the third experiment only showed a burst in 

gamma activity. These results again support the possibility that the gamma band is 

involved in motor tasks requiring a greater force, whereas tasks requiring less force 

produce activity in the beta band.  

2.10 Current Project 

 The current project will use graph theory in conjunction with CCC analysis of 

MEG data to identify the neural network associated with a unilateral UL task in a group 

of non-disabled participants. Due to its combination of temporal and spatial resolution, 

MEG is an optimal tool for conducting FC analysis and has also proved to be a useful 

tool for applying graph theoretical measures to the functional data recorded (Bassett et 

al., 2006, Bardouille and Boe, 2012).  
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Despite the variation in data analysis techniques and modalities used for recording 

purposes, motor networks associated with UL tasks have been identified previously 

(Grefkes et al., 2008, Kuhtz-Buschbeck et al., 2008, Bardouille and Boe, 2012). In 

general, these previous studies are lacking the application of analysis techniques to 

quantitatively characterize the motor network. Applying graph theory to results obtained 

through CCC analysis has permitted the quantification of these parameters for the neural 

nodes of interest. As previously described, the study by Bardouille and Boe (2012) 

utilized FC in conjunction with graph theory to successfully quantify the sensorimotor 

network. However their paradigm had participants perform a bilateral UL task in the 

MEG environment. While a bilateral task does elucidate the network underlying motor 

task performance it does not allow the separation of the brain regions that interact during 

a unilateral task alone. Gaining insight into the unilateral network is important for future 

applications of this knowledge to populations with unilateral brain lesions that result in 

hemiparesis, such as the case of stroke. The current project will implement a unilateral 

task but follow closely a similar analysis paradigm.  

Using state-related CCC analysis techniques, the current study will examine 

differences in activation between the spatial pattern of FC observed during performance 

of a visually cued unilateral power gripping task and the pattern of FC during rest to 

elucidate the neural network that is activated during motor task performance.  

Hypothesis 1: It is hypothesized that there will be a significantly different pattern of 

FC during the task than during rest.  

Hypothesis 2: Furthermore, FC will increase predominantly between nodes of the 

sensorimotor network that are contralateral to the movement. Specifically, increased 

connectivity is expected between nodes in the contralateral M1, PMCv and PMCd 
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respectively as well as the ipsilateral CB, and the SMA. Also, since it is a visuomotor 

task, increased connectivity is also expected between V1 and regions of the sensorimotor 

network.  

Hypothesis 3: A task-related increase in FC will result in an increased node degree 

for regions in the task-positive network, indicating their importance within the network. 

In relation to graph theory, it is hypothesized that the SMA will have the highest node 

degree, proving itself to be a hub between separate neural areas involved in a visuomotor 

task. This is based on the previously discussed findings of the significant activation of the 

SMA in a myriad of motor tasks. 

It is also important to note that the current project is a portion of a larger study that 

plans to test post-stroke patients on the same paradigm used in the present study. 

Comparisons will be made between patients and non-disabled controls in an attempt to 

uncover differences in the network nodes and the nature of their configuration. The 

current study will determine the sensorimotor network efficiency through calculating 

mean path length as well as clustering coefficient. Also it will determine if the 

sensorimotor network is a small-world network. Determining these values will establish a 

baseline pattern of ‘normal’ network efficiency, to which patient data collected in the 

future will be compared. This will in turn guide future studies that use neural stimulation 

as a rehabilitative tool. Providing researchers with information about the importance of 

different neural regions in the sensorimotor network can help increase the efficiency of 

the rehabilitative process, resulting in greater behavioral outcomes for patients. To date, 

studies that used brain stimulation as a rehabilitative tool have focused on the primary 

motor cortex only (Grefkes et al., 2010). However, comparisons between patients and 
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controls may highlight novel, more functionally important areas within the sensorimotor 

network (e.g., having a high node degree) to be used as potential stimulation sites. 
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CHAPTER 3: METHODS 
 
 
3.1 Participants  

 The study involved 21 young (20-34 years old, 25 ± 4, 12 females), healthy, right-

handed participants who were free of neurological impairments as well as being both 

MEG and MRI compatible as determined by a pre-screening form (See Appendix A). 

Handedness was confirmed using the Edinburgh (Oldfield, 1971) handedness 

questionnaire (See Appendix B, group score = 76 ± 17). All participants were given $25 

at the onset of the study to offset costs associated with study participation (e.g., parking, 

transportation). The study was approved by the Research Ethics Boards of the 

participating institutions, including the IWK Health Centre, Capital District Health 

Authority, and the National Research Council of Canada. Written informed consent was 

obtained from each individual before participation. 

3.2 Task Choice  

 For the current project, all behavioural and neuroimaging data was acquired while 

the participant performed a unilateral UL task in the MEG scanner. The task was 

designed to elicit activation in brain regions related to motor task performance, as well as 

being accessible to patients post-stroke with intact ability for mass grip with the affected 

UL. 

Being a unilateral task, it is expected (in non-disabled participants) that the 

majority of activation will occur in the hemisphere contralateral to the limb used for task 

performance, apart from the ispilateral CB. Previous research has shown that using a 

bilateral task causes neural activation across the entire brain, making it more difficult to 

localize activity produced by a specific limb (Boe and Bardouille, 2012). In patients who 
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have had a stroke, cerebral infarcts are almost always unilateral in nature, therefore it is 

important to only examine lateralized hemispheric activation in healthy controls. In the 

future phase of the current project, when stroke patients are scanned, the activity will not 

be confounded by bilateral limb activation, enabling us to infer that contralesional 

activation is likely caused by the compensatory changes in the brain following stroke. 

Another important feature of the task is that it requires a power grip (i.e., all 4 fingers, 

thumb and the palm), as opposed to a pinch grip or other motor task requiring a finer 

degree of motor control. The use of a power grip task will enable a large cohort of 

patients to be involved with the study in the future.   

3.2.1 Task Overview 

 The task utilized in the current study was a custom-designed visuomotor paradigm 

programmed and presented using the Presentation software package (Neurobehavioral 

Systems, Albany, CA). The visuomotor paradigm was projected from outside the MSR 

through a series of mirrors onto a screen placed in front of the participant. The screen was 

placed one meter in front of the participant, and the projector was adjusted such that the 

main task screen was 27 centimetres tall to ensure a consistent, appropriate visual angle 

for all participants. Due to the effect eye movements have on MEG imaging data (i.e. 

artefacts), it was important to ensure participants could view the entire paradigm without 

having to move their eyes. The task required participants to use a power grip to squeeze a 

MEG-compatible force sensor (Current Designs, Philadelphia, PA, see Figure 4) with 

their non-dominant hand when prompted, to move a cursor vertically towards a moving 

target. The distance the ball moved was directly proportional to the force used to squeeze 

the sensor. The force generated by the participant was transmitted to the acquisition 

computer as a voltage. Once a response was made, the software determined the strength 
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of force of the response and generated movement of the ball on screen by converting the 

voltage from the device into the distance moved on screen. The harder the grip was 

squeezed, the greater distance the ball would travel.  The target was a horizontal grey bar 

that moved repeatedly up and down the screen at a constant speed. The task was designed 

so that the target bar had an equal probability of being in any of 10 equally sized regions 

of the task screen. This ensured all participants would be required to use a soft, medium, 

and strong grip equally in order to achieve a high degree of accuracy. The maximum grip 

force was roughly 25% of MVC.   

 

 

Figure 4: Grip Force. Grip Force (Current Designs, Philadelphia, PA) used by all 

participants during the task. It was held with their non-dominant (left) hand using a power 

grip. Once the participant made their response by squeezing the device, the voltage 

(power) was translated to the distance that the cursor moved on screen.   

Performance-related outcomes were recorded, including accuracy (number of 

times the cursor either landed on (‘hit’) or did not land on (‘miss’) the target bar) and 
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error (distance between the ball and the target). The behavioural data will be subjected to 

analysis in a parallel study (unrelated to this thesis) to examine learning related changes 

and underlying brain activity. For the present study, performance data allowed us to 

assess participant engagement in the task, which is important to ensure all participants 

were focusing on the task, thereby providing a similar level of arousal across all 

participants.  

3.2.2 Task Details 

 Each study session was divided into 7 blocks comprised of rest, test or training, 

with the test and training blocks made up of 700 trials of the visuomotor task. MEG data 

was collected throughout all study blocks. The first block was a 5-minute ‘Rest’ scan, 

which required the participant to sit still in the MEG scanner with their eyes closed while 

we recorded a baseline measurement of neural activity. The second scan block contained 

50 ‘test’ trials, wherein the ball turned invisible upon squeezing the force sensor and no 

feedback was given to indicate if they hit or missed the target bar. The third, fourth and 

fifth blocks included 200 ‘training’ trials each, wherein the participant could see the ball 

move and they also received visual feedback on whether they hit or missed the target 

(“Great Job” or “Try Again”). The sixth block was exactly like the first task block and 

was considered a final test block to assess changes in performance. An additional rest 

block was completed as the seventh block. As well, the software (via the presentation 

computer) sent event markers (or triggers) to the MEG electronics to indicate the timing 

of all events in the paradigm during task performance. There were 6 types of triggers in 

total, “Relax”, “Cue”, “Go”, “Move”, as well as Incorrect Feedback, and Correct 



	
  

	
   48	
  

Feedback.  

 

 

Figure 5: The timing for 1 single trial of the Test block. Each trial lasts approximately 

5.5 seconds. A trial begins with the Relax phase (red cursor), followed by the Cue 

(yellow cursor), and finally the Go (green cursor), whereby the participant is required to 

make their response in less than 0.67 seconds. The cursor then disappears for the move 

(invisible).  

 Figure 5 shows the timing for a single trial of the paradigm during the test blocks. 

Each trial began with the ‘Relax’ phase, wherein the ball was red for a random interval 

between 2 and 2.5 seconds. The presentation of a yellow ball cued the participant that the 

‘Go’ phase was imminent. This ‘Cue’ phase lasted for 1 second. The ball then turned 

green (‘Go’) and the participant had 0.67 s to make a response. Participants were 

instructed to make their response as quickly as possible following the ‘Go’ cue. If 

participants waited longer than the 0.67 seconds, the trial was skipped and scored as a 

miss. In the test blocks, the ball turned invisible when the response was made and the 

participants were not given feedback about performance. However, the Presentation 
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program still recorded the final position of the target bar and cursor (after an invisible 

movement). In the Training blocks, participants were able to see the ball move based on 

the applied force, and words appeared on screen to tell the participant whether they were 

correct or incorrect (“Great Job” or “Try Again” respectively).  

 It is important to note that the present study only analyzed data from the first rest 

and test blocks. All other blocks were recorded as a part of the larger study described 

above and will be analyzed in the future.  

3.3 Choice of Response Device  

 Preliminary work determined the parameters for the force grip device used in the 

study. To do this, a group of 20 participants (23-36 years old, 27 ± 5 years, 9 females) 

were randomly chosen and asked to perform a maximal power grip using a handheld 

dynamometer (JAMAR; Sammons Preston Inc., Warrenville, IL). Each participant was 

asked to sit, holding the dynamometer upright in their non-dominant hand while keeping 

their arm at their side with their elbow at 90 degrees of flexion. Participants were given 3 

trials (with a 30 second break between trials) to squeeze the dynamometer as hard as they 

could resulting in a maximum grip force of 368.5 ± 72.0 N (Table 1). The imaging 

paradigm was designed to have participants work at a submaximal level to ensure they do 

not experience muscle fatigue and also to ensure that in the future phase of the study, 

patients post-stroke can participate. Based on this requirement, a MEG-compatible force 

sensing device with a range of 100 N was chosen, which is roughly 25% of the maximal 

power grip exerted by a group of young healthy controls.  

 

Table 1. Maximal Power Grip Results. The table provides participants’ ages, gender, 

and the average force produced after 3 consecutive maximal grips.  
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Participant Age Gender Average Force (N) 
1 27 M 476.6 
2 23 M 464.0 
3 25 M 464.34 
4 28 F 320.46 
5 22 F 281.22 
6 25 M 444.72 
7 23 M 418.56 
8 23 F 294.3 
9 25 F 333.54 
10 22 F 359.7 
11 21 F 287.76 
12 23 F 340.08 
13 34 F 300.84 
14 34 M 418.56 
15 36 M 405.48 
16 36 M 431.64 
17 25 M 444.72 
18 26 M 287.76 
19 23 F 268.14 
20 31 M 333.54 

Average 27  368.86 
Standard 
Deviation 5  72.06 

 

3.4 MRI Acquisition 

 In order to maximize the spatial localization accuracy of MEG imaging, all 

participants had a structural MRI which was used in a later step whereby neural activity 

recorded using MEG was overlaid onto each participant’s own MRI.  

 All participants were pre-screened before entering the MR scanner (see Appendix 

A for the pre-screen form). This ensured that participants did not have metal in their 

bodies, any psychological illness, or any other factor that would preclude their 

participation or influence the results of the study. Also before entering the scanner, 

participants were required to change into a hospital gown, to ensure their clothing did not 
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produce any artefacts within the magnetic field. Participants were then placed in the 

scanner and given a blanket.  

 All 3D anatomical images were collected using a 1.5T MRI scanner (GE Medical 

Systems, Waukesha, WI) operated by and located in the IWK Health Centre. T1-

weighted images were collecting using a fast-spoiled gradient echo with inversion 

recovery prep sequence. The following parameters were used: field of view = 25.6 cm, 

slice thickness = 2mm (with a Zip2 factor resulting in a 1mm slice), frequency = 256, 

phase = 256, one excitation, bandwidth = 15.63 Hz, TE = Min Full, flip angle = 12°, prep 

time = 400 ms, number of slices = 108.   

3.5 MEG Acquisition 

3.5.1 Participant Preparation 

 When each participant entered the MEG lab, they were asked to remove any 

metallic objects they may have on their person. This included, but was not limited to, 

jewellery, phones and keys. Each participant was then shown the MEG scanner, and 

asked to take a seat so that an artefact check may be completed. This required the 

participant to be raised into the MEG helmet, and asked to remain still for roughly 30 

seconds. This artefact check ensured the participants were not generating any magnetic 

signals that would interfere with the subsequent recordings. Provided no artefacts were 

discovered, the participant was asked to leave the MSR and move to the participant 

preparation station. In one instance a female participant generated a noticeable artefact 

that would negatively affect results. It was determined that she was wearing eye make-up 

that must have contained metal. After washing it off, another artefact check was 

conducted and no artefacts were subsequently discovered.   
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 Prior to entering the MEG scanner to complete the task, a total of nine self-

adhering Ag/AgCl electrodes (3 x 3 cm; Kendall-LTP, Chicopee, MA) were attached to 

each participant for electrophysiological recordings. To attach these electrodes, all 

recording sites were first prepared by abrading the skin lightly with NuPrep Skin Gel 

(Weaver and Company, Aurora, CO) to ensure minimal impedance followed by cleaning 

the area with an alcohol swab to ensure good adhesion. Electrodes were then placed 

above and below the left eye to record vertical electro-oculogram (VEOG), and outside 

the corner of each eye to record horizontal electro-oculogram (HEOG). Electrodes were 

also placed 2 cm apart on the anterior forearm of the non-dominant (left) arm to record 

muscle activity from the long flexors of the digits (e.g., flexor digitorum superficialis, 

flexor pollicis longus), as an electromyogram (EMG). As well, electrodes were placed on 

the inside of each bicep to record an electrocardiogram (ECG). Finally, a single electrode 

was placed on the collarbone to serve as a ground. Electrodes were affixed using 

Tagaderm transparent film dressings (3M, London, Ont). The EOG and ECG data were 

used as reference signals for the offline removal of MEG artefacts due to eye movements 

and cardiac activity, respectively. The EMG data enabled us to determine when the 

behavioral response was made. 

3.5.2 Head Position Estimation 

 In addition to attaching electrodes to record physiological measures, each 

participant was set up for head position monitoring. To prepare for head position 

monitoring in the MEG, an electromagnetic stylus (Polhemus digitization device, 

Polhemus Incorporated, Vermont, USA) was used for head digitization. Three anatomical 

landmarks (the nasion, as well as the right and left pre-auricular points) were digitized as 

well as the positions of 4 head position indicator (HPI) coils. These coils were placed on 
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the forehead just below the hairline above each eye (x2), and one behind each ear on the 

mastoid process. HPI coils were also affixed using Tagaderm transparent film dressings. 

Finally, approximately 200 locations on the surface of the scalp were digitized with the 

stylus to create a 3D structure of the participant’s head. The HPI coils were activated 

during MEG scanning, and were localized offline to monitor the participant’s position 

within the MEG helmet. The digitization data was also used to co-register MEG data to 

the structural MRI (based on the 3D model), providing us with millimeter MEG source 

localization accuracy (Koessler et al., 2007).  

After all electrode placement and digitization was completed, the participant was 

ready to enter the MSR to be placed in the MEG scanner. Once seated under the MEG 

helmet, the participant was then given one MEG compatible force grip sensor in their 

non-dominant (left) hand, which they used to make their behavioral response. Participants 

were then instructed on how to perform the task using a standardized script (Appendix 

C).  

3.5.3 MEG Data Acquisition  

All MEG data were recorded using a 306-channel whole-head Elekta Neuromag 

system (Elekta AB, Stockholm, SE) located within and operated by the IWK Health 

Centre. Data were acquired at a sampling rate of 1500 Hz, and a bandwidth of 0-500 Hz 

using proprietary software (Elekta AB, Stockholm, SE). Using a low-pass frequency of 

one third of the recording frequency ensured that we did not violate the Nyquist theorem, 

thus avoiding aliasing signals from 750-1500 Hz into the 0-750 Hz range (Nyquist, 

1928). A low frequency (high-pass) filter setting of 0 Hz was selected to allow detection 

of slow wave activity including the readiness field, which is a slow change in the 

magnetic field associated with the preparation for a motor task (Deecke et al., 1982, 
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Cheyne and Weinberg, 1989). Recording at this bandpass allows for the future analysis of 

event-related activation, not related to the current thesis. Magnetic fields were recorded at 

102 sites, with each site measuring the magnetic fields within the head on one 

magnetometer (in Tesla) and two planar gradiometers (in Tesla/cm2). In addition, the 

MEG acquisition software also recorded VEOG, HEOG, ECG, and EMG, at a rate of 

1500 Hz on the same electronics along with the triggers produced from the Presentation 

software. The software also continuously monitored head position via the HPI coils that 

were placed on each participant.  

3.6 Data Analysis - Single Subject Analysis 
 
3.6.1 Behavioral Data 

 As outlined previously, the presentation software recorded each participant’s 

performance on the behavioral task. Both the location of the cursor and bar on screen 

were recorded and were used to calculate the error. By default these values were recorded 

in pixels, however they were converted to cm by multiplying them by 0.0293. Also each 

participant’s accuracy was recorded. The EMG activity was visually inspected in relation 

to the cues, to determine if behavioral responses were made at the appropriate times (i.e., 

after the Go cue). Task compliance is indicated by appropriately responding.  

3.6.2 MEG Pre-processing 

 Prior to statistical analyses, all MEG data were pre-processed. The first step was 

to Maxfilter the data with the Elekta Neuromag software (Elekta AB, Stockholm, SE), 

using the temporal signal space separation (tSSS) method. In general terms, applying 

tSSS to the data spatially filters it and attempts to exclude any external noise that is 

detected from outside of the head. The tSSS method has been shown to be a useful and 

efficient tool for improving the signal-to-noise ratio of MEG data (Taulu, 2009). The 
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second step was to create the head position estimation file, again using Elekta Neuromag 

software. This command utilizes the head position data recorded through the scanner 

(based on the HPI coils) and generates a file containing the coordinates (in mm) of each 

coil in space, represented in a 3-dimensional plane. Both head position estimation data 

sets (rest and test) for each participant were then checked using the Maxfilter program 

(Elekta AB, Stockholm, SE) to determine any movement during the scan. A dataset was 

discarded if the participant rotated more than 5 degrees, or shifted more than 5 mm in any 

direction. The data was then down sampled from 1500 Hz to 250 Hz and a low-pass filter 

of 70Hz was applied to filter out high-frequency noise. An additional artefact removal 

was done using a custom Matlab script (Mathworks, Natick, MA). This artefact removal 

utilized an independent component analysis (ICA, Hyvarinen et al., 2010). Specifically, 

the ICA-based analysis is an automated function that looks for linear, independent signals 

(components) in the data and removes any components that are assumed to be caused by 

external sources and not the brain. This assumption is based on temporal correlations 

between the components and the activity from the EOG or ECG channels.  

3.6.3 MRI Pre-processing 

 To allow for group comparisons, MRI pre-processing registered each participant’s 

own MRI to Talairach-Tournoux template space using the Freesurfer software package 

(Martinos Center for Biomedical Imaging, Massachusetts, USA). This fits each 

participant’s brain to a common space to enable comparison of MEG source activity from 

the same source location between people. In addition to fitting each participant’s brain to 

the template space, we also created a boundary around the brain, termed boundary 

element model (BEM), using Freesurfer. The use of a BEM created a refined shape of the 

brain boundary that was used for MEG source localization.  A boundary was drawn 
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around the participant’s brain to constrain source estimation. The BEM model is widely 

used in MEG- and EEG-based imaging and has been shown to be more accurate than 

spherical models in calculating the forward solution (Fuchs et al., 1998). 

3.6.4 MEG-MRI Co-registration 

 In order to further increase the accuracy of the source localization, each 

participant’s structural MRI was co-registered to match the digitized structure created 

during the head position estimate phase. Co-registration required two steps. The first step 

was to manually pinpoint the landmarks (nasion, left and right preauricular points) on the 

participant’s MRI using the propriety MRI viewing software MRIView (Elekta AB, 

Stockholm, SE). Then, the 3D head image created during the digitization step was 

overlaid onto the structural MRI. The newly created MRIView landmarks were then 

adjusted so that they were within a 5mm agreement with the landmarks of the 3D head 

image. A quality assurance check was done by examining the location of the 200 points 

that were digitized prior to the MEG scan. In all cases the digital image of the head fit the 

anatomical MRI (i.e., the 200 points were located on the surface of the anatomical MRI). 

The BEM was then overlaid onto the co-registered MRI using a custom Matlab script. 

Using MRIView, the alignment of the BEM and MRI was checked to ensure the BEM 

was an accurate encapsulation of the brain that was fitted inside of the head.  

3.6.5 Calculating CCC 

 Eighty anatomically pre-determined (Diaconescu et al., 2011, Bardouille and Boe, 

2012) nodes described by their Talairach-Tournoux coordinates were used in the present 

study as regions of interest within the brain (for a list of nodes and their X, Y, and Z 

coordinates see Appendix D). These nodes were aligned to each participant’s brain in 3D 
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space, based on the transformation defined during MRI pre-processing (MRI alignment to 

Talairach-Tournoux space) and MEG-MRI co-registration. Figure 6 below shows all 

nodes placed onto a 2D template brain for viewing perspective. It should be noted that the 

left and right medial premotor cortex (PMCMed) nodes were considered together as 

representative of the SMA due to their anatomical location. Therefore any results 

pertaining to the SMA are based on connections between the bilateral PMCMed nodes.  

 

Figure 6: Anatomical Nodes used in the CCC Analysis. All 80 nodes are shown as 

blue dots (with their corresponding numbers) for viewing perspective on a template brain. 

Figure taken from Bardouille and Boe (2012).  

 The next step in the CCC analysis required calculating the estimated source level 

activity at each of the nodes across time (i.e., “virtual depth electrode”) in each condition. 

The two conditions used were the rest block and the test (task) block. The beamformer 

spatial filter (Vrba et al., 2010) was used to determine activity from each node across the 

entire length of each scan. To calculate the source activity, the MEG data for each 

condition was combined with the structural MRI (containing the location of each node as 
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well as the BEM) to create a file containing the virtual electrode data over time at each 

location. Owing to variability in response time, the length of the data obtained for each 

virtual electrode differed. As such, all virtual electrode datasets (all test and all rest 

datasets) were cropped to match the shortest dataset, as calculated based on the first and 

last event marker. Each dataset was then epoched into durations of 250ms with a 125ms 

overlap for the purposes of coherence analysis. A fast Fourier transform (FFT) was then 

applied to each epoch to estimate the frequency content of each virtual electrode epoch at 

each location.  The coherence between each node pair (represented as a comparison of the 

frequency content for a pair of virtual electrodes) was then calculated based on the FFT 

data to determine the amount of synchronous oscillatory activity occurring between the 

node pairs. 

3.7 Group Level Analysis 

3.7.1 Partial Least Squares Analysis 

 Using a custom Matlab script, a PLS analysis (McIntosh and Lobaugh, 2004) was 

applied to the CCC results to determine if there was a significant difference across 

functional connections between states (i.e., Is task different from rest?). The CCC 

analysis required transforming the FFT data into a 4D structure consisting of conditions 

(2) x subjects (19) x frequency bins (11) x node pairs (3160). During this step, only the 

beta band (15-30 Hz) was analyzed, therefore there were a total of 11, 1.36 Hz frequency 

bins. Mean-centered PLS was then applied using 512 permutations to identify latent 

variables (LVs) that represented a significant change in CCC across the group between 

conditions (rest and task) (p < .05) against the null hypothesis, which stated that CCC is 

the same between conditions. As there were only two conditions in the current study, the 

only LV of interest was the first LV, which indicates a change in CCC between rest and 
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task. A bootstrap ratio (BSR) with 512 iterations was then used to determine which 

frequency bins and node pairs reliably expressed this change at the 99.9th percentile. The 

magnitude of the BSR for each frequency bin and node-pair indicated the reliability of 

the conditional effect. The sign (i.e., positive or negative) of the BSR indicated if CCC 

for each frequency bin and node-pair increased or decreased between the two conditions. 

For each node pair, the maximum positive or negative BSR value was used across 

frequency bins. A change in CCC could have been task-positive, indicating significantly 

increased CCC during task compared to rest, or task-negative indicating significant 

decreased CCC during task as compared to rest.  

3.7.2 Constructing a Task-Positive Network Matrix 

 Based on the results obtained from the BSR analysis on the first LV, an 80x80 

coherence matrix was created. This matrix contained nodes (1-80) on both the X and Y-

axis and represented all 3160 possible connections. The matrix was filtered, using the 

Brain Connectivity Toolbox (Rubinov and Sporns, 2010), to include only task-positive 

synchronous connections between nodes. This filtering first removed all task-negative 

connections by assigning them a value of 0 and then the remaining connections were 

assigned a value of 1. This process left an 80x80 binary undirected matrix representing 

the task-positive sensorimotor network that contained only significant task-positive 

connections.  

3.7.3 Graph Theory Measures  

 All graph theory measures were calculated using the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). This Toolbox is an open source Matlab package that 

contains the scripts necessary to perform graph theory analyses. The first measure 

calculated was node degree. Node degree was calculated by counting the number of 
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connections one node has with any other nodes, based on the binary matrix described 

above. According to previous literature (Bardouille and Boe, 2012), any node with a 

degree of three or greater is considered an important component of the network. The 

second measure calculated was the clustering coefficient, C. The C is calculated by 

determining the number of a node’s neighbors (nodes that share a connection) that were 

also connected to each other compared to the total number of possible connections 

between a node’s neighbors. Mean characteristic path length, L, was also calculated by 

averaging all shortest path lengths connecting each node-node pair.  

 Efficiency was calculated based on the inverse of the L. It is assumed that a more 

efficient network is composed of shorter path lengths between connected nodes. As this 

study is providing the foundation for a future study, the comparison of these graph theory 

metrics to the values obtained from a clinical population will provide novel information 

regarding changes within the diseased brain.  

 Finally, in order to determine if the network was a small-world network, the C 

and L for a random network were calculated (represented by CRand and LRand ) using the 

Brain Connectivity Toolbox. However, to produce a more reliable measure, 20 random 

networks were generated in total. For each of these networks, the CRand and LRand were 

calculated and an average value was taken for each metric. To calculate small-worldness 

(S), the following equation was used where CN and LN represent values from the network 

from the present study: S = [(CN/CRand) / (LN/LRand)] 

3.8 Direct Links from Paradigm to Hypotheses 

 The first hypothesis predicts that there will be a significantly different network 

during task than during rest. To determine this, the PLS analysis will compare the two 

networks (rest vs. task), and it is expected that the first LV which states that the networks 



	
  

	
   61	
  

are different, will be significant. Secondly, it is expected that FC will increase in the 

nodes contralateral to the active limb. Provided the task positive network is significantly 

different from rest, investigating the nodes that make up the task-positive network will 

reveal their location within the brain. Finally it is expected that the SMA will have the 

highest node degree. Once the FC between all regions is determined, graph theory will 

quantify the network based on node degree. The degree for all nodes including SMA will 

be tabulated to determine how many connections each node forms within the network. 
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CHAPTER 4: RESULTS 
 
 Out of the 21 participants scanned, 2 were removed from data analysis due to 

excessive head movement during the first rest scan, resulting in a total of 19 participants 

(11 females) aged 20-34 (25 ± 4 years) who were identified as being right handed using 

the Edinburgh Handedness questionnaire (76.3 ± 17.3). Unless stated otherwise, all data 

are presented as mean value ± standard deviation.  

4.1 Behavioural Results 

 The target bar position was plotted for all participants across all trials, to ensure 

the bar had an equal probability of being in a given area across the entire task (Figure 7). 

The results show that the bar had a mean chance of 10 ± 1% of being in any 1 of the 10 

equally sized regions.  

 

Figure 7: Location of the Bar during Test 1. The figure shows the percentage of times 

the bar was present in each of 10 possible locations at the time of the participants’ 
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responses. The target was equally likely (10%) to be within any of the 10 regions during 

the task. The dotted line marks the 10% chance of occurrence in a given region.     

4.1.1 Accuracy and Error 

 During the test block, participants successfully hit the target bar an average of 

19.5 ± 11.25% of the time with a range of 0 (minimum) to 20 (maximum) hits (out of a 

possible 50). Each participant’s accuracy is shown as a percentage in Figure 8. The graph 

indicates that performance was generally poor across the 50 trials and that there is 

variability between participants.  

 

Figure 8: Accuracy During Test 1. This figure shows the percentage of times each 

participant correctly hit the target bar with the cursor, out of 50 possible trials. Participant 

2 performed the best (40%), whereas participant 8 performed the worst (0%).  

 

 Despite poor performance during the initial test block, participants’ performance 

improves post-training. This is illustrated by a decrease in error (Figure 9) as well as an 
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increase in accuracy (not shown). Figure 9 shows the error (distance between the centre 

of the bar and the cursor) across all 700 trials for each participant. Although learning 

across trials is not a component of the present study, error was examined to ensure task 

compliance. Participants improved throughout the task, indicating that they were 

performing the task properly. Also based on the visual inspection of the EMG channels, it 

was evident that participants were responding after the Go cue, and not during other 

phases of the experiment, indicating compliance with the task instructions.  

  

Figure 9: Error Across the Entire Experiment. The graph shows the difference (in 

cms) between the centre of the target bar and the centre of the cursor across all trials for 

all participants. It is clear from the graph that participants perform the task most poorly 

during the first 50 trials (Test 1), however performance improves over time.  

4.2 MEG Results 
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 Changes in CCC between node-pairs between conditions (test and rest) were 

identified across all participants within the beta frequency band. The first hypothesis of 

the present study was confirmed. The results of the PLS analysis indicate a significant 

difference between task and rest networks (i.e., first LV). The results of the FC analysis 

highlight the regions that are exhibiting increased functional connectivity during the task. 

The second hypothesis was also confirmed and as expected the ipsilateral CB and several 

regions contralateral to the moving hand, such as M1, SMA, PMC, and S1 showed 

increased connectivity and had high node degrees. Figure 10 below, shows the node-pairs 

that exhibit a reliable increase in synchrony during the task, as compared to rest (i.e., the 

task-positive network). See Appendix E for a list of all reliable nodes-pairs and their 

corresponding BSRs. For illustrative purposes, Table 2 below presents the 10 most 

reliable node-node pairs. 
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Figure 10: Beta Band Functional Connectivity between Nodes. The figure shows the 

task-positive network overlaid onto a template brain. Each blue dot is a node (for a total 

of 80) and each red line represents a connection that has increased synchrony between the 

two corresponding nodes during test, as compared to rest.  

 

Table 2: Reliable Node-Pairs Determined by the BSR Analysis. Each ‘Node 1’ is 

connected to its corresponding ‘Node 2’, and the reliability of their connection is given. 

The table also provides which hemisphere the nodes are located in.  

Node 1 Hemi 1 Node 2 Hemi 2 BSR 
Medial Premotor 

Cortex Left Angular Gyrus Right 8.893 

Angular Gyrus Left Inferior Parietal 
Cortex Right 6.54 

Subgenual Cingulate 
Cortex Midline Middle Temporal 

Cortex Right 6.211 

Angular Gyrus Right Medial Premotor 
Cortex Right 6.05 

Dorsomedial 
Prefrontal Cortex Left Cuneus Right 5.601 

Primary Motor 
Cortex Left Primary Auditory 

Cortex Right 5.549 

Medial Premotor 
Cortex Left Primary Visual 

Cortex Right 5.487 

Primary 
Somatosensory 

Cortex 
Right Cruseus I Left 5.451 

Inferior Parietal 
Cortex Right Dorsolateral 

Prefrontal Cortex Right 5.291 

Anterior Cingulate 
Cortex Midline Fusiform Gyrus Right 5.271 

 

4.2.1 Task-Positive BSR Matrix 

 Figure 11 shows the non-thresholded BSR matrix of the task-related network as 

compared to rest. This matrix shows that multiple node-node pairs show increased (blue 
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squares) and decreased (red squares) functional connectivity during the task, as compared 

to rest. It is evident from the figure that both task-negative and task-positive networks are 

composed of multiple nodes spanning the entire brain. Figure 12 shows the binary task-

positive only network matrix. Again each filled square represents a significant connection 

between the two corresponding nodes. Node 1 (anterior cingulate cortex) for example had 

one of the highest node degrees (8), which can be seen by counting the connections 

across the first row (or down the first column).  

 

Figure 11: Non-thresholded BSR Matrix. This matrix is derived from the results of the 

BSR analysis. The axes represent nodes (80 total), ordered numerically. The colour in 

each filled square represents the reliability of the task-related change in FC between the 
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corresponding nodes on each axis. Cold (blue) squares represent the task-positive change 

in FC and all red (hot) squares are the task-negative changes in FC. The graph is mirrored 

along the diagonal (bottom left to top right corner). 

 

Figure 12: Binary Undirected Task-Positive Matrix. The axes represent nodes (80 

total), ordered numerically. Each filled square represents a significant connection 

between the corresponding nodes on each axis. The graph is mirrored along the diagonal 

(bottom left to top right corner). Node degree may be derived from this figure by 

counting the connections along a column or row. For example, the top left corner square 

and bottom right corner square both represent the significant edge between the 1st and 

80th nodes.  
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4.3 Graph Theory Measures 

4.3.1 Node Degree 

 There were a total of 40 nodes in the task-positive network that had a degree of 3 

or greater (Appendix F). Table 3 below shows several nodes with a degree greater than 3. 

Many of these nodes such as the SMA, PMC, the dentate (CB), M1, and S1 are 

considered to be relevant to the sensorimotor network as shown by previous literature 

(see Discussion for details concerning these regions). Furthermore the SMA (consisting 

of the bilateral PMCMed) had the highest node degree with a degree of 13.  

 

Table 3. A Subset of Nodes with a High Degree. The table lists several nodes, as well 

as their hemisphere and degree, that are considered important within the task-positive 

network based on both node degree from the present study, and previous literature.  

Node Name Hemisphere Degree 
SMA Bilateral 13 

Angular Gyrus Left 11 
Anterior Cingulate Cortex Midline 8 

Ventrolateral Premotor Cortex Right 8 
Dentate Left 7 

Anterior Insula Right 5 
Dorsolateral Premotor Cortex Right 5 

Angular Gyrus Right 5 
Primary Motor Cortex Right 4 

Primary Somatosensory Cortex Right 4 
Secondary Somatosensory Cortex Right 4 

 

4.3.2 Other Graph Theory Metrics 

 The task-positive sensorimotor network found in this study had a mean 

characteristic path length (L) of 3.66, a clustering coefficient (C) of 0.049, and an 

efficiency of 0.27. The random graphs generated had an average L of 3.91, C of 0.036, 
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and an efficiency of 0.25.  As such, the task-positive network had an S value of 1.45 

indicating more small-worldness than that of a random network.  
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CHAPTER 5: DISCUSSION 
 
5.1 Overview 
 
 The purpose of the present study was to highlight the task-positive  

sensorimotor network in a group of non-disabled controls while they performed a 

unilateral hand grip task. Magnetoencephalography was recorded throughout to obtain 

measures of brain activity while participants were at rest and during the performance of a 

visuomotor task. The neural networks associated with each condition were established by 

using FC analysis on a subset of 80 pre-determined regions of the brain. Furthermore, 

graph theory was applied to the network (composed of significant connections) to 

quantify the connections resulting from the performance a unilateral UL task.  

 The results from the PLS analysis revealed a significant difference in FC between 

the rest and task condition. More specifically, there were multiple (118) connections 

between node pairs present during the task condition that demonstrated increased 

synchrony as compared to the rest condition, highlighting a task-positive network, 

confirming the first hypothesis. Also graph theory has identified 40 nodes that have 

multiple connections with other nodes in the network, suggesting them to be key 

components within the network that subserves the performance of an UL, unilateral 

visuomotor task in non-disabled participants. As hypothesized, five of the nodes that 

comprise this task positive sensorimotor network represent brain regions previously 

established as important components of the network that underlies motor performance, 

including M1, S1, SMA, CB, and PMC among others, which will be discussed below. 

Finally the SMA was found to act as a hub within the network as demonstrated by it 

having the highest node degree, as posited in our third hypothesis. 
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 The present study has improved upon previous literature by highlighting the 

functional connections that result from motor task performance, as compared to rest. As 

described in the introduction, much of the FC analyses have focused on the brain during a 

single state, and limited research has been done to compare interactions within the brain 

between separate conditions or the change in interactions across conditions. By 

highlighting the sensorimotor network in a group of non-disabled controls, the present 

study has provided a template of neural activity depicting the communication between 

separate brain regions, as well as a quantitative list highlighting the number of 

connections each region has with other regions.  

 As previously described, one study (Boe and Bardouille, 2012) has established 

and compared the functional connections within the brain between a rest and a motor task 

condition, however the task used was bilateral, making it difficult to infer activity from a 

single hemisphere. The ability to determine functional connections within a single 

hemisphere has many applications to clinical populations who have had unilateral brain 

damage. The results from the present study will be used in future studies as a baseline of 

activity to compare against the network of an impaired clinical population.    

5.2 Evidence for Task Compliance 

 When performing neuroimaging research it is important to devise a paradigm that 

will directly enable the researcher to answer the scientific question posed. Therefore, for 

the present study it was important to create a motor task that was moderately difficult, 

required a unilateral response, was accessible to stroke patients, and required constant 

attention from the participants. It would have been easy to utilize a paradigm that 

required the participants to move their hand in the absence of any challenge or visual aid. 

Such a simple task should, of course, activate the motor network. However, enabling the 
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participants’ minds to wander while they perform a simple movement is not an ideal 

paradigm to use for study of the motor network.  By ensuring all participants were 

engaged in the same task, activity could be directly compared across participants as it was 

assumed all individual networks are representative of the task performed. As discussed in 

the introduction, while participants are at rest and not performing a task (i.e., ‘idling’), the 

DMN is active, which consists of activity within different frequency bands from regions 

not necessarily involved with the sensorimotor network. The paradigm that was 

developed for the present study required concentration and skill to successfully complete. 

Using a challenging task ensured that all participants were focused and engaged, while 

enabling the passive collection of neural activation resulting from the unilateral UL 

movement.  

 Although the present study only analyzed the neural activation resulting from the 

first test block, examining the data across the entire experiment (all 7 blocks) provided 

evidence that the participants were complying with the task. The fact that error decreased 

and accuracy increased throughout the experiment proved that participants were focused 

and attempting to successfully complete the task. Furthermore, although some 

participants’ performance was very poor (i.e. 0% accuracy) based on the EMG data it was 

concluded they were responding at the correct time and therefore attempting to 

successfully complete the task. Finally, as the MEG data indicate, synchronous beta 

rhythm activity between nodes of the sensorimotor network increased during the task 

performance block, highlighting the task’s success to activate the intended network. 

5.3 The Established Sensorimotor Network  

 The present study has demonstrated that there is a significant increase in 

synchrony while performing a motor task compared to resting. As expected, the observed 



	
  

	
   74	
  

functional network is composed of connections between multiple regions within the 

brain, including areas within the contralateral hemisphere as well as the ispilateral CB. 

Multiple regions within this network contained a high node degree indicating their 

importance within the network. These nodes can be seen in Table 1 above. By examining 

the binary undirected matrix (Figure 12), one can determine how important a given node 

is by counting its connections (filled squares) across its row or column. Several of the 

regions (including M1, the PMC, S1, the SMA, and the CB) that had a high node degree 

have previously been shown to be involved in early motor learning and will be described 

in detail below (for a review see (Hardwick et al., 2013). Several studies, using MEG 

(Pollok et al., 2003) and fMRI (Floyer-Lea and Matthews, 2004, Boe et al., 2012) have 

shown that during a motor task, these regions are activated. However when analyzing 

spatial data, only inferences regarding underlying connections can be made. Through the 

use of FC analysis, the present study has directly shown synchrony between distinct 

regions, providing stronger evidence for neuronal communication. Concordance with the 

spatial activation patterns from earlier research increases the confidence that the 

functional connections found in the present study are real and related to the sensorimotor 

network.    

5.4 Functional Connectivity 

 The current study used a coherence-based functional connectivity analysis and 

found anatomically distinct brain regions that had significantly different synchrony 

during a motor task, as compared to rest. This FC analysis allowed for the creation of a 

sensorimotor network map (Figure 10) that represents the coherence between separate 

regions during an active state compared to a resting state.  
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 The present study provides novel results that show the functional connections 

within the brain in a group of non-disabled participants during a unilateral motor task. 

These results are complementary to those found by Bardouille and Boe (2012). Their 

study used the same analysis procedures, and highlighted the network while participants 

performed a very similar albeit bilateral motor task. As their results indicate, the 

performance of a bilateral task results in functional connections and high node degrees in 

multiple regions within the brain, across multiple frequency bands. As discussed in the 

Introduction, the literature has shown that compared to a unilateral task, a bilateral 

movement task results in significantly different patterns of activity across the brain as 

well as increased activation in areas such as the SMA. It is believed that these differences 

in activity manifest themselves as mechanisms to integrate and control coordination and 

sequential activation between the active limbs. Therefore the results of the Bardouille and 

Boe study can be used as a comparator for network analyses requiring a bilateral grip 

task, however the data cannot be segregated into separate unilateral conditions. Compared 

to the present study their results show that there is a higher node degree in the left PMCv 

within the beta frequency range during bilateral, as compared to unilateral, movement. 

This is likely the case because the premotor cortex is more involved in integrating 

information between the active limbs during a bilateral movement task. Bardouille and 

Boe also examined synchrony in the beta as well as the gamma (32-64 Hz) frequency 

range. However they found high node degrees in similar areas such as the SMA, M1, S1, 

and CB across both frequency bands. Both studies can now be used as templates in future 

FC research that uses unilateral or bilateral upper-limb tasks to determine communication 

within the brain.  
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5.4.1 Advantages to the FC Analysis Used 

 The use of the state-related approach in the present study is an improvement upon 

previous FC research. The present study sought to determine the network during a motor 

task. Therefore, in order to locate the regions directly related to the task, it was important 

to compare the task-related network against a resting state. Previous FC research has 

examined neuronal synchrony during rest or during a task. However, the entire brain is a 

network that is constantly active, even during rest, as evidenced by studies showing 

activation in the DMN and other networks during the resting state (Greicius et al., 2003). 

Therefore when examining neural activity during a single state, without comparing it to a 

baseline, there is the possibility of seeing activation in other networks that are also active. 

The state-related approach used in the present study ensures that the connections 

observed are a direct result of the task and are significantly different from resting state.  

 Another advantage to the present study methodology was that it used predefined 

ROIs. By determining coherence between these pre-defined ROIs, all possible 

connections were highlighted regardless of the power at each source. Other studies 

(Hoechstetter et al., 2004) employ methods that first locate ROIs based on the strength of 

the signal at that source, and then calculate coherence between these highlighted regions. 

This technique faces the possibility of missing functionally relevant coherence between 

active regions that are below an intensity threshold and not considered strong sources. By 

pre-defining regions based on anatomy, one can first calculate the activity at each region 

regardless of signal strength and then determine synchrony between this and other 

regions of similar or varying signal strengths. Using this technique in the present study 

ensured that all possible connections between the 80 nodes were uncovered, regardless of 

signal strength.     
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 The methodology of the present study also improves upon previous literature by 

highlighting possible connections between 80 regions across the entire brain, as opposed 

to only using several ROIs. By design, the present study and analysis pipeline allows 

connections between any brain regions to have possibly increased and decreased 

synchrony during the task, and may be involved in the task-positive network. Based on 

this design, the network was not constrained. By using 80 nodes that span the entire 

brain, the present study did not exclude possible connections that may not have been 

found in previous work. Studies by (Xu et al., 2014) and (Sun et al., 2007) for example 

potentially exclude connections by constraining their network to use only limited regions 

of interest (13 and 5, respectively). Although activation within these regions is expected 

as they have been previously identified as components of the motor network, it is 

important to expand the literature by determining the connections between other, 

generally unexplored regions. For example, the present study predicted and found V1 to 

be a component based on the task used (visuomotor), however V1 is traditionally not 

assumed to be a component in the sensorimotor network.    

5.5 Graph Theory Metrics 

 Applying graph theory to the task-positive network quantified the characteristics 

of node connections within the network. Therefore, the present study was able to 

highlight important nodes by assigning values to each node, indicating a node’s relevance 

or importance within the network based on its node degree. Graph theory was also able to 

determine the mean path length (L), the clustering coefficient (C), the small-worldness, 

and the efficiency of the network.  

 As hypothesized, regions involved in the early stages of motor learning did form 

multiple significant connections with other regions, resulting in a high node degree for 
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each region. The results of the graph theory analysis produced multiple significant node-

node connections that correspond with the motor learning literature. However, the 

literature is limited because studies have not utilized a similar approach to quantifying the 

sensorimotor network in a group of healthy participants. One study (Xu et al., 2014) 

examined the differences in the neural networks produced from a motor execution task 

(unilateral dominant UL) and a motor imagery task, using functional connectivity fMRI 

(fcMRI). Both FC analysis and graph theory were applied to the imaging data to quantify 

each network. The authors however used a measure other than node degree to determine a 

node’s importance within the network, called betweeness centrality. Betweeness 

centrality is a measure that is based on the number of shortest paths between all nodes 

that cross through a specified node. It is believed that if many paths cross through a given 

node, it is acting as a hub within the network. Using only 13 ROIs, the authors conclude 

that the SMA is the only hub or ‘key’ node within the motor execution network in their 

study. Finding the SMA as a hub coincides with the present study, however there is also 

the possibility that a node with a very high degree is not a common intersecting point for 

other nodes, yet it is still important. Although the study by Xu and colleagues (2014) 

quantified a sensorimotor network based on a unilateral UL task, they used only 13 ROIs 

and found that only one node is important in the network. Perhaps identifying hub nodes, 

and nodes with a high node degree collectively would provide additional information in 

highlighting key nodes within the identified network.  

 As reported in the results, the sensorimotor network in the present study had a C 

of 0.049, an efficiency of 0.27, and an L of 3.66. Also it was found to show small-world 

characteristics with an S value of 1.45 (Humphries and Gurney, 2008). Having a higher 
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clustering coefficient and a shorter path length than a random network, characterizes the 

sensorimotor network of the present study as exhibiting small-world architecture.  

 Future studies that examine clinical populations can make direct comparisons to 

the values obtained in the present study. For example, when a patient post-stroke 

performs the same unilateral task, values for efficiency can be calculated for their 

sensorimotor network and compared to these baseline values derived from participants 

without brain injury. It is expected that a patient exhibiting impairment of the UL will 

have a less efficient network than the non-disabled controls of the present study. 

Therefore a value for efficiency of less than 0.27 is expected. In addition to efficiency, 

the small-worldness of the network in the present study could also be compared to 

networks from clinical populations performing the same task. Based on previous research 

examining the small-worldness of clinical populations (Micheloyannis et al., 2006), it is 

likely that the non-disabled motor network will be more of a small-world network than 

the stroke patient’s motor network. For example, a study by Micheloyannis et al. (2006) 

found that compared to a neurologically healthy participant group, a group of patients 

with schizophrenia exhibited less of a small-world network. It is inferred that 

neurological conditions result in a disordered network that does not function as efficiently 

as it should. Based on this, we would hypothesize that a post-stroke neural network will 

also be more disordered and less efficient than the standard network obtained from those 

without neurological injury.  

 A further application of the graph theoretical measures found in the present study 

can be used to characterize motor learning. The present study produced the network that 

was active during a test block compared to a rest block. Further analysis could be 

conducted to determine the network during the post-training block (second test block), as 
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compared to rest. The post-training network could then be compared to the pre-training 

network to determine any quantitative differences based on significant differences in FC. 

As the behavioral results of the present study show, the participants learned the task with 

increasing practice. Based on the idea of neuroplasticity (Penhune and Doyon, 2005), it is 

expected that accompanying this behavioral change there should also be underlying 

neural changes. Given this evidence, one would hypothesize that these neural changes 

would be characterized by different node degrees between regions of the networks 

involved in the different stages of motor learning, as well as a more efficient, post-

training network. More specifically, the literature (Penhune and Doyon, 2005) has shown 

early in motor learning there is a cerebellar-cortical network, whereas post motor learning 

there is a shift toward a striatal-cortical network (Doyon and Benali, 2005). Therefore one 

would expect a decrease in FC in the cerebellar and thalamus nodes, and an increase in 

regions such as the M1, S1, and SMA.  

 The graph theoretical analysis used in the present study showed that multiple 

nodes had node degrees above the threshold of three, indicating their importance within 

the network. Although each of these nodes are likely important components of the 

network, the following sections will discuss the nodes hypothesized to be involved in the 

network, followed by discussion related to several nodes that had a high degree but were 

not expected to be a part of the network.  

5.6 Primary Motor Cortex 

 Although the performance of a motor task requires the simultaneous activation of 

multiple brain regions, the region most widely studied within the behavioral context has 

been M1. Based on the large body of literature surrounding this region, it was expected 

that the contralateral M1 would certainly be a key component in the neural network 
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highlighted by the present study. The descending pathways from the cortex form the 

corticospinal tract, which is directly involved with voluntary movement. Roughly 40% of 

the corticospinal tract originates in the motor cortex (Kandel, 2000). By having 

participants perform a left-handed task, the activation of the right M1 was expected and it 

was found. Contralateral M1 formed four significant connections with various regions of 

the brain during the task condition, while ipsilateral M1 had a degree of less than three. 

This reinforces contralateral M1’s importance during a motor task and additionally, based 

on the results of the FC analysis, provides insight into which regions M1 is 

communicating with during the task. 

 Previous literature has repeatedly shown the importance of M1 during a motor 

task, beginning with Penfield and Boldrey’s (1937) observation that a motor response is a 

result of stimulating the contralateral M1. Additionally, a meta-analysis (Hardwick et al., 

2013) conducted on 39 motor learning studies that consisted of a unilateral (right) handed 

task only, showed consistent activation of the contralateral M1 across all studies. More 

relevant to the current study, the experiment previously described by Kuthtz-Buschbeck 

et al. (2008) showed that during a unilateral power grip task, the contralateral, not the 

ipsilateral, M1 was significantly activated.  

 The results of the present study show that one of the connections for the right M1 

was to the ipsilateral superior parietal cortex (SPC). The SPC has repeatedly been shown 

to be important in visuomotor grasping tasks (Culham and Valyear, 2006). Therefore this 

connection is logical, as the choice of grip aperture for grasping is simultaneous with the 

motor cortex’s top down command to make the response.  In addition to its connection 

with the right SPC, M1 was also connected to the left precuneus, and the right cuneus. 

Several studies have shown that the precuneus is involved in ball-tracking tasks, and that 
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damage to the precuneus results in an impairment to track a moving target. Several other 

studies have also shown that the precuneus is involved with visuospatial tasks, and is 

involved in planning as it has direct connections to the frontal lobes (for a review see 

(Cavanna and Trimble, 2006). Since the present task has used a visuomotor paradigm that 

involves the tracking of a moving target and requires a planned response, it is not 

surprising that the precuneus was active and also had a significant connection with the 

M1, which directly controls the voluntary response.  

 Figure 13 below shows the motor network components that are required to 

perform a voluntary movement. From this image, it is evident that M1 works in 

conjunction with the PMC, the S1, the cerebellar cortex, and several deep brain 

structures, among many more. In the figure, the purple lines indicate major descending 

projections, and the green lines indicate either feedback projections or local connections. 

Except for the deep brain structures, the present study found activation in each of these 

regions involved with movement, however M1 did not form significant connections with 

these areas. A possible reason for this absence in FC between M1 and these motor 

regions could be that they were coherent in another frequency band such as the gamma 

band, and not the beta band. Although the beta band is primarily concerned with 

movement, several studies also show activity within the gamma band during voluntary 

movement (Muthukumaraswamy, 2011, Bardouille and Boe, 2012). Perhaps a voluntary 

motor task requires activation across multiple frequency bands, which may explain the 

absence of other expected functional connections between regions within this network. 

 



	
  

	
   83	
  

 

Figure 13. Brain Regions Involved with Voluntary Movement. This figure shows the 

regions that form the motor network responsible for voluntary movement. The purple 

lines are feedback projections or local connections, and the green lines are major 

descending pathways. The majority of the corticospinal tract (green pyramidal tract) 

originates in the cortex (primarily in M1) and crosses to the contralateral side of the body 

at the level of the medulla. Image taken from (Kandel, 2000). 

  

5.7 Premotor Cortex 

 When connections from PMCd and PMCv were combined, the contralateral PMC 

demonstrated a node degree of 13 within the task-positive sensorimotor network in the 

current study. It is important to note that the PMCMed node used in the present study is 
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considered to represent the SMA, and will be described below. Therefore its degree was 

not factored into the contralateral PMC node degree calculation. Among the many 

connections the PMC formed with other nodes, one of these was between the right PMCv 

and the left inferior parietal cortex (IPC), which is expected within the context of the 

present paradigm. The premotor cortex has been shown on multiple occasions to be 

involved in motor planning and execution, especially during visuomotor tasks (for a 

review see (Chouinard and Paus, 2006). For example, one study examined single neuron 

discharge in the PMCv of the monkey and they found neural activity when the monkey 

grasped various objects, as well as when presented with various 3D objects (Murata et al., 

1997). The IPC is considered a relay station between sensory and motor regions of the 

brain (Fogassi et al., 2005). The IPC has been shown to receive input from the visual 

stream, and as a result, patients who have lesions to his region have Optic Ataxia. This 

disorder is characterized by abnormal grasping when reaching for object (Sakata and 

Taira, 1994). Therefore one would expect a functional connection between these two 

regions, as both are required to perform a visuomotor task that utilizes grasping or mass 

grip.  

5.8 Primary Somatosensory Cortex 

 In addition to the regions described above, the right S1 had a node degree of 4, 

indicating its importance within the network. Similar to M1, the somatosensory cortex is 

also topographically organized and has specific areas that are responsible for sensation on 

the contralateral side of the body (Kandel, 2000). Therefore, the presence of functional 

connections between S1 and other regions confirms our hypothesis and replicates 

previous literature showing that S1 is a component of the sensorimotor network. 
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 The somatosensory cortex has repeatedly been shown to be involved in 

visuomotor tasks, as it is concerned with processing of somatosensory feedback. One 

recent study used repetitive TMS (rTMS) to assess the effects of disrupting S1 during 

learning a novel visuomotor task (Vidoni et al., 2010). Their study required 27 healthy 

right-handed participants to perform a visual tracking task by moving their wrist to move 

a cursor on screen. Within the experimental group, immediately before performing the 

task, repetitive 1Hz TMS was applied to contralateral S1 for 20 minutes. The control 

group received sham TMS (i.e. no pulse was delivered).  The results showed that the 

sham TMS group had a greater reduction in tracking error for the 2 tests immediately 

following (sham) rTMS as well as during the retention test the following (third) day, 

where no rTMS was used. Therefore it is evident that S1 plays an important role in the 

accurate performance of a novel motor skill.  

 The contralateral S1 showed connections with Cruseus 1 (left), Cruseus 2 (left), 

SPC (left) and the angular gyrus (AG, left). Both Cruseus 1 and Cruseus 2 are regions in 

the CB, which has been shown to receive sensory information from the spinal cord and is 

directly related to ipsilateral movement (Kandel, 2000). Furthermore, both the CB and 

somatosensory cortex have direct connections to the thalamus, which functions as a relay 

station. Therefore although the CB and the somatosensory cortex do not share a direct 

structural connection, they are functionally connected through the thalamus.  

 Similar to M1, S1 was also functionally connected to the SPC. As described 

above, the SPC has been shown to be involved in planning and grasping actions, 

therefore it was expected that during a task requiring the manipulation of grasp aperture 

this region would be active. Furthermore, it has been shown (Sakata, 2007) that a 

unilateral lesion (left lateralized) to this region produces a deficit in visually guided hand 
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manipulation tasks, therefore activation in the left hemisphere is acceptable and it is not 

expected to be contralateral to the active limb.   

 As a final note regarding the role of S1, Bardouille and Boe (2012) also found S1 

to be a part of the sensorimotor network. Although the task required bilateral movements, 

they found the left S1 to have a node degree of 4 during a visuomotor mass grip task, 

based on FC within the beta-band. From the studies outlined above, it is evident that S1 

plays a major role in the sensorimotor network, especially during visuomotor tasks that 

require sensory feedback in order to improve task performance.  

5.9 Cerebellum 

 As hypothesized, the ipsilateral CB was an important component of the 

sensorimotor network found in the present study. It formed significant functional 

connections with M1, S1 (as described above) and several other regions. Although not all 

of the eight nodes within the CB had a high node degree, one region (the dentate) did 

have a degree of seven, which was the 4th highest degree in the task-positive network. 

Previous literature has established the CB’s role in motor learning and it is considered to 

be crucial in error detection and correction during sensorimotor tasks. An early study that 

confirmed this role, utilized functional neuroimaging in human participants while they 

performed novel sensorimotor tasks (Flament et al., 1996). The tasks required 

participants to use a joystick to move a cursor toward a target during standard, reverse 

(the cursor’s movements were opposite to the joystick’s), or random (the cursor’s 

direction based on joystick movement changed from trial to trial) conditions. Participants 

could see their performance in real time and were provided feedback. Using these three 

conditions in conjunction with fMRI, the researchers found that that the CB was 

significantly more activated during the random condition as well as during the early stage 
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of learning, as compared to the standard condition. As participants’ performance 

improved during the reverse task, cerebellar activity significantly declined. These results 

highlight the role of the CB in early motor learning.  

 A more recent study by (Galea et al., 2011) applied transcranial direct current 

stimulation (tDCS) to the ipsilateral CB and contralateral M1 to participants in an attempt 

to uncover the functional roles of these regions during an adaptive visuomotor task. The 

authors note that previous research using tDCS has shown its ability to increase 

excitability in both the CB and M1. Participants were required to move a digital stylus 

across a tablet, in a straight line to hit a cursor located 10 mm away. However during 

certain blocks when tDCS was applied to either ipsilateral CB or contralateral M1, the 

target was unexpectedly shifted off centre by 30 degrees. The authors found that during 

normal trials there were no significant differences between groups. However, during the 

shifted trials, the tDCS CB group showed a decrease in error. The authors inferred that 

anodal cerebellar tDCS enhanced task behavior. This indicates the role of the CB in 

adapting to and learning a changing motor task.   

 The present study used a unilateral grip task that required participants to vary the 

amount of force used, based on the moving target on screen. Similar to the studies 

mentioned above, early in the learning phase participants had to adjust their responses 

accordingly to a changing stimulus. Although the stimulus never changed unexpectedly, 

each trial was different and the target had to be hit at different heights on the screen. Also 

without receiving any feedback during this test block, it can be considered an early phase 

of motor learning. As such the increased FC between the CB and other regions was 

expected as the task required the active adaptation in movements during the early stages 

of a novel motor paradigm.   
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5.10 Supplementary Motor Area 

 As described in the introduction, the SMA has been studied extensively for 

several decades in both monkeys and humans, and has been shown repeatedly to be 

involved in several aspects of motor functioning. The SMA forms direct structural 

connections with multiple brain regions as well as with the corticospinal tract and motor 

neurons (for a complete overview of the SMA see (Nachev et al., 2008), providing a 

direct link to movement, much like M1. Based on this previous knowledge it was 

expected that the SMA would act as a hub and have the highest node degree, which it did.  

 For the present study, the SMA was considered to be composed of both the left 

and right PMCMed. The location of these two nodes fit into the anatomically defined 

region of the SMA. Before these regions were combined, the connections with each node 

were examined to ensure that no connection was counted twice. This occurred once 

whereby the right and left PMCMed both had a connection with the right AG. Therefore 

this connection was only counted once, leaving a total node degree of 13 for the SMA, 

which was the highest node degree found, proving it to be a hub within the established 

sensorimotor network.  

 An alternative approach to determining node degree for the SMA could have been 

done by altering the node locations prior to the analysis. A single node representing the 

SMA as a whole could have been defined. However the SMA is located on the midline 

and extends into both hemispheres. Therefore perhaps two sources would be more 

representative of SMA connectivity, especially based on the finding that apart from 

sharing one connection, both nodes made independent connections. These connections 

were with visual areas (V1, V2, FEF), bilateral CB, bilateral angular gyri, and left IPC 

among several more. As the SMA is involved with a myriad of functions such as 



	
  

	
   89	
  

planning, initiating, and directing movement, as well as motor learning, connections from 

SMA to multiple widespread regions were expected. Since the task required vision to 

plan the movement, connections with the visual areas were certainly expected. 

Furthermore, similar to the SPC, the IPC is also involved in grasping movements, so the 

planning and executing of a mass grip task should consist of interaction between this 

region and the SMA. Finally the AG has been shown to be involved with consciousness 

or awareness of action as well as action discrepancy (Farrer et al., 2008). Farrer et al. 

(2008) conducted an experiment whereby participants performed a unilateral UL motor 

task and received delayed feedback. This delay between action and consequence resulted 

in significant activation of the right and left AG. The task used in the present study also 

introduced a level of discrepancy between action and consequence because the cursor 

disappeared once a behavioral response was made and the participants did not receive 

feedback. Although they were conscious of their behavioral response, they could only 

estimate the outcome based on how hard they squeezed the force grip device. Therefore 

activation in the AG is expected within the context of the present study.   

5.11 Primary Visual Cortex 

 Finally, as expected, V1 was also an important node within the established 

network. Both the right and left primary visual cortices were important regions, having 

node degrees of five and four respectively. The analysis used in the present study 

required comparing a visuomotor task condition to a resting, eyes-closed condition, 

therefore it was expected that there would be an increase in coherence between V1 and 

other regions. A study by (Pool et al., 2013) examined FC using fMRI within a group of 

healthy participants while they performed repetitive fist closures (unilaterally and 

bilaterally) cued by a visual stimulus. The unilateral condition was associated with 
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enhanced BOLD activity within the right and left V1. Although they found activity 

within the V1, they however were only focused on connectivity between regions of the 

motor network and therefore did not provide results relating to the functional connections 

of V1. A study by (Culham et al., 2003) also showed visual cortex activation during a 

visuomotor grasping task. As stated in the previous discussion point, V1 made functional 

connections with the SMA, as well as the anterior cingulate cortex, bilateral prefrontal 

cortex, and right PMC. One study (Classen et al., 1998) used EEG to examine FC 

between the visual and motor regions of the brain. Using the 10-20 electrode coordinate 

system connectivity was examined between electrodes C3 and FC3 (representing the 

primary motor, sensorimotor, and premotor cortices, as well as the SMA) and electrodes 

O1 and O2 (representing the occipital cortices). The authors found that during a unilateral 

visuomotor task requiring an alternating finger pressure to trace a visually presented 

sinusoidal wave, there was increased beta band coherence between the motor and 

occipital regions, compared to a task that required the visual or motor aspect separately. 

The author’s note that they cannot infer from exactly which region the strongest source of 

activity is emanating. However, it is evident that there are functional connections 

between the primary visual regions and those regions considered to be components within 

the sensorimotor network. This is in line with the findings from the current study. 

5.12 Other Regions Showing High Node Degree 

 Apart from the regions listed above that were hypothesized to be components of 

the sensorimotor network, several other regions not expected to be a part of the network 

showed a high node degree as well (see Appendix F). These regions include the AG, and 

the cingulate cortex (subgenual and anterior regions). 
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 The AG has been extensively studied using a variety of paradigms that have 

uncovered its multiple functions. It is involved in word processing, learning, creativity, 

memory, attention, and spatial cognition (for a review see (Seghier, 2013). Futhermore, 

the AG is structurally connected with Brodmann area 7 (Makris et al., 2007), which 

contains the precuneus and the SPC. Both of these regions are considered to be involved 

in, or functionally connected to the sensorimotor network (precuneus: Margulies et al., 

2009, SPC: Sakata and Taira, 1994). Although the present study did not find any 

functional connections between the AG and these specific regions, the AG was found to 

be functionally connected to the IPC, the premotor cortex, the SMA, and the 

somatosensory cortices, in addition to other regions. The AG was not hypothesized to 

have a high node degree, however the results show that it does share several connections 

with important components of the sensorimotor network, which in turn are functionally 

connected with each other. Based on these connections it is evident that the AG was a 

component in the task-positive network, however this finding was unexpected and 

somewhat inexplicable. Perhaps it played a role as a hub between the other, important 

sensorimotor regions, however this role has not been established in the literature.  

 The cingulate cortex (CC) was not hypothesized to have a high degree in the 

present study, yet the subgenual and anterior regions combined had a node degree of 15.  

(Picard and Strick, 2001) conducted a meta-analysis on the premotor regions, and have 

proposed two motor components of the CC, a rostral cingulate zone (RCZ) and a caudal 

cingulate zone (CCZ). The CCZ is believed to be activated during movement execution 

while the RCZ is involved with conflict monitoring and attention/selection for action. 

Another meta-analysis (Beckmann et al., 2009) has found that the CC has repeatedly been 

involved in an error detection network (16 studies found), as well as with motor function 
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(23 studies found). The task used in the present study was, of course, a motor task 

requiring the estimation of behavioral error to perform as accurately as possible. 

Therefore activation of the CC, in hindsight, was reasonable.  

5.13 Limitations of the present study  

 The present study has provided novel information to the field of MEG imaging as 

well as to the understanding of brain regions responsible for motor performance by using 

FC and graph theory to characterize the sensorimotor network in a group of non-disabled 

participants. The study has provided a template of FC that shows the neural activity when 

a group of non-disabled participants perform a unilateral UL task. However, throughout 

data recording and analysis there are several assumptions to be made as well as 

limitations to the techniques used. 

 The first point of discussion concerns the task performance by the participants. 

During the first test block, performance across all participants was poor. The most skilled 

participant only obtained a correct hit response of 40%, proving the task to be rather 

difficult initially. Poor behavioral performance however was expected, because the task 

used was a part of a larger study, which required participants to learn over time. Also the 

task did not provide feedback, so participants could not judge their performance. 

However, the results show that many brain regions active during this initial phase are 

involved in early motor learning, and support task compliance. Additionally, the poor 

initial performance of participants in the present study was similar to a study by Boe and 

colleagues (2012) that assessed changes in neural activity based on motor learning across 

a single session. The paradigm used was similar to the study by Bardouille and Boe 

(2012) and also required a bilateral UL mass grip response to move a cursor toward a 

stationary target. The results show that during the first 20 pre-training test trials 
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participants had an average accuracy of 8%, which was significantly different than the 

post-training accuracy, indicating that they learned with repeated training. Another study 

(Floyer-Lea and Matthews, 2004) examined neural activity across a single session of 

learning. Participants of this study performed a unilateral tracking task by squeezing a 

pressure sensor to move a vertical bar on screen to match another vertical bar (target 

pressure bar). The results showed that participants significantly improved tracking 

performance, which was indicated by a difference in tracking error between the first 

block and the last (10th) block. Based on the results of these studies in addition to the 

present, it is not uncommon to see poor performance during the initial trials of a novel 

motor task. More importantly these results highlight the principle that poor performance 

is not a result of non-compliance.  

 Another limitation in the current study relates to the use of MEG for source 

estimation. During data analysis we are attempting to localize sources of brain activity 

from activity recorded outside the brain. As discussed previously, this forms the inverse 

problem, which does not have a unique solution. There are however several ways to 

ensure that localization is as accurate as possible. To calculate source activity from each 

node in the present study the virtual electrode data was calculated based on the 

beamformer spatial filter, using a realistic BEM for calculation of the forward solution 

(as described in the Methods). It is accepted that these analyses techniques provide 

accurate spatial localization in motor tasks (Bardouille and Boe, 2012, Cheyne, 2013). 

The beamformer spatial filter is a widely used method for determining activity from a 

specific source by attenuating all other sources of activity within the brain, and for 

calculating CCC across the brain. Due to its sensitivity, the beamformer is also able to 

detect and locate deep brain sources, which is contrary to the traditional view that MEG 
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is insensitive to deep brain sources. One study (Mills et al., 2012) localized activity to the 

hippocampus using a beamformer spatial filter, despite the hippocampus being 

considered a deep brain structure. During source estimation, one way to increase the 

accuracy is by using the actual participants’ structural MRIs. The use of a participant’s 

structural MRI ensures that all neural activity recorded is being overlaid onto the person’s 

own brain, and not a template brain. This step also requires the successful digitization of 

the participant’s head before the scanning occurs. By utilizing a digital head position 

estimation and movement tracking system, the participant’s head position was monitored 

throughout the task with accuracy on the millimeter scale. The limitation with MEG is 

that unlike EEG, the sensors are stationary and when a participant moves their head 

inside the sensor array, source activity becomes less accurate. Therefore if a participant 

moves excessively, data may be lost. However based on the data obtained from the 

movement tracking system, any scans that contained excessive movement were removed 

from the analysis, ensuring the neural activity could be localized as accurately as 

possible.  A potential issue may arise if the heads were not digitized properly, however 

methodological precautions were taken to ensure optimal digitization. Based on these 

widely used analysis procedures we can infer a degree of confidence that the location and 

activity of the estimated sources are accurate localizations of the real sources of neural 

activity. 

 Another potential issue with MEG imaging during the present study was that 

activity from all nodes may not have been independent. All neural activity studied was 

from 80 pre-determined nodes located across brain. The location of these nodes were 

based on Talairach-Tournoux coordinates, which were fitted to each participant’s own 

MRI to ensure optimal spatial localization. The problem however arises when nodes are 
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close together. Magnetoencephalography sensors may not be able to distinguish between 

nodes that are in close proximity on the cortical surface. Therefore the activity recorded 

from two such nodes may be contributing to the same sensor signal, which is termed 

“cross-talk” between the signals (Brookes et al., 2011). This cross-talk can lead to 

estimates of cortical coherence that are higher than the true coherence. The present study 

however, examines the difference in FC between states and does not specifically focus on 

the absolute level of FC during each state. Since the analysis required a relative 

comparison between states and the location of the nodes did not differ between states, if 

there was cross-talk between signals, it should be consistent across scans and not affect 

the results.  

 Although the methodology of the current study had several strengths, one 

weakness of the analysis was that the coherence measure used did not indicate 

directionality of communication. The current study determined synchrony between two 

nodes, irrespective of information flow. For the purposes of the present study however, 

the coherence analysis used was appropriate to answer the study objective by quantifying 

the task-positive network, without the requirement to investigate the temporal order of 

activation (an indicator of directionality). However, knowing the direction of information 

flow could add to the results as previous literature has indicated directionality of multiple 

connections within the motor network.  

5.14 Future Directions 

 The present study has established a sensorimotor network in a group of non-

disabled controls while they performed a unilateral motor task. This network can and will 

be used in future studies as a template to compare against the networks of clinical 

populations performing the same task. By applying graph theory metrics to the 
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neuroimaging data obtained, the network has been quantified which allows direct 

numerical comparisons to be made. For example, a node of interest could be directly 

compared between multiple networks by comparing its node degree. Furthermore the 

present study has also determined the efficiency of this template network. Future studies 

using clinical populations can directly compare the efficiency of the diseased (or altered) 

network to that of a non-diseased network.  

 In the future this standard map of activity will be compared against a group of 

patients who have had a stroke. Stroke is a neurological disease that usually affects one 

hemisphere of the brain. By restricting blood flow and subsequent oxygen and nutrient 

flow to a neural region, ischemic strokes effectively kill the brain region where they 

occur. The majority of strokes affect the motor cortex or surrounding motor regions, 

which result in a physical impairment for those who experience them. The present study 

is important in the context of stroke research because it utilized a unilateral task, which 

provided a brain-wide estimation of FC based on the movement of one limb. In follow-up 

studies planned to supersede the current study, stroke patients will perform the same task 

with their affected limb. Analysis of the FC patterns within the patients’ brains will likely 

reveal irregular patterns of activity or coherence between regions as a result of the stroke. 

I expect that at the location of the lesion, surrounding nodes will exhibit both a decreased 

functional connectivity as well as a smaller node degree compared to the non-disabled 

network. Furthermore I would also expect a less efficient post-stroke network, provided 

there was impaired behavior present. Comparing the FC patterns between patients and 

non-disabled controls will provide insight into how communication between regions of 

the brain change pre- and post-stroke.  
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 Beyond comparing FC between patients and healthy individuals, there is ongoing 

research into methodologies for improving post-stroke rehabilitation based on neural 

stimulation (such as TMS). Grefkes et. al. (2008) has shown that when stroke patients 

have damage to the M1 contralateral to movement, there is an increase in activity of the 

ipsilateral M1 that may be working as a compensatory mechanism. Therefore one would 

expect a node degree shift between damaged regions of the contralateral motor network 

to the nodes of the ipsilateral network. In addition to this finding, Grefkes and others 

(2010) have shown that TMS of the affected M1 improves post-stroke rehabilitation. The 

problem, however, is that research into using TMS for post-stroke rehabilitation to date 

has only focused on this one region (M1). By determining the FC pattern within the 

stroke brain, different regions may be highlighted as potential targets for stimulation. The 

results of the present study show for example that the SMA is a major component of a 

non-disabled network. It would be interesting to make a direct comparison between the 

node degrees of SMA between the standard network and the post stroke network. Such a 

direct comparison could possibly unveil a functional discrepancy between networks that 

may provide a target for neural stimulation.  
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CHAPTER 6: CONCLUSION 

 The present study is one of few to utilize FC analysis to highlight the 

sensorimotor network in a group of non-disabled controls using a state-related approach, 

and then apply graph theoretical metrics to quantify the network. As hypothesized, this 

study has found a significant increase in FC during an active motor task compared to an 

eyes-closed resting condition. This highlights the ability of the human brain to utilize 

different neural networks depending on the demands of the task. Furthermore, the task-

positive network contained connections between areas that have been previously shown 

to be specific components of the sensorimotor network and involved in visuomotor tasks, 

which confirmed the second hypothesis of the study. These regions include, but are not 

limited to, the contralateral M1, S1, PMC, SMA, V1, and the ipsilateral CB. Furthermore 

the third hypothesis of the present study was also confirmed, wherein the SMA had the 

highest degree within the network, confirming this region’s role as a hub in the network 

supporting movement performance. The application of graph theory to this network has 

highlighted the importance of these regions through the calculation of quantitative 

measures. The application of graph theory to neuroimaging data is a relatively new 

approach to data analysis and therefore has much left to be discovered. However, using 

this analysis procedure the current project has established a baseline quantification of FC 

during a motor task that can be used as a comparator in future studies examining clinical 

populations performing behavioral ULs tasks. By comparing the important regions, as 

quantified with node degree, between a diseased or lesioned brain with the non-disabled 

population, researchers using neural stimulation procedures will have novel targets to 

stimulate. As this study has shown for example, among the 40 nodes considered 

important within the network, the SMA proved to be a hub within the network by having 
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the highest node degree, proving it to be a potential site in neurostimulation experiments. 

Locating these regions that change as a result of injury may provide useful information to 

aid in the rehabilitation process.   



	
  

	
   100	
  

REFERENCES 

Achard	
  S,	
  Salvador	
  R,	
  Whitcher	
  B,	
  Suckling	
  J,	
  Bullmore	
  E	
  (2006)	
  A	
  resilient,	
  low-­‐

frequency,	
  small-­‐world	
  human	
  brain	
  functional	
  network	
  with	
  highly	
  

connected	
  association	
  cortical	
  hubs.	
  J	
  Neurosci	
  26:63-­‐72.	
  

Baillet	
  S,	
  Mosher	
  JC,	
  Leahy	
  RM	
  (2001)	
  Electromagnetic	
  brain	
  mapping.	
  Ieee	
  Signal	
  

Proc	
  Mag	
  18:14-­‐30.	
  

Baker	
  SN,	
  Olivier	
  E,	
  Lemon	
  RN	
  (1997)	
  Coherent	
  oscillations	
  in	
  monkey	
  motor	
  cortex	
  

and	
  hand	
  muscle	
  EMG	
  show	
  task-­‐dependent	
  modulation.	
  The	
  Journal	
  of	
  

physiology	
  501	
  (	
  Pt	
  1):225-­‐241.	
  

Bardouille	
  T,	
  Boe	
  S	
  (2012)	
  State-­‐related	
  changes	
  in	
  MEG	
  functional	
  connectivity	
  

reveal	
  the	
  task-­‐positive	
  sensorimotor	
  network.	
  PloS	
  one	
  7:e48682.	
  

Bartolomei	
  F,	
  Bosma	
  I,	
  Klein	
  M,	
  Baayen	
  JC,	
  Reijneveld	
  JC,	
  Postma	
  TJ,	
  Heimans	
  JJ,	
  van	
  

Dijk	
  BW,	
  de	
  Munck	
  JC,	
  de	
  Jongh	
  A,	
  Cover	
  KS,	
  Stam	
  CJ	
  (2006)	
  Disturbed	
  

functional	
  connectivity	
  in	
  brain	
  tumour	
  patients:	
  evaluation	
  by	
  graph	
  

analysis	
  of	
  synchronization	
  matrices.	
  Clin	
  Neurophysiol	
  117:2039-­‐2049.	
  

Bassett	
  DS,	
  Meyer-­‐Lindenberg	
  A,	
  Achard	
  S,	
  Duke	
  T,	
  Bullmore	
  E	
  (2006)	
  Adaptive	
  

reconfiguration	
  of	
  fractal	
  small-­‐world	
  human	
  brain	
  functional	
  networks.	
  

Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  of	
  the	
  United	
  States	
  of	
  

America	
  103:19518-­‐19523.	
  

Beckmann	
  M,	
  Johansen-­‐Berg	
  H,	
  Rushworth	
  MF	
  (2009)	
  Connectivity-­‐based	
  

parcellation	
  of	
  human	
  cingulate	
  cortex	
  and	
  its	
  relation	
  to	
  functional	
  

specialization.	
  J	
  Neurosci	
  29:1175-­‐1190.	
  

Boe	
  SG,	
  Cassidy	
  RJ,	
  McIlroy	
  WE,	
  Graham	
  SJ	
  (2012)	
  Single	
  session	
  motor	
  learning	
  

demonstrated	
  using	
  a	
  visuomotor	
  task:	
  Evidence	
  from	
  fMRI	
  and	
  behavioural	
  

analysis.	
  Journal	
  of	
  neuroscience	
  methods	
  209:308-­‐319.	
  

Bressler	
  SL	
  (2002b)	
  Event-­‐related	
  potentials.	
  In:	
  The	
  handbook	
  of	
  brain	
  theory	
  and	
  

neural	
  networks,	
  pp	
  412-­‐415	
  Cambridge,	
  Massachusetts:	
  MIT	
  Press.	
  

Brookes	
  MJ,	
  Hale	
  JR,	
  Zumer	
  JM,	
  Stevenson	
  CM,	
  Francis	
  ST,	
  Barnes	
  GR,	
  Owen	
  JP,	
  

Morris	
  PG,	
  Nagarajan	
  SS	
  (2011)	
  Measuring	
  functional	
  connectivity	
  using	
  

MEG:	
  methodology	
  and	
  comparison	
  with	
  fcMRI.	
  Neuroimage	
  56:1082-­‐1104.	
  



	
  

	
   101	
  

Brovelli	
  A,	
  Ding	
  M,	
  Ledberg	
  A,	
  Chen	
  Y,	
  Nakamura	
  R,	
  Bressler	
  SL	
  (2004)	
  Beta	
  

oscillations	
  in	
  a	
  large-­‐scale	
  sensorimotor	
  cortical	
  network:	
  directional	
  

influences	
  revealed	
  by	
  Granger	
  causality.	
  Proceedings	
  of	
  the	
  National	
  

Academy	
  of	
  Sciences	
  of	
  the	
  United	
  States	
  of	
  America	
  101:9849-­‐9854.	
  

Brown	
  P,	
  Salenius	
  S,	
  Rothwell	
  JC,	
  Hari	
  R	
  (1998)	
  Cortical	
  correlate	
  of	
  the	
  Piper	
  

rhythm	
  in	
  humans.	
  Journal	
  of	
  neurophysiology	
  80:2911-­‐2917.	
  

Broyd	
  SJ,	
  Demanuele	
  C,	
  Debener	
  S,	
  Helps	
  SK,	
  James	
  CJ,	
  Sonuga-­‐Barke	
  EJ	
  (2009)	
  

Default-­‐mode	
  brain	
  dysfunction	
  in	
  mental	
  disorders:	
  a	
  systematic	
  review.	
  

Neurosci	
  Biobehav	
  Rev	
  33:279-­‐296.	
  

Bullmore	
  E,	
  Sporns	
  O	
  (2009)	
  Complex	
  brain	
  networks:	
  graph	
  theoretical	
  analysis	
  of	
  

structural	
  and	
  functional	
  systems.	
  Nature	
  reviews	
  Neuroscience	
  10:186-­‐198.	
  

Carson	
  RG	
  (2005)	
  Neural	
  pathways	
  mediating	
  bilateral	
  interactions	
  between	
  the	
  

upper	
  limbs.	
  Brain	
  research	
  Brain	
  research	
  reviews	
  49:641-­‐662.	
  

Cavanna	
  AE,	
  Trimble	
  MR	
  (2006)	
  The	
  precuneus:	
  a	
  review	
  of	
  its	
  functional	
  anatomy	
  

and	
  behavioural	
  correlates.	
  Brain	
  :	
  a	
  journal	
  of	
  neurology	
  129:564-­‐583.	
  

Cheyne	
  D,	
  Weinberg	
  H	
  (1989)	
  Neuromagnetic	
  fields	
  accompanying	
  unilateral	
  finger	
  

movements:	
  pre-­‐movement	
  and	
  movement-­‐evoked	
  fields.	
  Exp	
  Brain	
  Res	
  

78:604-­‐612.	
  

Cheyne	
  DO	
  (2013)	
  MEG	
  studies	
  of	
  sensorimotor	
  rhythms:	
  a	
  review.	
  Experimental	
  

neurology	
  245:27-­‐39.	
  

Chouinard	
  PA,	
  Paus	
  T	
  (2006)	
  The	
  primary	
  motor	
  and	
  premotor	
  areas	
  of	
  the	
  human	
  

cerebral	
  cortex.	
  The	
  Neuroscientist	
  :	
  a	
  review	
  journal	
  bringing	
  neurobiology,	
  

neurology	
  and	
  psychiatry	
  12:143-­‐152.	
  

Classen	
  J,	
  Gerloff	
  C,	
  Honda	
  M,	
  Hallett	
  M	
  (1998)	
  Integrative	
  visuomotor	
  behavior	
  is	
  

associated	
  with	
  interregionally	
  coherent	
  oscillations	
  in	
  the	
  human	
  brain.	
  

Journal	
  of	
  neurophysiology	
  79:1567-­‐1573.	
  

Cohen	
  D	
  (1972)	
  Magnetoencephalography:	
  detection	
  of	
  the	
  brain's	
  electrical	
  activity	
  

with	
  a	
  superconducting	
  magnetometer.	
  Science	
  175:664-­‐666.	
  

Cooke	
  SF,	
  Bliss	
  TV	
  (2006)	
  Plasticity	
  in	
  the	
  human	
  central	
  nervous	
  system.	
  Brain	
  :	
  a	
  

journal	
  of	
  neurology	
  129:1659-­‐1673.	
  



	
  

	
   102	
  

Culham	
  JC,	
  Danckert	
  SL,	
  DeSouza	
  JF,	
  Gati	
  JS,	
  Menon	
  RS,	
  Goodale	
  MA	
  (2003)	
  Visually	
  

guided	
  grasping	
  produces	
  fMRI	
  activation	
  in	
  dorsal	
  but	
  not	
  ventral	
  stream	
  

brain	
  areas.	
  Exp	
  Brain	
  Res	
  153:180-­‐189.	
  

Culham	
  JC,	
  Valyear	
  KF	
  (2006)	
  Human	
  parietal	
  cortex	
  in	
  action.	
  Current	
  opinion	
  in	
  

neurobiology	
  16:205-­‐212.	
  

Deecke	
  L,	
  Weinberg	
  H,	
  Brickett	
  P	
  (1982)	
  Magnetic	
  fields	
  of	
  the	
  human	
  brain	
  

accompanying	
  voluntary	
  movement:	
  Bereitschaftsmagnetfeld.	
  Exp	
  Brain	
  Res	
  

48:144-­‐148.	
  

Diaconescu	
  AO,	
  Alain	
  C,	
  McIntosh	
  AR	
  (2011)	
  The	
  co-­‐occurrence	
  of	
  multisensory	
  

facilitation	
  and	
  cross-­‐modal	
  conflict	
  in	
  the	
  human	
  brain.	
  Journal	
  of	
  

neurophysiology	
  106:2896-­‐2909.	
  

Doyon	
  J,	
  Benali	
  H	
  (2005)	
  Reorganization	
  and	
  plasticity	
  in	
  the	
  adult	
  brain	
  during	
  

learning	
  of	
  motor	
  skills.	
  Current	
  opinion	
  in	
  neurobiology	
  15:161-­‐167.	
  

Ehrsson	
  HH,	
  Fagergren	
  A,	
  Jonsson	
  T,	
  Westling	
  G,	
  Johansson	
  RS,	
  Forssberg	
  H	
  (2000)	
  

Cortical	
  activity	
  in	
  precision-­‐	
  versus	
  power-­‐grip	
  tasks:	
  an	
  fMRI	
  study.	
  Journal	
  

of	
  neurophysiology	
  83:528-­‐536.	
  

Farmer	
  SF,	
  Bremner	
  FD,	
  Halliday	
  DM,	
  Rosenberg	
  JR,	
  Stephens	
  JA	
  (1993)	
  The	
  

frequency	
  content	
  of	
  common	
  synaptic	
  inputs	
  to	
  motoneurones	
  studied	
  

during	
  voluntary	
  isometric	
  contraction	
  in	
  man.	
  The	
  Journal	
  of	
  physiology	
  

470:127-­‐155.	
  

Farrer	
  C,	
  Frey	
  SH,	
  Van	
  Horn	
  JD,	
  Tunik	
  E,	
  Turk	
  D,	
  Inati	
  S,	
  Grafton	
  ST	
  (2008)	
  The	
  

angular	
  gyrus	
  computes	
  action	
  awareness	
  representations.	
  Cerebral	
  cortex	
  

18:254-­‐261.	
  

Feige	
  B,	
  Aertsen	
  A,	
  Kristeva-­‐Feige	
  R	
  (2000)	
  Dynamic	
  synchronization	
  between	
  

multiple	
  cortical	
  motor	
  areas	
  and	
  muscle	
  activity	
  in	
  phasic	
  voluntary	
  

movements.	
  Journal	
  of	
  neurophysiology	
  84:2622-­‐2629.	
  

Ferbert	
  A,	
  Priori	
  A,	
  Rothwell	
  JC,	
  Day	
  BL,	
  Colebatch	
  JG,	
  Marsden	
  CD	
  (1992)	
  

Interhemispheric	
  inhibition	
  of	
  the	
  human	
  motor	
  cortex.	
  The	
  Journal	
  of	
  

physiology	
  453:525-­‐546.	
  



	
  

	
   103	
  

Flament	
  D,	
  Ellermann	
  JM,	
  Kim	
  SG,	
  Ugurbil	
  K,	
  Ebner	
  TJ	
  (1996)	
  Functional	
  magnetic	
  

resonance	
  imaging	
  of	
  cerebellar	
  activation	
  during	
  the	
  learning	
  of	
  a	
  

visuomotor	
  dissociation	
  task.	
  Human	
  brain	
  mapping	
  4:210-­‐226.	
  

Floyer-­‐Lea	
  A,	
  Matthews	
  PM	
  (2004)	
  Changing	
  brain	
  networks	
  for	
  visuomotor	
  control	
  

with	
  increased	
  movement	
  automaticity.	
  Journal	
  of	
  neurophysiology	
  92:2405-­‐

2412.	
  

Fogassi	
  L,	
  Ferrari	
  PF,	
  Gesierich	
  B,	
  Rozzi	
  S,	
  Chersi	
  F,	
  Rizzolatti	
  G	
  (2005)	
  Parietal	
  lobe:	
  

from	
  action	
  organization	
  to	
  intention	
  understanding.	
  Science	
  308:662-­‐667.	
  

Fries	
  P	
  (2005)	
  A	
  mechanism	
  for	
  cognitive	
  dynamics:	
  neuronal	
  communication	
  

through	
  neuronal	
  coherence.	
  Trends	
  in	
  cognitive	
  sciences	
  9:474-­‐480.	
  

Friston	
  KJ,	
  Frith	
  CD,	
  Liddle	
  PF,	
  Frackowiak	
  RS	
  (1993)	
  Functional	
  connectivity:	
  the	
  

principal-­‐component	
  analysis	
  of	
  large	
  (PET)	
  data	
  sets.	
  Journal	
  of	
  cerebral	
  

blood	
  flow	
  and	
  metabolism	
  :	
  official	
  journal	
  of	
  the	
  International	
  Society	
  of	
  

Cerebral	
  Blood	
  Flow	
  and	
  Metabolism	
  13:5-­‐14.	
  

Fuchs	
  M,	
  Drenckhahn	
  R,	
  Wischmann	
  HA,	
  Wagner	
  M	
  (1998)	
  An	
  improved	
  boundary	
  

element	
  method	
  for	
  realistic	
  volume-­‐conductor	
  modeling.	
  IEEE	
  transactions	
  

on	
  bio-­‐medical	
  engineering	
  45:980-­‐997.	
  

Galea	
  JM,	
  Vazquez	
  A,	
  Pasricha	
  N,	
  de	
  Xivry	
  JJ,	
  Celnik	
  P	
  (2011)	
  Dissociating	
  the	
  roles	
  of	
  

the	
  cerebellum	
  and	
  motor	
  cortex	
  during	
  adaptive	
  learning:	
  the	
  motor	
  cortex	
  

retains	
  what	
  the	
  cerebellum	
  learns.	
  Cerebral	
  cortex	
  21:1761-­‐1770.	
  

Gray	
  CM,	
  Konig	
  P,	
  Engel	
  AK,	
  Singer	
  W	
  (1989)	
  Oscillatory	
  responses	
  in	
  cat	
  visual	
  

cortex	
  exhibit	
  inter-­‐columnar	
  synchronization	
  which	
  reflects	
  global	
  stimulus	
  

properties.	
  Nature	
  338:334-­‐337.	
  

Gray	
  CM,	
  Singer	
  W	
  (1989)	
  Stimulus-­‐specific	
  neuronal	
  oscillations	
  in	
  orientation	
  

columns	
  of	
  cat	
  visual	
  cortex.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  

Sciences	
  of	
  the	
  United	
  States	
  of	
  America	
  86:1698-­‐1702.	
  

Grefkes	
  C,	
  Eickhoff	
  SB,	
  Nowak	
  DA,	
  Dafotakis	
  M,	
  Fink	
  GR	
  (2008)	
  Dynamic	
  intra-­‐	
  and	
  

interhemispheric	
  interactions	
  during	
  unilateral	
  and	
  bilateral	
  hand	
  

movements	
  assessed	
  with	
  fMRI	
  and	
  DCM.	
  Neuroimage	
  41:1382-­‐1394.	
  



	
  

	
   104	
  

Grefkes	
  C,	
  Nowak	
  DA,	
  Wang	
  LE,	
  Dafotakis	
  M,	
  Eickhoff	
  SB,	
  Fink	
  GR	
  (2010)	
  

Modulating	
  cortical	
  connectivity	
  in	
  stroke	
  patients	
  by	
  rTMS	
  assessed	
  with	
  

fMRI	
  and	
  dynamic	
  causal	
  modeling.	
  Neuroimage	
  50:233-­‐242.	
  

Greicius	
  MD,	
  Krasnow	
  B,	
  Reiss	
  AL,	
  Menon	
  V	
  (2003)	
  Functional	
  connectivity	
  in	
  the	
  

resting	
  brain:	
  a	
  network	
  analysis	
  of	
  the	
  default	
  mode	
  hypothesis.	
  

Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  of	
  the	
  United	
  States	
  of	
  

America	
  100:253-­‐258.	
  

Gross	
  J,	
  Kujala	
  J,	
  Hamalainen	
  M,	
  Timmermann	
  L,	
  Schnitzler	
  A,	
  Salmelin	
  R	
  (2001)	
  

Dynamic	
  imaging	
  of	
  coherent	
  sources:	
  Studying	
  neural	
  interactions	
  in	
  the	
  

human	
  brain.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  of	
  the	
  United	
  

States	
  of	
  America	
  98:694-­‐699.	
  

Guye	
  M,	
  Bartolomei	
  F,	
  Ranjeva	
  JP	
  (2008)	
  Imaging	
  structural	
  and	
  functional	
  

connectivity:	
  towards	
  a	
  unified	
  definition	
  of	
  human	
  brain	
  organization?	
  

Current	
  opinion	
  in	
  neurology	
  21:393-­‐403.	
  

Hagmann	
  P,	
  Kurant	
  M,	
  Gigandet	
  X,	
  Thiran	
  P,	
  Wedeen	
  VJ,	
  Meuli	
  R,	
  Thiran	
  JP	
  (2007)	
  

Mapping	
  human	
  whole-­‐brain	
  structural	
  networks	
  with	
  diffusion	
  MRI.	
  PloS	
  

one	
  2:e597.	
  

Hardwick	
  RM,	
  Rottschy	
  C,	
  Miall	
  RC,	
  Eickhoff	
  SB	
  (2013)	
  A	
  quantitative	
  meta-­‐analysis	
  

and	
  review	
  of	
  motor	
  learning	
  in	
  the	
  human	
  brain.	
  Neuroimage	
  67:283-­‐297.	
  

Hart	
  G	
  (1991)	
  Biomagnetometry:	
  imaging	
  the	
  heart's	
  magnetic	
  field.	
  British	
  Heart	
  

Journal	
  65:61-­‐62.	
  

Hebb	
  D,	
  O.,	
  (1949)	
  The	
  Organization	
  of	
  Behavior:	
  A	
  Neuropsychological	
  Theory.	
  

Florence,	
  Kentucky:	
  Psychology	
  Press.	
  

Herculano-­‐Houzel	
  S	
  (2009)	
  The	
  human	
  brain	
  in	
  numbers:	
  a	
  linearly	
  scaled-­‐up	
  

primate	
  brain.	
  Frontiers	
  in	
  human	
  neuroscience	
  3:31.	
  

Hoechstetter	
  K,	
  Bornfleth	
  H,	
  Weckesser	
  D,	
  Ille	
  N,	
  Berg	
  P,	
  Scherg	
  M	
  (2004)	
  BESA	
  

source	
  coherence:	
  a	
  new	
  method	
  to	
  study	
  cortical	
  oscillatory	
  coupling.	
  Brain	
  

topography	
  16:233-­‐238.	
  

Hofman	
  MA	
  (2014)	
  Evolution	
  of	
  the	
  human	
  brain:	
  when	
  bigger	
  is	
  better.	
  Frontiers	
  in	
  

neuroanatomy	
  8:15.	
  



	
  

	
   105	
  

Honey	
  CJ,	
  Sporns	
  O,	
  Cammoun	
  L,	
  Gigandet	
  X,	
  Thiran	
  JP,	
  Meuli	
  R,	
  Hagmann	
  P	
  (2009)	
  

Predicting	
  human	
  resting-­‐state	
  functional	
  connectivity	
  from	
  structural	
  

connectivity.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  of	
  the	
  United	
  

States	
  of	
  America	
  106:2035-­‐2040.	
  

Hopfield	
  JJ	
  (1982)	
  Neural	
  networks	
  and	
  physical	
  systems	
  with	
  emergent	
  collective	
  

computational	
  abilities.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  of	
  

the	
  United	
  States	
  of	
  America	
  79:2554-­‐2558.	
  

Humphries	
  MD,	
  Gurney	
  K	
  (2008)	
  Network	
  'small-­‐world-­‐ness':	
  a	
  quantitative	
  

method	
  for	
  determining	
  canonical	
  network	
  equivalence.	
  PloS	
  one	
  

3:e0002051.	
  

Hyvarinen	
  A,	
  Ramkumar	
  P,	
  Parkkonen	
  L,	
  Hari	
  R	
  (2010)	
  Independent	
  component	
  

analysis	
  of	
  short-­‐time	
  Fourier	
  transforms	
  for	
  spontaneous	
  EEG/MEG	
  

analysis.	
  Neuroimage	
  49:257-­‐271.	
  

Kandel	
  ER,	
  Schwartz,	
  J.H.,	
  &	
  Jessell,	
  T.M.	
  (2000)	
  Principles	
  of	
  neural	
  science.	
  New	
  

York:	
  McGraw-­‐Hill.	
  

Kappenman	
  ES,	
  Luck	
  SJ	
  (2010)	
  The	
  effects	
  of	
  electrode	
  impedance	
  on	
  data	
  quality	
  

and	
  statistical	
  significance	
  in	
  ERP	
  recordings.	
  Psychophysiology	
  47:888-­‐904.	
  

Kapreli	
  E,	
  Athanasopoulos	
  S,	
  Papathanasiou	
  M,	
  Van	
  Hecke	
  P,	
  Strimpakos	
  N,	
  

Gouliamos	
  A,	
  Peeters	
  R,	
  Sunaert	
  S	
  (2006)	
  Lateralization	
  of	
  brain	
  activity	
  

during	
  lower	
  limb	
  joints	
  movement.	
  An	
  fMRI	
  study.	
  Neuroimage	
  32:1709-­‐

1721.	
  

Kim	
  SG,	
  Ashe	
  J,	
  Georgopoulos	
  AP,	
  Merkle	
  H,	
  Ellermann	
  JM,	
  Menon	
  RS,	
  Ogawa	
  S,	
  

Ugurbil	
  K	
  (1993)	
  Functional	
  imaging	
  of	
  human	
  motor	
  cortex	
  at	
  high	
  magnetic	
  

field.	
  Journal	
  of	
  neurophysiology	
  69:297-­‐302.	
  

Koessler	
  L,	
  Maillard	
  L,	
  Benhadid	
  A,	
  Vignal	
  JP,	
  Braun	
  M,	
  Vespignani	
  H	
  (2007)	
  Spatial	
  

localization	
  of	
  EEG	
  electrodes.	
  Neurophysiologie	
  clinique	
  =	
  Clinical	
  

neurophysiology	
  37:97-­‐102.	
  

Kuhtz-­‐Buschbeck	
  JP,	
  Gilster	
  R,	
  Wolff	
  S,	
  Ulmer	
  S,	
  Siebner	
  H,	
  Jansen	
  O	
  (2008)	
  Brain	
  

activity	
  is	
  similar	
  during	
  precision	
  and	
  power	
  gripping	
  with	
  light	
  force:	
  an	
  

fMRI	
  study.	
  Neuroimage	
  40:1469-­‐1481.	
  



	
  

	
   106	
  

Lamus	
  C,	
  Hamalainen	
  MS,	
  Temereanca	
  S,	
  Brown	
  EN,	
  Purdon	
  PL	
  (2012)	
  A	
  

spatiotemporal	
  dynamic	
  distributed	
  solution	
  to	
  the	
  MEG	
  inverse	
  problem.	
  

Neuroimage	
  63:894-­‐909.	
  

Makris	
  N,	
  Papadimitriou	
  GM,	
  Sorg	
  S,	
  Kennedy	
  DN,	
  Caviness	
  VS,	
  Pandya	
  DN	
  (2007)	
  

The	
  occipitofrontal	
  fascicle	
  in	
  humans:	
  a	
  quantitative,	
  in	
  vivo,	
  DT-­‐MRI	
  study.	
  

Neuroimage	
  37:1100-­‐1111.	
  

Margulies	
  DS,	
  Vincent	
  JL,	
  Kelly	
  C,	
  Lohmann	
  G,	
  Uddin	
  LQ,	
  Biswal	
  BB,	
  Villringer	
  A,	
  

Castellanos	
  FX,	
  Milham	
  MP,	
  Petrides	
  M	
  (2009)	
  Precuneus	
  shares	
  intrinsic	
  

functional	
  architecture	
  in	
  humans	
  and	
  monkeys.	
  Proceedings	
  of	
  the	
  National	
  

Academy	
  of	
  Sciences	
  of	
  the	
  United	
  States	
  of	
  America	
  106:20069-­‐20074.	
  

McIntosh	
  AR,	
  Lobaugh	
  NJ	
  (2004)	
  Partial	
  least	
  squares	
  analysis	
  of	
  neuroimaging	
  

data:	
  applications	
  and	
  advances.	
  Neuroimage	
  23	
  Suppl	
  1:S250-­‐263.	
  

Micheloyannis	
  S,	
  Pachou	
  E,	
  Stam	
  CJ,	
  Breakspear	
  M,	
  Bitsios	
  P,	
  Vourkas	
  M,	
  Erimaki	
  S,	
  

Zervakis	
  M	
  (2006)	
  Small-­‐world	
  networks	
  and	
  disturbed	
  functional	
  

connectivity	
  in	
  schizophrenia.	
  Schizophrenia	
  research	
  87:60-­‐66.	
  

Milgram	
  S	
  (1967)	
  Small-­‐World	
  Problem.	
  Psychol	
  Today	
  1:61-­‐67.	
  

Mills	
  T,	
  Lalancette	
  M,	
  Moses	
  SN,	
  Taylor	
  MJ,	
  Quraan	
  MA	
  (2012)	
  Techniques	
  for	
  

detection	
  and	
  localization	
  of	
  weak	
  hippocampal	
  and	
  medial	
  frontal	
  sources	
  

using	
  beamformers	
  in	
  MEG.	
  Brain	
  topography	
  25:248-­‐263.	
  

Milner	
  PM	
  (1974)	
  A	
  model	
  for	
  visual	
  shape	
  recognition.	
  Psychological	
  review	
  

81:521-­‐535.	
  

Murata	
  A,	
  Fadiga	
  L,	
  Fogassi	
  L,	
  Gallese	
  V,	
  Raos	
  V,	
  Rizzolatti	
  G	
  (1997)	
  Object	
  

representation	
  in	
  the	
  ventral	
  premotor	
  cortex	
  (area	
  F5)	
  of	
  the	
  monkey.	
  

Journal	
  of	
  neurophysiology	
  78:2226-­‐2230.	
  

Murthy	
  VN,	
  Fetz	
  EE	
  (1992)	
  Coherent	
  25-­‐	
  to	
  35-­‐Hz	
  oscillations	
  in	
  the	
  sensorimotor	
  

cortex	
  of	
  awake	
  behaving	
  monkeys.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  

Sciences	
  of	
  the	
  United	
  States	
  of	
  America	
  89:5670-­‐5674.	
  

Muthukumaraswamy	
  SD	
  (2011)	
  Temporal	
  dynamics	
  of	
  primary	
  motor	
  cortex	
  

gamma	
  oscillation	
  amplitude	
  and	
  piper	
  corticomuscular	
  coherence	
  changes	
  

during	
  motor	
  control.	
  Exp	
  Brain	
  Res	
  212:623-­‐633.	
  



	
  

	
   107	
  

Nachev	
  P,	
  Kennard	
  C,	
  Husain	
  M	
  (2008)	
  Functional	
  role	
  of	
  the	
  supplementary	
  and	
  

pre-­‐supplementary	
  motor	
  areas.	
  Nature	
  reviews	
  Neuroscience	
  9:856-­‐869.	
  

Nair	
  DG,	
  Purcott	
  KL,	
  Fuchs	
  A,	
  Steinberg	
  F,	
  Kelso	
  JA	
  (2003)	
  Cortical	
  and	
  cerebellar	
  

activity	
  of	
  the	
  human	
  brain	
  during	
  imagined	
  and	
  executed	
  unimanual	
  and	
  

bimanual	
  action	
  sequences:	
  a	
  functional	
  MRI	
  study.	
  Brain	
  research	
  Cognitive	
  

brain	
  research	
  15:250-­‐260.	
  

Napier	
  JR	
  (1956)	
  The	
  prehensile	
  movements	
  of	
  the	
  human	
  hand.	
  The	
  Journal	
  of	
  

bone	
  and	
  joint	
  surgery	
  British	
  volume	
  38-­‐B:902-­‐913.	
  

Nunez	
  PL,	
  Srinivasan	
  R,	
  Westdorp	
  AF,	
  Wijesinghe	
  RS,	
  Tucker	
  DM,	
  Silberstein	
  RB,	
  

Cadusch	
  PJ	
  (1997)	
  EEG	
  coherency.	
  I:	
  Statistics,	
  reference	
  electrode,	
  volume	
  

conduction,	
  Laplacians,	
  cortical	
  imaging,	
  and	
  interpretation	
  at	
  multiple	
  

scales.	
  Electroencephalography	
  and	
  clinical	
  neurophysiology	
  103:499-­‐515.	
  

Nyquist	
  H	
  (1928)	
  Certain	
  topics	
  in	
  telegraph	
  transmission	
  theory.	
  Transactions	
  of	
  

the	
  American	
  Institute	
  of	
  Electrical	
  Engineers	
  47:617-­‐644.	
  

Ogawa	
  S,	
  Lee	
  TM,	
  Kay	
  AR,	
  Tank	
  DW	
  (1990)	
  Brain	
  magnetic	
  resonance	
  imaging	
  with	
  

contrast	
  dependent	
  on	
  blood	
  oxygenation.	
  Proceedings	
  of	
  the	
  National	
  

Academy	
  of	
  Sciences	
  of	
  the	
  United	
  States	
  of	
  America	
  87:9868-­‐9872.	
  

Oldfield	
  RC	
  (1971)	
  The	
  assessment	
  and	
  analysis	
  of	
  handedness:	
  the	
  Edinburgh	
  

inventory.	
  Neuropsychologia	
  9:97-­‐113.	
  

Orgogozo	
  JM,	
  Larsen	
  B	
  (1979)	
  Activation	
  of	
  the	
  supplementary	
  motor	
  area	
  during	
  

voluntary	
  movement	
  in	
  man	
  suggests	
  it	
  works	
  as	
  a	
  supramotor	
  area.	
  Science	
  

206:847-­‐850.	
  

Penfield	
  WB,	
  E.	
  (1937)	
  Somatic	
  Motor	
  and	
  Sensory	
  Representation	
  in	
  the	
  Cerebral	
  

Cortex	
  of	
  Man	
  as	
  Studied	
  by	
  Electrical	
  Stimulation.	
  Brain	
  :	
  a	
  journal	
  of	
  

neurology	
  60:389-­‐443.	
  

Penhune	
  VB,	
  Doyon	
  J	
  (2005)	
  Cerebellum	
  and	
  M1	
  interaction	
  during	
  early	
  learning	
  of	
  

timed	
  motor	
  sequences.	
  Neuroimage	
  26:801-­‐812.	
  

Picard	
  N,	
  Strick	
  PL	
  (2001)	
  Imaging	
  the	
  premotor	
  areas.	
  Current	
  opinion	
  in	
  

neurobiology	
  11:663-­‐672.	
  



	
  

	
   108	
  

Pollok	
  B,	
  Muller	
  K,	
  Aschersleben	
  G,	
  Schmitz	
  F,	
  Schnitzler	
  A,	
  Prinz	
  W	
  (2003)	
  Cortical	
  

activations	
  associated	
  with	
  auditorily	
  paced	
  finger	
  tapping.	
  Neuroreport	
  

14:247-­‐250.	
  

Pool	
  EM,	
  Rehme	
  AK,	
  Fink	
  GR,	
  Eickhoff	
  SB,	
  Grefkes	
  C	
  (2013)	
  Network	
  dynamics	
  

engaged	
  in	
  the	
  modulation	
  of	
  motor	
  behavior	
  in	
  healthy	
  subjects.	
  

Neuroimage	
  82:68-­‐76.	
  

Rao	
  SM,	
  Binder	
  JR,	
  Bandettini	
  PA,	
  Hammeke	
  TA,	
  Yetkin	
  FZ,	
  Jesmanowicz	
  A,	
  Lisk	
  LM,	
  

Morris	
  GL,	
  Mueller	
  WM,	
  Estkowski	
  LD,	
  et	
  al.	
  (1993)	
  Functional	
  magnetic	
  

resonance	
  imaging	
  of	
  complex	
  human	
  movements.	
  Neurology	
  43:2311-­‐2318.	
  

Roland	
  PE,	
  Larsen	
  B,	
  Lassen	
  NA,	
  Skinhoj	
  E	
  (1980)	
  Supplementary	
  motor	
  area	
  and	
  

other	
  cortical	
  areas	
  in	
  organization	
  of	
  voluntary	
  movements	
  in	
  man.	
  Journal	
  

of	
  neurophysiology	
  43:118-­‐136.	
  

Rubinov	
  M,	
  Sporns	
  O	
  (2010)	
  Complex	
  network	
  measures	
  of	
  brain	
  connectivity:	
  uses	
  

and	
  interpretations.	
  Neuroimage	
  52:1059-­‐1069.	
  

Sadato	
  N,	
  Yonekura	
  Y,	
  Waki	
  A,	
  Yamada	
  H,	
  Ishii	
  Y	
  (1997)	
  Role	
  of	
  the	
  supplementary	
  

motor	
  area	
  and	
  the	
  right	
  premotor	
  cortex	
  in	
  the	
  coordination	
  of	
  bimanual	
  

finger	
  movements.	
  J	
  Neurosci	
  17:9667-­‐9674.	
  

Sakata	
  H,	
  Taira	
  M	
  (1994)	
  Parietal	
  control	
  of	
  hand	
  action.	
  Current	
  opinion	
  in	
  

neurobiology	
  4:847-­‐856.	
  

Scannell	
  JW,	
  Burns	
  GA,	
  Hilgetag	
  CC,	
  O'Neil	
  MA,	
  Young	
  MP	
  (1999)	
  The	
  connectional	
  

organization	
  of	
  the	
  cortico-­‐thalamic	
  system	
  of	
  the	
  cat.	
  Cerebral	
  cortex	
  9:277-­‐

299.	
  

Schoffelen	
  JM,	
  Oostenveld	
  R,	
  Fries	
  P	
  (2008)	
  Imaging	
  the	
  human	
  motor	
  system's	
  

beta-­‐band	
  synchronization	
  during	
  isometric	
  contraction.	
  Neuroimage	
  

41:437-­‐447.	
  

Seghier	
  ML	
  (2013)	
  The	
  angular	
  gyrus:	
  multiple	
  functions	
  and	
  multiple	
  subdivisions.	
  

The	
  Neuroscientist	
  :	
  a	
  review	
  journal	
  bringing	
  neurobiology,	
  neurology	
  and	
  

psychiatry	
  19:43-­‐61.	
  

	
  

	
  



	
  

	
   109	
  

Shibasaki	
  H,	
  Sadato	
  N,	
  Lyshkow	
  H,	
  Yonekura	
  Y,	
  Honda	
  M,	
  Nagamine	
  T,	
  Suwazono	
  S,	
  

Magata	
  Y,	
  Ikeda	
  A,	
  Miyazaki	
  M,	
  et	
  al.	
  (1993)	
  Both	
  primary	
  motor	
  cortex	
  and	
  

supplementary	
  motor	
  area	
  play	
  an	
  important	
  role	
  in	
  complex	
  finger	
  

movement.	
  Brain	
  :	
  a	
  journal	
  of	
  neurology	
  116	
  (	
  Pt	
  6):1387-­‐1398.	
  

Singer	
  W	
  (1999)	
  Neuronal	
  synchrony:	
  a	
  versatile	
  code	
  for	
  the	
  definition	
  of	
  

relations?	
  Neuron	
  24:49-­‐65,	
  111-­‐125.	
  

Sporns	
  O	
  (2011)	
  The	
  non-­‐random	
  brain:	
  efficiency,	
  economy,	
  and	
  complex	
  

dynamics.	
  Frontiers	
  in	
  computational	
  neuroscience	
  5:5.	
  

Sporns	
  O,	
  Tononi	
  G,	
  Kotter	
  R	
  (2005)	
  The	
  human	
  connectome:	
  A	
  structural	
  

description	
  of	
  the	
  human	
  brain.	
  PLoS	
  computational	
  biology	
  1:e42.	
  

Stam	
  CJ,	
  Reijneveld	
  JC	
  (2007)	
  Graph	
  theoretical	
  analysis	
  of	
  complex	
  networks	
  in	
  the	
  

brain.	
  Nonlinear	
  biomedical	
  physics	
  1:3.	
  

Stinear	
  JW,	
  Byblow	
  WD	
  (2002)	
  Disinhibition	
  in	
  the	
  human	
  motor	
  cortex	
  is	
  enhanced	
  

by	
  synchronous	
  upper	
  limb	
  movements.	
  The	
  Journal	
  of	
  physiology	
  543:307-­‐

316.	
  

Sun	
  FT,	
  Miller	
  LM,	
  Rao	
  AA,	
  D'Esposito	
  M	
  (2007)	
  Functional	
  connectivity	
  of	
  cortical	
  

networks	
  involved	
  in	
  bimanual	
  motor	
  sequence	
  learning.	
  Cerebral	
  cortex	
  

17:1227-­‐1234.	
  

Takasawa	
  M,	
  Oku	
  N,	
  Osaki	
  Y,	
  Kinoshita	
  H,	
  Imaizumi	
  M,	
  Yoshikawa	
  T,	
  Kimura	
  Y,	
  

Kajimoto	
  K,	
  Sasagaki	
  M,	
  Kitagawa	
  K,	
  Hori	
  M,	
  Hatazawa	
  J	
  (2003)	
  Cerebral	
  and	
  

cerebellar	
  activation	
  in	
  power	
  and	
  precision	
  grip	
  movements:	
  an	
  H2	
  15O	
  

positron	
  emission	
  tomography	
  study.	
  Journal	
  of	
  cerebral	
  blood	
  flow	
  and	
  

metabolism	
  :	
  official	
  journal	
  of	
  the	
  International	
  Society	
  of	
  Cerebral	
  Blood	
  

Flow	
  and	
  Metabolism	
  23:1378-­‐1382.	
  

Vidoni	
  ED,	
  Acerra	
  NE,	
  Dao	
  E,	
  Meehan	
  SK,	
  Boyd	
  LA	
  (2010)	
  Role	
  of	
  the	
  primary	
  

somatosensory	
  cortex	
  in	
  motor	
  learning:	
  An	
  rTMS	
  study.	
  Neurobiology	
  of	
  

learning	
  and	
  memory	
  93:532-­‐539.	
  

von	
  der	
  Malsburg	
  C	
  (1981)	
  The	
  Correlation	
  Theory	
  of	
  Brain	
  Function.	
  	
  	
  Gottingen,	
  

Germany:	
  Max-­‐Planck-­‐Institute	
  for	
  Biophysical	
  Chemistry.	
  

Vrba	
  J,	
  Robinson	
  SE	
  (2001)	
  Signal	
  processing	
  in	
  magnetoencephalography.	
  Methods	
  

25:249-­‐271.	
  



	
  

	
   110	
  

Vrba	
  J,	
  Taulu	
  S,	
  Nenonen	
  J,	
  Ahonen	
  A	
  (2010)	
  Signal	
  space	
  separation	
  beamformer.	
  

Brain	
  topography	
  23:128-­‐133.	
  

Watts	
  DJ,	
  Strogatz	
  SH	
  (1998)	
  Collective	
  dynamics	
  of	
  'small-­‐world'	
  networks.	
  Nature	
  

393:440-­‐442.	
  

White	
  JG,	
  Southgate	
  E,	
  Thomson	
  JN,	
  Brenner	
  S	
  (1986)	
  The	
  structure	
  of	
  the	
  nervous	
  

system	
  of	
  the	
  nematode	
  Caenorhabditis	
  elegans.	
  Philosophical	
  transactions	
  

of	
  the	
  Royal	
  Society	
  of	
  London	
  Series	
  B,	
  Biological	
  sciences	
  314:1-­‐340.	
  

Xu	
  L,	
  Zhang	
  H,	
  Hui	
  M,	
  Long	
  Z,	
  Jin	
  Z,	
  Liu	
  Y,	
  Yao	
  L	
  (2014)	
  Motor	
  execution	
  and	
  motor	
  

imagery:	
  a	
  comparison	
  of	
  functional	
  connectivity	
  patterns	
  based	
  on	
  graph	
  

theory.	
  Neuroscience	
  261:184-­‐194.	
  

Young	
  MP	
  (1993)	
  The	
  organization	
  of	
  neural	
  systems	
  in	
  the	
  primate	
  cerebral	
  cortex.	
  

Proceedings	
  Biological	
  sciences	
  /	
  The	
  Royal	
  Society	
  252:13-­‐18.	
  

 
 

  



	
  

	
   111	
  

APPENDIX A: PRE-SCREENING FORM

 

 

  

MRI Participant Screening Form 
 
 
 

Participant Code __ __ __         Date ________________________________ 
  
Have you every worked as a machinist, metalworker, or in any profession or hobby grinding metal?  Yes   No 
Have you ever had an injury to the eye involving a metallic object (e.g. metallic slivers, shavings, or foreign body)?  Yes   No 
Have you ever been injured by a metallic object or foreign body (e.g. BB, bullet, Buckshot, shrapnel, etc.)?  Yes   No 
Are you pregnant, experiencing a late menstrual period, or having fertility treatments?  Yes   No  
Are you currently taking or have recently taken any medication?  Yes   No Please List: ____________________________ 
Do you have drug allergies or have you had an allergic reaction?  Yes   No Please List: ____________________________ 
 
Some of the following items may be hazardous to your safety and some can interfere with the MRI 
examination.  Please check Yes or No for each of the following: 
 Yes  No Cardiac pacemaker  Yes   No Claustrophobia 
 Yes  No Aneurysm clip or brain clip  Yes   No IUD or diaphragm 
 Yes  No Cochlear, otologic, or ear implant  Yes   No Pessary or bladder ring 
 Yes  No Implanted cardiac defibrillator  Yes   No Medication patch (remove before scan) 
 Yes  No Neurostimulator  Yes   No Body piercing(s) (remove before scan) 
 Yes  No Insulin or infusion pump  Yes   No Metal fragments (eye, head, ear, skin) 
 Yes  No Implanted drug infusion device  Yes   No Facelift or other cosmetic surgery on body 
 Yes  No Spinal or Bone fusion stimulator  Yes   No Electrodes (on body, head, or brain) 
 Yes  No Carotid artery vascular clamp  Yes   No Aortic clips 
 Yes  No Tissue expander (breast)  Yes   No Venous umbrella 
 Yes  No Prosthesis (eye/orbital spring or wire, penile, etc.)  Yes   No Metal or wire mesh implants (Retainers/Braces) 
 Yes  No Implant or device held in place by a magnet  Yes   No Wire sutures or surgical staples, clips 
 Yes  No Heart valve prosthesis  Yes   No Harrington rods (spine) 
 Yes  No Artificial limb or joint  Yes   No Metal rods in bones, joint replacements 
 Yes  No Other implants in body or head (radiation seeds)  Yes   No Bone/joint pin, screw, nail, wire, plate 
 Yes  No Internal pacing wires  Yes   No Wig, toupee, or hair implants 
 Yes  No Intravascular stents, filters, or coils  Yes   No Hearing aid (remove before scan) 
 Yes  No Shunt (spinal or intraventricular)  Yes   No Dentures (remove before scan) 
 Yes  No Vascular access port or catheters  Yes   No Asthma or breathing disorders 
 Yes  No Swan-Ganz or thermodilution catheter  Yes   No Seizures or motion disorders 
 Yes  No Tatoos, permanent makeup  Yes   No Other implant _____________ 

 
Please remove all metallic objects prior to your MR examination including: keys, hair pins, barrettes, jewelry, 
watch, safety pins, paperclips, money clip, credit cards, coins, pens, belt, metal buttons, pocket knife, cell phone, 
and beepers. 
 

 
 
Form Completed By ___________________________________  
                                     Print Name                                                          
 
 
Signature of Person Completing Form _________________________________  ___________________________ 
       Date  
 
 
 
 
 
 
 

 
 
Adapted from: Rotman Research Institute Pre-Procedure Participant Screening Form, 2008 
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APPENDIX B: HANDEDNESS FORM 

 

  

Edinburgh Handedness Inventory 
  

  
  
Please indicate your preferences in the use of hands in the following activities by putting 
a check in the appropriate column. Where the preference is so strong that you would 
never try to use the other hand, unless absolutely forced to, put 2 checks. If in any case 
you are really indifferent, put a check in both columns.  
  
Some of the activities listed below require the use of both hands. In these cases, the part 
of the task, or object, for which hand preference is wanted is indicated in parentheses. 
  
Please try and answer all of the questions, and only leave a blank if you have no 
experience at all with the object or task. 
  

  
 Left  Right  

1. Writing    
2. Drawing   
3. Throwing    
4. Scissors   
5. Toothbrush   
6. Knife (without fork)   
7. Spoon   
8. Broom (upper hand)   
9. Striking Match (match)   
10. Opening box (lid)   
TOTAL(count checks in 
both columns) 

  

  
 
 
 

Difference Cumulative TOTAL Result 
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   APPENDIX C: TASK INSTRUCTIONS 

 

The task that we are asking you to do requires that you get the red ball to land on the gray 

bar. The movement of the ball is based on how hard you squeeze the grip force. The ball 

is going to change from red to yellow to green, much like a traffic light. After the ball 

turns green you make your response by squeezing the force grip. You might think that 

responding before the green cue is better, but we do not include that information so it is 

important that you only respond after the ball turns green. The harder you squeeze the 

handgrip, the higher on the screen the ball will go. The softer you squeeze the grip the 

less distance the ball will go. It is important to point out that you only get one response. 

You cannot correct the movement when the ball starts moving. Also before and after 

making a response you should relax your hand so you are not squeezing the grip, this will 

give us a good reading of when movement starts and ends. 

 

Each trial will start with the task screen. Then the ball will turn from red to yellow to 

green.  You have one second after the ball turns green to make your response. Again, the 

objective is to get the ball to touch the grey bar, which will move up and down the screen 

repeatedly.  

 

The first test consists of 50 trials. During these trials you will not see the ball move, nor 

will you be told if you were correct or incorrect. This means that you will not know how 

well you are doing so you need to estimate where the ball is going. 

 

The second block consists of 600 trials, broken up into groups of 200 with a break in 

between. During these trials you will see the ball move so you will know how well you 

are doing. In these trials you will get feedback that says if you hit or missed the target 

bar. 

 

During the final test, you will do another 50 trials exactly like the first test and you will 

not see the ball move. These trials will tell us how well you learned the task.  
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The whole session will take roughly one hour. You will get a short break after the first 50 

trials, then a break after every set of 200 trials. During each part it is important that you 

keep your head as still as possible. We will tell you when each part starts and ends, and 

you may move your head during the breaks. It’s easiest to remain still if you rest your 

head against the back or the front of the helmet. Also blinking interferes with the scan but 

I understand that you have to blink so if you could try to blink after the feedback that 

would be great. 

 

Do you have any questions? 

 

Okay, lets get started. Remember that we can see you through the camera and will be able 

to hear you at all times. Let us know right away if you have any problems and we can 

come in and get you.  

 

Rest Block Instructions 

First we are going to do a 5-minute scan to get a baseline measure of activity. We ask that 

you please close your eyes, relax and try not to move during this time. 

 

Test Block  

In this first scan you will do 50 trials without feedback. Try your best to estimate where 

the ball is moving based on how hard you squeeze the force grip. Try to remain still 

during this Block.  

 

Training Block 

In this block you will do 600 trials, broken into 3 groups of 200 trials with a break in-

between. Here you will see the ball move and you will get feedback. These trials are a 

little faster then the first block because the cursor does not remain red for as long. Try 

your best and remember to relax your hand in-between trials and also remain still during 

testing. 

 

Final Test Block Instructions  
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In this last scan you will do 50 trials without feedback again (the same as the beginning). 

Try your best to estimate where the ball is moving based on how hard you squeeze the 

force grip. Try to remain still during this Block. 

 

Rest Block Instructions 

First we are going to do a 5-minute scan to get a baseline measure of activity. We ask that 

you please close your eyes, relax and try not to move during this time. 
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APPENDIX D: LIST OF 80 NODES AND COORDINATES 

Node Abbreviated 
Name 

Hemisphere X Y Z 
Number Name 

1 Anterior cingulate cortex AntCC MIDLINE 0 32 24 
2 Posterior cingulate cortex PosCC MIDLINE 0 -32 24 
3 Retrosplenial cingulate cortex RsCC MIDLINE 0 -48 12 
4 Subgenual cingulate cortex SubCC MIDLINE 0 16 -8 
5 Primary auditory cortex  A1 LEFT -40 -14 4 
6 Secondary auditory cortex A2 LEFT -60 -14 4 
7 Frontal eye fields FEF LEFT -36 8 56 
8 Anterior insula AntI LEFT -36 16 -4 
9 Claustrum  Claus LEFT -36 -8 -4 
10 Primary motor cortex M1 LEFT -24 -24 56 
11 Inferior parietal cortex IPC LEFT -44 -48 20 
12 Angular gyrus  AG LEFT -44 -64 28 
13 Precuneus  PreCun LEFT -8 -64 54 
14 Superior parietal cortex SPC LEFT -28 -56 54 
15 Centrolateral prefrontal 

cortex 
PFCCL LEFT -48 32 12 

16 Dorsolateral prefrontal cortex PFCDL LEFT -48 36 32 
17 Dorsomedial prefrontal 

cortex 
PFCDM LEFT -8 36 40 

18 Medial prefrontal cortex PFCMed LEFT -8 48 20 
19 Orbitofrontal cortex PFCORB LEFT -24 44 -20 
20 Frontal polar prefrontal 

cortex 
PFCFPol LEFT -24 64 4 

21 Ventrolateral prefrontal 
cortex 

PFCVL LEFT -48 32 -8 

22 Parahippocampal cortex ParHippC LEFT -28 -16 -16 
23 Dorsolateral premotor cortex PMCDL LEFT -28 0 60 
24 Medial premotor cortex PMCMed LEFT -4 0 60 
25 Ventrolateral premotor cortex PMCVL LEFT -44 4 24 
26 Pulvinar Pulvinar LEFT -16 -28 4 
27 Primary somatosensory 

cortex 
S1 LEFT -40 -28 64 

28 Secondary somatosensory 
cortex 

S2 LEFT -56 -16 16 

29 Middle temporal cortex TCMid LEFT -64 -24 -12 
30 Inferior temporal cortex TCI LEFT -64 -24 -24 
31 Temporal pole TempPol LEFT -52 12 -28 
32 Superior temporal cortex TCS LEFT -52 -4 -8 
33 Ventral temporal cortex TCV LEFT -32 -28 -28 
34 Thalamus (ventral lateral 

nucleus) 
Thal LEFT -8 -8 4 

35 Primary visual cortex V1 LEFT -4 -84 -4 



	
  

	
   117	
  

Node Abbreviated 
Name 

Hemisphere X Y Z 
Number Name 

36 Secondary visual cortex V2 LEFT -4 -96 8 
37 Cuneus Cun LEFT -20 -88 20 
38 Fusiform gyrus FusiG LEFT -20 -84 -12 
39 Primary auditory cortex A1 RIGHT 40 -14 4 
40 Secondary auditory cortex A2 RIGHT 60 -14 4 
41 Frontal eye fields FEF RIGHT 36 8 56 
42 Anterior insula AntI RIGHT 36 16 -4 
43 Claustrum Claus RIGHT 36 -8 -4 
44 Primary motor cortex M1 RIGHT 24 -24 56 
45 Inferior parietal cortex IPC RIGHT 44 -48 20 
46 Angular gyrus AG RIGHT 44 -64 28 
47 Precuneus PreCun RIGHT 8 -64 54 
48 Superior parietal cortex SPC RIGHT 28 -56 54 
49 Centrolateral prefrontal 

cortex 
PFCCL RIGHT 48 32 12 

50 Dorsolateral prefrontal cortex PFCDL RIGHT 48 36 32 
51 Dorsomedial prefrontal 

cortex 
PFCDM RIGHT 8 36 40 

52 Medial prefrontal cortex PFCMed RIGHT 8 48 20 
53 Orbitofrontal cortex PFCORB RIGHT 24 44 -20 
54 Frontal polar PFCFPol RIGHT 24 64 4 
55 Ventrolateral prefrontal 

cortex 
PFCVL RIGHT 48 32 -8 

56 Parahippocampal cortex ParHippC RIGHT 28 -16 -16 
57 Dorsolateral premotor cortex PMCDL RIGHT 28 0 60 
58 Medial premotor cortex PMCMed RIGHT 4 0 60 
59 Ventrolateral premotor cortex PMCVL RIGHT 44 4 24 
60 Pulvinar Pulvinar RIGHT 16 -28 4 
61 Primary somatosensory 

cortex 
S1 RIGHT 40 -28 64 

62 Secondary somatosensory 
cortex 

S2 RIGHT 56 -16 16 

63 Middle temporal cortex TCMid RIGHT 64 -24 -12 
64 Inferior temporal cortex TCI RIGHT 64 -24 -24 
65 Temporal pole TempPol RIGHT 52 12 -28 
66 Superior temporal cortex TCS RIGHT 52 -4 -8 
67 Ventral temporal cortex TCV RIGHT 32 -28 -28 
68 Thalamus (ventral lateral 

nucleus) 
Thal RIGHT 8 -8 4 

69 Primary visual cortex V1 RIGHT 4 -84 -4 
70 Secondary visual cortex V2 RIGHT 4 -96 8 
71 Cuneus Cun RIGHT 20 -88 20 
72 Fusiform gyrus FusiG RIGHT 20 -84 -12 
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Node Abbreviated 
Name 

Hemisphere X Y Z 
Number Name 

73 Dentate Nucleus Dentate LEFT -12 -52 -24 
74 Posterior Lobe PostLobe LEFT -30 -55 -49 
75 Cruseus 1 CrusI LEFT -36 -46 -26 
76 Cruseus 2 CrusII LEFT -45 -45 -32 
77 Dentate Nucleus Dentate RIGHT 12 -52 -24 
78 Posterior Lobe PostLobe RIGHT 30 -55 -49 
79 Cruseus 1 CrusI RIGHT 36 -46 -26 
80 Cruseus 2 CrusII RIGHT 45 -45 -32 
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APPENDIX E: LIST OF SIGNIFICANT NODE-PAIRS 

Node 1 Hemisphere 1 Node 2 Hemisphere 2 BSR 
PMCMed LEFT AG RIGHT -8.893 
AG LEFT IPC RIGHT -6.54 
SubCC MIDLINE TCMid RIGHT -6.211 
AG RIGHT PMCMed RIGHT -6.05 
PFCDM LEFT Cun RIGHT -5.601 
M1 LEFT A1 RIGHT -5.549 
PMCMed LEFT V1 RIGHT -5.487 
S1 RIGHT CrusI LEFT -5.451 
IPC RIGHT PFCDL RIGHT -5.291 
AntCC MIDLINE FusiG RIGHT -5.271 
AntCC MIDLINE V1 RIGHT -5.158 
AntCC MIDLINE Thal LEFT -5.138 
A2 LEFT PMCVL RIGHT -5.131 
PFCFPol LEFT CrusI RIGHT -5.041 
S1 RIGHT CrusII LEFT -5.005 
FusiG LEFT PMCDL RIGHT -5.003 
AntCC MIDLINE CrusI RIGHT -4.951 
PFCORB LEFT PFCVL RIGHT -4.941 
AG LEFT A1 RIGHT -4.909 
IPC LEFT PMCVL RIGHT -4.886 
PMCDL RIGHT FusiG RIGHT -4.868 
FEF LEFT PMCMed LEFT -4.802 
PosCC MIDLINE V2 LEFT -4.746 
SPC LEFT PFCDL RIGHT -4.704 
PFCFPol LEFT CrusII RIGHT -4.692 
AntCC MIDLINE CrusII RIGHT -4.659 
SubCC MIDLINE PMCDL LEFT -4.621 
AG LEFT AntI RIGHT -4.583 
AntCC MIDLINE V1 LEFT -4.526 
V2 LEFT Pulvinar RIGHT -4.523 
Cun LEFT PMCDL RIGHT -4.523 
AG LEFT PMCVL RIGHT -4.484 
PFCDM RIGHT PostLobe RIGHT -4.47 
AG RIGHT Dentate LEFT -4.464 
PFCCL RIGHT PFCDM RIGHT -4.462 
PFCFPol RIGHT V1 RIGHT -4.447 
Thal LEFT PFCORB RIGHT -4.407 
PreCun LEFT M1 RIGHT -4.406 
PFCDM LEFT PostLobe RIGHT -4.397 
V2 LEFT AG RIGHT -4.388 
A2 LEFT AntI RIGHT -4.375 
PMCDL RIGHT Pulvinar RIGHT -4.368 
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Node 1 Hemisphere 1 Node 2 Hemisphere 2 BSR 
TempPol LEFT SPC RIGHT -4.342 
PMCMed LEFT V2 LEFT -4.334 
PFCDM LEFT V1 RIGHT -4.313 
PFCDL LEFT TCI RIGHT -4.305 
PFCCL RIGHT Dentate LEFT -4.3 
A1 LEFT M1 RIGHT -4.298 
TCMid LEFT Pulvinar RIGHT -4.298 
FEF LEFT PFCFPol RIGHT -4.292 
PMCMed LEFT Dentate LEFT -4.286 
AntCC MIDLINE IPC LEFT -4.282 
TCMid LEFT A1 RIGHT -4.268 
FEF LEFT PFCORB RIGHT -4.254 
V1 LEFT PMCVL RIGHT -4.247 
M1 LEFT V2 LEFT -4.245 
PFCORB LEFT TempPol LEFT -4.24 
PreCun LEFT TCV RIGHT -4.235 
AG LEFT PMCMed RIGHT -4.233 
A2 LEFT PFCMed RIGHT -4.226 
FEF LEFT PMCVL LEFT -4.224 
IPC LEFT A1 RIGHT -4.207 
IPC LEFT PFCORB LEFT -4.204 
V2 LEFT PFCDM RIGHT -4.189 
SubCC MIDLINE S2 RIGHT -4.186 
RsCC MIDLINE A2 LEFT -4.179 
Cun RIGHT Dentate LEFT -4.169 
TCMid LEFT PMCVL RIGHT -4.161 
SubCC MIDLINE A2 RIGHT -4.154 
PFCMed LEFT CrusI RIGHT -4.148 
M1 RIGHT Cun RIGHT -4.126 
SubCC MIDLINE V1 RIGHT -4.122 
PreCun LEFT SPC LEFT -4.114 
PMCMed RIGHT CrusI RIGHT -4.107 
SPC LEFT S1 RIGHT -4.107 
PFCFPol LEFT TCMid RIGHT -4.106 
PMCVL RIGHT Cun RIGHT -4.094 
AG LEFT S2 RIGHT -4.089 
FusiG LEFT FusiG RIGHT -4.086 
S2 LEFT AntI RIGHT -4.079 
PMCMed LEFT AntI RIGHT -4.069 
PFCDM LEFT A2 RIGHT -4.067 
AntI LEFT Dentate LEFT -4.066 
AG LEFT PFCCL LEFT -4.06 
TempPol RIGHT PostLobe LEFT -4.044 
TCV LEFT AG RIGHT -4.012 
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Node 1 Hemisphere 1 Node 2 Hemisphere 2 BSR 
PFCDM LEFT CrusI RIGHT -4.01 
IPC LEFT PMCMed RIGHT -3.972 
IPC RIGHT PFCVL RIGHT -3.967 
IPC LEFT TempPol RIGHT -3.965 
PMCMed LEFT V1 LEFT -3.965 
AG LEFT TCMid RIGHT -3.96 
A1 RIGHT PMCVL RIGHT -3.951 
S2 RIGHT TCS RIGHT -3.95 
PFCDM LEFT Thal LEFT -3.95 
AntI RIGHT PMCDL RIGHT -3.945 
AG LEFT PFCVL RIGHT -3.942 
TempPol LEFT PreCun RIGHT -3.935 
AntCC MIDLINE A2 RIGHT -3.931 
PFCFPol LEFT TempPol RIGHT -3.931 
S2 RIGHT TempPol RIGHT -3.926 
SubCC MIDLINE TCI LEFT -3.921 
AG LEFT S1 RIGHT -3.908 
RsCC MIDLINE PMCMed LEFT -3.905 
PMCMed LEFT Thal RIGHT -3.897 
PFCCL LEFT TCMid RIGHT -3.892 
S2 LEFT TCI RIGHT -3.89 
Claus LEFT Dentate LEFT -3.888 
PFCCL LEFT A2 RIGHT -3.881 
ParHippC LEFT PFCFPol RIGHT -3.865 
AG LEFT PMCVL LEFT -3.859 
SubCC MIDLINE V2 LEFT -3.857 
M1 RIGHT SPC RIGHT -3.856 
Thal LEFT Dentate RIGHT -3.854 
A2 LEFT FEF RIGHT -3.838 
V1 LEFT PFCDM RIGHT -3.835 
PMCMed LEFT FusiG RIGHT -3.833 
PMCVL RIGHT Dentate LEFT -3.831 
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APPENDIX F: LIST OF ALL NODES WITH A DEGREE OF 3 OR GREATER 
 
Node Hemisphere Degree 
AG LEFT 11 
PMCMed LEFT 10 
AntCC MIDLINE 8 
PMCVL RIGHT 8 
SubCC MIDLINE 7 
V2 LEFT 7 
Dentate LEFT 7 
IPC LEFT 6 
PFCDM LEFT 6 
A2 LEFT 5 
A1 RIGHT 5 
AntI RIGHT 5 
AG RIGHT 5 
PMCDL RIGHT 5 
V1 RIGHT 5 
CrusI RIGHT 5 
FEF LEFT 4 
PFCFPol LEFT 4 
Thal LEFT 4 
V1 LEFT 4 
A2 RIGHT 4 
M1 RIGHT 4 
PFCDM RIGHT 4 
PMCMed RIGHT 4 
S1 RIGHT 4 
S2 RIGHT 4 
TCMid RIGHT 4 
TempPol RIGHT 4 
Cun RIGHT 4 
FusiG RIGHT 4 
PreCun LEFT 3 
SPC LEFT 3 
PFCCL LEFT 3 
PFCORB LEFT 3 
TCMid LEFT 3 
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Node Hemisphere Degree 
TempPol LEFT 3 
IPC RIGHT 3 
PFCFPol RIGHT 3 
PFCVL RIGHT 3 
Pulvinar RIGHT 3 
 
 


