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ABSTRACT
We report the results of a pilot study with the Expanded Very Large Array (EVLA) of12CO
J = 1−0 emission from four submillimetre-selected galaxies (SMGs) at z = 2.2–2.5, each
with an existing detection of12CO J = 3−2, one of which comprises two distinct spatial
components. Using the EVLA’s most compact configuration we detect strong, broad (medi-
ans: 990 km s−1 FWZI; 540 km s−1 FWHM) J = 1−0 line emission from all of our targets
– coincident in position and velocity with theirJ = 3−2 emission. The median line width
ratio,σ1−0/σ3−2 = 1.15 ± 0.06, suggests that theJ =1−0 is more spatially extended than
theJ =3−2 emission, a situation confirmed by our maps which reveal velocity structure in
several cases and typical sizes of∼16 kpcFWHM. The median brightness temperature (Tb)
ratio isr3−2/1−0 = 0.55 ± 0.05, consistent with local galaxies withLIR > 1011 L⊙, noting
that our value may be biased high because of theJ =3−2-based sample selection. Naively,
this suggests gas masses roughly 2× higher than estimates made using higher-J transitions
of CO, with the discrepency due entirely to the difference inassumedTb ratio. We also esti-
mate molecular gas masses using the12CO J =1−0 line and the observed globalTb ratios,
assuming standard underlyingTb ratios for the non-star-forming and star-forming gas phases
as well as a limiting star-formation efficiency (SFE) for thelatter in all systems, i.e. without
calling uponXCO (≡ α). Using this new method, we find a median molecular gas mass of
(2.5± 0.8)× 1010 M⊙, with a plausible range stretching up to 3× higher. Even larger masses
cannot be ruled out, but are not favoured by dynamical constraints: the median dynamical
mass withinR ∼ 7 kpc for our sample is(2.3 ± 1.4) × 1011 M⊙, or ∼6× more massive
than UV-selected galaxies at this epoch. We examine the Schmidt-Kennicutt (S-K) relation
for all the distant galaxy populations for which COJ = 1−0 or J = 2−1 data are avail-
able, finding small systematic differences between galaxy populations. These have previously
been interpreted as evidence for different modes of star formation, but we argue that these
differences are to be expected, given the still considerable uncertainties, certainly when con-
sidering the probable excitation biases due to the molecular lines used, and the possibility of
sustained S-K offsets during the evolution of individual gas-rich systems. Finally, we discuss
the morass of degeneracies surrounding molecular gas mass estimates, the possibilities for
breaking them, and the future prospects for imaging and studying cold, quiescent molecular
gas at high redshifts.

Key words: galaxies: evolution — galaxies: high-redshift — galaxies:starburst — infrared:
galaxies — radio lines: galaxies

1 INTRODUCTION

The star-formation density contributed by ultraluminous infrared
galaxies (ULIRGs) appears to increase out toz >

∼ 2 (e.g. Chap-
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man et al. 2005; Wardlow et al. 2010). These galaxies are often
heavily obscured by dust and hence the bulk of their luminosity is
radiated in the rest-frame far-infrared (far-IR) and observed in the
submillimetre (submm) band, hence their epitette: ‘submm galax-
ies’ (SMGs). SMGs have the potential to form the stellar massof
an L∗ galaxy in a single event (e.g. Lilly et al. 1999; Smail et al.
2004; Swinbank et al. 2006; Hainline et al. 2010). To accomplish
this feat, however, SMGs must have sufficiently large reservoirs of
cold gas,>∼1011 M⊙. The first searches for molecular gas emission,
via theJ=3−2 or 4−3 transitions of12CO, were successful in de-
tecting significant quantities of gas in several SMGs (Frayer et al.
1998, 1999; Ivison et al. 2001). Subsequent, larger surveyswith the
Plateau de Bure Interferometer (PdBI) greatly expanded this work
(e.g. Downes & Solomon 2003; Genzel et al. 2003; Kneib et al.
2005; Greve et al. 2005; Tacconi et al. 2006; Bothwell et al. 2010).

Observations of the molecular gas within high-redshift galax-
ies provides powerful insight into the physics of star formation in
these systems (Solomon & Vanden Bout 2005), and allows com-
parisons with local systems. More specifically they allow usto: a)
probe the mass and extent of the reservoir of molecular gas avail-
able for fueling their prodigious starbursts; b) determinethe dy-
namical mass of the host galaxy, free from the uncertaintiesarising
from outflows and patchy dust extinction which plagues optical and
near-IR spectroscopic studies (e.g. Swinbank et al. 2006; Ivison
et al. 2010a); c) derive their gas-mass fraction,Mgas(H2)/Mdyn.
The dynamical mass is a strong indicator of the ‘end’ state ofsuch
systems in the present Universe while a well-determined gas-mass
fraction indicates their likely evolutionary status at thelook-back
time where they are observed. Finally, gas-consumption timescales,
〈τgas〉 = M(H2)/SFR, where SFR is the star-formation rate,
gives the minimum timescale for the conclusion of their star-
forming (SF) episodes.

While the PdBI studies of SMGs represent a considerable ad-
vance, they are fundamentally limited by their focus on high-J
12CO lines whose high excitation requirements (ncrit ∼ 104–
105 cm−3, Eu/kB ∼ 50–150K) confine the emission from such
transitions to regions of active star formation, rather than tracing
the total available reservoir of gas within a galaxy. In the nearby
archetypal starburst, M 82, such lines would reveal only thehighly
excited, SF molecular gas in its inner 400 pc (Mao et al. 2000;Weiß
et al. 2001) rather than the more massive, low-excitation gas com-
ponent that extends∼ 1.7 kpc beyond its centre (Walter et al. 2002;
Weiß et al. 2005). This also suggests potential spatial biases in the
high-J 12CO emission – which exhibit typical half-light radii of
0.8–2.8 kpc for SMGs (Tacconi et al. 2008) – means they may not
trace the true dimensions (or kinematics) of the total molecular gas
distribution.

A recent comparison of12CO line ratios between local, IR-
luminous galaxies and distant SMGs has provided strong indica-
tions that several high-redshift systems must contain significant
amounts of colder, non-SF gas or – for a few compact, extreme star-
bursts – that they may suffer high optical depths at short submm
wavelengths due to dust (Papadopoulos et al. 2010). Thus their
high-J 12CO line emission may not be a good tracer of the total
CO-rich molecular gas mass, its distribution, or the total enclosed
dynamical masses, as is usually assumed (e.g. Tacconi et al.2006).
Indeed the low brightness-temperature (Tb) ratios of12COJ=7−6
(or 6−5) to3−2 (r7−6/3−2 . 0.3) measured in several SMGs (Tac-
coni et al. 2006)are nottypical of dense, warm, SF gas providing
strong but still circumstantial evidence that high-J 12CO line stud-
ies may miss a critical gas component in SMGs.

The earliest evidence of low, Milky Way-type, global CO line

excitation in a distant SF system was uncovered in the submm-
bright extremely red object, HR 10 (Papadopoulos & Ivison 2002).
Since then a handful of SMGs have been observed in12COJ=1−0
(Greve et al. 2003; Hainline et al. 2006; Ivison et al. 2010a;Swin-
bank et al. 2010; Carilli et al. 2010; Harris et al. 2010; Frayer
et al. 2010) and several show evidence of substantial reservoirs
of 12CO J = 1− 0 with r3−2/1−0 ∼ 0.5 (see also Danielson
et al. 2010). A systematic under-estimate of molecular gas mass
via high-J CO line emission could lie at the heart of the appar-
ent discrepancy between the gas-depletion timescales for SMGs,
40–100 Myr, based on high-J observations (Greve et al. 2005),
and the proposed lifetimes of these luminous starbursts,∼300 Myr
(Swinbank et al. 2006, 2008), though strong feedback eventswill
punctuate the evolutionary path of any starburst and these are ex-
pected to lengthen any putative gas-consumption timescales. This,
in turn, influences our understanding of the evolutionary links be-
tween SMGs and other high-redshift populations, e.g. quasars or
passive galaxies (Chapman et al. 2005; Wardlow et al. 2010) which
rely on duty-cycle and space-density arguments, which theninflu-
ences our interpretation of their likely descendants atz ∼ 0 (Swin-
bank et al. 2008). Similarly, the spatial bias in the high-J 12CO
dynamical tracers employed for SMGs means we might be missing
important signatures in the velocity fields at large radii, perhaps re-
flecting disk-like rotation or even evidence for cold-flow accretion
(e.g. Dekel et al. 2009).

To address these concerns we have undertaken a pilot study
with the National Radio Astronomy Observatory’s (NRAO’s1) Ex-
panded Very Large Array (EVLA) of12CO J = 1− 0 emis-
sion from four well-studied SMGs, withS850µm ∼ 10mJy at
z = 2.2–2.5, two each in the Great Observatories Origins Sur-
veys (GOODS) North and European Large Area Infrared Survey
(ELAIS) N2 submm survey fields (Scott et al. 2002; Borys et al.
2003), pinpointed accurately via arcsec-resolution radiocontinuum
imaging (Ivison et al. 2002; Chapman et al. 2005), with redshifts
determined via Keck spectroscopy (Chapman et al. 2003, 2005) and
confirmed via detections of12CO J = 3−2 at PdBI (Neri et al.
2003; Greve et al. 2005; Tacconi et al. 2006, 2008). Ultimately, the
combination of EVLA and PdBI imaging will allows us to compare
the gas masses, morphologies and dynamics derived from the12CO
J =1−0 and3−2 or higher-J lines in these intense starbursts. In
this first paper we explore those parameters probed by the initial
phase of our EVLA survey, conducted at relatively low resolution
using the EVLA’s most compact configuration during shared-risk
time.

Throughout the paper we use a cosmology withH0 =
71 km s−1 Mpc−1, Ωm = 0.27, ΩΛ = 0.73 which gives a median
angular scale of 8.2 kpc arcsec−1 for our sample.

2 OBSERVATIONS AND DATA REDUCTION

Our sample was chosen such that the12CO J = 1−0 line is red-
shifted to the∼33–36 GHz frequency range, where both sub-band
pairs of the EVLA’s new Ka-band receivers can be utilised, yield-
ing up to 256 MHz of instantaeous bandwidth during the earliest
shared-risk phase of EVLA commissioning with the new Wide-
band Interferometric Digital Architecture (WIDAR) correlator (see
Table 1). We overlapped the two64 × 2-MHz dual-polarisation

1 NRAO is operated by Associated Universities Inc., under a cooperative
agreement with the National Science Foundation.
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Table 1.SMG sample and observing log.

Target name zaCO3−2 Deboosted S1.4GHz Observing dates (2010) Alternative target names
SMM J... S850µm (mJy) (µJy) (2.0–2.1 hr per track, on-source)

123549.44+621536.8 2.202 8.3± 2.5 81± 5 May 2, 14, 15, 16, Jun 20, 27, Jul 6 HDF 76
123707.21+621408.1-NE 2.486 10.7± 2.7 39± 8 Apr 12, 14, 22, May 4, 6 HDF 242, GN 19
123707.21+621408.1-SW 30± 8
163650.43+405734.5 2.385 8.2± 1.7 242 ± 11 Apr 16, 19 (×2), 20, May 8, 11, 12 N2 850.4, N2 1200.10
163658.19+410523.8 2.452 10.7± 2.0 115 ± 11 Apr 22, 27, May 8, 14, Jun 20, 21, Jul 7 N2 850.2

Notes:a COJ = 3− 2 redshifts from Tacconi et al. (2006); for SMM J123707, we quote the value used to determine velocities in that work.

sub-bands by a total of 10 channels – to minimise issues with the
edge channels – and we centred the lines 36 MHz to the red, using
the redshifts published by Tacconi et al. (2006, 2008). Thislatter
precaution proved unnecessary. Our approach ultimately yielded a
single 236-MHz dataset for each target,∼2,000 km s−1 of cover-
age with 16.7–18.2-km s−1 channels, coveringuv ∼ 5–100kλ.

Each target was observed for between five and seven 3-hr
tracks during 2010 April–July (Table 1), a period during which
∼15 functional Ka-band receivers were typically available and the
EVLA was in its most compact configuration (D), recording data
every 1 s, with a resultant data rate of∼6.3 GB hr−1 [programme
AS1013]. The tracks were scheduled flexibly to ensure appropri-
ate weather conditions for these high-frequency observations. Af-
ter 2010 May 12, several antennas were plagued by phase jumps,
but most of these data were salvaged. Three tracks suffered se-
vere phase jumps or unsuitable weather and were discarded. An-
tenna pointing was checked every 90 min at 5 GHz. Each track con-
tained a 5-min scan of 1331+305 (3C 286) for absolute flux cali-
bration (1.87 Jy at 35.1 GHz), and regular (every<

∼5 min) scans of
the bright, local calibrators, 1302+575 and 1642+394 (∼0.35 and
∼7.0 Jy, respectively). The latter has been monitored at 33.75 GHz
(Davies et al. 2009) and we found consistent flux densities when
bootstrapping from 0137+331, albeit with evidence of the variabil-
ity found by Franzen et al. (2009).

Editing and calibration were accomplished withinAIPS
(31DEC10). For 1331+305, we used an appropriately scaled 22.5-
GHz model to determine gain solutions; the other calibrators were
used to determine the spectral variation of the gain solutions (the
‘bandpass’), after first removing atmospheric phase driftson a
timescale of 6–12 s via self-calibration with a simple point-source
model. Despite the significant increase in data volume relative to
the old VLA correlator, we were able to employ standardAIPS
recipes throughout the data-reduction process.

3 RESULTS

3.1 Infrared luminosities

On several occasions in the subsequent discussion, e.g.§4.3, 4.5
and 4.6, we shall call upon SFRs determined from rest-frame 8–
1,000-µm luminosities,LIR, so we start by describing these mea-
surements.

For our SMGs, plus 13 others available in the literature with
measurements of12CO J = 1−0 or J = 2−1 and comparable
selection biases and general properties (Greve et al. 2003,2005;
Hainline et al. 2006; Frayer et al. 2008; Schinnerer et al. 2008;
Knudsen et al. 2009; Ivison et al. 2010a,b; Harris et al. 2010; Car-
illi et al. 2010; Swinbank et al. 2010), we deriveLIR by fitting
the spectral energy distribution (SED) template from Pope et al.

(2008) and that of SMM J2135−0102 (Swinbank et al. 2010; Ivi-
son et al. 2010b) to the available photometric data, ignoring the
radio photometry for those sources known to suffer contamina-
tion by AGN: SMM J163650 (Smail et al. 2003), SMM J02399
(Ivison et al. 2010a) and SMM J14009 (Ivison et al. 2000; Weiß
et al. 2009). The SMM J2135 SED gave better fits and we adopt
these values, which are 10–20 per cent higher than those given
by the Pope et al. (2008) template. We then convert these into
SFRs, following Kennicutt (1998a). Our five SMGs have a mean
LIR of (5.4 ± 0.8) × 1012 L⊙ (see Table 3) and a correspond-
ing SFR of 930 ± 140M⊙ yr−1 (for the full sample,LIR =
(5.5± 0.9) × 1012 L⊙ and950± 155M⊙ yr−1).

3.2 Spectra and morphologies

We construct maps of each source, stepping through the frequency
range of the data, examining image cubes with velocity resolu-
tions ranging from 2–16 channels (35–250 km s−1). The synthe-
sised beam for a natural weighting scheme is typically 2.7 by
2.0 arcsec with a position angle (PA) near−5◦, or 3.2 by 2.6 arcsec
when employing a Gaussian taper that reaches 30 per cent at 80kλ.
We find strong12CO J = 1− 0 line emission from each of the
four SMGs, at the expected positions and frequencies derived from
the12CO J =3−2 emission, though we note that some published
redshifts/spectra are misleading – e.g. for SMM J123707, Tacconi
et al. (2006) quotez = 2.490 rather thanz = 2.486. We see
two distinct spatial components in SMM J123707, so we hereafter
refer to a sample of five SMGs using the suffixes -NE and -SW
for SMM J123707, following Tacconi et al. (2006). We extracta
spectrum for the emission in an area corresponding to aroundthree
synthesised beams, centred on each of our targets (SMM J123707-
NW and -SW are combined in this case) and show these in Fig. 1,
after Hanning smoothing with a four-channel triangular kernel. All
sources display broad lines, with full widths at zero intensity of
∼1,000 km s−1. We measure the line fluxes by integrating the emis-
sion across the velocity ranges reported in Table 1 (no continuum
correction is applied as we detect no significant continuum emis-
sion from any of the SMGs,3σ < 60µJy, as expected). We assess
the uncertainty in the velocity-integrated fluxes from the variance
of the off-line emission and we report the flux and associatederror
in Table 2. We also list the COJ=3−2 line intensities (from Tac-
coni et al. 2008) for our five SMGs, having checked for consistency
with the low-resolution fluxes of Greve et al. (2005).

We calculate the intensity-weighted redshift for the emission
in the velocity window and report this in Table 2. It is clear from
Tacconi et al. (2008) that some of the12CO J = 3−2 lines are
better fit by two Gaussian profiles and this is also true for several
of the12COJ=1−0 lines; however, for the sake of uniformity we
determine the intensity-weighted second moment of the velocity

c© 0000 RAS, MNRAS000, 000–000
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Figure 1. COJ=1−0 spectra and lightlyCLEANed images for the SMGs in our study. On the left we show the spectra, integrated over a region of∼3 beam
areas in the datacubes, with the corresponding PdBI COJ=3−2 spectra from Tacconi et al. (2006) shown as dot-dashed lines, scaled by9−1× to be on the
same Rayleigh-JeansTb scale. Arrows indicate the COJ=3−2 line centres. The COJ=1−0 spectrum of the NE component of SMM J123707 is shown in
red. All our targets are well-detected with COJ=1−0 FWHM of ∼300–800 km s−1, marginally broader than the corresponding COJ=3−2 emission. The
frequency range used to create the images in the right-hand panels are indicated below each spectrum. A typical±1-σ error bar is shown at the top right of
each panel. Velocities are relative to the COJ=1−0 redshifts listed in Table 2 and the spectra have been Hanningsmoothed with an four-channel triangular
kernel with 4-MHz (∼35-km s−1) spectral resolution.Right: CO J = 1−0 emission integrated over the channels indicated in the corresponding spectrum,
displayed as contours (−3, 3, 4...×σ whereσ is typically∼20µJy beam−1), superimposed on linear greyscales of the 1.4-GHz continuum emission. We see
that all targets are marginally or well resolved at the resolution of our map, with SMM J123707 comprising two components. The beam is shown in the bottom
left corner of each image. Insets show 6- by 6-arcsec postagestamps of COJ =1−0 for SMM J123549 (a 220-km s−1-wide bin centred at−150 km s−1,
displayed as contours, superimposed on a greyscale of the total COJ =1−0 emission) and SMM J123707 (contiguous 390-km s−1-wide blue and red bins
represented by the contours and the underlying greyscale, respectively, illustrating the velocity gradient across SMM J123707-NE).
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distribution and report this as the equivalent 1-σ width of a Gaus-
sian with the same second moment in Table 2. We find a median
FWHM of 540 ± 110 km s−1 for our target SMGs, which is nearly
double the medianFWHM of 300 ± 20 km s−1 measured for the
12CO J = 1−0 emission in ULIRGs by Solomon et al. (1997).
For comparison, we also calculate the equivalent 1-σ width of the
12COJ=3−2 emission in the same velocity range from the spec-
tra shown in Tacconi et al. (2008), finding a median ratio between
the two line widths ofσ1−0/σ3−2 = 1.15 ± 0.06. Assuming that
the dynamics of the central regions of these systems are dominated
by baryonic gas disks then this suggests that the12CO J = 1−0
is more spatially extended than the12CO J = 3−2 emission, a
situation confirmed by our maps.

Fig. 1 also shows the maps of the12CO J = 1−0 emission.
We mark the centroids of the12COJ=3−2 emission for all of the
sources, confirming that the12COJ=1−0 emission is spatially co-
incident in all cases, although we note that in SMM J163658 there
is evidence that the 1.4-GHz continuum is offset to the northof
the J = 3− 2 emission which is, in turn, offset to the north of
the J = 1−0 centroid – a situation reminiscent of the complex
AGN/starburst, SMM J02399−0136 (Ivison et al. 2010a).

Even though these12CO J =1−0 maps were taken with the
most compact EVLA configuration, they resolve all of the systems
except SMM J123707-SW, one of two12CO J = 1−0 emitters
seperated by∼3 arcsec (∼23 kpc) in the field of SMM J123707, as
previously identified in12CO J =3−2 with PdBI and at 1.4 GHz
with the VLA by Tacconi et al. (2006). The north-eastern compo-
nent within SMM J123707 and the other three SMGs have typical
FWHM of ∼2 arcsec or∼16 kpc. These sizes are larger than the
0.8–2.8 kpc half-light radii deduced from the higher-J transitions
by Tacconi et al. (2008), as expected from the larger line widths.
Combining our data with the forthcoming C-configuration EVLA
observations of12COJ=1−0 will ensure we have sufficient sen-
sitivity and resolution to confirm this suggestion.

We also find evidence for velocity structure within several of
the sources. In SMM J123549 we identify a northern spur to the
J=1−0 emission (see inset, Fig. 1), centred at−150 km s−1, which
is not seen inJ=3−2. This feature is coincident with a prominent,
narrow feature in theJ=1−0 spectrum and suggests that the system
may contain two components (cf. 4C 60.07 – Ivison et al. 2008).
We find a velocity difference of just80 ± 60 km s−1 between the
two components of SMM J123707, suggesting that they are orbit-
ing one another in the plane of the sky with a physical separation
of ∼25 kpc. We also see velocity structure within SMM J123549
and most strikingly a velocity gradient of∼600 km s−1 across
SMM J123707-NE over a spatial scale of∼2 arcsec (∼16 kpc – see
inset, Fig. 1), though our spatial resolution is currently insufficient
to determine whether the velocity structure is well ordered.

3.3 Brightness temperature ratios: average gas excitation

Combining our new12CO J = 1−0 data with the12CO J = 3−
2 luminosities from Tacconi et al. (2008), we derive a weighted-
meanTb ratio of r3−2/1−0 = 0.56 ± 0.05 (the median ratio and
bootstrapped error are0.55±0.05). Including similar observations
of the same transitions in the fivez ∼ 2 SMGs from Ivison et al.

2 The ELAIS N2 continuum image was recreated from the
raw data [programmes AI91 and AD432] to avoid the astro-
metric issue described by Morrison et al. (2010). See also
http://science.nrao.edu/evla/archive/issues/#010.

(2010a), Harris et al. (2010) and Swinbank et al. (2010), we derive
a weighted-meanTb ratio ofr3−2/1−0 = 0.65±0.02 and a median
of 0.58 ± 0.05. The distributions ofr3−2/1−0 for our sample and
the literature sources are statistically indistinguishable.

The weighted-meanTb ratio for the Yao et al. (2003) sub-
sample of local IR-luminous galaxies with rest-frame 8–1,000-µm
luminosities,LIR > 1011 L⊙, is r3−2/1−0 = 0.57 ± 0.06 with a
median of0.63 ± 0.10, similar to that of high-redshift SMGs (see
also Harris et al. 2010). This is also consistent with the average ex-
citation conditions of local LIRGs studied by Yao et al. butLIR and
the molecular gas mass is typically an order of magnitude larger for
the SMGs. This similarity, while reassuring, does not mean that the
physical state of the molecular gas in SMGs and LIRGs is identi-
cal. Indeed,r3−2/1−0 is often low for the LIRGs studied by Yao
et al., which is atypical of dense, SF molecular gas (where this ra-
tio would approach unity); this is thought to be caused by a diffuse,
unbound, warm gas phase that is frequently found in galacticnu-
clei. The physical scale sampled by our beam in SMGs atz ∼ 2.4
(∼20 kpc) is larger than that employed for the LIRGs studied by
Yao et al. (∼2–6 kpc) and may sample an extended, cold molecular
gas phase that can suppress the globalr3−2/1−0 (an issue discussed
in detail in§4.3).

We highlight two features of ourr3−2/1−0 distribution.
Firstly, we are using what is effectively an12COJ=3−2-selected
sample for this analysis and it is possible that SMGs with lower
r3−2/1−0 ratios remained undetected by the12CO J = 3−2 sur-
veys and were thereby excluded from our study. We note that a pro-
gramme to search for12COJ=1−0 emission using the Zpectrom-
eter instrument on the Green Bank Telescope (GBT) from SMGs
which were undetected in12CO J = 3−2 by PdBI has been ter-
minated due to problems with GBT’s Ka receiver. Secondly, we
stress that there is a wide range in the apparentr3−2/1−0 values
within the SMG sample but that formally these are consistentwith
our error-weighted mean value, given the quoted uncertainties, so
we have yet to uncover the variation inr3−2/1−0 seen locally (Yao
et al. 2003).

3.4 The plausible range of molecular gas masses

The key advantage of observing the lowest12COJ=1−0 transition
is that it allows us to determine their molecular gas mass andits
distribution in a manner identical to that used in the local Universe,
which permits a direct comparison of these systems to local IR-
luminous galaxies. A firm lower limit on the molecular gas mass
can be obtained by assuming local thermodynamic equilibrium and
an optically thin transition where:

M(H2)

L′
CO1−0

= Xthin
CO ∼ 0.08

[

g1
Z

e−T◦/Tk

(

J(Tk)−J(Tbg)

J(Tk)

)]−1

×
(

[CO/H2]

10−4

)−1
M⊙

Kkm s−1 pc2
, (1)

with T◦ = Eu/kB ∼ 5.5 K, J(T ) = T◦(e
T◦/T − 1)−1,

Tbg = (1 + z)TCMB = 9.52 K (the temperature of the cos-
mic microwave background atz = 2.5), g1 = 3 (the degener-
acy of leveln = 1), Z ∼ 2 Tk/T◦ (the partition function), and
where[CO/H2] = 10−4 is the CO abundance in typical molecu-
lar clouds (or a Solar-metallicity environment – Bryant & Scoville
1996). Note thatXCO is sometimes also known asα and that we
shall ignore its cumbersome units hereafter. The line luminosity,
L′

CO1−0, is the velocity- and area-integrated brightness tempera-
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Table 2.SMG observed properties.

Name zCO(1−0) I1−0 I3−2 r3−2/1−0 r6−5/3−2 σa
1−0 FWZI R

(Jy km s−1) (Jy km s−1) (km s−1) (km s−1) (kpc)

SMM J123549 2.2015± 0.0002 0.32 ± 0.04 1.6± 0.2 0.56± 0.10 0.36± 0.08 230± 20 1050 7± 2
SMM J123707-NE 2.4870± 0.0005 0.09 ± 0.02 0.32± 0.09 0.40± 0.14 ... 200± 35 830 7± 2
SMM J123707-SW 2.4861± 0.0004 0.12 ± 0.02 0.59± 0.09 0.55± 0.12 ... 140± 30 920 < 3
SMM J163650 2.3847± 0.0004 0.34 ± 0.04 2.3± 0.3 0.75± 0.13 0.23± 0.05 330± 35 1340 6± 2
SMM J163658 2.4494± 0.0002 0.37 ± 0.07 1.8± 0.2 0.54± 0.12 0.33± 0.07 295± 10 990 11± 3

Note:a FWHM = 2
√
2 ln 2× σ.

ture in the source reference frame,L′
CO1−0 =

∫

∆V

∫

As
Tb dAdV ,

with unitsK km s−1 pc2 (e.g. Solomon et al. 1997):

L′

CO1−0 =
3.25 × 107

(1 + z)

(

Dlum

νCO

)2 ∫

V

[SCO1−0 dV ] , (2)

whereDlum is the luminosity distance in Mpc,νCO is the rest-
frame frequency (in GHz) of the12COJ=1−0 transition and the
velocity-integrated flux density is in units of Jy km s−1.

Making no assumption about the state of the molecular gas,
we set the minimum temperature range toTkin ∼ 15−20 K, which
yields〈Xthin

CO 〉 ∼ 0.45, and this can be used to compute the mini-
mum plausible molecular gas mass in each SMG,Mmin (for com-
parison, a temperature range ofTkin ∼ 40−50 K, typical of SF gas,
has〈Xthin

CO 〉 ∼ 0.65). We determineMmax by adoptingXCO = 5
(see§4.1). Note that the contribution from Helium is already in-
cluded.

Setting aside issues regarding the appropriate value ofXCO,
it is worth mentioning that the use of COJ = 1−0 to estimate
molecular gas masses in SMGs, rather thanJ = 3−2 or higher-J
lines, yields∼2× higher masses, simply because we have observed
that r3−2/1−0 is significantly below unity. If, for a moment, we
adopt the so-called ‘ULIRG-appropriate’ value ofXCO, which is
around 0.8 and has been used widely to estimate molecular gas
masses in SMGs (e.g. Greve et al. 2005; Tacconi et al. 2006), this
would yield a median molecular gas mass of(6.1±2.2)×1010 M⊙

in these systems. We report the plausible range of moleculargas
masses in Table 3 and now move on to discuss how best to assess
the state of the molecular gas, and how we might better determine
its mass, e.g. locally, the key to choosing an appropriateXCO for
ULIRGs came from dynamical constraints (Solomon et al. 1997),
as we discuss in§4.2.

4 DISCUSSION

4.1 Physical conditions of the molecular gas

Two uncertainties plague us when we employ CO transitions to
trace the mass of molecular gas in high-redshift galaxies, namely:
1) the assumedTb ratio, if transitions other thanJ=1−0 are used,
and 2) theXCO factor, which must be appropriate for the average
excitation and kinematic state of the molecular gas. The first of
these has been removed by our observation of the12CO J =1−0
transition and we now focus our discussion on the second.

In practice,12COJ=1−0 emission in giant molecular clouds
(GMCs) can be optically thick, andM(H2) = XCO L′

CO1−0 is
estimated by adoptingXCO ∼ 5. The latter value ofXCO was ob-
tained from GMC studies in quiescent environments (e.g. Solomon
et al. 1987; Solomon & Barrett 1991) and is robust (to within

∼2×) even in warm and dense SF molecular gas, providing that the
molecular gas remains reducible to ensembles of self-gravitating
units in all environments (see Dickman et al. 1986 for the ap-
propriate formalism). The failure of the latter assumptionresults
in XCO ∼ 0.3–1.3 in the extreme interstellar medium (ISM) of
ULIRGs (Downes & Solomon 1998), as the molecular gas reser-
voir can form a continuous medium rather than an ensemble of viri-
alised gas clumps. In the literature,XCO = 0.8 is widely adopted
for SMGs, as noted earlier, but this carries a significant uncertainty,
even within the ULIRG class, as the original study indicates. Such
uncertainties can only be exacerbated in SMGs, e.g. more extreme
velocity fields would act to lowerXCO still further, while the pres-
ence of dominant quantities of dense (n(H2) > 104 cm−3) SF gas
could increaseXCO – perhaps even back into the Galactic range.
For these reasons we do not adopt a singleXCO value, but explore
its possible range, aided by the available CO lines, with theJ=1−0
transition now providing a normalisation to the total molecular gas
mass.

Since we want to avoid the assumption that the molecular gas
reservoirs in SMGs are reducible to ensembles of virialisedclumps,
as well as being able to incorporate any information about the aver-
age state of the gas (as provided by available12CO lines), we adopt
the following expression:

XCO = 2.1

(

√

〈n(H2)〉
TCO1−0

)

K−1
vir M⊙

(

Kkms−1 pc2
)−1

(3)

where〈n(H2)〉 and TCO1−0 are the average density andTb (in
12CO J = 1−0) of the molecular cloud ensemble (e.g. Bryant &
Scoville 1996) to be constrained by radiative transfer models of
available12CO line ratios. The expression:

Kvir =
(dV/dr)obs
(dV/dr)vir

∼ 1.54
[CO/H2 ]√
αΛCO

[

〈n(H2)〉
103 cm−3

]−1/2

(4)

corrects XCO for non-virial gas motions, whereΛCO =
[CO/H2]/(dV/dR) in (km s−1 pc−1)−1. The parameter,α = 1–
2.5, depends on the assumed density profile of a typical cloud; here
we adopt an average value,α = 1.75. Values ofKvir > 1 bring
XCO towards the lower values reported for ULIRGs (Solomon
et al. 1997; Downes & Solomon 1998) whileKvir ≪ 1 is used
to exclude dynamically-unattainable kinematic gas statesfrom the
range of radiative transfer modeling solutions.

We can then use12CO line ratios to constrain the average con-
ditions of the molecular gas for the SMGs in our sample, and equa-
tion (3) to obtain the correspondingXCO values.

For the system with the highest level of global12CO excita-
tion, SMM J163650, our large-velocity gradient (LVG) modeling
of r3−2/1−0 andr6−5/3−2 yields two plausible solutions, namely:
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a) Tkin ∼ 20–30K with n(H2) ∼ 104–105 cm−3 andKvir ∼ 4–
11, which corresponds to〈XCO〉 ∼ 4.5 and b)Tkin ∼ 90–110K

with n(H2) ∼ 103 cm−3, andKvir ∼ 1, with 〈XCO〉 ∼ 1 for the
corresponding gas phases. The system with the lowest excitation,
SMM J123707-NE, hasr3−2/1−0 ∼ 0.4, which is Milky Way-
like and is also compatible with two ranges of LVG solutions:a)
Tkin = 15 K, n(H2) = 3× 102 cm−3, Kvir ∼ 1 with XCO = 10,
and b)Tkin ∼ 25 or 45–100K, n(H2) = (1–3) × 102 cm−3,
Kvir ∼ 4–10 (and even up to 30) with〈XCO〉 ∼ 0.8.

ThusXCO ∼ 5–10 is certainly compatible with the global
12CO line excitation observed in SMGs, as are values as low as
XCO ∼ 0.4–1. This dual range of LVG solutions and correspond-
ing XCO factors is a general characteristic of such modeling when
constrained by a small number of line ratios. In our LVG models we
always find more parameter space associated with the lower rather
than the higher values ofXCO, but this does not make the latter
less probable, nor does it help break the aforementioned degener-
acy (although as we see in the following section, dynamical argu-
ments favour the former solutions). It is important to note that the
choice between the two ranges ofXCO that could apply in SMGs
is not between quiescent and SF molecular gas:XCO ∼ 5–10 can
be associated both with cold, non-SF gas as well as with the warm,
dense gas found in SF regions. Both components can be distributed
widely in IR-luminous spiral galaxies and their similarXCO fac-
tors actually ensure the robustness of global molecular gasmass
estimates in such systems when using a common (usually Galactic)
XCO value (e.g. Young & Scoville 1991). LowXCO values, on
the other hand, are found in the warm, diffuse, and typicallynon-
self-gravitating gas which – for typical spirals – is confined to their
nuclei (e.g. Regan 2000), and thus a lowXCO applies for only a
small fraction of their total molecular gas mass. In ULIRGs,low
XCO factors (with a considerable dispersion) apply for all of their
molecular gas as the aforementioned gas phase is expected tobe
concomitant with the entire gas reservoir (e.g. Aalto et al.1995) –
the result of high pressures in the ISM and tidal molecular cloud
disruption in merger environments.

The difference between molecular gas phases with highXCO

(quiescent or SF) and those with lowXCO (found mostly in SF
environments as a second phase dominating the low-J 12CO emis-
sion) is mostly due to the optical depth of the12COJ=1−0 line.
This is large for the former (τ1−0 & 5) and typically small for
the latter (τ1−0 ∼ 0.5–2) as a result of higher temperatures, lower
densities and/or velocity gradients, withKvir & 5. The proxim-
ity of some ULIRGs has allowed several studies to break the de-
generacies (e.g. Lisenfeld et al. 2000; Hinz & Rieke 2006). When
using low-J 12CO lines this is possible with high-resolution imag-
ing that resolves the gas disks in ULIRGs (Downes & Solomon
1998), while13CO and multi-J 12CO line measurements (e.g. Mao
et al. 2000; Weiß et al. 2001) that allow the mean optical depth of
the 12CO J = 1−0 line to be determined can also achieve this –
see§4.4. Finally, detailed models of CO line emission from turbu-
lent gas clouds reveal that COJ = 3−2 and higher-J lines are
very sensitive to the presence of dense, self-gravitating cores; these
lines are significantly under-luminous with respect to COJ=1−0
for diffuse, non-self-gravitating, turbulent gas (Ossenkopf 2002).
The resulting non-linear dependence of high-J ratios such as CO
J=7−6/J=3−2 (available for several SMGs) on the mean den-
sity of such a diffuse phase (see Figure 9 of Ossenkopf 2002) makes
them unsuitable for constraining an unobserved COJ =1−0 line
luminosity, especially when such a phase exists alongside dense,
self-gravitating, SF gas, as is the case with ULIRGs.

4.2 Dynamical constraints onXCO and gas mass

Table 3 lists the stellar masses for our target galaxies, derived us-
ing Bruzual & Charlot stellar population models3 (Hainline et al.
2010). We caution that these mass estimates are systematically
uncertain due to the potentially complex star-formation histories
and dust obscuration within SMGs, as discussed by Hainline et al.
(2010). We also use the measuredFWHM velocity of the12COJ=
1−0 lines and the observed semi-major axes to determine dynamical
masses, correcting for inclination using

〈

sin2 i
〉

= 2/3 (following
Tacconi et al. 2008). UsingMdyn = 2.1σ2

1−0R/G we derive a me-
dian dynamical mass withinR ∼ 7 kpc of (2.3± 1.4)× 1011 M⊙,
consistent with the masses of SMGs from their resolved dynamics
(Swinbank et al. 2006) and roughly 6× more massive than UV-
selected galaxies at this epoch (Erb et al. 2006), calculated in the
same manner.

Combining our minimum estimate of the molecular gas mass,
〈Mmin〉 = (3.4 ± 1.2) × 1010 M⊙ and the stellar masses
from Hainline et al. (2010),〈M∗〉 = (1.4 ± 0.3) × 1011 M⊙,
we derive a total baryonic mass,〈Mbaryon〉 = (1.8 ± 0.1) ×
1011 M⊙ for our five SMGs, comparable with their median dy-
namical mass. We also determine a median gas mass fraction of
〈Mmin〉/〈Mbaryon〉 = 0.14 ± 0.02, a median gas-to-stars mass
ratio of 〈Mmin〉/〈M∗〉 = 0.16 ± 0.02 and a total baryonic frac-
tion, fbaryon = 〈Mbaryon〉/〈Mdyn〉 = 0.51 ± 0.10. Adopting the
Milky Way value for XCO would increase the first two of these
fractions by a factor of∼10× and would result infbaryon ∼ 1.5.
We note that our median baryonic mass is about 50 per cent higher
thanL∗ at the present day (Cole et al. 2001) suggesting that SMGs
are indeed the progenitors of massive galaxies.

The median baryonic mass does not exceed the median dy-
namical mass forXCO <

∼ 3. However, we note that the mass-to-
light ratios used to derive the stellar masses are not consistent with
the star-formation histories implied by the observed gas mass, the
current SFRs and the expectation that we are (on average) seeing
the SMGs mid-way through their burst phase. If we require that
SMGs are seen half-way through their burst, that the currentSFR
is 50-per-cent efficient and is sustained for the duration ofthe burst,
then we can use the observed dynamical masses,12CO J = 1−0
and rest-frameH-band luminosities to derive self-consistent con-
straints onXCO, the mass of the stellar population prior to the
burst, and the duration of the burst. We use a constant-SFR model
from STARBURST99 (Leitherer et al. 1999) to determine the mass-
to-light ratio in theH-band of the burst (which is obscured by a
foreground dust screen with extinction,AV ) and a pre-existing,
unobscured 1-Gyr stellar population whose combined luminosity
is required to reproduce the observedH-band flux. A disk-like dy-
namical model for the molecular gas reservoir in the SMGs yields
XCO < 2, an expected burst lifetime of<∼150 Myr, a gas fraction
of <

∼65 per cent, and moderate extinction for the burst,AV >
∼ 7. In

this scenarioXCO = 0.8 is recovered for a model with a gas frac-
tion of 25 per cent, a pre-existing stellar mass of1.4 × 1011 M⊙

and a burst duration of 50 Myr withAV ∼ 20, which has added
20 per cent to the stellar mass of the galaxy. However, allowing a
wider range of dynamical models (e.g. a virialised sphere) removes
this constraint, allowing solutions as high asXCO ∼ 5, and so we
conclude that it is impossible with current information to reliably

3 For SMM J123707-NE, we scale the mass given by Hainline et al.(2010)
for SMM J123707-SW based on the relative 5.8-µm fluxes of the compo-
nents.
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Table 3.SMG derived properties.

Name L′
CO1−0 Ma

min,M
b
max mCQ/SF LIR Mc

best range Md
∗ Mdyn

(1010 K km s−1 pc2) (1010 M⊙) (1012 L⊙) (1010 M⊙) (1010 M⊙) (1010 M⊙)

SMM J123549 7.6± 1.0 3.4, 38 1.3 5.5± 1.2 2.5–7.5 21± 6 23 ± 4
SMM J123707-NE 2.7± 0.6 1.2, 13 5.0 4.1± 0.8 4.9–14.7 8± 2 18 ± 6
SMM J123707-SW 3.5± 0.6 1.6, 18 1.4 3.1± 0.6 1.5–3.5 18± 3 6 4
SMM J163650 9.3± 1.1 4.2, 47 0.33 7.8± 1.5 2.1–6.3 14± 4 41 ± 8
SMM J163658 10.6 ± 2.0 4.9, 54 1.5 6.4± 0.9 3.2–9.6 13± 3 58 ± 4

Notes:a) adoptingXCO = 0.45 – see§3.4 and§4.1;b) adoptingXCO = 5 – see§3.4 and§4.1;
c) assuming SFE = 500 L⊙ M−1

⊙
, and plausibly up to 3× lower – see§4.3;d) from Hainline et al. (2010).

constrainXCO from dynamical limits on SMG samples. Neverthe-
less, it is clear that values ofXCO >

∼ 5 are disfavoured.

4.3 The molecular gas in SMGs: two phases

Larger values ofXCO have the potential to radically re-shape our
view of the structure, gas-consumption timescales and evolution-
ary state of SMGs. From their observed12CO line ratios it is obvi-
ous that they are not dominated by SF, dense and warm gas where
r3−2/1−0 ∼ 1 andr6−5/3−2 ∼ 0.8–1, as measured for Orion A-
type clouds and the central SF regions of nearby starbursts such as
M 82 and NGC 253 (e.g. Wild et al. 1992; Bradford et al. 2003).
For SMGs, the average value ofr3−2/1−0 is lower, with some in-
dividual sources reaching Milky Way-like values,r3−2/1−0 ∼ 0.4
andr6−5/3−2 ∼ 0.23–0.35, well below that of SF gas.

Recalling our discussion in§4.1, such low12CO line ratios do
not necessarily imply the presence of cold, quiescent gas such as
that typifying quiescent GMCs in the Milky Way. Diffuse, warm
and highly non-virial gas, concomitant with the SF phase in SMGs,
can also suppress their global12CO ratios. Such a phase is respon-
sible for the low averager3−2/1−0 ∼ 0.66 in the nuclei of nearby
IR-luminous galaxies (e.g. Yao et al. 2003; Leech et al. 2010) where
its presence has been known for some time (Regan 2000).r3−2/1−0

then drops from its intrinsic starburst value,∼1, as the diffuse phase
contributes extra12COJ = 1-0 emission, while theJ =3−2 and
higher-J lines remain dominated by the SF gas.12CO line ratios
normalised to theJ =1−0 line luminosity (e.g.r3−2/1−0) would
then be lower than those intrinsic to SF gas, while ratios involving
only high-J lines (e.g.r6−5/3−2) would be high, being dominated
by the SF gas phase.This is not the case for any of the SMGs in our
sample(Table 2). Moreover, LVG modeling finds no average gas
state that can adequately reproduce bothr3−2/1−0 andr6−5/3−2

for any of the SMGs in our sample, with fits of only the high-J
CO ratios yieldingr3−2/1−0 ∼ 0.9–1.2, which is much higher
than observed. Thus, while a broad two-phase differentiation of the
molecular gas is certainly apparent in SMGs,it is not of the type
observed in local starburst nuclei and ULIRGs(with its associ-
ated lowXCO). Significant masses of non-SF molecular gas remain
the only viable alternative for the lowr3−2/1−0 andr6−5/3−2 ob-
served in SMGs. This is further corroborated by the fact thatthe
systems with the largest spatial extent of the12CO J = 1−0 rel-
ative toJ = 3−2 emission show the lowestr3−2/1−0 ratios (see
Fig. 1 and Table 2).

If we assume conservatively that XCO(SF)∼
XCO(quiescent) ∼ 5 for both the SF and quiescent gas in
SMGs (in practiceXCO for the SF gas can be somewhat lower),
then we arrive at robust upper limits for their total molecular
gas masses,Mmax, as described in§3.4 and listed in Table 3.

Alternatively, we can user3−2/1−0 to determine the relative
fractions of cold, quiescent (CQ) and warm, SF molecular gas
mCQ/SF = MCQ/MSF from:

mCQ/SF =
r
(SF)
3−2/1−0 − r3−2/1−0

r3−2/1−0 − r
(CQ)
3−2/1−0

, (5)

wherer(SF)

3−2/1−0
∼ 0.9 and r

(CQ)

3−2/1−0
∼ 0.3 are set as typical

intrinsic ratios of these two gas phases. The total molecular gas
mass,Mbest = MSF(1 + mCQ/SF), can then be deduced us-
ing LIR (§3.1) if we assume that the SF gas phase in all galax-
ies has the same intrinsicSFEmax = LIR/MSF. Its maximum
value,∼500 L⊙ M−1

⊙ , is thought to be the result of an Eddington
limit set by photon pressure on dust in the molecular gas accreted
by the SF sites (Scoville 2004; Thompson 2009) while an almost
identical limiting SFE can result from a cosmic-ray-generated Ed-
dington limit (Socrates et al. 2008). Such ‘maximum SFE’ values
have been observed in diverse places: individual molecularclouds
around OB star clusters in M 51, for the total molecular gas reser-
voir of Arp 220, as well as for the HCN-bright gas phase of LIRGs.
Here we adopt the maximum SFE, noting that the true value will
likely be smaller by a factor of up to 3× since gas accretion towards
sites of star formation may not be spherically symmetric; moreover,
CO emission may also be included from beyond the natal sites of
the OB stars (where the Eddington limit is set), which explains why
the HCN-bright gas phase yields higher values of SFE in ULIRGs,
closer to the maximum value than those associated with the CO-
bright gas phase (e.g. Gao & Solomon 2004).

mCQ/SF andMbest are listed in Table 3. Reassuringly, the
maximum globally-averaged〈SFE〉 – estimated usingMmin (via
Xthin

CO ) for the total gas mass and making no discrimination be-
tween SF and non-SF molecular gas – is around 160–200 L⊙ M−1

⊙

for most of our SMGs, with only SMM J163650 approaching the
maximum value allowed by our aforementioned arguments.

The median cold/warm gas mass fraction for the SMGs is 1.4
(Table 3). Indeed, only in one source, SMM J163650, do we find
mCQ/SF < 1, strong evidence that a significant fraction of the
molecular gas in most SMGs must be cold, low-excitation gas,tak-
ing no part in the starburst.4 The largemCQ/SF values, along with
evidence for extended12COJ =1−0 emission (this study; Ivison
et al. 2010a; Carilli et al. 2010), suggests that the main gasreser-
voir in these systems is more widely distributed than the compact,
maximal starbursts implied by high-J 12CO imaging (e.g. Tacconi
et al. 2006).

We consider thatMbest provides the most likely range of the
total molecular gas masses of the SMGs in our sample, albeit with
a large uncertainty due to the plausible range of maximum SFE.
Using this new method, we find a median molecular gas mass of
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(2.5 ± 0.8) × 1010 M⊙, with a plausible range stretching up to
3× higher. If we combine both components in SMM J123707, this
becomes(3.2± 0.9) × 1010 M⊙.

.

4.4 Breaking degeneracies in excitation andXCO via 13CO
observations

During 2011–12 the EVLA will offer 2 GHz of instantaneous band-
width, prior to commissioning of the full 8-GHz WIDAR capa-
bility. This will allow simultaneous5 imaging of 12CO and13CO
J=1−0, each having 4× the velocity coverage utilised to date.

Sensitive13COJ=1−0 imaging of SMGs can break the de-
generacies of the12CO spectral-line energy distribution (SLED),
allowing us to determineXCO by: a) determining the total molec-
ular gas mass via an independent, typically optically thin line, or
b) placing diagnostically powerful lower limits on the12CO/13CO
J =1−0 line-intensity ratio,R1−0. For the12CO intensities seen
in our sample, deep EVLA observations can detect13COJ=1−0
whereR1−0 ∼ 3–6, typical for cold Galactic GMCs, where12CO
J =1−0 is optically thick (Scoville et al. 1979; Polk et al. 1988).
On the other hand, the ability to set lower limits ofR1−0 > 10
can decisively break the degeneracy described in§4.3 in favour of
the diffuse phase with moderate optical depth in12CO J = 1−0
and lowXCO. This is because whileR1−0 ∼ 5–10 is typical of
Galactic GMCs and quiescent spiral disks (e.g. Sakamoto et al.
1997; Paglione et al. 2001),R1−0 > 10 is found almost exclu-
sively in starbursts (e.g. Casoli, Dupraz & Combes 1992; Aalto
et al. 1995) or galactic centres, where a diffuse, warm, non-self-
gravitating phase dominates theJ=1−0 emission.

For the SMG with the lowest12CO excitation in our sam-
ple, SMM J123707-NE, our LVG models (for an abundance ratio
[12CO/13CO] = 60) yield R1−0 >

∼ 20 for all solutions corre-
sponding to diffuse, warm, non-self-gravitating gas, whileR1−0 ∼
9–10 is found for the dense, cold, self-gravitating phase. Similarly,
for the averager3−2/1−0 of the sample, andR1−0 = 5, all LVG
solutions correspond to virial or only slightly unbound kinematic
states (Kvir ∼ 1–3) with XCO ∼ 3–6, with the best fit found
for Tk ∼ 15 K andn(H2) ∼ 103 cm−3 – conditions typical for
quiescent GMCs. Forr3−2/1−0 ∼ 0.6 andR1−0 ∼ 15, all solu-
tions compatible with the aforementionedTb ratio haveKvir >

∼ 5
and a correspondingXCO ∼ 0.65–1.2. For the highest12CO
J=1−0 flux levels observed in our sample, a∼10× weaker13CO
J=1−0 line can be detected at>

∼10σ by the fully upgraded EVLA
in <

∼100 hr.
Finally, we mention the possibility that there may be a signifi-

cant optical depth due to dust in compact ULIRGs with very dense
gas (n(H2) & 105 cm−3), even at short submm wavelengths. This
is suspected for nearby ULIRGs such as Arp 220, and for some
SMGs (Papadopoulos et al. 2010), and creates an additional degen-
eracy for the interpretation of very low (high-J)/(low-J) 12CO line
ratios in extreme starbursts. EVLA observations of the high-density
gas tracer, HCNJ=1−0, at 88.632 GHz, along with low-J 12CO
transitions and high-J (J=6−5 and higher)12CO transitions with

4 Any significant AGN contribution toLIR would lower our estimates of
the warm SF molecular gas mass and increase themCQ/SF gas mass frac-
tions reported in Table 3.
5 The frequency of13COJ=1−0 differs from that of12COJ=1−0 by
5.070/(1+ z)GHz, or∼1.5 GHz for the SMGs targeted here, though note
that contiguous placement of sub-band pairs is not mandatory when using
WIDAR.

Figure 2. LIR versusL′
CO for those SMGs, local (U)LIRGs and BzK

galaxies (see legend) with robust COJ = 1−0 (or J = 2−1) measure-
ments. Trend lines are fitted to the ULIRGs plus SMGs (solid) and LIRGs
plus BzK galaxies (dashed), as well as all the samples combined (dotted).
The resulting linear slopes are given in parentheses. Also shown are the
mean corrections that would have been required inL′

CO for the SMGs and
BzK galaxies if their CO luminosities had been derived usingCOJ=4−3
or J=3−2, which would have resulted in an erroneously steep trend. The
measurements from this paper are circled.

the Atacama Large Millimetre Array (ALMA), have the potential
to break this degeneracy (Papadopoulos et al. 2010).

4.5 Gas depletion timescales and the evolutionary state of
SMGs

The gas-consumption timescale,τgas = M(H2)/SFR, is the time
needed for star formation to consume a given molecular gas reser-
voir, in the absence of feedback effects, and can be estimated using
the plausible range of values forMSF andMbest. Thusτgas(SF) =
MSF/SFR yields the shortest feasible duration for the observed
SMG bursts, whileMbest/SFR = τgas(SF)(1 +mCQ/SF) is the
longest time over which SF can continue if the colder material
can be involved without delays imposed by dynamics or SF-related
feedback.

We find a median gas-consumption timescale,〈τgas(SF)〉 =
12Myr, which lengthens to 28 Myr if the colder gas can become
involved. This is considerably shorter than naive expectations for
the lifetime of the SMG phase,∼300 Myr (e.g. Swinbank et al.
2006), but these gas-comsumption timescales can be extended if
the SFE is below 500 L⊙ M−1

⊙ , perhaps up to 3× longer. Moreover,
we are neglecting the effect of feedback, which is also expected to
lengthen the total duration of successive SF episodes in SMGs due
to the need to re-accrete material towards the typically very com-
pact SF regions (∼100–500 pc) expected in merger-driven, gas-rich
starbursts.
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4.6 The rest-frame Schmidt-Kennicutt relation in the distant
Universe: a comparison to the local Universe

The availability of a significant number of12CO J = 1−0 line
luminosities in vigorously SF systems at high redshifts presents an
opportunity to examine the Schmidt-Kennicutt (S-K) relation be-
tween their gas reservoirs and SFRs, without resorting to the use of
high-J 12CO transitions and assumptions about global12CO high-
J /J = 1−0 line ratios (i.e. assumptions about the average state
of their molecular gas reservoirs). The latter can create artificial
offsets from the S-K relation for galaxy populations where only
high-J 12CO lines have been observed, if an incorrect12CO high-
J /J=1−0 ratio is assumed. Such offsets can also be created by the
application of inappropriateXCO factors in various galaxy classes.
For our present short discussion we render the S-K relation only as
a LIR − L′

CO relation, postponing our investigation of the physi-
cal relation,SFR − M(H2), whereXCO must be considered, for
a future paper (Greve et al., in preparation).

In its original form, the S-K relation was established via HI

and 12CO J = 1−0 measurements of galaxies in the local Uni-
verse (Schmidt 1959; Kennicutt 1989, 1998b). The HI + H2 gas
surface densities,Σ(H I+H2), are related to the star-formation sur-
face density,Σ⋆, by Σ⋆ ∝ [Σ(H I + H2)]

κ, whereκ ∼ 1.4–1.5.
In a recent, comprehensive analysis of the HI and H2 distributions
in nearby galaxies, on sub-kpc scales, Bigiel et al. (2009) found
a power-law with slopeN = 1.0 ± 0.2 in regions where the to-
tal gas content (HI + H2) is dominated by H2. The latter seems to
be characterised by gas surface densities>

∼9 M⊙ pc−2, indicating a
saturation point for HI.

Assuming that distant LIRGs are mostly HI-poor, as they are
in the local Universe, with<∼20 per cent of the their total gas in HI,
we can estimate their total mass using the12CO J = 1−0 line.
Even for the most HI-rich local LIRGs, omission of HI results in
a gas-mass under-estimate of<

∼2×, leavingXCO as the dominant
uncertainty (see§4.1).

That SMGs follow the S-K relation in its basic observational
form,LIR −L′

CO, was first shown by the12COJ=3−2 and4−3
survey of SMGs by Greve et al. (2005). More recently, CO surveys
of gas-rich disk galaxies atz = 1–2 (Daddi et al. 2008, 2010; Dan-
nerbauer et al. 2009; Genzel et al. 2010) have shown that theytoo
obey a S-K-like relation, albeit apparently offset from theSMGs
(lower LIR/L

′
CO). It has been speculated that this offset reflects

two modes of global star formation in galaxies: SMGs typify those
galaxies undergoing major mergers, with intense, highly efficient
bursts of star formation, and BzKs typify galaxies undergoing a
more leisurely rate of star formation, at lower efficiency. However,
this apparent offset in the S-K relation is deduced from a compari-
son of high-J CO observations from SMGs with a mixture of CO
J = 3−2, J = 2−1 and1−0 line observations of disk galaxies,
and the reality of the apparent offset (and its interpretation as dif-
ferent global star-formation laws for mergers and disk galaxies) is
therefore hampered by biases and uncertainties in the underlying
gas excitation, especially in SMGs.

With an increased sample of SMGs observed in12COJ=1−0
we can make a relatively unbiased comparison between SMGs and
the z ∼ 1–2 disk population. In Fig. 2 we showLIR (§3.1) ver-
susL′

CO1−0, populated with local LIRGs and ULIRGs from Pa-
padopoulos et al. (in preparation) as well as with those SMGsand
BzK galaxies with reliable measurements of12CO J = 1−0 or
J = 2−1 (whereJ = 1−0 is not available, we useJ = 2−1,
calculatingL′

CO1−0 via r21 = 0.75). We see that the SMGs ex-
tend the S-K relation to higher luminosities, with a low dispersion.

Fitting linear relations of the formlogLIR = α logL′
CO1−0 + β,

we determine slopes for the various samples, reporting these in the
labels of Fig. 2. Taking the SMGs alone, we findα = 0.65 ± 0.13
and β = 5.7 ± 1.4; local ULIRGs display a shallower slope,
α = 0.39 ± 0.11 with β = 8.4 ± 1.1, though this is highly un-
certain as they span only a small range inLIR; for LIRGs we see
α = 0.67 ± 0.05 andβ = 5.0± 0.5, similar to the SMGs.

Generally, we find slopes that are significantly below unity
(α ∼ 0.5–0.7) for the various samples. This contrasts with the
steeper slopes (α ∼ 1.1–1.5) reported by other studies of low- and
high-redshift samples (e.g. Greve et al. 2005; Daddi et al. 2010;
Genzel et al. 2010). These have typically employed high-J 12CO
line luminosities for the high-redshift galaxies andL′

CO1−0 for the
local sources, which may artificially steepen the slope. Iono et al.
(2009) looked at the S-K relation using12CO J = 3−2 for both
low- and high-redshift galaxies, findingα = 1.08 ± 0.03, similar
to that derived by Gao & Solomon (2004) using HCNJ = 1−0.
These two molecular transitions both trace the dense, warm,SF gas
phase. A common slope of unity in the corresponding S-K relations
is to be expected if a near-constant SFEmax = LIR/MSF underlies
star formation in all galaxies, with only the dense gas phaseavail-
able as fuel, and an Eddington-type limit (set by photons or cosmic
rays) setting SFEmax (see§4.3).

Taking the SMGs and ULIRGs together – they both contain
extreme SF environments, after all – yieldsα = 0.56 ± 0.05 and
β = 6.6 ± 0.6, whereas taking the LIRGs and BzK galaxies to-
gether yieldsα = 0.72±0.05 andβ = 4.6±0.5. The BzK galaxies
do not stand out dramatically from the other low- and high-redshift
samples. There are only three BzK galaxies with12COJ=1−0 de-
tections (Aravena et al. 2010), but the situation is unchanged when
we include the BzK galaxies detected in12COJ=2−1 from Daddi
et al. (2010), adoptingr2−1/1−0 = 0.75 to calculateL′

CO1−0. If,
however, we compare the BzKs with the SMGs, this time using the
12CO J = 3−2, 4−3 and5−4 lines for the latter (the mean re-
sulting offset inL′

CO is shown in Fig. 2), then one might argue that
SMGs and ULIRGs populate a different sequence to BzK and spi-
ral galaxies, as did Daddi et al. (2010). Thus an apparent displace-
ment and/or steepening of the S-K relation between various galaxy
populations may not reflect a true difference in their respective SF
modes, but rather the strong excitation biases produced by using
molecular lines with different excitation requirements. Given these
biases, the relatively small galaxy samples, and their scatter, the
evidence for different S-K relations between different galaxy pop-
ulations is weak, as we shall argue in a forthcoming paper (Greve
et al., in preparation).

Adding a last cautionary note, Papadopoulos & Pelupessy
(2010) have shown that while typical present-day galaxies quickly
settle into S-K-type relations, this may not be the case for gas-rich,
metal-poor systems in the early Universe. Such galaxies canspend
sustained periods with their SFR significantly below or above that
expected from the local S-K relation. If the same gas-rich, metal-
poor galaxy can deviate strongly from the S-K relation during the
course of its evolution, then the use of the S-K relation as a tool for
differentiating between different SF modes must be re-evaluated.
Indeed, given the dynamic and non-equilibrium ISM in strongly
evolving, gas-rich systems (where the global mass fractions of the
various gas phases, e.g.MSF(H2)/Mtotal andM(H I)/M(H2),
are strongly time-dependent) there could be a simple, underly-
ing S-K relation ofSFR ∝ MSF(H2), while the different expo-
nents recovered in various samples are artifacts of strongly evolving
MSF(H2)/Mtotal fractions, further compounded by the choice of
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observed molecular lines so with different excitation requirements
for high-redshift systems.

5 FUTURE PROSPECTS

5.1 Blind surveys

Blain, Carilli & Darling (2004) present the number of blind CO
J = 1− 0 line detections expected with 4-GHz-wide observing
bands, based on Blain et al. (2002), updating the work of Carilli
& Blain (2002) to reflect the SMG redshift distribution of Chap-
man et al. (2005). Their 30–34-GHz band is most easily compared
with our z ∼ 2.4 SMGs: scaling to our 236-MHz of instanta-
neous bandwidth, they predict a source density of∼2.4 deg−2 at
the flux levels (§2) to which we are sensitive,>∼ 2× 10−22 W m−2

or >
∼0.18 Jy km s−1.

It is no great surprise, therefore, that we find no robust (>5-
σ) detections within the four fields of our pilot survey, each with a
∼70-arcsecFWHM primary beam: sensitivities ranging from∼0.1–
0.2 Jy km s−1, covering∼10−3 deg2.

In Blain et al., the galaxies responsible forJ=1−0 emission
at or above the level to which we are sensitive are extremely lu-
minous – they have higherLIR than our SMGs. This suggests the
predictions may be rather pessimistic; of course, we might also ex-
pect to see an over-density of sources since our fields are centred
on relatively massive galaxies (e.g. Stevens et al. 2003).

Based on the predictions of Blain et al., a blind survey utilising
WIDAR’s full 8-GHz bandwidth, would need to cover∼100× our
current area, to a similar depth, to provide a significant number of
robust detections and hence a useful test of the predictions. Our sur-
vey suggests these requirements can be relaxed significantly; it will
be interesting to see whether the∼2× deeper observations planned
for our targets using EVLA’s C configuration provide evidence to
support our suggestion.

5.2 The study of cold, quiescent molecular gas at high
redshift

All current molecular-lines studies of distant starbursts, including
our own, involve samples selected via large rest-frame far-IR lumi-
nosities and luminous high-J 12CO lines (J=3−2 and higher). It is
thus possible that SMGs with lowr3−2/1−0 ratios remain mostly
undetected by the12CO J = 3−2 surveys and were thereby ex-
cluded from our study, as noted in§3.3.

The fact that much of the molecular gas in SF systems may
not be participating in the starbursts has been well-established by
studies of local LIRGs, where sensitive low-J 12CO imaging (e.g.
Weiß et al. 2004) or submm continuum imaging of dust (e.g. Pa-
padopoulos & Seaquist 1999; Dunne & Eales 2001; Thomas et al.
2002) couldspatiallydisentangle the cold and extended molecular
gas and/or its associated dust from the compact starbursts,which
otherwise dominate their global SEDs and their molecular SLEDs.

It has only recently become possible to attempt a similar spa-
tial separation of ISM components in high-redshift systems, via
tracers that can remain luminous in the cold, low-excitation ISM –
e.g. 12CO J = 1−0 and submm continuum emission from dust.
This explains the previous lack of evidence for extended, low-
excitation molecular gas around SMGs, but also point to several
obvious routes forward, via EVLA and ALMA.

Less well known is the prospect of utilising the two fine-
structure lines of neutral carbon,3P1→3P0 at 492.160 GHz and

3P2→3P1 at 809.343 GHz to trace molecular gas and dynami-
cal mass (Papadopoulos et al. 2004; Papadopoulos & Greve 2004;
Weiß et al. 2005), exploiting the full concomitance of C and CO
in molecular clouds (Keene et al. 1996), the simple, three-level
partition function, the low optical depth and modest excitation re-
quirements. Moreover, unlike the luminous [CII ] fine-structure line
at 1.9 THz, the neutral carbon lines are not subject to contamina-
tion by atomic or ionised gas, tracing solely the molecular gas.
The [CI] J = 1−0 line remains luminous even for UV-shielded,
cold (Tk ∼ 15 K) molecular gas (e.g. Oka et al. 2001) where the
[C II ] line luminosity is negligable because all carbon is neutral and
Tk ≪ ∆Eu([C II ])/kB ∼ 92 K. Finally, the [CI] lines are accessi-
ble in the most sensitive bands (3–7, or 84–373 GHz) of ALMA for
a much wider redshift range (and range of look-back times) than
[C II ] – z ∼ 0.3–4.9 forJ = 1−0 andz ∼ 1.2–8.6 forJ =2−1
versusz >

∼ 4 for [C II ].
The [CI] 3P1 → 3P0 line, in particular, remains well-excited

in quiescent GMCs (Eu/kB ∼ 24 K, ncrit ∼ 600 cm−3 for low
Tk), while maintaining a favourableK-correction with respect to
12CO J = 1−0 (SC I/SCO ∼ 2.75–5.5 forTb([C I])/Tb(CO)∼
0.15 − 0.30). The 3P2 → 3P1 line (Eu/kB ∼ 63 K, ncrit ∼
965 cm−3) also maintains aK-correction advantage with respect
to both 12CO J = 1− 0 andJ = 7− 6 (the CO line closest in
rest-frame frequency), while detecting the pair yields an excellent
thermometer for molecular gas (both lines are available in bands 3–
7 of ALMA for z ∼ 1.2–4.9). Thus [CI] J=1−0,J=2−1 imaging
with ALMA and COJ=1−0 imaging with the completed EVLA
will constitute the most powerful tools for making inventories of the
global molecular gas and dynamical gas mass in distant galaxies,
unbiased by the excitation state of the molecular gas and theextent
of their star-formation regions.

6 CONCLUSIONS

We report the results of a pilot study with the EVLA of12COJ =
1−0 emission from a small sample of well-studied SMGs atz =
2.2–2.5, previously detected in12COJ=3−2 using PdBI.

Using the EVLA’s most compact configuration we detect
strong, broad (∼1,000 km s−1 FWZI) line emission from all of our
targets – coincident in position and velocity with theirJ = 3−2
emission.

The median line width ratio,σ1−0/σ3−2 = 1.15± 0.06, sug-
gests that theJ=1−0 emission is more spatially extended than the
J = 3−2 emission, a situation confirmed by our maps which re-
veal velocity structure in several cases and typical sizes of ∼16 kpc
FWHM. With the current spatial resolution we are unable to deter-
mine whether observed gas motions are well ordered, but we find
no evidence of large-scale flows of cold gas.

We find a medianTb ratio ofr3−2/1−0 = 0.55±0.05, consis-
tent with local galaxies withLIR > 1011 L⊙, noting that our value
may be biased high because of theJ=3−2-based sample selection.
Including five systems with similar luminosities from the literature
we find a median ofr3−2/1−0 = 0.58 ± 0.05 and see no evidence
for measureable intrinsic scatter within the sample.

Using the observed12CO J = 1−0 line emission, naive es-
timates of the molecular gas masses are around 2× higher than
previous estimates based on12COJ=3−2 with r3−2/1−0 = 1.

We also estimate molecular gas masses using the12CO J =
1− 0 line and the observed globalTb ratios, assuming standard
underlyingTb ratios for the non-SF and SF gas phases as well as
a common SFE for the latter in all systems, i.e. without calling
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uponXCO. Using this new method, we find a median molecular gas
mass of(2.5 ± 0.8) × 1010 M⊙, with a plausible range stretching
up to 3× higher. Even higher masses cannot be ruled out, but are
not favoured by dynamical constraints: the median dynamical mass
within R ∼ 7 kpc for our sample,(2.3 ± 1.4) × 1011 M⊙, ∼6×
more massive than UV-selected galaxies at this epoch.

We find a median gas-consumption timescale,〈τgas(SF)〉 =
12Myr, or 28 Myr if the colder gas can become involved. This is
shorter than naive expectations for the lifetime of the SMG phase,
but these timescales can be longer if the SFE is below 500 L⊙ M−1

⊙ ,
and we neglect the effect of feedback.

We examine the S-K relation inLIR − L′
CO for all the dis-

tant galaxy populations for which COJ =1−0 or J =2−1 data
are available, finding small systematic differences between popula-
tions. These have previously been interpreted as evidence for dif-
ferent modes of star formation, but we argue that these differences
are to be expected, given the still considerable uncertainties, cer-
tainly when considering the probable excitation biases dueto the
molecular lines used, and the possibility of sustained S-K offsets
during the evolution of individual, gas-rich systems.

We discuss the degeneracies surrounding molecular gas mass
estimates, the possibilities for breaking them, and the future
prospects for imaging and studying cold, quiescent molecular gas
at high redshift.

We note in ending that if SMGs (and other high-redshift star-
bursts) are as extended as our observations suggest (up to 20kpc)
then even the shortest possible dish spacings of the EVLA arenot
well-matched to their sizes. However, the smaller ALMA dishes
(especially those in the ALMA Compact Array), if fitted with
Band-1 receivers, or GBT, are ideal for studying the critical 12CO
J=1−0 emission from these galaxies.
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