
ONTOLOGY MERGING USING SEMANTICALLY-

DEFINED MERGE CRITERIA AND OWL REASONING

SERVICES: TOWARDS EXECUTION-TIME MERGING OF

MULTIPLE CLINICAL WORKFLOWS TO HANDLE

COMORBIDITIES

by

Borna Jafarpour

Submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

December 2013

© Copyright by Borna Jafarpour, 2013

ii

To my parents – I hope I have made you proud.

iii

Contents

List of Figures .. ix

List of Tables .. xii

Abstract .. xvi

List of Abbreviations and Symbols Used .. xvii

Acknowledgements .. xix

CHAPTER 1: INTRODUCTION ... 1

1.1. Problem Description .. 1

1.2. Research Objectives and Challenges ... 2

1.2.1. Knowledge Mapping ... 3

1.2.2. Ontology Merging ... 4

1.2.3. Ontology Execution .. 5

1.3. Solution Approach ... 6

1.4. OntoMorph Framework Application: Merging Clinical Practice Guidelines 9

1.5. Research Contributions ... 10

1.6. Thesis Outline .. 13

CHAPTER 2: RELATED WORK .. 15

2.1. Ontology-based Clinical Decision Support Systems ... 15

2.1.1. CPG Representation Languages ... 17

2.1.2. CPG Execution Engines .. 27

2.1.3. Conclusion .. 34

2.2. Ontology Mapping .. 37

iv

2.2.1. Introduction ... 37

2.2.2. Mapping Techniques ... 41

2.2.3. Conclusion .. 52

2.3. Representation of Mappings .. 53

2.3.1. Requirements for Mapping Representation Languages 54

2.3.2. Existing Representation Languages for Mappings 61

2.3.3. Conclusion .. 69

2.4. Merging of Computerized Clinical Practice Guidelines 69

2.4.1. Introduction ... 69

2.4.2. Guideline Level Merging .. 71

2.4.3. Computerization Level Merging ... 71

2.4.4. Pre-Execution Merging ... 72

2.4.5. Execution-Time Merging .. 77

2.4.6. Conclusion .. 78

CHAPTER 3: ONTOMORPH: A SEMANTIC WEB BASED KNOWLEDGE

MORPHING FRAMEWORK ... 80

3.1. Solution Approach ... 80

3.2. Preliminaries .. 81

3.2.1. OWL Ontologies ... 81

3.2.2. OWL Reasoning and Ontology Semantics ... 82

3.3. OntoMorph Knowledge Morphing Framework Solution Steps 83

3.4. Solution Modules .. 90

v

3.4.1. Knowledge Representation Module .. 91

3.4.2. Knowledge Mapping Module ... 92

3.4.3. Knowledge Merging Module .. 94

3.4.4. Knowledge Execution Module ... 96

3.4.5. Functional Description of our Knowledge Morphing Framework 97

3.5. Knowledge Morphing Framework Application .. 99

CHAPTER 4: CPG DOMAIN KNOWLEDGE ONTOLOGY (CPG-DKO) 103

4.1. Introduction ... 103

4.2. CPG Domain Knowledge Ontology Engineering ... 104

4.3. Common Workflow Patterns in CPG Representation Languages 109

4.4. OWL-DL Implementation of the CPG Domain Knowledge Ontology 121

4.5. Conclusion ... 128

CHAPTER 5: EXPRESSION ONTOLOGY .. 129

5.1. Introduction ... 129

5.2. Expression Ontology Engineering ... 130

5.3. Expression Ontology in OWL-DL .. 133

5.3.1. Variables ... 134

5.3.2. Functions, Inputs and Outputs .. 135

5.3.3. Operators ... 137

5.3.4. Expression Ontology Instantiation Examples ... 138

5.4. Execution Semantics of Expression Ontology in SWRL 139

5.5. Conclusion ... 143

CHAPTER 6: OWL-BASED KNOWLEDGE EXECUTION ENGINE 145

vi

6.1. Introduction ... 145

6.2. OWL-Based Execution of Clinical Practice Guidelines 150

6.2.1. OWL-DL based CPG Execution Engine .. 151

6.2.2. OWL 2 based CPG Execution Engine .. 162

6.2.3. SWRL based CPG Execution Engine ... 166

6.3. Conclusion .. 169

CHAPTER 7: KNOWLEDGE MAPPING ONTOLOGY (KMO) 172

7.1. Introduction ... 172

7.2. Ontology Mapping Process ... 174

7.3. Knowledge Mapping Ontology (KMO) ... 176

7.3.1. Mappings and Relations .. 176

7.3.2. Variables ... 181

7.3.3. Functions and Operators ... 185

7.3.4. Meta Data .. 188

7.3.5. Relations between Mappings .. 189

7.4. Translation of Mappings to OWL and SWRL .. 190

7.4.1. Translation of None-Output Variables ... 192

7.4.2. Translation of Boolean Output Variables ... 203

7.4.3. Handling Conditions ... 204

7.4.4. Translation of Instance of the Mapping Class .. 206

7.5. Conclusion .. 212

CHAPTER 8: ONTOLOGY MERGING ... 216

8.1. Introduction ... 216

vii

8.2. CPG Merging Framework .. 218

8.3. CPG Knowledge morPhing Ontology (CPG-KPO) 220

8.3.1. Merging Constraints ... 222

8.3.2. Conflicts .. 230

8.3.3. Real World Examples ... 231

8.4. CPG Knowledge Morphing Execution Engine ... 242

8.4.1. Constraint State Transition ... 243

8.4.2. Effect of Constraint State Transitions on Tasks’ States 246

8.4.3. CPG Merging Execution Algorithm ... 247

8.5. Conclusion .. 248

CHAPTER 9: EVALUATION ... 251

9.1. Evaluation of CPG-DKO and the OWL-Based CPG Execution Engine 253

9.1.1. Evaluation by Comparison with the Features Identified in the Related

Literature ... 256

9.1.2. Monitoring the Execution of the Existing CPG .. 261

9.1.3. Evaluation by Comparison of Execution Results 276

9.1.4. Evaluation by Modeling and Executing New CPG 277

9.2. Evaluation of the Ontology Mapping Module .. 282

9.2.1. Evaluation of the Knowledge Mapping Ontology (KMO) 283

9.2.2. Evaluation of KMO and the Translation to OWL+SWRL Algorithm 291

9.3. Evaluation of the CPG Merging Framework .. 293

9.3.1. Evaluation of the CPG-KPO ... 293

9.3.2. Evaluation of the Merge Execution Engine .. 300

9.4. Ontology Metrics .. 313

viii

9.4.1. Ontology Metrics of CPG-DKO ... 315

9.4.2. Ontology Metrics of KMO ... 321

9.4.3. Ontology Metrics of CPG-KPO .. 324

9.4.4. Ontology Metrics of Expression Ontology ... 327

9.5. Conclusion .. 330

CHAPTER 10: CONCLUSION ... 333

10.1. Ontology Mapping: Challenges, Solution, and Contributions 334

10.2. Ontology Merging Challenges, Solution, and Contributions 336

10.3. Ontology Execution Challenges, Solution, and Contributions 337

10.4. Knowledge Morphing Framework Application: CPG Merging 340

10.4.2. CPG Merging Future Work .. 347

10.5. Knowledge Morphing Future Work ... 348

BIBLOGRAPHY ... 350

ix

List of Figures

Figure 1.1 OntoMorph Solution Approach ... 7

Figure 2.1 Task Ontology (Class hierarchy) in PROforma ... 18

Figure 2.2 Method Ontology (Class hierarchy) in GASTON ... 20

Figure 2.3 Method Ontology (Class hierarchy) in GLIF3 ... 25

Figure 2.4 Task state transitions in PROforma [138] .. 30

Figure 2.5 Components of the Execution-Time Scheduler in GASTON [134] 32

Figure 2.6 Task state transition in GLEE [140] ... 34

Figure 2.7 Conceptual Architecture of MAFRA [62] ... 50

Figure 2.8 Ontology Mapping Framework discussed in [63].. 51

Figure 2.9 CPG to SDA transformation process [26] ... 74

Figure 3.1 The systems architecture of OntoMorph .. 91

Figure 3.2 Tasks accomplished in the modules of OntoMorph... 98

Figure 4.1 Steps of the ontology development methodology proposed in [125] 105

Figure 4.2 (a) Class hierarchy of CPG-DKO .. 122

Figure 5.1 (a) Class hierarchy, (b) object properties and (c) data type properties of

the Expression Ontology .. 134

Figure 6.1 Schematic of our CPG modeling and execution approach. 147

Figure 6.2 State transitions in OWL-DL based execution engine 152

Figure 6.3 The transformation for handling condition satisfaction criteria in absence

of QCR for conditional tasks ... 157

Figure 6.4 An example CPG used for explaining the execution algorithm 158

Figure 6.5 Example CPG in step 1 of the execution algorithm 158

Figure 6.6 Example CPG in step 3 of the execution algorithm 159

x

Figure 6.7 Example CPG in step 4 of the execution algorithm 160

Figure 6.8 Example CPG in step 5 of the execution algorithm 160

Figure 6.9 Example CPG in step 5 of the execution algorithm 161

Figure 8.1 Class Hierarchy of CPG-KPO.. 222

Figure 8.2 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG

that participate in the merge [107] ... 233

Figure 8.3 The instantiation of the CPG-KPO and the parts of the TIA and DC CPG

that participate in the merge [25]. .. 234

Figure 8.4 The instantiation of the CPG-KPO and the parts of the osteoarthritis and

hypertension pathways that participate in the merge. 237

Figure 8.5 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG

that participate in the merge. .. 242

Figure 8.6 Constraints’ state transitions .. 243

Figure 9.1 A part of the CAP CPG workflow ... 255

Figure 9.2 Execution of “CHF pathway entry point #5 Initiation of treatment of

HF” [107] ... 265

Figure 9.3 Execution of “CHF Pathway Entry point # 2 Assessment of Initial Tests

Results” [107] CPG .. 269

Figure 9.4 Execution of “CHF entry point #4-Pre-treatment electrolyte assessment

and correction” CPG [107] .. 272

Figure 9.5 Execution of “Adjustment of Oral Furosemide Dosing for Changes in Dry

Weight” .. 276

Figure 9.6 The Osteoarthritis treatment algorithm .. 279

Figure 9.7 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG

that participate in the merge ... 302

Figure 9.8 The instantiation of the CPG-KPO and the parts of the TIA and DC CPG

that participate in the merge ... 305

xi

Figure 9.9 The instantiation of the CPG-KPO and the parts of the osteoarthritis and

hypertension pathways that participate in the merge. 308

Figure 9.10 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG

that participate in the merge. .. 311

xii

List of Tables

Table 1.1 Semantic Web ontologies and algorithm developed in this thesis 13

Table 2.1 EON modeling language execution algorithm [155] 33

Table 2.2 Constructs of the mapping language in [73] and their description 66

Table 2.3 Set of ontology manipulation operators presented in [73] and their

associated input entity types .. 66

Table 2.4 Constructs of the instance mapping ontology in [74] 68

Table 3.1 Knowledge Execution Algorithm .. 89

Table 3.2 The modules of our CPG Merging Framework, their purposes and their

counterpart modules in OntoMorph ... 101

Table 4.1 Workflow pattern categories discussed in [101] and their description 110

Table 4.2 Representable workflow patterns in Asbru, EON, GLIF, PROforma,

GASTON and CPG representation ontologies developed in NICHE

research group .. 118

Table 5.1 Common manipulation and comparison operators for Boolean, numerical

and string variables in CPG expression languages .. 132

Table 5.2 Datatype properties that are used to assign values to variable in the

Expression Ontology, their domains and ranges .. 135

Table 5.3 Properties used to assign the input and output variables and operator to

functions in the Expression Ontology .. 136

Table 5.4 Values assigned to SWRL variables during execution of a function with

addMO operator ... 141

Table 6.1 Capabilities of our CPG execution engines ... 170

Table 7.1 MappingRelation class, its subclasses and their instances 178

Table 7.2 Properties used to assign values to ClassVariable, InstanceVariable and

PropertyVariable instances along with domains and ranges. 184

xiii

Table 7.3 Instances of the SetOperator, PropertyOperator, ConvertOperator,

ClassComparatorOperator and CreateOperator classes, the functions

that makes use of these variable and their output types 188

Table 7.4 Properties used for Meta data modeling in KMO .. 189

Table 7.5 The pseudocode for translation of KMO instantiations to OWL + SWRL ... 191

Table 7.6 Correspondence table between instantiations of our mapping ontology

and OWL axioms ... 194

Table 7.7 Jena functions have been used to implement the convert operators 199

Table 8.1 CPG merging execution algorithm .. 247

Table 8.2 Aspects of CPG merging that can be captured by each of the merging

constraints .. 249

Table 9.1 Two examples of the patient scenario for the CAP CPG ontology 255

Table 9.2 Comparison of support for workflow patterns in Asbru, EON, GLIF,

PROforma, GASTON and CPG representation languages that are

developed by NICHE research group members and CPG-DKO 258

Table 9.3 Workflow score of CPG-DKO, Asbru, EON, GLIF and NICHE ontologies 261

Table 9.4 State transition of tasks during execution of the CPG in Figure 9.6 282

Table 9.5 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting class mapping patterns 284

Table 9.6 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting relation and attribute patterns 285

Table 9.7 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting instance mapping patterns 286

Table 9.8 Comparison of KMO with the existing ontology mapping representation

languages in terms of support for instance transformation and ontology

mapping operators .. 287

Table 9.9 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting conditions, constraints and various

condition satisfaction criteria ... 289

xiv

Table 9.10 Comparison of KMO with the existing ontology mapping representation

languages based on the supporting relations between the mappings 290

Table 9.11 Comparison of KMO with the existing ontology mapping representation

languages based on existence of tools, capturing meta-data, reasoning in

presence of inconsistencies, formal semantics, expression languages and

variables ... 291

Table 9.12 Criteria used for evaluating ease of use of CPG-KPO for CPG merging 295

Table 9.13 Criteria used for evaluation of clarity of CPG-KPO concepts to

participants ... 296

Table 9.14 Aspects of CPG merging evaluated for expressiveness by participants of

our survey ... 297

Table 9.15 Concepts of CPG-KPO evaluated for usefulness by participants of our

survey ... 298

Table 9.16 Table used to evaluate the overall satisfaction of participants with

CPG-KPO... 299

Table 9.17 State transition of tasks and constraints during execution of the merged

CPG in Figure 8.2 .. 303

Table 9.18 State transition of tasks and constraints during execution of the merged

CPG in Figure 8.3. ... 307

Table 9.19 State transition of tasks and constraints during execution of the merged

CPG in Figure 8.4. ... 310

Table 9.20 State transition of tasks and constraints during execution of the merged

CPG in Figure 8.5 .. 313

Table 9.21 Schema metrics and class richness metric of CPG-DKO, NCPGO 316

Table 9.22 Top ten classes in CPG-DKO based on class connectivity 319

Table 9.23 Top ten classes in CPG-DKO based on class importance 320

Table 9.24 Top ten classes in CPG-DKO based on relation richness 321

Table 9.25 Schema metrics and class richness metric of KMO 322

Table 9.26 Top ten classes in KMO based on class connectivity 322

xv

Table 9.27 Top ten classes in KMO based on class importance 323

Table 9.28 Top ten classes in KMO based on relation richness 324

Table 9.29 Schema metrics and class richness metric of CPG-KPO 324

Table 9.30 Top ten classes in CPG-KPO based on class connectivity 325

Table 9.31 Top ten classes in CPG-KPO based on class importance 326

Table 9.32 Top ten classes in CPG-KPO based on relation richness............................... 327

Table 9.33 Schema metrics and class richness metric of the Expression Ontology 328

Table 9.34 Top ten classes in EO based on class importance .. 329

Table 9.35 Classes with non-zero relation richness in Expression Ontology 329

xvi

Abstract

Semantic web based decision support systems represent domain knowledge using

ontologies that capture the domain concepts, their relationships and instances. Typically,

decision support systems use a single knowledge model—i.e. a single ontology—which at

times restricts the knowledge coverage to only select aspects of the domain knowledge. The

integration of multiple knowledge models—i.e. multiple ontologies—provides a holistic

knowledge model that encompasses multiple perspectives, orientations and instances. The

challenge is the execution-time merging of multiple ontologies whilst maintaining

knowledge consistency and procedural validity. Knowledge morphing aims at the

intelligent merging of multiple computerized knowledge artifacts—represented as distinct

ontological models—in order to create a holistic and networked knowledge model. In our

research, we have investigated and developed a knowledge morphing framework—termed

as OntoMorph—that supports ontology merging through: (1) Ontology Reconciliation

whereby we harmonize multiple ontologies in terms of their vocabularies, knowledge

coverage, and description granularities; (2) Ontology Merging where multiple reconciled

ontologies are merged into a single merged ontology. To achieve ontology merging, we

have formalized a set of semantically-defined merging criteria that determine ontology

merge points, and describe the associated process-specific and knowledge consistency

constraints that need to be satisfied to ensure consistent ontology merging; and (3)

Ontology Execution whereby we have developed logic-based execution engines for both

execution-time ontology merging and the execution of the merged ontology to infer

knowledge-based recommendations. We have utilized OWL reasoning services, for

efficient and decidable reasoning, to execute an OWL ontology. We have applied the

OntoMorph framework for clinical decision support, more specifically to achieve the

dynamic merging of multiple clinical practice guidelines in order to handle comorbid

situations where a patient may have multiple diseases and hence multiple clinical

guidelines are to be simultaneously operationalized. We have demonstrated the execution

time merging of ontologically-modelled clinical guidelines, such that the decision support

recommendations are derived from multiple, yet merged, clinical guidelines such that the

inferred recommendations are clinically consistent. The thesis contributes new methods for

ontology reconciliation, merging and execution, and presents a solution for execution-time

merging of multiple clinical guidelines.

xvii

List of Abbreviations and Symbols Used

𝓐 = Set of newly created ontology instances

𝓒 = Set of ontology concepts

𝓘 = Set of ontology instances

𝓛 = Set of ontology literals

𝓜𝒑 = Set of Meta properties

𝓜𝒄 = Set of Meta classes

𝓞 = An ontology

𝓡 = Set of ontology relations

𝓥 = Vocabulary of the ontology

𝕀 = Set of transformed ontology instances

𝔻 = Set of mappings between two ontologies discovered by a reasoning algorithm

𝕄 = Set of mappings between two ontologies

ℙ = Set of morphing constructs between two ontologies

ℝ = Set of inferred triples based on a reasoning algorithm

AF = Atrial Fibrillation

C-OWL= Contextualizing OWL

CDSS = Clinical Decision Support System

CHF = Chronic Heart Failure

CP = Clinical Pathway

CPG = Clinical Practice Guideline

DKO = Domain Knowledge Ontology

DSS = Decision Support System

DL = Description Logic

GLIF = Guideline Interchange Format

HL7 = Health Level 7

xviii

KMO = Knowledge Mapping Ontology

KPO = Knowledge Morphing Ontology

OWL = Web Ontology Language

RDF = Resource Description Format

SWRL = Semantic Web Rule Language

TIA = Transient Ischemic Attack

URI = Unique Resource Identifier

xix

Acknowledgements

I express my deepest gratitude to my supervisor, Dr. Raza Abidi, for his excellent guidance,

caring and patience. He provided me with an excellent atmosphere for research, patiently

corrected my writing, and technically supported my research.

 I would also like to thank my examining committee: Dr. Samina Abidi, Dr. Christian

Blouin and Dr. Michael Shepherd and my external examiner Dr. David Riano for their

interest in my research and their valuable feedback. I am especially thankful to Samina

Abidi for her constructive discussions and providing me with several useful test cases

without which I could not have evaluated my research.

I am also grateful to my parents, Dr. Mojtaba Jafarpour and Zahra Mazloomdoost as well as

my brother Seena Jafarpour; without their resolute patronage, I would not have reached this

standing. It was difficult to be 10,000 kilometers apart from my loved ones but they made

me feel close to their minds and hearts at all times.

1

CHAPTER 1: INTRODUCTION

1.1. Problem Description

Decision Support Systems (DSS) aim to facilitate decision making in many areas such as

medicine [1], business [95], management [96], etc. Computerized DSS can be categorized

as data-driven and knowledge-based DSS [5]. In knowledge-based DSS, the knowledge

artifacts are modeled in a computer understandable format and used for decision making.

Knowledge artifacts are explicit/published knowledge sources in a specific domain area.

Knowledge-based DSS use the computerized knowledge sources to develop a model using

logic-based knowledge representation languages, and then use logic-based knowledge

reasoners to derive recommendations based on the problems’ state. Examples of ontology

based DSS can be seen in many domain areas such as medicine [107][134], law [8],

network security [6], oil-and-gas production [7], electronic issue management systems [9].

Ontologies are among the most popular languages for computerized knowledge

representation [2]. Web Ontology Language (OWL) [142], has gained great popularity in

recent years as a knowledge representation formalism in knowledge-based DSS [3]

specially clinical DSS [4].

Knowledge artifacts used in decision support in every domain may come in different

formats and representation formalisms. For instance, Clinical Pathways (CP) and Clinical

Practice Guidelines (CPG) are two types of medical knowledge artifacts used for decision

making in health-care. These knowledge artifacts and the ontologies represent them in a

computer understandable format are different [37] in their (1) vocabularies, (2) coverage of

concepts; (3) description granularities—this happens when two ontologies try to cover the

same part of the domain knowledge with different levels of details and (4) points of view:

knowledge sources of the same domain may be described differently according to the point

of view of the user of the ontology. For instance, CPG developed for physicians and nurses

for the same disease are different. Thus, different knowledge artifacts complete each other

and collectively provide a holistic view of the domain knowledge [10][12].

2

In the same way that a domain expert takes into consideration several heterogeneous

knowledge sources for decision making, a DSS can benefit from using multiple

computerized knowledge sources; however, conventional knowledge-based DSS are able to

make their decisions based on only a single knowledge source and do not accommodate the

use of multiple knowledge sources [12]. Research in knowledge synthesis, referred as

knowledge morphing aims at integrating several heterogeneous knowledge sources and

creating a consistent holistic view of the domain knowledge. Knowledge Morphing is

defined as “The intelligent and autonomous fusion/integration of contextually,

conceptually and functionally related knowledge objects that may exist in different

representation modalities and formalisms, in order to establish a comprehensive,

multi-faceted and networked view of all knowledge pertaining to a domain-specific

problem” [97]. Therefore, we argue that the key element in providing decision making

based on several knowledge sources is to morph the knowledge encapsulated within

different knowledge artifacts, and use the morphed knowledge as the knowledge base in a

DSS. We call such a DSS environment as a Knowledge Morphing Framework. Developing

a knowledge morphing framework is challenging because challenges with regards to

integration of heterogeneous semantic web ontologies, formally capturing the procedural

aspects of the domain knowledge (i.e. execution semantics) and morphing ontologically

modelled knowledge artifacts to realize a unified knowledge object.

1.2. Research Objectives and Challenges

The objective of this thesis is to develop a semantic web based knowledge morphing

framework that allows the specialized merging of knowledge artifacts modeled as

ontologies—i.e. to achieve the merging of multiple ontologies along user-specified and

domain-specified merging constraints. From an applied perspective, the objective of this

thesis is to pursue the problem of merging multiple Clinical Practice Guidelines (CPG), in a

CDSS setting, to provide recommendations that conform to comorbid (i.e. the simultaneous

3

presence of multiple diseases within a patient) situations. Concerning the research

objectives, in this thesis we aim to pursue the following research challenges:

1.2.1. Knowledge Mapping

The knowledge pertaining to a problem-specific decision making activity is typically

encapsulated in different types of knowledge artifacts and across several knowledge

artifacts of the same type [12]. In a semantic web framework, knowledge is represented

using domain-specific ontologies, therefore for a given domain one may need to work with

knowledge that is represented across heterogeneous ontologies, where these ontologies may

differ in their domain interpretation, concept formalization, vocabularies and usage [37].

The diversity of the knowledge representation—i.e. the encapsulation of domain-specific

knowledge across different ontologies referred here as Local Knowledge Ontologies

(LKO)—makes it rather infeasible to effectively reason over multiple ontologies to derive

knowledge-driven decision support. Even if one pursues reasoning over a single LKO to

derive a recommendation/action based the knowledge encapsulated in that particular LKO,

there is still the need to intelligently synthesize the inferential results from these multiple

LKO-based reasoning exercises in order to derive a consistent and comprehensive

recommendation/solution that takes into account the available domain knowledge

represented in terms of multiple LKO.

In a semantic web framework, ontology reconciliation techniques are used to map

heterogeneous ontologies and transfer instances between them [13]. Literature reports on

two different approaches for ontology reconciliation leading to reasoning over several

heterogeneous LKO [13][37]: (1) Every two ontologies can be mapped to each other so that

a network of connected ontologies is created; (2) All LKO can be mapped to and have their

instances transformed to a unified knowledge object such as a more detailed ontology,

referred as a Domain Knowledge Ontology (DKO). Please refer to section 2.2 for more

details, advantages and disadvantages of each of approaches. In the latter approach,

inferring a recommendation/solution based on a more comprehensive DKO is regarded to

4

entail knowledge from multiple LKO. Therefore, the second approach seems a natural

choice for our knowledge morphing framework. Unifying the representation of ontologies,

with the intent to reason over them to infer recommendations/solutions, is not a

straightforward task as it raises the following challenges:

1. Insufficiency of the existing ontology mapping representation languages in representing

complex mappings between ontologies to facilitate automatic instance transformation

between multiple LKO to a common DKO.

2. The conceptual and representational sufficiency of the DKO should be (a) rich enough

to capture the available domain knowledge; and (b) detailed enough so that it is possible

to align every concepts in LKO to a concept in DKO

1.2.2. Ontology Merging

Ontology merging in an ontology-based DSS can be regarded as creating a holistic view of

the domain area by integrating several knowledge sources represented in different

heterogeneous LKO [14]. Although each individual LKO may encapsulate a specific aspect

of the domain knowledge, yet a LKO does not represent the merging constructs that may

potentially exist with other LKO. Merging constructs—also referred as merging

constraints—describe how the several LKO are semantically related to instantiations of

other LKO and how these relations should affect the results of reasoning on them when put

together as a single ontology. Existing ontology merging approaches can handle

representational differences between heterogeneous LKO but do not take into account the

semantic relations between instantiations of LKO that are not directly asserted in them or

cannot be inferred [13][14][37]. Therefore, traditional ontology merging approaches do not

facilitate knowledge morphing from a decision support perspective because even though a

LKO presents a specific decision it does not render any information about how the inferred

decision should be modified/interpreted in the presence of multiple LKO-driven decisions.

Note that the synthesis of multiple decisions is an important aspect of knowledge morphing

as one needs to reconcile the decisions from multiple LKO so that the eventual decision

5

does not lead to a conflict situation; and that the synthesis of decisions may only be

possible after the satisfaction of problem-specific metrics such as duration or cost. The

challenge therefore is to synthesise, through a process of decisional reconciliation,

decisions derived from inferring different LKO in terms of unified conflict-free decision.

We note the following challenges with regards to ontology merging for DSS:

1. To perform automatic decision reconciliation during decision making, the necessary

modifications are needed to be identified and represented in a computer interpretable

format so that a computer program can load, parse, verify and execute them. The choice

of the representation language and how the decision reconciliation process is encoded in

that language are two challenges to be addressed. The language constructs that

represent these modifications and describe the conditions under which the modification

should be performed are called morphing construct.

1. The representation language developed for knowledge morphing in a specific domain

area should be instantiated to represent the decision reconciliation process for a specific

set of input ontologies used in a computerized DSS. Due to subtlety of each domain and

each problem, we believe this step should be performed manually with the help of a

domain expert.

2. If a reasoner is utilized to infer when and how modifications are performed, semantics

of the morphing constructs should be represented in a formal language such as

Description Logic. The formal description of how the recommendations by different

knowledge sources, for the same input scenario, are reconciled in a reasoner to ensure a

mutually consistent recommendation is called formal semantics and it is a challenge to

define it.

1.2.3. Ontology Execution

Knowledge execution in an ontology-based DSS involves reasoning on the ontology (which

serves as the knowledge base) to infer decisions in line with the current problem

6

state [6][7][8][9][107][134]. In a semantic web framework, it is important to define the

formal semantics of the domain knowledge in terms of a formal knowledge representation

language such as Description Logic [50]. Formal semantics enables a reasoner to interpret

the knowledge encapsulated in the ontology and derive the most relevant result pertaining

to the current state of the domain variables [15]. It is a challenge to implement an ontology

execution engine based on execution semantics represented in OWL due to the following

limitations in OWL:

(1) Lack of an expression language to support data type expressivity needed for

knowledge execution

(2) Decidability and performance issues

(3) Non-unique naming and open world assumptions

These limitations need to be addressed to define the semantics of a domain knowledge

ontology in OWL. This task becomes more challenging in a knowledge morphing

framework. Not only the execution semantics of the knowledge sources contribute to the

decision made for the current state of the problem, but also the morphing semantics defined

during knowledge morphing step. A knowledge execution engine should be able to

dynamically find the effect of the defined morphing constructs on the reasoning process in

each of knowledge sources and to combine those results in order to come up with a single

decision to be shown to the user as the most appropriate decision to follow.

1.3. Solution Approach

In this thesis, we use semantic web technologies [16] to develop a knowledge morphing

framework in the decision support context. Semantic Web technologies are suitable to

address research challenges discussed in section 1.2 because they offer (a) a standard and

formal knowledge representation language called Web Ontology Language (OWL) that can

be used to capture the concepts and their underlying semantic relations in a domain of

7

interest; (b) efficient and decidable reasoning algorithms that produce sound and complete

results [17]. Our solution framework is realized through the following five general tasks as

shown in Figure 1.1.

Paper-based Knowledge ArtifactPaper-based Knowledge Artifact

Task#1: Ontological Representation

Task#2: Ontology Mapping

Task#3: Instance Transformation

 Task#4: Ontology Merging

Task#5: Ontology Execution

LKO1 LKO2

LKO to DKO Mappings

LKO1 and LKO2 in DKO

Decision Support

Figure 1.1 OntoMorph Solution Approach

8

 Task #1: Ontological representation of knowledge artifacts

Knowledge artifacts should be represented in a computer interpretable format in order to be

used in DSS for decision making. Due to existence of several ontologies to represent

knowledge in a domain of interest, we assume these knowledge sources might be

represented in different LKO. This task in our framework is done manually with the help of

a domain expert.

 Task #2: Mapping LKO to DKO

LKO are of different levels of details and coverage. In order to standardize the

representation of these LKO, we develop a comprehensive Domain Knowledge Ontology

(DKO) that all LKO can be mapped to and have their instantiations transformed to it. We

represent the mapping using an OWL-Full ontology called Knowledge Mapping Ontology

(KMO). We manually instantiate this ontology to represent mappings between two

ontologies.

 Task#3: Transformation of instantiations of LKO to DKO

We perform reasoning on the mapped ontologies and the mapping ontology in order to

discover new mappings that do not exist in the original mappings and transform instances

of the source and the target ontologies. In order to avoid undecidability during the

reasoning process of the ontology mapping, we translate instantiations of KMO from

OWL-Full to OWL-DL using a translation algorithm. Automatic instance transformation is

achieved by reasoning on the mappings and the mapped ontologies.

 Task#4: Merging transformed LKO in DKO

To help a domain expert to identify and formally represent the decision reconciliation

process, we developed an ontology called Knowledge morPhing Ontology (KPO). An

instantiation of this ontology represents the criteria that should be met during concurrent

execution of knowledge in several LKO. We call these criteria the morphing criteria. We

9

define the morphing criteria as constraints that should be respected during recommendation

generation in a DSS using several LKO in order to achieve decision reconciliation. We call

these constraints the Merging Constraints in the remainder of this thesis. Therefore,

morphing criteria and merging constraints are used interchangeably in the rest of the thesis.

This ontology is instantiated manually.

 Task#5: Ontology Execution

In order to provide decision support using ontologies, they need to be executed. Execution

is the computerized interpretation of the ontology knowledge in regards to the current state

of the decision making problem in order to provide the user of DSS with the most suitable

recommendation. We exploit OWL reasoning services to (1) provide decision support by

executing a single LKO and (2) perform decision reconciliation during concurrent

execution of several LKO according to their merging constraints.

1.4. OntoMorph Framework Application: Merging Clinical Practice Guidelines

Clinical Practice Guidelines (CPG) are evidence-based medical algorithms that assist

health-care professionals in diagnosis, management and follow-up of medical conditions.

Studies [18] show that following CPG by health-care professional are beneficial for patient

care by standardization of the diagnostic and treatment procedures, reducing the care costs

and increasing the quality and consistency of care. To improve the utilization of CPG in

point of care, there have been numerous efforts to computerize CPG in ontologies and

incorporate them within CDSS. PROforma [136][138], GLIF [133][140],

GASTON [134][135], Asbru [108], EON [137][155], SAGE [34] and COMET [107] are a

few to name. In these frameworks, the domain knowledge related the disease (i.e. medical

concepts) and the procedural aspects (i.e. medical actions) are captured in terms of

ontology elements.

CPG are designed to address only one medical condition in patients [107]. However, a

patient can have comorbidities—i.e. existence of several concurrent medical conditions.

10

Older patients are more likely to have more comorbidities. For instance, hypertension and

diabetes are two diseases that commonly co-exist in elderly patients. Comorbidities are

complex and expensive to be treated and comorbid patients are associated with worse

outcomes than patients with only one medical condition. From a CDSS perspective,

concurrently using several CPG as inputs for treatment of two or more comorbid diseases is

not a feasible solution as it leads to unnecessary duplication of tasks, visits and conflicts.

Rather, a solution to handle comorbid conditions in a CDSS is to systematically merge the

independent CPG of the comorbid conditions to generate a mutually consistent comorbid

CPG [107]. We call this task CPG Merging henceforth. However, it may be noted that CPG

do not give a detailed account of strategies and recommendations to handle comorbid

conditions. There are only a few CPG computerization frameworks that offer a number of

functionalities to handle comorbidities [24][26][30][99][107]. We use our knowledge

morphing framework to address the problem of CPG Merging to deliver clinical decision

support to comorbid patients. We call this domain-specific knowledge morphing

framework the CPG Merging Framework. Contrary to the existing CPG merging

frameworks that perform the merge before CPG execution, we decide on CPG merging on

the fly and generate more relevant recommendations pertaining to the patients’ status. The

role of each components of the OntoMorph framework in CPG merging is discussed in

section 3.5.

1.5. Research Contributions

In this thesis, we developed a knowledge morphing framework capable of dynamically

morphing the knowledge encapsulated in several heterogeneous ontologies. We have

contributed to the following areas of semantic web research:

a. Ontology Mapping

We developed an ontology that can be used as an ontology mapping representation

language. This ontology is instantiated to represent complex mappings between any two

11

OWL ontologies. Our ontology is superior to ontology mapping representation languages in

terms of capturing meta-data, providing an expression language and expressivity. To

improve expressivity, we have improved upon support for mapping patterns, mapping

operators, conditions, constraints, and relations between mappings.

Another novel aspect of our ontology mapping approach is the translation of the mappings

to OWL + SWRL in order to define formal semantics for the mappings. Formal semantics

enables us to utilize an OWL reasoner to perform further mapping discovery and instance

transformation between the mapped ontologies. This feature is missing in most of the

mapping representation languages or is not fully implemented.

b. Ontology merging

We have also contributed to the field of semantic-web based knowledge morphing

frameworks. We proposed to develop an ontology for expressing morphing constructs

between semantic web ontologies. Moreover, we define the formal semantics of these

morphing constructs to be used in tandem with the domain knowledge semantics in order to

perform dynamic execution time knowledge merging. We implemented these knowledge

morphing constructs and their semantics for a CPG Merging Framework.

c. Knowledge Execution

We have made two advancements in this research area. Our first contribution is in the area

of knowledge execution engines. The novel aspect of our knowledge execution engine is to

define the formal semantics in OWL + SWRL and to use OWL reasoning services to derive

the best decisions as opposed to conventional knowledge execution engines that hardcode

the semantics of the domain knowledge in a programming language. Our knowledge

execution engine is not tied to any programming language, OWL reasoner or API. This

independence has the following benefits:

1. Improvement of the shareability of the domain knowledge ontology.

12

2. Ease of switching to new semantics web technologies.

3. Ease of developing tailor-made knowledge execution engines as the execution

semantics is encoded in the domain ontology and does not need to be implemented

in a programming language.

We also developed a Knowledge Morphing Execution Engine capable of delivering

decision support using several relevant semantic web ontologies. The novel aspect of this

engine is to use the semantics of the morphing constructs to dynamically merge source

ontologies as opposed to existing knowledge morphing frameworks that perform the merge

before the execution at the modelling level [30]. As we discussed before, modelling level

merging is inferior to execution level merging for two reasons:

1. Every possible state of the problem should be evaluated for a possible morphing

scenario. However, a problem may have a large number of state that makes this

process tedious or even impossible.

2. To deal with the huge problem state, a number of frameworks [24][26][30][107]

make some assumptions about the problem state that might not be true during

knowledge execution.

Table 1.1 summarizes the semantic web ontologies and algorithms developed for our CPG

merging framework in this thesis.

13

Table 1.1 Semantic Web ontologies and algorithm developed in this thesis

Ontologies Algorithms

CPG Domain Ontology (CPG-DKO) Knowledge Morphing Execution Algorithm

Expression Ontology KMO to OWL + SWRL Algorithm

Knowledge Mapping Ontology (KMO)
CPG-DKO and CPG-KPO pre-processing

Algorithm

CPG Knowledge morPhing Ontology

(CPG-KPO)

1.6. Thesis Outline

This thesis is outlined as follows: Chapter 2 provides an overview of the existing

approaches for ontology reconciliation. This includes a review of the existing ontology

mapping representation languages, instance transformation approaches and the features that

a domain knowledge ontology should have in order to be considered as ‘comprehensive’

DKO. Since we are applying our framework to the problem of CPG merging, we also

review the CPG computerization frameworks and present the list of features that a

comprehensive CPG domain knowledge ontology should have. Moreover, we review the

decision reconciliation approaches proposed in the literature pertaining to CPG merging

research. In chapter 3 we thoroughly discuss the steps of our framework, the module that

we have developed to carry out those steps and their interactions. In chapter 4, we describe

the CPG-DKO and the workflow patterns that have been included in it in order to be used

as a ‘comprehensive’ CPG-DKO. Chapter 5 discusses an extension that we have made to

CPG-DKO in order to provide the CDSS with more coverage of the domain knowledge.

This ontology can be used towards representation and execution of the decision logic in

computerized CPG. We provide the full description of our OWL-based CPG execution

engine in chapter 6. Our ontology mapping framework is discussed in chapter 7. This

14

chapter is divided into two subsections describing the KMO and tis translation algorithm.

Chapter 8 explains our KPO and the Knowledge Morphing Execution engine. Evaluation

and conclusion are discussed in chapter 9 and 10 respectively.

15

CHAPTER 2: RELATED WORK

In this chapter, we review research pertaining to (a) ontology-driven Clinical Decision

Support Systems (CDSS) based on computerized Clinical Practice Guidelines (CPG), (b)

ontology mapping frameworks and existing ontology mapping representation languages;

and (c) merging of computerized CPG for handling comorbidities.

2.1. Ontology-based Clinical Decision Support Systems

A computer-based clinical decision support system is defined as the use of computer

software to assist the patients, physicians, nurses or any other healthcare professional

involved the care of a patient with the diagnosis and treatment of patients [1]. CDSS

usually have the following components: (1) A knowledge base containing specialized

medical knowledge, represented in a computer interpretable and operable representation,

describing the diagnostic and therapeutic processes; (2) A knowledge execution engine for

deriving relevant recommendation based on the available knowledge in line with the patient

data; and (3) several information interfaces to interact with the user, electronic health

records and hospital information systems.

CDSS are typically categorized as knowledge-based systems and data-driven systems [1].

Data driven CDSS mainly use soft computing techniques to ‘learn’ decision models from

available healthcare data, and use the learnt model to derive decisions. Typical model

learning methods include Genetic Algorithm [80][81], Particle Swarm

Optimization [84][85], and Neural Networks [82][83] and Bayesian networks [93]. The

source of medical knowledge in these systems is the data that is usually stored in databases

or electronic health records and are retrieved by the analyzing engine during execution.

Knowledge based CDSS use explicit/published knowledge to develop a knowledge model

using logic-based knowledge representation approaches, and then use logic-based

knowledge execution engines (also referred as reasoning engines) to derive pertinent

16

recommendations based on the patients’ information. Based on the knowledge base of the

CDSS they can be categorized as (1) Rule-Based Systems [86][87] and (2) Ontology based

systems. The knowledge base in rule based approaches is composed of classical condition-

action rules, such as If-Then-Else rules, which are used to infer new knowledge. The

knowledge base in ontology based approaches is an ontology which captures the domain

knowledge in terms of a semantic representation of concepts, relationships and axioms. A

logical reasoned is used as the knowledge execution engine, whereby patient information is

provided in terms of instances of concepts and relationships and the output is a set of

recommendations.

For knowledge-based CDSS, one of the prominent and validated sources of knowledge is

Clinical Practice Guidelines (CPG). To incorporate CPG in CDSS, several CPG modeling

frameworks have been developed for computerization and execution of CPG. The literature

reports on a number of solutions for computerizing CPG, such as PROforma [136][138],

GLIF [133][140], GASTON [134][135], Asbru [108], EON [137][155], SAGE [34] and

some OWL-based methods [106][143]0[144][145][168]. The goal for computerizing CPG

is to both model the CPG in a computer interpretable format and subsequently to execute

the computerized CPG in order to give evidence-based advice to the health care

professionals [88][89][90][91][145].

In this thesis, we review the PROforma [136][138], GLIF [133][140],

GASTON [134][135], Asbru [108], EON [137][155] CPG modelling frameworks along the

axis of CPG representation ontology and CPG execution engine. We chose these CPG

modelling frameworks for two reasons: (1) Their CPG representation languages are among

the most expressive CPG representation languages [88][89][90][91][145] and (2) They

cover both approaches of CPG execution engine (graph parsing and transformation). These

approaches are discussed in section 2.1.2.

Our rationale for this review is to identify the salient features of the CPG representation

languages, and the capabilities of existing CPG execution engines associated with these

17

CPG representation languages. In reviewing the CPG representation languages, our focus

mainly is to identify the workflow elements supported by these languages, since the goal of

this thesis is to include CPG related workflow elements in the CPG-DKO and within our

execution engines for both CPG execution and merging.

2.1.1. CPG Representation Languages

Ontology-based CDSS need a knowledge representation language to formally represent the

CPG knowledge which is used towards clinical decision making. Most of the CPG

representation languages have specialized constructs to (1) model the organization of plans

and nesting components, (2) model sequential, parallel and cyclical tasks, (3) model

decision models, and (4) provide the user with an expression/criterion language to specify

criteria and goals. We review the CPG representation language of the

PROforma [136][138], GLIF [133][140], GASTON [134][135], Asbru [108],

EON [137][155] along the axis of the abovementioned criteria.

2.1.1.1. PROforma

PROforma was developed at Imperial Cancer Research centre. The name is a combination

of the words proxy and formalize.

 Organization of Plans and Nesting Components in PROforma

CPG are modeled as a directed graph in which the nodes are instances of classes that model

guideline elements. roottask is the main class of this language. roottask class has the

following three important set of attributes: (1) Components: This attribute holds a set of

tasks that should be executed (e.g., Follow-up, Therapy, and Diagnosis); (2) Scheduling

constraints, Temporal constraints and Termination conditions attributes are used to define

the order in which the tasks are execute in the CPG, what temporal constraints exist

between them and the conditions under which a task is regarded as terminated respectively;

(3) Trigger condition: A task can be triggered according to a temporal event or evaluation

of a Boolean expression. If the trigger condition is satisfied and the goal of the task is not

18

present, the task will be considered for enactment. Sub-classes of this class are 1. Plan, 2.

Decision 3.Action and 4.Enquiry. All of them except for the Plan task are atomic and are

not further extensible. Figure 2.1 shows the class hierarchy of the PROforma.

Figure 2.1 Task Ontology (Class hierarchy) in PROforma

The Plan class represents a (sub) guideline in PROforma. PROforma incorporates a model

of decision making that can work under uncertainty [157]. The decision making logic is

modeled using the Decision class. Instances of the Action class are tasks that ask an

external agent to act upon for completion of the plan. (e.g. Administration of a drug).

Actions are atomic and not decomposable in PROforma. Enquiries represented by the

Enquiry class are used for requesting information from a source. This source can be a

nurse, an electronic medical record, etc.

 Sequential, Parallel and Cyclical Tasks in PROforma

PROforma does not support branching explicitly but it is achievable through scheduling

constraints [92]. PROforma provides a cycle description sub-language to define the

constraints under which the repetition should be continued. It can repeat a task for a defined

interval, until a specific state or a predefined number of iterations is reached or the

termination condition becomes true. Multiple entry points are possible by setting pre-

conditions for tasks of the PROforma.

 Decision Model in PROforma

Priority of options are defined by a set of schema that have rules, qualitative variables,

quantitative weights and certainty factor and support (+) and oppose (-) candidates

(options). For instance, “if (diagnosis = disease X) and (disease Y = absent) then (medicine

19

Z+)” is a rule that will be a schema by adding certainty factor and quantitative weights to

the available options. Some other rules can be associated with the same options.

Commitment to the available options depends on the overall balance of oppose and support

schemas.

 PROforma does not provide explicit mechanism for switch construct but it is possible to

have it using aforementioned schema. After an option wins the argumentation, the

precondition of that task must be satisfied to be executed. The goal of a decision can be

processed in the precondition of a task. When the argumentation is not needed, the decision

making can be based solely on the commitment mechanism which is not clearly discussed

in [136][138].

 Expression/Criterion Language to Specify Criteria and Goals in PROforma:

The expression language of PROforma that is defined in Backus Naur Form. This language

allows use of usual Boolean, arithmetic, and comparison operators, as well as functions that

evaluate the execution states of tasks (e.g. active, completed etc.) as well as the values of

data items.

The root task class has the attribute goal that represents the goal of a task. If the matching

term of the goal of a task is inserted into patient record before or during execution of that

task, enactment of the task will stop because the goal is already achieved.

The Precondition attribute is used to assign preconditions to medical actions. The value of

the Postcondition attribute of a task is considered to be true after its completion. It is

possible to write rules in the form of if-then-else to set post conditions.

2.1.1.2. GASTON

GASTON is a joint effort of the Department of medical Informatics of Maastricht

University and the Signal Processing Systems group of the Eindhoven University of

20

Technology. The goal of the project is to create a standard formalism to boost the

acceptance of computerized CPG and CDSS.

 Organization of Plans and Nesting Components in GASTON

This CPG representation formalism uses a frame-based model as an underlying mechanism.

Two ontologies are defined for modeling CPG in a slightly modified version of Open

Knowledge Base Connectivity (OKBC) as the underlying knowledge model in

protégé [134]: 1. Domain Ontology and 2. Method Ontology.

Domain ontology is the domain-specific knowledge represented in terms of medical

concepts, attributes and their relations. Method ontology is designed to capture the

workflow structure of the CPG. The important concepts used in the Method ontology are

Guideline, Primitives and Problem Solving Methods (PSM). Figure 2.2 shows the class

hierarchy of the method ontology.

Figure 2.2 Method Ontology (Class hierarchy) in GASTON

PSMs are decomposable CPG elements which contain an instance of Control_Structure

class that defines sub-components of the PSM. It can, for example, have references to a

branch primitive that expresses that two specific tasks should be enacted in parallel and a

synchronization point that waits for that two primitives (or PSMs) to meet. To use a PSM

for solving a problem two tasks should be done: 1.refining the PSMs by changing some

attributes of them, like messages that are going to be shown to the user or for example the

number of clusters for a PSM that does clustering of data. 2. Mapping PSM knowledge

roles to the domain ontology concepts. Three kind of knowledge roles are defined for PSM:

Input knowledge roles, Output knowledge roles and Intermediate knowledge roles. Output

21

and Input roles serve as inputs and outputs for other PSMs respectively and Intermediate

roles are used in the internal procedure of PSMs. PSMs are decomposable into sub-tasks

that can be executed by sub-methods. When a sub-method is no longer decomposable it is

called primitive-PSM. Separating the PSM from the domain knowledge increases the

usability of PSM

The Primitive class represents a single non-decomposable step in the CPG and contains the

following four attributes: (1) Procedure: contains execution time information; (2) Refiners:

specifies which attributes of PSM are used to further refine the primitives; (3) Mappings:

Contains mappings to parameters from other primitives, domain ontology concepts and

knowledge roles in a PSM and (4) Visualization: contains information about how to

visualize the primitive in the user interface. The Primitive class has the following four sub-

classes:

1. Action: specifies a clinical action. An action can be an instantaneous or persistent

over time. An Activity is an action which is persistent over time and have some

values assigned to Start_Activity and End_Acitivity attributes which refer to

instances of Time_annotation to specify the temporal constraint for that Action.

2. Decision: will be discussed in later sections.

3. Branching: directs the flow of the CPG into parallel branches of that should be

enacted in parallel.

4. Synchronization: the primitive in which the previously branched execution paths

meet.

5. A Guideline represents the CPG as a whole and can only contain primitives and

PSM. Similar to PSM, Guideline contains a control structure that defines constituent

elements of it. Eligibility criteria of a patient and the criteria for abortion of the

guideline are represented by Eligibility_Criteria and Abort_Criteria attributes

22

respectively. The values of these two attributes come from the class

K_of_N_Criteria which will be discussed in the next sub-section.

 Decision Model in GASTON

GASTON has two types of decision model primitives namely; K_of_N Primitives and

Boolean_Criteria. K_of_N Primitives has a Criteria attribute that refers to one or more

Criterion class instances and a K attribute. If K out of N criteria of this decision primitive is

true, then the whole logical statement is evaluated as true and the designated primitive is

enacted. K is defined via refiners attribute that exist in Primitive class. Boolean_Criteria

acts exactly the same as “if-then-else”.

 Expression/Criterion Language to Specify Criteria and Goals in GASTON

GASTON has a rule representation model developed separately from the method ontology.

Each guideline can contain several If-Then-Else rules. Two types of rules can be written in

GASTON guidelines: 1.Action Rule and 2. Intermediate rules. Action rules ask a health

professional to perform a medical task to continue with the course of treatment and the

intermediate rules changes the internal values of the CPG without leading to any immediate

actions. The conditions of the rules can be composed of instantiated conditions in the

domain ontology combined with Boolean operators (AND, OR and NOT). However, the

existing expression language does not support any type of mathematical, string and

numerical computations and comparison.

Goal attribute of each primitive or PSM is an instance of K_of_N_Critera that defines

whether the goal of the task or primitive is reached or not.

2.1.1.3. EON

EON that is developed in Stanford University is a methodology for building DSS based on

clinical workflows. The EON approach is accompanied with several tools that facilitate

acquisition and execution of CPG. It has an object oriented CPG model that is capable of

23

describing complex scheduling and temporal constraints between tasks to capture the

structure of CPG.

 Organization of Plans and Nesting Components in EON

EON’s architecture is composed of four components that work together for modeling CPG.

1.Domain Independent Problem Solving Methods (PSM) 2.Temporal Reasoning System

that can infer higher level abstractions form time stamped patient data. 3. A temporal query

system that can perform time-oriented queries on time stamped patient data and 4. A

domain ontology.

Domain independent problem solving method is very similar to PROforma’s and

GASTON’s problem solving methods. Problem solving methods are reusable domain

independent procedures that can be utilized for domain specific problems with appropriate

mappings between the concepts in the PSM and the domain knowledge. PSM that are not

further decomposable are called mechanisms in EON. It has 5 main constructs for modeling

the workflow of the CPG: 1.ClinicalAlgorithm 2.Scenario 3.Decision 4.Action and Activity

and 5.Goal that form the core elements of the CPG. In contrast to GLIF and PROforma

they can be further specialized.

An instance of the ClinicalAlgorithm class represents a CPG. Instances of this class may

contain scenarios, decisions, actions and sequential and temporal constraints. It is similar to

Plan in PROforma and PSM in GASTON. A Scenario shows the state of the patients that

are being treated with an eligibility criterion that specifies the necessary conditions for the

patient to be in that state. A scenario is always followed by a decision or an action. It can

also be an exception handler when the situation is out of control of the CPG and needs

human attention. The Decision class will be discussed in later sections.

Action instances are instantaneous acts that should be done in the care process like

enquiring information from the user or showing a message regarding an injection. They

24

may change the status of the other components too. An Activity is an action that is

persistent processes over time. Actions can start, stop and change the state of an Activity.

The authors of the EON have developed a PSM for Protocol-directed therapy which is

called Episodic Skeletal-Plan Refinement (ESPR) [137]. Episodic Skeletal-Plan

Refinement (ESPR) is an extremely general problem solving method that can be specialized

for different clinical problems. For instance, the ESPR can be “fleshed out” to be a therapy

planner that generates relevant recommendations based on the patients’ state and the related

therapy protocol. The following tasks can be achieved using ESPR problem solver:

1. Propose plan: determine the appropriate therapy plan for the patient according to

the patient status and the therapy protocol (Domain Knowledge).

2. Identify Problem: find the problem that may occur because of applying the

selected therapy in the previous subtask.

3. Revise Plan: modify the standard treatment that is suggested by Propose Plan sub-

task according to the Identify problem subtask’s suggestions.

 Decision Model in EON

Two types of decisions are provided in EON. The first one supports if-then-else and in the

second decision model each option has a rule-in and a rule-out associated to it. If the

option’s rule-in is true, then the option is selected and if the same thing happens to the rule-

out the option will be rejected. The latter decision method is similar to PROforma’s. In the

case that both of them are false, a default option is selected.

 Expression/Criterion Language to Specify Criteria and Goals in EON

EON uses Protégé 2000 constraint language (PAL) to define decision criteria in a sub-set of

first order predicate logic written in knowledge interchange format [155]. It is possible to

check presence or absence of data items, perform numeric comparison, and make Boolean

25

combination of statement in the expression language. Every step has a goal that can be true

or false indicating the achievement of the goal after the task is completed.

2.1.1.4. GLIF 3

GLIF is collaboratively developed at Columbia, Stanford and Harvard universities. The

goal is to develop a standard representation format for sharable computer interpretable

CPG. GLIF 3 is a revision of GLIF2 [33] which tries to alleviate the shortcomings of the

older version by adding flowchart constructs, improving the expression language and

handling iterations, etc.

 Organization of Plans and Nesting Components in GLIF 3

GLIF 3 can encode CPG in three different layers: (1) Conceptual Flowchart, (2)

Computation Level and (3) Implementation specification. GLIF3 uses an object-oriented

language that models concepts in the form of classes, attributes and relations. CPG in

GLIF3 are represented as flowcharts that have temporal or sequential transitions between

CPG steps. Figure 2.3 shows the class hierarchy in GLIF 3.

Figure 2.3 Method Ontology (Class hierarchy) in GLIF3

The first step in modeling a CPG is to create an instance of the Guideline class. This class

that represents a guideline or a sub-guideline contains attributes pertaining to intention of

the CPG, eligibility criteria, and exceptions that may interrupt normal flow of the CPG.

CPG recommendations are modeled by an instance of Algorithm class that is an attribute of

Guideline class and contains a collection of Guideline_Step. First_Step of the Algorithm

26

shows where the execution should start form. The flow between these CPG steps are

established via explicitly linking CPG steps with the next_step attribute of the Action_Step.

Action_Step is similar to all of the action steps in previously discussed models. It contains a

strength value that shows the necessity of the recommendations provided in that step as

well as attributes that can define the duration of the task, events that trigger or abort the task

and whether it has medical or programming purposes. Decision_Step is used to model the

decisions in the CPG. It is possible to add more tailored decision models to the provided

decision models in GLIF3. For this mean, the sub-classes of Decision_Step are further

specialized. Decision steps will be discussed in more detail in later sections.

Patient_State_Step has two purposes. The first purpose is to show the state of the patient

after each successful step of the CPG. The CPG can be imagined as a network of patient

states that are connected by CPG steps. Another purpose of this step is to serve as entry

points to the CPG. When a CPG is about to be executed, all the patient states are evaluated

to check the eligibility of the patient for that state. If the patient is eligible for one of the

states, the CPG can be executed from that point rather than from the starting point.

Branch_Step is used to define parallel paths in the CPG workflow. The continuation

attribute of the Synchronization_Step defines how the synchronization step should wait for

parallel branches that are going meet in that step. A synchronization step may wait for any

or all of the parallel paths to be finished in order to pass the execution flow to the next task.

Iteration is possible in Decision and Actions steps via Iteration_Specification attribute. It is

possible to define frequency, stopping criteria (normal) and abortion criteria (abnormal).

Decision, action and patient state steps have an instance of the class Triggering_Event that

defines the condition for triggering of that task. When the control flow reaches one of these

steps, the step will be considered for execution only if one of its triggering events occurs. If

more than one trigger is occurring, one of them is selected according to their priorities.

27

Different types of events can be defined, for example end of execution of the previous step,

availability of needed information can be a Triggering_Event.

It is possible to nest the CPG in action and decision steps. For example, a decision step can

consist of several sub-guidelines. Decision steps are nested using the decision_detail

attribute that can refer to a sub-guideline. With adding an instance of subguideline_action

to the task attribute of an action step, it is possible to refer to a sub-guideline for further

nesting

 Decision Model in GLIF 3

Each decision step has a set of Decision_Options. Each Decision_Option has a

Destination_Step that determines the next step that is going to be executed if the

corresponding option is selected. Two types of decision models are developed: rule-in-

choice and weighted-choice. In rule-in-choice rules are defined for and against each option.

There are four categories of such rules: 1.rule-in 2.strict-rule-in 3.rule-out 4.strict-rule-out.

In the weighted-choice model, each option has a number of weighted criteria. Weight of a

choice is equal to the sum of the weights of the associated criteria that are true. Choices are

ranked and selected according to these associated weights. The Boolean variable called

automatic_deicion defines whether the user should confirm the decision or it can be made

automatically.

 Expression/Criterion Language to Specify Criteria and Goals in GLIF 3

The object oriented expression language GELLO [92] which is a superset of Arden syntax

is proposed to specify decision and eligibility criteria in GLIF. There is a structured

grammar for specifying these expressions and criteria. The grammar can specify logical

criteria, numerical expressions, temporal expressions, and strings operations.

2.1.2. CPG Execution Engines

28

CPG execution engines developed in CPG modelling frameworks can be categorized in to

two main approaches:

In the first approach, the core of the CPG execution engine offers the functionality to parse

the computerized CPG to render it as a graph-based model for execution purposes, where

the graph represents the execution workflow of the CPG. GLIF’s [140] and EON’s [137]

execution engines are two examples of this execution approach. This approach is referred

as graph parsing approach.

The second approach, referred as the transformation approach, involves a CPG pre-

processing stage before execution where the computerized CPG is specifically transformed

to an intermediate (knowledge) representation that is amenable for execution purposes. The

intermediate knowledge representation formats are usually complex and not suitable for

CPG encoders, hence the need for transformation of the computerized CPG. For instance,

Petri-net is an intermediate representation formalism that is used by some researchers to

translate computerized CPG to because it offers a well-understood execution

semantics [145][156]. Another example is the Arezzo [157] (a PROforma engine)

execution engine which transforms the CPG encoded in the Red Representation Language

(R2L) [157] to RR2L(Logic of R2L) format that can be interpreted by a PROLOG-like

interpreter. This approach is regarded as the transformation approach.

There has been some attempts to use semantic web technologies for executing CPG

modeled in OWL, where SWRL rules are used to determine the execution

logic [143][149][150]. In these approaches, medical knowledge and execution semantics

(e.g. Tasks’ states) are represented through rules which makes the execution engine a CPG

specific execution engine that is not capable of executing any other CPG.

We review GLIF’s [140] and EON’s [137] execution engines as two examples of the graph

parsing execution approach and PROforma’s [157] and GASTON’s [121] execution

engines as two examples of the transformation execution approach.

29

 PROforma’s Execution Engine

Two main implementation of PROforma approach are ArezzoTM [157] a commercial tool

which is developed by InferMed Ltd. (London UK) and Tallis which is developed by

Cancer Research UK [138]. CPG are encoded in terms of instances of classes using the Red

Representation Language (R2L) [19]. This language is transformed to another language

which is called RR2L(Logic of R2L) and then a PROLOG-like engine is used to parse and

execute the CPG in an execution engine [157]. PROforma is one of the few reported

approaches in the literature that does a pre-processing on the original encoded CPG similar

to our method to prime them for execution. Both execution engines can be integrated with

the legacy systems using the provided APIs We describe Tallis in this section of the report

in more detail. The enactment engine is responsible for execution (enactment) of the CPG.

Each medical action goes through four states during execution: 1. dormant 2. in_progress

3. discarded and 4. completed. Figure 2.4 shows the possible transitions between these

states. All tasks are initially in the dormant state. Tasks that are in dormant state are not

ready for execution yet. in_progress state means that the task is in progress either by the

engine or the healthcare professional. A task is discarded if the it is not going to be

executed or it is interrupted in the middle of execution and completed means successful

execution of the task. There are transitions from completed and discarded state to other

states to be able to handle cycle during execution. A task will go from completed to

in_progress if the task is cyclic itself and it goes to dormant if the super-task is cycling.

Figure 2.4 shows the possible transitions between the abovementioned execution states.

30

completed

In_progress

dormant

discarded

Figure 2.4 Task state transitions in PROforma [138]

The CPG execution engine has four important internal variables.

1. Properties Table: A three column table containing properties’ values of all

components. Each row in the table is of the form (C,P,V) where C is the component,

P is the property and V is the value.

2. Change Table: A table which has the same form as Properties Table. This table

contains the new values for properties of components that are to be assigned as a

result of the operations that have been performed in the CPG. Having two different

rows with the same C and P but different V will result in setting an exception flag.

3. Exception Flag: it is set when something abnormal has happened during execution.

4. EngineTime: This is set by setEngineTime public function of the CPG execution

engine. It does not necessary corresponds to the real time.

The execution engine also has a number of public operations that an external system can

use to connect to it and guide the engine for proper execution. Here are some examples of

these public operations: 1.LoadGuideline 2.ConfrimTask: Informs the CPG execution

engine that a given task is executed 3.commitCandidate: commits to a particular candidate

or candidate of a decision etc.

 GASTON’s Execution Engine

31

To execute the CPG, execution engine loads the control structure of each the guidelines and

creates a workflow structure that is composed of primitives only. This structure along with

the information that is attached to each primitive regarding its execution is compiled into an

efficient form for execution. The execution time representation is optimized in order to

make execution as fast as possible.

Their execution engine is composed of an execution-time scheduler and four other

components that connect to it: (1) Procedure manager: This component traverses the CPG

and informs of the execution-time scheduler what tasks are going to be executed and in

what order; (2) Data Source Manager: This component makes use of existing

communication standards to connect to hospital information systems and electronic health

records; (3) Event Manager: this component enable the execution-time scheduler to act

upon triggers that may be generated by the user or by outside sources such as a hospital

information system; (4) Action Manager: This component is the interface for the user. It

shows the user the tasks that should be executed and their related information. User can use

this component to inform the scheduler of his decisions, outcomes of actions and states of

the medical actions.

All the components connect to the scheduler with the same standard interface. This makes

it effortless to expand the execution engine by creating new components and connect them

to the execution-time scheduler with the standard interface. Figure 2.5 shows the

architecture of the GASTON’s execution engine.

32

Figure 2.5 Components of the Execution-Time Scheduler in GASTON [134]

 EON’s Execution Engine

The algorithm for EON model execution engine is described in [155]. A task can have four

executional states namely; active, completed, aborted, suspended. Possible state transitions

are between the active and aborted states and between active and completed states. State

transitions to and from suspended state is not discussed in [155]. A task can get activated if

(a) All the preconditions are satisfied; (b) the predecessor of the task is active and (c) all the

interventions associated with predecessor of the node is completed or aborted. Revision

rules are instructions regarding how to change the attribute values and states of an

intervention. You can see the execution algorithm in Table 2.1.

33

Table 2.1 EON modeling language execution algorithm [155]

1. If the procedure has not been activated before, activate the start node. If the procedure

has been activated before, go to 2.

2. Evaluate the revision rules of all active nodes, if there are any.

3. For each node that is a successor of an activated node, check to see if the node can be

activated. If yes, then add the node to the list (L) of nodes to activate.

4. If L is empty, then exit.

5. Deactivate those nodes whose successors are in L.

6. Activate the nodes in L.

7. Go to 2.

 GLIF 3’s Execution Engine

GLIF3 Guideline Execution Engine (GLEE) [140] is the only tool developed for executing

CPG encoded in GLIF3. This CPG execution engine can be categorized under graph

parsing methods. The execution engine considers four different states for each task in the

CPG. These states are 1. prepared, 2. started, 3. finished and 4. stopped.

A task is in the prepared state when it is suggested to the user for execution by the engine.

started state means that the task is in progress. Tasks that are stopped by the user before or

during the execution will have the stopped state and finally, the finished state means normal

completion of a task. Figure 2.6 shows these states, the state transitions and the actors that

may cause these state transitions.

34

Figure 2.6 Task state transition in GLEE [140]

An interesting behavior that is not reported in any other CPG execution engines is the

ability to decide whether to go to sub-steps of a step for completion of it or skipping over

them if the goal of the step is already achieved. If the user decides to go through the steps,

the first step is activated for execution. During the execution of the sub-steps, the super-step

will remain in the started state and execution returns to the super-step after finishing all the

sub-steps. A tracing system is also provided in the CPG execution engine that can keep

track of the time of the activation, start, finish and discarding of the steps during execution.

2.1.3. Conclusion

Review of the CPG computerization frameworks informs us about common features of

CPG representation languages and CPG execution engines. Our review shoes that the

elements of the CPG representation languages serve two different purposes: 1. Modelling

of the medical knowledge encapsulated in the paper-based CPG and 2. Capturing the

workflow structure of the paper-based CPG and making the necessary mappings between

the workflow variables and their counterpart variables in the domain knowledge. Since

modelling the medical knowledge of CPG is out of scope of this thesis, we focused on

modelling of the workflow structure of CPG. We created a list of most commonly

representable workflow patterns within existing CPG representation languages:

35

1. Task ordering: It represents the order in which the tasks should be followed during the

treatment of a patient.

2. Task nesting: CPG may have different levels of nesting of tasks—i.e. a high-level

composite task may contain multiple levels of sub-tasks.

3. Conditions: Execution of tasks in a CPG may depend on satisfaction of a certain set of

conditions. Boolean conditions are the most common type of the representable

conditions in these languages.

4. Condition satisfaction criteria: The criterion for satisfaction of conditions of medical

tasks can be rather complex. This criterion expresses how many of the conditions of a

task should be satisfied before execution.

5. Loops: CPG representation languages should have the ability to express iterative

medical tasks—i.e. tasks that are to be repeated till a specified loop termination

condition are satisfied.

6. Decisions: Several decision mechanisms such as if-then-else, switch and argumentation

rules are present in the decision logic of CPG.

7. Branches: At any given point during patient care multiple clinical tasks may get

activated and executed simultaneously. A branch point is where the execution flow

diverges into these parallel tasks.

8. Synchronization: Clinical tasks executing in parallel may need to eventually merge at a

point to realize a singular execution flow. A synchronization point merges multiple

branches to streamline the execution flow.

9. Expression Language: During the course of execution of a CPG, several mathematical,

Boolean and string computations might be needed in order to interpret the execution

logic. A language describing these expressions is necessary.

36

We also reviewed the existing engines developed for execution of CPG representation

languages. Regardless of the approach that is followed for execution, they mostly share the

same capabilities in regard with CPG execution. Below we present our list of desired CPG

execution engine functionalities:

1. Functions for loading and storing the computerized CPG and modifying the patient

information.

2. Executing the workflow structure in line with the patients’ information. CPG execution

engines need to follow the stipulated order of the clinical tasks indicated in the CPG in

order to generate recommendations relevant to the current states of the patients. This

involves execution of all the devised workflow structures in the CPG representation

language. In order to execute a CPG a state transition system should be implemented.

This state transition mechanism is needed to (a) control the execution order of the tasks

as per the execution semantics, and (b) provide the current state of the tasks at any

given point in time.

3. Executing the expression language. Execution of the instances of the expression

language is pivotal for proper interpretation of the workflow of the CPG. This is the

ability of the execution CPG to understand and process: (a) Restrictions to a subset of

data type values, e.g. Numbers that are bigger than say 20, (b) Relationships between

values of datatype properties on different resources, e.g. Blood pressure measurements

that are greater than their previous one, (c) Mathematical, string and Boolean functions,

e.g. difference between two values or increasing a counter for loop handling.

4. Handling Conditions: A CPG execution engine should have the functionality to

evaluate the conditions of a task based on the available information.

5. An interface that allows users to interact with the execution engine, enter input values

and outcomes and follow the instructions.

37

6. Easy to use data interface methods that are needed to communicate with hospital

information systems/electronic medical records.

7. A mechanism to handle decisions automatically or with the help of the user during

execution.

2.2. Ontology Mapping

2.2.1. Introduction

Ontologies are expressive knowledge representation languages used in many areas of

science. They can create a semantically rich representation of the concepts within a specific

domain in a sharable and computer understandable format. The ability to share knowledge

while ensuring that the parties have the same understanding of the meaning of the shared

knowledge is called semantic interoperability [94]. Ontologies can increase semantic

interoperability among heterogeneous systems and semantic web applications if accepted as

the standard knowledge representation formalism between all parties. However, the

distributed and the open nature of the semantic web have led to slightly dissimilar

ontologies describing the overlapping or similar domains. This dissimilarity between

ontologies is also referred as heterogeneity. If heterogeneous ontologies are used by

different parties knowledge sharing and as a result semantic interoperability will not be

achieved. Four types of heterogeneities exist between ontologies describing the same

topic [37]: (a) Syntactic heterogeneity: when ontologies are described in different

representation languages (e.g. OWL [142] and F-Logic [35]). (b) Terminological

heterogeneity: same concepts described using different words (e.g. synonyms, etc.). (c)

Semiotic heterogeneity: this heterogeneity can be explained by the fact that ontologies are

interpreted and understood differently by different individuals. Even though ontologies are

used to increase interoperability and shareability, heterogeneity among ontologies

developed by different parties on the same subject stops them from interacting successfully.

(d) Semantic heterogeneity: this sort of heterogeneity is the differences in techniques and

approaches that used in modeling the same concepts. For instance, CPG representation

38

languages described in section 2.1.1 use different modelling techniques for capturing

encapsulated knowledge in paper-based CPG. Therefore, the same CPG will be represented

differently in various CPG representation ontologies. Three reasons are identified in [36]

for semantic heterogeneity:

(1) Difference in the coverage of the concepts: different ontologies about the same topic

may have different levels of coverage of the concepts within the domain knowledge.

For instance, a workflow ontology may be able to express 10 workflow patterns while

another workflow ontology can only support 5 of those patterns.

(2) Difference in granularity: This happens when two ontologies try to cover the same part

of the domain knowledge with different levels of detail. For instance, subclasses of a

class can be identified up to 2 or 3 levels.

(3) Difference in point of view: Ontologies of the same domain may be described

differently according to the point of view of the user of the ontology. For instance,

ontologies developed for physicians and nurses for the same disease are different. This

is different from coverage as ontologies with different overages are developed with the

same point of view and ideally should be exactly the same. On the contrary, the

ontologies with different points of views should not be the same and must be suitable

for their intended users.

We are interested in merging several existing computerized CPG and executing them

concurrently in a comorbidity CPG execution engine. However, these CPG may be

represented in different ontologies. Merging CPG in heterogeneous ontologies is difficult as

the similar concepts might be modeled differently. As a result, it might not be possible to

find the corresponding concepts in different ontologies in order to establish the necessary

merging alignments. Moreover, each of the CPG ontologies has their own dedicated CPG

execution engine and executing all of them is not possible in a single merging execution

engine. Therefore, semantic interoperability which is CPG merging in our case, can be

39

achieved by removing semantic heterogeneity and unifying the representation of all the

CPG that are going to be merged in a single representation format suitable for merging and

execution.

A solution to reduce semantic heterogeneity between ontologies is ontology matching.

There are three central concepts concerning ontology matching relevant to our work:

 Ontology matching is the process of finding similarities among different ontologies

that are going to be mapped. This process can be either performed manually or

automatically. Either way, the outcome can be a similarity matrix filled with similarity

measures from the [0,1] range. For instance, the output of an ontology matching process

can express that Human and Person classes from two different ontologies are similar.

Ontology matching results can be used towards finding the mappings among those

ontologies.

 Ontology mapping is the process of aligning elements from different ontologies either

directly or according to the ontology matching results. As an example, the result of

mapping two ontologies in OWL can express that Human and Person are equivalent

classes using owl:equivalentClass construct. The ontology mapping representation must

be rich enough to capture all the aspects of the mapping. It should also have clear

syntax.

 Instance Transformation: Mapping two ontologies enables us to perform instance

transformation. Instance transformation is the process of transforming instances of one

ontology in to the terms of another ontology based on the identified mappings.

Continuing from our previous example, instance transformation will cause all the

instance of the class Human in the source ontology to belong to the class Person in the

target ontology as well. By transforming instance of the source ontology to the target

ontology the semantic heterogeneity is removed and all the concepts are represented in

40

a unified ontology. Therefore, instance transformation can be used towards unification

of representation CPG modeled in different ontologies.

Ontology matching eliminates the semantic heterogeneity as it finds the differences

between ontologies and makes the necessary mappings needed for instance transformation.

Two approaches can be taken in order to reduce semantic heterogeneity among different

ontologies by ontology matching [1]:

(a)Mapping local ontologies to a pre-existing background ontology: in this approach, a

background ontology exists that every local ontology can be mapped to. It is easier to find

mapping between a local ontology and the global background ontology because it is

assumed that the global ontology provides a comprehensive, easy to understand and

standard vocabulary of the domain knowledge. No direct links exists between local

ontologies; however, those links can be inferred via reasoners. This approach is not suitable

for highly dynamic environment as updating the background ontology frequently in a

highly dynamic environment is not always a possibility. This approach can provide

applications with a unified knowledge model in order to access the knowledge of all local

ontologies. Since no direct mappings exist between the local ontologies they can contain

inconsistent pieces of knowledge. Since we are not dealing with a highly dynamic

environment, we believe that this is an appropriate solution for the problem of unifying the

CPG ontologies.

(b) Mapping local ontologies directly: in this methodology, direct mappings are established

among elements of local ontologies and no global ontology takes part in the process.

Dynamic and distributed systems can benefit from this mapping, as there is no need to keep

a background knowledge updated frequently. However, it is harder to find mappings

between these local ontologies because of lack of enough common vocabulary and enough

overlap in concepts. Another disadvantage is that incremental development of systems

using this approach will be complicated, as new mappings should be created between the

newly added ontology to the systems and every other existing ontology. On the contrary, in

41

approaches using a background ontology, only a new mapping between the newly added

ontology and the background ontology should be made. When interoperability is necessary

and no background knowledge exists or cannot be agreed upon, this mapping approach

should be followed.

2.2.2. Mapping Techniques

Ontology mapping techniques can be categorized under 4 classes [37] namely; (a) Name-

based, (b) Structure-based (c) Extensional and (d) Semantic-based approaches. These

methods are described in the next four sub-sections.

2.2.2.1. Name-Based Approaches

In this approach, names, comments and other forms of textual information are used for

finding links between the concepts. Our research does not concern this sub category of

ontology matching therefore we just review the general ideas in this area. Two sub-

categories exist based on this approach: (a) string and (b) linguistic-based approaches.

In string-based approaches, ontology mapping is performed based on the similarity of

strings that represent concepts in ontologies. All of the existing approaches follow these

two general steps (a) Find similarities among elements of the two ontologies based on their

names or comments, etc. and (b) use a threshold value to decide on the validity of the

created links. Similarity of names can be based on the distance of the two strings. Several

distance measures exist that can assist the ontology matching. Hamming distance, n-gram

distances, cosine similarity are few to name. Interested reader may refer to [38] for further

details on distance functions and their use in name matching.

Linguistic methods rely on Natural Language Processing (NLP) techniques. Natural

languages are hard to understand for computers because they are ambiguous, vague and are

created to describe anything. For instance, it is possible that the same concept can have

different forms with the same meaning. A word can undergo different morphological

processes that turn the word into another word with almost the same meaning but different

42

string. It is hard for string-based approaches to detect this correctly. Inflection, derivation

and compounding are amongst the possible morphological processes. In order to remove

the effect of these processes, a text undergoes different steps to be transformed into a

unified format. Some of these steps are (a) Stemming: This is the process in which stems of

the words are found e.g., “foxes” is mapped to “fox”, or the word “library” is mapped to the

stem “library”. It is highly possible that the words with the same stem are semantically

related. String matching algorithms now can be used conveniently; (b) Lemmatization: In

this step, a word is mapped to its base form considering the context in which the word

appears in the text. For instance, The word "merging" can be either the base form of a noun

or a form of a verb ("to merge") depending on the context, e.g., "in this approach of

merging" or "We are merging CPG". Unlike stemming, lemmatisation understands the

difference and selects the right base form as it appears in the dictionary; (c) Elimination:

certain categories of words are repeated frequently no matter what the texts is about and are

not of much value for most of language processing related tasks. Articles, prepositions,

conjunctions, etc. are few of such categories to name.

Sometimes the text itself is not enough and we have to resort to external sources of

information like dictionaries or thesauri. A thesaurus is a dictionary to which some

information regarding relations of the words are added. For instance, “fast” is an antonym

of “slow” and “raging” is a synonym of “angry”. Knowing synonym can greatly enhance

our success rate in finding matches that string based approaches fail. Homonyms (similar

words with different meanings) can also be useful in removing some of the non-relevant

mappings.

WordNet [39] is a thesaurus for English language and based on the concept of “synsets”

which is a set of synonym names. It also contains information regarding the super and sub

concepts and “part of” relation. It is one of the most widely used thesauri in NLP research

area. Several similarity measures have been proposed based on WordNet. For instance, a

distance between to concepts can be calculated based on the distance that they have from

each other based on super concept and sub concept relations. Five different proposed

43

measures are compared in [40] for the task of finding semantic similarity. Publication [48]

described a matching method which makes use of WordNet to find different meanings

(senses) that a word might have. Relevant senses are kept according to background

knowledge and used to drive relations between concepts between two hierarchies that are

matched.

2.2.2.2. Structure-Based Approaches

The structure of ontologies can contain a great amount of information that can be beneficial

to ontology matching algorithms. This source of information can be accessed from two

different perspectives: (a) Properties associated with concepts (Internal Structure) and (b)

their relationships with other concepts in the ontology (External Structure).

The methods relying on internal structure of the concepts use properties and their different

features such as their type (datatype or object properties), ranges, cardinality, restrictions,

transitivity, etc. to evaluate the similarity of two concepts. For instance, a datatype property

with the range “real” is more similar to a property with the range “integer” than a property

with the range of “string”. Some other similarity measures are developed based on the

range of the properties [42], their cardinalities [43]. It is also proposed in [41] that use of

constructs like “sets”, “bags”, “arrays”, etc. can be used for further similarity

measurements. This sort of matching usually creates inaccurate “m:n” matching clusters.

Even though the output of this approach is not accurate enough to be used in isolation it can

significantly reduce the match possibilities for other methods.

An algorithm to find similarities between entities of OWL-Lite ontologies is described

in [41]. This methods works purely on the internal structure of the OWL-lite ontologies and

no domain knowledge is needed to be incorporated in the process. However, there is no

proposed algorithm in the literature that takes into account the peculiarities of OWL 2 and

SWRL technologies. As an example, Qualified Cardinality Restrictions or user defined data

types are constructs that are not available in OWL 1 and can be used towards improvement

44

of internal structure based ontology mapping algorithms for OWL 2. SWRL rules can also

contain significant amount of knowledge that is currently totally neglected. It seems that

further research is needed in this area due to increasing popularity of these technologies.

External methods are based on the fact that the more similar two concepts, the more similar

their relationships with other concepts are. Therefore, another perspective is to evaluate

similarity of concepts with respect to the relationships that they have with other concepts of

the ontology. Two sorts of properties can be used for this mean:

1. Tree making properties (taxonomy making properties): These properties make a tree out

of the ontology graph. Absence of cycle makes calculating the similarity values an easy

job based on either top-down or bottom-up methods. One of the most important set of

properties that make a tree is the set of properties that create the backbone of the

ontology’s taxonomy (such as owl:subClassOf, owl:superClassOf, etc.). One of the

most obvious ways of comparing objects in any taxonomy (no matter if it is an ontology

or not) is to calculate the distance that they have in the taxonomy structure[44].

2. Cycle making properties: These properties make a graph in the ontology. The difficulty

with these sorts of properties is that if we consider that similarity of a concept depends

on the similarity of its neighbors (according to the selected property) we may end up

going around the loops infinitely in order to compute the similarity. One of the

approaches that deals with this problem is presented in [45] as a graph matching

algorithm.

Choosing properties other than the taxonomy making ones is highly dependent on the

domain. For instance, in the medical domain, hasSymptom property might be a very

important property for finding similarities between classes of diseases.

2.2.2.3. Instance-Based Approaches

45

On the contrary to the other approaches discussed so far, this one needs the ontologies to be

instantiated. This approach, works based on the shared instances. The more instances two

ontology classes share, the more overlap these two concepts have. The first step is to

identify the shared instances. Name based approaches are the most natural way of finding

these correspondences between instances. The next step is to compare similarity of the

concepts in ontologies based on their known shared instances. As an example, Jaccard

index between two sets can be used to measure the similarity of two concepts based on their

instances: 𝛿(𝑐1, 𝑐2) =
|𝑐1∪𝑐2− 𝑐1∩𝑐2|

|𝑐1∪𝑐2|
. Another way of leveraging existence of instances is to

perform statistical analysis on them. For instance, minimum, maximum, mean and variance

of values of data type properties can be computed utilized towards the measurements of the

similarity [37]. Publication [46] presents (a) an empirical comparison of different similarity

measures (Hamming Distance, Point wise Mutual Information, Information Gain or Log-

likelihood ratio) that can be used for evaluating the similarity of two concepts based on

their common instances and (b) how to tune thresholds to make decision on the overlap of

the concepts in different ontologies on order to deal with data sparseness problem.

This approach is not of interest to us as we are dealing with ontologies which do not have

many instantiations and those instantiations hardly share instances.

2.2.2.4. Semantic-Based Techniques

This approach is composed of two main sub-steps (a) anchoring and (b) deriving relations.

In the first step, other ontology mapping (name based methods for instance) are used to

create an initial set of mapping between ontologies. After creating anchors between

ontologies, they can be considered as one ontology and a reasoner can derive new relations

between the concepts in both ontologies based on the anchors and the existing relations in

the ontologies. Sometimes it is not possible to map two ontologies to each other directly

because of the semantic heterogeneity. Background ontologies can be used as an

Interlingua between two ontologies. Reasoning techniques that used to derive new relations

can be categorized under three classes: (1) Propositional logic and satisfiability, (2)

46

Description logic and (3) algorithm developed for specific mapping representations and

frameworks.

 Propositional Logic and Satisfiability

Prepositional logic [51] is a formal system in which elements of a language are defined as

propositions in terms of elements of a finite set of alphabets, operators, and initial points. A

set of transformation (inference) rules is used to derive new formulas. Three steps should

be taken to apply this logic to ontology mapping problem:

(1) An anchoring process will be performed based on existing matching techniques. The

result is formulated using the alphabets and operators of the propositional logic. For

instance, a name based matching technique may say that o1:Brain is equal to o2:brain and

o1:neoplasm is equal to o2:tumour. Translating these anchors to prepositional logic axioms

will result in: (𝑜1: 𝐵𝑟𝑎𝑖𝑛 ↔ 𝑜2: 𝑏𝑟𝑎𝑖𝑛) ∧ (𝑜1: 𝑛𝑒𝑜𝑝𝑙𝑎𝑠𝑚 ↔ 𝑜2: 𝑡𝑢𝑚𝑜𝑟).

(2) A matching formula is built for each possible pair of classes in which elements of the

pair are from different ontologies. Suppose that class c1 is intersection of o1:Brain and

o1:neoplasm and c2 is the intersection of o2:brain and o2:tumour. To discover to correct

relation of c1 and c2 all the possible relations between c1 and c2 should be considered and

formulated.

(3) These matching formula are used as inputs to prepositional SATisfiability solver that

evaluates the validity of the formula. BerkMin [52] and GRASP [53] are two examples of

SAT solvers. A new relation between two classes is valid if and only if the negation is

unsatisfiable.

To find the correct relation between classes an exhaustive search over all classes and

relations is necessary and this makes it a computationally expensive algorithm. The other

disadvantage of this approach is the lack of expressivity in prepositional logic.

CTXMATCH mapping framework that is explained in [48] uses SAT solvers to find the

47

correct mapping between ontologies. Publications [47][49] are some other examples of this

approach.

 Description Logic

Description Logic (DL)[50] is a family of knowledge representation languages which are

more expressive than the propositional knowledge. In this approach, first, an anchoring step

is performed and an initial set of mappings are created. After creating the initial mappings,

ontologies can be considered as a single ontology and a reasoner can perform reasoning for

further mapping discovery. For instance, suppose that OWL ontology 1 expresses: All

Vehicles have at least 2 Wheels and OWL ontology 2 expresses: all Cars have exactly 4

Tires. If we map the two ontology by saying that “O1:Wheel owl:equivalentClass O2:Tire”

then the reasoner will infer that “o2:Car owl:subClassOfO1:Vehicle”.

There are two disadvantages to this approach: (1) It can be computationally expensive

because merging all ontologies to one can result in a huge ontology that is very time

consuming for the reasoner to perform reasoning on; (2) It is not possible to perform

reasoning if ontologies contain inconsistent knowledge.

To overcome these problems in OWL which is the most popular ontology language, an

extension of OWL which is called Contextualized OWL (C-OWL) is proposed in [58]. In

this approach, instead of sharing the knowledge of all of the merged ontologies, their

contents are contextualized. In other words, ontologies can keep their content local and

have mappings with other ontologies with the explicit constructs (semantic bridges) that are

devised in C-OWL. Five types of semantic bridges are defined: 1. Subsumption, 2.

Equivalence, 3. Containment, 4. Disjunction and 5. Intersection. Using this language,

ontologies can contain inconsistent pieces of knowledge because ontologies do not have to

share them with others during the reasoning process. Being computationally expensive is

not an issue either because the reasoning engine performs on a small fraction of all of the

ontologies to derive new intra-ontology relations.

48

The second disadvantage (impossibility of reasoning because of inconsistency) can be an

advantage for domains that we merely want to check the correctness of the mappings. In

these domains, it is assumed that the ontologies do not contain any inconsistent knowledge

and any issues with inconsistency have occurred because of the incorrect mappings.

Incorrect mapping will be detected and changed with the help of a DL reasoner. A method

that uses description logic to encode mapping for integration of spatio-temporal database

schema is described in [54]. A DL reasoner is used to debug mappings using inconsistency

detection. Another example is discussed in [55]. Authors of this paper present an algorithm

for finding inconsistencies in mappings using Distributed Description Logic.

Another approach which pursues application of DL reasoning is explained in [57]. This

paper contains a theoretical work which shows how description logic can be used for

reasoning about the mapping themselves to check their attributes. These attributes are

containment, minimality, consistency and embedding. Another approach that leverages DL

reasoning services is the OIS framework [56].

Authors of [59] introduce a new language which is called WordNet Description Logic

(WDL). In this approach, meaning of each element is extracted from the domain knowledge

(WordNet) and represented by DL. A word may have multiple senses (meanings) in

WordNet. They suggest removing some of the senses from the meaning of the words by a

process called semantic elicitation. With the help of the structure of the ontology irrelevant

senses of the words are removed. They use a DL reasoner to find the semantic relation of

two elements from two different ontologies based on the meaning of those elements

described in DL. Since WordNet works as the background knowledge (common

vocabulary), there is no need to create any direct mapping between the ontologies and it is

the DL reasoner that infers the relationships.

Even though DL has a high level of expressivity and many of the computational tasks can

be performed efficiently, it is still not enough because of lack of expressivity to capture

some simple and useful mappings. An example which shows DL falls short is the following

49

mapping [60]: If an article has a book_title and the article is included in a book, that book

has the same book_ title as the article. This issue emanates from lack of variables in DL.

 Other Approaches

There are other methodologies that use neither of the abovementioned reasoning formalism.

They have developed their own reasoning algorithms for their representation.

OntoMerge [61] methodology has a solution for the problem of ontology translation.

Ontology translation is the process of transformation of an ontology (The ontology itself

and its instances) to another ontology according the specified mappings. They encode the

mappings using First Order Logic in an XML based syntax. They have implemented an

inference engine (OntoEngine) which processes the mapping in either a demand driven

(backward chaining) or a data driven (forward chaining) manner. An interesting point

mentioned in the paper is that fully automatic ontology merging and instance

transformation is not possible yet due to the limitations of the existing mappers. The

existing automatic mappers cannot produce 100% accurate mapping and can only infer

simple mappings such as equivalentClass, subClassOf, etc. whereas far more complex

mappings may exist that can be only detected by a domain expert.

MAFRA [62] is an interactive and dynamic framework for ontology mapping and

transformation. It has five vertical activities that should be performed in order to achieve

the ontology transformation goal. These activities that can be seen in Figure 2.7 are: 1.Lift

and Normalization: in this step, a text pre-processing step is performed on the texts (names,

descriptions, etc.) in order to translate them to a unified format 2. Similarity: after

normalization of the text, a string similarity measure is used to find a confidence factor for

potential mappings. 3. Semantic Bridging: This step has 5 sub steps namely; a. class and b.

property mapping identification: Based on the similarities, an algorithm will figure out the

valid mappings. The most straightforward approach is to have a cut off value. c. inferencing

step which suggest the use of a reasoner to acquire the mappings that are implicitly stated in

50

the ontology, d. refinement step: an optional step in which the mappings are checked for

quality and e. transformation specification step: It specifies a transformation procedure to

the mappings. 4. Execution: execution is the process of transforming the source ontology to

the target ontology based on the specified mappings. Publication [62] contains some details

on how the execution engine should be implemented in regard with their mapping

representation language. 5. Post-processing: in this step, quality and consistency of the

transformed ontology will be checked.

Figure 2.7 Conceptual Architecture of MAFRA [62]

Vertical activities are the ones that should be performed in parallel with all of the sequential

steps. Evolution synchronizes the mappings with the changes in the source and the target

ontologies in dynamic environments. Domain knowledge & Constraints: making use of the

domain ontology can drastically improve the results in each of the sequential steps. For

instance, domain knowledge may become handy when the similarity measure is computed.

Cooperative Consensus Building is bringing the two parties practicing in the mapping to an

agreement regarding the correct mappings. A Graphical User Interface can facilitate all of

the above-mentioned steps.

51

Another ontology mapping framework is introduced in [63]. They believe that the

methodology introduced in MAFRA does not cover some necessary aspects of the ontology

mapping life cycle. For instance, they believe MAFRA does not support detection of

ontology mismatch. Another issue with MAFRA is the assumption that ontologies are used

to represent mappings while this is not the case in many mapping methodologies [64].

Their methodology is composed of three steps: 1.Mapping Discovery, 2.Mapping

Representation and 3.Mapping execution. These steps are shows in Figure 2.8 taken from

[97].

Figure 2.8 Ontology Mapping Framework discussed in [63]

Mapping discovery is finding mismatches and similarities. The next step is mapping

representation. They have classified different representation approaches into two classes of

1-to-1 mapping and ontology based mapping. In 1-to-1 mapping representation, two

concepts from the two ontologies are directly connected to each other without adding any

semantics to the link. They mention that since this approach is a good solution for direct

translation of instances, it can be easily used for ontologies that share the same level of

details and have enough overlap. Different levels of abstraction or the need for complex

mappings can be a big challenge for this approach. On the other hand, ontology based

representations are capable of expressing very complex mappings and are useful for other

52

purposes. The last step is Mapping Execution that is categorized under the Ontology

Translation and Ontology Merging tasks. Similar to MAFRA, they suggest the use of

domain knowledge and management of changes in source and target ontologies in two

umbrella activities.

Two other papers that develop their own inference algorithm are discussed in [65][109].

They both use very similar approaches to solve the mapping problem. They try to find a

CPG-DKO (selected either manually or automatically) and use it as an Interlingua between

the two mapped ontologies. Both of the approaches use very basic string comparisons to

make very simple mapping (equivalence, subsumption, etc.) between ontologies and the

background ontology. They also introduce their own basic reasoning algorithms to infer

new relations between elements of the mapped CPG.

Anchor-Prompt [66] is another approach which performs reasoning on the ontologies and

their mappings. This algorithm takes two ontologies and the mappings as the input and

finds the pair-wise similarity measure between all elements of the ontologies. This

algorithm treats classes in the ontology as nodes and properties as links. After anchoring,

all of the existing paths between anchor points in one ontology are traversed and compared

with the paths in the other ontology. For instance, suppose that a is mapped to b and c is

mapped to d (a and c from ontology 1 and b and d from ontology 2). Every existing path

between a and c in ontology 1 and every existing path between b and d in ontology 2 are

traversed. If node e from ontology 1 and f from ontology 2 have the same position in the

paths traversed in their ontologies (e.g. being the second node in the path for instance) their

similarity is increased in a similarity matrix. This approach does not fully exploit the

expressivity of ontologies and can only infer extremely simple mappings.

2.2.3. Conclusion

In this section, we reviewed four approaches of ontology mapping discovery: 1. Name

based, 2. Structure based, 3. Instance based and 4. Semantic based approaches. Semantic-

based approaches have two steps (a) anchoring and (b) reasoning relations. Anchoring is

53

done with the help of another mapping technique and the reasoning step is performed via a

reasoner. Description logic, propositional and proprietary reasoning formalisms have been

used for the reasoning step.

We believe that propositional logic is not a good option for reasoning due to its lack of

expressivity for representation of the complex mappings. Moreover, using proprietary

algorithms has following limitations: (1) a reasoning engine should be developed from

scratch; (2) since these engines can only perform reasoning on the mappings and not the

ontology representation languages (e.g. OWL) they cannot exploit the internal structure of

the mapped ontologies to draw new mappings

Review of the semantic based mapping literature showed that DL has been widely used for

debugging and deriving simple mappings (equivalence, etc.) but no attempt has been made

to derive more complex mappings. We believe that lack of an expressive mapping

representation language in DL is putting this limit on the capabilities of the semantic based

merging techniques.

2.3. Representation of Mappings

Most of the research in the area of ontology mapping has been focused on discovery of

mappings using different sources of knowledge that can come from external resources

(domain knowledge or thesauri) or the internal structure of the ontologies. The output of the

existing mapping discovery algorithms are usually in the following form of (𝑒1, 𝑒2, 𝑅, 𝑐).

𝑒1and 𝑒2 are the elements that are mapped from ontology 1 and ontology 2 respectively and

R is the relationship that they have (e.g. equivalence) and c is the level of the confidence

that is usually between 0 and 1. However, automatic mapping discovery algorithms are not

capable of finding complex m-n mappings that may contain structural modification and

mathematical operators. These mappings can only be detected by a domain expert familiar

with ontologies. In order to perform automatic instance transformation and ontology

merging these mappings identified by the domain expert should be modelled in a computer

54

understandable format. Since the mappings can be quite complex, an expressive mapping

representation language is needed. In this section, we first review the identified

requirements of these representation languages in section 2.3.1 and then review some of the

existing languages in section 2.3.2.

2.3.1. Requirements for Mapping Representation Languages

We reviewed the publications that identify requirements of the mapping representation

languages [67][68][69][70][71][72][73][74]. These publications present overlapping sets of

required features using different vocabularies. Below we present the list 8 general features

identified in these papers in a unified wording:

1. Clear syntax

Clear syntax is important for both human and computer understanding. It makes it possible

to create, store, parse, modify and share the instantiations of these languages using

computer programs. This features has been identified in all of the reviewed

literature [67][68][69][70] [71][72][73][74].

2. Formal Semantics

Semantics of the mappings should be formally represented in a computer interpretable

format. Defining semantics enables us to perform reasoning on the mappings and the

mapped ontologies. Formal semantics for reasoning on the mapped ontologies are

necessary for the reasoning step of the semantic-based ontology mapping approaches

discussed in section 2.2.2.4. With no formal semantics defined for the ontology mapping

representation language, automatic instance transformation and ontology merging is not

possible. This feature has been mentioned in [67][74]. Moreover, reasoning on the

mappings can help us find several relations between the mappings such as equivalence and

entailment. Finding these relations can help us to optimize the mappings. For instance,

there is no need to have two equivalent mappings and one of them can simply be discarded.

55

Query re-writing is another identified feature in [70] that is closely related to formal

semantics. Imagine ontology A is mapped to ontology B and there is an application that

makes use of the knowledge encoded in ontology B by querying it. If we are interested in

using the contents of the ontology A in the application at hand, the queries written for

ontology B should be re-written in terms of the ontology A based on the existing mappings

and then the results should be translated back to ontology B. This is called query re-writing.

To the best of our knowledge, no research related to ontology query re-writing exists.

However, we believe transforming instances of the ontology A to ontology B can solve the

problem of query re-writing and translating the knowledge back to the ontology B. As we

discussed earlier, formal semantics is needed for instance transformation. Therefore, query

re-writing can be regarded as a sub-feature of the formal semantics.

3. Expressivity

Expressivity is the capability of the mapping representation language in representation of

complex mappings. The more expressive the mapping language, the more detailed and

accurate the mappings are. All the reviewed publications [67][68][69][70][71][72][73][74]

discuss the necessity of expressivity of the mapping representation languages and introduce

a number of its sub-features:

a. Accommodation of incompleteness

Incompleteness in mapping refers to the case when the target ontology does not contain the

piece of knowledge that corresponds to the entity from the source ontology or the mapping

is too complex to be encoded and an incomplete mapping suffices. Other than [67] no other

publication mentions this as an expressivity need.

b. Expressing functions to manipulate numbers, structures, string, dates, etc.

 It is often the case that mathematical, string and date calculations on the data values of the

source ontologies should be performed in order to accurately express the mappings. For

instance, the values of the height and weight of a person in the source ontology may be

56

mapped to the value of the BMI (Body Mass Index) in the target ontology. As another

example, weight of a person may be in pounds in the source ontology whereas it is in

kilograms in the target ontology. String, date and numerical computational needs of

ontology mapping are mentioned in [69][70][72].

c. Expressing m-to-n mappings:

Any mapping more complex than 1-to-1 mapping including class-to-property and property-

to-class mapping can be categorized as m-to-n mapping [69][70]. Therefore, this feature is

simply being able to express mappings more complex than 1-to-1 mappings.

d. Capturing recurrent mapping patterns

Even though each mapping problem has its own peculiarities, the same mapping patterns

are repeated frequently in many of them. In order to speed up the process of mapping by

using the existing templates for the mappings and reuse the existing mappings, these

patterns should be captured and modeled in the mapping representation language [70]. This

makes the mapping process more manageable and modularized. They are similar to

functions in programming languages. Instead of writing the mappings multiple times, you

write them once and use them multiple times. An instance of one of these mapping patterns

is Property-to-Class mapping pattern. In this mapping pattern, two instances connected to

each other using a property are mapped to an instance of a class. This property will be

replaced by an instances of a class that connects those two instances using two other

properties. For instance, mapping of hasiWife property to class Marriage will cause the

triple “:john :hasWife :jane” to be mapped to the following triples in an OWL ontology.

:janeAndJohnMarriage a :Marriage;

 :hasMalePartner :john;

 :hasFemalePartner :jane;

A comprehensive library of the mapping patterns has been listed and discussed in [165].

57

e. Expressing conditional mappings

The importance of conditional mappings in terms of the type and values of the attributes

associated to classes is pointed out in [73]. A mapping should only be used for ontology

merging and instance transformation if its conditions are satisfied. A mapping

representation language should be able to model a wide range of conditions and conditional

mappings. Conditions of a mapping might be based on the (1) values of properties, (2)

Number of different values that properties have. For example, in order to map the class

Person from the source ontology to the class Adult in the target ontology, the condition is

that the value of the property hasAge in the source ontology should be greater than 18.

f. Variable:

A mapping representation language should support variables. Variables are useful for three

purposes: (1) They can be used to address a subset of the ontology rather than a specific

elements of the ontology [69]. For instance, variables can represent all the instance of the

class Person with at least two values for the property ownsCar. This variable represents

people that own at least two cars. This feature helps with the representation of the m-to-n

mappings mentioned previously; (2) Variables are needed for value transformations during

the mapping [70]. For instance, imagine a mapping scenario in which the value of BMI is

computed using the supported math functions in the source ontology and it is supposed to

be assigned as the value of the property hasBMI in the target ontology. If the BMI was a

value of a property in the source ontology, let us say hasBodyMassIndex we could just

simply create a equivalence relation between the properties hasBMI and

hasBodyMassIndex. However, since BMI is not the value of a property it should be

transferred as a variable to the target ontology and be assigned as the value of the property

hasBMI. (3) Creating rich semantics among the transformed entities: using variables makes

the transformed elements in the target ontology available for creating relations between

them using target ontology properties [74].

g. Expressing relations between the mappings

58

Mappings can have several relations with each other. The identified relations in literature

are Specialization, Abstraction, Composition and Alternatives. Composition has been

identified in [62][68] and the rest of them are identified only in [62]. Specialization relation

express that a mapping is a specialized form of another mapping. For instance, we can first

define a general mapping that maps two super classes and then define specialized mappings

that take care of the subclasses of these two more general classes. Abstraction is similar to

specialization with the difference that the more general mapping does not participate in the

mapping an act as an abstract mapping that other mappings can specialize. Composition

relation shows that a mapping is actually composed of several other mappings. For

instance, if m12 is mapping class C1 to class C2 and m23 is mapping class C2 to class C3,

m13 that is a mapping between classes C1 and C3 is actually the composition of the

mappings m12 and m23. Alternative relation shows that several mappings are mutual

exclusive alternatives and only one of them should be considered for mapping if its

conditions are satisfied. For instance, mappings m1 and m2 that map the instances of the

class Person in the source ontology to the disjoint classes of MalePerson and

FemalePerson classes in the target ontology are alternative mappings.

h. Expressing the necessary structural transformation

Besides the data values in an ontology, structure of the ontology is sometimes needed to be

modified during the mapping [69]. The following sub-features are reported in the literature

as the possible structural modification operations:

i. Counting:

By counting we mean counting the number of values of a property in an ontology and

assigning this number to value of an object property in the source ontology [70]. As an

example, imagine two ontologies about the research faculty of a department. In the first

ontology, the property hasPublication indicates the publications of a researcher while in the

second one there is a property called numberOfPublications that only holds the number of

publications. In order to transform an instance from the source ontology to the target

59

ontology, the number of values of the property hasPublication should be counted and

assigned as the value of the property numberOfPublications.

ii. Treating classes as instances and vice versa:

Because of different modeling techniques that are taken and different views of the world

that people have, it is possible to see a similar concept modeled as a class or as an instance

in two different ontologies. For instance, airplane may be class in the source ontology while

it is an instance of the class TransportationMedium in the target ontology. Therefore, the

mapping representation language should be able to map classes to instance and vice

versa [70].

iii. Creating classes, properties, instances:

During the instance transformation or ontology merging, new classes, properties or instance

may be created to alleviate the problem of lack of overlap or to cope with the different

approaches in design. A mapping expression language should facilitate creating these

necessary ontology elements [71] .For instance, in the property-to-class transformation

discussed earlier, an instance of a specific class should be created in the target ontology in

order to deal with different modelling approaches.

4. Language independence

Mapping representation languages should ideally be able to map any two ontologies

regardless of their representation languages [68][74]. This requirement is almost impossible

to be achieved since each language has its own peculiarities and no mapping representation

language can cope with all of those differences. Even if in an ideal world such a language

existed, there was no reasoner that could perform reasoning on multiple representation

languages in a semantic-based ontology mapping approach at the same time. This feature

has been called “handling heterogeneity” in [67] which is a reference to syntactic

heterogeneity.

60

5. Have existing applications that support loading, saving, manipulation of and reasoning

on the mappings

A mapping representation language needs applications for loading, manipulation,

visualization and storage of the mappings [69]. Availability of these applications means

less implementations and easier integration with the existing systems. Therefore,

availability of these applications can greatly improve the acceptance of a mapping

representation language among researchers, developers and users. This feature has been

called “being web ready” in [68].

6. Capture the meta-data that can help reusing the mappings

It is suggested that a mapping representation language should capture the meta-data related

to the mappings. Authors’ information, the mapping algorithm and parameters used in the

algorithm and versioning information [69][70] are among the meta-data that are identified

useful to be captured. Capturing meta-data (1) improves the shareability of the mappings

and (2) facilitates the maintenance of the mappings.

7. Be multipurpose

Mapping representation languages should be able to map two ontologies regardless of the

domain knowledge they cover [68][70]. Therefore, the mapping representation language

should be as general as possible.

8. Be able to map OWL ontologies

OWL that is a sub-set of the Description Logic has gained great popularity in recent years

as an ontology representation language. This popularity has led to development of a huge

number of working ontologies in this language. Therefore, it is a great advantage for a

mapping representation language to be able to map these already developed OWL

ontologies [70]. However, it is not discussed what features a mapping representation

language should have in order to be able to map OWL ontologies.

61

2.3.2. Existing Representation Languages for Mappings

Six languages that are designed or can be used for ontology mapping representation

including OWL, C-OWL, SWRL, MAFRA are discussed in this section and their

advantages and disadvantages in the context of the mapping representation are described.

Our evaluations show that all these language are multipurpose and are not proprietary to

any special domain and can be used for mapping OWL ontologies. Therefore, we do not

discuss these aspects of the ontology mapping in these languages.

2.3.2.1. OWL

OWL is the W3C standard language for representation of the ontologies. It also contains

constructs that can be used to map ontologies. Some of the examples are the following

constructs that can be used for mapping of ontology classes and properties:

owl:subClassOf, owl:equivalenClass, owl:subPropertyOf and owl:equivalentProperty. For

instance, the following triples show a mapping between two ontologies about cars:

o1:SportCarowl:subClassOf o2:Car. Some shortcomings in regard with ontology mapping

have been noticed in several publications:

A disadvantage which is mentioned in [68] is the language dependency. They believe that

OWL is not language independent in the sense that in order to perform reasoning on the

mappings and benefit from the internal structure of the ontologies, ontologies should be in

OWL. This is true but none of the existing representation languages is capable of

performing reasoning on the mappings and taking into account the content of the ontologies

regardless of their representation format. Therefore, this is a disadvantage that is not

specific to OWL. Some other disadvantages in regard with ontology mapping are

mentioned in [70]:

a. Tight coupling between ontologies: If we import an ontology directly in another

ontology and then articulate the mappings, the definition of the entities in two

ontologies rely on each other and a tight coupling which is not desirable exists between

62

them. This makes it necessary to have access to both of the ontologies when we are

performing local reasoning on one of them. Dependency of ontologies is highly

undesirable in the semantic web and this is one of the most important reasons of

adoption the Open World Assumption in semantic web tools.

b. Lack of expressivity: Certain sorts of mappings are not expressible in OWL. For

instance, transforming a value from a property in an ontology to a property in another

ontology is not possible.

c. Epistemologically inadequacy: It is also mentioned in [70] that “We argue that the

mapping constructs provided by OWL are also epistemologically inadequate, mainly

because the OWL language was not conceived as a mapping language, but as an

ontology modeling language.” They believe that the DL constructs available in OWL

are more useful for describing merged ontologies rather than the mappings between

them.

Two other issues are mentioned in [58]: (1) to perform reasoning on the ontologies and

mappings in OWL they should be considered as a single ontology. This ontology may

become computationally expensive to perform reasoning on. (2) Ontologies may contain

inconsistent pieces of knowledge. Reasoning on these ontologies is not possible in semantic

web.

Advantages of this language in the context of the ontology mapping representation are 1.

Clear syntax, 2. Formal semantics, and 3. Existence of applications and API for loading,

saving, manipulation of and reasoning on the mappings

2.3.2.2. C-OWL

As we mentioned in previous section, reasoning on the ontologies that are mapped using

OWL constructs can be expensive in terms of computation or even impossible due to

inconsistencies in the mapped ontologies. To overcome these problems, an extension of

63

OWL which is called Contextualized OWL (C-OWL) is proposed in [58]. This version of

OWL enables the ontology designers to design contextualized ontologies. Contextualized

ontologies can keep their content local and establish mappings with other ontologies using

the constructs (semantic bridges) that are devised in C-OWL for this mean. Having

inconsistent knowledge is not a problem as there is no need to perform reasoning on a

global interpretation of the ontologies for mapping and only the pieces of knowledge that

are shared with other ontologies will be used for reasoning. This solves the problem of

being computationally expensive as well. Five types of semantic bridges are defined: 1.

Subsumption, 2. Equivalence, 3.Containement, 4. Disjunction and 5. Intersection. Syntax

and semantics of this ontology representation language is formally defined in[58].

The advantages that this mapping representation language has are 1. Clear syntax, 2.

Formal semantics and 3. The ability to represent mappings between OWL ontologies.

The biggest disadvantage that this language has is the simplicity of the constructs that are

defined for mapping representation. This language is hardly capable of expressing any

complex mappings. Moreover, no application supporting this language exists and no meta-

data support is provided.

2.3.2.3. SWRL

SWRL is a proposal for representation of rules in semantic web. SWRL allows writing

rules in terms of OWL constructs, classes, properties and instances in order to achieve a

higher level of expressivity and reasoning. The only publication that discusses the

possibility of using SWRL for ontology mapping is [75]. A useful feature of SWRL in

ontology mapping is its built-in functions that make it possible to execute aggregation,

mathematical and string functions etc. However, this language lacks the necessary

constructs needed for representing complex mappings. This language lacks the expressivity

to represent Boolean functions, conditions, structural transformation and meta-data.

64

Advantages of this language in the context of the ontology mapping representation are 1.

Clear syntax, 2. Formal semantics, 3. Existence of applications and API for loading, saving,

manipulation of and reasoning on the mappings and 4. The ability to define variables and

express date, mathematical and string computations.

2.3.2.4. MAFRA

MAFRA [62] (MAppingFRAmework) is a semantic bridging ontology. Two important

classes of the ontology are the SemanticBridge and Service. Semantic bridges indicate a

mapping between two elements of the ontology. A SemanticBridge is further specialized to

ConceptBridge, AttributeBridge and RelationBridge. The class service represents a class

that is used to reference resources that are responsible to connect to, or describe

transformations. This class is intended to be used to describe these transformations

resources. Transformations that are performed by services are not executed by the

transformation engine and they are external to it. Their inputs can be literals, classes,

properties or an array of them. Condition and Alternative classes can be used to define

conditional mappings and the different alternatives that exist for a decision. Conditions can

be combined using and, or, xor and not operators. For instance, an Individual from

ontology 1 can be mapped to either one of the Man or Woman classes of ontology 2 based

on the gender. Another example from [62] can be found below:

<Transformation rdf:ID="copyName">

<mapSourceArgument>

<MapArg><from

rdf:resource="#name"/><to>sourceString</to></MapArg>

</mapSourceArgument>

<mapTargetArgument>

<MapArg><from>targetString</from><to

rdf:resource="#name"/></MapArg>

</mapTargetArgument>

65

<inService>CopyString</inService>

</Transformation>

This mapping makes use of a service called "copyString". The other service explained in

the same paper is CountRelation service that is used for counting the number of different

values that an entity has for a specific property. To find out how expressive MAFRA is, we

downloaded MAFRA Toolkit from http://mafra-toolkit.sourceforge.net/. Most of the

operators available in the toolkit designed for string manipulation and no operators exist for

mathematical transformations. The only other service that is useful for structural

modification is the CountRelation that supports counting. Additionally, no formal

semantics or meta-data support is provided. This language does not support pre-defined

mapping patters.

The advantages of this mapping representation language are 1. Clear syntax, 2. Existence of

tools for loading, saving, manipulation of the mappings and 3. String manipulation

functions. Moreover, MAFRA is the only mapping representation language that can express

composition, specialization, abstraction relations between the mappings.

2.3.2.5. A Language to Specify Mappings between Ontologies

This language [73] contains constructs to express mappings between classes, relations and

attributes. Table 2.2 shows the predefined relations that can be established between entities

of ontologies.

http://mafra-toolkit.sourceforge.net/

66

Table 2.2 Constructs of the mapping language in [73] and their description

Language Construct Description

ClassMapping Mapping between two classes

AttributeMapping Mapping between two attributes

RelationMapping Mapping between two relations

ClassAttributeMapping Mapping between a class and an attribute

ClassRelationMapping Mapping between a class and a relation

ClassInstanceMapping Mapping between a class and an instance

IndividualMapping Mapping between two instances

Each type of the constructs in Table 2.3 has its own set of operators that can be combined

with entities of the same type. For instance, a PhD student is a subclass of both Researcher

and Student Classes. Table 2.3 shows the set of operators that can be applied to each type

of the constructs in the ontologies.

Table 2.3 Set of ontology manipulation operators presented in [73] and their associated

input entity types

Entity Operator

Class and, or, not, join

Attribute and, or, not, inverse, symmetric, reflexive, transitive, closure, join

Relation and, or, not, join

Another important aspect of the mapping which is covered in this paper is the support for

conditional mappings. Mappings can be conditional based on the existence of attributes,

their types and their values. A programming interface is developed to facilitate the use of

67

this language. As you can see in Table 2.2 this language provides a user with some

frequently used mapping patterns.

No mathematical or string manipulation functions are defined and formal semantics does

not exist for this language .

2.3.2.6. An Instance Mapping Ontology for the Semantic Web

Another language is introduced by Lei [74]. They discuss that many of the existing

representation mapping languages are expressive enough to be used for articulation of

complex mappings that create proper classes, instances and properties in the target

ontology. What is missing is the ability to create rich semantics between the created

entities. To fill this gap, they have boosted their representation language with constructs

that make it possible to use the transformed entities to the target ontology and incorporate

them in the mapping process. For instance, suppose that in an ontology mapping scenario in

which an instance of the class Publication (p1) and an instance of the class Researcher (r1)

are being created in the target ontology. This language makes it possible to create the

relation hasPublication between instances p1 and r1 in the target ontology. Table 2.4 shows

the language constructs.

68

Table 2.4 Constructs of the instance mapping ontology in [74]

Construct Description Slots

OntologyMappings
Grouping the mapping instructions

for generating semantic data entries.
has-instance-mapping

InstanceMapping
Describing how to generate instances

from the specified source data objects

has-source-dataset

has-target-dataset

has-source-class-name

has-target-class-name

has-instance-constraint

has-slot-value-mapping

has-correspondent-slot

InstanceConstraint
Describing constraints on the

instances of the specified source class

 has-constrained-source-

dataset

has-constrained-class-name

has-constrained-expression

SlotValueMapping

Expressing how to generate values

for the specified target slot from the

specified sources

has-target-slot

values-from-slot

values-from-existing-

instances

values-from

DataSet

Describing how to access databases,

knowledge bases, or XML

documents.

has-db-name

has-db-url

has-db-server

ConstraintExpression Expressing constraints

has-constrained-slot-name

has-constrained-operator

has-constrained-value

has-logic-operator

69

No formal syntax, meta-data modelling solution or supporting tools are provided for this

language. This language also does not support mathematical, date Boolean or string

computations. This language has clear syntax and supports many of the commonly used

mapping patters.

2.3.3. Conclusion

In this section, we reviewed the literature concerning requirements for an ontology

mapping representation language. Our review and existing review of these languages [69]

show that they suffer from lack of expressivity in several aspects. These languages mostly

support equivalence and subclass relations only, are not able to represent variables,

complex conditional mappings and mathematical functions. We also observed that even

though the intended semantics of these languages can be conveyed from their descriptions

and names, they do not have formal semantics that can be used for reasoning. Availability

of tools for loading, saving and manipulation of mapping representation languages is

another limitation of the reviewed mapping representation languages. OWL is the only

language that is widely agreed upon as a standard. Several tools are developed to load,

save, manipulate, visualize and reason over OWL ontologies.

Most of these existing representation languages are designed to be utilized by automatic

mapping discovery algorithms that are unable to find complex relationships between

elements of the ontologies. However, domain exerts are able to find intricate mappings that

cannot be represented by these languages. Developing an expressive mapping

representation language that is supported by existing tools and defining its formal semantics

to be used by reasoners can be two great steps forward in this research area.

2.4. Merging of Computerized Clinical Practice Guidelines

2.4.1. Introduction

As we discussed earlier, computerized CPG have been developed for patients with just one

disease and do not usually take into account the simultaneous presence of other medical

70

conditions—the clinical term for such conditions is comorbid conditions. To handle

comorbid conditions within a CDSS, it is not possible to simultaneously operate on

multiple CPG as one needs to be cognizant of the interactions between multiple CPG—the

recommendations from one CPG may counter the recommendations from another CPG

resulting in a situation that is harmful to the patient. Therefore, to handle comorbidities in a

CPG within an CDSS, one solution is to systematically synthesize/merge the computerized

CPG of the individual comorbid diseases in order to obtain a unified CPG which resolves

the potential interactions between multiple CPG and in turn offers recommendations that

are consistent with the comorbid conditions.

Merging CPG is best defined in [107] as “The challenge is to align multiple CPG of the

comorbid diseases whilst maintaining the integrity of medical knowledge and task

pragmatics, and ensuring patient safety”. In order to successfully merge several

computerized CPG, the Morphing constraints should be captured by interviewing the

domain expert. Merging constraints represent the knowledge morphing constructs in the

CPG merging framework that describe how the medical actions in each of the CPG should

be modified for comorbid patients in order to avoid conflicts and adverse interactions.

Domain expert will notify the user of possible conflicts, similarities and any other aspect

that should be considered during treatment of a patient using several CPG. This knowledge

will be used to guide the merging of multiple CPG.

There have not been many attempts to merge computerized CPG in order to develop a

CDSS for patients with comorbidities. Merging CPG in general can happen at four

levels [107]: (a) Guideline level (before computerization) (b) Modeling Level (during

computerization) (c) Pre-Execution Level (after computerization, before execution) and (d)

Execution Level (after computerization, during execution).

Merging computerized CPG can have several benefits. The following list shows benefits of

merging computerized CPG for comorbidities [20][21][22][24][25][26][29][30][107]:

71

1. Avoiding unnecessary duplication of tasks, visits and medical tests and reusing their

results.

2. Identifying potential adverse interactions that may arise because of simultaneous

application of several treatments on the patient and preventing from them since they may

compromise patient’s safety.

3. Standardization of care across multiple institutions for comorbid patients.

4. Timely and cost effective treatment of patients by reusing medical tests and tasks and

avoiding adverse interactions.

2.4.2. Guideline Level Merging

Textual CPG can be merged by physicians on the paper. Then the merged CPG can be

computerized like any other CPG. If merging happens at this level, the CPG

computerization methodology does not need to provide a tool for merging and many of

leading computerization methodologies can model and execute such merged CPG. There

might be a need for some extra level of expressivity for modeling these comorbidity CPG

as they can be more complex than the CPG for single diseases. No research exists about

this topic.

2.4.3. Computerization Level Merging

The next level of merge can happen in the computerization level. In this level, multiple

paper-based CPG are merged into a single computerized CPG. The result is a unified

computerized CPG that contains the knowledge of the all of the paper-based CPG.

Physicians and health informaticians can identify the common steps and inconsistencies

among several CPG, establish the necessary connection between them and model all CPG

in a unified computerized CPG. This makes it possible for the execution engine to take

advantage of this pre-execution merging and execute the unified CPG to generate a therapy

plan which is concordant to all of the CPG participating in the treatment of the patient.

72

The literature [20][21] describe a method for merging ontologically modeled CPG in OWL

language. The authors’ goal is not to merge computerized CPG of multiple diseases but to

merge location-specific CPG for a specific disease into one unified CPG that can be utilized

by all the locations. They indicate that the same CPG may have different tasks, treatments,

follow ups, clinicians, task intervals and frequencies at different institutions and provide the

necessary ontology elements to model the CPG and their location based merge. They

successfully merge three prostate cancer CPG from three locations into one unified CPG by

finding the common tasks. This unified CPG can be used in each of the three locations by

using branch nodes to deviate from the unified CPG and to go to institution specific tasks

and come back to the unified CPG by using synchronization points. We have not come

across any other publication that performs computerization level merge.

2.4.4. Pre-Execution Merging

The next level is to merge the CPG after they are computerized. These computerized CPG

are merged into a single computerized CPG. They can either be merged automatically or

manually. In the manual merge, physicians and health informaticians identify the potential

incompatibilities, adverse interactions and common tasks among the computerized CPG

and merge them into a unified computerized CPG manually. These methods are explained

in section 2.4.4.1. The other approach is to try to solve the problem using techniques from

computer science. Using these techniques can automate the merging process.

Section 2.4.4.2 describes these methods.

2.4.4.1. Manual Merging of Clinical Practice Guidelines

In this level of the merge, at least two CPG that are already computerized are merged into a

single CPG. This merge is done using special constructs devised in the CPG modeling

language for this purpose.

An example of this research is [107]. The researchers first computerize Chronic Heart

Failure (CHF) and Atrial Fibrillation (AF) CPG using the OWL language. These separately

73

computerized CPG are then merged into a unified model based on the domain experts’

opinion. The unified model is composed of three parts: (a) CHF tasks, (b) AF tasks and (c)

common tasks. The common tasks part represents the identical shared tasks between the

two CPG. A set of preconditions are set for the common tasks to make sure that they are

executed solely for the patients who have the comorbidity and their patient record indicates

the need. In a similar research [100], parts of guidelines are re-used and put together

manually in order to create a therapy plan for comorbid patients.

A conceptual framework for merging clinically modeled CPG is designed in [22]. It

suggests the use of SWRL to represent the similarity of elements from different CPG.

Capturing the commonalities of CPG using SWRL rule enables the execution engine to use

a SWRL engine for dynamic merge the common element in line with patient data. No

further details that can be used towards implementation of this framework are provided. It

is mentioned in [30] that utilizing representation formalisms that allow defining CPG

elements once and reusing and re-instantiating them multiple times (like OWL) can pave

the way for merging CPG at the pre-execution level but no further detail is provided.

2.4.4.2. Automatic Merging of Clinical Practice Guidelines

Computer programs can merge the computerized CPG automatically. To the best of our

knowledge, [26] describes the first proposed method for automatic merging of CPG. This

merge algorithm works with the SDA* representation language [27]. SDA* language is

based on three clinical elements: States, Actions and Decisions. A state describes the

patient’s status. For instance, it can show that patient is taking a specific medication or have

a specific medical condition. These states can be used as precondition of medical actions or

as entry points to the CPG. Actions are always followed by states and other elements can be

followed by any other type of elements. This is how the CPG are merged:

A. For each pair of the (State,Action) in the CPG, all of the paths between them are

enumerated and stored in the State-Decision-Action structure (SDA structure) by

74

considering different decisions that can be made and ignoring the actions in the path.

Therefore if two binary decisions exist between a state and an action, four paths will be

enumerated regardless of the number of actions in between. Each SDA structure shows

that action A should be performed if the decision D has been made in state A.

Figure 2.9 shows an example of the SA generation step. In this step the SD part of the

SDA structures are (A^B) and (A^~B) and the A part is Action1 and Action2

respectively.

Figure 2.9 CPG to SDA transformation process [26]. State primitives are shown as

circles, decision primitives as diamonds, and action primitives as squares.

B. After computing the SDA structure of the all of the CPG, they are combined into a

single SDA structure. Every SDA structure of the first CPG is combined with all of the

SDA structures of the second one. Combining of two SDA structures is equal to

computing the union of SD part of the SDA structures and union of the A part of the

structures. Having m and n SDA structures in CPG will result in m.n SDA structures in

the combination of the CPG.

C. Two sets of rules are applied to the combination of these two SDA sets. Restriction

Rules are used to remove the possibility of having contradicting State-Decision or State-

State pairs in a patient. For instance, a restriction rules may state that state Anorexy =

true and the decision isPatientObese = true are not consistent. Substitution Rules are

used to remove the possibility of having adverse effects because of undesired

interactions. For instance, it may state that if a patient has fever and is receiving two

75

specific medications, he should stop taking one of them and rest. These rules are

applied to the SDA structure repeatedly until no further change is possible.

D. Domain experts are asked to predict what would be the state after execution of A in

every SDA structure. Therefore, SDA structures are transformed to State-Decision-

Action-State (SDAS) structures. These structure are merged into a unified CPG based

on the similarity of beginning state and ending state of SDAS structures [28].

The CPG merging method described above suffers from several limitations: (a) The

outcome state of each SDA structure in each of the merged CG should be foreseen by

domain expert prior the merge [29];(b) It is not very straightforward and sometimes even

not possible to predict comorbid patients’ state for all of the SDA structures [29]; (c)

During a merge, CPG are broken down into SDA structures merged and put together to

form a single merged CPG with a possibly totally different order. This is highly undesirable

since these CPG are developed by a group of experienced domain experts based on the

evidence based literature of the related field and rearranging these CPG can be very

dangerous for the patients; (d) In this approach, CPG are not merged based on the similarity

of the tasks but based on the similarity of the outcomes and states. Therefore, it can’t merge

similar tasks into one task in order to save time and money in treatment of the patients; (e)

Temporal aspects are neglected. To alleviate the first two deficiencies, it is proposed to use

machine learning techniques to automatically extract the necessary information regarding

SDAS structures to relax knowledge dependencies of the algorithm from clinical data [29].

This makes situation grimmer as the role of the domain expert is removed from the process.

Another research that describes a method to solve the adverse interaction sub-problem of

merging comorbidities’ CPG is discussed in [25]. They propose a solution based on

constraint logic programming that performs modifications on CPG to remove the adverse

interactions and contradicting states according to the patient information. When it is not

possible to remove the threats to the patients’ wellbeing via a modification, appropriate

warnings are generated for the healthcare professionals. This method can only be used for

76

removing adverse interactions and cannot be used to avoid duplication of tasks, etc. The

key principle of their method is the use of mitigation operators. These operators indicate

what changes should be made to the first CPG in the case of occurrence of a specific

pattern in the first or second or both of CPG. For instance, a mitigation operator may

indicate that asprin should be replaced with clopidogrel in the first CPG when asprin is

prescribed in the absence of antiplatelet drugs (in any of the CPG). These mitigation

operators are iteratively applied and the corresponding tables containing enumerated paths

are modified accordingly and a solution that does not violate the constraints is sought. If a

solution is not found another mitigation operator is applied and a solution is sought again.

Two sets of constraints should be respected by a solution: (1) The set of constraints that

mitigation operators represent and (2) The set constraints that indicate that if there are

common tasks in the two CPG they must have the same binary value for their execution

variable. Same binary value for two CPG elements means that if they are tasks they must

either co-occur (not necessarily at the same time) or do not occur at all and if they are

decisions or enquiries they must have the same outcome in both of the CPG. They use

ECLiPSe [23] to solve this constraint satisfaction problem.

This method has the following limitations: (a) their workflow model is unrealistically

simple. The only workflow patterns that they support are binary decisions and simple

sequential tasks; (b) only 2 CPG can be merged using their algorithm; (c) temporal aspects

are not considered; (d) a solution generated by their algorithm is two execution paths (One

for each of the merged CPG) that respect all the constraints. Existence of such an execution

path for each of the CPG means that if we make specific decisions and task have specific

outcomes we are sure that CPG can be applied to the patient simultaneously without any

contradictions and constraint violations. This solution is only useful for that specific

scenario because the decisions that are going to made by the healthcare professional and the

outcome of tasks are almost impossible to be foreseen in advance. As a result, if the user

does not make those specific decisions or tasks do not have those specific outcomes

indicated in the solution adverse interactions or violation of constraints are possible to

77

happen. The same research is discussed in an earlier paper [24]. The different is the

introduction of mitigation operators in [25] to remove the inconsistencies in addition to

finding them. In a more recent publication [98], the ability to handle iterative tasks and

numerical measurements is added to this framework.

2.4.5. Execution-Time Merging

In this approach, a unified CPG is not created beforehand and it is the execution engine’s

responsibility to merge the CPG during the execution dynamically. Even though there are

publications [21][30][99][188] that propose methods for execution-time merging of CPG,

there is no implementation of them and to the best of our knowledge there is no other

computer system that are capable of performing execution time merging. These are the only

publications that introduce the idea of merging CPG at the execution level. Two scenarios

under which execution time merging (reusing tasks and their outcomes) is possible are

introduced in publications [21][30]: (a) There are common tasks among CPG and they

should be executed at the same time. If all the CPG reach that point at the same time, the

common task is executed once but all of the contributing CPG can proceed to the next step.

If a CPG is ahead of others in terms of execution of the common tasks, it should wait (if

possible) for the rest to catch up. It is necessary to know how long it takes for the behind

CPG to reach the common step and how long the CPG ahead is capable of waiting; (b)

common tasks may not need to happen at the same time but they can have results or effects

lasting long enough to be reused by other CPG. A mechanism should be devised in order to

ensure the validity of the result when the other CPG are using them.

Publication [99] proposes a multi-agent framework for dynamic CPG merging. In this

framework, each agent is responsible for generating a therapy plan for a patients based on a

disease-specific CPG while they share their associated CPG status with the rest of the

agents in order to avoid harmful interactions. Each agent creates a comorbidity therapy plan

and the best one is chosen among all the therapy plans to be followed. However, several

implementation details and research questions are left unanswered in this framework. The

78

GLINDA project’s [188] goal is also to develop a multi-agent system for comorbidity

decision making based on several clinical guidelines. They suggest using an ontology to

represent medical interactions such as drug-drug interactions between several CPG. No

actual implementation of the guideline interaction ontology or their multi-agent system

exists to the best of our knowledge.

We argue that execution level merging, although a challenging exercise is the most viable

way of merging two CPG based on the current state of the patient and the current state of a

CPG’s execution. In other words, merging is decided upon in response to the current state

of the CPG execution as opposed to pre-execution CPG merging with priori assumptions

about the outcomes of decisions, values of variables and CPG starting times.

2.4.6. Conclusion

Literature review shows that merging CPG can happen at four levels: (1) before

computerization (CPG level), (2) during computerization, (3) before execution and (4)

during execution. Lack of research in this area can be greatly felt. No research related to

merging CPG at the guideline level is reported in the literature. There exists only one

publication that tries to merge CPG during computerization [20]. The most studied topic is

merging CPG after computerization (Pre-execution) using CPG merging algorithms. These

algorithms still need many improvements as they can only reconcile conflicts but no

attempt has been made to reuse the tasks and their results. These methods suffer from other

deficiencies that stop them from practically being used in real clinical settings. Only one

proposal exists for merging CPG during the execution [21]. However, no implementation

exists for this conceptual framework. We have not come across any other CPG

computerization and execution framework that is able to perform execution time merging.

A general shortcoming of the existing CPG merging methodologies is the simplicity of

merging constraints. We believe that a much broader range of merging constraints should

be identified and incorporated in CPG merging methodologies. Additionally, in order to

utilize the new identified merging constraints in automatic CPG merging algorithms, they

79

should be represented in an expressive computer understandable format. None of the

existing approaches has such an expressive language due to simplicity of their merging

constraints.

80

CHAPTER 3: ONTOMORPH: A SEMANTIC WEB BASED

KNOWLEDGE MORPHING FRAMEWORK

3.1. Solution Approach

In this section, we propose a Semantic Web architecture in order to address research

challenges discussed in section 1.2 to develop a knowledge morphing framework.

Semantic web technologies provide us with (a) Web Ontology Language (OWL) that is

used for formalizing and organizing knowledge in a domain area; (b) improvement in

knowledge sharing between different parties and semantic operability between computer

systems that use ontologies by providing a standard representation; (c) a rule language

called Semantic Web Rule Language (SWRL). SWRL improves expressivity of OWL in

many aspects such as numeric, date, string and Boolean comparison and computation

functions and (d) Several open-source and publicly available software tools for

manipulation, loading and saving, visualization of ontologies and reasoning on them. These

features make OWL a suitable logical framework for knowledge morphing. Our Semantic

Web based Knowledge Morphing Framework called OntoMorph is realized through the

following main tasks (as shown in Figure 1.1):

 Task #1: Ontological representation of knowledge artifacts

 Task #2: Mapping ontologically modeled knowledge artifacts to the domain knowledge

ontology

 Task#3: Transformation of local ontologies (LKO) to the domain knowledge ontology

(DKO)

 Task#4: Merging instantiation of LKO transformed to instantiations in DKO

81

 Task#5: Knowledge Execution

We discuss the details of these steps in section 3.3 after we discuss the necessary

preliminaries in section 3.2. Modules that have been developed to perform these steps are

discussed in section 3.4.

3.2. Preliminaries

In order to discuss steps and modules of our solution we need to discuss some preliminaries

first. These preliminaries are OWL ontologies, reasoning process on OWL ontologies, and

ontology semantics.

3.2.1. OWL Ontologies

Definition 1 (OWL Ontologies) An OWL ontology 𝒪 defined on the vocabulary 𝒱 =

(𝒞, ℛ, ℐ, ℒ, ℳ𝑝, ℳ𝑐) is composed of a set of concepts 𝒞, a set of properties ℛ, a set of

instances ℐ and a set of literals ℒ, a set of meta properties ℳ𝑝 and a set of meta classes ℳ𝑐.

An OWL ontology can be represented as a set of triples of the form <s,p,o> ∈ 𝒪 ⊆

(𝒞 ∪ ℐ ∪ ℛ) × (𝒞 ∪ ℐ ∪ ℛ × ℳ𝑝) × (𝒞 ∪ ℐ ∪ ℛ ∪ ℒ × ℳ𝑐). s, p and o are called subject,

predicate and object in an OWL triple respectively. As an example, in the triple “:Patient

rdf:type owl:class” “Patient” is a member of 𝒞 , “rdf:type” is a member of ℳ𝑝 and

“owl:class” is a member of ℳ𝑐. As another example, in triple “:john :hasAge 22”, “john” is

a member of ℐ, “hasAge” is a member of ℛ and 22 is a member of ℒ.

Depending on the specie of OWL, the membership of s, o and p can be restricted to specific

sets or subsets of the vocabulary. For instance, in both OWL-lite and OWL-DL there exists

a strict separation of classes, properties, instances and literals.

Definition 2 (Ontology Instantiation) Instantiation of an ontology 𝒪 based on the

vocabulary 𝒱 = (𝒞, ℛ, ℐ, ℒ) is the process of creating a set of new instances 𝒜, assigning

them to classes in 𝒞 and creating relations between the new and the existing instances in the

82

ontology using properties in ℛ. Therefore, an instantiation of the ontology 𝒪 is a set of the

form {<s,p,o>} ⊆ 𝒪 ∪ (𝒜 × (ℛ ∪ ℳ𝑝) × (ℐ ∪ ℒ ∪ 𝒜)) ∪ ((ℐ ∪ 𝒜) × (ℛ ∪ ℳ𝑝) × 𝒜) ∪

(𝒜 ×{rdf:type}× 𝒞)

Please note that rdf:type ∈ ℳ𝑝. Instantiations can have labels in order to be distinguished

from other instantiations. The instantiation with the label “j” from ontology 𝒪 is

represented as 𝒪𝑗.

3.2.2. OWL Reasoning and Ontology Semantics

The following list shows a subset of tasks that OWL reasoners perform on an OWL

ontology [31]:

 Consistency checking: Checking the ontology for contradictory facts.

 Concept satisfiability: Checking the concepts for possibility of having any

instances. Defining an instance for an unsatisfiable class will results in

inconsistency.

 Classification: Computing all of the direct super and sub classes of classes and all

of the direct super and sub properties of properties in an OWL ontology.

 Realization: Finding all the classes that instances belong to. This step can only be

performed when the classification step is finished, as the complete class hierarchy is

needed for this task.

 Property fillers: Given a specific property p and a specific individual s, all the

values and individuals that are related to s via p are found.

OWL has model-theoretic semantics written for its abstract syntax [32]. Reasoners will

utilize the formal semantics of OWL language to perform the abovementioned reasoning

tasks on an ontology and its instantiations. This process results in addition of triples that do

83

not exist in the original ontology and its instantiation. Reasoning algorithm is represented

as the function ℝ . The new knowledge-base after reasoning on instantiation 𝒪𝑖 is

represented as ℝ(𝒪𝑖) ⊇ 𝒪𝑖. An OWL ontology formalizes the concepts and their relations

in a specific domain area. Semantics of an ontology formally defines the meaning of the

ontology in a computer understandable format so that a logical reasoner can utilize them to

derive new facts that did not already exist. Formal semantics should be defined in such a

way the reasoner derives the desired facts for each specific instantiation of the ontology.

From a decision support perspective, an ontology instantiation can represent a problem and

its state in a domain area and the new derived facts by the reasoner can represent the

decision corresponding to the current state of the problem. Since we are using our

ontologies for decision support, we discuss ontology semantics along this line of thinking.

We define semantics of our ontologies in terms of OWL constructs.

Definition 3 (Ontology Semantics) Semantics of an ontology is a set of OWL triples that

are used in a reasoner along with an instantiation of an ontology 𝒪𝑖 that represent the

current state of the domain problem in order to reason the solution. Therefore, semantics of

ontology 𝒪 represented by 𝑆𝒪 is a triple set of the form {<s,p,o>} ⊆ (𝒞 ∪ ℐ ∪ ℛ) ×

(𝒞 ∪ ℐ ∪ ℛ × ℳ𝑝) × (𝒞 ∪ ℐ ∪ ℛ ∪ ℒ × ℳ𝑐) such that ℝ(𝒪 ∪ 𝑆𝒪) - ℝ(𝒪) ontologically

represents the solution for that specific state of the problem. Formal semantics may be

dependent on or independent of the instantiation representing the problem in a specific

domain area. A more complex domain area needs generation of formal semantics for each

instantiation in order to achieve the desired results using OWL reasoners.

3.3. OntoMorph Knowledge Morphing Framework Solution Steps

In this section, we discuss the steps of our solution for morphing the knowledge

encapsulated in several heterogeneous ontologies.

 Task #1: Ontological representation of knowledge artifacts

84

In order to use knowledge artifacts relevant to a specific problem in a computer-based DSS,

the knowledge encapsulated in several knowledge artifacts need to be modeled in a

computer understandable format. We propose to use OWL based ontologies to capture the

domain concepts inherent within the knowledge artifacts and their relations in terms of

OWL classes, instances and properties. We call this ontology as the Domain Knowledge

Ontology (DKO). Our solution approach is to manually instantiate DKO in order to

computerized each of the knowledge artifacts utilized in the decision making process.

Therefore, each knowledge artifact is an instantiation of the DKO. An instantiation of this

ontology with label i is represented as 𝒪𝐷𝐾𝑂
𝑖 . The Knowledge Representation Module is

responsible for ontologically modelling the knowlege encapsulated in the relevant

knowledge artifacts.

 Task #2: Mapping ontologically modeled knowledge artifacts to the domain

knowledge ontology

We also recognize that there may already exist a wide range of specialized ontologies to

represent knowledge artifacts in a domain area—these can be regarded as Local Knowledge

Ontologies (LKO). It is our intent to reuse the available knowledge artifacts represented in

LKO and hence to achieve semantic interoperability by mapping them to a common

representation formalism—i.e. the DKO. In order to represent mappings between two

ontologies, we developed an ontology called Knowledge Mapping Ontology (KMO)

represented as 𝒪𝑚𝑎𝑝 on vocabulary (𝒞𝑚𝑎𝑝, ℛ𝑚𝑎𝑝, ℐ𝑚𝑎𝑝 , ℒ𝑚𝑎𝑝). Ontology mapping in our

framework is the process of manually aligning elements from different ontologies using m-

to-n relations. We use the ontology 𝒪𝑚𝑎𝑝 to represent mappings between any two OWL

ontologies regardless of their domain. To create the ith m-to-n alignment between the local

ontology 𝒪𝑗 and 𝒪𝐷𝐾𝑂 represented by 𝑀𝑎𝑝𝑖𝑜𝑗𝑜𝐷𝐾𝑂
, a new set of instances 𝒜i is created and

added to ℐ𝑚𝑎𝑝. Then, this mapping between ontologies 𝒪𝑗 and 𝒪𝐷𝐾𝑂 is represented as a set

of the form {<s,p,o>} ⊆ (𝒜𝑖 × ℛ𝑚𝑎𝑝 × (ℐ𝑚𝑎𝑝 ∪ ℒ𝑚𝑎𝑝 ∪ 𝒞𝑗 ∪ ℛ𝑗 ∪ ℐ𝑗 ∪ 𝒞𝐷𝐾𝑂 ∪ ℛ𝐷𝐾𝑂 ∪

ℐ𝐷𝐾𝑂)) ∪ (𝒜𝑖 ×{rdf:type}× 𝒞𝑚𝑎𝑝).

85

The complete mapping between 𝒪𝑗 and 𝒪𝐷𝐾𝑂 that is composed of k n-to-m mapping is

represented as 𝒪𝑚𝑎𝑝

𝒪𝑗𝒪𝐷𝐾𝑂
 = ⋃ ℳ𝑎𝑝i𝒪j𝒪DKO

𝑘
𝑖=1 is the output of the function 𝕄(𝒪𝑗 , 𝒪𝐷𝐾𝑂).

 Task #3: Transformation of LKO to DKO

In our framework, we propose to use ontology mapping techniques in order to map and

transform the knowledge within multiple LKO to the common representation of DKO. We

define the semantics of the mapping language in OWL order to use it for discovering new

mappings between the mapped ontologies and then use the existing and the new mappings

to transfer instances between the source and the target ontologies. Therefore, discovering

new mappings between 𝒪𝑗 and 𝒪𝐷𝐾𝑂 with respect to the mapping 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
 is the process of

computing the union of 𝒪𝑗 , 𝒪𝐷𝐾𝑂, and 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
 and treating them as a single ontology in a

logical reasoner in order to find new relations between classes and properties of 𝒪𝑗 and

𝒪𝐷𝐾𝑂 that do not already exist in 𝒪𝑗 or 𝒪𝐷𝐾𝑂 . Thus, the output of this process which is

represented by 𝔻(𝒪𝑗 , 𝒪𝐷𝐾𝑂, 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
) will be a triple set of the form {<s,p,o>} ⊆ (ℛ𝑗 ×

ℳ𝑝−𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 × ℛ𝐷𝐾𝑂) ∪ (𝒞𝑗 × ℳ𝑝−𝑐𝑙𝑎𝑠𝑠 × 𝒞𝐷𝐾𝑂) ⊆ ℝ(𝒪𝑗 ∪ 𝒪𝐷𝐾𝑂 ∪ 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
) . Please

note that ℳ𝑝−𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ⊂ ℳ𝑝 represents the set of possible relations between OWL

properties such as owl:subPropertyOf and ℳ𝑝−𝑐𝑙𝑎𝑠𝑠 ⊂ ℳ𝑝 represents the set of possible

relations between OWL classes such as owl:disjointWith.

The new discovered mappings and the existing mappings are used towards automatic

instance transformation from the source ontology to the target ontology. Instance

transformation from 𝒪𝑗 to 𝒪𝐷𝐾𝑂 with respect to the mapping 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
 is the process of (1)

creating new instances and literals in the target ontology in order to prepare the target

ontology to accommodate the source ontology instances and (2) to utilize the mapping

representation language semantics to find (a) membership of instances of 𝒪𝑗 in classes of

𝒪𝐷𝐾𝑂 ; (b) relation of instances of 𝒪𝑗 with instances and literals of 𝒪𝑗 and 𝒪𝐷𝐾𝑂 using

properties of 𝒪𝐷𝐾𝑂. Therefore, instance transformation in our framework from 𝒪𝑗 to 𝒪𝐷𝐾𝑂

86

with respect to the mapping 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
 is the process of computing the union of 𝒪𝑗 , 𝒪𝐷𝐾𝑂,

𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
 and 𝔻(𝒪𝑗 , 𝒪𝐷𝐾𝑂 , 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
) and treating them as a single ontology in a logical

reasoner. Results of instance transformation which is represented by 𝒪𝐷𝐾𝑂

𝑜𝑗 =

𝕀(𝒪𝑗 , 𝒪𝐷𝐾𝑂,𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
∪ 𝔻(𝒪𝑗 , 𝒪𝐷𝐾𝑂, 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
)) is a set of the form {<s,p,o>} ∈ {<s,p,o>| <

𝑠, 𝑜 > ∈ (ℐ𝑗 × ℐ𝐷𝐾𝑂 ∪ ℐ𝐷𝐾𝑂 × ℐ𝑗 ∪ ℐ𝑗 × ℐ𝑗) ∧ p ∈ ℛ𝐷𝐾𝑂 } ∪ (s ×{rdf:type}× 𝒞𝐷𝐾𝑂) ⊆

ℝ(𝒪𝑗 ∪ 𝒪𝐷𝐾𝑂 ∪ 𝒪𝑚𝑎𝑝

𝑜𝑗𝑜𝐷𝐾𝑂
).

Knowledge Mapping Module is used to perform ontology mapping and instance

transformation. This module is described in section 3.4.2.

 Task#4: Merging instantiation of LKO transformed to instantiations in DKO

If we assume n ontologies that are transformed to DKO are used as the knowledge sources

in our knowledge morphing framework, the input of this step is ⋃ 𝒪𝐷𝐾𝑂

𝑜𝑗𝑛
𝑗=1 . The knowledge

encapsulated in each of the instantiations of the DKO represents a specific view of the

domain knowledge. Knowledge morphing, however, cannot be achieved by merely

transferring all the local ontologies to a common representation format due to lack of

definition of morphing constructs in the transformed LKO. From a decision support

perspective, these morphing constructs representing the necessary modifications to be

performed on the reasoned decisions in each of the transformed LKO to achieve a conflict-

free and improved set of decisions.

Identifying and capturing the morphing constructs among local ontologies in a formal

representation format enables a logical reasoner to derive more relevant and accurate results

by reasoning on the ontologies and their morphing constructs as opposed to a reasoner that

only reasons over LKO.

In our framework, we propose to use an OWL ontology called Knowledge morPhing

Ontology (KPO) represented by 𝒪𝑚𝑜𝑟𝑝ℎ on the vocabulary

87

(𝒞𝑚𝑜𝑝𝑟ℎ, ℛ𝑚𝑜𝑟𝑝ℎ, ℐ𝑚𝑜𝑟𝑝ℎ, ℒ𝑚𝑜𝑟𝑝ℎ) to represent the problem-specific morphing constructs

between several instantiations of DKO. Defining a morphing construct between two

ontologies 𝒪1 and 𝒪2 is performed by creating new instances of 𝒞𝑚𝑜𝑝𝑟ℎ represented by 𝒜𝑖

and creating relations between them and other instances in 𝒪𝑚𝑜𝑟𝑝ℎ, 𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 using

properties in ℛ𝑚𝑜𝑟𝑝ℎ. Therefore, the ith morphing construct between ontologies, 𝒪𝐷𝐾𝑂
𝑜1 and

𝒪𝐷𝐾𝑂
𝑜2 using the morphing ontology 𝒪𝑚𝑜𝑟𝑝ℎ that is called ℳ𝑜𝑟𝑝ℎio1o2 is a set of the form

<s,p,o> ∈ 𝒜𝑖 × ℛ𝑚𝑜𝑟𝑝ℎ × (ℐ𝑚𝑜𝑟𝑝ℎ ∪ ℒ𝑚𝑜𝑟𝑝ℎ ∪ ℐ𝒪𝐷𝐾𝑂
𝑜1 ∪ ℐ𝒪𝐷𝐾𝑂

𝑜2 . All the morphing

constructs represented by the triple set 𝒪𝑚𝑜𝑟𝑝ℎ
𝑜1𝑜2 = ⋃ ℳ𝑜𝑟𝑝ℎio1o2

𝑘
𝑖=1 that is the output of the

function ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2). Please note that due to complexity of the morphing constructs

between two ontologies, we generate them manually with the help of a domain expert.

If we assume 𝒪1 and 𝒪2 are two independent problem-solving ontologies for a decision

support problem, reasoning on 𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 together as one ontology or separately

produces the same decisions in either scenario because there are no semantic relations

between their instances. However, addition of the morphing constructs 𝒪𝑚𝑜𝑟𝑝ℎ
𝑜1𝑜2 that creates

semantic relations between instances of 𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 may results in obtaining new facts

in a logical reasoner. These new facts are used to modify the values of the properties in

𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 . These new facts that are obtained by computing ℝ(𝒪𝐷𝐾𝑂
𝑜1 ∪ 𝒪𝐷𝐾𝑂

𝑜2 ∪

𝒪𝑚𝑜𝑟𝑝ℎ
𝑜1𝑜2) – ℝ (𝒪𝐷𝐾𝑂

𝑜1 ∪ 𝒪𝐷𝐾𝑂
𝑜2) − 𝒪𝑚𝑜𝑟𝑝ℎ

𝑜1𝑜2 are of the following form: {<s,p,o> | <s,o>∈ (ℐ1 ×

(ℐ𝒪𝐷𝐾𝑂
𝑜1 ∪ ℒ𝒪𝐷𝐾𝑂

𝑜1) ∪ ℐ𝒪𝐷𝐾𝑂
𝑜2 × (ℐ𝒪𝐷𝐾𝑂

𝑜2 ∪ ℒ𝒪𝐷𝐾𝑂
𝑜2)) ∧ ∃p´,URI(p) = URI(p´) + "New" }. Please

note that URI function returns the unified resource identifier (URI) of its input and “+”

represents the string concatenation function. Value of each property p´ is replaced by the

value of the property p, if URI(p´) = URI(p) + "New". In this way, the solutions reasoned

in 𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 are modified according to the morphing construct in order to merge

𝒪𝐷𝐾𝑂
𝑜1 and 𝒪𝐷𝐾𝑂

𝑜2 . The result of morphing for ontologies 𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 … 𝒪𝐷𝐾𝑂
𝑜𝑛 , n>2 that is

represented by ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 ,.... 𝒪𝐷𝐾𝑂
𝑜𝑛) is equal to ⋃ ℙ(𝒪𝐷𝐾𝑂

𝑜𝑖 , ⋃ 𝒪𝐷𝐾𝑂

𝑜𝑗)𝑛
𝑗=1)𝑛

𝑖=1 .

88

Please note that this reasoning and modification is not a onetime task in the decision

support context and needs to be executed repeatedly for each state of the problem until an

equilibrium is reached. Due to the subtleties of each domain area, a problem-specific KMO

should be developed for morphing the knowledge of LKO. Moreover, for each set of input

LKO, the domain expert who is familiar with the domain knowledge and its morphing

constraints creates an instantiation of this ontology manually. Using OWL as the language

for representing this ontology enables us to perform reasoning on the transformed local

ontologies and the instantiation of the KMO using a single OWL reasoner. Ontology

Merging Module that is responsible for this step of our framework is described in

section 3.4.3.

 Task#5: Ontology Execution

If we assume the source ontologies of our knowledge morphing framework are n ontologies

called 𝒪1, 𝒪2 … 𝒪𝑛 , the input of this step is ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 , 𝒪𝐷𝐾𝑂
𝑜𝑛). Please note that

𝒪𝐷𝐾𝑂

𝑜𝑗 = 𝕀(𝒪𝑗 , 𝒪𝐷𝐾𝑂 ,𝔻(𝒪𝑗 , 𝒪𝐷𝐾𝑂 , 𝕄(𝒪𝑗 , 𝒪𝐷𝐾𝑂)) ∪ 𝕄(𝒪𝑗 , 𝒪𝐷𝐾𝑂)) represents the instances

that are transformed from 𝒪𝑗 to 𝒪𝐷𝐾𝑂. The ultimate purpose of knowledge morphing is to

use the morphed knowledge in a DSS to deliver decision support based on several

heterogeneous knowledge sources that complete each other. The assumption is that using

multiple knowledge sources as opposed to only one leads to making more accurate and

relevant problem-specific decisions. We use the algorithm in Table 3.1 in our DSS to

provide decision support based on several morphed ontologies transformed to DKO.

89

Table 3.1 Knowledge Execution Algorithm

1. Acquire the current state of the problem. This can be done through querying a data-base,

interacting with the user, etc.

2. If the desired state of the decision making problem has reached, execution is finished otherwise

go to next.

3. Encode the current state of the problem in DKO. This happens by modification of values of

certain properties in that ontology.

4. Perform reasoning on (⋃ 𝒪𝐷𝐾𝑂
𝑜𝑖)𝑖=1

𝑛 ∪ ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 ,.... 𝒪𝐷𝐾𝑂
𝑜𝑛).

5. If ∃ <s, p´, o´> ∈ ℝ((⋃ 𝒪𝐷𝐾𝑂
𝑜𝑖)𝑛

𝑖=1 ∪ ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 ,.... 𝒪𝐷𝐾𝑂
𝑜𝑛)) ∧ ∃ <s,p ,o > ∈

ℝ((⋃ 𝒪𝐷𝐾𝑂
𝑜𝑖)𝑛

𝑖=1 ∪ ℙ(𝒪𝐷𝐾𝑂
𝑜1 , 𝒪𝐷𝐾𝑂

𝑜2 ,.... 𝒪𝐷𝐾𝑂
𝑜𝑛)) ∧ URI(p) = URI(p´) + "New", replace <s,p,o>

with <s,p, o´>, delete <s, p´, o´> from the ontology and go to previous. Otherwise go to next.

6. Query the values of properties that represent the decision made for the current state of the

problem and represent them to the user through a user interface.

7. Wait for the user to act upon the made decisions.

8. Go to 1.

In our framework, knowledge morphing is dynamically guided by the morphing constructs

represented in KMO during running the execution algorithm as opposed to altering the

transformed local ontologies manually to reflect the morphing before knowledge execution.

We argue dynamic knowledge morphing during running the execution algorithm according

to the morphing constructs is superior to knowledge morphing before running the execution

algorithm for two reasons:

(1) The elements that define the state of a problem can create a huge problem space that

may not be easily accounted for during the pre-execution morphing process. For

instance, in case of merging several medical workflow algorithms, problem state may

contain several variables from an Electronic Medical Records (EMR) and the Hospital

Information Systems (HIS). Morphing the knowledge in these clinical workflow

ontologies should be concordant to every possible state that a patient might have during

his treatment.

90

(2) In order to deal with the huge problem state, assumptions about the problem state can

be made to reduce it to a smaller and more manageable one. However, many of the

assumptions may not hold true during the execution and cause the generation of

decisions that does not apply to the current problem at hand.

Knowledge Execution Module is responsible for execution of the abovementioned steps.

This module is described in section 3.4.4.

3.4. Solution Modules

The following modules are needed in order to perform the abovementioned tasks: 1.

Knowledge Representation, 2. Knowledge Mapping, 3. Knowledge Morphing and 4.

Knowledge Morphing Execution. Figure 3.1 shows the system architecture of our semantic

web based knowledge morphing framework.

91

Knowledge Execution ModuleKnowledge Merging Module

Knowledge Mapping ModuleKnowledge Representation Module

2. Domain Knowledge Semantics

3. DKO Preprocessing Algorithm

2. Knowledge Mapping Ontology (KMO)

3. KMO to OWL + SWRL Algorithm

2. Morphing Semantics

3. KPO Preprocessing Algorithm

2. Knowledge Execution Engine

3. User Interface

KA2 in LKO2

Knowledge Artifact 1
(KA1)

KA3 in LKO3

Knowledge Artifact 2
(KA2)

Knowledge Artifact 3
(KA3)

1.An OWL Reasoner1. Knowledge morPhing Ontology (KPO)

1. Knowledge Mapping Semantics1. Knowledge morPhing Ontology (KPO)1. Domain Knowledge Ontology (DKO)

KA1 in DKO KA1 in DKO KA1 in DKO

An instantiation
of KPO

Current State of
the Problem

Decision Support Based on
Dynamically Morphed Knowledge

Figure 3.1 The systems architecture of OntoMorph

3.4.1. Knowledge Representation Module

In order to use the knowledge encapsulated in knowledge artifacts for computerized

decision support, this knowledge should be captured in a computer understandable format.

The inputs of this module are knowledge artifacts and the output is several instantiations of

the DKO ontology each modelling a knowledge artifact. Knowledge Representation

Module that is responsible for this task has the following sub-components:

a. Domain Knowledge Ontology (DKO)

DKO is an OWL ontology that models concepts, instances and their relations. This OWL

ontology should be expressive enough to capture all the knowledge pertaining to the

decision making process. For instance, if the knowledge sources of a CDSS are paper-based

disease-specific CPG, DKO captures the all the medical and procedural aspects of these

92

knowledge artifacts that participate in the clinical decision making. Thus, it is a problem-

specific ontology. If a knowledge source is mapped to this ontology, instantiations will

happen automatically during the instance transformation process. Otherwise, it is manually

instantiated by the help of a domain expert in order to represent a paper-based knowledge

source.

b. Domain Knowledge Semantics

The knowledge modeled in DKO is meant to be used towards decision making. A solution

is to use an OWL reasoner to perform reasoning on the instantiation of the DKO that

represents the participating knowledge artifacts in order to derive the decisions. To do so,

meaning of the DKO should be described in a formal language that can be understood by

OWL reasoners. Formal semantics are meaning of the DKO constructs in a computer

understandable format. For instance, imagine a property called hasNextTask in DKO

ontology that represents the sequence of actions in a workflow ontology. If the instantiation

of DKO expresses task2 should be executed when task1 is completed using OWL triple

“:task1 :hasNext :task2” and task1 is completed, reasoning on DKO should derive the fact

that task2 is the active task at this moment. The formal semantics of DKO are expressed

using OWL triples and SWRL rules in our framework.

c. DKO Pre-processing algorithm

Each of the instantiations of DKO undergoes a pre-processing phase that deals with the

non-unique naming and the open world assumptions and addresses the lack of qualified

cardinality restriction, property chaining and data type expressivity in OWL in order to

prepare the knowledge artifact for execution in the knowledge execution module. DKO pre-

processing algorithm is responsible for this process.

3.4.2. Knowledge Mapping Module

As we discussed earlier, knowledge artifacts represented in different heterogonous

ontologies are mapped and then have their instances transformed to a common

93

representation language in our knowledge morphing framework for two reasons: (1)

Morphing the knowledge in different ontologies is not possible as it is difficult and

sometimes impossible to find corresponding concepts and relations in heterogeneous

ontologies and (2) execution algorithm utilized for the decision making in the morphing

execution engine is not able to process several heterogeneous ontologies. The knowledge-

mapping module is responsible for mapping local heterogeneous ontologies to DKO and

then transforming their instances to instances of DKO. This module is composed of two

sub-components:

a. Knowledge Mapping Ontology (KMO)

Knowledge Mapping Ontology (KMO) is developed for ontology mapping representation.

This OWL-Full ontology can represent a range of simple mappings to complex mappings

that may contain complex mathematical computation and structure modification. This

ontology is in OWL-Full as it does not respect the separation of classes, properties and

instances in OWL-DL. An instantiation of this ontology represents how classes, instances

and properties of the two ontologies are related to each other and how the source ontology

instances are transformed to instances of the target ontology. Since mappings can be quite

complex, we generate them manually. Please note that this ontology is not problem-specific

and can be used to map any two OWL ontologies.

We have also developed an ontology called Expression Ontology that can be instantiated to

model and calculate the expressions needed for decision support. For instance, the formula

how to calculate Body Mass Index (BMI) based on the weight and height of a person can

be modelled in this ontology. Moreover, this ontology is equipped with OWL triples and

SWRL rules that enable computing the values of the expression in this language using

OWL reasoners.

b. Knowledge Mapping Semantics

94

Semantics of the KMO enables a reasoner to perform reasoning on the mapped ontologies

and the reasoning in order to perform instances transformation and discovering new

mappings. However, since KMO is in OWL-Full, it is undecidable and cannot be used for

these two tasks in a logical reasoner. Therefore, instead of representing the mappings in

OWL-DL + SWRL, we represent the mappings OWL-Full and then translate them to

OWL-DL + SWRL using the KMO to OWL + SWRL Algorithm for the following reasons:

(a) The expressivity of KMO being OWL-Full—i.e. using properties and classes as

instances—makes the ontology mappings more readable and less verbose—i.e. with fewer

triples compared to OWL-DL; (b) It enables us to support conditional mappings and

complex condition satisfaction criteria, meta modelling, Boolean operators and converting

ontology elements and creating new ones which are not directly supported by either OWL

or SWRL. These aspects of ontology mapping are supported by automatic generation of

several OWL triples and SWRL rules that simulate the lacking feature during the

translation process; (c) SWRL rules are difficult to write and can easily become

undecidable if not written correctly. In our translation algorithm, DL-Safe SWRL rules are

generated automatically thus relieving the user about decidability concerns.

3.4.3. Knowledge Merging Module

Ontology instantiations transformed to DKO are ready to be morphed. Morphing in our

framework is achieved by expressing the dependencies between the knowledge

encapsulated in several instantiations of DKO. This module is composed of two sub-

components:

a. Knowledge morPhing Ontology (KPO)

KPO is a domain-specific ontology for knowledge morphing that can express the

dependencies between the knowledge encapsulated in the knowledge artifacts of a specific

domain are. These dependencies are often ignored in individual knowledge artifacts and the

domain expert should help to define the morphing constructs. This ontology is composed of

two parts. These first is used to define the morphing constructs between several LKO. We

95

call this part of the ontology the independent part. This part of the ontology is independent

of DKO in the sense that it does not share any classes, instances or properties with it. The

second part of this ontology that is shared between DKO and KPO represent the key

elements of the domain knowledge. We call this part the shared part. Therefore, an

instantiation of the KPO uses the independent part to define morphing constructs between

concepts represented in the shared part. As an example, imagine a CDSS that uses two

ontologies as its knowledge sources each describing a drug family. These two ontologies

may not contain the knowledge regarding the possible adverse interactions between them in

infant patients. Any decisions made regarding use of these drugs in an infant will be

affected by the morphing constructs that are not encapsulated in any of the drug ontologies.

In this example, the independent part of the KPO contains morphing constructs that can

represent the adverse interactions and their conditions. The shared part of KPO in this

example contains classes representing drugs in local ontologies.

The source of knowledge encapsulated in an instantiation of this ontology can be domain

experts’ personal experience participating in the ontology instantiation or their

interpretation of published knowledge sources that contain knowledge regarding the how to

merge LKO participating in the merge.

b. Knowledge Morphing Semantics

Morphing constructs in an instantiation of the KPO are used towards modification of the

results of reasoning on the local ontologies. Morphing semantics enables a reasoner to

automatically infer these modifications for each state of the problem in a computerized

DSS. For instance, reasoning on two local ontologies that have not been morphed may

result in administration of two adversely interacting drugs. However, if we perform

reasoning on these local ontologies and an instantiation of the KPO, the reasoning result

will provide us with necessary modifications to avoid adverse interactions. Since local

ontologies and KPO are all in OWL, we define the semantics of the morphing ontology in

96

OWL and SWRL. This choice of representation enables us to perform reasoning on the

local ontologies and the instantiation of DKO simultaneously.

c. KPO Pre-processing algorithm

Each of the instantiations of KPO undergoes a pre-processing phase that deals with the non-

unique naming and the open world assumptions and addresses the lack of qualified

cardinality restriction, property chaining and data type expressivity in order to be prepared

for execution in the knowledge execution module. This module is described next.

3.4.4. Knowledge Execution Module

After transforming the local ontologies to a common representation format and then

morphing the knowledge encapsulated in them using an instantiation of the KPO, they can

be used for delivering decision support. The Knowledge Execution Module is responsible

for interacting with the user and reasoning on the transformed ontologies in DKO and an

instantiation of KPO. As it is shown in Figure 3.1, reasoning on the transformed ontologies

and the knowledge morphing constructs is performed in regard with their formal semantics

in OWL and SWRL. This module is composed of the following sub-components:

a. An OWL reasoner

Knowledge Execution Module makes use of an OWL reasoner that performs reasoning on

instantiations of the DKO and KMO in order to derive the best decision according to the

current state of the problem. We use Pellet reasoner [161] as it supports both OWL and

SWRL in an integrated environment.

b. A Knowledge Execution Engine

A Knowledge Morphing Execution Engine is a program that runs the execution algorithm in

order to deliver decision support based on the ontologies encoded in DKO and an

instantiation of KMO. Our execution algorithm has been previously shown in Table 3.1.

This engine is also capable of execution of one or more instantiations of DKO

97

independently if an instantiation of the KMO is not provided. We refer to this engine as the

Knowledge Execution Engine if no morphing is performed during execution of one or

concurrent execution of several instantiations of the DKO.

c. A User Interface

This user interface has the following responsibilities: (1) Showing the decision reasoned by

the execution algorithm and (2) Accepting inputs from user that indicates the problem state

and his preferences and reflecting them in DKO.

3.4.5. Functional Description of our Knowledge Morphing Framework

In this section, we briefly discuss the tasks that are performed in each of the modules in

order to prepare several paper-based and ontologically modelled knowledge artifacts as

knowledge sources in our knowledge morphing framework. Figure 3.2 displays a functional

view of our framework.

98

Knowledge Execution ModuleKnowledge Merging Module

Knowledge Mapping Module
Knowledge Representation Module

2. Instantiating DKO

3. Preprocessing

2. Mapping Discovery

2. Instantiating KPO

3. Preprocessing

2. Reasoning on Instantiations of DKO
and KPO

KA2 in LKO2

Knowledge Artifact 1
(KA1)

KA3 in LKO3

Knowledge Artifact 2
(KA2)

Knowledge Artifact 3
(KA3)

1. Running the Execution Algorithm1. Identifying the Morphing Constraints

1. Instantiating KMO

1. Knowledge morPhing Ontology (KPO)
1. Identifying the Knowledge Elements in
Knowledge Artifacts

KA1 in DKO KA2 in DKO KA2 in DKO

An instantiation
of KPO

Current State of
the Problem

Decision Support Based on
Dynamically Morphed Knowledge

3. Translation to OWL + SWRL

4. Instance Transformation

Figure 3.2 Tasks accomplished in the modules of OntoMorph

a. Tasks Performed in the Knowledge Representation Module

In the first step, the main concepts of the domain knowledge and the procedural aspect

represented in the knowledge artifact are identified with the help of a domain expert. In the

next step, the domain knowledge and the procedural aspects covered in the knowledge

artifact are represented by an instantiation of the DKO. Therefore, each knowledge artifact

will be an instantiation of the DKO in our framework. The last step is executing the pre-

processing algorithm on instantiations of DKO.

b. Tasks Performed in the Knowledge Mapping Module

In order to unify the representation of the heterogeneous ontologies representing different

knowledge artifacts, we first need to identify the relations between classes, properties and

99

instances of those ontologies and DKO. These relations can be represented as an

instantiation of KMO. Therefore, an instantiation of KMO is manually created for each

knowledge artifact that is not represented in DKO. Instantiation of the KMO are translated

to a combination of OWL axioms and SWRL rules using a translation algorithm. Reasoning

on the translated mappings and the mapped ontologies will result in discovering new

mapping and subsequently transforming the instances of the LKO to DKO.

c. Tasks Performed in the Knowledge Merging Module

In the first step, domain expert identifies the morphing constructs between the knowledge

artifacts represented in DKO. Then, KPO is instantiated to represent those morphing

constructs in terms of merging constraints. The last step is to execute the KPO pre-

processing algorithm on instantiations of KPO in order to prepare it for execution.

d. Tasks Performed in the Knowledge Execution Module

The only tasks that are needed to be performed in this module are to enter the current state

of the problem to the engine using the provided user interface and act upon the provided

decisions. These two tasks are repeatedly performed until the desired problem state is

reached.

3.5. Knowledge Morphing Framework Application

We use our knowledge morphing framework to address the problem of CPG Merging to

deliver clinical decision support to comorbid patients. We call this domain-specific

knowledge morphing framework the CPG Merging Framework. In the rest of this section,

we briefly describe how each of the modules of the knowledge morphing framework has

been customized in order to handle the task of the CPG merging.

CPG modeled in heterogeneous ontologies are the knowledge sources of our CPG merging

framework that come in different representation ontologies. CPG represented in different

ontologies are all needed to be mapped to a common representation ontology. We

100

developed an ontology called CPG Domain Knowledge Ontology (CPG-DKO). We map

each of the ontologically modeled CPG to CPG-DKO using an instantiation of the

Knowledge Mapping Ontology (KMO) and then transform all their instances to instances of

the CPG-DKO.

We first developed an engine called CPG Execution Engine that is able to execute a CPG

represented in CPG-DKO in order to deliver decision support to patients with only one

medical condition. Using this engine, we can concurrently execute several CPG

independently. However, this engine is not capable of avoiding duplications and conflicts;

therefore, it cannot be used for CPG Merging.

The knowledge encapsulate in several CPG are ready to be morphed after unifying the

representation in CPG-DKO. We developed a problem-specific Knowledge Morphing

Ontology called CPG Knowledge morPhing Ontology (CPG-KPO) with the help of medical

domain experts and reviewing the related literature. An instantiation of this ontology

expresses the morphing constructs between two CPG modeled in CPG-KPO. For example,

an instantiation of this ontology may describe the condition under which two medical

actions may be conflicting and their simultaneous application on the patient may be

harmful. The source of knowledge in a manually created instantiation of this ontology is

physicians personal experience participating in ontology instantiation and their

interpretation of published knowledge sources regarding

In order to dynamically merge several CPG during their execution, we modified our CPG

execution algorithm so that it can also take into consideration the semantics of the merging

constraints. This engine that is called CPG Merging Execution Engine uses semantics of the

merging constraints to modify the medical actions recommended by individual CPG and

therefore delivering a conflict-free and improved decision support for comorbid patients.

For instance, if two medical actions are conflicting and one of them is already performed on

the patient in one of the CPG, the other task will be discarded if recommended by any other

101

CPG. Table 3.2 shows the modules of our CPG Merging Framework and their counterpart

modules in our Knowledge Morphing Framework.

Table 3.2 The modules of our CPG Merging Framework, their purposes and their

counterpart modules in OntoMorph

Knowledge
Morphing

Framework
Modules

CPG Merging
Framework

Modules

Purpose in CPG merging

framework

Domain Knowledge

Ontology (DKO)

CPG Domain

Knowledge Ontology

(CPG-DKO)

Unifying the representation of

several ontologically modeled CPG

Knowledge Morphing

Ontology (KMO)

CPG Knowledge

MorPhing Ontology

(CPG-KPO)

Capturing the comorbidity related

morphing constructs between

several single-disease CPG

Knowledge Execution

Engine
CPG Execution Engine

Delivering decision support for

patients with one medical condition

based on one CPG

Knowledge Morphing

Execution Engine

CPG Merging Execution

Engine

Delivering Decision Support for

comorbid patients based on several

merged CPG

We successfully used our CPG merging framework to merge several comorbidity related

CPG in order to deliver decision support for the following comorbidities:

 Chronic Heart Failure - Atrial Fibrillation

 Transient Ischemic Attack - Duodenal Ulcer

 Osteoarthritis - Diabetes

 Osteoarthritis – Hypertension

102

 Hypertension – Diabetes

 Osteoarthritis – Hypertension - Diabetes

103

CHAPTER 4: CPG DOMAIN KNOWLEDGE ONTOLOGY (CPG-DKO)

4.1. Introduction

Knowledge artifacts available for decision making in a specific problem may come in

different formats. These knowledge artifacts are represented in semantically heterogeneous

ontologies with different classes, properties and instances. These ontologies cover different

aspects of the domain knowledge and barely overlap. For instance, ontologies designed to

capture the knowledge in a CPG and a CP can be very different in terms of coverage of

concepts and structure. Moreover, ontologies developed to describe the same type of

knowledge artifacts for a CDSS can be heterogeneous as well. Open nature of semantic

web has led to development of several heterogeneous ontologies describing the same type

of knowledge artifacts, such as

CPG [20][30][104][105][106][107][108][133][134][135][136][137][138][140][145][155].

Ontologies that describe the same type of knowledge artifacts in a domain of interest

(LKO) can differ in their coverage of the domain knowledge, points of views and levels of

granularity. Thus, ontologies of a domain area can be semantically heterogeneous

regardless of the fact they are representing knowledge about the same domain.

Semantic heterogeneity of ontologies describing the knowledge artifacts is a great

hindrance to knowledge morphing and execution. It is not always a feasible option to find

the related concepts and properties in order to merge several heterogeneous LKO.

Moreover, reasoning on these ontologies in order to deliver decision support is not

straightforward as it requires combining the results of reasoning on these ontologies into a

unified decision.

A solution to address semantic heterogeneity, as it pertains to knowledge representation

using ontologies, is to transform the different source ontologies to a common representation

ontology. Note that due to semantic heterogeneity of these ontologies, none of them can be

chosen as this common representation ontology. Therefore, an alternative option is to map

104

and transform all these ontologies to a domain ontology that can act as the background

ontology [146][147]. The background ontology that is a comprehensive DKO is expected to

have the highest coverage of the domain and the most detailed granularity compared to the

source ontologies describing the domain. The DKO can be used as an Interlingua between

ontologies of the domain thus providing a mechanism to interrelate semantically

heterogeneous ontologies [109][110][111][112][114]. We have developed a DKO for CPG

called CPG-DKO that can be used as the common representation of CPG represented in

heterogeneous ontologies. All the ontologically modelled CPG are mapped to CPG-DKO

and their instances are transformed to it. Merging and execution of these CPG happen in

this ontology. In section 4.2, we discuss how this ontology has been developed so that it

can be used as a comprehensive DKO for CPG. We use terms comprehensive DKO and

background ontology interchangeably in this thesis.

Mapping different ontologies to a DKO has the following benefits: (a) problem of semantic

heterogeneity between ontologies is alleviated; (b) the internal structure of the background

and the mapped ontologies along with the mappings can be used to derive new mappings

between the mapped ontologies and (c) reasoning can be performed in case of

inconsistency between the mapped ontologies as the reasoning is performed on the DKO

and each of the mapped ontologies separately rather than on all of them at the same time.

4.2. CPG Domain Knowledge Ontology Engineering

In order to develop a comprehensive DKO for CPG we needed an ontology development

methodology. Many of the ontology development methodologies are designed to organize

the joint effort of a group of developers involved in development of large-scale

ontologies [118][119][120][121][122] that have several resemblances to software

development methodologies [123][124] that are utilized for large software engineering

projects and do not match our needs for development of a small-scale ontology. We

adopted the methodology introduced in [125] due to its simplicity and proven capability in

development of small-scale ontologies [126][127][128][129]. This methodology is

105

composed of the steps shown in Figure 4.1. These steps should be performed in a cyclic

fashion until the ontology with the desired features has been developed.

Figure 4.1 Steps of the ontology development methodology proposed in [125]

In the rest of this section we discuss how each of the steps in Figure 4.1 are performed in

order to develop a DKO for CPG.

Step 1. Determine the domain, scope and purpose of the ontology

In the first step of this methodology, the ontology developer should determine the scope

and the intended use of the ontology. Our ontology will be used as a common

representation language for CPG merged in our CPG merging framework. We focus on the

workflow structure of CPG rather than their medical knowledge for two reasons: (1) Our

area of expertise is computer science and (2) the elements of the medical knowledge in

CPG act as input values to the workflow structure and affects its execution. Therefore, if

we model the decision variables in the workflow structure, the necessary mappings between

the medical knowledge elements and the workflow structure can be created. For instance, if

we model comparison of numeric variables for decision making in our ontology, we can

Determine Scope
and domain

Consider Reusing
Existing Ontologies

Enumerate
Important terms

Define classes and
their hierarchy

Define Properties,
their hierarchy and

constraints

Instantiate

106

simply create the necessary mappings between these variables and the corresponding values

in the medical knowledge to decide if a patient suffers from hypertension.

As we discussed previously, a comprehensive DKO is needed to cope with semantic

heterogeneity. Differences in points of view, coverage and granularity levels are three

limiting factors of semantic heterogeneity. Our assumption is that all CPG are developed

from the point of view of the physician responsible for managing the medial condition in

the patient; therefore, the fact that different ontologies might have different points of view

does not concern us and is kept out of the equation. Thus, our CPG Comprehensive DKO

should be able to alleviate the lack of enough overlap and different levels of granularity

between CPG ontologies.

To deal with lack of enough overlap, we focused on making our ontology as comprehensive

as possible in terms of covering the workflow patterns used in CPG ontologies. Therefore,

the goal is to have a corresponding concept in the Comprehensive DKO for any existing

workflow pattern in any of the CPG representation languages. Some examples of these

workflow patterns are decisions, cycles and sequential constraints.

Difference in granularity is another hindrance to unifying the representation of the CPG

ontologies. This is different from coverage in the sense that ontologies with different

granularity can have the same coverage but describe the knowledge with different levels of

detail. As an example, two ontologies may cover the concept of cyclic tasks but one of

them may be able to express cycles in more details. For instance, the more detailed

ontology can be able to define several exit points for a while loop whereas the other

ontology can only support traditional while loops with only one exit point. To resolve this

issue, not only we tried to include every workflow pattern in our ontology, but also all its

variations. For instance, in case of decisions, we added all the variations of decisions such

as if-then-else, switch, multiple-decision-option and argumentation rules to our ontology.

We also expanded augmentation rules into three subclasses in order to be able to capture

more than one variant of the argumentation rules. Moreover, we tried to avoid general

107

concepts that are specialized using values of properties. Instead, we focused on creating a

more detailed class hierarchy. We believe that this feature makes it easier to differentiate

between different levels of details and make the necessary mappings between CPG

ontologies and our Comprehensive DKO.

Step 2. Considering re-using existing ontologies

In this step, existing ontologies are checked for reusing possibilities. If an existing ontology

serves our purpose there is no need to develop a new one. If no ontology exists that matches

our needs reusing some parts of them might be an option. We reviewed the existing CPG

representation languages [34][108][133][134][135][136][138][137][140][155] and their

implementations specially the ones developed in the NICHE research

group [20][30][104][105][106][107][145] due to their implementations in OWL. The only

attempt that is made to create a Comprehensive DKO for CPG is reported in [114]. Wang et

al. [114] has developed a comprehensive DKO called the “generalized guideline” for CPG

representation languages. In order to develop their comprehensive DKO they performed an

extensive survey [113] to find the common workflow patterns existing in different CPG

representation languages. However, their approach has the following limitations: (1) A

limited list of workflow structures as compared to the list of workflow elements listed

in [101] are implemented; (2) They use of frames as opposed to OWL, where frames are

less expressive than OWL ontologies; (3) Limited ability to share the mapping with OWL

based ontologies [115]; (4) frames are now obsolete and most recent CPG representation

languages do not use frames.

NICHE ontologies are in OWL and provide us with a wide range of workflow patterns that

can be reused. However, since they are not as comprehensive as we need, we create our

own ontology and reuse some parts of these NICHE ontologies. We did not come across

any other comprehensive DKO for CPG implemented in OWL. As we describe our

ontology, we discuss which parts have been reused from existing CPG ontologies.

108

Step 3: Enumerate important terms in the ontology

In this step of the ontology development methodology, a list of terms and concept that the

developed ontology is about should be created. For instance, for a hypertension CPG

ontology, the terms Diabetes_Types, Blood_Pressure and Therapy are among the terms that

would be in this list. In this step, we focused on finding the workflow patterns that is

reported in existing CPG representation

languages [20][30][104][105][106][107][108][133][134][135][136] [137][138][140][145][1

55] and the surveys that review these languages in terms of their workflow representation

capabilities [88][89][101][103][113]. We created a list of workflow patterns that have been

used at least in one of the major CPG representation languages. The identified workflow

patterns that we would like our ontology to capture are discussed in section 4.3.

Step 4 and 5: Implementation

As this methodology points out, implementing classes, properties and their hierarchies are

intertwined tasks and cannot be performed in a sequential manner. In this step, we went

through the workflow patterns identified in the last step and checked their existence in

NICHE ontologies. If the workflow patterns exists in those ontologies, we simply reused

the associated classes, properties and instances in our ontology. If reusing was not an option

due to lack of covering the concept, new classes and properties were created. Upon creating

classes and properties, their position in the hierarchy were determined as well. For instance,

after creating the class WhileLoop, we assigned it as a subclass of the class Cycle. The

developed ontology is in OWL-DL as it does not use the OWL-Full abilities such as

treating ontology classes as instances or properties at the same time. This ontology is

described in section 4.4.

Step 6: Instantiation

Instantiation of the ontology is the last step of the methodology. In this step, classes are

instantiated and their associated properties are utilized to create relations between instances.

109

Each instantiation of our ontology is manually created and represents the workflow

structure of a disease-specific CPG. We instantiated our ontology in order to represent the

workflow structure of several real and imaginary CPG.

Cycling through steps of the ontology development methodology

The methodology utilized suggests that steps 1 to 5 should be repeatedly performed until a

desired ontology has been developed. However, this methodology fails to describe how to

use the instantiation results in order to improve the ontology when we go back to the first

step in the development cycle. We adopted our own approach to fill this gap. We

instantiated our ontology in order to represent the workflow structure of several real and

imaginary CPG. If we came across a workflow pattern that could not be represented in our

ontology and could not be reused from existing OWL ontologies, we would update the list

created in step 3. The new workflow patterns in the list were added to the ontology during

the next phase of the implementation. If a workflow pattern already existed in our ontology

but was not properly represented, the necessary modifications were done during the next

implementation phase. We repeated the steps of the ontology development twice. We did

not perform any evaluations in terms of efficacy in a CPG merging framework at this stage

of the development.

4.3. Common Workflow Patterns in CPG Representation Languages

To develop a comprehensive DKO that alleviates the lack of overlap and difference in

granularity, we need to identify the workflow patterns and all their variants that have been

utilized in existing CPG representation languages. In a seminal work by Mulyar et al. [101],

Asbru, GLIF, EON and PROforma CPG representation languages are reviewed in order to

identify the presence of 43 classic workflow patterns. We follow their categorizations of

workflow patterns and use their results in the specification of a detailed list of CPG

workflow elements that are subsequently used to develop CPG-DKO. Note that CPG

workflow patterns in [101] are categorized under 7 classes which have been previously

110

identified by Russel et al. [102]. Table 4.1 shows the categorization of workflow patterns

discussed in [102] and their description.

Table 4.1 Workflow pattern categories discussed in [101] and their description

Pattern Category Pattern Description

Basic Control-flow

These patterns represent the basic elements of workflows such

as sequential constraints, nesting, branches, synchronizations

and conditions.

Advanced branching and

synchronization

Patterns describing advanced branching and synchronization

points.

Structural patterns
This category includes implicit termination and multiple entry

and exit point cycles.

Multiple instances

patterns

This category of patterns deal with concurrent execution of

several instances of a specific type

State-based patterns
These patterns are able to describe execution scenarios based

on executional states of tasks in the workflow.

Cancellation patterns
These patterns characterize the scenarios in which one or

several tasks should be cancelled if certain criteria are met.

New patterns
Patterns that authors of [101] believe are not adequately

captured in existing workflow representation languages

Albeit authors of [101] have provided a thorough comparison of CPG modelling languages

from a workflow pattern perspective, they have not elaborated on different decision models

that exist in these languages. These decision models that play an important role in

controlling the flow of the executions of CPG are surveyed by Peleg et al. [88][103]. Based

on our review, we identified the following workflow patterns that are present in CPG

representation languages. We briefly explain the function of each of the identified

workflow element.

 Basic control-flow patterns:

111

Sequence: This workflow pattern simply specifies the order in which tasks should be

executed.

Preconditions: This pattern is used to define preconditions for tasks. These preconditions

should be satisfied in order to be able to execute the conditional tasks. If the

preconditions are not satisfied, the conditional task should be discarded.

Nesting of guideline: Not all the tasks in a CPG are atomic and they may be composed of

several sub-steps. Nesting pattern is used to define sub-components for CPG and

composite tasks.

Parallel Split: When execution of the CPG reaches this point, several paths that should be

executed in parallel get activated.

Synchronization: Several parallel paths that have diverged before during execution of the

CPG converge at this point to a single path of execution.

Exclusive choice: It is similar to a parallel split with the difference that exactly one of the

branches will be selected for execution based on a selection mechanism.

Simple merge: It is similar to a synchronization point with the difference that completion

of any of the incoming branches causes the next task after the merge to be enabled.

Execution of the rest of the paths continues

Please note that we reused the implementation of Basic Control patterns and the rest of the

implementation is our contribution.

 Advanced branching and synchronization:

112

Multi-choice: It is similar to a parallel split with the difference that not necessarily all the

branches get activated. For instance, it is possible to activate only 2 execution paths out

of 6 after the split.

Structured synchronizing merge: A multi-choice is usually followed by a structured

synchronization merge. When all of the active paths of the multi choice are completed,

the next task after the structured synchronization merge gets activated. This workflow

pattern acts similar to synchronization point with the difference that it is only waiting

for the completion of the paths that are previously activated by a multi-choice and not

all of the paths.

Structured discriminator: The same as simple synchronization. The only difference is that

the parallel paths that are synchronized should be emanating from a single parallel split

and they might not be engaged in other synchronization points and splits.

 Structural patterns:

Arbitrary cycle: Many CPG may contain repetitive tasks which should be iterated over a

predefined number of times or until a specific condition is satisfied. A cycle may have

several entry and exit points.

Implicit termination: Implicit termination causes the execution to finish when there are no

more tasks to be executed during execution of a CPG. We believe that this is a feature

of the CPG execution engine rather than a workflow pattern. Nonetheless we have

included this in our comparison.

113

 State-based patterns:

Deferred choice: This pattern is similar to a branch step. The difference is that only one of

the branches based on the locally available data and not the user decision is selected.

Upon activation of one of the branches the rest are discarded.

Interleaved parallel routing: This pattern represents a set of partially ordered tasks.

Milestone: Consider three tasks named A, B, and C contained in a CPG. Activity A is only

enabled if activity B has been executed and C has not been executed yet, i.e. A is not

enabled before the execution of B and A is not enabled after the execution of C. This

pattern is called milestone. We believe that this is just a special case of using

executional states of tasks as preconditions.

 Cancellation Patterns

Cancel activity: This pattern enables users to cancel a specific task in the workflow.

Cancel case: Certain combination of conditions leads to cancellation of a set of tasks and

their associated subtasks.

 New Patterns:

114

Structured loop: This is similar to the arbitrary loop with the difference that there is

exactly one entry and exit point.

Transient triggers: Triggers are signals that can act as conditions and cause tasks to

change their executional states. For instance, having a blood pressure value more than a

predefined may trigger “prescribe hypertension medication”. These triggers can be

generated by tasks in the CPG or may come from an external source. Transient triggers

are lost if they are not acted upon instantly. For instance, if the high blood pressure

trigger is generated and the task “prescribe hypertension medication” is satisfied, this

task will get activated otherwise the trigger is lost and the task will not get activated

later because of this trigger.

Persistent triggers On the contrary to transient triggers, persistent triggers are permanent

and they do not need to be acted upon instantaneously. They will last until they are used

by a task to be triggered.

Cancel multiple instance task: Execution of this pattern leads to cancelation of tasks

which are of a specific type. For instance, execution of this pattern can cause

cancellation of all of the blood works that are due to be executed. All the cancelled

tasks will be marked as unsuccessfully completed.

Complete multiple instance task: Same as cancel multiple instance task with the

difference that tasks should become completed instead of cancelled. All the completed

tasks will be marked as successfully completed.

Cancelling discriminator: This pattern is very similar to the synchronization pattern. The

difference is that when the first branch reaches the cancelling discriminator, execution

of the rest of the branches stops whereas execution of the branches continues in case of

a synchronization pattern.

115

Structured N-out-of-M join: This pattern is a synchronization point that passes the

execution to the next task when n out of m parallel branches are completed. Execution

of the rest of the branches continues when the task after the structured N-out-of-M join

is activated.

Cancelling N-out-of-M join: Exactly the same as above with the difference that execution

of the rest of the branches stops when n out of m branches are completed.

Local synchronizing merge: This pattern is similar to the structured synchronizing merge.

However, the number of tasks that this synchronizing merge is waiting for, may come

from a local data and does not necessarily come from a multi-choice.

Critical section: Two or more sub-plans of the CPG are considered critical sections in the

following situation: if a sub-task of one of sub plans is under execution, no task can be

activated in the rest of the sub-plans. Thus, once one of the critical section sub-plans

starts, the other sub-plans cannot start.

Interleaved routing: This pattern represents a composite task which is composed of a set

of tasks that should be executed only once in any desired order. No two sub-tasks can

be executed at the same time. Once all the sub-tasks finished, the composite task is

regarded as a completed task as well.

 Decision patterns:

If-then-else: This is a commonly used decision mechanism that exists in most of the CPG

representation languages. If a specific condition is satisfied the then part of the if-then-

else is executed, otherwise the else part will be executed.

116

Switch: This pattern is a more general form of the if-then-else pattern. This pattern has

several conditions with a task assigned to each one of them. If a condition is satisfied

the associated task will be executed and the switch will be completed and as the result,

the rest of the conditional tasks are discarded. If two or more conditions are satisfied at

the same time, the task with more priority will be executed and the rest of the satisfied

conditions will be ignored.

Argumentation rules: When several options are available at a decision point during the

execution of a CPG, argumentation rules which can be “against” or “for” specific

options can be used to make a dynamic decision based on the available information.

Each one of these rules add or remove a value from the overall balance of each option

(which is set to zero before execution). The overall balance of the rules which are

against(-) and in favor(+) of the option is the value which will be evaluated in order to

determine if the option should be selected or not. Three types of Argumentations exist

depending on how the overall balances are used towards choosing options: (1) Type1:

The option with the largest overall balance will be selected and the rest will be

discarded, (2) Type2: All the options with the overall balance of greater than a specific

threshold which is common for all of them will be selected and the rest will be

discarded, (3) Type 3: Each option has its own threshold and all the options with the

overall balance of more than their specific threshold will be executed. The CPG

representation language used for authoring the argumentation rules should provide the

user with a rule language.

Preference for options: In situations where there are several options available to the user it

may be desirable to express different levels of preference for them. These preferences

can be shown to the users in order to leave the decisions to them or they can be acted

upon by an execution engine in order to automate the decision making process. This

preference can be either numerical or symbolic which can be translated to a numeric-

based preference.

117

We contributed to the results in [101][102][103] by reviewing GASTON and NICHE CPG

representation ontologies and evaluating the presence of the abovementioned workflow

patterns. NICHE CPG representation ontologies are several ontologies that have been

successfully developed and utilized in our research group namely; Prostate Cancer

Ontology [20], Chronic Heart Failure and Atrial Fibrillation [107] , Nursing Care Plans

Ontology [145] and a number of general CPG modelling ontologies [30][104][105][106].

Moreover, we reviewed Asbru [108], EON [137][155], GLIF [133][140],

PROforma [136][138] for presence of the Decision Patterns. In Table 4.2, we list the

presence of the abovementioned workflow elements in the reviewed CPG representation

languages. Workflow patterns listed in Table 4.2 are organized according to the

categorization provided in Table 4.1.

118

Table 4.2 Representable workflow patterns in Asbru, EON, GLIF, PROforma, GASTON

and CPG representation ontologies developed in NICHE research group. ±

symbol means that the corresponding feature is partially supported.

Workflow
pattern

Asbru EON GLIF PROforma GASTON NICHE1

Basic Control-

Flow

1. Sequence + + + + + +

2. Preconditions + + + + + +

3. Nesting of

guidelines
+ + + + + +

4. Parallel Split + + + + + +

5.

Synchronization
+ + + + + +

6. Exclusive

Choice
+ + + + + +

Advanced

Branching and

synchronization

7. Multi choice + + + + + +

8. Structured

synchronization

merge
± - - - + +

1 NICHE represents all the CPG representation ontologies developed in NICHE research

group

119

9. Structured

discriminator
+ + + + + +

Structural

Patterns

10. Arbitrary

cycle
- + + - - +

11. Implicit

Termination
+ + + + + +

State based

patterns

12. Deferred

choice
+ - + + - +

13. Interleaved

parallel routing
+ - - - - -

14. Milestone - - - + - -

Cancellation

Patterns

15. Cancel

activity
+ + + + - +

16. Cancel case + - ± + - +

New Patterns

17. Structured

loop
+ + + + - +

18. Transient

trigger
- - - + - -

19. Persistent

trigger
- - + + - -

20. Cancel

multiple
+ - + + - -

120

instance activity

21. Completed

multiple

instance activity

+ - - + - -

22. Cancelling

discriminator
+ - - + - +

23. Structured

N-out-of-M join
+ - + + + +

24. Cancelling

N-out-of-M join
- - - + - +

25. Local

synchronizing

merge

- - - + + +

26. Critical

section
+ - + - - -

27. Interleaved

routing
+ - + - - -

Decision

Mechanisms

28. If-then-else + + + + + ±

29. Switch + + + + - -

30.

Argumentation

rules

- + + + - -

31. Preference

for options
+ - - + - -

As we discussed previously, we need to find the coverage that our ontology should have in

order to be used as a comprehensive DKO. This survey found the workflow patterns that

CPG-DKO should be capable of representing. Not only these workflow patterns should be

121

representable, but also all their variants in order to deal with difference in granularity. For

instance, if we are able to represent cyclic tasks, all the possible variants are needed to be

supported in order to successfully use the developed ontology as a comprehensive DKO.

4.4. OWL-DL Implementation of the CPG Domain Knowledge Ontology

We discussed the workflow patterns and their variants are needed to be modelled CPG-

DKO. In this section, we discuss how each of the workflow patterns is represented in terms

of OWL classes, properties and instances. Figure 4.2 (a) shows the class hierarchy of the

CPG-DKO. In Figure 4.2 (b) class Task is expanded to show more details of this ontology.

122

(a) (b)

Figure 4.2 (a) Class hierarchy of CPG-DKO. Please note that class Task is not expanded.

(b) Subclasses of the Task class.

In this section of the thesis, we go through some of the identified workflow patterns and

discuss the classes used to represent those patterns, their associated properties and instances

and their purposes. TURTLE syntax is used to write OWL triples of our ontology. In order

123

to easily identify classes, properties and instances in the text, class names are italicized and

their first letter are capitalized (e.g. ClassNameExample), property names are italicized (e.g.

propertyExample) and instance names are underlined (e.g. instanceExample). Please note

that the Sequence, Precondition, Multi-choice, Simple merge, Exclusive Choice,

Synchronization, Parallel Split and Nesting of guidelines have been reused from the

existing NICHE CPG ontologies and the rest of the implementation is our contribution.

Sequence

A simple object property can be easily used to assert the sequence in which tasks should be

executed in a CPG execution engine. This property is called hasNext. Domain and range of

this class are Task class. This class is used to model medical tasks in our ontology. As an

example, assume two medical tasks called t1 and t2 exist in a CPG and we want to assert

that task t2 should be executed after task t1. We simply use the hasNext property and assert

the following triple in our ontology: “:t1 :hasNext :t2”. This property helps the execution

engine to activate the task t2 when the task t1 is finished. This property has been reused

from existing NICHE ontologies.

Nesting of guideline

Tasks may be composed of several sub-tasks. An obvious example of this situation is the

CPG itself that is composed of several sub-tasks that should be completed in order to

consider the CPG as a completed task as well. hasTask property(inverse of isTaskOf) with

the domain and range of Task is defined to assign subtasks to a composite task.

hasFirstTask (inverse of isFirstTaskOf) is a sub property of hasTask that indicates the first

subtask to be executed among all the subtasks. For instance, in order to capture cpg1 has

subtasks t1 and t2 and t1 is the first task that should be executed among the subtasks, the

following triples will be asserted:

:cpg1 a CPG;

:hasFirstTask :t1;

124

:hasTask :t2.

CPG is the class that represents the Clinical Practice Guidelines. More levels of nesting are

possible by assigning composite tasks as tasks of other tasks. Tasks with no subtasks

belong to the class AtomicTask. These properties are reused from existing NICHE

ontologies.

Parallel Split

Split class represents this pattern. This class has the hasBranch property (inverse of

isBranchOf) with the domain of Split and range of Task. This property points to the tasks

that may be executed in parallel upon activation of the split point. The following example

shows a split with 4 tasks that may be executed in parallel when the execution engine

reaches that split point. We call this workflow structure also as the Branch structure.

:b1 a Split;

 :hasBranch :t1,:t2,:t3,:t4.

This part of the ontology is reused from existing NICHE ontologies.

Synchronization

Synch class represents this pattern. Instances of the Synch class indicate what tasks are

synchronized using the property isWaitingForTask (inverse of isWaitedBy) with the domain

of Synch and range of Task. Cardinality class, hasCardinalityType and

hasCardinalityValue properties can be used to define how many of the parallel paths should

complete in order to pass the execution to the next task after the Synch point. They are used

in the same fashion that condition satisfaction criteria have been defined. The following

example shows a synchronization point that is waiting for 4 parallel paths. Completion of

minimum 2 out of 4 parallel paths leads to passing the execution to the next task after the

Synch point.

125

:s1 a :Synch;

 :isWaitingForTask :t1,:t2,:t3,:t4;

 :hasCardinalityType :min;

 :hasNumericValueForCardinality “2”^^xsd:positiveInteger.

This part of the ontology is reused from existing NICHE ontologies.

Exclusive Choice

ExclusiveChoice class is a subclass of Branch class with the cardinality type of max and

cardinality value of one. It is execution engine’s responsibility to perform the execution

correctly by asking the user which paths he or she wants to execute. This class is defined as

follows:

:ExclusiveChoice rdfs:subClassOf

[owl:intersectionOf(

 :Split

 [a owl:Restriction;

 owl:onProperty :hasCardinalityType;

 owl:hasValue :max

]

 [a owl:Restriction;

 owl:onProperty :hasCardinalityTypeValue;

 owl:hasValue “1”^^xsd:positiveInteger

]

)].

Simple merge

This pattern is a Synch point with the cardinality type of min and cardinality value of 1. In

order to assert that, the SimpleMerge class is defined as follows:

126

:SimpleMerge rdfs:subClassOf

[owl:intersectionOf(

 :Synch

 [a owl:Restriction;

 owl:onProperty :hasCardinalityType;

 owl:hasValue :min

]

 [a owl:Restriction;

 owl:onProperty :hasCardinalityTypeValue;

 owl:hasValue “1”^^xsd:positiveInteger

]

)].

Multi-choice

MultipleOptionDecision class represents this pattern and hasOption property (inverse of

isOptionOf) with the domain of MultipleOptionDecision and range of BooleanOutcome

points to the outcomes that may lead to activation of their assigned branches. These

outcomes are used as conditions for the first task of the paths. A selected option is an

outcome that has happened as a result of execution the instance of the

MultipleOptionDecision.

We again use the Cardinality class, hasCardinalityType property and

hasNumericValueForCardinality as we used in preconditions pattern to indicate how many

branches are allowed to be activated when the branch step has been reached. The following

example shows a multi-choice pattern which has 4 possible options. The user or the

execution engine can choose no more than two of the options:

:Choose_a_BP_Medication a :MultipleOptionDecision

:hasOption :Aldactone, :Dyrenium, :Lasix, :Lozol;

:hasCardinalityType :max;

:hasNumericValueForCardinality “2”^^xsd:positiveInteger.

127

:take_Aldactone :hasCondition :Aldactone.

:take_Dyrenium :hasCondition :Dyrenium.

:take_Lasix :hasCondition :Lasix.

:take_Lozol :hasCondition :Lozol.

When the execution engine reaches Choose_a_BP_Medication, it shows the outcomes

Aldactone Dyrenium, Lasix, Lozol as the options to the user. Selection of any of the

options leads to execution of the corresponding path.

Switch

Instances of the Switch class represent this pattern. hasSwitchCondition property (inverse of

isSwitchConditionOf) with the domain of Switch and the range of Condition indicates what

conditions lead to activation of the switch tasks. When a condition of the switch construct is

satisfied, the property hasAssociatedPath with the domain of Condition and range of Task

indicates what task should be executed as a result. Since only one task can be activated, if

two or more conditions are satisfied, we use the transitive property

hasPriorityOverCondition with the domain and range of Condition to indicate what

conditions have more priority over others. The example below shows how a switch with

three conditions can be modeled in our ontology.

:switch1 a :Switch;

 :hasSwitchCondition :sc1;

 :hasSwitchCondition :sc2;

 :hasSwitchCondition :sc3.

:sc1 :hasPriorityOverCondition :sc2.

:sc2 :hasPriorityOverCondition :sc3.

:sc1 :hasAssociatedPath :t1.

:sc2 :hasAssociatedPath :t2.

128

:sc3 :hasAssociatedPath :t3.

We did not include implementation of the rest of the workflow patterns due to space

limitations.

4.5. Conclusion

Review of the existing CPG representation languages shows that they are able to represent

a wide range of workflow patterns. However, besides the basic workflow patterns, there is

not much of overlap between the supported workflow patterns. Moreover, the supported

workflow patterns can be described with different detail levels. Hence, none of these

languages can be used as a comprehensive domain knowledge ontology due to lack of (1)

enough coverage of the domain knowledge and (2) expressivity to represent details of the

covered knowledge. To address this problem, we developed a background CPG ontology

based on our survey of the existence of workflow patterns in prominent CPG representation

languages. In comparison to the existing CPG representation languages, CPG-KPO can

represent the most comprehensive set of workflow patterns. This ontology is especially

superior to NICHE CPG ontologies as they only support basic control flow patterns

discussed in Table 4.1. Therefore, we believe this ontology can alleviate the lack of enough

overlap between several CPG ontologies. CPG-DKO can represent not only all the

identified workflow patterns but also all their identified variations. Therefore, this ontology

can also alleviate the differences in granularity level of CPG ontologies.

A limitation of our research is that CPG-DKO bears several resemblances to NICHE CPG

ontologies because of reusing their implementation of the basic control workflow patterns

in CPG-DKO. Hence, CPG-DKO might be more effective when used as the background

ontology of the NICHE CPG ontologies. Evaluations using other CPG ontologies can shed

light on usefulness of CPG-DKO as the background ontology for other CPG ontologies.

Results of this evaluation can be used to further improve this ontology.

129

CHAPTER 5: EXPRESSION ONTOLOGY

5.1. Introduction

We developed a CPG-DKO in the previous section of the thesis in order to be used as an

Interlingua between several heterogeneous CPG ontologies. CPG deal with qualitative

data—the data is either being measured by a device or is calculated using a set of patient

data items. Clinical decisions are based on such qualitative analysis of the data. However,

even though ontologically modelled CPG may contain mathematical, Boolean and string

manipulation and comparison functions, CPG-DKO is unable to represent this aspect of

CPG representation. This is a great hindrance to representation of different heterogeneous

CPG ontologies in CPG-DKO. Moreover, to execute CPG, we need to have the ability to

represent and perform mathematical functions on clinical data. The outputs of these

functions guide the clinical decisions and the ensuing clinical workflows.

In a logical framework, such as an ontology, there are no natural mechanisms to handle

quantitative data processing vis-à-vis mathematical functions. Therefore, there is a need to

develop a formal representation scheme for the enacting mathematical functions in a

semantic web framework. In this chapter, we present a dedicated expression ontology in

OWL-DL called Expression Ontology that was developed to process quantitative clinical

data to support the execution of a CPG. This ontology is in OWL-DL due to using

constructs such as owl:hasValue that pushes the ontology out of OWL-lite to OWL-DL.

Moreover, this ontology is not in OWL-Full as we did not use any of OWL-Full capabilities

such as mixture of classes, properties and instances. The expression ontology works in

tandem with the execution engine, which utilizes OWL and SWRL reasoning services for

execution.

SWRL language has been used to implement the execution semantics of the expression

ontology. SWRL offers a range of built-ins to execute expressions to perform mathematical

and Boolean computations and to perform string manipulation. Using OWL and SWRL

130

creates a unified representation and execution formalism for both CPG and expressions.

Moreover, SWRL allows writing rules using OWL classes, properties and instances. This

enables the definition of expressions that utilize the structure of the ontology that can be

reasoned over. For instance, it can check the membership of an instance in a specific OWL

class and use the result as the precondition for execution of the rule.

5.2. Expression Ontology Engineering

We used the same ontology development methodology used for development of CPG-DKO

in section 4.2 to develop the expression ontology. The steps of this ontology development

methodology are depicted in Figure 4.1. We discuss the details of each of these steps in the

development of the expression ontology in the rest of this section.

Step 1. Determine the domain, scope and purpose of the ontology

We need an ontology that is able to represent numerical, string and Boolean manipulation

and comparison functions and their combinations–i.e. expressions–and their effects in the

decision making process of CPG execution. Moreover, the ontologically represented

expressions should be interpreted according to the patients’ data during the execution in

order to deliver successful clinical decision support. For instance, ontologically represented

BMI formula should be computed during execution when patient’s data are available in

order to make decisions regarding obesity. For execution time interpretation of the

expressions, the execution semantics should be captured in a computer understandable

format. To put it simply, we need an ontology for representation and execution of

mathematical, Boolean and string manipulation and comparison in a semantic web based

framework.

Step 2. Considering re-using existing ontologies

In the CPG modeling literature we note that most major CPG representation formalisms,

such as GLIF, EON, GLIF, PROforma and GASTON, have a dedicated expression

131

language that supports mathematical, comparison operators and logical rules to represent

the decision criteria, preconditions, post conditions and decisional rules. GELLO [92] is an

example of an expression language developed for GLIF. However, we believe that

developing a new expression ontology in OWL is a superior solution to reusing these

existing languages due to the following reasons:

 In order to use an existing expression language such as GELLO in our OWL-based

CPG execution engine, an interface program should be written which transfers the

data and from our CPG ontology to the GELLO executer and transfers the results

back. We will be then facing the questions when and how a transfer should happen.

 Besides an interface program, there should also be a parser and an execution engine

for that expression language that works in tandem with the CPG execution engine.

However, using OWL and SWRL enables us to use the same OWL reasoner used

for execution of CPG, to interpret expressions as well. Therefore, all the execution

related tasks are performed in unified reasoning framework.

 We are using OWL ontologies to model CPG in a computer interpretable format.

Therefore, the modelling of expressions in OWL creates a unified representation

framework for modeling CPG and the related data processing operators. This

increases the shareability of the computerized CPG as a lower number of softwares

components are needed to modify, visualize and execute them.

Due to high levels of expressivity in the existing expression languages of CPG

representation languages [34][88][108][133][134][135][136][138][137][140][155], our

intent is not to create a new language that is more expressive or efficient compared to the

existing ones. Rather, our objectives for developing a dedicated expression ontology for

modelling and execution of CPG and their expressions in a unified representation and

reasoning framework.

 Step 3: Enumerate important terms in the ontology

132

In this step of the ontology development methodology, we need to create a list of concepts

that our ontology is going to represent. Review of the CPG representation language shows

that these languages commonly support the following concepts: Function, Variable,

Operator, Input and Output. A function represents the smallest computation entity. A

function takes one or more inputs, perform an operation on them and produce an output.

Inputs can be predefined values or variables and outputs can only be variables. Different

expression languages support different types of variables and operators. Boolean, string and

numerical variables are the most common supported variable types. Depending on the

variables used in a function, different types of operators may be utilized for manipulation of

the data or comparing them. Table 5.1 shows the operators associated with each type of

variables.

Table 5.1 Common manipulation and comparison operators for Boolean, numerical and

string variables in CPG expression languages

String Variables Numbers Variables
Boolean

Values

Manipulation

Operators

Comparison

Operators

Manipulation

Operators

Comparison

Operators

Manipulation

Operators

Concatenation =

≠

+

-

/

*

=

<

>

<=

>=

≠

And

Or

Xor

Not

Table 5.1 shows the types of variables and their associated operators that our ontology

needs to model. Please note that we are reusing the existing expression languages at the

knowledge level by remodelling their concepts in our ontology rather than reusing them at

the implementation level by reusing their actual implementations in their original format.

133

 Step 4 and 5: Implementation

We implemented this ontology in two steps: (1) We first implemented classes, properties

and instances that represent the concepts identified in the previous step of the ontology

development; (2) We then implemented the execution semantics in SWRL language.

SWRL rules are written to enable an OWL reasoner with SWRL support to execute the

expression represented in our expression ontology. The developed ontology in the first step

is discussed in section 5.3 and the SWRL rules written to execute expressions are disused in

section 5.4

 Step 6: Instantiation

We instantiated the expression ontology in order to represent the expressions in several real

and imaginary CPG.

 Cycling through steps of the ontology development methodology

For each of the modelled operators we created a function that utilized that operator. We

then fed each function with at least two different input sets and validated the output. If any

of the outputs were not correct, we would check the classes, properties and instances related

and the SWRL rules associated to it. We went through the ontology development twice.

After finishing the second cycle, we did not come across a miscalculation in any of the

operators.

5.3. Expression Ontology in OWL-DL

In order to easily identify classes, properties and instances in the text, class names are

Italicized and their first letter are Capitalized (e.g. ClassNameExample), property names are

italicized (e.g. propertyNameExample) and instance names are underlined (e.g.

instanceNameExample). Figure 5.1 shows the class hierarchy, data type and object

properties of the ontology. The purpose of each of the classes and then its associated

134

properties are described. Moreover, a practical example in each subsection has been

discussed.

(a) Class Hierarchy (b) Object Properties (c) Data Type Properties

Figure 5.1 (a) Class hierarchy, (b) object properties and (c) data type properties of the

Expression Ontology

5.3.1. Variables

Expression variables are represented by the Variable class. Boolean, string and numerical

variables are represented by the following subclasses of the Variable class respectively:

BooleanVariable, StringVariable and NumericalVariable. Table 5.2 shows the data type

properties that can be used to assign values to these variables. All of these properties are

sub properties of the topDataProperty data type property.

135

Table 5.2 Datatype properties that are used to assign values to variable in the Expression
Ontology, their domains and ranges

Property Domain Range

variableHasBooleanValue BooleanVariable xsd:boolean

variableHasStringValue StringVariable xsd:string

variableHasNumericalValue NumericalVariable xsd:float

variableHasValue Variable

As an example, imagine that weights of patients are retrieved from an EMR during

execution and compared to 84kg in order to make a decision regarding the dosage of the

Synthroid drug. The following instances of the NumericVariable class represent these two

variables:

:patientsWeight a :NumericVariable. # patient’s weight

:weightThreshold a :NumericVariable; # threshold

 :variableHasNumericalValue “84”^^xsd:float.

If we assume that EMR shows that the patient weighs 95kg the following triple is added to

the ontology to reflect this fact:

:patientsWeight :variableHasNumericalValue “95”^^xsd:float.

5.3.2. Functions, Inputs and Outputs

As we discussed previously, a function is the smallest entity for manipulation or

comparison of data. Class Function represents this concept. Each function accepts two

inputs and an operator and generates an output. Table 5.3 shows the properties used to

assign these items to a function.

136

Table 5.3 Properties used to assign the input and output variables and operator to

functions in the Expression Ontology

Property Domain Range Inverse Property

functionHasInputVariable1 Function Variable isInputOfFunction

functionHasInputVariable2 Function Variable isInputOfFunction

functionHasOperator Function Operator isOperatorOfFunction

functionHasOutputVariable Function Variable isOutputOfFunction

We continue our weight comparison example to depict how these properties are used to

define a function that can be used in a real CPG. The following instantiation shows a

function that accepts the variables patientsWeight and weightThreshold from our previous

example:

:weight_comparison_function a :Function;

 :functionHasInputVariable1 :patientsWeight;

 :functionHasInputVariable2 :weightThreshold;

In order to make use of the comparison result for decision making, the output of the above

function should be captured in a Boolean variable using property

functionHasOutputVariable:

:weight_comparison_result a :BooleanVariable.

:weight_comparison_function a :Function;

 :functionHasInputVariable1 :patientsWeight;

 :functionHasInputVariable2 :weightThreshold;

 :functionHasOutputVariable :weight_comparison_result.

The value of the weight_comparison_results is assigned to it by the CPG execution engine

during the execution using property variableHasBooleanValue. We yet have to define the

137

type of comparison that this function performs on its input data. We discuss the concepts of

operators in the next subsection.

5.3.3. Operators

Each function has exactly one operator indicated using the functional property

functionHasOperator with the domain of Function and range of Operator. The Operator

class represents different types of operations representable in our expression languages.

Figure 5.1 shows the sub classes of the Operator class. Classes BooleanOperator,

MathOperator and StringOperator represent the manipulation operators and classes

MathComparatorOperator and StringComparatorOperator represent the comparator

operators.

Operator of a function determines the type of output it has. For instance, if a function is

using any of the comparator operators the outcome will be BooleanVariable. The following

triples assert this fact:

[a owl:Restriction;

 owl:onProperty :functionHasOperator

 owl:someValuesFrom :CompratorOperator

]

rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :functionHasOutput

 owl:allValuesFrom :BooleanVariable

].

Therefore, if we assign a numerical variable to output of a comparator function, expression

ontology becomes inconsistent. This makes the ontology instantiation process less error-

prone and easier to debug. Several other similar OWL triples have been added to

expression ontology to assert the type of outputs that functions should have based on their

138

operators. Continuing from our example in which we defined the function

weight_comparison_function, we define the operator for this function:

:weight_comparison_function a :Function;

 :functionHasInputVariable1 :patientsWeight;

 :functionHasInputVariable2 :weightThreshold;

 :functionHasOutputVariable :weight_comparison_result;

 :functionHasOperator :gtMO.# greater than

In the above example, the value of the weight_comparison_result will be true if

patientsWeight > weightThreshold and false otherwise.

5.3.4. Expression Ontology Instantiation Examples

To further familiarize the reader with our expression ontology, we go through two

examples.

Example1. In this example, we create a function with two input variables

synthroid_Pill_Dose and number_Of_pills_taken. This function multiplies these numbers

and assigns the value to the variable total_TSH_Dosage. Function f1 is defined as follows:

:f1 :functionHasInputVariable1 :synthroid_Pill_Dose;

 :functionHasInputVariable1 :number_Of_pills_taken;

 :functionHasOutputVariable :total_TSH_Dosage;

 :functionHasOperator :multiplyMO.

Now if we assign values 3 and 6 to a and b using the following triples

:synthroid_Pill_Dose :variableHasNumericalValue “.075”^^xsd:float.

:number_Of_pills_taken :variableHasNumericalValue “3”^^xsd:int.

We want the following triple to be added to our ontology:

:total_TSH_Dosage :variableHasNumericalValue “.225”^^xsd:float.

139

As we will see later in section 5.4, this calculation is performed using SWRL built-ins.

Example2. In this example, we use the result from our previous example to decide if

synthroid_Pill_Dose multiplied by number_Of_pills_taken is bigger than “.3”. If that is the

case and the TSH is more than normal, patient should be advised to lose weight. Therefore,

TSH_biggerthan_point_three that is output of the function f2, is reused as the precondition

of advise_patient_to_lose_weight. Function f2 is defined as follows:

:f2 :functionHasInputVariable1 :total_TSH_Dosage;

 :functionHasInputVariable2 “.3”^^xsd:float;

 :functionHasOutputVariable :TSH_biggerthan_point_three;

 :functionHasOperator :gtMO.

:advise_patient_to_lose_weight a :Task;

:hasCondition :TSH_biggerthan_point_three, :TSH_High;

:hasCardinalityType :all.

5.4. Execution Semantics of Expression Ontology in SWRL

As we mentioned earlier, we need to define the execution semantics of the expression

language in order to be able to calculate the results of expressions using an OWL reasoner.

Thus, we write SWRL rules that enable dynamic calculation of results of functions as their

inputs become available during the execution. Please note that these rules are only used by

the OWL reasoner and a user who instantiates this ontology does not need to be aware of

their existence. In order to describe the general structure of these SWRL rules, we discuss

the rule written for handling addMO (+) mathematical operator in details:

functionHasInputVariable1(?f1,?iv1) ^

functionHasInputVariable2(?f1,?iv2) ^

functionHasOutputVariable(?f1,?ovar) ^

functionHasOperator(?f1,:addMO) ^

variableHasNumericValue(?iv1,?v1) ^

140

variableHasNumericValue(?iv2,?v2) ^

swrlb:add(?v1PlusV2,?v1,?v2)

-> variableHasNumericValue(?ovar,?v1PlusV2)

In order to describe the values assigned to SWRL variables in the above rule, we discuss

the working of this rule for the following function instantiated in the expression ontology:

:func1 a :Function;

 :functionHasInputVariable1 :a;

 :functionHasInputVariable2 :b;

 :functionHasOutputVariable :c;

 :functionHasOperator :addMO.

:a :variableHasNumericValue “8”^^xsd:float.

:b :variableHasNumericValue “3”^^xsd:float.

The above example shows a function that adds the value of a and b expression variables

and puts the result in expression variable c. We are assuming that values of variables a and

b are 8 and 3 respectively at this specific moment of the execution.

In the remainder of this section, we discuss the general structure of the written SWRL rules

and give examples from func1 that makes use of the addMO operator. Each rule is

composed of four parts that have the following purposes:

1. Identifying the input values of the functions when available and assign them to

SWRL variable.

The following SWRL axioms in the body of the rule find the input variables and the output

variable from the expression ontology using properties functionHasInputVariable1,

functionHasInputVariable2 and functionHasOutputVariable and assign them to SWRL

variables ?iv1, ?iv2 and ?ov respectively:

functionHasInputVariable1(?f1,?iv1) ^

functionHasInputVariable2(?f1,?iv2) ^

141

functionHasOutputVariable(?f1,?ov)

Table 5.4 shows the expression ontology elements that are assigned to SWRL variables ?iv,

?iv2, ?ov and ?f1 for execution of func1. Depending on the type of expression variables,

different properties are used to access their values. If a variable is an instance of the

BooleanVariable, StringVariable or NumericVariable, properties

variableHasBooleanValue, variableHasStringValue or variableHasNumericVariable will

be used to access their values respectively. Since addMO inputs are numerical variables, we

use the property variableHasNumericVariable in this SWRL rule to find the values of the

input variables:

variableHasNumericVariable(?iv1,?v1)^

variableHasNumericVariable(?iv2,?v2)^

As a result of execution of this part of the SWRL body in our example, values 8 and 3 are

assigned to ?v1 and ?v2 SWRL variables. Please note that if the input variables have no

values yet, no values are assigned to ?v1 and ?v2 and this rule will not be executed.

Table 5.4 Values assigned to SWRL variables during execution of a function with

addMO operator

SWRL

Variable

Assigned Value
from Expression
Ontology

?f1 func1

?iv1 a

?iv2 b

?ov c

?v1 8

?v2 3

142

2. Identifying the operator

This part of the SWRL rules checks the operator of the function using property

functionHasOperator. If the function’s operator is what the SWRL rule is intended for, the

SWRL rule will be executed. For instance, the following SWRL axiom acts as a

precondition and lets the SWRL rule to be executed if the value of the property

functionHasOperator is addMO:

functionHasOperator(?f1,:addMO)

If the operator of the function is not addMO, this SWRL rules does not apply to it.

3. Calculating the results of the operation.

This part of the rule performs the operation identified in the previous parts of the rule on

the input values. Since the SWRL built-in that corresponds addMO is swrlb:add, the

following axioms performs the addition operation on ?v1 and ?v2 and puts the result in

SWRL variable ?v1PlusV2:

swrlb:add(?v1PlusV2,?v1,?v2)

As a result of execution of this part of the SWRL rule in our example, value 11 is assigned

to SWRL variable ?v1PlusV2.

4. Assigning the results to the output variable of the function.

The SWRL variable ?v1PlusV2 represents the result of the addition and the SWRL variable

?ovar represents c that is the output variable of func1. We just need to assign?v1PlusV2 as

the value of the property variableHasNumericVariable to ?ov using the following axiom in

the head of the SWRL rule:

variableHasNumericValue(?ov,?v1PlusV2)

143

As the result of execution of the abovementioned rule in our example, 11 will be assigned

to variable c as the value of the property variableHasNumericValue. Please note that this

SWRL rule is not specific to func1 and can execute any instantiation of the Function class

that uses addMO as its operator.

5.5. Conclusion

As we discussed previously, DKO should be covering every aspect of the domain

knowledge in order to be used as the background ontology in our knowledge morphing

framework. An aspect of CPG domain knowledge that was not covered in CPG-DKO was

representation of the expressions. Expression ontology aims at filling this gap in order to

provide CPG-DKO with more coverage of the CPG domain knowledge. This ontology

allows a CPG encoder to define functions that use a wide range of useful operators to

perform mathematical, string and logical operations, perform comparisons and use the

result in the decision making process of our execution engine. Our expression ontology and

its execution semantics along with our CPG ontology provides us with a unified formalism

for both representation and execution of CPG.

We like to point out that this is the first attempt to represent and execute expressions in an

ontology. Even though our ontology is not capable of representing very complex

expressions such as sets, bags, temporal expressions, etc. it is a start for developing OWL

ontologies for representation of more complex expressions.

A disadvantage of using OWL and SWRL for implementation of expressions is inability to

execute the operators that are not supported by SWRL. Albeit it is possible to extend

SWRL with new built-ins, it can harm the shareability of the computerized CPG as the

extension code is reasoner-specific.

An improvement of this research will be a formal syntax for the our expression language.

Defining formal syntax makes it possible to write programs that can parse and check the

syntax for correctness. Another important improvement can be increasing the

144

expressiveness of the language using more XML data types and SWRL built-ins. It is also

possible to improve the expressiveness of the expression ontology using query languages

such as SPARQLE [130].

145

CHAPTER 6: OWL-BASED KNOWLEDGE EXECUTION ENGINE

6.1. Introduction

In ontology-based DSS, an execution algorithm is utilized to perform reasoning on the

input ontologies in order to derive the best decision according to current state of the

problem and user’s input. This execution algorithm defines (1) the details of the reasoning

process, (2) the ontology elements that are involved in this process and (3) the frequency

that this reasoning process is needed. We believe that a general knowledge execution

algorithm is not possible to be developed as each domain area has its own subtleties that

demands specialized reasoning algorithms for decision making. Moreover, we also believe

that a general knowledge execution algorithm for a particular domain area is not feasible

either as this algorithm operates directly on a specific ontology that can be quite different

compared to other ontologies of that domain. For instance, a knowledge execution

algorithm developed for instances of ontology O1 will not be able to operate on instances

of ontology O2 due to difference in the class, properties and instances used for knowledge

representation. Thus, not only we believe that each domain area needs a specialized

execution algorithm but also every ontology in that domain area. Since the input of our

knowledge morphing framework are ontologically modeled CPG in DKO, we develop a

knowledge execution algorithm for CPG modeled in DKO. The module that runs this

algorithm is called CPG Execution Algorithm.

Functionally speaking, a CPG execution engine interprets the procedural and decision logic

inherent within the computerized CPG and in conjunction with patient data and physician’s

input. In other words, the CPG execution engine orchestrates the executional flow of the

CPG—i.e. stipulating the ordering of clinical tasks, evaluating the satisfaction of criteria of

decisions, constraints, conditions and responding to outcomes of clinical tasks—to provide

patient-specific and disease-specific recommendations about care interventions and clinical

decision making. The execution of CPG is one of the most challenging topics in health

informatics in general and healthcare knowledge management in particular. CPG

146

encapsulate highly complex elements in terms of domain knowledge, decision logic,

clinical constraints, set of clinical actions and temporal relations; therefore the execution of

a computerized CPG needs to monitor and handle such complexities in line with the

specific patient data and the institution’s operational conditions. In operation, a CPG

execution engine, therefore, operates as (a) interpreter of the CPG knowledge represented

in a specific health knowledge representation formalism; (b) operator of the CPG decision

logic under different clinical situations; (c) orchestrator of the CPG process model to

manage the CPG workflow; and (d) monitor of the clinical triggers and temporal

constraints.

There are two main approaches to develop CPG execution engines: (i) A dedicated CPG

execution engine approach stipulates the development of a specialized execution engines

that are specific to a particular CPG representation formalism. In this regard, quite a few

CPG representation formalisms, in particular GLIF [133] and EON [137], have specialized

CPG execution engines that apply a graph parsing approach which treats the CPG as a

graph and executes the CPG steps as a graph-based state transition problem; (ii) A

transformation approach that transforms the original CPG representation scheme to an

existing knowledge processing/inferencing method, such as Petri nets, etc, and then exploits

existing execution engines supporting the standard knowledge processing method [140].

PROforma [136] and GASTON [134] execution engines are developed with this approach.

The emergence of Semantic Web technologies has offered new ways of developing

knowledge-centric CPG-based CDSS. In a semantic web paradigm, the clinical knowledge

and workflows encapsulated within a CPG can be modeled and computerized using a

semantically-rich formalism—i.e. an ontology using the Web Ontology Language

(OWL) [142]—and the ontologically-modeled CPG can be executed by reasoning over the

CPG’s execution logic captured using logical rules. The use of OWL ontologies as

knowledge representation formalisms for representing CPG is quite profound and is used

by several CPG computerization formalisms [106][133]0[145].

147

We argue that the existing CPG execution engines, both graph-based and transformation

based approaches that use OWL-based ontologies to model the CPG, do not attempt to

exploit the reasoning capabilities offered by OWL to provide a generic execution engine.

Reasoning services offered by OWL can be readily applied to execute CPG that are

modeled using OWL. The advantage of our approach is the realization of a native OWL-

based environment for both the representation and execution of CPG such that both the

form and function of a CPG is captured by representational structures. More so, this will

help to realize a generic OWL-based CPG execution engine supporting OWL-based CPG

models.

CPG-DKO

OWL-DL

 Open World

 Non-Unique Naming

 Precondition Handling

 State Transitions

OWL-2

 OWL-DL Expressivity

 Efficient Condition

Handling

 Data Type Expressivity

SWRL

 OWL-DL Expressivity

 Enhanced Data-Type

Expressivity

 Loops

OWL-DL

Execution

Engine

OWL 2

Execution

Engine

SWRL

Execution

Engine

Processed CPG
P

re
-P

ro
c

e
s

s
in

g

Paper-based

CPG

Figure 6.1 Schematic of our CPG modeling and execution approach.

In this chapter of the thesis we present a CPG modeling and execution framework (shown

in Figure 6.1) that comprises two main elements:

a) OWL based CPG ontology:

148

for modeling a CPG in terms of an ontological model—the CPG ontology entails a rich

representation of CPG based concepts, relations and axioms. The computerization of a CPG

is achieved by instantiating it using CPG-DKO in chapter 4 of the thesis.

b) OWL-based CPG execution engine:

This engine is capable of executing a CPG, modeled using the CPG ontology, in terms of

suggesting CPG-mediated recommendations in line with a clinical case, patient data and

clinician decisions. To develop the CPG execution engine we investigated different variants

of OWL, each offering a different degree of expressivity and executional capabilities. We

have developed three variants of OWL-based CPG execution engines as follows:

 OWL-DL based CPG execution engine: CPG execution engine based on OWL-

DL [142] (a sub-language of OWL) is the most basic execution engine that offers

reasoning services that are sufficient for executing a range of simple CPG

constructs, such as: (a) Handling of state transitions for the various CPG tasks being

executed, (b) Ordering of medical tasks, (c) Evaluation of conditions of tasks, (d)

Responding to outcomes of medical tasks, (e) Handling decisions, (f) Support for

the following workflow structures: branch, synchronization, deferred choice,

interleaved routing, multiple option decision, split, switch, triggers and while loops,

(g) Handling nesting of procedures within CPG. However, this particular CPG

execution engine has certain limitations that are inherited from the lack of

expressiveness of OWL-DL such as: lack of data type expressivity, Qualified

Cardinality Restrictions [151] (QCR) and relational expressivity. This renders the

CPG execution engine unable to handle operations on data.

 OWL 2 based CPG execution engine: CPG execution engine utilizing OWL 2

RL [152] (a profile of OWL 2) offers additional expressivity to handle (a) user

defined data ranges; (b) Some while loops; and (c) more efficient condition

149

handling. OWL 2 [153] offers qualified cardinality restriction handling which we

have employed in our OWL 2 based execution engine to check the satisfaction of

conditions for the activation of tasks that demand certain conditions to be satisfied

before being executed. This execution engine can also handle conditions which

entail the satisfaction of user defined ranges to compare numeric values of datatype

properties (e.g. hasAge property) with predefined values (e.g. 18). In this way, the

lack of data type expressivity that was noted in OWL-DL has been partially

addressed since OWL 2 still lacks advance data type expressivity capabilities, such

as handling of variables and Mathematical/String manipulation functions that are

necessary for the execution of other more complex CPG tasks.

 OWL-DL + SWRL based CPG execution engine: This engine offers advance

data manipulation capabilities that are not available in the earlier CPG execution

engines. SWRL extends the expressivity of OWL by including Horn-like rules to

the OWL knowledge base, thus providing a range of built-in functions that enable:

(a) the computation of mathematical functions (e.g. multiplication) by using the

SWRL rules that have been written to support the operators in our expression

ontology described in chapter 5 of the thesis, (b) comparison of values of data type

properties and (c) the ability to support for the following workflow structures:

executional state condition, force to state and for loop. This is the most advance

CPG execution engine, whereby SWRL rules can be incorporated within the OWL-

DL based execution engine to enhance the expressivity and reasoning of OWL-DL.

In this section, we demonstrate the use of OWL reasoning services to develop the

abovementioned CPG execution engines. We will explain the evolution of the CPG

execution engines, starting with OWL-DL based execution engine to OWL-DL+SWRL

based execution engine, highlighting the rationale and the CPG executional capabilities for

each execution engine.

150

6.2. OWL-Based Execution of Clinical Practice Guidelines

In this section, we present our OWL-based CPG execution engines. The OWL-DL based

execution engine is the baseline execution engine which is capable of performing simple

CPG executional tasks, whereas for more complex executional capabilities (described later)

we use OWL 2 and SWRL to extend the functionalities of our CPG execution engines. For

the abovementioned CPG execution engines our CPG execution approach is:

 Ontology-based CPG Modeling: We use CPG-DKO described in chapter 4 of the

thesis to computerize a paper-based CPG in terms of an OWL-based model that

captures the CPG’s domain and functional concepts, workflow elements, decisional

aspects and patient/medical data.

 Adding State Transition Rules: Tasks go through several states during application

of a CPG to a patient in the real world. In order to simulate these state transitions in

our CPG execution engines, the rules governing these state transitions should be

carefully implemented to assure the correctness of the generated recommendations.

These rules are added manually to the CPG ontology. These state transition rules are

a part of CPG-DKO. Hence, they exist in any instantiation of the CPG ontology and

it is not needed to add them again to the instantiations.

 Pre-processing of CPG Model: To extend the expressivity of the OWL-based CPG

model—i.e. the CPG ontology—to handle high-level executional constructs we

preprocess the computerized CPG whereby additional execution-specific constructs

are added to the CPG ontology in order to prepare it for execution. Depending on

the complexity of the CPG and the executional capabilities sought, different pre-

processing steps are performed on the instantiated CPG ontology. This step is

performed fully automatically.

 Execution of CPG: Our CPG execution strategy is to query the CPG for active

tasks with respect to the CPG’s workflow and upon completion of a task insert

151

triples that indicate the completion of specific tasks, the data generated and the

decisions made by the healthcare professionals. The entire execution is managed

and monitored within the CPG ontology using an OWL reasoner.

In the following sections we described our OWL-DL, OWL 2 and SWRL based execution

engines.

6.2.1. OWL-DL based CPG Execution Engine

Functionally speaking, a CPG execution engine interprets a task’s state, responds to the

actions associated with the task, and enacts changes to the task’s stage in response to the

outcome of task’s actions. We have developed the following task state transition for this

purpose.

6.2.1.1. State Transition Model in OWL-DL based Execution Engine

To execute an ontologically-modeled CPG using an OWL reasoner, we have developed

executional semantics that determine: (a) the current state of a task described in the CPG,

and (b) the transition of tasks from one state to another in response to operations/actions

applied to a task. To control CPG execution, we have developed a CPG execution model

that comprises 5 states as follows:

1. inactive: Tasks that are not ready for execution yet. All tasks are in this state before the

execution starts.

2. active: Tasks that are ready for execution and either will proceed based on available data

or will be acted upon by a healthcare professional.

3. discarded: Tasks that will not be considered active and cannot be executed. The only

way for them to get activated is their repetition through a loop which is not supported in our

OWL-DL execution engine.

4. completed: Tasks that their execution is completed normally.

152

5. started: Tasks go to this state when they are under execution. For instance, composite

tasks that are under execution have this state.

Each one of these states is an instance of the class TaskState. To show that a task has one of

these specific states, hasTaskState property with the domain of Task and range of TaskState

is used. For instance, “:t1 hasTaskState :active” means that t1 is an active task in the CPG.

The state of a task can be either inferred by the OWL reasoner or can be forced by the

execution engine. Tasks that have states active, inactive, completed, started and discarded

are instances of classes ActiveTask, InactiveTask, CompletedTask, StartedTask and

DiscardedTask respectively by the following OWL construct and other similar ones.

[a owl:Restriction ;

 owl:onProperty :hasTaskState ;

 owl:hasValue :active]

 owl:equivalentClass :ActiveTask.

Instead of using “[a owl:Restriction; owl:onProperty :hasTaskState; owl:hasValue

:active]” we can simply use ActiveTask in the ontology. Please note the sole purpose of this

is to make the ontology less verbose and easier to read in the TURTLE syntax. Figure 6.2

shows possible state transitions during execution of a CPG.

i a s c

d

Non-routing Tasks Non-routing Tasks

Routing Tasks

Routing Tasks

Figure 6.2 State transitions in OWL-DL based execution engine (i = inactive, a = active, s

= started, c = completed, d = discarded). labels of the arcs show the kind of

task that may go through the indicated state transition.

153

State transition rules are manually added to CPG-DKO. We discuss the state transition rules

of the Task class instances as an example of these state transition rules. Please note that the

property hasTaskStateNewCandidate property with the domain of Task and range of

TaskState shows the candidate values for the new state of a task. It is execution engines

responsibility to select one of the candidates and assign the state to the task.

 Inactive  Active

An inactive non-routing task which includes instances of the AtomicTask, BagOfTasks,

CompositeTask, Cycle, Decision or Inquiry classes with satisfied condition criterion goes to

active if it is preceded by a completed task or it is the first task of the started composite task

or the first task of a bag of tasks. The following OWL axiom implement this state

transition:

[a owl:Class ;

 owl:intersectionOf (

 :InactiveTask

 :TaskWithSatisfiedCriterion

 [a owl:Class ;

 owl:unionOf (

 :AtomicTask :BagOfTasks

 :CompositeTask :Cycle :Decision :Inquiry)]

 [a owl:Class ;

 owl:unionOf (

 [a owl:Restriction ;

 owl:onProperty :hasPrevious ;#inverse of hasNext

 owl:someValuesFrom :CompletedTask

]

 [a owl:Restriction ;

 owl:onProperty :isTaskOf;

 owl:someValuesFrom [a owl:Class ;

 owl:intersectionOf (:BagOfTasks :StartedTask)]

154

])])]

rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :hasTaskStateNewCandidate ;

 owl:hasValue :active].

Having defined the abovementioned OWL axioms, an OWL reasoner will infer that a task

with the above criteria should get activated by asserting the value active for the property

hasTaskStateNewCandidate.

 Active Started

It is execution engine’s responsibility to change the state of a task from active to started

when the user indicates through the interface that he is in the process of doing the task.

 Started Completed

Same as “active  started” state transition, this state transition is initiated by the user when

he has completed an AtomicTask through the execution engine’s interface. However, this

state transition is inferred for instances of CompositeTask and BagOfTasks classes. These

tasks will be regarded as completed when all the sub-tasks are completed or discarded.

 All states Discarded

An active, started or inactive task goes to the discarded state if it is a sub-task of a

discarded step or all the preceding tasks are discarded:

[a owl:Class ;

 owl:intersectionOf (

 [owl:unionOf(:ActiveTask :StartedTask :InactiveTask)]

 [owl:unionOf(

 [a owl:Restriction ;

 owl:onProperty :isTaskOf ;

155

 owl:someValuesFrom :DiscardedTask

]

 [a owl:Restriction ;

 owl:onProperty :hasPrevious ;

 owl:allValuesFrom :DiscardedTask

]

)])]

rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :hasTaskStateNewCandidate ;

 owl:hasValue :discarded

] .

 Completed or Discarded Inactive

Tasks become inactive to be re-executed in the cycles.

6.2.1.2. Pre-processing Phase

To execute an ontologically-modeled CPG using OWL reasoners, we perform a CPG

transformation on instantiations of our CPG ontology whereby additional workflow

elements—i.e. specific properties, classes, instances and necessary relationships—are

augmented to the instantiated CPG ontology (as shown in Figure 6.1). Our transformation

is performed automatically and no manual editing of the ontology is needed.

In contrast to adding the state transition rules which is performed manually on the CPG

ontology only once, the pre-processing phase should be performed on instantiations of the

CPG ontology. CPG transformation involves the following activities:

6.2.1.2.1. Handling the Open World Assumption

Most of the OWL reasoners adopt the open world assumption. This assumption indicates

that absence of a statement does not mean it is false and no inference can be made from it.

156

For example, earlier we described a state transition rule which states that a task is a

CompletedTask if all of its sub-tasks are completed. Suppose t1 is a composite task whose

sub-tasks are t1-1 and t1-2 and they have the completed state. Since OWL adopts the open-

world assumption an OWL reasoner will not infer that all of the sub-tasks of t1 are

CompletedTasks because t1 might have more sub-tasks which are not included in this

ontology. We solve this problem by adding the following triples:

:t1 a [a owl:Restriction;

 owl:onProperty :hasTask;

 owl:cardinality 2].

This triple set clearly indicates that t1 is a member of class of tasks who has exactly two

different values for their hasTask property. The same process should be performed

wherever that owl:allValuesFrom is used in our CPG execution engine. Conditions,

condition combination points, synchronization points, and composite tasks makes use of

owl:allValuesFrom.

6.2.1.2.2. Handling the Non-Unique Naming Assumption

This assumption indicates that two different names may refer to the same entity in an

ontology. Continuing our previous example, since OWL adopts the non-unique naming

assumption the reasoner considers the possibility that t1-1 and t1-2 are different names for

the same task. Because of this possibility, completion of these two tasks is not enough for

the reasoner to infer that their super-task is completed too. The following triples should be

added during the pre-processing to make the reasoner to draw the desired inference.

:t1-1 owl:differentFrom :t1-2.

The same process should be performed wherever that owl:allValuesFrom is used.

6.2.1.2.3. Handling Conditions

157

Checking conditions of tasks to determine their eligibility for execution is an important

aspect of CPG execution. The condition satisfaction criteria can be “all”, “any” or “any k”.

Criteria for “all” and “any” are easily handled by using owl:allValuesFrom and

owl:someValuesFrom from OWL. However, to handle “any k” out of N we need Qualified

Cardinality Restriction (QCR) expressivity which is not supported in OWL-DL. We

developed a workaround to this problem by making additional intermediate nodes that go

between conditions and tasks. Each of these intermediates nodes represents a combination

of k out of N conditions. These intermediate nodes which are instances of class

ConditionCombinationPoint are added during the pre-processing and the CPG modeler

does not need to deal with them. The conditions that are represented by a combination point

are indicated by the property isWaitingForCondition. Figure 6.3 illustrates the changes that

we make for a task with 3 condition and criterion of “any 2” out of 3 conditions.

c1 c2 c3

t1

isWaitingForCondition

ccp23ccp12 ccp13

hasCombinationPoint

c1 c2 c3

t1

hasCondition

any 2

Figure 6.3 The transformation for handling condition satisfaction criteria in absence of

QCR for conditional tasks. (c1, c2 and c3 conditions and ccp12, ccp23 and

ccp12 are instances of ConditionCombinationPoint)

6.2.1.3. OWL-Based CPG Execution Algorithm

The CPG ontology pre-processing stage renders the CPG for execution using OWL

reasoners. In this section we explain our CPG execution algorithm. This execution

158

algorithm is the specialized version of the execution algorithm shown in Table 3.2. To

understand how the execution algorithm works, we go through a small example CPG

pictured in Figure 6.4. This small CPG is composed to two atomic tasks. As you can see

both of the tasks t1 and t2 are in inactive state in the beginning of the execution. t1 which is

the first task of this small CPG has a possible outcome which is the condition for t2. If o1

happens as the result of executing t1, t2 can be executed too otherwise it is discarded.

t1

hasNext

t2

o1 hasOutcome

hasPrecondition

:hasTaskState :inactive

Figure 6.4 A small example CPG used for explaining the execution algorithm

The following steps show how execution engine works:

Step 1: Load the instantiated CPG ontology to the OWL reasoner and activate the first task

in the CPG. Figure 6.5 shows the execution states in this step. In order to activate the first

task, the previous value of the hasTaskState property is deleted and this triple is added to

the instantiated ontology “:t1:hasTaskState :active”.

t1

hasNext

t2

o1 hasOutcome

hasPrecondition
:hasTaskState :inactive

:hasTaskState :active

Figure 6.5 Example CPG in step 1 of the execution algorithm

Step 2: Query the ontology for the active tasks and show them to the user. In order to find

the active tasks, a query will be performed on the values of the property hasTaskState. If

the value of the hasTaskState property is active the task is returned in this query. The active

tasks are shown to the user and he is asked to act upon active tasks. If the query does not

159

return anything execution terminates. In our example, t1 is the only active task. We assume

that this task is selected by the user for execution.

Step 3: Record the start of tasks by asserting triples into the CPG ontology. To record the

start of task t1 by the user, triple “:t1 :hasTaskState :started” is inserted into the ontology.

Prior to asserting the new state, the previous state is deleted from the ontology by deleting

the triple “:t1 :hasTaskState :active”. Figure 6.6 shows the execution states in this step.

t1

hasNext

t2

o1 hasOutcome

hasPrecondition
:hasTaskState :inactive

:hasTaskState :started

Figure 6.6 Example CPG in step 3 of the execution algorithm

Step 4: Record the completion of tasks and their outcomes. When the user has completed a

task, it is time to record completion of that task by inserting the triple “:t1:hasTaskState

:completed”. In order to find the outcomes of the active tasks, the values of the property

hasOutcome is queried for the completed task and shown as the outcomes. In our example,

o1 is shown to the user as the possible outcome of t1 and he is asked if the outcome has

actually happened or not. For instance, t1 can be measure_BP and its outcome can be

high_BP. In order to show that high_BP is the result of execution of t1, the following triple

is added to the instantiated ontology “:high_BP :hasConditionState :happenedOutcome”.

The HappenedOutcome is equivalent class of the SatisfiedCondition class. If the user

indicates that the outcome has not happened, “:o1 :hasOutcomeState

notHappenedOutcome” will be put inside the ontology. NotHappenedOutcome is

equivalent class of the UnSatisfiedCondition class. The result of indicating that t1 is

completed and o1 is a happened outcome is shown in Figure 6.7.

160

t1

hasNext

t2

o1 hasOutcome

hasPrecondition
:hasTaskState :inactive

:hasTaskState :completed:hasOutcomeState :happenedOutcome

Figure 6.7 Example CPG in step 4 of the execution algorithm

Step 5: Use the execution semantics embedded within the CPG ontology in conjunction

with the existing inferred/asserted values to calculate the candidate values for the new

states of the tasks. This step is simply performing reasoning on the ontology after the

modifications that have been performed on it in the previous steps. In our example, an

OWL reasoner will use the current states of the tasks and the OWL triples mentioned in

section 6.2.1.1 for implementation of the inactive  active state transition rule to infer that

the task t2 has the value active for the property hasTaskStateNewCandidate. The result of

this step is shown in Figure 6.8.

t1

hasNext

t2

o1 hasOutcome

hasPrecondition :hasTaskState :inactive

:hasTaskStateNewCandidate :active

:hasTaskState :completed:hasOutcomeState :happenedOutcome

Figure 6.8 Example CPG in step 5 of the execution algorithm

Step 6: Apply the new states of tasks that are inferred in the previous step to them. The

values of hasTaskStateNewCandidate property are queried and used as the new state of the

tasks. For instance, if a task has the value active for this property, the values of the

properties hasTaskState and hasTaskStateNewCandidate are deleted and active is assigned

as the value of the property hasTaskState. The result of this step is activation of task t2. The

result is shown in Figure 6.9.

161

t1

hasNext

t2

o1 hasOutcome

hasPrecondition
:hasTaskState :active

:hasTaskState :completed:hasOutcomeState :happenedOutcome

Figure 6.9 Example CPG in step 5 of the execution algorithm

Please note that a task may have several candidates for its new state coming from different

transition rules. As an example, a state transition rule may indicate that a task should be

discarded because its super task is discarded and another rule may indicate that the task

should be active because its previous task is completed. If more than one value exists for

the property hasTaskStateNewCandidate, a conflict resolution process should be applied

because a task cannot be in two different states simultaneously. In our execution engine, we

have given the following priorities to the states: discarded > completed > started > active >

inactive. For instance, if a task has the values completed and discarded as the value the

property hasTaskStateNewCandidate, the next state of the task will be the discarded. More

complex state transition rules can be implemented if necessary.

Step 6: Go to step 2. In our example, the algorithm runs one more iteration for the

execution of the task t2.

The abovementioned execution algorithm shows that the only elements from the CPG

ontology that the CPG execution engine needs to deal with are the ones pertaining to tasks

(Task Class), activation and completion of tasks (started, active instances and hasTaskState,

hasTaskStateNewCandidate properties) and their outcomes (hasOutcome, hasOutcomeState

properties and happenedOutcome and nothappenedOutcome instances) and the rest of the

ontology (e.g. :hasNext property etc.) are used by the reasoner to execute branches,

synchronization, state transitions, condition checking, etc.

162

We have used Jena library [160] to add triples to and query the ontology. We use

Pellet [161] as the OWL reasoner. We have used TURTLE syntax [159] to show the OWL

constructs that represent our ontologies in this section of the paper.

6.2.2. OWL 2 based CPG Execution Engine

OWL 2 is the new version of OWL that offers two enhancements that are relevant to CPG

execution—i.e.(a) modeling of and reasoning on qualified cardinality restriction and (b)

limited datatype expressivity that supports user defined ranges. We extended OWL-DL

based execution engine by incorporating OWL 2 constructs to offer the following

functionalities: (a) handling complex conditions (b) handling data type expressivity.

OWL 2 based execution algorithm works in the same way as our OWL-DL based execution

algorithm. The only difference is in the pre-processing phase. In this phase, the step for

handling conditions is performed differently in order to create a more efficient way of

executing conditions. There is also an extra step for adding data type expressivity to the

instantiated CPG ontology. Every other element of the execution engine such as state

transition and execution algorithm are exactly the same as OWL-DL based execution

algorithm.

6.2.2.1. Handling Conditions in OWL 2

This section shows how conditions are handled differently in the pre-processing phase of

OWL 2 based execution engine. We use the QCR modeling and reasoning capability of

OWL 2 to handle “any k” condition criteria more effectively. We go through an example to

explain how QCR capability of OWL is used in the pre-processing phase for condition

handling. Suppose that t is a task which has tree conditions p1, p2 and p3 and its condition

satisfaction criterion is “any 2”. To handle conditions of a task with satisfaction criterion of

“any k” out of N we create six new OWL classes during the following 4 steps of the pre-

processing.

163

(1) Task_Requires_k_Satisfied_Conditions is a class whose members are tasks that need at

least k satisfied conditions in order to satisfy their criteria. During the pre-processing we

add the following triples to the ontology.

:t a Task_Requires_2_Satisfied_Conditions.

(2) Task_Has_Atleast_k_Satisfied_Conditions is a class whose members are tasks that have

at least k conditions satisfied at that point in time during execution regardless of the

number of satisfied conditions that they actually need. For instance, a task which is

waiting for k conditions and has two satisfied so far is a member of the following class

which makes use of OWL 2 QCR capability.

Task_Has_atleast_2_Satisfied_Conditions

 [a owl:Restriction;

owl:onProperty :hasCondition;

owl:onClass :SatisfiedCondition;

owl:minqualifiedCardinality 2].

To enable the CPG execution engine to perform reasoning on QCR, open world and non-

unique naming assumptions should be taken care of.

(3) To determine whether a task has satisfied the requisite number of conditions (which is

“any k”), we have created an anonymous class which takes the intersection of the two

abovementioned classes– if a task is a member of the class intersection then it can be

inferred that it has a satisfied condition criterion.

[a owl:Class; owl:intesectionOf(

 :Task_Requires_2_Satisfied_Conditions

 :Task_Has_Atleast_2_Satisfied_Conditions)

] rdfs:subClassOf :TaskWithSatisfiedCriterion.

(4) Three other classes are defined in a similar fashion to handle the case where the number

of unsatisfied conditions is more than or equal to N-k+1 (3-2+1 = 2). In this case, the

164

number of satisfied conditions is less than k and the condition criterion of the task is

unsatisfied. The following OWL triples show these classes:

:t a Task_Requires_1_UnSatisfied_Conditions.

:Task_Has_atleast_1_UnSatisfied_Conditions

 [a owl:Restriction; owl:onProperty

 :hasCondition; owl:onClass

 :UnSatisfiedCondition; owl:minqualifiedCardinality 1].

[a owl:Class; owl:intesectionOf(

 :Task_Requires_1_UnSatisfied_Conditions

 :Task_Has_atleast_1_UnSatisfied_Conditions

)

] rdfs:subClassOf :TaskWithUnSatisfiedCriterion.

6.2.2.2. Data Type Expressivity in OWL 2 Based Execution Engine

We do not necessarily need SWRL rules for mathematical computations and OWL 2 is able

to support some level of data type expressivity. Our OWL 2 based execution engine is

capable of evaluating conditions such as “patient older than N” that need to compare a

numeric value against a data range. To achieve this functionality, we utilized user defined

ranges in OWL 2 to perform arithmetic comparison on numeric values of data type

properties and use the result in the decision makings in CPG. To evaluate a precondition as

stated earlier, we create 5 new OWL classes during CPG pre-processing. We define a class

Condition_Should_be_Greater_Than_N and set the condition (c1) as its instance during

pre-processing:

:c1 a :Instance_Should_Have_hasNumericValue_GT_N.

Next, we define a class Condition_Has_GT_N that makes use of user defined data ranges in

OWL 2 as follows:

:Condition_is_GreathaerThanEqual_N a owl:Class;

owl:equivalentClass

165

[a owl:Restriction ;

owl:onProperty :has_age ;

owl:someValuesFrom

 [a rdfs:Datatype ;

 owl:onDatatype xsd:int ;

 owl:withRestrictions ([xsd:min N+1"^^xsd:int])]

].

The above construct ensures that during CPG execution when the value of the has_age

property is greater than N, c1 will be regarded as an instance of

Condition_is_GreaterThan_N by the OWL reasoner. If a data value should belong to a

specific range and it belongs to a class of instances which have that specific range we can

reason that the condition regarding the data value is satisfied. Finally, we create an

anonymous class which is the intersection of Condition_Should_be_Greater_Than_N and

Condition_is_GreaterThan_N and set it as a subclass of SatisfiedCondition:

 [a owl:intersectionOf(

:Condition_Should_be_Greater_Than_N

:Condition_is_GreaterThan_N)

]

rdfs:subClassOf :SatisfiedCondition.

Conditions are considered as UnsatisfiedPreconditions when the age is less than equal N in

a similar fashion:

:Condition_is_LessThanEqual_N a owl:Class;

owl:equivalentClass

[a owl:Restriction ;

owl:onProperty :has_age ;

owl:someValuesFrom

 [a rdfs:Datatype ;

 owl:onDatatype xsd:int ;

166

 owl:withRestrictions ([xsd:max N"^^xsd:int])]

].

[a owl:intersectionOf(

:Condition_Should_be_Greater_Than_N

:Condition_is_LessThanEqual_N)

]

rdfs:subClassOf :SatisfiedCondition.

6.2.3. SWRL based CPG Execution Engine

OWL 2 has a limited support for mathematical functions and comparison of numerical

values. For instance, it cannot compare values of two datatype properties or perform

mathematical operations. To address these shortcomings, we have developed a CPG

execution engine that leverages SWRL to enhance the functionalities of the OWL-DL

based CPG execution engine. The advantage of using SWRL is that it offers a set of useful

built-in functions. These built-in functions have been used to support mathematical, string

and Boolean operators, executional state conditions and for-loops. As we described our

expression ontology in chapter 5, we discussed the SWRL rules that have been written to

support the mathematical, string and Boolean operators. Using an OWL reasoner that

supports SWRL rules enables us to make use of all the capabilities of our expression

ontology in the execution engine. The details of how For-loops and executional state

condition are supported using SWRL rules are described in this section.

Pre-processing phase and the execution algorithm of the SWRL based CPG execution

engine are exactly the same as OWL-DL. The difference is that a number of extra SWRL

rules have been manually added to CPG-DKO. As a result, any instantiation of the CPG

ontology will contain these rules and it is not needed to add them manually again. These

rules are fired in the OWL reasoner that supports SWRL rules during execution in order to

enhance the expressivity of OWL-DL. To account for decidability issues that may arise as a

167

result of using SWRL we restricted the SWRL rules to DL-Safe ones [162]. We illustrate

below the use of SWRL to address the following CPG execution issues:

6.2.3.1. State Transition Model in SWRL based Execution Engine

6.2.3.1.1. ForLoop

 Inactive Active

The same state transition rule described for activation of Task class instances is applied.

 Active Started

A ForLoop task can get activated through the execution engine by a user. The first inactive

subtasks get activated when the ForLoop is in started state. Activation of the first task is the

first step towards repetition of the subtasks of the for-loop. These tasks should be repeated

until we reach the maximum number of allowed iterations. A simple solution would be

adding 1 to the value of a datatype property when, let’s say, the last task of the loop is

completed. However, this rule is not DL-safe as it uses the new value of the data type

property to fire the rule infinitely. We have implemented a DL-Safe solution by defining

two data type properties and using swrl:add built-in function. hasItrNum that holds the

iteration number and is set to 0 at the beginning. hasItrNumCopy holds a copy of the

hasItrNum’s value from the previous iteration. The loop handling rules operate as follows:

(i) When the first task of a loops is completed, value of itrNum is copied to itrNumCopy:

Loop(?l1)^ StartedTask(?l1)^hasFirstTask(?l1,?ft)^

hasState(?ft,completed)^ hasItrNum(?l1,?n) →

hasItrNumCopy(?l1,?n)

(ii) When the last task of the loop is completed 1 is added to itrNumCopy and the result is

put in itrNum:

168

Loop(?l1) ^ Loop(?l1) ^ hasLastTask(?l1,?lt) ^

hasState(?lt,completed) ^ hasItrNumCopy(?l1,?n) ^

swrlb:add(?nPlus1,?n,1)→ hasItrNum (?l1,?nPlus1)

 Started Completed

This state transition happen when the value of hasItrNum reaches the maximum number of

iterations:

Loop(?l1) hasMaxRepetitionNumber(?l1,?max) ^ hasItrNum(?l1,?n) ^

swrlb:greaterThanOrEqual(?n,?max)→

hasTaskStateNewCandidate(?l1,completed)

 All states Discarded

The same state transition rule described in section 6.2.1.1 will apply to this task.

6.2.3.1.2. Executional State Conditions

As we discussed in section 4.4 of the thesis, the state of tasks can be used as conditions for

other tasks. Implementation of these conditions is done using SWRL rules. A

ExecutionalStateCondition is a satisfied condition if the state of the task identified by the

property isChekingExecutionalStateOfTask is equal to the value of the property

shouldHaveExecStateForSatisfaction:

ExecutionalStateCondition(?c) ^ hasTaskState(?t, ?s1) ^

isChekingExecutionalStateOfTask(?c, ?t) ^

shouldHaveExecStateForSatisfaction(?c, ?s1) ->

conditionHasStateNew(?c, satisfied)

The property conditionHasStateNew will be used by the execution engine to find the new

state of the executional state condition. A ExecutionalStateCondition is an unsatisfied

169

condition if state of the task identified by the property isChekingExecutionalStateOfTask is

not equal to the value of the property shouldHaveExecStateForSatisfaction:

ExecutionalStateCondition(?c) ^ UndefinedCondition(?c) ^

hasTaskState(?t, ?s2), isBiggerThanStateBO(?s2, ?s1) ^

isChekingExecutionalStateOfTask(?c, ?t) ^

shouldHaveExecStateForSatisfaction(?c, ?s1) ->

conditionHasStateNew(?c, unsatisfied)

6.3. Conclusion

In this section, we developed three OWL based CPG execution engines based on OWL-DL,

OWL 2 and SWRL. OWL-DL CPG execution engine was capable of execution of all the

workflow patterns identified in section 4.3. OWL 2 qualified cardinality restrictions and

user defined data ranges that are not available in OWL-DL were needed to handle

conditions more effectively and perform numeric comparison respectively. In order to

achieve more expressivity such as rules and mathematical calculations, the OWL-DL CPG

execution engine was needed to be augmented with SWRL rules. Table 6.1 compares the

executional capabilities of these three OWL based CPG execution engines.

170

Table 6.1 Capabilities of our CPG execution engines (±: somewhat supported, +:

supported, -: not supported).

 OWL-DL OWL 2 SWRL

Workflow Execution + + +

QCR - + +

Datatype Expressivity - ± +

Rules - - +

Reasoning + + +

Loops - ± +

Due to the fact that execution of a great majority of CPG needs datatype expressivity and

execution of loops, OWL-DL + SWRL based CPG execution engine is the most practical

solution.

The unique aspect of our research is that we presented a CPG execution framework that

utilizes a single formalism—i.e. OWL—to both represent and execute CPG. Our approach

has several advantages over the existing graph-based CPG execution engines:

(1) Ease of switching to new technologies: In our method, after CPG undergo the pre-

processing phase they can be executed by any OWL reasoner and any API. For instance, it

is easily possible to execute the CPG using OWL API and Hermit reasoner or any other

OWL reasoner and API that will be developed in future even in different programming

languages.

(2) Increased shareability and flexibility: To execute the preprocessed CPG there is a need

for a very simple program that performs queries on and puts new triples into the ontology

and there is no need to be familiar with all the elements of the CPG ontology or to know

171

any of the execution semantics at all. In this way, the CPG is untied from a special CPG

execution engine. This increases shareability of the computerized CPG and also gives the

flexibility to the developers to implements their desired behavior in the execution engine

programs. For instance, the CPG execution engine developer can make the user to indicate

the possible outcomes immediately after the completion of a task or give the user to option

to enter the outcomes at a later point in time when the outcome are ready.

(3) Reusing existing reasoners instead of writing a new one: Developing a graph-parsing

CPG execution engine involves writing a small reasoner which performs reasoning on the

execution semantics of the used knowledge representation language. Using OWL enables

us to use several existing reasoners instead of developing one.

Below we list disadvantages of our approach compared to graph-parsing approaches:

(1) Low efficiency: OWL reasoners are general-purpose reasoners whereas graph-parsing

algorithms written for execution of a CPG language are problem-specific. These graph-

parsing algorithms only perform the reasoning tasks that are necessary for CPG execution

and avoid unnecessary reasoning activities such as classification that is performed in the

OWL reasoners regardless of its usefulness in CPG execution.

(2) Lack of expressivity for temporal reasoning and abstraction: For instance, if it is needed

to detect a temporal pattern such as “existence of two gout attacks in the last three months

that each lasted at least 2 days” in a patient’s health record, OWL and SWRL are not

expressive enough for this task.

(3) Debugging ontologies are more difficult as opposed to programming languages.

Therefore, OWL based CPG execution engines are more prone to have errors and those

errors are more difficult to be detected and fixed.

172

CHAPTER 7: KNOWLEDGE MAPPING ONTOLOGY (KMO)

7.1. Introduction

As we discussed previously, knowledge artifacts used in a DSS may be represented in

heterogeneous Local Knowledge Ontologies (LKO). Our solution is to map all LKO to a

Domain Knowledge Ontology (DKO) in order to unify the representation of LKO for

merging and execution. In order to merge and then execute LKO they all are needed to be

mapped and have their instances to DKO. In a CPG merging framework, LKO contain

ontologically modeled CPG and DKO is CPG-DKO. In order to merge and then

simultaneously execute CPG to create therapy plan for a comorbid patient, these

comorbidity CPG should be transformed to a unified representation as no execution engine

is capable of executing heterogeneously represented ontologies. For instance, if we have a

cough CPG modeled in GASTON and a Chronic Heart Failure CPG in COMET [107],

there is no way of simultaneous execution of these CPG in a single execution engine. Our

solution to this problem is to map and then transform all the participating CPG to the

developed CPG-DKO in chapter 4 of the thesis.

We are interested in using semantic-based ontology mapping techniques as our assumption

is that the CPG that are being merged are in OWL language which has well defined

semantics and it is accompanied by several reasoning engines with practical reasoning

algorithms. Anchoring two ontologies needs an expressive mapping representation

language. This mapping will be used by the domain expert or the mapping discovery

algorithm to find the initial mappings. As we reviewed the mapping representation

languages and the papers that compare these languages in section 2.2, we came to the

conclusion these languages suffer from lack of expressivity. They are mostly designed to be

the output of the mapping discovery algorithms which are not very powerful and as a result

are not capable of discovering complex mappings. Since ontologies designed to model CPG

are very complex and make heavy use of OWL constructs, the existing ontology mapping

representation languages are not expressive enough to capture the mappings between these

173

ontologies for the anchoring step. We feel the need for a more expressive mapping

representation language that can be used by a domain expert to manually map the CPG

related to comorbidities to CPG-DKO.

Recently OWL (a sub-language of DL) has been accepted by the semantic web community

as the standard language for representation of ontologies and several tools also have been

developed to support manipulation, querying, visualization and reasoning on OWL

ontologies. This makes us believe that description logic is the natural candidate to be used

in semantic based ontology mappings. Careful review of the semantic based mapping

literature reveals that DL has been widely used for debugging and deriving simple

mappings (class equivalence, etc.) [54][55][56][57] but no attempt has been made to create

more complex mappings. We believe that DL’s potentials have not been carefully

investigated for representation of the mappings and reasoning on them and further research

is needed.

We have developed a new expressive ontology mapping representation language for two

reasons: (1) Lack of expressivity in the existing ontology mapping representation

languages; (2) Lack of formal semantics to use the mapping representation languages in

semantic-based ontology mapping approaches. In section 2.3 of the thesis we reviewed the

literature pertaining to ontology mapping representation languages and created a list of

important features those mapping representation languages should have. Our mapping

representation language which is in OWL-Full supports most of the identified requirements

in that list. We call this ontology the Knowledge Mapping Ontology. We have also created

a translation algorithm that translates the mapping to OWL-DL + SWRL in order to define

the mapping semantics formally in such a way that reasoners can perform the mapping and

instance transformation. Using OWL-Full for mapping representation and translating them

to OWL-DL + SWRL makes the mappings more expressive and less verbose—i.e. less

OWL triples are needed for representation of the mappings.

174

Our approach has three unique aspects: (1) Ontologies and the mapping are modeled in a

unified format. This increases the shareability of the mappings; (2) As we will see in the

comparison section our mapping representation algorithm is one of the most expressive

existing ontology mapping languages which support a wide range of mapping patterns; (3)

As we discussed no description logic based approach which formally defines the mapping

semantics exists that can be used for mapping and instance transformation. Therefore, our

approach is the first approach that fully defines the semantics of our mapping in such a way

that OWL reasoners can handle the mapping and transformation. We believe that these

three features make our approach an advancement in the field of semantic-based ontology

mapping.

7.2. Ontology Mapping Process

In order to map to ontologies successfully and then transform instances of the source

ontology to the target ontology using our approach several steps are needed to be taken:

1. Importing: The two mapped ontologies are imported by our mapping ontology so that

the instances, properties and classes of the mapped ontologies are available in the mapping

ontology.

2. Mapping (Anchoring): The two ontologies are mapped by manually instantiating our

mapping ontology by a domain expert. The instantiation of the mapping ontology is

performed by creating semantic relations between the instances of the mapped ontology

using the ontology mapping classes, instances and properties. In the remainder of this

section the prefixes “source:”, “target:” and “mo:” represent source, target and the mapping

ontologies respectively. In the following example, the mapping ontology expresses that

classes Human from the source ontology is a subclass of the Person in the target ontology:

mo:m a mo:ClassMapping;

 mo:hasSourceClass source:Human;

 mo:hasTargetClass target:Person;

175

 mo:hasRelation mo:subClassRelation.

Please note that the “mo:”, “source:” and “target:” are the namespaces for the mapping

ontology, the source and the target ontologies respectively. Therefore, ClassMapping OWL

class, subClassRelation instance and hasSourceClass, hasTargetClass and hasRelation

object properties belongs to the mapping ontology. Human and Person classes belong to the

source and target ontologies respectively. Therefore, the output of the mapping process is

the two mapped ontology and an instantiation of the mapping ontology. Our mapping

ontology is described in section 7.3 of the thesis.

Since CPG demand high level expressivity to be computerized, the designed CPG

representation languages are very expressive in terms of workflow constructs and the

medical knowledge. The more expressive two ontologies are the more complex the

mappings between them. Due to the complexity of the mappings that exist between CPG

representation languages, we believe that automatic mapping discovery algorithms are not

capable of performing an acceptable job in finding the mappings between the CPG that are

being merged and CPG-DKO. Therefore, we do not make use of automatic discovering

algorithms and perform the anchoring step manually.

3. Translation to OWL-DL + SWRL: We transform the instantiation of the mapping

ontology to a combination of OWL-DL + SWRL in order to formally define the mapping

semantics in a computer understandable format. Formal semantics of the mapping are

defined in OWL-DL + SWRL because: (1) Our mapping ontology is in OWL-Full because

we do not respect the class-instance-property separation that is needed to keep the

ontologies in OWL-DL. For instance, in our previous example Human and Person OWL

classes are treated as instances by being used as the values of the object properties

hasSourceClass and hasTargetClass. OWL-Full is undecidable and it is not possible to

perform reasoning on it for mapping and instance transformation purposes. Therefore, we

translate it to OWL-DL which is a decidable specie of OWL to make the reasoning

possible; (2) As we will discuss later OWL-DL is not expressive enough for our mapping

176

purposes and our translation algorithm will add the necessary SWRL rules automatically to

prepare the mappings for reasoning. To avoid the possible undecidability as the result of

using SWRL rules, only DL-Safe rules [162] are added in the translation process. Our

translation algorithm has been discussed in section 7.4. As an example, the mapping

instantiation described above will be translated from OWL-Full to the following OWL-DL

triple. Please note that SWRL rules are not needed for this mapping.

source:Human owl:subClassOf target:Person.

4. Reasoning: We use OWL reasoners to perform reasoning on the translated mapping for

discovering new mappings and performing instance transformation. As an example of

instance transformation, if john is an instance of the class source:Human the reasoning will

infer that john is also an instance of the class target:Person. As an instance for discovering

new mappings, if the class source:MaleHuman is a subclass of the source:Human class the

reasoner will also infer that the source:MaleHuman class is a sub-class of the taget:Person.

As you can see, this inference is new and has not been expressed in the instantiation of the

mapping ontology. We have used pellet as our reasoner since it supports both OWL and

SWRL.

7.3. Knowledge Mapping Ontology (KMO)

In this section of the thesis we describe our OWL-Full mapping ontology. While designing

this ontology, we included all the aspects listed in section 2.3.1 of the thesis in which we

reviewed the existing representation languages and the requirements identified in the

literature. While our goal is to meet all of the identified requirements, we have specially

focused on expressivity needs of the language.

7.3.1. Mappings and Relations

Class Mapping is used to map classes, instances and properties between ontologies. The

attributes of the mappings are assigned to a mapping using the following properties which

177

all have the class Mapping as their domain: (1) mappingHasSource: This property indicates

the source of the mapping. Since any element of ontology can be used as the source of a

mapping the range of this property is owl:Thing; (2) mappingHasTarget: this property the

target of the mapping and the range of this property is owl:Thing; (3)

mappingHasFunction: Several functions may be utilized to indicate how data

transformation and condition evaluation should be performed in a mapping. This property

with the range Function indicates what functions are in a mapping. The Function class is

elaborated in section 5.3.2; (4) hasCondition: same as tasks in CPG-DKO, mappings can be

conditional. This property with the range Condition shows the conditions that should be

satisfied in order to execute the corresponding mapping.

We have identified three types of mapping in the literature and created three subclasses of

the Mapping class in order to model them in our ontology: (1) RelationalMapping, (2)

TransformationMapping and (3) ValueTransferMapping.

(1) Relational mapping: These mappings create a relation between two or more elements

of the source and the target ontology. As a simple example, a relational mapping may

express that a class in the source ontology is a subclass of a class in the target ontology.

Depending if the source and the target ontologies are treated as instances, properties or

classes one of the class instance, property or class mapping relations may be used

respectively. The property mappingHasRelation with the domain RelationalMapping and

the range MappingRelation is used to define the relation in a relational mapping.

MappingRelation Class and its subclasses and their instances can be seen in Table 7.1.

178

Table 7.1 MappingRelation class, its subclasses and their instances

Subclasses of MappingRelation Instances

ClassRelation

classRelationEquivalentClass

classRelationDisjointWith

classRelationSubClass

classRelationSuperClass

PropertyRelation

propertyRelationEquivalentProperty

propertyRelationDisjointWith

propertyRelationSubProperty

propertyRelationSuperProperty

InstanceRelation

instanceIsMemberOf

instanceDifferentFrom

instanceSameAs

The classRelationEquivalentClass, classRelationDisjointWith, classRelationSubClass,

classRelationSuperClass instances of the ClassRelation can be used to indicate that the

source class of the mapping is equivalent to, disjoint with, sub class of or super-class of the

target class. The propertyRelationEquivalentProperty, propertyRelationDisjointWith,

propertyRelationSubProperty, propertyRelationSuperProperty instances of the

PropertyRelation class can be used to indicate that the source property of the mapping is

equivalent to, disjoint with, sub property of or super-property of the target property.

Our mapping language is also capable of expressing relations between instances of the

source or the target ontology. instanceDifferentFrom and instanceSameAs instances of the

InstanceRelation class express that the source and the target ontologies are different or the

same instances respectively. instanceIsMemberOf relation means that a specific instance in

the source ontology is an instance of a specific class in the target ontology.

179

As an example the following instantiation of KMO expresses that the class ECG_finding in

the source ontology is a subclass of the Diagnostic_test_result in the target ontology.

mo:m1 a :RelationalMapping;

 mo:mappingHasSource source:ECG_finding;

 mo:mappingHasTarget target:Diagnostic_test_result;

 mo:mappingHasRelation mo:classRelationSubClass.

(2) Transformation mapping: In this mapping, a transformation process is utilized in

order to transform the sources of the mapping to the targets of the mapping rather than just

by establishing a mapping relation between them. This mapping is represented by

TransformationMapping class. The sub-category of the transformation mapping we have

come across is property to class and class to property transformation. The class

PropertyToClassTransformation and ClassToPropertyTransformation represents these

mappings.

 PropertyToClassTransformation:

In this relation, two instances and the property that is connecting them is transformed to a

class that has those two instances as values of two specific properties. For instance,

“:patient1 :is_Taking_Medication :esmolol_Brevibloc” is transformed to an instance of the

class Patient_Medication_Entry in the target ontology in the following format:

:patient1_Medication_Entry1 a : Medication_Entry;

:medication_Name :esmolol_Brevibloc;

:patiet_ID :patient1.

As you can see the two instances patient1 and esmolol_Brevibloc that are connected by the

property is_Taking_Medication are transformed to an instance of the Medication_Entry

class and are connect to it by the properties patiet_ID and medication_Name properties in

the target ontology.

180

The following properties with the domain PropertyToClassTransformation are used to

define the details of property to class mapping: (1)

propertyToClassTranHasSourceProperty: The value of this property which is also a

property indicates the source property that is being transformed to a class in the target

ontology. Range of this property is owl:ObjectProperty; (2)

propertyToClassTransformationHasTargetClass property is used to indicate what class the

property is being transformed to; (3)(4) propertyToClassTransHasFirstTargetProperty and

propertyToClassTransHasSecondTargetProperty indicate the properties in the target

ontology which have the target class as their domain and the subject and object of the

transformed source property as their values.

 ClassToPropertyTransformation:

The other type of transformation mapping is the opposite of the property to class

transformation. In ClassToPropertyTransformation mapping, an instance of a specific

class, which is connected to two other instances using two specific object properties are

transformed to relation between those two instances using a specific property in the target

ontology. As an example the instance of the Medication_Entry class

(patient1_Medication_Entry1) that is connected to instances esmolol_Brevibloc and

patient1 using properties medication_Name and patient_ID is transformed to “:patient1

:is_Taking_Medication :esmolol_Brevibloc” as a result of a classToPropertyMapping.

:patient1_Medication_Entry1 a :Medication_Entry;

 :medication_Name :esmolol_Brevibloc;

 :patient_ID :patient1.

Four properties with the domain of ClassToPropertyTransformation are used to specify the

details of the mapping. classToPropertyTransformationHasSourceClass with the range

owl:Class shows the source class. classToPropertyTransformationHasSourceFirstProperty

and classToPropertyTransformationHasSourceSecondProperty with the range

owl:ObjectProperty show the first and the second source properties respectively and

181

classToPropertyTransformationHasTargetProperty with the same range shows the target

property. To create a class to property transformation mapping, the mapping ontology

should be instantiated in the following way:

:m a : ClassToPropertyTransformation;

 :propertyToClassTranHasTargetProperty :is_Taking_Medication;

 :propertyToClassTransformationHasSourceClass :Medication_Entry;

 :propertyToClassTransHasFirstSourceProperty : patient_ID;

 :propertyToClassTransHasSecondSourceProperty :medication_Name.

(3) Value transfer mapping: In this mapping, no relation exists or no transformation on

the structure of the ontology element is needed to happen. These mappings represent a

value transfer from the source to the target ontology. This mapping is represented by the

ValueTransferMapping class. Several functions can be used to manipulate the transferred

value. No special property is needed to be defined for this class. The only difference with

the relational mapping is that no relation exists and the mapping is making use of a data

variable which does not have a value for variableHasValue property. These mapping will

be translated to SWRL rules for execution. An example of this mapping will be computing

the Body Mass Index of a person and transferring it to the target ontology and assign it as

the value of the property hasBMI:

source:john source:has_Weight_KG “82.2”^^xsd:float;

 source:has_Height_CM “187.0”^^xsd:float.

will be transferred to

source:john target:has_BMI “23.5”^^xsd:float.

In order to show how this transformation is executed in our mapping ontology we first need

to explain the concepts of variables, operators and functions. We will review an example in

section 7.4.4.3 after covering the necessary background.

7.3.2. Variables

182

Having variables in a mapping representation language can increase the expressiveness

significantly by representing a fragment of the ontology rather than a specific class,

property or instances. However, variables cannot be defined in most of the mapping

representation languages. For instance, a class variable may represent all the patients who

have at least two or more symptoms of a specific disease. In the expression ontology in

chapter 5 of the ontology we defined a Variable class with three subclasses

NumericVariable, StringVariable and BooleanVariables which can be used for data values.

We also need variables For instance, classes and properties. These variables are represented

by ClassVariable, InstanceDataVariable and PropertyVariable classes respectively in our

mapping ontology. An instance of the ClassVariable represents a class variable. Class

variables are basically a set of instances that may belong to a specific class and can have a

restriction on a specific property. For instance, a class variable may represent Atrial

Fibrillation patients who have at least 2 risk factors of bleeding. Therefore, our class

variable is representing instances that belong to the class AF_Patient and have two different

values for their has_Bleeding_Risk_Factor property. Restrictions can be put on the value of

a property, type of the value of the property or the number of different values that the

property can have. Class variables can be used as an input or output of a function or source

or target of a mapping.

In order to indicate what class the instances represented by the class variable should belong

to, the property classVariableHasClass with the domain of ClassVariable and range of

owl:Class has been defined. For instance, the following example shows a class of instances

which is equal to the AF_Patient class.

:cv1 a :ClassVariable;

 :classVariableHasClass :AF_Patient;

The class represented by cv1 is an equivalent to the Student class because the instances

belonging to the class represented by cv1 are all members of the Student class and vice

versa. However, if we put a restrictions on the number of different values that instances of

183

this class variable can have on the property hasSummerCourse, cv1 will be representing a

subclass of the Student class. Please note that use of classVariableHasClass property is not

obligatory. Therefore, if no value is assigned by this property, the instances that belong to

this class variable can belong to any class as long as they satisfy the property constraints.

Regardless of whether a value exists for the classVariableHasClass property or not we can

use the property classVariableHasProperty with the domain of ClassVariable and range of

owl:ObjectProperty to indicate what property is restricted in this class variable. Please note

that making use of this property is optional and it is only used to indicate what property the

restriction is put on.

To indicate that an instance variable belongs to a specific class, the property

classPropertyHasValueRestrictionHasInstanceVariable with the domain of ClassVariable

and range of InstanceVariable is used. This property makes the restriction that the instance

variable represents an instance which belongs to the class represented by the corresponding

ClassVariable. For instance, the following example shows an instance variable

(patientInstVar) which belongs to the class Student.

:cv1 a :ClassVariable;

 :classPropertyHasValueRestrictionHasInstanceVariable

 :patientInstVar;

 :classVariableHasClass :Patient.

To put a restriction on the properties of class variables one of the two subclasses of the

class variable described in sections 7.3.2.1 and 7.3.2.2 should be used.

Previously, we explained that variableHasNumericValue, variableHasBooleanValue and

variableHasStringValue properties are used to assign values to data variables. We use

variableHasClassValue, variableHasInstanceValue, variableHasPropertyValue to assign

values to instances of the ClassVariable, InstanceVariable and PropertyVariable

184

respectively. Table 7.2 shows these properties which are sub properties variableHasValue

property along with their domain and ranges.

Table 7.2 Properties used to assign values to ClassVariable, InstanceVariable and

PropertyVariable instances along with domains and ranges.

Property Domain Range

variableHasClassValue ClassVariable owl:Class

variableHasInstanceValue InstanceVariable owl:Thing

VariableHasPropertyValue PropertyVariable owl:ObjectProperty

When a value is assigned to variables using one of the abovementioned properties, it will be

replaced by that value wherever it is used. For instance, if the value of a cv1 is

:cv1 :variableHasClassValue

 [a owl:Restriction;

 owl:onProperty :has_Bleeding_Risk_Factor;

 owl:hasValue :currently_Smokes].

cv1 will be replaced by this value during translation to OWL and SWRL axioms. This

translation process is described in section 7.4.1.

7.3.2.1. ClassPropertyHasValueRestriction class

ClassPropertyHasValueRestriction is a subclass of the ClassVariable. In this subclass of

the VaribleClass a restriction is put on the value of the restricted property. To restrict a

datatype property to a specific value or an object property to a specific instance, properties

classPropertyHasValueRestrictionHasValue and

classPropertyHasValueRestrictionHasInstance are used respectively.

7.3.2.2. ClassPropertyQualifiedCardinalityRestriction class

185

ClassPropertyQualifiedCardinalityRestriction is another subclass of the ClassVariable

which can be used to put a restriction on either type or the number of values that a specific

property can have in a class variable. hasCardinalityType with the range of Cardinality

shows the type of cardinality restriction on the restricted property. The instances of the

Cardinality class are any, all, min, and max. variableHasNumericValueForCardinality data

type property indicates what the cardinality number is and classPropertyQCROnClass with

the range owl:Class property indicates what class the values of the restricted property

should belong to. For instance the following example shows an existential (any) restriction

on the type of the values of the warfarin_is_contraindicated_due_to property:

:cv1 a :ClassPropertyHasValueRestriction;

 :classVariableHasProperty :warfarin_is_contraindicated_due_to;

 :classPropertyQCROnClass :Contraindication_to_warfarin

 :hasCardinalityType :any.

This class variable represents instances that have at least one contraindication to Warfarin.

This class variable can, for instance, be mapped to class

Patients_whith_no_Warfatin_Tolerance.

As another instance, the following example shows a class of instances that has at least two

values for the warfarin_is_contraindicated_due_to property (a cardinality restriction):

:cv1 a :ClassPropertyHasValueRestriction;

:classVariableHasProperty :warfarin_is_contraindicated_due_to;

:variableHasNumericValueForCardinality “2”^^xsd:int;

:hasCardinalityType :min.// or any

This class variable can be mapped to Patient_With_Two_Constraindications_to_Warfarin.

Besides the number of values of a property, the type of those values can be restricted in

order to create a Qualified Cardinality Restriction.

7.3.3. Functions and Operators

186

We have augmented the expression ontology that we developed in chapter 5 of the thesis to

be used in our mapping ontology. Function class is an entity that can be used for

computation in our mapping methodology. Each function accepts an operator, one or two

inputs and generates an output. We have expanded the operator class of the expression

ontology by several new operators to manipulate classes, properties and instances. These

new classes of operators are SetOperator, PropertyOperator, ConvertOperator,

ClassComparatorOperator and CreateOperator. Object property functionHasOperator

with the domain Function and range of Operator can be used to assign an operator to a

function. Regardless of the operator type, the output of the function is assigned to it by the

functionHasOutputVariable with the domain of Function and range of Variable. Depending

on the type of the operator used in a function, it can be categorized as on the subclasses of

the Function Class:

(1) CreateFunction:

This function which makes use of one of the instances of the CreateOperatorClass is used

for creating new elements in the target ontology during the mapping. Depending on the

type of create operator the necessary input variables are assigned to each type of the

function using special properties. We will discuss these properties when we review the

instances of the CreateOperator class in the remainder of this section.

(2) ConvertFunction:

These functions make use ConvertOperator instances as their operators to create new

instances in the target ontology. How the input of these functions are assigned to them are

discussed when each instance of the ConvertOperator is reviewed in the remainder of this

section

(3) ExpressionFunction:

187

All other operators are used by instances of the ExpressionFunction Class. We call them

expression functions because they all have the same style of accepting inputs as the

functions in our expression ontology discussed previously. In this section of the thesis, we

expand the set of operators defined in chapter 5 and introduce a new set of operators which

are used for ontology mapping purposes. Properties functionHasInputVariable1and

functionHasInputVariable2 which have Function class as their domain and Variable as

their range are used to assign two input variables to these functions. For instance, in order

to define a function which multiplies two input variables aVar and bVar and puts the result

in variable cVar our mapping ontology will be instantiated in the following way:

mo:divideFunc1 a mo:ExpressionFunction;

mo:functionHasOperator mo:multiplyMO;

 mo:functionHasInputVariable1 mo:aVar;

 mo:functionHasInputVariable2 mo:bVar;

 mo:functionHasOutputVariable mo:cVar.

Please note that multiplyMO operator was introduced in the expression ontology. The

instances of the new operators, the type of the function that will be using them and output

type of those functions are listed in Table 7.3.

188

Table 7.3 Instances of the SetOperator, PropertyOperator, ConvertOperator,

ClassComparatorOperator and CreateOperator classes, the functions that

makes use of these variable and their output types

Operator Class Instance Function
Function

Output

SetOperator
unionSO

intersectionSO
ExpressionFunction ClassVariable

PropertyOperator chainPO ExpressionFunction PropertyVariable

ConvertOperator

convertToInstanceTO

convertToClassTO

convertToPropertyTO

ConvertFunction

InstanceVariable

ClassVariable

PropertyVariable

ClassComparatorOperator

equivalanceCO

subclassCO

superClassCO

disjointCO

complementCO

ExpressionFunction BooleanVariable

CreateOperator

classCreateOperator

instanceCreateOperator

propertyCreateOperator

CreateFunction

ClassVariable

InstanceVariable

PropertyVariable

In Appnedix D, we review the new introduced operators in KMO, their purposes and the

details of using them in a function along with the properties used for assigning inputs to

them:

7.3.4. Meta Data

Euzenat and his colleagues [164] have created a comprehensive list of annotation properties

for ontology mappings. We use their list of annotation properties and make some minor

modifications to support modeling meta-data in our mapping ontology. Table 7.4 shows the

189

properties that have been created for capturing meta-data, their ranges and purposes. The

domain of all these properties is the class Mapping.

Table 7.4 Properties used for Meta data modeling in KMO

Property Range Purpose

hasCreator xsd:string
Indicates the person who is responsible for creating

the mapping

hasDate xsd:date Shows the creation date of the mapping

hasPurpose xsd:string Shows the purpose of the mapping

createdByAlgorithm xsd:string
Shows what algorithm has been used to create the

mapping

timeSpentToCreate xsd:duration
Shows the times that has been taken to create the

mapping

hasParameters xsd:string
A textual description of the parameters passed to

mapping discovery algorithm

hasConfidence xsd:float
This property shows the confidence measure of the

mapping that belongs to [0,1]

hasDescription xsd:string Any other details can be added using this property

7.3.5. Relations between Mappings

MAFRA is the only mapping representation language that allows the user to establish a set

relations between the mappings. As we saw previously in chapter 2, the authors of MAFRA

identified four types of relations: Specialization, Abstraction, Composition and

Alternatives. We have added the necessary constructs to our mapping ontology to capture

these relations.

190

mappingIsSpecializedFormOf object property with the domain and range of Mapping is

used to represent specialization relation between mappings. Before starting the translation

we go through all of the specialization relationships and copy all of the values of the

mapping related properties from the general mapping and assign them to the specialized

mapping.

To indicate the abstract mappings the data type property mappingIsAbstract with the

domain Mapping and range of xsd:Boolean is used. If a mapping is abstract it will not be

translated and won’t participate in the instance translation.

Composition of the mappings is also possible by using the target of a mapping as the source

of another mapping. Moreover, a mapping can be composed of several other sub-mappings

indicated by the mappingHasSubMapping with the domain and rang of Mapping.

Conditions are only applied to the super-mappings the sub-mappings are unconditional.

Alternative relation can be easily captured using conditions and no special construct is

necessary for handling it.

7.4. Translation of Mappings to OWL and SWRL

A reason to map ontologies is to transform instances of the source ontology to the target

ontology. There are two options in order to automatically achieve the instance

transformation task: (1) Write a computer program which understands the mapping

semantics and parses the mappings and loads the ontologies to perform the instance

transformation; (2) Define formal semantics for the mapping language and perform the

instance transformation using a reasoner for the language in which the formal semantics are

defined. We choose the second approach in order to transform the instances between the

ontologies that are mapped using our mapping ontology.

We believe that Semantic Web is expressive enough for instance transformation but it has

not been fully utilized for this task. We transform the instantiation of the mapping ontology

191

to a combination of OWL (either OWL-DL or OWL 2 RL) and SWRL. Using SWRL rules

does not harm the decidability, soundness and completeness of the reasoning process. This

mixture of OWL and SWRL then fed to an OWL reasoner that supports both OWL and

SWRL. In order to translate instantiation of our mapping ontology we have two general

steps (a) Translate the class, instance, property and data variables in each mapping (steps 1-

7 of the Table 7.5) to OWL-Full; (b) Translate each mapping to OWL-DL + SWRL in

order to be fed to an OWL reasoner (step 8 of the Table 7.5). Table 7.5 shows the

pseudocode for translation of each mapping in our methodology.

Table 7.5 The pseudocode for translation of KMO instantiations to OWL + SWRL

1. Put all the variables of the current mapping that are not output of functions (Except for

Instance and Data variables) in list1. Put all the output variables of the current mapping

(Except for Boolean variables) in list 2. Put all Boolean output variables of the current

mapping in list 3.

2. Translate the variables in list 1 until no further translation is possible. (Section 7.4.1)

3. Translate the variables in list 2 until no further translation is possible. (Section 7.4.1.3)

4. If list1 and list2 are empty go to 5 else go to 2.

5. Translate all the Boolean variables in list 3. (Section 7.4.2)

6. Process conditions. (Section 7.4.3)

7. Prepare the translated mapping for reasoning according to the translated variables.

(section 7.4.4)

List 1 and 2 are repeatedly swept for variables to be translated until both of the lists are

empty as the input variables should be first translated in order to translate the output

variables based on them. However, the input variables may be dependent on the translation

of the output variables as well. For example, an instance variable may belong to a class

which is the output of a set function. In order to translate that instance variable, the class

variable that it belongs to should be translated in list 2.

Boolean functions are treated separately since they are not supported by either OWL or

SWRL directly. Mappings with Boolean functions are first translated into a single mapping

rule without considering the Boolean functions in it. Then, considering the Boolean

192

functions a single mapping rule may be transformed to several other SWRL rules in order

to consider the effect of Boolean functions on the mapping.

The reason that we do not put instance and data variables in list 1 is that all of them are

created in class variable ClassPropertyHasValueRestriction using properties

classPropertyHasValueRestrictionHasValue and

classPropertyHasValueRestrictionHasInstance. Therefore, if we take care of instances of

the ClassPropertyHasValueRestriction in lists 1 and 2, all data and instance variables are

taken care of as well. During the translation, variables are replaced by their values that are

assigned to them using variableHasClassValue, variableHasPropertyValue,

variableHasInstanceValue, variableHasBooleanValue, variableHasNumericValue and

variableHasStringValue properties.

7.4.1. Translation of None-Output Variables

In this section, we explain how class, instance and property variables that are not output of

functions are translated to OWL or SWRL axioms. Variables that are output of functions

are translated during the translation of operators in section 7.4.1.3. Our algorithm for

translation of these variables work in the following way:

(1) Remove each variable from the list1 once. If any of the values of the properties

classVariableHasProperty, classPropertyQCROnClass, classVariableHasClass is a

variable that exists in either list1 or list2 it means that variable is not translate yet and it

should be put back in the list1 otherwise it is translated according to the algorithm

explained in this section.

(2) If a variable was translated in step 1 go to step 1 else go to next step of the main

algorithm.

How variables are translated in step 1 of the abovementioned algorithm is explained in the

remainder of this section. Depending on the properties that are used for defining a class

variable they may be translated to either OWL or SWRL axioms. If any of the following

193

conditions are satisfied we will be using SWRL axioms (section 7.4.1.2) otherwise they are

translated to OWL axioms (section 7.4.1.1).

(1) If the instance of the ClassVariable has a value for the property

classPropertyHasValueRestrictionHasInstanceVariable. In this case, an instance

variable is being defined.

(2) If value of the property classPropertyHasValueRestrictionHasValue is a variable which

does not have a value for the property variableHasValue (super property of the

variableHasNumericValue, variableHasBooleanValue and variableHasStringValue). In

this case, a value variable is being defined.

7.4.1.1. Translation of Non-output Variables to OWL Axioms

In order to translate the ClassVariable class to OWL axioms our transformation algorithm

uses the correspondences listed in Table 7.6 to translate instantiations of the mapping

ontology to corresponding OWL-DL or OWL 2 axioms. When we arrive at an instantiation

of the mapping ontology which belongs to cell on the left hand side of this table, it is

translated to the corresponding OWL axiom mentioned in the cell on the right.

194

Table 7.6 Correspondence table between instantiations of our mapping ontology and

OWL axioms. ?p, ?v and ?c represent properties, data values and classes or

variables representing them respectively.

Mapping Ontology
Equivalent OWL-DL,

 OWL 2 Construct

classVariableHasProperty ?p

classPropertyQCROnClass ?c

hasCardinalityType any

[a owl:Restriction;

owl:onProperty ?p

owl:someValuesFrom ?c]

classVariableHasProperty ?p

classPropertyQCROnClass ?c

hasCardinalityType any

[a owl:Restriction;

owl:onProperty ?p

owl:allValuesFrom ?c]

classVariableHasProperty ?p

hasCardinalityType any

variableHasNumericValueForCardinality ?v

[a owl:Restriction;

owl:onProperty ?p owl:cardinality

?v]

classVariableHasProperty ?p

hasCardinalityType min

variableHasNumericValueForCardinality ?v

[a owl:Restriction;

owl:onProperty ?p

owl:minCardinality ?v]

classVariableHasProperty ?p

hasCardinalityType max

variableHasNumericValueForCardinality

[a owl:Restriction;

owl:onProperty ?p

owl:maxCardinality ?v]

classPropertyQCROnClass ?c

classVariableHasProperty ?p

hasCardinalityType min

variableHasNumericValueForCardinality ?v

[a owl:Restriction; owl:onClass ?c

owl:onProperty ?p

owl:minQualifiedCardinality ?v]

classPropertyQCROnClass ?c

classVariableHasProperty ?p

hasCardinalityType max

variableHasNumericValueForCardinality ?v

[a owl:Restriction;

owl:onClass ?c

owl:onProperty ?p

owl:maxQualifiedCardinality ?v]

classVariableHasProperty ?p

variableHasNumericValueForCardinality ?v

[a owl:Restriction;

owl:onProperty ?p

owl:hasValue ?v]

195

In the table above we did not assign a value to the property classVariableHasClass. If any

of the examples in the first column of the Table 7.6 has a value for this property, the value

mentioned in the second column of the table should be intersected with the value of the

property classVariableHasClass.

For instance, if we assign a value to this property in the example in the first row of the

Table 7.6 the value in the row 1:

:cv1 a :ClassVariable;

:classVariableHasClass ?ic;

:classVariableHasProperty ?p;

:classPropertyQCROnClass ?c;

:hasCardinalityType any;

row 1 column 2 will be:

[a owl:Class; owl:intersectionOf

(?ic

 [a owl:Restriction;

 owl:onProperty ?p;

 owl:someValuesFrom ?c]

)

]

The same restriction is created for all of the examples in Table 7.6 if there is a value for the

property classVariableHasClass.

As we mentioned previously, during translation to assign the real value of the class variable

to it the property variableClassHasClassValue is used. For instance, the class variable in

the above example has an assigned value using the following triples:

:cv1 :variableClassHasClassValue

[a owl:Class; owl:intersectionOf

196

 (?ic

 [a owl:Restriction;

 owl:onProperty ?p;

 owl:someValuesFrom ?c]

)

]

7.4.1.2. Translation of Non-output Variables to SWRL Axioms

As we described earlier if the variable class that is being translated has a value for the

property classPropertyHasValueRestrictionHasInstanceVariable or value of the property

classPropertyHasValueRestrictionHasValue is a variable which does not have a value for

the property variableHasValue it will be translated to SWRL axioms that will be used in

SWRL rules.

To explain how we translate these variables to SWRL axioms we will explain the result of

each step of our translation algorithm on the following example:

:cv1 a :ClassVariable;

 :classPropertyHasValueRestrictionHasInstanceVariable :personVar;

 :classVariableHasClass :Student;

 :classVariableHasProperty :hasWeight;

 :classVariabfleHasValue :weightVar.

Step1:

Find the value of the property classPropertyHasValueRestrictionHasInstanceVariable and

create a SWRL variable with the name of the value of this property + “SWRLVar”.

:personVarSWRLVar a swrl:Variable.

Then create a SWRL axiom which shows that the created variable belongs the class

represented by the property classVariableHasClass:

197

[a swrl:ClassAtom ;

 swrl:argument1 :personVarSWRLVar;

 swrl:classPredicate source:Person

]

If the value of the classVariableHasClass is an owl:Class, it will be used in the OWL

axiom. If this value is a class variable, the value of the property classVariableHasClass will

be used in the created OWL axioms.

Step2:

If the value of the classPropertyHasValueRestrictionHasValue is a variable that does not

have a value for the property variableHasValue a SWRL variable is created with the name

of the value of this property + “SWRLVar”:

: weightVarSWRLVar a swrl:Variable.

Step 3:

Another axiom is created which shows that the SWRL variables created in the first and

second steps are connected using the property indicated by the classVariableHasProperty

which is hasWeight:

 [a swrl:DatavaluedPropertyAtom ;

 swrl:argument1 :personVarSWRLVar;

 swrl:argument2 :weightVarSWRLVar;

 swrl:propertyPredicate :hasWeight

]

Please note that since hasWeight is a data type property swrl:DatavaluedPropertyAtom

should be used according to SWRL syntax. If we were creating SWRL axioms for a class

variable that puts restrictions on an object property such as hasFather, we would use

swrl:IndividualPropertyAtom:

198

 [a swrl:IndividualPropertyAtom;

 swrl:argument1 :personVar1SWRLVar;

 swrl:argument2 :fatherVar2SWRLVar;

 swrl:propertyPredicate :hasFather

]

If the class variable belongs to the source of the mapping, these SWRL axioms are added to

the body of the SWRL rules otherwise they are added to the head of the SWRL rule.

7.4.1.3. Translation of Non-Boolean Output variables

In this section we describe how the non-Boolean output variables are translated to OWL

and SWRL rules. Output variables of functions are translated according the operator used in

corresponding function. To translate output variables, the function producing it, the first

and second input variable, the output variable and operator of the function should be

retrieved from the ontology. Depending on the function if it is ExpressionFunction,

ConvertFunction or CreateFunction the inputs of them should be retrieved using different

properties. Our algorithm for translation of these variables works in the following way:

(1) Remove each variable once from the list2. If any the input variables that are needed to

compute the output variable is in the list1 or list 2 put the variable back to the list2

otherwise proceed with the translation of output variable according to the used operator

(explained in sections 7.4.1.4, 7.4.1.5, 7.4.1.6 and 7.4.1.7).

(2) If a variable was translated in step 1 go to step 1 else go to next step of the main

algorithm.

7.4.1.4. Output Variables of Functions with Convert Operators

Convert functions are translated using Jena API functions. If the operator is

convertToClassTO or convertToPropertyTO, the first input is converted to a class or a

property respectively. If the operator is convertToInstanceTO, the first input is converted to

199

an instance which belongs to the class that is indicated by input 2. Please note that the

original element remains intact and it is the function’s output that holds the new converted

values. Table 7.7 shows the Jena API functions that have been used to execute convert

operators. This output variables can be used to define other variables or be used in other

functions.

Table 7.7 Jena functions have been used to implement the convert operators

Operator Jena API function

convertToClassTO OntModel.createClass(String)

convertToInstanceTO OntModel.createIndividual(String)

convertToPropertyTO OntModel.createProperty(String)

For instance, if we have a function with the following specification:

mo:f1 a :Function;

 mo:functionHasInputVariable1 source:airbus;

 mo:functionHasInputVariable2 source:AirPlance;

 mo:functionHasOutputVariable mo:fout;

 mo:functionHasOperator mo:convertToClassTO.

The result of translation of fout variable will be adding the following triples to the

instantiation of the mapping ontology:

target:Airbus a owl:Class.

 mo:fout mo:classVariableHasClassValue target:Airbus.

As you can see, the target:Airbus class has been used as a value of the property

classVariableHasClassValue. Therefore, this triple is in OWL-Full which is undecidable.

These variables will be translated to OWL-DL + SWRL during the translation of the

mapping that uses the mo:fout variable. This process is described in 7.4.4.

200

7.4.1.5. Output Variables of Functions with Set Operators

Several operators have been defined to perform set operations on classes and class

variables. The true values of the input variables (indicated by the properties in Table 7.2)

will be put in a java RDFList then the corresponding Jena function is used to create the

necessary OWL axioms. If the operator is intersectionSO, unionSO or intersectionSO the

Jena functions OntModel.createIntersectionClass(String, RDFList),

OntModel.createUnionClass(String, RDFList) or

OntModel.createComplementClass(String, Resource) will be used respectively to create

values for the output variables. The created class will be set as the value of the property

variableHasClassValue of the output variable. For instance, the following instantiation of

the mapping ontology:

:func1 a :Function;

:functionHasInputVariable1 :Male;

:functionHasInputVariable2 :Parent;

:functionHasOperator :intersectionSO;

:functionHasOutputVariable :func1OutVar.

will be translated to the following triples:

:func1OutVar :variableHasClassValue

[a owl:class;

 owl:intersectionOf(:Parent :Male)

].

Now this class variable is ready to be used in other class variables or as an input of

functions. Please note that these triples will not be used for reasoning because they are in

OWL-Full and the final stage will transform these triples to OWL-DL + SWRL. This

process is described in 7.4.4.

7.4.1.6. Output Variables of Functions with Mathematic Operators

201

Output variables of functions that make use of instances of StringOperator,

MathOperators, CompratorOperator and BooleanOperator will be translated to SWRL

axioms that will be added to the body of the SWRL rule representing a mapping. These

SWRL rules will be used by a reasoner to perform the instance transformation. In order to

create SWRL axioms first input, second input and output variables and the operator should

be retrieved from the instantiation of the mapping ontology. Each of the variables defined

in our mapping ontology will be represented by a SWRL variable with the name: name of

the variable + “SWRLVar”. Then the corresponding SWRL operator is found to be used in

the SWRL rule. Finally a SWRL built-in atom is created based on the inputs, the operator

and the output. For instance the following example

:f1 a :Function;

:functionHasInputVariable1 :input1;

:functionHasInputVariable2 :input2;

:functionHasOutputVariable :output

:functionHasOperator :divideMO

is translated to

:outputSWRLVar a swrl:Variable.

:input1SWRLVar a swrl:Variable.

:input2SWRLVar a swrl:Variable.

[a swrl:BuiltinAtom ;

swrl:arguments (:outputSWRLVar :input1SWRLVar :input2SWRLVar);

swrl:builtin swrlb:divide]

Depending on the operator, a different swrl:builtin may be used. For instance, for the

multiplyMO operator we will use swrlb:multiply to create the corresponding SWRL axiom.

7.4.1.7. Output Variables of InstanceFromPropertyCreateFunction

202

All create functions can be easily implemented using Jena API. However, the

InstanceFromPropertyCreateFunction needs special attention for implementation. In order

to understand how this function is translated to OWL and SWRL rules, we go through the

following example:

:icf1 a :InstanceFromPropertyCreateFunction;

 :functionHasInputVariable1 :a;

 :functionHasInputVariable1 :b;

 :functionHasOutputVariable :c;

 :functionPropertyToCreateInstnace source:is_Taking_Medication.

Upon reaching an InstanceFromPropertyCreateFunction output the following steps will be

taken:

(1) A SWRL variable is created by adding the “SWRLVar” the name of each of the input

variables and the output variable:

mo:aSWRLVar a swrl:Variable.

mo:bSWRLVar a swrl:Variable.

mo:cSWRLVar a swrl:Variable.

(2) Every two instance that are connected using the property indicated by

functionPropertyToCreateInstnace are found and an instance with the name of the

subject + _property_ + object is created. In our example, if there is a triple

“source:patient1 source:is_Taking_Medication source:Aspirin” the following triple is

created in the target ontology “target: patient1_ is_Taking_Medication_Aspirin”.

(3) Property hasName with the domain owl:Thing and range xsd:string is used to assign the

names to the created instance and the instances that have been used for creating it. In

our example the created instance is patient1 is_Taking_Medication_Aspirin and

instances that have been used to create it are patient1 and Aspirin:

:patient1 :hasName “patient1”^^xsd:string.

203

:Aspirin :hasName “Aspirin”^^xsd:string.

:patient1 is_Taking_Medication_Aspirin :hasName

 “patient1_is_Taking_Medication_Aspirin”^^xsd:string.

Please note that SWRL cannot use the name of the instances in the reasoning process. This

is why we have added the names as property values to make them available to the SWRL

rules. These names will be used to identify the created instances in the SWRL rules.

(4) A SWRL rule which makes use of the assigned name to identify the created instance in

the target ontology is made. The following rule identifies the created instance in the

target ontology based on the instances that are used to create it (instances that are

assigned to aSWRLVar and bSWRLVar), by checking the values of the hasName

property for SWRL variables aSWRLVar, bSWRLVar and cSWRLVar.

mo:hasName(?aSWRLVar,?v1name) ^ mo:hasName(?bSWRLVar,?v2name) ^

swrlb:stringConcat(?sv1,?v1name,”_is_Taking_Medication_”) ^

swrlb:stringConcat(?sv2,sv1,v2name) ^

mo:hasName(?cSWRLVar,?sv2) 

target:patient_ID(?cSWRLVar,?aSWRLVar) ^

target:medication_?Name(?cSWRLVar,?bSWRLVar)

In the example above, for the instances patient1 and Aspirin and the property

is_Taking_Medication, the created instance patient1_is_Taking_Medication_Aspirin will

be assigned to the variable cSWRLVar. Now this variable can be used in the head of the

SWRL rule for ontology mapping to assert that

target:patient1_is_Taking_Medication_Aspirin

target:patient_ID source:patient1;

target:mediation_Name source:jane.

7.4.2. Translation of Boolean Output Variables

204

When both list1 and list2 are empty, we start translation of output of the Boolean operators.

Unfortunately SWRL does not provide the built-in for the orBO, andBO and xorBO

operators; therefore we need to take care of them separately. In order to handle Boolean

orBO, andBO and xorBO operators we need to break the existing SWRL rule into two

several other SWRL rules.

We first create a SWRL variable for each of the Boolean variables in the function by

adding the name “SWRLVar” to the end of each of those variables. For instance, the

variable for the variable mo:a the following variable is created:

mo:aSWRLVar a swrl:Variable.

After creation of the necessary SWRL variables, we iterate through all the possible values

of the Boolean variables that are not output of functions and compute the values of the

Boolean output variables in list3 (using the SWRL rules described in section 5.4 for

implementation of the expression functions). As we iterate through the values, we create a

copy of the existing SWRL rule created for the current mapping and add a SWRL axioms

that represents the current value of the all of the Boolean values. Therefore, if we have n

non-output Boolean variables, we create 2n different set of SWRL axioms.

7.4.3. Handling Conditions

Mappings can be conditional and have complex condition satisfaction criteria. The same

properties and classes used in precondition section of CPG-DKO in section 4.4 of the thesis

are used to indicate conditions for conditional mappings. Classes used for handling

conditions are Condition, SatisfiedCondition, UnSatisfiedCondition and Cardinality and the

properties used for this purpose are hasCondition, hasCardinalityType and

hasCardinalityValue.

As we saw previously, mappings with variables that have no asserted values for the

property variableHasValue will be translated to SWRL rules because they are representing

a fragment of the ontology rather than a specific element of it. For instance, in the

205

following example, ageVar represents all the numeric values of the property hasAge in the

source ontology.

mo:ageVar a mo:NumericVariable.

mo:cv1 a :ClassVariable;

 mo:classPropertyHasValueRestrictionHasInstanceVariable

:personVar;

 mo:classVariableHasProperty source:hasAge

 mo:classVariabfleHasValue mo:ageVar.

Having preconditions will lead to using variables that need SWRL rules. Therefore,

whenever a mapping is conditional, it is represented by SWRL rules. In order to allow only

the mappings that have satisfied condition criteria to be used in instance transformation, we

review the SWRL rules that have been created in section 7.4.2 and see if the condition

satisfaction criteria is satisfied in them by checking the values of Boolean variables. If the

condition satisfaction criteria is met, the SWRL rule is kept otherwise it is removed from

the list of SWRL rules representing the mapping. In this step, usually the size of the set of

SWRL rules representing a mapping is significantly reduced.

Continuing our previous example in section 7.4.2, we mentioned that 8 SWRL rules will be

created to handle the Boolean operators in that mapping. Suppose that both

isEligibleForFreeFluShotVar and isDiabeticAndHasHFOutVar are conditions of the

mapping and the condition satisfaction criterion is all. We go through all of the SWRL rules

created for that mapping and review the Boolean variables and remove the SWRL rule

when either of the variables’ value equals to "false"^^xsd:Boolean. Therefore, of those 8

created SWRL rules the only ones are kept that have both of the following axioms in the

head of the rule:

[a swrl:BuiltinAtom ;

swrl:arguments (isEligibleForFreeFluShotVarSWRLVar

"true"^^xsd:boolean) ;

206

swrl:builtin swrlb:equal

]

[a swrl:BuiltinAtom ;

swrl:arguments (isDiabeticAndHasHFOutVarSWRLVar "true"^^xsd:boolean) ;

swrl:builtin swrlb:equal

]

Other condition satisfaction criteria such as any, any k out of n are handled in the same

way.

7.4.4. Translation of Instance of the Mapping Class

The value transfer mappings are already in SWRL and ready for execution. However,

Relational and transformation mappings are in OWL-Full because of not respecting the

class-instance separation that is needed in OWL-DL. In this section we describe how these

two mappings are translated to OWL-DL + SWRL for reasoning.

7.4.4.1. Translation of Relational Mapping

Relational mappings can only have one source and one target with a value for the property

mappingHasRelation. In order to be able to translate these mapping to OWL-DL for

instance transformation we need to write a triple in the following form:

(Real value of the source variable, the corresponding OWL relation, real value of the target

variable). For instance, imagine the following mapping and the following translated source

and target variables:

:m1 a :Mapping;

 :mappingHasRelation :classRelationEquivalentClass

 :MappingHasSource :out1;

 :MappingHasTarget :out2;

:out1 :variableHasClassValue

207

 [a owl:Class;

 owl:intersectionOf (source:Parent source:Male)

]

:out2 :variableHasClassValue

 [a owl:Class; owl:intersectionOf(

 target:Person

 [a owl:Class; owl:ComplementOf(target:Mother)]

)

]

This is in OWL-Full because OWL classes have been used as instances and cannot be used

for reasoners instance transformation. This mapping is translated to the following OWL-DL

axiom:

 [a owl:Class;

 owl:intersectionOf (source:Parent source:Male)

]

owl:equivalentClass

[a owl:Class; owl:intersectionOf(

 target:Person

 [a owl:Class; owl:ComplementOf(target:Mother)]

)

]

7.4.4.2. Translation of Transformation Mappings

After translation of all the variables it is possible to translate transformation mappings as

well. The first type of transformation mapping is ClassToPropertyTransformation. These

mappings can be easily translated using SWRL rules.

To translate these mappings, the true value of the properties

classToPropertyTransformationHasSourceClass,

208

classToPropertyTransformationHasSourceFirstProperty,

classToPropertyTransformationHasSourceSecondProperty and

classToPropertyTransformationHasTargetProperty are found and then a SWRL rule which

makes use of these values is written to represent the mapping. If we assume the values of

these properties are sourceClass, sourceProp1, sourceProp2 and targetProp respectively,

the mapping will be represented by the following SWRL rule:

source:sourceClass(?x) ^ source:sourceProp1(?x,?x1) ^

source:sourceProp2(?x,?x2)  target:targetProp(?x1,?x2)

Another type of transformation mapping is the PropertyToClassTransformationMapping.

To translate this mapping to OWL, the value of the properties

propertyToClassTransformationHasSourceProperty ,

propertyToClassTransformationHasTargetClass,

propertyToClassTransformationHasFirstTargetProperty and

propertyToClassTransformationHasSecondTargetProperty are found. Assume that they

have the following values sourceProp, TargetClass, firstTargetProp and

secondTargetProp. For every two instance that are connected using sourceProp, an

instance created in the target ontology with the name: name of the subject +_ +name of the

sourceProp + _+ name of the object. This instance is set as an instance of the TargetClass.

Then subject and objects of the sourceProp are connected to this created instance using

firstTargetProp and secondTargetProp properties respectively.For instance if we have the

following mapping:

:m a :PropertyToClassTransformationMapping

:propertyToClassTransformationHasSourceProperty source:marriedTo;

 :propertyToClassTransformationHasTargetClass target:Marriage;

 :propertyToClassTransformationHasFirstTargetProperty

target:hasPartner1;

 :propertyToClassTransformationHasSecondTargetProperty

 target:hasPartner2.

209

and we have the following triple “source:john source:marriedTo source:jane” in the source

ontology, the outcome of the abovementioned procedure will be

target:john_jane_marriedTo_PropToClassTrans a target:Marriage;

 target:hasPartner1 :john;

 target:hasPartner1 :jane.

7.4.4.3. Translation of Value Transfer Mappings

As the variables are translated, SWRL rules representing these mappings are built as well.

Therefore, these mappings that are represented by SWRL rules are ready to be used by

reasoners to perform instance transformation. These mappings can have several sources and

targets with no value for mappingHasRelation. Since we had not covered the concept of

variables and functions in section 7.3.1, we discuss an example of the value transfer

mapping in this section. We would like to create a mapping which makes use of the height

and the weight of a person in the source ontology and assign the BMI of the person to him

or her using the hasBMI from the target ontology. For instance from having this:

source:john source:hasWeightKG “82.2”^^xsd:float;

 source:hasHeightCM “187.0”^^xsd:float.

We would like to have the following triple after the mapping in the target ontology:

source:john target:hasBMI_KG_CM “23.5”^^xsd:float

We first need to create the variables that represent the weight, height and BMI of a person

and the person itself:

mo:weightVar a mo:NumericVariable.

mo:HeightVar a mo:NumericVariable.

mo:BMIVar a mo:NumericVariable.

mo:personVar a mo:InstanceVariable.

210

mo:cv1 a mo:ClassPropertyHasValueRestriction ;

 mo:classVariableHasClass source:Person ;

 mo:classVariableHasProperty source:hasWeight ;

 mo:classPropertyHasValueRestrictionHasInstanceVariable

 mo:personVar;

 mo:classPropertyHasValueRestrictionHasValue mo:weightVar

mo:cv2 a :ClassPropertyHasValueRestriction ;

 mo:classVariableHasClass source:Person ;

 mo:classVariableHasProperty source:hasHeight ;

 mo:classPropertyHasValueRestrictionHasInstanceVariable

 :personVar;

 mo:classPropertyHasValueRestrictionHasValue :HeightVar.

Then we need functions that make use of weightVar and HeightVar to compute the

BMIVar according to the following formula: weightVar/(HeightVar)2:

:mathfunc1 a :MathFunction;

 :functionHasInputVariable1 :weightVar;

 :functionHasInputVariable2 :HeightVar;

 :functionHasOutputVariable :mathfunc1Out;

 :functionHasOperator :divideMO.

:mathfunc2 a :MathFunction;

 :functionHasInputVariable1 :mathfunc1Out;

 :functionHasInputVariable2 :HeightVar;

 :functionHasOutputVariable :BMIVar;

 :functionHasOperator :divideMO.

Then we need to assign the value of the BMIVar to the instance variable personVar using

the target:hasBMI property:

211

mo:cv3 a mo:ClassPropertyHasValueRestriction ;

 mo:classVariableHasClass target:Person ;

 mo:classVariableHasProperty target:hasBMI ;

 mo:classPropertyHasValueRestrictionHasInstanceVariable

mo:personVar;

 mo:classPropertyHasValueRestrictionHasValue :BMIVar .

And finally we need to create a transformation mapping which makes use of the created

class variables and mathematical functions for the mapping:

:m12 a :ValueTransferMapping;

 :mappingHasSource :cv1;

 :mappingHasSource :cv2;

 :mappingHasFunction :mathfunc3;

 :mappingHasFunction :mathfunc4;

 :mappingHasTarget :cv3.

This mapping is translated to the following SWRL rule to be executed in Pellet reasoner:

:SWRLRule1

 a swrl:Imp ;

 swrl:body (

 [a swrl:ClassAtom ;

 swrl:argument1 :personVarSWRLVar;

 swrl:classPredicate source:Person

]

 [a swrl:ClassAtom ;

 swrl:argument1 : personVarSWRLVar ;

 swrl:classPredicate source:Person

]

 [a swrl:DatavaluedPropertyAtom ;

 swrl:argument1 :sourceInstSWRLVar ;

 swrl:argument2 :weightVarSWRLVar ;

212

 swrl:propertyPredicate source:hasWeight

]

 [a swrl:DatavaluedPropertyAtom ;

 swrl:argument1 :sourceInstSWRLVar ;

 swrl:argument2 :HeightVarSWRLVar ;

 swrl:propertyPredicate source:hasHeight

]

 [a swrl:BuiltinAtom ; swrl:arguments

 (:mathfunc1OutSWRLVar :weightVarSWRLVar :HeightVarSWRLVar)

;

 swrl:builtin swrlb:divide

]

 [a swrl:BuiltinAtom ;

 swrl:arguments(:BMIVarSWRLVar :mathfunc1OutSWRLVar

:HeightVarSWRLVar);

 swrl:builtin swrlb:divide

]

) ;

 swrl:head (

 [a swrl:ClassAtom ;

 swrl:argument1 : personVarSWRLVar ;

 swrl:classPredicate target:Person

]

 [a swrl:DatavaluedPropertyAtom ;

 swrl:argument1 :personVarSWRLVar;

 swrl:argument2 :BMIVarSWRLVar ;

 swrl:propertyPredicate target:hasBMI

]) .

7.5. Conclusion

213

In this section, we introduced our ontology mapping framework that is composed of (1) an

ontology for representation of mappings and (2) an algorithm for translation of the

mappings to OWL-DL + SWRL. Our ontology can map any two ontologies in OWL. Our

ontology mapping framework has the following unique features compared to the exiting

mapping representation languages:

 High Expressivity:

KMO is of high expressivity for representation of complex mappings. This ontology is

superior to the existing ontology mapping representation languages in terms of

representation of predefined mapping patterns, conditions, expressions and structural

modification operators. Two of the closest mapping representation languages in terms of

expressiveness are discussed in [165] and [166]. However the language in [165] does not

have an expression language. The language provided in [166] is more expressive than the

one presented in [165] but still suffers from lack of several important expressivity features

such as structural modification operators.

 Translation of mappings to OWL + SWRL:

We define the formal semantics of the ontology mappings in KMO by translating them

from OWL-Full to OWL-DL + SWRL using our translation algorithm. As opposed to using

OWL + SWRL directly to map two ontologies, our approach has the following benefits:

i. The expressivity of KMO being OWL-Full—i.e. using properties and classes as

instances—makes the ontology mappings more readable and less verbose.

ii. It enables us to support conditional mappings and complex condition satisfaction

criteria, Meta modelling, Boolean operators and converting ontology elements and

creating new ones which are not directly supported by either OWL or SWRL.

214

iii. SWRL rules are difficult to write and can become undecidable if not written

correctly. In our translation algorithm, DL-Safe SWRL rules are generated

automatically thus relieving the user about decidability concerns.

There are other mapping frameworks such as [164] and [166] that can translate the

mappings to either SWRL or OWL but not a combination of them. However, we saw in this

chapter that a combination of both languages is necessary to effectively map two OWL

ontologies. Unfortunately, no explanations or details of the translation process in these

frameworks are provided.

 Formal semantics:

We define the formal semantics of our mapping representation ontology by translating it to

OWL-DL + SWRL. An OWL reasoner can use the formal semantics to discover new

mappings between the mapped ontologies and to transform instances from the source

ontology to the target ontology automatically.

Our review of the mapping representation languages in Chapter 2 showed that only a few of

the mapping representation languages such as OWL [142], C-OWL [58], SWRL [154] and

Euzenat1 [166] have formal semantics. OWL, C-OWL, SWRL are not expressive enough

for complex mappings. Authors of [166] have defined the semantics of their mapping

language in first order logic and have assumed they can replace all the expressions by first-

order formulas. There are two issues with that (1) First order logic can be undecidable and

no explanations have been provided in this regard; (2) No practical details have been

provided that can help with an implementation of a semantic based ontology mapping

approach. The tool that is developed to work with this language does not perform reasoning

on it and uses Java for instance transformation.

Our ontology mapping approach has the following limitations:

215

 If inconsistencies exist between the mapped ontologies or the mappings themselves,

instance transformation or mapping discovery is not possible.

 It is only possible to map OWL ontologies.

 Worst case complexity of reasoning on OWL-DL ontologies is NEXPTIME-

complete [152]. This means that reasoning on OWL-DL ontologies can be

computationally expensive. Therefore, when two large ontologies are mapped, the

instance transformation process can be time consuming.

We also suggest the following potential future works in order to improve this research:

 Defining a formal syntax for the mapping representation language so that mappings

can be checked for syntactical correctness.

 Extracting contextualized sub-ontologies: it will be beneficial to extract the

contextualized sub-ontologies that are relevant to the context and to perform

reasoning on them and the mappings as opposed to using the whole ontology. This

will reduce the reasoning time and avoid any potential inconsistencies between the

parts that are not extracted.

216

CHAPTER 8: ONTOLOGY MERGING

8.1. Introduction

Thus far, we have developed the modules that are needed to map several LKO to DKO and

have all their instances transformed to it. Moreover, our knowledge execution module is

capable of delivering decision support based on concurrent and independent execution of

several knowledge artifacts that are transformed to DKO. There are still two components to

be developed in order to dynamically merge the transformed LKO represented in DKO: (1)

A language in order to represent the morphing constructs—i.e. merging constraints—

between the knowledge artifacts and (2) a knowledge morphing execution engine that is

capable of modifying the decisions made in each of the knowledge artifacts according to

the semantics of the merging constraints in order to provide an improved and conflict-free

decision support for the problem at hand. Since these components are domain-specific, we

develop these two components for our CPG Merging Framework.

The purpose of our CPG Merging Framework is to provide decision support for treatment

of comorbidities. The treatment of comorbid diseases—i.e. the simultaneous presentation of

multiple medical conditions in a patient—is a challenge, as it demands the careful

coordination between the disease-specific therapeutic plans of the comorbid diseases. CPG

are usually focused towards a specialized disease, where they present evidence-based

recommendations about the management of a single disease. Although, some CPG allude to

the presence of comorbid conditions but they do not stipulate specialized clinical pathways

on the management of comorbid conditions [107].

The execution of CPG, in the realm of a computerized DSS, is a challenging exercise since

CPG encapsulate highly complex elements in terms of domain knowledge, decision logic,

clinical constraints, set of clinical actions and temporal relations. Therefore, execution of a

computerized CPG needs to monitor and handle such complexities in line with the specific

patient data and the institution’s operational conditions. To handle comorbidities in a

217

clinical decision support environment is further challenging as it demands the coordination

of two disease-specific CPG. Here, the challenge is not just to optimize the overall care

process in terms of avoiding duplication of tasks, but more importantly ensuring patient

safety such that actions recommended by one CPG do not cause harm to the patient’s

comorbid condition. Therefore, the concurrent execution of two independent CPG to handle

comorbidities is not a viable solution. We argue that to handle comorbid conditions, it is

important to establish a relationship between the comorbidity CPG so that the overall care

process is coordinated. We argue that to handle comorbid conditions in a clinical decision

support environment, one approach is to systematically merge the independent CPG of the

comorbid conditions leading to the generation of a mutually consistent comorbid CPG.

Merging multiple CPG is best defined by Abidi [107] as: “Merging multiple CPG is the

process of merging the knowledge which is encapsulated in them into a unified CPG that

can be used to treat the patients for their comorbidities while the integrity and pragmatics

of the medical knowledge is kept intact”. Merging CPG to handle comorbid conditions can

have several benefits: (a) Timely and cost effective treatment of patients by avoiding

unnecessary duplication of tasks, visits and medical test and reusing existing test results; (b)

Identifying potential adverse interactions and preventing patients from treatments that may

compromise their safety; (c) Standardization of care across multiple institutions for

comorbid patients.

Several frameworks have been developed to model paper-based CPG in a semantically

explicit and computationally executable formalism in order to be used in CDSS.

PROforma [136][138], GLIF [133][140], GASTON [134][135], Asbru [108],

EON [137][155], SAGE [34] and COMET [107] are a few to name. However, only few of

the existing approaches have the ability to merge multiple CPG in order to handle comorbid

situations [24][26][30][99][107]. In our work, we utilize semantic web technologies to

address the merging of multiple CPG in order to deliver guideline-mediated decision

support via a CDSS. Our CPG merging framework has been discussed in the next

subsection.

218

8.2. CPG Merging Framework

We are pursuing the problem of dynamic merging of two CPG to handle comorbid

conditions by utilizing our knowledge morphing framework. Our solution approach is to:

(a) model the paper-based CPG in terms of CPG-DKO (b) establish semantically-explicit

merging constraints that need to be satisfied to safely merge multiple CPG; and (c) merge

multiple ontologically-modeled CPG by executing the pre-specified morphing constraints.

These steps are performed using the following components:

 CPG Domain Knowledge Ontology (CPG-DKO):

The purpose of a CPG domain ontology is to computerize each individual CPG using a

standard and semantically-explicit representation formalism. We use our CPG-DKO

described in chapter 4 for this purpose. Each CPG is as an instantiation of this ontology.

 CPG Knowledge morPhing Ontology (CPG-KPO):

Morphing constructs in our CPG merging framework represent the CPG merging

constraints. A morphing construct describes a constraint that needs to be respected during

parallel execution of CPG. It may also describe the modifications that should be performed

on the reasoned decisions in individual comorbidity CPG in order to avoid violation of the

represented constraint. Two CPG can merge at the action/task level subject to the

satisfaction of a priori defined conditions for the morphing constraints.

During our review of the related literature to CPG merging we noticed that the only

merging constraints that are considered in the existing CPG merging frameworks are

aligning common tasks between CPG and identifying the conflicting tasks. However, we

believe that merging disease-specific CPG in clinical decision support is more complicated

than merely finding the common tasks and conflicts and more complicated criteria can be

taken into consideration. To create a more comprehensive list of merging constraints, we

discussed with the physicians in our research group, reviewed CPG merging

219

literature [20][21][22][24][25][26][29][30][107] and got inspired from classical AI

planning literature [183]. For instance, a merge constraint in our list may express that two

inter-CPG tasks (a) are identical, (b) should be executed simultaneously, (c) are conflicting,

(d) can reuse each other’s results, (e) have a temporal or sequential constraint between

them, (f) can be combined to a new task and (g) their execution schedule depends on

operational constraints for their simultaneous execution.

To represent the CPG merging constraints in a computer understandable format, we have

developed an OWL-DL ontology referred to as CPG Knowledge morPhing Ontology

(CPG-KPO). This ontology is instantiated manually with the help of a domain expert

familiar with the comorbidities and their merging criteria. Therefore, the source of

knowledge encapsulated in an instantiation of this ontology can be physicians’ personal

experience participating in the ontology instantiation or their interpretation of evidence

based CPG that contain knowledge regarding comorbidities. We have also defined the

formal semantics of this ontology in terms of OWL and SWRL. Using formal semantics,

decision reconciliation can be performed automatically using our OWL-based CPG

execution engine.

 Comorbidity CPG Execution Engine:

The Knowledge Morphing Execution Engine of our CPG merging framework is called the

Comorbidity CPG Execution Engine. This engine takes two sets of inputs: (1) Two or more

instantiation of CPG-DKO that represent disease-specific CPG and (2) an instantiation of

CPG-KPO that represents the morphing constraints. The output of this merge execution

engine is recommendations generated based on the dynamically merged CPG during their

concurrent execution. To implement this engine, we made modifications to our OWL based

CPG execution engine in order to enable it to take into account the semantics of the CPG-

KPO. Considering semantics of CPG-KPO enables this engine to detect merging constraint

violations and perform modifications on the generated therapy plans in each of the CPG in

order to avoid constraint violation.

220

Even though it is possible to capture the morphing constraints between CPG computerized

in different ontologies (LKO) using CPG-KPO, dynamic merging of these merged CPG

will be difficult as it involves execution of all the CPG representation languages. However,

execution engines including ours are not capable of executing more than one CPG

representation language. Hence, our merging execution engine solely operates on CPG

represented in CPG-DKO

8.3. CPG Knowledge morPhing Ontology (CPG-KPO)

In this section, we describe CPG-KPO as it is central to our CPG merging framework. We

use OWL to model the morphing constraints because: (1) Our CPG ontology is modeled in

OWL language; using OWL creates a unified representation format for both CPG

representation and merging; (2) Since the merging constraints can be rather complex, OWL

provides reasonable expressiveness to represent these complex morphing constraints.

In the discussion, the CPG-KPO’s properties are listed in italics and classes are both

italicized and Capitalized and instances are underlined. CPG-KPO can be instantiated in

order to represent the merging constraints between two ontologically modeled CPG. This

ontology is composed of two parts called the independent part and the shared part. The

shared part that is shared between CPG-KPO and CPG-DKO represents the basic concepts

of the domain knowledge that are used in definition of morphing constraints. These

ontology elements are the classes Task and its subclasses that represent different states of

this task which are ActiveTask, InactiveTask, CompletedTask, StartedTask and

DiscardedTask classes. We also added the class PendingTask to shared part. This class is

used for execution purposes. Moreover, class Condition and its subclasses which are

SatisfiedCondition and UnSatisfiedCondition classes belong to this part of the ontology.

The independent part of this ontology is instantiated to represent the merging constraints

between instances of the Task class in two or more CPG. No relations are created between

classes or properties of CPG ontologies and CPG-DKO. Therefore, we can say that

221

merging happens at the instance level and classes and properties of these CPG ontologies

are not involved in the merge. The morphing constraints are represented as a set of

constraints that need to be respected in order to merge two tasks from different CPG during

the concurrent execution of two or more CPG. The Constraint class represents the merging

constraints—the constraints are further categorized in to four types represented by the

following subclasses of the Constraints class:

1. WorkflowConstraint: This class represents constraints that affect how the workflow

structures of the CPG are interpreted during concurrent execution with other CPG.

2. OperationalConstraint: These constraints represent the operational constraints that

affect merging several CPG in a specific institution. The intent is to account for the fact

that the handling of comorbidities is potentially different at different institutions.

Therefore, these constraints represent the institutional regulations regarding the merging

of CPG.

3. TemporalConstraint: This class represents the temporal constraints between the inter-

CPG tasks. For instance, a temporal constraint may indicate that a specific task from the

CHF CPG should not be executed at least ten days after another specific task in the AF

CPG.

4. MedicalConstraint: This class represents constraints pertaining to the potential reuse of

the results of medical tasks.

The tasks that are merged by a constraints are indicated by the properties hasTask1 and

hasTask2 with the domain of Constraint and range of Task. We call these tasks task1 and

task2 respectively for all of the constraints in the rest of this section. The Task class

represents all possible clinical tasks in CPG. For instance, a blood test will be indicated by

an instance of the Task class. Figure 8.1 shows the class hierarchy of the CPG-KPO.

222

Figure 8.1 Class Hierarchy of CPG-KPO

8.3.1. Merging Constraints

In this section, we describe in detail the workflow, operational, temporal and medical

merging constraints. As we describe these concepts, we give simple imaginary examples in

order to explain the purpose and meaning of each of the introduced concepts. We also go

through several real CPG merging examples and discuss how CPG-KPO can represent the

intended merging constraints.

223

8.3.1.1. Workflow Constraints

The workflow constraint class has four subclasses: IdenticalActionConstraint,

PrecedenceConstraint, SimultaneousActionConstraint and CombinationConstraint.

IdenticalActionConstraint indicates that task1 and task2, each belonging to a different

CPG, are identical and hence a single instance of this task needs to be executed rather than

executing both these identical tasks. This constraint aims to avoid duplication of tasks in

order to minimize resource usage and costs. For instance, if two CPG are both

recommending a CT-Scan then this constraint will order a single CT-scan and re-use its

result. Since the two similar tasks may not necessarily co-occur in both CPG, the CPG

reaching the common task first will execute the task and the other CPG will re-use the

results when it reaches the common task, provided the results of the common task are still

clinically and temporally valid. Data type properties hasValidityPeriodT1 and

hasValidityPeriodT2 determine how long after the execution of a common task its results

are clinically valid. For instance, suppose task1 and task2 are identical and task1 in CPG1

gets executed. When the CPG execution engine reaches the task2 in CPG2, it compares the

value of the hasValidityPeriodT1 with the amount of time that has been passed since the

execution of task1. If the elapsed time is within the validity period, then task2 will not be

executed and CPG2 will take the results of task1. The following example shows that CHF:

Pre-treatment_electrolytes_assessment_and_correction and AF:Pre-

treatment_electrolytes_assessment_and_correction from CHF and AF CPG respectively are

identical and the results of these tasks are valid for 10 days after execution:

:c1 a :IdenticalActionConstraint;

 :hasValidityPeriodT1 “10”^^xsd:int; #days

 :hasValidityPeriodT2 “10”^^xsd:int; #days

 :hasTask1 CHF:Pretreatment_electrolytes_assessment_correction;

 :hasTask2 AF:Pretreatment_electrolytes_assessment_correction.

PrecedenceConstraint represents the situation where task1 should be executed before task2.

An instance of this class creates a sequential constraint between the tasks of the merged

224

CPG. The rationale for defining such a constraint is to ensure the ordering of certain critical

tasks, for instance to avoid adverse interactions between medical actions. The following

example shows that task2 from CPG2 should be executed after task1 from CPG1:

:c1 a :IdenticalActionConstraint;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2.

SimultaneousActionConstraint class is used when task1 and task2 from different CPG

should be executed simultaneously. For instance, the task “take Warfarin” in the AF CPG

and the task “take beta blockers” in CHF CPG should be executed at the same time under

certain conditions. Therefore, during the execution of these two CPG if CHF CPG reaches

chf:takeBetaBlocker first but the AF CPG has not yet reached af:takeWarfarin, due to this

constraint the execution engine will delay the execution of chf:takeBetaBlocker until the

AF CPG catches up. Delaying the chf:takeBetaBlocker should be performed under two

circumstances: (1) The delay does not harm the treatment process and (2) The lagging CPG

(in this example the AF CPG) is expected to catch up within an acceptable delay. Property

task1CanWaitFor with the domain of Constraint shows how long task1 can be safely

delayed for the lagging CPG to catch up. Data type property takesTimeToReachT2 with the

domain of Constraint shows how long it is going to take for the lagging CPG to reach

task2. Calculating the time that it takes to reach task2 from the current position in the CPG

can be based on the average, shortest or longest time that it has taken to reach task2 in

previous executions. The object property hasLogicToCalculateTheTimeToReachT2 with the

domain of Constraint and range LogicToCalculateTime defines the method used for

calculation of the value of the property takesTimeToReachT2. Instances of the class

LogicToCalculateTime are shortest, average and longest. Another example of this

constraint can be delaying a blood test requested by a CPG and doing it with a blood test

requested by another CPG so that unnecessary visits can be avoided. The following

example shows simultaneous action constraint between CPG1:bloodWork1 and

CPG2:bloodWork2.

225

The logic to calculate the catching up time of task2 is the average time that has been taken

in previous executions in order to go from the current point of execution to task2 in CPG2.

We assume this average time is 10 days:

:c1 a :SimultaneousActionConstraint;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2;

 :hasLogicToCalculateTheTimeToReachT2 :average;

 :task1CanWaitFor “10”^^xsd:int.

Please note that the value of the hasLogicToCalculateTheTimeToReachT2 property can be

calculated more accurately as the number of execution of this CPG increases.

The CombinationConstraint class represents the case where two tasks are combined and

transformed to a new task. If such a combination of two tasks is feasible, both task1 and

task2 will be combined and replaced by the value of the property hasMergeOutcomeTask

with the domain of CombinationConstraint and range of Task. This constraint is used to

prevent adverse interactions or create more time and cost effective treatments. For instance,

two procedures can be replaced by a cheaper and more effective procedure if possible.

SimultaneousActionConstraint properties task1CanWaitFor and takesTimeToReachT2 are

used to define an acceptable time frame for approving the combination of tasks. For

instance, if one of the tasks is required to be executed instantaneously while the other CPG

is still behind, this merging constraint will be ignored. The following instantiation of the

CPG-KPO shows a combination constraint between task1 and task2. This constraint

expresses that the outcome of combining these two tasks is task3. Moreover, if task1

becomes active, it can wait up to 10 days until task2 becomes active as well so it can be

combined with task1. The shortest recorded execution time between current active point

and the task 2 is used as the time that CPG2 needs for activation of task2:

:c1 a :CombinationConstraint;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2;

226

 :hasMergeOutcomeTask cpg1-cpg2:task3;

 :hasLogicToCalculateTheTimeToReachT2 :shortest;

 :task1CanWaitFor “10”^^xsd:int.

8.3.1.2. Operational Constraints

OperationalConstraint represent the institution-specific conditions that govern the merging

of two tasks across different CPG. For instance, a SimultaneousActionConstraint may be

ignored if the operational constraints do not allow it.

Data type properties canBeExecutedAtTheSameTime, shouldBeExecutedAtTheSameTime,

canBeExecutedAtTheSameLocation, shouldBeExecutedAtTheSameLocation with the

domain of OperationalConstraint and range of xsd:Boolean express these constraints. In

order to express that two tasks should or can happen at the same time or location the value

“true”^^xsd:Boolean is assigned as the values of one of these properties. For instance,

assigning “true”^^xsd:Boolean as the value of the shouldBeExecutedAtTheSameTime

property means that task1 and task2 should be executed at the same time in the institution

that the merge is happening. Assigning “false”^^xsd:Boolean to these properties has the

opposite meaning. For instance, assigning “false”^^xsd:Boolean as the value of the

property shouldBeExecutedAtTheSameLocation property means that task1 and task2 should

not be executed at the same location in this institution. For instance, the following

constraint expresses that task1 and task2 should be executed at the same location in QEII

hospital:

:c1_QEII a :OperationalConstraint;

 :shouldBeExecutedAtTheSameLocation “true”^^xsd:Boolean;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2.

As another example, the following constraint expresses that task1 and task2 cannot be

executed at the same time in QEII hospital:

227

:c1_QEII a :OperationalConstraint;

 :canBeExecutedAtTheSameTime “false”^^xsd:Boolean;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2.

8.3.1.3. Temporal Constraints

A merging criterion can be defining temporal constraints between the tasks of the CPG.

TemporalConstraint is another subclass of the Constraint class that represents this concept.

A commonly used temporal constraint is called Simple Temporal Network (STN). This

temporal constraint defines a temporal window between two tasks during which the second

task should be executed after the first task. STNConstraint models this temporal constraint.

stnConstraintHasTime1 and stnConstraintHasTime2 properties with the domain of

STNConstraint define the lower and upper bounds of the temporal window. Defining more

temporal constraints is left as subject of future work. The following example shows that the

task2 in cpg2 should be executed between 6 days to 10 days after task1 in cpg1:

:c1 a :STNConstraint;

 :stnConstraintHasTime1 “6”^^xsd:int;

 :stnConstraintHasTime2 “10”^^xsd:int;

 :hasTask1 cpg1:tak1;

 :hasTask2 cpg2:tak2.

8.3.1.4. Medical Constraints

MedicalConstraint deals with reusing test results and avoiding conflicts and adverse

interactions. Its subclasses are TaskSubstitute and UseResultsConstraint. TaskSubstitute

constraint indicates that in case there is a conflict between two tasks that appear in two

CPG that need to be merged, then either of the conflicting tasks should be replaced with an

alternative task to facilitate the merging of the two CPG. If such a situation arises, during

CPG execution, task1 is replaced with the value of the property t1ToBeReplacedWith with

the domain TaskSubstitute and range Task.

228

Another medical merging constraint is reusing a specific result of a task from another CPG.

This constraint is represented by the UseResultsConstraint class. This constraint indicates

that task1 should reuse the results of task2 if the result validity period indicated by

hasValidityPeriodT2 has not been yet expired. useOutcomeOfT2 property with the domain

of UseResultsConstraint and range of Outcome indicates which outcome of task2 is reused

by task1. The Outcome class represents the medical outcomes in our CPG ontology. The

following example shows an instance of the UseResultsConstraint. This merging constraint

expresses that the value of TSH acquired in CPG2 using task bloodtest2 can be re-used as

the outcome of the bloodTest1 in CPG1:

:useResultConst1 a :UseResultsConstraint;

 :hasTask1 cpg1:bloodTest1;

 :hasTask2 cpg2:bloodTest2;

 :useOutcomeOfT2 cpg2:TSHValue.

bloodTest1 in CPG1 can be skipped if it is only carried out to find the value of TSH.

In our framework, we offer the provision of conditional merging constraints where it is

possible to define the satisfaction of n out of m constraints to pursue CPG merging. The

property hasCondition with the domain of Constraint and range of Condition assigns one or

more conditions to a constraint. If a condition is satisfied, it belongs to the class

SatisfiedCondition and an unsatisfied condition belongs to the class UnsatisfiedCondition.

Subclasses of the condition class are BooleanCondition, ResourceCondition. Boolean

conditions solely check the presence of a fact in patient’s data. For instance, having a high

blood pressure can be a Boolean condition. Therefore, Boolean conditions’ purpose and

working are exactly the same as BooleanCondition class in CPG-DKO.

ResourceCondition checks the availability of the needed resources for CPG merging. The

Resource class represents the care resources (human, equipment, space, etc.). Object

property conditionNeedsResource with the domain of ResourceCondition and range of

ResourceType defines the type of resource that is needed for the satisfaction of the

229

condition. Data type property numberOfNeededResource with the domain of

ResourceCondition indicates the number of resources that is needed for satisfaction of a

resource condition. For instance, the following example shows a condition that is checking

the existence of two free nurses for a simultaneous action constraint:

:rc1 a :ResourceCondition;

 :conditionNeedsResource :nurseResource;

 :numberOfNeededResource “2”^^xsd:int.

:c1 a :SimultaneousActionConstraint;

 :hasTask1 cpg1:task1

 :hasTask2 cpg2:task2;

 :hasCondition :rc1.

Object property hasCardinalityType with the domain of Constraint and range of

Cardinality assigns the cardinality of the condition satisfaction criterion. Instances of the

Cardinality class are min, max, exactly, any, all. The data type property

hasCardinalityValue with the domain of Constraint and range of xsd:int defines the

cardinality value. For instance, the following instantiation of the CPG-KPO shows a

workflow constraint with 3 Boolean conditions from two different CPG and the condition

satisfaction criterion of minimum 2 out of 3:

:c1 a :WorkflowConstraint;

 :hasCondition cpg1:lowTSH,cpg2:Systolic_GreaterThan_119,

 cpg2:Infant_patient;

 :hasCardinalityType :min;

 :hasCardinalityValue “2”^^xsd:int.

cpg1:lowTSH a :BooleanCondition.

cpg2:Systolic_GreaterThan_119 a :BooleanCondition.

cpg2:Infant_patient a :BooleanCondition.

230

If no values for the property hasCardinalityType and hasCardinalityValue are entered, the

condition satisfaction criteria of “any” is used as the default.

8.3.2. Conflicts

Some constraints might be conflicting such that they both cannot be respected during the

merge. Class Conflict represents this concept in the ontology. Object property

hasConstraint with the domain of Conflict and range of Constraint indicates the conflicting

constraints. For instance, the following instantiation of this class expresses that

simultaneous constraint simConst and precedence constraint precConst are conflicting and

only one of them should be respected during the merge:

:conf1 a :Conflict;

 :hasConstraint :simConst;

 :hasConstraint :PrecConst.

If any of the constraints is already respected during execution, the other one will be

discarded. If two constraints are about to be respected simultaneously, the constraint with

more priority will be respected and the other constraint is ignored. Property

hasHighestPriority property with the domain of Conflict and range of Constraint

determines which constraint should be given priority. For instance, we can express that

simConst has more priority in the above example in the following fashion:

:conf1 a :Conflict;

 :hasHighestPriority :simConst.

If no priority information has been given, the decision on the priority of the constraints can

be made based on the time or the cost that can be saved by respecting each of the

constraints. The object property hasPriorityDecisionCriterion with the domain of Conflict

and range of PriorityDecisionCriterion determines whether cost or time is the basis of

defining priority. Instances of the class PriorityDecisionCriterion are timeCriterion and

costCriterion. This property can be used to decide about the priority of the conflicting

231

constraints automatically during execution. The following example shows that priority

between constraints simConst and precConst should be decided based on the time saving

achievable via each of the merges:

:conf1 a :Conflict;

 :hasConstraint :simConst;

 :hasConstraint :PrecConst;

:hasPriorityDecisionCriterion :timeCriterion.

Please note that more instances can be added to PriorityDecisionCriterion class in order to

represent a wider set of criteria for priority decision making.

8.3.2.1. Conflict Detection Rules

Several constraints may be conflicting because they may contain inconsistent pieces of

knowledge on how two CPG should be merged. For instance, if constraint 1 expresses that

task1 should be executed after task2 and constraint 2 is expressing that task2 should be

executed after task1, constraints 1 and 2 are conflicting. Identifying conflicts can be a

tedious task if performed manually. In order to automate the process of detecting the

conflicting constraints, we have identified the possible conflicts that different types of

constraint might have with each other. A SWRL rule that can automatically detect conflicts

is written for each of the possible identified conflicts is written. Below, we give an example

of the SWRL rules written to detect conflicts between SimultaneousActionConstraint and

PrecedenceConstraint instances:

PrecedenceConstraint(?pc), SimultaneousActionConstraint(?sac),

hasTask1(?pc, ?t1), hasTask1(?sac, ?t1), hasTask2(?pc, ?t2),

hasTask2(?sac, ?t2) -> constraintIsInConflictWith(?sac, ?pc)

8.3.3. Real World Examples

In this section, we see examples of CPG merging for CHF-AF, Transient Ischemic Attack-

Duodenal Ulcer, Osteoarthritis-Hypertension, Diabetes-Osteoarthritis and Diabetes-

232

Hypertension comorbidities. In each example, we describe the CPG merging constraints

and explain how CPG-KPO has been instantiated to represent those criteria.

8.3.3.1. CPG Merging Example1: CHF-AF

In this section, we see how an example of IdenticalActionConstraint is handled in our CPG

merging ontology. We work with two independent CPG, one for Chronic Heart Failure

(CHF) and the other for Atrial Fibrillation (AF) that were originally computerized in [107].

In order to merge these two CPG we first transformed the instantiations of these ontologies

to CPG-DKO using the ontology mapping technique previously discussed in this thesis. We

then instantiated the CPG-KPO in order to capture the morphing constraints between the

two transformed CPG. These two CPG share several identical tasks. We have created

several IdenticalActionConstraints in order to capture these identical tasks between the two

CPG. An example of these tasks is pre-treatment_electrolyte_assessment_&_correction that

might be executed in both of the CPG for comorbid patients. Let us assume that the results

of this step are valid for 10 days. Our CPG-KPO has been instantiated as follows to capture

this merging constraint:

:const1 a :IdenticalActionConstraint;

:hasTask1 chf:CHF-AF1 # pre-treatment electrolyte assessment &

correction

 :hasTask2 af:CHF-AF1 # pre-treatment electrolyte assessment &

correction

 :hasValidityPeriodT1 “10”xsd:int;

 :hasValidityPeriodT2 “10”xsd:int.

Figure 8.2 shows the instantiation of the CPG-KPO connect AF and CHF CPG.

233

 CHF CPG AF CPG

Assessment of

left ventricular

function

Stroke risk

stratification

Clinical

assessment

Impaired

left

ventricular

 function

Normal

left

ventricular

function

Treatment of

AF

Assessment of

results

CHF1

Clinical history &

Exam

ECG

abnormal
ECG

normal

hasCondition

KPO instantiation

identical

identical

identical

identical

Assessment of echocardiography result

Pre-treatment electrolyte assessment & correction

Initiation of treatment of heart failure

Thromboprophylaxis in patients with CHF & AF

Treatment of AF in patient with heart failure

CHF1:

CHF-AF1:

CHF-AF2:

CHF-AF3:

CHF-AF4:

CHF-AF1

CHF-AF2

CHF-AF3

CHF-AF4

CHF-AF1

CHF-AF2

CHF-AF3

CHF-AF4

Figure 8.2 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG that

participate in the merge [107]

8.3.3.2. CPG Merging Example2: Transient Ischemic Attack -

Duodenal Ulcer

Transient Ischemic Attack - Duodenal Ulcer comorbidity has been used in [25] as an

example for the proposed pre-execution merging algorithm. We computerized these CPG in

CPG-DKO based on the provided flowchart in [25] and merged them using CPG-KPO. The

only defined merging constraint for this comorbidity is the conflict between the task tia:A

(Give Aspirin) from transient ischemic attack and the task dc:AS (Stop taking aspirin if

used) from the duodenal ulcer. This constraint is modeled in our CPG-KPO by creating

TaskSubstituteInCaseOfConflict constraint:

234

:const1 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 tia:A ;#Give aspirin

 :hasTask2 dc:SA; # Stop taking aspirin if used;

 :t1ToBeReplacedWith tia-dc:DGA;# DO_NOT_GIVE_ASPIRIN. # DGA

In the above example, the task tia-dc:DGA (“do not give aspirin”) will replace the task

tia:GA (“give aspirin”) in the case of a conflict. If no conflict happens, both of the CPG

will continue their normal execution flow. Figure 8.2 shows these two CPG and the

instantiation of the CPG-KPO that merges them. Please note that if TIA

KPO instantiation

Conflict

t1

t2

tia-dc:DGA

Replace t1 with

 TIA DC

Figure 8.3 The instantiation of the CPG-KPO and the parts of the TIA and DC CPG that

participate in the merge [25].

235

8.3.3.3. CPG Merging Example3: Osteoarthritis-Hypertension –

Diabetes

Osteoarthritis, hypertension and diabetes are three diseases that frequently co-occur in

comorbid patients. Review of the treatments of these diseases reveals several possible pair-

wise conflicts between them. We give three examples of the

TaskSubstituteInCaseOfConflict in the pair-wise comorbidity of these diseases.

 Osteoarthritis and Hypertension:

We will see an example of the TaskSubstituteInCaseOfConflict in this section. During the

treatment of a patient for osteoarthritis, non-steroidal anti-inflammatory drugs (NSAD)

such as aspirin, ibuprofen, and naproxen may be prescribed for the patient. However, these

drugs aggravate the patient’s hypertension by increasing the blood pressure. The solution is

to replace any of these drugs with alternatives such as acetaminophen, tramadol or narcotic

analgesics. We reviewed the osteoarthritis treatment algorithm published by National

Health Services Tayside of Scotland [169] and computerized it in CPG-DKO. We found

three cases of prescribing NSAD drugs in the osteoarthritis treatment algorithm. These

three tasks are: (1) add_Ibuprofen_1_point_2g_day, (2)

Substitute_Naproxen_Instead_Of_Ibuprofen and (3)

inquiry_about_possibility_of_continuing_Ibuprofen_after_6_month. We have created the

following three TaskSubstituteInCaseOfConflict constraints in order to replace all these

tasks with the task RNSAD (replace NSAD with Acetaminophen Tramadol Narcotic

analgesics). ht: and os: represent the namespace for the hypertension and the osteoarthritis

ontologies respectively.

:conflict1 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 os:AB; #add Ibuprofen 1 point 2g day;

 :hasTask2 ht:hypertension_CPG;

 :t1ToBeReplacedWith os-ht:RNSAD;

236

:conflict2 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 os:Substitute_Naproxen_Instead_Of_Ibuprofen;

 :hasTask2 ht:hypertension_CPG;

 :t1ToBeReplacedWith os-ht:RNSAD.

:conflict3 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 os:os1;

 :hasTask2 ht:hypertension_CPG;

 :t1ToBeReplacedWith os-ht:RNSAD.

#os-ht:RNSAD = Replace NSAD with Acetaminophen Tramadol Narcotic

narcotic analgesics.

#os:os1 = inquiry about possibility of continuing Ibuprofen after

6 month;

Figure 8.4 shows the parts of the osteoarthritis and hypertension pathways that participate

in the CPG merging and the instantiation of the CPG-KPO.

237

Inquiry about

GI bleeding

risk factors

Inquiry about

possibility of

continuing

Ibuprofen after 6

month

KPO instantiation

Conflict1
Hypertension

Pathway

Add Ibuprofen

1.2g/day

Administer

Parcatemol 4g day

Substitute

Naproxen Instead

Of Ibuprofen

Review ongoing

requirement for

NSAID at least

every 6 months

Can

continue

Ibuprofen

Can Not

continue

Ibuprofen

Conflict3

Conflict2

Osteoarthritis

Pathway

Figure 8.4 The instantiation of the CPG-KPO and the parts of the osteoarthritis and

hypertension pathways that participate in the merge.

 Diabetes and Hypertension,

We will see an example of the TaskSubstituteInCaseOfConflict in this section. Domain

expert believes that prescribing high doses of diuretics for treatment of hypertension can

aggravate diabetes by increasing levels of blood sugar. We reviewed and computerized the

clinical pathways for hypertension [170] and diabetes [171] published by National Institute

of Health and Clinical Excellence of UK. We identified two cases of prescribing diuretics

in the diabetes pathway: (1)

step_3_ACE_inhibitor_or_low_cost_angiotensin_II_receptor_blocker_PLUS_calcium_cha

nnel_blocker_PLUS_thiazide_like_diuretic and (2)

step_4_ACE_inhibitor_or_low_cost_angiotensin_II_receptor_blocker_PLUS_calcium_cha

nnel_blocker_PLUS_thiazide_like_diuretic_PLUS_consider_further_diuretic_or_alpha_or_

beta_blocker_IF_HT_PERSISTENT. These two tasks are replaced with the task

reduce_high_dose_Of_thiazide_like_diuretic_to_lower_doses in the diabetes pathway if the

238

patient is also being treated for hypertension. The following instantiation of the CPG-KPO

expresses these two merging constraints:

:Hypertension_Diabetes_1 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 ht:step3; #Hypertension

 :hasTask2 db:diabetes_CPG;

 :t1ToBeReplacedWith ht-db:ComorbidityTask1.

:Hypertension_Diabetes_2 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 ht:step4; #Hypertension

 :hasTask2 db:diabetes_CPG;

 :t1ToBeReplacedWith:ht-db:ComorbidityTask1.

##---------------------------------------

##Ht:step3 = step 3 ACE inhibitor or low cost angiotensin II

receptor blocker PLUS calcium channel blocker PLUS thiazide like

diuretic;”

##ht-db:ComorbidityTask1 = reduce high dose of thiazide like

diuretic to lower doses.

##ht:Step4 = step 4 ACE inhibitor or low cost angiotensin II

receptor blocker PLUS calcium channel blocker PLUS thiazide like

diuretic PLUS consider further diuretic or alpha or beta blocker

IF HT PERSISTENT

 Diabetes and Osteoarthritis:

239

We will see an example of the TaskSubstituteInCaseOfConflict in this section. Domain

expert believes that prescribing high doses of NSAD in both diabetes and osteoarthritis will

increase the risk of bleeding in patients with osteoarthritis. The solution is to replace these

NSAD drugs with alternatives such as acetaminophen, tramadol or narcotic analgesics. We

reviewed and computerized the hypertension pathway [170] published by National Institute

of Health and Clinical Excellence of UK and osteoarthritis treatment algorithm [169]

published by National Health Services Tayside of Scotland and computerized them in CPG-

DKO. We identified one case of prescribing NSAD drugs in diabetes and two cases of

prescribing NSAD drugs in the osteoarthritis pathway. The following two constraints are

expressing that the NASD prescribing tasks in diabetes pathway are replaced with the task

replace_NSAD_in_Osteoarthritis_with_Acetaminophen_Tramadol_Narcotic_narcotic_anal

gesics if the osteoarthritis pathway is prescribing NSAD as well. The following

instantiation of the CPG-KPO represents these CPG merging constraints:

:diabetes_Osteoarthritis_1 a :TaskSubstituteInCaseOfConflict;

 :hasTask1 ht:offer_low-dose_75_mg_daily_aspirin; #Dibates

 :hasTask2 os:add_Ibuprofen_1_point_2g_day; #Osteoarthritis

 :t1ToBeReplacedWith db-os:ComorbidityTask1.

:diabetes_Osteoarthritis_2 a TaskSubstituteInCaseOfConflict;

 :hasTask1 db:offer_low-dose_75_mg_daily_aspirin; #Dibates

 :hasTask2 :osSubstitute_Naproxen_Instead_Of_Ibuprofen;

 :t1ToBeReplacedWith db-os:ComorbidityTask1

db-os:ComorbidityTask1 = “replace NSAD in Osteoarthritis with

Acetaminophen Tramadol Narcotic narcotic analgesics”

8.3.3.4. CPG Merging Example4: CHF-AF

240

The last example features a SimultaneousActionConstraint from CHF-AF comorbidity.

During the treatment of the CHF patients, angiotensin-converting-enzyme inhibitors

(ACEI) and beta blockers (BB) may be prescribed simultaneously represented by the task

initiate_treatment_with_beta_blockers_in_addition_to_ACEI. Moreover, AF patients may

need to take Warfarin represented by the task anticoagulation_with_Warfarin to avoid

formation of blood clots. Domain experts believe that simultaneous prescription of these

drugs has better results in CHF-AF comorbid patients. We have made two assumptions in

this example in order to illustrate the capability of CPG-KPO in expressing complex

conditions: (1) prescription of the ACEI and BB in CHF patients can be delayed for at most

7 days if the stage of their CHF disease is either one of the stages A, B or C of the

American College of Cardiology/American Heart Association working group stages [172];

(2) This task can be delayed for 24 hours if the patient is in stage D of the American heart

association stages. The following instantiation of the CPG-KPO represents these two CPG

merging constraints:

:simacconst1 a :SimultaneousActionConstraint;

 :hasTask1 chf:Initiate_BB_and_ACEI;

 :hasTask2 af:anticoagulation_with_Warfarin;

 :task1CanWait "7"^^xsd:int. #7 days

 :hasCondition af:AFStageA, af:AFStageB, af:AFStageC;

 :hasCardinalityType :any.

:simacconst2 a :SimultaneousActionConstraint;

 :hasTask1 chf:Initiate_BB_and_ACEI;

 :hasTask2 af:anticoagulation_with_Warfarin;

 :task1CanWait "1"^^xsd:int; #one day

 :hasCondition chf:AFStageD;

 :hasCardinalityType :any.

241

#chf:Initiate_BB_and_ACEI = Initiate treatment with beta blockers

in addition to ACEI;

On the other hand, if we assume that prescription of Warfarin for AF patients can be

delayed for 3 days if patient is in one of the Paroxysmal AF or Persistent AF stages, this

constraint can be represented by the following instantiation of the CPG-KPO :

:simacconst3 a :SimultaneousActionConstraint;

 :hasTask1 af:anticoagulation_with_Warfarin;

 :hasTask2 chf:Initiate_BB_and_ACEI;

 :task1CanWait "3"^^xsd:int; #three days

 :hasCondition af:paroxysmal_AF, af:persistent AF ;

 :hasCondition chf:AFStageD;

 :hasCardinalityType :any.

#chf:Initiate_BB_and_ACEI = Initiate treatment with beta blockers

in addition to ACEI;

Figure 8.5 shows the abovementioned three merging constraints between the AF and CHF

CPG and the parts of the CPG that participate in the merging. It also shows the instantiation

of the CPG-KPO for CPG merging.

242

KPO instantiation

simacconst1

Warfarin

AF1: Determine any
contraindications to

beta blockers

ACEI + BB

AF2: Determine if
there are any signs

of fluid overload

simacconst2

simacconst3

CHF1: Consider
anticoagulation

or aspirin

CHF2: Identify any
contraindication to

Warfarin

....

....

....

....

Figure 8.5 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG that

participate in the merge.

8.4. CPG Knowledge Morphing Execution Engine

All of the existing execution engines including our OWL-based CPG execution engine

function based on the concept of the state transition systems and are designed to execute a

single CPG rather than several CPG concurrently. A state transition system is a graph in

which the nodes are the states and the arcs represent the transitions between the states. The

goal of creating a state transformation system in CPG execution engines is to simulate the

tasks’ states in the real world and how they change their state as a result of treatments or

changes in the patients’ state.

Similar to tasks, merging constraints considered by physicians go through several states in

the real world while patients are treated. Moreover, state transitions in constraints may

cause state transitions in tasks too. These state transitions in tasks are actually the

modifications that are needed to be performed on medical actions recommended in each of

the CPG in order to avoid duplications and conflicts. For instance, the activation of a

constraint that deals with a conflict may lead to discarding the troublesome task. Hence, in

order to successfully execute several CPG related to a comorbidity we need to model (a)

243

state transition system of medical tasks in the CPG ontology; (b) state transition system of

merging constraint in the CPG-KPO and (c) the effect of state transitions in constraints on

state transitions in tasks. We augment our OWL-based CPG execution engine by adding

two sets of OWL axioms and SWRL rules to the CPG execution engine in order to model

items b and c from the list above, as explained in sections 8.4.1 and 8.4.2 respectively.

Please note that our execution engine is already capable of handling item a.

8.4.1. Constraint State Transition

During the CPG execution, constraints go through the InactiveConstraint, activeConstraint,

StartedConstraint, DiscardedConstraint and CompletedConstraint states. Figure 8.6 shows

the possible state transitions for constraints during execution.

inactive active started completed

discarded

Figure 8.6 Constraints’ state transitions

Instances of classes ActiveConstraint, InactiveConstraint, CompletedConstraint,

StartedConstraint and DiscardedConstraint have the following values for the property

hasConstraintState with the domain of Constraint and range of ConstraintState: active,

inactive, completed, sarted and discarded respectively by the following OWL construct and

other similar ones.

[a owl:Restriction ;

 owl:onProperty :hasConstraintState ;

 owl:hasValue :active]

 owl:equivalentClass :ActiveConstraint.

Please note that the default name space “:” represents CPG-KPO in this section of the

thesis. In the rest of this section, we describe what scenarios trigger the state transitions

244

shown in Figure 8.6 and what OWL triples and SWRL rules have been written to support

the execution of them in our OWL based CPG execution engine for

SimultaneousActionConstraint. Please note that the inferred values of the property

constraintHasStateNew with the domain of Constraint and range of ConstraintState by the

reasoner shows the new states of the constraints that should be assigned to them by the

execution engine.

 InactiveConstraint  ActiveConstraint:

All of the constraints start from the inactive state. As long as the natural flow of execution

of the CPG in the execution engine respects a constraint, it does not leave this state. A

constraint goes to the active state from the inactive state when (a) the constraint is about to

be violated and (b) the conditions of the constraint is satisfied. Since each constraint may be

violated by a different combination of CPG tasks states, they all have their own specific

rules for activation. Please note that a task goes to the StartedTask in the CPG execution

engine when it is being executed. SimultaneousActionConstraint is violated if one the

merged tasks is started while the other one is still inactive. Therefore, this constraint

becomes active if (a) it is inactive, (b) its conditions are satisfied and (c) the first merged

task is started, and the second merged task is still inactive and the started task has enough

time to wait for the inactive task to catch up for simultaneous execution. This means the

value of task1CanWaitFor is greater than takesTimeToReachT2. The following SWRL rule

represents this state transition rule:

SimultaneousActionConstraint(?const) ^

hasConstraintState(?const,:InactiveConstraint)^

ConstraintWithSatisfiedCondition(?const) ^ hasTask1(?const,?t1) ^

hasTaskState(?t1,:StartedTask) ^ hasTask2(?const,?t2) ^

hasTaskState(?t2,:StartedTask) ^

takesTimeToReachT2(?const,?timeToT2) ^

task1CanWait(?const,?canWaitt1) ^

245

swrlb:greaterThan(?canWaitt1,?timeToT2) →

constraintHasStateNew(?const,:ActiveConstraint)

 ActiveConstraint  StartedConstraint:

An active constraint can potentially change the execution states of the tasks in the merged

CPG in order to stop the execution engine from violating it, if (1) all the constraints with

more priority are either inactive or discarded or (2) all the constraints with less priority are

in inactive, active or discarded state. As we will see in the next state transition rule, the

constraints with less priority in the active state will be discarded upon activation of a

constraint with more priority. constrainthasLessPriorityThan which is the inverse of

constraintHasPriorityOver with the domain and range of Constraint can be used to express

the priority of conflicting constraint in case that both of them are active or started. Both of

these properties are sub properties of the constraintIsInConflictWith property described in

section 8.3.2.1.

 ActiveConstraint  DiscardedState:

An active constraint will be discarded if (1) Any of the conflicting constraint regardless of

its priority has already been started or completed or (2) A constraint with more priority is

active. A discarded constraint will not be able to have an effect on the states of the tasks in

the CPG in order to avoid its violation.

 StartedConstraint  CompletedConstraint:

If all of the involved tasks in a constraint are completed or discarded the constraint is

considered a completed constraint as it will not be able to have any further effects on the

state of the tasks. As we described in the previous state transition rule, in the rest of the

execution, the conflicting constraints with a completed constraint will be discarded.

 CompletedConstraint and DiscardedConstraint  InactiveConstraint:

246

If all of the tasks merged by a constraint become InactiveTask to be re-executed in a loop,

the constraint goes to the InactiveConstraint state so that the tasks can be re-merged.

8.4.2. Effect of Constraint State Transitions on Tasks’ States

In our OWL based CPG execution engine, tasks go through states InactiveTask, ActiveTask,

StartedTask, CompletedTask and DiscardedTask during execution. We also add a

PendingTask state to this engine to support execution of constraints that is only used by the

constraints. As we discussed previously, each type of constraint that goes to the

StartedConstraint state is about to be violated and has its own special way of avoiding its

violation by triggering state transitions in tasks. These state transitions in tasks are

modification of the medical actions reasoned in individual CPG. We explain these rules for

SimultaneousActionConstraint class. When a SimultaneousActionConstraint is started, it

will force the task ahead to go to the pending state if (1) the constraint is in started state and

(2) the behind task is in one of inactive, pending or active states and (3) the behind task is

going to catch-up in an acceptable time frame for the task in front (value of the property

hasTimeToReachT2 < value of the property task1CanWait):

IPATask(?t2), SimultaneousActionConstraint(?const),

StartedConstraint(?const), hasTaskState(?t1, started),

hasTask1(?const, ?t1), hasTask2(?const, ?t2),

hasTimeToReachT2(?const, ?timeToReacht2), task1CanWait(?const,

?canWait1), swrlb:greaterThan(?canWait1, ?timeToReacht2) ->

hasTaskStateNewCandidate(?t1, pending)

:IPATask a [owl:unionOf(:InactiveTask :ActiveTask :PendingTask)].

This pending task will go the started state when the behind task is started as well so they

both can be executed at the same time and make the execution engine respect the constraint.

StartedConstraint(?const),SimultaneousActionConstraint(?const),

hasTask1(?const, ?t1), hasTask2(?const, ?t2),

247

PendingTask(?t1), StartedTask(?t2), hasTimeToReachT2(?const,

?timeToReacht2), task1CanWait(?const, ?canWait1),

swrlb:greaterThan(?canWait1, ?timeToReacht2) ->

hasTaskStateNewCandidate(?t1, started)

All other constraints have similar rules that make the necessary state transitions the task

state transition to force execution engine to respect them.

8.4.3. CPG Merging Execution Algorithm

In order to merge several CPG, we feed the computerized CPG, the instantiation of the

CPG-KPO and the constraints’ state transition rules and their effects of tasks’ state

transition rules to our OWL-based CPG execution engine. The SWRL rules and the OWL

axioms written for modeling the constraints’ state transition models and their effects on the

executional states of the tasks are used by our OWL-DL + SWRL based execution engine

to generate therapy plans for several CPG modeled in CPG-DKO. Table 8.1 shows the

execution algorithm from section 6.2.1 of the thesis with the new steps added to handle the

merging constraints:

Table 8.1 CPG merging execution algorithm

Step 1: Load the instantiated CPG ontology to the OWL reasoner and activate the first

task in the CPG.

Step 2: Query the ontology for the active tasks and show them to the user.

Step 3: Wait for the user to start one or more active tasks. Record the start of tasks by

asserting triples into the CPG ontology.

Step 4: Wait for the user to complete one or more started tasks. Record the completion

of tasks and their outcomes.

Step 5: Perform reasoning on the ontology to calculate the candidate values for the new

states of the tasks and the new states of the constraints. The new states of the

constraints are the values of the constraintHasStateNew property.

Step 6: Apply the new states of tasks and constraints that are inferred in the previous

step to them. If a task or constraint state change has happened go to step 5 otherwise go

to step 2.

248

As you can see, this CPG merging execution algorithm is the same as the execution

algorithm described in section 6.2.1 with the difference that (1) step 5 finds the new states

of constraints in addition to the new states of the tasks and the effect of constraints states on

the state transitions of the tasks and (2) step 6 assigns the new states to constraints besides

assigning the new states of the tasks. If a constraint has a value for the property

constraintHasStateNew, this value is used as the new state of the constraint by assigning it

as the value of the property hasConstraintState. The previous value of this property and the

value of the constraintHasStateNew are removed from the ontology in the process. For

instance, if a constraint has the value active for constraintHasStateNew property, the values

of the properties hasConstraintState and constraintHasStateNew are deleted and active is

assigned as the value of the property hasConstraintState. Please note that modification of

the medical actions in individual CPG happens in the step 6 of the abovementioned

algorithm by assigning new states to them.

8.5. Conclusion

In this chapter, we identified a new set of potentially useful CPG merging constraints.

These new merging constraints can capture complex workflow, temporal and operational

constraints between CPG tasks and enable an execution engine to merge two or more CPG

dynamically. We also developed an OWL-DL ontology called CPG-KPO in order to

represent these new merging constraints as well as the previously identified CPG merging

constraints in the related literature. CPG-KPO is the first expressive ontological approach

to represent CPG merging constraints. Table 8.2 summarizes the purpose of each of the

constraints described in this chapter in the CPG merging application.

249

Table 8.2 Aspects of CPG merging that can be captured by each of the merging

constraints (-+ means partial coverage of the merging aspect)

Avoiding

Duplication

Temporal
and

sequential
constraint

Avoiding

conflicts

Representing
operational

constraints

Identical

Action

Constraint

+

Precedence

Constraint
 + + +

Combination

Constraint
 +

Simultaneous

Constraint
-+ + -+ -+

Operational

Location

Constraint

 +

Operational

Time

Constraint

 + +

Temporal

Constraints
 + + +

Another novel aspect of our research is to define the formal semantics of the merging

constraints in OWL and SWRL. We modified the CPG execution algorithm in Table 3.1 so

that it can utilize the CPG-DKO and CPG-KPO formal semantics in an OWL reasoner and

merge CPG during execution. On the other hand, in the existing CPG merging frameworks,

CPG are modified and merged pre-execution and there is no flexibility during CPG

execution. As an example, in pre-execution merge, if two tasks are identified as identical

and merged before execution, there will be only one execution of the these tasks during

250

execution even though it might not be possible to merge them due the temporal constraints.

However, our framework decides if it is possible to merge these two tasks according to the

flow of the execution in CPG on the fly. Therefore, our framework is the first execution-

time CPG merging framework.

In the existing CPG merging frameworks, merged CPG are modified and can no longer be

used for single disease decision support. On the contrary, our approach purports a clear

separation between the CPG and the morphing constraints. In this way, one ontological

representation of CPG can be used in single disease CDSS or be merged by an instantiation

of the CPG-KPO in a CPG merging framework.

A limitation of our work is lack of evaluations for medical validity of (1) the CPG merging

constraints and (2) the generated recommendations for comorbidities using our CPG

merging framework. Moreover, we had only a few real examples to work with. Therefore,

we evaluated the CPG-KPO and the CPG merging engine using few real examples and a

large number of imaginary test cases that do not necessarily reflect the complex nature of

real CPG merging. Furthermore, CPG-KPO should be instantiated manually, which can be

a labour intensive task. Currently, a constraint in CPG-KPO can only merge two tasks. For

instance, to indicate that m tasks should be executed simultaneously, total of m×(m-1)/2

constraints should be created. As a future work, we can define constraints that can merge

more than two tasks. This improvement makes CPG-KPO instantiations smaller and easier

to create while merging more than two CPG. An important aspect that should always be

taken into consideration while treating comorbidies is drug interactions. We believe that

our framework needs a drug interaction knowledge source that can capture drug-action and

dug-drug interactions. Moreover, the knowledge encapsulated in this knowledge source

should be used in the execution-time CPG merging engine to improve the generate

recommendations for comorbid patients.

251

CHAPTER 9: EVALUATION

In this section, we evaluate our knowledge morphing framework for the task of CPG

merging. To evaluate our framework, we evaluate ontologies and algorithms developed in

our problem specific knowledge morphing framework. We have developed two problem-

specific ontologies CPG-DKO (see chapter 4) and CPG-KPO (see section 8.3) and a

problem-independent ontology KMO (see chapter 7) in our knowledge morphing

framework. We have also developed four algorithms in our framework namely; 1. CPG-

DKO and CPG-KPO preprocessing algorithm (see section 6.2.1.2), 2. KMO to

OWL+SWRL translation (see section 7.4), 3. CPG Execution algorithm (see

section 6.2.1.3) and 4. CPG merging execution algorithm (see section 8.4.3). In this section

of the thesis, we evaluate ontologies one by one and then we evaluate the output of their

associated algorithms for real world and imaginary input sets.

Ontologies of our framework are used for both knowledge representation and reasoning in

OWL reasoners in order to accomplish the necessary steps for merging CPG. To use an

ontology for reasoning, it should be consistent. An ontology can be regarded as logically

consistent if it is satisfiable, which means that it does not contain contradictory

information [173]. We have used pellet reasoner to verify the consistency all of the

designed ontologies. To use an ontology for knowledge representation, it should be

syntactically correct. Syntactical correctness can be evaluated using OWL parsers. Both

Pellet and protégé have OWL parsers that can be used for syntactical correctness

evaluation. Computational complexity of the reasoning process on an ontology is another

aspect that plays a prime role in usability of ontologies. We check the species of ontologies

of our framework, before, during and after being used in our algorithms. Since OWL-Full is

not decidable, we need our ontologies to belong to either OWL-lite or OWL-DL. Moreover,

an ontology should be complete in order to be successfully utilized for knowledge sharing

and semantic interoperability. An ontology is complete “if and only if all the knowledge

that is supposed to be in the ontology is explicitly stated in it, or can be inferred” [173].

252

Approaches reported in the literature for evaluating the completeness of ontologies usually

belong to one of the following four categories [174]:

i. Methods based on comparing the ontology to a golden standard ontology:

To evaluate an ontology in this method, a number of metrics are extracted from the

ontology and compared to those of a golden standard ontology. However, there are no

golden standard ontologies for any of the ontologies that we have developed in this thesis.

The only ontology that has a number of counterpart ontologies in OWL is CPG-DKO. We

extract and compare a number of metrics proposed in [178] in order to get a sense of

quality of our ontology compared to the existing ontologies along these metrics. However,

this comparison is far from an ideal comparison because these ontologies are used for

modelling both medical knowledge and workflow structure of the CPG whereas our

ontology is only capable of modelling the workflow structure of CPG. For the ontologies

that there are no equivalent OWL ontologies, we merely report the extracted metrics and

discuss the interesting aspects of them. These metrics are reported in section 9.4 of the

thesis.

ii. Methods based on using the ontology in an application and evaluating the

results:

Ontologies are used in several ontology-driven applications as the knowledge source. The

quality of the outcome of these applications can be used for evaluation of both

completeness of the ontology and correctness of the application. Therefore, we can use this

evaluation method to evaluate both our ontologies and their associated algorithms.

iii. Methods based on existing body of literature describing what an ontology

related to a specific domain should be able to capture:

Albeit the golden standard ontology does not always exist, there might a body of literature

on the necessary features of these ontologies. Features of the evaluated ontology can be

253

compared against the list of the desired features defined by the related literature to measure

the completeness of the ontology. This body of literature exists for KMO and CPG-DKO.

However, almost no research has been performed in order to identify a list of necessary

features for CPG-KPO. Therefore, we only use this approach to evaluate the completeness

of CPG-DKO and KMO.

iv. Methods based on evaluation by domain experts

Domain experts familiar with knowledge management, ontologies and semantic web

technologies can be the judge of completeness of an ontology. They can point out to the

strength and weak points of an ontology. We use this approach for evaluation of the CPG-

KPO.

9.1. Evaluation of CPG-DKO and the OWL-Based CPG Execution Engine

We used OWL reasoners to evaluate the CPG-DKO for consistency. Pellet reasoner shows

that our ontology is consistent without any instantiations. We also checked the ontology

after instantiation for modeling any of the executed CPG. Our evaluations show that our

ontology remains consistent after pre-processing and during and after execution. Moreover,

in all instantiations of the CPG, the CPG-DKO ontology remained in the OWL specie that

was used for execution. For instance, if an ontology was executed by the OWL-DL

execution the instantiation of the CPG-DKO remained in OWL-DL in all steps of the

execution. This ensures decidability and efficiency of the reasoning.

In order to evaluate the completeness of CPG-DKO we (1) compare the features of CPG-

DKO with the necessary feature of these languages identified in the literature in

section 9.1.1. The representation needs of this ontology for representing the workflow

structure of the CPG is our focus. This comparison shows that our domain knowledge

ontology is one the most expressive ontologies of the CPG domain area.

254

We also executed several computerized CPG using our OWL-based CPG execution engine

in order to use the outcome for evaluation of both the engine and CPG-DKO. We

monitored and recorded the state transitions of tasks during execution. We evaluate these

state transitions in chapter 9. We also used the generate recommendations by our execution

engine and other execution engines for the same CPG in section 9.1.3. In order to evaluate

the generated recommendations for one of the CPG that was not executable using any other

execution engine we asked the domain expert to comment on them. We discuss this in

section 9.1.4.

We developed several patient scenarios for each of the executed computerized CPG to be

used for evaluation. These imaginary patient scenarios are created in order to evaluate the

capability of the CPG execution engine in execution of all of the existing paths in a CPG.

To make sure that every single path is covered in the CPG, we have created enough number

of patient scenarios by creating different combinations of values used in the decision

making point of the CPG. Therefore, each patient scenario is actually a sequence of the

values for the decision variables. For instance, imagine we are designing imaginary patient

scenarios for the small CPG in Figure 9.1.

255

Recent

Antibiotic

Therapy?

yes

Comorbid

Risk Factor

Exist?

Prescribe 1
st
 line

extra comorbid

agent

yes

Prescribe 1
st
 line

extra no comorbid

agent

no

Prescribe 1
st
 line

extra comorbid

agent

no

Figure 9.1 A part of the CAP CPG workflow

Table 9.1 shows the scenarios used to cause the execution flow to go to all of the possible

paths of this part of the CPG.

Table 9.1 Two examples of the patient scenario for the CAP CPG ontology

 Variables’ Values

 Recent Antibiotic Therapy? Comorbid Risk Factor Exist?

Scenario 1 Yes Yes

Scenario 2 Yes No

256

As you can see in the above table the only value that we consider for the output variable of

the question “Recent Antibiotic Therapy” in our imaginary patient scenarios is “yes”

because answering no will cause the execution engine to skip the execution path that

contains the tasks “Prescribe 1st line extra No comorbid Agent” and “Prescribe 1st Line

Extra Comorbid Agent”. If we assume a CPG contains n Boolean variables used in its

decision making process we do not necessarily need to make 2n different patient scenarios

for 2 reasons: (1) Several different combinations of values of variable may lead to

execution of the same paths in the CPG, (2) A combination may activate several paths of

the CPG. Therefore, the number of different combinations in order to go through all the

paths of the CPG is far less than 2n.

For evaluation of the expression ontology, we created an example function for each of the

representable operators, fed the function with two different input sets, and evaluated the

output. In all cases. the functions were producing the correct outputs for all the inputs.

9.1.1. Evaluation by Comparison with the Features Identified in the Related

Literature

An approach for completeness evaluation of an ontology is to compare its main features

with the identified requirements in the related literature. Since our focus is to capture the

workflow structure and the medical knowledge that participates in the workflow

interpretation of CPG, we compared the support for the workflow patterns in CPG-DKO

and the commonly used CPG representation languages.

As we described in section 4.3, Mulyar et al. [101] reviewed Asbru, GLIF, EON and

PROforma CPG representation languages in order to identify the presence of 43 classic

workflow patterns. Workflow patterns in [101] are categorized under 7 classes which have

been previously identified by Russel et al. [102]. As we saw previously in Table 4.1,

Russel’s categorization has the following classes: (1) Basic control-flow patterns, (2)

257

Advanced branching and synchronization, (3) Structural patterns, (4) Multiple instances

patterns, (5) State-based patterns, (6) Cancellation patterns and (7) New patterns. Albeit the

authors of [101] have provided a thorough comparison CPG modeling languages from a

workflow pattern perspective, they have not elaborated on different decision models that

exist in these languages. These decision models that play an important role in controlling

the flow of the executions of CPG are surveyed by Peleg et al. [88][103]. Other than Asbru,

EON, GLIF and PROforma that are already reviewed in [88][101][103], we also reviewed

the CPG ontologies which are developed by members of the NICHE research group and

GASTON and used the results in the comparison. Table 9.2 compares the workflow

patterns supported by CPG-DKO against the patterns supported by the existing CPG

representation languages:

258

Table 9.2 Comparison of support for workflow patterns in Asbru, EON, GLIF,

PROforma, GASTON and CPG representation languages that are developed

by NICHE research group members and CPG-DKO. +, - and ± mean full

support, no support and partial support respectively.

Workflow

pattern
Asbru EON GLIF PROforma GASTON NICHE2

CPG-

DKO

Basic Control-

Flow

1. Sequence + + + + + + +

2. Preconditions + + + + + + +

3. Nesting of

guidelines
+ + + + + + +

4. Parallel Split + + + + + + +

5.

Synchronization
+ + + + + + +

6. Exclusive

Choice
+ + + + + + +

Advanced

Branching and

synchronization

Asbru EON GLIF PROforma GASTON NICHE
CPG-

DKO

7. Multi choice + + + + + + +

8. Structured

synchronization

merge
± - - - + + +

9. Structured

discriminator
+ + + + + + +

2 NICHE represents all the CPG representation ontologies developed in NICHE research

group

259

Structural

Patterns
Asbru EON GLIF PROforma GASTON NICHE

CPG-

DKO

10. Arbitrary

cycle
- + + - - + +

11. Implicit

Termination
+ + + + + + +

State based

patterns
Asbru EON GLIF PROforma GASTON NICHE

CPG-

DKO

12. Deferred

choice
+ - + + - + +

13. Interleaved

parallel routing
+ - - - - - +

14. Milestone - - - + - - +

Cancellation

Patterns
Asbru EON GLIF PROforma GASTON NICHE

CPG-

DKO

15. Cancel

activity
+ + + + - + +

16. Cancel case + - ± + - + +

New

Patterns
Asbru EON GLIF PROforma GASTON NICHE

CPG-

DKO

17. Structured

loop
+ + + + - + +

18. Transient

trigger
- - - + - - +

19. Persistent

trigger
- - + + - - +

20. Cancel

multiple

instance activity

+ - + + - - +

21. Completed

multiple
+ - - + - - +

260

instance activity

22. Cancelling

discriminator
+ - - + - + +

23. Structured

N-out-of-M join
+ - + + + + +

24. Cancelling

N-out-of-M join
- - - + - + +

25. Local

synchronizing

merge

- - - + + + +

26. Critical

section
+ - + - - - +

27. Interleaved

routing
+ - + - - - +

Decision

Mechanisms
Asbru EON GLIF PROforma GASTON NICHE

CPG-

DKO

28. If-then-else + + + + + ± +

29. Switch + + + + - - +

30.

Argumentation

rules

- + + + - - +

31. Preference

for options
+ - - + - - +

As we can see in Table 9.2, our CPG ontology is capable of modeling every important

workflow patterns or decision mechanism that is supported by any of the commonly used

CPG representation languages. In order to obtain a quantitative measure for comparison, we

counted the workflow score (number of supported workflow patterns) and compared them

in Table 9.3. + counts as one and ± counts as a 0.5 for calculating the workflow score. This

table shows that based on the support for the workflow patterns we can rank the CPG

261

representation languages follows: CPG-DKO > PROforma > Asbru > GLIF >NICHE >

EON > GASTON.

Table 9.3 Workflow score of CPG-DKO, Asbru, EON, GLIF and NICHE ontologies

CPG-
DKO

Asbru EON GLIF PROforma GASTON NICHE3

Workflow

Score
32 24.5 16 22.5 27 14 21.5

9.1.2. Monitoring the Execution of the Existing CPG

Another way for evaluation of the CPG execution engine and CPG-DKO is to monitor the

execution of different patient scenarios and compare them to the intended executional

behavior dictated by the execution semantics. For instance, execution semantics dictate that

if all the conditions of a task are unsatisfied, that task needs to be discarded. If during the

execution of a patient scenario this expected state transition does not happen we can

conclude that either one of CPG-DKO or the CPG execution engine is faulty. Therefore, we

monitor the state transitions in execution of several CPG and compare them with the

desired state transitions dictated by the execution semantics. We go through some examples

of these scenarios and discuss how each of the state transitions recorded during each step of

the execution is consistent with the intended execution semantics. In our examples of

execution which have been used for evaluation, if the number of tasks is less than 10, we

use tables to describe several execution scenarios by listing the states of the tasks at each

3 NICHE represents all the CPG representation ontologies developed in NICHE research

group

262

step of the execution. If the number of tasks is more than that and as a result all the tasks

cannot be put in a single table we annotate the CPG diagram with the states and their

associated time steps. We use a logical clock to keep track of time: Logical time is zero at

the beginning and increases when a user either starts a task (step 3 of execution algorithm

in section 6.2.1.3) or completes a task (step 4 of execution algorithm in section 6.2.1.3) and

the reasoning happens in between two logical times. Each logical time is considered as a

step.

We monitored the execution of the CAP, CHF-AF and Nursing CPG ontologies that were

transformed to instances of CPG-DKO during execution of manually crated patient

scenarios that cover all the paths of the CPG. We review examples of execution of these

CPG in this section in order to show how we evaluated the OWL-DL, OWL-2 and SWRL-

based CPG execution engines.

Scenario 1. CHF pathway entry point #5 Initiation of treatment of HF

We choose our first example from the CHF-AF ontology as it is one of the most detailed

and expressive ontology representation language and the instantiations of it make use of

complex workflow structures. CHF-AF ontology is composed of several independent parts.

The Chronic Heart Failure (CHF) treatment algorithm corresponds to the therapies outlined

in Canadian CPG [175]. The treatment schedule (Figure 9.2) depicts temporal and spatial

relationships between various prescriptions and the activities related to prescriptions such

as checking for the drug indications and contraindications. Once a particular drug is

prescribed, it has to be up-titrated based on a specific schedule. The drug up-titration

schemas along with dosage information for medications are nested within each prescription

and are developed as separate algorithms (not shown in Figure 9.2). The algorithm

comprises of four decision steps each enabling the clinician to evaluate the presence or

absence of any contraindication to a particular medication to ensure that the therapy can be

safely followed. The computerized version of this CPG and the figure used in this scenario

are prepared in [107]. We have mapped the CPG ontology in [107] and transformed its

263

instances to CPG-DKO for execution. Figure 9.2 shows an execution scenario that has been

used for evaluation. Each task and condition has been annotated with its state at each

specific point in time. A task or a condition retains its state until a new state has been

applied to it.

264

ACEI
contraindicated

Identify any
contraindication

to ACEI

1. Severe aortic stenosis
2. Outflow tract obstruction
3. Renal artery stenosis

Refer to
specialist

History of
Angioedema
with no other
C/I to ACEINo

contraindication
to ACEI

Initiate
Treatment
 with ACE
inhibitors

Initiate Rx
 with ARB
Instead of

ACEI

Beta blockers
are contraindicated

Determine any
Contraindications
to beta blockers

No
contraindications
to beta blockers

1. Symptomatic bradycardia
2. Severe reactive airway disease
3. Symptomatic hypotension despite
adjustment to other therapies
4. Significant AV block without a
permanent pace maker

Initiate_treatment_wi
th_beta_blockers_in_
addition_to_ACEI_or

_ARB

Determine any
signs of fluid

overload

Signs of fluid
overload
present

Signs of fluid
overload
absent

Determine any
contraindication
to loop diuretics

Continue Rx
with ACEI

and BB

No
contraindication
to loop diuretics

Add loop
diuretics

to
treatment
regimen

Loop diuretics are
contraindicated

Systolic BP less
than 90 mmHg

Refer to
cardiologist

ENDDetermine
 any caution to
loop diuretics

use

No caution to loop
diuretics use

Serum K
<4.0mmol/l

Refer to
cardiologist to

determine
appropriateness
and amount of K

supplement

CHF pathway entry point #5 Initiation of
treatment of HF

ACEI/ARB
and BB

Uptitration
algorithm

Loop diuretics
Uptitration

algorithm (in
addition to ACEI

and BB)

Refer to
specialist

T0: active

T1: Started

T2: completed

T2: unSatisfiedCondition

T2: discarded

T2: active

T3: Started

T4: completed

T5: active

T6: started

T7: completed

T7: unSatisfiedCondition

T7: satisfiedCondition

T7: active

T8: started

T9: completed

T9: satisfiedCondition

T9: unSatisfiedCondition

T11: satisfiedCondition

T13: satisfiedCondition

T9: active

T10: started

T11: completed

T4: active

T5: started

T5: completed

T11: active

T12: started

T13: completed

T11: unSatisfiedCondition

T13: unSatisfiedCondition

hasNext

hasOutcome

isConditionOf

Outcome/Precondition

Enquiry Task

Task

T13: discarded

T13: active

T14: started

T15: completed

T9: discarded

T2: satisfiedCondition

265

Figure 9.2 Execution of “CHF pathway entry point #5 Initiation of treatment of

HF” [107]. Each task and outcome/condition of the CPG is annotated with the

new values of the hasTaskState and hasConditionState properties and their

corresponding logical times. Underlined annotations indicate the triples that

are entered by the execution engine in the ontology and the rest of the triples

are inferred by the OWL reasoner at the annotated time. Executed tasks and

satisfied conditions/happened outcomes are underlined.

In this example, we show how we evaluated the working of our OWL-DL execution engine

using a patient scenario for of the “CHF pathway entry point #5 Initiation of treatment of

HF” computerized in [107]. This CPG will be used for evaluation of the OWL-DL based

CPG execution engine because it does not contain any forms of datatype expressivity or

loops. The CPG is composed of a series of sequential decisions that should be made by the

clinician. Some tasks have conditions that are not investigated or generated in this

particular CPG and they may come from other CPG or from an electronic medical record.

The below descriptions provide a detailed account of state transitions in some of the more

interesting steps of the execution:

T0: The only active task at the beginning is “Identify any contraindication to ACEI”. This

task is found by the CPG execution engine (in our case we use Jena functions to query the

ontology) and shown on the screen. User is asked to execute this task as the first sub-task of

the CPG.

T1: User decides that he is going to execute the task “Identify any contraindication to

ACEI”. Therefore, this task goes to the started state.

T2: When the user has completed “Identify any contraindication to ACEI” task, the

execution engine checks the possible outcomes (values that this task has for hasOutcome

property). Three outcomes are listed for this task in the ontology and they are shown to the

user. When an outcome (“ACEI is not contraindicated”) is selected by the user, the

execution engine adds the values satisfiedCondition/happenedOutcome for the property

conditionHasState of the selected outcome. This will cause the OWL reasoner to infer that

the task “Initiate Treatment with ACE inhibitors” is active. Other outcomes (“History of

266

Angioedema with no other C/I to ACEI” and “ACEI contraindicated”) that are not selected

will have the value notHappenedOutcome/unSatisfiedCondition for the hasConditionState

property. Moreover, the reasoner will infer that the tasks “Initiate Rx with ARB Instead of

ACEI” and “Refer to specialist” are discarded because their conditions are unsatisfied.

After handling the outcomes, the execution engine inserts a triple (hasTaskState

Completed) for the executed task to let the OWL reasoner know that the task is

accomplished by the user.

The rest of the decisions are handled in the same way during the execution. In this example

we evaluated the capabilities of our OWL-DL based execution engine in handling state

transitions, task orderings, outcomes specification, checking conditions and decisions. As

we monitored the state transitions, all the state transitions where concordant to the

execution semantics and we did not come across any inconsistencies.

Scenario 2. CHF Pathway Entry point # 2 Assessment of Initial Tests Results

The Canadian CPG [175] for the diagnosis of heart failure involves: (i) performing tests to

rule out heart failure as diagnosis; (ii) if it cannot be ruled out then the next step is to

determine any reduction in the left ventricular systolic function through echocardiography.

Figure 9.3 depicting the clinical algorithm comprising rules to evaluate initial clinical

assessments and tests to rule out heart failure as diagnosis. We have mapped the CPG

ontology in [107] and transformed its instances to CPG-DKO for execution. The interesting

aspect of this CPG is that it starts with a branch which is followed by three tasks that can be

executed in parallel by the health care professionals. These tasks have outcomes which are

conditions for two other tasks. Decision steps of the guideline are: (a) “Assess BNP”, (b)

“Assess X-Ray” (c) “Assess ECG” and (d) “Calculate Cumulative Boston Criteria Score”.

Boston Criteria [107] is a point score system for diagnosis of heart failure. It assigns scores

to symptoms, signs and chest X-ray findings. Since heart failure signs and symptoms are

non-organ specific, it is difficult to reach any diagnostic conclusion purely based on signs

and symptoms. As a result, a scoring scheme such as Boston Criteria is helpful for deriving

267

a more objective picture based on clinical and radiological findings. Boston criteria has

three possible options: 1. Score is less than 4 points– means heart failure is unlikely 2.

Score is between 5 and 7 points– means heart failure is possible 3. Score is more than 8–12

points means heart failure is definite. These decisions have outcomes which are conditions

for two other tasks. The task “Order Echocardiography” can get activated by satisfaction of

any of its 5 conditions. The CPG also indicates that even if one of the conditions is

satisfied, the task should not be acted upon until all of the BNP, ECG and X-Ray

assessments are finished first. To enforce this requirement, a synchronization point which is

waiting for the completion of all of the assessment tasks is put before “Order

Echocardiography”.

Figure 9.3 shows an execution scenario that has been used for evaluation. Each task and

condition has been annotated with its current state at each specific point in time. A task or a

condition retains its state until a new state has been applied to it.

268

Assess

 BNP

Assess

 ECG

Assess

 X-ray

Calculate

cumulative

Boston

Criteria Score

Reassess

or refer

Order

Echocardiography

Entry point 3

Assessment of

Echo & final

Diagnosis

CHF Pathway Entry point # 2

Assessment of Initial

Tests Results

isWaitedBy

HasBranch

Branch

Synchronization

BNP

Normal

For CHF

BNP

Abnormal

For CHF

ECG

Normal

ECG

Abnormal

for CHF

ECG

abnormal

for CHF

 and AF

BCS<4

Unlikely
5<BCS<7

Possible
BCS>8

Definite

All

Any

B1

hasBranchhasBranch

T0: active

T0: complete

T0: active

T5: started

T6: completed

T0: active

T3: started

T4: completed

T0: active

T1: started

T2: completed

isWaitedBy

All

isWaitedBy

S1

isWaitedBy

T2: active

T7: started

T8:completed

T8: hasValue 9

T8: satisfiedCondition

T8: hasValue 9

T8: unSatisfiedCondition

T4: satisfiedCondition

T4: unSatisfiedCondition

T6: satisfiedCondition

T6: unSatisfiedCondition

T4: discarded

T6: active

T6: completed

T6: active

T7 started

T8 completed

T8: active

hasBranch

269

Figure 9.3 Execution of “CHF Pathway Entry point # 2 Assessment of Initial Tests

Results” [107] CPG. Each task and outcome/condition of the guideline is

annotated with the new values of the hasTaskState and hasConditionState

properties and their corresponding logical times. Underlined annotations

indicate the triples that are entered by the execution engine in the ontology and

the rest of the triples are inferred by the OWL reasoner at the annotated time.

Executed tasks and satisfied conditions/happened outcomes are underlined.

OWL-DL based execution engine is not capable of executing this CPG as it needs

numerical comparisons. Since we are comparing the Boston criteria with a predefined set of

numbers (they are known before the execution) OWL-2 based execution is enough and we

do not expressivity of the SWRL. The below descriptions provide a detailed account of

state transitions in some of the more interesting steps of the execution:

T0: Initial activation of the branch step “B1” leads to activation of all of its branches. There

is no specific order in which “Assess BNP”, “Assess ECG” and “Assess X-Ray” should be

executed so it is left to the user to decide. Since this is a routing task and has made the

intended effect on the state transition it goes directly to the completed state.

T4: In this step, the user indicates that the outcome “ECG Normal” and “ECG Abnormal

for CHF” are both unsatisfied conditions. However, these two are conditions of the task

“Reassess or refer” with the condition satisfaction criterion of all. Therefore, this task goes

to the discarded state from inactive state.

T6: In this step, all the tasks that the synchronization task s1 is waiting for are completed.

Therefore, this task goes to the completed state directly in order to unify the execution flow

and direct it to the next task. Therefore, the task “Order Echocardiography” becomes

active.

T8: After execution of “Calculate cumulative Boston Criteria Score” the execution engine

asks the user to enter a value as the outcome and uses this value (9) to enter the triple

“hasValue 9” for the corresponding outcomes. Our OWL 2 based inference engine uses the

user defined ranges defined in the pre-processing phase to infer that “BCS<4 Unlikely” is

270

unsatisfied and the task “Reassess or refer” that is waiting for “all” of its conditions is

discarded. It also infers that “BCS>8 Definite” has state satisfiedCondition.

In this scenario, we evaluated the capabilities of our OWL-2 based execution engine in

handling state transitions, task orderings, outcomes specification, checking conditions,

decisions, branches, synchronization and data type expressivity. As we monitored the state

transitions, all the state transitions where concordant to the execution semantics and we did

not come across any inconsistencies.

Scenario 3. CHF entry point #4-Pre-treatment electrolyte assessment and correction

According Canadian guideline [175] for CHF, it is absolutely imperative to assess some

preliminary parameters such as: serum creatinine, potassium and sodium and correct them

if possible before CHF therapy with Angiotensin-Converting Enzyme Inhibitor (ACEI) and

Beta Blocker (BB) can be safely administered. The purpose of the CPG (Figure 9.4) in this

scenario is to guide a family physician, in a stepwise fashion, to evaluate these parameters

and take appropriate actions in accordance to the outcome assessments. The interesting

aspects of this CPG are: (i) two while loops and (ii) numeric comparisons. OWL 2

execution engine can execute this guideline and there is no need to use SWRL rules here as

no mathematical function is needed to handle while loops and the guideline does not need

to compare two numbers that are entered during execution.

We have mapped the CPG ontology in [107] and transformed its instances to our CPG-

DKO for execution.

Figure 9.4 that is taken from [107] shows an execution scenario that has been used for

evaluation. Each task and condition has been annotated with its current state at each

specific point in time. A task or a condition retains its state until a new state has been

applied to it.

271

Assess

Initial

Serum

creatinine

>113

micromol/L

<113

micromol/L

Refer to

nephrology

and

cardiology

Assess

Serum

K

>5.1

mmol/L

<5.1

mmol/L

Low Diet K,

Restrict

external

sources of K

& correct K

>136

mmol/L

<136

mmol/L

Assess

serum

Na

Restrict free

water &

correct Na

Assess

Systolic

BP

<90

mmHg

>90

mmHg

Refer to

cardiologist

Entry point 5

Initiation of

Rx of HF

hasExitCondition

hasExitCondition

T0: active

T1: started

T2: complete

T2: hasNumericValue 105

T2: satisfiedCondition

T2: hasNumericValue 105

T2: unSatisfiedCondition

T2: discarded

isFollowedBy

hasOutcome

isPreconditionOf

Outcome/Precondition

Enquiry Task

Task

T4: hasNumericValue 6

T4: satisfiedCondition

T8: hasValue 4.9

T8: unSatisfiedCondition

T8: active

T9: started

T10: complete

T10: hasNumericValue 110

T10: unSatisfiedCondition

T10: discarded

T10: hasNumericValue 110

T10: unSatisfiedCondition

T10: active

T11 done

T11: complete T11: hasNumericValue 100

T11: satisfiedCondition

T11: hasNumericValue 100

T11: unSatisfiedCondition

T11: discarded T11: active

T4: active

T5: started

T6: complete

T8: discarded

T4: hasNumericValue 6

T4: unSatisfiedCondition

T8: hasNumericValue 4.9

T8: satisfiedCondition

T2: active

T3: started

T4: complete

T6: active

T7: started

T8: complete

272

Figure 9.4 Execution of “CHF entry point #4-Pre-treatment electrolyte assessment and

correction” CPG [107]. Each task and outcome/condition of the guideline is

annotated with the new values of the hasTaskState and hasConditionState

properties and their corresponding logical times. Underlined annotations

indicate the triples that are entered by the execution engine in the ontology and

the rest of the triples are inferred by the OWL reasoner at the annotated time.

Executed tasks and satisfied conditions/happened outcomes are underlined.

In this example, we show how we evaluated the working of our OWL 2 based execution

engine using a patient scenario for of the “CHF entry point #4-Pre-treatment electrolyte

assessment and correction” computerized in [107].The CPG is composed of a series of

inquiry tasks that are used to decide about the continuation of the while-loop tasks. The

below descriptions provide a detailed account of state transitions in some of the more

interesting steps of the execution:

T2: Upon completion of the task “Assess Initial Serum creatinine” by the user, the

execution engine checks the outcome of the task. User is asked to enter a value for the

serum creatinine. We assume that in this patient scenario the value 105 micromol/L is

entered for this outcome. As a result of this outcome, the OWL reasoner will infer that the

condition “<113 mmol/L” is satisfied and the task “Assess Serum Na” is active. Moreover,

the reasoner will infer that the condition “>113 mmol/L” is unsatisfied and the task “Refer

to nephrology and cardiology” is discarded. Now the only active task is “Assess serum K”

which is the second task of the loop.

T4: When user has finished the task “Assess serum K” user is asked to enter a numeric

value as the outcome of this task. We assume that in our patient scenario this value is 6

mmol/L. Therefore, the OWL reasoner will infer that condition “>5.1 mmol/L” is satisfied,

“Low Diet K, Restrict external sources of K & correct K” is activated and condition

“<5.1mmol/L” has state “unSatisfiedCondition”. Now “Low Diet K, Restrict external

sources of K & correct K” which is the first task of the loop becomes activated. This task is

shown to the user to be acted upon.

273

T6: When the user is done with the task “Low Diet K, Restrict external sources of K &

correct K” the first task of the loop “Assess serum K” is activated again and is ready for

execution and evaluation of its outcome.

T8: This time, users enter the value 4.9 mmol as the outcome of the task “Assess serum K”

and the OWL reasoner infers that exit condition “<5.1 mmol/L” is satisfied. Therefore the

next task after the loop which is “assess serum NA” becomes activated.

The rest of the execution is performed in a similar fashion. Please note that we do not go to

the second loop and just skip it in this scenario. This example has been discussed to show

how our OWL 2 based execution engine is evaluated for handling state transitions, task

orderings, outcome specification, checking conditions, decisions, while loops and some

level of data type expressivity. As we monitored the state transitions, all the state transitions

where concordant to the execution semantics and we did not come across any

inconsistencies.

Scenario 4. Adjustment of Oral Furosemide Dosing for Changes in Dry Weight

Figure 9.5 depicts a hypothetical case of diuretic dose adjustment. Diuretics such as

Furosemide are administered for control of congestion and fluid retention. Once optimal

fluid balance has been restored, the patients are usually maintained at an effective yet

lowest possible dose. During the diuretic therapy, patients are instructed to record their

weight daily. If there is an increase in weight by more than by 1 kg over a week, then the

diuretic dose has to be adjusted. This algorithm (Figure 9.5) compares patient’s weights

over period of a week to recommend appropriate dose adjustment. This guideline can only

be executed using our SWRL based execution engine because of the need to perform

mathematical comparisons between patient’s data that are not available during the pre-

processing. To execute the above mentioned CPG, a function with the operator subtractMO

which has the outcomes weight1 and weight2 as its inputs and the weight difference

between the two measurements as its output. The output of this math function is the input

274

of two other functions that compare the weight difference with the value 1 kg. The outputs

these functions with the operators greaterThanEqualMO and lessThanMO are used as the

conditions of the tasks that adjust the dose of the Furosemide. Figure 9.5 shows an

execution scenario that has been used for evaluation. Each task and condition has been

annotated with its current state at each specific point in time. A task or a condition retains

its state until a new state has been applied to it.

275

Measure

Weight

Week1

weight1

Measure

Weight

Week2

weight2

T0: active

T1: started

T2: complete

T2: active

T3: started

T4: complete

T4: hasNumericValue 72kgT2: hasnNumericValue 69kg

subtract

>= <
input2

1

input2

1

Weight

Difference
input1

input1

Weight difference <

1 kg

Furosemide

20mg am

Furosemide

20mg am

20mg pm

Weight difference <=

1 kg

T4: hasNumericValue 3kg

T4: satisfiedConditionT4: unSatisfiedCondition

T4: discarded T4: active

276

Figure 9.5 Execution of “Adjustment of Oral Furosemide Dosing for Changes in Dry

Weight”. Each task and outcome/condition of the guideline is annotated with

the new values of the hasTaskState and hasConditionState properties and their

corresponding logical times. Underlined annotations indicate the triples that

are entered by the execution engine in the ontology and the rest of the triples

are inferred by the OWL reasoner at the annotated time. Executed tasks and

satisfied conditions/happened outcomes are underlined.

In order to see how this CPG is used for evaluating our SWRL-based CPG execution

engine, we go through a scenario and discuss the state transitions. T0 to T3 are executed the

same as the previous scenarios discussed in this section. Below we describe the state

transitions in step T4:

T4: When both of the weight measurement tasks are done, both operand of the subtract

function are available for the corresponding SWRL rule to be executed by the OWL

reasoning engine. After the execution of the rules, the corresponding value is assigned to

the subtract function outcome. In our scenario, patient’s weight has changed from 69kg to

72kg. Therefore the output of this function has the numeric value 3. Comparison of the

value 3 with 1 in the two math functions will cause the OWL reasoner to infer that the

conditions “Weight difference < 1 kg” and “Weight difference >= 1 kg” belong to

UnSatisfiedCondition and SatisfiedCondition classes respectively.

This example scenario has been discussed in order to evaluate the capability of our SWRL

based execution engine in handling state transitions, task orderings, outcomes specification,

checking preconditions, decisions, higher level of data type expressivity compared to OWL

2 and OWL-DL. More data type expressivity includes mathematical computation and

comparison of numbers which are not known before the execution. As we monitored the

state transitions, all the state transitions where concordant to the execution semantics and

we did not come across any inconsistencies.

9.1.3. Evaluation by Comparison of Execution Results

277

An ontology can be evaluated in an application that makes use of the ontology. As we

discussed earlier we successfully mapped and transferred Nursing CPG, AF-CHF CPG and

CAP ontologies to CPG-DKO. These CPG ontologies have total of 9 instantiations each

representing a disease-specific CPG. Both Nursing CPG and AF-CHF CPG ontologies have

proprietary execution engines developed in the NICHE group. The nursing CPG execution

engine is developed by the author of the thesis in collaboration with the nursing CPG

developer and encoder in [145]. CHF-AF CPG ontology has also a web based execution

engine described in [107]. Both of these CPG execution engines adopt a graph parsing

approach for execution. We can compare the generated therapy plans by these execution

engines and our OWL-based execution engine for evaluation.

In order to compare the results of the CPG execution engines of the CHF-AF and nursing

CPG ontologies and our OWL-based CPG execution engine that executes the CPG-DKO,

we used the designed patient scenarios discussed in the beginning of the section 9.1. We

executed each of the disease-specific CPG simultaneously in their original format with their

own proprietary execution engine and in CPG-DKO ontology with our OWL-based CPG

execution engine. In all of the 9 cases, the generated recommendations perfectly match

each other and we do not find any difference between them as long as we follow the same

execution strategy. Execution engines can execute a CPG based on a Breadth First Search

or a Depth First Search strategy or a strategy that is dictated by the user. Our limitations in

this evaluation are (1) We do not go through all the possible scenarios; (2) our scenarios are

not necessarily medically valid.

9.1.4. Evaluation by Modeling and Executing New CPG

In order to perform more evaluations on the both CPG-DKO and the CPG execution

engine, we have computerized Osteoarthritis treatment algorithm published by National

Health Services Tayside of Scotland [169] and clinical pathways for hypertension [170] and

diabetes [171] published by National Institute of Health and Clinical Excellence of UK.

278

Therefore, instead of performing instance transformation on existing computerized CPG,

we have computerized these pathways from scratch. Since hypertension and diabetes two

clinical pathways are very detailed and can have up to 5 levels of nesting, we have only

gone two levels down and left the rest of the details for the future work. These pathways are

not very complicated in terms of the workflow construct and are mainly computerized in

order to evaluate our CPG merging methodology discussed later. However, execution of

them can be used as an evaluation for capabilities of our CPG execution engine for

execution of basic workflow constructs. In all cases, our CPG execution engine can

successfully follow the CPG workflow constructs and execute the decisions successfully.

We go through an example scenario in order to show how our execution engine

successfully interprets the workflow structure of the CPG. Figure 9.6 shows the

Osteoarthritis treatment algorithm published by National Health Services Tayside of

Scotland [169] used for evaluation.

279

Osteoarthritis treatment algorithm

IG

II

IT AP: Administer Parcatemol 4g day

AI: Add Ibuprofen 1.2g/day

IG: Inquiry about GI bleeding risk factors

II: Inquiry about possibility of continuing Ibuprofen after 6 month

AH: Add PPI If at high risk of bleeding

RO: Review ongoing requirement for NSAID at least every 6 months

IT: Inquiry about tolerance of PPI after 6 month

SC: Substitute COX-2 inhibitor instead Of PPI

SN: Substitute Naproxen Instead Of Ibuprofen

AP

AI

RO

AH

SN

SC

Can Not

continue

PPI

Can

continue

PPI

Can

continue

Ibuprofen

Can Not

continue

Ibuprofen

History of

GI

History of

cardiovascul

ar disease

Aged 65

years or

over

hasNext

hasOutcome

isConditionOf

Outcome/Precondition

Enquiry Task

Task

Figure 9.6 The Osteoarthritis treatment algorithm

As we described earlier, in order to evaluate the correctness of the generated

recommendations we created several patient scenarios that cover all the execution paths in

the CPG. We ran the execution engine with these imaginary scenarios and recorded the

state transition of all the tasks in the CPG. Reviewing the state transitions of the tasks

during execution can be used to evaluate if the workflow constructs are interpreted as they

are supposed to. Successful interpretation of the workflow constructs indicates that CPG-

DKO is correctly modeling the intended CPG and the execution engine is correctly

280

executing the computerized CPG. In the following, we see an example of the recorded

state transitions for an imaginary patient scenario:

T0: We start reviewing the state transitions of our scenario at this point of time. In this step

the first task of the algorithm AP is already started by the user.

T1: In this time step, user indicates that he has finished the task AP. Therefore, this task

goes to the completed state. Completion of this task will cause the activation of the next

inactive task which is AI. This task becomes active according to the state transition rules

and it is shown to the user to be acted upon.

T2: User starts execution of the task AI. Therefore, AI goes to the started task until the user

indicates that he has completed this task.

T3: User indicates that the task AI is completed and the task goes to the completed state.

Completion of this task causes activation of the next inactive task which is IG. This task is

activated by the reasoner and shows to the user by the execution engine.

T4: User starts execution of the task IG. This task goes to the started state.

T5: Since IG is completed by the user it goes to the completed state. This task has three

outcomes which are shown to the user after completion of IG: (1) “History of GI”, (2)

“History of Cardiovascular disease” and (3) “Age 65 or over”. User can select zero or more

of these outcomes. We assume that patient is younger than 65 and does not have a history

of the GI or cardiovascular diseases. Therefore, none of these options are selected as the

outcome of the task GI. These outcomes are conditions of the tasks AH and IT. Since these

conditions are not satisfied both of these tasks are discarded. Since IT is discarded, its

outcomes which are “cannot continue PPI” and “can’t continue PPI” can never be selected.

As a result, the task SC will never have satisfied conditions. Therefore this task is discarded

as well according the state transition rules.

T6 is similar to the states T1.

281

T7: Task II is completed in this state. This will cause the inactive task RO to get activated.

After completion of II the outcomes of this task which are “cannot continue ibuprofen” and

“can’t continue ibuprofen” are shown to the user. If we assume that the patient is not

capable of taking ibuprofen for some medical conditions, the second outcome will be

selected. After selection of this outcome the conditions of the task SN will be satisfied and

this task will become activated. Now, both RO and SN tasks are active.

T8: User opts to execute both of the active tasks simultaneously. Both tasks RO and SN go

to the started state.

T9: User finishes execution of the tasks RO and SN and both of these tasks go to the

completed state.

These state transitions have been reported in Table 9.4.

282

Table 9.4 State transition of tasks during execution of the CPG in Figure 9.6. New states

are bolded and the state transitions performed by the user are underlined. (A =

Active, I = Inactive, S = Started, D = Discarded, C = Completed)

 AP AI IG II AH RO IT SC SN Selected Outcome

T0 S I I I I I I I I

T1 C A I I I I I I I

T2 C S I I I I I I I

T3 C C A I I I I I I

T4 C C S I I I I I I

T5 C C C A D I D D I None

T6 C C C S D I D D I

T7 C C C C D A D D A Cannot continue Ibuprofen

T8 C C C C D S D D S

T9 C C C C D C D D C

As you can see in the table above, our execution engine interprets the tasks’ sequence,

outcomes and conditions in the exact way that our execution semantics and the workflow

structure of this CPG is representing.

9.2. Evaluation of the Ontology Mapping Module

For evaluation purposes, our mapping ontology is compared with the existing

representation languages in section 9.2.1 in terms of the features identified in the related

literature. These features have been reported in section 2.3.1 of the thesis. To evaluate the

ability of the mapping languages in mapping complex ontologies and the translation

algorithm in preparing the mappings for instance transformation we used them for mapping

283

and transformation of several CPG ontologies to CPG-DKO. The results of this evaluation

are discussed in section 9.2.2.

9.2.1. Evaluation of the Knowledge Mapping Ontology (KMO)

We used OWL reasoners to evaluate KMO and its instantiations for consistency and

syntactical correctness. Pellet reasoner shows that our ontology is consistent. We also

checked the consistency of the ontology after translation to OWL-DL + SWRL. Our

evaluations show that our ontology remains consistent after translation. Moreover, the

output of this function is always in OWL-DL + SWRL. This ensures decidability and

efficiency of the reasoning algorithm.

In order to evaluate our mapping ontology for completeness we compare our ontology with

the popular ontology mapping methodologies C-OWL [58], MARFA [62], SEKT [165],

Yuangui1 [74], Euzenat1 [166], OWL [142] and SWRL [154] for representation and

execution of mappings. This comparison includes support for mappings patterns, operators,

condition, constraints, relations between mappings and several other aspects.

9.2.1.1. Support for mapping patterns

In this section, the support for a list of mapping patterns identified in [165] will be

compared. The result of comparison of mapping patterns for classes, attributes and instance

are listed in Table 9.5, Table 9.6 and Table 9.7 respectively.

284

Table 9.5 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting class mapping patterns

Class

Pattern
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Class

Equivalence
+ + - + + + + +

Class

Subsumption
+ + - + + + + +

Class by

attribute

mapping

+ + + - -+ + + +

Class mapping

by axiom
- - + - -+ - + +

Class join

mapping
- - - - + - - +

Class to

attribute

mapping

+ + + - -+ - + +

Class Relation

mapping
+ + + - + - + +

285

Table 9.6 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting relation and attribute patterns

Attribute

Pattern
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Property

Equivalence
+ + - - + + + +

Super Sub

Property
+ + - - + - + +

Mapping by

axiom
- - - - -+ - + +

Attribute

value to

attribute value

mapping

- - + - -+ - + +

Attribute

value to class

mapping

- + + - -+ - - +

Relation

Equivalence
- + -+ - + - + +

Sub-super

attribute value

mapping

- + - - -+ - - +

286

Table 9.7 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting instance mapping patterns

Instance

Pattern
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Equivalence - + + - + - - +

Difference - + + - - - - +

Equivalent

relation

instance

mapping

- + + - -+ - - +

Our language has a more comprehensive set of supported mapping patterns compared to the

existing ontology mapping representation languages. All these aspects of the mapping can

be greatly beneficial when complex mappings are needed for expressive ontologies.

9.2.1.2. Support for Mapping Operators

Operators play an important role in manipulation and preparation of ontology elements for

ontology mapping. The more operators can be expressed and executed, the more expressive

the mapping representation language is. Comparison of our language with the existing

languages can be seen in Figure 9.8.

287

Table 9.8 Comparison of KMO with the existing ontology mapping representation

languages in terms of support for instance transformation and ontology

mapping operators

Operator

Name
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Class Union - + + - + + + +

Class

Intersection
- + + - + - + +

Class

Complement
- + - - + - + +

Negation - - - - + - + +

Inverse - + + - + - + +

Transitive - + + - + - + +

Symmetric - + + - + - + +

Property Chain - + + - - - - +

Math Operator - - + - - - + +

String Operator -+ - + - - - + +

Boolean

Operator
- - + - - - - +

Comparator

Operator
- -+ + - - - + +

Convert

Operators
+ - - - - - - +

Instance transformation, which is the main reason for us to map ontologies, makes heavy

use of these operators. Supporting these operators make our language a very powerful tool

for instance transformation.

288

9.2.1.3. Support for Conditions and Constraints

An important expressivity feature is to assign conditions, condition satisfaction criteria and

constraints to mappings. A major advantage of our mapping representation language is the

ability to define very complex conditions and condition satisfaction criteria that no other

existing language is capable of expressing and executing. The result of comparison of our

CPG representation language with the existing CPG representation languages is listed in

Table 9.9.

289

Table 9.9 Comparison of KMO with the existing ontology mapping representation

languages in terms of supporting conditions, constraints and various condition

satisfaction criteria

Class

Conditions
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 MKO

Property

HasValue
+ + + - + - + +

Property

Cardinality

Restriction

- + - - - - - +

Property

Qualified

Cardinality

Restriction

- + - - -+ - - +

Self

Restriction
- + - - - - - +

Attribute

Condition
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

HasValue + + + - - + - + +

Cardinality

Restriction
- + - - - - - +

Qualified

Cardinality

Restriction

- + - - -+ - - +

Condition

Satisfaction

Criteria For

mappings

MARFA OWL SWRL
C-

OWL
SEKT Yuangui1 Euzenat1 KMO

any - - -+ - - - - +

all - - -+ - - - - +

any k - - - - - - - +

290

min - - - - - - - +

max - - - - - - - +

Table above shows that our methodology has made improvements in expressing mapping

conditions and the condition satisfaction criteria.

9.2.1.4. Relation between Mappings

Another aspect that has been widely ignored by researchers in the field of ontology

mapping is the possible relations between the mappings. As you can see in Table 9.10,

MARFA and our language are the only languages that provide the user a set of possible

relations between the mappings.

Table 9.10 Comparison of KMO with the existing ontology mapping representation

languages based on the supporting relations between the mappings

Mapping

Relation
MARFA OWL SWRL

C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Abstraction + - - - - - - +

Specialization + - - - - - - +

Composition + - - - - + - +

Alternatives + - - - - - - +

Ability to express these relations can facilitate the mapping process by reusing the existing

mappings in the current instantiation of the mapping ontology or based on other similar

mappings problems.

9.2.1.5. Other Aspects of the Mappings

The two other important expressivity features are existence of an expression language for

defining the condition and the constraints and the support for variables in that expression

291

language. Supporting variables is extremely important in instance transformation as it can

be used to transfer values between the source and target ontologies. Other than expressivity

there are several important factors that should be taken into the consideration. All of these

features are compared in Table 9.11.

Table 9.11 Comparison of KMO with the existing ontology mapping representation

languages based on existence of tools, capturing meta-data, reasoning in

presence of inconsistencies, formal semantics, expression languages and

variables

Feature MARFA OWL SWRL
C-

OWL
SEKT Yuangui1 Euzenat1 KMO

Existence of tools -+ + + - -+ - -+ +

Capturing Meta-

data
- - - - - - + +

Reasoning in

presence of

inconsistencies

- - - + - - - -+

Formal Semantics - + + + -+ - -+ +

An Expression

Language
- - + - - - -+ +

Support For

Variables
- - + - - -+ - +

These features are important as they improve shareability, expressivity and usability in

semantic-based ontology mapping approaches. As the above table shows, all these features

are supported by our mapping representation ontology.

9.2.2. Evaluation of KMO and the Translation to OWL+SWRL Algorithm

In order to evaluate KMO and the translation algorithm, we first need to instantiate KMO,

feed those instantiations to the translation algorithm, and evaluate the output. As we

292

discussed earlier, we instantiated KMO to map CHF-AF, CAP and Nursing CPG ontologies

to CPG-DKO. Then we used our translation algorithm to translate the mappings to OWL-

DL + SWRL in order to perform instance transformation. We then used the pellet reasoner

to perform reasoning on the mapped CPG ontologies and the translated mappings in order

to transfer instance of the source CPG ontologies to CPG-DKO. KMO and the translation

algorithm can be evaluated in two ways:

(1) The output of the translation algorithm should have proper syntax, be in OWL-DL +

SWRL and consistent. We used pellet to check the syntax and consistency of the output. In

all three cases, the output is syntactically correct and consistent. Moreover, Protégé shows

that the specie of the output is always OWL-DL.

(2) After the reasoning step of the semantic based ontology mapping, the transformed

instances should represent the same knowledge as the source ontology. A way of doing this

is to give the ontologies to the domain expert and ask them to compare the medical

knowledge and the workflow structure represented by the both ontologies. However,

comparing two ontologies needs extensive knowledge of the domain, ontologies and the

semantics of the source and the target ontologies. Domain expert should go through each

instance in the source ontology and its equivalent in the target ontology and compare their

relations. There are two disadvantages to this approach: 1. This can be excessively time

consuming to be done manually for large ontologies like the ones that we are dealing with.

2. An instance, class or property in the source ontology may not necessarily have an

equivalent in the target ontology or vice versa due to different modeling approaches.

Therefore, we believe the best way to validate the correctness of the transformed instances

is to utilize them in applications that accept them as their inputs and evaluate the results of

those applications. We use CPG execution engines as the evaluating application. In order

to confirm that the transformed instances represent the same CPG ontology, we executed

the transformed CPG using our own OWL-based execution engine and compared the

results with the output of the execution of these CPG in their original format by their own

proprietary execution engines. Both Nursing CPG and AF-CHF CPG ontologies have

293

designated CPG execution engines developed in the NICHE group. Comparison of the

execution results using the scenarios designed to evaluate the execution engines show that

the same output is generated in all scenarios for all the CPG.

Since the CAP ontology did not have an execution engine for comparison, we asked the

person who had instantiated the ontology to use our engine to evaluate the transformed

CAP ontology. In the beginning, the expert found several inconsistencies between their

ontology and generated output of our CPG execution engine. Our investigations showed

that these errors happen due to spelling errors and missing relations in the ontology. Fixing

those errors made the final output of our OWL-based CPG execution engine consistent to

what was expected form the CAP ontology according to the provided flowchart.

9.3. Evaluation of the CPG Merging Framework

Our merging approach has two components: (1) CPG-KPO and (2) CPG Merging

Execution Engine. We seek experts’ opinion in order to evaluate KMO as there is no

golden standard ontology developed for this purpose and not enough research has been

performed on requirements of CPG merging representation languages in order to be used

for evaluation. We also evaluate both CPG-KPO and merge execution engine by

monitoring the execution of 6 real and 10 imaginary CPG merging examples. We recorded

the state transitions in order to validate that the execution of the merged CPG is performed

as it is dictated by the execution semantics of the tasks and constraints.

9.3.1. Evaluation of the CPG-KPO

We used domain experts’ opinion in order to evaluate this ontology. The evaluation process

started with a 20-minutes presentation that discussed the concepts represented in the CPG-

KPO, their significance and rationale in CPG merging. Then seven health informaticians,

physicians and computer scientists who are experts in medical ontologies were asked to

answer a questionnaire designed for evaluation of CPG-KPO. This questionnaire asked

participants’ opinions regarding ease of use, clarity, expressiveness, usefulness of CPG-

294

KPO concepts and participants’ overall satisfaction. They were given 30 minutes to fill the

questionnaires. During that time, participants were allowed to ask questions but not to share

opinions with each other. In the rest of this section, we review each of the questions in the

questionnaire and participants’ responses to it:

9.3.1.1. Ease of Use

Table 9.12 shows the table used to evaluate CPG-KPO for “ease of use” by domain experts.

This table shows the criteria used for evaluation and the possible answers for each of these

criteria. The number in each of the cells shows the percentage that participants have chosen

the corresponding answer.

295

Table 9.12 Criteria used for evaluating ease of use of CPG-KPO for CPG merging. The

number in each table cell represents the percentage that each answer has been

selected

Strongly
disagree

Moderately
disagree

Neither
agree or

disagree

Moderately
agree

Strongly
agree

I find it easy to

instantiate the

CPG-KPO in

order to merge

CGP

0% 0% 43% 43% 14%

Names of the

CPG-KPO

elements are

meaningful

0% 0% 14% 57% 29%

Purpose of

CPG-KPO

elements are

clear

0% 0% 14% 29% 57%

Concept class

hierarchy is

appropriately

defined

0% 0% 29% 57% 14%

296

Table 9.12 shows that the participants find CPG-KPO moderately easy to use for CPG

merging.

9.3.1.2. Clarity

Table 9.13 shows the table used to evaluate CPG-KPO for “clarity” by domain experts.

This table shows the criteria used for evaluation and the possible answers for each of these

criteria. The number in each cell shows the percentage that participants have chosen the

corresponding answer.

Table 9.13 Criteria used for evaluation of clarity of CPG-KPO concepts to participants.

The number in each table cell represents the percentage that each answer has

been selected

 Not Clear
at all

Not
clear

Somewhat
clear

Clear
Very
Clear

Constraints 0% 0% 0% 57% 43%

Conditions 0% 0% 0% 43% 57%

Constraint

Priorities
0% 0% 14% 29% 57%

Constraint

Conflicts
0% 0% 43% 28.5% 28.5%

Table 9.13 shows that the majority of the concepts are clear or very clear to participants.

The concept that is less clear to participants is Constraint Conflicts.

9.3.1.3. Expressiveness

We also asked the participants to evaluate the expressiveness of our ontology for

representing CPG merging aspects listed in Table 9.14. The number in each cell shows the

percentage that participants have chosen the corresponding answer.

297

Table 9.14 Aspects of CPG merging evaluated for expressiveness by participants of our

survey. The number in each of the table cells represents the percentage that

each option has been selected

Not

Expressive

at all

Not

expressive

Somewhat

expressive
Expressive

Very

expressive

Modelling

Workflow

constraints

0% 0% 14% 43% 43%

Modelling

Intuitional

constraints

0% 0% 29% 29% 43%

Modelling

Temporal

constraints

0% 0% 29% 29% 43%

Modelling

Medical

Constraints

0% 14% 14% 58% 14%

Modelling

Conflicts

between

Constraints

0% 14% 57% 0% 29%

Modelling

Conditions
0% 0% 29% 0% 71%

Table 9.14 shows that our ontology is perceived as an expressive ontology for the task of

CPG merging by participants. This table also shows that participants believe that the least

expressive aspect of CPG-KPO is the ability to model conflicts between constraints. We

believe that this is due to the fact that it was the least clear concept in CPG-KPO to

participants. Participants also find the ontology very expressive for representation of

conditions. This concept was among the clearest concepts to the participants.

9.3.1.4. Usefulness

298

We asked participants to evaluate the usefulness of concepts of CPG-KPO in representation

of the CPG merging. The criteria used for usefulness evaluation are listed in Table 9.15.

The number in each cell represents the percentage that the corresponding answer has been

selected by our participants.

Table 9.15 Concepts of CPG-KPO evaluated for usefulness by participants of our survey.

The number in each of the table cells represents the percentage that each

option has been selected

Not useful
at all

Not
useful

Somewhat
useful

Useful
Very
useful

Workflow

Constraints
0% 0% 14% 14% 71%

Temporal

Constraints
0% 0% 0% 29% 71%

Medical

Constraints
0% 0% 14% 29% 57%

Operational

Constraints
0% 0% 14% 43% 43%

Condition 0% 0% 0% 43% 57%

Conflict 0% 0% 14% 29% 57%

Conflict

Detection Rules
0% 0% 0% 29% 71%

Table 9.15 shows that most of the participants in our study find the concepts representable

in our ontology useful or very useful for CPG merging. Even though our ontology does not

support many temporal constraints, this feature is identified as the most useful feature. This

is an indication that more research on temporal constraint for CPG merging should be

performed and our ontology can benefit from improvements in this regard.

9.3.1.5. Overall Satisfaction

299

Participants also expressed their overall satisfaction with CPG-KPO. Table 9.16 shows the

table used to evaluate the overall satisfaction of participants with CPG-KPO. The number

in each cell represents the percentage that the corresponding answer has been selected by

our participants.

Table 9.16 Table used to evaluate the overall satisfaction of participants with CPG-KPO.

The number in each of the table cells represents the percentage that each

option has been selected

Not
satisfied

at all

Not
satisfied

Somewhat
satisfied

Satisfied
Very
satisfied

Overall

Satisfaction
0% 0% 0% 83% 17%

Table 9.16 shows that all of the participants are either satisfied or very satisfied overly with

CPG-KPO. One of the participants did not respond to this question.

9.3.1.6. Open-Ended Questions

Besides close-ended questions, we asked the participants to answer a number of open-

ended questions as well. These questions were not answered by the all of the participants

however. We discuss these questions and the answers given to them by the participants.

1. Are there any improvements that you would like to see in CPG-KPO?

The following list summarizes the improvements suggested by the participants:

 Modelling evidence conflict

 Modelling evolution of CPG and automatic updating of CPG-KPO for new

versions of CPG

 Using temporal conditions for tasks

300

 Defining constraints between more than two tasks.

2. What is the most useful feature of CPG-KPO in regard with CPG merging?

There is a consensus among the participants that all constraints are very important. The

constraint that models task conflicts is the most mentioned constraint.

3. What is the biggest hindrance to using CPG-KPO for merging real computerized

CPG?

Two of the participants expressed since it is common to have more than two concurrent

conditions in elderly patients, it is crucial to improve how CPG-KPO merges three or more

CPG. No specific details were provided. Another participant believes that lack of the ability

to model CPG evolution is the biggest hindrance to CPG merging.

9.3.2. Evaluation of the Merge Execution Engine

As we saw previously, we instantiated CPG-KPO in section 8.3.3 in order to capture the

merging constraints between CPG in 6 real comorbidities. We use those real comorbidity

cases to evaluate our CPG-KPO and merge execution engine. We have also created 10

imaginary examples of the merged CPG in order to evaluate the capability of CPG-KPO in

modeling complex conditions, conflicts and the constraints that we have not found in our

real examples. For each of the real or imaginary comorbidities, we have created at least

four imaginary patients scenarios and executed the merged CPG using our merge execution

engine.

During execution, we have recorded all the state transitions and compared them to the

desired state transitions defined by the execution semantics of the tasks and constraints.

Please note that the evaluation of the medical correctness of the generated outcome is not

the objective of this comparison and we are only evaluating the capabilities of the execution

engine from a workflow point of view. In all 16 examples our merge execution engine can

successfully model the constraints’ state transitions and their effects on tasks’ state

301

transition systems. We go through 4 real example scenarios in order to show how we

evaluate the capabilities of merge execution engine in dynamically merge several CPG

during execution. We use tables to describe execution scenarios by listing the states of the

tasks and constraints at each step of the execution. We also use a logical clock to keep track

of time: Logical time is zero at the beginning and increases when a user either starts a task

(step 3 of the merging algorithm) or completes a task (step 4 of the merging algorithm) and

the reasoning happens in between two logical times. Each logical time is considered as a

step of the execution and it is broken into several sub-steps in order to show the sequence in

which the reasoning happens in the OWL reasoner.

9.3.2.1. CPG Merging Scenario 1: CHF-AF

CHF-AF comorbidity CPG ontology [107] gives us several opportunities to evaluate our

merge execution engine. In this section, we show how we have evaluated the capability of

our execution engine in handling IdenticalActionConstraint using CHF-AF comorbidity

CPG. In order to merge CHF and AF CPG, we first transformed the instantiations of these

ontologies to CPG-DKO using our ontology mapping methodology described in chapter 7

of the thesis. We then instantiated the CPG-KPO in order to capture the morphing

constraints between the two transformed CPG.

We have created several IdenticalActionConstraints in order to capture the identical tasks

between the CHF and AF CPG. An example of these identical tasks is “pre-treatment

electrolyte assessment & correction”(CHF-AF1) which might be executed in both of the

CPG for comorbid patients. The constraint merging these two tasks is called indetical1 in

the instantiation of the CPG-KPO. Figure 8.2 shows the AF and CHF CPG flowcharts and

the instantiation of the CPG-KPO that is used to merge these two CPG. In order to see how

we evaluate the capability of the merge execution engine in handling the constraints we go

through a part of one of the imaginary patient scenarios. We have annotated the tasks and

constraints participating in the merge with their states in the first time step that we start to

discuss the scenario.

302

 CHF CPG AF CPG

Assessment of

left ventricular

function

Stroke risk

stratification

Clinical

assessment

Impaired

left

ventricular

 function

Normal

left

ventricular

function

Treatment of

AF

Assessment of

results

CHF1

Clinical history &

Exam

ECG

abnormal

ECG

normal

hasCondition

MCO instantiation

identical1

identical2

identical3

identical3

Assessment of echocardiography result

Pre-treatment electrolyte assessment & correction

Initiation of treatment of heart failure

Thromboprophylaxis in patients with CHF & AF

Treatment of AF in patient with heart failure

CHF1:

CHF-AF1:

CHF-AF2:

CHF-AF3:

CHF-AF4:

CHF-AF1

CHF-AF2

CHF-AF3

CHF-AF4

CHF-AF1

CHF-AF2

CHF-AF3

CHF-AF4

T0: inactive

T0: started

T0: inactive

T0: inactive

Figure 9.7 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG that

participate in the merge. Important tasks and constraints are annotated with

their initial states in our example scenario.

We have recorded the state transition of the constraints and the tasks during this scenario

and compared them with the expected state transitions dictated by the execution semantics.

The states of the tasks and constraints during our scenario are given in Table 9.2 for each

logical time.

303

Table 9.17 State transition of tasks and constraints during execution of the merged CPG

in Figure 8.2. New states are bolded and the state transitions performed by the

user are underlined.

 CHF AF Constraints

 CHF1 CHF-AF1 CHF-AF2 CHF-AF1 Identical1

T0 Started Inactive Inactive Completed Inactive

T1

1 Completed Inactive Inactive Completed Inactive

2 Completed Active Inactive Completed Inactive

3 Completed Active Inactive Completed Active

4 Completed Active Inactive Completed Started

5 Completed Completed Inactive Completed Started

6 Completed Completed Active Completed Completed

The below descriptions provide a detailed account of some of the more interesting state

transitions and their significance in dynamically merging comorbidity CPG during one of

our merging scenarios:

T0: Our scenario starts from this step. Imagine that the task chf:CHF1 is in the started state

and the common task CHF-AF1 (“pre-treatment electrolyte assessment & correction”) is

already executed in the AF CPG three days ago. This task is still inactive in the CHF CPG

because its previous task chf:CHF1 is still under execution.

T1: Several state transitions are inferred by the OWL reasoner in this step. The description

of these state transitions are sorted based on the sequence they are inferred in the OWL

reasoner: T1-1: In this sub-step, the user indicates that he has completed the task chf:CHF1.

T1-2: According to tasks’ state transition rules, the task chf:CHF-AF1 becomes active. T1-

3: Since the constraint indetical1 indicates that tasks chf:CHF-AF1 and af:CHF-AF1 are

identical and should not be executed twice, execution of the chf:CHF-AF1 will be violating

304

this constraints. According to the constraints’ state transition rules, identical1 will go to the

active state because the results of the previous execution are still valid. These results are

still valid because only three days have been passed after execution of this common task

and the validity period of those results are 10 days according to identical1. T1-4: Since no

constraint is conflicting with identical1, it goes to the started state in order to avoid its

violation. T1-5: The identical action constraint identical1 will cause the task chf:CHF-AF1

to go to completed state according to the rules written to implement the effect of constraints

on tasks’ state transitions in section 8.4.2. T1-6: According to constraints’ state transition

rules, identical1 will go to the completed state because the tasks merged by it are in the

completed state as well.

The rest of the state transitions happen in a very similar fashion. All the discussed state

transitions are in accordance with what we have implemented in our state transition systems

for both tasks and constraints. Therefore, this imaginary scenario and other manually

designed scenarios for evaluation show that our merging execution engine can successfully

merge several comorbidity CPG form a workflow point of view.

9.3.2.2. CPG Merging Scenario 2: Transient Ischemic Attack-Duodenal

Ulcer

In order to evaluate the capability of our CPG execution engine in handling

TaskSubstituteInCaseOfConflict we have used the example described in [25]. In this

example the transient ischemic attack (TIA) and duodenal ulcer (DC) CPG are merged. We

modeled the workflow structure of these CPG in CPG-DKO based on the description and

the flowcharts provided in [25]. Then we merged these two CPG by instantiating CPG-

KPO. The only existing merge constraint between these two CPG is the conflict between

the tasks tia:A (“Give Aspirin”) from transient ischemic attack and the task dc:AS (“Stop

taking aspirin if used”) from the duodenal ulcer. In this conflict, the task tia-dc:DGA (“do

not give aspirin”) will replace the task tia:GA (“give aspirin”) in the case of a conflict.

Figure 9.8 shows these two CPG and the instantiation of the CPG-KPO that merges them.

305

MCO instantiation

conflict1

t1

t2

tia-dc:DGA

Replace t1 with

T0: started

T0: inactive

T0: inactive

T0: inactive

T0: completed

T0: inactive

 TIA CPG DC CPG

Figure 9.8 The instantiation of the CPG-KPO and the parts of the TIA and DC CPG that

participate in the merge. The graphical representation of CPG are taken

from [25]. Important tasks and constraints are annotated with their initial states

in our example scenario.

We used four different scenarios in order to evaluate the correctness of the merging from a

workflow point of view. During merging, we recorded the state transitions in both tasks and

constraints and compared them with the transitions dictated by the execution semantics.

The below descriptions provide a detailed account of some of the more interesting state

transitions and their significance in dynamically merging comorbidity CPG during one of

our merging scenarios:

306

T0: Our scenario starts in this step. Imagine that the SA CPG has been previously executed

when the execution engine activates the task tia:A. This means that the task dc:SA is

already in the completed state and the task tia:A is in active state.

T1: Several state transitions are inferred by the OWL reasoner in this step. The description

of these state transitions are sorted based on the sequence they are inferred in the OWL

reasoner: T1-1: tia:NSR task is completed by the user. Therefore, this task goes to the

completed state. T1-2: Since the task tia:NSR is completed, the next inactive task which is

tia:A becomes activated. T1-3: Execution of this task is in conflict with the task dc:SA

according to conflict1. Therefore, this constraint becomes active in order to avoid its

violation. T1-4: Since no conflicting constraints exist, this constraint will go the started

state. T1-5: since conflict1 is started, it will cause the conflicting task tia:A to become

discarded and the substitute comorbidity task tia-dc:DGA (“don’t give aspirin”) to become

active. In this way, the conflicting task has been replaced by an alternative task. T1-6:

When the merged tasks (tia:A and dc:SA) are both completed or discarded the constraint

merging them (conflict1) will be regarded as a completed constraint.

T2: The substitute task tia-dc:DGA has been chosen for execution by the user in this step.

The states of the tasks and constraints are given in Table 9.18 for each logical time.

307

Table 9.18 State transition of tasks and constraints during execution of the merged CPG

in Figure 8.3. New states are bolded and the state transitions performed by the

user are underlined.

 TIA TIA-DC DC Constraints

 NSR A ERS DGA SA const1

T0 Started inactive Inactive inactive Completed inactive

T1

1 Completed inactive Inactive inactive Completed inactive

2 Completed active Inactive inactive Completed inactive

3 Completed active Inactive inactive Completed active

4 Completed active Inactive inactive Completed Started

5 Completed discarded Inactive active Completed Started

6 Completed discarded Inactive active Completed completed

T2 Completed discarded Inactive Started Completed Started

All the discussed state transitions are in accordance with what we have implemented in our

state transition systems for both tasks and constraints. Therefore, this imaginary scenario

and other manually designed scenarios for evaluation show that our merging execution

engine can successfully merge several comorbidity CPG form a workflow point of view.

9.3.2.3. CPG Merging Scenario 3: Osteoarthritis-Hypertension

Osteoarthritis and hypertension are two diseases that may co-occur in patients. In order to

use these diseases for evaluation of our merging execution engine we computerized

Osteoarthritis treatment algorithm [169] published by National Health Services Tayside of

Scotland and clinical pathways of diabetes [171] published by National Institute of Health

and Clinical Excellence of UK in CPG-DKO.

308

During the treatment of Osteoarthritis-Hypertension patient for osteoarthritis, non-steroidal

anti-inflammatory drugs (NSAD) such as aspirin, ibuprofen, and naproxen may be

prescribed. However, these drugs aggravate the hypertension patients by increasing the

blood pressure. According to the domain expert, the solution is to replace any of these

drugs with alternatives such as acetaminophen, tramadol or narcotic analgesics. These

conflicts can be modeled using TaskSubstituteInCaseOfConflict constraints. As we

discussed in section 8.3.3.3 we found three cases of prescribing NSAD drugs in the

osteoarthritis treatment algorithm. These three tasks are: (1) “add Ibuprofen 1 point 2g

day”, (2) “substitute Naproxen Instead Of Ibuprofen” and (3) “inquiry about possibility of

continuing Ibuprofen after 6 month”. Figure 9.9 shows the parts of the osteoarthritis and

hypertension pathways that participate in the CPG merging and the instantiation of the

CPG-KPO that merges these two CPG.

Inquiry about

GI bleeding

risk factors

Inquiry about

possibility of

continuing

Ibuprofen after 6

month

MCO instantiation

Conflict1
Hypertension

Pathway

Add Ibuprofen

1.2g/day

Administer

Parcatemol 4g day

Substitute

Naproxen Instead

Of Ibuprofen

Review ongoing

requirement for

NSAID at least

every 6 months

Can

continue

Ibuprofen

Can Not

continue

Ibuprofen

Conflict3

Conflict2

Osteoarthritis

Pathway

T0: started

T0: started

T0: inactive

T0: inactive

Figure 9.9 The instantiation of the CPG-KPO and the parts of the osteoarthritis and

hypertension pathways that participate in the merge. Important tasks and

constraints are annotated with their initial states in our example scenario.

309

We used four different scenarios in order to evaluate the correctness of the merging from a

workflow point of view. During merging, we recorded the state transitions in both tasks

and constraints and compared them with the transitions dictated by the execution semantics.

The below descriptions provide a detailed account of some of the more interesting state

transitions and their significance in dynamically merging comorbidity CPG during one of

our merging scenarios:

T0: Our scenario starts from this step. In this step, the hypertension pathway is under

execution (in the started state) for the patient and the task os:AP (“administer parcatemol”)

is in the started state.

T1: Several state transitions are inferred by the OWL reasoner in this step. The description

of these state transitions are sorted based on the sequence they are inferred in the OWL

reasoner: T1-1: os:AP task is completed by the user. Therefore, this task goes to the

completed state. T1-2: Since the task os:AP is completed, the next inactive task which is

os:A becomes activated. T1-3: Execution of this task is in conflict with the task

ht:hypertension_CPG which is already in the started state according to the conflict1

constraint. Therefore, the constraint conflict1 becomes active in order to avoid its violation.

T1-4: Since no conflicting constraints exist, this constraint will go the started state. T1-5:

since conflict1 is started, it will cause the conflicting task os:A to become discarded and the

substitute task os-ht:RNSAD (“don’t give aspirin”) to become active. In this way, the

conflicting task has been replaced by an alternative solution. T1-6: When the merged tasks

(os:A and ht:hypertension_CPG) are both completed or discarded the constraint merging

them will also be regarded as a completed constraint.

The states of the tasks and constraints are given in Table 9.19 for each logical time.

310

Table 9.19 State transition of tasks and constraints during execution of the merged CPG

in Figure 8.4. New states are bolded and the state transitions performed by the

user are underlined. (A = Active, I = Inactive, S = Started, D = Discarded, C =

Completed)

 Osteoarthritis
Osteoarthritis-

Hypertension
Hypertension Constraints

 AP A RNSAD Hypertension CPG conflict1

T0 S I I S I

T1

1 C I I S I

2 C A I S I

3 C A I S A

4 C A I S S

5 C D A S S

6 C D A S C

T2 C D S S C

T3 C D C S C

All the discussed state transitions are in accordance with what we have implemented in our

state transition systems for both tasks and constraints. Therefore, this imaginary scenario

and other manually designed scenarios for evaluation show that our merging execution

engine can successfully merge several comorbidity CPG form a workflow point of view.

9.3.2.4. CPG Merging Scenario 4: CHF-AF

CHF-AF comorbidity can also be used to evaluate the execution of the

SimultanousActionConstraint in our merging execution engine. During treatment of the

CHF patients, angiotensin-converting-enzyme inhibitors (ACEI) and beta blockers (BB)

may be prescribed for the patients represented by the task “initiate treatment with beta

311

blockers in addition to ACEI”. Moreover, AF patients may need to take Warfarin

represented by the task “anticoagulation with Warfarin” to avoid formation of blood clots.

Domain experts believe that simultaneous prescription of these drugs has better overall

results in treatment of CHF-AF comorbid patients. As we saw in the example of

section 8.3.3.4 we created three SimultaneousActionConstraint called simacconst1,

simacconst2 and simacconst3. For more details about these constraints, refer to

section 8.3.3.4. Figure 9.10 shows the abovementioned three merging constraints between

the AF and CHF CPG and the parts of the CPG that participate in the merging.

MCO instantiation

simacconst1

Warfarin

AF1: Determine any

contraindications to

beta blockers

ACEI + BB

AF2: Determine if

there are any signs

of fluid over load

simacconst2

simacconst3

CHF1: Consider

anticoagulation

or aspirin

CHF2: Identify any

contraindication to

Warfarin

....

....

....

....

T0: inactive

T0: started

T0: inactive

T0: started

T0: inactive

Figure 9.10 The instantiation of the CPG-KPO and the parts of the CHF and AF CPG that

participate in the merge. Important tasks and constraints are annotated with

their initial states in our example scenario.

We used four different scenarios in order to evaluate the correctness of the merging from a

workflow point of view. During merging, we recorded the state transitions in both tasks and

constraints and compared them with the transitions dictated by the execution semantics.

The below description provide a detailed account of the state transitions and their

significance in dynamically merging comorbidity CPG during one of our merging

scenarios:

312

T0: Our scenario starts in this time step. Both tasks chf:CHF1 and af:AF1 are started and

the af:ACEI+BB and chf:Warfarin are inactive.

T1: Several state transitions are inferred by the OWL reasoner in this step. The description

of these state transitions are sorted based on the sequence they are inferred in the OWL

reasoner: T1-1: In this step, the user indicates that the task chf:CHF1 is completed. T1-2:

The task after chf:CHF1 which is chf:Warfarin gets activated according to the tasks’ state

transition rules. T1-3: Since af:ACEI+BB is still inactive, execution of the task

chf:Warfarin will violate the constraint simacconst1, simacconst2 and simacconst3. If we

assume that the simacconst1 has satisfied conditions and the task af:ACEI+BB can catch up

in an acceptable time frame for the task chf:Warfarin, this constraint will go from inactive

to active state. T1-4: This constraint has no conflicting constraints therefore it will go to the

started state according to the constraint state transition rules in section 8.4.1. T1-5: Since

the simacconst1 is started, it will cause the task chf:Warfarin to go to the pending state so

that the task af:ACEI+BB can catch up later.

T2: In this step, user indicates that he is completed the task af:AF1. According to tasks’

state transition rules this will lead to activation of the task af:ACEI+BB.

T3: T3-1: In this step, user indicates that he has started the execution of the task

af:ACEI+BB. T3-2: Since the tasks af:ACEI+BB and chf:Warfarin are supposed to be

executed simultaneously, the task chf:Warfarin also goes to the started state from the

pending state. This state transition is the effect of the constraint simacconst1 according to

the rules described in section 8.4.2. In this way, both of the tasks go under execution

simultaneously.

T4: T4-1: In this step user indicates that both tasks af:ACEI+BB and chf:Warfarin are

completed. T4-2: Since all the tasks merged by simacconst1 are completed, this constraint

will be regarded as completed as well.

This scenario is summarized in Table 9.20.

313

Table 9.20 State transition of tasks and constraints during execution of the merged CPG

in Figure 8.5. New states are bolded and the state transitions performed by the

user are underlined. (A = Active, I = Inactive, S = Started, D = Discarded, C =

Completed, P = Pending)

 CHF AF Constraints

 CHF1 Warfarin AF1 ACEI+BB Simacconst1 Simacconst2 Simacconst3

T0 S I S I I I I

T1

1 C I S I I I I

2 C A S I I I I

3 C A S I A I I

4 C A S I S I I

5 C P S I S I I

T2
1 C P C I S I I

2 C P C A S I I

T3
1 C P C S S I I

2 C S C S S I I

T4
1 C C C C S I I

2 C C C C C I I

All the discussed state transitions are in accordance with what we have implemented in our

state transition systems for both tasks and constraints. Therefore, this imaginary scenario

and other manually designed scenarios for evaluation show that our merging execution

engine can successfully merge several comorbidity CPG form a workflow point of view.

9.4. Ontology Metrics

314

As we discussed previously, an approach to evaluate ontologies is to extract a number of

metrics from them and compare them to those of a golden standard ontology. There have

been numerous efforts for extracting metrics from ontologies in order to find the “best”

ontology that best suits the need of the application at hand [177] among a number of

ontologies. One of the most popular set of ontology metrics have been proposed by Tartir et

al. [178]. They categorize their proposed metrics as Schema and Knowledge metrics.

Schema metrics represent the features of the ontology design and knowledge metrics

describe how data is represented in terms of instances of the ontology classes and

properties. We briefly discuss these metrics below:

1. Schema metrics

 Relation Richness: This metric is the ratio of the number of non-subsumption

relations divided by the total number of relations between classes of the ontology.

Higher values of this metric indicate higher diversity of relations between classes

and more expressivity as the result in the ontology.

 Attribute Richness: This metric is defined as the ratio of the number of properties

(data type and object property) divided by the total number of classes in the

ontology. Ontologies with higher values for this metric are more likely to be able to

capture the domain knowledge in more detail.

 Inheritance Relation: This metric is defined as the ratio of the number of

subsumption relations between classes of the ontology divided by the total number

of classes. Class hierarchy of ontologies with high values for this metric are likely

to have more width than depth. Therefore, these ontologies are more horizontal and

more likely to have better coverage of the domain knowledge as opposed to

ontologies with lower values for this metric. Class hierarchy of ontologies with

lower values for this metric are more vertical and detailed in a specific part of the

domain area.

315

2. Knowledge metrics

 Class Richness: This metric is defined as the number of classes with asserted

instances divided by the total number of classes. Very low values of this metric can

be indicative of unnecessary and redundant classes.

 Class Importance: Importance of a class is defined as the number of asserted and

inferred instances of that class divided by the total number of instances in the

ontology. This metric can be used to identify the key concepts of the domain

knowledge in the ontology.

 Relationship Richness: This class-specific metric is defined as the ratio of the

number of properties of a class and properties of its asserted and inferred super

classes that have been used, divided by the total number of those properties. An

ontology that contains classes with low values for this feature might contain

redundant and unnecessary properties.

We have implemented a Java program for calculation of the above-mentioned metrics using

Jena library [160]. In this section of the thesis, we extract these metrics from our

ontologies. Since no golden standard OWL ontology exists for any of the ontologies that

we have developed in our thesis, we merely report these metrics and discuss them. The only

ontology that has a number of OWL counterparts is CPG-DKO ontology. We compare the

schema metrics and the class richness of these ontologies and discuss them in the next

section.

9.4.1. Ontology Metrics of CPG-DKO

9.4.1.1. Schema Metrics and Class Richness of CPG-DKO

316

Since no golden standard ontologies exist for representation of CPG, we compare CPG-

DKO with the OWL ontologies available to us that have been used for computerization of

CPG: CHF-AF [107], CAP [30] and NCPG [145]. While we compare the metrics, please

bear in mind that these ontologies are used for modelling both workflow structure and

medical knowledge of CPG whereas CPG-DKO is only used for modelling the workflow

structure of CPG. Schema metrics and class richness of CPG-DKO, CHF-AF, CAP

Ontology and NCPG Ontology are listed in Table 9.21.

Table 9.21 Schema metrics and class richness metric of CPG-DKO, NCPGO

 # of
Classes

#of
Properties

of
Instances

Relationship
Richness

Attribute
Richness

Inheritance
Richness

Class
Richness

CPG-

DKO
42 75 1250 0.567 1.786 1.524 0.571

NCPG 98 144 372 0.0 1.469 0.490 0.347

CHF-AF 108 39 555 0.0 0.361 2.361 0.759

CAP 50 123 229 0.015 2.4 1.24 0.6

In the rest of this section, we compare the extracted metrics in Table 9.21.

1. Number of classes, properties and instances

As you can see in the Table 9.21, our ontology contains less properties and classes. This is

due to the fact that our ontology is only capable of representing the workflow structure of

CPG while others can be used to model the medical knowledge as well. Even considering

this fact, other ontologies are not significantly superior to our ontologies in terms of these

metrics. Our ontology contains way more instances compared to the rest of the ontologies

because we have mapped and transformed instances of the compared ontologies to CPG-

DKO.

2. Relationship richness

317

As you can see in Table 9.21, CPG-DKO is significantly superior to the rest of the CPG

representation ontologies in terms of relationship richness. This shows that our ontology,

other than subsumption relation, contains several other relations between classes such as

disjointWith, equivalentClass, complementOf, etc. Our ontology has a greater value for this

metric because we have defined the formal semantics in the ontology using these class

relations. Therefore, we can conclude that the emphasis of the rest of the ontologies is on

defining the class hierarchy rather than formally capturing the formal semantics of the

domain knowledge.

3. Attribute richness

Table 9.21 shows that our ontology has a higher attribute richness compared to two out of

three CPG ontologies. Review of CAP ontology that has a higher value for this metric

reveals that this ontology contains 64 data type properties that are mostly used for capturing

Meta-data and drug administration scheduling and dosages. However, we found that only

four out of those 64 data-types might be actually used for modelling the workflow structure

of the CPG. Not considering the irrelevant datatype properties can lessen this metric for

CAP otology.

4. Inheritance richness

Table 9.21 shows that our ontology has a higher inheritance richness compared to two of

the compared ontologies. Review of the CHF-AF ontology that has a higher value than

CPG-DKO for this metric shows that several classes have been defined to represent the

medical knowledge regarding Chronic Heart Failure and Atrial Fibrillation treatments and

drugs. These classes are very detailed and as a result contribute in the high inheritance

richness of this ontology. Moreover, classes that are related to the workflow structure of the

CPG are categorized into several subclasses that are of no executional value and are

interpreted the same in the execution engine. For instance, the class Decision_option in

CFH-AF ontology has 12 subclasses that are all treated similarly during execution.

318

5. Class richness

Our ontology has a lower value for this metric compared to two of the CPG ontologies. We

believe that this is because we have created several class hierarchy levels that are used for

execution and not instantiation necessarily. For instance, class Cycle that has been

repeatedly used in OWL triples pertaining to formal semantics is not instantiated. In order

to define a cycle in CPG-DKO one of its subclasses such as ForLoop should be

instantiated. Moreover, many of the classes related to execution such as ActiveTask or

SatisfiedCondition classes will be instantiated during the execution.

9.4.1.2. Knowledge Metrics of CPG-DKO

In this section, we review the class connectivity, class importance and relation richness of

CPG-DKO classes. Table 9.22, Table 9.23 and Table 9.24 show the top ten classes based

on class connectivity, class importance and relation richness respectively.

319

Table 9.22 Top ten classes in CPG-DKO based on class connectivity

Class Connectivity

Task 1350

CompositeTask 590

AtomicTask 363

MedicalWorkflow 285

Split 68

Cycle 68

WhileLoop 52

ActiveTask 51

WhileLoopMultipleExit 36

Synch 16

Table 9.22 shows the class with most connections is the Task class that represents medical

tasks.

320

Table 9.23 Top ten classes in CPG-DKO based on class importance

Class Importance

Task 0.635

Outcome 0.267

Condition 0.267

AtomicTask 0.103

CompositeTask 0.071

MedicalWorkflow 0.028

State 0.025

TaskState 0.017

Split 0.014

Cardinality 0.011

Table 9.23 shows the class with the most connections is the Task class.

321

Table 9.24 Top ten classes in CPG-DKO based on relation richness

Class Relation Richness

AtomicTask 1.0

Synch 0.75

MultipleOptionDecision 0.571

Decision 0.5

IfThenElse 0.5

Task 0.45

Split 0.333

WhileLoop 0.333

ForLoop 0.333

WhileLoopMultipleExit 0.333

Table 9.24 shows that the only class that makes use of all its associated properties is the

AtomicTask class. The reason that some classes do not have value 1.0 for this metric is (1)

Lack of enough instantiations that makes use of all the properties and (2) existence of

subclasses that make use of their super class’ execution semantics but do not use some of

their properties. For instance, WhileLoopMultipleExit makes use of the execution semantics

of WhileLoop but uses its own proprietary properties for defining the termination condition.

9.4.2. Ontology Metrics of KMO

In this section of the thesis, we report the ontology metrics of KMO.

Table 9.25 shows the number of ontology elements, relationship richness, attribute

richness, inheritance richness and class richness of KMO.

322

Table 9.25 Schema metrics and class richness metric of KMO

 # of
Classes

#of
Properties

of
Instances

Relationship
Richness

Attribute
Richness

Inheritance
Richness

Class
Richness

KMO 53 60 341 0.010 1.132 3.641 0.623

As you can see in Table 9.25, the relationship richness is a very low number because most

of the semantics of the mappings are represented in terms of SWRL rules that have not

been taken into consideration by the used metrics. Table 9.26, Table 9.27 and Table 9.28

show top ten classes of KMO based on class connectivity, class importance and relation

richness respectively.

Table 9.26 Top ten classes in KMO based on class connectivity

Class Connectivity

Mapping 617

TransformationMapping 429

ClassVariable 422

ClassPropertyHasValueRestriction 413

RelationalMapping 290

Variable 281

ExpressionFunction 225

Function 225

CreateFunction 117

InstanceFromPropertyCreateFunction 112

323

Table 9.26 shows that the most connected class of the ontology is the Mapping class based

on the existing instances in the ontology.

Table 9.27 Top ten classes in KMO based on class importance

Class Importance

Variable 0.354

ClassVariable 0.246

ClassPropertyHasValueRestriction 0.225

Mapping 0.105

Operator 0.085

MathOperator 0.079

Function 0.067

ExpressionFunction 0.067

TransformationMapping 0.058

RelationalMapping 0.058

Even though the Mapping class is the most connected class in the ontology, Table 9.27

shows that the Variable class comprises more than 1/3 of the total instances. This is

because several variables may be involved in a single mapping.

324

Table 9.28 Top ten classes in KMO based on relation richness

Class Relation Richness

ClassPropertyHasValueRestriction 1.0

NumericVariable 1.0

ClassPropertyQualifiedCardinalityRestriction 1.0

RelationalMapping 1.0

Function 1.0

ClassToPropertyTransformationMapping 1.0

PropertyCreateFunction 1.0

PropertyToClassTransformationMapping 0.8

ClassVariable 0.75

Mapping 0.5

Table 9.28 shows that the relation richness is 1.0 for 6 out of ten top classes in KMO. This

is an indication that ontology is not likely to contain redundant and useless properties.

9.4.3. Ontology Metrics of CPG-KPO

In this section of the thesis, we report the ontology metrics of KMO. Table 9.29 shows the

number of ontology elements, relationship richness, attribute richness, inheritance richness

and class richness of CPG-KPO ontology.

Table 9.29 Schema metrics and class richness metric of CPG-KPO

 # of
Classes

#of
Properties

of
Instances

Relationship
Richness

Attribute
Richness

Inheritance
Richness

Class
Richness

CPG-

KPO
61 66 158 0.096 1.082 1.852 0.459

325

Since this ontology has formal semantics, one may expect to see a high value for relation

richness. However, as we can see in Table 9.29, this metric is very close to zero indicating

that a great majority of relations between ontology classes are owl:subClassOf. This is

because that most of the formal semantics of this language is defined in SWRL rather than

OWL. Table 9.30, Table 9.31 and Table 9.32 show top ten classes of CPG-KPO based on

class connectivity, class importance and relation richness respectively.

Table 9.30 Top ten classes in CPG-KPO based on class connectivity

Class Connectivity

Constraint 338

Function 192

MedicalConstraint 158

WorkflowConstraint 144

TaskSubstituteInCaseOfConflict 81

UseResultsConstraint 77

SimultaneousActionConstraint 69

IdenticalActionConstraint 53

ConstraintWithSatisfiedCondition 44

PrecedenceConstraint 12

MergingConstraint 10

As one could expect, Table 9.31 shows that instances of the Constraint class has the most

number of connections to instances of other classes.

326

Table 9.31 Top ten classes in CPG-KPO based on class importance

Class Importance

Constraint 0.387

Task 0.265

WorkflowConstraint 0.120

MedicalConstraint 0.094

SimultaneousActionConstraint 0.069

TaskSubtituteInCaseOfConflict 0.056

State 0.051

Cardinality 0.038

ResourceType 0.038

UseResultsConstraint 0.038

Table 9.31 shows the most instantiated classes of the ontology is the Constraint class. As

you can see, the Task class that is shared between CPG-KPO and CPG-DKO is the second

most instantiated classes after the Constraint class. This is because each constraint is

defined between two instances of the Task class; however, since several constraints are

defined between the same two classes, constraint class has more instances.

327

Table 9.32 Top ten classes in CPG-KPO based on relation richness

Class Relation Richness

Constraint 1.0

MedicalConstraint 1.0

PrecedenceConstraint 0.667

UseResultsConstraint 0.625

TaskSubtituteInCaseOfConflict 0.5

SimultaneousActionConstraint 0.445

OperationalConstraint 0.4

InstituteTimeCondition 0.375

Task 0.143

MergingConstraint 0.1

Review of Table 9.32 shows that some of the ontology classes have low values for the

relation richness metric. We believe that this does not necessarily mean that the ontology

contains redundant properties. Creating more instantiations and performing evaluations

using real patient data will shed light on usefulness of the unused properties.

9.4.4. Ontology Metrics of Expression Ontology

In this section of the thesis, we report the ontology metrics of the Expression Ontology.

Table 9.33 shows the number of ontology elements, relationship richness, attribute

richness, inheritance richness and class richness of Expression Ontology.

328

Table 9.33 Schema metrics and class richness metric of the Expression Ontology

 # of
Classes

#of
Properties

of
Instances

Relationship
Richness

Attribute
Richness

Inheritance
Richness

Class
Richness

CPG-

KPO
21 16 55 0.15 0.762 0.810 0.429

As you can see in Table 9.30, similar to CPG-KPO, this ontology has a close to zero value

for the relationship richness metric. The reason is defining the formal semantics using

SWRL rules rather than OWL triples. The only class with a non-zero value for class

connectivity is the Function class. The value of class connectivity is 121 for this class. This

does not mean that other classes are not instantiated. This means that they all have been

used as the object of the OWL triples in the created instantiations. Table 9.34 shows the top

ten classes of the Expression Ontology based on class importance and Table 9.35 shows the

most instantiated classes in the Expression Ontology.

329

Table 9.34 Top ten classes in EO based on class importance

Class Importance

Variable 0.436

Operator 0.291

Function 0.181

ComparatorOperator 0.127

NumericVariable 0.109

MathComparatorOperator 0.091

BooleanOperator 0.073

MathOperator 0.073

StringVariable 0.073

BooleanVariable 0.036

Table 9.34 shows the most instantiated classes in the Expression Ontology. As one may

expect, Variable, Operator and Function classes are on top of the list.

Table 9.35 Classes with non-zero relation richness in Expression Ontology

Class Relation Richness

StringVariable 1.0

BooleanVariable 1.0

NumericVariable 1.0

Function 0.8

330

As you can see in Table 9.35, most of the properties defined in the Expression Ontology

have been used by the instances of this ontology. This means that this ontology is less

likely to contain useless properties.

9.5. Conclusion

In this section, we evaluated our knowledge morphing framework as a CPG merging

framework. We evaluated (1) CPG-DKO, the Expression Ontology and the OWL-based

CPG execution engine; (2) KMO and the algorithm that translates its instantiations to OWL

+ SWRL; and (3) CPG-KPO and the CPG merging execution engine. Below we conclude

the evaluation of these components of our solution.

 CPG-DKO and OWL-based execution engine:

Comparison of CPG-DKO with popular CPG computerization languages showed that CPG-

DKO provides the most comprehensive set of workflow patterns expressible among all

these languages. This shows that CPG-KPO can be potentially used as the comprehensive

domain knowledge ontology for procedural aspect of CPG. We also extracted a number of

metrics proposed in [178] from CPG-DKO and compared them with those of three other

CPG ontologies. Our comparisons show that our ontology is more expressive than these

ontologies and it is not likely to contain redundant classes and properties. A limitation of

this evaluation is not taking into consideration some other procedural aspects of CPG such

as [4]: Specification of goals/intention, Representing effects of actions and reasoning with

them, Expression language capabilities and Patient information model.

We computerized three clinical pathways and transformed instantiations of three CPG

ontologies to CPG-KPO. In all cases, execution results were consistent with the provided

flowchart. Moreover, execution results of Nursing Clinical Practice Guidelines in our OWL

CPG execution engine were consistent with their execution results in their proprietary

developed execution engine in [145]. As a result, we conclude that (1) CPG-DKO is

capable of representation of a wide range of CPG and (2) CPG execution engine can

331

interpret the workflow structure of the computerized CPG correctly. As a future work, it

will be interesting to use real patient scenarios to generate recommendations and evaluate

them for medical validity with the help of domain experts. Moreover, execution of more

complex CPG that for instance contain loops with complex continuation conditions will

further evaluate CPG-DKO and the CPG execution engine.

 KMO and the Translation Algorithm:

Comparison of KMO with the existing ontology mapping representation languages reveals

that it is more expressive in terms of representation of mappings patterns, variables, meta-

modelling constructs, structural modification and data manipulation operators and

conditions. We performed more evaluations by mapping several CPG ontologies to CPG-

DKO and execution of the transformed CPG. In all cases, the execution results are

consistent with the workflow diagram and the results of the original execution engines of

those CPG. This shows that mappings are represented correctly and instance transformation

has been successful in these test cases. Moreover, ontology quality metrics show that this

ontology is not likely to contain unnecessary classes and properties. To improve this

evaluation, ontologies from different domains such as aviation can be useful in order to

show that our ontology mapping module is multipurpose.

 CPG-KPO and the merge execution engine:

Participants of our survey found CPG-KPO moderately easy to use, expressive and useful

for the task of CPG merging. They also found the purpose of the concepts in CPG-KPO

clear. Ontology quality metrics show that this ontology is not likely to contain unnecessary

classes and properties. We also used several imaginary examples and a number of real

examples from Chronic Heart Failure-Atrial Fibrillation, Transient Ischemic Attack -

Duodenal Ulcer, Diabetes - Hypertension - Osteoarthritis comorbidities. In all cases,

execution results are consistent with the provided flowcharts and the merging constraints

for imaginary patient scenarios. Therefore, our evaluations show the correctness of the

332

generated recommendation from a workflow point of view. However, medical evaluation of

the generated recommendations with real patient scenarios will shed light on efficacy and

usefulness of our CPG merging framework. It is also interesting to find more real CPG

merging examples and evaluate the efficacy of the CPG merging framework in

representation of the merging constraints and execution-time CPG merging.

333

CHAPTER 10: CONCLUSION

Domain experts may use the knowledge encapsulated in several knowledge artifacts to

make decisions. This is due to the fact that a single knowledge source does not cover all the

domain knowledge needed for efficient decision making. Thus, the required knowledge

may be dispersed among several different knowledge sources. In the same way that domain

experts may integrate the knowledge in several knowledge sources for decision making,

computerized DSS can benefit from using several computerized knowledge sources [97].

The solution for decision making using several ontologies is knowledge morphing whereby

several ontologies are merged to create a holistic view of the domain knowledge. This

holistic view can be used by knowledge execution algorithm to provide improved and

conflict-free decision making [12]. Knowledge morphing has been described by Abidi as

“the intelligent and autonomous fusion/integration of contextually, conceptually and

functionally related knowledge objects that may exist in different representation modalities

and formalisms, in order to establish a comprehensive, multi-faceted and networked view of

all knowledge pertaining to a domain-specific problem” [97].

The challenge towards merging and execution of the knowledge in several knowledge

artifacts in ontology-based DSS is heterogeneity of these ontologies. These ontologies

called Local Knowledge Ontologies (LKO) in this thesis are different in their vocabulary,

points of view, coverage of the domain knowledge and level of granularity. In this thesis,

we developed a semantic web based knowledge morphing framework in order to merge and

execute the knowledge modeled in several heterogeneous OWL ontologies based on pre-

defined constraints that govern the merging of the ontologies. Therefore, the input of our

framework is several heterogeneous LKO in OWL representing different knowledge

sources of a specific domain and the output is decision support for the problem at hand

based on the dynamically merged knowledge of those knowledge artifacts. Our framework

has three general steps namely; Ontology Mapping, Ontology Merging and Ontology

Execution. In the rest of this section, we review the challenges in each of these steps, our

334

solution and contributions. Moreover, we discuss the limitations of our work and some

potential directions for future work.

10.1. Ontology Mapping: Challenges, Solution, and Contributions

Ontology mapping involves the conceptual mapping and instance transformation of all the

heterogeneous LKO to a comprehensive DKO.

The challenges to ontology mapping originate from the reality that existing ontology

mapping languages suffer from lack of expressivity in representation of the mappings that

can be used for effective instances transformation. Moreover, most of these languages do

not define the formal semantics of their mapping representation language. Semantics of a

mapping language that describes the formal definition of the mappings can be used by a

reasoner in a semantic based ontology mapping approach for improving the existing

mappings and performing automatic instance transformation between source and target

ontologies. Another challenge is finding/creating of an expressive comprehensive DKO that

any other ontology of that domain can be mapped to. Creation of this ontology is

particularly challenging, as it should have the highest coverage of the domain knowledge

and the highest level of expressivity for representation of the details in the covered

knowledge compared to any other existing domain knowledge ontology.

In this thesis, to address the abovementioned ontology mapping challenges we developed

an OWL-Full ontology called Knowledge Mapping Ontology (KMO) to represent

mappings between two ontologies. An instantiation of this ontology represents mappings

between a source and a target ontology. After mapping two ontologies, KMO instantiations

are translated to OWL-DL + SWRL in order to be used in a reasoner for discovering new

mappings and performing automatic instance transformation.

Moreover, we proposed and implemented a background ontology called Domain

Knowledge Ontology (DKO) to alleviate the lack of overlap between ontologies and to

account for the different levels of granularity in the source ontologies.

335

In terms of contributions, a comparison of our mapping ontology with the existing ontology

mapping representation languages shows that our language is more expressive in terms of

support for mappings patterns, variables, meta-modelling constructs, structural

modification and data manipulation operators and conditions. We have achieved this by

transforming mappings from OWL-Full to OWL-DL + SWRL instead of direct use of

OWL-DL + SWRL. Using OWL-Full also makes the mappings less verbose—i.e. a smaller

number of triples are used for representation of the mappings. Another important

contribution of this thesis is defining the formal semantics of the mapping by translating the

mappings to OWL-DL that is a subset of the DL. Therefore, we can say that our framework

is the most expressive DL-based ontology mapping framework with formal semantics.

In order to evaluate the efficacy of our knowledge mapping framework, we used KMO to

map three CPG ontologies to CPG-DKO and transform their instances to it. The evaluation

results of this mapping are discussed in section 9.2.1. We also extracted a number of

ontology metrics proposed in [178] in order to evaluate the quality KMO. These metrics

showed that KMO is not likely to contain redundant classes and properties.

 Limitations and Future Work

Generation of a comprehensive domain knowledge ontology can be time consuming and

challenging specially in dynamic environments. Moreover, instantiation of the KMO is a

labour intensive task that reduces usability of our knowledge mapping framework. An

interesting improvement to our work can be automation of these two processes. The

automatically generated comprehensive domain knowledge ontology and the mappings can

be reviewed by domain experts for further extension and enhancement.

Our knowledge mapping framework cannot transform instances between inconsistent

ontologies due to incapacity of OWL reasoners in reasoning on inconsistent ontologies.

Instance transformation between ontologies can also be computationally expensive because

the worst case complexity of reasoning on OWL-DL ontologies is NEXPTIME-

336

complete [152]. Extracting sub-contextualized ontologies [12] will improve our framework

by reducing the risk of inconsistencies and speeding up the instance transformation process

by reasoning on the extracted sub-ontologies.

10.2. Ontology Merging Challenges, Solution, and Contributions

In ontology merging, two or more LKO (transformed to DKO) are merged by defining the

merging constraints. In the context of decision making, these constraints describe how the

decision made according to each of those LKO should be modified in order to improve a set

of predefined metrics such as overall duration or cost of the decision making process. We

refer to this process as the decision reconciliation process. For ontology merging we

encountered three research challenges as follows:

i. Identifying the merging constraints between knowledge artifacts of the specific

domain that the DSS is developed for.

ii. Developing a computer understandable language for representation of the

merging constraints

iii. Defining formal semantics that can be used by a reasoner for automatic decision

reconciliation.

In this thesis we identified and represented merging constraints using an ontology called

Knowledge morPhing Ontology (KPO). These merging constraints represent the logic for

decision reconciliation according the current state of the problem. We also proposed to

define the formal semantics of the merging constraints to be represented in OWL + SWRL.

Formal semantics is used in the knowledge execution step to perform automatic decision

reconciliation

In our research, we recognized the fact that the merging constraints between knowledge

artifacts may not be representable in the existing local ontologies of a domain. Therefore,

the contribution of this thesis is the definition of the merging constraints in a separate OWL

337

ontology. Defining the merging constraints in a separate ontology as opposed to modifying

the ontological representation of knowledge artifacts in order to hardcode the merging

constraints offered the following benefits:

i. Since the ontological representation of the knowledge artifacts are kept intact, they

can be used in both traditional DSS and knowledge morphing frameworks.

Therefore, only one version of the knowledge artifact serves both purposes.

ii. It makes possible to perform decision reconciliation dynamically during the

knowledge execution step. This is superior to pre-execution morphing that is not

able to modify the decisions according to the current state of the problem.

In addition, this thesis proposed a range of morphing constructs and represented their

semantics in OWL. This increased the shareability of the merging constraints as they are all

represented in a unified representation formalism.

 Limitations and Future Work

A potential limitation of our work is that all of the constraints defined in the KPO are

problem specific and may not be applicable to other applications. However, the principle of

identifying merging constraints and the formalism for representing merging constraint can

be readily extended to other applications.

10.3. Ontology Execution Challenges, Solution, and Contributions

We performed knowledge execution by performing the following tasks: (1) Modelling the

state of the problem in DKO; (2). Performing reasoning on DKO to infer the decision

corresponding state of the problem, and (3) Representation of the inferred decision..

The challenge of ontology execution is the implementation of execution semantics.

Execution semantics can be either hardcoded in terms of computer programs or can be

defined as a formal knowledge representation formalism. In either scenario, it is

338

challenging to define semantics of the DKO in such a way that reasoning process infers the

decision corresponding to each state of the problem. Since we are using semantic web

technologies for both representation and reasoning, we are interested in defining formal

semantics in OWL and SWRL. However, defining formal semantics in OWL can be

challenging due to decidability and performance issues, open-world and non-unique

naming assumptions, lack of support for qualified cardinality restrictions and data type

expressivity.

In this thesis we developed a domain specific DKO and its formal semantics in OWL-DL +

SWRL. Therefore, several complex OWL axioms and SWRL rules are manually added to

DKO in order to define domain-specific semantics. Moreover, in order to automate the

time-consuming and error-prone tasks of handling non-unique and open world assumptions

and lack of data-expressivity and qualified cardinality restriction, we proposed to

preprocess an instantiation of DKO before execution. The lacking features are simulated by

creating several triples added to the ontology using the preprocessing algorithms.

Depending on the needed expressivity of DKO instantiations, they might be in OWL-DL or

OWL 2 RL or OWL-DL + SWRL after preprocessing.

We used the algorithm in Table 3.1 to perform knowledge execution. This algorithm is able

to execute the knowledge encapsulated in several knowledge artifacts represented in

instantiations of DKO in parallel. We made minor modifications to the algorithm in

Table 3.1 in order to perform dynamic decision reconciliation during knowledge execution.

The modified algorithm can be seen in Table 8.1. This new algorithm modifies the

decisions made based on each of the knowledge sources during their concurrent execution

according to the semantics of the merging constraints.

Performing knowledge execution in a reasoner using formal semantics of the DKO instead

of utilizing proprietary developed reasoners in a programming language has the following

benefits:

339

i. Ease of switching to new technologies: In our method, after DKO instantiations

undergo the preprocessing phase, they can be executed by any OWL reasoner and

any API.

ii. Increased shareability and flexibility: During the preprocessing all the necessary

execution semantics are added to the CPG in the form of DL and it is ready for

execution. Thus, to execute the preprocessed CPG there is a need for a very simple

program that performs queries on and puts new triples into the ontology.

iii. Reusing existing reasoners instead of writing a new one: Existing OWL reasoners

can be utilized instead of developing a proprietary reasoner that performs reasoning

on the execution semantics of the knowledge representation language.

Existing ontology based knowledge morphing frameworks propose to modify the

ontological representation of knowledge encapsulated in the LKO in order to perform

decision reconciliation [12][97]. Therefore, decision reconciliation is performed before

knowledge execution at the modelling level. Our knowledge morphing framework is

unique in the sense that it is the first framework that proposes to use an ontology for

representation of merging constraints and performing decision reconciliation during

execution. Our dynamic knowledge morphing approach has been observed to be better

for the following reasons:

i. In pre-execution morphing, every possible state of the problem should be evaluated

for a knowledge morphing scenario before the execution. However, a problem may

have a huge problem state that makes this process extremely time consuming or

even impossible. In our approach, merging scenario is decided dynamically upon

according the current state of the problem.

ii. Most of the frameworks [12][97] make assumptions about the state of the problem

in order to reduce it to a more manageable one. However, these assumptions may

not hold true during knowledge execution hence rendering the generate

340

recommendations irrelevant. Since we proposed to make the decisions dynamically,

no irrelevant assumptions are made before the execution.

 Limitations and Future Work

Worst-case complexity of reasoning on OWL-DL and OWL 2 RL ontologies are

NEXPTIME-complete and co-NP-complete [152] respectively. Therefore, execution of

several large ontologies along with their merging constraints can be too slow especially for

time-critical applications such as DSS in emergency rooms. Ontology patterns that make

the reasoning process slower can be avoided by optimizing our ontologies. For instance,

Pellint [182] that is an ontology repairing and optimization tool can be used for this

purpose.

10.4. Knowledge Morphing Framework Application: CPG Merging

Several CPG computerization languages and their execution engines have been used for

developing CDSS for assisting healthcare professionals with diagnosis, treatment and

follow-up of patients with only one medical

condition [34][108][133][134][135][136][137][138][140][155]. However, it is very

common to have several concurrent medical conditions—i.e. comorbidities— in a patient.

It is not a feasible solution to execute several CPG independently in order to provide

decision support to comorbid patients due to possibility of unnecessary visits, duplication

of tasks and adverse interactions that may exist between medical actions of different CPG.

CPG merging research area aims at integrating several disease-specific CPG to provide

decision support for comorbid patients while it reduce duration and cost of care,

unnecessary visits, duplications and adverse interactions. We have used our knowledge

morphing framework in order to provide a solution to the CPG merging problem. We faced

three general research challenges in this research: 1. Computerization of CPG, 2. Merging

CPG and 3. CPG Execution. We discuss each of these challenges, our solution to these

challenges, our contributions and results, and limitations and future work.

341

10.4.1. Computerizing of CPG

To computerize CPG, every element of the CPG participating in the decision making and

its relations with other elements should be found. Then these elements and their relations

should be represented in terms of ontology classes, properties and instances. This is

challenging because:

i. Paper-based CPG can be quite complex, lengthy and difficult to understand.

ii. Usually, there is no 1-to-1 mapping between elements of the paper-based CPG and

the CPG ontology. Therefore, to computerize a CPG concept, several instances of

the CPG classes might be needed to be created.

iii. CPG ontology of choice may not be able to represent some of the elements of the

paper-based CPG.

Standardizing CPG formats by mapping and transforming them to a unified representation

will enable us to reuse existing computerized CPG in other CPG ontologies and avoid the

abovementioned challenges. However, existing CPG ontologies do not cover the whole

CPG domain knowledge, have different vocabularies and different levels of expressivity for

details of the domain knowledge. Therefore, none of the existing CPG ontologies can be

used as this standardized format.

Our review of the ontology mapping representation languages shows that they suffer from

lack of expressivity in representation of complex mappings and formal semantics for

automatic instance transformation between the mapped ontologies. Due to the complex

nature of CPG, mapping CPG ontologies using the existing ontology mapping

representation languages is not possible.

To develop a standardized format for representation of CPG, we surveyed the identified

workflow patterns in CPG representation languages and developed an ontology called

CPG-KPO capable of representing these patterns and all their variants.

342

We also surveyed the literature that identify the desired features of the ontology mapping

representation languages. We developed an OWL-Full ontology called KPO that can be

instantiated to represent mappings between two OWL ontologies. We translated the

mappings from OWL-Full to OWL-DL + SWRL so that an OWL reasoner can perform

reasoning on the mapped ontologies and the mappings to perform instance transformation.

In terns of contributions, in this thesis we compared CPG-DKO with popular CPG

representation languages in section 9.1. Our comparison showed the effectivenes of CPG-

DKO in terms of expressivity for representation of workflow patterns. Computerization and

mapping of total of 12 disease-specific CPG shows the usefulness of CPG-DKO as a CPG

domain knowledge. Moreover, Expression Ontology developed with CPG-DKO is the first

ontological representation of mathematical expressions. In contrast to the existing CPG

representation languages that use a different expression language, this ontology enables us

to represent both CPG and their expressions in a unified knowledge representation

formalism. We also extracted a number of ontology metrics proposed in [178] in order to

evaluate the quality of CPG-DKO. These metrics showed that CPG-DKO is more

expressive compared to three existing CPG ontologies. Moreover, these metrics showed

that this ontology is not likely to contain redundant classes and properties. .

We mapped several CPG ontologies to CPG-DKO and transforming their instances. Since

in all cases the execution results are consistent with original computerized CPG, we can

conclude that (1) mappings between CPG-DKO and other CPG ontologies are represented

correctly and (2) instance transformation is performed successfully.

 Limitations and Future Work

The computerized CPG used for evaluation of our CPG merging framework are not

complex and do not use most of the identified workflow patterns of CPG representation

languages. Therefore, we could not evaluate the possibility of transforming complex CPG

to CPG-DKO using real examples. Moreover, since we have reused implementation of

343

basic control flow patterns of the CPG from NICHE CPG ontologies in CPG-DKO, this

ontology bears several resemblances to them. Hence, CPG-DKO might be more effective

when used as the background ontology of the NICHE CPG ontologies. Unfortunately, we

did not have access to other CPG ontologies in OWL to perform more evaluations. Results

of such an evaluation can be used to improve both CPG-DKO and KMO. Since worst case

complexity of reasoning on OWL-DL is NEXPTIME-complete [152], instance

transformation using KMO be computationally expensive.

10.4.1.1. CPG Merging

The challenge in CPG merging is to identify how CPG should be modified so they are

safely merged with the rest of the CPG pertaining to a comorbidity. Computerized CPG can

either be modified before or during execution. The challenge in pre-execution merging is to

design an algorithm that merges several CPG by modification of them and connecting the

related tasks while patients safety is not compromised. However, our investigations show

that pre-execution merge is not a practical solution due to making several assumption

regarding the execution flow of the CPG that may not necessarily hold true during

execution hence rendering the generate recommendations irrelevant or potentially

dangerous. An alternate approach is to merge different CPG during their concurrent

execution so that decisions regarding CPG merging are based on the evolving patients’

status. . To achieve this, the merging constraints should be captured in a computer

understandable format that can be used by a CPG merging execution engine.

Our solution entailed the development of an ontology called CPG-KPO to represent the

merging constraints between computerized CPG pertaining to a comorbidity. These

merging constraints describe how the medical actions recommended in individual CPG

should be modified or delayed so that a safe and improved therapy plan for comorbid

patients are generated. To identify the constraints that should be included in our ontology,

we discussed with the physicians in our research group, reviewed CPG merging

literature [20][21][22][24][25][26][29][30][107] and got inspired from classical AI

344

planning literature [183]. We also considered a number of new constraints as potentially

useful constraints and included them in CPG-KPO.

We created a list of CPG merging constraints that can be used by other researchers

interested in computerized CPG merging topic. CPG-KPO is the first and the most

expressive ontological approach for representation of CPG merging constraints. We used

this ontology to represent the merging constraints between ontologically modeled CPG that

had already been merged in CPG merging literature [25][107]. In all cases, CPG-DKO is

expressive enough to capture the merging constraints between their transformed versions in

CPG-DKO. We also asked a physician to find the merging constraints between CPG of

Osteoarthritis [169], Hypertension [170] and Diabetes [171] diseases represented in CPG-

DKO. Our ontology was able to represent those merging constraints and their execution

logic. We also asked the opinion of total of seven computer scientists, health informaticians

and physicians about CPG-KPO. Participants in the survey found CPG-DKO moderately

easy to use, very clear, expressive and very useful for CPG merging. The most suggested

enhancement for CPG-DKO is to improve how more than two CPG are merged.

We also extracted a number of ontology metrics proposed in [178] in order to evaluate the

quality of CPG-KPO as an ontology. These metrics show that our ontology is not likely to

contain redundant classes and properties.

 Limitations and Future Work

We could not find examples for some of the suggested merging constraints. Usefulness of

these constraints in real CPG merging scenarios has yet to be evaluated. Therefore, it will

be useful to collaborate with domain experts involved in treatment of comorbid patients to

find more real CPG merging examples.

A constraint in CPG-KPO can only merge two tasks. Therefore, to indicate that m tasks

should be executed simultaneously, total of m×(m-1)/2 constraints should be created. As a

future work, we can define constraints that can merge more than two tasks. This

345

improvement makes KPO instantiations smaller and easier to create while merging more

than two knowledge sources. Moreover, most of the constraints defined in the KPO are

problem specific and may not be useful in other applications. Depending on the problem,

these constraints may need to be revised and improved.

10.4.1.2. CPG Execution

A CPG execution engine should interpret the procedural and the decision logic inherent

within the computerized CPG and in conjunction with patient data and physician’s input. In

other words, the CPG execution engine should orchestrates the executional flow of the

CPG—i.e. stipulating the ordering of clinical tasks, evaluating the satisfaction of criteria of

decisions, constraints, conditions and responding to outcomes of clinical tasks—to provide

patient-specific and disease-specific recommendations about care interventions and clinical

decision-making. This becomes more challenging when CPG merging constraints should

also be taken into consideration while concurrently executing several CPG. We used OWL

reasoning services for CPG execution, whilst solving the following research challenges:

i. Lack of an expression language to support data type expressivity needed for

knowledge execution

ii. Decidability and performance issues

iii. Non-unique naming and open world assumptions

Our solution for CPG execution was to define the formal semantic of CPG-DKO in OWL-

DL + SWRL. This enabled us to execute CPG by encoding the current state of the problem

in CPG-DKO and performing reasoning on them. We preprocess instantiations of CPG-

DKO before execution in order to deal with the non-unique naming and the open world

assumptions and addresses the lack of qualified cardinality restriction, property chaining

and data type expressivity in OWL.

346

We also defined the formal semantics of the merging constraints in OWL-DL + SWRL as

well. The formal semantics of the CPG-DKO and CPG-KPO work in tandem in order to

merge CPG during execution.

The main innovation of our OWL based CPG execution and merging engines was to define

the execution semantics in OWL and SWRL in order to execute CPG using OWL reasoning

services rather than implementing a graph parsing algorithm in a programming language.

This approach of CPG execution is superior to the existing graph-parsing based CPG

execution algorithms due to (1) Ease of switching to new semantic web technologies, (2)

Increased shareability and flexibility and (3) Reusing existing reasoners instead of writing a

new one. Our evaluations also showed that our OWL + SWRL based CPG execution

engine is the engine with the most executional capabilities. We successfully executed 12

disease-specific CPG that were either mapped to CPG-DKO or computerized in CPG-

DKO.

Our CPG merging execution engine is the first execution-time CPG merging framework.

This engine is superior to existing CPG merging frameworks that all perform CPG merging

before execution because:

i. Merging is performed in response to the current state as opposed to a priori

assumptions about the outcomes of decisions, values of variables and CPG starting

times.

ii. Our approach keeps the ontologically modeled CPG intact because it makes a clear

separation between the CPG and the morphing constraints. This increases the

shareability and facilitates the maintenance of both mergings and the computerized

CPG.

 Limitation and Future Work

347

We have not evaluated the medical validity of the output of the CPG execution engines and

the CPG merging engine. Therefore, a limitation of this work is lack of medical evaluation.

The worst-case complexity of reasoning on OWL-DL is NEXPTIME-complete [152].

Therefore, adding a new CPG to the set of CPG that are being merged can significantly

increase the reasoning time. Currently, a constraint in CPG-KPO can only merge two tasks.

Therefore, to indicate that m tasks should be executed simultaneously, m×(m-1)/2

constraints should be created in total. Therefore, size of the instantiation of CPG-KPO can

grow in a polynomial fashion as new CPG are added which can further slowdown the

reasoning process. Therefore, we can conclude that our framework may not be scalable to

comorbidities with a large number of disease-specific CPG.

10.4.2. CPG Merging Future Work

We believe that our research pertaining to CPG merging can be improved in the following

ways:

1. Making use of standard vocabularies such as SNOMED CT [185] for automation of the

mapping and the merging processes.

2. Implementation of interfaces with standard electronic health records protocols such as

HL7 [184]. This is crucial for facilitation of evaluation with real patients’ data.

3. Implementation of a multi-agent version of CPG merging framework to facilitate the

geographically-dispersed nature of patient care especially for comorbidies.

4. Medical evaluation of the therapy plans generated based on CPG modeled in CPG-

DKO using real patient data.

5. Medical evaluation of the therapy plans generated based on several computerized CPG

by physicians who are involved in patient-care with the same comorbidities using real

patient data.

348

6. Improvement of the CPG merging constraints representable in CPG-DKO by consulting

domain experts involved in treatment of comorbid patients.

10.5. Knowledge Morphing Future Work

In this section of the thesis, we list general future research directions that can improve our

knowledge morphing framework:

1. Using domain-specific standard vocabularies in order to automate the mapping and the

morphing processes. For instance, as we suggested earlier, SNOMED CT [185] can be

used in our CPG merging framework for this purpose.

2. Evaluation of the computational complexity of reasoning on our ontologies: Even

though theoretical work has shown that worst-case complexity of reasoning on OWL-

DL and OWL 2 RL ontologies are NEXPTIME-complete and co-NP-complete

respectively [152], it is hard to predict the actual complexity of a specific OWL

ontology. The approach proposed by Kang et al. [181] uses machine learning

techniques to classify ontologies based on the complexity of reasoning on them. This

approach and similar approaches can show how scalable our framework is.

3. Improvement of reasoning speed on our ontologies: Pellint [182] which is a tool for

repairing modelling constructs with low reasoning performance on OWL ontologies can

be used towards this goal. This tool however does not detect performance issues related

to SWRL rules and their combination with OWL ontologies. Further research is needed

in this regard.

4. Detecting and resolving inconsistencies: Several knowledge sources used for decision

making may contain inconsistent pieces of knowledge [12]. Since OWL reasoners are

not able to perform reasoning on inconsistent ontologies, inconsistencies between the

morphed ontologies should be detected and resolved.

349

5. Extracting contextualized sub-ontologies: This process extracts the part of the ontology

that is relevant to the decision making problem at hand and leaves the rest out [12]. This

extraction can be beneficial in two ways: (1) it reduce the size of the final morphed

ontology. A smaller ontology can be reasoned over more effectively; (2) it avoids

inconsistencies between the relevant extracted part of an ontology with the non-

extracted parts of other ontologies.

6. We used our ontology mapping framework to map several CPG ontologies. More

evaluations using ontologies of different domains can prove the efficacy of our mapping

approach in mapping ontologies pertaining to any decision making problem.

7. Using our knowledge morphing framework for different applications: It helps us to

evaluate the efficacy of our framework as a general knowledge morphing framework.

Multi-agent decision making [186], AI plan merging [183] and drug interaction

systems [187] can be some candidate applications.

350

BIBLOGRAPHY

[1] R. A. Greenes, Clinical decision support: the road ahead. Academic Press, San Diego,

2011.

[2] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer, Berlin, 2001.

[3] E. Blomqvist, “The use of Semantic Web technologies for decision support–a

survey,” Sem. Web, Vol. 5, No. 2, 2014. – accepted for publication.

[4] M. Peleg, “Computer-interpretable clinical guidelines: A methodological review,” J.

Biomed. Inform., vol. 46, no. 4, pp. 744 – 763, 2013.

[5] G. M. Marakas, Decision support systems in the 21st century, vol. 134. Prentice Hall,

New Jersey, 2003.

[6] M. Choraś, R. Kozik, A. Flizikowski, R. Renk, and W. Hołubowicz, “Ontology-based

decision support for security management in heterogeneous networks,” in Emerging

Intelligent Computing Technology and Applications. With Aspects of Artificial

Intelligence, Springer, 2009, pp. 920–927.

[7] Y. A. Zagorulko and G. Zagorulko, “Ontology-Based Approach to Development of the

Decision Support System for Oil-and-Gas Production Enterprise,” in 9th International

Conference on Software Methodologies, Tools and Techniques (SoMeT), 2010, pp.

457–466.

[8] P. Casanovas, N. Casellas, and Vallb’e Joan-Josep, “An Ontology-Based Decision

Support System for Judges,” in Proceedings of the 2009 conference on Law,

Ontologies and the Semantic Web: Channelling the Legal Information Flood, 2009, pp.

165–175.

[9] T. Pangjitt and T. Sunetnanta, “A model of ontology driven case-based reasoning for

electronic issue management systems,” in Computer Science and Software Engineering

(JCSSE), 2011 Eighth International Joint Conference on, 2011, pp. 87–90.

[10] A. Schatten, S. Biffl, and A. M. Tjoa, “Closing the gap: from nescience to knowledge

management,” in Proceedings of Euromicro Conference 2003, pp. 327–335.

[11] M. Fortin, G. Bravo, C. Hudon, A. Vanasse and L. Lapointe, "Prevalence of

multimorbidity among adults seen in family practice," Ann. Fam. Med., vol. 3, pp. 223-

228, May-Jun, 2005.

351

[12] S. Hussain, K-MORPH: A Semantic Web Based Knowledge Representation and

Context-Driven Morphing Framework,” in Advances in Artificial Intelligence, vol.

5549, Y. Gao and N. Japkowicz, Eds. Springer Berlin Heidelberg, 2009, pp. 279–282.

[13] A. Hameed, A. Preece, and D. Sleeman, “Ontology reconciliation,” in Handbook on

ontologies, Springer, 2004, pp. 231–250.

[14] P. Hitzler, M. Krötzsch, M. Ehrig, and Y. Sure, “What is ontology merging?-a

categorytheoretic perspective using pushouts,” in Proc. First International Workshop

on Contexts and Ontologies: Theory, Practice and Applications, 2005.

[15] B. C. Van Fraassen, Formal semantics and logic. Macmillan New York, 1971.

[16] “Semantic Web,” http://www.w3.org/standards/semanticweb/

[17] F. Baader and U. Sattler, “Tableau algorithms for description logics,” in Automated

Reasoning with Analytic Tableaux and Related Methods, Springer, 2000, pp. 1–18.

[18] J. M. Grimshaw and I. T. Russell, “Effect of clinical guidelines on medical practice: a

systematic review of rigorous evaluations,” Lancet, vol. 342, no. 8883, pp. 1317–1322,

1993.

[19] J. Fox and S. K. Das, "The RED knowledge representation language," in Safe and

Sound : Artificial Intelligence in Hazardous ApplicationsMenlo Park, California.:

AAAI Press/MIT Press, 2000, pp. 191-206.

[20] S. Abidi, S. Abidi, L. Butler and S. Hussain, "Operationalizing prostate cancer clinical

pathways: An ontological model to computerize, merge and execute institution-specific

clinical pathways," in Knowledge Management for Health Care Procedures, D. Riaño,

Ed. Springer Berlin / Heidelberg, 2009, pp. 1-12.

[21] S. R. Abidi and S. S. R. Abidi, "Towards the merging of multiple clinical protocols and

guidelines via ontology-driven modeling," in Artificial Intelligence in Medicine, C.

Combi, Y. Shahar and A. Abu-Hanna, Eds. Springer Berlin / Heidelberg, 2009, pp. 81-

85.

[22] S. R. Abidi, “A Conceptual Framework for Ontology Based Automating and Merging

of Clinical Pathways of Comorbidities,” in Knowledge Management for Health Care

Procedures, vol. 5626, D. Riaño, Ed. Springer Berlin / Heidelberg, 2009, pp. 55–66.

[23] K. R. Apt and M. Wallace, Constraint Logic Programming using Eclipse. New York,

NY, USA: Cambridge University Press, 2007.

http://www.w3.org/standards/semanticweb/

352

[24] M. M. Hing, M. Michalowski, S. Wilk, W. Michalowski and K. Farion, "Identifying

inconsistencies in multiple clinical practice guidelines for a patient with comorbidity,"

in IEEE International Conference on Bioinformatics and Biomedicine Workshops

(BIBMW), 2010, pp. 447-452.

[25] S. Wilk, M. Michalowski, M. M. Hing, W. Michalowski and K. Farion, "Reconciliation

of concurrently applied clinical practice guidelines using constraint logic

programming," in Proceedings of the 6th International Symposium on Health

Informatics and Bioinformatics, (HIBIT 2011), Izmir, Turkey, 2011, pp. 138-144.

[26] F. Real and D. Riaño, “Automatic combination of formal intervention plans using

SDA* representation model,” in Proceedings of the 2007 conference on Knowledge

management for health care procedures, 2008, vol. Amsterdam, The Netherlands, pp.

75–86.

[27] D. Riano, "The SDA model: A set theory approach," in Twentieth IEEE International

Symposium on Computer-Based Medical Systems, 2007, pp. 563-568.

[28] F. Real, D. Riano and J. Bohada, "Automatic generation of formal intervention plans

based on the SDA* representation model," in Computer-Based Medical Systems, 2007.

CBMS '07. Twentieth IEEE International Symposium on, 2007, pp. 575-580.

[29] F. Real and D. Riano, "An autonomous algorithm for generating and merging clinical

algorithms," in Knowledge Management for Health Care Procedures, D. Riaño, Ed.

Springer Berlin / Heidelberg, 2009, pp. 13-24.

[30] S. S. R. Abidi and S. Shayegani, “Modeling the form and function of clinical practice

guidelines: An ontological model to computerize clinical practice guidelines,” in

Knowledge Management for Health Care Procedures, Springer, 2009, pp. 81–91.

[31] J. Bock, P. Haase, Q. Ji, and R. Volz, “Benchmarking OWL reasoners,” in Proc. of the

ARea2008 Workshop, Tenerife, Spain, 2008.

[32] P. F. Patel-Schneider, P. Hayes and I. Horrocks, “Semantics and Abstract Syntax,”

http://www.w3.org/TR/owl-semantics/

[33] L. Ohno-Machado, J. H. Gennari, S. N. Murphy, N. L. Jain, S. W. Tu, D. E. Oliver, E.

Pattison-Gordon, R. A. Greenes, E. H. Shortliffe and G. O. Barnett, "The GuideLine

Interchange Format: A Model for Representing Guidelines," American Medical

Informatics Association, vol. 5, pp. 357-372, 1998.

http://www.w3.org/TR/owl-semantics/

353

[34] S. W. Tu, M. A. Musen, R. Shankar, J. Campbell, K. Hrabak, J. McClay, S. M. Huff,

R. McClure, C. Parker, R. Rocha, R. Abarbanel, N. Beard, J. Glasgow, G. Mansfield,

P. Ram, Q. Ye, E. Mays, T. Weida, C. G. Chute, K. McDonald, D. Molu, M. A.

Nyman, S. Scheitel, H. Solbrig, D. A. Zill and M. K. Goldstein, "Modeling guidelines

for integration into clinical workflow," Stud.Health Technol.Inform., vol. 107, pp. 174-

178, 2004.

[35] M. Kifer and G. Lausen, "F-logic: A higher-order language for reasoning about objects,

inheritance, and scheme," in Proceedings of the 1989 ACM SIGMOD International

Conference on Management of Data, Portland, Oregon, United States, 1989, pp. 134-

146.

[36] M. Benerecetti, P. Bouquet and C. Ghidini, "On the dimensions of context dependence:

Partiality, approximation, and perspective," in Proceedings of the Third International

and Interdisciplinary Conference on Modeling and using Context, 2001, pp. 59-72.

[37] J. Euzenat and P. Shvaiko, Ontology Matching. Springer-Verlag New York Inc, 2007.

[38] W. W. Cohen, P. Ravikumar and S. E. Fienberg, "A comparison of string distance

metrics for name-matching tasks," in Proceedings of the IJCAI-2003 Workshop on

Information Integration on the Web (IIWeb-03), 2003, pp. 73–78.

[39] G. A. Miller, "WordNet: a lexical database for English," Commun ACM, vol. 38, pp.

39-41, 1995.

[40] A. Budanitsky and G. Hirst, "Semantic distance in WordNet: An experimental,

application-oriented evaluation of five measures," in Workshop on Wordnet and Other

Lexical Resources, Second Meeting of the North American Chapter of the Association

for Computational Linguistics, 2001, .

[41] J. Euzenat and P. Valtchev, "Similarity-based ontology alignment in OWL-lite," in

Proceeding of ECAI 2004: 16th European Conference on Artificial Intelligence,

Valencia, Spain, 2004, pp. 333-337.

[42] J. English and S. Nirenburg, "Calculating concept similarity heuristics for ontology

learning from text," University of Maryland, 2007.

[43] L. Lee, L. H. Yang, W. Hsu and X. Yang, "XClust: Clustering XML schemas for

effective integration," in Proceedings of the Eleventh International Conference on

Information and Knowledge Management, McLean, Virginia, USA, 2002, pp. 292-299.

[44] R. R. Sokal, "Distance as a measure of taxonomic similarity," Syst. Biol., vol. 10, pp.

70, 1961.

354

[45] S. Melnik, H. Garcia-Molina and E. Rahm, "Similarity flooding: A versatile graph

matching algorithm and its application to schema matching," in Proceeding of 18th

International Conference on Data Engineering, 2002, pp. 117-128.

[46] A. Isaac, L. Van Der Meij, S. Schlobach and S. Wang, "An empirical study of instance-

based ontology matching," in Proceedings of the 6th International the Semantic Web

and 2nd Asian Conference on Asian Semantic Web Conference, Busan, Korea, 2007,

pp. 253-266.

[47] P. Bouquet, L. Serafini and S. Zanobini, "Peer-to-peer semantic coordination," J. Web

Sem., vol. 2, pp. 81-97, 12/1, 2004.

[48] P. Bouquet, L. Serafini and S. Zanobini, "Semantic coordination: A new approach and

an application," in The Semantic Web - ISWC 2003, D. Fensel, K. Sycara and J.

Mylopoulos, Eds. Springer Berlin / Heidelberg, 2003, pp. 130-145.

[49] F. Giunchiglia, P. Shvaiko and M. Yatskevich, "S-match: An algorithm and an

implementation of semantic matching," in The Semantic Web: Research and

Applications, C. Bussler, J. Davies, D. Fensel and R. Studer, Eds. Springer Berlin /

Heidelberg, 2004, pp. 61-75.

[50] D. Calvanese, F. Baader, P. Patel-Schneider, D. L. McGuinness and D. Nardi, The

Description Logic Handbook: Theory, Implementation, and Applications. New York,

USA: Cambridge University Press, 2003.

[51] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row Publishers, Inc., 1985.

[52] E. Goldberg and Y. Novikov, "BerkMin: A fast and robust SAT-solver," in

Proceedings of Design, Automation and Test in Europe Conference and Exhibition.

2002, pp. 142-149.

[53] J. P. Marques-Silva and K. A. Sakallah, "GRASP: a search algorithm for propositional

satisfiability," IEEE Trans. Comput., vol. 48, pp. 506-521, 1999.

[54] Sotnykova, C. Vangenot, N. Cullot, N. Bennacer and M. Aufaure, "Semantic mappings

in description logics for spatio-temporal database schema integration," in Journal on

Data Semantics III, S. Spaccapietra and E. Zimányi, Eds. Springer Berlin / Heidelberg,

2005, pp. 586-586.

[55] Meilicke, H. Stuckenschmidt and A. Tamilin, "Improving automatically created

mappings using logical reasoning." in Ontology Mapping Workshop at ISWC, Athens,

GA, USA, 2006.

355

[56] Calvanese, G. D. Giacomo and M. Lenzerini, "Ontology of integration and integration

of ontologies," Description Logics, vol. 49, pp. 10-19, 2001.

[57] H. Stuckenschmidt, L. Serafini and H. Wache, "Reasoning about ontology mappings,"

ITC-IRST, Trento, 2005.

[58] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini and H. Stuckenschmidt, "C-

OWL: Contextualizing ontologies." in International Semantic Web Conference, 2003,

pp. 164-179.

[59] P. Bouquet, L. Serafini, S. Zanobini and S. Sceffer, "Bootstrapping semantics on the

web: Meaning elicitation from schemas," in Proceedings of the 15th International

Conference on World Wide Web, Edinburgh, Scotland, 2006, pp. 505-512.

[60] D. Dou, D. McDermott and P. Qi, "Ontology translation by ontology merging and

automated reasoning," in Proceeding of Workshop on Ontologies for MultiAgent

Systems,2005, pp. 73–94.

[61] D. Dou, D. McDermott and P. Qi, "Ontology translation on the semantic web," in

Journal on Data Semantics II, S. Spaccapietra, E. Bertino, S. Jajodia, R. King, D.

McLeod, M. Orlowska and L. Strous, Eds. Springer Berlin / Heidelberg, 2005, pp. 35-

57.

[62] A. Maedche, B. Motik, N. Silva and R. Volz, "MAFRA - A Mapping FRAmework for

distributed ontologies," in Proceedings of the 13th International Conference on

Knowledge Engineering and Knowledge Management. Ontologies and the Semantic

Web, 2002, pp. 235-250.

[63] K. Yang and R. Steele, "A framework for ontology mapping for the semantic web," in

Proceeding of the International Conference on Information Technology in Asia

(CITA07), 2007.

[64] N. F. Noy, "Semantic integration: a survey of ontology-based approaches," SIGMOD

Rec., vol. 33, pp. 65-70, December, 2004.

[65] M. Sabou, M. DʼAquin and E. Motta, "Exploring the Semantic Web as background

knowledge for ontology matching," Knowledge, vol. 11, pp. 156-190, 2008.

[66] N. F. Noy and M. A. Musen, "Anchor-prompt: Using non-local context for semantic

matching," in Proceedings of the Workshop on Ontologies and Information Sharing at

the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001),

2001, pp. 63-70.

356

[67] J. Madhavan, P. A. Bernstein, P. Domingos and A. Y. Halevy, "Representing and

reasoning about mappings between domain models," in Eighteenth National

Conference on Artificial Intelligence, Edmonton, Alberta, Canada, 2002, pp. 80-86.

[68] E. Jérôme, S. François and S. Luciano, "Specification of the delivery alignment

format," Knowledge web, 2005.

[69] H. Thomas, D. Sullivan and R. Brennan, "Ontology Mapping Representations: a

Pragmatic Evaluation," Management, pp. 228-232, 2009.

[70] J. d. Bruijn and A. Polleres, "Towards an ontology mapping specification language for

the semantic web," DERI - DIGITAL ENTERPRISE RESEARCH INSTITUTE, Tech.

Rep. DERI-2004-06-30, 2004.

[71] B. Omelayenko, “RDFT: A mapping meta-ontology for business integration,” in Proc.

of the Workshop on Knowledge Transformation for the Semantic Web at the 15th

European Conference on Artificial Intelligence (KTSW2002), 2002, pp. 77–84.

[72] F. Scharffe, "Instance transformation for semantic data mediation," in Proceeding of

the International Semantic Web and Web Services Conference SWWS, 2006.

[73] F. Scharffe and J. d. Bruijn, "A language to specify mappings between ontologies," in

Proceeding of the Internet Based Systems IEEE Conference (SITIS05), 2005, pp. 267-

271.

[74] Y. Lei, "An instance mapping ontology for the semantic web," in Proceedings of the

3rd International Conference on Knowledge Capture, Banff, Alberta, Canada, 2005,

pp. 67-74.

[75] Haase and B. Motik, "A mapping system for the integration of OWL-DL ontologies,"

in Proceedings of the First International Workshop on Interoperability of

Heterogeneous Information Systems, Bremen, Germany, 2005, pp. 9-16.

[76] Burton-Jones, V. C. Storey, V. Sugumaran and P. Ahluwalia, "A semiotic metrics suite

for assessing the quality of ontologies," Data Knowl. Eng., vol. 55, pp. 84-102,

October, 2005.

[77] Gangemi, C. Catenacci, M. Ciaramita and J. Lehmann, "A theoreticalframework for

ontologyevaluation and validation," in Proceedings of the 2nd ItalianSemantic Web

Workshop, SWAP 2005 - Semantic Web Applications and Perspectives, Trento, Italy,

2005.

357

[78] J. Völker, D. Vrandečić and Y. Sure, "Automatic evaluation of ontologies (AEON)," in

The Semantic Web – ISWC 2005, Y. Gil, E. Motta, V. Benjamins and M. Musen, Eds.

Springer Berlin / Heidelberg, 2005, pp. 716-731.

[79] D. Isern and A. Moreno, “Computer-based execution of clinical guidelines: a

review,” Int. J. Med. Inf., vol. 77, no. 12, pp. 787–808, 2008.

[80] L. Parthiban and R. Subramanian, “Intelligent heart disease prediction system using

CANFIS and genetic algorithm,” Intl. J. Bio. Biomed. Med. Sci., vol. 3, no. 3, 2008.

[81] R. Dybowski, V. Gant, P. Weller, and R. Chang, “Prediction of outcome in critically ill

patients using artificial neural network synthesised by genetic algorithm,” Lancet, vol.

347, no. 9009, pp. 1146–1150, 1996.

[82] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, “A multilayer perceptron-based

medical decision support system for heart disease diagnosis,” Expert Syst.Appl., vol.

30, no. 2, pp. 272–281, 2006.

[83] V. L. Yu, L. M. Fagan, S. M. Wraith, W. J. Clancey, A. C. Scott, J. Hannigan, R. L.

Blum, B. G. Buchanan, and S. N. Cohen, “Antimicrobial selection by a computer. A

blinded evaluation by infectious diseases experts.,” J. Am. Med. Inform. Assoc., vol.

242, no. 12, p. 1279, 1979.

[84] M. Suganthi and M. Madheswaran, “An improved medical decision support system to

identify the breast cancer using mammogram,” J. Med. Syst., vol. 36, no. 1, pp. 79–91,

2012.

[85] N. Mehdi, S. Mehdi, N. T. Adel, and M. Azra, “Hepatitis disease diagnosis using

hybrid case based reasoning and particle swarm optimization,” ISRN Artificial

Intelligence, vol. 2012, 2012.

[86] K. A. Kumar, Y. Singh, and S. Sanyal, “Hybrid approach using case-based reasoning

and rule-based reasoning for domain independent clinical decision support in ICU,”

Expert Syst.Appl., vol. 36, no. 1, pp. 65–71, 2009.

[87] W. J. Clancey, Knowledge-based tutoring: the GUIDON program. Cambridge, MA,

USA: MIT Press, 1987.

[88] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R. A. Greenes, R. Hall, P. D. Johnson, N.

Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang, E. H. Shortliffe, and M.

Stefanelli, “Comparing computer-interpretable guideline models: a case-study

approach,” J. Am. Med. Inform. Assoc., vol. 10, no. 1, pp. 52–68, Feb. 2003

358

[89] P. A. de Clercq, J. A. Blom, H. H. Korsten, and A. Hasman, “Approaches for creating

computer-interpretable guidelines that facilitate decision support,” Artif. Intell. Med.,

vol. 31, no. 1, pp. 1–27, 2004.

[90] S. W. Tu and M. A. Musen, “Representation formalisms and computational methods

for modeling guideline-based patient care,” Stud.Health Technol.Inform., pp. 115–132,

2001.

[91] P. De Clercq, K. Kaiser, and A. Hasman, “Computer-interpretable guideline

formalisms,” Stud.Health Technol.Inform., vol. 139, p. 22, 2008.

[92] M. Sordo, O. Ogunyemi, A. A. Boxwala, and R. A. Greenes, “GELLO: an object-

oriented query and expression language for clinical decision support,” in the AMIA

Annual Symposium Proceedings, 2003, vol. 2003, p. 1012.

[93] P. J. Lucas, N. C. de Bruijn, K. Schurink, and A. Hoepelman, “A probabilistic and

decision-theoretic approach to the management of infectious disease at the ICU,”

Artif.Intell.Med., vol. 19, no. 3, pp. 251–279, 2000

[94] S. Heiler, “Semantic interoperability,” ACM Comput. Surv., vol. 27, no. 2, pp. 271–

273, 1995.

[95] M. Klein and L. B. Methlie, Knowledge-based decision support systems with

applications in business: a decision support approach. Chichester: John Wiley & Sons,

2009.

[96] S. Haag, M. Cummings, and J. Dawkins, “Management information systems,”

Multimedia Syst., vol. 279, pp. 280,297–298, 1998.

[97] S. S. R. Abidi, “Medical knowledge morphing: towards case-specific integration of

heterogeneous medical knowledge resources,” in Computer-Based Medical Systems,

2005. Proceedings. 18th IEEE Symposium on, 2005, pp. 208–213.

[98] M. Michalowski, S. Wilk, W. Michalowski, D. Lin, K. Farion, and S. Mohapatra,

“Using Constraint Logic Programming to Implement Iterative Actions and Numerical

Measures during Mitigation of Concurrently Applied Clinical Practice Guidelines,” in

Artificial Intelligence in Medicine, Springer, 2013, pp. 17–22.

[99] I. Sánchez-Garzón, J. Fdez-Olivares, E. Onaindía, G. Milla, J. Jordán, and P. Castejón,

“A Multi-agent Planning Approach for the Generation of Personalized Treatment Plans

of Comorbid Patients,” in Artificial Intelligence in Medicine, Springer, 2013, pp. 23–

27.

359

[100] E. Lozano, M. Marcos, B. MartÃnez-Salvador, A. Alonso, and J. Alonso, “Experiences

in the Development of Electronic Care Plans for the Management of Comorbidities,”

vol. 5943, D. RiaÃo, A. Teije, S. Miksch, and M. Peleg, Eds. Springer Berlin

Heidelberg, 2010, pp. 113–123.

[101] N. Mulyar, W. M. P. van der Aalst, and M. Peleg, “A Pattern-based Analysis of

Clinical Computer-interpretable Guideline Modeling Languages,” J. Am. Med. Inform.

Assoc., vol. 14, no. 6, pp. 781–787, 2007.

[102] N. Russell, W. M. van der Aalst, and N. Mulyar, “Workflow Control-Flow Patterns: A

Revised View,” BPM Center Report BPM-06-22, 2006.

[103] M. Peleg, S. Tu, and J. Bury, “Comparing models of decision and action for guideline-

based decision support: a case-study approach,” J. Am. Med. Inform. Assoc., vol 1, no.

10, pp. 52-68, 2002.

[104] S. Hussain and S. Abidi, “An ontology-based framework for authoring and executing

clinical practice guidelines for clinical decision support systems,” J. Inf. Technol.

Healthc, vol. 6, no. 1, pp. 8–22, 2008.

[105] S. Hussain and S. S. R. Abidi, “Ontology driven CPG authoring and execution via a

Semantic Web framework,” in the System Sciences, 2007. HICSS 2007. 40th Annual

Hawaii International Conference on, 2007, pp. 135–135

[106] A. Daniyal, S. R. Abidi, and S. S. R. Abidi, “Computerizing clinical pathways:

ontology-based modeling and execution.,” Stud.Health Technol.Inform., vol. 150, pp.

643–647, 2009.

[107] S. R. Abidi, “A Knowledge Management Framework to Develop, Model, Align and

Operationalize Clinical Pathways to Provide Decision Support for Comorbid Diseases,”

Dalhousie University, Halifax, NS, 2010.

[108] Y. Shahar, S. Miksch, and P. Johnson, “The Asgaard project: a task-specific framework

for the application and critiquing of time-oriented clinical guidelines,” Artif. Intell.

Med., vol. 14, no. 1–2, pp. 29–51, 1998.

[109] Z. Aleksovski, M. Klein, W. ten Kate, and F. van Harmelen, “Matching Unstructured

Vocabularies using a Background Ontology,” in Proceedings of the 15th International

Conference on Knowledge Engineering and Knowledge Management, 2006, pp. 182–

197.

[110] Z. Aleksovski, W. ten Kate, and F. van Harmelen, “Using multiple ontologies as

background knowledge in ontology matching,” in Procedding of Collective Intelligence

& the Semantic Web (CISWeb 2008), p. 35, 2008.

360

[111] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “Discovering Missing Background

Knowledge in Ontology Matching,” in Proceedings of the 2006 conference on ECAI

2006: 17th European Conference on Artificial Intelligence, Riva del Garda, Italy, 2006,

pp. 382–386.

[112] Z. Aleksovski, W. ten Kate, and F. van Harmelen, “Exploiting the Structure of

Background Knowledge Used in Ontology Matching.,” in Proceeding of Internation

Workshop of Ontology Matching, 2006, p. 13-21.

[113] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, R. A. Greenes, V. L. Patel, and E. H.

Shortliffe, “Representation primitives, process models and patient data in computer-

interpretable clinical practice guidelines: A literature review of guideline representation

models,” Int. J. Med. Inf., vol. 68, no. 1, pp. 59–70, 2002.

[114] D. Wang, M. Peleg, D. Bu, M. Cantor, G. Landesberg, E. Lunenfeld, S. W. Tu, G. E.

Kaiser, G. Hripcsak, and V. L. Patel, “GESDOR–a generic execution model for sharing

of computer-interpretable clinical practice guidelines,” in AMIA Annual Symposium

Proceedings, 2003, vol. 2003, p. 694.

[115] H. Wang, N. Noy, A. Rector, M. Musen, T. Redmond, D. Rubin, S. Tu, T. Tudorache,

N. Drummond, M. Horridge, and J. Seidenberg, “Frames and OWL Side by Side,” in

9th International Protégé Conference, 2006.

[116] Y. Kitamura, M. Ikeda, and R. Mizoguchi, “A causal time ontology for qualitative

reasoning,” in International Joint Conferences on Artificial Intelligence, 1997, vol. 1,

pp. 501–507.

[117] J. R. Hobbs and F. Pan, “An ontology of time for the semantic web,” ACM Trans.

Asian Lang. Inf. Process., vol. 3, no. 1, pp. 66–85, 2004.

[118] I. Paulsen, D. Mainz, K. Weller, I. Mainz, J. Kohl, and A. von Haeseler, “Ontoverse:

Collaborative Knowledge Management in the Life Sciences Network,” in Proceedings

of the German e-Science Conference 2007 GES 2007, 2007.

[119] C. Tempich, E. Simperl, M. Luczak, R. Studer, and H. S. Pinto, “Argumentation-based

ontology engineering,” IEEE Intell. Syst., vol. 22, no. 6, pp. 52–59, 2007.

[120] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke, “OntoEdit:

Collaborative Ontology Development for the Semantic Web,” in Proceedings of the

First Semantic Web Conference, 2002.

[121] M. Fernández-López, A. Gómez-Pérez, and N. Juristo, “Methontology: from

ontological art towards ontological engineering,” in Proc. Symposium on Ontological

Engineering of AAAI, 1997.

361

[122] H. S. Pinto, S. Staab, and C. Tempich, “DILIGENT: Towards a fine-grained

methodology for DIstributed, Loosely-controlled and evolvInG Engineering of

oNTologies,” in Proceedings of the 16th European Conference on Artificial

Intelligence (ECAI), 2004.

[123] E. P. B. Simperl, M. Mochol, T. Bürger, and I. O. Popov, “Achieving Maturity: The

State of Practice in Ontology Engineering in 2009.,” in OTM Conferences 2, 2009, vol.

5871, pp. 983–991.

[124] M. M. F. López, “Overview of Methodologies for Building Ontologies,”

in Proceedings of the IJCAI-99 Workshop on Ontologies and Problem Solving Methods

(KRR5) Stockholm, Sweden, August 2, 1999, 1999.

[125] N. NOY, “Ontology Development 101: A Guide to Creating Your First Ontology:

Knowldege Systems Laboratory, Stanford University,” Stanford Knowledge Systems

Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical

Report SMI-2001-0880, 2001.

[126] C. Knight, D. Gasevic, and G. Richards, “An ontology-based framework for bridging

learning design and learning content,” Educ. Technol. Soc., vol. 9, no. 1, pp. 23–37,

2006.

[127] G. V. Gkoutos, E. C. Green, A.-M. Mallon, J. M. Hancock, and D. Davidson, “Using

ontologies to describe mouse phenotypes,” Genome Biol., vol. 6, no. 1, p. R8, 2004.

[128] A. Kim, J. Luo, and M. Kang, “Security ontology for annotating resources,” in

Proceedings of the 2005 OTM Confederated international conference on On the Move

to Meaningful Internet Systems: CoopIS, COA, and ODBASE, 2005, pp. 1483–1499.

[129] G. Dobson and A. Sanchez-Macian, “Towards Unified QoS/SLA Ontologies,” in

Proceedings of the IEEE Services Computing Workshops, 2006, pp. 169–174.

[130] A. Seaborne and E. Prud’hommeaux, “SPARQL Query Language for RDF,” W3C,

W3C Recommendation, Jan. 2008.

[131] M. L. Sbodio, C. Moulin, “SPARQL as an expression language for OWL-S,” In OWL-

S: Experiences and Directions, a workshop at the 4th European Semantic Web

Conference (ESWC 2007), 2007.

[132] J. M. Grimshaw and I. T. Russell, “Effect of clinical guidelines on medical practice: a

systematic review of rigorous evaluations,” Lancet, vol. 342, no. 8883, pp. 1317–1322,

1993.

362

[133] A. A. Boxwala, M. Peleg, S. Tu, O. Ogunyemi, Q. T. Zeng, D. Wang, V. L. Patel, R.

A. Greenes, and E. H. Shortliffe, “GLIF3: a representation format for sharable

computer-interpretable clinical practice guidelines,” J. Biomed. Inform., vol. 37, no. 3,

pp. 147–161, 2004.

[134] P. A. de Clercq, A. Hasman, J. A. Blom, and H. H. M. Korsten, “Design and

implementation of a framework to support the development of clinical guidelines,” Int.

J. Med. Inform., vol. 64, no. 2–3, pp. 285–318, 2001.

[135] P. A. de Clercq, A. Hasman, J. A. Blom, and H. H. M. Korsten, “The application of

ontologies and problem-solving methods for the development of shareable guidelines,”

Artif. Intell. Med., vol. 22, no. 1, pp. 1–22, 2001.

[136] J. Fox, N. Johns, and A. Rahmanzadeh, “Disseminating medical knowledge: the

PROforma approach,” Artif. Intell. Med., vol. 14, no. 1–2, pp. 157–182, 1998.

[137] M. A. Musen, S. W. Tu, A. K. Das, and Y. Shahar, “EON: A Component-Based

Approach to Automation of Protocol-Directed Therapy,” J. Am. Med. Inform. Assoc.,

vol. 3, no. 6, pp. 367–387, 1996.

[138] D. R. Sutton and J. Fox, “The Syntax and Semantics of the PROforma Guideline

Modeling Language,” J. Am. Med. Inform. Assoc., vol. 10, no. 5, pp. 433–443, 2003.

[139] S. W. Tu and M. A. Musen, “A flexible approach to guideline modeling,” in

Proceeding of AMIA 1999 Annual Symposium, 1999, vol. 2, Washington DC, pp. 420–

424.

[140] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, O. Ogunyemi, Q. Zeng, R. A. Greenes,

V. L. Patel, and E. H. Shortliffe, “Design and implementation of the GLIF3 guideline

execution engine,” J. Biomed. Inform., vol. 37, no. 5, pp. 305–318, 2004.

[141] J. Lee, J. Kim, I. Cho, and Y. Kim, “Integration of workflow and rule engines for

clinical decision support services,” Stud.Health Technol.Inform., vol. 160, no. Pt 2, pp.

811–815, 2010.

[142] “OWL web ontology language guide”, http://www.w3.org/TR/owl-guide/

[143] M. A. Casteleiro and J. J. Des Diz, “Clinical practice guidelines: A case study of

combining OWL-S, OWL, and SWRL,” Knowl-Based Syst., vol. 21, no. 3, pp. 247–

255, 2008.

http://www.w3.org/TR/owl-guide/

363

[144] S. Hussain and S. S. R. Abidi, “A Semantic Web Based Framework for Modelling

Clinical Practice Guidelines to Develop Clinical Decision Support Systems,” in 12th

World Congress on Health (Medical) Informatics; Building Sustainable Health Systems

(Medinfo 2007), 2007, Brisbane, Australia.

[145] M. A. Din, S. S. Abidi, and B. Jafarpour, “Ontology based modeling and execution of

Nursing Care Plans and Practice Guidelines,” Stud.Health Technol.Inform., vol. 160,

no. Pt 2, pp. 1104–1108, 2010.

[146] Z. Aleksovski, M. Klein, W. t. Kate and F. v. Harmelen, "Matching unstructured

vocabularies using a background ontology," in Proceedings of the 15th

International Conference on Knowledge Engineering and Knowledge Management,

2006, pp. 182-197.

[147] M. Sabou, M. DʼAquin and E. Motta, "Exploring the Semantic Web as background

knowledge for ontology matching," Knowledge, vol. 11, pp. 156-190, 2008.

[148] A. Daniyal and S. S. R. Abidi, “Semantic Web-Based Modeling of Clinical Pathways

Using the UML Activity Diagrams and OWL-S,” in Knowledge Representation for

Health-Care. Data, Processes and Guidelines, vol. 5943, D. Riaño, A. ten Teije, S.

Miksch, and M. Peleg, Eds. Springer Berlin / Heidelberg, 2010, pp. 88–99.

[149] M. Arguello Casteleiro, J. Des, M. J. Prieto, R. Perez, and H. Paniagua, “Executing

medical guidelines on the web: Towards next generation healthcare,” Knowl-Based

Syst., vol. 22, no. 7, pp. 545–551, 2009.

[150] M. Ceccarelli, A. Donatiello, and D. Vitale, “KON3: A clinical decision support

system, in oncology environment, based on knowledge management,” in the 20th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI 2008), 2008, vol.

2, pp. 206-210.

[151] “Qualified cardinality restrictions (QCR),”

http://www.w3.org/2001/sw/BestPractices/OEP/QCR/

[152] “OWL 2 Web Ontology Language Profiles”, http://www.w3.org/TR/owl2-profiles/

[153] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler, “OWL

2: The next step for OWL,” J. Web Sem., vol. 6, no. 4, pp. 309–322, 2008.

[154] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, “SWRL:

A semantic web rule language combining OWL and RuleML,”

http://www.w3.org/Submission/SWRL/.

http://www.w3.org/2001/sw/BestPractices/OEP/QCR/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/Submission/SWRL/

364

[155] S. W. Tu and M. A. Musen, “The EON model of intervention protocols and

guidelines,” in the Proceeding of AMIA Annual Fall Symposium, 1996, vol.

Philadelphia, pp. 587–591.

[156] S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and C. Mossa,

“Guideline-based careflow systems,” Artif. Intell. Med., vol. 20, no. 1, pp. 5–22, 2000.

[157] “InferMed Arezzo technical white paper,” http://www.infermed.com/

[158] J. Fox and S. K. Das, Safe and sound - artificial intelligence in hazardous

applications. MIT Press, 2000.

[159] D. Beckett and T. Berners-Lee, “Turtle - terse RDF triple language,”

http://www.w3.org/TeamSubmission/turtle/.

[160] B. McBride, “Jena: A Semantic Web Toolkit,” IEEE Internet Comput., vol. 6, no. 6,

pp. 55–59, 2002.

[161] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-

DL reasoner,” J. Web Sem., vol. 5, no. 2, pp. 51–53, 2007.

[162] B. Motik, U. Sattler, and R. Studer, “Query Answering for OWL-DL with rules,” J.

Web Sem., vol. 3, no. 1, pp. 41–60, 2005.

[163] M. A. Din, “Ontology modeling for nursing care plans and clinical practice guidelines,”

Master’s dissertation, Dalhousie University, Halifax, NS, 2009.

[164] J. Euzenat, “An API for Ontology Alignment,” in The Semantic Web “ ISWC 2004,

vol. 3298, S. McIlraith, D. Plexousakis, and F. Harmelen, Eds. Springer Berlin

Heidelberg, 2004, pp. 698–712.

[165] J. de Bruijn, D. Foxvog, and K. Zimmermann, “Ontology mediation patterns library

v1,” Deliverable D4, vol. 3, 2004.

[166] J. Euzenat, F. Scharffe, and A. Zimmermann, “Expressive alignment language and

implementation,” Knowledge Web Project Report D 2.2.10, 2007.

[167] B. Jafarpour, S. Abidi, and S. Abidi, “Exploiting OWL Reasoning Services to Execute

Ontologically-Modeled Clinical Practice Guidelines,” vol. 6747, M. Peleg, N. LavraÄ,

and C. Combi, Eds. Springer Berlin Heidelberg, 2011, pp. 307–311.

[168] D. Riaño, F. Real, J. A. López-Vallverdú, F. Campana, S. Ercolani, P. Mecocci, R.

Annicchiarico, and C. Caltagirone, “An ontology-based personalization of health-care

knowledge to support clinical decisions for chronically ill patients,” J.Biomed.Inform.,

vol. 45, no. 3, pp. 429–446, 2012.

http://www.infermed.com/
http://www.w3.org/TeamSubmission/turtle/

365

[169] “Osteoartherathis Treatment Algorithm,” National Health Services Tayside of

Scotland,

http://www.nhstaysideadtc.scot.nhs.uk/TAPG%20html/pdf%20docs/Section%20%201

0%20osteoalgor2.pdf

[170] “Hypertension Pathway,” National Institute for Health and Care Excelence,

http://pathways.nice.org.uk/pathways/hypertension

[171] “Diabetes Pathway,” National Institute for Health and Care Excelence,

http://pathways.nice.org.uk/pathways/diabetes

[172] S. A. Hunt, W. T. Abraham, M. H. Chin, A. M. Feldman, G. S. Francis, T. G. Ganiats,

M. Jessup, M. A. Konstam, D. M. Mancini, and K. Michl, “ACC/AHA 2005 guideline

update for the diagnosis and management of chronic heart failure in the adult a report

of the American College of Cardiology/American Heart Association Task Force on

Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the

Evaluation and Management of Heart Failure),” Circulation, vol. 112, no. 12, pp.

e154–e235, 2005.

[173] A. Gómez-Pérez, “Ontology evaluation,” in Handbook on ontologies, Springer, 2004,

pp. 251–273.

[174] J. Brank, M. Grobelnik, and D. Mladenić, “A survey of ontology evaluation

techniques,” in Proceedings of the Conference on Data Mining and Data Warehouses

(SiKDD 2005), 2005.

[175] J. M. Arnold, P. Liu, C. Demers, P. Dorian, N. Giannetti, H. Haddad, G. A. Heckman,

J. G. Howlett, A. Ignaszewski, D. E. Johnstone, P. Jong, R. S. McKelvie, G. W. Moe, J.

D. Parker, V. Rao, H. J. Ross, E. J. Sequeira, A. M. Svendsen, K. Teo, R. T. Tsuyuki,

M. White, and Canadian Cardiovascular Society, “Canadian Cardiovascular Society

consensus conference recommendations on heart failure 2006: diagnosis and

management,” Can. J. Cardiol., vol. 22, no. 1, pp. 23–45, 2006.

[176] M. Di Bari, C. Pozzi, M. C. Cavallini, F. Innocenti, G. Baldereschi, W. De Alfieri, E.

Antonini, R. Pini, G. Masotti, and N. Marchionni, “The diagnosis of heart failure in the

community. Comparative validation of four sets of criteria in unselected older adults:

the ICARe Dicomano Study,”J. Am. Coll. Cardiol., vol. 44, no. 8, pp. 1601–1608,

2004.

[177] J. García, F. Jose’García-Peñalvo, and R. Therón, “A survey on ontology metrics,”

in Knowledge management, information systems, E-learning, and sustainability

research, Springer, 2010, pp. 22–27.

http://www.nhstaysideadtc.scot.nhs.uk/TAPG%20html/pdf%20docs/Section%20%2010%20osteoalgor2.pdf
http://www.nhstaysideadtc.scot.nhs.uk/TAPG%20html/pdf%20docs/Section%20%2010%20osteoalgor2.pdf
http://pathways.nice.org.uk/pathways/hypertension
http://pathways.nice.org.uk/pathways/diabetes

366

[178] S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B. Aleman-Meza, “OntoQA:

Metric-based ontology quality analysis,” in IEEE Workshop on Knowledge Acquisition

from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge

Sources, 2005, vol. 9.

[179] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent research and

development,” Auton.Agents Multi-Agent Syst., vol. 1, no. 1, pp. 7–38, 1998.

[180] “Computational Properties of OWL,” http://www.w3.org/TR/owl2-

profiles/#Computational_Properties

[181] Y.-B. Kang, Y.-F. Li, and S. Krishnaswamy, “Predicting Reasoning Performance Using

Ontology Metrics,” in The Semantic Web – ISWC 2012, vol. 7649, P. Cudré-Mauroux,

J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. Parreira, J. Hendler, G.

Schreiber, A. Bernstein, and E. Blomqvist, Eds. Springer Berlin Heidelberg, 2012, pp.

198–214.

[182] H. Lin and E. Sirin, “Pellint - A Performance Lint Tool for Pellet,” in the OWL:

Experiences and Directions (OWLED), Fourth International Workshop, 2008,

Washington, DC, USA.

[183] D. E. Foulser, M. Li and Q. Yang, "Theory and algorithms for plan merging," Artif.

Intell., vol. 57, pp. 143-181, October, 1992.

[184] “Health Level Seven,” http://www.hl7.org/

[185] P. L. Elkin, S. H. Brown, C. S. Husser, B. A. Bauer, D. Wahner-Roedler, S. T.

Rosenbloom, and T. Speroff, “Evaluation of the content coverage of SNOMED CT:

ability of SNOMED clinical terms to represent clinical problem lists,” in Mayo Clinic

Proceedings, 2006, vol. 81, pp. 741–748.

[186] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in multi-

agent coordination,” in American Control Conference, 2005. Proceedings of the 2005,

2005, pp. 1859–1864.

[187] S. Yoshikawa, S. Kenji, and A. Konagaya, “Drug interaction ontology (DIO) for

inferences of possible drug-drug interactions,” Stud.Health Technol.Inform., vol. 107,

pp. 454–458, 2004.

[188] “GLINDA: GuideLine INteraction Detection Architecture,” http://glinda-

project.stanford.edu/guidelineinteractionontology.html

http://www.w3.org/TR/owl2-profiles/#Computational_Properties
http://www.w3.org/TR/owl2-profiles/#Computational_Properties
http://www.hl7.org/
http://glinda-project.stanford.edu/guidelineinteractionontology.html
http://glinda-project.stanford.edu/guidelineinteractionontology.html

