
Comparative Proteomics in the Absence of Tandem Mass Spectra

by

Bjorn L. M. Wielens

Submitted in partial fulfilment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

December 2013

© Copyright by Bjorn L. M. Wielens, 2013

TABLE OF CONTENTS

 List of Tables...v

 List of Figures..vi

 Abstract..ix

 List of Abbreviations Used...x

 Acknowledgements..xi

CHAPTER 1 Introduction..1

1.1 Quantitative Proteomics...3

1.2 Comparative Proteomics..6

1.2.1 Stable Isotope Labelling..11

1.2.2 Isobaric Tagging..13

1.2.3 Spectral Counting..14

1.2.4 Feature Extraction Methods..16

1.3 Proposed Method for Quantitation...20

1.4 Thesis Outline..26

CHAPTER 2 Methods And Experiments..28

2.1 Chemicals Used...28

2.2 Tryptic Digest...29

2.3 Post-digestion Cleanup..29

2.4 Dimethyl Labelling..30

2.5 Post-labelling RPLC Cleanup..31

2.6 LC-MS/MS HPLC...31

2.7 Double-labelling Experiment...32

2.8 Triple-labelling Experiment...32

2.9 Alternate Ratio Experiment..33

2.10 MS Acquisition and SEQUEST Search Parameters..33

CHAPTER 3 Workflow and Algorithms...35

ii

3.1 Overview..35

3.2 Data Preparation and Import..35

3.2.1 mzXML Import Function..36

3.2.2 Base64 Conversion...41

3.3 Computing Models of Peptide Pair Isotopic Peaks..43

3.3.1 Average Peptide Composition Formula..43

3.3.2 Isotopic Ratio Pre-Calculation..44

3.3.3 Computing an Isotopic Pattern for a Given Molecular Formula..................45

3.3.4 A Note on Isotopic Ratio Limitations...47

3.3.5 Modelling a Single Peptide Pair...48

3.4 Algorithm for Initial Detection of Peptide Pairs..51

3.5 Algorithm for Clustering Signals...60

3.5.1 Clustering of Individual Detections..60

3.5.2 Cluster Contraction and Reprocessing..63

3.5.3 Cluster Overlap Removal..65

3.5.4 Parameter Selection..66

3.6 High-Resolution and Triple Label Adaptability...72

3.7 Cross-Referencing with SEQUEST Results..76

3.7.1 SEQUEST Results Import..76

3.7.2 Cross-Referencing SEQUEST and PITS Results...79

CHAPTER 4 Results and Discussion..81

4.1 Introduction..81

4.2 PITS Detection Results for the Four Replicate BSA Data Files............................81

4.2.1 Supplementation of PITS Results with SEQUEST......................................85

4.3 PITS Results for Yeast...89

4.4 PITS Results for High-Resolution Data...90

4.5 PITS Results for Triple-Labelling Data...93

4.6 Detection of Differential Expression ..96

iii

CHAPTER 5 Conclusions and Future Work..100

5.1 Conclusions..100

5.2 Future Work...101

 References...105

Appendix 1 High-Resolution MS Acquisition Parameters...109

Appendix 2 Triple-Label MS Acquisition Parameters..110

Appendix 3 Alternate Ratio MS Acquisition Parameters..112

Appendix 4 MzXML Import Function..114

Appendix 5 Base64 Decoding Function...117

Appendix 6 Average Amino Acid Function..118

Appendix 7 Isotope Possibilities Table Function..121

Appendix 8 Formula to Isotopic Ratios Function...122

Appendix 9 Multinomial Distribution Function ..124

Appendix 10 Fast Factorial Function..126

Appendix 11 Gaussian Model Function..127

Appendix 12 Peptide Finder Function..130

Appendix 13 Clustering Function ..134

Appendix 14 SEQUEST XLS Import ..144

Appendix 15 Label Counting Function...155

Appendix 16 SEQUEST Scan Combinations...156

Appendix 17 SEQUEST Cross Referencer...157

Appendix 18 Software Prerequisites and Use...160

iv

LIST OF TABLES
Table 1: An overview of the steps involved in converting (truncated) Base64 encoded

data in an mzXML file to m/z and intensity pairs...42

Table 2: Intensities of isotopic peaks for heaviest possible mass, normalized to base
peak..47

Table 3: Summary of the peaks detected using the PITS algorithms outlined
previously..82

Table 4: Overview of the number of each "class" of peptide detected for the four BSA
data files...82

Table 5: Number of detections per peptide class for the S. cerevisiae data file.................89

Table 6: Counts of each type for the six higher-resolution BSA data files........................91

Table 7: Summary of peptide detection counts for the two BSA files with three
isotopic labels..95

v

LIST OF FIGURES
Figure 1: An overview of the steps involved in stable isotope labelling...........................11

Figure 2: An overview of labelling using isobaric tagging methods.................................14

Figure 3: An overview of the spectral counting workflow..15

Figure 4: Overview of feature detection process...17

Figure 5: An overview of the order of steps in traditional methods vs the proposed
method..21

Figure 6: Reductive amination reaction which methylates primary amines......................24

Figure 7: Overview of the workflow to analyze data with the proposed method..............35

Figure 8: The isotopic peak models at m/z 400 for each of the eight classes of peptides:
z=+1 with 1 and 2 labels (1,2), z=+2 with 1, 2, and 3 labels (3,4,5) and
z=+3 with 1, 2, and 3 labels (6,7,8)...50

Figure 9: The isotopic peak models at m/z 1700 for each of the eight classes of peptides:
z=+1 with 1 and 2 labels (1,2), z=+2 with 1, 2, and 3 labels (3,4,5) and
z=+3 with 1, 2, and 3 labels (6,7,8)...51

Figure 10: A representative singly-charged peak pair with one label. This peak pair is
used to illustrate the signal-to-noise ratio behaviour and several aspects of
fitting such as interference, multiple model fits, and chromatographic
intensity variations...55

Figure 11: The chromatographic dimension of the peak pair in Figure 10. The feature
of note is the dip in intensity at 1500 seconds, which can result in two
separate groupings of detections if the signal-to-noise ratio drops below
the cutoff value..56

Figure 12: A view of the m/z dimension of the singly-charged, one-label peak pair
shown in Figure 10. Note the interfering peak that appears just before
m/z 406...56

Figure 13: Intensity maps of the signal-to-noise ratio for each of the eight classes of
peptide pairs, for the region corresponding to the peak shown in the
previous figures. Darker regions represent larger signal-to-noise values,
while values less than 3 are white..57

Figure 14: Assignment of the peptide class detected at each of the mass-to-charge
values and time points in the raw data, after the initial detection is
complete. The region shown here corresponds to that of Figure 10................58

Figure 15: A peak pair extracted from the raw data (solid line) and three different

vi

models (dashed line: singly charged, 1 label; dotted line: doubly charged,
two labels; dash-dot line: triply charged, three labels) with the same m/z
spacing between isotopic patterns showing that all three models will have
some degree of fit to the raw data. The correct model will have the highest
signal-to-noise ratio...59

Figure 16: "Clouds" produced by the clustering function which establish the bounds of
the region within which a detection is considered to be a part of the same
cluster. Darker values indicate the spot is closer to a valid detection..............62

Figure 17: Final assignment of class and location of the peptide detections previously
shown in Figure 15. Note that only a single final detection is indicated. The
other detections were excluded either for not persisting long enough in the
chromatographic axis (<5 points), or having a final signal-to-noise ratio
which was too low (<8)...64

Figure 18: Histograms of the signal-to-noise ratios output by the first phase of
detection. There are no immediately visible features such as plateaus or
valleys that provide an intuitive cutoff during clustering. Counts are
logarithmic to better represent the range of data in the figure.........................67

Figure 19: Representative peaks for doubly charged detections with one label at
various signal-to-noise ratios. Note that the isotopic patterns and peak
shapes become cleaner as the signal-to-noise ratio increases. The figure
with the lowest signal-to-noise ratio appears to have clean peaks but note
that the peaks are not spaced correctly for the class type. This is an
inherent risk of selecting too low a signal-to-noise value when alignment
artifacts are present. Solid lines are the raw signal while dashed lines
represent the model..68

Figure 20: Surface plot of the raw spectral data for the peak from Figure 19 with a
signal-to-noise ratio of 5.02, which is below the cutoff of 8. While the
peak is visible, it is not well defined. Many of the peaks with lower
signal-to-noise values have similar appearances...70

Figure 21: Plots of final computed ratios for each of the four BSA data files. Note the
ratios are logarithmic for symmetric distribution about zero. Black points
are those which have a signal-to-noise ratio of 8 or greater, red plus
symbols represent detections that do not meet this criteria and are shown
for reference...72

Figure 22: Example of the singly-charged, single-label model (class 1) adapted for
triple-label detection. The solid line is the first vector, containing the two
outer "detection" peaks, and the dashed line is the second vector
corresponding to the second sample's signal...76

vii

Figure 23: Computed ratios for each of the four replicate BSA data files.........................83

Figure 24: Histograms of the computed ratios for each of the four BSA replicates..........84

Figure 25: Plot of ratios as a function of m/z with SEQUEST matches indicated.
Peptides with matches are plotted as red + symbols, while those without
matches are plotted as black points..86

Figure 26: Histograms of the ratios separated by SEQUEST matches. Black bars
correspond to detections with matches, white bars correspond to detections
without SEQUEST matches...87

Figure 27: Plot of isotopic peak ratios as a function of m/z value for the S. cerevisiae
data file. The distribution appears normal about the expected ratio of 1:1......90

Figure 28: Histogram of the ratios computed for the S. cerevisiae data file.....................90

Figure 29: Plots of the intensity ratios for each detection as a function of the m/z
value, for each of the six higher-resolution BSA data files.............................92

Figure 30: Histograms and plots of detected ratios as a function of m/z value for the
two data files containing three isotopic labels...94

Figure 31: Plots of detected expression ratios as a function of m/z, grouped by
organism. Lysozyme is represented with circles, BSA with triangles, and
E. coli with solid points. Note the distinct grouping and separation of the
lysozyme circles (where present)...97

Figure 32: Calculated ratios for the second set of BSA, lysozyme, and E. coli
samples...98

Figure 33: Main interface display of PITS software package..101

viii

ABSTRACT

Mass spectrometry plays a significant role in many proteomics experiments owing to
its ability to provide high quality, detailed data on complex samples containing proteins
and/or their constituent peptides. As with any technology, the capabilities of mass
spectrometers are constantly increasing to provide better resolution, faster data
acquisition, and more accurate mass measurements. However, the existence and
widespread use of previous-generation instruments is not negligible. While these
instruments may not have the capabilities of their modern counterparts they are still able
to collect useful experimental data, though their limitations can result in trade-offs
between certain parameters such as resolution, sample run-time, and tandem MS
experiments.

This work describes an alternative method of MS data analysis, dubbed Parallel
Isotopic Tag Screening (PITS), which seeks to enable higher throughput and the
collection of better quality data on such previous generation instruments. This is
accomplished by altering the duty cycle of the instrument in favour of MS¹ scans for the
purposes of quantitation, and reducing the collection of MS² data (for the identification of
peptides) to a single MS run which is separate from the quantitation data. Detection of
peptides in the mass chromatogram is achieved through the use of a stable-isotope
labelling method (dimethyl labelling) to produce a pair of isotopic patterns in the raw MS
data, where the signal from the “light” isotopic pattern corresponds to peptides from one
sample, and the signal from the “heavy” isotopic pattern to a second sample. Through the
fitting of reference isotopic patterns to the raw data, these peak pairs can be detected and
quantified to determine the relative protein expression ratios between the two samples.

The algorithm was validated against the results of an established proteomics software
component (SEQUEST) and was able to detect four times as many peptide pairs as the
traditional tool. To demonstrate its ease of adaptability to different experimental methods
and instrument configurations, the PITS algorithm was also shown to be successful in the
quantitation of peptides for both low and high resolution data (m/z increments of 1/12 and
1/50, resp.), and for samples which contained a third isotopic label. Finally, the
algorithm's ability to successfully detect differential protein expression was evaluated
through the use of a sample containing proteins with light:heavy concentration ratios at
2:1 and 1:2, against a complex 1:1 background. PITS was able to detect groups of
peptides that were present at each of the prepared concentration ratios above and below
the background ratio. The viability of the algorithm in this range of situations
demonstrates its potential for increasing both the throughput of proteomics experiments
and the quality of the resulting data.

ix

LIST OF ABBREVIATIONS USED

ΔCN Delta Correlation Number

ASCII American Standard Code for Information Interchange

BSA Bovine Serum Albumin

DNA Deoxy Ribonucleic Acid

DTT Dithiothreitol

ESI Electro-spray Ionization

HPLC High-Performance Liquid Chromatography

IAA Iodoacetamide

ICAT Isotope-Coded Affinity Tagging

Inf Infinity or infinite (MATLAB abbreviation)

iTRAQ Isobaric Tag for Relative and Absolute Quantitation

LC Liquid Chromatography

MALDI Matrix-Assisted Laser Desorption Ionization

MS Mass Spectrometer/Mass Spectrometry

MS/MS or MS² Tandem Mass spectrometry

NaN Not-a-Number

PITS Parallel Isotopic Tag Screening

RPLC Reversed-phase liquid chromatography

SEQUEST Protein sequence identification software using MS/MS

scans.

SHA Secure Hash Algorithm

SILAC Stable-Isotope Labelling of Amino acids in Cell culture

SNR or S/N Signal-to-noise ratio

TEAB Triethylammonium bicarbonate

TFA Trifluoroacetic acid

XML Extensible Markup Language

x

ACKNOWLEDGEMENTS

I would like to thank all those who contributed to the creation of this work and the

surrounding research, and made it possible. Notable contributions include the prior work

(Joseph Boutilier for initial proof of concept and the S. cerevisiae data file, Mark Wall for

preparing the 4 BSA samples and data files), experimental work in labelling methods and

sample preparation for new experiments (Gemma Regan, summer research assistant),

SEQUEST-related work and peak width code (Samantha Rudolph, summer research

assistant), the members of the Doucette Group for the use of their lab (and assistance with

instruments and procedures), and finally my supervisor, Dr. Peter Wentzell, for the

opportunity to create this work.

xi

CHAPTER 1 INTRODUCTION

The term “proteome” has its origins in literature by Wilkins et al.[1] in 1995. The term

itself is a portmanteau of the words “protein” and “genome”. Analogous to the genome,

the proteome is intended to encompass the entire protein complement of an organism.

However, in contrast to the static genome of a given organism, and despite originating

from the same, the proteome of an organism is dynamic in nature and there is no 1:1

relationship between the number of proteins and genes. This is because there are many

biological processes involved in the transcription of DNA to messenger RNA (mRNA)

and the translation of mRNA to proteins. As a consequence, there is no simple direct

relationship between the expression of genes and the abundance of proteins.[2] Some

genetic information is never translated into a protein, while other genes may give rise to

several proteins, owing to post-translational modifications of the genetic information.

Modern cell biology involves the study of genomics, transcriptomics and proteomics (as

well as other “omics” fields), but the last is often regarded as the most challenging due to

the number, diversity, and concentration range of proteins in an organism. Since proteins

are ultimately the functional elements of a cell (catalysis, structure, signalling, etc.), the

study of the proteome is of key importance.

Since its creation, the field of proteomics and its methodology have grown and

improved significantly, but the definition by Anderson and Anderson[3] still holds true. In

1

1998 they defined proteomics as “the use of quantitative protein-level measurements of

gene expression to characterize biological processes (e.g. disease processes and drug

effects) and decipher the mechanisms of gene expression control”. They also note that,

while ambitious to obtain, the knowledge of how the molecular regulation of a biological

system functions is far more powerful than simply mapping proteins to the genome.

Thus, the ultimate goal in proteomics is to understand the role that each protein plays and

how it interacts with other proteins and molecules within the living system. There are also

practical implications to this understanding from a medical perspective, and the search

for protein biomarkers provides a strong motivation for the field of proteomics.[4],[5] The

identification of proteins that are uniquely associated with a disease state allows for a

better understanding of a disease, and potential drug targets to be found.

While proteomics can be broadly described to encompass the characterization

(structure, properties, abundance, etc.) of any protein in a living system, a major

emphasis of modern proteomics is the large-scale, system-wide description of the

proteome in the study of systems biology. From a bio-analytical perspective, this means

the use of high throughput biological methods to measure the expression of many

proteins in a living system. Rather than static measurements, a better understanding of the

roles and relationships of proteins is gained by examining changes in protein expression

between two or more states. These states could consist of organisms in healthy and

diseased conditions, or exposed to different stimuli (growing conditions, heat shock, etc.),

or simply different time points in a longitudinal study. The objective is to examine

2

changes in protein expression among the different states to gain a better understanding of

the biological system. This is often referred to as “comparative proteomics” and has the

goals of identifying the proteins that are differentially expressed (up- or down-regulated)

and providing explanations for the observed behavior.

The objective of this research has been to develop methods to improve capabilities in

comparative proteomics. The remainder of this chapter presents a brief overview of the

most relevant high-throughput mass-spectrometry based methods currently used and

outlines how the proposed method integrates with this framework.

1.1 QUANTITATIVE PROTEOMICS

From an analytical perspective, the ideal methodology in proteomics would provide

unambiguous identities and accurate concentrations for all of the proteins (including post-

translational modifications and different isoforms) that make up the proteome of the

sample. Since biological samples are complex and highly variable, the ideal methodology

should also allow for rapid processing of many replicates. However, the realization of this

ideal is not complete, and an insufficient number of samples is often cited as a reason for

inconsistent results in the search for protein biomarkers.[6],[7],[8]

These ideal objectives often run into conflict with one another, so compromises are

generally made. Proteins can exhibit a wide range of properties (e.g. size, hydrophobicity,

charge), and so the extraction and purification of proteins from an organism is generally a

complex process involving many steps. Solubilization can be difficult, especially for

3

hydrophobic proteins such as membrane proteins, and the complexity of the proteome

can mean that a variety of fractionation steps may be needed to simplify the sample prior

to further analysis. These steps can include gel electrophoresis and various types of

chromatography (e.g., ion-exchange, reversed-phase), and may be applied to the proteins

themselves, or the peptide fragments obtained by protein digestion during sample work-

up. These procedures may result a single sample producing multiple fractions for

analysis. The final step in the analysis generally involves some form of liquid

chromatography coupled to mass-spectrometry (LC-MS) with electro-spray ionization

(ESI), but other approaches such as matrix-assisted laser desorption ionization (MALDI)

MS are also used. MS provides an almost ideal detection method for proteomics, since it

provides high sensitivity, mass selectivity, a wide dynamic range and the ability identify

peptides and proteins through high-resolution measurements and tandem MS methods.

Therefore, MS has become the workhorse of modern proteomics and a wide variety of

platforms are used.

There are generally two approaches to proteomics, which are termed “top-down” and

“bottom-up” or “shotgun” proteomics.[9],[10] In top-down proteomics, the proteins

extracted from the sample remain intact throughout the analysis, whereas bottom-up

analysis requires that the proteins are digested into constituent peptides prior to analysis

by MS. Bottom-up methods have the advantage that peptides are easier to analyze by

chromatography and mass spectrometry since they are smaller and have more

homogeneous properties. However, the number of peptides will be much greater than the

4

number of proteins, and identification of the protein associated with a given peptide

requires sequencing of the peptide and comparison with a protein database. Furthermore,

information on post-translational modifications is obscured. On the other hand, top-down

proteomics provides more direct information on the protein, but the size and diverse

protein properties make the chromatography and MS more challenging. Applications

involving bottom-up proteomics are currently more widespread, but advances in top-

down proteomics continue to improve the methodology. This present work will focus on

bottom-up proteomics.

Regardless of the approach used, it is still necessary to obtain some measure of

protein expression under a given set of conditions. Absolute quantitation of protein

concentrations in an organism would be ideal, but is difficult as it necessitates the use of

internal standards in a reproducible fashion. These internal standards are typically

peptides with isotopic substitutions.[11],[12] This type of quantitation can be useful in

circumstances such as cellular modelling, where knowledge of absolute concentrations of

proteins is important, e.g. direct comparisons across organisms for metabolic pathway

studies, but the determination of these concentrations poses an additional challenge. In

many cases, the knowledge of the relative changes in protein concentration is sufficient to

determine protein significance in relation to a biological condition, as the absolute

concentration of a protein can have little correlation with its importance in the biological

process (such as signalling proteins, which can trigger significant changes even at low

concentrations). Within the context of a given biological system, it is therefore generally

5

more practical to determine the change in protein expression for a “test” state (e.g.

stressed, diseased, or after a fixed time) in relation to a “reference” or “control” state

(normal, healthy, time zero). These relative measures are what give rise to quantitative

proteomics.

The central thesis of this research is that the throughput and quantitation of current

methods in comparative, bottom-up proteomics can be improved through the use of the

methods employed herein. These proposed methods involve the analysis of MS data only,

and although tandem scans may be available, they are not used for quantitation nor the

location of peptide peaks. Instead, they are only used for peptide and protein

identification. The remainder of this chapter will consist of an overview of current

methods in comparative bottom-up proteomics, followed by a brief description of the

proposed method and its perceived advantages.

1.2 COMPARATIVE PROTEOMICS

While there are many methods that have been proposed and used in comparative

proteomics, a comprehensive review of these methods is beyond the intended scope of

this document. Most of the common methods can be separated into one of several

categories, although specific variations are common. All methods start with the extraction

of the proteins in at least two biological states to be analyzed, with the objective of

comparing individual protein expression levels under those conditions. For simplicity, the

discussion that follows will limit this to two states, termed “test” and “reference.”

Sample preparation will typically include digestion of the protein into peptides (typically

6

using trypsin), and a series of purification and separation steps. This is then followed by

further cleanup and separation, potentially with multiple dimensions and/or fractions, and

ultimately lead to detection of the peptides by mass spectrometry. The separation and

digestion steps can vary considerably, depending on the nature of the sample, but are

generally critical to its success. Ergo, the focus of this work is on the final separation and

MS detection of the peptides.

The principal methods currently used to identify and quantify the proteins and

peptides in comparative bottom-up proteomics can be classified in a number of ways.

One classification is according to whether the method uses labels, or is “label-free”.

When labelling is used, different chemical tags are added to the digested peptides for the

test and reference samples, and the samples are combined prior to LC-MS analysis. The

tags used allow for distinction of the mass spectra of the two samples, so that the relative

concentrations of peptides can be determined within the same analysis. These methods

have the drawback of the inconvenience, expense and complications of adding a label to

the sample, but also have the advantage of fewer experiments and less susceptibility to

variations between runs. For label-free methods, which include spectral counting and

feature extraction, the digested peptides are analyzed directly without the addition of

chemical tags. This can simplify the analysis, but the test and reference samples must be

run separately, which can lead to issues of variability in retention time and mass spectral

sensitivity.

7

Another distinction that can be made is whether or not the methods require the use of

tandem mass spectrometry data, as modern proteomics makes extensive use of tandem

mass spectrometry to identify peptides and proteins present. In a typical LC-MS analysis,

this occurs as follows: as compounds elute from the column, the mass spectrometer will

constantly cycle to obtain ESI mass spectra (referred to as MS1 data). Peaks detected

within the mass spectrum may correspond to peptides, or originate from other molecules

that are not of interest. At the end of each MS1 scan, algorithms built into the mass

spectrometer determine whether peaks warranting further examination by tandem mass

spectrometry are present. This algorithm is complex and considers a number of

configurable factors in determining how many and which peaks to examine, such as the

size of the signal, the charge state of the ion, and whether or not the same peak has been

recently examined. On the instrument used in this work, this process is also configured to

include a “zoom” scan, which is a localized higher resolution scan to assess candidate

peaks in the MS1 spectrum. For each of the peaks chosen from the MS1 scan, the

corresponding ion is selected and fragmented to provide the MS/MS data. These

additional scans are stored and can later be used to determine if the selected ion is a

peptide, and if so, to attempt to identify its amino acid sequence (discussed shortly). The

number of tandem scans carried out in this manner is determined by the instrument

configuration, and after these scans are complete, the instrument returns to the MS1

scanning mode and the entire process is repeated.

Peptides, and their parent proteins, can be identified from MS/MS data in a variety of

8

ways, including de novo sequencing from the fragmentation pattern, protein database

matching, or hybrid methods[13], but database matching is the most common approach and

will be described briefly here. Candidate peptides can be identified from the protein

database based on parameters such as the mass of the parent ion and the digestion

protocol. For each of these candidates, hypothetical fragmentation patterns based on the

amino acid sequence can be computed and compared with the experimental pattern

observed in the MS/MS data. If, according to a variety of criteria, a good match is

obtained, then the peptide is considered to be identified. If the peptide sequence is

sufficiently unique, then it can be assigned to the corresponding protein in the database.

However, this process is not without pitfalls. First, a number of parameters for the

matching algorithm must be optimized to ensure an acceptable level of false positives and

false negatives for peptide detection[14]. Second, criteria must be established to rank

acceptable matches within a number of candidates, and it is possible that the selected

sequence is incorrect. Third, protein databases are continually evolving and protein

identifiers may not be consistent across different sources or over time. Finally, it should

be noted that the unambiguous association of a peptide with a protein in the database

requires a sequence of sufficient length to be unique. Despite these limitations, protein

identification through MS/MS data is generally quite reliable.

An important consideration in this work is the “duty cycle” of the mass spectrometer,

which can be defined as the fraction of time that the instrument spends performing MS1

scans. When the MS1 spectra are plotted as a function of time, the result is a mass

9

chromatogram (intensity vs. m/z vs. time). To obtain reliable quantitative information, the

sampling interval along the time dimension must be sufficiently small to adequately

capture chromatographic elution profiles. If the number of tandem MS scans between

MS1 scans is increased, the sampling interval is also increased, and under-sampling of the

chromatogram may result in poor quality data. On the other hand, if the number of

tandem scans is reduced, the sampling interval is decreased, but important peptides in the

mass chromatogram may not be located and identified by MS/MS. Additionally, the

sampling interval can be considerably variable over time, as not all MS1 scans will

contain the maximum number of signals meeting the criteria for tandem MS analysis. On

the instrument used in this work, sampling intervals ranging from 1.4 up to 9.0 seconds

have been observed in the same data file. The highest sampling frequency can be

achieved if tandem MS scans are eliminated altogether, corresponding to a 100% duty

cycle. A higher sampling rate has implications for throughput as well. As narrower

chromatographic elution profiles can be tolerated with a reduced MS1 sampling interval,

shorter chromatographic runs and/or higher resolution separation methods can be

employed, resulting in reduced analysis time and improved peak capacity. Furthermore, if

MS/MS scans are eliminated while retaining the same sampling rate at 100% duty cycle,

higher resolution MS1 data can be obtained, again improving the quality of the data.

Thus, while tandem MS scans are needed for peptide identification, their elimination can

improve throughput, peak capacity and/or mass spectral resolution, providing advantages

to methods that do not require tandem MS data.

10

The remainder of this section focuses on several general methods that are used for

comparative proteomics. The first two of these are based on isotopic labelling, while the

last two are label-free methods. All of the methods, except for the last, require tandem

MS data.

1.2.1 STABLE ISOTOPE LABELLING

Stable-isotope labelling refers to a method in which the samples in the different states

being analyzed are labelled with isotopic tags. In the case of two states, one will be

11

labelled with a “light” tag, and the other state with a “heavy” tag. There are various

strategies for the incorporation of these labels, and several types of labels from which to

choose.[15],[16],[17],[18],[19],[20] Despite these options, the underlying strategies employed tend to

remain the same, and an overview is illustrated in Figure 1.

Generally, the mixture containing the differentially labelled peptides is subjected to

chromatographic separation, followed by introduction into a mass spectrometer to

produce a mass chromatogram. During the MS run, peaks which meet the configured

tandem MS scanning criteria are subjected to tandem MS analysis, as described

previously. The data are then subjected to post-processing in which the tandem MS

spectra and a protein database are used to determine the peptide sequence and identify the

protein to which the sequence belongs. This is done using a software program such as

SEQUEST,[21] MASCOT,[22] or TANDEM,[23] which can also integrate labelling

information to provide information on the number and location of the light or heavy tags

incorporated to the peptide. Once a peptide sequence has been identified in this fashion,

the corresponding light or heavy peak can be located within the mass chromatogram and

the intensity ratios calculated based on the MS1 data.

There are several drawbacks to this approach, both instrumental and methodological,

as has been noted in the previous section. First, the identification of a protein is not a

standardized procedure, as there are a myriad of adjustable matching parameters which

must be set, and a variety of databases to choose from. Furthermore, the duty cycle of the

MS instrument is split between preliminary (MS¹), and tandem (MS²) scans, such that it

12

is only possible to gather a limited number of tandem scans for any given MS1 sampling

rate. While it is possible to increase either the sampling rate or the number of tandem

scans, the other will be negatively impacted as either a degradation in the quality of the

chromatographic data, or a reduction in the number of peptide peaks that can be detected

and identified.

1.2.2 ISOBARIC TAGGING

Isobaric tagging methods such as iTRAQ (developed by Ross et al.[24]) or Tandem

Mass Tags (Thompson et al.[20]) are a special type of stable-isotope labelling used to

achieve relative quantitation of proteins. The difference arises in how the tags themselves

are designed. All of the tags employed have the same nominal mass, but contain different

combinations of isotopes. An overview of the strategy is shown in Figure 2. Note that the

order of the steps has changed somewhat from the previous example. The labelling step is

as before, but incorporating the isobaric labels. Once again, mass peaks are selected for

tandem MS scans, but in this method the peaks are not paired. In this case, a single MS1

peak contains both the test and reference states for the peptide, but these two states give

rise to different fragment ions (“reporter ions”) in the MS/MS spectra. The fragment ion

intensities in the tandem MS scans are used to determine differences in the intensity

ratios of the samples. The tandem MS scans are also post-processed in a similar fashion

as before.

13

This approach resolves the necessity of locating both the light and heavy peaks in the

sample as they occur simultaneously in the mass and time dimensions. The problems of

database search parameters, duty cycle, and reagent cost still remain. Furthermore, one is

limited to using only tandem MS scans to quantify the protein ratios, and this scan may

not occur at the maximum of the peak itself. Integration of peak area for distinct labels is

not possible either, as all tag variants are contained within the same mass peak. Thus, the

calculated ratio may be less precise than that obtained by using multiple time channels in

the MS1 data.

14

1.2.3 SPECTRAL COUNTING

Spectral counting,[25],[26] first validated by Liu et al.,[27] is a significant departure from

the workflows described previously. The test and reference samples are processed

15

separately, and therefore no labels are necessary to distinguish them. As before, peaks of

interest are scanned using tandem MS, and the proteins identified from the composition

of peptides detected. It is then assumed that the number of times a protein is detected

from its constituent peptides is related to the amount of that protein present in the sample.

Comparison of the number of counts of a protein in both the test and reference samples is

used to establish the relative ratio and determine whether the protein is up-regulated or

down-regulated. This is illustrated in Figure 3.

As no labels are required, this method is less expensive and procedurally less

complex, but it is again limited in its reliance on tandem MS data and the correct

identification of a peak. It is entirely possible that a peak is present but not detected, and

because the test and reference samples are processed separately, it is imperative that the

conditions of analysis remain consistent across all samples. Finally, the relationship

between detection counts and the amount of protein present is likely to be non-linear and

highly variable, since the detection of one protein is affected by the presence of other

proteins in a complex sample[28].

1.2.4 FEATURE EXTRACTION METHODS

Feature extraction methods represent a substantial class of techniques for comparative

proteomics that are characterized by their direct use of information from the mass

chromatogram to obtain relative measures of protein expression.[29],[30],[31],[32] Although

specific implementations of this approach differ in their algorithmic details, the general

16

strategy is essentially the same and illustrated in Figure 4. As these methods do not make

direct use of MS/MS data (unlike the other methods discussed so far), the issues

surrounding protein identification and under-sampling due to mass spectrometer duty

cycle are removed, and simpler instruments can, in principle, be employed to run the

experiments. In addition, these methods are generally label-free approaches, further

simplifying their implementation.

Feature extraction methods can be considered to derive from earlier approaches to

peptide finger-printing that existed even before mass spectrometry was routinely

available.[33],[34],[35] In these approaches, the proteins in the sample would first be

separated, typically using a method such as two-dimensional gel electrophoresis.

Differences in the patterns observed for the test and reference samples could then be

noted and proteins of interest could be extracted for further investigation and

17

identification. This identification could be performed by traditional biochemical methods

or, more recently, using mass spectrometry. This approach focuses on the identification of

only those proteins where differences are observed and ignores the majority that exhibit

no differential expression. In contrast, most strategies in MS-based proteomics seek to

identify as many proteins as possible and then search for differential expression.

The transformation of traditional peptide finger-printing to MS based platforms

involves replacing the 2D gels with the mass chromatograms and detecting differences in

intensities of peptide signals (and thereby the expression levels of the parent proteins).

Two elements are key to this process. First, chromatographic features within the mass

chromatogram associated with the peptides must be identified. Since no tandem MS

information is assumed to be available, association of peaks with a particular peptide is

not possible and the location of peptides (or possible peptides) must employ other

methods. This is a complex procedure, since signals within the mass chromatogram

arising from peptides must be distinguished from background noise and irrelevant signals

that may be present. A variety of strategies have been developed for this purpose in

different software packages. Generally, however, algorithms employ a stepwise procedure

involving signal smoothing, background removal, peak detection, detection of isotopic

patterns, and conditional acceptance criteria. At the end of this process, the features

identified form a map of typically hundreds of mass/time windows which contain the

peaks of interest. The peaks within these windows can then be quantified through

intensity or area measurement.

18

To detect differential expression through the peptides, it is necessary to compare the

mass chromatograms of the test and reference samples. Therefore, a second key element

of the process is mapping the features extracted from one mass chromatogram to another,

which is also not trivial. Although the mass registration for peptide peaks detected should

be fairly consistent, chromatographic variability, especially over extended periods of

time, can lead to significant differences in retention times. Therefore, alignment of the

mass chromatograms in the time direction is generally necessary before the two sets of

results can be compared. Post-alignment, an algorithm with specified matching criteria

can be used to pair the features in each data set and calculate ratios. Of course, issues

with missing features or incorrect matching are still possible.

Once expression ratios have been obtained, the data can be analyzed to identify

peptide peaks that exhibit differential expression or interesting behavior. In the original

peptide mapping experiments, fairly simple methods, such as visual inspection, were

typically employed to identify interesting features. As technology improved, it became

possible to use more advanced chemometric tools, such as exploratory data analysis, to

distinguish the more subtle aspects of a data set. At this point, one or more experiments

can be carried out to target the peptides of interest for MS/MS identification. This way,

time is not spent identifying peptides and proteins that are not relevant to the system

under study.

19

The experimental simplicity of feature extraction methods, which are label-free

methods that require only mass chromatograms, is their most attractive characteristic. In

addition, the 100% duty cycle has the advantages of higher throughput, better mass

resolution and higher peptide detection rates already noted. However, these methods are

not without drawbacks. The algorithmic complexity of locating features and aligning

them across multiple experiments can be a complicating factor, and these methods work

best with high resolution MS data. From an analytical standpoint, it is also often more

appealing to have features that are associated with an identified protein from MS/MS data

from the beginning, rather than trying to discover these at the end of the experiment. As

there are variations in chromatographic behavior and MS sensitivity across multiple

experiments, the calculated expression ratios are also likely to be more variable than

those obtained from a method based on isotopic labelling, and normalization of ratios

may be required. It is possible to use feature extraction methods in conjunction with

isotopic labelling experiments, but generally the isotopic pairs are identified after their

extraction as individual features. It is this aspect that is addressed in the present work.

1.3 PROPOSED METHOD FOR QUANTITATION

The method proposed in this work strives to combine elements of stable isotope

labelling and feature extraction methods to exploit the advantages of both. This new

method, referred to as “Parallel Isotopic Tag Screening” (PITS), was originally

investigated by J. Boutilier[36] in this research group. While this original work established

a proof-of-principle for the underlying concept, many of the algorithms developed were

20

unrefined, resulting in sub-optimal performance with regards to both efficiency and

results. Furthermore, the original work did not fully validate the method for detection of

differential expression, nor its full potential under different experimental conditions. The

present work represents the author's contribution to address some of these issues in an

ongoing effort to establish PITS as a useful tool for large-scale proteomics studies.

The advantages and drawbacks surrounding feature extraction methods were

discussed in the previous section. In contrast to other methods discussed, feature

extraction methods represent a fundamental shift in the strategy for comparative

proteomics experiments, as represented in Figure 5.

Whereas the sequence used in most methods is to locate the peptides, identify the

peptides and proteins, quantify the relative expression levels and analyze the results for

21

interesting behavior, feature extraction methods move the peptide/protein identification

step to the end, making this a separate experiment. In doing so, the need for tandem MS

scans is eliminated and the instrument can operate in MS-only mode. As already noted,

there are numerous potential advantages to this that include the detection of a larger

number of peptide features, greater throughput, higher mass resolution and less restrictive

instrument requirements.

Perhaps the biggest drawbacks of feature extraction methods are the complexity of

identifying legitimate features in the mass chromatogram and the variability associated

with calculating expression ratios across multiple experiments. It is the premise of the

work presented here that both of these issues can be mitigated by combining the

principles of feature extraction to stable isotope labelling experiments. To address the

first drawback of feature identification, the PITS algorithm simultaneously models the

isotopic patterns of both light and heavy peptides in the pair to provide greater confidence

in establishing the location of peptides. This is in contrast to other feature extraction

methods that model isotopic patterns for individual ions, making it difficult to distinguish

peptides from other contaminants or spurious signals. Additionally, this approach allows

the detection of overlapping peptide pairs with relatively small separation in isotopic

mass, a situation which is difficult to accommodate with conventional feature extraction

methods. Such modelling also leads to direct quantitative assessment of expression ratios

between the light and heavy peptides (test and reference), reducing the problem of

quantitative variability across experiments.

22

It has been the goal of this research to improve the algorithms associated with the

PITS methodology and to demonstrate their efficacy in a variety of situations. The intent

is to be able to apply the method to mass chromatograms from stable isotope labelling

experiments and to make it adaptable to a variety of protocols, but the target data are

experiments with relatively low mass resolution. It may be argued that, as

instrumentation continues to improve, providing higher resolution and faster scanning

rates, issues surrounding the duty cycle and the collection of tandem MS data will

become less relevant and algorithms based on the analysis of MS1 data will become

obsolete. However, such instruments, which are costly and of limited availability, will

remain a bottleneck in the proteomics workflow and restrict higher throughput of

samples. A trend in modern high throughput analysis, as evidenced by the human genome

project, is towards parallel analysis using multiple, less expensive instruments. With the

increased miniaturization of analytical instruments, including mass spectrometers,[37]

there is likely to continue to be a role for the analysis of low resolution MS1 data.

To demonstrate the PITS methodology, this research employs dimethyl labelling[38],[39],

which uses isotopic variants of formaldehyde to differentiate the masses of the test and

reference samples. The advantages of this method are that it is less expensive than

commercial methods, and the labelling procedure consists of straightforward addition of

reagents and reasonably short incubation times. During the process of dimethyl labelling,

the digested peptides are labelled by dimethylation of any primary amines present in the

23

peptide chain. Such primary amines are found at both the N-terminus of the peptide chain

and also in the side chain of each lysine residue. The mechanism of this reaction is via a

reductive amination pathway, and the overall reaction is shown in Figure 6.

The use of deuterium labels has minimal effects of retention time shifts in the

chromatographic domain[40]. It is even possible to expand the number of possible labels

through the additional use of deuterated sodium cyanoborohydride (replacing the

remaining H atom in the added methyl groups) and/or 13C deuterated formaldehyde

(replacing the 12C of the methyl groups with 13C). Combinations of these reagents can

produce labels with offsets of two, four, six, and eight mass units above the “light” label.

Use of labels differing by only two mass units will result in overlap of signals within an

isotopic cluster. While this work only utilizes labels with mass differences of 4 mass

units, the proposed method will still work in situations with such an overlap. This is

because the computed models would incorporate the overlap and de-convolute the

contributions of each isotopic pattern during the model-fitting calculations.

As mentioned, tandem MS scans are not necessary for the quantitation of a detected

peptide pair (though they may be present). This results in the possibility of detecting a

24

greater number of peptide pairs, and allows the tailoring of the instrument configuration

to match the intent of the experiment. Eliminating tandem MS scans improves the duty

cycle of the instrument, which allows for the choice of more full MS scans for better

quantitation, higher resolution for better detection, and/or faster separations for better

throughput.

Of course, a disadvantage of any feature extraction method based on MS1 data is that

tandem MS is still necessary to provide identification of a peptide, but it is possible to

collect this information in a few post-analysis experiments and cross-reference them to

the quantified data, should a signal of interest be observed. Also, the location of peptides

by the PITS method is susceptible to interferences that affect the isotopic pattern, unlike

methods that identify peptides on the basis of tandem MS scans. However, quantitation of

the expression ratios based on MS1 data will be an issue for both approaches in such

situations.

A further challenge in implementing the PITS algorithm on samples with only two

isotopic labels occurs when one of the two isotopic patterns is completely absent. In this

situation, the PITS algorithm is unable to detect a pair of peaks for a peptide which may

be of high interest to the researcher. This is because the double-label method relies on the

presence of both of the isotopic patterns within the spectral data, and the second isotopic

pattern in the pair serves both as a reference for detection of peptides against other

components in the sample, and as the signal to be quantified. The dual purpose of this

25

signal can be eliminated through the use of a third isotopic label. One such experimental

design could have two of the isotopic patterns correspond to reference sample, but

labelled using two different labels. These patterns would then always be present to serve

as a reference for the location of signals. The third isotopic pattern would correspond to

the test sample, labelled using a third variant of the isotopic label. Should this signal be

completely absent, it is still possible to detect the reference signals and make note of the

absence of this third signal.

1.4 THESIS OUTLINE

The theory and principles of the proposed method outlined above may seem

straightforward, but there are substantial technical challenges which must be overcome

during the implementation stages. Particularly, establishing the relationships between the

detections at individual points on the mass chromatogram, processing time of the

algorithm on larger data sets, and integration of SEQUEST results. The remainder of this

work describes the re-written algorithms for data import and peptide detection, which

reduced the performance bottleneck, the newly-developed clustering algorithm for

grouping individual detections into a signal which persists over chromatographic domain,

and the code to import SEQUEST detections and cross-reference them with PITS

detections. It should be noted that while this work builds on the previous work of Joseph

Boutilier,[36] the original implementations of those algorithms have also been re-written to

provide additional features, performance, and flexibility.

The following chapter (Chapter 2) describes the experimental details of the methods

26

used in the preparation of samples, including the digestion process, labelling procedure,

and the instruments used. Chapter 3 covers the workflow and specific algorithms as

implemented for each of the key stages of the workflow. Chapter 4 describes the results

and validation of these algorithms on a variety of protein samples, and applications to

higher-resolution data, and the use of multiple labels, with preliminary experiments that

demonstrate this functionality. Finally, the overall conclusions are discussed in Chapter 5,

along with in-progress and future work which would further validate the PITS method.

27

CHAPTER 2 METHODS AND EXPERIMENTS

2.1 CHEMICALS USED

The following materials were used in the digestion and labelling of the protein

samples in this work. Catalogue numbers are provided in brackets after the chemical

name. Ammonium bicarbonate (A1641), iodoacetamide (11149), trifluoroacetic acid

(T5608), Tris (T1378-IKG), trypsin (T8802), triethylammonium bicarbonate (T7408),

formaldehyde 37 wt. % in H O (as formalin, F1635), deuterated formaldehyde 20 wt. % ₂

in D O (49-262-0), 13C deuterated formaldehyde 20 wt. % in D O (5-96388), sodium ₂ ₂

cyanoborohydride (15615-9) and sodium cyanoborodeuteride (190020) were obtained

from Sigma-Aldrich (St. Louis, MI, USA), dithiothreitol (161-0611) from Bio-Rad,

(Hercules, CA, USA), formic acid (A119P-4) from Fisher Scientific, (Waltham, MA,

USA).

Additional HPLC grade reagents were formic acid (94318-50ML) from Sigma-

Aldrich (St. Louis, MI, USA) and acetonitrile (A996-4) from Fisher Scientific (Waltham,

MA, USA).

Protein standards used were as follows: Bovine Serum Albumin (BSA) (A-8022), and

Lysozyme C (L-6878 Sigma) from Sigma-Aldrich (St. Louis, MI, USA). Escherichia coli

was grown as a culture per established methods[41], and was a gift from Dr. Andrew Roger

of the Department of Biochemistry and Molecular Biology at Dalhousie University. All

water used in sample preparation and HPLC was filtered on a Milli-Q purifier (Millipore

EMD, Billerica, MA, USA) and purified to 18 MΩ cm, courtesy of the laboratory of Peng

28

Zhang in the Department of Chemistry at Dalhousie University.

2.2 TRYPTIC DIGEST

In preparation for tryptic digest as published by Wall et al.[14], the proteins to be

digested (either BSA, lysozyme C, or the E. coli proteome) were portioned into 200 µg

aliquots, either by dilution from frozen stock to 1 mg/mL protein in 50 mM Tris buffer

(pH 7.4), or by weighing approximately 1 mg of solid protein standard and dissolving in

equivalent volume of 50 mM Tris buffer (pH 7.4) to working concentration of 1 mg/mL.

Dithiothreitol (DTT) was added to each sample to a final concentration of 9.5 mM, from

a 200 mM stock (4.75 µL / 100 µL of sample). The samples were incubated at 60 °C for

20 min in a water bath, after which iodoacetamide (IAA) was added to a concentration of

19 mM (10.5 µL of 200 mM stock per 100 µL of sample). The samples were placed in the

dark at room temperature for 20 min, after which 4 µg of trypsin (from 1 mg/mL stock in

1x10-4 M HCl) was added to the sample. The samples were then left to incubate at 37 °C

overnight. Finally, 24 µL (10% of the total sample volume) of 10% TFA (by volume in

H O)₂ was added to each sample to terminate the reaction. The samples were evaporated

to dryness in a Speedvac (Thermo Fisher Scientific, Waltham, MA, USA) rotary

concentrator and re-suspended (by actuating with a micropipette 40 times, followed by

vortexing of the sample) in 200 µL of water with 0.1% TFA, in preparation for cleanup as

described in section 2.3.

2.3 POST-DIGESTION CLEANUP

After digestion, the samples were subjected to reversed-phase liquid chromatography

29

(RPLC) cleanup to remove leftover reagents, especially ammonium bicarbonate which

interferes with the labelling process. Cleanups were run on a 1200 series Agilent (Santa

Clara, CA, USA) HPLC system with a G1379B degasser, 1376A pump, G1313A auto-

sampler, G1315B diode array detector, and G1364D fraction collector. Solvents used

were nano-filtered water with 0.1% TFA (Solvent A) and acetonitrile with 0.1% TFA

(Solvent B). The flow rate was set at 200 µL/min with 10 µL injections (10 µg

protein/injection). The solvent gradient timing is as follows: 0 min to 5 min at 5% B,

increasing to 95% B at 10 min, and re-equilibrating at 5% B until the 40 min mark.

Fractions were collected from 8.5 to 11 min, depositing three collected fractions per vial

to produce 30 µg aliquots of cleaned protein. Collected fractions were dried down in the

rotary concentrator in preparation for labelling. Samples were cleaned on a self-packed

column (5 cm x 1mm inner diameter) with Waters (Milford, MA, USA) Spherisorb S5

ODS2 beads (part no. 820019).

2.4 DIMETHYL LABELLING

In preparation for dimethyl labelling,[39] the 30 µg aliquots that were previously

digested, cleaned, and dried were re-suspended in 100 µL of triethylammonium

bicarbonate (TEAB). A 4 µL aliquot of 4 wt. % formaldehyde in H O₂ (either normal or

deuterated as appropriate) was added to the sample. The samples were briefly vortexed

and spun down in a centrifuge. A 4 µL aliquot of 0.6 M sodium cyanoborohydride

(normal or deuterated per the experimental design) was added to each sample, and the

samples were vortexed and left to incubate for two hours in a fume hood, with an

additional vortex step after one hour. The remaining reagents were quenched by the

30

addition of 16 µL of 1% w/v solution of ammonium bicarbonate, vortexed, and spun

down in the centrifuge. Finally, the samples were placed in a freezer-chilled rack to

prevent heating during the final quenching, which was completed by the addition of 8 µL

of 5% formic acid. The samples were evaporated to dryness in preparation for a final

RPLC cleanup.

2.5 POST-LABELLING RPLC CLEANUP

The reversed-phase cleanup procedure after labelling is identical to that discussed

previously (section 2.3) in the post-digestion cleanup, except that fractions were collected

so as to aliquot 10 µg of protein per vial. The amount of protein in the fractions was

estimated based on the chromatographic peaks, and used to recombine the light and

heavy labelled samples at a 1:1 ratio prior to LC/MS analysis. Samples were again dried

down in the rotary concentrator and placed in a freezer until use.

2.6 LC-MS/MS HPLC

The LC-MS/MS and HPLC configuration were shortened variants of the method

published by Wall et al.[14] Solvent A consisted of nano-filtered water with 0.1% formic

acid. Solvent B was acetonitrile with 0.1% formic acid. Protein samples to be analyzed

were re-suspended in solvent A and combined in the light:heavy ratios as appropriate for

the experiment (these samples and ratios are detailed subsequently in sections 2.7 to 2.9).

The pump flow rate was set to 250 nL/min with a 10 µL injection amount (injecting a

total of 1 µg protein). The solvent gradient was as follows: 0 min: 5% B; 0.1 min: 7.5%

B; 45 min: 20% B; 57.5 min: 25% B; 60 min: 35% B; 61 min: 80% B; 64.9 min: 80% B;

31

65 min: 5% B. The instrument used was comprised of a Hewlett-Packard (Palo Alto, CA,

USA) 1050 series pump, Agilent (Santa Clara, CA, USA) 1200 series G3113A auto-

sampler, and G2226A nano-flow pump, coupled to a Thermo Finnigan (Waltham, MA,

USA) LTQ mass spectrometer via nano-spray ESI. The separation column was self-

packed (25 cm x 75 µm inner diameter) with 4 µm Jupiter (Phenomenex, Torrence, CA,

USA) Proteo C beads, catalogue 00G-4396-E0). ₁₂

2.7 DOUBLE-LABELLING EXPERIMENT

Doubly-labelled samples of BSA for the high-resolution data files were prepared as

outlined in sections 2.2 through 2.6. Prior to LC-MS analysis, one 10 µg aliquot of BSA

with the light isotopic label was combined with one 10 µg aliquot of BSA with the heavy

isotopic label, resulting in a light:heavy ratio of 1:1.

2.8 TRIPLE-LABELLING EXPERIMENT

The methods used to prepare a protein sample containing three isotopic labels are as

in sections 2.2 through 2.6, with the following additions. During the addition of the

labelling reagents (formaldehyde and sodium cyanoborohydride), one 30 µg aliquot of

unlabelled BSA (“reference” sample) was labelled with normal formaldehyde and normal

sodium cyanoborohydride, to produce an un-deuterated “light” label. A second 30 µg

aliquot (representing the “test” sample) was labelled using deuterated formaldehyde and

normal sodium cyanoborohydride to create an “intermediate” label which is 4 mass units

heavier per label than the “light” variant. A third 30 µg aliquot (a duplicate of the

“reference” sample) was labelled with both deuterated, 13C formaldehyde and deuterated

32

sodium cyanoborohydride to create the “heavy” label which was 8 mass units heavier per

label than the light variant. These three labelled aliquots were combined prior to LC/MS

analysis at a 1:1:1 ratio (based on the estimated protein concentrations) to produce a

three-label sample.

2.9 ALTERNATE RATIO EXPERIMENT

To prepare a sample containing a 1:1 “background” proteome and surrogate up and

down-regulated proteins, four 10 µg aliquots of digested and labelled E. coli (two with

light labels, two with heavy labels) were combined and brought up in 400 µL of nano-

water with 0.1% TFA (LC/MS solvent A). Three 10 µg aliquots of digested and labelled

BSA (two with heavy labels, and one with light labels) were combined and brought up in

300 µL of solvent A. Three 10 µg aliquots of digested and labelled lysozyme C (two with

light labels, one with heavy labels) were combined and brought up in 300 µL of solvent

A. The resulting lysozyme C and BSA mixtures were combined to produce a sample

containing equal parts lysozyme C (as a surrogate “up-regulated” protein at a light:heavy

ratio of 2:1), and BSA (as a surrogate “down-regulated” protein at a light:heavy ratio of

1:2). This mixture of proteins was then combined at three different ratios (1:10, 1:100 and

1:1000 in the lowest-concentration labelled protein in the mixture to E. coli) with the E.

coli background. Each of these samples contained 100 µL of E. coli mixture, 60 µL of the

protein mixture for the 1:10 sample, 6 µL of protein mixture for the 1:100 sample, and 6

µL of a 10-fold dilution of the protein mixture to yield a 1:1000 sample.

33

2.10 MS ACQUISITION AND SEQUEST SEARCH PARAMETERS

The acquisition parameters for each of the experiments conducted above in sections

2.7,2.8, and 2.9 are provided in Appendix 1, Appendix 2, and Appendix 3, respectively.

The SEQUEST search on the data files for the alternate ratio experiment (section 2.9)

was performed by the undergraduates Gemma Regan and Samantha Rudolph, using

Proteome Discoverer 1.3.0.339. Settings were left at defaults, excepting the following:

Max. Precursor mass: 8000 Da, precursor mass tolerance: 2 Da. The protein database

consisted of E. coli K12 and 12 standard proteins (including BSA and lysozyme C), with

templates configured for proteins with 28 and 32 Da tags. Result filters were configured

for peptides ranked with high confidence, a peptide maximum ΔCN score of 0.1, peptide

rank of 4, false positive rate of 1% or less, 1 peptide per protein minimum, and the

minimal scores for charge states of 1 thru 7, and >7 set to 1.5, 2.0, 3.25, 3.75, 2.75, 3.0,

3.2, and 3.4, respectively.

34

CHAPTER 3 WORKFLOW AND ALGORITHMS

3.1 OVERVIEW

This chapter describes the algorithms which were designed for the quantitation

without tandem MS data. The order in which the algorithms are discussed is similar to the

workflow that would be followed when performing the analysis of the data. A diagram of

this workflow is shown below in Figure 7.

The process begins with the preparation and import of the data, such as converting the

raw spectral data files from the instrument to a usable format. Subsequently, the isotopic

ratios of the protein sample are pre-computed and modelled in preparation for use during

the detection stage. Once the peptides have been detected in the mass chromatogram, the

detections must be clustered, and appropriate data values recalculated based on the entire

region over which the peptide signal was observed. Finally, the data is analyzed (and

potentially cross-referenced with SEQUEST search results for additional validation).

3.2 DATA PREPARATION AND IMPORT

The files in which the data are stored must be converted from their native proprietary

(.RAW) format produced by the XCALIBUR mass spectrometer software (Thermo

Scientific, Waltham, MA, USA) to a different format to be imported into MATLAB (The

35

Mathworks Inc., Natick, MA, USA). As of this writing, no known direct conversion tools

between these formats exist, so it was necessary to convert these files to an intermediate

format prior to import into MATLAB. This issue of proprietary file formats has

previously been addressed by Pedrioli et al.[42] through the design of a non-proprietary

XML-based format (file extension .mzXML) which can then be parsed and stored as a

MATLAB matrix. The conversion from RAW format to mzXML format can be done

using a pre-written program named 'ReAdW' by the Seattle Proteome Center[43]. It is then

possible to parse this mzXML file and import it into MATLAB by extracting the retention

time, scan numbers, and Base64 encoded spectral data. The spectral data is stored as a

series of paired values; the first value of a pair is the m/z value, the second value is the

intensity value measured at the m/z value for the pair in question. The m/z range and

interval of the MS scans is constant for the duration of the experiment.

 To save space, these MS data sequences were reconstructed into a single matrix of

size m by n, where m corresponds to the m/z dimension, and n represents the time

dimension. Associated with this matrix are an m-by-1 vector of m/z values, and an n-by-1

vector of times, reducing an otherwise m by n vector of repeated m/z values to only a

single vector of such values. The actual data import function may be seen in Appendix 4

and its key aspects are described in detail below. The conversion process of the Base64

encoded data to usable single precision values is a separate process and is discussed in a

subsequent section.

3.2.1 MZXML IMPORT FUNCTION

36

The function to import the mzXML files into MATLAB compatible data structures

was originally written by Joseph Boutilier as part of his thesis[36]. The function included

here is a completely re-written, optimized version which decreases processing time

significantly from the original. Prior to optimization, the import of an mzXML file for a

90 minute MS run (approximately 400 megabytes in size) took approximately one hour to

extract the MS data, or longer if the zoom scans and tandem MS data were also desired.

After optimization, all three scan types for the same mzXML files can be imported in two

to three minutes.

The mzXML format is an extensible markup language (XML) based layout, parts of

which are human-readable and therefore easy to interpret by inspection. As a result of the

highly-structured and defined nature of the mzXML markup language, it is also

straightforward to parse and subsequently interpret using computer software.

The data contained in an XML file is delineated by a series of hierarchical tags which

define instances of specific objects (e.g. a single MS scan in the case of mzXML) and a

series of associated parameter-value pairs that describe the attributes of that specific

instance. An example of such a tag contained in an mzXML file can be seen in Schema 1,

below.

<parentFile fileName="Aon-1-2.RAW" fileType="RAWData"
fileSha1="ad72bffc9f55f3bbdefe6d55037f33bde5303a83" />

Schema 1: Example tag and its associated properties from an mzXML file.

37

The XML tag is denoted by the less-than symbol (<). The keyword immediately

following it defines the type of the tag. The valid keywords depend upon the application

for which the XML is designed – for this reason any XML usually has a publicly

available format specification for reference. The specifications for various mzXML

versions may be found (at the time of this writing) at

http://sashimi.sourceforge.net/schema_revision/ as an XML schema document, and

contains details of the types of valid tags and the corresponding children and key-value

pairs which are considered legal within the XML.

This example tag is of the type “parentFile” and indicates (through the three property-

value pairs) the original filename was “Aon-1-2.RAW”, the file type was “RAWData”

and the SHA-1 checksum of the file in question (SHA-1 refers to the NIST-published

method used to calculate the checksum data; these data allow one to validate that the

contents of the source file have not been altered since the creation of this derivative file).

The trailing slash and greater-than symbol (/>) indicate that this instance of the object has

been fully described. As mentioned earlier, XML allows for a hierarchical structure, and

in cases where a tag has child objects, the end of the parent object is denoted by a

“closing” version of the same tag, which consists of the tag type, prefixed with a forward

slash (/) and surrounded by greater-than and less-than symbols as before. An example tag

may be seen in Schema 2.

38

http://sashimi.sourceforge.net/schema_revision/

 <msInstrument>
 <msManufacturer category="msManufacturer" value="Thermo
Scientific" />
 <msModel category="msModel" value="LTQ" />
 <msIonisation category="msIonisation" value="NSI" />
 <msMassAnalyzer category="msMassAnalyzer" value="ITMS" />
 <msDetector category="msDetector" value="unknown" />
 <software type="acquisition" name="Xcalibur" version="2.2" />
 </msInstrument>

Schema 2: An example of an mzXML tag with child objects, and its respective "closing"
tag.

Here, the parent object (msInstrument) contains a series of child objects that describe

the properties of the instrument on which the data file was created, such as the

manufacturer, model, and ionization source, before being terminated by the closing

msInstrument tag.

 <scan num="1" msLevel="1" peaksCount="15600" polarity="+" scanType="Full"
filterLine="ITMS + p NSI Full ms [400.00-1700.00]"

retentionTime="PT0.5285S" lowMz="400.083" highMz="1700"
basePeakMz="1358.42" basePeakIntensity="3009.96"

 totIonCurrent="1.05386e+007" >
 <peaks precision="32" byteOrder="network" contentType="m/z-int"

compressionType="none” compressedLen="0" >
%BASE64DATA%

</peaks>
 </scan>

Schema 3: Sample mzXML code that is used to define a single (non-zoom) MS scan by
the instrument. The Base64 data has been omitted for length.

The MS intensity data of interest is contained in a “scan” tag, an example of which

can be seen in Schema 3. Note that the Base64 encoded data has been omitted, it has been

replaced with the placeholder “%BASE64DATA%” for length reasons, as the encoded

data can contain many thousands of characters.

39

The key attributes of interest (apart from the actual Base64-encoded intensity data)

are the scan number (num), MS level (msLevel, with value 1 for standard MS, 2 for an

MS/MS scan), the scan type (scanType, with value 'Full' for a scan of the full m/z range,

or 'Z' for a zoom scan), and the time (retentionTime, with a value in seconds). Tandem

MS scans will contain additional parameters of interest, namely the charge of the

precursor ion and its mass. The additional parameters are not of particular interest for this

research and are not imported.

Each of these properties are extracted and stored in MATLAB arrays such that given

an index value into any of the property value arrays remains constant for all other

property value arrays. For example, the fifth element of the time array corresponds to the

fifth element of the scan number array, the fifth column (columns being the time

dimension) of the MS intensity array, and so on. The tandem MS and zoom scan data are

extracted, but tandem MS data are not currently used during data processing, and as a

consequence of the file format, zoom scan data are required when the instrument is run in

a higher-resolution mode.

As noted earlier, a similar function was written as a component of the previous work,

but suffered from performance problems. This was largely attributed to the use of loops

to iterate over objects such as file contents and groups of bits. Ultimately, it is faster to

alter these iterations so they are performed in parallel, or at the very least remove the

requirement for sequential processing to allow MATLAB to process the data as it deems

40

optimal. In some cases additional performance could be gained through the use of built-in

MATLAB functions, or modified versions of those functions which can make specific

assumptions about this type of data that a more general implementation of the same

function cannot.

3.2.2 BASE64 CONVERSION

The mzXML format stores m/z and intensity pairs of an MS scan as a Base64 encoded

string. These data must be decoded prior to use, and a MATLAB function has been

written for this purpose. Base64 uses a subset of 64 ASCII characters to represent binary

data. Thus, to convert from Base64 back to binary data, the sequence of characters must

first be translated from their 8-bit ASCII representation to their 6-bit Base64 counterparts,

which can be accomplished with a look-up table in which the value of the ith row

contains the Base64 index of ASCII value i. The Base64 indices range from 0-63, and can

therefore be represented by six place values in the binary number system (2 =64)⁶ . These

binary representations are concatenated and repartitioned into groups of 8 bits, which

restores the original eight-bit binary data. Conceptually, the first 8-bit sequence is

composed of the entirety of the first six-bit number, and the first two bits of the next six-

bit number. The following 8-bit sequence is composed of the last 4 bits of the second six-

bit number, and the first 4 bits of the third 6-bit number. This pattern continues until 24

bits, after which it repeats (24 being the least common product of 6 and 8). As m/z values

and intensities are not integers, they are stored as floating-point single-precision values

(32 bits per value, or four sets of eight bits). Such values can be stored either with the

41

most significant (highest value) bits first, or the least significant (lowest value) bits first.

As the mzXML format and MATLAB differ in which bit ordering they use, it is necessary

to reverse the order of the four eight-bit components that comprise a single-precision

value. There do exist cases where the Base64 data are of insufficient length to produce an

integer number of eight-bit values; in these cases the remaining space is padded with

binary zeros prior to conversion. A visual overview of this process may be found in Table

1, and the Base64 decoding function itself in Appendix 5. Note that the byte significance

reordering and conversion to a single-precision value are completed immediately

following the Base64 conversion of the data, but these commands reside in the mzXML

import function, so that the Base64 decoder is a generalized function which can be re-

used elsewhere.

Table 1: An overview of the steps involved in converting (truncated) Base64 encoded
data in an mzXML file to m/z and intensity pairs. The order of steps flows from
the top of the table to the bottom.

Base64 data Q 8 g K q 0 E E

Character index 16 60 32 10 42 52 4 4

6-bit value 010000 111100 100000 001010 101010 110100 000100 000100

8-bit repack 01000011 11001000 00001010 10101011 01000001 00000100

Decimal value 67 200 10 171 65 4

Significance
reorder

171 10 200 67

…
32-bit value 400.0833

Again, performance was a limiting factor, and optimization of this conversion

function was similar to that of the mzXML import function; significant performance

gains were achieved by re-writing the functions to replace an iterative sequence of

42

commands with their matrix-based counterparts. Additionally, repeated calls to base two

and base ten conversion functions were replaced with computationally efficient lookup

tables, matrix operations, and boolean logic.

3.3 COMPUTING MODELS OF PEPTIDE PAIR ISOTOPIC PEAKS

Detecting the presence of peptide pairs in the MS data necessitates models to serve as

a reference for comparison. This model must have the correct ratio of isotopic peaks for a

particular m/z value to minimize the difference between the model and an actual isotopic

pattern which is present in the spectral data. These models are computationally intensive

to construct, and are therefore precomputed and stored for future reference.

It is worth noting that the version of this method discussed in the previous work[36]

was limited to a total of four peaks (M and the M+1 to M+3 isotopic peaks). This was

found to be insufficient at high mass values, and therefore the functions relating to

isotopic peaks have been extended up to and including the M+10 peak.

3.3.1 AVERAGE PEPTIDE COMPOSITION FORMULA

One issue that adds complexity to the modelling of isotopic peaks is the molecular

formula of the peptides. Each peptide will be different, so a wide range of peptide

formulas will result. Modelling the isotopic pattern for each of these individual peptides

is a computationally expensive problem which becomes significantly more difficult when

only the molecular weight (but not the formula) of the peptide is known. For this reason,

43

an “average” peptide method from the previous work[36] is used. Briefly, this algorithm

computes the distribution of amino acids in the protein sequence to be searched for, and

determines the relative ratios of each of carbon, hydrogen, nitrogen, oxygen, and sulfur.

This makes it possible to compute the elemental ratios of an “average” peptide's

molecular formula, and subsequently the formula of an “average” peptide for any given

mass. These average peptide formulae are then used in the following section to compute

the isotopic ratios of the peaks at a given mass.

3.3.2 ISOTOPIC RATIO PRE-CALCULATION

Computing the isotopic ratios for a given molecular formula can be approached in a

number of ways. The simplest approach (conceptually) is to analyze the formula, and find

the possible isotope counts that would give rise to an M+1 peak, then determine the

counts for an M+2 peak, and so on. While this solution is acceptable for a single formula,

it becomes a very tedious task when it is necessary to compute the isotopic ratios for a

large number of formulae. This is because the entire calculation hinges on the counts for

each isotope. The method described herein is computationally more efficient because it

abstracts the counts to be independent of the lowest-mass isotopes for as long as possible

– which means it is possible to pre-compute an abstracted table of isotope counts that

give rise to each of the isotopic peaks. To determine the isotopic ratios, it is only

necessary to select the appropriate counts (those that have an appropriate number of

elemental atoms for the given formula) from the table, and sum their contributions to the

pattern.

44

This precomputed table is calculated using the isotopcalc.m function in Appendix 7.

As mentioned, the function is written so as to be independent of the number of lowest-

mass isotopes for atoms in the molecule. It iterates over all possibilities of having zero to

ten of a given isotope (13C, 2H, 15N, 17O, 18O, 33S, 34S, 36S). This gives rise to 108 possible

combinations, though not all of them will fall within the first 10 isotopic peaks – for

example, a molecule with one of every isotope mentioned would have a mass that is 11

higher than its lowest-mass counterpart (the consequences of limiting the algorithm to 10

isotopic peaks is discussed in a subsequent section). The mass difference of each of these

possibilities is computed relative to the lowest-mass counterpart, and this mass difference

is used to sort the possibilities into one of a series of i “M+i” bins, representing the M+1

to M+10 isotopic peaks. On completion of the precalculation, each bin will contain a list

of the isotopic counts that contribute to that particular isotopic peak, and it is the contents

of these bins that are stored for future use.

3.3.3 COMPUTING AN ISOTOPIC PATTERN FOR A GIVEN MOLECULAR FORMULA

Once the table from the previous section has been computed, it is possible to

determine the isotopic patterns for a given elemental formula. The function written for

this purpose may be found in Appendix 8. The first step in this process is establishing

which of the precomputed possibilities are invalid, and eliminating them. Invalid

possibilities are considered to be those table entries that have a higher total count for any

particular element than defined by the input molecular formula, e.g. an entry with four

45

33S atoms is not a valid contributing entry to the isotopic pattern for an input formula

containing only two sulfur atoms. The valid possibilities are copied to a new table, and

supplemented with the counts of the lowest-mass isotopes, which can be calculated by

subtracting the sum of the isotopic counts for an element from the quantity of that

element provided in the molecular formula. A multinomial distribution function

(Appendix 9) is used to calculate the probability of each entry in this table. These

probabilities represent the contribution of that particular combination of isotopes to the

final isotopic pattern. All of these contributions are then summed and normalized to the

lowest-mass (M) peak, to give the final isotopic ratios for that mass value.

Note that the multinomial distribution function makes use of repeated factorial

calculations on large integers, which is computationally inefficient. As such, the standard

factorial function has been replaced with a faster hybrid version (Appendix 10) that

utilizes a look-up table of past factorial computations to eliminate these repeated

calculations. However, this table also has limitations in the maximum value it can store

before an overflow occurs. In MATLAB, this limit is reached when computing the

factorial of 171 or higher; the double precision data type used cannot contain the resulting

value and is set to infinity (Inf). Subsequent divisions necessary to calculate

combinations result in invalid answers (either not-a-number, “NaN”, which can result

from division by zero, or further “Inf” responses when dividing an infinite value by any

other number) so it is necessary to use an alternate method of calculating the

combinations by reducing the factorials as much as possible. This reduction is possible

46

because the division of two factorials can be simplified to the product of integers greater

than the lesser of the two numbers, up to and including the greater of the two, e.g. 5!/3! =

1x2x3x4x5/1x2x3 = 4x5.

3.3.4 A NOTE ON ISOTOPIC RATIO LIMITATIONS

The isotopic peak calculation method outlined previously is limited in two ways.

First, it is constrained to a maximum of 10 isotopic peaks. Second, it only iterates over a

maximum of 10 isotopes of each element. An inspection of the final contributions of each

isotopic peak confirms that this is sufficient for the purposes of this research; even at the

heaviest modelled mass of 5100 Da, (a triply charged species at 1700 m/z), the tenth

isotopic peak (M+11) has a contribution which is 1.4% that of the most intense (M+4)

peak. Intensities normalized to the base peak are given below in Table 2. This suggests

that ten isotopic peaks are sufficient to establish a peptide pair model for which the

unaccounted isotopic peak contribution is less than 1.4% of the maximum intensity.

Table 2: Intensities of isotopic peaks for heaviest possible mass, normalized to base peak.

M M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9 M+10

Intensity 1.00 2.86 4.34 4.62 3.85 2.66 1.59 0.83 0.39 0.17 0.07

% Max 21.6 61.9 94.0 100 83.3 57.7 34.3 18.0 8.52 3.66 1.44

The limitation of 10 isotopes of each element does not affect the isotopic patterns

over the range calculated. Since each isotope has a minimum contribution of +1 to the

mass value, a molecular formula containing more than 10 of any particular isotope

(regardless of the isotope in question) will fall outside of the first 10 isotopic peaks, and

47

will not be of consequence to the model.

Should the need arise, it is not a difficult procedure to increase the number of peaks

being computed, though at a tradeoff of increased computational time during the model

creation phase.

3.3.5 MODELLING A SINGLE PEPTIDE PAIR

Once the isotopic peak ratios have been computed, there is sufficient information to

construct a vector which models the actual peaks as would be observed in the raw MS

intensity data. The previous work of Boutilier established that using Gaussian peaks

models the isotopic pattern acceptably. The width of the peaks is established depending

on the resolution of the instrument and data; higher resolution data will have more

sharply defined peaks, while the opposite is true for lower resolution data. The peak

width value determined in this previous work (0.15) was found to provide acceptable

matches with real spectral data, and remains unchanged for low-resolution data. Higher-

resolution data necessitated the re-evaluation of this parameter, which was done by

Samantha Rudolph as a summer research assistant, who found that the isotopic peaks

were best modelled using widths of 0.08,0.07, and 0.06 for singly-, doubly-, and triply-

charged species, respectively.

The relative locations of the peaks in the m/z domain (and their width) is inversely

proportional to the charge (z) of the peptide being modelled; as the charge increases, the

48

spacing between the isotopic peak pair decreases to 1/z m/z units; the width of the

isotopic pattern decreases similarly. However, the spacing between the light and heavy

isotopic patterns of a peptide is determined by the number of labels a peptide possesses.

Recall that a single “label” is considered to be the dimethylation of a primary amine, and

that in addition to the N-terminus of a peptide, any lysine residues present are also

labelled. Each label contributes a separation of 4 mass units between the corresponding

peaks of the light and heavy isotopic patterns. The resolution of the data initially used for

this work limited the maximum charge value on a peptide to +3; higher charge values do

not have sufficient separation between isotopic peaks (and the separation between

peptides which are labelled with only a single tag) to make these signals clear enough to

distinguish from non-peptide signals. The single mass unit separation also causes the two

isotopic patterns of a labelled pair to overlap significantly.

These model vectors for m/z 400 may be seen in Figure 8. In this work, eight separate

“classes” of pairs have been defined based on the charge and number of labels on the

peptide being observed: singly charged peptides with one (sub-figure 1) and two labels

(sub-figure 2), doubly charged peptides with one to three labels (sub-figures 3-5,

respectively), and triply charged peptides with one to three labels (sub-figures 6-8,

respectively). Each isotopic pattern is retained in a separate vector so that they may be

modelled separately from one another. Some classes have a large separation between the

light (solid) and heavy (dashed) isotopic patterns; these spaces may not be empty in the

raw MS data. Therefore, these regions (and the regions before the first isotopic pattern

49

and after the second pattern) are excised prior to fitting the model.

Figure 8: The isotopic peak models at m/z 400 for each of the eight classes of peptides:
z=+1 with 1 and 2 labels (1,2), z=+2 with 1, 2, and 3 labels (3,4,5) and z=+3 with 1, 2,
and 3 labels (6,7,8)

In contrast, the models at m/z 1700 are shown in Figure 9. Note the significant change

in the intensities of the isotopic patterns. It should be noted that these patterns are

computed at intervals of 10 m/z values - this is done to reduce computation time as the

isotopic patterns do not change significantly enough within this interval to require

50

recalculation of the model for every possible m/z value.

Figure 9: The isotopic peak models at m/z 1700 for each of the eight classes of
peptides: z=+1 with 1 and 2 labels (1,2), z=+2 with 1, 2, and 3 labels (3,4,5) and
z=+3 with 1, 2, and 3 labels (6,7,8)

3.4 ALGORITHM FOR INITIAL DETECTION OF PEPTIDE PAIRS

The detection of peptide pairs in the raw data is a multistage process. An initial search

of the data allows for the annotation of locations which contain potential peptide pairs. If

we assign a single time point extracted from the raw MS data to a response vector, r, then

there exists some coefficient matrix c, which, when multiplied with the model matrix K,

51

r=cK

ĉ=rKT
(KKT

)
−1

reproduces an idealized version of the response vector, as in Equation 1.

(1)

Here, r is a 1xp vector of mass spectral intensities, c is a 1x3 vector of model

coefficients, and k is a 3xp matrix of profiles comprised of the light and heavy isotopic

patterns, and a constant baseline. These isotopic profiles have been generated based on

the presumed mass of the peptide fragment, and the baseline is a vector of ones. The p

points of the mass spectral data correspond to a window which encompasses the model,

but these points may not necessarily be contiguous. As the desired solution to this

equation is the coefficient vector c, Equation 1 can be rearranged to isolate this term,

yielding Equation 2, which estimates c as ĉ.

(2)

Given that the model K is comprised of three components (two vectors modelling the

light and heavy isotopic peak patterns, and a vector of ones representing the baseline),

solving for ĉ yields three values, which will represent the intensity of each of those three

components in the response vector r. Locations in the raw MS data which feature a pair

of isotopic peaks which align with the model K should therefore exhibit high intensity

values for the isotopic peak components of the model, relative to the intensity parameter

of the baseline, and overall, a good fit to the measured data.

Since the models contain regions in which the peptide peaks are not present (such as

52

RK T(KKT)−1=Ĉ

se(i)=√ (r i− r̂i)(ri−r̂ i)
T

p−3

between the last peak of the light pattern and the first peak of the heavy pattern), these

areas are excised from the components r and K of the equation. Fitting these “blank”

regions when a signal is present within them would decrease the quality of the fit, and

erroneously indicate that the model was not valid.

As the computation of c is identical for any given m/z value throughout the entire

time domain of the experiment, it is possible to process a matrix of response vectors in a

single multiplication, greatly improving the efficiency of the calculation and reducing the

required computation time for the entire matrix of MS intensity data. Equation 3 is

similar to Equation 2, except that r and ĉ have been replaced with matrices R and Ĉ,

producing a series of m intensity parameters, where m is the number of time points in the

MS data.

(3)

It is necessary to have a measure of the quality of the fit at a particular point in the

MS data; such a parameter makes it possible to set a cutoff below which the response

vector is considered to lack a pair of peptide peaks, or contain peaks which are not

quantifiable. The standard error of the estimate provides a measure of the deviation of the

fitted model from the raw data; this error is computed as per Equation 4.

(4)

It is then possible to compute a signal-to-noise ratio (taken as the minimum of the

53

(S/ N)i=
min (c1i , c2i)

se (i)

maximum fitted intensity for each isotopic pattern over the standard error of the fit) for

each detection, which can be used to establish the presence of a peptide pair or not, as

show in Equation 5. Note that the profile vectors are normalized to a maximum intensity

of unity, therefore the coefficients c₁ and c₂ correspond to the maximum intensities of the

fitted profiles.

A high signal-to-noise ratio will correspond to both a good fit to the two patterns and

low fit error; a poor signal-to-noise ratio indicates either a poor fit to the models, or a

signal that is close to the same order of magnitude as the error in the fit. Figure 10 shows

a surface plot of a representative singly-charged peak pair, with one label. This peak pair

has several features which hinder a straightforward model fit and assignment of the peak

class. Specifically, the interfering peaks between the two isotopic patterns, the intensity

fluctuations over the chromatographic dimension, and the isotopic pattern spacing of 4

m/z units, which is a feature of three of the classes. These three classes will therefore

show some degree of fit to the model, and the signal-to-noise ratio enables determination

of the correct class. These reasons make the peak a good candidate for illustration of the

modelling behaviour in commonly encountered situations. These features can be seen in

Figure 11 and Figure 12.

The key features to note are the small interfering peak just before m/z value 406 in

Figure 12 and the dip in intensity at 1500 seconds in Figure 11. The calculated signal-to-

noise values in the same region are displayed subsequently in Figure 13. They are

54

(5)

Figure 10: A representative singly-charged peak pair with one label. This peak pair is
used to illustrate the signal-to-noise ratio behaviour and several aspects of fitting such as
interference, multiple model fits, and chromatographic intensity variations.

represented as intensity maps, where a darker region corresponds to a larger signal-to-

noise ratio. As expected, the signal-to-noise ratio for the correct class (singly charged

with one label, sub-figure A) has the highest intensity values at the same coordinates as

the base peak of the first isotopic pattern of the pair. This corresponds to when the model

is perfectly aligned with the peak pair in the intensity data.

55

Figure 11: The chromatographic dimension of the peak pair in Figure 10. The feature of
note is the dip in intensity at 1500 seconds, which can result in two separate groupings of
detections if the signal-to-noise ratio drops below the cutoff value.

Figure 12: A view of the m/z dimension of the singly-charged, one-label peak pair shown
in Figure 10. Note the interfering peak that appears just before m/z 406.

While it is difficult to see its presence in the three-dimensional surface plot, the

interfering peak in Figure 10 appears at the lower retention times, corresponding to the

left-hand side of the intensity maps (there are other peaks which appear at the higher end

of the retention window shown, but these may actually be another peak pair of a

differentclass, as evidenced by the dark region in sub-map C of Figure 13). The dip in

intensity does not noticeably impact the signal-to-noise ratio values for this peak pair, but

56

1 3 0 01 3 5 01 4 0 01 4 5 01 5 0 01 5 5 01 6 0 01 6 5 01 7 0 0
0

2

4

6

8
x 1 0

4

S c a n t im e (s)

In
te

ns
ity

4 0 2 4 0 3 4 0 4 4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 1 0 4 1 1 4 1 2
0

2

4

6

8
x 1 0

4

m / z

In
te

ns
ity

Figure 13: Intensity maps of the signal-to-noise ratio for each of the eight classes of
peptide pairs, for the region corresponding to the peak shown in the previous figures.
Darker regions represent larger signal-to-noise values, while values less than 3 are white.

in some cases it may drop below the minimum limit of 3. This value was based on visual

inspection of the peaks, and is intentionally generous, since the peaks will be clustered

and re-quantified later. Note that no classification is assigned for regions where the

signal-to-noise ratio drops below 3 – and as such a dip in the intensity can appear as a gap

in the peptide's classification band. This issue is addressed during the second stage of the

detection when individual m/z and time points are clustered together. Provided the gap is

narrower than the time threshold in the clustering algorithm, the gap would be

57

“traversed” during the exploration phase, and both parts of the detection band would be

assigned the same cluster ID.

Some of these maps exhibit several regions of high signal-to-noise values which

appear at the base m/z value plus a multiple of the inter-peak width of an isotopic pattern.

This arises from the regular spacing of the peaks in the isotopic pattern; the model fits

well when shifted by an inter-peak width as the isotopic pattern has a degree of self-

similarity – ignoring the base peak and aligning to the M+1 peak results in a reasonable

match, but at lower intensity than the base peak (if the base peak is not the most intense,

this self-similarity vanishes and aligning to the M+1 peak does not result in a match).

Figure 14: Assignment of the peptide class detected at each of the mass-to-charge values
and time points in the raw data, after the initial detection is complete. The region shown
here corresponds to that of Figure 10.

The final point of note is that there is a reasonably large (3 or greater) signal-to-noise

value for both of the other classes that have a distance of 4 m/z units between the isotopic

58

base peaks (sub-figures D and H). This is also an artifact of the model alignment to the

raw data, and it manifests itself in the class assignment as a detection band which

contains multiple adjacent classes, as in Figure 15. This is commonly seen for any charge

and label combinations with the same spacing between the base peaks of the isotopic

patterns. Colours represent peptide classes as follows: red: z=+1, 1 label; orange: z=+1, 2

labels; green: z=+2, 1 label; blue: z=+2, 2 labels; cyan: z=+2, 3 labels; yellow: z=+3, 1

label; pink: z=+3, 2 labels; white: z=+3, 3 labels.

4 0 2 4 0 3 4 0 4 4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 1 0 4 1 1 4 1 2
0

1

2

3

4

5

6

7

8
x 1 0

4

m / z

In
te

ns
ity

Figure 15: A peak pair extracted from the raw data (solid line) and three different models
(dashed line: singly charged, 1 label; dotted line: doubly charged, two labels; dash-dot
line: triply charged, three labels) with the same m/z spacing between isotopic patterns
showing that all three models will have some degree of fit to the raw data. The correct
model will have the highest signal-to-noise ratio.

Figure 15 shows the mass-to-charge region at a single retention time, upon which the

three “matching” models in question have been superimposed. It is clear that the incorrect

models have the same spacing between the light and heavy signals, and the proportional

nature of the charge increase results in additional alignment of non-corresponding peaks.

59

As a result, these “incorrect” models still have relatively low fit errors, which necessitates

reassessing the assigned model over the entire detection after the clustering phase is

complete.

3.5 ALGORITHM FOR CLUSTERING SIGNALS

The initial detection algorithm assigns a classification for every m/z value and time

point combination where a peptide peak pair was detected. As can be seen in Figure 15

(and discussed in the previous section), this does not produce a perfectly rectangular

detection region of the same class, nor does it establish the chromatographic duration of

the peak. Determining this contextual information for a signal requires an additional

processing step in which individual detections are grouped together via a clustering

algorithm into a single m/z value and time range over which a given signal is present.

This process is divided into three distinct stages, which are the clustering of detections,

calculation of the properties of a cluster, and overlap removal.

3.5.1 CLUSTERING OF INDIVIDUAL DETECTIONS

Grouping of detections at individual m/z and time values is a computationally

challenging problem. This arises from the visual nature of the problem. While it is easier

for an observer to view a pattern of points and group them based on separation in the m/z

and time dimensions, it is computationally complex as it becomes necessary to select and

define parameters that establish cut-off values beyond which a particular detection is no

longer considered to belong to a group. The most straightforward parameters are the

60

temporal distance, m/z distance, and the class index of the peptide pair. All three of these

are used to determine a weighted Euclidean distance between two points and establish

whether they are a part of the same cluster.

The clustering algorithm uses a last-in first-out data structure called a stack to visit

each individual detection point in turn. This ensures that the area surrounding a detected

point is explored, the nearest (and therefore most likely to be related) detections are

processed prior to detections which are further away. “Processing” of a point refers to its

removal from the stack and the evaluation of the criteria that is used to establish whether

it is a part of the cluster that is currently being explored. If so, this point's immediate

neighbours are placed at the top of the stack for subsequent exploration. Should the

current point being processed be discarded, the next one is removed from the top of the

stack and the process begins anew. Should the stack be empty (in other words, the

immediate “area” surrounding the current candidate cluster has been explored and no new

member points identified), the next detection point which has not been assigned a cluster

ID is placed into the stack and processed as described until all points have been assigned

a cluster ID.

Cluster IDs are tracked via a binary flag indicating if the algorithm is currently

“visiting” a cluster. Visiting a valid point while this flag is true will retain the current

cluster ID and assign the point to that cluster; if the algorithm visits a valid point while

not visiting a known cluster (a “new” cluster has been discovered), then a new cluster ID

61

is assigned to this point. Validity of a point is established using a minimum signal-to-

noise ratio below which the point is not considered to match the model. Finally, the

point's distance weighting (based on the three parameters mentioned earlier) is evaluated.

If the weight of the point is both less than the specified cutoff, and less than any existing

weight (points may be visited more than once with this algorithm, and thus it is necessary

to ensure that only the “shortest” distance is used), the point's eight surrounding

neighbours are added to the stack for exploration, as they may potentially be members of

this cluster. Figure 16 shows the “clouds” that are formed as a result of the clustering

algorithm on the sample region shown previously in Figure 15.

Figure 16: "Clouds" produced by the clustering function which establish the bounds of
the region within which a detection is considered to be a part of the same cluster. Darker
values indicate the spot is closer to a valid detection.

The darkest regions of this map correspond to a location where a peak pair was

detected during the initial detection phase. The shading indicates a distance from the

nearest valid detection, and the lightest shade (the background) indicates the weighted

distance is greater than the maximum weighted distance a point may be from any

62

neighbours while still remaining a part of that cluster. Therefore, these regions define the

boundaries of a particular cluster and corresponding ID. Notice that even though some of

the detections in Figure 15 are not contiguous regions they are still within the same dark

region of this figure, and are therefore assigned the same cluster ID.

3.5.2 CLUSTER CONTRACTION AND REPROCESSING

Now that the extent of each detection region has been established, the next phase of

processing contracts these regions to a single m/z value corresponding to the base peak of

the first isotopic pattern, and a time span over which this particular pattern is visible. In

order to assign a single set of values to the intensity parameters, the chromatographic

window over which the peak is present is averaged over the time dimension to produce a

single vector in the m/z axis. This resulting vector will be of sufficient size that each of

the eight models may be fitted to it at p different m/z points, where p is the maximum m/z

range of the detection “band” for this particular cluster (that is, if a detection band spans

more than a single m/z value, the models are fitted over the entire range of p m/z values).

The overall maximum signal-to-noise ratio for each of these eight 1xp regions is

identified, and the location of this maximum in the m/z dimension establishes the final

m/z value at which the peak pair has been considered to be detected. Similarly, the class

to which this maximum corresponds is taken to be the final class assignment of the

peptide pair.

The final assignment of class types for the spectral region used in the previous figures

63

can be seen in Figure 17. Only a single peptide detection is assigned, as the other

detections either did not have enough individual detections in the chromatographic

dimension, or the final signal-to-noise ratio computed was below the cutoff. Suitable

values for these two parameters were determined through visual inspection of the data;

specifying that a cluster should have a minimum of 5 detections in the chromatographic

axis was found to eliminate single point detections arising from random alignment of

noise with the model, while also avoiding very short chromatographic peaks which

cannot be reliably quantified.

Figure 17: Final assignment of class and location of the peptide detections previously
shown in Figure 15. Note that only a single final detection is indicated. The other
detections were excluded either for not persisting long enough in the chromatographic
axis (<5 points), or having a final signal-to-noise ratio which was too low (<8).

64

The signal-to-noise parameter was also determined by inspection. A minimum signal-

to-noise value of 8 was selected because peaks below this value tended to be difficult to

distinguish visually from the surrounding region. Additionally, lower values results in the

inclusion of detection artifacts such as the second red band (between m/z 404 and m/z

405) in Figure 15. The value is somewhat restrictive in that it can potentially discard

detections which are valid, but if the peak cannot be clearly distinguished from the

background by inspection, the reliability of the final quantitation may be questionable

regardless.

3.5.3 CLUSTER OVERLAP REMOVAL

Once a definite location has been established for all clusters, it is necessary to

establish regions in which the detections conflict by overlapping both in the temporal and

m/z dimensions. This situation results in interference as the isotopic pattern of one

detection can interleave and interfere with the isotopic pattern of another detection. For

example, if two peptide pairs have isotopic pattern spacings of eight m/z units, and the

second pair is offset by +4 m/z units from the first, the M+4 peak of the second pair's

light pattern will overlap with the base peak of the first pair's heavy pattern, M+5 will

overlap with M+1, and so on, respectively. In this situation, the overlaps will inflate the

error when fitting the model to the raw data, and for this reason these regions cannot be

reliably quantified with the current algorithm. Thus, affected time regions are excluded

from the region over which the cluster is quantified.

65

The algorithm to detect these overlaps is straightforward and consists of locating the

borders of each detected peak (both in the chromatographic and m/z dimensions) and then

testing whether two or more of these boundaries overlap. If an overlap is detected, the

extent of the overlap is determined. Should removing the overlap (on all involved

detections) leave fewer time points than the minimum size specified earlier, the detection

is marked with a negative class identifier (e.g. -1 instead of 1) to indicate it cannot be

quantified, while allowing the location and class assignment to be retained. If sufficient

points remain for quantitation, then the overlapping region is excised from the detection

and the remainder is re-quantified. The extent of the region, and the area(s) over which it

was quantified, are both retained. Finally, those detections which do not meet the

minimum signal-to-noise ratio are discarded from the results list.

3.5.4 PARAMETER SELECTION

To make the designed algorithms as flexible as possible, they are configurable with

several parameters (first pass signal-to-noise cutoff, clustering signal to noise cutoff,

clustering weightings and distance cutoffs) to control their behaviour in excluding peaks

and detections. Determining suitable values for these cutoff parameters was done based

on manual inspection of the data and results. There is naturally some interplay between

each of these parameters – for example, a higher first-pass signal-to-noise cutoff will also

tend to increase the chromatographic size of a given peak, potentially resulting in more

overlaps which must be processed.

66

Figure 18: Histograms of the signal-to-noise ratios output by the first phase of detection.
There are no immediately visible features such as plateaus or valleys that provide an
intuitive cutoff during clustering. Counts are logarithmic to better represent the range of
data in the figure.

As mentioned earlier, a base signal-to-noise ratio of 3 was selected for the initial

detection stages. This was intended to be a loose control parameter that provides a

reasonable filter that passes all but the very lowest quality detections, and behave

similarly to the standard limit of detection (LOD) which is usually defined as three times

the baseline. Examination of the initial signal-to-noise ratios computed for the peaks in

each BSA data file did not reveal any distinguishing features to indicate an intuitive value

to use as a cutoff. As seen in Figure 18, the distribution of signal-to-noise values

67

Figure 19: Representative peaks for doubly charged detections with one label at various
signal-to-noise ratios. Note that the isotopic patterns and peak shapes become cleaner as
the signal-to-noise ratio increases. The figure with the lowest signal-to-noise ratio
appears to have clean peaks but note that the peaks are not spaced correctly for the class
type. This is an inherent risk of selecting too low a signal-to-noise value when alignment
artifacts are present. Solid lines are the raw signal while dashed lines represent the model.

 appears to be a fairly continuous distribution with a long tail towards the higher signal-

to-noise values. For this reason, determining a suitable cutoff value fell to manual

68

inspection of the detection peaks in the raw data. Examples of these data are shown in

Figure 19, which illustrates doubly-charged peaks with a single label which had final

signal-to-noise ratios ranging from 3 up to 10. It is observed that the final isotopic

patterns of the peak pair become clearer as the signal-to-noise ratio increases. The

topmost plot (with signal-to-noise ratio just over 3) has “clean” peaks but the isotopic

peak spacing corresponds to a singly-charged peptide. This was purposefully included to

illustrate the erroneous detections that can result from a final cutoff that is too generous.

That is, an acceptable signal-to-noise can be obtained for an incorrect model in this

situation.

Initial exploration of detections with a signal-to-noise ratio of 10 or greater (based on

parallels to the limit of quantitation, at 10 times the noise) revealed that these detections

had signals which could be clearly seen in the raw data by manual inspection. This

persisted when inspecting peaks with lower signal-to-noise ratios; only when inspecting

detections with signal-to-noise ratios below 8 did the signals of these detections become

less clearly defined. The overall shape of the peaks in the raw data was also examined

and it was observed that at lower signal-to-noise values the peaks can become difficult to

distinguish from the background (Figure 21). Based on these findings it was decided to

set the final signal-to-noise cutoff at a value of 8. It should be noted that this parameter

can change depending on the data in question, but the selected value should serve as a

reasonable starting point for initial exploration when applying these methods to other data

sets.

69

Figure 20: Surface plot of the raw spectral data for the peak from Figure 19 with a
signal-to-noise ratio of 5.02, which is below the cutoff of 8. While the peak is visible, it is
not well defined. Many of the peaks with lower signal-to-noise values have similar
appearances.

The other clustering parameters were determined based on a best-guess estimate and

visual inspection of the results; the minimum size of five time points appeared to

eliminate the presence of scattered small detections which are either too small for reliable

quantitation, or arise from random patterns of noise in the data that correlate well with the

models. A corresponding value was also found to be suitable as a cutoff for the inclusion

of points within the same cluster during the grouping phase of the algorithm, i.e. signals

within five time points of each other and at the same m/z value were considered to belong

70

to the same peptide. These values were set conservatively to prevent close, but distinct

detections from being assigned a similar cluster.

This grouping phase also has parameters for the cluster “boundary” cutoff in the m/z

direction and for the inclusion weighting in cases when the signal's best-fitting model

(peptide class) changes within this normal m/z window of inclusion. The nature of the

data is such that the m/z value of a peptide detection is more sharply defined than its

temporal location, therefore these parameters were set such that only those signals which

make direct “contact” with the current signal (in the m/z direction) are considered to be in

the same cluster. This situation was only observed due to alignment artifacts, i.e. when a

slight shift in the m/z direction of the model altered the classification of the peak cluster

in a predictable patterns. This was observed when the separation of the isotopic patterns

was ambiguous as to the class of the peptide signal. No cases were observed where this

situation did not apply, therefore, the only time this cutoff value was utilized occurred in

the presence of such alignment artifacts, no adverse behaviour of the algorithm was

observed when the same cutoff was applied in all cases.

The final confirmation that the outlined algorithm functions as intended can be seen

in the intensity ratios of one isotopic pattern to the other in a peak pair. Since the original

samples for the BSA experiments were prepared at a 1:1 ratio of light:heavy labelled

peptides, the observed ratios should reflect this information. This can be seen in the

scatterplot (Figure 21). There does appear to be a slight offset from the expected value.

71

This may be attributed to sample preparation, as the light and heavy labelled samples

originate from separate preparations and may not have been combined in an exact 1:1

ratio. The red + symbols are included to indicate detections which did not meet the

minimum signal-to-noise cutoff of 8; the remaining detections (black points) form a

distinct band around the theoretical ratio of 1:1.

Figure 21: Plots of final computed ratios for each of the four BSA data files. Note the
ratios are logarithmic for symmetric distribution about zero. Black points are those which
have a signal-to-noise ratio of 8 or greater, red plus symbols represent detections that do
not meet this criteria and are shown for reference.

3.6 HIGH-RESOLUTION AND TRIPLE LABEL ADAPTABILITY

72

A significant drawback of the reduced duty cycle imposed by the collection of tandem

MS scans is a lower resolution in the standard MS scans, which can make it difficult to

distinguish the individual peaks of an isotopic pattern at higher charge states. This limits

the discriminating abilities of the model. If tandem MS scans are eliminated from the data

collection process, it is possible to obtain higher-resolution MS scans by increasing the

m/z interval of the full scans so that the time previously allocated to tandem scans is

allocated to full scans instead.

Initial tests with a sample of these higher resolution data files (collected with an m/z

interval of 1/50 as opposed to 1/12) exhibited promising results. These data files were of

sufficient resolution to resolve the individual isotopic peaks of a triply-charged peptide

pair, which was not possible when using the lower-resolution data set. However, the

nature of these data files is such that the models used in fitting require both a higher

density of points, and a better understanding of the relation between the data and the peak

width parameter (σ) of the gaussian model used. Determining this peak width parameter

for the higher-resolution data was the work of a summer student, Samantha Rudolph.

After locating and analyzing a series of isotopic peaks in the higher-resolution data, it

was found that the peak width parameter varied slightly with charge, resulting in

calculated width parameters of 0.08, 0.07, and 0.06, for singly-, doubly-, and triply-

charged isotopic patterns, as opposed to the value of 0.15 used previously in the lower-

resolution data.

73

As these high-resolution data files have many more data points, the processing time

was far greater than for the previous data files; initially the detection and clustering took

approximately one day per file. The current algorithm has been revised for this scenario

and functions acceptably with a reasonable balance between speed and memory usage,

but even higher-resolution (and therefore larger) data files are achievable with other

instruments. It is highly likely that the method of clustering and post-processing may

need to be revisited in the future in order to perform well under these circumstances.

Another issue to be addressed in this strategy is the detection of peptide pairs when

the corresponding protein is at a low level, or completely absent in either the test or

reference samples. In these situations, the pair would not be detected because one of the

isotopic patterns would be below the threshold of detection. These peptides (being either

down- or up-regulated, respectively) are of great interest, and the corresponding loss of

information would have important consequences.

The introduction of a third labelled sample (“triple-labelling”) can potentially solve

this problem. This is achieved through the use of deuterated sodium cyanoborohydride

and 13C, deuterated formaldehyde, resulting in a mass increase of eight. In the proposed

arrangement, the reference sample is split, with one aliquot labelled using the “light”

(Δm=0) label and the other with the new “heavy” (Δm=8) label. The test sample is then

labelled using the “intermediate” (Δm=4) label, and all three samples combined. In this

configuration, the reference samples bracket the test sample and can be used to detect the

74

peptide, after which the test sample's level of expression can be determined based on the

intermediate label.

As mentioned, there exists a case where a protein may be down-regulated or absent

from the reference. Fortunately, this can also be addressed in one of several ways. In

time-course studies, where the actual ratio is not as important as the relative changes, the

use of a “pooled” reference could be used (that is, it contains all of the proteins). In other

studies, one of the labels could be applied to a mixture of the test and reference, or the

roles of the test and reference samples could be reversed (with the 'test' sample's isotopic

patterns bracketing that of the reference).

The triple labelling of peaks was also found to yield promising results. For both of

these adaptations, the modifications to the original algorithm were minimal, and

consisted only of altering the desired models to match the nature of the data – a testament

to the flexibility of the approach outlined previously. Higher resolution merely requires

models which have a matching peak shape and higher density of data points over the

same m/z range. Triple labelling experiments required only the adaptation of the model's

first vector to include a second isotopic pattern at the correct m/z distance. An example of

the modified, singly-charged triple-label model at m/z 400 is shown below in Figure 22.

75

3.7 CROSS-REFERENCING WITH SEQUEST RESULTS

The SEQUEST[21] computer software is one tool available to determine the peptide

sequences and proteins detected in the mass chromatogram. This is achieved using a

library of candidate proteins present in the sample. The sequences of candidate peptides

are determined based on the protein sequence and digestion method. Finally, a theoretical

fragmentation pattern is generated for these peptides, and compared to the observed

tandem MS fragmentation spectrum to determine the best match (and thereby the peptide

sequence and source protein).

3.7.1 SEQUEST RESULTS IMPORT

As the results of SEQUEST searches were available for the data files used for

algorithm development, these can be used to verify the PITS detections by cross

76

Figure 22: Example of the singly-charged, single-label model (class 1) adapted for triple-
label detection. The solid line is the first vector, containing the two outer "detection" peaks,
and the dashed line is the second vector corresponding to the second sample's signal.

referencing them with SEQUEST detections. The first stage in this process is importing

the SEQUEST search results into MATLAB. There are different software applications

which can be used to produce these results, and for this work support for both BioWorks

and Proteome Discoverer (both from Thermo Scientific, Waltham, MA, USA) was

implemented, allowing the use of either format. The import process needed to begin from

a common source file, and since both of these tools are capable of saving data in

Microsoft Excel's .xls format (and MATLAB is capable of reading these files), the .xls

file was selected as a starting point. It was then necessary to extract the relevant

information from these files. The layout of these files differs significantly for BioWorks

and Proteome Discoverer, and for this reason the .xls importing code was written so as to

support importing both file types and create a list of represented peptides and their

associated information.

The finished function may be seen in Appendix 14. As separate SEQUEST searches

are performed for each of the light and heavy signals of peptide pairs, a single “import”

operation takes both of these results files (in .xls format) and imports them together. This

is necessary because it is possible for SEQUEST to detect only one of the two

isotopically labelled peptides in a pair, and combining the results will give greater

coverage than a single search alone. The SEQUEST results table is altered slightly from

its original format to provide more relevant data than is included. First, it is necessary to

determine the number of labels present in the detection. This can be done by determining

the difference between the observed m/z value of the detection, and the calculated weight

77

of the unlabelled sequence. Division by 28.03 (for a light label) and 32.06 (for a heavy

label) returns a value that should be near an integer value (within round-off error) which

corresponds to the number of labels. This is a separate function from the .xls import

function and is provided in Appendix 15. The SEQUEST peptide sequence is retained

unaltered, as are the charge, and mass of the MH+ peak. The scan numbers at which a

peptide was identified are altered slightly, as SEQUEST may either provide a single scan

number, or a range of scans separated by a hyphen. These scan numbers are translated

into a series of scan “starts” and “ends” which correspond to the first and last scan

number at which that SEQUEST entry was detected. For single scan detections, both the

start and end value will be the same.

This import process is then repeated for the results table of the SEQUEST search for

the peptides labelled with the heavy isotope. Note that the masses reported by SEQUEST

in this table are for the MH+ peak of the peptide with the heavy isotopic label, and need

to be translated into the corresponding MH+ of the peptide with the light label to be

directly comparable to the results of the PITS algorithm. This is done by subtracting the

weight difference of the isotopic label pair, which is shown in Equation 6.

MH+
Light=MH+

Heavy – (4*(# Labels)*(Mass(D)-Mass(H))) (6)

Finally, the results tables are combined and appended with a flag indicating whether

each SEQUEST result originated from the search for the peptide with either the light or

heavy isotopic label.

78

Post-import, the SEQUEST results table can contain multiple entries for the same

peptide, but at different, non-contiguous scan numbers. These entries are processed using

the MATLAB combineScans.m function in Appendix 16 which condenses multiple

entries for the same peptide into a single entry with a list of the scan numbers at which it

was detected. This function also combines the detections of the same peptide but which

are labelled with the light and heavy isotopic labels. The flag indicating the detection

origin (light or heavy) is retained and stored for reference.

3.7.2 CROSS-REFERENCING SEQUEST AND PITS RESULTS

Since the PITS algorithm does not determine the sequence of a peptide it detects, it is

not possible to directly cross-reference the results sets. Instead, it is necessary to analyze

the properties of the two sets to establish matches. These properties are the charges,

number of labels, scan numbers (which correspond to elution time) and masses of the

entries. This process can be automated and the MATLAB code is shown in Appendix 17.

A SEQUEST entry is considered to match a PITS entry if the mass, detection range

(time), charge and number of labels fall within acceptable limits. For the charge and

number of labels (i.e. peptide class), the matches must be identical. Additionally, the

SEQUEST detection time must overlap with the time range of the PITS entry to be

considered a match (increasing this tolerance by any range provided only a small number

of additional “matches” which cannot be guaranteed to be a valid match). Finally, the

mass-to-charge value from PITS is converted to its corresponding MH+ value, and is

considered a match if within four-twelfths of a mass unit. This wider range was necessary

79

because there was some variability between the SEQUEST reported masses and the mass

observed by the PITS algorithms. This difference is suspected to result from the

alignment of the models to the lower-resolution MS data, in contrast with the higher-

resolution (but limited m/z range) zoom scans, and the tandem scans used by SEQUEST.

80

CHAPTER 4 RESULTS AND DISCUSSION

4.1 INTRODUCTION

This chapter contains a discussion of the results obtained by processing a series of

data files using the described algorithms. The four replicate BSA data files referred to

herein are the same utilized in the previous work by Boutilier[36]. Similarly, the yeast

(Saccharomyces cerevisiae) data file originated from the previous work. Both this data

file and the four replicate BSA files were generated from samples which were dimethyl-

labelled at a ratio of 1:1. The “high-resolution”, “triple-labelling” and “differential

expression” data files analyzed in subsequent sections were prepared by a summer

research student, Gemma Regan, and the methods used to obtain these files are described

in Chapter 2.

4.2 PITS DETECTION RESULTS FOR THE FOUR REPLICATE BSA DATA FILES

The results of processing the four BSA data files with the described algorithms and

parameters are given in Table 3. The first row corresponds to the total number of peaks

which were detected using the PITS algorithm. The previous work by Boutilier[36] found a

total of 535 peak pairs pooled across all samples, which is on par with these values, but a

slight difference is to be expected, arising from the changes to the PITS algorithm since

the previous incarnation. However, not all of these detections are quantifiable; a small

selection of these detections are overlapped by other peaks and this interference prevents

reliable quantitation in situations where there is an insufficient “clean” (non-overlapping)

81

Table 3: Summary of the peaks detected using the PITS algorithms outlined previously.
Groups of counts separated by solid lines represent those that sum to the total
number of detections in the results.

Data File Aon_1-2.raw Aon_2-3.raw Aon_3-4.raw Aon_4-5.raw

PITS Detections 493 552 540 525

Quantifiable 483 539 516 513

Interference 10 13 24 12

Charge (z)=1 136 179 141 166

Charge (z)=2 254 300 283 287

Charge (z)=3 103 73 116 72

Labels=1 250 322 267 305

Labels=2 195 194 218 185

Labels=3 48 36 55 35

Table 4: Overview of the number of each "class" of peptide detected for the four BSA
data files

Data File Aon_1-2.raw Aon_2-3.raw Aon_3-4.raw Aon_4-5.raw

1 Label, z=1 119 153 121 146

2 Labels, z=1 17 23 20 50

1 Label, z=2 113 150 130 147

2 Labels, z=2 127 136 133 129

3 Labels, z=2 14 14 20 11

1 Label, z=3 18 16 16 12

2 Labels, z=3 51 35 65 36

3 Labels, z=3 34 22 35 24

region to quantify (per the minimum temporal size parameter). In these cases, only 10-20

peaks were not quantifiable. The distribution of charges and labels appears to indicate

that doubly charged peptides and single labels are more common. However, this does not

82

provide insight into the combinations of charge and labels which are more commonly

observed. These details are provided above in Table 4.

Figure 23: Computed ratios for each of the four replicate BSA data files.

From Table 4 it can be seen that singly charged peptides with one label, and doubly-

labelled peptides with a charge of +1 and +2 are the most prevalent. This is expected

when considering the amino acids present in peptides; single and doubly-labelled

peptides contain either zero or one lysine residue, respectively. Given that the enzyme

83

trypsin cleaves at either lysine or arginine residues this is to be expected. On the other

hand, peptides with triple labels would have to contain at least two lysine residues (one n-

terminal label and two other labelled primary amines). This situation is only likely to

occur if there are multiple missed tryptic cleavages, which will result in peptide chains

with additional primary amine groups.

The ratios of the light to heavy isotopic labels of these peaks are shown as a function

of the m/z value in Figure 23. Overall, the distribution of these ratios appears as expected

(spread about the designed ratio of 1:1). There is some slight variability in the spread and

Figure 24: Histograms of the computed ratios for each of the four BSA replicates.

84

centering. This may be attributable to sample preparation, as the four samples were each

digested and labelled separately prior to analysis, as opposed to replicate injections of the

same sample. Histograms of these plots are shown in Figure 24, which illustrate this

variability, but in general the three central bins do comprise the bulk of the detections,

with a reasonably balanced distribution to either side of the center.

4.2.1 SUPPLEMENTATION OF PITS RESULTS WITH SEQUEST

The list of PITS detections was cross-referenced with the results of the previously

performed SEQUEST searches for the four BSA replicates. Overall, there were found to

be 160, 155, 162, and 153 PITS detections which had “matching” entries in the unfiltered

SEQUEST results for replicates 1-4, respectively. This left 323, 384, 354, and 360

detections without matches. It was initially suspected that the large difference between

the number of PITS detected peptides and the number which had matching SEQUEST

entries could arise from a lack of zoom and tandem scans present on these detections.

However, this was not the case, as a large number of the PITS entries without SEQUEST

matches did have “candidate” zoom and tandem scans. “Candidate” scans are the zoom

and tandem scans which were triggered within the region of the PITS detection – that is,

the zoom scan's m/z range spans the value detected by PITS, occurred during the time

range over which PITS observed the signal, and the tandem scan's parent ion must have a

mass which falls within the PITS detection's mass range. While it is highly likely that

these scans are indeed triggered on a peptide signal, there are two possibilities that make

this difficult to confirm for every matched set of PITS detections and zoom or tandem

85

scans without exhaustive manual investigation. Specifically, there may be more intense

signals from non-peptide sources interleaved amongst the isotopic patterns, or the tandem

scan was triggered by a peak other than the first peak of the light isotopic pattern. In the

latter scenario, this makes it difficult to directly compare m/z values, as the tandem scans

will report the m/z values on which they were triggered, whilst PITS identifies detections

by the m/z value of the first peak of the light isotopic pattern.

Figure 25: Plot of ratios as a function of m/z with SEQUEST matches indicated.
Peptides with matches are plotted as red + symbols, while those without matches are
plotted as black points.

86

Figure 26: Histograms of the ratios separated by SEQUEST matches. Black bars
correspond to detections with matches, white bars correspond to detections without
SEQUEST matches.

These PITS detections which are “unaccounted for” exhibit all of the characteristics

of their known valid counterparts – that is, the signals fit well to the isotopic peak model,

and have fit ratios that are not distinguishable from the other peptides detected.

Unfortunately it is not possible to conclude that they are peptides without a positive

identification. These detections can be seen in Figure 25, a duplicate of Figure 23, except

that detections which have SEQUEST matches are indicated with red '+' symbols as

opposed to black dots. It is worth noting that there does not seem to be a clearly visible

87

difference between these two groups with respect to their distribution about the axes, as

further evidenced by the histograms in Figure 26, which shows that the distribution

among the bins is highly similar for both groups.

The previous work of Boutilier[36] also included a list of 124 “known good” peptides

which were established through manual inspection and filtering of the combined

SEQUEST results of all four files. This list was also compared to the PITS and

SEQUEST results. Four possible cases were considered and explored, consisting of

whether the peptide was detected in a given file by PITS, SEQUEST, both methods, or

neither method (that is, it was found in at least one data file but not the file being

inspected). Peptides detected by PITS and not by SEQUEST will not appear in this

analysis, as without identification, there is no possible way to establish their presence

across all four files with certainty. Similarly, peptides which are detected by both or

neither method are not of particular interest as they show the detection methods agree.

The situations of particular interest occur when a peptide is not detected by PITS but is

detected by SEQUEST. Only a small number (~10) such detections were found in each

file. For these signals, the raw data was extracted and examined in detail. In all such

cases, it was observed that the raw MS¹ data was of insufficient quality for PITS to detect

the peptide. This was typically due to either signal interference, signals that were too

brief in the temporal domain, or simply signals with a low signal-to-noise ratio. This is

not unexpected, as the signal quality of zoom and tandem MS scans is generally superior

to the raw MS scan. It is anticipated that this situation will improve with higher-

88

resolution MS data, but this cannot be tested on the current instrumentation, since

collection of higher-resolution data precludes the collection of tandem MS scans.

4.3 PITS RESULTS FOR YEAST

Analysis of the yeast data file showed similar results as those observed for the BSA

data files. This sample is more complex than the BSA data files as it contains an entire

proteome as opposed to a single protein. In this case, a total of 1880 PITS detections were

found. Of this total, 1739 were considered “quantifiable”, with 546, 1076, and 258 singly,

doubly, and triply charged detections (respectively), 801 detections with 1 label, 878 with

two labels, and 201 with 3 labels. Finally, the “class” distribution for these peptides is

given in Table 5.

Table 5: Number of detections per peptide class for the S. cerevisiae data file.

Labels 1 2 1 2 3 1 2 3

Charge (z) 1 1 2 2 2 3 3 3

Detections 342 204 424 601 51 35 73 150

Unfortunately, this data file was prepared as part of the previous work by Boutilier,[36]

and did not contain the requisite tandem MS scans for SEQUEST searching and

identification, limiting further interpretation of these results, but a plot of isotopic peak

ratios is well distributed about the expected 1:1 value and may be seen above in Figure

27, with the corresponding histogram in Figure 28. It is worth noting that the higher

number of unquantifiable detections indicates that as the complexity of the sample

increases, it will be necessary to adapt the quantification method of the PITS algorithm to

89

handle scenarios where detections overlap.

Figure 27: Plot of isotopic peak ratios as a function of m/z value for the S. cerevisiae
data file. The distribution appears normal about the expected ratio of 1:1.

Figure 28: Histogram of the ratios computed for the S. cerevisiae data file.

4.4 PITS RESULTS FOR HIGH-RESOLUTION DATA

Six replicate injections of a sample of BSA labelled at a ratio of 1:1 were collected by

undergraduate researcher Gemma Regan, with the instrument configured in a higher

resolution mode (m/z increments of 1/50) and disabling the collection of zoom and

90

tandem scans. The six data files collected at higher resolution were also analyzed with the

same detection settings as the lower-resolution files (excepting the peak width parameter

used in modelling). The counts for these six files are shown in Table 6.

Table 6: Counts of each type for the six higher-resolution BSA data files. Groups of
entries separated by lines are those which sum to the total number of detections.

Data File BSA_C1_
01.raw

BSA_C2_
02.raw

BSA_C1_
03.raw

BSA_C2_
04.raw

BSA_C1_
05.raw

BSA_C2_
06.raw

Total # 149 148 156 158 160 151

Quantifiable 149 148 156 155 158 151

z=1 57 52 58 60 59 56

z=2 84 84 88 85 91 83

z=3 8 12 10 13 10 12

1 label 74 64 78 69 81 70

2 labels 69 75 72 81 73 74

3 labels 6 9 6 8 6 7

1 Label, z=1 53 48 56 53 58 52

2 Labels, z=1 4 4 2 7 1 4

1 Label, z=2 20 15 21 15 22 17

2 Labels, z=2 61 64 64 66 66 63

3 Labels, z=2 3 5 3 4 3 3

1 Label, z=3 1 1 1 1 1 1

2 Labels, z=3 4 7 6 8 6 7

3 Labels, z=3 3 4 3 4 3 4

It is worth observing that these results appear to be more consistent across the six

files for the same sample. This may be attributable to the higher resolution of the data

resulting in a less ambiguous fit to the models for incompletely resolved isotopic patterns

in relation to the alignment artifacts described in Chapter 3. The number of peptides

91

Figure 29: Plots of the intensity ratios for each detection as a function of the m/z value,
for each of the six higher-resolution BSA data files.

observed here appears to be significantly lower than for the lower-resolution BSA files,

and the reason for this discrepancy remains to be investigated during the continuation of

this work. One possibility is that the higher resolution results in a greater sensitivity to

any variations in the peak width, causing a lack of fit to the model and a lower than

92

anticipated signal-to-noise ratio. This arises during the calculation of the residuals during

fitting, as the residual error increases rapidly for small differences in peak width as the

overall peak shape becomes narrower. The possibility of false detections in the lower-

resolution data also cannot be excluded, especially given that these numbers are more

consistent with the SEQUEST results. However, the consistency of the ratios in the

lower-resolution data files contradicts this possibility. Finally, a variation in instrument

sensitivity between the two sets of experiments is also a possible explanation.

Plots of the detection ratios for each of the six files may be seen in Figure 29. It is

worth observing that there appears to be a downward shift in the ratios which is

consistent across the files, which is indicative that the samples were likely not exactly at a

1:1 ratio when introduced into the MS instrument. Further analysis of the reproducibility

of signal ratio calculations for replicate injections is planned once the alignment of points

across multiple data files has been implemented.

4.5 PITS RESULTS FOR TRIPLE-LABELLING DATA

The triple-labelling of peptides is a method that should resolve the problem of

detection when only a single isotopic pattern of the peak pair is present. As such, an

exploratory sample of BSA was prepared at a ratio of 1:1 for the reference to test, per the

methods described in Chapter 2. The data was collected at the standard resolution used

for the four replicate BSA files (m/z increments of 1/12). The ratio plots may be seen

below in Figure 30 and the summary results are shown subsequently in Table 7.

93

Figure 30: Histograms and plots of detected ratios as a function of m/z value for the two
data files containing three isotopic labels.

The ratios shown above were determined based on the intensity of the two outer

“reference” peaks over the intensity of the middle “test” peak, using the model

modification described in the previous chapter. As can be seen from the plots, theoretical

ratios are consistent with the designed value of 1:1. It is interesting to note that the total

number of detections is higher than observed in the higher-resolution data files. It appears

that this increase results from an increase in the number of peptides detected at higher

charge states. It has been observed previously that at standard resolution, the

94

Table 7: Summary of peptide detection counts for the two BSA files with three isotopic
labels.

Data File 200fmol_BSA_C1_01.raw 200fmol_BSA_C2_02.raw

Total # 226 231

Quantifiable 225 225

z=1 45 46

z=2 147 148

z=3 34 37

1 label 90 96

2 labels 111 106

3 labels 25 29

1 Label, z=1 37 37

1 Label, z=2 8 9

2 Labels, z=1 48 54

2 Labels, z=2 91 82

2 Labels, z=3 8 12

3 Labels, z=1 5 5

3 Labels, z=2 12 15

3 Labels, z=3 17 17

isotopic pattern of these signals is not as clearly distinguished as singly-charged peptides.

Ergo, it is possible that the addition of the third label provides better detection in cases

where the fit of only two isotopic patterns might otherwise be discarded for having a

signal-to-noise ratio that was too low. As the sample was prepared at a 1:1 ratio, it does

not offer any insight as to the detection abilities when a peptide may be down-regulated

or up-regulated. While it is anticipated that this would provide results similar to the

differential labelling experiment described in the next section, it should be noted that the

95

addition of a third label does increase the complexity of a sample by a factor of 1.5, and

this will require careful experimental design when a triple-label method is applied to a

sample which is already complex, such as a complete proteome.

4.6 DETECTION OF DIFFERENTIAL EXPRESSION

The experiments reported up until this point have all used protein ratios of 1:1 in

order to illustrate the ability of the algorithm to locate peptide pairs and report a reliable

ratio. However, the algorithm must be able to detect differential protein expression to be

useful. To demonstrate this ability, an experiment was designed in which up- and down-

regulation of proteins was simulated amongst a complex proteome background.

Three mixtures were prepared as described earlier in Chapter 2,and two replicate runs

were carried out in low-resolution mode (with tandem MS scans). These data files were

then analyzed using PITS and SEQUEST in an attempt to confirm these differential

expression ratios could be detected correctly. The initial results of these experiments were

promising. Through cross-referencing detections with SEQUEST results, several points

with expression ratios close to 3:1 were shown to have peptide sequences which originate

from the lysozyme protein, as shown in Figure 31. While the target ratio of 2:1 is small

and can be overlapped by a small number of ratios corresponding to the background

which was prepared at 1:1, it was selected with the intent to establish whether such a

small ratio resulted in a visually distinct grouping of points in the ratio plots, and to

provide a visual reference for the range of concentration ratios that could be practically

observed as deviating from 1:1 during a differential expression experiment.

96

Figure 31: Plots of detected expression ratios as a function of m/z, grouped by organism.
Lysozyme is represented with circles, BSA with triangles, and E. coli with solid points.
Note the distinct grouping and separation of the lysozyme circles (where present).

Note that lysozyme is a relatively small protein yielding only a few peptides on

digestion. Therefore, it was not expected that many matches would be observed, if at all.

This is likely the reason that the experiments with the smallest amount of lysozyme failed

to produce any matches in one of the replicates, as only 21 femtomoles of this protein is

present, and divided 2:1 amongst the light and heavy labelled variants. Regardless,

97

several matches which are consistently up-regulated have been found in the other runs.

Unfortunately, the points identified as originating from BSA did not appear as a distinct

group as expected. Instead, they are interspersed with the E. coli “background”. It is

suspected that the origin of this error lies in the normalization of samples, as three pairs

of light and heavy samples must be prepared separately prior to final dilution and

combination for LC-MS/MS analysis.

The same experiment was repeated in an attempt to confirm the differential

expression for both up-regulation and down-regulation. The results of this second set of

experiments are shown in Figure 32.

Figure 32: Calculated ratios for the second set of BSA, lysozyme, and E. coli samples.

98

In this experiment, the ratios of BSA and lysozyme were inverted (e.g. BSA was up-

regulated at 2:1, and lysozyme was down-regulated at 1:2) to ensure that the problem did

not originate specifically with BSA. The results clearly display groups of peptides around

the appropriate ratios, but a definitive confirmation cannot be made, as the data collection

was inadvertently run using the higher-resolution method which was not configured to

collect MS² data. Ergo, no tandem MS data was collected and SEQUEST results could

not be obtained to identify the differentially expressed proteins. It would appear highly

likely that the patterns shown are consistent with the expected results, given that the

masses of the up-regulated peptides identified as lysozyme (m/z 537.3, 728.8, 891.4 and

691.4) in the first experiment are also observed within one mass channel (1/12 m/z) in the

second attempt, but with down-regulated ratios per the experimental design. Further

experiments are planned to complete this validation.

99

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

The methods outlined in this work have been shown to improve and extend the

functionality of the PITS method of detecting peptides in MS data without the use of

tandem MS data or the identification of the exact sequence of the peptide. Specifically, it

has shown successful detection of peptides using customized algorithms to determine the

anticipated isotopic ratios of a peptide based on the formula of an “average” amino acid,

rapid initial detection of peptide pair signals in raw data from the MS instrument, and

successful filtering and clustering of this initial detection to provide a final list of peptide

detections which performs comparably to SEQUEST, while also detecting peptide peak

pairs which are singly charged or not recognized from the database. Finally, it has shown

success in quantifying the ratios of the intensities of these isotopically labelled peptide

peak pairs in the raw data.

The software developed in this work has been compiled into a self-contained package

to guide the user through each of the steps in the workflow. Information on prerequisites

and how to use the package are provided in Appendix 18. The main interface of this

package is depicted in Figure 33, and each “block” in this workflow can be clicked to

open a dialog with additional information and instructions, or to run that particular step of

the process.

100

Figure 33: Main interface display of PITS software package

5.2 FUTURE WORK

The algorithms in this work have not yet reached their full potential, and much work

remains to be completed before this can happen. There are many possible applications

and future extensions for this work, and current research also focuses on expanding the

capabilities of the workflow into several new regions. The preliminary experiments using

non-uniform expression ratios, triple labels, and higher-resolution data have been shown

to be successful, but further validation is necessary.

One aspect that requires further investigation is the metric used to determine the

quality of the model fit. A relative fit error is currently used to express the signal-to-noise

ratio, but this may not be the best approach. The noise in MS signals can be dependent on

101

signal intensity, which translates to larger residuals for larger signals. A more appropriate

evaluation might be based on weighted residuals. Accordingly, it will also be necessary to

characterize the baseline and signal noise, and develop error models to estimate the

reliability of the ratios calculated from the mass chromatographic data.

While the software speed is currently less of a bottleneck than the collection of the

MS data, improvements are possible to increase the efficiency of the various stages, and

this will become of significant importance as the size of data files increases, either in

resolution or in the temporal direction.

It is anticipated that higher resolution, triple-labelling experiments such as those

described in this work will provide the best results, but the analysis of such data has

additional challenges in the model sensitivity to changes in peak width and position.

Currently, these procedures will need to be investigated, as it is not clear whether they are

optimal. Extending this concept even further, more complications are introduced when

the data becomes of sufficient resolution that individual isotope peaks are resolved, or

that one may observe the interleaving of two or more signals within the m/z range of a

single isotopic pattern. This will necessitate the adaptation of the modelling methods to

process these regions appropriately and prevent these signals from interfering with each

other when quantifying the intensities.

Rather than limiting studies to single mass chromatograms, the goal is to apply these

102

methods to larger-scale studies, In particular, these methods are targeted to longitudinal

studies such as time-course analysis to discern large-scale changes in protein expression

as opposed to biomarker studies. This will require the integration of multiple sets of data,

so the time alignment of peptide detections is a desirable feature to be incorporated into

this workflow, which will require evaluating existing methods for suitability, or

implementing a new approach that integrates with the developed workflow. Early during

the development of this work, one possible method was tested which relied on the use of

PCA to correct time shifts from one sample to the next, but the complications arising

from establishing relationships between data files were found to be more complex than

anticipated. Therefore, the exploration of additional time alignment methods and

quantitation of detections over time remains as a candidate for future research to further

enhance the workflow.

Triple labelling, which was shown to be a viable approach when used together with

the PITS algorithm, also requires further investigation. The best method for

implementing the third label in the design of an experiment remains for future

consideration, but the advantage of the PITS method in conjunction with this labelling

method is that it can still be used to detect peptides when the isotope clusters are

overlapped, and it does not preclude the use of more labels.

Finally, to validate this approach, it will be necessary to conduct an experiment on a

larger experimental system of relevance. The goal of this experiment would be to

103

demonstrate that meaningful information can be extracted through the multivariate data

obtained in the experiment. Currently, such an experiment is underway to investigate the

evolution of protein expression during yeast sporulation. Approximately twenty samples

have been collected during this process by Gemma Regan, an undergraduate researcher,

and these samples await preparation for analysis.

104

REFERENCES
1. Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J., Yan, J. X.,

Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K., Hochstrasser, D. F,
From proteins to proteomes: Large scale protein identification by two-dimensional
Electrophoresis and amino acid analysis, Biotechnology, 14:61 (1996)

2. Gygi, S., Rochon, Y., Franza, B., Aebersold, R., Correlation between protein and
mRNA abundance in yeast, Molecular and Cellular Biology, 19 (3):1720 (1999)

3. Anderson, N. L., Anderson, N. G., Proteome and proteomics: New technologies, new
concepts, and new words, Electrophoresis, 19:1853 (1998)

4. Liu, Y., Huttengain, R., Collins, B., Aebersold, R., Mass spectrometric protein maps
for biomarker discovery and clinical research, Expert Review of Molecular
Diagnostics, 13 (8):811 (2013)

5. Marshall, R., Simpson, J., Lukey, P., Strategies for biomarker discovery in fibrotic
disease, Biochimica et Biophysica Acta - Molecular Basis of Disease, 1832 (7):1079
(2013)

6. Arnaud, C., Biomarkers wanted, Chemical and Engineering News, 89 (30):40 (2011)

7. Qin, X., Ling, B., Proteomics studies in breast cancer (Review), Oncology Letters,
3:735 (2012)

8. Shoemaker, L., Achrol, A., Sethu, P., Steinberg, G., Chang, S., Clinical
neuroproteomics and biomarkers: From basic research to clinical decision making,
Neurosurgery, 70 (3):518 (2011)

9. Yates, J., Ruse, C., Nakorchevsky, A., Proteomics by mass spectrometry: approaches,
advances, and applications, Annual Review of Biomedical Engineering, 11:49 (2009)

10. Han, X., Aslanian, A., Yates, J., Mass spectrometry for proteomics, Current Opinion
in Chemical Biology, 12:483 (2008)

11. Malmström, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E., Aebersold, R.,
Proteome-wide cellular protein concentrations of the human pathogen Leptospira
interrogans, Nature, 460 (6):762 (2009)

12. Gerber, S., Rush, J., Stemman, O., Kirschner, M., Gygi, S., Absolute quantification of
proteins and phosphoproteins from cell lysates by tandem MS, Proceedings of the
National Academy of Sciences USA, 100 (12):6940 (2003)

13. Nesvizhskii, A., Vitek, O., Aebersold, R., Analysis and validation of proteomic data
generated by tandem mass spectrometry, Nature Methods, 4 (10):787 (2007)

14. Wall, M. J., Crowell, A. M. J., Simms, G. A., Liu, F., Doucette, A. A., Implications of
partial tryptic digestion in organic-aqueous solvent systems for bottom-up proteome
analysis, Analytica Chimica Acta, 703:194 (2011)

105

15. Gygi, S. P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M. H., Aebersold, R.,
Quantitative analysis of complex protein mixtures using isotope-coded affinity tags,
Nature Biotechnology, 17:994 (1999)

16. Ong, S., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A.,
Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple
and accurate approach to expression proteomics, Molecular and Cellular Proteomics,
1:376 (2002)

17. Wang, Y., Ma, Z., Quinn, D., Fu, W., Inverse 18O labeling mass spectrometry for the
rapid identification of marker/target proteins, Analytical Chemistry, 73:3742 (2001)

18. Yu, L., Bottari, P., Turecek, F., Aebersold, R., Gelb, M., Absolute quantitation of
specific proteins in complex mixtures using visible isotope-coded affinity tags,
Analytical Chemistry, 76:4104 (2004)

19. Hansen, K., Schmitt-Ulms, G., Chalkley, R., Hirsch, J., Baldwin, M., Burlingame, A.,
Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-
isotope-coded affinity tag and multidimensional chromatography, Molecular and
Cellular Proteomics, 2:299 (2003)

20. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann,
T., Hamon, C., Tandem mass tags: A novel quantification strategy for comparative
analysis of complex protein mixtures by MS/MS, Analytical Chemistry, 75:1895
(2003)

21. Eng, J. K., McCormack, A. L., Yates, J. R. III, An Approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database, Journal of
the American Society for Mass Spectrometry, 5 (11):976 (1994)

22. Perkins, D., Pappin, D., Creasy, D., Cottrell, J., Probability-based protein
identification by searching sequence databases using mass spectrometry data,
Electrophoresis, 20:3551 (1999)

23. Craig, R., Beavis, R., TANDEM: matching proteins with tandem mass spectra,
Bioinformatics, 20 (9):1466 (2004)

24. Ross, P. L., Huang, Y. N., Marchese, J. M., Williamson, B., Parker, K., Hattan, S.,
Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S.,
Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D. J., Multiplexed protein
quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging
reagents, Molecular and Cellular Proteomics, 3:1154 (2004)

25. Lundgren, D., Hwang, S., Wu, L., Han, K.,, Role of spectral counting in quantitative
proteomics, Expert Reviews Proteomics, 7 (1):39 (2010)

26. Zhu, W., Smith, J., Huang, C., Mass spectrometry based label-free quantitative
proteomics, Journal of Biomedicine and Biotechnology, 2010 (2009)

106

27. Liu, H., Sadygov, R., Yates, J., A model for random sampling and estimation of
relative protein abundance in shotgun proteomics, Analytical Chemistry, 76 (14):4193
2004

28. Julka, S., Regnier, F., Quantification in proteomics through stable isotope coding: A
review, Journal of Proteome Research, 3:350 (2004)

29. Yasui, Y., McLerran, D., Adam, B., Winget, M.,Thornquist, M., Feng, Z., An
automated peak identification/calibration procedure for high-dimensional protein
measures from mass spectrometers, Journal of Biomedicine and Biotechnology, 4:242
(2003)

30. Morris, J., Coombes, K., Koomen, J., Baggerly, K., Kobayashi, R., Feature extraction
and quantification for mass spectrometry in biomedical applications using the mean
spectrum, Bioinformatics, 21 (9):1764 (2005)

31. Samuelsson, J., Dalevi, D., Levander, F., Rögnvaldsson, T., Modular, scriptable and
automated analysis tools for high-throughput peptide mass fingerprinting,
Bioinformatics, 20 (18):3628 (2004)

32. Noy, K., Fasulo, D., Improved model-based, platform-independent feature extraction
for mass spectrometry, Bioinformatics, 23 (19):2528 (2007)

33. James, P., Quadroni, M., Carafoli, E., Gonnet, G., Protein identification by mass
profile fingerprinting, Biochemical and Biophysical Research Communications, 195
(1):58 (1993)

34. Henzel, J., Watanabe, C., Stults, J., Protein identification: The origins of peptide mass
fingerprinting, Journal of the American Society for Mass Spectrometry, 14:931 (2003)

35. Yates, J., Speicher, S., Griffin, P., Hunkapiller, T., Peptide mass maps: A highly
informative approach to protein identification, Analytical Biochemistry, 214:397
(1993)

36. Boutilier, Joseph M., Strategies to Impove Quantitative Proteomics: Implications of
Dimethyl Labeling and Novel Peptide Detection (Masters Thesis), 2012 (Available
via DalSpace (URI: http://hdl.handle.net/10222/14558))

37. Reisch, M., Tiny tools, Chemical and Engineering News, 91 (34):11 (2013)

38. Hsu, J., Huang, S., Chow, N., Chen, S., Stable-isotope dimethyl labeling for
quantitative proteomics, Analytical Chemistry, 75 (24):6843 (2003)

39. Melanson, J., Avery, S., Pinto, D. M., High-coverage quantitative proteomics using
amine-specific isotopic labeling, Proteomics, 6:4466 (2006)

40. Boutilier, J.M., Warden, H., Doucette, A. A., Wentzell, P. D., Chromatographic
behaviour of peptides following dimethylation with H2/D2-formaldehyde:
Implications for comparative proteomics, Journal of Chromatography B, 908:59

107

(2012)

41. The Quiagen guide to good microbial practice, 1999,
http://www.pointbiolabs.com/uploads/5/0/9/8/5098737/___guide_to_good_microbiol
ogical_practices_iii.pdf (Last accessed December 16, 2013)

42. Pedrioli, P., Eng, J. Hubley, R., Vogelzang, M., Deutsch, E., Raught, B., Pratt, B.,
Nilsson, E., Angeletti, R., Apweiler, R., Cheung, K., Costello, C., Hermjakob, H.,
Huang, S., Julian, R., Kapp, E., McComb, M., Oliver, S., Omenn, G., Paton, N.,
Simpson, R., Smith, R., Taylor, C., Zhu, W., Aebersold, R., A common open
representation of mass spectrometry data and its application to proteomics research,
Nature Biotechnology, 22 (11):1459 (2004)

43. Tasman, N., Eng, J., Pratt, B., Chambers, M., ReAdW 4.3.1 (Computer software),
http://tools.proteomecenter.org/wiki/index.php?title=Software:ReAdW (Last accessed
December 17, 2013)

108

http://tools.proteomecenter.org/wiki/index.php?title=Software:ReAdW
http://www.pointbiolabs.com/uploads/5/0/9/8/5098737/___guide_to_good_microbiological_practices_iii.pdf
http://www.pointbiolabs.com/uploads/5/0/9/8/5098737/___guide_to_good_microbiological_practices_iii.pdf

APPENDIX 1 HIGH-RESOLUTION MS ACQUISITION PARAMETERS

MS Run Time (min): 65.00
Sequence override of method parameters not enabled.
Divert Valve: not used during run
Contact Closure: not used during run
Syringe Pump: not used during run
MS Detector Settings:Real-time modifications to method disabled
Stepped collision energy not enabled
Additional Microscans:

MS2 0
MS3 0
MS4 0
MS5 0
MS6 0
MS7 0
MS8 0
MS9 0
MS10 0

Segment 1 Information
Duration (min): 65.00
Number of Scan Events: 1
Tune Method: June19_2013_NSITune
Scan Event Details:

1: ITMS + p norm !corona !pi oZ(400.0-1300.0)
Custom Data Dependent Settings: Not enabled

109

APPENDIX 2 TRIPLE-LABEL MS ACQUISITION PARAMETERS

MS Run Time (min): 65.00
Sequence override of method parameters not enabled.
Divert Valve: not used during run
Contact Closure: not used during run
Syringe Pump: not used during run
MS Detector Settings:Real-time modifications to method disabled
Stepped collision energy not enabled
Additional Microscans:
 MS2 0
MS3 0
MS4 0
MS5 0
MS6 0
MS7 0
MS8 0
MS9 0
MS10 0
Experiment Type: Nth Order Triple Play
Tune Method: May24_2013_NSITune
Scan Event Details:

1: ITMS + p norm !corona !pi o(400.0-1300.0)
2: ITMS + p norm !corona !pi Dep Zoom MS Most intense ion from (1)

Activation Type: CID
Min. Signal Required: 5000.0
Isolation Width: 2.00
Normalized Coll. Energy: 35.0
Default Charge State: 2
Activation Q: 0.250
Activation Time: 30.000

3: ITMS + c norm !corona !pi Dep MS/MS Most intense ion from (2)
Activation Type: CID
Min. Signal Required: 5000.0
Isolation Width: 2.00
Normalized Coll. Energy: 35.0
Default Charge State: 2
Activation Q: 0.250
Activation Time: 30.000
Scan Events 2 and 3 repeated for top 3 peaks.
Data Dependent Settings: Use separate polarity settings disabled
Parent Mass List: (none)
Reject Mass List: (none)
Neutral Loss Mass List: (none)

110

Neutral loss in top: 3
Most intense if no parent masses found not enabled
Add/subtract mass not enabled
Charge state screening not enabled
Charge state rejection enabled
Unassigned charge states : rejected
Charge state 1 : rejected
Charge state 2 : not rejected
Charge state 3 : not rejected
Charge states 4+ : not rejected
Global Data Dependent Settings:
Use global parent and reject mass lists not enabled
Exclude parent mass from data dependent selection not enabled
Exclusion mass width by mass
Exclusion mass width low: 1.50
Exclusion mass width high: 2.50
Parent mass width by mass
Parent mass width low: 0.50
Parent mass width high: 0.50
Reject mass width by mass
Reject mass width low: 0.50
Reject mass width high: 0.50
Zoom/UltraZoom scan mass width by mass
Zoom/UltraZoom scan mass width low: 5.00
Zoom/UltraZoom scan mass width high: 5.00
Neutral Loss candidates processed by decreasing intensity
Neutral Loss mass width by mass
Neutral Loss mass width low: 0.50
Neutral Loss mass width high: 0.50
MS mass range: 0.00-1000000.00
MSn mass range by mass
MSn mass range: 0.00-1000000.00
Analog UV data dep. not enabled
Dynamic exclusion enabled
Repeat Count: 1
Repeat Duration: 30.00
Exclusion List Size: 50
Exclusion Duration: 120.00
Exclusion mass width by mass
Exclusion mass width low: 1.50
Exclusion mass width high: 2.50
Expiration: disabled
Isotopic data dependence not enabled
Custom Data Dependent Settings: Not enabled

111

APPENDIX 3 ALTERNATE RATIO MS ACQUISITION PARAMETERS

MS Run Time (min): 65.00
Sequence override of method parameters not enabled.
Divert Valve: not used during run
Contact Closure: not used during run
Syringe Pump: not used during run
MS Detector Settings:Real-time modifications to method disabled
Stepped collision energy not enabled
Additional Microscans:
 MS2 0
MS3 0
MS4 0
MS5 0
MS6 0
MS7 0
MS8 0
MS9 0
MS10 0
Experiment Type: Nth Order Triple Play
Tune Method: June19_2013_NSITune
Scan Event Details:

1: ITMS + p norm !corona !pi o(400.0-1300.0)
2: ITMS + p norm !corona !pi Dep Zoom MS Most intense ion from (1)

Activation Type: CID
Min. Signal Required: 5000.0
Isolation Width: 2.00
Normalized Coll. Energy: 35.0
Default Charge State: 2
Activation Q: 0.250
Activation Time: 30.000

3: ITMS + c norm !corona !pi Dep MS/MS Most intense ion from (2)
Activation Type: CID
Min. Signal Required: 5000.0
Isolation Width: 2.00
Normalized Coll. Energy: 35.0
Default Charge State: 2
Activation Q: 0.250
Activation Time: 30.000
Scan Events 2 and 3 repeated for top 3 peaks.
Data Dependent Settings: Use separate polarity settings disabled
Parent Mass List: (none)
Reject Mass List: (none)
Neutral Loss Mass List: (none)

112

Neutral loss in top: 3
Most intense if no parent masses found not enabled
Add/subtract mass not enabled
Charge state screening not enabled
Charge state rejection enabled
Unassigned charge states : rejected
Charge state 1 : rejected
Charge state 2 : not rejected
Charge state 3 : not rejected
Charge states 4+ : not rejected
Global Data Dependent Settings:
Use global parent and reject mass lists not enabled
Exclude parent mass from data dependent selection not enabled
Exclusion mass width by mass
Exclusion mass width low: 1.50
Exclusion mass width high: 2.50
Parent mass width by mass
Parent mass width low: 0.50
Parent mass width high: 0.50
Reject mass width by mass
Reject mass width low: 0.50
Reject mass width high: 0.50
Zoom/UltraZoom scan mass width by mass
Zoom/UltraZoom scan mass width low: 5.00
Zoom/UltraZoom scan mass width high: 5.00
Neutral Loss candidates processed by decreasing intensity
Neutral Loss mass width by mass
Neutral Loss mass width low: 0.50
Neutral Loss mass width high: 0.50
MS mass range: 0.00-1000000.00
MSn mass range by mass
MSn mass range: 0.00-1000000.00
Analog UV data dep. not enabled
Dynamic exclusion enabled
Repeat Count: 1
Repeat Duration: 30.00
Exclusion List Size: 50
Exclusion Duration: 120.00
Exclusion mass width by mass
Exclusion mass width low: 1.50
Exclusion mass width high: 2.50
Expiration: disabled
Isotopic data dependence not enabled
Custom Data Dependent Settings:Not enabled

113

APPENDIX 4 MZXML IMPORT FUNCTION

%% Scan mzXML file into matlab for all MS,Zoom,MSMS scans
function [dat]=rawexportall_new(mzXML,savename)
% mzXML and savename needs to be string variables
% mzXML is the filename of the file being exported
% savename is the filename that you want to save the data as

tic;
fid = fopen(mzXML,'r+'); % read in mzXML data file
fContents=fread(fid,'*char');
fclose(fid);

main=fContents';
toCut=(main==' ' | main==char(10));
main=main(~toCut);

tokens = regexp(main,'<\?xmlversion="(.*?)</dataProcessing>','tokens');
header = tokens{1}{1,1};

 tokens = regexp(header,'fileName="(.*?)"','tokens');
dat.fileName=tokens{1}{1,1};
tokens = regexp(header,'scanCount="(.*?)"','tokens');
dat.scanCount=str2double(tokens{1}{1,1});

FulCount=1;
ZCount=1;
TCount=1;

match = regexp(main,'<scannum="(.*?)</peaks>','match');
nscan=length(match);
for iscan = 1:nscan;

 tokens = regexp(match{1,iscan},'msLevel="(.*?)"','tokens');
 msLevel=str2double(tokens{1}{1,1});

 tokens = regexp(match{1,iscan},'scanType="(.*?)"','tokens');
 scanType=tokens{1}{1,1};

 %Full Scans
 msLevelCheck=msLevel==1;
 scanTypeCheck=strncmp(scanType,'Full',4);
 if msLevelCheck && scanTypeCheck == true

114

 tokens = regexp(match{1,iscan},'compressedLen="0">(.*?)</peaks>',...
 'tokens');
 rawdata=tokens{1}{1,1};

 base64 = base64cvt(rawdata);
 DATA=swapbytes(typecast(base64,'single'));

 tokens = regexp(match{1,iscan},'scannum="(.*?)"','tokens');
 curscan=str2double(tokens{1}{1,1});
 dat.scanNum(1,FulCount)=curscan;

 tokens = regexp(match{1,iscan},'retentionTime="PT(.*?)S"','tokens');
 dat.rTime(1,FulCount)=str2double(tokens{1}{1,1});

 DATA_R=reshape(DATA,2,[])';
 dat.intensity(:,FulCount)=DATA_R(:,2);
 FulCount=FulCount+1;
 if FulCount == 2
 dat.massCharge(:,1)=DATA_R(:,1);
 end
 end

 %Zoom Scans
 msLevelCheck=msLevel==1;
 scanTypeCheck=strncmp(scanType,'Z',1);
 if msLevelCheck && scanTypeCheck == true

 tokens = regexp(match{1,iscan},'compressedLen="0">(.*?)</peaks>',...
 'tokens');
 rawdata=tokens{1}{1,1};

 base64 = base64cvt(rawdata);
 [~,col]=size(base64);
 data_length=col/4;
 DATA=swapbytes(typecast(base64,'single'));

 tokens = regexp(match{1,iscan},'scannum="(.*?)"','tokens');
 curscan=str2double(tokens{1}{1,1});
 dat.scanNumZ(1,ZCount)=curscan;

 tokens = regexp(match{1,iscan},'retentionTime="PT(.*?)S"','tokens');
 dat.rTimeZ(1,ZCount)=str2double(tokens{1}{1,1});

 DATA_R=reshape(DATA,2,[])';

115

 dat.intensityZ(:,ZCount)=DATA_R(1:data_length/2,2);
 dat.massChargeZ(:,ZCount)=DATA_R(1:data_length/2,1);
 ZCount=ZCount+1;
 end

 %Tandem MS Scans
 msLevelCheck=msLevel==2;
 scanTypeCheck=strncmp(scanType,'Full',4);
 if msLevelCheck && scanTypeCheck == true

 tokens = regexp(match{1,iscan},'compressedLen="0">(.*?)</peaks>',...
 'tokens');
 rawdata=tokens{1}{1,1};

 base64 = base64cvt(rawdata);
 [~,col]=size(base64);
 data_length=col/4;
 DATA=swapbytes(typecast(base64,'single'));

 tokens = regexp(match{1,iscan},'scannum="(.*?)"','tokens');
 curscan=str2double(tokens{1}{1,1});
 dat.scanNumT(1,TCount)=curscan;

 tokens = regexp(match{1,iscan},'retentionTime="PT(.*?)S"','tokens');
 dat.rTimeT(1,TCount)=str2double(tokens{1}{1,1});

 tokens = regexp(match{1,iscan},'filterLine="ITMS(.*?)@cid','tokens');
 value=tokens{1}{1,1};
 value=value(14:end);
 %token should look like '+cNSIdFullms2NUMBER' and I need that NUMBER
 dat.MassIonT(1,TCount)=str2double(value);

 tokens=regexp(match{1,iscan},'precursorCharge="(.*?)"','tokens');
 dat.MassIonCharge(1,TCount)=str2double(tokens{1}{1,1});

 DATA_R=reshape(DATA,2,[])';
 dat.intensityT{TCount}=DATA_R(1:data_length/2,2)';
 dat.massChargeT{TCount}=DATA_R(1:data_length/2,1)';
 TCount=TCount+1;
 end
end

dat.runTime=toc/60;
save(savename,'dat')

116

APPENDIX 5 BASE64 DECODING FUNCTION

% Function to decompress base-64 xml data to binary (byte) format.
%
function byteout=base64cvt(charlst)
b64codes=ones(122,1)*-1; % starting off vector with the length of the number of ASCII
codes
b64set=[65:90 97:122 48:57 43 47]'; %ASCII codes for base 64 set
b64vals=[0:63]'; %base 64 values see (http://en.wikipedia.org/wiki/Base64)
b64codes(b64set)=b64vals; %a vector of base 64 codes where they are in ASCII

padding=(charlst=='=');
charCodes=uint8(b64codes(charlst(~padding)));
charCodes(padding)=0;
bitCodes=dec2bin(charCodes);
eightBitGroups=reshape(bitCodes',8,[])';
fastDecimal=eightBitGroups=='1'; %Do a faster conversion back to decimal than bin2dec
decodedB64=uint8(fastDecimal*[128 64 32 16 8 4 2 1]')';
if any(padding)
 last3Bytes=decodedB64(end-2:end);
 decodedB64(end-2:end)=0;
 nPadding=sum(padding);
 nShift=3-sum(padding);
 decodedB64(end-1:end-2+nShift)=last3Bytes(1:nShift);
 if nPadding==2
 decodedB64(end)=[];
 end
end

byteout=decodedB64;

117

APPENDIX 6 AVERAGE AMINO ACID FUNCTION

%PQ_MODULE
% ----- Begin Config. DO NOT EDIT! -----
%Config:NodeName='Amino acid distribution'
%Config:NodePrev='@NONE'
%Config.NodeNext='isotopeRatioGen.m'
%Config.NodeVarI='study'
%Config.NodeVarO='study'
%ENDCONFIG
% ----- End Config -----

function [study, success]=AADistribution(study)
success=false;
%% if txtfile is NOT in matlab already and file only has amino acids in txtfile (BSA)
%BSAseq.txt is the Amino Acid sequence for the Full length BSA precursor protein of
607 amino acids
%BSAseq2.txt is the Amino Acid sequence for the mature BSA protein of 583 amino
acids
%****Should use the BSAseq2.txt****

%old way
% function [AmNum,MW,ElementSummary,AAratio]=aminodis(txtFile,savename)

%Changed on July 21,2011 to use AvgAAMet.m which needs these variable to
%calulate the elemental composition of a peptide at a given MW

%type == 1 for BSA
%type == 2 for Yeast

proteinSequence=study.preliminary.proteinSequence;
load aminoData;
%% Calculate the number of each amino acid
proteinSequence=regexprep(proteinSequence,'\W','');
aminoCount=arrayfun(@(aaChar) sum(proteinSequence==aaChar),
char(aminoProperties(:,1)));

%% Calculate the relative and isotopic molecular weight
relMW=round((aminoCount'*cell2mat(aminoProperties(:,4)))+((2*1.00795)+15.9994));
isoMW=round((aminoCount'*cell2mat(aminoProperties(:,5)))+
((2*1.007825)+15.994915));
MW=[relMW isoMW];

%% Calculate the total amount of Carbon, Hydrogen, Nitrogen, Oxygen and Sulfur

118

elementCounts=cell2mat(aminoProperties(:,6:end));
Carbon=(aminoCount'*elementCounts(:,1));
Hydrogen=(aminoCount'*elementCounts(:,2));
Nitrogen=(aminoCount'*elementCounts(:,3));
Oxygen=(aminoCount'*elementCounts(:,4));
Sulfur=(aminoCount'*elementCounts(:,5));
Element=[Carbon Hydrogen Nitrogen Oxygen Sulfur];

%% Calculate the percentage of Carbon, Hydrogen, Nitrogen, Oxygen and Sulfur
CarbonPcnt=Carbon/sum(Element); HydrogenPcnt=Hydrogen/sum(Element);
NitrogenPcnt=Nitrogen/sum(Element); OxygenPcnt=Oxygen/sum(Element);
SulfurPcnt=Sulfur/sum(Element);
ElementPcnt=[CarbonPcnt HydrogenPcnt NitrogenPcnt OxygenPcnt SulfurPcnt];

%% Calculate the average number of Carbon, Hydrogen, Nitrogen, Oxygen and Sulfur
AvgCarbon=mean(aminoCount.*elementCounts(:,1));
AvgHydrogen=mean(aminoCount.*elementCounts(:,2));
AvgNitrogen=mean(aminoCount.*elementCounts(:,3));
AvgOxygen=mean(aminoCount.*elementCounts(:,4));
AvgSulfur=mean(aminoCount.*elementCounts(:,5));
AvgElement=[AvgCarbon AvgHydrogen AvgNitrogen AvgOxygen AvgSulfur];

ElementSummary=[Element; AvgElement; ElementPcnt;];

%% Calculate the ratios of each amino acid to the max and to the total
ratTot=aminoCount./sum(aminoCount);
ratMax=aminoCount./max(aminoCount);
AAratio=[ratTot'; ratMax';];

%% Calculate the discrete mean values
NumCarbon=Carbon/sum(aminoCount); NumHydrogen=Hydrogen/sum(aminoCount);
NumNitrogen=Nitrogen/sum(aminoCount);
NumOxygen=Oxygen/sum(aminoCount); NumSulfur=Sulfur/sum(aminoCount);
ElementNum=[NumCarbon NumHydrogen NumNitrogen NumOxygen NumSulfur];
ElementNorm=ElementNum/min(ElementNum);
MassElement=[12.00 1.007825 14.00307 15.994915 31.972071];
AvgAminoMass=ElementNum*MassElement';

%% Plot the Amino Acid Distribution
figure('Color','w','name','Amino Acid distribution')
axes('FontWeight','bold','FontSize',12)
bar(aminoCount)
set(gca,'XTick',1:1:22)
set(gca,'XTickLabel',{char(aminoProperties(:,1))})

119

xlabel('Amino Acid')
axis('tight')

study.preliminary.distribution.aminoCount=aminoCount;
study.preliminary.distribution.avgAminoMass=AvgAminoMass;
study.preliminary.distribution.elementNorm=ElementNorm;
study.preliminary.distribution.elementNum=ElementNum;
study.preliminary.distribution.elementMass=MassElement;
study.preliminary.distribution.aminoSymbols=char(aminoProperties(:,1));
%success is set to false, so that if a return is issued before the script
%completes, a failure is displayed.

%processing done. Set success to true so that a completion is indicated.
success=true;

120

APPENDIX 7 ISOTOPE POSSIBILITIES TABLE FUNCTION

% This function precomputes the distribution of possible isotopic
% combinations that comprises an M+i isotopic peak. We do this by iterating
% over all possiblities from 0 to 10 of each element, looking at the final
% mass difference with the base peak, and establishing the molecular weight
% difference from the base. This difference is used to determine which
% "bin" the isotope combination is a part of.
% No input
% Output: 1x10 cell array, with the ith cell containing all possible
% element isotope combinations that give rise to an M+i peak.

function XplusI=isotopcalc()
C=10; H=10; N=10; O=10; S=10;
[MWest]=isotopweight(C,0,H,0,N,0,O,0,0,S,0,0,0);
count=zeros(1,10);
percent=0;
for C13=0:C;
 for H2=0:H;
 for N15=0:N;
 display(['Done: ', num2str(percent),'%'])
 percent=percent+0.1;
 for O17=0:O;
 for O18=0:O;
 for S33=0:S;
 for S34=0:S;
 for S36=0:S;
 [MolWeight]=isotopweight(C-C13,C13,H-H2, ...
 H2,N-N15,N15,O-O17-O18,O17,O18, ...
 S-S33-S34-S36,S33,S34,S36); %verison 3
 diff=MolWeight-MWest;
 if diff<=10 && diff>0
 count(diff)=count(diff)+1;
 XplusI{diff}(count(diff),:)=[C13,H2, ...
 N15,O17,O18,S33,S34,S36];
 end
 end
 end
 end
 end
 end
 end
 end
end

121

APPENDIX 8 FORMULA TO ISOTOPIC RATIOS FUNCTION

% ISOTOPEST2 is a script that will calculate isotopic ratios for a
% particular molcular weight using the analytical solution of the problem.

%Inputs: Array containing molecular formula for number of carbon, hydrogen,
% nitrogen, oxygen and sulfur in the atom, of the form [C H N O S]
% Output: 1x11 vector of the isotopic peak heights normalized to the base
% peak.

function [Mtot]=isotopest2(element)
C=element(1);
H=element(2);
N=element(3);
O=element(4); %Separate the isotopes for easy conceptualization in code.
S=element(5);

% Attempt to load in a data file containing all of the possible
% combinations of isotopes that yield an M+I peak. If file is not there,
% generate it using isotopcalc().
persistent XplusI
if (isempty(XplusI))
 try
 load('isotopdata_10','XplusI');
 catch error
 XplusI=isotopcalc();
 save('isotopdata_10','XplusI');
 end
end

%Housekeeping - preallocating vars.
rowXI=cell(1,10);
XI=cell(1,10);

% For each of the isotopic peaks, establish which patterns are invalid -
% that is, they have more isotopes of an element than the input formula.
% Delete the offending rows, and store the size for later.
for i=1:10
 Car=XplusI{i}(:,1);
 Csum=sum(Car,2)>C;
 Hyd=XplusI{i}(:,2);
 Hsum=sum(Hyd,2)>H;
 Sul=XplusI{i}(:,6:8);
 Ssum=sum(Sul,2)>S;

122

 Oxy=XplusI{i}(:,4:5);
 Osum=sum(Oxy,2)>O;
 Nsum=XplusI{i}(:,3)>N;
 badRows=(Ssum) | (Osum) | (Nsum) | (Csum) | (Hsum);
 XI{i}=XplusI{i};
 XI{i}(badRows>0,:)=[];
 [rowXI{i},~]=size(XI{i});
end

% More houskeeping. Could use some lemon pledge.
XplusI2=cell(1,10);
rowplusI=cell(1,10);
hmplusI=cell(1,10);
mplusI=cell(1,10);
MplusI=cell(1,10);

% Now rebuild the table of isotope count possiblities to INCLUDE the
% number of the baseisotope present from the input formula.
for j=1:10
 for i = 1:rowXI{j}
 XplusI2{j}(i,:)=[C-XI{j}(i,1),XI{j}(i,1),H-XI{j}(i,2), ...
 XI{j}(i,2),N-XI{j}(i,3),XI{j}(i,3),O-XI{j}(i,4)-XI{j}(i,5),...
 XI{j}(i,4),XI{j}(i,5),S-XI{j}(i,6)-XI{j}(i,7)-XI{j}(i,8),...
 XI{j}(i,6),XI{j}(i,7),XI{j}(i,8)];
 end
 [rowplusI{j},~]=size(XplusI2{j});
end

hm=[C 0 H 0 N 0 O 0 0 S 0 0 0];
[M]=multnomdis(hm); %Calculate height of the M peak.

% Now iterate and compute the height of the M+jth peak, over each of the i
% possiblities for that peak.
for j=1:10
 for i = 1:rowplusI{j};
 hmplusI{j}=XplusI2{j}(i,:);
 [mplusI{j}]=multnomdis(hmplusI{j});
 MplusI{j}(i)=mplusI{j};
 end
end
% Sum and normalize to base peak over all 10, and return.
Mtot=[M/M, sum(MplusI{1})/M, sum(MplusI{2})/M, sum(MplusI{3})/M, ...
 sum(MplusI{4})/M, sum(MplusI{5})/M, sum(MplusI{6})/M, ...
 sum(MplusI{7})/M, sum(MplusI{8})/M, sum(MplusI{9})/M, sum(MplusI{10})/M];

123

APPENDIX 9 MULTINOMIAL DISTRIBUTION FUNCTION

%% Multinomial Distribution calculation for isotopic distribution
%Input: Vector of isotopic counts of elements, in form:
% [C12 C13 H1 H2 N14 N15 O16 O17 O18 S32 S33 S34 S36]
% Output:
% Probability of that combination based on elemental probabilities.

function [M]=multnomdis(element)

C12=element(1); C13=element(2); Ctot=C12+C13;
H1=element(3); H2=element(4); Htot=H1+H2;
N14=element(5); N15=element(6); Ntot=N14+N15;
O16=element(7); O17=element(8); O18=element(9); Otot=O16+O17+O18;
S32=element(10); S33=element(11); S34=element(12); S36=element(13);
Stot=S32+S33+S34+S36;

PC12=0.9889; PC13=0.0111;
PH1=0.99985; PH2=0.00015;
PN14=0.9964; PN15=0.0036;
PO16=0.9976; PO17=0.0004; PO18=0.0020;
PS32=0.9500; PS33=0.0076; PS34=0.0422; PS36=0.0002;
 if Htot <= 170;
 MH=fastFactorial(Htot)/(fastFactorial(H1)*fastFactorial(H2));
 else
 dif=Htot-H1;
 if dif == 0
 MH=1;
 else
 Htop=[Htot-dif+1:1:Htot];
 Htop=cumprod(Htop);
 Mtop=Htop(end);
 Hbot=[1:1:dif];
 Hbot=cumprod(Hbot);
 Mbot=Hbot(end);
 MH=Mtop/Mbot;
 end
 end

if Ctot <= 170
 MC=fastFactorial(Ctot)/(fastFactorial(C12)*fastFactorial(C13));
else
 dif=Ctot-C12;
 if dif == 0

124

 MC=1;
 else
 Ctop=[Ctot-dif+1:1:Ctot];
 Ctop=cumprod(Ctop);
 Mtop=Ctop(end);
 Cbot=[1:1:dif];
 Cbot=cumprod(Cbot);
 Mbot=Cbot(end);
 MC=Mtop/Mbot;
 end
end

if Ntot <= 170
 MN=fastFactorial(Ntot)/(fastFactorial(N14)*fastFactorial(N15));
else
 dif=Ntot-N14;
 if dif == 0
 MN=1;
 else
 Ntop=[Ntot-dif+1:1:Ntot];
 Ntop=cumprod(Ntop);
 Mtop=Ntop(end);
 Nbot=[1:1:dif];
 Nbot=cumprod(Nbot);
 Mbot=Nbot(end);
 MN=Mtop/Mbot;
 end
end

MO=fastFactorial(Otot)/(fastFactorial(O16)*fastFactorial(O17)* ...
 fastFactorial(O18));
MS=fastFactorial(Stot)/(fastFactorial(S32)*fastFactorial(S33)* ...
 fastFactorial(S34)*fastFactorial(S36));
M1=MC*MH*MN*MO*MS;

M2=(PC12^C12)*(PC13^C13)* ...
 (PH1^H1)*(PH2^H2)*...
 (PN14^N14)*(PN15^N15)* ...
 (PO16^O16)*(PO17^O17)*(PO18^O18)* ...
 (PS32^S32)*(PS33^S33)*(PS34^S34)*(PS36^S36);

M=M1*M2;

125

APPENDIX 10 FAST FACTORIAL FUNCTION

function fx=fastFactorial(x)
persistent factorials; %generate persistent lookup factorial table
if (x==0)
 fx=1;
 return;
end
if (isempty(factorials)) % No table? Build it up to 100!
 factorials(1)=1;
 fastFactorial(100);
end
if (numel(factorials)<x)
 for i=numel(factorials)+1:x
 factorials(i)=factorials(i-1)*i;
 end
end
fx=factorials(x);

126

APPENDIX 11 GAUSSIAN MODEL FUNCTION

%PQ_MODULE
% ----- Begin Config. DO NOT EDIT! -----
%Config:NodeName='Generate K-Matrices'
%Config:NodePrev='isotopeRatioGen.m'
%Config.NodeNext='@NONE'
%Config.NodeVarI='study'
%Config.NodeVarO='study'
%ENDCONFIG
% ----- End Config -----
% The above lines MUST be present as the first thing in every module. The
% order of the variables is not critical. See GUIsample.m for details on
% the configuration variables above.

% This is a sample of a non-gui script module. The main function can use
% hard-coded variables, or varargin/varargout as appropriate, but the
% latter may be more difficult to interpret.

function [study,success]=Kmatrix_gen(study)
success=false;
ElementTot=study.preliminary.isotopeRatios.ElementTot;
Mtot=study.preliminary.isotopeRatios.Mtot;
Mass=study.preliminary.isotopeRatios.Mass;
MassIndx=study.preliminary.isotopeRatios.MassIndx;

mass_sigma=0.15;
mass_delta=[1 1 0.5 0.5 0.5 1/3 1/3 1/3];

CalcMass=(400:10:1700)';
Kmatrix1=cell(length(CalcMass),8);
Kmatrix2=cell(length(CalcMass),8);
Kmatdis1=cell(length(CalcMass),8);
Kmatdis2=cell(length(CalcMass),8);
for i = 1:length(CalcMass);
 SelMass=CalcMass(i);

 tempplus2=find(Mass==(SelMass*2));
 tempplus3=find(Mass==(SelMass*3));
 Ratplus1=Mtot(i,:);
 Ratplus2=Mtot(tempplus2,:);
 Ratplus3=Mtot(tempplus3,:);

127

 ratio=[Ratplus1; Ratplus1; ...
 Ratplus2; Ratplus2; Ratplus2; ...
 Ratplus3; Ratplus3; Ratplus3;];

 Norm1=ratio(1,:)./max(ratio(1,:)); Norm2=ratio(2,:)./max(ratio(2,:));
 Norm3=ratio(3,:)./max(ratio(3,:)); Norm4=ratio(4,:)./max(ratio(4,:));
 Norm5=ratio(5,:)./max(ratio(5,:)); Norm6=ratio(6,:)./max(ratio(6,:));
 Norm7=ratio(7,:)./max(ratio(7,:)); Norm8=ratio(8,:)./max(ratio(8,:));

 ratio_new=[Norm1; Norm2; Norm3; Norm4; Norm5; Norm6; Norm7; Norm8;];
 tags=[1 2 1 2 3 1 2 3];
 charge=[1 1 2 2 2 3 3 3];
 offset=zeros(1,8);
 yfitend1=zeros(1,8);
 for k=1:8
 offset(k)=((4*tags(k))/charge(k));
 yfitend1(k)=(21+(2/12));
 end

 for k = 1:8
 pars=zeros(1,14);
 pars(2)=mass_delta(k);
 pars(3)=mass_sigma;
 pars(4)=ratio_new(k,1);
 pars(5)=ratio_new(k,2);
 pars(6)=ratio_new(k,3);
 pars(7)=ratio_new(k,4);
 pars(8)=ratio_new(k,5);
 pars(9)=ratio_new(k,6);
 pars(10)=ratio_new(k,7);
 pars(11)=ratio_new(k,8);
 pars(12)=ratio_new(k,9);
 pars(13)=ratio_new(k,10);
 pars(14)=ratio_new(k,11);
 mass_pos=18;
 pars(1)=(1/12)*mass_pos;

 name=['K',num2str(k)];

 yfit=[0:(1/12):yfitend1(k)];
 K1=pars(4)*exp(-(yfit-pars(1)).^2/(2*pars(3)^2))+...
 pars(5)*exp(-(yfit-pars(1)-pars(2)).^2/(2*pars(3)^2))+...
 pars(6)*exp(-(yfit-pars(1)-2*pars(2)).^2/(2*pars(3)^2))+...

128

 pars(7)*exp(-(yfit-pars(1)-3*pars(2)).^2/(2*pars(3)^2))+...
 pars(8)*exp(-(yfit-pars(1)-4*pars(2)).^2/(2*pars(3)^2))+...
 pars(9)*exp(-(yfit-pars(1)-5*pars(2)).^2/(2*pars(3)^2))+...
 pars(10)*exp(-(yfit-pars(1)-6*pars(2)).^2/(2*pars(3)^2))+...
 pars(11)*exp(-(yfit-pars(1)-7*pars(2)).^2/(2*pars(3)^2))+...
 pars(12)*exp(-(yfit-pars(1)-8*pars(2)).^2/(2*pars(3)^2))+...
 pars(13)*exp(-(yfit-pars(1)-9*pars(2)).^2/(2*pars(3)^2))+...
 pars(14)*exp(-(yfit-pars(1)-10*pars(2)).^2/(2*pars(3)^2));

 yfit2=[0:(1/12):yfitend1(k)];
 pars(1)=((1/12)*mass_pos)+offset(k);

 K2=pars(4)*exp(-(yfit2-pars(1)).^2/(2*pars(3)^2))+...
 pars(5)*exp(-(yfit2-pars(1)-pars(2)).^2/(2*pars(3)^2))+...
 pars(6)*exp(-(yfit2-pars(1)-2*pars(2)).^2/(2*pars(3)^2))+...
 pars(7)*exp(-(yfit2-pars(1)-3*pars(2)).^2/(2*pars(3)^2))+...
 pars(8)*exp(-(yfit2-pars(1)-4*pars(2)).^2/(2*pars(3)^2))+...
 pars(9)*exp(-(yfit2-pars(1)-5*pars(2)).^2/(2*pars(3)^2))+...
 pars(10)*exp(-(yfit-pars(1)-6*pars(2)).^2/(2*pars(3)^2))+...
 pars(11)*exp(-(yfit-pars(1)-7*pars(2)).^2/(2*pars(3)^2))+...
 pars(12)*exp(-(yfit-pars(1)-8*pars(2)).^2/(2*pars(3)^2))+...
 pars(13)*exp(-(yfit-pars(1)-9*pars(2)).^2/(2*pars(3)^2))+...
 pars(14)*exp(-(yfit-pars(1)-10*pars(2)).^2/(2*pars(3)^2));
 Kmatdis1{i,k}=yfit;
 Out{i,k}(1,:)=K1/max(K1);
 Out{i,k}(2,:)=K2/max(K2);
 clear K1 K2
 end
end
study.preliminary.kMatrices=Out;
success=true;

129

APPENDIX 12 PEPTIDE FINDER FUNCTION

function peptideFinder(dataFile, models, modelMass)
%%
% Configuration stuff.
start=1;
config.dataFile=dataFile;
config.modelFile='INTERNAL_FROM_WORKFLOW';
config.ratioFile='INTERNAL_FROM_WORKFLOW';
config.outputSuffix='pF';
config.minSignal=100;
config.minSNR=3;
% End configuration

% Begin load-in
inData.models=models;
inData.modelMass=modelMass;
load(config.dataFile);
inData.raw=dat.intensity;
inData.mz=dat.massCharge;
inData.scanTime=dat.rTime;
clear('dat');
[inData.numMzPts,inData.numTimePts]=size(inData.raw);
% End load-in.

% Begin model parameter calculation
model.basePeakIndex=19;
model.isotopePeakWidth=12;
model.numIsotopePeaks=10;
model.lightHeavyDeltaMass=4;
model.numTypes=8;
model.charge=[1 1 2 2 2 3 3 3];
model.numLabels=[1 2 1 2 3 1 2 3];
% ------------------------
model.width=(model.numIsotopePeaks+2)*model.isotopePeakWidth;
% Add 2 peak widths for pre/post falloff.
model.firstPeakStart=ones(1,model.numTypes)*(model.basePeakIndex-7);
%compute model start. Subtract 7 to get to base of M peak.
model.secondPeakStart=model.firstPeakStart+((model.isotopePeakWidth* ...
 model.lightHeavyDeltaMass.*model.numLabels)./model.charge);
%model.peakEndOffset=(1./model.charge)*model.width;
model.peak1NonZeroIndex=cellfun(@(model) find(model(1,:)>0.01),...
 inData.models,'uniformOutput',false);
model.firstPeakEnd=cellfun(@(indices) max(indices)+1,model.peak1NonZeroIndex);

130

model.peak2NonZeroIndex=cellfun(@(model) find(model(2,:)>0.01),...
 inData.models,'uniformOutput',false);
model.secondPeakEnd=cellfun(@(indices) max(indices)+1,model.peak2NonZeroIndex);
% end model parameter calculation.

% Begin prepare output arrays.

outData.bestModel=sparse(zeros(inData.numMzPts,inData.numTimePts));
outData.modelSNR=sparse(zeros(inData.numMzPts,inData.numTimePts));
outData.modelParam1=sparse(zeros(inData.numMzPts,inData.numTimePts));
outData.modelParam2=sparse(zeros(inData.numMzPts,inData.numTimePts));
outData.modelParam3=sparse(zeros(inData.numMzPts,inData.numTimePts));
% End prepare output arrays.

% Begin prepare temporary arrays
tempData.thisMassModel=[];
tempData.excisedModel=[];
tempData.idealRawData=[];
tempData.modelFit=[];
tempData.SSR=[];
tempData.stdErr=[];
tempData.excisedData=[];
% End prepare temporary arrays
%%
progress=waitbar(0,['Processing ...'],'Name','Processing points...');
for massPtr=start:inData.numMzPts-7;
 if (massPtr==1||mod(massPtr,120)==0)
 tempData.thisModelIndex=ceil(massPtr/120);
 tempData.thisMassModel=inData.models(tempData.thisModelIndex,:);
 tempData.firstPeakEnd=model.firstPeakEnd(tempData.thisModelIndex,:);
 tempData.secondPeakEnd=model.secondPeakEnd(tempData.thisModelIndex,:);
 tempData.totalLength=tempData.secondPeakEnd-model.firstPeakStart;
 tempData.excisedModel=arrayfun(@(model,mStart,mEnd) model{1}(:, ...
 mStart:mEnd),tempData.thisMassModel,model.firstPeakStart,...
 tempData.secondPeakEnd,'UniformOutput',false);
 tempData.excisedModel=cellfun(@(model) model',tempData.excisedModel,...
 'uniformOutput',false); % transpose for function.
 tempData.excisedModel=arrayfun(@trimInterpeakSpace, ...
 model.firstPeakStart, ...
 tempData.firstPeakEnd, ...
 model.secondPeakStart, ...
 tempData.secondPeakEnd, ...
 tempData.excisedModel, 'uniformOutput',false);
 tempData.excisedModel=cellfun(@(model) model',tempData.excisedModel,...

131

 'uniformOutput',false); % transpose for function.
 tempData.excisedModel=cellfun(@(model) [model; ...
 ones(1,numel(model(1,:)))], tempData.excisedModel,...
 'uniformOutput',false);
 tempData.inverseModel=cellfun(@(model) model'/(model*model'),...
 tempData.excisedModel,'uniformOutput',false);
 end
 tempData.excisedData=arrayfun(@(mSize) inData.raw(massPtr:min(...
 massPtr+mSize,inData.numMzPts),:),tempData.totalLength,...
 'UniformOutput',false);
 tempData.excisedData=arrayfun(@trimInterpeakSpace, ...
 model.firstPeakStart, ...
 tempData.firstPeakEnd, ...
 model.secondPeakStart, ...
 tempData.secondPeakEnd, ...
 tempData.excisedData, 'uniformOutput',false);
 tempData.modelFit=cellfun(@(rawData,inverseModel)(rawData'*inverseModel)',...
 tempData.excisedData,tempData.inverseModel,'uniformOutput',false);
 tempData.idealRawData=cellfun(@(model,fits) fits'*model, ...
 tempData.excisedModel, tempData.modelFit,'uniformOutput',false);
 tempData.SSR=cellfun(@(rawData,idealRawData) ...
 sum((rawData-idealRawData').^2), tempData.excisedData, ...
 tempData.idealRawData,'uniformOutput',false);
 tempData.stdErr=cellfun(@(SSR,model) sqrt(SSR/(numel(model(1,:))-3)),...
 tempData.SSR, tempData.excisedModel,'uniformOutput',false);
 tempData.SNR=cellfun(@(stdErrs,fits) min([fits(1,:)./stdErrs; fits(2,:)...
 ./stdErrs]),tempData.stdErr,tempData.modelFit,'uniformOutput',false);
 tempData.validLocations=cellfun(@(SNRs,fits) ((fits(1,:)>config.minSignal)...
 .*(fits(2,:)>config.minSignal).*(SNRs>config.minSNR)),tempData.SNR,...
 tempData.modelFit,'uniformOutput',false);
 tempData.filteredFit=cellfun(@(fits,valid) fits.*repmat(valid,3,1),...
 tempData.modelFit,tempData.validLocations,'uniformOutput',false);
 tempData.filteredSNR=cellfun(@(SNRs,valid) SNRs.*valid, tempData.SNR,...
 tempData.validLocations,'uniformOutput',false);
 tempData.filteredSNR=cell2mat(tempData.filteredSNR');
 tempData.param1=cell2mat(cellfun(@(fit) fit(1,:),tempData.filteredFit,...
 'uniformOutput',false)');
 tempData.param2=cell2mat(cellfun(@(fit) fit(2,:),tempData.filteredFit,...
 'uniformOutput',false)');
 tempData.param3=cell2mat(cellfun(@(fit) fit(3,:),tempData.filteredFit,...
 'uniformOutput',false)');
 [tempData.classMaxVal,tempData.classType]=max(tempData.filteredSNR);
 tempData.selectedIndex=sub2ind(size(tempData.param1),tempData.classType,...
 1:numel(tempData.classType));

132

 outData.modelParam1(massPtr+7,:)=tempData.param1(tempData.selectedIndex);
 outData.modelParam2(massPtr+7,:)=tempData.param2(tempData.selectedIndex);
 outData.modelParam3(massPtr+7,:)=tempData.param3(tempData.selectedIndex);
 tempData.classType(tempData.classMaxVal==0)=0;
 outData.bestModel(massPtr+7,:)=tempData.classType;
 outData.modelSNR(massPtr+7,:)=tempData.classMaxVal;
 waitbar(massPtr/inData.numMzPts,progress,['Processing m/z ' ...
 num2str(massPtr) ' of ' num2str(inData.numMzPts) '.']);
 if (any(outData.bestModel(massPtr+7,:)==1 & ...
 outData.modelSNR(massPtr+7,:)>15))
 keyboard;
 end
end
close(progress);
save([config.dataFile '-' config.outputSuffix],'outData','inData','model','config');

% Begin helper functions

function outData=trimInterpeakSpace(peak1Start,peak1End,peak2Start,peak2End,data)
 % Pad end of data with zeros if it is smaller than the range we
 % want to excise. Fit over this area will be zero, and discarded by
 % the check that the fit parameter is less than config.minSignal.
 if numel(data{1}(:,1)<peak2End-peak1Start)
 data{1}(end:(peak2End-peak1Start)+1,:)=0;
 end
 if peak1End<peak2Start
 outData=[data{1}(1:peak1End-peak1Start,:); ...
 data{1}(peak2Start-peak1Start:peak2End-peak1Start,:)];
 else
 outData=data{1}(1:peak2End-peak1Start+1,:);
 end

133

APPENDIX 13 CLUSTERING FUNCTION

function buildCluster2(dataFile)

% Begin load-in

load(dataFile,'-mat');

% End load-in.

% Begin Configuration

config.weightCutoff=6;
config.typeCutoff=5;
config.timeUnitWeight=1;
config.mzUnitWeight=5;
config.minTimeSize=5;
config.minSNRofMinSize=3;
config.samePeptideTimeDistance=round(0.1*numel(inData.raw(1,:)));
config.minOverallSNR=8; % 8 for _REAL_ data, 3 for testing.

% End configuration.

% Begin prep for locating clusters.

[tempData.clusterMzs,tempData.clusterTimes]=find(outData.bestModel>0);
tempData.clusterIDs=sparse(zeros(size(outData.bestModel)));
tempData.clusterWts=ones(size(outData.bestModel))*(config.weightCutoff+1);
tempData.visitedPts=zeros(size(outData.bestModel));
tempData.toLookAt=java.util.Stack();
tempData.diagWeight=sqrt(config.timeUnitWeight^2+config.mzUnitWeight^2);
tempData.lastClusterID=0;

% End variable setup for locating.

%Begin determining extent of clusters
progress=waitbar(0,['Processing ...'],'Name','Processing points...');
for clusterPt=1:numel(tempData.clusterMzs)
 startMz=tempData.clusterMzs(clusterPt);
 startTime=tempData.clusterTimes(clusterPt);
 if tempData.visitedPts(startMz,startTime)==0 &&
outData.bestModel(startMz,startTime)~=0

tempData.toLookAt.push([startMz,startTime,1,outData.bestModel(startMz,startTime)]);

134

 tempData.inCluster=false;
 while (~tempData.toLookAt.empty())
 thisPoint=tempData.toLookAt.pop();
 thisMz=thisPoint(1); thisTime=thisPoint(2); thisWeight=thisPoint(3);
lastType=thisPoint(4);
 tempData.stackEmpty=false;
 while thisMz<1 || thisMz>inData.numMzPts || thisTime<1 ||
thisTime>inData.numTimePts
 if tempData.toLookAt.empty()
 tempData.stackEmpty=true;
 break;
 end
 thisPoint=tempData.toLookAt.pop();
 thisMz=thisPoint(1); thisTime=thisPoint(2); thisWeight=thisPoint(3);
lastType=thisPoint(4);
 end
 if tempData.stackEmpty
 break;
 end
 thisType=outData.bestModel(thisMz,thisTime);
 tempData.deltaWeight=thisWeight;
 if ~tempData.inCluster
 tempData.lastClusterID=tempData.lastClusterID+1;
 end
 if thisType~=0 && outData.modelSNR(thisMz,thisTime) >
config.minSNRofMinSize
 % we have a valid point. Determine what cluster it matches.
 if thisType~=lastType && tempData.inCluster && lastType~=0
 if numel(config.typeCutoff)==1
 tempData.deltaWeight=config.typeCutoff;
 else

tempData.deltaWeight=config.typeCutoff(min(thisType,lastType),max(thisType,lastType)
);
 end
 else
 tempData.deltaWeight=1;
 end
 end
 if ~tempData.inCluster
 tempData.inCluster=true;
 end
 if tempData.deltaWeight<config.weightCutoff &&
tempData.deltaWeight<tempData.clusterWts(thisMz,thisTime)

135

 tempData.clusterIDs(thisMz,thisTime)=tempData.lastClusterID;
 tempData.clusterWts(thisMz,thisTime)=tempData.deltaWeight;
 % This is a valid cluster point. Explore the neighbours.
 tempData.toLookAt.push([thisMz-
1,thisTime,tempData.deltaWeight+config.mzUnitWeight,thisType]);

tempData.toLookAt.push([thisMz+1,thisTime,tempData.deltaWeight+config.mzUnitWei
ght,thisType]);
 tempData.toLookAt.push([thisMz,thisTime-
1,tempData.deltaWeight+config.timeUnitWeight,thisType]);

tempData.toLookAt.push([thisMz,thisTime+1,tempData.deltaWeight+config.timeUnitWe
ight,thisType]);
 tempData.toLookAt.push([thisMz-1,thisTime-
1,tempData.deltaWeight+tempData.diagWeight,thisType]);
 tempData.toLookAt.push([thisMz-
1,thisTime+1,tempData.deltaWeight+tempData.diagWeight,thisType]);
 tempData.toLookAt.push([thisMz+1,thisTime-
1,tempData.deltaWeight+tempData.diagWeight,thisType]);

tempData.toLookAt.push([thisMz+1,thisTime+1,tempData.deltaWeight+tempData.diagW
eight,thisType]);
 end
 tempData.visited(thisMz,thisTime)=1;
 end
 end
 if (mod(clusterPt,50)==0)
 waitbar(clusterPt/numel(tempData.clusterMzs),progress,['Phase 1 of 3 - Processing '
num2str(clusterPt) ' of ' num2str(numel(tempData.clusterMzs)) ' points.']);
% disp(['Processed ' num2str(clusterPt) ' of '
num2str(numel(tempData.clusterMzs))]);
 end
end

% End locating clusters.

% Begin Postprocessing each cluster
outData.clusterTypes=sparse(zeros(size(outData.bestModel)));
tempData.clusterWts(tempData.clusterWts==config.weightCutoff+1)=0;
tempData.clusterWts=sparse(tempData.clusterWts);
tempData.clusterInfo=zeros(tempData.lastClusterID,7);
tempData.modelOffset=((model.isotopePeakWidth/2)+1);
tempData.knownLocations=tempData.clusterWts==1;
% Filter ID "clouds" down to regions where peptideFinder identified

136

% something.
tempData.clusterIDs(~tempData.knownLocations)=0;
outData.peakStats=zeros(tempData.lastClusterID,9);
for thisCluster=1:tempData.lastClusterID
% if thisCluster==25225
% a=1;
% end
 if mod(thisCluster, 25)==0
 waitbar(thisCluster/tempData.lastClusterID,progress,['Phase 2 of 3 - Processing '
num2str(thisCluster) ' of ' num2str(tempData.lastClusterID) ' clusters']);
% disp(['Processed ' num2str(thisCluster) ' of ' num2str(tempData.lastClusterID)]);
 end
 tempData.boolLocation=tempData.clusterIDs==thisCluster;
 [tempData.clusterMzs,tempData.clusterTimes]=find(tempData.boolLocation);
 if isempty(tempData.clusterMzs)
 continue;
 end
 if max(max(tempData.clusterTimes))-
min(min(tempData.clusterTimes))<config.minTimeSize || ...
 numel(tempData.clusterMzs)<config.minTimeSize
 continue; % Check that we span the required time length and have the required
minimum number of points.
 end
 % Get the range over which our cluster exists:
 tempData.topEdge=min(tempData.clusterMzs);
 tempData.bottomEdge=max(tempData.clusterMzs);
 tempData.leftEdge=min(tempData.clusterTimes);
 tempData.rightEdge=max(tempData.clusterTimes);
 % Grab the correct models for our fit
 tempData.thisModelIndex=ceil(tempData.topEdge/120);
 tempData.thisMassModel=inData.models(tempData.thisModelIndex,:);
 tempData.firstPeakEnd=model.firstPeakEnd(tempData.thisModelIndex,:);
 tempData.secondPeakEnd=model.secondPeakEnd(tempData.thisModelIndex,:);
 tempData.totalLength=tempData.secondPeakEnd-model.firstPeakStart+1;
 tempData.excisedModel=arrayfun(@(model,mStart,mEnd) model{1}
(:,mStart:mEnd),tempData.thisMassModel,model.firstPeakStart,tempData.secondPeakEn
d,'UniformOutput',false);
 tempData.excisedModel=cellfun(@(model)
model',tempData.excisedModel,'uniformOutput',false); % transpose for function.
 tempData.excisedModel=arrayfun(@trimInterpeakSpaceNoPadding, ...
 model.firstPeakStart, ...
 tempData.firstPeakEnd, ...
 model.secondPeakStart, ...
 tempData.secondPeakEnd, ...

137

 tempData.excisedModel, 'uniformOutput',false);
 tempData.excisedModel=cellfun(@(model)
model',tempData.excisedModel,'uniformOutput',false); % transpose for function.
 tempData.excisedModel=cellfun(@(model) [model; ones(1,numel(model(1,:)))],
tempData.excisedModel , 'uniformOutput',false);
 tempData.inverseModel=cellfun(@(model) model'/(model*model'),
tempData.excisedModel,'uniformOutput',false);
 %Now excise the raw data so we can determine type/fit.
 tempData.excisedData=arrayfun(@(mSize) inData.raw(tempData.topEdge-
tempData.modelOffset:min(tempData.bottomEdge-
tempData.modelOffset+mSize+1,inData.numMzPts),tempData.leftEdge:tempData.rightE
dge),tempData.totalLength,'UniformOutput',false);
 tempData.fitData=cell(1,(tempData.bottomEdge-tempData.topEdge)+1);
% if max(max(tempData.excisedData{1}))>10000
% keyboard;
% end
 for thisOffset=1:(tempData.bottomEdge-tempData.topEdge)+1
 tempData.subWindow=arrayfun(@(data,length)
cutSubWindow(data,length,thisOffset),tempData.excisedData,tempData.totalLength,'unif
ormOutput',false);
 tempData.subWindow=arrayfun(@trimInterpeakSpaceNoPadding, ...
 model.firstPeakStart, ...
 tempData.firstPeakEnd, ...
 model.secondPeakStart, ...
 tempData.secondPeakEnd, ...
 tempData.subWindow, 'uniformOutput',false);

tempData.fitData{thisOffset}=cellfun(@fitModeltoSVD,tempData.inverseModel,tempDa
ta.excisedModel,tempData.subWindow,'uniformOutput',false);
 end
 tempData.SNRs=cellfun(@(fits)
cell2mat(fits),tempData.fitData,'uniformOutput',false);
 tempData.SNRs=cellfun(@(fits) fits(4,:),tempData.SNRs,'uniformOutput',false);
 tempData.SNRs=cell2mat(tempData.SNRs');
 if (max(max(tempData.SNRs))>config.minOverallSNR)
 [bestRow,bestClass]=find(tempData.SNRs==max(max(tempData.SNRs)));
 outData.clusterTypes(tempData.topEdge+(bestRow-
1),tempData.leftEdge:tempData.rightEdge)=bestClass;
 outData.peakStats(thisCluster,1)=tempData.topEdge+(bestRow-1);
 outData.peakStats(thisCluster,2)=tempData.secondPeakEnd(bestClass)-12;
 outData.peakStats(thisCluster,3)=tempData.leftEdge;
 outData.peakStats(thisCluster,4)=tempData.rightEdge;
 outData.peakStats(thisCluster,5)=bestClass;
 outData.peakStats(thisCluster,6:9)=tempData.fitData{bestRow}{bestClass};

138

 end
end
emptyData=sum(outData.peakStats,2)==0;
outData.peakStats(emptyData,:)=[];
clear tempData; % clean up, prepare for overlap check.
waitbar(0.9,progress,['Phase 3 of 3 - Recomputing Statistics...']);
tempData.numClusters=numel(outData.peakStats(:,1));
tempData.boundingBoxes(:,1)=outData.peakStats(:,1)-7;
tempData.boundingBoxes(:,2)=outData.peakStats(:,1)+outData.peakStats(:,2)-7;
tempData.boundingBoxes(:,3)=outData.peakStats(:,3);
tempData.boundingBoxes(:,4)=outData.peakStats(:,4);

tempData.bbStats=outData.peakStats;
tempData.bbStats(:,1:4)=tempData.boundingBoxes;
tempData.bbCell=num2cell(tempData.bbStats,2);

% Prior to overlap, check whether some of the detections are possibly the
% same peptide but it has dropped out for some reason in between
% (interference or too low quality)
tempData.relatedDetections=cellfun(@(thisSignal)find(...
 tempData.bbStats(:,1)>=thisSignal(1)-1 & ...
 tempData.bbStats(:,1)<=thisSignal(1)+1 & ...
 tempData.bbStats(:,5)==thisSignal(5) & ...
 thisSignal(3)<=tempData.bbStats(:,4)+config.samePeptideTimeDistance & ...
 thisSignal(4)>=tempData.bbStats(:,3)-config.samePeptideTimeDistance ...
),tempData.bbCell,'uniformoutput',false);
for i=1:numel(tempData.relatedDetections)
 if min(tempData.relatedDetections{i})~=i
 tempData.relatedDetections{i}=-1;
 end
end

%now that we know which detections are related, rebuild the data table to
%account for this.
tempData.mergedDetections=zeros(i,9);
tempData.quantifyMask=cell(i,1);
tempData.detectionMask=false(size(inData.raw));
for i=1:numel(tempData.relatedDetections)
 if tempData.relatedDetections{i}~=-1
 detectionTable=tempData.bbStats(tempData.relatedDetections{i},:);
 tempData.mergedDetections(i,[1,2,5])=tempData.bbStats(i,[1,2,5]);
 tempData.mergedDetections(i,3)=min(detectionTable(:,3));
 tempData.mergedDetections(i,4)=max(detectionTable(:,4));
 tempData.quantifyMask{i}=false(1,1+tempData.mergedDetections(i,4)-

139

tempData.mergedDetections(i,3));
 for j=1:numel(detectionTable(:,1))
 tempData.quantifyMask{i}(1+detectionTable(j,3)-
tempData.mergedDetections(i,3):1+detectionTable(j,4)-
tempData.mergedDetections(i,3))=true;
 end

tempData.detectionMask(tempData.mergedDetections(i,1),tempData.mergedDetections(i,
3):tempData.mergedDetections(i,4))=tempData.quantifyMask{i};
 end
end
keepDetections=~cellfun('isempty',tempData.quantifyMask);
tempData.quantifyMask=tempData.quantifyMask(keepDetections,1);
tempData.mergedDetections=tempData.mergedDetections(keepDetections,:);
tempData.finalDetectionMask=false(size(inData.raw));
%Finally, handle overlapping signals and mark as appropriate.
for i=1:numel(tempData.mergedDetections(:,1))
 overlapTest=tempData.detectionMask(...
 tempData.mergedDetections(i,1):tempData.mergedDetections(i,2),...
 tempData.mergedDetections(i,3):tempData.mergedDetections(i,4));
 overlapColumns=sum(overlapTest)>1;
 overlapTest(:,overlapColumns)=false;
 tempData.finalDetectionMask(...
 tempData.mergedDetections(i,1):tempData.mergedDetections(i,2),...
 tempData.mergedDetections(i,3):tempData.mergedDetections(i,4))=overlapTest;
end
tempData.quantifyMask=cellfun(@(detection)tempData.finalDetectionMask(detection(1)
,detection(3):detection(4)),num2cell(tempData.mergedDetections,2),'uniformoutput',false
);

tempData.recalcStats=cellfun(@(dim,mask)requantify(dim,mask),num2cell(tempData.me
rgedDetections,2),tempData.quantifyMask,'uniformoutput',false);
%tempData.quantRanges=cellfun(@(stats) stats{2},
tempData.recalcStats,'uniformOutput',false);
%tempData.recalcStats=cellfun(@(stats) stats{1},
tempData.recalcStats,'uniformOutput',false);
tempData.recalcStats=cell2mat(tempData.recalcStats);
tempData.goodSNR=tempData.recalcStats(:,9)>=config.minOverallSNR |
tempData.recalcStats(:,9)==0;

tempData.recalcStats=tempData.recalcStats(tempData.goodSNR,:);
%outData.quantRanges=tempData.quantRanges(tempData.goodSNR,:);

140

outData.finalStats=tempData.recalcStats;
%restore original format.
outData.quantifyMask=tempData.quantifyMask;
outData.finalStats(:,2)=outData.finalStats(:,2)-outData.finalStats(:,1);
outData.finalStats(:,1)=outData.finalStats(:,1)+7;
outData.finalStatsColumns={'First Peak m/z';'m/z duration';'Start time';'End
time';'Class';'Intensity 1';'Intensity 2';'Baseline Intensity';'Signal To Error'}
save(dataFile,'outData','config','-append');
close(progress);

function outData=fitModeltoSVD(invModel,model,data)
averagePeak=mean(data');
% [p1,p2,p3]=svd(shiftedData,'econ');
% component=p1*p2;
% component=component(:,1)';
fit=averagePeak*invModel;
idealData=fit*model;
SSR=sum((idealData-averagePeak).^2);
stdErr=sqrt(SSR/(numel(invModel(:,1))-3));
SNR=min(fit(1)/stdErr,fit(2)/stdErr);
if (SNR>10)
 % keyboard;
end
outData=double([fit'; SNR]);

function outData=trimInterpeakSpace(peak1Start,peak1End,peak2Start,peak2End,data)
% Check that the data is oriented correctly for the function. If
% not, rotate it, and rotate back when done.
% Pad end of data with zeros if it is smaller than the range we
% want to excise. Fit over this area will be zero, and discarded by
% the check that the fit parameter is less than config.minSignal.
if numel(data{1}(:,1)<peak2End-peak1Start)
 data{1}(end:(peak2End-peak1Start)+1,:)=0;
end
if peak1End<peak2Start
 outData=[data{1}(1:peak1End-peak1Start,:); data{1}(peak2Start-
peak1Start:peak2End-peak1Start,:)];
else
 outData=data{1}(1:peak2End-peak1Start+1,:);
end

141

function
outData=trimInterpeakSpaceNoPadding(peak1Start,peak1End,peak2Start,peak2End,data)
% Check that the data is oriented correctly for the function. If
% not, rotate it, and rotate back when done.
% Pad end of data with zeros if it is smaller than the range we
% want to excise. Fit over this area will be zero, and discarded by
% the check that the fit parameter is less than config.minSignal.
if peak1End<peak2Start
 outData=[data{1}(1:peak1End-peak1Start,:); data{1}(peak2Start-
peak1Start:peak2End-peak1Start,:)];
else
 if (peak2End-peak1Start+1)>numel(data{1}(:,1))
 keyboard;
 end
 outData=data{1}(1:peak2End-peak1Start+1,:);
end

function outData=requantify(thisPeak,detectionMask)
% This function detects the overlap between two peaks and adjusts the
% window sizes appropriately, before re-computing the fit using the
% corrected window.
config=evalin('caller','config');
fullStats=thisPeak;
canRequantify=true;

if sum(detectionMask)<config.minTimeSize
 canRequantify=false; % cant quantify, too small after removing overlap.
 fullStats(5)=fullStats(5)*-1; % Mark as unquantifiable.
else
 newRange=thisPeak(3):thisPeak(4);
 newRange=newRange(detectionMask);
end

if (canRequantify)
 rawData=evalin('caller','inData.raw');
 rawData=rawData(thisPeak(1):thisPeak(2),newRange);
 reqModel=ceil(thisPeak(1)/120);
 thisMassModel=evalin('caller',['inData.models(' num2str(reqModel) ',:)']);
 firstPeakStart=evalin('caller','model.firstPeakStart');
 firstPeakEnd=evalin('caller',['model.firstPeakEnd(' num2str(reqModel) ',:)']);
 secondPeakStart=evalin('caller','model.secondPeakStart');
 secondPeakEnd=evalin('caller',['model.secondPeakEnd(' num2str(reqModel) ',:)']);
 trimmedModel=arrayfun(@(model,mStart,mEnd) model{1}

142

(:,mStart:mEnd),thisMassModel,firstPeakStart,secondPeakEnd,'UniformOutput',false);
 trimmedModel=cellfun(@(model) model',trimmedModel,'uniformOutput',false);
 trimmedModel=arrayfun(@trimInterpeakSpaceNoPadding, ...
 firstPeakStart, ...
 firstPeakEnd, ...
 secondPeakStart, ...
 secondPeakEnd, ...
 trimmedModel, 'uniformOutput',false);
 trimmedData=trimInterpeakSpace(...
 firstPeakStart(fullStats(5)), ...
 firstPeakEnd(fullStats(5)), ...
 secondPeakStart(fullStats(5)), ...
 secondPeakEnd(fullStats(5)), ...
 {rawData});
 trimmedModel=trimmedModel{fullStats(5)}; % Get data only for correct class.
 trimmedModel(:,3)=ones(numel(trimmedModel(:,1)),1);
 trimmedModel=trimmedModel';
 invTrimmedModel=trimmedModel'/(trimmedModel*trimmedModel');
 stats=fitModeltoSVD(invTrimmedModel,trimmedModel,trimmedData);
 fullStats(6:9)=stats';
end
outData=fullStats;

function out=cutSubWindow(data,length,thisOffset)
try
 out=data{1}(thisOffset:thisOffset+length,:);
catch errorWeDontCareAboutBecauseWeAreLazy
 out=zeros(length,numel(data{1}(1,:)));
end

143

APPENDIX 14 SEQUEST XLS IMPORT

%fileName is the xls file to read that has been exported from Bioworks.
% It should contain only ONE protein for now.
% Masses reported are for the LIGHT location of a particular sequence,
% regardless if whether it is actually light or heavy.
%Output needs to be fed through CombineScans to prepare for use with
%SequestCompare.
function dataOut=xlsExtract(filePath,lightFileName,heavyFileName,xlsSource)

% desiredColumns=[1:2 3 5 4 6]; % was 2:4,6 for old sequest
% [~,~,fileContent]=xlsread([filePath lightFileName]);
% data=fileContent(1:end,desiredColumns);
% Above is no longer needed with new load<source> methods.

switch xlsSource
 case 'BW'
 fileLoadFunction=@loadBioworks;
 case 'PD'
 fileLoadFunction=@loadProteomeDiscoverer;
end

data=fileLoadFunction([filePath lightFileName]);
%
data(:,5)=cellfun(@(seq,wt)sequenceWeight(upper(seq),wt,'L'),data(:,2),data(:,3),'unifor
moutput',false);
% % Compute # labels by mass difference
data(:,end+1)=cellfun(@(seq)sum(seq=='k'|seq=='K')+1,data(:,2),'uniformoutput',false);
% Compute # labels based on K
dataOut.sequence=data(:,2);
dataOut.scanType=repmat('L',numel(dataOut.sequence),1);
dataOut.MHMass=cell2mat(data(:,3));
dataOut.z=cell2mat(data(:,4));
dataOut.numLabels=cell2mat(data(:,end));
dataOut.organism=data(:,5);
dataOut.protein=data(:,6);
[dataOut.scanStart,dataOut.scanEnd]=cellfun(@splitScans,data(:,1),'uniformoutput',false)
;
dataOut.scanStart=cell2mat(dataOut.scanStart);
dataOut.scanEnd=cell2mat(dataOut.scanEnd);

data=fileLoadFunction([filePath heavyFileName]);
%

144

data(:,5)=cellfun(@(seq,wt)sequenceWeight(upper(seq),wt,'H'),data(:,2),data(:,3),'unifor
moutput',false);
data(:,end+1)=cellfun(@(seq)sum(seq=='k'|seq=='K')+1,data(:,2),'uniformoutput',false);
% Compute # labels based on K
dataOut.sequence=[dataOut.sequence;data(:,2)];
dataOut.scanType=[dataOut.scanType;repmat('H',numel(data(:,2)),1)];
dataOut.MHMass=[dataOut.MHMass; (cell2mat(data(:,3))-
(4.025108*cell2mat(data(:,end))))]; %Convert heavy weights to light.
dataOut.z=[dataOut.z;cell2mat(data(:,4))];
dataOut.numLabels=[dataOut.numLabels;cell2mat(data(:,end))];
dataOut.organism=[dataOut.organism;data(:,5)];
dataOut.protein=[dataOut.protein;data(:,6)];
[tScanStart,tScanEnd]=cellfun(@splitScans,data(:,1),'uniformoutput',false);
dataOut.scanStart=[dataOut.scanStart;cell2mat(tScanStart)];
dataOut.scanEnd=[dataOut.scanEnd;cell2mat(tScanEnd)];
dataOut.lightFile=lightFileName;
dataOut.heavyFile=heavyFileName;
dataOut.sourcePath=filePath;

function [left,right]=splitScans(scanRange)
splitLoc=strfind(scanRange,'-');
if isempty(splitLoc)
 if isstr(scanRange)
 left=str2num(scanRange);
 else
 left=scanRange;
 end
 right=left;
else
 left=str2num(scanRange(1:splitLoc-1));
 right=str2num(scanRange(splitLoc+1:end));
end

function data=loadBioworks(file)
[~,~,raw]=xlsread(file);
data={};
temp='BSA';
temp2=raw{3,2};
% temp4=',';

%REFORMAT
rawTrunc=raw(4:end,:); %remove top 3 lines

organism=cellstr(repmat(temp,length(rawTrunc),1));

145

protein=cellstr(repmat(temp2,length(rawTrunc),1));
rawTrunc(:,3)=cellfun(@(str)str(3:end-2),rawTrunc(:,3),'uniformOutput',false);

% for i=1:length(rawTrunc) %remove ,file name from scan column Not
% needed?
% scan=rawTrunc{i,2};
% for j=1:length(rawTrunc{i,2})
% if(scan(j)==temp4)
% temp5=j;
% rawTrunc{i,2}=scan(1:temp5-1);
% end
% end
% end
data(:,1)=rawTrunc(:,2); %scans
data(:,2)=rawTrunc(:,3); %sequences
data(:,3)=rawTrunc(:,4); %MH+
data(:,5)=organism; %organism
data(:,4)=rawTrunc(:,6); %charge
data(:,6)=protein; %protein

function data=loadProteomeDiscoverer(file)
[num,txt,raw]=xlsread(file);

%INITIALIZATION
pepcountstore=zeros(length(raw),1);
prostore=cell(length(raw),1);

BSAcount=0;
lysocount=0;
ecolicount=0;
keratincount=0;

p1='bovine';
p2='Lyso';
p3='coli';
p4='keratin';

type1='BSA';
type2='Lysozyme';
type3='E.Coli';
type4='Keratin';

start1=1;

146

fin1=length(p1);
start2=1;
fin2=length(p2);
start3=1;
fin3=length(p3);
start4=1;
fin4=length(p4);

pepstore=cell(length(raw),1);
chargestore=zeros(length(raw),1);
mzstore=chargestore;
fstscanstore=chargestore;
lstscanstore=chargestore;
mhplusstore=chargestore;

prolist=cell(length(find(pepcountstore>0)),1);

type=zeros(length(prolist),1);

peplist=cell((sum(pepcountstore)),1);

pepcountlist=zeros(sum(pepcountstore>0),1);
chargelist=zeros(sum(chargestore>0),1);
mzlist=zeros(sum(mzstore>0),1);
fstscanlist=zeros(sum(fstscanstore>0),1);
lstscanlist=zeros(sum(lstscanstore>0),1);
mhpluslist=zeros(sum(mhplusstore>0),1);

ones=zeros(length(type),1);
twos=zeros(length(type),1);
threes=zeros(length(type),1);
fours=zeros(length(type),1);

startscan=[];
endscan=[];
charge=[];
mz=[];
peptide=[];
proteintype=[];
protein=[];
mhplus=[];

var=NaN;

147

%COLLECTING INFORMATION
for i=2:length(raw)
 if isa(raw{i,1},'char')
 pepcountstore(i,:)=raw{i,8};
 prostore{i,:}=raw{i,2};
 end
end

 for i=2:length(pepcountstore)
 if pepcountstore(i)>0
 k=i+2;
 if k>length(pepcountstore)
 break
 end
 for j=1:pepcountstore(i)
 pepstore{k,:}=raw{k,3};
 chargestore(k,:)=raw{k,20};
 mzstore(k,:)=raw{k,21};
 mhplusstore(k,:)=raw{k,22};
 fstscanstore(k,:)=raw{k,25};
 lstscanstore(k,:)=raw{k,26};
 if length(pepcountstore)==1
 break
 end

 k=k+3;
 if k>length(pepcountstore)
 break
 end
 if isequaln(var,raw{k,20});
 k=k+1;
 if k>length(pepcountstore)
 break
 end
 end
 end
 end
 end

 j=1;%condense protein list
 for i=1:length(prostore)
 if isa(prostore{i,:},'char')
 prolist{j,:}=prostore{i};
 j=j+1;

148

 end
 end

 j=1;%condense peptide list
for i=1:length(raw)
 if isa(pepstore{i,:},'char')
 peplist{j,:}=pepstore{i};
 j=j+1;
 end
end

j=1;%condense peptide count list
for i=1:length(raw)
 if pepcountstore(i)>0
 pepcountlist(j,:)=pepcountstore(i);
 j=j+1;
 end
end

j=1;%condense charge list
for i=1:length(raw)
 if chargestore(i)>0
 chargelist(j,:)=chargestore(i);
 mzlist(j,:)=mzstore(i);
 fstscanlist(j,:)=fstscanstore(i);
 lstscanlist(j,:)=lstscanstore(i);
 mhpluslist(j,:)=mhplusstore(i);
 j=j+1;
 end
end

pepcountlist2=zeros(length(pepcountlist),1);
for i=2:(length(pepcountlist)) %cumulative peptide count list
 pepcountlist2(1,:)=pepcountlist(1);
 pepcountlist2(i:end,:)=pepcountlist(i:end,:)+sum(pepcountlist(1:i-1,:));
end

for i=1:length(prolist) %get separate protein and type counts
 pro=prolist{i,1};

 start1=1;
 fin1=length(p1);

 while fin1<=length(pro)

149

 portion=pro(1,start1:fin1);
 evaluate=portion==p1;
 add=sum(evaluate);

 if add==length(p1)
 BSAcount=BSAcount+1;
 type(i,:)=1;
 start1=start1+1;
 fin1=fin1+1;
 else
 start1=start1+1;
 fin1=fin1+1;
 end
 end

 start2=1;
 fin2=length(p2);

 while fin2<=length(pro)
 portion=pro(1,start2:fin2);
 evaluate=portion==p2;
 add=sum(evaluate);
 if add==length(p2)
 lysocount=lysocount+1;
 type(i,:)=2;
 start2=start2+1;
 fin2=fin2+1;
 else
 start2=start2+1;
 fin2=fin2+1;
 end
 end

 start3=1;
 fin3=length(p3);

 while fin3<=length(pro)
 portion=pro(1,start3:fin3);
 evaluate=portion==p3;
 add=sum(evaluate);
 if add==length(p3)
 ecolicount=ecolicount+1;
 type(i,:)=3;
 start3=start3+1;

150

 fin3=fin3+1;
 else
 start3=start3+1;
 fin3=fin3+1;
 end
 end

 start4=1;
 fin4=length(p4);

 while fin4<=length(pro)
 portion=pro(1,start4:fin4);
 evaluate=portion==p4;
 add=sum(evaluate);
 if add==length(p4)
 keratincount=keratincount+1;
 type(i,:)=4;
 start4=start4+1;
 fin4=fin4+1;
 else
 start4=start4+1;
 fin4=fin4+1;
 end
 end

end

for i=1:length(type)
 if (type(i)==1)
 ones(i,:)=(i);
 elseif (type(i)==2)
 twos(i,:)=(i);
 elseif (type(i)==3)
 threes(i,:)=(i);
 else
 fours(i,:)=(i);
 end
end

finalStatL=cell(length(prolist),8);

for k=1:length(prolist)
 for i=1:length(type)
 if type(i)==1

151

 finalStatL{i,1}=type1;
 finalStatL{i,2}=prolist{i,:};
 if ones(i)==1
 ran=1:pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 else
 ran=(pepcountlist2(i-1)+1):pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 end
 elseif type(i)==2
 finalStatL{i,1}=type2;
 finalStatL{i,2}=prolist{i,:};
 if twos(i)==1
 ran=1:pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 else
 ran=(pepcountlist2(i-1)+1):pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 end
 elseif type(i)==3
 finalStatL{i,1}=type3;
 finalStatL{i,2}=prolist{i,:};
 if threes(i)==1;
 ran=1:pepcountlist2(i);

152

 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 else
 ran=(pepcountlist2(i-1)+1):pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 end
 else
 finalStatL{i,1}=type4;
 finalStatL{i,2}=prolist{i,:};
 if fours(i)==1;
 ran=1:pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 else
 ran=(pepcountlist2(i-1)+1):pepcountlist2(i);
 finalStatL{i,3}=(peplist(ran,:));
 finalStatL{i,4}=(chargelist(ran,:));
 finalStatL{i,5}=(mzlist(ran,:));
 finalStatL{i,6}=(mhpluslist(ran,:));
 finalStatL{i,7}=(fstscanlist(ran,:));
 finalStatL{i,8}=(lstscanlist(ran,:));
 end
 end
 end
 end

%REFORMAT (expand all cells)
 for i=1:length(finalStatL)
 startscan=[startscan; finalStatL{i,7}];
 endscan=[endscan; finalStatL{i,8}];
 charge=[charge; finalStatL{i,4}];

153

 mz=[mz; finalStatL{i,5}];
 peptide=[peptide; finalStatL{i,3}];
 mhplus=[mhplus; finalStatL{i,6}];

 for j=1:length(finalStatL{i,3})
 proteintype=[proteintype; finalStatL(i,1)];
 protein=[protein; finalStatL(i,2)];
 end
 end

[scanorder,idx]=sort(startscan); %organizes by sorting scan
startscan=startscan(idx);
endscan=endscan(idx);
charge=charge(idx);
mz=mz(idx);
peptide=peptide(idx);
proteintype=proteintype(idx);
protein=protein(idx);
mhplus=mhplus(idx);

%FINAL OUTPUT (excel)
scanmatrix=cellstr([num2str(startscan) repmat(' - ',numel(startscan),1)
num2str(endscan)]);
% finalStatsL=[scanmatrix peptide num2cell(mz) proteintype num2cell(charge)
num2cell(mhplus) protein];
data(:,1)=scanmatrix; %scans
data(:,2)=peptide; %sequences
data(:,3)=num2cell(mhplus); %MH+
data(:,5)=proteintype; %organism
data(:,4)=num2cell(charge); %charge
data(:,6)=protein; %protein
 left=str2num(scanRange);
 right=left;
else
 left=str2num(scanRange(1:splitLoc-1));
 right=str2num(scanRange(splitLoc+1:end));
end

154

APPENDIX 15 LABEL COUNTING FUNCTION

% This function takes the sequence weight, observed weight (by sequest) and
% the label type (L/H), and uses these to determine the number of labels present
% by the difference of these weights.
function dOut=sequenceWeight(sequence, obsMW, labelType)
sequence=sequence(3:end-2);
mwTable={'G', 57.02146'; ...
 'A', 71.03711;
 'S', 87.03203;
 'P', 97.05276;
 'V', 99.06841;
 'T', 101.04768;
 'C', 160.03068 %103.00918+57.03404; % IAA reaction adds weight to C
 'L', 113.08406;
 'I', 113.08406;
 'N', 114.04293;
 'D', 115.02694;
 'Q', 128.05858;
 'K', 128.09496;
 'E', 129.04259;
 'M', 131.04048;
 'H', 137.05891;
 'F', 147.06841;
 'R', 156.10111;
 'Y', 163.06333;
 'W', 186.07931;
 '#', 79.96633;
 '*', 15.99492};

MW=0;
for i=1:numel(mwTable(:,1));
 MW=MW+(sum(sequence==mwTable{i,1})*mwTable{i,2});
end
MW=MW+18.0106;
labelWeight=(obsMW-MW)-1;
light=labelWeight/28.0313;
heavy=labelWeight/32.056408;
if labelType=='L'
 nLabels=light;
else
 nLabels=heavy;
end
dOut=round(nLabels);

155

APPENDIX 16 SEQUEST SCAN COMBINATIONS

%Prepares output of xlsExtract for use with SequestComare by combining
%duplicate sequences' scans into a single entry.
function outData=combineScans(inData,scanIndices)
outData.sequence={};
outData.z=[];
outData.MHMass=[];
outData.fullMsScans={};
outData.scanSource={};
chargeAndSequence=cellstr([num2str(inData.z),repmat(':',numel(inData.z),1),...
 char(inData.sequence)]);
peptideChargeList=unique(chargeAndSequence);
peptideList=cellfun(@(name)name(3:end),peptideChargeList,'uniformOutput',false);
chargeList=cellfun(@(name)str2num(name(1)),peptideChargeList);
for i=1:numel(peptideChargeList)
 thisSequence=peptideChargeList{i}(3:end);
 thisCharge=str2num(peptideChargeList{i}(1));
% if all(~(thisSequence=='#')) % Not a PTM
 thisPeptideLocations=find(strcmp(inData.sequence,thisSequence) & ...
 inData.z==thisCharge);
 outData.sequence=[outData.sequence;{thisSequence}];
 outData.z=[outData.z;thisCharge];
 outData.MHMass=[outData.MHMass;inData.MHMass(thisPeptideLocations(1))];
 scanOutput=[];
 scanSource='';
 for j=1:numel(thisPeptideLocations)
 thisScanIdxStart=find(scanIndices<=...
 inData.scanStart(thisPeptideLocations(j)),1,'last');
 thisScanIdxEnd=find(scanIndices<=...
 inData.scanEnd(thisPeptideLocations(j)),1,'last');
 scanOutput=[scanOutput, scanIndices(thisScanIdxStart:thisScanIdxEnd)];
 scanSource=[scanSource,inData.scanType(thisPeptideLocations(j))];
 end
 outData.scanSource=[outData.scanSource;{scanSource}];
 outData.fullMsScans=[outData.fullMsScans;{scanOutput}];
 outData.scans=outData.fullMsScans;
% end
end

156

APPENDIX 17 SEQUEST CROSS REFERENCER

function out=sequestCompare(pfResults,sequest,inData)
mzTolerance=4/12;
timeTolerance=1;

% Start by getting common terms together. The imported XLS file already has
% most of the stuff we need, but our data could use some changes.
class2Charge=[1 1 2 2 2 3 3 3];
class2Labels=[1 2 1 2 3 1 2 3];
index2massCharge=inData.mz;
index2scanNum=inData.scanIdx;

pfResults(:,5)=abs(pfResults(:,5));

myResults.MZ=index2massCharge(pfResults(:,1));
myResults.z=class2Charge(pfResults(:,5));
myResults.numLabels=class2Labels(pfResults(:,5));
myResults.unfixedMass=((myResults.MZ-1.007825).*myResults.z')+1.007825;
myResults.mass=myResults.unfixedMass;
myResults.scanStart=index2scanNum(pfResults(:,3))';
myResults.scanEnd=index2scanNum(pfResults(:,4))';
myResults.midScan=((myResults.scanStart+myResults.scanEnd)./2);

zMatch=arrayfun(@(sZ) find(myResults.z==sZ),sequest.z,'uniformOutput',false);

labelMatch=arrayfun(@(seq) find(myResults.numLabels==countLabels(seq{1})),...
 sequest.sequence,'uniformOutput',false);
expandedWindow=[myResults.scanStart,myResults.scanEnd];

timeMatch=arrayfun(@(sScans) find(arrayfun(@(mScansS,mScansE) ...
 any(ismember(sScans{1},mScansS:mScansE)),expandedWindow(:,1),...
 expandedWindow(:,2))),sequest.scans,'uniformoutput',false);

 massMatch=arrayfun(@(sMass,sCharge) find(myResults.mass<=sMass+...
 (mzTolerance*sCharge) & myResults.mass>=sMass-(mzTolerance*sCharge)),...
 sequest.MHMass,sequest.z,'uniformOutput',false);
 finalMatch=cellfun(@(z,label,time,mass) intersect(intersect(z,label),...
 intersect(mass,time)), ...
 zMatch,labelMatch,massMatch,timeMatch,'uniformOutput',false);
 sum(~cellfun('isempty',finalMatch))

157

 sequestIndex=~cellfun('isempty',finalMatch);
 myIndex=cellfun(@(myIdx,seqScans) myIdx(nearest(...
 myResults.midScan(myIdx),seqScans)),finalMatch(sequestIndex),...
 sequest.scans(sequestIndex),'uniformOutput',false);
 mySingleIndex=cellfun(@(myIdx,seqScans) myIdx(nearestSingle(...
 myResults.midScan(myIdx),seqScans)),finalMatch(sequestIndex),...
 sequest.scans(sequestIndex));
 out.unfixedPITSMHMass=myResults.unfixedMass(mySingleIndex);
 out.fixedPITSMHMass=myResults.mass(mySingleIndex);
 out.z=myResults.z(mySingleIndex)';
 out.sequestMHMass=sequest.MHMass(sequestIndex);
 out.sequence=sequest.sequence(sequestIndex);
 out.PITSTimes=cellfun(@(idx) [myResults.scanStart(idx),...
 myResults.scanEnd(idx)],myIndex,'uniformoutput',false);
 out.sequestTimes=sequest.scans(sequestIndex);
 out.sequestIndex=find(sequestIndex);
 out.PITSIndex=mySingleIndex;
 out.allPitsMatches=myIndex;
end

function nLabels=countLabels(sequence)
 sequence=sequence(3:end-2);
 nLabels=sum(sequence=='K')+1;
end

function nearestIndex=nearest(myScans,seqScans)
seqRange=min(seqScans):max(seqScans);
minDists=arrayfun(@(myScan) min(abs(myScan-seqRange)),myScans);
nearestIndex=find(minDists==min(minDists));
end

function nearestIndex=nearestSingle(myScans,seqScans)
seqRange=min(seqScans):max(seqScans);
minDists=arrayfun(@(myScan) min(abs(myScan-seqRange)),myScans);
nearestIndex=find(minDists==min(minDists));
nearestIndex=nearestIndex(1);
end

function clickFcn(object,~,~)
persistent waiting lastPt lastLine;
 rawData=evalin('sequestCompare','rawData');
 index2scanNum=evalin('sequestCompare','index2scanNum');

158

thisPt=get(object,'currentPoint');
if (waiting == 1)
 hold on;
 try
 delete(lastLine);
 end
 lastLine=line([lastPt(1),lastPt(1),thisPt(1),thisPt(1),lastPt(1)],...
 [thisPt(3),lastPt(3),lastPt(3),thisPt(3),thisPt(3)],...
 'hittest','off','color','white','linewidth',2);
 hold off;
 timeCoords=find(abs(index2scanNum-min(lastPt(1),thisPt(1)))==...
 min(abs(index2scanNum-min(lastPt(1),thisPt(1)))));
 timeCoords(2)=find(abs(index2scanNum-max(lastPt(1),thisPt(1)))==...
 min(abs(index2scanNum-max(lastPt(1),thisPt(1)))));
 massCoords=((min(lastPt(3),thisPt(3))-400)*12):((max(lastPt(3),...
 thisPt(3))-400)*12);
 rawData=rawData(uint16(massCoords),timeCoords(1):timeCoords(2));
 figure(2);
 surf(double(rawData));
 figure(3);
 clf;
 copyobj(object,figure(3));
 set(gca,'xLim',[min(lastPt(1),thisPt(1)) max(lastPt(1),thisPt(1))],...
 'yLim',[min(lastPt(3),thisPt(3)),max(lastPt(3),thisPt(3))]);
 hold on;
 axes();
 [xGrid,yGrid]=meshgrid(index2scanNum(timeCoords(1):timeCoords(2)),...
 (massCoords/12)+400);
 contour(xGrid,yGrid,double(rawData));
 set(gca,'color','none');
 hold off;
 waiting=0;
else
 lastPt=thisPt;
 waiting=1;
end
end

159

APPENDIX 18 SOFTWARE PREREQUISITES AND USE

The toolchain described in this work is written as a contained workflow designed to

be as easy to use as possible. While the algorithms are described previously, the complete

suite is currently only available by request whilst it is still under development. The only

prerequisite (if automated import of .RAW files is desired) is the installation of the

ReAdW component of the trans-proteome pipeline toolsuite by the Seattle Proteome

Center (this package additionally requires the XCALIBUR software to interface with

.RAW files).

The software can be launched by running the 'modularizer.m' file contained within;

this will display a flowchart-like interface illustrating all of the stages of the data analysis

process developed; each of these steps may be clicked in sequence to open an additional

dialog with information and details to complete that step. In this fashion, one may

transgress through the workflow from start (.RAW file) to finish (saved list of detections

and their properties) without needing a detailed list of MATLAB commands and scripts

to run in a particular order. Additionally, the modular nature of the workflow allows those

interested in expanding or customizing certain steps to easily create their own data

manipulation “modules” at any point in the process.

160

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	CHAPTER 1 Introduction
	1.1 Quantitative Proteomics
	1.2 Comparative Proteomics
	1.2.1 Stable Isotope Labelling
	1.2.2 Isobaric Tagging
	1.2.3 Spectral Counting
	1.2.4 Feature Extraction Methods

	1.3 Proposed Method for Quantitation
	1.4 Thesis Outline

	CHAPTER 2 Methods And Experiments
	2.1 Chemicals Used
	2.2 Tryptic Digest
	2.3 Post-digestion Cleanup
	2.4 Dimethyl Labelling
	2.5 Post-labelling RPLC Cleanup
	2.6 LC-MS/MS HPLC
	2.7 Double-labelling Experiment
	2.8 Triple-labelling Experiment
	2.9 Alternate Ratio Experiment
	2.10 MS Acquisition and SEQUEST Search Parameters

	CHAPTER 3 Workflow and Algorithms
	3.1 Overview
	3.2 Data Preparation and Import
	3.2.1 mzXML Import Function
	3.2.2 Base64 Conversion

	3.3 Computing Models of Peptide Pair Isotopic Peaks
	3.3.1 Average Peptide Composition Formula
	3.3.2 Isotopic Ratio Pre-Calculation
	3.3.3 Computing an Isotopic Pattern for a Given Molecular Formula
	3.3.4 A Note on Isotopic Ratio Limitations
	3.3.5 Modelling a Single Peptide Pair

	3.4 Algorithm for Initial Detection of Peptide Pairs
	3.5 Algorithm for Clustering Signals
	3.5.1 Clustering of Individual Detections
	3.5.2 Cluster Contraction and Reprocessing
	3.5.3 Cluster Overlap Removal
	3.5.4 Parameter Selection

	3.6 High-Resolution and Triple Label Adaptability
	3.7 Cross-Referencing with SEQUEST Results
	3.7.1 SEQUEST Results Import
	3.7.2 Cross-Referencing SEQUEST and PITS Results

	CHAPTER 4 Results and Discussion
	4.1 Introduction
	4.2 PITS Detection Results for the Four Replicate BSA Data Files
	4.2.1 Supplementation of PITS Results with SEQUEST

	4.3 PITS Results for Yeast
	4.4 PITS Results for High-Resolution Data
	4.5 PITS Results for Triple-Labelling Data
	4.6 Detection of Differential Expression

	CHAPTER 5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	References
	Appendix 1 High-Resolution MS Acquisition Parameters
	Appendix 2 Triple-Label MS Acquisition Parameters
	Appendix 3 Alternate Ratio MS Acquisition Parameters
	Appendix 4 MzXML Import Function
	Appendix 5 Base64 Decoding Function
	Appendix 6 Average Amino Acid Function
	Appendix 7 Isotope Possibilities Table Function
	Appendix 8 Formula to Isotopic Ratios Function
	Appendix 9 Multinomial Distribution Function
	Appendix 10 Fast Factorial Function
	Appendix 11 Gaussian Model Function
	Appendix 12 Peptide Finder Function
	Appendix 13 Clustering Function
	Appendix 14 SEQUEST XLS Import
	Appendix 15 Label Counting Function
	Appendix 16 SEQUEST Scan Combinations
	Appendix 17 SEQUEST Cross Referencer
	Appendix 18 Software Prerequisites and Use

