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6.1 (a) A side-view of the striatal nuclei situated among other brain
regions: Cd - caudate, Pu - putamen, and NAcc - nucleus ac-
cumbens. (b) A rear-view (a composite coronal slice) schematic
of basal ganglia nuclei, the thalamus, and the cortex and their
interconnections. Of the striatal regions, only the putamen
is connected for clarity’s sake. Note that the connections are
highly-schematic and do not represent the breadth of the con-
nectivity between areas. Abbreviations: Ctx - neocortex, Th -
thalamus, GPe - globus pallidus externa, GPi - globus pallidus
interna, STN - subthalamic nucleus, SNr - substantia nigra pars
reticulata, SNc - substantia nigra pars compacta . . . . . . . . 68

6.2 Diagram of salient basal ganglia features. There are three path-
ways through the basal ganglia: the direct, indirect, and hyper-
direct pathways. The direct and indirect pathways have distinc-
tive features including dopamine receptor subtypes (D1 or D2)
and input from the cortex. Separate channels (or striatal com-
partments), known as the striosome and matrix, innervate the
SNc/VTA and SNr/GPi, respectively. Abbreviations: MSpN
- medium spiny neuron, GPe - globus pallidus externa, GPi
- globus pallidus interna, STN - subthalamic nucleus, SNr -
substantia nigra pars reticulata, SNc - substantia nigra pars
compacta, VTA - ventral tegmental area . . . . . . . . . . . . 71

7.1 Distributed stimuli used in a simulation of the Ghirlanda (2005)
model. Gaussian-shaped stimuli L, T, and C represent condi-
tioned stimuli and the flat function X represents the context.
The input to Ghirlanda’s model is the sum of the present stim-
uli and the context, of which the example LTCX is given. There
are 100 stimulus elements. . . . . . . . . . . . . . . . . . . . . 83
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7.2 Results of a lick suppression experiment (3) in Matzel et al.
(1985) and its simulation using the model of Ghirlanda (2005).
Responding shown in the upper panels is in terms of mean log
latency (in seconds) to make 25 licks in the presence of the
light stimulus. Longer latencies indicate greater suppression
and greater associative strength. Corresponding simulations of
associative strengths from Ghirlanda’s model are provided in
the lower panels. In the simulations a procedure similar to the
experiment was used (‘X’ is the context): Phase 1: TLX+,
X-, CX+, X-, Phase 2: Group O: X-, X-, Group ET: TX-, X-
, Group EC: CX-, X-, Phase 3: LX-, TX-, CX- (all groups).
Sufficient trials were used in each phase of simulation to en-
sure that responses to a stimulus reached asymptotic levels. In
Ghirlanda’s model, extinction of the tone in phase 2 (Group
ET) inflated the light above the overshadowing control group
(Group O), which corresponds to the findings of Matzel et al..
The extinction of the click (Group EC) in simulation, however,
also strongly inflated the light, which is a failure to predict the
associated experimental data. The extinction of the tone in the
model also inflated the click and vice versa, but this also fails to
occur in the data. Experimental data from Matzel el al. (1985),
Experiment 3, used by permission. . . . . . . . . . . . . . . . 84
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7.3 The striatal lateral inhibition model (SLIM). The stimulus ele-
ment inputs represented by the rounded boxes take exactly the
same distributed input as used in Ghirlanda’s model, except
that the context here is also modeled as a Gaussian pattern.
Each dashed line in the model represents a connection that will
(or will not) be established upon model initialization with some
fixed probability. Neurons in the model, represented by circles,
receive input and become excited. The connections between
the neurons are inhibitory. These connections induce competi-
tion between the neurons, which reduces neuron activities and
leads to a subset of neurons that dominates and suppresses all
other neurons. The activities of the neurons are accumulated
(bottom-center circle), where one half of these neurons add and
the other half subtract from the sum. The total is appropriately
scaled and represents the sum of associative strengths (ΣV ) for
the input stimuli. Conditioning is accomplished by changing
the connection weights of model neurons. This is a function of
the several factors including the US surprisingness (computed
in the bottom-left circle), which is represented by the broad ar-
row leading back to the input and lateral connections. Impor-
tantly, the stimuli presented on a trial determine the ensemble
of active neurons that develops through competition. Since it
is the sum of activities of model neurons that gives the asso-
ciative strength, the active neural ensembles come to represent
the associative strengths of the stimuli that evoke them. . . . 87

7.4 SLIM during excitatory conditioning, simulated using only 50
neurons for demonstration purposes. a) Activity in some posi-
tive neurons (neurons 26-50) increases with the number of trials.
Other neurons lose the competition and are silenced. Nega-
tive neurons (1-25) are either suppressed or very weakly active.
b) Overall associative strength increases, approaching asymp-
tote within 30 trials. c) The average change in input synaptic
weights for each neuron between the first and last trials shows
a substantial increase for positive neurons and a slight decrease
for negative neurons. d) Lateral synaptic weights also increase
for positive neurons and decrease for negative neurons. . . . . 91
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7.5 Simulation of negative patterning using various configurations
of the present model for 15 differently initialized models (stat
rats). Each block consists of 3 trials (A+, B+, AB-). Negative
patterning requires that both the positive and negative neurons
exist and that there is activity proportional learning. The lat-
eral inhibition and lateral learning mechanisms do not assist
but also do not substantially interfere. Acronyms: DP - Dual
Pathway, APL - Activity Proportional Learning, LI - Lateral
Inhibition, LL - Lateral Learning . . . . . . . . . . . . . . . . 92

7.6 Correlation between the weights in a random selection of model
neurons and stimuli A (ΣSA

i w
I
ij) and B (ΣSB

i w
I
ij) when both

pathways and activity proportional learning are enabled (i.e.,
lateral inhibition and lateral learning are disabled). Negative
neurons grow relatively evenly for both stimuli A and B, making
them respond substantially more to the compound AB than to
A or B alone. In contrast, positive neurons’ weights tend to
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Abstract

To survive, many biological organisms need to accurately infer which features of their

environment predict future rewards and punishments. In machine learning terms, this

is the problem of spatial credit assignment, for which many supervised learning al-

gorithms have been developed. In this thesis, I mainly propose that a dual-pathway,

regression-like strategy and associated biological implementations may be used to

solve this problem. Using David Marr’s (1982) three-level philosophy of computa-

tional neuroscience, the thesis and its contributions are organized as follows:

• Computational Level: Here, the spatial credit assignment problem is formally

defined and modeled using probability density functions. The specific challenges

of the problem faced by organisms and machine learning algorithms alike are

also identified.

• Algorithmic Level: I present and evaluate the novel hypothesis that the general

strategy used by animals is to perform a regression over past experiences. I also

introduce an extension of a probabilistic model for regression that substantially

improves generalization without resorting to regularization. This approach sub-

dues residual associations to irrelevant features, as does regularization.

• Physical Level: Here, the neuroscience of classical conditioning and of the basal

ganglia is briefly reviewed. Then, two novel models of the basal ganglia are

put forward: 1) an online-learning model that supports the regression hypoth-

esis and 2) a biological implementation of the probabilistic model previously

introduced. Finally, we compare these models to others in the literature.

In short, this thesis establishes a theoretical framework for studying the spatial credit

assignment problem, offers a simple hypothesis for how biological systems solve it,

and implements basal ganglia-based algorithms in support. The thesis brings to

light novel approaches for machine learning and several explanations for biological

structures and classical conditioning phenomena.
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Chapter 1

Introduction

Spatial credit assignment is the problem of properly distributing predictive ability

among features based on previous experience or data so that one may accurately

predict a future outcome for a new combination of inputs. This is a process that

is carried out by living things which must learn certain real-world cues that signal

the opportunity for sustenance or the impending danger of a predator. In biologi-

cal systems, learning about such forms of reinforcement has been localized to a few

brain areas, namely the amygdala, orbitofrontal cortex, and the basal ganglia (Maia,

2009). A very prominent discovery (Schultz, 1998) supporting this understanding

is that the dopaminergic cells of the basal ganglia’s substantia nigra pars compacta

region and the ventral tegmental area appear to provide a signal that computational

models (namely Temporal Difference learning (Montague, Dayan, & Sejnowski, 1996;

Schultz, Dayan, & Montague, 1997)) use to learn about reinforcements. However,

such studies have mostly been concerned with assigning credit back through time to

the earliest predictor rather than assigning credit among many stimuli appearing at

the same time. A common interpretation is that the basal ganglia, and particularly

the striatum, encodes the reward value of stimuli and actions (Niv, 2009). Whether

for representing the expected future reward for being in a specific context or for en-

couraging the selection of an appropriate action, the basal ganglia appear to have the

connectivity and downstream influence necessary for these roles (see Chapter 6). As

part of encoding the reward value of a stimulus or potential action, it would seem

necessary to carefully assign credit among the many stimuli (or actions) simultane-

ously present (or taken) prior to the receipt of a reinforcement. How this is done in

biological systems has not been thoroughly investigated.

Ultimately, the present work proposes and evaluates a dual pathway, basal ganglia-

based approach to spatial credit assignment. In short, the basal ganglia models

presented: 1) improve prediction accuracy by making certain assumptions about the

1
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real-world relationships between predictors and outcomes and 2) offer an online way

to perform a batch-like regression process over past experiences. To demonstrate

this, this thesis covers a variety of topics. This will involve moving freely between

the fields of machine learning, animal learning, and neuroscience. This interaction

will prove fruitful as the notions from each area will assist and inform the others. For

example, the field of machine learning demonstrates the challenging issues associated

with learning and offers the theoretical foundations for learning approaches to which

biological systems are undoubtedly subject. Also, animal learning and neuroscience

provide insight into how biological systems actually solve the problem, which can be

used to narrow the search through learning algorithms offered by machine learning.

To show how a dual pathway approach makes effective assumptions, several tasks

were undertaken. The spatial credit assignment problem is first defined in terms of

learning the parameters of a probability density function. A function that captures

aspects of the real world was chosen to serve as the “optimal” model from which

data were generated for a simple regression task that is used to draw comparisons

between learning approaches. Using least mean squares regression simulations of

several classical conditioning experiments, it is shown here that mammals appear to

accomplish spatial credit assignment by roughly performing a regression over past

experience. Taking the regression strategy further, least mean squares with several

regularization or Bayesian prior terms is also evaluated. The Dual Noisy OR model, a

probabilistic dual pathway model that extends the Noisy OR model of Pearl (1988), is

proposed and evaluated. This strategy has no explicit prior (it is implicitly uniform)

but naturally accentuates the most relevant or predictive features at the expense of

the lesser predictive features, just as occurs in animal learning experiments. The

primary mechanisms of this model are then extracted and fitted to the basal ganglia,

demonstrating that they are primarily responsible for the model’s effectiveness.

A dual pathway approach ought to learn effectively in an online fashion for it to

be biologically plausible and practical. In biological hardware, performing regression

appears implausible at first because it involves batch-learning. However, I propose a

novel neural network model of basal ganglia structure with a focus on the striatum

that is capable of performing an aspect of our regression task in an online fashion.

I also offer the possibility that existing models of classical conditioning are able to
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explain other aspects of regression in an online way as well.

Relating our dual pathway models to a number of basal ganglia models on the

market, including Frank (2005) and Bar Gad et al. (2001), I suggest a new role

for its dual pathway structure. Instead of simply duplicating functionality, the dual

pathways support a multiplicative approach to integrating inhibition that reduces

prediction errors, which is done in part by separating positive predictors of an outcome

and negative predictors (that cancel a prediction) into different pathways. Another

possible role for dual pathways, which takes advantage of this separation, is to perform

simple non-linear discriminations (e.g., exclusive OR), as will be shown. Preliminary

combination of the mechanisms that implement these two roles has proven to be very

powerful, substantially reducing the amount of data or experience needed to make

such non-linear distinctions.

In sum, the dual pathway approach provides a level of performance in our specfic

spatial credit assignment regression task that rivals popular approaches and yet suits

the basal ganglia.

1.1 What is Spatial Credit Assignment?

Spatial credit assignment is the task of attributing to features of an environment the

ability to predict a future outcome based on previous experience or data. Figure 1.1

depicts this as a black box where each input is the salience of a potential feature and

the output is the learner’s expectation of a future outcome. The system should learn

the relevant input-output associations so that it can make accurate predictions in the

future. In more specific terms, spatial credit assignment is the process of learning to

predict an outcome value, y, from a vector of attributes or feature values, x, based

on a training set where each data point is an x and y pair. In machine learning, this

is commonly referred to as supervised learning.

Spatial credit assignment is routinely relied upon by many living things. Al-

though there is much instinctual knowledge for the acquisition of food and escape

from predators, much can be learned as well. It becomes important to discern the

cues that predict rewarding and punishing outcomes from the spectrum of features

in the world. Since people and animals seem to be very effective in this task, ma-

chine learning stands to benefit from understanding the biological solution to this
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Figure 1.1: An illustration of the spatial credit assignment problem. An algorithm
inside the black box relates input features, x, to outcome values, y, based on past
experience so as to accurately predict future outcomes from novel inputs.

problem. The purpose of this thesis is to show what biologically-based algorithms

and implementations may be inside the black box. In particular I will propose a dual

pathway-based structure and show how its associated mechanisms relate to existing

algorithms/models addressing the same problem in machine learning and classical

conditioning.

Before continuing, it seems appropriate to clarify what spatial credit assignment

is not. Biological systems appear to use the equivalent of unsupervised deep learning

methods to develop representations for stimuli in the world from raw sensory data.

Perhaps the most prominent example of this is the visual system. Cortical regions

arranged in a hierarchy extract increasingly abstract and transformation-invariant

features of the environment (for a review, see DiCarlo, Zoccolan, & Rust, 2012).

This ability is crucial for understanding the state of the world around us, encoding

the prominence of certain object-level features as the intensity of neural activities.

However, this is not spatial credit assignment since no predictions are made (i.e.,

it is not supervised learning). Yet, spatial credit assignment critically depends on

an effective higher-level representation of the predictive features of the world, since

these often form the inputs (x) to which we must assign credit. Thus, in this thesis,

we rely on the existence of such high-level features but do not examine how such

representations are formed.
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1.2 Spatial Credit Assignment and Classical Conditioning

The field of classical conditioning studies the biological approach to spatial credit

assignment by evaluating animal responses to stimuli after being presented in various

arrangements of time and space. In classical conditioning experiments, there are two

types of stimuli: the conditioned stimulus (CS) and the unconditioned stimulus (US).

In an experiment, a CS such as a light or tone begins as a neutral stimulus that

does not elicit any conditioned response (CR) such as salivation or pecking. The US,

however, does naturally elicit a response upon presentation since it represents a moti-

vationally salient stimulus such as food pellets or foot shock. In a typical experiment,

one or more CSs are presented and followed by a US. For example, in the phenomenon

of conditioned excitation, a single stimulus A is followed by reinforcement (A→US,

or more commonly expressed as A+). The result of repeated pairings or trials is that

the subject will develop a response to the CS, stimulus A, in a subsequent testing

phase. In a slightly more involved experiment, two different types of trials are used.

In conditioned inhibition, a reinforced CS (A+) is alternated with presentation of a

compound or pair of stimuli (A and X) followed by no reinforcement (AX-, where the

“−” represents no reinforcement). In this experiment, stimulus A still develops a re-

sponse, but stimulus X comes to signal no reinforcement and thus inhibits responding

that otherwise would occur to A.

Pavlov (1927) established the above nomenclature and identified many of the main

phenomena recognized in the field today, which include conditioned excitation and

conditioned inhibition. Experiments investigating how simultaneous presentation of

multiple CSs affects how each CS is conditioned began in the late 1960’s (Kamin,

1968, 1969; Wagner, Logan, Haberlandt, & Price, 1968). Kamin is credited with dis-

covering the forward blocking phenomenon (Kamin, 1969) which involves two phases:

1) repeated presentations of A+ and 2) repeated presentations of AX+. The result

was that little conditioning occurred to X in the second phase relative to a control

(CX+) group, where the partner stimulus C was not conditioned in the first phase. In

essence, conditioning to A in the first phase blocked conditioning to X in the second.

Other early work involving multiple stimuli include the phenomena of overshadow-

ing (Pavlov, 1927) and relative validity (Wagner et al., 1968), which we will visit in

some detail in the body of this work. In recent years, there have been many human
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causal learning studies that study the interaction of multiple CSs, where subjects

rate the predictive strength of various stimuli that are sometimes presented together

(e.g., Baetu & Baker, 2010; Van Hamme & Wasserman, 1994; McLaren, Forrest, &

McLaren, 2012). The important point is that there are many classical conditioning

experiments which identify how biological systems distribute predictive ability among

multiple features (stimuli) in the environment under a variety of different conditions.

It thereby provides a large body of evidence that helps characterize how people and

animals solve the spatial credit assignment problem.

The CR expresses an animal’s prediction of a future outcome. This prediction

can be thought of as an association connecting an environmental cue and a future

outcome, such that when the cue appears, the association leads to an internal sense or

expectation of the outcome. The field of classical conditioning frequently employs the

term “associative strength” to refer to the degree to which a CS predicts another stim-

ulus (usually a US). I will use this term interchangeably with “predictive strength”.

The strength, rate, or vigor of the animal’s CR to a CS presented in the test phase of

an animal learning experiment is generally interpreted as being proportional to the

degree of associative strength with which the CS predicts the US. Accordingly, this

notion is assumed in the later discussion of experiments and simulations.

1.3 Spatial Credit Assignment and Machine Learning

Although little is mentioned in the literature explicitly discussing “spatial credit as-

signment”, the notion is central to machine learning. The black box in Figure 1.1 is

representative of supervised learning (i.e., regression and classification), a large seg-

ment of the field. Many ways have been invented to develop an effective translation

between the inputs, x, and the output, y, based on training data. Some general pur-

pose approaches include multilayer perceptrons, classification and regression trees,

and support vector machines.

The multilayer perceptron (MLP) (Rumelhart, Hinton, & Williams, 1986), also

referred to as a connectionist network, was one of the first of these algorithms, loosely

representing a network of interacting neurons. Usually, there are only two layers of

multiple learning units, which are commonly updated in proportion to their prediction

accuracy (larger errors lead to larger changes) and the gradient of the prediction
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equation (defined by the network) with respect to the learning element or weight to be

updated. A sufficiently complex MLP network can represent a non-linear function to

an arbitrary accuracy (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989), making

this approach very general purpose, in principle. The simpler single-layer perceptron

(similar to least mean squares regression) can be substituted when the function to be

learned is linear. The classification and regression tree (CART) represents another

common prediction model approach (Breiman, Friedman, Olshen, & Stone, 1984).

This computationally efficient technique looks to explain data using simple rules (e.g.,

Is x > 2.5?) that branch out. If the first rule is true for a given data point, it

is funneled to a secondary rule. If, instead, it is false, it is funneled to another

secondary rule. Each data point is evaluated by the secondary rule and then may

be sent to a tertiary rule (branch) and so on until a “leaf” node is encountered,

where the output value is mapped to the data point. There are several different

algorithms that can be used to “learn” effective rules that map the input to the

output. Finally, the support vector machine (SVM) (Vapnik, 1995; Cortes & Vapnik,

1995), has gained popularity in recent years. It is quite robust for many problems

with default settings and thus does not require careful tuning (unlike the MLP).

Like the MLP and CART, it can learn both linear and non-linear relationships. For

mapping inputs to outputs, one would use support vector regression (SVR) (Vapnik,

1995), the regression version of SVM that is based on similar theoretical principles.

One form of SVR, called the epsilon-SVR involves fitting a hyperplane with margins

(i.e., a hyper-rectangular prism) so that it encompasses all data while at the same

time minimizing the hyperplane’s slope (Smola & Schölkopf, 2004). This is often

infeasible, so that outliers are permitted but at a cost, leading to a trade-off between

minimization of the slope and the acceptance of outliers.

Much has been learned from machine learning about general problems and solu-

tions in spatial credit assignment. For instance, it is well known that spatial credit

assignment usually becomes less accurate as the number of input features becomes

large (Bengio & Bengio, 2000; Evangelista, Embrechts, & Szymanski, 2006) relative

to the amount of data available, a problem for which many feature reduction algo-

rithms (Fodor, 2002; Guyon, Gunn, Nikravesh, & Zadeh, 2006) have been devised.

Naturally, predictions become more difficult as increasing levels of noise are injected
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into the data. Machine learning has addressed these general problems in a couple of

ways. One way is to increase the number of training data points. This could be done

by collecting additional data. In some circumstances, however, acquiring additional

data is costly or not feasible. In this case, generating synthetic data may be feasi-

ble. Another general solution is to reduce the number of features to only the most

important ones, since the number of truly predictive features is often only a fraction

of the total. Feature reduction techniques are commonly used to eliminate irrelevant

features (e.g., feature subset selection) or express the same data with fewer features

(e.g., Principle Components Analysis). We will look at these general problems and

machine learning solutions later in greater detail.

While much work has been done in both the fields of classical conditioning and

machine learning regarding spatial credit assignment, there has been little formal in-

teraction between the two fields. The important exception to this is a well known

model of conditioning by Rescorla and Wagner (1972), which is better known by its

temporal cousin, temporal difference (TD) learning (Sutton & Barto, 1990), a key

algorithm used in reinforcement learning. In the Rescorla-Wagner model, after each

trial, a stimulus or feature’s predictive strength is increased whenever the feature is

presented and followed by more reinforcement than expected and is decreased when

it is presented but followed by less reinforcement than expected. In TD learning, the

learning process is similar but is broken down into many time steps within a trial. In

an effort to narrow the scope of the present work, we treat predictions and outcomes

at a trial-level resolution instead of in“real-time”. This allows us to focus on investi-

gating how associations are distributed “spatially”, that is, among stimulus features

of the environment. In the machine learning subfield of reinforcement learning, this

spatial distinction is not frequently made.

In the standard reinforcement learning paradigm, the Markov Decision Process,

an agent normally moves across a chess-board style grid, where each square-shaped

location is a distinct state that the agent may visit. The agent’s goal is to maximize

reward and minimize punishment. Beginning in a “start state”, the agent moves

from state to adjacent state until it arrives at a terminal state, which is typically

rewarding or punishing. At this time, it receives and learns from the reinforcement

and is then forced to repeat the scenario in a new “episode”, with the expectation
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that its performance should improve with experience. Reinforcement values are slowly

propagated backward through the states traveled leading up to the terminal state(s),

which serve as trail through the state grid toward rewarding terminal states (and away

from punishing terminal states). For simplicity, each state is normally treated as being

distinct, that is, it does not share features or anything in common with other states.

In stimulus terminology, it would be like saying that a certain stimulus is only present

when the agent is in a specific state and thus learning about that stimulus can only

occur at that time. Now, if one needs as many distinct stimuli as states, and there are

individual states for every X-Y location on a map, then the number of stimuli required

can explode very quickly as a function of the size or resolution of the state map.

To avoid this problem, reinforcement learning turns toward function approximation

or supervised learning techniques, which employ spatial credit assignment. In this

case, each state is now encoded as a vector of features (or stimuli), where similar

map locations are represented as similar patterns of input. This allows learning in

one “state” to be partially transferred to neighbouring states because they share

similar, albeit slightly different, vector representations. So, although spatial credit

assignment is not as commonly employed in Markov Decision Processes as, say, in

linear regression, it is indispensible as the size of the state-space gets large.

Since we seek to understand the algorithms underlying the biological solution

to spatial credit assignment, we focus mostly on machine learning approaches that

maintain some level of biological plausibility. Here, for an algorithm to be biologically

plausible, it must be plausibly implementable in terms of the neural system it aims

to represent. In general, this takes the form of a network of neurons. Individual neu-

rons are known to receive input from and send output to other neurons, but locally

compute from their inputs when and how frequently they respond as captured in

standard biophysically detailed neuron models (Hodgkin & Huxley, 1952; FitzHugh,

1961; Nagumo, Arimoto, & Yoshizawa, 1962; C. Morris & Lecar, 1981). Updates to

neuron parameters also appear to be locally performed since changes in connectivity

(synaptic) strengths for a given neuron can be predicted from its specific input and

activity (Bi & Poo, 1998; Bliss & Lømo, 1973; Reynolds & Wickens, 2002), which

means that one neuron cannot adjust another neuron’s parameters apart from its
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influence as a potential input. Neurons can be connected in any number of com-

plicated arrangements, potentially involving recurrent, reciprocal, lateral, excitatory,

inhibitory, and modulatory connections, etc. However, constraints on the types of

connections are imposed when attempting to match an algorithm to a specific brain

area, since not all types may be present there.

The biological plausibility factor varies among machine learning approaches, but

most fall into the relatively implausible category. For example, even MLPs are crit-

icized (Chinta & Tweed, 2012) because to adjust the parameters of a neuron in one

layer (using the gradient), the parameters of downstream neurons must be known.

This breaks the local-update criterion. CART is a sequential process of repeatedly

making a decision point and branching, all the while maintaining the series of specific

rules already defined. It would take a great imagination to realize such a procedure

in terms of a neural network, especially a robust one that can scale with a large num-

bers of features, such as can be accommodated by CART. In this thesis, biological

plausibility has been a critical ally in narrowing the evaluation of possible learning

algorithms to a few key, standard approaches. In the first half of the thesis, the

direct biological plausibility of the algorithms being tested is less critical as abstract

approaches that biology may be using are evaluated, although we still prune our in-

vestigation to evaluate and relate algorithms that seem somewhat plausible. In the

second half of the thesis, the biologically plausible distinction becomes imperative

as we seek to understand possible neural implementations of these algorithms. As

algorithms are put forward, their levels of biological plausibility will be discussed.

1.4 Chapter by Chapter Thesis Outline

In the present work, I aim to show how biology may solve the spatial credit assign-

ment problem, which involves addressing the general challenges identified by machine

learning. I approach this in terms of David Marr’s three-level philosophy of compu-

tational neuroscience. The first level, called the “computational level” is to identify

the problem or task that the brain must solve. This introductory chapter helps ac-

complish this by defining the spatial credit assignment problem and reviewing initial

evidence suggesting that the brain engages in it. In Chapter 2, I formally introduce

the spatial credit assignment problem and describe it in terms of probability density
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functions. I also define the “world” model used to generate data for later simula-

tions to match the real world in a number of important ways (e.g., sparse activation,

relatively few experiences, and rectified outcome) and derive the associated optimal

regression model. Finally, I provide simulations to illustrate the key challenges of us-

ing few data points, many features, and noise, showing that spatial credit assignment

is truly a problem.

The second level, called the “algorithmic/representational level” aims to identify

algorithms or general computational approaches that may be used to solve the prob-

lem. In Chapter 3, I put forth the novel hypothesis that biological systems treat

spatial credit assignment as a regression over past experiences. In support, I compare

simulations of classical conditioning phenomena using the Rescorla-Wagner model

(Rescorla & Wagner, 1972) and least mean squares (LMS) linear regression, show-

ing how regression can simulate two additional groups of phenomena. Chapter 4

reviews a number of (mostly biologically plausible) ways from the machine learning

literature to address the key challenges noted in Chapter 2. The last chapter in this

part of the thesis, Chapter 5, offers a novel approach to regression that extends the

Noisy OR probabilistic model of Pearl (1988). Here, we show how this principled

approach handles many irrelevant features and system noise with little data by forc-

ing parameter values and outputs (probabilities) to be non-negative. The extended,

dual pathway, model maintains this principle and allows the integration of inhibitory

features by incorporating them in a multiplicative way. In summary, this part of the

thesis describes the general regression strategy that biological systems appear to use

to solve the problem, shows how certain machine learning strategies overcome the key

challenges, and provides a novel dual pathway solution.

The third level in Marr’s philosophy, called the “physical level”, aims to show

how the potential algorithms may be implemented in biological hardware (i.e., net-

works of neurons). In Chapter 6, I review the anatomy of the basal ganglia and

the neuroscience of classical conditioning, which provides the basis for biological im-

plementations of the above algorithms. Chapter 7 presents a novel dual pathway

neural network model of the basal ganglia focused largely around the striatum and

its lateral inhibitory connectivity, which we call the striatal lateral inhibition model

or SLIM. This model is able to explain a number of classical conditioning phenomena
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beyond the Rescorla-Wagner model. Specifically, I show that this model is able to

explain retrospective revaluation phenomena with only seeing the training data once

(i.e., online-learning). This differs from LMS, which must keep and repeatedly cycle

through recent and all previous data to explain these same phenomena. Thus, we

show how an online approach can be used, making the regression hypothesis more

plausible. Chapter 8 introduces Dual Pathway Regression or DPR, a novel way of

integrating inhibition into a LMS-like model that is based on our extension of the

Noisy OR model in Chapter 5. We find that it is also capable of handling many ir-

relevant features and additionally explains certain classical conditioning phenomena

that could not be explained by LMS alone. Chapter 9 reviews a number of other basal

ganglia models and relates them to SLIM and DPR. In particular, I compare SLIM

to the models of Frank (2005) and Bar-Gad et al. (2003), which bear a number of

similarities. I also show promising preliminary work that combines aspects of SLIM

and DPR to perform non-linear discriminations.

1.5 Summary of Contributions to Research

This thesis represents three primary contributions to research:

• The “Regression Hypothesis” of Biological Spatial Credit Assignment - I sup-

port with classical conditioning simulations the novel hypothesis that, with re-

gard to spatial credit assignment, animals perform a regression over past experi-

ences. Specifically, but not exclusively, this is expressed in classical conditioning

phenomena involving multiple stimuli.

• Generalization by Multiplicative Inhibition - Many models integrate the influ-

ence of an inhibitory features (negative parameter values in least mean squares)

by summing them with the influence of excitatory features to “cancel” predic-

tions. I show through the Dual Noisy OR model (an extension of Noisy OR)

and finally Dual Pathway Regression that prediction errors can be reduced by

incorporating inhibition in a shunting, multiplicative fashion. Here the sum of

excitatory influences (i.e., the positive prediction) is multiplied by a number

between zero and one representing the inhibition level, where higher inhibition

is represented by a smaller number.
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• The Striatal Lateral Inhibition Model - I developed a novel dual pathway neu-

ral network with lateral inhibition that can explain retrospective revaluation

phenomena without having to cycle through past trials, thereby supporting the

plausibility of the “regression hypothesis”.

Other noteworthy contributions include:

• Zero-Peak Regularization/Bayesian Prior - I have defined a new prior distribu-

tion form which is the sum of a parameterized constant value and a variable-

width Gaussian. It can be also viewed as a regularization technique. Better

than a uniform prior, it represents the distribution from which parameters are

drawn in our main regression task. Like the LASSO regularization technique,

it is also likely effective for tasks that employ some form of feature selection.

• A Realistic Spatial Credit Assignment Task - I defined very specific parameters

for the training and test data to reflect features of the real world as it regards the

spatial credit assignment task, which included the sparsity of relevant features

and reinforcements. For this world, I derived the “optimal” maximum likelihood

estimate model as well, which I refer to as rectified least mean squares.

• Comparison of a Variety of Generalization and Regression Methods in Machine

Learning - I have evaluated a variety of the machine learning methods from

the literature to gage the effectiveness of the novel methods. I also draw atten-

tion to the differences in effectiveness between several of the approaches in the

literature.



Chapter 2

Modeling the World of Spatial Credit Assignment

2.1 Chapter Summary

This chapter is devoted to describing and defining the real world as it pertains to

animal learning and the spatial credit assignment problem. Aspects of the real world

are encoded into a mathematical model from which data is generated. This probability

density model and data will be used to draw comparisons with other approaches in

later chapters. Finally, we examine the spatial credit assignment problem when we

have little data but lots of features and noise using a specific regression task that is

employed frequently in the thesis. Excerpts are taken from Connor and Trappenberg

(2013), c©2013 IEEE, in which I was primarily responsible for developing the theory

and simulations as well as drafting the manuscript.

2.2 Modeling the Real World as a Probability Density Function

In the real world, certain environmental features precede certain rewards or pun-

ishments. The relationship between a feature and reward or punishment has both

deterministic and probabilistic aspects. For example, the stronger the presence of

a feature (e.g., redness of the fruit), the larger the reward we expect (deterministic

aspect). However there is some uncertainty (probabilistic aspect) in this prediction

since the quality of the fruit is not always linked to its redness (e.g., it may be rot-

ten). It is appropriate to model this relationship as a random variable and represent

it with a probability density function (PDF). Figure 2.1 shows an imagined PDF for

the degree of benefit obtained given the redness of the fruit. The x-axis is the redness

of the fruit and the y-axis represents an amount of reward value obtained. Given a

certain redness (e.g., x=0.5), there is a one-dimensional PDF (a cross-section of the

two-dimensional PDF) indicating the likelihood of each possible amount of reward.

A system that solves the spatial credit assignment problem is able to predict a

14
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Figure 2.1: A probability (or joint) density function showing the likelihood of certain
x and y-value pairs.

future outcome given some input or feature values. Given that we know the true

PDF, the best prediction one can make is to compute the expected value of y given

x, which is

E[Y ] =

∫ +∞

−∞
yP (Y = y,X = x)dy (2.1)

Of course, the trouble is that given data, we must somehow approximate the true

PDF. This is the spatial credit assignment problem. One way to do this is to simply

build a probability table, P (y, x1, x2, ..., xN), from the training data, where each data

point adds to a probability “bin”. However, by having many features or by having

only a few real-valued features we run into trouble – there are so many bins to fill

that it would take an enormous (infinite) amount of data to give an accurate picture

of the true PDF.
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If we could assume that the values of the inputs (x) are independent of one an-

other, at least we would not have to consider potential interactions between them.

From a probabilistic model point of view, this would allows us to break up the joint

distribution, P (y, x1, x2, ...xN), into independent probability density tables, P (y, x1),

P (y, x2), ... , P (y, xN). The Naive Bayes model makes use of this assumption to

compute P (y|x) as

P (y|x) = P (x1|y)P (x2|y)...P (xN |y)P (y)

P (x1)P (x2)...P (xN)
(2.2)

Although this approach is not as vulnerable, it is still troubled as the number of unique

x values increases because it spreads out the available data, making each probability

table sampling more inaccurate. Thus, even this approach is only practical when

there are either few discrete values of x or when there is a lot of data. To further

complicate matters, irrelevant features (ones that do not affect the outcome) will

add noise to the computation of P (y|x), since each irrelevant feature’s contribution

(P (xi|y)
P (xi)

) will deviate from 1 unless there is a lot of data relative to the number of

features.

Instead, a common approach to determining the PDF is to assume that the data

conforms to a certain PDF model, and then the available data is used to configure

the model parameters.

2.3 Modeling the World as a Gaussian Random Variable with a

Rectified Linear Mean

In the real world, some features are positively predictive of a specific outcome (i.e., a

certain reward or punishment). Other features are predictive of no outcome, even in

the presence of other features that are positively predictive. Such inhibitory features

reduce or cancel otherwise expected outcomes, but importantly do not predict the

opposite or a “negative” outcome. For example, consider a classical conditioning

experiment, where subjects are accustomed to receiving food in the presence of a

tone stimulus. If, in later trials, they receive no food in the presence of a tone-light

compound stimulus, they will come to see the light as canceling the food predicted

by the tone, but will not expect a punishment like footshock, which is the oppositely

valenced outcome. Thus, in classical conditioning, an excitatory stimulus is viewed
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as being positively predictive of either a reward or punishment whereas an inhibitory

stimulus is seen as canceling the prediction of a reinforcement (of either valence). We

will later show that making the distinction between such inhibitory stimuli and stimuli

predicting oppositely valenced outcomes is beneficial. Therefore, in this work, I have

chosen to model the world with a PDF that can only give prediction values ≥ 0 for

a specific outcome, that positively predictive stimuli increase and inhibitory stimuli

only extinguish. The true PDF, from which the data is generated for simulations, is

the rectification of a Gaussian random variable with a linear mean,

y = G(φTx+N (0, σ)) (2.3)

where x is an input vector, x0 = 1 is the “always-on” input associated with the bias, y

is the output, and 0 and σ are the mean and variance of the Gaussian random variable.

The function G() is the threshold-linear function (Usher & McClelland, 2001), which

returns the argument when it is greater than zero and returns zero otherwise. It

essentially eliminates the output of negative values, forcing y ≥ 0. So, within a

certain region (y > 0), the rectified linear function is equal to a simple linear function

(with noise). An example of this PDF model is pictured in the earlier Figure 2.1.

This particular distribution represents the situation where a feature is linearly related

to the outcome of interest, provided it does not predict an outcome of less than zero.

In fact, learning linear relationships is the focus of much of the classical conditioning

evidence and an “entry-level requirement” of supervised machine learning methods.

Therefore, this work focuses on the linear case.

If we know we are given data generated from Equation 2.3 but do not know the

values of φ, then a simple solution to spatial credit assignment is to assume this

model in our PDF and use the data to infer values of φ. We can infer the values using

maximum likelihood estimation. We define the probability density function that a

data point is generated by a Gaussian random variable with a rectified linear mean

(i.e., according to Equation 2.3) as follows

p(y, x|φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2πσ

e−
(y−φT x)2

2σ2 , for y > 0

1
2
(1− erf( φ

T x√
2σ
), for y = 0

0, for y < 0

(2.4)
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The probability or likelihood that a certain training data set is generated from this

distribution becomes

L(φ) = p(y(1), ...y(m), x(1), ...x(m)|φ)

=
m∏
i=1

p(y(i), x(i)|φ) (2.5)

wherem is the number of training data points. Our goal is to maximize this likelihood

and thereby find the n-dimensional linear function (where n is the number of features

in x) that most likely generated the training data. We can maximize this convex

function by taking its log and ascending its gradient,

log L(φ) = log
m∏
i=1

p(y(i), x(i)|φ)

=
m∑
i=1

log p(y(i), x(i)|φ)

= −my>0log(
√
2πσ)− 1

2σ2

∑
i,y(i)>0

(y(i) − φTx(i))2

−my=0log(2) +
∑

i,y(i)=0

log(1− erf(
φTx(i)

√
2σ

)) (2.6)

where my>0 and my=0 are the number of data points when y > 0 and y = 0, respec-

tively. Taking the gradient of this function with respect to each φj gives

∂ log L(φ)

∂φj

=
1

σ2

∑
i,y(i)>0

(y(i) − φTx(i))x
(i)
j −

√
2

πσ2

∑
i,y(i)=0

e−
(φT x(i))2

2σ2

1− erf(φ
T x(i)√
2σ

)
x
(i)
j (2.7)

The gradient can be ascended by iteratively updating the model parameters,

φj =: φj + α
∂ log L(φ)

∂φj

(2.8)

where the learning rate, α = σ2

n+2
1. If instead of using the rectified linear function,

we had chosen to use a simple linear function as our PDF model, the derivative of the

log likelihood would be the same as the rectified linear function’s value when y > 0.

Maximizing the likelihood of a linear function with Gaussian noise equates to the

1We start with this learning rate because it is optimal (Tweed, 2011) for Gaussian random
variable with an unrectified linear mean (when the inputs have a zero mean and a variance of one)
and it also works well, in practice.
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standard practice of minimizing the mean squared error using gradient ascent, which

is commonly referred to as least mean squares (LMS). We will refer to the rectified

version as rectified least mean squares (rLMS), not to be confused with recursive

least mean squares (another well known method). One complicating difference be-

tween LMS and rLMS is that rLMS requires knowledge of the additive noise variance

(multiplying Equation 4.7 by the learning rate α eliminates some but not all σ terms).

Another difference is that rectifying the linear function essentially turns off learning

when the model’s prediction is negative (φTx < 0) and y = 0 (with low noise). It

is otherwise practically equivalent to ascending the gradient of the linear function

itself. Classical conditioning findings suggest that turning off learning under similar

circumstances is what animals do, which will be explored further in Section 8.4.

This optimal model is much like the machine learning “perceptron”, which shares

much in common with the input-computation-output form of a single neuron. The

parameters of the model can be loosely seen as the synaptic weights of a neuron and

the output be viewed as the neuron’s firing rate. In other ways, it is not especially

biologically plausible because it allows parameters to change sign and it requires

knowing the variance of the noise in the data, which would not be normally known

by a biological system. The model, however, will serve as an important approach for

comparison purposes, form the basis for certain other approaches, and be a major

point in later discussion.

2.4 The Trouble with Small Data, Many Features, and Noise

Given that the training data points are generated from the rectifications of a Gaus-

sian random variable with linear mean, then modeling the true PDF as above and

using maximum likelihood is the optimal way to determine its parameters. Although

optimal, errors in prediction can still occur. In particular, when either there are few

training data points, many features, or the variance of the Gaussian noise is high,

rLMS will learn to “predict” the output values of the training data quite well, but

will become very inaccurate at predicting outputs for inputs it has never seen, that

is, it does not generalize well.

Let us illustrate this in two respects using rLMS in a simple regression task, using

training datasets that attempt to mimic aspects of the real world. Each training
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data set has 100 data points with each feature being present only 25% of the time.

This reflects the reality that rewarding and punishing experiences, and thus their

predictors, occur somewhat rarely and that the number of present features is a small

fraction of all possible features. Yet it is large enough that we get, on average, 6 data

points where both relevant features are present. This is important because in cases

where one of the relevant features is inhibitory, we can only learn its identity when

it cancels the prediction of the other relevant feature. Each data point is represented

by an output, y, and a vector of binary values, x, reflecting the presence or absence

of each feature. The rectified linear function that is used to generate the outputs is

parameterized by a vector, with each value falling between -0.5 and 0.5. Positive and

negative parameter values reflect positive and “inhibitory” predictions, respectively,

both of which commonly occur in the world. The bias of the rectified linear function

will be set to zero, mimicking the notion that rarely does a motivational outcome

consistently occur without some predictive feature attached. Only two of the 99

parameters used to generate the data are chosen to be non-zero. Thus only the

inputs associated with two variables actually affect the output value. This represents

the usual case that only a small number of features are predictive of reward and that

the other features are practically irrelevant. Finally, the outputs of data points that

are “negative” (due to the noise) are set to zero (i.e., rectified).

To get a representative sampling of the combinations of the two relevant features

in our simulations, we repeat each test for all possible positive-negative parameter

combinations (e.g., 0.25, -0.25) and positive-positive parameter combinations (e.g.,

0.25, 0.25) from a grid with a resolution of 1/7. To do this we combine every possible

positive parameter value (determined by the resolution) with every possible positive

and negative parameter value. These combinations provide the mean prediction errors

displayed in the figures. Our test data sets have 1000 data points each. Whereas the

training data sets use sparsely activated relevant features to correspond to real-world

training conditions, we want test data points that are enriched with the presence of

relevant features. It is important that an animal makes accurate predictions in these

otherwise rare circumstances. Therefore, we use test data sets where the relevant

features appear 50% of the time, while the irrelevant features continue to appear only

25% of the time. This can be seen as selectively choosing data points from a larger
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dataset where all features appear only 25% of the time to increase the focus on those

experiences where relevant features appear. Exactly the same training and test data

sets are used for all models. Conveniently, this allows us to compare models using a

matched-pairs type of statistical test to determine significance, namely the sign test

(p < 0.01). This is used in all of the plots of the main regression task now being

described. Data points that that are marked with a light gray “x” are significant

according to this test with respect to all other curves in the plot. To be marked, the

significance must also have the same sign as the difference between the curve means

at that point. Curves that are close to one another might be significantly different

yet the arrangement of their means may be ordinally opposite to the direction of

significance. For clarity’s sake, such data points are not marked as significant.

In the top panel of Figure 2.2 we fix the noise at zero and vary the number

of inputs between 2 and 1000 while maintaining a training set with only 100 data

points. Finding the line of best fit using the rLMS algorithm will solve this linear

system of equations exactly, up until the number of inputs crosses some threshold.

Experimentally, this occurs at around 50 input features, where the prediction error in

the test set begins to rise substantially. In the bottom panel of Figure 2.2 we vary the

variance of the additive noise in the training data between 0 and 0.25. We compare the

prediction error for the training data with the prediction error for the test data. No

Gaussian noise is added to the test sets to more clearly show the differences in model

performance. In this scenario, we see that prediction error increases far more rapidly

with increasing additive noise for the test data than for the training data. In both

panels, we see that rLMS is a better predictive model than the Naive Bayes model

described earlier, dramatically showing the value of choosing a specific PDF model

and using the available data to configure its parameters. Even when the number of

entries in the probability table is few (Top Panel) because the inputs, x, are binary

and there is no additive noise, Naive Bayes still struggles tremendously because of

the noisy contribution of the irrelevant features. The prediction errors we see for the

test set is not an artifact of having chosen a rectified linear PDF model, since even

a simple linear PDF model is plagued with this problem (Connor & Trappenberg,

2013) and it is a commonly acknowledged issue in machine learning.
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The lower prediction error for the training data seen in both simulations is techni-

cally known as overfitting, though this may seem unusual at first for linear regression.

Linear regression fits a line to the training data, which is ideal when there is no ad-

ditive noise and enough data. When either of these requirements are not met, the

training data do not perfectly or completely represent the distribution from which

the test set is derived. Thus, the line of best fit is crooked to some degree relative to

the true linear model which generates the data.

In LMS training, as well as for many other methods evaluated below, if training

is terminated before the method “memorizes” the specifics of the data rather than

the true linear model, it will reduce overfitting. One approach used to decide when

to stop training is to present a “validation” data set to the model after every cycle

(epoch) through the data. Validation sets are separate data sets generated from the

true model, and often are siphoned from the training sets, making the training sets

smaller. In this approach, training will continue as long as the prediction error on the

validation set decreases with each epoch (or group of epochs2). Once the prediction

error begins to grow again, training stops and the test set is evaluated. The biological

analogue of a validation set would be having an organism isolate a number of its

experiences, not to learn from, but to avoid memorization of other things it learns.

Perhaps a more plausible notion would be that learning only runs for a fixed small

number of epochs, but in this work the standard practice of employing validation sets

will be maintained for sake of drawing more grounded comparisons between machine

learning methods. Here, the validation set will contain 10 times more data than the

training set since data is freely available and will avoid a potential confound (the use

of a small validation set) when explaining results.

In the batch-learning of this work, training data is repeatedly revisited by per-

forming multiple epochs. However, the parameter values of a model are updated after

the presentation of each data point rather than waiting until the end of the epoch to

perform an average update, as the rLMS update equations call for. This represents

another element of biological plausibility since it seems more likely that biological

organisms learn all the time rather than saving up their learning for a specific time

(e.g., at the end of the day). In general, this has little impact on the final results for

2In the case of rLMS and related approaches we run for 25 epochs between evaluations of the
validation set to allow for somewhat noisy descents.
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small enough learning rates. To be sure, several simulations were run with average

updates (not shown) and although these improved rLMS results relative to other ap-

proaches that will be shown, it did not affect the conclusions drawn. The exception

to this is that one regularization technique (zero-peak) became slightly more effective

than another (the LASSO), which are introduced in Chapter 4.

To illustrate the general nature of the problems of small data, many features,

and noise in machine learning, Figure 2.3 shows results of the same task using a

multi-layer perceptron (MLP), support vector regression (SVR), and a classification

and regression tree (CART), which have been manually tuned to get near their best

performance. Looking only at test set prediction errors, we see in both the top

and bottom panels that the multi-layer perceptron and the support vector regression

struggle in much the same way as does rLMS, performing well with low noise and few

irrelevant features and breaking down under more extreme conditions. Curiously, the

classification and regression tree is quite effective, handling any number of irrelevant

features and performing significantly better with high levels of noise.

Recall that in these simulations only two features were relevant (i.e., their gener-

ative parameters were non-zero). Thus, only the inputs associated with two variables

actually affect the output. CART performs extremely well in the top panel of Fig-

ure 2.3 because it ignores all but the most useful features, thereby delivering compa-

rable results regardless of the number of irrelevant features. In fact, not as many data

points are necessary to learn the true parameter values for the relevant features under

these circumstances because there are more equations than unknowns, if the irrele-

vant features can be confidently detected (and dropped) somehow. For these reasons,

Chapter 4 evaluates existing biologically plausible approaches to “feature selection”.

Another strategy examined is the artificial augmentation of the training data, since

having more data points better informs a regression. Unfortunately for CART and a

number of other methods, a neurobiological interpretation is very difficult to conceive,

and so they are pruned from further evaluation.
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Figure 2.2: (See following page for caption)
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Figure 2.2: Top Panel: rLMS prediction error as the number of inputs is varied,
while keeping the number of data points fixed at 100 and having zero additive noise.
The training set’s prediction stays low (near zero) regardless of the number of input
features. Because there is zero additive noise, the test set’s prediction error is small
for a low number of irrelevant features. This is the case regardless of whether or not
the dataset is enriched with a higher frequency of relevant feature activation (i.e., 50%
vs. 25%). As the number of irrelevant features increases, the test set prediction error
rises as well. The Naive Bayes model prediction error quickly ascends far above rLMS,
showing that a model-based PDF is worthwhile. Bottom Panel: As the variance of the
additive Gaussian noise is increased, rLMS prediction error in the training and test
sets increases. The curves diverge, with the test set increasing in error more rapidly
than the training set. Again, the Naive Bayes model prediction error is substantially
higher than the rLMS prediction error. In both panels, rLMS test error is larger than
the training error, demonstrating the phenomenon of overfitting, where the model fits
the training data well but does not generalize as well to unseen data. In both panels,
mean values are marked with an X if the associated data is significantly different from
the other curves, according to the sign test, p < 0.01.
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Figure 2.3: Top Panel: Test set prediction error as the number of inputs is varied,
while keeping the number of data points fixed at 100 and having zero additive noise.
SVR and MLP perform comparably to rLMS, whereas CART performs effectively
regardless of the number of irrelevant features. Bottom Panel: As the variance of the
additive Gaussian noise is increased, test set prediction error increases. Again, SVR
and MLP perform comparably to rLMS. In this test, CART improves over rLMS but
steadily degrades with an increase in noise.



Chapter 3

A Regression Over Experience as a Biological Strategy

3.1 Chapter Summary

In this chapter, we show how a significant number of classical conditioning phenomena

appears to suggest that animals learn to predict future outcomes by roughly perform-

ing a regression-like process over past experiences, which will be referred to as the

“regression hypothesis”. This is shown by first describing the close correspondence

between LMS and the Rescorla-Wagner model. Then, it is shown how two additional

groups of classical conditioning phenomena can be explained by the sole difference

between these two models: LMS, a regression model, is allowed to cycle through

all prior experiences and train until the US surprisingness (i.e., prediction error) is

minimized over the entire set of experiences.

3.2 Comparing LMS and the Rescorla-Wagner Model of Classical

Conditioning

Classical conditioning has enjoyed a history of more than a century of experimental

work. In the last few decades, it has become more common to develop mathematical

models to relate theories and make predictions for future experiments. The Rescorla-

Wagner model (Rescorla &Wagner, 1972) was an important early approach to capture

the known classical conditioning phenomena and drove a significant number of sub-

sequent experiments. The Rescorla-Wagner model is represented by a single learning

rule,

ΔVi = αiβ(λ−
∑
j

Vj) (3.1)

where N is the number of stimuli, Vi represents the associative or predictive strength

of a stimulus i, and αi reflects a stimulus salience which acts like a learning rate. The

parameter β is a learning rate associated with the degree of the rewarding/punishing

outcome and λ is representative of magnitude of the US. In the equation, the sum of

27
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all V values associated with stimuli present in an experimental trial represents the

aggregate outcome prediction for that trial.

Importantly, we can show that the Rescorla-Wagner model is almost identical to

LMS (Dawson, 2008), which underlies simple linear regression and machine learning’s

single layer perceptron. Although we will later perform simulations using rLMS, we

will draw comparisons with LMS in this chapter for clarity’s sake.

For convenience, the update rule for LMS linear regression can be written as,

Δφi = xiβ(y −
N∑
j=1

xjφj) (3.2)

where xi is the strength of an input in a particular trial, φi represents the weights or

parameters of the linear model being learned, β is a simple learning rate, and y is the

outcome. Comparing Equations 3.1 and 3.2, the correspondence between parameters

is almost one-for-one. The main difference is that the sum in Equation 3.2 is weighted

by the current input x whereas in Equation 3.1 the sum is only of the predictive

strengths for stimuli present on the trial, Vj, which correspond to the parametric

weights, φj. However, this difference is removed when the x values are binary, which

is the case in our simulations and common in classical conditioning experiments (i.e.,

stimuli are either present or absent but do not vary in salience across trials). There

is only one remaining difference: LMS is permitted to repeatedly cycle through the

data it has experienced since training began, whereas the Rescorla-Wagner model

only sees the data or trial once. Because of the similarities, it comes as no surprise

that the Rescorla-Wagner model behaves in much the same way as linear regression.

The Rescorla-Wagner model correctly predicts the findings of many classical con-

ditioning experiments. In excitatory conditioning, a stimulus, A, is followed by a

reinforcing outcome (say, λ = 1), written as A+. Figure 3.1 shows that, given an

initial value VA = 0, VA is increased in the Rescorla-Wagner model with repeated

A+ trials until VA = λ. Also shown, is the same conditioning simulation using LMS,

which gives a similar, although sharper, learning curve. These simulations show the

predictive strengths on each trial. In an equivalent classical conditioning experiment,

one would measure the animal’s responding at the presence of the A stimulus on each

trial to get the equivalent curve.

What made the Rescorla-Wagner model novel was how it deals with multiple
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Figure 3.1: Excitatory conditioning simulated using the Rescorla-Wagner model (λ =
1, αA = 1, β = 0.25) and LMS. Excitatory conditioning develops a linear association
between a feature of the environment and a reinforcement, where V represents the
strength of the association. The sharp transition of LMS is due to the fact that it
repeatedly processes the prior trials until the average trial error cannot be further
reduced.

stimuli. It is able to explain a phenomenon called blocking, where one stimulus is first

conditioned (i.e., repeated A+ trials), followed by an additional conditioning phase

where the first conditioned stimulus is combined with a novel condtioned stimulus

(i.e., repeated AB+ trials). Kamin (1968) found that animals conditioned less to the

novel stimulus B when it was trained in this Blocking condition than when it was

conditioned on its own (i.e., B+). As Figure 3.2 shows, the Rescorla-Wagner model

(and LMS) captures this phenomenon. This phenomenon could not be explained by

an earlier model of classical conditioning proposed by Bush and Mosteller (1955),

which also predicted a negatively accelerated learning curve but the “error term” for

a stimulus took only its own associative strength into account. A “blocked” stimulus

would therefore appear as a novel stimulus and condition accordingly. The Blocking

phenomenon is very similar to, but can be differentiated from, another phenomenon

called “overshadowing”, which is also simulated in Figure 3.2 using the Rescorla-

Wagner model and LMS. In overshadowing, two stimuli are repeatedly presented and

reinforced (AB+) in the first (and only) training phase. The result is that they divide

the predictive strength between them, where the one with greater salience gains more
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of the strength than the other. The phenomenon gets its name, however, from the

fact that each stimulus receives less conditioning when conditioned in compound with

another stimulus than when conditioned alone.

Figure 3.2: Blocking and overshadowing simulated using the Rescorla-Wagner model
and LMS (least mean squares linear regression). Both approaches give similar results,
having almost identical learning rules. In phase 2 of blocking (the first phase is iden-
tical to Figure 3.1), stimulus B gains no associative strength in either model because
stimulus A already explains the reinforcement (i.e., there is zero error, so no values
will change) in both models. Therefore, the curves for A (horizontal line at y=1)
and B (horizontal line at y=0) overlap between models and are indistinguishable. In
overshadowing, both models allow both equally salient stimuli to each gain half of the
available associative strength supported by the reinforcement, making the individual
stimuli indistinguishable in the graph, although the differences between models can
be seen.

From the simulations given in Figures 3.1 and 3.2, we see that the Rescorla-

Wagner model closely matches the learning ability of LMS. The Rescorla-Wagner

model, however, is also known to be limited (Miller, Barnet, & Grahame, 1995) in

that it cannot explain all known classical conditioning phenomena that fall within its

scope. In the next two sections, we show how two groups of classical conditioning

phenomena that cannot be simulated by the Rescorla-Wagner model can be simulated

using LMS.
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3.3 Retrospective Revaluation Phenomena: Performing Regression

The investigation of retrospective revaluation phenomena arose about a decade after

the Rescorla-Wagner model was introduced. An early retrospective revaluation phe-

nomenon is called “recovery from overshadowing” (Kaufman & Bolles, 1981; Matzel,

Schachtman, & Miller, 1985). In this experiment, the first phase of conditioning is

overshadowing (Phase 1: AB+). In a second conditioning phase, one of the stimuli

is presented but not reinforced (Phase 2: A-). Naturally, we would expect that stim-

ulus A would lose predictive strength, and this is seen in the experimental data. The

defining feature of this phenomenon is that the data also shows that the predictive

strength of the B stimulus increases (above a relevant control group). Stimulus B’s

predictive strength is revalued (increased) in retrospect after A has been reduced.

A major challenge to the Rescorla-Wagner model is that it cannot explain recov-

ery from overshadowing or other retrospective revaluation phenomena. The Rescorla-

Wagner model only changes the predictive strength of its present stimuli, such that in

the second phase of recovery from overshadowing, stimulus A loses predictive strength

but stimulus B’s predictive strength remains unchanged. Figure 3.3 tells a different

story for LMS, such that B’s predictive strength is increased as A’s strength is de-

creased. Again, the only difference between the LMS approach and the Rescorla-

Wagner model in our simulations is that LMS repeatedly cycles through all of its

training data. For the Rescorla-Wagner model, this would be the equivalent of cy-

cling through Phase 1 and Phase 2 repeatedly until the model could accurately predict

all of the trial outcomes. Table 3.1 includes an inexhaustive list of other retrospective

revaluation phenomena (Shanks, 1985; Denniston, Miller, & Matute, 1996; Chap-

man, 1991; G. Urcelay, Perelmuter, & Miller, 2008; Blaisdell, Gunther, & Miller,

1999; Lysle & Fowler, 1985) that LMS can simulate (see Appendix A for simulation

results), but not the Rescorla-Wagner model. Note that each experiment has an

appropriate control group but these are not shown in the table for brevity’s sake.

Whether or not retrospective revaluation may be accomplished biologically by re-

peatedly cycling through experiences, we will discuss in Chapter 7. For the moment,

it appears that simple animal learning processes such as blocking and overshadow-

ing and more complex phenomena like retrospective revaluation phenomena may be

specific expressions of an overall system that performs regression, since LMS is a



32

Table 3.1: Retrospective revaluation phenomena in classical conditioning. Initial
conditions begin with zero responding to the stimuli (i.e., predictive strengths are
zero). Known ordinal changes in the response to each stimulus caused by the training
in each phase of the experiment are also provided.

Phenomenon Procedure A’s Change B’s Change
Backward Blocking P1: AB+ ⇑ ⇑

P2: A+ ⇑ ⇓
Backward P1: AB- 0 0
Conditioned Inhibition P2: A+ ⇑ ⇓
Recovery from P1: A+ ⇑ 0
Forward Blocking P2: AB+ 0 0

P3: A- ⇓ ⇑
Recovery from P1: A+ ⇑ 0
Conditioned Inhibition P2: A+, AB- 0 ⇓

P3: A- ⇓ ⇑

regression method. To further explore this regression hypothesis of biological spatial

credit assignment, we consider another category of classical conditioning phenomena.

3.4 Other Revaluation Phenomena: Learning a New Predictive

Strength for a Familiar Stimulus

The variety of classical conditioning behaviors that can be brought under the umbrella

of a linear regression process includes a second group of phenomena that we will

refer to here as other revaluation phenomena. Learning a new predictive strength

for a familiar stimulus will require overcoming or overwriting a previous value or

predictive strength and thus should be more difficult than learning about a new

stimulus. An example phenomenon from this group is latent inhibition, which is also

called Conditioned Stimulus (CS) Preexposure. Here, a stimulus is first presented but

not reinforced (Phase 1: A-). In the second phase, the same stimulus is presented and

reinforced (Phase 2: A+). The stimulus is thus “preexposed” before being associated

with reinforcement in the second phase. The outcome is that preexposure slows

conditioning relative to a control that has no preexposure (Lubow & Moore, 1959).

In terms of regression, increased predictive strengths due to reinforced trials in

phase 2 are partially countered by the preexposure trials in phase 1 as the data from
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Figure 3.3: Simulation of the second phase of recovery from overshadowing using the
Rescorla-Wagner model and LMS, showing stimulus B’s predictive strength. The pro-
cedure for recovery from overshadowing is Phase 1: AB+, Phase 2: A-. In phase 2,
the non-reinforcement of A is expected to lower its predictive strength. Recovery
from overshadowing is the finding that this increases the absent stimulus, B’s, predic-
tive strength. The Rescorla-Wagner model does not change B’s predictive strength,
whereas LMS does increase it. The difference is that LMS internally cycles through
all trial “data” prior to and including the current trial, training until it can accurately
predict or explain its experience to date.

both phases are repeatedly revisited. As shown in Figure 3.4, the preexposure trials

“slow down” the learning in LMS requiring a far greater number of conditioning (A+)

trials to bring stimulus A’s predictive strength near asymptote. For the Rescorla-

Wagner model, CS preexposure has no effect (compare with Figure 3.1), counter to

the classical conditioning findings. Again, the only formal difference between the two

models in our simulations is that LMS repeatedly cycles through all of the trial data

up to the current trial.

In some simulations, LMS changes its prediction very suddenly within the first

few trials of a training phase. This is the result of the batch-training nature of the

algorithm. Such abrupt changes, however, are generally uncharacteristic of condition-

ing findings (but see Gallistel, Fairhurst, & Balsam, 2004). One reason for this may

be simply that the brain uses fewer iterations and thus does not converge as quickly

as LMS. Yet, it is also possible to force LMS to “slow down” the learning curve for
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a stimulus by seeding the dataset with a few instances where the stimulus is pre-

sented but not reinforced. This procedure slowed the learning in the CS Preexposure

simulation (Figure 3.4).

Figure 3.4: CS Preexposure simulated using the Rescorla-Wagner model and LMS.
Experimentally, prior exposure to a conditioned stimulus (CS) without reinforcement
slows subsequent excitatory conditioning. Again, we see that the Rescorla-Wagner
model cannot explain this phenomenon whereas LMS does so by repeatedly cycling
through all training data prior to and including the current trial.

Table 3.2 describes a few additional phenomena (Hall & Pearce, 1979; Rescorla,

1969) which involve stimuli whose predictive nature is changed midstream. These

phenomena can also be modeled by an LMS approach (see Appendix A). The thin

upward arrows reflect a smaller rate of increase in predictive strength than for a

control group.

3.5 Latent Cause Normative Models

Another normative approach to explaining a variety of classical conditioning phe-

nomena is based on determining the latent causes of CS-CS and CS-US combinations

(Courville, Daw, & Touretzky, 2006; S. J. Gershman & Niv, 2012). Figure 3.5 pic-

torally describes the approach. For each trial, it is presumed that an unobserved or

latent cause(s) induces the CS-US arrangement. This is inferred using Bayes’ Rule

based on experience over trials. In subsequent trials, the presentation of a CS triggers



35

Table 3.2: Reversal phenomena. Initial conditions begin with zero conditioning to the
stimuli (i.e., predictive strengths are zero). Known ordinal changes in the response
to each stimulus caused by the training in each phase of the experiment are also
provided.

Phenomenon Procedure A’s Change B’s Change
Hall-Pearce P1: A+ (G1), B+ (G2) ⇑ (G1) 0 (G2) 0 (G1) ⇑ (G2)
Negative Transfer P2: A++ ↑ (G1) ⇑ (G2) 0
Retardation test for P1: A+ ⇑ 0
Conditioned Inhibition P2: A+, AB-, 0 ⇓

P3: B+ (G1), C+ (G2) 0 ↑ (G1) ⇑ (G2)

the relevant or probable latent cause, which can then be used to predict the future

outcome.

Figure 3.5: The latent cause theory of conditioning proposes that animals learn the
unobservable causes of stimulus-outcome relationships. Then, when a stimulus ap-
pears, it recalls the related cause from which it can predict future stimuli or outcomes.

This normative approach is capable of explaining many diverse phenomena, from

many of those captured by the Rescorla-Wagner, some configural phenomena, the

revaluation phenomena described in this chapter, and more. It is an elegant theory

suggesting that rather than learning to predict future outcomes based directly on

the presence of stimuli, that a higher cause must first be identified from which the

future outcomes can be predicted. It seems slightly less parsimonious than the re-

gression hypothesis, however, which learns direct predictive strengths from stimulus

to outcome.

The more novel a stimulus and the more volatile the world appears to be, the
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more uncertain one should be about the predictive nature of a stimulus. The more

uncertain the predictive nature of a stimulus, it would seem the more one should

adjust its prediction based on additional, recent data. From Courville et al. (2006),

the latent cause approach can deal with predictive uncertainty and change over time

by influencing how quickly model parameters are able to change (faster for uncertain

stimuli). In slight contrast, the regression hypothesis as defined here only more quickly

learns about novel stimuli and assumes that the world does not change over time.

However, it would be possible to augment the present hypothesis to weight more

recent data to better reflect a changing world or include stimulus-specific learning

rates that depend on the uncertainty. Doing so would substantially increase the

complexity of this approach, however.

3.6 Blaisdell, Bristol, Gunther, and Miller (1998)

Although many classical conditioning phenomena appear to reflect a regression pro-

cess, not all relevant phenomena in classical conditioning support this view. Blaisdell

et al. (1998) found that CS preexposure and overshadowing counteract one another

(see Blaisdell, Savastano, & Miller, 1999 and G. P. Urcelay & Miller, 2006 for related

findings). In CS preexposure, learning is slowed because of the prior exposure. In

overshadowing, the asymptotic level of learning is reduced because the association is

being split among two or more stimuli. So, both processes, on their own, reduce or

slow the acquisition of the predictive strength of a CS. The natural intuition is that

preexposing and overshadowing the same stimulus (e.g., stimulus A in an experiment

with Phase 1: A-, Phase 2: AB+) should lower its associative strength below that of

either treatment alone. However, Blaisdell et al. found that preexposing a stimulus

that is later overshadowed causes it to gain a larger association than if only one of

these treatments is given.

This finding is significant because it seems related to a common situation encoun-

tered by biological systems. Often, we may be in an environment that on its own

has no significance (i.e., CS preexposure, A-). Later on in that environment, a novel

stimulus appears and is followed by reinforcement (i.e., Overshadowing, AB+). A

natural intuition would be that the preexposure of the environment should hinder an

increase in its associative strength, leaving the novel stimulus B to gain the majority
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of the associative strength. The results of Blaisdell et al., however, would suggest the

opposite: that the preexposure of the context A would lead to an enhancement in its

associative strength when the overshadowing phase/trial (AB+) occurs. Yet, there is

an important difference between this scenario and the procedure used in Blaisdell et

al. In their work, stimulus A was a punctate stimulus rather than an environmental

context. It is therefore uncertain what might occur if the context were preexposed

and overshadowed stimulus in their experiment and would need to be evaluated em-

pirically. This would help to both understand the specific results of trading a distinct

stimulus for a context and also to confirm the findings of Blaisdell et al., which have

been questioned by one group that found that CS Preexposure and Overshadowing

do sum to further reduce conditioning in conditioned taste aversion in rats (Nagaishi

& Nakajima, 2008; Nakajima, Ka, & Imada, 1999; Nakajima & Nagaishi, 2005).



Chapter 4

Machine Learning Strategies

4.1 Chapter Summary

In this chapter, we review and evaluate several machine learning techniques using

the same regression task defined in Chapter 2 to show how machine learning theory

addresses the key challenges to spatial credit assignment as identified earlier. In short,

machine learning both allows us to determine the optimal results for our regression

task and shows us that feature selection is critical to reducing prediction error when

there are many irrelevant features or noise in the system.

4.2 Feature Reduction and Feature Selection

Because of its usefulness, feature reduction is a large area of research (Guyon &

Elisseeff, 2003; Fodor, 2002; Saeys, Inza, & Larrañaga, 2007). The general notion of

feature reduction can be broken down into two main categories: feature extraction

and feature selection. Generally speaking, feature extraction takes a set of features

and remaps them into a lower dimensional space, that is, as fewer features. This can

be done in principled ways such as in principle components analysis (Jolliffe, 1986),

where the data is reexpressed as a linear combination of a few n-dimensional axes

about which there is the most variance in the data distribution. Feature extraction

can also be accomplished in adhoc ways. For example, one might fit a geometric shape

to an object in an image and use the parameters of best fit as features instead of the

raw pixel intensities. Feature selection, on the other hand, is not about transforming

the data. Instead, it chooses a subset of features to use verbatim. This is the form of

feature reduction employed in spatial credit assignment since the goal is to eliminate

irrelevant real-world features from consideration.

Feature selection methods can be further categorized as either filter, wrapper, or

embedded methods (Saeys et al., 2007). A filter method gives a score for each feature

38
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or subset of features, often using a statistical measure such as mutual information.

Features with the highest scores are then selected according to some criterion. The

Bayesian model selection approach used in the next section can be seen as a filter

method, where we compute a score (the likelihood) for each combination of 2 relevant

features and then select the combination with the highest likelihood. To use a wrapper

method, an intermediate subset of features is selected and a score is computed from

the prediction error of a chosen supervised learning method. Then, the wrapper

method iteratively adds or remove features from this subset to improve the score.

The specific combination of supervised learning technique and wrapper method (e.g.,

add or remove) influences results and the number of potential combinations is large.

Finally, embedded feature selection methods are supervised learning approaches that

have built-in feature selection techniques. For example, weight decay is a technique

that is added to LMS to reduce the φ values of features that contribute little to the

prediction. This feature is embedded in the LMS update by slightly changing the

gradient ascent learning rule. CART is another example of an embedded feature

selection technique since, for each branch, it creates a rule from a single feature.

We do not further consider wrapper methods, which serially evaluate a plethora

of feature combinations, since they appear very biologically implausible. Instead, we

discuss two filter methods and a family of embedded methods that can be used in

conjunction with rLMS. These methods strongly relate to an embedded method we

will propose and evaluate in the following chapter.

4.3 Bayesian Modeling and Optimal Feature Selection

How effective can feature selection possibly be? The optimal performance benchmark

for a specific learning task comes from a Bayesian model, whenever it is analytically

tractable. Unfortunately, Bayesian models are rarely biologically plausible because

they can become very complicated very easily. Yet because of their benchmarking

ability and theoretical importance, it is worthwhile to investigate them here.

As we saw above, simply computing the maximum likelihood estimate for rLMS’

log likelihood function log(P (y|x)) did not take into account irrelevant features. One

way of doing this is to find a way to determine which of the features are irrelevant

and ignore these. For this, Bayesian modeling offers a solution.
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In the regression task used earlier to evaluate rLMS, we used only 2 relevant

features and a number of irrelevant features. Here, we use a Bayesian model selection

approach to discern which 2 features are the relevant ones. We treat each combination

of 2 features as a separate hypothesis, giving us
(
n
2

)
hypotheses total. The probability

(posterior) that a certain hypothesis (combination of 2 features) is responsible for

generating the training data can be described using Bayes’ rule,

P (hj|D) =
P (D|hj)P (hj)

P (D)
(4.1)

where hj is the hypothesis under test and D represents the training data (instances

of x- and y-values). Here, the model will be endowed with as much prior knowledge

or assumptions as possible about how the data is generated in the task, to perform

optimal feature selection and give us a prediction error benchmark for our regression

task. We know that the 2 features are chosen and that this is done at random

with a uniform distribution. Thus, the prior, P (hj) = 1

(n2)
, is a constant for all

hypotheses. In the model selection task, only knowing which of the hypotheses is

most likely is necessary. As such, it is not necessary to include the uniform P (hj).

Nor is it necessary to compute P(D), since it will also be the same for all hypotheses.

Thus, the posterior will be proportional to the the likelihood term, P (D|hj). This

likelihood is equal to the rLMS L(φ) from Equation 2.5 except that here there are

only two parameters, those associated with hypothesis hj. So, if we want to find the

best hypothesis (for rLMS and our specific simulations), we simply find the one with

the highest likelihood. But this requires knowing the optimal parameter values for

each hypothesis. Bayes’ rule speaks to this as well.

Given the two features from a hypothesis, we create a new hypothesis space where

each combination of the two φ values is a separate hypothesis. Conveniently, we do

not need to enumerate all of these. The probability that a particular pair of φ values

are the ones that generated the data is given by

P (φ|D) =
P (D|φ)P (φ)

P (D)
(4.2)

Again, we can simplify this problem by the fact that we are merely interested in

picking the most likely parameters (i.e., performing a MAP estimate). This allows us

to not compute P (D). It is also unnecessary to include P (φ) because this probability
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is uniformly distributed. This leaves us with

P (φ|D) ∝ P (D|φ) (4.3)

So, in this case, the MAP estimate is the same as the maximum likelihood estimate.

This ultimately means that we can use the rLMS descent algorithm on the selected

parameters to find the optimal parameter values for a given selection of two features.

So, to select the best features overall, we could first evaluate every feature-pair

hypothesis by running rLMS to find the optimal parameter values for each feature

pair and then select the hypothesis with the highest likelihood. However, this would

be extremely computationally expensive. One way around this is to compute the

“expected” likelihood by marginalizing over the possible feature values to evaluate

our hypotheses. This turns out not to be straight forward, however. Marginalizing our

likelihood function over the appropriate range for each of the two unknown parameters

does not appear to have an analytical solution for rLMS, although one does exist for

LMS. Yet, Bayes can still help us. Bayes tells us that the most likely hypothesis for the

rLMS model in our simulations is the one with the highest likelihood function value.

This will generally be the correct hypothesis (i.e., the hypothesis containing the truly

relevant features), although a relevant parameter that contributes very little may be

passed-over for an irrelevant feature that appears more relevant, and especially so

when there is little data. Thus, we would say that the Bayesian feature selection

technique would choose the correct hypothesis most of the time. So, if we want to

define the “optimal” results for our regression task according to Bayesian theory, we

can simply manually choose the correct hypothesis, find the best φ parameter values

by gradient ascent, and record the prediction error.

Now, we can repeat the earlier rLMS simulations and determine the optimal re-

sults for our regression task. In the upper panel of Figure 4.1, we vary the number

of features but maintain zero noise. The prediction errors are consistently near zero,

since the fact that we manually choose the correct hypothesis does not change, regard-

less of the number of irrelevant features. In the lower panel, we see that prediction

errors do change, slowly ramping upward with increasing noise. Both results are

a substantial improvement over rLMS with many irrelevant features. Why is this?

In the process of deriving Bayesian optimal parameters for a given feature-pair, we
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indicated that the prior probability, P (φ), was uniform since the pair of true param-

eter values were drawn from a uniform distribution. This led to the realization that

we could use the rLMS algorithm to find such parameters. So, although it was not

said earlier, the rLMS model assumes that each parameter is selected from a uniform

distribution. However, this is not actually the case, since the parameter values of

irrelevant features, comprising most of inputs, are actually set to zero. This begs

the question of whether or not using a more accurate prior distribution in rLMS will

improve results. In the next section, this will be evaluated. For now, however, notice

that this Bayesian feature selection process can be used to get around applying an

accurate prior distribution. With feature selection, we can use the uniform prior dis-

tribution to get optimal results, when the actual prior distribution without feature

selection has a spike around 0 (since the many irrelevant features are given parameter

values of zero).

4.4 Bayesian Priors and Regularization

Weight decay is the idea of reducing the strength of a weight or parameter over time

or with each learning update in proportion to the current weight. Intuitively, it seems

it should shrink the effects of features which do not highly correlate with the outcome,

providing an embedded type of feature selection method. It is also biologically plau-

sible since synaptic weights representing model parameters could conceivably decay

according to some natural process and would require only local information.

Perhaps a better way to think of weight decay is as the application of a non-

uniform prior for each feature to the PDF model. A simple such prior is the Gaussian

distribution. We could multiply Equation 2.4 by exp−λφ
2
j for each feature, j, dropping

the normalizing term of the Gaussian and seeing λ as equivalent to the usual 1
2σ2 . If we

do this, and derive the learning rule using maximum likelihood estimation as before,

we get

∂ log L(φ)

∂φj

=
1

σ2

∑
i,y(i)>0

(y(i)−φTx(i))x
(i)
j −

√
2

πσ2

∑
i,y(i)=0

e−
(φT x(i))2

2σ2

1− erf(φ
T x(i)√
2σ

)
x
(i)
j −λφj (4.4)

where the prior introduces right-most term, λφj. Here, not only are weights influenced

by the data, but weights are also reduced in proportion to their size, since the Gaussian
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Figure 4.1: Top Panel: As the number of input features is increased, the Bayesian
optimal model continues to achieve near zero error, since it always selects the correct
2 features and is therefore unaffected by the total number of features. Bottom Panel:
As the variance of the additive Gaussian noise is increased, the Bayesian optimal
model gives far less prediction error than rLMS.
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shaped prior suggests that it is more likely that a parameter value be small than large.

This prior is equivalent to “ridge regression” (Hoerl & Kennard, 1970), a special case

of Tikhonov regularization (Tikhonov, 1963), which employs an L2 norm penalty on

the parameters. Krogh and Hertz (1992) showed that the optimal value of λ for

LMS is the variance of the Gaussian random variable divided by the average squared

generative parameter, λ = σ2

1
M

∑
i ψ

2
i

.

Instead of using a prior based on the Gaussian, another option is to base it on

the parameters’ absolute values, giving a prior of exp−λ|φj |. This is equivalent to

the “least absolute shrinkage and selection operator” (LASSO) approach (Tibshirani,

1996), which employs an L1 norm penalty on the parameters. This formulation is

non-differentiable at parameter values of φi = 0, such that standard gradient ascent

cannot be accurately used to reach the global maximum. A number of solutions

involving quadratic programming have been devised (Tibshirani, 2011). However, it

is still a convex optimization problem, such that we might approximate the gradient

and find local minima that are good approximations of the global minimum. In the

following simulations, this direction is taken in an effort to remain more biologically

plausible. Given that the initial parameter values are set to some negligibly small

random value, there will be no cases of φi = 0 with the following learning rule,

∂ log L(φ)

∂φj

=
1

σ2

∑
i,y(i)>0

(y(i)−φTx(i))x
(i)
j −

√
2

πσ2

∑
i,y(i)=0

e−
(φT x(i))2

2σ2

1− erf(φ
T x(i)√
2σ

)
x
(i)
j −λsign(φj)

(4.5)

In ridge regression, a weight decays in proportion to its current value with each

iteration, whereas in the LASSO, every weight is reduced at the same constant rate.

One difference between this approximation and true LASSO solutions is that our

approximation forces weights to always maintain at least some small non-zero value

proportional to λ whereas true solutions can force some parameters to zero. In our

approximation, parameters whose absolute values of φ are less than λ jump back-

and-forth across zero with each iteration.

When considering the shapes of the priors implied by ridge regression and the

LASSO, we see that neither of these match well the distribution from which the

parameter values in the regression task are actually drawn. Figure 4.2 compares these

two with an additional prior distribution, where the likelihood function is multiplied
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by

∏
j

(z +
(1− z)√
2πσφ

e
− φ2j

2σ2
φ )λ (4.6)

where z is the probability that a parameter is chosen randomly with a uniform distri-

bution (say, between -0.5 and 0.5) and σφ is a small standard deviation of a Gaussian

centered about zero. In short, this distribution represents a uniform distribution plus

a sharp Gaussian distribution, suggesting that parameter values are drawn most fre-

quently around 0 but some are drawn with a uniform distribution. This “zero-peak”

prior represents the true distribution from which the parameters were drawn, and

leads to the following learning rule,

∂ log L(φ)

∂φj

=
1

σ2

∑
i,y(i)>0

(y(i) − φTx(i))x
(i)
j −

√
2

πσ2

∑
i,y(i)=0

e−
(φT x(i))2

2σ2

1− erf(φ
T x(i)√
2σ

)
x
(i)
j

+
λ

σ2
φ

φj(z − 1)

z(
√
2πσφe

φ2
j

2σ2
φ − 1) + 1

(4.7)

In this scenario, weights decay rapidly around zero and almost not at all for larger

values of φ. When z = 1 this approach reverts back to a uniform distribution and

when z = 0, it is equivalent to ridge regression (if σφ = 1). This is reminiscent of

Elastic Nets (Zou & Hastie, 2005), which combine the LASSO and ridge regression in

a similar weighted way. However, Elastic Nets do not employ sharp Gaussians since

the weighted value, which takes the place of λ, never gets above 1.

For ridge regression, the LASSO, and zero peak, we repeat the earlier simulations

as shown in Figures 4.3, 4.4, and 4.5, respectively. The upper panels of these figures

show the results of varying the number of features when there is zero additive noise.

Here, the three methods give very different results. The optimal λ for ridge regression

is zero because there is zero additive noise. Therefore, in the top panel in Figure 4.3,

we see that increasing λ only increases prediction errors. In contrast, increasing

λ for the LASSO completely eliminates the rapid climb. Nevertheless, a λ value

must be carefully chosen since larger λ values increase the base level of prediction

error. Finally, we see that the zero-peak prediction error climbs in proportion to its

value of σφ, providing prediction errors between ridge regression and the LASSO.

The lower panels show the results of varying the variance of the additive noise while
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Figure 4.2: Prior distributions for a single parameter. Ridge regression and LASSO
are common approaches used to reduce prediction errors. These can be viewed as
priors on the parameters of a PDF model. Ridge regression and LASSO, however, do
not match the true parameter distribution very well. The “zero-peak” distribution
proposed here better matches the true distribution of our regression task, where a few
parameters are drawn from a uniform distribution but most are set to zero. Using this
prior should lower prediction errors because it matches the true distribution better
than the others.

maintaining the same number of features. In all figures, by increasing the value of λ

or σφ, the prediction errors are reduced for high noise levels whereas the prediction

errors are increased for low noise levels. As noted earlier, in ridge regression, it has

been shown that the optimal λ value depends on the true variance of the error (Krogh

& Hertz, 1992). In the end, the best LASSO and zero-peak curves give smaller overall

prediction errors in the lower panels than ridge regression.

In summary, ridge regression helps to improve generalization (lower test set pre-

diction error) in the presence of noise, but does not help as the number of features gets

large. In contrast, the LASSO improves generalization substantially in both cases.

In particular, it generalizes extremely well when there are many features relative to

the amount of data. Finally, the zero-peak prediction errors are a little lower than

the LASSO in the varying noise case, but far worst when there are large numbers

of features. Although technically the best fitting prior, zero-peak is inferior to the

LASSO if it must consider the possibility of noise, which requires a widening of the

Gaussian for effective performance. Without noise, the Gaussian can be thinner and

will perform better in the varying numbers of features case.
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Figure 4.3: Top Panel: Ridge regression prediction error as the number of features is
varied. Here, increasing λ only increases prediction errors. See text for explanation.
Bottom Panel: Ridge regression prediction error as the variance of the additive noise
is varied. Larger values of λ lead to lower prediction errors when noise is large but
larger prediction errors when noise is small.
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Figure 4.4: Top Panel: The LASSO prediction error as the number of features is
varied. Here, we see that by increasing the λ value we both eliminate the dramatic
climb of the prediction error and raise the baseline level of prediction error. Bottom
Panel: The LASSO prediction error as the variance of the additive noise is varied.
Larger values of λ lead to lower prediction errors when noise is large but slightly
larger prediction errors when noise is small.



49

Figure 4.5: Top Panel: The zero-peak prediction error as the number of features
is varied. Here, we see that decreasing the σφ-value reduces the dramatic climb of
the prediction error. Smaller values of σφ better approximate the true distribution
from which the underlying parameter values are drawn. Bottom Panel: The zero-
peak prediction error as the variance of the additive noise is varied. It is now larger
values of σφ that lead to lower prediction errors than small values. As noise increases,
irrelevant parameters are seen as being more relevant and thus a wider Gaussian curve
is needed (for the same learning rate) to envelope and shrink irrelevant parameter
values, which leads to lower prediction errors.
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4.5 Feature Selection via Feature Correlation

The correlation between an input feature and the outcome can be used to identify

relevant features, falling under the filter-type feature selection method category. Cor-

relation could be seen as being accomplished by Hebbian learning (“neurons that

fire together, wire together”), which can be seen as a generalized form of spike-time

dependent plasticity (Bi & Poo, 1998, 2001), a biological synaptic plasticity protocol.

The sample correlation coefficient can be used to compute the correlation directly

from data,

rxjy =

∑m
i=1(x

(i)
j − μxj

)(y(i) − μy)√∑m
i=1(x

(i)
j − μxj

)2
∑m

i=1(y
(i) − μy)2

(4.8)

where μxj
and μy are the means of an individual feature and the output, respec-

tively. When rxjy = +1, the feature xj perfectly correlates with the output, y. A

value of −1 represents a perfectly anti-correlated feature and a 0 value represents

an uncorrelated feature. This approach identifies only linear features, although such

model-independent feature selection can be generalized to higher-order feature com-

binations (i.e., mutual information (Back & Trappenberg, 2001)).

To illustrate this feature selection technique, we again simulate the same two sce-

narios: one that varies the number of input features and one that varies the variance

of the additive noise. Prior to training, we select the 2 features with the highest

correlations/anti-correlations, eliminating all others, and then use rLMS to find the

associated parameters for these 2 features. The results show that this works very well.

In the both panels of Figure 4.6 the prediction error closely tracks the Bayesian opti-

mal model’s prediction error. In both models, the exact number of relevant features

were specified, which gives these approaches an advantage over the others.

4.6 Data Augmentation

Given more data, we would expect rLMS to perform better. However, getting this

data can be costly to sample in the real world. One possibility, however, is to syn-

thesize some new data from existing data by adding noise. This seems biologically

plausible, since there are many stages in the neuron signal transmission process by

which we might expect noise to enter. If we add Gaussian noise to the input, this
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Figure 4.6: Top Panel: Prediction error as the number of features is varied. Feature
correlation as a selection technique gives low prediction error relative to rLMS and
similar, albeit larger than, the Bayesian optimal model. Bottom Panel: Prediction
error as the variance of the additive noise is varied. Again, feature selection via
feature correlation leads to a low prediction error relative to rLMS and is similar to
the Bayesian model.
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will multiply by the φ values and give us a noisy prediction. The prediction error will

thereby be noisy as well, leading to a “noisy” update. Equivalently, one could simply

add noise to the output to get a noisy update. Since the sum of two Gaussian random

variables is another Gaussian random variable, temporary injection of artificial noise

into the data is equivalent to producing a new dataset with more additive noise. We

can use this process to synthesize as much data as we like.

Applying this to the simulations of rLMS, Figure 4.7 shows the results for when the

number of parameters (upper panel) and the variance of the noise (lower panel) are

varied. Like ridge regression, the prediction error in the upper panel either stays about

the same or increases with the variance of the injected noise. Like ridge regression, it

can be shown (Bishop, 1995) that data augmentation is also equivalent to a form of

Tikhonov regularization. The lower panel of Figure 4.7 shows that augmenting the

data set is at best insignificant (sign test, p < 0.01) with varying amounts of additive

noise in the data.
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Figure 4.7: Top Panel: Prediction error as the number of features is varied when the
training data is augmented by an unlimited supply of synthesized data, created by
injecting small amounts of noise into the y-values. Like ridge regression, increasing
λ does little but increase prediction errors. Bottom Panel: Prediction error as the
variance of the additive noise is varied when the training data is augmented by an
unlimited supply of synthesized data. A small variance on the noise is able to only
slightly decrease the prediction error here, but even this is not significant.



Chapter 5

A Dual Pathway Approach

5.1 Chapter Summary

Here, we review and extend the Noisy OR model (Pearl, 1988) as a constrained

approach to regression in the specific regression task. We describe how this approach

improves results by reducing the residual parameter values for irrelevant features,

something that can also be accomplished by regularization techniques. It is also

shown that employing one of these solutions explains the conditioning phenomenon

of relative validity, which suggests that mammals are likewise doing something to

reduce their residuals as well. Some of the text in this chapter is taken from Connor

and Trappenberg (2013), in which I was primarily responsible for developing the

theory and simulations as well as drafting the manuscript.

5.2 The Noisy OR Model (Pearl, 1988)

For the moment, let us consider the case where we are given binary inputs representing

features of the world (1 for present, 0 for absent) and binary outputs representing

whether or not an outcome occurs. This is the input and output arrangement used

by the Noisy OR model (Pearl, 1988) shown in Figure 5.1. The Noisy OR model,

like LMS, makes predictions based on parameters inferred from data. The subtle

difference is that its prediction is the probability that an outcome will occur rather

than the expected value of the outcome.

The Noisy OR model is intended to capture the probability of an outcome oc-

curring (y = 1), where an individual probability indicates its feature’s contribution

to this likelihood. To get the probability of the outcome occurring, we simply union

the individual probabilities of the present features. This model is not obviously bi-

ologically plausible because it deals in probabilities which are sharply constrained

(between 0 and 1) and are normalized during learning, etc.. Extensions of this model

54
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Figure 5.1: The Noisy OR model. For inputs, xj, that are present (=1), we take the
union of the associated individual probabilities 1 − φj to get the probability of the
outcome, y. Used by permission, c©2013 IEEE.

described later, however, will be shown to be more plausible.

Using an equivalent but slightly different formulation of the Noisy OR model than

Pearl (1988), we write the probability or likelihood of an outcome occurring as

P (y = 1|x;φ) = 1−
∏
j

φ
xj

j (5.1)

where x is a binary input vector and φ is here a vector of probabilities (each represents

1 minus the probability that the associated input will be followed by an outcome).

The probability of getting no outcome (y = 0) becomes 1− P (y = 1|x, φ). Thus the
probability that a certain output (y) occurs given an input (x) is written as

P (y|x;φ) = (1−
∏
j

φ
xj

j )y(
∏
j

φ
xj

j )(1−y) (5.2)

The Noisy OR model is probabilistic in nature, but can be seen as a sort of discrete

version of the rLMS model. To visualize this, Figure 5.2 overlays the PDFs of each

model for the case of a single relevant feature (no irrelevant features). The mass

of each discrete point of the Noisy OR PDF (circled spikes in the figure corners)

represents the mass of a representative zone in the rLMS PDF space. Formally, this

means interpreting output values, y, as probabilities. For example, an output value

of y = 0.79 is now seen as a probability of outcome of P (y = 1) = 0.79. So, although,

the Noisy OR model was originally designed for representing the probabilities of

outcomes, this reinterpretation allows it to be used for linear regression to a limited
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Figure 5.2: The probability density functions (PDFs) of the Noisy OR (circled spikes
at the figure corners) and rLMS (wave-shape with discrete values at y = 0) models
overlaid on one another for the case of a single relevant feature (no irrelevant features)
whose underlying parameter value is 0.5. The Noisy OR model can be seen as an
approximate discretization of the rLMS model, where the Noisy OR’s discrete prob-
abilities roughly express the rLMS’s probability mass over the region they represent.

degree. The model’s binary output is simply relaxed to include positive real values

between 0 and 1 without any reformulation and an “always-on” input is added to

represent the linear function bias term. Although the Noisy OR model seems to nicely

fit our simulation paradigm, there is reason to expect it will perform linear regression

worse than rLMS under ideal conditions because the Noisy OR model is not linear.

Instead of a weighted sum, the Noisy OR model provides a union of probabilities,

which subtracts out the “common area” covered by more than one present input.

The larger the individual probabilities, the worse this non-linearity becomes.

One fundamental problem remains. The Noisy OR model has no way of represent-

ing negative linear parameters since values of 1−φ principally represent probabilities.
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In the following section, a solution is proposed.

5.3 The Dual Noisy OR Model

As shown in Figure 5.3, the proposed Dual Noisy OR model extends the Noisy OR

model to represent the negative parameters of a linear function (i.e., global inhibitory

influences) by having both a “positive” Noisy OR model that represents the probabil-

ity that an outcome will occur (P+) and a “negative” Noisy OR model that represents

the probability that the outcome will be inhibited or canceled (P−). The probability

of the outcome occurring then becomes the probability of the outcome multiplied by

the probability of it not being canceled or,

P (y|x;φ) = P+(1− P−) (5.3)

where P+ and P− are expressed by Equation 5.1, where each model has its own

distinct set of φ values. The associated likelihood function can be drawn from this,

just as was done for Equation 5.1. The likelihood becomes

L(φ) =
m∏
i=1

((1−
∏
j

φ
x
(i)
j

+,j )
∏
j

φ
x
(i)
j

−,j )
y(i)

(1− (1−
∏
j

φ
x
(i)
j

+,j )
∏
j

φ
x
(i)
j

−,j )
(1−y(i)) (5.4)

The gradient for the positive model parameters becomes
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and the gradient for the negative model parameters becomes

∂ log L(φ)
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Figure 5.3: The Dual Noisy OR model is an extension of the Noisy OR model
that is able to incorporate global inhibitory influences and thereby represent the
negative parameters of a linear function. It is essentially two Noisy OR models, where
one represents the probability that an outcome will occur and the other represents
the probability that the outcome will be canceled. These models join in predicting
the outcome as the probability of occurrence multiplied by the probability that the
outcome is not canceled. Used by permission, c©2013 IEEE.

which are used to update model parameters, as in Equation 2.8.

Figure 5.4 shows results for the regression task comparing the Dual Noisy OR

model with rLMS, the LASSO, and the optimal benchmark. The Dual Noisy OR

model performs well relative to rLMS in both simulations, whether with or without

regularization (the LASSO), even though the Dual Noisy OR model is not the optimal

model for this task. The rLMS world was chosen as the testbed for the present work

as a useful compromise between incorporating aspects of the real-world and being

able to relate sufficiently with standard machine learning algorithms and principles.

However, it is possible that the real-world is less like the continuous, rLMS model and

more like the discrete, Dual Noisy OR model. In such a case, we would expect the

Dual Noisy OR model to be even more effective than shown here. Another potential

advantage of this model is that it does not require knowledge of the additive noise

variance, unlike how rLMS does (to be optimal).
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Figure 5.4: Top Panel: Test set prediction error of the Dual Noisy OR model, the
LASSO, and zero-peak as the number of features is varied. The Dual Noisy OR has a
slightly larger average prediction error than the LASSO, but far less than zero-peak
at large numbers of irrelevant features. Bottom Panel: Test set prediction error of
the Dual Noisy OR model, the LASSO, and zero-peak as the variance of the additive
output noise is varied. The Dual Noisy OR model is comparable to the other methods
except that zero-peak shows significantly less error at high levels of noise.
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5.4 Eliminating a Primary Source of Generalization Error

When examining the math of the Noisy OR model, we see that P (y|x;φ) increases by
increasing values of 1− φj for xj = 1 when y = 1, that is, by increasing the influence

of features that correlate with the output. P (y|x;φ) also increases by decreasing

values 1− φj for xj = 1 when y = 0, that is, by decreasing the influence of the lesser

correlated and uncorrelated features. Something very similar happens in rLMS. Its

P (y|x;φ) increases and decreases as φ values are increased and decreased for xj = 1

when y = 1 and y = 0, respectively. Thus, maximizing L(φ) in the Noisy OR model

and rLMS maximizes the likelihood of the input generating the output by increasing

the influence of the features that correlate most with the output and by reducing (and

in rLMS, even making negative) the influence of features that least correlate with the

output. This process will be referred to as relative correlation.

There is evidence of relative correlation in classical conditioning. Simultaneous

Feature Positive Discrimination (SFPD) (Ross & Holland, 1981) is a conditioning

phenomenon where there are two stimuli which are correlated with reinforcement.

In this single phase experiment, reinforced presentations of a compound stimulus

(AX+) are alternated with non-reinforced presentations of one of the elements (X-).

Stimulus A is followed by reinforcement every time it is presented, whereas stimulus

X is followed by reinforcement only half of the time. After training, the animal

learns that the most highly correlated stimulus predicts the reinforcement and that

the other stimulus does not, even though it is correlated with reinforcement half of

the time. We know that this is not because a partially reinforced stimulus cannot be

conditioned, since it can be (Jenkins & Stanley Jr, 1950).

The simulation of SFPD using the Rescorla-Wagner model, shown in Figure 5.5,

gives a useful explanation of why this may occur in animals. In the AX+ trials,

both stimuli increase in associative strength. In the X- trials, stimulus X decreases

in associative strength. If the associative strength of the AX compound reaches the

asymptotic level, a subsequent X- trial will reduce this. The next AX+ trial will

have new room for associative strength to grow once again and A and X will split the

gains. This cycle of stimulus X losing in X- trials, while gains are split between A

and X in AX+ trials leads to A slowly draining all of X’s associative strength. This is

relative correlation in action, where the most highly correlated stimulus steals away
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Figure 5.5: Simulation of simultaneous feature positive discrimination (SFPD) using
the Rescorla-Wagner model. The procedure is described by two trial types in a single
phase experiment, AX+, X-. Although in early trials, the associative strength of X
is increased, it is eventually extinguished in favour of A even though X is reinforced
half of the time. In this simulation, the associative strength to X is reduced in X-
trials and split between A and X in AX+ trials such that A slowly steals all of X’s
early associative strength.

the associative strength of the lesser correlated stimulus. Indeed, it could be said

that X is an irrelevant feature and that its partial correlation with reinforcement was

circumstantial, due only to its simultaneous presentation with A.

Problems arise in the Rescorla-Wagner model in regard to relative correlation as

we begin to add more irrelevant features. Simulating the phenomenon of relative

validity (Wagner et al., 1968) captures this. In relative validity, there are two groups,

each with three stimuli: A, B, and X. In group “correlated” we have the trials AX+,

BX-, AX+, BX-, such that A and B are perfectly correlated with reinforcement and

non-reinforcement, respectively. Stimulus X, however, is only partially correlated.

In group uncorrelated, we have the trials AX+, BX-, AX-, BX+, where all of the

stimuli are equally partially reinforced (50%), except that X is presented twice as

often. Wagner et al. (1968) discovered that responding to X in group correlated

was less than in group uncorrelated. This is just what relative correlation would

predict since X is less correlated with the reinforcement than A. Figure 5.6 shows the

result of simulating this phenomenon with the Rescorla-Wagner model. In neither
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simulated group is the associative strength of X mostly extinguished1 as occurred in

the case of SFPD and as occurs in relative validity experiments as well (Wagner et

al., 1968; E. A. Wasserman, 1974; Pearce, Dopson, Haselgrove, & Esber, 2012). After

an AX+ trial increases the predictive strength for A and X, a BX- trial reduces the

associative strength of B and X. Since B is never reinforced, B only decreases and

becomes an inhibitor. At asymptote, the associative strength of A and X sum to

predict the full reinforcement and B becomes inhibitory enough to cancel the residual

association in X so that BX predicts zero reinforcement. Such a residual association

in an apparently irrelevant or non-predictive feature becomes a bigger problem as we

increase the number of irrelevant features.

This can be illustrated by examining the parameters of rLMS after being trained

in the regression task. Figure 5.7 displays one such case (100 data points, 99 features,

0.0 noise variance). Although there is no additive noise, irrelevant parameters retain

a small residual value. When there are many parameters, a new random binary

activation of the inputs can add up and significantly throw off a prediction, leading

to substantial prediction error.

How can we solve this problem? One simple solution is providing more data.

In principle, the optimal rLMS model will give the best result with sufficient data.

Since biological systems usually do not have this luxury, we must consider alterna-

tives. The use of priors or regularization methods we examined in the previous chapter

battled this issue by reducing all parameter values to varying degrees. In the case

of the LASSO, every update involved a constant reduction in the absolute value of

all parameter values. In this way, such residual parameter values were extinguished,

allowing the relevant features to acquire from the loss and improving generalization.

The reason for the Dual Noisy OR model’s success is twofold. First, the model never

has negative parameters, since they are probabilities. This avoids the problem of pos-

itive and negative parameter values canceling one another to support residual values.

Now, a small residual negative pathway probability can only slightly decrease the

total prediction probability because it is applied multiplicatively instead of additively

(e.g., 0.1(1 - 0.1) instead of 0.1 - 0.1). Second, Equation 5.6 indicates that the change

1The Rescorla-Wagner model can explain relative validity if it uses a different learning rate for
trials on which there is reinforcement than for trials on which there is none (Rescorla & Wagner,
1972), but in keeping with LMS theory, this detail was not incorporated here.
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Figure 5.6: Simulation of relative validity using the Rescorla-Wagner model. Top
Panel: The associative strengths of the stimuli in group “correlated”, which receive
AX+, BX-, AX+, and BX- trials in a single phase of conditioning. Bottom Panel: The
associative strengths of the stimuli in group “uncorrelated”, which receive AX+,BX-
,AX-, and BX+ trials in a single phase. Notice that the asymptotes for VX are the
same in both groups, despite that X could be perceived as an irrelevant predictor in
group correlated.
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Figure 5.7: Residual parameter values after training rLMS with 99 features, 100
data points, and zero noise. The two relevant features are on the far left and have
generative values of 0.4 and 0.2. We see that these parameter values do not quite
reach their true generative values and that the irrelevant features retain a residual
parameter value, even though they have generative values of zero. These residual
values cancel-out one another so that the prediction error is zero on training set
input vectors where relevant features are absent. With test data, however, they add
noise to the predictions and increase prediction errors.
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Figure 5.8: The associative strength or parameter value of stimulus X following
correlated relative validity conditioning (AX+, BX-) for the Rescorla-Wagner (RW)
model/LMS, the LASSO, Dual Noisy OR (DuNOR), and Dual Pathway Regression
(DPR) (introduced in Chapter 8). All methods except the Rescorla-Wagner model
effectively extinguish this irrelevant stimulus.

in negative parameter values is proportional to the total model prediction2. This

means that the small positive predictions made by irrelevant positive residuals will

have a small learning rate, further discouraging negative residuals from forming.

So, residual associations to irrelevant parameters are reduced when either regular-

ization is used or negative parameters are not permitted and there is a multiplicative

way of representing inhibition. Consequently, this leads to a simulation of relative

validity that matches what we see in classical conditioning experiments. Figure 5.8

shows the asymptotic associative strength of X in group correlated in simulations of

relative validity using the LASSO regularization, Dual Noisy OR, and Dual Pathway

Regression (a derivative of Dual Noisy OR that is the focus of Chapter 8). In all

cases, the association to X is extinguished, unlike in the Rescorla-Wagner/LMS case.

That relative validity animal learning experiments (Wagner et al., 1968; E. A. Wasser-

man, 1974; Pearce et al., 2012) mostly extinguish the irrelevant stimulus, and ap-

proaches that implicitly assume a uniform prior distribution on stimulus relevancy

(e.g., the Rescorla-Wagner model, rLMS) do not, suggests that biological systems

2Changes in the positive pathway are also proportional to the full model prediction. However,
they are also inversely proportional to the positive pathway prediction (which is large whenever the
total model prediction is large), such that these two terms counteract one another.
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must be using some strategy (e.g., regularization or non-negative parameterization

with multiplicative inhibition) to reduce residual associations for irrelevant parame-

ters.



Chapter 6

The Neuroscience of Stimulus Learning

6.1 Chapter Summary

In this chapter, we seek to describe the neurobiology after which the subsequently

presented models of spatial credit assignment will be fashioned. In particular, the

salient features of the basal ganglia are described with a focus on the striatum. Re-

quiring models to fit this specific neurobiology narrows the possible spatial credit

assignment solutions. We will later rely on this exposition to compare and contrast

these models in terms of their biological faithfulness.

6.2 Basal Ganglia Anatomy

6.2.1 Organization of Nuclei

The basal ganglia are a group of interconnected nuclei in the midbrain, as shown

in Figure 6.1. This collection of nuclei has input and output stages. Specifically,

the striatum and subthalamic nucleus serve as the input regions and the substantia

nigra pars reticulata (SNr) and the globus pallidus interna (GPi) serve as the output

regions. The globus pallidus externa (GPe) receives inputs from and projects to

other basal ganglia nuclei. The substantia nigra pars compacta (SNc) and ventral

tegmental area (VTA) receive projections as though they were output nuclei but

provide special feedback connections to the striatum from their dopaminergic neurons.

The basal ganglia receive inputs from all over the neocortex, providing them with the

opportunity to integrate CSs from widely varying sources. Other inputs include the

amygdala, the hippocampus, and the thalamus. In the following subsections, we

describe some of the major features of the basal ganglia. For additional details, the

reader is referred to Wilson (2004) and Parent and Hazrati (1995a, 1995b).

67
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Figure 6.1: (a) A side-view of the striatal nuclei situated among other brain regions:
Cd - caudate, Pu - putamen, and NAcc - nucleus accumbens. (b) A rear-view (a com-
posite coronal slice) schematic of basal ganglia nuclei, the thalamus, and the cortex
and their interconnections. Of the striatal regions, only the putamen is connected for
clarity’s sake. Note that the connections are highly-schematic and do not represent
the breadth of the connectivity between areas. Abbreviations: Ctx - neocortex, Th
- thalamus, GPe - globus pallidus externa, GPi - globus pallidus interna, STN - sub-
thalamic nucleus, SNr - substantia nigra pars reticulata, SNc - substantia nigra pars
compacta
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6.2.2 Basal Ganglia Pathways

The striatum is mostly composed of medium spiny neurons (MSpNs), which receive

excitatory input primarily from the cortex and thalamus and project to downstream

basal ganglia nuclei. The striatum also contains several types of interneurons that

are believed to help sculpt MSpN activity (Tepper, Bolam, et al., 2004; Tepper, Wil-

son, & Koos, 2008; Pakhotin & Bracci, 2007), though we do not discuss them at

length here. As shown in Figure 6.2, each MSpN projects along one of two major

routes commonly known as the direct and indirect pathways. Direct pathway MSpNs

connect directly to the basal ganglia output nuclei (GPi and SNr) and SNc/VTA

while the indirect pathway MSpNs project first to the GPe before arriving at these

same destinations. An unusual feature of these projections is that they are all in-

hibitory, including the influence of the output nuclei on the main target, the thala-

mus. Because the indirect pathway involves three sequential inhibitory projections

(Striatum→GPe→GPi/SNr→Thalamus), its net effect on the thalamus is inhibitory,

while the direct pathway projection has only two sequential inhibitory projections

(Striatum→GPi/SNr→Thalamus), causing a net excitatory effect. Thus, these two

pathways tend to have opposing effects. The direct and indirect pathways differ in

a few ways besides their different routes through the basal ganglia. MSpNs primar-

ily express either D1 (direct pathway) or D2 (indirect pathway) dopamine receptors

(Surmeier, Song, & Yan, 1996; Wilson, 2004). They receive cortical inputs from neu-

rons in either the more superficial (direct pathway, layer 3 and upper layer 5) or deep

layers (indirect pathway, layer 5) whose axons have either broad (direct pathway)

or narrow (indirect pathway) branching patterns in the striatum, as found in rats

(Lei, Jiao, Del Mar, & Reiner, 2004; Cowan & Wilson, 1994). There is a further

dimension of organization within each of the direct and indirect pathways according

to each final destination nucleus. In the striatum there are so called “matrix” and

“striosomal” zones which project ultimately to either the SNr/GPi or SNc/VTA, re-

spectively (Joel & Weiner, 2000). One challenge to the direct and indirect pathway

dichotomy is that MSpNs of the direct pathway also send collateral projections to the

GPe (Kawaguchi, Wilson, & Emson, 1990). While this seems to cloud the distinction,
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we will later provide a potential algorithmic interpretation of this feature that may

help in maintaining the dual pathway distinction.

A “hyper-direct” pathway has also been proposed (Nambu, Tokuno, & Takada,

2002), where the cortex provides input to the subthalamic nucleus, which excites

many basal ganglia nuclei. It has been suggested that the hyper-direct pathway is

useful in canceling actions and suppressing competing motor actions besides the one

voluntarily selected. It provides a direct and diffuse route for exciting activity in the

GPi, which inhibits the thalamus and other subcortical nuclei.

6.2.3 Lateral Inhibition in the Striatum

The projection neurons of the striatum send out lateral inhibitory (Plenz, 2003; Tun-

stall, Oorschot, Kean, & Wickens, 2002) axon collaterals which freely contact other

MSpNs, within and between the direct and indirect pathways (Yung, Smith, Levey,

& Bolam, 1996). Some MSpN collaterals cover a local area, whereas others branch

out relatively broadly (Kawaguchi et al., 1990). There appears to be, at most, about

a 1
3
probability of one neuron sending an inhibitory connection to another (Taverna,

Ilijic, & Surmeier, 2008). As a result, these lateral inhibitory connections are usually

one-way (at best only 1 in 9 connections are reciprocated in a randomly connected

network). Although profuse, the lateral inhibitory connections are believed to be

weak compared with the inhibition of fast spiking inhibitory interneurons (Tepper et

al., 2008; Gruber, Powell, & O’Donnell, 2009).

6.2.4 Division of Labour in the Striatum

Another feature of the basal ganglia is that there are parallel, functionally segregated

channels passing through it (Alexander, DeLong, & Strick, 1986). Segregation is

fine enough that somatotopic organization exists for both somatosensory (Flaherty &

Graybiel, 1991) and motor cortical inputs. These channels exist for both the direct

and indirect pathways and allow for focused computations.

A number of basal ganglia models (Mink, 1996; Gurney, Prescott, & Redgrave,

2001; Humphries, Stewart, & Gurney, 2006; Frank, 2005; Houk, Adams, & Barto,

1995) support the notion that the basal ganglia takes part in the selection of appro-

priate actions by lowering its tonic inhibition in channels associated with the action(s)
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Figure 6.2: Diagram of salient basal ganglia features. There are three pathways
through the basal ganglia: the direct, indirect, and hyperdirect pathways. The direct
and indirect pathways have distinctive features including dopamine receptor subtypes
(D1 or D2) and input from the cortex. Separate channels (or striatal compartments),
known as the striosome and matrix, innervate the SNc/VTA and SNr/GPi, respec-
tively. Abbreviations: MSpN - medium spiny neuron, GPe - globus pallidus externa,
GPi - globus pallidus interna, STN - subthalamic nucleus, SNr - substantia nigra pars
reticulata, SNc - substantia nigra pars compacta, VTA - ventral tegmental area
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and that learning occurs in the striatum in the course of rewarding and punishing

experiences. While the basal ganglia is often thought in terms of its role in action se-

lection, parallel channels flow through the basal ganglia from non-motor cortical and

subcortical areas as well. One reinforcement learning model proposes an actor-critic

dichotomy (see Joel, Niv, & Ruppin, 2002 for a review), where the actor (mapped

onto the dorsolateral (putamen) and dorsomedial (caudate) striatum) is responsible

for action selection, and the critic (mapped onto the ventral (nucleus accumbens)

striatum) is used to track the expected future reward in each situation. This coordi-

nates with the difference between instrumental and classical conditioning, which learn

about stimuli with and without the subject’s action, respectively. The striatal areas

associated with the actor can be further subdivided between the dorsolateral stria-

tum and dorsomedial striatum according to whether it supports habit-driven action

or goal-directed action, respectively (Balleine & O’Doherty, 2009). We focus here on

learning the predictive values of environmental stimuli rather than the appropriate

actions that maximize future rewards, though the similarity in the striatal structures

commonly associated with each purpose supports the notion that there are common

underlying mechanisms for both (Pennartz, Ito, Verschure, Battaglia, & Robbins,

2011; Matamales et al., 2009). In addition, cortico-striatal synaptic plasticity and

the dual pathway nature of the basal ganglia are consistent with the notion that the

ventral striatum is learning and expressing associative strength, as described in more

detail below.

6.3 Classical Conditioning and the Basal Ganglia

Two areas believed to play a strong role in classical conditioning are the cerebellum

and the amygdala (for a review, see Fanselow & Poulos, 2005). The cerebellum is

the locus of Pavlovian eyeblink conditioning. The amygdala, however, has featured

prominently in the conditioning literature as a key region for the acquisition and ex-

pression of fear conditioning (LeDoux, 2007; Maren, 2001), which is more relevant

to the present discussion. Specific evidence of this includes that long-term poten-

tiation (LTP) (a sustained increase in synaptic strength) appears to occur in the

frontotemporal amygdala (Clugnet & LeDoux, 1990) and that this happens during

fear conditioning to a tone (McKernan & Shinnick-Gallagher, 1997).
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Yet, the amygdala sends a projection to the nucleus accumbens, a region of the

ventral striatum (McDonald, 1991; Russchen, Bakst, Amaral, & Price, 1985), which

has also been found to facilitate Pavlovian conditioning in a number of scenarios

(Ito, Robbins, Pennartz, & Everitt, 2008; Haralambous & Westbrook, 1999; Brad-

field & McNally, 2010; Phillips, Setzu, & Hitchcott, 2003). Several studies (Stuber

et al., 2011; Ambroggi, Ishikawa, Fields, & Nicola, 2008; Fadok, Darvas, Dickerson,

& Palmiter, 2010; Popescu, Popa, & Paré, 2009; Setlow, Holland, & Gallagher, 2002,

but see Shiflett & Balleine, 2010) found that inactivation of this amygdaloid-striatal

projection decreased responding to predictive cues. In regard to complex conditioning

phenomena, a number of studies have implicated the ventral striatum. Two imaging

studies (Corlett et al., 2004; San-Galli, Marchand, Decorte, & Di Scala, 2011) have

suggested that the ventral striatum takes part in retrospective revaluation. Also, sev-

eral studies suggest that the ventral striatum may contribute in complex experimental

designs where there are competing predictors (Bradfield & McNally, 2010; Iordanova,

McNally, & Westbrook, 2006; Iordanova, Westbrook, & Killcross, 2006; McNally &

Westbrook, 2006).

The ventral striatum and the amygdala both receive dopaminergic projections

from the mid-brain. Schultz and others (1997; 1998) found that phasic bursts of

dopamine occur with the receipt of unpredicted reward and that dopamine dips oc-

cur when reward is expected but omitted, which resembles a US-surprisingness or

prediction error signal1. Many experiments have now demonstrated this (see Niv,

2009 and Maia, 2009 for reviews), a view referred to as the reward prediction er-

ror (RPE) hypothesis of dopamine (Montague et al., 1996; Schultz, 1998). Most

notably, in conditioned acquisition, the phasic dopaminergic response elicited by a

conditioned stimulus is proportional to the magnitude and probability of the reward

it predicts (Fiorillo, 2003; G. Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004; To-

bler, Fiorillo, & Schultz, 2005). In blocking and appetitive conditioned inhibition,

the phasic dopamine response also appears to largely fulfill predictions made by the

RPE hypothesis (Tobler, Dickinson, & Schultz, 2003; Waelti, Dickinson, & Schultz,

1Temporal Difference (TD) learning, a temporally extended version of the Rescorla-Wagner
model, bears a signal called the reward prediction error which is equivalent to US surprisingness
in the single time-step case. It is the reward prediction error signal that has been correlated with
phasic dopamine signals of the midbrain.



74

2001). Although some reports suggest dopamine is involved in conditioned acqui-

sition (Flagel et al., 2010; Lex & Hauber, 2010; Tsai et al., 2009) the evidence is

not entirely conclusive since others suggest that conditioned acquisition is possible

without dopamine-based learning (Young, Moran, & Joseph, 2005; Berridge, 2007).

Although the RPE hypothesis is strongly supported in terms of quantity and

multi-directional quality of the evidence (Niv, 2009), there are competing views of

what the phasic dopamine signal represents (see Berridge, 2007 for a review). One

is the hypothesis that the short latency phasic dopamine signal that occurs with the

appearance of novel/salient sensory stimuli is used to promote actions which lead to

further experiences of such novel sensory stimuli (Redgrave, 1999; Redgrave & Gur-

ney, 2006). Since the onset of the phasic dopamine burst is apparently too early (70

ms after stimulus presentation) for a stimulus signal to ascend the inferior tempo-

ral cortex and be interpreted as rewarding, the RPE hypothesis seems insufficient

to entirely account for the phasic dopamine activity. Yet the duration of the phasic

burst appears to depend on the initiator, namely that short phasic bursts (100 ms

duration) are indicative of novel/salient stimuli, whereas a more sustained phasic ac-

tivation (200 ms duration) is reward driven (Horvitz, Choi, Morvan, Eyny, & Balsam,

2007), which is time enough to interpret the reward value of a stimulus. This suggests

that both reward and novel/salient stimuli contribute to the dopamine signal. An-

other challenge to the RPE hypothesis is that phasic dopamine neuron activity and

increased dopamine concentrations have been detected in response to aversive stim-

uli (Ungless, 2004; Matsumoto & Hikosaka, 2009; Young, 2004), whereas the RPE

hypothesis predicts a reduction in dopamine activity under these circumstances.

One unifying possibility is that the dopamine signal encompasses more than

the RPE hypothesis. Both appetitive and aversive stimuli appear to induce phasic

dopamine signals and prediction error-like responses in the striatum (see Delgado, Li,

Schiller, & Phelps, 2008 for a review). This suggests that the same US surprisingness-

like dopamine signal observed in appetitive conditioning may be useful in learning

about aversive stimuli. Such a scenario would conveniently suit the standard clas-

sical conditioning notion that excitatory conditioning can be accomplished in the

presence of either an appetitive or aversive US, although the way in which condi-

tioned responding is measured depends on this detail. Furthermore, extracellular
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dopamine concentrations increase (in the striatum) during sensory preconditioning,

where one neutral stimulus is followed by another, but concentrations do not increase

during presentation of a single neutral stimulus alone (Young, Ahier, Upton, Joseph,

& Gray, 1998; Young, 2004). Dopamine may thus even encode a form of CS surpris-

ingness, accommodating the perspective (common in classical conditioning) that, in

sensory preconditioning, conditioning alters CS-CS associative strength rather than

a prediction of the amount of expected future reward or punishment per se.

6.3.1 Cortico-Striatal (MSpN) Synaptic Plasticity

The discovery of the correlation between prediction error and dopamine activity has

spawned much research aimed at understanding what is learned by neurons in the

striatum. Again, this nucleus receives a strong projection from the dopamine neurons

of the SNc/VTA, which provides the prediction error needed to learn predictions (i.e.,

values of φ). Below, we will review at least four major factors that influence learning

in MSpNs. These are the input (presynaptic) activity, MSpN (postsynaptic) activity,

dopamine levels, and the temporal relationship between pre- and postsynaptic spikes.

Reynolds and Wickens (2002) reviewed a number of studies that evaluate some

or all of the first three of these factors. They summarized their findings with a

“three-factor rule” which says that long-term depression (LTD) (a sustained decrease

in synaptic strength) occurs when there is presynaptic activity and postsynaptic de-

polarization with a normal level of dopamine whereas LTP occurs when there is

presynaptic activity and postsynaptic depolarization with a high phasic increase of

dopamine.

Shen et al. (2008) provides a detailed account of how dopamine and the temporal

relationship between pre- and postsynaptic neural impulses/spikes (also called spike-

time dependent plasticity) influences learning in striatal neurons. Since we assume

that a conditioned stimulus will send presynaptic spikes to neurons and induce post-

synaptic spikes, we limit our discussion to this pre-post (positive) timing. Shen et al.

show that when D1 dopamine receptor agonists are applied in the presence of positive

spike timings, LTP is induced in direct pathway neurons, where D1 dopamine recep-

tors are most common. However, when D1 receptor antagonists are applied, LTD

occurs. The opposite is true of indirect pathway neurons, which dominantly express
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D2 dopamine receptors. Positive timings in the presence of D2 dopamine receptor

agonists lead to LTD whereas D2 receptor antagonists elicited LTP.

Dopamine enhances activity in direct pathway neurons when they are above a

certain membrane potential, and suppresses otherwise (Hernandez-Lopez, Bargas,

Surmeier, Reyes, & Galarraga, 1997). It also appears that dopamine suppresses

synaptic currents of indirect pathway neurons and thus excitability (Hernandez-Lopez

et al., 2000). Essentially, with phasic bursts of dopamine, the direct pathway neurons

become more active and take more of the responsibility for learning whereas with

dopamine dips, the indirect pathway neurons would appear to bear more of the weight.

It may be, then, that when a phasic dopamine burst occurs, the direct pathway is

primarily activated, leading to the LTP. This would help to reconcile the conclusions

of Reynolds and Wickens (2002) with the findings of Shen et al. (2008).



Chapter 7

The Striatal Lateral Inhibition Model

7.1 Chapter Summary

In this chapter, we begin by highlighting the seemingly implausible batch-learning

nature of LMS, that is, that LMS cycles through all of its past experiences (data)

until it reaches convergence. Then, I present a biologically plausible model of the

basal ganglia that can explain retrospective revaluation (a snapshot of regression in

action) without resorting to batch-learning. We also relate this to a number of other

existing classical conditioning models that explain this phenomena without batch-

learning. Finally, several experimental predictions are made. The majority of the

text in this chapter is an taken from Connor, LoLordo, and Trappenberg (2013),

in which I was primarily responsible for developing the theory and simulations and

drafting the manuscript.

7.2 Batch-learning versus Online-learning

LMS relies on batch-learning, the repeated reprocessing of all the data (or “trials”

in the classical conditioning simulations) until some low prediction error threshold is

reached. At face value, this appears to be biologically implausible, since there would

be the need to store all of this data and repeatedly process it while processing new

experiences. In animal learning, the theory of “rehearsal” resembles batch-wise train-

ing in machine learning to a certain degree. It may involve the recall and processing

(“rehearsing”) of surprising trials (Wagner, Rudy, & Whitlow, 1973), a recent or spe-

cial grouping of trials (Ratcliff, 1990), or trials related to the present trial (Chapman,

1991). At odds with this notion is that rehearsal may interfere with the processing

of the constant flow of incoming data. One way to resolve this would be to per-

form rehearsal in restful periods. In memory consolidation, hippocampal memories

are transferred over time to cortical areas for longer term storage (McGaugh, 2000).

77
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In one study, recordings of hippocampal and visual cortex neurons showed that rats

replayed their memory of traveling on a track as a number of spiking cells that fired

in the same sequence both during task execution and afterward during sleep (Ji &

Wilson, 2006). It has also been shown that replay occurs in the ventral striatum

during sleep (Lansink, Goltstein, Lankelma, McNaughton, & Pennartz, 2009), where

the model presented in this chapter finds its focus. A simple proposal of batch-like

learning in the brain, then, is that animals learn immediately from their experiences

and then, during sleep or restful periods, subconsciously replay and reprocess past

experience to further hone predictions.

If batch-like learning were the sole facility through which regression-like animal

learning phenomena were achieved, we should expect that phenomena such as ret-

rospective revaluation would not occur over short, mentally active periods when the

mental hardware is presumably needed for other processing (e.g., incoming signals)

and not performing replay. Yet, there are a number of examples where retrospective

revaluation phenomena have appeared under such conditions (e.g., Luque, Flores, &

Vadillo, 2013; McLaren et al., 2012; S. Gershman, Markman, & Otto, 2012). Special-

ized online-learning models serve as an alternative explanation of phenomena that

can be explained by batch-learning. For example, most models from the classical

conditioning literature that explain retrospective revaluation phenomena do so in an

online-learning way. Even if the brain were to do batch-learning, say, during sleep, an

online-learning method could still benefit from such repetition, as does the Rescorla-

Wagner model. Indeed, employing a method that can be batch-like during online

operation and then benefit from offline batch-processing would be more flexible than

a strictly batch-learning approach. We now turn to review a number of the online

models of classical conditioning that explain retrospective revaluation and present an

online-learning dual pathway model of the basal ganglia (with a focus on the striatum)

that does the same.
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7.3 Online Models of Classical Conditioning that Explain Retrospective

Revaluation

The associative classical conditioning models in the early days of retrospective revalu-

ation findings were unable to account for these phenomena. In response, the Rescorla-

Wagner model and the “Sometimes Opponent Process” (SOP) model of conditioning

(Wagner, 1981) were retrofitted to explain them (Dickinson & Burke, 1996; Aitken &

Dickinson, 2005; Van Hamme & Wasserman, 1994). Both models make use of within-

compound associations (associations between stimuli presented simultaneously) pre-

sumably developed in the first phase of the phenomena to later associatively retrieve

the absent stimulus of a subsequent phase. Then each model uses a mechanism to

revalue the absent stimulus. In the case of the Van Hamme and Wasserman ex-

tension of the Rescorla-Wagner model, the absent stimulus is retrieved and given a

negative alpha value. This leads to revaluation of the absent stimulus in the opposite

direction as the presented stimulus. The Van Hamme and Wasserman model was

recently elaborated upon by Witnauer and Miller (2011). Their model further devel-

ops the use of within-compound associations to enable it to account for second-order

retrospective revaluation phenomena, which we will discuss later. Within-compound

associations are also featured in other associative models of retrospective revaluation

(e.g., Kasprow, Schachtman, & Miller, 1987; Kutlu & Schmajuk, 2012; Jamieson,

Crump, & Hannah, 2012). For example, in the comparator hypothesis (Kasprow et

al., 1987; Miller & Matzel, 1988; Stout & Miller, 2007), the within-compound as-

sociations become important during the test phase. The presence of a stimulus at

test evokes previously paired stimuli through within-compound associations. The

presented stimulus’ response-evoking power becomes the associative strength of the

presented stimulus B minus a fraction of the product of A’s associative strength and

the strength of the A→B within-compound association. In recovery from overshad-

owing, subsequent extinction of cue A makes the product of the B→A association and

A→US association smaller than in a control group, thereby increasing the response-

evoking power of cue B at test. All of these within-compound models are online

learners.

A few online-learning models have taken a different approach, explaining ret-

rospective revaluation phenomena apart from within-compound associations. The
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“Adaptively Parameterised Error Correcting System” (APECS) model (McLaren,

1993; Le Pelley & McLaren, 2001; McLaren, 2011) explains these phenomena using

configural units that represent memories of compound trials. A few elemental asso-

ciative models (Ghirlanda, 2005; Dawson, 2008) also explain the phenomena apart

from within-compound associations. Yet, the models of Ghirlanda and Dawson bear

a key flaw. As will be shown, substantial revaluation in these models can occur

without an associative history between the elements, an apparent failure to match

the experimental data (e.g., Matzel et al., 1985) and the present general understand-

ing of these phenomena. In this chapter, we present a model which overcomes this

particular issue. The result is an online-learning neural network that can explain ret-

rospective revaluation phenomena without relying on within-compound associations.

Importantly, it also appears to suit basal ganglia structure and function.

7.4 Online Elemental Models of Retrospective Revaluation

The models of Dawson (2008) and Ghirlanda (2005) represent simple elemental mod-

els of retrospective revaluation phenomena. Dawson (2008) offers a model similar

to the Van Hamme and Wasserman (1994) extension but gives negative α values to

all absent stimuli. Ghirlanda (2005) took a different approach, which we will now

discuss in some depth. This model represents stimuli in a distributed format instead

of the usual one-to-one stimulus-input arrangement. Each stimulus in this model is

described as a compound of many stimulus elements (mini-stimuli). For a feature

such as colour, we could model 100 stimulus elements spanning the visible colour

spectrum, each element representing a different wavelength. Here, Ghirlanda rep-

resents each punctate stimulus (e.g., stimulus A) as a Gaussian pattern of stimulus

elements, as shown in Figure 7.1. Formally, the input provided to Ghirlanda’s model

is

Si = K +
∑
j

αje
− ( i

N
−μj)

2

σ2 (7.1)

where Si represents the i
th stimulus element’s input salience, αj is the salience of the

jth stimulus (analogous to the Rescorla-Wagner model’s α term), andN represents the

number of stimulus elements. Each stimulus’ Gaussian pattern of stimulus elements

is centered about a specific feature value (e.g., wavelength) between 0 and 1 (μj), and
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has a certain width (σ). In simulations of Ghirlanda’s model and our proposed model,

we use 100 stimulus elements spanning between feature values of 0 and 1, and use

σ = 1
10
√
2
to fit several Gaussian-shaped stimuli into this range. The environmental

context’s representation does not have a Gaussian shape. Instead, it is represented

as a flat function, such that all 100 stimulus elements have the same value, K = 0.2.

In a simulated trial, the input provided to Ghirlanda’s model (Si) is the sum of

the Gaussian patterns for each presented stimulus and the flat background context.

The Gaussian shaped stimuli L, T, and C that we use in our simulations are shown

in Figure 7.1, as well as an example input LTC compound, which incorporates the

context (X).

Learning proceeds after each trial as in the Rescorla-Wagner model except that

each stimulus element has an associative strength that is updated instead of associa-

tive strengths for punctate CSs,

ΔWi = Siβ(λ− rs) (7.2)

rs =
∑
i

WiSi (7.3)

where Wi represents the ith distributed stimulus element’s associative strength, and

rs computes the total associative strength for all stimuli including the context on a

given trial. For simple Pavlovian conditioning (i.e., AX+, X-, where X- represents the

extinction of the context during the intertrial interval), the AX+ trials pull the Wi

values upward toward rAX = 1 while the X- trials pull Wi values downward toward

rX = 0. At the end of this tug-of-war, Wi values are found that satisfy both pulls and

thus asymptotes are reached. The resulting associative strengths can be pictured as

a Gaussian curve shifted downward (negatively) by an amount similar to the context

value, K.

One of the earliest investigations of recovery from overshadowing was reported by

Matzel et al. (1985). In Experiment 3, they paired a light and tone in the first phase,

followed by reinforcement (TL+). They also reinforced separate presentations of a

click stimulus (C+). In the second phase, they separated subjects into three groups:

Group ET received non-reinforced presentations of the tone, Group EC received non-

reinforced presentations of the click stimulus, and Group O was placed in conditioning

chambers (as was done for the other groups) but no additional stimulus presentations



82

were made. In the third phase, testing was performed. Results from their experiment

and results from a simulation of this procedure using Ghirlanda’s model are shown

in Figure 7.2. The first phase of simulation (TLX+, CX+, X-) leads to a set of

Wi values that could be depicted as three negatively shifted Gaussians (rT = 0.50,

rL = 0.50, rC = 1.0). In the second phase, the extinction of the tone (rT = 0.0)

in Group ET inflates responding to the light (rL = 0.61), which corresponds to the

ordinal findings in Matzel el al. (1985). However, when we examine Group EC, where

the separately conditioned click stimulus is extinguished, we find that responding to

the light stimulus has also been inflated (rL = 0.71), which is at variance with the

experimental data in Figure 7.2. The extinction of the tone stimulus in Group ET

also inflated responding to the click stimulus above Group O, the control (Group ET:

rC = 1.11, Group O: rC = 1.0) and extinction of the click stimulus in Group EC

also inflated the tone above Group O (Group EC: rT = 0.71, Group O: rT = 0.50

). These two revaluations also disagree with the experimental findings. In summary,

these simulations show that retrospective revaluation in Ghirlanda’s model does not

require a history of compound conditioning. Instead, it predicts that the revaluing

of a conditioned stimulus will substantially affect the associative strength of even

separately conditioned stimuli. Dawson’s (2008) model makes the same prediction,

apparently employing a negative α for all absent stimuli. These simple associative

models not only disagree with the findings of Matzel et al. (1985) and others (Miller,

Barnet, & Grahame, 1992; Cole, Barnet, & Miller, 1995) but also the current gen-

eral understanding of these phenomena (but see Escobar, PineŻno, & Matute, 2002;

Amundson, Escobar, & Miller, 2003). In practical terms, if conditioning a stimulus

could substantially alter the responses to unrelated stimuli, such interference could

accumulate and confuse an organism about what each stimulus actually predicts.

As we will show, the present model overcomes the problems described above and

yet, like the simple associative models, does not rely upon within-compound associa-

tions. In what follows, we will describe our model and then look at the contributions

of each of its mechanisms by enabling them one at a time while simulating several

classical conditioning phenomena. Ultimately, we will arrive at an explanation for

retrospective revaluation phenomena.
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Figure 7.1: Distributed stimuli used in a simulation of the Ghirlanda (2005) model.
Gaussian-shaped stimuli L, T, and C represent conditioned stimuli and the flat func-
tion X represents the context. The input to Ghirlanda’s model is the sum of the
present stimuli and the context, of which the example LTCX is given. There are 100
stimulus elements.

7.5 The Striatal Lateral Inhibition Model (SLIM)

Here we show how associative strength is computed and updated in our neural net-

work model, which we refer to as the striatal lateral inhibition model (SLIM). It is

illustrated in Figure 7.3. Where possible, we attempt to maintain biological plausibil-

ity and will briefly mention where this motivation influences certain design decisions.

Possible neurobiological correspondences reflecting specific structural and learning

rule details of the basal ganglia are discussed in the next section.

We represent a stimulus in the same Gaussian form as in Ghirlanda’s model.

Unlike the Ghirlanda model, however, we do not use a flat function to represent

the context. Instead, the context is expressed by its own Gaussian-shaped curve, to

represent that an environmental context is really a collection of stimuli itself. This

approach also allows the possibility of having different contexts, if so desired. Given

a certain distributed CS as input, the model responds with activity in its neurons,

which equals the excitatory input minus the lateral competition. Upon stimulus

presentation, each neuron is allowed to settle into an internal activity (uj) according

to

Δuj =
1

τ
(−uj + (

1

N

N∑
i=1

Siw
I
ij −

1

M

M∑
k=1

r(uk)w
L
kj)) (7.4)

where τ = 10, N = 100 is the number of stimulus elements, and M = 2500 is
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Figure 7.2: Results of a lick suppression experiment (3) in Matzel et al. (1985)
and its simulation using the model of Ghirlanda (2005). Responding shown in the
upper panels is in terms of mean log latency (in seconds) to make 25 licks in the
presence of the light stimulus. Longer latencies indicate greater suppression and
greater associative strength. Corresponding simulations of associative strengths from
Ghirlanda’s model are provided in the lower panels. In the simulations a procedure
similar to the experiment was used (‘X’ is the context): Phase 1: TLX+, X-, CX+,
X-, Phase 2: Group O: X-, X-, Group ET: TX-, X-, Group EC: CX-, X-, Phase 3:
LX-, TX-, CX- (all groups). Sufficient trials were used in each phase of simulation
to ensure that responses to a stimulus reached asymptotic levels. In Ghirlanda’s
model, extinction of the tone in phase 2 (Group ET) inflated the light above the
overshadowing control group (Group O), which corresponds to the findings of Matzel
et al.. The extinction of the click (Group EC) in simulation, however, also strongly
inflated the light, which is a failure to predict the associated experimental data. The
extinction of the tone in the model also inflated the click and vice versa, but this also
fails to occur in the data. Experimental data from Matzel el al. (1985), Experiment
3, used by permission.
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the number of neurons in the model. We use a large number of model neurons

because it improves the consistency of the simulation results. The distributed stimulus

elements, Si, are connected to each neuron with a certain connection probability

(P I = 0.25). Subsequent equations appear to invoke full connectivity. However an

absent connection is represented as an immutable connection weight of zero, which

helps to simplify both the formal description and implementation of the model. This

partial connectivity allows certain neurons to prefer activating in response to one

stimulus or another and agrees with the reality that neural projections are not fully

connected. The synaptic weights receiving stimulus input, wI
ij, are initialized with

a value of 20 for each connection made. Note that the indices i and j represent

specific stimulus elements and specific model neurons respectively. So, instead of

having a single weight per stimulus element, as in the Ghirlanda model, there is a

single weight per stimulus element for each neuron in the model. Each neuron also

has lateral synaptic weights, which receive inhibitory inputs from competing neurons.

The lateral weight wL
kj is located on neuron j and receives input from competing

neuron k. These weights are also initialized to 20 for connections made and recurrent

connections are permitted and the connection probability is PL = 0.25. The term

r(uk) is an activation function transforming the internal activation into a mean neuron

firing rate,

r(uk) = G(uk)
2 (7.5)

where G(uk) = 0 when uk < 0 and G(uk) = uk otherwise is the threshold-linear

function (Usher & McClelland, 2001), which means that neurons become silent when

their internal activation goes below zero (analogous to real neurons). The outputs of

these model neurons converge as a sum of the neuron firing rates, r(uj), with half of

the neurons increasing the output and the other half decreasing it,

ΣV =
λS

M

M∑
j=1

T (j)r(uj), (7.6)

T (j) = sgn(
j
M
2

− 1) (7.7)

where the sgn() function returns the sign of its argument and λS is a factor that

translates the output from a sum of activities into units of associative strength (λS =



86

2500). The function T (j) is +1 for half of the neurons (hereafter called “positive”

neurons) and −1 for the other half (“negative” neurons) based on their index, j.

The final sum represents the combined associative strength of the input stimuli, or

the expected associative strength (ΣV ), the analogue to rs in Equation 7.3 from

Ghirlanda’s model. This approach permits both positive and negative associative

strengths by using a population of positively contributing and negatively contributing

neurons. For a positive associative strength, the positive neurons are (on average)

more active than the negative neurons. Negative associative strengths are expressed

by the opposite difference of activity. The segregation of neurons into these two groups

allows all input connection weights to be consistently positive, which is more plausible

biologically speaking. There are few instances where a real neural connection can

switch from having a positive to a negative influence. Also, as we will see, having two

segregated groups of neurons contributes to generating a novel configural mechanism

from elemental inputs.

Importantly, the ensemble of neurons that wins the competition and remains active

is determined by the stimulus input provided. Because it is the activities of model

neurons that ultimately combine to express associative strength, the active neural

ensembles come to represent the associative strengths of the stimuli that evoke them.

The learning rules cooperate by only updating the active ensemble neurons and only

for non-zero stimulus elements (i.e., present stimuli). The learning rule used to update

the input weights of each neuron is,

ΔwI
ij = T (j)Siβ(λ− ΣV )G(uj) (7.8)

Notice that updates to a neuron are proportional to its internal activation when it

is above zero only (i.e., G(uj)) and thus is part of the ensemble of active neurons.

Also notice that weights associated with distributed stimulus elements that have zero

salience will also not change. This ensures that input weights are only updated for

presented stimuli. The learning rule for the lateral weights, which receive inputs from

other neurons, is

ΔwL
kj = T (j)H(uk)ρ(λ− ΣV )G(uj) (7.9)

where H() is the Heaviside or unit step function (1 when the argument is greater than

zero and 0 otherwise), which means that learning will only occur if the sending neuron,
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Figure 7.3: The striatal lateral inhibition model (SLIM). The stimulus element in-
puts represented by the rounded boxes take exactly the same distributed input as
used in Ghirlanda’s model, except that the context here is also modeled as a Gaus-
sian pattern. Each dashed line in the model represents a connection that will (or will
not) be established upon model initialization with some fixed probability. Neurons in
the model, represented by circles, receive input and become excited. The connections
between the neurons are inhibitory. These connections induce competition between
the neurons, which reduces neuron activities and leads to a subset of neurons that
dominates and suppresses all other neurons. The activities of the neurons are accu-
mulated (bottom-center circle), where one half of these neurons add and the other
half subtract from the sum. The total is appropriately scaled and represents the sum
of associative strengths (ΣV ) for the input stimuli. Conditioning is accomplished by
changing the connection weights of model neurons. This is a function of the several
factors including the US surprisingness (computed in the bottom-left circle), which
is represented by the broad arrow leading back to the input and lateral connections.
Importantly, the stimuli presented on a trial determine the ensemble of active neurons
that develops through competition. Since it is the sum of activities of model neurons
that gives the associative strength, the active neural ensembles come to represent the
associative strengths of the stimuli that evoke them.
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indexed as k, is active. The parameter ρ in Equation 7.9 is the learning rate parameter

for lateral weights (ρ = 0.5β). In this model, an individual neuron’s weights, wI
ij and

wL
jk, are always positive. This keeps the stimulus input influence excitatory and

the lateral influence inhibitory in Equation 7.4. Weight changes must have opposite

signs for the positive and negative neurons, so that these opposing pathways learn

cooperatively. The function T (j) defined in Equation 7.7 achieves this. Equation 7.8

is essentially a Hebbian learning rule (from its pre- and postsynaptic activity terms)

modulated by the US surprisingness error term.

7.6 SLIM’s Relationship to the Neurobiology of the Basal Ganglia

The present model, although described in an abstract way, can be readily related to

features of the neurobiology of the ventral striatum and basal ganglia. The positive

and negative neurons map to the striatal projection neurons belonging to the direct

and indirect pathways of the basal ganglia, respectively. The input weight learning

rule (Equation 7.8) corresponds with experimental findings regarding the effects of

dopamine (λ−ΣV ) and pre- (Si) and postsynaptic activity (G(uj)) on cortico-striatal

synapses (Frank & Fossella, 2011; Reynolds & Wickens, 2002; Schultz et al., 1997;

Shen et al., 2008). In short, SLIM represents a small patch of striatum that receives

a small portion of topologically distributed cortical inputs.

The key feature of the present model that sets it apart from related neurobiologi-

cal models of the basal ganglia (Houk et al., 1995; Frank, 2005) is its lateral inhibition

and lateral learning. SLIM’s lateral connectivity mirrors the rarely reciprocated lat-

eral connections of the more common local laterally projecting MSpNs in the striatum

(Kawaguchi et al., 1990). As noted earlier, although the lateral inhibitory connec-

tions are believed to be weak, fast spiking inhibitory interneurons provide additional

inhibition (Tepper et al., 2008; Gruber et al., 2009). Therefore, the lateral inhibitory

component of this model could roughly be viewed as representing the contributions of

both types of inhibition. Neurobiology concerning the lateral learning rule, however,

is less clear than evidence concerning its input weight counterpart. Long-term learn-

ing has been found to occur in the lateral synaptic connections of striatal projection

neurons (Rueda-Orozco et al., 2009), although how this relates to a dopamine-based

error term is not clear. In the model, the learning rule for these lateral connections is
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similar to that of the input connections, except that the CS intensity, I, is replaced

by a term related to the activity of one of its laterally inhibiting neurons.

7.7 Classical Conditioning Simulations and SLIM

SLIM is readily integrated into trial-based simulations of classical conditioning exper-

iments. A single trial consists of presenting stimuli, presenting the outcome (US or no

US), computing the surprisingness, and adjusting synaptic weights according to the

learning rules. Although we simulate phenomena that develop CS-US associations,

the model does not explicitly exclude the notion of developing CS-CS associations,

though these do not occur in the present simulations. Our model, like many others,

does not define any CS-US timing, thereby excluding certain temporal phenomena

(e.g., serial feature-positive discrimination) from its scope. Experimental findings

and model predictions are ordinal in nature, so the usual assumption that associative

strength is monotonically translated into conditioned responding is made here.

Salience levels play a role in our simulations. The US (β = 0.1) has a value

of λ = 100 when the US is present and λ = 0 when it is absent. Conditioned

stimuli have a salience of α = 1.0, while the context (X) has a salience of α =

0.2. Each intertrial interval is simulated like a single conditioning trial, where the

context is presented but not reinforced (X-), just as in simulations of Ghirlanda’s

model. Associative strength accrued to the context is partly extinguished during these

intertrial intervals. Parameters of the model used in simulations have been specified

in the preceding section. A similar version of the present model was described in

Connor and Trappenberg (2011) and shows how performance of the model varies

within appropriate ranges for selected parameters.

An example of how conditioning proceeds in this network is shown in Figure 7.4.

In excitatory conditioning (CS→US) trials, the synaptic weights of active positive

neurons are increased while the synaptic weights of active negative neurons are de-

creased. This results in increased activity in the positive neurons and decreased activ-

ity in the negative neurons for subsequent trials. The difference between the activity

in these two pathways gives a final positive associative strength. As conditioning

trials continue, the associative strength will grow until it matches that supportable

by the US. More and more neurons are also silenced through lateral inhibition as
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an ensemble of neurons increasingly dominates. During extinction, the opposite pro-

cess happens, cutting down positive neuron activity and restoring negative neuron

activity. Also, the active ensemble will grow to include more neurons once again. In

short, increases and decreases in associative strength track increases and decreases of

synaptic weights in the positive neurons, and the opposite relationship exists between

associative strength and the synaptic weights of negative neurons.

In the following sections we use additional classical conditioning simulations to

show how certain model mechanisms affect model behaviour. Beyond the acquisition

example in Figure 7.4, we do not revisit demonstrations of the mechanisms borrowed

from the Rescorla-Wagner model but rather focus on the unique mechanisms of the

present model. Building upward, we first show how the combination of the activity

dependent learning term G(uj) and having dual pathways (i.e., positive and negative

neurons) develops configural representations from individual stimuli. Then we demon-

strate how adding lateral inhibition sculpts ensembles of active neurons, and finally

how learning in these lateral connections enables retrospective revaluation effects.

7.7.1 Activity Proportional Learning and Dual Pathways Perform

Configuration

Recall that there are positive and negative neurons in the model whose influences

sum to provide the overall associative strength. Changes to the weights of these

neurons are made in proportion to their internal activation, G(uj) (Equations 7.8

and 7.9). The combination of these two mechanisms leads to the development of

configural cues. To demonstrate this, we simulate the negative patterning procedure,

which in a single phase interleaves trials of AB- with A+ and B+ trials. The ordinal

finding is that responding to the compound AB during a subsequent test is less

than responding to either A or B alone (Woodbury, 1943; Delamater, Sosa, & Katz,

1999; Harris, Gharaei, & Moore, 2009; Redhead & Pearce, 1995). To demonstrate

the combined efforts of the two mechanisms, Figure 7.5 shows simulated negative

patterning results for our model with and without each of them. In addition, results

when lateral inhibition and lateral learning are enabled are also given to show that

these additional mechanisms do not interfere. Note that to disable the dual pathway

nature of the model, we eliminate excitatory input to the negative neurons to silence
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Figure 7.4: SLIM during excitatory conditioning, simulated using only 50 neurons
for demonstration purposes. a) Activity in some positive neurons (neurons 26-50)
increases with the number of trials. Other neurons lose the competition and are
silenced. Negative neurons (1-25) are either suppressed or very weakly active. b)
Overall associative strength increases, approaching asymptote within 30 trials. c)
The average change in input synaptic weights for each neuron between the first and
last trials shows a substantial increase for positive neurons and a slight decrease for
negative neurons. d) Lateral synaptic weights also increase for positive neurons and
decrease for negative neurons.
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Figure 7.5: Simulation of negative patterning using various configurations of the
present model for 15 differently initialized models (stat rats). Each block consists
of 3 trials (A+, B+, AB-). Negative patterning requires that both the positive and
negative neurons exist and that there is activity proportional learning. The lateral
inhibition and lateral learning mechanisms do not assist but also do not substantially
interfere. Acronyms: DP - Dual Pathway, APL - Activity Proportional Learning, LI
- Lateral Inhibition, LL - Lateral Learning

them. To disable activity proportional learning, we simulate without the last term

in Equations 7.8 and 7.9. Disabling lateral inhibition is accomplished by fixing all

lateral weights to zero and disabling lateral learning is done by setting ρ = 0.

As Figure 7.5 shows, when either the dual pathway or activity proportional learn-

ing mechanisms work alone, negative patterning fails. When both mechanisms are

engaged, however, the phenomenon emerges. The way in which the model accom-

plishes this can be seen from the input weights. Figure 7.6 shows that when activity

proportional learning and both pathways are enabled, positive neuron weights special-

ize for either stimulus A or B, while negative neuron weights grow similarly for each

stimulus. When only a single stimulus (A or B) is present, the specializing positive

neurons activate strongly, whereas the unspecialized negative neurons activate little.
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Figure 7.6: Correlation between the weights in a random selection of model neurons
and stimuli A (ΣSA

i w
I
ij) and B (ΣSB

i w
I
ij) when both pathways and activity propor-

tional learning are enabled (i.e., lateral inhibition and lateral learning are disabled).
Negative neurons grow relatively evenly for both stimuli A and B, making them re-
spond substantially more to the compound AB than to A or B alone. In contrast,
positive neurons’ weights tend to specialize (increase) for either stimulus A or B and
decrease for the other stimulus.

The sum of large positive neuron activations minus small negative neuron activations

results in asymptotic (λ) conditioned responding. Now, recall that the activation

function is r(uj) = G(uj)
2, which means that doubling the stimulus input (which

doubles uj) will quadruple a neuron’s output. So, when both stimuli are present

(AB) the negative neurons’ activations are increased exponentially, which enables

them to balance out the positive neuron activations, resulting in zero conditioned

responding. The weights develop as follows: initial stages of training show that for

positive neurons which are activated more strongly for a certain stimulus (e.g., A),

the input weights increase more on A trials than they decrease on AB- trials. Con-

versely weights receiving connections from the stimulus for which a positive neuron’s

activation is weaker (e.g., B) will have a net decrease because their reinforced trial in-

creases the weights less than the decrease occurring from AB- trials. Negative neuron

weights decrease in early stages because the reinforced trials have a larger positive

error term (which decreases negative neuron weights) than the negative error term on

AB- trials. As associative strength increases to the individual stimuli, however, this

situation reverses and negative neuron weights begin to grow more on the AB- trials

and do so roughly evenly for A and B.
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Although not a focus of this thesis, this approach to developing configural cues

is quite novel. Its elemental basis puts it in the same realm as Harris’ elemental

model (2006) and the replaced elements theory (Brandon & Wagner, 1998; Wagner

& Brandon, 2001; Wagner, 2003). In such models, each stimulus is represented by

a set of elements. Elements that are active (or within an attentional buffer) during

conditioning receive larger changes in associative strength than the others. Certain

elements for each stimulus are allowed to become activated depending on whether the

stimulus is presented alone or in compound. Therefore, in the negative patterning

procedure, some stimulus elements are primarily conditioned in the single stimulus

trials but not the compound trials and vice versa. This allows some elements to

encode the single-stimulus associative strength and others to help represent an oppo-

site compound associative strength. The present model departs radically from this

idea, not needing to deactivate stimulus elements, but instead deriving its configural

ability from its dual pathways and activity proportional learning in the context of

a squared activation function. Additional work is needed to evaluate this approach

by simulating other experimental paradigms and drawing thorough comparisons with

the other configural models on the market. For the present work, however, we have

focused on the model’s ability to explain retrospective revaluation phenomena, which

is supported by lateral inhibitory connections and the learning therein, to which we

now turn.

7.7.2 Adding Lateral Inhibition

Figure 7.7 shows the neuron response following negative patterning for a model with

only 200 neurons for illustration purposes, where both panels show models that have

activity proportional learning and both pathways enabled. In the top panel lateral

inhibition is disabled and in the bottom panel it is enabled (without learning, ρ = 0).

Although the difference in associative strength between the two conditions will be

small (e.g., see comparison in Figure 7.5), the neural activity takes a new form.

Without lateral inhibition, all neurons are active for every input. When lateral inhi-

bition is enabled, a unique ensemble of active neurons takes shape in response to the

presentation of each stimulus or compound. On the surface, it may seem that this

mechanism is very similar to the replaced elements mechanism of models noted above
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Figure 7.7: Model neuron activity after negative patterning. Using only 200 neurons
for demonstration purposes, the simulated activity for each stimulus or compound
is computed and drawn as a stacked column in the bar graph, where each column
represents one neuron. The length of each colored bar in the stack is the amount of
activity observed for the condition it represents. The left half of the neurons (1-100)
are negative neurons and the right half (101-200) are positive neurons. When lateral
inhibition is disabled, all neurons respond to some degree for every stimulus, and thus
take part in representing every stimulus’ associative strength. When lateral inhibition
is enabled, however, only a fraction of the neurons are active for any given stimu-
lus. This means that each neuron takes part in representing only certain stimuli’s
associative strengths.

which perform configuration. Although lateral inhibition may technically be able to

behave in this way, it is ancillary in our simulations. In fact, lateral inhibition does

not appear to explain any additional phenomena in this context, besides taking part

in helping lateral learning explain retrospective revaluation phenomena, which will

be discussed later. A potential benefit, however, is that because it uses fewer neurons

to represent the same information, the overall capacity of the system to learn further

stimulus-outcome relationships should increase.

With lateral inhibition enabled, unique active ensembles emerge for specific input

stimuli, such that when the input stimuli change, so will the active ensemble to some
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degree. Roughly speaking, the weights of the neurons in the ensemble match the

distributed stimulus input profile more closely than do the weights of neurons that

are silenced. Thus, the similarity between two ensembles depends on the similarity

of the two stimuli, and is reduced as stimuli become dissimilar. This is shown in

Figure 7.8, where the ensemble similarity between a previously conditioned stimulus

having a specific feature value (e.g., green light) and all feature values (i.e., green,

red, blue, yellow, etc.) is computed, both for when lateral inhibition is disabled

and enabled (but no lateral learning). Although there is no difference in associative

strength with and without lateral inhibition (upper panel), the similarity between

the neural activations of vastly different features (e.g., 0.5 vs. 0.2, or 0.5 vs. 0.9) is

smaller with lateral inhibition (lower panel). Without lateral inhibition, there will be

a greater similarity between the neural activations of different features because every

neuron is active for every feature.

Until now, we have discussed similarity between two distinct stimuli. Consider a

related case in which one stimulus is joined by a second stimulus to make a compound.

Because there is substantial similarity between the compound and its constituents, the

activation of neurons by the compound will be more similar to the activation evoked

by one of its constituents than to the activation evoked by an unrelated stimulus.

7.7.3 Adding Lateral Learning

Simulations of recovery from overshadowing using the present model are shown in

Figure 7.9 following Matzel et al. (1985) and the simulations of Ghirlanda’s model

described earlier. In particular, these simulations show: (1) that recovery only occurs

when lateral learning is enabled and (2) that revaluing a conditioned stimulus only

significantly affects the associative strengths of stimuli with which it was previously

paired, and not unrelated stimuli.

To understand how lateral learning accomplishes all of this, we will focus on two

positive neurons and explain how recovery from overshadowing can occur, as shown

in Figure 7.10. Negative neurons do not play a major role in this phenomenon, but

may take a more significant role in other retrospective revaluation phenomena (e.g.,

recovery from conditioned inhibition by extinction of the excitor). Excitatory con-

ditioning of a compound (Phase 1) increases the input weights of its active neurons.
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Figure 7.8: Measures of associative strength and active ensemble similarity between
a previously conditioned stimulus (feature value = 0.5) and all other feature values (0
to 1) with and without lateral inhibition. In both cases, we see that CSs with similar
feature values evoke substantially similar ensembles and thus associative strengths.
Adding lateral inhibition tends to lower the similarity between the ensembles activated
by unrelated stimuli. Similarity is computed as the cosine of the angle (i.e., the
normalized dot product) between the neural ensembles activated for the previously
conditioned stimulus and the test stimulus.
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Figure 7.9: Simulations of recovery from overshadowing (Matzel et al. (1985), Ex-
periment 3) using the present model when lateral learning is disabled (ρ = 0) and
enabled (ρ > 0). Error bars represent the small deviation in results for 15 differently
initialized models (stat rats). The simulation procedure matches that used for earlier
simulations of the Ghirlanda (2005) model: Phase 1 (50 trials): TLX+, X-, CX+,
X-, Phase 2 (200 trials): Group O: X-, X-, Group ET: TX-, X-, Group EC: CX-, X-,
Phase 3 (1 trial): LX-, TX-, CX- (all groups). Circled in the results, we see that
extinction of the tone in phase 2 of the simulation (Group ET) revalued (inflated)
the light above the control group (Group O) when lateral learning is enabled, but not
when it is disabled. Also in agreement with the experimental data, the simulations
did not substantially revalue any other stimuli (regardless of whether or not lateral
learning was enabled), in contrast to the simulations of Ghirlanda’s model.
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Because ρ > 0, the lateral inhibitory connections between the active neurons grow

as well. In Phase 2, only one of the constituents (A) is presented. Because of its

history of activating the ensemble associated with the compound (AB), there is a

substantial degree of similarity between the ensembles activated by AB and A and

thus these same two positive neurons are activated again. When the presentation

of A is followed by no reinforcement, these active neurons’ A-specific input weights

and their lateral weights are decreased. In Phase 3, when the absent stimulus (B)

is tested, we detect a change. Although the B-specific input weights did not change

(because there was no input from stimulus B in Phase 2), its active ensemble’s lateral

inhibitory weights are smaller. As a result, there is less inhibition, which increases

these positive neurons’ overall activities and thereby increases the associative strength

of B. Intuitively speaking, excitatory conditioning of a compound ties its constituents

together in terms of causing them to activate similar ensembles of neurons in future

trials. Then, interactions occur between these stimuli through lateral learning in

their shared connections. The result is that extinguishing one increases the associa-

tive strength of the other (i.e., recovery from overshadowing), and increasing one’s

associative strength will decrease the other’s (i.e., backward blocking). In this way,

the shared lateral connections play a similar role as the within-compound associa-

tions found in other models, but do not retrieve explicit stimuli per se. Without

the compound conditioning step, as is the case for unrelated stimuli, there would be

fewer shared neurons (and thus lateral connections) in the ensembles of the individual

stimuli. As a result, there would be far less change in the lateral inhibition for an

absent stimulus were an unrelated stimulus presented and revalued.

7.8 Second-order Retrospective Revaluation and Relation to Other

Models

In recent years, theorists have focused on the phenomena of second order retrospective

revaluation. The second-order retrospective revaluation procedure involves condition-

ing, in successive phases, two compounds that share a common element (i.e., Phase

1: AX+, Phase 2: XB+) and in a third phase revaluing one of the non-shared stimuli

(A).
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Figure 7.10: Recovery from overshadowing as demonstrated in the present model.
This diagram focuses on two positive neurons represented by circles that are active
whenever A, B, or AB are presented. Each neuron receives excitatory inputs from
stimuli A and B and an inhibitory connection from the other neuron. (a) The neu-
rons’ synaptic weights, which are represented thermometer style in the rectangles
associated with each connection, are initialized to about half value. (b) After condi-
tioning to compound AB (Phase 1), input weights connecting A and B to the neurons
are increased. Also increased are the lateral weights between these active neurons.
(c) In the second phase, A is presented but not reinforced, which decreases its input
weights and lateral weights. (d) Subsequent testing of B shows an increase of asso-
ciative strength. Although B’s input weights are unchanged, its lateral weights have
decreased. Less inhibition means greater activity in these positive neurons, which
translates into more associative strength (Equation 7.6).
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DeHouwer and Beckers (2002) ran three experiments, using a weapons/tanks pro-

cedure. In the first experiment they did Phase 1: CT1+, Phase 2: T1T2+, and Phase

3: either C+ or C- between groups. Group C+ had a much higher rating of C, a lower

rating of T1, and a higher rating of T2. The next experiment looked at third-order

retrospective revaluation: Phase 1: CT1+, Phase 2: T1T2+, Phase 3: T2T3+, and

Phase 4: C+ or C- between groups. Group C+ had higher ratings for C and T2 than

Group C- did, but lower ratings for T1 and T3. All the effects were substantial. The

next experiment looked at second-order retrospective revaluation in a within-subjects

design, essentially Phase 1: C1T1+, C2T3+, Phase 2: T1T2+, T3T4+, and Phase

3: C1+, C2-. Ratings of C1 were higher than C2, and T3 was rated higher than T1

(first-order retrospective revaluation). There was also a big second-order retrospec-

tive revaluation effect: T2 was higher than T4. Melchers, Lachnit and Shanks (2004)

obtained results similar to DeHouwer and Beckers in a within-subjects experiment

within the foods/allergies setting. Their experiment 3 looked at second-order retro-

spective revaluation (e.g., Phase 1: AB+, BC+, Phase 2: C+ vs. Phase 1: DE+,

EF+, Phase 2: F-) and its direct analogue (e.g., where the element trials came be-

fore the compound trials). First-order retrospective revaluation occurred (e.g., B<E),

and second-order retrospective revaluation was in the opposite direction (e.g., A>D).

Denniston et al. (2001) using rats, employed a between groups paradigm: Phase 1:

CA+, Phase 2: BA+, then either C- or nothing. The conditioned response to B was

lower in the C- group than in the controls. This finding is consistent with DeHouwer

and Beckers (2002) and Melchers, Lachnit and Shanks (2004).

McLaren, Forrest and McLaren (2012) reported an experiment on retrospective

revaluation using the foods/allergies setting. First- and second-order retrospective

revaluation were assessed in a within-groups design, so Phase 1: BC+, DE+, Phase

2: AB+, EF+, and Phase 3: A+, F-. Ratings of B and C both declined, relative

to D and E, and the first-order effect was about as big as the second-order effect.

Their second order result is opposite of the findings described above. McLaren et al.

reported that if they instead provided all the data at once on handouts, which they

interpreted as entailing a low memory load, then they got a different result; ratings

of B and C moved in opposite directions after A+, and ratings of D and E moved

in opposite directions after F-. They further suggested that the findings of Melchers
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et al., which were opposite to their own, were the result of a relatively low memory

load. This hypothesis needs to be tested in an experiment that varies memory load.

So, we have a data conflict, but what do the models predict? McLaren et al. said

that their participants who received all the data on handouts reported using rational

inference to derive their conclusions, so that after Phase 1: BC+, Phase 2: AB+, and

Phase 3: A+, they reasoned that if food A was responsible for the allergy, then food B

must not have been, and if food B was not responsible, then food C was responsible.

Witnauer and Miller (2011) compared the second-order retrospective revaluation

predictions that are made by the Van Hamme and Wasserman extension (1994) of the

Rescorla-Wagner model (1972) with their own extension that involved more develop-

ment of the role of within-compound associations. The Van Hamme and Wasserman

extension modeled retrospective revaluation by updating an absent stimulus’ associa-

tive strength with a negative learning rate, whenever a stimulus was presented with

which it had a within-compound association. Witnauer and Miller’s extension ad-

ditionally multiplied this by the sum of within-compound associations between each

of the present stimuli on a trial and the absent stimulus. Witnauer and Miller show

that while both models demonstrate first-order retrospective revaluation effects, only

their extension demonstrates the most commonly observed second-order retrospective

revaluation effects, in which the first- and second-order associates move in opposite di-

rections. It appears that the critical difference is that Witnauer and Miller’s enhanced

within-compound model encodes the sign of the within-compound associations (i.e.,

the inhibitory association between the non-shared elements of the two compounds),

whereas the Van Hamme and Wasserman extension does not. Witnauer and Miller

note that Stout and Miller’s Sometimes-Competing Retrieval model (Stout & Miller,

2007) also predicts the second-order (and higher-order) effects, and that Dickinson

and Burke’s modification of SOP does not. They conclude that all models that can

explain the most commonly observed higher-order retrospective revaluation effects

use within-compound associations.

In a second-order retrospective revaluation experiment with Phase 1: AB+, Phase

2: BC+, Phase 3: A-, the present model predicts a different result than would be made

by within-compound models. Because of lateral learning, recovery from overshadow-

ing will occur to the shared element (i.e., B’s associative strength will increase), but
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the model also predicts that the other, non-shared element (C) will also elicit more

responding, when tested. The reason for this is that when BC is conditioned, it

will gravitate toward using a relatively similar ensemble of neurons as the previously

conditioned AB. As a result, as A is extinguished, C’s somewhat similar ensemble

will have its lateral inhibition lowered as well. This leads to greater positive neuron

activity upon presentation of C and thus greater associative strength.

If retrieval by within-compound association is the mechanism by which retrospec-

tive revaluation occurs, then we would expect that large within-compound associ-

ations should lead to greater retrospective revaluation than weak within-compound

associations. Consider the following procedure: Phase 1: AX+, Phase 2: AX-, Phase

3: AY+, BX+, Phase 4: A-, Phase 5: X-, Y- (Test). After the first two phases, the

within-compound associations between A and X should be relatively large, despite

the fact that responding to AX after the second phase should have returned to near

initial conditions (i.e., low responding). In the third phase, A and X are separated

but conditioned in compound with Y and B, respectively. Given that the AX within

compound association is stronger than the AY within-compound association after

phase 3, then within-compound models predict that stimulus X should be revalued

more than stimulus Y. The present model makes the opposite prediction, that Y will

be revalued more than X. The first phase develops a neural ensemble for AX but the

second phase extinguishes this, essentially restoring the network to initial conditions.

The third and fourth phases are then seen as a simple recovery from overshadowing

paradigm, where Y is revalued more than X. Rational inference makes the same pre-

diction as the present model because at the end of phase 2, the inference would be

that neither A nor X predicts the US. In this way the third and fourth phases become

a simple recovery from overshadowing paradigm.

SLIM differs from other models of retrospective revaluation that do not employ

within-compound associations. Although it revalues an absent stimulus according

to associative mechanisms, it does so only when the stimulus presented in the sec-

ond phase was previously paired with the absent stimulus to be revalued (i.e., unlike

Ghirlanda, 2005 and Dawson, 2008). SLIM also does not make use of memory re-

trieval, though this is another route apart from within-compound associations to

explain the phenomena. For example, the APECS model (McLaren, 1993; Le Pelley
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& McLaren, 2001; McLaren, 2011) takes this approach. It is a neural network ap-

proach that recruits a new hidden layer neuron for each unique trial it experiences

(e.g., separate nodes for A+, A-, and AX+). Although a detailed description of the

model is not feasible here, the bias of a node representing a compound behaves in

much the same way as our lateral inhibition mechanism. In recovery from overshad-

owing, the first phase establishes a compound node (“AB+”) and associates it with

the US. During the intertrial intervals of this phase, the ‘bias’ weight for this node is

made negative, to offset the increased prediction made by the node when the inputs

are absent. In the second phase, a new node is established (“A-”) and during the in-

tertrial intervals of this phase, the “AB+” node’s bias is increased. This increases the

“retrievability” of node “AB+”, which then leads to an increased response upon pre-

sentation of stimulus B (i.e., recovery from overshadowing). The bias of the APECS

model functions like the lateral inhibition in SLIM except that it has the opposite

sign: in our model during extinction of stimulus A in the second phase, lateral inhi-

bition is decreased, making the positive neuron response to B larger. In both models,

the second phase does not change the input weights associated specifically with the

absent (B) stimulus, but rather the lateral weights for SLIM and the bias for APECS.

Having two opposing pathways to compute associative strength is also a feature of

the comparator hypothesis (Kasprow et al., 1987; Miller & Matzel, 1988). However,

the comparator hypothesis uses the second pathway to evoke CS-CS associations and

compare the associative strengths of different stimuli, while the present model simply

uses the second pathway to help represent negative associative strengths. The dual

pathway structure also bears resemblance to the division of CS-US and CS-no-US

associations discussed in Le Pelley (2004). A model of spontaneous recovery from

extinction by Pan et al. (2008) uses positive and negative weights, which are changed

in opposite directions and are summed to produce a measure of responding.

7.9 Application to other retrospective revaluation findings

In Figure 7.11, we show that the present model can also explain the backward blocking

effect (Shanks, 1985; Denniston et al., 1996; E. Wasserman & Berglan, 1998). Using

the backward blocking procedure in Shanks (1985) along with an additional con-

trol group (see Figure 7.11 for details), we correctly simulate the effect (p < 0.001,
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Figure 7.11: Responding to stimulus B in the test phase of backward blocking sim-
ulations when lateral learning is disabled (i.e., ρ = 0) and enabled (i.e., ρ > 0) using
the paradigm of Shanks (1985) and an additional control group. With lateral learn-
ing enabled, the backward blocking group (Group BB: Phase 1 (50 trials): ABX+,
X-, Phase 2 (200 trials): AX+,X-, Phase 3 (1 trial): BX- (Test)) expressed lower
responding (p < 0.001, Wilcoxon signed-rank test, 15 differently initialized simula-
tions or stat rats) than both control groups, Group BC and Group BX. In Group BC,
phase 2 trials reinforced a novel stimulus (Phase 2: CX+ X-) while in Group BX,
phase 2 trials did not involve any stimulus presentations (Phase 2: X- X-). In the
other phases, these groups received the same treatment and test as Group BB. Note
that in Phase 2, conditioning of A and the novel stimulus C reached asymptotic levels
of responding in their respective groups. This simulation shows that lateral learning
leads to a weak but significant backward blocking effect.

Wilcoxon signed-rank test, for 15 different model initializations or stat rats) with

SLIM. In the figure, it appears that without lateral learning the procedure increases

rather than decreases responding to the blocked stimulus relative to a control group

(BX). However, this is simply due to greater extinction of the context in the control

group, which is overwhelmed when lateral learning is enabled.

Backward conditioned inhibition (Chapman, 1991; G. Urcelay et al., 2008) refers

to the paradigm in which a non-reinforced compound is presented in the first phase

(AX-) followed by phase where one element is reinforced (A+). The result is that

the other element becomes inhibitory relative to a control group. An experiment by

Espinet et al. (Espinet, Iraola, Bennett, & Mackintosh, 1995) preexposed compounds

AX and BX (AX-, BX-). In the second phase, conditioning to one of the non-

shared constituents was conducted (A+). The result of these manipulations was

that stimulus B’s association with illness was either weakened or became inhibitory.
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This is called the Espinet effect. Formally, the Espinet paradigm is the second-

order analogue of the backward conditioned inhibition paradigm. The present model

does not explain these effects. For the same reasons as the Rescorla-Wagner model,

preexposure has no effect on subsequent conditioning phases. As a result, no sharing of

neural representations occurs, unlike compound conditioning when a US is presented.

If SLIM was extended to develop similar neural representations during a preexposure

phase (as occurs in a conditioning phase), then the model might also come to explain

these two effects.

Reminder-induced recovery from overshadowing (Kraemer, Lariviere, & Spear,

1988) is the finding that presentation of the overshadowed stimulus somewhere be-

tween the conditioning sessions and test sessions (the day following conditioning and

two days prior to test in Kraemer et al., 1988) enhances responding to an overshad-

owed stimulus. Corresponding reminder-induced recovery has also been discovered

in the blocking (Schachtman, Gee, Kasprow, & Miller, 1983), relative validity (Cole,

Denniston, & Miller, 1996), and latent inhibition (Kasprow, Catterson, Schachtman,

& Miller, 1984) paradigms. One prominent interpretation of the reminder-induced

recovery from overshadowing findings is that the overshadowed stimulus’ associative

strength is not reduced by being conditioned in compound, as the notion of cue

competition suggests, since later we find that responding has “recovered”. More for-

mally, the interpretation says that overshadowing is due to a deficit in performance

(e.g., memory retrieval failure in the test phase) rather than a deficit in acquisition

through cue competition in the conditioning phase. The question remains, however,

as to what mental processes the reminder treatment might invoke. One remaining

potential acquisition-deficit explanation (but see Schachtman et al., 1983) is that the

reminder treatment strengthens a within-compound association between the over-

shadowed stimulus and the overshadowing stimulus. Then, when the overshadowed

stimulus is later tested, the overshadowing stimulus is thereby retrieved and sub-

mitted as internal input to the associative learner, thereby generating a greater (or

“recovered”) level of responding. A similar mechanism might also explain spontaneous

recovery from overshadowing (Kasprow, Cacheiro, Balaz, & Miller, 1982), which has

also been thought to indicate a performance-deficit rather than an acquisition-deficit

in learning. In this phenomenon, responding to the overshadowed stimulus is greater
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after a retention interval. The acquisition-deficit explanation would say that time,

instead of a reminder treatment, may lead to stronger within-compound associations.

There is some evidence within a sensory preconditioning paradigm, however, that

within-compound associations degrade rather than strengthen when there is a de-

lay between conditioning and test (Pineo, Urushihara, & Miller, 2005). Additional

experimental work testing the strength of within-compound associations after re-

minder treatments and post-acquisition delays may better discriminate between the

performance-deficit and acquisition-deficit explanations.

Retrospective revaluation effects are not always observed (Shevill & Hall, 2004;

Dopson, Pearce, & Haselgrove, 2009). Within-compound association-based approaches

can often explain this as a failure in within-compound association-based retrieval ei-

ther during conditioning or test. In SLIM, retrospective revaluation phenomena are

reduced when the conditioned stimuli in the initial pairing are similar, that is, when

there is significant overlap between their distributed input representations. Consider

when stimuli are nearly identical. This will generate strongly similar input represen-

tations such that subsequent conditioning or extinction of one will similarly affect

the other, because the model treats them as essentially the same stimulus. This is

the opposite of retrospective revaluation behaviour and is referred to as mediated

conditioning, which has been found to occur when the paired stimuli are strongly

similar (Liljeholm & Balleine, 2009). Then to observe neither mediated condition-

ing nor retrospective revaluation in the present model, one explanation is that the

stimuli making up a compound stimulus have some middle-ground degree of similar-

ity. From our model, another possible explanation of why retrospective revaluation

is sometimes not observed is that the lateral learning rate (ρ) may change dynami-

cally. In the present model, we set ρ > 0, which supports retrospective revaluation

phenomena. As noted in Figure 7.9, when ρ = 0, no retrospective revaluation oc-

curs. Furthermore, if we set ρ < 0, the opposite of retrospective revaluation would

occur (i.e., mediated conditioning) because lateral learning would change weights in

the opposite direction. For example, recall the process in Figure 7.10. Instead of re-

ducing lateral weights, which increased the absent stimulus B’s associative strength,

the lateral weights would be increased, which would reduce activity and associative

strength when B is presented. Thus as stimulus A is extinguished, so would be its
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previously partnered stimulus B.

In a recovery from overshadowing experiment, Liljeholm and Balleine (2006) found

that the extinction of the more salient element of the compound revalued the less

salient element more than the other way around. In the present model, the more

salient stimulus takes a larger share of the associative strength due to cue competition.

This means that the more salient stimulus will have more associative strength to

extinguish and its lateral weights will be reduced proportionally. Thus extinction

of a salient stimulus will lead to more revaluation of the absent stimulus than will

extinction of a weakly salient stimulus. In more general terms, the larger the change

in a present stimulus’ associative strength, the more the absent stimulus is revalued.

7.10 SLIM Predictions

In Section 7.8, I described a procedure that would pit rational logic against within-

compound conditioning models but that lines up with SLIM’s prediction. In short,

SLIM predicts that the extinction of a conditioned compound largely unties the con-

stituent stimuli from future revaluation of one another in subsequent procedures,

whereas within-compound models predict that extinction instead increases the tie

between the stimuli.

In general, attenuating lateral learning (pharmacologically or otherwise) should

attenuate retrospective revaluation phenomena. The model also assumes that, during

an update, the lateral inhibitory weights of a neuron change in the same direction

(positively or negatively) as its input weights. In contrast, if lateral weights were

changed in the opposite direction, the model would not generate retrospective reval-

uation effects. It will be interesting to see whether or not neuroscience confirms this

key feature of the model, which might be done by evaluating the changes of synaptic

efficiency of the lateral connections using a paradigm similar to Shen et al. (2008).

Predictions may be made from the configural capability of the model as well. In

positive patterning, a configural cue must be invoked so that A, B, and AB can achieve

their target responses. So, in the present model, we have a configural cue pulling up

(AB+, an increase in direct pathway activations), which generalizes somewhat to

A and B, while the constituents themselves are being pulled downward (A-, B-, an

increase in indirect pathway activations). This tug of war results in significant activity
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in the indirect and direct pathways upon presentation of the constituents (A,B) so that

a balance between these pulls will result in no conditioned responding. To contrast, in

simultaneous feature-positive discrimination (AB+,B-), constituent B will be pulled

in two directions at first, but in the end conditioning will accrue to A alone and B will

activate model neurons with about the intensity of a novel stimulus. Because of the

configural-cue-generating nature of the model, it predicts that the neural activity that

B induces should be greater following positive patterning than following simultaneous

feature-positive discrimination, even though the amount of conditioned responding to

B is the same at the end of the procedures (zero). If physiological recordings are able

to confirm this, it would suggest that the dual pathways are indeed used to represent

configural cues and further support the notion that the basal ganglia is involved in

classical conditioning.



Chapter 8

Dual Pathway Regression

8.1 Chapter Summary

Here, we show a way of implementing features of the Dual Noisy OR model in an LMS-

like format that suits most of the high-level structural details of the basal ganglia.

This model is named Dual Pathway Regression and performs comparably to the Dual

Noisy OR model in the regression task. Dual Pathway Regression is then translated

into a classical conditioning format and is used to explain additional phenomena

beyond those explained by LMS. Finally, several experimental predictions are made.

Some of the text in this chapter is taken from Connor and Trappenberg (2013), c©2013

IEEE, in which I was primarily responsible for developing the theory and simulations

as well as drafting the manuscript.

8.2 Dual Pathway Regression (DPR): An LMS-like Dual Noisy OR

Model

The Dual Noisy OR model of Chapter 5 is an abstract model, not clearly related to

neural structure or function. Here we seek to remedy this issue and at the same time

highlight the mechanisms of the Dual Noisy OR model that are primarily responsible

for its ability to lower prediction errors.

Earlier, we noted that the success of the Dual Noisy OR model was that it pre-

vents negative residuals on irrelevant parameters from developing. This prevents the

canceling of the effects of positive parameters by negative parameters that allows

residual parameters to persist. As noted in Chapter 5, one of the mechanisms behind

overcoming overfitting in the Dual Noisy OR model is to change the way in which

inhibition is integrated. In principle, there are at least two ways in which inhibition

can be integrated. One is to sum negatively weighted inputs with positively weighted
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inputs (i.e., LMS). The other, put forward by the Dual Noisy OR model, is to multi-

ply the positive prediction of the outcome by some number between 0 and 1, where

more inhibitory influence reduces this multiplier. To integrate this second approach

into LMS, we will create a positive and negative model as in the Dual Noisy OR

model. This dual pathway LMS-like model is formulated as

y = 2φT
+x(1−

1

1 + e−φ
T
−x

) (8.1)

where φ+ and φ− are the positive model and negative model parameters respectively

(though both are forced to have positive values only), which both receive the same set

of inputs, x. The sigmoid function ensures that the range of values for the inhibitory

influence is contained between 0 and 1, where the slope is 1 when all parameters are

0. The parameter values can be learned using gradient ascent, as in the other meth-

ods evaluated here. This is the natural outcome of performing maximum likelihood

estimation on a Gaussian random variable with Equation 8.1 at its mean. Now, the

gradient of a parameter depends on its associated pathway. For the positive pathway

parameters, the gradient becomes
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and for the negative pathway parameters, it becomes

∂L(φ)
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= −

m∑
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(y(i) − 2φT
+x

(i)(1− 1

1 + e−φ
T
−x(i)

))x
(i)
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eφ
T
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(i)
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(i)

(1 + eφ
T
−x(i)

)2
(8.3)

where a positive or negative parameter is updated by

φj =: φj − α
∂L(φ)

∂φj

(8.4)

A few interesting properties can be seen in these learning rules. As in the Dual

Noisy OR model, the positive pathway’s parameters are changed in the opposite di-

rection as the negative pathway parameters during an update. Also, because initial

parameters are set very near zero, initial parameter changes are almost identical to

LMS for the positive pathway. Like the Dual Noisy OR model, negative pathway pa-

rameters are updated in proportion to the existing model prediction. This is how the

approach distinguishes between inhibitory and irrelevant features: inhibitory features

tend to reduce existing model predictions whereas irrelevant features do not.
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Figure 8.1 illustrates the effectiveness of this approach, which will be referred to as

Dual Pathway Regression (DPR). The top and bottom panels compare this approach

in the familiar regression task, in which the number of features and the noise variance

are varied. In both cases, we see that DPR performs comparably to the Dual Noisy

OR model.

8.3 DPR’s Relationship to Neurobiology of the Basal Ganglia

Figure 8.2 illustrates basal ganglia anatomy and DPR. For clarity, the positive and

negative pathways will be described as P+ and P−, respectively. The dual pathway

nature of DPR can be fitted to the dual pathway structure in the basal ganglia, with

the positive and negative pathways mapping onto the direct and indirect pathways,

respectively. Appropriately, the inhibitory projections of the indirect pathway sup-

port the inhibitory 1−P− term, where the “1” is contributed by excitatory input from

the STN. The pathways converge in the output nuclei and SNc/VTA, providing an

inhibitory product (−P+(1−P−)) to add to the tonic activity supported by the STN

(in SNr/GPi) or the reinforcement signal, λ (in SNc/VTA), giving 1 − P+(1 − P−)

for the SNr/GPi (assuming again that STN contributes the “1”) and λ−P+(1−P−)

for the SNc/VTA. This inhibitory product could be computed in two different loca-

tions, since the goal is that the output nuclei incorporate an inhibitory prediction

computation of P+(1 − P−), which expands to P+ − P+P−. One possibility is that

the product is performed in the output nuclei and the SNc/VTA. Mathematically,

the product of two negative numbers is positive, but in terms of neural effects, the

two inhibitory projections could conceivably amplify one another’s inhibitory influ-

ence. Perhaps a more parsimonious location, however, for this computation is in the

GPe. We know that there is an axon collateral projection from the direct pathway to

the GPe (Kawaguchi et al., 1990). If, again, the two inhibitory projections amplify

one another’s inhibitory influence, the computation at the level of the GPe would

become 1−P+P−. Then, only a simple summation of the inputs to the output nuclei

and SNc/VTA (P+ from the direct pathway plus 1 − P+P− from the indirect path-

way) would yield the necessary computation there. Thus, only one multiplicative

integration (in the GPe) would be needed instead of three or four (SNr, GPi, and

SNc/VTA). Yet, it appears that the striato-nigral projection collaterals to the GPe
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Figure 8.1: Top Panel: Prediction error as the number of features is varied. DPR
performs a little better overall than the Dual Noisy OR model, yet still substantially
worst than the optimal. Bottom Panel: Prediction error as the variance of the noise
is varied. Here, DPR’s performance is very similar to the Dual Noisy OR model.
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are more weakly connected than are the GPe-GPi connections (Wu, Richard, & Par-

ent, 2000; Parent & Hazrati, 1995a). In fact, it seems that the GPe to GPi projections

are strong, since they frequently contact the soma of GPi neurons, seemingly giving

this projection a modulatory role (Nambu, 2007). The same connectivity is also seen

between the GPe and SNr (Smith & Bolam, 1989) and between the GPe and SNc

(Smith & Bolam, 1990) (although more sparsely so). The form of the GPe to VTA

connectivity appears to be unknown. So, although structurally it seems that a multi-

plication in the GPe would be simpler, multiplication in the output and dopaminergic

nuclei seems better supported at present. It also appears that such a shunting inhi-

bition from the GPe projection makes a summation approach to integrating the two

pathways less tenable than a multiplicative approach.

As discussed above, learning rules that invoke opposite signs for positive and neg-

ative pathways in DPR nicely fit with what is known about cortico-striatal synaptic

plasticity (Shen et al., 2008; Frank & Fossella, 2011), including the effects of the

dopamine prediction error signal on the direct and indirect pathways, respectively.

According to DPR’s mathematical formulation, however, additional learning signals

are needed. For the positive pathway, the negative pathway’s prediction is needed

and, for the negative pathway, the positive pathway’s prediction is needed. One sim-

ple possibility is that this information is transferred through the lateral inhibitory

connections in the striatum, although this may conflict with SLIM’s proposal for

such connections. There is at least one other possibility. The way we arrived at these

learning rules was to find the maximum likelihood estimate, which results in taking

the derivative of the overall prediction with respect to positive and negative pathway

parameters. This allows us to ascend a gradient to reach the minimum prediction

error. However, it is not absolutely necessary to take the exact gradient of this func-

tion to get to near the minimum. Figure 8.3 shows that we can modify the learning

rules and still perform comparably. In short, all that must be done is to remove some

negative pathway prediction terms from each of the learning rules giving

∂L(φ)

∂φ+,j

=
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Figure 8.2: Mapping DPR onto the basal ganglia. The positive and negative pathway
contributions (P+ and P−) follow the direct and indirect pathways, out of the striatum
and into their targets, the GPi/SNr/SNc/VTA and GPe, respectively. Here, they
subtract from tonic activity (supported by the STN). Multiplicative inhibition may
occur in either the GPe or the output targets and SNc/VTA (see text for details). If
this occurs, the output nuclei and SNc/VTA will receive a prediction Y = P+(1−P−),
which they will use to compute their output signals. Cortico-striatal learning agrees
with the notion that the two DPR pathways learn with opposite signs in tandem
with a dopamine signal from the SNc/VTA that encodes prediction error. Additional
signals appear necessary for proper DPR learning as well, though perhaps only one
provided by the thalamus is necessary, if DPR is slightly simplified (see text for
details).
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These two equations strip the model down to the essential terms or mechanisms also

at play in the Dual Noisy OR model. The similar effectiveness of this reduced model

suggests that it represents the set of mechanisms responsible for reducing prediction

error in both DPR and the Dual Noisy OR model. The first simplified equation allows

the positive pathway to learn based on the prediction error and input activity only,

just like LMS. The second equation requires the negative pathway to additionally

have access to the model’s prediction. One possibility is that this is conveyed by the

output nuclei. The output nuclei express the model’s prediction and the thalamus,

a target of the output nuclei, is known to provide inputs directly to the striatum

(see Parent & Hazrati, 1995a for a brief review), which are believed to be excitatory.

However, the thalamic input does not make preferential contact with one pathway

or the other (Doig, Moss, & Bolam, 2010; Huerta-Ocampo, Mena-Segovia, & Bolam,

2013) whereas this model supposes that thalamic connections make contact mostly

with the indirect pathway. Recalling the gradient terms in the Dual Noisy OR update

rule (Equations 5.5 and 5.6), we see that parameters from both pathways are changed

in proportion to the model’s full prediction. However, positive pathway parameters

are also changed inversely proportional to the positive pathway prediction. A simple

substitute for this may be that the parameters of a direct pathway neuron are updated

inversely proportional to the neuron’s activity. Although the DPR model does not

use multiple neurons and there is no postsynaptic activity proportional term in the

learning rule, such is not incompatible with DPR, as will be shown in Section 9.5.

8.4 Classical Conditioning Simulations and DPR

DPR is capable of explaining some classical conditioning phenomena beyond the abil-

ity of LMS. To demonstrate this, we will first express DPR in standard classical con-

ditioning modeling terms. This will also help to describe novel classical conditioning

predictions made by DPR in the next section. Given the following constraints,

• must guarantee that P− ≤ 1, as DPR does by employing the sigmoid function

• inputs have a binary value (i.e., stimuli are either present or not present)

• positive and negative model associative strengths are not permitted to go below

zero
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Figure 8.3: Comparison of two DPR models, where one employs the original update
equations (Equations 8.2 and 8.3) and the other employs the simplified update equa-
tions (Equations 8.5 and 8.6). The performance of the models is very similar in both
panels except that the prediction error for the simplified version is slightly less than
the original in the bottom panel for high noise, bringing it a little closer to the results
of the Dual Noisy OR model shown in Figure 5.4.
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we can write the associative strength of a compound stimulus AB as

VAB = (V +
A + V +

B )(1− V −A − V −B ) (8.7)

where V +
A and V −A are the positive pathway and negative pathway contributions for

stimulus A, respectively. The compound stimulus associative strength is here defined

to convey how multiple stimuli interact. If instead of VAB, we wanted to compute VA,

we would drop the V +
B and V −B terms from Equation 8.7. Following the simplified

update rules for DPR, the update for the positive and negative associative strengths

for a single stimulus (A), after a trial in which compound AB was presented, is

ΔV +
A = αAβ(λ− VAB) (8.8)

and

ΔV −A = αAβ(λ− VAB)VAB, (8.9)

respectively. Note that the update rule for V +
A is the Rescorla-Wagner model update

rule and the update rule for V −A is additionally proportional to the associative strength

of the compound. The first example of this model used in a conditioning experiment

was already shown in Figure 5.8, demonstrating that it is capable of explaining relative

validity, just as can rLMS with the LASSO and the Dual Noisy OR model.

8.4.1 Recovery from Conditioned Inhibition: Inhibitory Residuals are

Expected

Recall that rLMS is the optimal model for the data in our simulated world (assuming

a uniform prior distribution). The derivation of this optimal model indicated that

for this simulated world, it is appropriate to turn off learning when the prediction

for the current input is negative. It was also noted that animals appear to behave

in the same way. In the classical conditioning phenomenon of conditioned inhibition

(Rescorla, 1969), subjects receive trials of A+, AB-. The result is that subjects view

stimulus A as predictive of reinforcement and that B cancels reinforcement or predicts

no reinforcement. Classical conditioning experiments confirm B’s inhibitory quality

(Rescorla, 1969), such that the subject’s response is smaller when B is combined with

a separately conditioned stimulus than when this stimulus is presented alone (i.e.,

C+B < C). Now, if stimulus A were presented but not reinforced in a second phase,



119

its prior conditioning would be extinguished and the animal would no longer respond

to it. Likewise, it seems reasonable to expect that if the inhibitor stimulus B were

presented but not reinforced that this would extinguish its inhibitory quality as well.

In fact, this is a direct prediction of the Rescorla-Wagner model and is referred to as

recovery from conditioned inhibition by extinction of the inhibitory stimulus.

This prediction and slight variations thereof have been evaluated experimentally

a number of times (Baetu & Baker, 2010; DeVito & Fowler, 1986; DeVito & Fowler,

1987; Hallam, Grahame, Harris, & Miller, 1992; Lotz & Lachnit, 2009; Williams,

1986; Williams, Travis, & Overmier, 1986; Witcher & Ayres, 1984; Zimmer-Hart

& Rescorla, 1974). In the first of these experiments, Zimmer-Hart and Rescorla

(1974) conditioned rats using the following procedure (Experiment 1) for each of 3

daily sessions: A+ (tone, 6 trials), B+ (clicker, 6 trials), and AX- (tone+light, 12

trials). They divided the rats into two groups. Group E received 24 trials of non-

reinforced presentations of X-, while Group C spent an equal amount of time in the

conditioning chamber without stimulus presentations. Testing of AX relative to A

demonstrated X had become a conditioned inhibitor. The attempted extinction of

X, however, failed since there was no difference in responding to compounds AX or

BX between Groups E and C. In their Experiment 2, they used a within-subjects

design but found the same result. They therefore failed to extinguish the conditioned

inhibition. Williams (1986) arrived at similar results despite using a different proce-

dure to establish the conditioned inhibition, which was accomplished by interspersing

presentations of the to-be inhibitor stimulus and US-alone in an explicitly unpaired

way. Devito and Fowler (1987) also arrived at similar results, except that a mod-

erate inhibitors’ strength was enhanced, rather than extinguished, in non-reinforced

presentations (see Williams et al., 1986, Experiment 4 for a similar result). Witcher

and Ayers (1984) used a similar paradigm to Zimmer-Hart and Rescorla, but instead

of only non-reinforcing the inhibitor X in the attempted extinction phase, they also

made non-reinforced presentations of the excitor A and the compound AX. Yet, they

similarly found that inhibition to X remained (see Hallam et al., 1992 for a similar

procedure and result). In their second experiment, they found that by presenting X

and the US randomly and independently of one another they could extinguish the

inhibition, presumably by making X appear irrelevant or non-predictive (see DeVito
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& Fowler, 1986 for a similar procedure and result).

More recent work has disagreed with the bulk of these results. Lotz and Lachnit

(2009), used a human causal learning paradigm where, on each trial, the subject was

presented with a food and asked to indicate how it affected a hormone level, and

was then told the outcome. In Group Unidirectional, subjects could indicate that the

hormone level would be either elevated or unchanged whereas the Group Bidirectional

could additionally indicate that the hormone level would be decreased. Conditioned

inhibition was established using the standard paradigm (A+,AX-) in the first learning

phase. This was followed by a phase attempting to extinguish the inhibitor (A+, X-).

The result was that extinction occurred in Group Bidirectional but not in Group

Unidirectional. So, by providing the option to rate foods as decreasing the hormone

level, they found extinction. Baetu and Baker (2010) followed up with a very similar

experimental paradigm. The key difference between their experiment and that of Lotz

and Lachnit (2009) is that they dropped an intermediate test phase and modified the

test phase to ask for a rating value rather than selection of specific (increase, neutral,

decrease) outcomes. As a result, Baetu and Baker found that extinction of inhibition

occurred in both the Unidirectional and Bidirectional groups.

In summary, although the results are mixed, the burden of the evidence, involving

the majority and most straightforward experiments suggest that inhibition is not

extinguished by mere non-reinforced presentations of the conditioned inhibitor.

In Figure 8.4, we show the second phase of a simulation of recovery from condi-

tioned inhibition by extinction of the inhibitory stimulus (i.e., Phase 1: A+, AB-,

Phase 2: B-). In this simulation, we conditioned the models in an online-learning

mode (data is not repeatedly reprocessed) to better show the changes that occur to

the parameters. The results confirm that the Rescorla-Wagner model extinguishes

the inhibitory strength of stimulus B. For the Rescorla-Wagner model, a second phase

B- trial results in a positive prediction error, encouraging the inhibitory B stimulus

to become neutral instead of remaining an inhibitor. The same is true of LMS, which

would give results equivalent to the Rescorla-Wagner model except for their being

compacted along the x-axis. In contrast, the attempted extinction of the inhibitory

stimulus (B) is ineffective in DPR and rLMS models. In rLMS, the presence of an

inhibitor alone gives a negative prediction and thus shuts off its learning according
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to Equation 4.7, which prevents the inhibitor’s extinction. Apparently, this is the

optimal thing to do in a world where there are no “negative” or anti-reinforcement

outcomes (e.g., less than zero food pellets), since rLMS is the optimal model for

performing spatial credit assignment in such a world. In a way, this makes intuitive

sense. Since the inhibitory stimulus is non-reinforced in both phases, there is little

reason to change one’s belief about the value of that stimulus in the second phase.

This contrasts with excitatory conditioning and then subsequent extinction (A+,

then A-), where the outcome differs between phases. DPR also does not extinguish

inhibitory stimuli when presented alone. According to Equation 8.7, the value for

VAB will always be positive because it is the product of two positive numbers. Since,

λ = 0 in a non-reinforced trial, the prediction error (λ − VAB) in the second phase

(B-) will always be negative (or zero). The other terms of Equation 8.9 will always

be positive, so V −B can only be reduced in a non-reinforced trial. Thus, an inhibitor

stimulus presented alone will never extinguish in DPR.

8.4.2 A Stimulus can be an Excitor and an Inhibitor at the Same Time

Miller, Barnet and Grahame (1995) grouped the failed extinction of conditioned inhi-

bition among several other failed predictions of the Rescorla-Wagner model. Among

these is the prediction that a single stimulus cannot have both excitatory and in-

hibitory properties at the same time. One experiment in opposition to this no-

tion is Matzel, Gladstein, and Miller (1988). They partially reinforced a stimulus

and it had excitatory properties when presented alone but also passed the stan-

dard summation and retardation tests for conditioned inhibition. DPR can ac-

commodate this finding, because it has separate positive and negative parameters

associated with each input (stimulus) and employs a multiplicative learning rule.

In fact, partially reinforcing a stimulus will lead to non-zero positive and nega-

tive pathway parameters in DPR (not shown). So, for example, suppose a par-

tially reinforced stimulus’ DPR parameters were 0.5 for the positive parameter and

0.5 for the negative parameter. The perceived associative strength of the stimu-

lus, when presented alone would be excitatory (i.e., 0.5(1 − 0.5) = 0.25). Also,

when paired with a continuously reinforced stimulus with a small positive parame-

ter (say, 0.25) and a zero negative parameter, it will still appear to be excitatory



122

Figure 8.4: Recovery from conditioned inhibition by extinction of the inhibitory
stimulus (Phase 1: A+, AB-, C+, Phase 2: B-). Shown, are the stimulus B parameter
values for the Rescorla-Wagner (VB) and rLMS (φB) models and B’s negative pathway
prediction strength for DPR (V −B ). Not shown are the curves for a control group that
received no Phase 2 presentations, which would then test at the same levels as the
first trials in the figure for these models. Generally, this procedure does not seem to
extinguish the inhibitory stimulus in either animal learning experiments nor in the
rLMS or DPR models. In contrast, the Rescorla-Wagner model and LMS predict that
the inhibitory strength will be extinguished with non-reinforced presentations of the
inhibitory stimulus. See text for explanation.
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(i.e., (0.25 + 0.5)(1− 0.0− 0.5) = 0.375) relative to a novel control whose parameter

values are zero (i.e., (0.25 + 0.0)(1 − 0.0 − 0.0) = 0.25). However, if paired with a

stimulus whose positive and negative parameters were 1.0 and 0.0 respectively, the

perceived associative strength would be inhibitory ((1 + 0.5)(1 − 0.0 − 0.5) = 0.75)

relative to a novel control (i.e., (1.0 + 0.0)(1 − 0.0 − 0.0) = 1). DPR can therefore

represent a stimulus so that it appears either excitatory or inhibitory, dependent on

the circumstances of its presentation.

8.5 DPR Predictions

In addition to the explanations of classical conditioning phenomena provided by DPR,

this model can make novel classical conditioning experimental predictions.

Again, in several models the aggregate prediction or associative strength is sim-

ply the sum of the parameters associated with the input stimuli. DPR would agree

that for excitatory stimuli, a sum-like operation occurs. However, it also says that

the integration of inhibition is multiplicative. One important test of DPR, then, is

to evaluate this feature of the model, as expressed in Equation 8.7. The following

experiment attempts to contrast the summation vs. multiplication hypotheses for

inhibition: Phase 1: A+, B+, BX-, Phase 2: ABX-, ACD- (test). In the first phase,

A and B become excitors and X becomes an inhibitor, fully canceling responding to B

in BX. In a summation scheme like the Rescorla-Wagner model, B and X would have

equal associative strengths but opposite signs, to give zero responding for presenta-

tions of BX. So, when A is added to the compound, responding should be equivalent

to the combination of stimulus A and two novel stimuli (to account for generaliza-

tion decrement due to external inhibition). In a multiplication scheme, however, the

inhibitor induces a shunting effect, substantially reducing responding to all present

stimuli. Thus, DPR would predict that responding to ABX will be significantly less

than to ACD. One potential confound, however, is generalization decrement due to the

3-stimulus compound. Although perhaps unlikely, it may be that the BX compound

is more potent than a novel stimulus at inducing external inhibition and explains low

responding rather than shunting or multiplicative inhibition.

Learning in DPR is also distinctive because it has two different variables per

stimulus and different ways in which to update them. Above, we showed that recovery
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from conditioned inhibition does not occur by extinction of the inhibitory stimulus

(X-). It does occur, however, by the conditioning of the inhibitory stimulus (X+)

(Rescorla, 1969). However, the subsequent conditioning is known to be slower than for

conditioning a novel stimulus. Notice again that the negative pathway learning rule

(Equation 8.9) increases negative pathway parameters in proportion to the prediction

of the model for the present stimuli. This is important because it says that stimuli

can only become inhibitory inasmuch as they reduce existing predictions. Turning

this around, however, we can say that if a strong inhibitor (X) were subsequently

conditioned in compound (e.g., AX+), it would condition at a rate proportional to

the model prediction as well. The proposed experiment becomes: Phase 1: A+, AX-,

B+, D+, Phase 2 (few trials): G1: BX+, G2: CX+, Phase 3: DX- (both groups). In

the first phase, the excitors and an inhibitor are established. In phase 2 a few trials

are used to extinguish the conditioned inhibitor by conditioning it in compound with

a previously conditioned stimulus (group 1) and a novel stimulus (group 2). DPR

predicts that there will be more extinction of inhibition in group 1 than group 2 during

phase 2 and thus more responding during the test phase (phase 3). In contrast, the

Rescorla-Wagner model predicts that more extinction will occur in group 2 because

it will have a larger US surprisingness term than will group 1.



Chapter 9

Relationship to Other Basal Ganglia Models

9.1 Chapter Summary

Here, we review certain basal ganglia models in the literature. The purposes of such

models range from time encoding to sequence learning. The evaluation is restricted

to the most related models, and in particular, we will examine two models that bear

the most resemblance to SLIM. In so doing, the uniqueness of the proposed models

and their relationship other models will be shown.

9.2 Models with a Focus on the Dual Pathway

Today, models of the basal ganglia explain how the structure may be involved in a

variety of computations and roles from sequence learning to principle components

analysis (Houk, 2007). Their development really began in earnest around 1990. The

Albin-DeLong model (Albin, Young, & Penney, 1989; DeLong, 1990), shown in Fig-

ure 9.1, was the first dual-pathway model of the basal ganglia. It offered an expla-

nation for the hyper and hypo-kinetic disorders as a difference in the effectiveness

of pathway-specific striatal neurons on their targets. One feature of this model is

that the indirect pathway here flows through the STN whereas some more recent

models (including SLIM and DPR) instead make use of the projection from the GPe

directly to the output nuclei. This trend follows Parent and Hazrati (1995a), which

suggest that the STN-GPe reciprocal connection is likely segregated from the STN-

output nuclei connections. Nevertheless, several models have followed and extended

the Albin-Delong’s interpretation of the direct pathway. Mink (1996) notes that be-

cause the connections from the STN to the output nuclei are diffuse and the direct

pathway’s connections are focused, that one can expect a center-surround effect. Such

a mechanism could act to disinhibit the central action and suppress the neighbouring

actions and thus resolve competitions between them. Gurney et. al (2001) reformed

125
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Figure 9.1: The Albin-Delong model of the basal ganglia, consisting of striatial input
and GPi/SNr output with a dual pathway structure. This early model offered expla-
nations for hypo- and hyper-kinetic disorders. Its indirect pathway is routed through
the STN. Terms: GPe - globus pallidus externa, STN - subthalamic nucleus, SNr -
substantia nigra pars reticulata, GPi - globus pallidus interna

the direct and indirect pathway paradigm to instead consist of selection and control

pathways. They suggest that the striatal neural circuitry of the selection (direct)

pathway expresses a salience for each action and that the control (indirect) path-

way scales the output activity via the diffuse connectivity of the STN, providing a

inter-nuclei center-surround effect.

One common feature of these models is that the direct and indirect pathways

are considered the means of facilitating or suppressing certain actions. In contrast,

Houk et al. (1995) used the same structure to explain the process by which the rein-

forcement values of stimuli could be learned. They superimposed this model on the

striosomal compartments that link the striatum and the midbrain dopamine system.

In their model, the pathways convey the expected future reward, where the indirect

pathway coveys this expectation at the present time step and the direct pathway

delivers the prediction of the previous time step. These two signals plus the primary
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reward signal are necessary to compute the temporal difference error in TD learn-

ing. Houk et al. also go on to explain how this system can be combined with an

action-learning module to make an “actor-critic” system, a concept from the machine

learning subfield of reinforcement learning (Sutton & Barto, 1998). Figure 9.2 illus-

trates this concept in terms of basal ganglia anatomy. The critic learns to predict

the expected future reward for a given state. The actor uses an analogous learning

structure for each action and learns to value certain actions more than others. Im-

portantly, the learning signal for both modules is computed by the critic. So, when

the critic gets more reward than expected, it increases the “value” of actions that

were selected just prior to the time of the reward. A number of actor-critic basal

ganglia models have been described (e.g., Barto, 1995; Suri & Schultz, 1999; Bal-

dassarre, 2002; Houk, 2007), although some of their biological interpretations appear

problematic (Joel et al., 2002). The important point is that in the models described

so far, the direct and indirect pathways have been modeled in two distinct ways: 1) as

facilitating and suppressing actions (respectively) and 2) as the expectation of future

reward for two slightly separated moments in time.

9.2.1 Why have Dual Pathways?

In the models of action selection, the direct pathway facilitates and the indirect

pathway suppresses. In principle, however, it is not necessary to have two pathways

to complete this dual function. A single pathway that has an initial bias of positive

activity can be reduced to express suppression or increased to show facilitation. In

Frank’s (2005) model of the basal ganglia, which we examine in more detail below,

the dual pathway structure appears to only increase the rate at which associations

are learned. It appears that instead of the indirect pathway having a distinct role,

it simply duplicates that of the direct pathway, thereby facilitating faster learning.

Therefore, what is being accomplished by two pathways could be accomplished by

one pathway, given the initial bias of positive activity and an adequate increase in

the synaptic learning rate to make up for the loss of a pathway. Granted, biological

organisms employ a great deal of redundancy so that when one system fails, the other

can maintain functionality. One could argue that the indirect pathway is redundant

despite the clear asymmetry between the two pathways. Both the direct and indirect
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Figure 9.2: The actor-critic approach mapped to basal ganglia anatomy, based on
Houk (2007). The critic, which is mapped to the ventral striatum, receives input that
reflects the state of the system and learns to predict the value of future reward from
the given state. The actor, mapped to the dorsolateral and dorsomedial striatum,
receives input that represents the state and activates its output node according to its
degree of preference for the associated action in that state. The critic provides the
learning signal for both modules, but the individual actors only use it to update their
associated action if they were recently employed.
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pathways arrive at the same output nuclei and appear to provide cooperative signals.

The direct pathway even provides a collateral projection to the GPe. Thus, both the

direct and indirect pathway targets are both influenced by the D1 and D2 populations

of MSpNs.

However, for such an elaborate system of distinct dopamine receptor types, con-

trast enhancement, learning rule, and projection path, a more parsimonious expla-

nation seems to be that there is a distinct purpose for the indirect pathway. Houk

et al.’s (1995) model suggested that the indirect pathway expresses the expectation

of future reward for the present time step, whereas the direct pathway expressed the

expected future reward for a previous time step. Since its proposal, we have learned

that there is much asymmetry in MSpN learning between the direct and indirect

pathways, making the idea that the pathways learn the same thing but for different

time steps seem unlikely.

From this work, two novel purposes for having a second pathway are proposed

that can cooperate, as will be shown in Section 9.5. Through the Dual Noisy OR

model and DPR, it has been shown that a second pathway provides a way to improve

generalization in the presence of lots of features and noise. A consequence of this is

that the indirect pathway comes to specifically represent inhibitory features whereas

the direct pathway represents excitatory features. Here, inhibitory features are not

viewed as “negative” valued predictions per se, but as canceling positive predictions

when present. This accommodates the notion that the direct pathway might learn

the generally rewarded actions (e.g., grasping) and stimuli whereas the indirect path-

way might learn the exceptions to the rule (e.g., grasping the air). The SLIM model

provides an additional insight that encourages representing excitatory and inhibitory

features in separate pathways. We have briefly shown that the dual pathway structure

is capable of explaining negative patterning (i.e., the XOR problem) by representing

individual excitatory stimuli in the direct pathway and the inhibitory combination

of the stimuli in the indirect pathway. Thus, non-linear discriminations can be made

using dual pathways. In Section 9.5, we show further evidence of this and provide

promising preliminary data that suggest that this non-linear mechanism is very ef-

fective when integrated within DPR. I therefore submit that the purpose of the dual

pathway structure may be to simultaneously help represent non-linear scenarios and
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improve generalization.

9.3 Models with a Focus on Lateral Inhibition in the Striatum

In the case of the actor-critic, the actor must select from among its candidate actions

in each state. Therefore, all but one of the actions controlling a particular motor

output must be suppressed. Given that parallel channels in the basal ganglia represent

different candidate actions, it has been suggested that the lateral inhibition between

striatal neurons might implement this function (Barto, 1995; Suri & Schultz, 1999),

and is frequently referred to as Winner-Take-All. However, physiological studies have

not supported this notion (for a brief review, see Tepper, Koós, & Wilson, 2004).

Instead of strong reciprocal connections between neurons, they found that individual

lateral connections are usually weak and rarely reciprocated.

The interpretation of the lateral inhibition taken by SLIM is that it sculpts striatal

activity resulting in an ensemble of active neurons that suppress others irrespective of

specific actions. This interpretation has been referred to as “winnerless competition”.

In particular, Ponzi and Wickens (2010, 2012) have studied this approach, taking

it one step further by suggesting that temporally evolving spatial patterns occur

under specific circumstances that seem plausible for the striatum. A computational

advantage to the winnerless competition paradigm is that certain neurons come to

represent the “value” for certain stimuli and this generalizes between similar stimuli

to a degree. This is similar to the notion of sparse coarse-coding, where specific

learning elements are responsible for representing a “value” when “activated” by

input (Sutton, 1996; Sutton & Barto, 1998). For example, let’s say that a specific

element is activated whenever an x-y coordinate input falls within its associated

circular boundary. Other circular elements have boundaries of similar radius but

have a different center position. Element boundaries overlap substantially such that

a given x-y coordinate input falls within the boundaries of a fraction (e.g., 10%) of

the elements’ boundaries, activating them. The activated elements then share the

responsibility of representing the learned value associated with the given coordinate.

Because elements are activated by coordinate position, similar coordinate positions

will activate a similar set of elements, thus largely generalizing what was learned for

one coordinate to nearby coordinates. This is very similar to what happens in SLIM,



131

where neurons become the learning elements and the input stimuli replace the x-y

coordinate input. The key difference is that SLIM has as many input dimensions as

input elements rather than only the 2 dimensions of an x-y coordinate.

Bar-Gad et al. (2003) provide another interpretation. They show how the lateral

inhibitory connections may implement a form of feature reduction.

9.3.1 Bar Gad et al.’s (2003) Dimensionality Reduction Model

This model expresses the possibility that the basal ganglia can accomplish dimen-

sionality reduction, very similar to the principle components analysis approach briefly

described in Chapter 1, and is referred to as the reinforcement-driven dimensionality

reduction (RDDR) model. We follow the more recent and more mathematical de-

scription from Bar-Gad et al. (2003), although a slightly different version (Bar-Gad,

Havazelet-Heimer, Goldberg, Ruppin, & Bergman, 2000) came first. From 8x8 pixel

images of vertical and horizontal line pairs, the RDDR model’s output nodes learn

to activate exclusively for certain vertical or horizontal lines. The model essentially

learns the most important components of the training images.

Figure 9.3 depicts the structure of the model. It is a fully connected, two-layer

neural network (three layers in Bar-Gad et al., 2000) with more input nodes than

hidden/output nodes. This forces it to learn to represent the input with fewer nodes

and thereby perform reduction. Each output node becomes active according to

ri =
n∑

j=1

wI
ijxj +

m∑
k=1

wL
ikrk (9.1)

where ri is the activity of an output node, x is a vector of inputs, n is the number of

feed-forward inputs, m is the number of output nodes, and wI and wL are the input

feed-forward and lateral weights, respectively. The lateral inhibitory connections are

set to be asymmetric, where wL
ik = 0 for i < k.

Although RDDR uses a reinforcement learning signal, it is unsupervised at the

core. That is, it does not need labels or reinforcements to perform the dimensionality

reduction. The model therefore also does not “predict” outcomes. Instead, it learns

to transform the input data into a reduced representation. The reinforcement’s role

is to encourage the model to represent certain (rewarded) patterns over others. The
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Figure 9.3: Bar-Gad et al.’s model of the basal ganglia. Patterned cortical input
excites striatal neurons in a single pathway. Lateral inhibition reduces this activity.
Lateral connectivity is asymmetric such that ΔwL

ik = 0 for i < k.

feed-forward input learning rule is

ΔwI
ij = αδ(rixj − r2iwij) (9.2)

where δ is the reinforcement (i.e., the prediction error). In one of their experiments,

Bar-Gad et al. (2003) presented 8x8 images each containing either horizontal or verti-

cal lines. When reinforcement was associated with vertical lines, the output neurons

specialized for the vertical lines. When reinforcement was subsequently associated

with horizontal lines, the output neurons reorganized to specialize for horizontal lines.

Lateral weights are updated with a very similar rule,

ΔwL
ik = −α(rirk + r2iw

L
ik). (9.3)

If two neurons fire together, they increase the inhibition between them. If one fires

and the other does not, the firing neuron’s incoming lateral inhibition is reduced. The

inactive neuron sees no change. Unlike the feed-forward learning rule, this learning

rule is not proportional to the reinforcement signal.

A key feature of this model is that it explains why the lateral weights appear

to be generally weak. Although it is necessary to increase these weights initially to

decorrelate the output neurons’ activity, the feed-forward weights eventually become

responsible for encoding the reduced input representations. Once this happens, the

uncorrelated outputs will subsequently reduce the lateral inhibition between them

according to Equation 9.3. So, in this model, lateral weights are strong only tem-

porarily.
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A Qualitative Comparison with SLIM

Generally speaking, the RDDR model is very different from SLIM in terms of its

structure, but its form of lateral inhibition and lateral learning is very similar to that

found in SLIM. Perhaps, the most profound difference is that the RDDR model is

mainly unsupervised whereas SLIM is a supervised model.

The RDDR model’s structure uses a fully connected two-layered network. In the

hidden layer, however, the lateral inhibitory connectivity is only partial (systemati-

cally asymmetric, ΔwL
ik = 0 for i < k). SLIM, on the other hand, employs partial

connectivity for both the forward and lateral inhibitory weights. The RDDR model

only has one “pathway”, whereas SLIM is broken down into two pathways, which we

have seen may be useful for representing inhibitory and configural stimuli. In the case

of RDDR, multiple pathways were not necessary to demonstrate the dimensionality

reduction functionality. In SLIM, the synaptic weights are not permitted to change

sign. However, in RDDR, the synaptic weights are able to change signs. The authors

note that this is not very biologically plausible since occurrences of neurotransmit-

ters having both positive and negative effects are rare and not likely to exist in the

striatum.

The form of lateral inhibition here is very similar to SLIM, having specific neuron-

to-neuron inhibitory connections. Another similarity between the two models’ is that

the feed-forward and lateral weights are generally updated in the same direction

(sign). In SLIM, this is responsible for the retrospective revaluation results, since

lateral learning in the opposite direction gives the opposite effect (i.e., mediated

conditioning).

There are a few significant differences in the lateral learning rules. In SLIM, both

the sending and receiving neurons must be active for any learning to take place,

whereas learning may occur in RDDR when only the receiving neuron is active. This

feature of RDDR appears to be responsible for the weakening of lateral inhibition

following decorrelation of the output nodes. RDDR’s lateral learning rule is not

formally influenced by reinforcement, whereas it is in SLIM. This is important in SLIM

to account for the retrospective revaluation, since this is what keeps the direction of

the lateral learning the same as the direction of feed-forward learning.

Is the notion of dimensionality reduction and the decorrelation of output nodes
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incompatible with SLIM? Not entirely. SLIM’s lateral inhibition instead encourages

multiple instances of stimulus-outcome learning to be spread out among the various

neurons of the network. To be more concrete, as lateral weights between the neu-

rons of an ensemble are increased during conditioning, these neurons will naturally

become more difficult to activate by novel stimuli. So, the novel stimuli will gravitate

toward being represented by a largely separate ensemble. Ultimately, this behaviour

encourages a more thorough use of all of the neurons in the network. Although not

evaluated here, this would presumably reduce destructive interference or degradation

in its predictions as more and more stimulus-outcome relationships are learned.

9.4 Frank’s (2005) Model

Frank (2005) proposes a model of the basal ganglia that shares the most in common

with the present model. Here, we describe this model and provide additional details

in Appendix B. Frank’s rate-coding model, shown in Figure 9.4, is composed of

cortical, striatal, pallidal, and thalamic regions representing the complete cortico-

basal-ganglia-thalamo-cortical loop. It is a model of action selection, where each

action has a separate, topologically organized, loop throughout the system. The

cortical (patterned) input to the striatum and premotor cortex (PMC) are the only

fully connected (not topologically organized) sets of connections in the system. Frank

uses this system to simulate cognitive phenomena and, in particular, the difference

between a healthy subject and one with Parkinson’s disease (PD) by attenuating the

dopaminergic effects on striatal neurons in the PD case.

In the Weather Prediction task (Knowlton & Squire, 1994), 1, 2 or 3 of 4 possible

symbols are presented to the subject. The subject predicts whether Sun or Rain will

follow and the outcome is then revealed. In the model, a binary pattern representing

the presence of the predictive symbols is given as input. The striatum and other

regions of the model begin to activate and ultimately arrive at a decision, marked

by the active PMC node. This initial activation of the system is referred to as the

“minus” phase by Frank (2005). This is followed by the “plus” phase, in which

correct actions earn a phasic increase in dopamine while incorrect actions earn a dip

in dopamine. An increase or decrease of dopamine increases or decreases activity

in direct pathway neurons respectively and has the opposite effect on the indirect



135

Figure 9.4: Frank’s (2005) model of the basal ganglia with cortical and thalamic
nuclei. Patterned cortical input excites striatal neurons in the direct and indirect
pathways. Channels associated with actions A and B stay segregated throughout
the downstream connections. Terms: PMC - premotor cortex, GPe - globus pallidus
externa, GPi - globus pallidus interna.
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pathway neurons.

There are a number of dynamics that contribute to the operation of the model

and its learning. The striatal neurons are subdivided in two ways. First, each neuron

is topographically related to one of the possible actions (Sun or Rain). Second, each

neuron belongs either to the so called Go pathway (the direct pathway) or the NoGo

pathway (indirect pathway). Following the anatomy, Go pathway neurons project

directly to the GPi while NoGo pathway neurons project first to the GPe, which then

projects to the GPi. Thus, when an input is provided, the difference in Go to NoGo

pathway neuron activity is born out in the GPi, leading to the basal ganglia’s action

recommendation. This recommendation modulates activity in the thalamus, which

is reciprocally connected to the PMC. The thalamus essentially becomes a shutoff

valve on the activity of the non-preferred action, encouraging the preferred action. A

key feature of the model is the PMC’s topographic input connection to the striatum.

As the basal ganglia begins to settle on a decision, the PMC encourages activity

in stratial neurons that correspond to that decision. According to the contrastive

Hebbian learning rule used to update striatal weights (see Appendix B.3), a neuron’s

weights are changed in proportion to its activity. So, the PMC’s striatal projection

appropriately encourages or focuses learning on the neurons responsible for making

the decision. Without the PMC’s striatal influence, it would seem that some sort of

manual procedure would be needed to force learning in the neurons associated with

the decision made (as proposed in an actor-critic model described by Barto (1995)).

Learning occurs in both the striatum and the PMC. In the striatum, the change

in a neuron’s weights in a certain trial is proportional to the difference in its minus

and plus phase activity and the activity of the input unit from which it receives a

connection. A striatal neuron’s activity is also modulated by dopamine. Each neuron,

regardless of pathway, is enhanced to the same degree by the baseline dopamine level

in the minus phase. If the outcome matched the model’s prediction, dopamine levels

are increased. This enhances the Go neurons’ activity and reduces the NoGo Pathway

neurons’ activity. When the outcome does not match the prediction, dopamine levels

are decreased. This has the opposite effect on Go and NoGo neuron activity. The dif-

ference in activity between this latter (plus) phase and the earlier (minus) phase and

the way that dopamine oppositely modulates the Go and NoGo pathways means that
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these two pathways learn in opposite directions. In the PMC, learning is Hebbian

in nature, increasing the weights connecting active inputs and active neurons. An

important factor in this model is that the PMC learning must be made slow. Since

the PMC significantly influences activity in the striatum, causing a positive feedback

loop, a fast learning PMC may get an early reward or punishment that is statistically

uncharacteristic and then get stuck in this belief, ignoring the basal ganglia’s recom-

mendations even as experience grows. With a proper, slow learning rate, the basal

ganglia is eventually not needed to make a decision because the correct response has

been encoded in the input-PMC weights, an encoding process that could not have

been achieved with a Hebbian learning system alone.

9.4.1 A Qualitative Comparison with SLIM

The basal ganglia portion of Frank’s model shares much in common with the present

model, but there are a variety of differences as well. Both models involve multiple

neurons in the striatum, although SLIM uses far more for statistical stability reasons1.

Both models use a non-linear activation function, which translates internal values

to neural activities. Both have dual pathways, where one pathway has a positive

influence on the output whereas the other has a negative influence. SLIM takes

advantage of this feature to be able to develop configurations so as to accomplish

negative patterning (i.e., the XOR problem). Frank’s model does not do this.

Frank’s model is one of action selection (i.e., instrumental learning) rather than

merely learning the association between inputs and an outcome (i.e., classical condi-

tioning). As we mentioned earlier, the striatum appears to be involved in both forms

of learning, where it may use a similar approach to encode the values of actions as

well as states.

Both models have a form of lateral inhibition. SLIM has specific neuron-neuron

lateral inhibitory connections whereas Frank’s model uses a general global (striatum-

wide) inhibition. The purpose of the lateral inhibition is different in each model. In

Frank’s model, lateral inhibition is simply used to sparsify the neural activity. In

SLIM, the lateral inhibition sparsifies the neural activity but it also sets the stage

1With few neurons, SLIM can still behave correctly, but is more sensitive to the initial parameters
used. However, having many neurons reduces this sensitivity and allows SLIM to consistently
demonstrate conditioning findings as shown earlier.
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for lateral learning which leads to the retrospective revaluation phenomena. In both

Frank’s model and SLIM, the striatum is the only basal ganglia region that employs

lateral inhibition.

The learning rules for both models encourage neurons of the different pathways to

learn in opposite directions – when direct pathway synapses are strengthened, indirect

pathway synapses are weakened and vice versa. The exact way in which the models

implement this is different. Frank’s approach more accurately models the action of

dopamine on the activities of the D1 and D2 neurons and uses a common learning

rule based on the changes in neural activities between the minus and plus phases.

SLIM abstracts these details by simply using opposite signs in the learning rule for

the two pathways. In both models, having this opposite learning feature allows the

two pathways to learn cooperatively, that is, the effects of weight updates in the two

pathways add or work together rather than cancel out one another. In one way or

another, both models’ learning rules are proportional to the input, output, and level

of dopamine.

9.5 Relating SLIM and DPR

In the preceding sections, we described the relationship between two related basal

ganglia models and SLIM. We could have also drawn comparisons between these

models, especially the Frank (2005) model, and DPR. However, SLIM and DPR are

similar enough that to do so would be redundant. For example, SLIM and DPR use

the same dual-pathway structure and have similar cortico-striatal plasticity rules in

that the direction of learning is opposite for the direct pathway than for the indirect

pathway and that learning is proportional to prediction error and the salience of the

input. They differ in that DPR only uses 2 neurons (one per pathway) whereas SLIM

uses many neurons per pathway. DPR also multiplies the contributions of the direct

and indirect pathway whereas SLIM sums the contributions.

Because of the similarities, it seems possible to combine mechanisms from both

models to increase the total capability of a single model. As a proof of concept, I ex-

tended DPR to use multiple neurons per pathway and a quadratic activation function.

The learning rule also made each neuron’s learning proportional to the square root

of its activity, as in SLIM. The result not only enabled DPR to perform a non-linear
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discrimination, but to do so in an extremely efficient manner. Figure 9.5 compares the

results of an XOR task (negative patterning) between this non-linear DPR model and

a Support Vector Machine (SVM). Here we are not performing regression but rather

classification with 0 and 1 labels. In the task, there are two relevant features such

that when either is present, but not both or neither, reinforcement is delivered. In

the generated data, there is a 50% probability of activation for every feature, whether

relevant or irrelevant. There are a variable number of irrelevant features (indicated

in the figure legend). In this task, it is impossible to tell which of the features are

relevant based only on the frequency of association with the reinforcement, making it

a worst case scenario. We see that with few irrelevant features, the non-linear DPR

and SVM can accurately classify test examples with few training examples. However,

as the number of irrelevant features increases, DPR relatively quickly learns the re-

lationship whereas SVM lags behind, requiring an order of magnitude more training

examples to achieve comparable classification rates when there are only 50 irrelevant

features.

Fully combining SLIM and DPR is a task saved for future work. Unfortunately,

SLIM requires substantial computational time to run a single trial and has far fewer

stimulus inputs than we have typically been using in tests of DPR.
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Figure 9.5: An XOR classification task comparing an SVM and DPR enriched with
two mechanisms from SLIM. In the task, there are two relevant features such that
when either is present, but not both or neither, reinforcement is delivered. Relevant
and irrelevant features are present with 50% probability and, by nature of the task,
reinforcement is given as frequently in the presence of an individual relevant feature as
in the presence of an irrelevant feature. In this worst case type of scenario, we see that
the SVM performs comparably to DPR so long as the number of irrelevant features
is low. When there are a large number of irrelevant features, the SVM requires far
more training examples to provide comparable classification accuracy.
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General Discussion

10.1 Thesis Summary and Integration

The aim of the present work was to understand and evaluate potential biologically

plausible ways of solving the spatial credit assignment problem, especially those with

a dual pathway structure. In so doing, it might reveal novel approaches that are

beneficial for machine learning and may shed light on reasons for specific animal

behaviours.

Toward this end, I characterized the spatial credit assignment problem and de-

fined a probability density function from which the x and y training and test set

data were generated for the main regression task. An important detail was that in-

hibitory stimuli were defined as being distinct from stimuli that predict a “negative”

or oppositely valenced outcome. This is different than the Rescorla-Wagner and LMS

approaches, which put reward and punishment on the same “number line”, but with

opposite signs. In that line of thinking, negative values can both cancel a positive

prediction and suggest a negatively valenced outcome. This seems like a trouble-

some perspective. A direct prediction from this would be that an inhibitor which

signals no food reward (due to conditioned inhibition) should lead to an expectation

of punishment when presented alone because the prediction value should be very neg-

ative in this case. Despite such an unnatural prediction, using contemporary machine

learning methods like MLP or SVM for predicting future reinforcement will do this.

Additional evidence that the perspective taken in this thesis on inhibitory features is

correct is that animals tend not to extinguish inhibitory features by non-reinforced

presentation. The LMS and Rescorla-Wagner models, however, do extinguish in-

hibitory stimuli. The rLMS model, the optimal model for the task, and DPR do not

extinguish inhibitory stimuli in this way, treating inhibitory stimuli as a means of

canceling positive predictions only.

A next step was to identify potential strategies taken by biological systems. This

141
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was done by evaluating a number of existing theoretical approaches. An obvious

choice was simple linear regression. In so doing, I have discovered that a number

of classical conditioning phenomena in addition to those explained by the Rescorla-

Wagner model can be explained by merely repetitively reprocessing past experiences,

which is equivalent to linear regression. An interesting feature of this discovery is

that phenomena as different as retrospective revaluation and CS preexposure can be

additionally explained with this simple approach. Rationale and logic are sometimes

spoken of when verbal explanations of various conditioning phenomena are given.

Essentially, rationale wants to best account for all of our experiences, or in other

words, find the explanation(s) that maximizes the likelihood of our observed experi-

ences. This is formalized in linear regression in computing the maximum likelihood

estimate for our PDF model. Although the batch-learning associated with regression

may initially appear biologically implausible, the classical conditioning findings herein

suggest it is behaviorally plausible, and the ability of SLIM to explain retrospective

revaluation phenomena supports the idea that it is also biologically possible.

Generally speaking, the field of machine learning has helped us formally recognize

that learning runs into prediction problems when there is little data, many features,

and noise. Formal simulations presented here have confirmed that this is the case

even for the specific conditions represented in data sets fashioned after features of the

real-world. The model that was used to generate the data became the optimal model

with which to discover the underlying parameters, given enough data. Yet, imposing

irrelevant features (i.e., underlying parameter values of zero) does not match the im-

plicit assumption made by our “optimal model” that parameters are drawn from a

uniform distribution. The so called “optimal” model is therefore not optimal. Never-

theless, this parallels the fact that the uniform distribution assumption is commonly

made in machine learning problems. As a work around for making this incorrect as-

sumption, feature selection is used to improve performance. This essentially corrects

for the fact that many parameters have no influence on the output (i.e., have a pa-

rameter value of zero). The most extreme form of this is represented by the Bayesian

optimal model results, where the rLMS model was told exactly which 2 features were

relevant and regressed over these alone. Also, several different sub-optimal feature

selection methods were evaluated. A common theme is that having many irrelevant
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features, small data, and noise makes finding the relevant features more difficult for

rLMS and related methods. An important contributor to high prediction errors are

the residual values in parameters associated with irrelevant features. Regularization

methods shrink these residual values, transferring the value to relevant feature pa-

rameters. The LASSO, a specific regularization technique was found to be the most

effective of these overall in our simulations.

Classical conditioning models also exhibit problems eliminating residual values.

In the relative validity procedure, an irrelevant stimulus, X, retained substantial as-

sociative strength after many AX+, BX- trials in simulations of the Rescorla-Wagner

model. In contrast, no residual in X remained with an AX+, X- treatment (SFPD).

In SFPD, relative correlation takes place, where the most highly correlated stimulus

gains the associative strength, leaving little for the lesser correlated stimulus. Thus,

the addition of an irrelevant stimulus, B, in relative validity leads to residual errors

and a break-down in this relative correlation process. The problem seems to be in

permitting B’s strength to be negative because it then is able to support the residual

association in X. The Dual Noisy OR model, an extension of the Noisy OR model,

offered a solution. As reiterated in the formulation of DPR, instead of allowing stim-

ulus B to take on a negative value and sum with X, B’s inhibition is represented as

a number between 0 and 1 (smaller for greater inhibition) and is multiplied by the

positive value of X to make predictions. Importantly, the residual associative strength

in relative validity could no longer be supported without summation and a negative

associative strength for B and thus A and X reached full strength and zero strength,

respectively. This represents a restoration of the relative correlation principle and a

better fit for relative validity experimental data. The LASSO method was also able

restore relative correlation as well. The LASSO diminishes all parameters, relevant

or irrelevant. Truly relevant features are reinforced consistently enough to overwhelm

the LASSO’s effect on their associated parameters. The irrelevant features’ parameter

strengths, however, are reduced and ultimately transferred to the relevant features.

Whereas machine learning identified the key challenges to spatial credit assign-

ment and possible high-level solutions, neuroscience helps to narrow the range of

possible algorithms by demanding biological plausibility. Many of the algorithms in-

vestigated here have biologically plausible implementations. Specifically, we saw that
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the regularization methods could be seen as neuron synaptic strengths being reduced

over time and data augmentation as there being noise in the system during an update.

Such general purpose qualities could be at work anywhere in the brain. In contrast,

the proposed SLIM and DPR algorithms were centered around the basal ganglia and

are admittedly less parsimonious but offer potential purposes for this complicated

structure. Many machine learning algorithms do not have readily plausible neural

implementations. For example, the process of feature selection by employing a wrap-

per method begins with a certain subset of features and then adds or removes a feature

based on whether it improves the prediction error or not. Such a serial and highly

combinatorial process would be too slow for a biological system to use effectively.

Similarly, properly employing the Bayesian model selection would require evaluating

the plethora of feature combinations to arrive at the best hypothesis, and is therefore

considered implausible. As for general purpose learning machines, the MLP has an

air of biological plausibility but has been criticized for having to transfer knowledge

of synaptic weights in the output layer to the hidden layer (referred to as “weight

transport”), and it is not clear how this may be done biologically. In contrast, SLIM

and the enriched DPR model of Section 9.5 avoided the need for a second layer (and

thus weight transport) but were still able to learn simple non-linear discriminations.

The basal ganglia is an elaborate system of several pathways, synaptic plasticity

factors, and intranuclear connectivity, and not all of these features have strong, pur-

poseful explanations. In this work, the dual pathways are stripped of the purpose that

says the indirect pathway duplicates the functionality of the direct pathway. Instead,

new purposes are proposed. The dual pathway structure represents excitatory and

inhibitory features separately, which allows for: 1) improved generalization through

a multiplicative integration of inhibition and 2) configuration through a non-linear

activation function. DPR also suggests possible explanations for the direct pathway

axon collaterals to the GPe and the reciprocating projection from the thalamus to the

striatum. SLIM has shown how lateral inhibition in the striatum could be responsible

for online expression of retrospective revaluation phenomena, allowing one aspect of

regression to operate in an online setting.

In summary, mainly two novel biologically constrained algorithms have been pro-

posed. DPR uses multiplicative inhibition to suppress irrelevant features, which
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ultimately leads to fewer training data points being needed to learn the same dis-

crimination (especially clear in Figure 9.5). SLIM offers a way of learning non-linear

configurations and performing an aspect of regression online. Together, the mod-

els support an online means of efficiently learning which features are predictive of

an outcome or, in other words, spatial credit assignment. As described in more de-

tail in Section 10.3, machine learning stands to benefit in terms of improved linear

regression, in online settings especially. This work also speaks to classical condi-

tioning theory. From a large number of classical conditioning phenomena it appears

that animals are performing a regression over past experience. Also, SLIM offers a

novel elemental approach to performing retrospective revaluation phenomena, and

DPR also explains conditioning phenomena beyond LMS. Finally, rLMS’ and DPR’s

ability to properly avoid extinction of conditioned inhibition supports the stance

that prediction-canceling inhibitory stimuli are qualitatively different from excitatory

stimuli of opposite valence.

10.2 A 3-Stage Model of Reinforcement Learning

In the introduction, the spatial credit assignment problem was defined as being dis-

tinct from the unsupervised learning systems responsible for deriving high-level fea-

tures from raw sensory data. So, we started by breaking the total reinforcement

learning problem into two parts. As Figure 10.1 illustrates, the total reinforcement

learning problem could also be divided into three parts: an unsupervised part, a su-

pervised part, and a reinforcement learning part. As described in the introduction,

the “unsupervised learning” module transforms raw sensory input into a vector of

mid-to-high level features of the real world, where the salience of each feature is ex-

pressed as a scalar value between 0 (absent) and 1 (strongly present). This output

is then provided to the “supervised learning” module, which performs spatial credit

assignment. This module predicts the expected future salience of a range of stimuli

(especially USs), although in the earlier simulations we only ever predict a single

output for simplicity. This output is passed to the third, “reinforcement learning”

module. This final module simply maps each of its inputs to an independent rein-

forcement value and sums the effects of the expected reinforcements. This is where
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predictions of reward and punishment would mix to account for certain animal be-

havior. There are a few primary reasons why it may be helpful to make the 3-module

distinction.

Firstly, inhibitory stimuli cancel expectations but do not predict reinforcement of

the opposite valence. In reinforcement learning, the subfield of machine learning,

reinforcements can be either positive or negative. Naturally, rewards have positive

values and punishments have negative values. In reinforcement learning, inhibitors

of reward would acquire a negative reinforcement value so that when coupled with

the reward predictor they inhibit, there is less (or zero) expectation of reward. The

problem comes when the inhibitor is presented alone. Having a negative reinforcement

value should mean that the agent is being “punished” in some way, suggesting that

the agent should avoid such a state. To draw an analogy in animal learning terms,

this would mean that the presence of an inhibitor of food reward, which normally

indicates disappointment, when presented alone should make the animal fearful of

punishment. In both cases, the inhibitor is only meant to affect predictions when

in the presence of the stimulus/stimuli it was conditioned to inhibit. By separating

the supervised learning and reinforcement learning parts, the inhibitor is only used

in the supervised learning part to help predict whether or not the US will appear.

This non-negative prediction of the US is then funneled to the reinforcement learning

module, which assesses and integrates the reinforcement values of all predicted USs

or stimuli.

Secondly, prediction of future reward is more flexible if a US’ reinforcement changes.

After CS-US conditioning (e.g., tone → sucrose), it is possible that the US may be

devalued (e.g., sucrose paired with sickness). However, if conditioning only encodes

the CS’ reinforcement value, then it will not notice the US devaluation and still

predict substantial future reinforcement. In the 3-module distinction, as CS-US as-

sociations are made during conditioning, the supervised learning part would learn to

predict that the US will follow the CS. During the US devaluation, the reinforcement

learning module would update its direct mapping from US to reinforcement value.

Subsequent presentations of the CS would lead to predictions of the US whose up-

dated reinforcement value would be reported by the reinforcement learning module.
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Thirdly, this organization provides for a basal ganglia-based attentional mecha-

nism that is useful in looking ahead or, in other words, contributes to a model-based

reinforcement learning architecture. The basal ganglia modulates topologically orga-

nized cortical activity through its outputs’ influence on thalamo-cortical connections.

If these basal ganglia outputs represent the prediction of important CSs, the cortical

activity representing such CSs would be enhanced relative to other CSs, suppress-

ing the distracting unimportant stimuli. Model-based reinforcement learning involves

taking the present state/time and looking ahead through expected state transitions

to potential outcomes and thereby computing the expected reward. If the basal gan-

glia took on the commonly believed reinforcement learning role by encoding “reward

value” only, the basal ganglia would presumably enhance only stimuli that lead to

reward and help direct a model-based lookahead process toward potential rewarding

outcomes. However, if the basal ganglia instead takes a supervised learning role, it

should influence model-based lookahead toward punishing as well as rewarding out-

comes since it encodes importance or motivational salience rather than motivational

value. It would seem that being able to additionally predict aversive outcomes would

be necessary to an organism in the lookahead process. However, having a prediction

error that treats rewarding and punishing predictors alike does not suit the develop-

ment of action preferences believed to reside in the putamen and caudate areas of the

striatum. Such a prediction error would encourage actions that lead not only to re-

warding outcomes but also to aversive outcomes, which is not in the organism’s best

interests. There is some evidence suggesting that the prediction-error dopamine neu-

rons can be divided into two groups: neurons that respond to unpredicted rewarding

and punishing stimuli with dopamine burst and dips, respectively (i.e., motivational

value) and neurons that respond to unpredicted rewarding and punishing stimuli

with bursts alike (i.e., motivational salience). There is also evidence that these two

groups of neurons preferentially target different brain areas (see Bromberg-Martin,

Matsumoto, & Hikosaka, 2010 for a review). Motivational salience-reporting neurons

would be relevant for assisting high-level cognitive areas that require knowledge of

aversive as well as rewarding stimuli (e.g., lookahead), whereas motivational value-

reporting neurons would be especially important for encouraging actions that lead to

reward or away from punishment.
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10.3 Tips for Building a Better Value Function Approximator

A simple way to do value-function approximation is to use a supervised learning algo-

rithm with reinforcement learning data, which provides a state/time representation

as input and a reward value as output. Not all supervised learning algorithms are

conducive to representing value, however (Sutton & Barto, 1998). It is important

that the methods used can learn effectively when values are being learned via boot-

strapping. In bootstrapping, values are learned in relation to neighbouring values.

In temporal difference learning, for example, the reward value is slowly passed back-

ward through a sequence of states. So, the value for a given state is not usually

provided as an output immediately, but is only discovered after a number of episodes.

For this, an online-learning approach seems more appropriate or perhaps a batch-

learning approach that puts more weight on recent data. Another caveat is that not

all approaches will provide convergent predictions (with repeated episodes). So, one

must take care to ensure that the method in use converges.

From the present work, several recommendations can be made to improve the

spatial credit assignment nature of value-function approximation approaches.

• Consider dividing the reinforcement learning problem into 3 modules as noted

above. The first stage of unsupervised learning discovers the regularities in the

world and represents the salience of common features. This largely takes care of

managing the non-linearities inherent in raw sensory data. Unfortunately, exist-

ing unsupervised learning methods are still not as good as the brain at extract-

ing features that are invariant to common transformations. In the meantime,

manually constructed high-level features may suffice. Distinguishing between

the supervised and reinforcement learning stages is valuable. The key benefit

here is that features which predict no reward (inhibitors) are distinguished from

features that predict punishment. In this way, when the feature that predicts

no reward is presented on its own, it is not equated with the expectation of

punishment or negative reward. The interaction of punishment and reward pre-

dicting stimuli instead take place in the reinforcement learning module, where

the reinforcement value of each expected US, whether positive or negative, is

summed.



149

• Batch-learning gets you most of the way there but can be problematic. It has

been shown how simply repeatedly retraining on previous data can increase

the number of classical conditioning phenomena that LMS can explain. In this

way, batch-learning both improves prediction errors while better representing

the processes at work in the brain. However, when the predictive ability of

features change or the reinforcement learning strategy is to use bootstrapping,

an online-learning approach may fare better.

• Use a dual pathway strategy, which generalizes better than LMS when both

have a simple uniform prior. Also, employ an appropriate prior when feasible.

Even if all one can safely do is to assume that many features will be irrelevant,

the zero-peak prior will at least replace the implicit uniform distribution with

one that acknowledges that many features will have a parameter value of zero.

Employing the right prior appears to reduce overfitting (data not shown) and

may thus eliminate the need for a validation set.

• Use a dual pathway strategy with multiple elements per pathway and a non-

linear activation function to model non-linear combinations of features (e.g.,

XOR, AND, etc.). This structure invokes non-linearity without the usual prob-

lem of avoiding local minima since the local minimum is also the global one

(i.e., it is a convex optimization problem).

• Add lateral inhibition among the multiple neurons to provide an efficient multi-

dimensional representation of the present stimuli. In coarse coding (Sutton,

1996; Sutton & Barto, 1998), linear and non-linear conjunctions of features are

represented by an ensemble of elements. As the number of input dimensions in-

creases, the number of elements necessary for a similar degree of coverage grows

exponentially. Lateral inhibition encourages configurations of active ensembles

to represent specific (multi-dimensional) combinations of inputs and this gen-

eralizes well to subsets of such combinations (i.e., generalizes well even as the

number of dimensions/active inputs changes). Lateral inhibition also has the

expected benefit of increasing the capacity of the system to store information

since it forces fewer neurons to represent the same values as it would have with-

out lateral inhibition. Adding even a small amount of lateral learning helps to
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spread out these stimulus-outcome associations.

• If online-learning is important, add mechanisms like lateral learning that em-

ulate aspects of what occurs in batch-learning. Classical conditioning models,

besides SLIM, offer candidate mechanisms for this purpose.
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Figure 10.1: A 3-stage reinforcement learning model that computes a reward value
prediction from raw sensory input. An unsupervised learning module transforms
raw sensory data into the saliences of mid-high level features. A supervised learning
module then uses this input to predict the future saliences of other stimuli, especially
those with motivational value. Finally, a reinforcement learning module maps the
prediction of future stimuli to reward values, where positive values represent rewards
and negative values represent costs or punishments. These individual values are
summed to give a final reward value or prediction.



Chapter 11

Future Work

The present work has highlighted the value of a dual pathway approach to spatial

credit assignment and more specifically as the primary solution implemented by bio-

logical systems. There are a great number of possibilities, but with additional time,

I feel it would be most worthwhile to pursue research in the following directions:

• Investigating further the configural properties of SLIM in light of the classi-

cal conditioning literature. Although preliminary work has suggested that the

SLIM’s configural mechanism is very robust, it has not yet been evaluated with

respect to a number of related classical conditioning phenomena. Also, because

of its robustness (and regardless of its relationship to biological systems), it

seems worthwhile to further evaluate this mechanism as an extension of DPR,

since we have seen that this can have a powerful effect in learning certain non-

linear relationships and because it makes DPR a slightly more general purpose

model.

• Formally evaluating the latent cause theory of conditioning from a rigourous

spatial credit assignment problem perspective as done for the other approaches

described here. It appears that such methods would inherently require a lot of

data, but a formal analysis would confirm this.

• Evaluating the dual pathway approach on datasets generated with different

assumptions (priors) to discern whether or not DPR is a good general purpose

generalization approach. I would also like to combine DPR with the zero-peak

prior to see if the combination of their residual-reducing strategies adds to

further improve performance on the main regression task.

• Developing further or scaling up online approaches to regression. Although

with SLIM it was suggested how retrospective revaluation phenomena might be

explained in a biologically implementable online way, the same was not shown
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for CS Preexposure or other revaluation phenomena. Earlier versions of SLIM

included a weight-proportional learning mechanism that could accomplish this

but significantly complicated the model and was set aside. This approach is

very nearly the same as Pearce and Hall’s model (1980) and is worth investigat-

ing further. There are also other models of classical conditioning phenomena

that employ certain mechanisms to likewise generate retrospective revaluation

and/or other revaluation phenomena without relying on batch processing (e.g.,

Kasprow et al., 1987; Jamieson et al., 2012; Kutlu & Schmajuk, 2012). The

difficulty in making use of these approaches is in scaling them to be used in

the same versatile way as LMS. Nevertheless, these approaches constitute a

potentially fertile field of mostly untapped learning mechanisms for machine

learning.

• Relating the dual pathway mechanisms of basal ganglia function described here

to explain the cause or symptoms of various disorders localized in the basal

ganglia, namely Parkinsonism, Huntington’s disease, Schizophrenia, Attention

Deficit Hyperactivity Disorder, etc. Frank’s (2005) model already does this to

a certain degree for Parkinsonism, but the multiplicative inhibitory aspect of

DPR, the lateral inhibition of SLIM, etc. may also play a role in this and other

ailments.



Chapter 12

Conclusions

In this thesis, the main regression task was designed to represent aspects of the

real world. The optimal unbiased model (i.e., with uniform prior distribution) called

rectified least mean squares (rLMS) ruminates over all of its previously seen data (i.e.,

batch-learning) until it converges to a low average (mean squared) error. This work

has shown that revisiting previous trials in this way adds many classical conditioning

phenomena to the list that can be explained by the Rescorla-Wagner model, which

is otherwise equivalent. This supports the notion that biological systems are, in

some way, regressing over past experiences to make the most sense of them (i.e., to

maximize the likelihood of the observed events).

Simulating the main regression task has demonstrated that the spatial credit as-

signment problem is difficult with small data, many irrelevant features, and additive

noise. Although optimal under certain assumptions, rLMS did not perform the best of

all models for the data at hand. However, by introducing more accurate assumptions

(e.g., through regularization/Bayesian priors, feature selection, etc.) performance

was improved. It is expected that biological systems are employing similar means.

Specifically, we saw that the conditioning phenomenon called relative validity could

be explained when one of these additional assumptions were integrated with rLMS

or through the use of the proposed Dual Noisy OR and Dual Pathway Regression

(DPR) models.

Of all of the various machine learning approaches for reducing prediction error

in the regression task, the LASSO regularization for rLMS appears to be the most

generally useful method, assuming that rLMS can be employed effectively without

having to accurately specify the variance of the additive noise. The regularization

and dual pathway methods can all be implemented in biological terms. The LASSO

and zero-peak priors could be realized as a rule for synaptic weight decay over time.

DPR, a dual pathway model, can be realized in terms of basal ganglia structure and
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the cortico-striatal synaptic plasticity details uncovered by neuroscientific studies.

A number of earlier basal ganglia models provide various interpretations for the

function of the basal ganglia. This thesis offers a different view. In the likely event

that most spatial credit assignment learning occurs in an online fashion, the Striatal

Lateral Inhibition Model (SLIM) offers an online way of explaining and biologically

implementing some of the aspects otherwise explained by repeatedly reviewing the

data. The basal ganglia’s dual pathway structure also provides a seat for integrating

multiplicative inhibition and non-linear discriminations. Finally, the notion of the

basal ganglia (at least the stream involving the ventral striatum) serving as a super-

vised learning module sandwiched between unsupervised and reinforcement learning

modules appears to be beneficial.

So, how do biological systems solve the spatial credit assignment problem? This

thesis supports the strategy that we implicitly maximize the likelihood of our experi-

ences, as in regression, and that we employ certain assumptions about the real-world

that enable us to learn with as little experience as possible. It appears that such a

strategy and assumptions can be implemented in terms of the dual pathway nature of

basal ganglia anatomy and function, even in the likely event that the learning process

is largely online.



Appendix A

Least Mean Squares Regression Simulations of Classical

Conditioning Phenomena

Here, it is demonstrated that LMS is capable of correctly simulating retrospective

revaluation phenomena (Table 3.1) and other revaluation phenomena (Table 3.2).

Each simulation is captured in its own figure with simulation specific details and

a paper citation referencing the associated animal experiment. In each simulation,

stimuli have a salience of 1, the context has a salience of 0.2, and all stimuli/contexts

begin with zero associative strength. Each phase runs for 50 blocks of conditioning

trials and the results show the associative strength at the end of the last conditioning

phase.
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Figure A.1: Backward Blocking. Phase 1: AB+, Phase 2: A+ (BB); C+ (Con1);
CXT- (Con2). Paradigm taken from Shanks (1985) and adds another control group.
After the first phase, associative strength is split between the equally salient stimuli.
After the second phase in the BB group, the B stimulus is extinguished because stim-
ulus A can account for reinforcement in phase 1. The control groups show that only
when the previously paired stimulus is conditioned in phase 2 will B be extinguished.
Backward blocking is usually found to be a weak phenomenon in the animal learning
literature. Our simulation, however, shows a very strong backward blocking effect.

Figure A.2: Backward Conditioned Inhibition. Phase 1: AB-, Phase 2: A+ (BCI);
C+ (Con1); CXT- (Con2). Taken from Chapman (1991), Experiment 5, but added
an extra control group 1 (Con1). After the first phase, neither A nor B has any
associative strength. After the second phase in the BCI group, the B stimulus gains
substantial inhibitory strength because stimulus A was reinforced. B’s inhibitory gain
is used to account for the zero reinforcement given to compound AB in the first phase
in light of A’s excitatory gain. The control groups confirm that B becomes inhibitory
only with the conditioning of the previously paired stimulus (A). The inhibitory gain
in this simulation is substantially larger than in Chapman’s (1991) human causal
learning experiment.
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Figure A.3: Recovery from Forward Blocking. Phase 1: A+ Phase 2: AB+, Phase
3: A- (RFB); C- (Con1); CXT- (Con2). Simulation derived from Blaisdell, Gunther
and Miller (1999), Experiment 3. Blaisdell et al. found that it takes a large number
of extinction trials to detect recovery from forward blocking (compare Experiments
2 and 3), whereas in this simulation, far fewer are used to get a very substantial
effect. With the 50 extinction trials (A-), the simulation does not get the thorough
extinction that Blaisdell et al. gets with 800 trials. The controls show that the effect
only occurs when the blocking stimulus is extinguished.
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Figure A.4: Recovery from Conditioned Inhibition. Phase 1: A+, Phase 2: A+,
AB-, Phase 3: A- (BCI); C- (Con1); CXT- (Con2). Taken from Lysle and Fowler
(1985), Experiment 2. After the first two phases, A is seen as an excitor and B as an
inhibitor (C is novel). After the third phase in the BCI group, the B stimulus loses
inhibitory associative strength in proportion to the amount of excitatory strength
lost by A’s extinction. This contrasts with the two simulated control groups, where
B’s inhibitory strength is unaffected. In Lysle and Fowler, the extinction of A led
to a nearly complete loss of inhibitory associative strength in B. Thus, this is a
very potent effect. The matching effect in the simulation would be similarly potent
given additional extinction trials in Phase 3 or a larger learning rate to complete the
extinction of A as in Lysle and Fowler (1985).

Figure A.5: Hall-Pearce Negative Transfer. Phase 1: A+ (G1), B+ (G2), Phase
2: A++. Adapted from Hall and Pearce (1979), Experiment 1. The first phase
establishes the associative strength of the A and B stimuli at 0.5 (the strength of the
reinforcement represented by a single “+” sign). In the second phase, a full strength
reinforcement follows presentation of A. The associative strength of A in Group 1 lags
that of Group 2. This appears to be a fairly strong effect in Hall and Pearce (1979)
and is relatively strong in the simulations as well.
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Figure A.6: Retardation Test for Conditioned Inhibition. Phase 1: A+, Phase 2:
A+, AB-, Phase 3: B+, C+. See Rescorla (1969) for a review of many instances of the
usage of this paradigm. After the first two phases, A is seen as an excitor and B as an
inhibitor. In the third phase, the inhibitor is instead conditioned alongside a control
stimulus (C). The general finding is that the novel stimulus C will condition more
readily than the conditioned inhibitor. This is also seen in the simulation such that
after 50 phase 3 trials, the associative strength of stimulus C is much greater than for
stimulus B. Note that in this simulation, the context stimulus was given 0.0 salience
because in the third phase, it was gaining a lot of associative strength and obscuring
the final results, though it did not change the ordinal relationship of the findings.
This phenomenon can also be simulated with the Rescorla-Wagner model because an
inhibitory feature will have a larger difference between its associative strength after
phase 2 and the US than does the difference between a novel stimulus and the US.



Appendix B

Details of Frank’s (2005) Model of the Basal Ganglia

The following subsections represent a formal description of Frank’s 2005 model based

on information gleaned from the original paper, related references, a book about

Leabra modeling (O’Reilly & Munakata, 2000), the Emergent software implementa-

tion of the model and its documentation, as well as personal communication with

Michael Frank. The goal was to determine the details of the model that are primarily

responsible for its outward behaviour.

B.1 Connectivity

Each layer is composed of a set number of neurons, which receive a certain pattern

of inputs from incoming projections. Most of the layers are topographic, having a

channel to represent one action/choice versus another. The system input pattern is

the exception, sending 20 projections (5 per cue) to fully connect with the striatal

neurons and PMC neurons.

For some connections, strengths are uniformly distributed random numbers with

a certain range. These connections are Input-PMC (0.345, 0.355), Input-STR (0.25,

0.75), and PMC-STR (0.44, 0.56). All other connections between regions have a

certain mean strength (usually 1.0) but no randomness.

B.2 Activation

For each neuron in a layer or region, the membrane potential is computed based on

three facets,

dVm(t)

dt
= ge(t)ge(Ee − Vm(t)) + gl(t)gl(El − Vm(t)) + gi(t)gi(Ei − Vm(t)) (B.1)

where ge(t) represents the excitatory input, ge represents the maximum expected

value of ge(t), and Ee is the reversal potential of the excitatory input. Corresponding
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terms labeled with subscripts l and i represent the contribution of the leak current

and the inhibitory input respectively. Frank includes an equation for computing the

equilibrium potential,

V ∞m (t) =
ge(t)e

ge(t)ge + gl(t)gl + gi(t)gi
(B.2)

However, since there is a feedback loop in the system, the input to the neurons will

change over time and thus this equation will not hold.

A neuron fires with a rate according to

y(t) = (1 +
1

γ[Vm(t)−Θ]+
)−1 (B.3)

where Θ is the firing threshold and γ is an activation gain control. Under most

circumstances, Θ = 0.25. The exception to this is that it increases to Θ = 0.254 in

neurons being additionally enhanced by a burst (Go neurons) or dip (NoGo neurons)

in dopamine1. The gain control is defined by the level of dopamine and the pathway

to which a neuron belongs. By default, γ = 600. When dopamine levels are high (as

in a burst), Go neurons are excited (γ = 10000∗k, where k represents the percentage

of living dopamine cells, a value between 0 and 1) whereas when dopamine levels are

low, they are enhanced less by dopamine and thus γ is set to less than the default

γ = 600 − 300 ∗ k). Combined with the learning rules described later, this leads to

an increase of synaptic strengths when Go neurons are rewarded with high dopamine

and a decrease when Go neurons are punished with a dopamine dip. The scenario

is opposite for NoGo neurons, and thus the γ values above are set in the opposite

arrangement. Note that the values for γ reported here are different from the current

Emergent (Leabra) version of this model, but follow the original paper more closely.

The time-varying conductances used to compute the membrane potential can be

computed as follows. For the leak current, the conductance is actually not time

varying, but constant, gl(t) = 1.0. Note that the GPe and GPi only receive inhibitory

inputs, and thus require some excitatory input or conductance to become active. This

is accomplished by adding a large positive number (20) to El, bringing it above the

1Note that Θ is not manipulated in Frank’s more recent models of this kind, because it apparently
introduces complicated dynamics into the model. In the present model, the threshold increase printed
in the original paper associated with a correct choice in the WP Task cause most or all of the direct
pathway neurons to be silenced during the plus phase, which means that their weights would never
be increased, leading to negative effects.
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threshold, which is interpreted as the leak current letting in positive ions instead of

negative ions and thereby encouraging activity in the neuron rather than attenuating

it. For the excitatory input conductances are

ge(t) = (1− dtnet)ge(t− 1)+dtnet(
β

N
+

1

np

∑
k

1

αk

∑
i

xikwijk) (B.4)

where dtnet = 0.7 is the proportion of the previously computed value mixed with

that computed at the present time. The constants np and αk are the number of

projections to a layer and each (k) one’s total expected value, respectively. These

help to normalize and balance input projections with differing numbers of neurons

and levels of activity. Finally, the constant β represents a bias that has the weight of

an additional projection.

The inhibition used in this model is a k-winners-take-all form. To get k winners,

the inhibition used is computed to suppress all but k neurons. This is done by

computing conductances for the kth and k + 1 neurons and taking their average

gi(t) = gΘk+1 + 0.25(gΘk − gΘk+1) (B.5)

where the conductance for a particular neuron (i.e. the kth or k + 1) is

gΘ =
ge(t)ge(Ee −Θ) + gl(t)gl(El −Θ)

Θ− Ei

(B.6)

Not every layer uses k-winners-take-all inhibition. According to Frank (personal

communication), the GPe and GPi layers do not make use of it because they have

inhibitory input from other layers. However, in so doing, the GPe basically outputs

either all or nothing. This means that the indirect pathway tends to make a tentative

decision based on the striatal activity rather than expressing the degree to which

indirect pathway neurons are active. Using the k-winners-takes-all inhibition in the

GPe avoids this.

B.3 Learning

Learning is done in two ways: Hebbian learning with Oja normalization and con-

trastive Hebbian learning. Hebbian learning with Oja normalization is computed

as

Δwij = yj(xi − wij) (B.7)
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whereas contrastive Hebbian learning is

Δwij = x+
i y

+
j − x−i y

−
j (B.8)

where the superscript + indicates a quantity associated with the plus phase and the

− subscript for minus phase quantities. Note that in cases where this learning is

used, there is no change for the connections of neurons that are inactive in the plus

phase. Learning occurs in the striatum and PMC. In the striatum, a mix of Hebbian

and contrastive Hebbian is used with a “mixing factor” that describes the relative

proportions of each. This is used so that when contrastive Hebbian learning is no

longer effective (i.e., the difference between Go neural activations in the plus and

minus phases is very small), the simple Hebbian learning can still reinforce these

weights.



Appendix C

Notices of Permission to Use Excerpts from Author’s

Publications

In this thesis, large and small excerpts were taken verbatim from two of the author’s

own papers (Connor et al., 2013; Connor & Trappenberg, 2013). Both Springer (pub-

lisher of the journal Learning and Behavior) and IEEE (publisher of the proceedings

of the International Joint Conference on Neural Networks) who accepted these arti-

cles state in the documents reproduced on the following pages that use of the author’s

work in their own dissertation is allowed.
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