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Abstract

Marine phytoplankton produce the vast majority of primary production in the world’s
oceans and sustain virtually all marine ecosystems. Despite this importance, it is cur-
rently unclear how global marine phytoplankton concentrations have been changing
over the available oceanographic record, and what the causes and consequences of any
such changes may be. In this thesis I use observational datasets, statistical modeling,
theory, and experiments, to estimate how the global standing stock of marine phy-
toplankton (referenced by chlorophyll) has changed over the past century, and what
the causes and consequences of any changes may be.

I inter-calibrated shipboard measurements of upper ocean chlorophyll, transparency,
and colour to generate a publicly-available global chlorophyll database spanning from
1890 to 2010. Generalized additive models and multi-model inference were used to
estimate the magnitude and nature of changes over the available record, and to ex-
plore the effects of multiple oceanographic and climatic variables on these changes.
Finally, I worked collaboratively to design and run a mesocosm experiment to test
the mechanisms by which rising ocean temperatures influence phytoplankton and
plankton community structure.

I observed declining trends in upper ocean chlorophyll concentrations at local, re-
gional, and global scales over the past century. Increasing trends were observed closer
to coastlines, and were possibly related to increased land-based nutrient deposition
there. I also observed inter-annual to multi-decadal fluctuations overlying the long-
term trends, which were partly related to climate variability. Sea surface temperature
was a consistently strong driver of observed chlorophyll trends. Strong negative ef-
fects of rising ocean temperatures on chlorophyll concentration were observed at mid,
and low latitudes, and positive effects were observed at high latitudes. The overall
effect of increasing temperature on chlorophyll was negative, yet the mesocosm ex-
periment revealed that the primary mechanisms explaining this effect depend on the
nature of the ecosystem. Under nutrient limitation, the physically-mediated effects
(stratification) of increasing SST were dominant, while under nutrient saturation, the
biologically-mediated effects (trophic) were dominant.

This thesis provides new evidence that sustained declines in marine phytoplankton
over the past century have occurred across multiple spatial scales and that rising
ocean temperatures have contributed to this trend. The possible implications of
this sustained decline are wide-ranging, with likely impacts on climate, geochemical
cycling, fisheries, and ecosystem structure.

xii



AAO
AIC
AMM
AMO
ANOVA
AO

AOI

BATS
BIC

CalCOFI

CDOM
Chl
Chlczces
Chl
Chly
Chl;

ChlSeaWiFS

Chly
CPR
CTD
CZCS

DIN
DMI
DOM

List of Abbreviations and Symbols Used

Antarctic oscillation

Akaike Information Criterion
Atlantic meridional mode
Atlantic multidecadal oscillation
Analysis of variance

Arctic oscillation

Arctic oscillation index

Bermuda Atlantic Time-series Study

Bayesian Information Criterion

California Cooperative Oceanic Fisheries Investiga-
tions

Coloured dissolved organic matter

Chlorophyll

Coastal zone colour scanner-derived chlorophyll
Calibrated chlorophyll

Forel-Ule derived chlorophyll

in situ chlorophyll

Sea-viewing wide field of view sensor-derived
chlorophyll

Transparency derived chlorophyll
Continuous Plankton Recorder
Conductivity temperature depth

Coastal Zone Colour Scanner

Dissolved inorganic nitrogen
Dipole mode index

Dissolved organic matter

xiil



EKE
ENSO
EU

FU

GAM
GCV
GEBCO
GLM
GLS
GMT
GPP
GSHHS

HadISST
HNF
HOTS
HPLC

ICES

10D
IPCC

KE

km

Eddy kinetic energy
El Nino southern oscillation

European Union

Forel-Ule

Generalized additive model

Generalized cross validation

General Bathymetric Chart of the Oceans database
Generalized linear model

Generalized least squares

Generic Mapping Tools

Gross primary production

Global  Self-consistent, = Heirarchical, = High-
resolution Shoreline database

Hadley Centre Sea Surface Temperature database
Heterotrophic nanoflagellate
Hawaii Ocean Timeseries

High performance liquid chromatography

International Council for the Exploration of the
Seas

Indian ocean dipole

Intergovernmental Panel on Climate Change

Kinetic energy

Kilometers

Meters

Xiv



MA
MIRC
ML
ml
MLD
MMI
MTE

NAO
NASA
NOAA
NODC
NPP

OAFlux
OGCM
OLS

P-IRLS
PCA
PCD
PCI
PDO
PL
POC
POM
PON
POP

Major axis

Marine Information Research Institute
Maximum likelihood

Milliliters

Mixed layer depth

Multi-model inference

Metabolic theory of ecology

Nitrate

North Atlantic Oscillation

National Aerononautics and Space Administation
National Ocean and Atmospheric Administration
National Oceanographic Data Center

Net primary production

Objectively Analyzed air-sea Fluxes
Ocean general circulation model

Ordinary least-squares

Phosphorous

Penalized iteratively re-weighted least squares
Principal component analysis

Programmed cell death

Plankton colour index

Pacific decadal oscillation

Penalized likelihood

Particulate organic carbon

Particulate organic matter

Particulate organic nitrogen

Particulate organic phosphorous

XV



RMA Ranged major axis

RPCA Rotated principal components analysis
S Seconds

SE Standard error

SeaWiFS  Sea-viewing Wide Field of view Sensor
SST Sea surface temperature

SSTq Sea surface temperature spatial gradients
TDS Temperature-driven stratification

TN Total nitrogen

TP Total phosphorous

TSR Temperature-size rule

TZCF Transition zone chlorophyll front
UBRE Un-biased risk estimation

VIF Varaiance inflation factor

WOOD Worldwide Ocean Optics Database

Yr Year

Zp Secchi depth

xvi



Acknowledgements

This thesis would not have been possible without the help and guidance of many
people. I am incredibly grateful to everyone who helped me along the very interesting
and rewarding path leading to the completion of this thesis.

Firstly, I am enormously thankful and indebted to Boris Worm, my PhD super-
visor. We have worked together since I was an undergraduate student, and he has
greatly influenced and shaped my approach to science and life. Throughout my initial
stumbling and faltering progress, Boris has been an excellent supervisor and mentor.
I have enjoyed our many conversations and have appreciated his balanced and positive
approach to research, which I hope to carry forth in my own life. Boris, I am very
grateful for your time, patience, support, enthusiasm, and generosity. Thank you.

I would also like to thank Ransom (RAM) Myers and Marlon Lewis, whom I
worked very closely with at various stages of my thesis. Ransom (RAM) Myers was
my former employer and academic co-supervisor. While our time together was sadly
brief, I will always remember his boundless energy, generosity, and passion. I am also
very grateful to Marlon Lewis, whom I have worked closely with throughout my thesis.
I have learned immensely from our talks, and have been amazed and inspired by his
ability to remain scientifically productive, maintain a family, and still find the time to
enjoy the many pleasures of life. Thank you to my committee members Sandra Walde,
Tamara Romanuk, Marlon Lewis, and Hal Whitehead, whose insightful comments and
questions have greatly improved this thesis.

[ am also very grateful to all those with whom I have collaborated with and
co-authored a paper during my thesis: Marlon Lewis, Michael Dowd, Ulrich Som-
mer, Aleksandra Lewandowska, Mattias Hofmann, and Birte Matthiessen. I would
particularly like to thank Aleksandra Lewandowska and Birte Matthiessen who were
incredibly warm, welcoming, and supportive to my family and me during the six week
running of experiments in Kiel, Germany.

[ am very grateful to many friends and colleagues in the Myers, Lotze, and Worm

labs. I am particularly thankful to Dan Riccard, Coilin Minto, Derek Tittensor,

XVil



Francessco Ferretti, lan Jonson, Luis Lucifora, and Travis Sheperd for generously
helping me during my initial, painstaking entry into the intimidating world of com-
puter programming and statistics. I am also very grateful to many additional past
and present lab members including Sean Anderson, Stephanie Bourdreau, Allison
Schmidt, Jennifer Ford, Catherine Miur, Brendal Davis, Aurelie Godin, Marta Coll-
Monton, Camilo Mora, Julia Baum, Ian Jonsen, Anna Magera, Greg Britten, Greg
Breed, Trevor Davies, Arliss Winship, Gretchen Fitzgerald, and Zoey Zaharodny for
their abundant help, support, and friendship during my thesis.

I would very much like to thank Mike Dowd, Joanna Mills-Flemming, Keith
Thompson, Bruce Smith, Hong Gu, for generously allowing me to audit their sta-
tistical courses. Particular thanks to Joanna Mills-Flemming, Mike Dowd, Wade
Blanchard, and Chris Field for donating their time and statistical expertise; their
hep enabled me to attain the quantitative tools necessary to undertake my thesis
work. I would also like to thank Heike Lotze, Joanna Mills-Flemming, Bill Li, and
Ken Frank, for providing valuable feedback and suggestions for improvement of my
research. I would like to thank Balagopal Pillai and Justin Breen for providing ex-
pert and timely computing support at all hours of the day (or night) throughout my
studies.

Thank you to Tim Boyer, Jeffrey Smart, for assisting me with data acquisition
during my thesis. I would also like to thank the many dedicated researchers who
have been collecting valuable oceanographic data throughout the global oceans for
over 120 years; without this immense effort this thesis would not have been possible.

Lastly, I would like to sincerely thank my parents, Dave and Sylvia, for supporting
and encouraging me to follow my interests to the fullest, even when they took me far
afield. T would like to thank my wife Tania for being my best friend and constant
support throughout the many ebbs and flows of this thesis and of life. Finally, thank
you to my little daughter Hazel, for unwittingly helping me complete my thesis by
‘motivating’ me to manage my time as efficiently as possible, providing me with lots
of comic relief when I needed it most, and for helping me to remember the important

things in life.

xviil



Chapter 1

Introduction

1.1 General Introduction

"Man eats the mackerel, which may feed upon young herring, and these
upon copepods, and the copepoda again upon diatoms. .... All such chains
of food matter from the sea seem to bring one through the copepods to
the diatoms, which may be regarded as the ultimate "producers’ of food
in the ocean. Thus our living food from the waters of the globe may be
said to be the diatoms and other microscopic organisms as much as the

fishes.”

- W.A. Herdman, Science, 1909

Since the late 1800’s marine scientists onboard the Challenger expedition began
to observe and document the link between the characteristics and colour of the ocean
and the presence of ubiquitous, floating microalgae - the phytoplankton (Buchanan,
1910); (Figure 1.1A, B). At this time, the role of phytoplankton was completely un-
known, and the theory of the ocean as a productive system supported entirely by the
phytoplankton (see above quote) was a radical new idea (Herdman and Url, 1909).
Since this time, there has been an enormous broadening in our understanding of
the important roles marine phytoplankton play in global processes. Throughout the
1930’s a series of oceanographic expeditions ultimately led to the startling discovery
that the activities of marine phytoplankton not only reflected the chemical compo-
sition of the deep oceans, but actually formed it (Redfield, 1958). The activities of
phytoplankton over geological time horizons have also profoundly shaped the compo-
sition of our atmosphere (Falkowski, 1998), and continue to influence global climate
patterns today (Charlson et al., 1987; Murtugudde et al., 2002). By generating 46%
of global annual primary production (Field et al., 1998), and more than 90% of marine

production (Charpy-Roubaud and Sournia, 1990), marine phytoplankton establish
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the upper limits for fisheries harvests (Chassot et al., 2010, 2007; Ryther, 1969),
fuel deep-sea communities, and strongly influence the structure and functioning of all
marine ecosystems (Chavez et al., 2003; Richardson and Schoeman, 2004). Despite
our burgeoning understanding of the important roles that marine phytoplankton play
in a diverse range of global processes, one of the most fundamental questions remains
unresolved: are the oceans becoming more, or less abundant with phytoplankton?
The difficulty in addressing this seemingly simple question has severely constrained
our ability to quantify the effect of changing phytoplankton on climate, geochemi-
cal, and ecosystem processes and to identify the factors which may drive long-term
phytoplankton changes.

Resolving long-term phytoplankton change has proven challenging for a number
of reasons. Marine phytoplankton closely track and may sometimes amplify very sub-
tle environmental changes (Taylor et al., 2002). Because of this, long-term changes
on phytoplankton abundance are often small relative to any natural environmental
variability. For instance, environmental disturbances can drive large transient Chl
changes over days or weeks (Hamme et al., 2010), and intra-annual phytoplankton
variability can span many orders of magnitude in some locations, such as at high lat-
itudes (D’Ortenzio et al., 2012). Further, oscillatory climate fluctuations can induce
20-fold changes in Chl over time intervals ranging from monthly to multi-decadal
(Barber and Chavez, 1986), and have been observed to explain a large proportion of
the variability of shorter-term phytoplankton trends (Behrenfeld et al., 2006; Boyce
et al., 2010; Chavez et al., 2011; Martinez et al., 2009). It has recently been esti-
mated that phytoplankton time series of between ~27 to ~40 years is required to
separate phytoplankton trends that are driven by transient environmental variability
from those which are sustained and long-term (Beaulieu et al., 2013; Henson et al.,
2010). Estimating such long-term changes requires a comprehensive database, robust
analysis methods and long-term time-series of phytoplankton abundance or biomass.
Appropriate analysis methods are now widely available, but consistent, accurate,
large scale, long term measurements of phytoplankton abundance are scarce. Al-
though different indices of phytoplankton biomass are available since the late 1800’s,

the availability of these data has changed considerably over time and space. For



Figure 1.1: Marine phytoplankton.

(A) Marine diatom cells (Rhizosolenia setigera), which are an important group of
phytoplankton in the oceans (Karl Bruun, Nostoca Algae Laboratory, photo cour-
tesy of Nikon Small World). (B) A large phytoplankton bloom in the Barents Sea as
viewed from space (NASA Earth Observatory Collection). (C) Scientists collecting
plankton ca. 1929 using a vertical net (Hurley, F., Part of B.A.N.Z. Antarctic Re-
search Expedition photographs, 1929-1931, photo courtesy of the National Library
of Australia). (C) Scientists measuring water transparency using a Secchi disk, ca.
1928. Historical Secchi disc measurements are one of the main data sources in this
analysis (Yonge, C.M., Part of Album of the Great Barrier Reef Expedition in the
Low Islands region, Queensland, 1928-1929, photo courtesy of the National Library
of Australia).
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instance, changes in phytoplankton concentration have been inferred from measure-
ments of upper ocean chlorophyll concentration (Chl; mg m™—3; ~1950 onward); (i.e.
Venrick et al., 1987), transparency (1889 onward; Figure 1.1D); (i.e. Falkowski and
Wilson, 1992), visual estimates of ocean colour (1889 onward); (i.e. Reid et al., 1998;
Wernand et al., 2013), and remotely-sensed water-leaving radiances (1978 to 1983 and
1997 onward); (i.e. Antoine et al., 2005; Behrenfeld et al., 2006; Gregg and Conkright,
2002). This lack of sampling consistency has resulted in considerable uncertainty re-
garding the nature of long-term marine phytoplankton change. For instance, despite
numerous published studies, both the direction and magnitude of marine phytoplank-
ton change remains unresolved.

Based on this situation, the overarching goal of this thesis is to resolve how marine
phytoplankton have been trending over the long term and globally, and what factors

may be driving any observed changes.

1.2 Thesis Research Questions

In my thesis I attempted to better understand long-term and global marine phyto-

plankton change by addressing the following main research questions:

1. How has the global standing stock of marine phytoplankton changed over the
past century? This includes quantifying the nature, magnitude, and spatial

patterns of temporal phytoplankton change.

1. What factors relate to temporal changes in marine phytoplankton standing
stock? Specifically, I am interested in identifying what physical or biologi-
cal variables most strongly relate to phytoplankton changes over time, and in
quantifying the nature, magnitude, and spatial patterns of the effects of drivers

on phytoplankton.

1. What is the effect of ocean warming on marine phytoplankton? I am interested
in understanding both the overall effect of ocean warming on phytoplankton, as
well as the pathways by which changes in temperature influences phytoplankton.

Spatial patterns in the temperature effects will also be explored.



1.3 Thesis Outline

Following this introduction, my thesis is organized into 7 more chapters:

Chapter 2 (Global phytoplankton decline over the past century) is an analysis
of phytoplankton changes over the past century, and a preliminary analysis of the
possible drivers of the observed changes. Ship-based measurements of upper ocean
chlorophyll and transparency (Figure 1.1C, D) were used in combination with sta-
tistical models to estimate global phytoplankton changes from 1899 to 2009. The
effect of several leading climate oscillations and 3 long-term oceanographic variables
on estimated trends was also explored.

Chapter 3 (Integrating global chlorophyll data from 1890 to 2010) is an in-depth
description of the data and methods used to generate the currently longest-running
publicly-available global chlorophyll database, available from 1890 to 2010. Mea-
surements of upper ocean chlorophyll, ocean colour, and transparency were inter-
calibrated to create a long-term and global database of chlorophyll measurements.
A range of sensitivity analyses and comparisons against widely used remote sensing
measurements of chlorophyll were undertaken to test the accuracy of the calibrated
chlorophyll measurements.

Chapter 4 (Global chlorophyll changes over the past century) makes use of this
new database (chapter 3) in combination with updated analysis methods to estimate
the nature, magnitude, and spatial pattern of marine chlorophyll change from 1890 to
2010. The new database encompasses a wider spatial and temporal range than what
has been compiled for Chapetr 2, and the use of multi-model inference allows for
more complex phytoplankton dynamics to be incorporated within the trend analysis.

Chapter 5 (Oceanographic drivers of chlorophyll change over the past century)
uses an expanded suite of oceanographic variables and new statistical methods to
examine the factors contributing to long-term marine chlorophyll change. I used high-
resolution time-series of 8 oceanographic variables and 4 leading climate variables in
combination with long-term global chlorophyll measurements (chapter 4) to estimate
the effect of the oceanographic variables on chlorophyll trends from 1890 to 2010. I
also explored the timescales over which these drivers influence marine chlorophyll.

Chapter 6 (Effects of sea surface warming on marine plankton) presents a mech-

anistic analysis conducted in collaboration with the GEOMAR facility in Germany
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examining the effects of ocean warming on a plankton community. This chapter com-
bines ocean general circulation modeling, empirical analysis, and experimentation to
explore the overall effects and pathways by which increasing temperature affects phy-
toplankton. This quantifies the influence of both physically- and biologically-mediated
effects of increasing ocean temperatures on phytoplankton.

Chapter 7 (Patterns, drivers and ecosystem consequences of marine phytoplankton
change) provides a broad overview of the state of our understanding of the drivers
and consequences of marine phytoplankton change, as well as a quantitative analysis
of past, present, and expected future changes in phytoplankton biomass as reported
from the published literature.

Chapter 8 (Conclusions) provides a general summary and synthesis of my thesis
findings and identifies the management implications and possible directions for future

scientific investigation.

1.4 Thesis Miscellanea

This thesis has been shaped by the feedback received following the publication of
Chapter 2. Chapters 3 to 5 were conducted in response to the interest and com-
ment from the scientific community (see Appendix for published commentaries and
response); these chapters test the robustness and validity of the chapter 2 findings,
and expand upon them. Appendices to this thesis include supplementary materials
for chapters 2, 5, 6, and 7, and a published reply to chapter 2, as well as all nec-
essary permissions to reproduce chapters which have been published. Lastly, most
of the chapters are published or submitted to peer-reviewed journals. Details of all
published or submitted chapters are provided on the first page of each chapter or
appendix. The references for each chapter and appendix are provided in a single

reference list at the end of the thesis.



Chapter 2

Global Phytoplankton Decline Over the Past Century

2.1 Abstract

In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for ap-
proximately half of the production of organic matter on earth (Beaugrand, 2002;
Sibert et al., 2006). Analyses of satellite-derived phytoplankton concentration (avail-
able since 1979) have suggested decadal-scale fluctuations linked to climate forcing,
but the length of this record is insufficient to resolve longer-term trends. Here, we
combine available ocean transparency measurements and in situ chlorophyll observa-
tions to estimate trajectories of phytoplankton biomass at local, regional, and global
scales since 1899. We observed declines in eight of ten ocean regions, and estimated a
global rate of decline of ~1% of the global median per year. Our analyses further re-
vealed interannual to decadal phytoplankton fluctuations superimposed on long-term
trends. These fluctuations were strongly correlated with leading climate indices, while
long-term declining trends were related to increasing sea surface temperatures. We
conclude that global phytoplankton concentration has declined over the past century

with implications for marine ecosystems, geochemical cycling, and fisheries.

2.2 Introduction

Generating roughly half of the planetary primary production (Field et al., 1998), ma-
rine phytoplankton affect the abundance and diversity of marine organisms, drive ma-
rine ecosystem functioning, and set the upper limits to fishery yields (Chassot et al.,
2010). Phytoplankton strongly influence climate processes (Murtugudde et al., 2002)
and biogeochemical cycles (Sabine et al., 2004; Roemmich and McGowan, 1995), par-
ticularly the carbon cycle. Despite this far-reaching importance, empirical estimates

of long-term temporal trends in phytoplankton abundance remain limited.

Published as: Boyce, D. G., M. R. Lewis, and B. Worm. 2010. Global phytoplankton decline
over the past century. Nature 466: 591596.
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Estimated changes in marine phytoplankton using satellite remote sensing (1979-
1986 and 1997-present) have been variable, with reported global decreases (Gregg
and Conkright, 2002), increases (Gregg et al., 2005; Antoine et al., 2005), and large
interannual (Behrenfeld et al., 2006) and decadal-scale variability (Martinez et al.,
2009). Despite differences in scale and approach, it is clear that long-term estimates of
phytoplankton abundance are a necessary, but elusive prerequisite to understanding
macroecological changes in the ocean (Behrenfeld et al., 2006; Falkowski, 1998; Raitsos
et al., 2005).

Phytoplankton biomass is commonly inferred from measures of total chlorophyll
pigment concentration (Chl). Since Chl explains much of the variance in marine
primary production (Ryther and Yentsch, 1957) and captures first-order changes in
phytoplankton biomass, it is considered a reliable indicator of both phytoplankton
production and biomass (Henson et al., 2010). Shipboard measurements of upper
ocean Chl have been made since the early 1900s, first using spectrophotometric and
then fluorometric analyses of filtered seawater residues, and more recently through in
vivo measurements of phytoplankton fluorescence (Jeffrey et al., 1997). Additionally,
measurements of upper ocean transparency using the standardized Secchi disk are
available from 1899 to present and can be related to surface Chl through empirically-
based optical equations (Falkowski and Wilson, 1992; Lewis et al., 1988). Although
the Secchi disk is one of the oldest and simplest oceanographic instruments, Chl
concentrations derived from Secchi depth observations are closely comparable to those
estimated from direct in situ optical measurements or satellite remote sensing (Lewis
et al., 1988).

We compiled publicly available in situ Chl and ocean transparency measurements
collected in the upper ocean over the last century (Figure 2.1A-C, see Appendices
for data sources). Transparency measurements were converted to depth-averaged Chl
concentrations using established models (Falkowski and Wilson, 1992). Systematic
filtration algorithms were applied to remove erroneous and biologically unrealistic Chl
measurements, and to exclude those in waters <25 m deep or <1 km from the coast,
where terrigenous and re-suspended substances introduce optical errors. In situ and
transparency-derived Chl measurements (monthly averages for each year, 0.25° res-

olution) were strongly correlated (r=0.52; P<0.0001). After log transforming these
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data to achieve normality and homoscedasticity, model II major axis regression anal-
ysis revealed linear scaling of transparency- and in situ-derived Chl (intercept=0.18;
slope=1.0840.016; r*=0.60). This, and additional analyses indicated that both data
sources were statistically similar enough to combine (see Methods and Appendix
figure A.2 & A.3). The blended data consisted of 445,237 globally distributed Chl
measurements collected between 1899 and 2008 (Figure 2.1A). Data density was great-
est in the North Atlantic and Pacific Oceans and after 1930 (Figure 2.1B, C), and
broadly reproduced spatial patterns of phytoplankton biomass derived from remote
sensing (Gregg and Conkright, 2002); (Figure 2.1D and Appendix Figure A.3).

Chl trends were estimated using generalized additive models (GAMs) (Hastie and
Tibshirani, 1986). These models are extensions of generalized linear models that
do not require prior knowledge of the shape of the response function. To ensure
robustness, Chl trends were estimated at three different spatial scales, (i.) local, (ii.)

regional, and (#i.) global.

2.3 Methods

2.3.1 Data

Available upper ocean (<20m) in situ Chl data were extracted from the National
Oceanographic Data Center! (NODC) and the Worldwide Ocean Optics Database 2
(WOOD). After removing duplicate observations, mean in situ Chl over the upper 20
meters was calculated for each cast. Ocean transparency data were extracted from
NODC, WOOD, and the Marine Information Research Center? (MIRC). Chl (mg

m_?’) was estimated from transparency measurements as

Chl = 457 x Z;,**7, (2.1)

where Zp is Secchi depth in meters (ref. Falkowski and Wilson, 1992). Since
data may be affected by sampling and data entry errors, we filtered erroneous or

biologically implausible measurements.

lwww.nodc.noaa.gov

2www.wood.jhuapl.edu/wood
Swww.mirc.jha.jp/en/outline
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Figure 2.1: Data availability.

(A) Temporal availability of ocean transparency (red), and in situ Chl (blue) mea-
surements. Bars represent the proportion of total observations collected in each year,
ticks on x-axes represent years containing data. Spatial distribution of (B) in situ
Chl, and (C) transparency data. Colors depict the number of measurements per 5° x
5° cell (In-transformed). (D) Averaged Chl concentration from blended transparency
and in situ data per cell.



11
2.3.2 Analysis.

Chl trends were estimated for each 10° x 10° cell containing adequate data (‘local’
models) and for each regional area (‘regional’ models). GAMs were fit to the blended

data to estimate Chl trends as follows:

n(w;) = Bo+ 1Y ear;+ [y Bathymetry;+ fo( Latitude, Longitude)+ f3(Day)+e;, (2.2)

where 7 is the monotonic link function of the expected mean Chl concentration, [,
is the model intercept, §; are parametric and f;, are nonparametric effects estimated
from the data and ¢; is an error term. A Gamma-distributed error structure and a log
link were used. The global mean rate of Chl change was estimated by calculating an
inverse variance-weighted random-effects meta-analytic mean (Cooper and Hedges,
1994) from the 10 regional estimates (see Appendices for full details).

SST changes were estimated by fitting linear models to data in each 1° x 1° cell
and area-weighted additive models to data in each of the 10 regions. To examine the
effects of physical drivers (SST, MLD, wind), Chl and physical datasets were merged
by location (1° cell) and time (year, month), and GAMs were fitted with an added

effect for the physical driver in question.

2.4 Results and Discussion

2.4.1 Local-scale Phytoplankton Trends

To estimate ‘local” Chl trends, blended data were binned onto a 10° x 10° global
grid and GAMs of Chl as log-linear functions of covariates were fit to data within
each cell. Phytoplankton declines were observed in most (59%; n=214) of the cells
containing sufficient data (Figure 2.2A, B). Clusters of increasing cells were found
across the Eastern Pacific, and the Northern and Eastern Indian Ocean (Figure 2.2B).
High-latitude areas (>60°) showed the greatest proportion of declining cells (range:
78-80%).

Due to sparse observations in early years, local trends were also estimated using
post-1950 data only. This yielded almost identical results, although the magnitude

of change was amplified in some cells (see Appendices, Figure A.7).
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Figure 2.2: Loacal-scale trends in phytoplankton

(A) Baseline year and temporal span of Chl data used in local models. (B) Mean
instantaneous rates of Chl change in each 10° x 10° cell (n=364). Yellow and red
represent cells where Chl has increased while blue represents a Chl decrease. Cells
bordered in black denote statistically significant rates of change (P<0.05) and white
cells indicate insufficient data. (C) Mean instantaneous rates of Chl change for each
10° x 10° cell, estimated as a function of distance from the nearest coastline (km) and
baseline year of trend. Color shading depicts the magnitude of change per year. All
effects used to fit the trend surface were statistically significant (P<0.05).
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Local models further suggested that Chl has declined more rapidly with increasing
distance from land (Figure 2.2C). This agrees with results derived from satellite data,
documenting declining phytoplankton in the open oceans (Gregg et al., 2005; Ware
and Thomson, 2005; Vantrepotte and Melin, 2009), and expansion of oligotrophic
gyres, likely due to intensifying vertical stratification and ocean warming (Behrenfeld
et al., 2006; Polovina et al., 2008). These trends are noteworthy since the majority
(75%) of aquatic primary production occurs in these waters (Pauly, 1995). In shelf
regions Chl trends switched from negative to positive in more recent years (since
~1980), consistent with reported Chl increases due to intensifying coastal eutrophi-

cation and land runoff (Gregg et al., 2005).

2.4.2 Regional and Global Phytoplankton Trends

To estimate ‘regional’ Chl trends, we divided the global ocean into 10 regions, exhibit-
ing similar variability in phytoplankton biomass in response to seasonality and climate
forcing (Behrenfeld et al., 2005); (Figure 2.3A). To capture the range of potential Chl
trajectories, regional trends were estimated from GAMs as linear functions of time
on a log scale in three different ways: as (i.) continuous (linear trend), (7.) discrete
(mean year-by-year estimates), and (éiz.) smooth functions of time (non-monotonic
trend). This approach is comprehensive; it allows both the quantitative (magnitude)
and qualitative nature (shape) of trends to be estimated.

Estimation of Chl trends as continuous log-linear functions of time revealed phy-
toplankton declines in 8 of 10 regions. The largest rates of decline were observed in
the South Atlantic (-0.018+0.0015 mg m~ yr~!), Southern (-0.01540.0016 mg m ™3
yr1), and Equatorial Atlantic (-0.013+0.0012 mg m™2 yr—!) regions (P<0.0001 for
all trends; Figure 2.3B). Increases were observed in the North (0.0018+0.0015 mg m 3
yr~1: P=0.268) and South Indian regions (0.0240.0011 mg m—3 yr~!; P<0.0001). The
global meta-analytic mean rate of Chl change derived from individual regional model
estimates was -0.0064-0.0017 mg m~ yr~!(P<0.0001; Figure 2.3B), representing an
annual rate of decline of ~1% relative to the global median chlorophyll concentration
(~0.56 mg m~3).

Regional trends were also estimated using data since 1950 only, but the direction

of all trends remained unchanged and the magnitude of changes was minimal (Figure
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Figure 2.3: Regional and global trends in phytoplankton.
(A) Ocean regions (n=10) used to estimate regional trends in Chl. (B), Mean instan-
taneous rates of Chl change estimated for each region, with 95% confidence limits.
Diamonds indicate the global meta-analytic mean rate of Chl change with 95% con-
fidence intervals. Trends were estimated using all available data (red symbols) and
data since 1950 only (blue symbols). Individual estimates are tick-marked on the x-
axis. All estimates were statistically significant (P<0.05), except for the North Indian

region (P=0.27).
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Figure 2.4: Temporal variability in phytoplankton trends.

(A) GAM estimates of Chl as a discrete (points) or smooth function (lines) of yearly
variability in each region (n=10). For each initial year, Chl is the arithmetic, rather
than model-estimated mean. Temporal data availability is tick-marked on the x-
axis. (B) Seasonal patterns of Chl as a smooth function of day of year in each
northern (blue), equatorial (red), and southern (green) ocean. Shaded areas represent
approximate 95% Bayesian credible limits around each estimate.
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2.3B). Post-1950 trends were amplified in some regions, resulting in a greater but more
variable global rate of decline (-0.008-+0.0068 mg m~3 yr—!; P<0.0001). Estimating
regional trends separately for each data source yielded similar results (see Appendices
Figure A.4).

Modeling Chl trends as both discrete and smooth functions of time revealed pro-
nounced interannual to decadal fluctuations superimposed on long-term trends (Fig-
ure 2.4A). We observed greater Chl fluctuations in the southern hemisphere regions
and greater uncertainty about estimates prior to 1950; both issues likely reflect limita-
tions in data availability for these regions and time periods. In the polar and Atlantic
regions, Chl increased until ~1950, before undergoing prolonged declines (ca. 1950-
1995). After ~1995, sharp increases were observed in the South Indian and Southern
Ocean regions (Figure 2.4A).

GAMs also accounted for mean seasonal variation in Chl (Figure 2.4B) and closely
reproduced known patterns (Behrenfeld et al., 2005; Yoder and Kennelly, 2003), pro-
viding a measure of confidence in our approach. Strong seasonality in polar regions
reflects pronounced variability in mixing, irradiance and ice cover (Behrenfeld et al.,
2001) while weak seasonality in equatorial regions is a function of near-constant solar
irradiance. Complex seasonality in the Indian Ocean relates to the effects of monsoon
dynamics and freshwater inputs on nutrient delivery (Wiggert et al., 2006). Temper-
ate regions are affected by seasonally changing solar irradiance and trade winds, and

their effects on upper ocean nutrient delivery (Mann and Lazier, 1991).

2.4.3 Climate Effects on Phytoplankton

Regional phytoplankton trends display both short-term variation and longer-term
trends. We hypothesized that the short-term (interannual to decadal) component in
Chl variation may be explained by the effects of leading climate oscillators, such as the
El Nifio Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). After
de-trending and removing seasonal variation, yearly Chl anomalies were strongly neg-
atively correlated with the bivariate ENSO index in the Equatorial Pacific (r=-0.45;
P<0.0001; Figure 2.5A). Positive ENSO phases are associated with warming sea sur-
face temperatures (SST), increased stratification, and a deeper nutricline, leading to

negative Chl anomalies in the Equatorial Pacific (Behrenfeld et al., 2006; Martinez
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et al., 2009). Negative correlations were also found between the NAO index and Chl
in the North (r=-0.31; P=0.0002; Figure 2.5B) and Equatorial (r=-0.44; P=0.001)
Atlantic in accordance with results from Continuous Plankton Recorder (CPR) sur-
veys (Dickson et al., 1988). Positive NAO phases are associated with intensifying
westerly winds and warmer SST in Europe and the central North Atlantic (Fro-
mentin and Planque, 1996). Possibly, the observed effects relate to increased westerly
wind stress during the winter months when annual phytoplankton productivity is
limited by light availability associated with deep mixed layer depths (MLD) (Dick-
son et al., 1988). We further hypothesize that an observed coupling of NAO and
wind intensity to regional zooplankton abundances (Fromentin and Planque, 1996;
Dickson et al., 1988) represents a trophic response to the observed phytoplankton
fluctuations. No significant relationship was found between the Indian Ocean Dipole
(IOD) index and Chl in the North Indian region (r=-0.23; P=0.18). The Atlantic
Multidecadal Oscillation (AMO) was positively correlated with Chl in all Atlantic
regions (range: r=0.31-0.43; P<0.05 for all). Chl anomalies in the Arctic region were
negatively correlated with the Arctic Oscillation (AO) index (r=-0.31; P=0.01; Fig-
ure 2.5C). Chl anomalies in the Southern region were negatively correlated with the
Antarctic Oscillation (AAO) index (r=-0.48; P=0.029; Figure 2.5D), again, possibly
due to intensifying westerly winds and deep mixed layer depths. The strength of all
relationships increased after 1950, indicating that phytoplankton may be increasingly
driven by climate variability or, alternatively, that model accuracy increased due to

increased data availability.

2.4.4 Physical Drivers of Phytoplankton Trends

Long-term trends in phytoplankton could be linked to changes in vertical stratifica-
tion and upwelling (Behrenfeld et al., 2006; Martinez et al., 2009; Polovina et al.,
2008), aerosol deposition (Paytan et al., 2009), ice, wind, and cloud formation (Gregg
et al., 2005; Montes-Hugo et al., 2009), coastal runoff (Ware and Thomson, 2005),
ocean circulation (Broecker et al., 1999), or trophic effects (Frank et al., 2005). For
parsimony, we focus on three variables that may reflect the coupling between physical
climate variability and the chlorophyll concentration in the upper ocean: (i.) ocean

mixed layer depth (MLD; 1955-2009), (éi.) wind stress at 10 m (1958-2009), and (44.)
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Figure 2.5: Effects of climate variability on phytoplankton.

Linear relationships between normalized and de-trended yearly Chl anomalies (red)
and smoothed climate indices (black) for (A) the Equatorial Pacific, (B) the North
Atlantic, (C) the Arctic, and (D) the Southern Ocean regions. Pearson correlation
coefficients and P-values are shown. Climate indices and correlation coefficients have
been inverted in order to better visualize correlations.
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sea surface temperature (SST; 1899-2009). These physical variables (monthly aver-
ages, 1° resolution) were matched by time (year, month) and location (1° cell) with
Chl data in order to estimate their effects on Chl within a single model framework
(see Appendices for details). SST was the strongest single predictor of Chl. Rising
SSTs over most of the global ocean (Figure 2.6A) were associated with declining Chl
in 8 of 10 regions (range: -0.21 to -0.019 mg m~3 °C~1; P<0.0001 for all). Positive
relationships between SST and Chl were found in the Arctic (0.067 mg m=3 °C~!;
P<0.0001) and Southern regions (0.002 mg m~3 °C~!; P=0.11). Likewise, inclusion
of SST as a covariate in our local models revealed negative SST effects on Chl in
76% (n=118) of 10°x10°cells (Figure 2.6B), with negative relationships at low lati-
tudes and strong positive effects at high latitudes, particularly in the Southern Ocean
(P<0.05 for all; Figure 2.6B, C).

The effects of SST on Chl are likely explained by its influence on water column
stability and MLD (Behrenfeld et al., 2006; Polovina et al., 2008). Increasing SST
leads to a shallower mixed layer which further limits nutrient supply to phytoplank-
ton in already stratified tropical waters, but may benefit phytoplankton at higher
latitudes where growth is constrained by light availability and deep mixing (Doney,
2006). Indeed, in our local models MLD was a significant, but weaker predictor of
Chl concentrations compared with SST, possibly due to the reduced time series span
(1955-2009). Latitudinal gradients in MLD effects were also observed, with predicted
positive effects between 20°N and 20°S and negative effects in polar areas (r?*=0.1;
P=0.018; Figure 2.6D). Cumulatively, these findings suggest that warming SST and
reduced MLD may be responsible for phytoplankton declines at low latitudes. This
mechanism, however, does not explain observed phytoplankton declines in polar ar-
eas, where ocean warming would be predicted to enhance Chl (Figure 2.6C). This
may partially be explained by concurrent increases in MLD and wind stress there
(see Appendices; Figure A.9). Further work is needed to understand the complex

oceanographic drivers of phytoplankton trends in polar waters.
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Figure 2.6: Physical drivers of phytoplankton trends.

(A) Estimated SST change at 1° resolution from 1899 to 2009. Blue represents cells
where SST has declined while yellow and red represents increases. (B) Effects of SST
changes on Chl estimated for each 10° x 10° cell with >10 yr of data (n=205). Size
of circles represents the magnitude and colors depict the sign of the standardized
SST effect on Chl in each cell. (C to D) Effects of SST (C), and MLD (D), on
Chl as a function of latitude (points). Relationships were best approximated as
quadratic functions of latitude (fitted lines and test statistics). Shading represents
95% confidence limits.



21

2.5 Conclusions

Our analysis suggests that global chlorophyll concentration has declined since the
beginning of oceanographic measurements in the late 1800s. Multiple lines of evi-
dence suggest that these changes are generally related to climatic and oceanographic
variability and particularly to increasing SST over the last century (Figure 2.6). The
negative effects of SST on Chl trends are particularly pronounced in tropical and
subtropical oceans where increasing stratification limits nutrient supply. Regional
climate variability can induce variation around these long-term trends (Figure 2.4),
and coastal processes such as land-runoff may modify Chl trends in nearshore waters.
The long-term global declines observed here are, however, unequivocal. These results
provide a larger context for recently observed declines in remotely sensed Chl (Gregg
and Conkright, 2002; Behrenfeld et al., 2006; Polovina et al., 2008), and are consistent
with the hypothesis that increasing ocean warming is contributing to a restructuring
of marine ecosystems (Richardson and Schoeman, 2004; Worm et al., 2009), with im-
plications for biogeochemical cycling (Henson et al., 2010), fishery yields (Brander,
2007), and ocean circulation (Murtugudde et al., 2002). Such consequences provide
incentive for an enhanced in situ and space-borne observational basis to reduce un-

certainties in future projections.
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Chapter 3

Integrating Global Chlorophyll Data From 1890 to 2010

3.1 Abstract

Understanding large-scale phytoplankton dynamics requires accurate, multi-decadal
measurements of abundance and distribution. Since 1890, marine phytoplankton
abundance has been assessed using a diverse range of sensors and observational plat-
forms, and inter-calibrating these data has been challenging. Consequently, syntheses
of historical phytoplankton data have been rarely attempted, and the need for ac-
curate, long-term assessments of phytoplankton abundance and distribution is com-
monly acknowledged. Here, we derive quantitative indices of phytoplankton abun-
dance from measurements of upper ocean transparency and colour calibrated with
direct measurements of surface chlorophyll. The strong correlation and linear scaling
of the predicted data enabled the construction of a comprehensive, globally inter-
calibrated chlorophyll time series from 1890 to 2010. The calibrated chlorophyll data
reproduced the well-established spatial features of phytoplankton surface biomass and
were strongly correlated with chlorophyll concentration derived from two independent
remote sensing platforms discontinuously available since 1978. These results suggest
that with careful statistical treatment, it is possible to generate a globally integrated
chlorophyll time series extending 120 years into the past. This database, which is
available in the web appendices of this paper, may enable new insights in the ar-
eas of climate science, biogeochemical cycling, and marine ecosystem structure and

functioning over the past century.

3.2 Introduction

Marine phytoplankton play a key role in the functioning of the Earth‘s ecosystem,
through their effects on climate (Murtugudde et al., 2002; Charlson et al., 1987),

Published as: Boyce, D. G., M. Lewis, and B. Worm. 2012. Integrating global chlorophyll data
from 1890 to 2010. Limnology and Oceanography: Methods 10: 840852.
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geochemical cycling (Sabine et al., 2004; Roemmich and McGowan, 1995), fisheries
yield (Chassot et al., 2007, 2010), and other important processes. Yet our under-
standing of macroecological phytoplankton dynamics is limited by the availability of
accurate, large-scale, long-term measurements of abundance, particularly from the
era pre-dating the operations of satellite sensors (ocean colour radiometry; available
since 1978). Here, we construct a multi-decadal time-series of chlorophyll concentra-
tion, an indicator of phytoplankton abundance, by statistically integrating historical
shipboard measurements from different sensors and sampling platforms.
Measurements of total chlorophyll pigment concentration (Chl) capture first-order
changes in phytoplankton Carbon biomass, and despite some known variations in
the Chl-to-carbon ratio (Geider, 1987) are considered to be the best indicator of
phytoplankton C biomass (C) available on a global scale (Huot et al., 2007; Henson
et al., 2010). Direct shipboard measurements of upper ocean Chl have been made since
the early 1900s, first using spectrophotometric (Stokes, 1864) and then fluorometric
analyses of filtered seawater residues, and more recently through in vivo measurements
of phytoplankton fluorescence (Yentsch and Menzel, 1963; Lorenzen, 1966; Jeffrey
et al., 1997). Measurements of upper ocean transparency using the standardized
Secchi disk have been made since 1866 (Tyler, 1968; Collier et al., 1968) and have been
used as a predictor of surface ocean Chl through empirically-based optical equations
(Falkowski and Wilson, 1992; Lewis et al., 1988). Although the Secchi disk is one of
the oldest and simplest oceanographic instruments, Chl concentrations derived from
Secchi depth observations (Zp) are closely comparable to those estimated from direct
in situ optical measurements or satellite remote sensing (Lewis et al., 1988; Boyce
et al., 2010). Finally, standardized measurements of ocean colour using the Forel-Ule
(FU) comparator scale are available from 1890 to present (Forel, 1890) and have
been used as an indicator of biological activity (Wernand and Woerd, 2010).
Modelling results indicate that a phytoplankton time series of ~40 years is nec-
essary to separate natural variability from long-term change (Henson et al., 2010).
Since the available continuous ocean colour satellite record (currently 1997 to 2011)
is presently too short, direct measurements of Chl, transparency, and colour repre-
sent the only available data to assess multi-decadal phytoplankton dynamics. To

this end, efforts have been directed towards developing methods to reliably merge
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different ocean colour data (I.O.C.C.G., 2007), and several studies have combined
historical and contemporary Chl data to produce synthetic Chl time series (Raitsos
et al., 2005; Gregg and Conkright, 2002; Gregg et al., 2003; Boyce et al., 2010). Such
approaches require a good knowledge of the accuracy, precision, and comparability of
Chl measurements sampled from different observational platforms.

Here, we build and expand upon the methods developed in a previous study
(Boyce et al., 2010), taking into account suggested improvements (Mackas, 2011;
McQuatters-Gollop et al., 2011; Rykaczewski and Dunne, 2011; Boyce et al., 2011).
By using a larger, more spatially and temporally comprehensive database and im-
proved statistical methods, we predict Chl concentrations from available measure-
ments of upper ocean transparency (Zp) and colour (FU), available since 1890. After
affirming the accuracy of the predictive methods, both directly measured and pre-
dicted Chl data were combined to create a globally integrated and inter-calibrated
Chl database (see Appendices). We then examine the accuracy of the calibrated Chl

data against more recent and spatially extensive remote sensing estimates of Chl.

3.3 Materials and Procedures

3.3.1 Data

All data used in this analysis were extracted from publicly available databases (Table

3.1):

1. In situ measurements: Direct shipboard measurements of upper-ocean, in situ-
derived Chl (Chl;, mg m~3) were extracted from the National Oceanographic
Data Center (NODC), the Worldwide Ocean Optics Database (WOOD), and
the International Council for the Exploration of the Sea! (ICES). Chl; mea-
surements were made on discrete water samples collected at different depths,
from vertical profiling instruments, or continuous observations by shipboard
flow-through systems. Chl; values were derived by spectrophotometric tech-
niques (Stokes, 1864), in vitro and in vivo fluorometric techniques (Yentsch
and Menzel, 1963; Lorenzen, 1966; Jeffrey et al., 1997), or chromatographic
methods such as high-performance liquid chromatography (HPLC) or filtered

Lwww.ices.dk/Pages/default.aspx



25

AOZ RROU DPOU

NPOOS YOTILIR( SYUI]
ourpino/us /d(-ey(-o1ru
dse-epgxeput /yp-seor

AOZ eROU DPOU

poom /npa-{dent[-poom

A0S eSRU"DJSF 108 R)RPURIOO
A0S RSB DJSS [0S R)RPURIDO
dse-epxoput /yp-seor

A0S eROU DPOU

poom /npa-1dent[-poom

800¢-068T
868T-068T
866T-€C6T
866T-€06T
L00C-668T
800¢-€06T
TT0C-L66T
986T1-8L6T
0TOC-€€61
0TO0CTE6T
€00¢-006T

nd IMO100)
7 Aouoredsuedy,
(7 Adouoredsuedy,
(7. Aouoredsued],
(7. Aouoredsuer],
7. Aouoredsuer],

SAMSTYD - qiAgqdoo)
SOZoy  qAydotoy)
o nidgqdoory)
p  nAydooyH
o ndqdorory)

9YTSARAN

uedg

[eUL] N PORLXH N

[oquAg IojomeIR

"S90IN0S BYR(] T°¢ O[RL



26

samples (Mantoura and Llewellyn, 1983). Chl; measurements were derived us-
ing different instrumentation, on different platforms, and by different observers,
but are collectively regarded as the most accurate Chl measurements available,
and are commonly used to inter-calibrate Chl estimates from more indirect
sources, such as remote sensing platforms. To allow comparability with Chl
estimates from other sources, which almost exclusively estimate Chl in the up-
permost layers of the oceans, only Chl; collected in the upper 20 m were used
in our analysis. All duplicated measurements were removed from the database

prior to the analysis.

. Transparency measurements: Measurements of upper ocean transparency (Zp m)
were collected with the standardized Secchi disk and were extracted from sev-
eral publicly available databases. Zp measurements are collected by lowering a
white Secchi disk into the seawater and recording the depth at which the disk
is no longer visible. Measurements of upper ocean transparency collected with
the Secchi disk have been collected using a standardized methodology since
1866 and have been related to inherent and apparent optical properties mea-
sured by modern oceanographic instruments in the context of a “theory” of
the Secchi disk (see Preisendorfer, 1986). Secchi disk measurements have been
used to infer changes in biological productivity and phytoplankton abundance
in both freshwater and oceans (Tyler, 1968; Collier et al., 1968; Lewis et al.,
1988; Falkowski and Wilson, 1992; Boyce et al., 2010). The linkage between
observations of transparency and chlorophyll is through the dominant influence
of marine phytoplankton on absorption and scattering of light in the upper
ocean, similar to the basis of using ocean colour radiometry in the inference of

chlorophyll concentration in the upper ocean.

. Ocean colour measurements: Measurements of upper ocean colour have been
recorded since 1890 using the Forel-Ule colour index scale (FU). The FU ob-
servations have been collected using a standardized methodology designed to
quantitatively assess the colour of the upper ocean against a Forel-Ule scale
of 21 discrete colours ranging from dark blue (FU=1) through different shades
of green to brown (FU=21); (Forel, 1890). FU measurements are derived by
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subjectively matching the colour of the seawater to that of the Forel-Ule colour
scale. Although the optical characteristics of the Forel-Ule measurements are
largely unresolved, they have been useful in inferring long-term changes in bi-
ological activity (see recent review by (Wernand and Woerd, 2010), and may

be useful in deriving upper ocean chlorophyll concentrations.

4. Radiometry measurements: Measurements of Chl derived from remotely-sensed
ocean-leaving radiances were extracted from the National Aeronautics and Space
Administration’s (NASA) ocean colour database. Chl measurements derived
from the Coastal Zone Colour Scanner (CZCS; Chlozos 1978-1986; (Hovis
et al., 1980), and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; Chlgy rs;
1997-2010; (McClain et al., 2004) were used. Remote sensing Chl data were ex-
tracted as monthly 9 km? resolution reprocessed Chl measurements, and were
spatially interpolated to 1° x 1° cells for each year and month using nearest

neighbour algorithms.

3.3.2 Analysis

The steps in this analysis included:

1. Quality control: Chl;, Zp and FU measurements are adjusted or eliminated

from the database based on objective quality-control procedures.

2. Corrections and standardizations: Chl;, Zp, and FU Measurements are objec-

tively standardized to common spatial and temporal resolutions.

3. Calibration: Chl fields are predicted from Zp and FU based on available spatial

and temporal matchups with Chl; measurements.

4. Validation: The precision and accuracy of calibrated Chl measurements are

compared against independent Chl measurements to assess their validity.

Quality control: Zp and FU measurements
To eliminate the optically-confounding effects of suspended particles and dissolved
organic material associated with terrigenous sources, all near-shore (< 20 m water

depth or < 1 km from the nearest coastline) Zp and FU measurements were removed
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from the database. If the time or location of the Zp or FU measurements were
erroneous those measurements were also removed. All FU measurements less than
one or greater than 21, and all Zp measurements less than zero or greater than 60 m

were treated as biologically implausible and removed from the database.

Quality control: Chl; measurements

The Chl; measurements used here have been collected since 1900 by different in-
stitutions and methods, and their accuracy may be affected by weather conditions,
incorrectly calibrated instrumentation, sampling technique, data digitization errors,
the optical complexity of seawater, and other factors. Due to the central impor-
tance of the Chl; measurements to the subsequent calibration exercise and the larger
number of factors potentially affecting their accuracy, the Chl; measurements were
rigorously filtered to remove any erroneous measurements. As for FU and Zp mea-
surements, all near-shore Chl; measurements (< 20 m depth or < 1 km from the
nearest coastline) and those with erroneous locations and time were removed. Chl;
measurements were identified as statistical outliers if they (i.) were greater than 75
mg m~?; (i.) were below the published limit of detection (0.01 mg m™3; (Wiltshire
et al., 1998); or (7i.) were identified as outliers by NODC quality control methods
(details in Conkright et al., 2002). Our analysis revealed that a small fraction of the
Chl; database contained outlying values which were likely un-calibrated fluorescence
measurements (Boyer et al., 2009). Such errors are likely systematically dependent
on the cast, cruise, or observer associated with the outlying Chl; measurement. To
account for this, Chl; measurements collected in casts or cruises where over 10% of all
measurements were flagged as outliers by the previous criteria were removed from the
database. While some erroneous measurements will remain, these represent a small
fraction of the entire Chl; database, and constitute a random, rather than systematic
departure from the mean. Following this step, all remaining outlying individual Chl;
measurements in the database were removed.

% accounted for a small fraction (~0.4%) of all Chl;

Chl measurements of 0 mg m™
data, but are biologically implausible in even the most oligotrophic marine waters.
These measurements may either reflect data collection or digitization errors, or valid

measurements which are below the detection limit of the sampling instrument. To
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identify and remove erroneous zero-Chl values and to estimate the true but unknown
zero-Chl values, we fit an objective function relating Chl to sampling depth for each

individual cast according to the number of Chl; measurements in each cast:

1. For casts containing more than six unique Chl; measurements, zero-Chl; val-
ues were assessed based on an empirically-based function relating Chl; to the
sampling depth. Zero Chl; values falling within the 95% confidence levels of
the fitted function were assumed to be true data which were below the limit
of detection and were readjusted to 50% of the minimum Chl value within the
cast. If this adjusted value was greater than the lowest limit of detection (0.01
mg m~?) then the values were again readjusted to 0.005 mg m=3. Zero Chl;
values falling outside of the confidence limits of the function were identified as

erroneous and removed from the database.

2. For casts containing between one and six additional measurements, if the lowest
recorded Chl; value was greater than 0.01 mg m~ then the zero-Chl; value was
assumed to be erroneous and was removed from the database. Otherwise, the
zero Chl; values were adjusted to 50% of the minimum Chl; value in the cast.
If this adjusted value was greater than 0.01 mg m~3 then the values were again

readjusted to 0.005 mg m=3.

These corrective algorithms were visually inspected for each individual cast to
ensure adequate performance. All zero-Chl; measurements contained within casts
with less than two additional measurements were eliminated from the database.

Even within the upper 20 m of the water column, Chl; values can vary over sev-
eral orders of magnitude, in part due to non-photochemical quenching of fluorescence.
To account for this variability, mean Chl; measurements were calculated over depth
for each individual cast under an assumption of a well-mixed surface layer. Alter-
nate depth interpolations such as the depth-weighted mean, median, Akima method
(Akima, 1978), wavelets, polynomials, and generalized additive models (Wood and
Bretherton, 2006; Hastie and Tibshirani, 1986) relating Chl; to the sampling depth
were used but did not improve the results.

Global spatial patterns of Chl at intra-annual timescales vary in a distinct and
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well-established manner (Doney et al., 2003; Mahadevan and Campbell, 2002). Spa-
tial filters were used to identify extreme outlying Chl; measurements. For each annual
season (n=4) a flexible spatial trend surface was fitted to the Chl; data. This was
accomplished by fitting an additive model (Wood and Bretherton, 2006) to the data
as follows:

Ln(u;) = Bo + fi(Longitude;, Latitude;) + €; (3.1)

where p; is the expected mean log-transformed Chl; concentration, By is the
model intercept, f; is the nonparametric effect estimated from the data and ¢; is an
error term. Measurements which were more than 12 standard deviations from the
fitted spatial surface were flagged as extreme outliers and removed from the database
(n=930). This technique is comparable to the Boolean ‘range checking’ methods
which are a common quality control method for oceanographic data (Conkright
et al., 2002).

Throughout these analyses, Chl; collected using ‘underway’ methods (undulating
ocean recorder or towed CTD) displayed atypical frequency distributions and many
statistically outlying observations. Since the accuracy of these data could not be

empirically verified they were removed from the analysis.

Standardizations

To examine the relationship between Chl; Zp and FU data, all measurements were
binned to a common spatial and temporal resolution. To balance the fine resolution
necessary to accurately capture small-scale spatial variations against the coarse res-
olution required to obtain representative sample sizes, datawere individually binned
into 1° x 1° cells. Mean values per year and month for each cell (Datay; jr) were

calculated:
Z Dataijjkl

> Nkl

where Data;,ji;is the data value and N; ji;is the number of measurements for cell j,

DataM’jkl = (32)

month k, and year [. Objectively weighted binning algorithms were also implemented
(Levy and Brown, 1986; Lewis et al., 1988; Boyce et al., 2010), but did not change the
resulting parameter values within three decimal points. Hence we used the simpler

un-weighted binning procedure here.
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Calibration

Previous Chl calibration algorithms have used a linear relationship on a logarithmic
scale between Secchi depth and Chl;, provided that measurements are made in op-
tically non-complex case I waters (Lewis et al., 1988; Falkowski and Wilson, 1992).
The basis for this relationship is best explained through the equation relating Zp to

the optical properties of marine waters which to first order:

1

ZDOC

where ¢ is the average (photopic) beam attenuation coefficient (m~!), and K is
the average (photopic) diffuse attenuation coefficient (m™!') and the proportionality
depends weakly on illumination, contrast of the disk and water, and visual acuity
(Preisendorfer, 1986; Falkowski and Wilson, 1992). Variations in ¢ + K explains the
majority of the variability in transparency depths and co-varies with the amount of
attenuating material in the water through its influence on the inherent optical prop-
erties such as scattering and absorption. For case I ocean waters, phytoplankton
cells and co-varying biogenic dissolved matter are the principal sources of variation
in the optical properties and empirically-based algorithms have consequently been
used to derive accurate upper ocean chlorophyll concentrations (Chly) from trans-
parency measurements (Lewis et al., 1988; Falkowski and Wilson, 1992; Boyce et al.,
2010). The non-linear nature of the relationship reflects changes in the average size
of phytoplankton cells, where rich coastal waters have a larger percentage of large
cells relative to low chlorophyll waters where small cells dominate.

Forel-Ule ocean colour data are positively correlated with both the transparency
and chlorophyll concentration of the upper ocean but have not yet been used to
derive quantitative measurements of Chl. Before attempting to calibrate these data,
we examined them along with the Zp data to establish relationships between Zp or
FU measurements and Chl; measurements.

To derive Chl values from Zp or FU, model II ranged major axis (RMA) linear
regression models were fitted to the (1° x 1° x month x year) binned data (Legendre
and Legendre, 1998; Sokal and Rohlf, 1995). Model II RMA regression methods

are appropriate when both variables in the regression equation are subject to error
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(Ripley and Thompson, 1987), are expressed in different units, or the error variances
differ (Legendre and Legendre, 1998). This technique accounts for the fact that
Chl;, Zp, and FU measurements were all measured with some error and that these
errors were probably unequal. Chl;, Zp, and FU measurements were log-transformed
to achieve bivariate normality, and homoscedasticity and linearity were confirmed,
as required by the regression analysis. The regression parameters from these models
were estimated to predict individual Chl values from each discrete quality-controlled
FU and Zp value. Error statistics for the estimated model parameters were generated
using randomized permutation tests with 1000 replicates (Legendre and Legendre,
1998). The suitability of alternate models and transformations were explored, but
model fit statistics indicated that they did not fit the data as well as the linear RMA
models. The resulting calibrated data are denoted as Chly and Chlg, derived from
Secchi depths and Forel-Ule indices respectively.

Validation

To explore the accuracy and linear scaling of Chl measurements derived from different
methods, two separate validation analyses were undertaken. The first analysis com-
pared the accuracy of calibrated Chly and Chlp measurements against each another
and against the direct Chl; measurements (three comparisons). The second analy-
sis compared the resulting integrated calibrated Chl measurements (Chls) against
remotely sensed Chlgy rpg and Chlgozeos measurements (three comparisons). Both
validation analyses employed the same statistical methods and are described below.

Chl measurements derived using different observational platforms were individu-
ally objectively binned (Equaation 3.2) and matched spatially (1° cell) and temporally
(month and year) to the Chl dataset under comparison. RMA regression models were
then fitted to the log-transformed Chl matchups to examine the linear relationship
between them. We used RMA as opposed to alternate model II regression techniques
since it was the method used to derive Chly and Chlgpvalues, and the statistical as-
sumptions remain valid. A Pearson correlation coefficient of 1, an estimated slope of
1, and an intercept of 0 would indicate that the Chl values from the two data sources
were identical. The bias of the estimated correlation coefficients and slopes was calcu-

lated using a bootstrapping procedure with 1000 replicates (Legendre and Legendre,
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1998). The difference between the estimated parameter and the mean of the boot-
strapped estimates provides an estimate of the bias. To further examine patterns of
similarity, the standardized Euclidean residuals from RMA regression fits were cal-
culated. These values correspond to the average difference between the two variables
under comparison while minimizing the confounding effects of spatial and temporal
variation. These differences were initially explored by visually inspecting the spa-
tial distribution of the mean and absolute mean Euclidean residuals, here defined as
the shortest distance between the residual and the fitted regression line. To further
explore factors that may explain any systematic differences between the variables,
spatially-explicit univariate and multivariate linear models were fit to the residuals.
Temporal (year, month), spatial (distance from the nearest coast, bathymetry, lat-
itude, Chl), and optical (climatological CDOM index; Acker and Leptoukh, 2007;
Siegel et al., 2005; Morel and Gentili, 2009) factors were included as possible ex-
planatory variables. An autocovariate was included within the models to account for
any potential spatial dependence in the residuals. The autocovariate for each geo-
graphic cell (A;) was calculated as the weighted average of the measurements within

a pre-specified geographical radius of 8 nearest neighbours as:

4, = 2ot (3.4)
D Wer
where y, is the measurement of y at location r among location ¢’s set of &
neighbours; wy,, is the weight given to location r’s influence over location ¢ (Augustin
et al., 1996; Gumpertz et al., 1997; Dormann, 2007). Individual weights for the
autocovariate were derived as: X

Wer = n (35)
qr

where w,, is the weight given to cell r’s influence over cell ¢, and hy is the
Euclidean distance between cells ¢ and r (Augustin et al., 1996).

Sensitivity analyses were undertaken to determine how robust the results of these
comparisons were to variation in the initial conditions of the model. The sensitivity
of the estimated slopes and correlation coefficients to changing sample sizes was esti-

mated by bootstrapping estimates (1000 replicates) at each of 18 sample sizes ranging
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from 10% to 100% of available matchups. Additionally, the sensitivity of the esti-
mates to the ocean basin, bathymetry, month, and decade when the measurements

were collected was also examined.

3.4 Results

After removing erroneous or biologically implausible measurements and those col-
lected in nearshore waters, Chl;, Zp, and FU measurements were distributed most
densely in northern temperate waters (>30° N) and closer to shore (Figure 3.1A, D,
G). Chl; measurements were most abundant in the North Atlantic, while Zp and
FU measurements were concentrated in the North Pacific. Spatial patterns of Chl;
measurements were similar to those of Zp and FU measurements (Figure 3.1B, E, H),
however, the oligotrophic gyres were less clearly delineated by the relatively sparser
FU measurements (Figure 3.1H). Chl; measurements were sampled since 1900, but
their availability decreased markedly prior to 1955. The Zp and FU measurements
extended back to 1890 (Figure 3.1C, F, I), but were less available since the 1990s.
The data density for all series was greater in Northern Hemisphere summer months
and since 1950.

Regression analysis revealed that the relationship between available Chl; and Zp
matchups (n1=12,841) was linear (log-transformed) for Zp >6 m (Figure 3.2A). Zp
measurements less than 6 m are rare in open ocean waters and are likely erroneous
or associated with coastal waters with complex optical properties. Examination of
available Zp, Chl;, and FU matchups (n=6,710) confirmed that most Zp values less
than 6 m corresponded to FU values greater than 10 (Figure 3.2C), indicative of
optically complex green or brown waters located close to coastlines (Figure 3.2E). In
fact, 86% of Zp values under 6 m were located on continental shelves (<200 m depth).
To eliminate Zp measurements in optically complex waters and to ensure a linear
relationship between available log-transformed Chl; matchups, all Zp measurements
less than 6 m were removed from the final database product (n=20,748; 7% of Zp
measurements).

Likewise it was determined that the relationship between available log-transformed
Chl; and FU matchups (n=6,943) was linear for FU values between 2 and 10 (Figure

3.2B). FU measurements greater than 10 corresponded to yellow and brown waters.
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Figure 3.1: Temporal and spatial availability of data.

(A, D, G) Spatial availability of (A) Chl;, (D) Zp, and (G) FU colour measurements.
Colours depict the number of available measurements per 5° cell. (B, E, H) Average
(B) Chl, (E) Zp, and (H) FU colour per 5° cell. Chl was derived using B-spline
interpolation; white indicates lack of data. (C, F, I) Time-varying availability of (C)
Chly, (F) Zp, and (I) FU measurements. Left axis and colours depict the number
of available measurements by month and year. Right axis and points depict the
proportion of total observations collected in each year, smoothed with kernel density.
Ticks on x-axes represent years containing data.
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Examination of available FU, Chl;, and Zp matchups confirmed that most FU values
above 10 corresponded to extremely low Zp depths (Figure 3.2D), again indicative
of optically complex waters located closer to coastlines (Figure 3.2E), which can con-
found Chl derivation techniques. In fact, 78% of FU values over 10 were located
on continental shelves (<200 m depth). In contrast, FU measurements below 2 cor-
responded to indigo blue waters which contain the lowest Chl concentrations. The
FU technique is likely unreliable in resolving subtle variations in Chl at these very
low phytoplankton concentrations, as the primary determinant of ocean colour is the
absorption and scattering associated with pure seawater. Although these waters may
appear uniformly dark blue on the FU scale, Chl concentrations may vary over an
order of magnitude or more, resulting in large variability at these FU values (Figure
3.2A). To eliminate FU measurements associated with optically complex waters and
to ensure a linear relationship between available Chl; matchups, FU values greater
than 10 or less than 2 were removed from the final database (n=10,123; 5% of all
FU measurements). The removal of these FU and Zp measurements was necessary
to ensure that the requisite statistical assumptions of the predictive models were
satisfied.

The RMA regression was then used to predict Chly. The regression explained
64% (p<0.0001) of the variance in Chl; (Figure 3.3A) and resulted in

Chly = 143.297 %92 (3.6)

where Chly is the transparency-derived Chl (mg m~3). Likewise, the RMA regres-
sion used to derive Chlg explained 46% (p<0.0001) of the variance in Chl; (Figure

3.3B), and resulted in
Chlp = 0.016 FU** (3.7)

where Chly is the FU-derived Chl (mg m~3). All RMA regressions conformed
to the necessary statistical assumptions, such as linearity, normality, constancy of
variance, and independence. Examination of the absolute Euclidean residuals from
the RMA regressions indicated that the discrepancies between the predicted Chl fields
(Chly or Chlp) and Chl; were random, and could not be explained by any of the

explanatory variables. Chl; matchups used to predict Chly or Chlg values were
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Figure 3.2: Comparing different data types.

Relationship between (A) Zp and (B) FU and Chl;. Relationships are approximated
by a B-spline (knots=4). Vertical dashed lines represent the thresholds, beyond which
the linear relationships break down. (C-D) Relationships between Zp, FU, and Chl;.
(C) Zp is plotted against Chl; with corresponding FU values indicated as colours.
(D) FU is plotted against Chl; with corresponding Zp values indicated as colours.
Dashed lines represent thresholds, beyond which the linear relationships deteriorate.
(E-F) Sampling effort of (E) Zp and (F) FU measurements as a function of distance
from the nearest coastline. Solid lines indicate all available data and dashed lines
are the data which are eliminated from the database. Ticks on x-axes are the depths
where the eliminated data are sampled; dashed vertical lines indicate a distance of 1
km from the nearest coastline.
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Figure 3.3: Predicting chlorophyll from transparency and colour data.

Linear RMA regression models used to derive Chl from (A) Zp, and (B) FU. Confi-
dence intervals are too narrow to visually detect. Spatial availability of Chl; and (C)
Zp, and (D) FU matchups. Time-varying availability of Chl; and (E) Zp and (F)
FU matchups. Left axes and colours depict the number of available measurements by
month. Right axes and lines depict the proportion of total available measurements
for each year. For all plots colours depict the number of available observations per
pixel.

available globally, but were more heavily distributed in the northern hemisphere, and
in near shore waters for both Zp (Figure 3.3C), and FU (Figure 3.3D. Chl; and FU
matchups were notably lacking in open ocean waters (Figure 3.3D). Chl; matchups
were slightly less available in boreal winter months for both datasets (Figure 3.3E,

Chly and Chlg are by definition inter-calibrated with Chl; (slope=1, intercept=0;
Figure 3.4). The accuracy of these inter-calibrations was further verified by the
strong positive correlation (r=0.70; p<0.0001) and linear scaling observed between

log-transformed Chlp and Chly (intercept=0.002, slope=1.0740.01, r*=0.48). These
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Figure 3.4: Spatial patterns of derived chlorophyll.

Mean Chl concentration from (A) Chly, and (B) Chlp per 5° cell. Relationships
between available Chl; matchups and (C) Chly and (D) Chlg. Idealized relationships
are plotted as dashed lines and are identical to fitted RMA regression lines. Colours
depict the number of observations per pixel.

calibrations were found to be insensitive to the number of measurements used, except
at extremely low sample sizes. The strength of the linear relationships did not change
with decreasing sample size, nor did they appreciably change with changes in the
bathymetry, ocean basin, month, or decade when the measurements were collected.
The magnitude of the estimated slopes varied randomly, rather than systematically.
These results suggest that no further inter-calibration was required prior to combining
historical Chl; measurements with those predicted from Zp or FU.

The resulting calibrated database (Chls) consisted of 644,916 globally distributed
Chl measurements collected between 1890 and 2010. Similar to the individual Chl
datasets, the sampling effort of Chly was heavily distributed over boreal summer
months, and in more recent decades (>1930; Figure 3.5A). Despite the greatly in-
creased spatial availability of Chls measurements, the sampling effort remained con-
centrated in the northern hemisphere (>30° S latitude), over mid- to low-latitude

regions, and in waters closer to coastlines (Figure 3.5B). The Chly measurements
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Figure 3.5: Availability of integrated chlorophyll measurements.

(A) Time-varying availability of Chls measurements. Left axis and colours depict
the number of available measurements by month and year. Right axis and points
depict the proportion of total observations collected in each year, smoothed with
kernel density. Ticks on x-axis represent years containing data. (B) Spatial avail-
ability of Chls data. Colours depict the number of available measurements per 5°
cell. (C) Spatial availability of Chlg, Chlgy s, and Chlgzos measurements through
time. Colours depict the observational platform, dashed line indicates the maximum
available ocean area. Tick marks on x-axis represent years containing Chle data. (D)
Spatio-temporal availability of Chls measurements. Colours depict the baseline year,
size of the circles depicts the temporal span of available data per 10° cell.

are available since the 1950s in most ocean regions and since before 1930 in many
North Atlantic and Pacific waters (Figure 3.5C). The data span more than 50 years in
most regions of the ocean and 112 years in some regions of the North Atlantic. Impor-
tantly, the spatial and temporal availability of the Chlg measurements is considerably
increased after combining available historical data.

Spatial patterns of Chly closely reproduced the well-known spatial patterns of Chl
derived from Chlgzeos and Chlgy rs (Figure 3.6); these include elevated chlorophyll
in coastal, high-latitude, and upwelling regions, as well as low chlorophyll in the olig-

otrophic gyres. Although there are potential issues regarding the inter-calibration of
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Chlozes (Antoine et al., 2005; Gregg and Conkright, 2001), the Chle fields were pos-
itively correlated with concurrent (1° x 1° x 1 month bins) Chl estimates from CZCS
(Chlgzes ; r=0.76, p<0.0001), and exhibited approximate linear scaling on a log-
scale (intercept=-0.01, slope=0.84, r*=0.58; Figure 3.6C; Table 3.2). Likewise, Chlg
measurements were positively correlated with Chlgy rs (r=0.81, p<0.0001), and ex-
hibited approximate linear scaling (intercept=0.01, slope=0.97, r*=0.65; Figure 3.6D;
Table 3.2). Interestingly, eliminating Chlgy from the database led to improved cor-
respondence between Chle and Chleozeos (r=0.77; intercept=-0.14; slope=0.86), and
Chlgw ps (r=0.82; intercept=-0.07; slope=1). Due to the large number of matchups,
all correlation coefficients were statistically significant.

Spatial examination of the standardized Euclidean residuals from the RMA re-
gressions indicated that there was a greater discrepancy between Chly and Chlgy rg
or Chlgzosin more coastal areas where Chl concentrations are on average greater
and more variable (Figure 3.6E, F). Spatially explicit models fitted to the residuals
confirmed that residuals were on average larger in areas closer to coastlines, at higher
latitudes, and where Chl values are greater. Since latitude, distance from the nearest
coast, and Chl are collinear, univariate models were also fitted to the residuals. The
strongest single explanatory variable to explain the residual variation in Chls rela-
tive to Chlgzog or Chlgwpgwas the average Chl concentration (Chlgyps: 12=0.05;
p<0.0001 and Chlczes: r2=0.16; p<0.0001; Figure 3.7). For both matchups, the
magnitude of the residuals was insensitive to the average concentration of coloured
dissolved organic matter (CDOM) in the water, or to changes in the year of sampling.
The relationship between Chly and Chlgy rg or Chlozos was found to be insensitive
to the number of measurements used. The strength of the relationships was largely
insensitive to reduced sample size, and to the bathymetry, ocean basin, month, or
decade when the measurements were collected.

The reliability of the Chls database rests on the assumption that the function used
to predict Chl is insensitive to the time and location of sampling and that the error
associated with that relationship is random. We were fortunate that the large tempo-
ral and spatial overlap between available matchups allowed for a robust test of these
assumptions; however, matchups were not available for all times and locations. Al-

though matchups of Chl; with water transparency or colour were unavailable prior to
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Figure 3.6: Comparison with satellite data.

Mean Chl concentration from (A) Chle, and (B) Chlgw ps per 5° cell. Chl was derived
using B-spline interpolation; white indicates lack of data. Relationships between Chls
and (C) Chlezes, and (D)Chlgw ps. Idealized relationships are plotted as dashed lines
and fitted RMA regressions are shown as solid lines. Colours depict the number of
data per pixel. (E-F) Spatial patterns of the average mean Euclidean residuals from
regression fits of Chle and (E) Chlezes, and (F) Chlgw s per 5° cell.
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Figure 3.7: Variability in absolute Euclidean residuals.
GAM estimates of the square root-transformed absolute Euclidean residuals from
linear RMA models of Chly versus Chlgyw s (red) and Chlozes (blue) as a function
of (A) distance from the nearest coastline; (B) bathymetry; (C) year; (D) coloured
dissolved organic material (CDOM); (E) latitude; and (F) mean Chl. The estimated
trends are plotted as solid lines and shaded areas represent the 95% Bayesian credible

limits for the trends.
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1950, the strong correlation and approximately linear scaling between log-transformed
Chly and Chlg matchups since 1890 confirmed the efficacy of the algorithms used to
calibrate them (Table 3.2). Additionally, the methods used here require accurate
measurements of Chl; to calibrate Chly and Chly. Chl; measurements derived from
high performance liquid chromatography (HPLC) are generally regarded as the best
performing in situ technique, but are not readily available over long time scales. To
generate a large enough database of historical measurements, Chl; values derived from
several in situ instruments were used here. Although some methods have been found
to underestimate Chl, relative to HPLC techniques, this error is believed to be small
(Trees et al., 1985), with the main source of Chl; variability resulting from method-
ological differences among investigators (Welschmeyer, 1994). Although systematic
quality control techniques were used to remove measurements associated with these
sources of variability, some erroneous Chl; measurements may persist, and contribute
to the unexplained variation in the data.

To enable comparison of the various shipboard and remote sensing methods, the
analysis was restricted to the surface layer (upper 20 metres). The Chly data there-
fore may not reflect the integrated chlorophyll values, since the Chl maximum occurs
much deeper in some low-latitude ocean regions (Cullen, 1982). Additionally, Chl;
measurements below 20 m are usually derived from CTD profiles of in vivo fluores-
cence, and variability in the chlorophyll-to-phytoplankton biomass (organic carbon)
relationship at these depths is known to produce more uncertain abundance esti-
mates. The use of Chl; measurements in the upper 20 m of the water column to infer
phytoplankton biomass is a common practice (Behrenfeld et al., 2006; Falkowski
and Wilson, 1992; Martinez et al., 2009), but it is possible that changes in major
oceanographic features such as the mixed layer depth (MLD) may cause correspond-
ing vertical shifts in phytoplankton to waters deeper than 20 m (Saba et al., 2010). If
such shifts were occurring, this could cause underestimates of phytoplankton in some
ocean regions and would provide a strong incentive for in situ observational platforms

to expand the vertical sampling range.
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3.5 Discussion

Here, we have demonstrated that shipboard measurements of upper ocean water
transparency and colour can be integrated to derive accurate Chl fields at global
scales, and extending 120 years into the past. Following careful calibration, measure-
ments of Chl derived from different observational platforms have been combined into a
single publicly-available database (see Appendices). This study was conducted using
similar approaches to those developed in a previous study (Boyce et al., 2010), but
incorporating additional data and several suggested improvements (Mackas, 2011;
McQuatters-Gollop et al., 2011; Rykaczewski and Dunne, 2011; Boyce et al., 2011).
Firstly, the calibrated database presented here was generated from a larger and more
comprehensive set of measurements, and includes the FU-derived Chl measurements
not previously used. Consequently, our calibrated Chl database is more spatially
and temporally complete, and contains an additional 199,679 measurements. Un-
fortunately, we could not include plankton color measurements from the continuous
plankton recorder (CPR) dataset (see Reid et al., 2003) in our analysis. Our goal
was to produce a publicly-available database of Chl measurements, and as the raw
CPR data are proprietary, we were unable to include them here. Furthermore, the
size of the CPR silk (>250 mm) is designed to sample large zooplankton, and may
not quantitatively sample smaller size fractions of the phytoplankton.

Secondly, several improvements have been made to the statistical methods used to
identify implausible Chl measurements. Such improvements include, for instance, the
treatment of zero Chl; measurements, the identification of erroneous CTD-derived
Chl; measurements, and the use of spatial filters. Lastly, the Chl measurements
presented here were directly calibrated from a database of independent, quality veri-
fied in situ Chl measurements, rather than from a previously established algorithm.
Further, the calibration algorithms were developed using an unprecedented number
of quality-controlled in situ Chl measurements (n=12,841 Secchi matchups; n=6,943
Forel-Ule matchups); this represents a considerable improvement over the number of
matchups typically used to calibrate chlorophyll fields from remotely sensed water-
leaving radiances (n=60 CZCS matchups; n=2,853 SWFS matchups); (Evans and
Gordon, 1994; O'Reilly et al., 2000). This increases confidence in our approach, and

allows for a robust verification of the statistical assumptions of the calibration and
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validation methods.

The database of calibrated chlorophyll measurements presented here remains under-
sampled, as there are still some large data gaps, particularly in the Southern hemi-
sphere. Despite this, we believe that the available data can and should be used to
explore trends in global or regional phytoplankton dynamics prior to the satellite era
(1979-86, 1997-2010). The separation of yearly-to-decadal fluctuations from longer-
term phytoplankton dynamics is a frequently acknowledged challenge (Behrenfeld
et al., 2006; Martinez et al., 2009; Henson et al., 2010), and is directly related to
the scarcity of calibrated phytoplankton abundance measurements in the pre-satellite
era (<1978). This lack of an adequate dataset may be partially responsible for the
large variability in estimated trends in regional or global phytoplankton concentra-
tions or primary production (Behrenfeld et al., 2006; Gregg et al., 2005; Gregg and
Conkright, 2002; Gregg et al., 2003; Antoine et al., 2005; Falkowski and Wilson,
1992; Venrick et al., 1987). Accordingly, the calibrated global phytoplankton time
series presented here may enable the assessment of ocean biological variability over
a range of time and spatial scales, and help in establishing the ‘missing baseline’
(Pauly, 1995) against which to compare contemporary trends and estimates. Given
the broad importance of phytoplankton to global marine ecosystems and processes
(Behrenfeld, 2011; Falkowski, 2012), the potential applications of the calibrated phy-
toplankton time-series are considerable. In order to facilitate optimal use of the
described dataset, we make it available as a web appendix to this paper. The data
set is presented as a user-friendly text file which can be easily imported into most
software platforms or in a spreadsheet. The associated metadata is also contained in
the header of this file and includes a description of the variables included in the data
set, the units they are measured in, the relevant citation for the data set, and contact

information if users have any relevant questions.

3.6 Conclusions

For those seeking to analyze these data, several attributes must be considered. Firstly,
to accurately calibrate Secchi and Forel-Ule measurements, we eliminated all mea-
surements close to coastlines, all in situ Chl measurements below a depth of 20 m,

all Secchi measurements less than 6 m, and all Forel-Ule measurements with a color
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value of less than 2 and greater than 10. Although this was necessary to ensure the
accuracy of calibration algorithms, the resulting database should not be considered
to represent a complete phytoplankton inventory. Secondly, since the calibrated Chl
values were derived from deterministic models, they contain no measurement error
and are thus considered non-random. Alternately, the in situ Chl measurements were
not derived from a model; thus, they contain measurement error and are considered
random. Hence the calibrated values will, on average, contain the same mean as the
in situ measurements but will have a lower variance. Lastly, spatial and temporal
matchups between Chl measurements derived from different sensors and observational
platforms are necessary for calibration and validation, but may violate the assumption

of non-independence required by many statistical analyses.
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Chapter 4

Estimating Global Chlorophyll Changes over the Past
Century

4.1 Abstract

Marine phytoplankton account for approximately half of the production of organic
matter on earth, support virtually all marine ecosystems, constrain fisheries yields,
and influence climate and weather. Despite this importance, long-term trajectories
of phytoplankton abundance or biomass are difficult to estimate, and the extent of
changes is unresolved. Here, we use a new, publicly-available database of historical
shipboard oceanographic measurements to estimate long-term changes in chlorophyll
concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to
2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking
published criticisms into account, and by using recalibrated data, and novel analysis
methods. Rates of long-term chlorophyll change were estimated using generalized
additive models within a multi-model inference framework, and post hoc sensitivity
analyses were undertaken to test the robust of results. Our analysis revealed sta-
tistically significant Chl declines over 62% of the global ocean surface area where
data were present, and in 8 of 11 large ocean regions. While Chl increases have oc-
curred in many locations, weighted syntheses of local- and regional-scale estimates
revealed that on average, chlorophyll concentrations have declined globally over the
past century. Sensitivity analyses indicate that these changes do not arise from any
bias between data types, nor do they depend upon the method of spatial or temporal
aggregation, nor the use of a particular statistical model. The wider consequences
of this long-term decline of marine phytoplankton are presently unresolved, but will
need to be considered in future studies of marine ecosystem structure, geochemical

cycling, and fishery yields.

In review as: Boyce, D. G., M. Dowd, M. Lewis, and B. Worm. 2012. Estimating global
chlorophyll changes over the past century. Progress in Oceanography.
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4.2 Introduction

Despite accounting for only 0.2% of global producer biomass, marine phytoplank-
ton account for 46% of annual primary production (Field et al., 1998). Changes in
marine phytoplankton biomass or productivity may lead to corresponding changes
in geochemical cycles (Redfield, 1958), climate and weather (Murtugudde et al.,
2002), fisheries landings (Chassot et al., 2010; Ryther, 1969), and the structure and
dynamics of marine ecosystems (Chavez et al., 2003; Richardson and Schoeman,
2004). Although there is mounting evidence that marine phytoplankton concentra-
tion is changing at the scale of ocean basins and possibly globally, there is consider-
able debate regarding the direction and magnitude of change (Antoine et al., 2005;
Behrenfeld et al., 2006; Boyce et al., 2010; Falkowski and Wilson, 1992; Gregg and
Conkright, 2002; Gregg et al., 2005; Mackas, 2011; McQuatters-Gollop et al., 2011;
Rykaczewski and Dunne, 2011; Venrick et al., 1987). This uncertainty likely results in
part from the lack of consistent, long-term time series of estimates of phytoplankton
concentration.

Changes in phytoplankton concentration have been inferred from measurements
of upper ocean chlorophyll concentration (Chl; mg m~2); (Venrick et al., 1987), trans-
parency (Falkowski and Wilson, 1992), visual estimates of ocean colour (Reid et al.,
1998; Wernand and Woerd, 2010), and remotely-sensed water-leaving radiances (An-
toine et al., 2005; Behrenfeld et al., 2006; Gregg and Conkright, 2002). Recent trends
estimated primarily from satellite data (<30 years) are strongly driven by transient
climate fluctuations (Behrenfeld et al., 2006; Boyce et al., 2010; Chavez et al., 2011;
Martinez et al., 2009), and longer series are required to resolve long-term trends
(Beaulieu et al., 2013; Henson et al., 2010). To overcome this limitation, several
studies have combined indices of phytoplankton concentration sampled over different
time periods and from different observational platforms (Antoine et al., 2005; Boyce
et al., 2010; Gregg and Conkright, 2002; Gregg et al., 2003; Raitsos et al., 2005;
Saulquin et al., 2013). One such study combined shipboard measurements of ocean
transparency and in situ Chl and concluded that average surface Chl had declined
globally over the past century (Boyce et al., 2010). These findings were questioned
by others, primarily because of possible calibration issues arising from the merging of

two independent time series, available over different time intervals, to estimate trends
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(Boyce et al., 2011; Mackas, 2011; Rykaczewski and Dunne, 2011). These criticisms
were addressed in a follow-up study where time series were calibrated against each
other, and their accuracy was compared against more recent satellite-derived mea-
surements of surface Chl (Boyce et al., 2012). This procedure removed any potential
bias introduced by merging of data types, and correlated strongly (r=0.81; ranged
major axis slope=1) with the independently derived satellite record. In constructing
this database we also introduced a range of methodological advancements and sen-
sitivity analyses, which demonstrated the accuracy of the Chl measurements. Here,
we use this larger, and expanded database of Chl measurements (Boyce et al., 2012)
combined with newly developed analysis methods and robustness checks to provide

new estimates of long-term changes in global upper ocean Chl over the last century.

4.3 Methods

4.3.1 Data

Due to the difficulty associated with direct enumeration of phytoplankton and in
separating phytoplankton carbon from that contained in other living and detrital
particles, the measured concentration of chlorophyll has been widely used as a first-
order indicator of the abundance and biomass of oceanic phytoplankton. Despite
variability in the phytoplankton Chl-to-carbon ratio (Geider, 1987; Saba et al., 2010),
Chl is still the most practical and extensively used proxy of phytoplankton biomass
over large spatial scales (Antoine et al., 2005; Behrenfeld et al., 2006; Gregg and
Conkright, 2002; Gregg et al., 2005; Henson et al., 2010; Huot et al., 2007; Montes-
Hugo et al., 2009; Raitsos et al., 2005; Reid et al., 1998).

We use a new and publicly-available database of integrated Chl values collected via
shipboard sampling platforms from 1890 to 2010 (details in Boyce et al. 2012). The
database is only briefly described here; full details of the data sources, temporal and
geographic distribution, quality control and inter-calibration are given in Boyce et al.
(2012). It consists of measurements of ocean transparency (derived from Secchi-depth
measurements; Zp) and colour (derived from the Forel-Ule color-matching scale; FU),
which were both calibrated against a large and comprehensive database of quality-

controlled in situ Chl measurements derived from spectrophotometric or fluorometric
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analyses of seawater. Since the calibration methods used to derive Chl values are
sensitive to the optical properties of the seawater, all near-shore measurements (<20
m water depth or <1 km from the nearest coastline) were removed from the database
on the assumption that these waters would likely contain significant concentrations
of other optically active constituents, that confound the optical detection of phyto-
plankton Chl. Statistical techniques were used to identify erroneous measurements;
these were corrected or removed from the database.

This database (details in Boyce et al. 2012) has been expanded and improved

over a previous version (used by Boyce et al., 2010), in a variety of ways, including :

1. The number of individual measurements, and the temporal and spatial coverage
of the database has considerably increased, despite the use of more stringent

quality control methods.

2. Transparency values in the database were calibrated directly against a large
number of quality-controlled in situ Chl measurements (n=12,841); this is a
large increase over the number of matchups used to calibrate globally distributed
remotely sensed water-leaving radiance values from the Coastal Zone Colour
Scanner (CZCS; n=60) or the Sea-viewing Wide Field-of-view Sensor (SeaWiF'S;
n=2, 853); (Evans and Gordon, 1994; O'Reilly et al., 2000), and ensures that

our calibration equations accurately represent in situ Chl concentrations.

3. A range of new statistical methods (i.e. spatial filters) were developed to iden-
tify potential outlying or implausible Chl measurements in the database, and
to subsequently remove or correct them. A range of Chl depth interpolation
methods were also explored to verify the assumption that the mean Chl over 20

m was the appropriate metric.

4. Measurements in the database were subjected to a number of additional post-
calibration analyses testing their quality, precision, and robustness (Boyce
et al., 2012). This included testing their accuracy against widely used remote
sensing estimates of Chl. These analyses indicated that the Chl values in this
database are strongly correlated with Chl from SeaWiFS (r=0.81; ranged major
axis slope=1) on log-log scales. The larger number of matchups and strong cor-

respondence with remote sensing measurements attest to the improved quality
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of the integrated Chl database (see Boyce et al. 2012 for further details).

Prior to our trend analyses, sensitivity analyses were undertaken to ensure that
merging in situ, color, and transparency-derived Chl measurements would not bias the
results of subsequent trend analyses. These sensitivity analyses suggested that Chl
trends derived from Forel-Ule ocean colour measurements were atypical. Changes
in Forel-Ule ocean color determinations are not sensitive to small changes in Chl
observed in oligotrophic (blue) waters (FU<2) where the optical properties of pure
water dominate, or in mesotrophic (green or brown) waters where other particles and
dissolved substances are significant (FU>10). Oligotrophic blue waters contain the
lowest Chl concentrations globally and are widely distributed.. Because the validity
of these values could not be confirmed and to avoid any potential bias, we removed
all FU-derived Chl values prior to the trend analysis. The resulting database used
here contains 451,383 calibrated Chl values, is globally distributed, and spans over
a century (1890 to 2010). Despite this, the measurements are sparse in many areas,

particularly in the Southern hemisphere, and prior to 1950.

4.3.2 Statistical Analyses

Inter-annual changes in average Chl are often small relative to the naturally-occurring
variability. For instance, stochastic natural disturbances can drive large transient
Chl changes over days to weeks (Hamme et al., 2010), intra-annual Chl variability
can span several orders of magnitude in some locations, and inter-annual to decadal
climate fluctuations can induce 20-fold changes in Chl over varying time intervals
(Barber and Chavez, 1986). Detection of any long-term trends that may underlie this
large variability requires powerful and flexible analysis tools. Hence, we estimated
changes in Chl over time using generalized additive models (GAMs). GAMs are an
extension of widely-used generalized linear models, but enable the estimation of both
linear trends as well as non-monotonic responses, (e.g. seasonal cycles) within the
same model framework (Hastie and Tibshirani, 1986). In contrast to more traditional
approaches, GAMs do not require the assumption of a fixed functional form (linear or
otherwise), hence more complex (e.g. cyclical or bi-modal) dynamics can be captured.

As an additional improvement, we employed GAMs within a multi-model frame-

work (Burnham and Anderson, 2002). This approach uses information theory to
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rank and/or average across a set of statistical models. By eliminating the reliance
on a single model, the robustness of the model inference is improved in much the
same way as ensemble forecasts do for meteorological or climate projections. The ad-
vantages of this approach are considerable. The GAM approach enables Chl to vary
as a linear or non-linear function of our model covariates, while accounting for the
non-normality, as well as the spatial and temporal dependence of Chl measurements.
The multi-model approach enabled us to allow for a very diverse array of dynamics
to explain Chl variability at different ocean locations. For instance, our ensemble
models allowed for the strength (magnitude) and nature (linear or smooth) of some
important model effects, such as seasonality, or coastal distance to vary across space
and through time.

As a first step in the analysis, an ensemble of competing GAM models to explain
Chl variability in the upper oceans was selected. The ensemble model set was rel-
atively small (maximum of 20-39 models) and defined a priori according to current
knowledge of which factors influence Chl. Since we were interested in determining
the rate of Chl change over time, all ensemble models contained an effect to explain
inter-annual Chl variability. In addition to this, most ensemble models included ef-
fects to explain variability in Chl related to the location of measurements, the day
of the year, water depth, and distance from the shore. Thus the general form of the

GAMs used to estimate trends was as follows:

n(pi) = Bo + Byear X year; + Brx1,; + fi(xa;) + fa(xsixa;) + € (4.1)

where 4 are the individual observations, 7 is the monotonic link function of the
expected mean Chl concentration p;, year;, x1, x2, vs, and xsare predictor variables,
Bo is the model intercept, § denotes parametric and f denotes functional effects
estimated from the data, and &; represents the residual error term. The functional
effects are continuous, smooth curves which can more closely track the response data,
and thus accommodate a wide array of response functions ranging from linear to
multi-modal (Wood and Bretherton, 2006; Wood, 2004, 2003). The predictors (x) in
the above example may be spatial (i.e. longitude, latitude, bathymetry) or temporal

(i.e. day of the year, decade) variables explaining Chl variability (Table 4.1). All
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Table 4.1: Specification of effects to explain Chl variability.

The ensemble model set contained different combinations of covariates.
The saturated model contained one effect from each category of variabil-
ity explained (column 1); the minimum model contained only one effect
of inter-annual variability. 3 are linear and f are functional model effects.

Variability explained Effect estimation Basis function  Dimension
Inter-annual B(Year)
B(factor(Year))
f(Year) Cubic 10
Intra-annual f(Day) Cyclic 5
f(Day x factor(Space)) Cyclic 5
f(Day x factor(Time)) Tensor product 5,3
B(factor(Month))
Nutrient re-suspension  f(Bathymetry) Cubic 4
Land-based deposition  f(Coast distance) Cubic 4
f(Coast distance x factor(Time)) Cubic 4
Spatial f(Longitude x Latitude) Thin plate Estimated
f(Longitude) Cubic Estimated
f(Latitude) Cubic Estimated

ensemble models contained [Bye.r, which is a parametric effect capturing the long-
term trend in average Chl. For all models we assumed a gamma-distributed error
structure (u; ~ Gamma) and a log link (1 (u;) ~ In(u;)); alternate distributions
and link functions were fitted but did not perform as well. Using this method, we
were able to estimate the average rate of Chl change over time while accounting for
underlying aspects of Chl variability. Further, because the influence of the model
covariates on the mean response is through the logarithmic link function such that
N (Byear) = ePvear  the estimated rate of Chl change over time was retrieved on a linear
response scale (mg m—2 yr~!). All model assumptions, including spatial and temporal
dependence were verified by analysis of the model residuals.

All GAMs were fitted to the data using penalized likelihood approximation by
penalized iteratively re-weighted least squares (Wood and Bretherton, 2006). The
smoothing parameters used to scale the likelihood penalty of all functional effects
were estimated by generalized cross-validation. To prevent over-fitting the influence
of the effective degrees of freedom on estimation of functional effects was inflated by
a factor of 1.4 (Kim and Gu, 2004). The basis dimensions of the functional effects

were estimated a priori such that any patterns in the residuals as a function of the
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functional predictor variables could not be explained by them. More information on
the theory and technical aspects of GAMs can be found in, for example (Hastie and
Tibshirani, 1986; Walsh and Kleiber, 2001; Wood and Bretherton, 2006; Litzow and
Ciannelli, 2007), while details and examples on their implementation in an oceano-
graphic context may found in, for example (Bigelow et al., 1999; Polovina et al.,
2008; Irwin and Finkel, 2009).

The Bayesian information criterion (BIC) was calculated for each individual model
within the ensemble (Schwarz, 1978) to evaluate its parsimonious performance. BIC
is an information theoretic-based goodness of fit statistic and takes into account model

fit, complexity, and sample size,
BIC = —2In[L(0, | y)] + pln(n) (4.2)

where n is the sample size, L (6, | y) are the likelihood estimates of the model
parameters ¢, given the data y, and p is the number of free parameters estimated
by the model. Normalized multi-model weights for each ensemble model (w,,) were
then calculated as,
exp(za)

Wy, = = (4.3)
e €ap(—3a-)

where R represents the total number of models fit, and

A = BIC,, — BIC,un (4.4)

Here BIC,,is the BIC score for model m, and BIC,,;, is the minimum (top rank-
ing) BIC score in the ensemble model set. The ‘best’ model was selected from the
ensemble according to the information-theoretic weights (w,,, Equation 4.3), with
Byear,5 €xtracted as the ‘best’ model estimated rate of Chl change over time. This
approach selects the model containing the largest amount of ‘information” (Burnham
and Anderson, 2002; Burnham, 2004).

To determine how sensitive the estimated rate of change was to the model selection

process, multi-model averaged estimates of Chl change over time were derived as
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follows,

R
Byear,MM - Z wmﬁyear,m (45)
m=1

Where Byem’ w18 the multi-model ensemble-averaged parameter estimate of the
rate of Chl change over time, w,, are the model weights, and B4, are the estimates

of the rate of Chl change over time for each model.

Estimating trends across spatial scales

We estimated rates of Chl change at local, regional, and global spatial scales, using
direct and weighted analysis methods. For the regional analyses Chl change was also
estimated as linear, discrete, and smooth functions of time. This was done to evaluate
robustness; estimates of change should be relatively insensitive to the use of different
statistical methods and assumptions.

To resolve spatial patterns of Chl change, local-scale trends were estimated for
individual 10° x 10° cells that contained adequate data. It has been suggested that
a continuous Chl series spanning at least 27 (Beaulieu et al., 2013) to as many as
40 years (Henson et al., 2010) is required to separate long-term trends from shorter-
term climate-driven fluctuations, with series length varying by ocean region. Hence
we restricted our analysis to cells where the temporal range of measurements spanned
at least 35 years. We also excluded cells containing <25 individual measurements or
<5 individual years with measurements. The remaining database contained n=280
individual 10° x 10°cells with sufficient data. For each cell, up to 39 candidate models
were fitted to the available data. From this ensemble model set, a multi-model average
rate, and a best-model rate of Chl change were estimated (see above, equations. 2-4).

To estimate Chl trends at the ‘regional’ scale of ocean basins, the data were ag-
gregated into 11 large regions which exhibit similar variability in Chl in response to
seasonality and inter-annual to decadal climate variability (Behrenfeld et al., 2005;
Boyce et al., 2010). Although 10 regions were initially selected, observed discontinu-
ities in the Chl response between the eastern (> 20° W longitude) and western (<
20° W longitude) North Atlantic region led us to further subdivide this basin (see
local and regional model results below for further details).

To capture the range of potential Chl trajectories over time, regional trends were
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estimated from GAMs as linear functions of time (on a log scale) in three different
ways: as (i) continuous (linear trend), (7.) discrete (decadal average estimates),
and (4ii.) smooth functions of time (functional trend). This approach allows both the
quantitative (rate) and qualitative (shape) characteristic of trends to be estimated
while accounting for the influence of the model covariates.

Rates of Chl change for each region were also determined by aggregating the local
10° x 10° estimates. Individual local scale estimates were heterogeneous in both the
uncertainty of individual estimates, as well as the geographic area encompassed by
them; statistical weighting methods were used to account for this heterogeneity. For
each local estimate, statistical weights were calculated, taking account the sampled
area, and the uncertainty weights. Standardized area weights (wWayeq(c,r)) Were derived

for each 10° x 10° cell (¢) within each region (r),

Ac,r
Amax(r)

Warea(c,r) = (46)

where A., is the convex polygon area of all measurements in cell ¢ within region
r and Apax(y is the maximum convex polygon area of all cells within region r. Stan-
dardized estimate uncertainty weights (wuncertamty(c,r)) were calculated for each cell

(¢) within each region (r),

CVer )_1 (@)

Wyncertainty(c,r) — <T()

where C'V ., is the coefficient of variation of cell ¢ within region r, and C'V yax(r)
is the maximum coefficient of variation of all cells within region r. Coefficient of
variation values were calculated using the estimated rates of Chl change and standard
errors. Using this method, local estimates encompassing larger geographic areas and
possessing less uncertainty are allocated greater statistical weight. Weighted mean

rates of Chl change for each region (f3,) were estimated as

) ;’l: wc,rﬁc,r
7, = Lzt Werler (4.8)

where w,, are the weights derived as the average of Wareq(c,r) aNd Wyncertainty(e,r) s

and f3., are local estimates for change for cell ¢ within region 7.
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where w,, are the weights derived as the average of Wareq(c,r) aNd Wyncertainty(e,r) s
and f3., are local estimates for change for cell ¢ within region r. Global rates of Chl
change were then derived by independently averaging local or regional estimates using
the statistical weighting methods (Equations 4.5 to 4.7).

Finally, to determine the sensitivity of the estimated trends to the merging of
transparency- and in situ-derived Chl measurements (Chly and Chly, respectively),
model IT major axis regression models were fitted to matched (1° x 1° x month x
year) Chly and Chl; measurements within each 10° x 10° cell. The estimated slope
parameter from the model ((y;,s) corresponds to the average change in Chly for each

unit of Chl; increase and is estimated as

s — 57+ /(55 — s3)? + 4(Sr)?
2srr

Bbias -

(4.9)

where s? and s%, are the estimated variances of Chl; and Chly, respectively, and
s?pis their estimated covariance (Sokal and Rohlf, 1995; Legendre and Legendre,
1998).

4.4 Results

4.4.1 Local Trends

When considering the 280 10° x 10° cells with sufficient data for long-term trend
analysis, 57.2 % (95% Wilson score confidence interval: 51.3-62.8%); (Wilson, 1927)
showed declining Chl trends; this proportion increased to 60.1% (95% CI: 52.5-67.2%)
when only statistically significant trends were considered (Figure 4.1A; Table 4.2).
When all 348 available cells were considered irrespective of their trend length, 56.6%
showed declining trends. This finding was robust to the estimation of changes using
different subsets of the complete Chl database, or when considering all available trends
or only statistically significant trends (Table 4.2). On an area basis, Chl declines were
observed over 58.4% of the global ocean surface area where adequate data permitted
trend analysis; this proportion increased to 62.1% when considering only areas where
the rate of change was statistically significant.

The rate of Chl decline increased with distance from the nearest coastline (Fig-

ure 4.1B). Weighted linear regression of available local trends (n=280) as a function
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of distance from the nearest coastline yielded a negative trend, that was marginally
non-significant (-4 x 107 mg m=3 yr=! km~'; P=0.06). When considering only statis-
tically significant local-scale estimates of Chl change this relationship became stronger
and statistically significant (-7 x 107® mg m™® yr~! km™'; P=0.04; n=168). This gen-
eral pattern was also observed when Chl changes were independently estimated from
in situ or transparency derived Chl data, or using only measurements collected since
1950. Estimating local-scale rates of change separately using measurements collected
in shelf (<200 m depth) or oceanic (>200 m depth) waters also suggested greater
rates of Chl decline in remote open ocean waters (Table 4.2).

Despite the overall decline in Chl observed, statistically significant increases were
observed in 39.9% of cells and (or 38.0% of the ocean surface) where adequate data
permitted trend analysis. Clusters of increasing cells were observed in the temperate
North Pacific, in the Northeast Atlantic, and across the subtropical warm pool (Figure
4.1A). Although rates of Chl increase were greater in waters closer to the shorelines
(Figure 4.1B), there was a no change in the proportion of cells containing increasing
Chl trends in coastal (< 200 m depth; 59.6%) or oceanic (>200 m depth; 60.3%)
waters.

Estimated rates of Chl change were larger and more variable in the Southern
Hemisphere, likely as a function of limited data availability. Spatial examination of
the strength of inference for the main model effects suggested the seasonal effects
were of large importance in most cells, but were especially significant in the Northern
Hemisphere and in the Atlantic Ocean. Spatial effects were dominant in the tropical
Pacific Ocean (20° N to 20° S), where seasonal effects were weaker.

When all local estimates were aggregated by ocean region (n=11; Figure 4.1C)
using statistical weighting methods (Equations 4.5 to 4.7), declining trends were ob-
served in 8 of 11 regions; five of those were statistically significant (Figure 4.1D).
The largest rates of decline were observed in the Atlantic, the South Indian, and
the Southern Ocean region. Conversely, the Northeast Atlantic and South Pacific
showed increasing trends and the equatorial Pacific region appeared approximately
stable. Estimates of change in the Southern hemisphere regions were found to be
more variable and uncertain than elsewhere. The proportion of declining cells was

also greater than 50% in 9 of 11 regions, with the largest proportional declines in
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Figure 4.1: Local-scale phytoplankton trends.

(A) Estimated instantaneous linear rate of Chl change in each 10° x 10 cell (n=280).
Color coding indicates the average rate of change over the available time series. Cells
bordered in black denote statistically significant rates of change (P<0.05) and white
cells indicate cells with insufficient data. (B) Chl change in each 10° x 10 cell as
a function of distance from the nearest coastline (km). Colours indicate the ocean
where the cell was located. Solid trend line was derived from a weighted linear model;
shaded area is the 95% confidence interval; dashed line represents no change in Chl.
(C) Ocean regions (n=11) used to estimate regional trends in Chl (D) Weighted mean
Chl changes estimated by aggregating local estimates within each region. Shapes
(‘Raindrops’) represent the probability distribution of the individual local estimates.
The weighted mean rates of Chl change are depicted as black vertical lines, and the
width of the raindrops and gray horizontal lines are the 95% confidence limits about
the means. The colours of the raindrops depict the number of cells within each region.
Green vertical lines are the proportion of increasing cells within each region. Black
and green tick marks on the axes represent the individual rates or proportions of
change, respectively. Dashed line represents no change.
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Atlantic and North Indian regions (Figure 4.1D). The proportional changes of cells
within each region was similar to weighted averages rates, except for the Southern
Pacific and Southern regions, where the number of cells and measurements were small

and estimates of change were variable (Figure 4.1D).

4.4.2 Regional Trends

Chl trajectories estimated as discrete, linear, or smooth functions of time suggested
strong fluctuations in average Chl concentrations superimposed on long-term linear
trends (Figure 4.2), with most trajectories declining over the last 60 years. Again,
estimated Chl trends were more uncertain in the Southern Hemisphere regions and
over earlier time periods, likely as a function of limited data availability. Estimated
smooth Chl trajectories are strongly influenced by data-poor years and decades, pos-
sibly explaining the large fluctuations over the pre-1950 period (Figure 4.2). With the
exception of the Pacific regions, Chl was observed to initially increase before under-
going prolonged decline. Most of these initial increases predated 1950, and appeared
to be driven by a relatively small number of data points.

Estimates of change within large ocean regions described previously (Figure 4.1C),
indicated statistically significant Chl decline in 8 of 11 regions (Figure 4.3A, B; Ta-
ble 4.3). The largest instantaneous rates of decline were observed in the Northwest
(-0.00964-0.001 mg m~3 yr—!; P<0.001), equatorial (-0.003540.0018 mg m—3 yr—!;
P<0.001), and South (-0.00364-0.0029 mg m—3 yr—!; P<0.001) Atlantic and the Arc-
tic (-0.0046+0.002 mg m—2 yr~!; P<0.001) and Southern Ocean (-0.0098+0.0033
mg m~? yr~!; P<0.001) regions (instantaneous rate of change and 95% confidence
interval). Statistically significant rates of increase were observed in the Northeast At-
lantic (0.0045+0.0016 mg m~—2 yr—'; P<0.001), South Indian (0.0058+0.0004 mg m >
yr~1: P<0.001), and South Pacific (0.006640.0005 mg m~3 yr—!; P<0.001) regions.
When extrapolating over the available trend length, these rates correspond to sub-
stantial cumulative upper ocean Chl changes. The largest proportional declines were
observed in the Northwest Atlantic (-61%), Southern (-64.5%), and Arctic (-38.5%)
regions (Table 4.3). Smaller declines were calculated for the equatorial Atlantic (-
28.5%) and South Atlantic (-28.2%), North Indian (-19.5%), equatorial (-17.9%) and

South Pacific (-4.5%) regions. Large increases were extrapolated for the Northeast
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Figure 4.2: Temporal trajectories of phytoplankton.

Estimates of Chl as a discrete (points), log-linear (lines), and smooth (dotted lines)
function of temporal variability in each region (n=11). Tick marks on the x-axis
represent the availability of data through time. The color of tick marks and points
represents the scaled number of observations available in each year (tick) and decade
(point). Shaded areas represent approximate 95% Bayesian credible limits around
each log-linear trend.
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Table 4.3: Regional-scale estimates of Chl change.

Region Byear ~ SE P value % Yr—! Deviance Area Span N Yr
Arctic -0.00 0.00 0.00 -0.37 35 177 1899 - 2005 111
NW Atlantic -0.01 0.00 0.00 -0.62 48 295 1911 - 2010 781
NE Atlantic 0.01 0.00 0.00 0.84 45 183 1890 - 2010 730
E Atlantic -0.00 0.00 0.00 -0.29 65 384 1911 - 2008 190
S Atlantic -0.00 0.00 0.02 -0.31 43 299 1911 - 2003 60
N Indian -0.00 0.00 0.02 -0.19 59 196 1895 - 1997 84
S Indian 0.00 0.00 0.00 0.58 76 760 1900 - 2006 131
N Pacific -0.00 0.00 0.00 -0.04 52 478 1907 - 2009 2842
E Pacific -0.00 0.00 0.00 -0.18 78 964 1907 - 2008 475
S Pacific 0.01 0.00 0.00 0.78 69 565 1956 - 2005 53
Southern -0.01  0.00 0.00 -0.61 40 336 1900 - 2006 89

Note: Estimate, SE, and P-value are the instantaneous linear rate of Chl change (mg m~3 yr’l), standard errors, and P-

values for the rates of change. % per Year is the Chl change per year, reported as a proportion of the initial value, Deviance is the
proportion of deviance explained by the individual models, Area is the maximum polygon area encompassed by the available data
(k1112 x 10%) and N/Year is the average number of measurements available in each year.

Atlantic (+100%), South Indian (61.9%) and South Pacific (38.4%) regions. These
rates of change may be exaggerated for regions where data availability is low such as
the Southern Ocean. In such instances, rates of change could be inflated due to the

influence of measurements taken in more recent, data-rich decades.

4.4.3 Global Trends

When aggregated globally, both local and regional scale estimates of change were ap-
proximately Gaussian distributed (Figure 4.4A).Using statistical weighting methods
to account for differences in the uncertainty and spatial coverage of estimates, we
observed globally declining Chl trajectories. Synthesis of local estimates revealed a
statistically significant global Chl decline of -0.006640.001 mg m— yr~! (random-
effects weighted mean and 95% confidence interval). This finding was insensitive to
the use, or method, of weighting (Figure 4.4B). Synthesis of available regional es-
timates suggested that the global rate of change was smaller and not statistically
significant (-0.00094:0.0027 mg m~ yr~!). The global rate of change derived from
regional estimates was sensitive to the splitting of the North Atlantic region; when
analyzing the North Atlantic as a whole, the global rate was greater and statistically

significant (-0.002940.0025 mg m =3 yr=1).
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Figure 4.3: Regional-scale phytoplankton trends.

(A) Estimated instantaneous linear rate of Chl change in each of 11 ocean regions.
Colors indicate rate of change; yellow and red are increasing regions, blue are de-
clining regions. Trends for each region are plotted at 5° resolution (B) Chl changes
estimated for each region (points), with 95% confidence intervals (gray lines). Individ-
ual estimates are displayed as tick marks on the x-axis. Colors depict the standardized
statistical weight used in the derivation of the global average for each region. Dashed
line represents no change.
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Figure 4.4: Average global phytoplankton change.

(A) Shaded areas represent the standardized kernel density distribution of individual
local (gray) and regional (red) scale estimates of Chl change. Tick marks on the
x-axis are the values of the individual estimates of change. Dashed line represents
no change. (B) Global rates of Chl change estimated using local and regional scale
estimates. Global rates of change were calculated as un-weighted (triangle points)
and weighted (square points); random-effects were assumed. Horizontal lines are the
95% confidence limits around the mean rates; dashed line represents no change.
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4.4.4 Sensitivity and Robustness Analyses

Analyses of all available 10° x 10° degree cells suggested that as the length of the
available Chl time series decreases, the estimates of change become larger and more
uncertain (Figure 4.5A). This supports the contention that Chl trends estimated over
shorter timescales are strongly influenced by decadal-scale climate oscillations and
may not necessarily represent long-term trends (Henson et al., 2010; Martinez et al.,
2009). However, since sample size also co-varies with trend length, it is possible that
the larger magnitude and uncertainty of estimates may be driven by data density,
not just total time span. The estimated rates and patterns of Chl change at local
scales were broadly insensitive to model specification, or the spatial resolution chosen
(changes within 5° x 5° cells were also estimated). The proportion of declining cells
and average global rate of Chl change were largely unchanged.

To determine the sensitivity of our analysis to model averaging, the estimates of
Chl change over time from best models (Byeqr,5) Were compared against those de-
rived from multi-model averaging (B, aras); (Figure 4.5B). In almost all instances,

Byean v and Byeqr p were identical in direction, but differed slightly in magnitude.

The ur estimates were generally smaller than By, p estimates and the differ-

year,M

ences between them tended to increase with decreasing sample size (Figure 4.5C).

However, since differences between ar and Byeqr, p were small and because the

year,M
statistical theory underlying single model selection is more robust, Bycqr, 5 Was used as
the metric of Chl change. The overall results were insensitive to the use of Byear’ MM
or Bycar,B-

Several analyses were performed to determine the sensitivity of the estimated
trends to the blending of Chl measurements collected from different sampling plat-
forms. It has been suggested that since the transparency- and in situ-derived Chl
values are available over different time periods, any systematic difference between
them could bias the overall rate of change over time (Mackas, 2011; Rykaczewski and
Dunne, 2011). We conducted several analyses to explore this possible bias. Firstly,
if temporal sampling differences were biasing the Chl trends, the magnitude of the
bias should scale proportionally to the magnitude of the trends. To quantitatively

test this, we examined the linear scaling of space- and time-matched Chly and Chl;

values on log-log scales in conjunction with the trend estimated from the integrated
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data (Byeqr,p) for each individual 10° x 10° cell. The linear scaling parameter was
estimated as the model II major axis log-log regression slope of Chly against Chl;
(Bpias), whereby parameter values greater than 1 indicate Chly>Chl; (Equation 4.8).
If declining Chl trends were the result of a bias resulting from the blending of different
data sources, fBpiqs should be negatively related to Byeqr, 5. There was no indication
that a systematic bias was present (r?=0.01, P=0.19), suggesting that the estimated
Chl trends (Byeqr,5) are not an artifact of the blending of Chly and Chl; (Figure
4.5D).

Whereas the Chl; measurements in the integrated database contain intrinsic mea-
surement error, the Chly values are calibrated using a deterministic process and thus
contain only an indirect form of measurement error. Consequently the means of Chly

and Chl; are identical, but their variances may not be (Figure 4.5E). Analyses were

Figure 4.5 (preceding page): (A) The absolute estimated rate of Chl change for
each 10° x 10° degree cell is plotted as a function of trend length. Colors represent
the number of measurements in each cell. The relationship was best approximated
by a generalized linear model (p; ~ Gamma and 1 (p;) ~ In (u;); solid line); Shaded
area depicts the confidence limits. (B) Rates of Chl change estimated by multi-model
averaging plotted against best-model estimates for each 10° x 10° degree cell. Gray
lines are the 95% confidence intervals for the estimates; dashed line represents ide-
alized relationship (slope=1, intercept=0). Solid line is the model II regression fit
(r=0.99; P<0.0001). Inset displays the same relationship for regional estimates. (C)
Difference between multi-model averaged and best model rates of Chl change as a
function of log sample size for each 10° x 10° degree cell. The relationship was ap-
proximated by a generalized linear model (u; ~ Poisson and n (p;) ~ In (u;); solid
line); shaded area depicts the 95% confidence interval. Colours represent the distance
of the cell to the nearest coastline. Inset displays the same relationship for regional
estimates. (D) Estimated rates of change from all data plotted as a function of the
average difference (model II major axis linear regression slope; equation 9) between
Chl data types for each 10° x 10° cell. Fitted line represents the relationship esti-
mated from a model II linear regression. Colour depicts the ocean where trends were
estimated. (E) Probability distribution of log-transformed Chl; (red) and Chly (blue)
measurements estimated as a kernel density function. Area under each curve sums
to 1. Tick marks represent the exact Chl values. (F) Rates of Chl change estimated
using truncated data as a function of changes estimated from all available data for
each 10° x 10° cell. Gray lines are the 95% confidence intervals for the estimates; solid
line represents slope from a model II regression fitted to the data (r=0.7; p<0.0001).
Dashed line represents idealized relationship (slope=1, intercept=0). Inset is the
same relationship for regional estimates.
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performed to determine the possible effect of this uneven variance on the estimated
Chl trends. Trends were estimated using only Chl measurements that were within the
extreme tails of the Chly distribution. This truncation simulation effectively stan-
dardized the variances of Chl; and Chly. By comparing trends estimated from the
truncated data against those estimated using all data, the sensitivity of the trends
to the potentially uneven variances of Chly and Chl; may be assessed. This analysis
suggested that the trends were insensitive to the larger variance of Chl; measure-
ments (Figure 4.5F). The changes estimated from the truncated database indicated

a slightly greater proportion of declining 10° cells and greater rates of Chl decline.

4.5 Discussion and Conclusions

This analysis presents comprehensive empirical evidence for a global decline in average
Chl, particularly over the second half of the 20" century. Importantly, this work
builds upon previous estimates of long-term phytoplankton change (Boyce et al.,
2010) and addresses all critical comments which were published in response (Boyce
et al., 2011; Mackas, 2011; McQuatters-Gollop et al., 2011; Rykaczewski and Dunne,

2011). We have increased the robustness of this analysis in several ways including:

1. Using a larger Chl database with more stringent data quality control methods

and direct Chl calibration methods (full details in: Boyce et al., 2012).

2. Implementing a range of new analyses to ascertain the sensitivity of the esti-
mated trends to any possible biases (Mackas, 2011; Rykaczewski and Dunne,
2011).

3. Using multi-model analyses to eliminate the reliance on a single model of Chl

change, and enabling for more complex Chl dynamics to be tested.

4. Restricting our analysis to Chl time-series that span at least 35 years, to min-
imize any confounding with cyclical climate variability (Beaulieu et al., 2013;

Henson et al., 2010).

Following these improvements, the trajectories of Chl change reported here are
similar, but not identical, to those estimated previously (Boyce et al., 2010). Sta-

tistically significant chlorophyll declines were observed in 60.1%40.076 of 10° cells
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examined, and over 62% of the global ocean surface area where trend analysis was
possible. While Chl has declined globally, Chl trends were spatially heterogeneous.
Large concentrations of declining cells were observed across the mid- to high-latitude
Atlantic oceans, the western Pacific and the eastern tropical Pacific Oceans (Figure
4.1A). Patches of increasing cells were found in the North Pacific Ocean, northeast At-
lantic Ocean, and Mediterranean Sea (Figure 4.1A). The greatest rates of Chl change
were observed in the Southern Hemisphere (<50° S), and where the trend time span
was shorter, likely as a function of limited data availability.

Weighted linear regression analysis suggested that the rate of Chl change became
increasingly negative with increasing distance from land masses, (p<0.01). This sug-
gests that Chl in the open oceans has been declining more rapidly than in shelf areas.
This finding is in agreement with results derived from satellite data available over
more recent time periods (1997 to 2010), documenting declining phytoplankton in
the open oceans (Gregg et al., 2005; Vantrepotte and Melin, 2009; Ware and Thom-
son, 2005) and expansion of the oligotrophic gyres (Polovina et al., 2008). These
declining trends have been generally related to ocean warming, intensifying vertical
stratification and reduced vertical mixing (Behrenfeld et al., 2006; Boyce et al., 2010;
McClain et al., 2004; Polovina et al., 2008), although they are largely unexplored over
pre-satellite eras. Stable or increasing trends in shelf areas, could be, at least in part,
due to the effects of anthropogenic eutrophication (Jickells, 1998; Nixon, 1995; Peierls
et al., 1991), which may counteract the effects of increasing stratification on nutrient
supply rates.

Regional estimates of change were in general agreement with local estimates, with
the largest declines observed in the Atlantic (excluding the Northeast Atlantic) and
polar regions (Figure 4.2 Figure 4.3). Due to the large spatial scale of these estimates,
and because the minimum trend length of our analysis is 35 years, it is challenging
to compare our results to independently published estimates, almost all of which are
estimated at finer spatial scales (Reid, 1975; Reid et al., 1998; Saba et al., 2010;
Venrick et al., 1987), or over shorter time intervals (Antoine et al., 2005; Behrenfeld
et al., 2006; Goes et al., 2005; Gregg et al., 2005; Montes-Hugo et al., 2009). Despite

this, some general patterns seem to emerge.
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Local and regional declines in the North Pacific were broadly supported by inde-
pendent long-term estimates derived from ocean transparency (Falkowski and Wilson,
1992) or colour (Wernand and Woerd, 2010). Our estimated rate of decline for the
North Pacific region (-0.0005; mg m~2 yr—!) is similar but smaller than that estimated
over a shorter time interval (-0.002 mg m=3 yr~!; 1900 to 1981) by Falkowski and
Wilson (1992).

Long-term local and regional Chl changes in the North Atlantic are in agreement
as well with estimated changes in the plankton colour index (PCI) from the North
Sea and Northeast Atlantic using the continuous plankton recorder (CPR) survey
(Raitsos et al., 2005; Reid, 1975; Reid et al., 1998), but at odds with PCI estimates
from the Central Northeast Atlantic (£52° to £58° N and £10° to £20° E). Indeed,
both our analysis and the plankton color index data suggest that phytoplankton
changes across the North Atlantic are spatially heterogeneous, and that estimating
a single aggregate trend for the entire region may be inappropriate. Our regional
analysis supports this hypothesis, and suggests that different dynamics may explain
phytoplankton variability in the eastern and western portions of the North Atlantic
region (Figure 4.2). However, a Chl decline in the Northwest Atlantic is indirectly
supported by the observed rapid expansion of the oligotrophic gyre there (McClain
et al., 2004; Polovina et al., 2008).

Globally, the direction of long term secular trends described here is consistent
with ocean general-circulation model (OGCM) projections of future changes in Chl
over similar time horizons. Although there is substantial variability among OGCM
projections, 15 of 18 published estimates report declining marine Chl or primary
production into the future (median time interval: 100 yr; time interval range: 10 to
2000 yr); (Beaulieu et al., 2013; Bopp et al., 2001; Boyd and Doney, 2002; Cermeno
et al., 2008; Cox et al., 2000; Henson et al., 2010; Hofmann et al., 2011; Olonscheck
et al., 2013; Steinacher et al., 2010; Taucher and Oschlies, 2011). These models do not
account for biological interactions, which may modify the Chl time trends (O’Connor
et al., 2009; Olonscheck et al., 2013; Taucher and Oschlies, 2011).

We conclude that upper ocean chlorophyll concentrations have declined over the
past century but that the absolute magnitude of this change remains uncertain (global

averages from local and regional models were both negative, but varied by a factor



74

of 7). The rates of change we report are also heterogeneous in space and time and
are overlaid by multi- decadal variability. Our analysis suggests that the direction of
upper ocean Chl change is robust (i.e. consistently declining, on average), but the
magnitude of changes is sensitive to the scale at which data are aggregated. A major
source of this uncertainty stems from the limited availability of Chl measurements in
many regions and years. This uncertainty and the fundamental importance of marine
phytoplankton should provide a powerful incentive to increase global observational

capabilities in order to more accurately resolve long-term phytoplankton change.
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Chapter 5

Oceanographic Drivers of Chlorophyll Change over the Past
Century

5.1 Abstract

There is mounting evidence that marine phytoplankton concentrations have been
changing globally over the past century, yet it is unclear what factors may be driving
these trends. Examination of contemporary satellite-derived ocean color data have
yielded insight into the factors that may be responsible for changes in phytoplankton
concentrations over shorter time periods (1978-1986 and 1997-2010), but analyses
over longer time scales are constrained by a lack of global time series. In this study,
we use the longest time series of chlorophyll measurements (a proxy for phytoplank-
ton concentration) currently in existence to address this issue. We analyze these
data along with time series of climate variability to determine the influence of eight
oceanographic variables on temporal chlorophyll change from 1890 to 2010. Statisti-
cal time series models based on generalized linear and additive models were used to
estimate changes in oceanographic variables and chlorophyll over time, and to test
for statistical relationships between them. This was based on 10° x 10° grid cells
containing sufficient data. Consistently strong correspondence was observed between
temporal changes in sea surface temperature (SST), vertical stratification, and wind
stress, with vertical stratification strongly influenced by the countervailing effects of
SST and wind. Overall, SST was the strongest single correlate of chlorophyll changes.
Increasing trends in SST and corresponding declines in chlorophyll were observed in
59% of cells, and SST was the strongest univariate driver of chlorophyll change in 26%
of cells. Rising SST's were found to be negatively related to chlorophyll over most of
the ocean, except at high latitudes (>60°), where the effects were positive. We also

observed a negative relationship between salinity on chlorophyll in coastal regions,

In review as: Boyce, D.G., M. Dowd, M. Lewis, and B. Worm. 2012. Oceanographic drivers of
global chlorophyll changes over the past century. Progress in Oceanography.
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likely due to river-borne nutrient inputs. The negative effect of rising temperature on
chlorophyll remained consistent after accounting for the effects of seasonal cycles, spa-
tial gradients, time trends, and climate oscillations. Our study provides new insight
into the effects of long-term and large-scale physical oceanographic change on phyto-
plankton concentrations, and is consistent with the theory of ocean warming reducing

the average concentration of global phytoplankton, particularly at lower latitudes.

5.2 Introduction

Macroecological changes in marine phytoplankton concentrations may influence cli-
mate patterns (Charlson et al., 1987; Murtugudde et al., 2002), elemental cycling
(Falkowski, 1998), ecosystem structure (Ryther, 1969; Ware and Thomson, 2005), and
fishery harvests (Chassot et al., 2010). Recently, the increased availability of publicly
available databases coupled with advances in statistical and computing capacity has
enabled improved assessment of the magnitude and nature of phytoplankton change
through space and time. Published analyses suggest that marine phytoplankton con-
centration is changing at regional and global scales, but the factors and mechanisms
driving these changes remain poorly explored and understood (Behrenfeld, 2011;
Boyce et al., 2013, 2010; Falkowski, 2012; Henson et al., 2010).

Long-term changes in marine phytoplankton abundance may be influenced by a
range of factors including changes in stratification (Behrenfeld et al., 2006; Polov-
ina et al., 2008), temperature (Boyce et al., 2010; O’Connor et al., 2009; Sommer
and Lengfellner, 2008), wind (Goes et al., 2005; Gregg and Conkright, 2002; Gregg
et al., 2003), ocean mixing (McGillicuddy et al., 2007; Oschlies and Garcon, 1998),
atmospheric nutrient deposition (Behrenfeld et al., 1996; Jickells, 1998), light avail-
ability (Montes-Hugo et al., 2009), ice concentration (Arrigo et al., 2012; Jacobs
et al., 2002), grazing pressure (Frank et al., 2005; Roman and McCarthy, 2010), and
climate variability (Boyce et al., 2010; Henson et al., 2010; Martinez et al., 2009).
The strength and importance of these factors as drivers of phytoplankton time trends
have generally been explored using short time series (<10 years), or empirical ex-
periments (O’Connor et al., 2009; Sommer and Lengfellner, 2008). For instance,
the relationship between increasing sea surface temperatures, enhanced stratification,

and phytoplankton has been variously explored in observational time series ranging
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from 5 to 12 years in length (Behrenfeld et al., 2006; Irwin and Finkel, 2009; Lozier
et al., 2011; McClain et al., 2004; Polovina et al., 2008), but only rarely over longer
time series (Boyce et al., 2010).

Analysis of time trends and drivers over these short intervals may be misleading,
since phytoplankton variability is strongly determined by transient climate fluctua-
tions (Behrenfeld et al., 2006; Martinez et al., 2009), which overly and may obscure
any secular changes (Boyce et al., 2010). Thus, it is important to use longer time
series in order to minimize the influence of inter-annual to multi-decadal climate fluc-
tuations on phytoplankton dynamics. Resolving how marine phytoplankton responds
to changing oceanographic conditions independent of transient climate variability is
an important component to understanding and managing change in marine ecosys-
tems.

In this study, we estimate global changes in eight physical oceanographic variables
and chlorophyll over the available observational record (1890-2010), and explore the
extent to which changes in physical variables may drive observed chlorophyll changes.
Further, we explore the effects of these oceanographic variables on chlorophyll in
relation to spatial, seasonal, inter-annual, and climate variability. Time trends in
oceanographic variables were estimated using linear and generalized linear models,
and trends in marine phytoplankton were estimated using multi-model ensemble in-
ference applied to a new publicly available database of chlorophyll measurements
collected from 1890 to 2010. All measurements used in this analysis were extracted

from publicly available sources (Table 5.1).

5.3 Methods

5.3.1 Data
Chlorophyll data

Measurements of chlorophyll concentration (Chl, mg m™3) were used as an indicator
for phytoplankton concentration. Chl is the most practical and extensively used proxy
to assess changes in phytoplankton at large spatial and temporal scales (Antoine
et al., 2005; Behrenfeld et al., 2006; Gregg and Conkright, 2002; Gregg et al., 2005;
Henson et al., 2010; Huot et al., 2007; Montes-Hugo et al., 2009; Raitsos et al., 2005;
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Reid et al., 1998). In this study, we use a new and publicly-available database of
integrated Chl values collected via shipboard sampling platforms from 1890 to 2010
(Boyce et al., 2012).

The database is only briefly described here; full details of the data sources, tem-
poral and geographic distributions, quality control and inter-calibration are given in
Boyce et al. (2012). It consists of measurements of ocean transparency (derived from
Secchi-depth measurements; Zp) and color (derived from the Forel-Ule color-matching
scale; FU), which were both calibrated against a large and comprehensive database
of intensively quality-controlled in situ Chl measurements derived from spectropho-
tometric or fluorometric analyses of seawater. All near-shore measurements (<20 m
water depth or <1 km from the nearest coastline) were removed from the database
on the assumption that these waters would likely contain significant concentrations of
other optically active constituents that confound the optical detection of phytoplank-
ton Chl. This database has been expanded and improved over a previous version
(used by Boyce et al., 2010). These improvements are fully described in Boyce et al.
(2012), and include the following changes:

1. The number of individual measurements and the temporal and spatial coverage
of the database have increased considerably, despite the use of more stringent

quality control methods.

2. Transparency values in the database were calibrated directly against a large
number of quality-controlled in situ Chl measurements (n=12,841); this is a
large increase over the number of matchups used to calibrate globally distributed
remotely sensed water-leaving radiance values from the Coastal Zone Color
Scanner (CZCS; n=60) or the Sea-viewing Wide Field-of-view Sensor (SeaWiF'S;
n=2, 853); (Evans and Gordon, 1994; O’Reilly et al., 2000), and ensures that

our calibration equations accurately represent in situ Chl concentrations.

3. A range of new statistical methods (i.e. spatial filters) were developed to iden-
tify outlying or implausible Chl measurements in the database, and to remove or
correct them. A range of Chl depth interpolation methods were also explored to

verify the assumption that the mean Chl over 20 m was the appropriate metric.
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4. Measurements in the database were subjected to a number of additional post-
calibration analyses testing quality, precision, and robustness. This included
testing the accuracy of the measurements against widely used remote sensing
estimates of Chl. These analyses indicated that the Chl values in this database
are strongly correlated with Chl from SeaWiFS (r=0.81; ranged major axis
slope=1) on log-log scales. The larger number of matchups and strong corre-
spondence with remote sensing measurements attest to the improved quality of

the integrated Chl database (see Boyce et al., 2012) for further details).

Previously undertaken sensitivity analyses (Boyce et al., 2013) suggested that Chl
time trends estimated from Forel-Ule ocean color measurements were inconsistent
with those derived from transparency-derived or in situ Chl measurements. Changes
in Forel-Ule ocean color determinations are insensitive to small changes in Chl ob-
served in oligotrophic (blue) waters (FU<2) where the optical properties of pure
water dominate, or in mesotrophic (green or brown) waters where other particles and
dissolved substances are significant (FU>10). The validity of these values could not
be confirmed, and to avoid any potential bias, we removed all FU-derived Chl values
prior to the analyses in this study. The resulting database used here contains 451,383
calibrated Chl values, is globally distributed, and spans over a century (1890 to 2010).

Physical oceanographic data

We examined the influence of eight variables that have been hypothesized to affect
long-term Chl trends: sea surface temperature (SST; °C; 1890-2010), wind stress (N
m?; 1890-2010), vertical stratification (dimensionless; 1890-2010), eddy kinetic energy
(KE; m? s7%; 1890-2010), ice cover (%; 1890-2010), cloud cover (dimensionless; 1890~
2010), surface salinity (dimensionless (psu); 1890-2010), and spatial temperature
gradients, (SST¢; °C km~';1890-2010); (Oschlies and Garcon, 1998), which indicate
frontal zones and warm- or cold-core eddies.

All physical oceanographic data were extracted from publicly available databases
(Table 5.1). Ice cover measurements were obtained from the MET Hadley Centre,

and were generated using a two-stage reduced space optimal interpolation analysis

Lwww.metoffice.gov.uk/climate-change/resources/hadley
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applied to digitized sea ice charts, passive microwave retrievals, and in situ measure-
ments (Rayner et al., 2003). Cloud cover data were generated from the Interna-
tional Comprehensive Ocean-Atmosphere Data Set (ICOADS version 2.5)?. Cloud
cover measurements are generated using a combination of ship observations, ocean
buoys, and other automated sampling platforms (Woodruff et al., 2011). Contrary
to the other oceanographic data used in this study, cloud cover measurements are
not predicted or interpolated fields, but are rather gridded averages. Ice and cloud
measurements were extracted on 1° x 1° and 2° x 2° global grids, respectively.

All remaining variables were extracted or calculated from the Simple Ocean Data
Assimilation model (SODA; Version 2.2.4)%, which uses available hydrographic profile
data, ocean station data, moored temperature and salinity time series, surface tem-
perature and salinity observations, and nighttime infrared satellite SST data (Carton
and Giese, 2008). SODA variables were obtained at a near-global (75° S to 90° N
latitude) resolution as 0.5° x 0.5° monthly and yearly values.

The vertical stratification anomaly was calculated from SODA profiles of salinity
and temperature as the difference between seawater density at the surface (depth of
6 m) and at a depth of 200 m (Behrenfeld et al., 2006). Interpolation was used to
obtain exact density values at 6 m and 200 m. Total kinetic energy (KE) values were
calculated as

KEc,m,y - (Uvi,c,m,y2 + ‘/i,c,m,yQ) ; (51)

N | —

where U, ¢, and V.., are the ith zonal and meridional geostrophic velocities
for cell ¢, month m, and year ¥, respectively (m s~1); (Patterson, 1985).

SST¢ was derived from the maximum rate of SST change between one grid cell
and the eight surrounding cells using the average maximum method (Burrough, P.
A., and McDonell, 1998). Average wind stress fields were calculated from the average
monthly zonal and meridional downward wind stress components (N m?).

All physical variables were interpolated over time using spline-based methods ap-
propriate for high-frequency variations (Akima, 1978). This was performed to obtain
daily values for each cell (0.25° for SODA, 1° for ice, and 2° for cloud) and year. This

method is analogous to a piecewise function comprised of a series of polynomials and

2www.icoads.noaa.gov/
3 d.ed
www.atmos.umd.edu/ ocean
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is commonly used to interpolate irregularly spaced bivariate data (Akima, 1978). Fol-
lowing this, physical variables were merged with the Chl database by location (0.25°
for SODA, 1° for ice, and 2° for cloud) and time (year and day).

Climate data

We extracted time series of several leading climate indices which have been hypoth-
esized or observed to be related to phytoplankton concentrations over inter-annual,
decadal, or multi-decadal timescales (Boyce et al., 2010; Martinez et al., 2009); (Table
5.1). Since we are interested in the influence of climate on long-term phytoplankton
change, we used only series which were available over time periods >100 years. In
the Pacific Ocean we extracted climate indices corresponding to the El Nifio South-
ern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO). For the Atlantic
Ocean we extracted the North Atlantic Oscillation (NAO) Index. For the Indian
Ocean we extracted the Indian Ocean Dipole (IOD) Index and for the Arctic Ocean
we extracted the Arctic Oscillation (AO) Index.

The ENSO index represents reconstructed SST anomalies across the eastern cen-
tral Pacific Ocean. The IOD is the normalized anomalous SST gradient between the
Western Equatorial Indian (50°E to70°E and 10°S to10°N) and the South Eastern
Equatorial Indian oceans (90°E to 110°E and 10°S to 0°N); (Saji et al., 1999). The
NAO represents the first principal component from a rotated principal components
analysis applied to monthly standardized pressure anomalies across the North Atlantic
(20° to 90°N); (Barnston and Livezey, 1987). The PDO is derived as the leading prin-
cipal component of monthly SST anomalies across the North Pacific Ocean (>20°N).
The AO represents sea level pressure anomalies across the Arctic and North Atlantic
oceans (>20°N). Over the available record, all climate series are stationary through
time. Following extraction, all series were standardized by normalizing to the max-
imum amplitude (range: -1 to 1) and were then merged to the database containing
the Chl and physical measurements by location (ocean region of relevance) and time
(year and month). For instance, since the PDO has effects centered on the North
Pacific Ocean, the PDO time series was merged to physical and Chl measurements

in the North Pacific region only.
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5.3.2 Analysis

Effect of physical oceanographic variables on long-term phytoplankton

trends

To examine the potential influence of physical oceanographic variables as drivers of
long-term phytoplankton change, we examined the correspondence between estimated
time trends in the physical variables and those of Chl at the same locations (10° x
10° cell) and over the same time intervals. It has been suggested that a continuous
Chl time series spanning at least 27 (Beaulieu et al., 2013) to 40 years (Henson
et al., 2010) is necessary to separate long-term trends from shorter-term climate-
driven fluctuations. Since we are interested in the effect of oceanographic drivers on
long-term Chl changes, we restricted our analysis to cells where the temporal range

of oceanographic driver and Chl trends spanned at least 35 years.

Estimating term trends in physical oceanographic variables

We estimated long-term changes in physical variables over the entire available time
period (1890 to 2010), and over the time period spanned by the Chl measurements
in each 5° x 5° and 10° x 10° cell, respectively. In both instances, changes in physical

oceanographic variables over time were estimated by the statistical model

n(wi) = Bo + Pryear; + Bamonth;, (5.2)

where ;are the individual observations, (3; is the rate of response change as a
function of time, [, is the rate of response change as a function of the month, and
Bp is the model intercept. 7 is the monotonic link function of the expected mean
response, ;. Because the physical variables possess different statistical properties,
we employed different statistical models to account for these differences (Table C.1).
For instance, since ice cover measurements are proportions, we estimated time trends
using generalized linear models (GLMs) with a binomial response distribution. For
all variables, we attempted to use the simplest available model, and confirmed that all
model assumptions were verified using residual diagnostic tests. Changes in physical
drivers were estimated as continuous linear and discrete (year-by-year) functions of

time.



84
Estimating chlorophyll trends

Changes in Chl through time were estimated using generalized additive models (GAMs)
within a multi-model inference framework (Burnham and Anderson, 2002). Because
this method has been described in detail previously (Boyce 2013), we briefly describe
only the salient aspects of the method here. The general form of the GAMs used to

estimate Chl changes in each 10° x 10° cell was

n(wi) = Bo+ Byearyear; + Brxri + fi(zei) + folg244), (5.3)

where ¢ are the individual observations, 7 is the monotonic link function of the
expected mean Chl concentration, u;, year;, x1, xs, x3, and x4 are the model covari-
ates, [y is the model intercept, and ( are parametric and f are functional effects
estimated from the data. The functional effects are continuous, smooth curves which
can more closely follow the response over increasing values of the covariate, and thus
accommodate a wide array of response functions ranging from linear to multi-modal
(Wood and Bretherton, 2006; Wood, 2004, 2003). The predictors (z’s) in the above
example may be spatial (i.e. longitude, latitude, bathymetry) or temporal (i.e. day
of the year, decade) variables that are believed to explain some Chl variability. All
ensemble models contained B¢, which is a parametric effect capturing the average
long-term rate of Chl change. For all models we assumed a gamma-distributed error
structure (u; ~ Gamma) and a log link (n(w;) ~ In(n;)).

Using this method, we were able to estimate the average rate of Chl change over
time while accounting for underlying aspects of Chl variability. Further, because the
influence of the model covariates on the mean response is through the logarithmic
link function such that 7 (Byear) = €| the estimated rate of Chl change over
time was back-calculated to be on a linear response scale (mg m— yr=!). All model
assumptions, including spatial and temporal dependence, were verified by analysis of
the model residuals. More details can be found in (Boyce et al., 2013); the theory
and technical aspects of GAMs are described in, for example (Hastie and Tibshirani,
1986; Walsh and Kleiber, 2001), while details and examples on their implementation
in an oceanographic context may found in, for example (Bigelow et al., 1999; Irwin

and Finkel, 2009; Polovina et al., 2008).
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The effects of physical drivers on temporal phytoplankton change

The influence of physical drivers on chlorophyll may occur at different temporal and
spatial scales, and could be related to spatial gradients, seasonal cycles, interannual
climate variability, or any processes responsible for long-term trends. Separating the
influence of physical drivers on Chl into these different scales of variability is a chal-
lenging but necessary step in understanding their effect on long-term Chl change. It
is worth noting that strong relationships between drivers and Chl may arise from, for
instance, the spatial coherence between them, rather than from a causal relationship.
While such approaches are common (Chassot et al., 2010, 2007; Ware and Thomson,
2005), they can potentially result in misinterpreting patterns of spatial coherence as
cause-and-effect relationships. Likewise, recent studies have highlighted the impor-
tance of correctly accounting for patterns of seasonality (Lozier et al., 2011) or climate
variability (Henson et al., 2010; Martinez et al., 2009) to avoid misinterpreting the
effects of physical drivers on phytoplankton.

We explored the effect of oceanographic variables on Chl before and after ac-
counting for different sources of variability. This was accomplished by generating
four different analogues of the physical and Chl databases: (1) raw data with no
variability accounted for, (2) spatial and seasonal variability accounted for, (%) spa-
tial, seasonal, and inter-annual trends accounted for, and (/) spatial, seasonal, and
inter-annual trends, and transient climate variability accounted for. This was accom-
plished by fitting statistical models to physical and Chl measurements in each 10°
x 10° degree cell, and extracting the model residuals. Following this procedure, the
model residuals are independent of the model covariates. This approach enables us
to attribute the relationships between oceanographic variables and Chl to spatial,
seasonal, long-term, or climate effects. For instance, this method allows us to bet-
ter quantify the effects of stratification on phytoplankton through seasonal (Lozier
et al., 2011), long-term (Boyce et al., 2010), and climate variability (Behrenfeld
et al., 2006) stratification effects.

To generate the database with spatial and seasonal variability accounted for

(database 2, described above), models containing a seasonal and spatial effect were
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fitted to measurements in each 10° x 10° cell as
wi = PBo+ Pamonth; + fi(Longitude,, Latitude;), (5.4)

where ; are the individual observations, u; is the predicted response, 5 is the
rate of response change as a function of the month, f; (Longitude;, Latitude;) is a
functional effect corresponding to the rate of response change as a function of loca-
tion, and fy is the model intercept. The residuals from the model are interpreted
as spatially independent and de-seasonalized analogues of the response variable. We
confirmed that this method was accounting for the seasonal cycle by plotting the
model residuals against the month of data collection and verifying that no patterns
were apparent. The spatial independence was also verified by calculating the spa-
tial correlogram of the model residuals. This approach is useful because it enables
the subsequent examination of the correspondence between physical variables and
phytoplankton while accounting for different sources of variability.

Expanding on this, we de-trended the physical or Chl time series (database 3, de-
scribed above), by adding Ssyear; to equation 4, where 33 corresponds to the rate of
response change over time. The rescaled residuals from the model are spatially inde-
pendent, de-seasonalized, and de-trended analogues of the response variable. Lastly,
the effects of leading climate oscillators on physical and Chl time series was accounted
for (case 4, above), by including fsyear;, and Syclimate; to equation 4, where (3, rep-
resents the change in the response as a function of the leading climate oscillator. The
rescaled residuals from the model are independent of spatial, seasonal, long-term,
temporal, and oscillatory climate variability.

Following this procedure, we examined the relationship between the physical vari-
ables and Chl with and without different sources of variability accounted for both
globally and at finer spatial scales. To quantify the nature and strength of the re-
lationships between the physical variables and Chl spatially, we estimated simple
ordinary least squares (OLS) linear univariate statistical models within each 10° x
10° cell as:

In(Chl), = po+ [1Driver;, (5.5)

where ;are the individual observations, In(Chl), is the In-Chl concentration, 3,
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is the model intercept, and S, is the rate of response change as a function of the
physical driver in question. This model was estimated within each cell, for each
physical variable, and for each analogue of the database. Using this approach we
quantified the direction, significance, and magnitude of the oceanographic effects on
Chl (1), as well as the proportion of variance explained by them (R?), both with, and
without different sources of variability accounted for. Normalizing transformations
were applied to physical covariates as required. All linear model assumptions were
verified for each individual model by visual examination of the model residuals.
Although linear relationships between physical variables and Chl are frequently
assumed, alternate functional forms may be present. To explore this possibility, we
estimated Chl as a non-monotonic function of each physical driver within each 10° x

10° cell using GAMs as
n (i) = Bo+ fidriver, (5.6)

where ; are the individual observations, 7 is the monotonic link function of the ex-
pected mean Chl concentration p;, fi is the function determining the non-monotonic
change in Chl as a function of the driver, and [, is the model intercept. Because
the physical variables possess different statistical properties, we employed different
statistical models to estimate changes over time (Table C.1). For all variables, we
attempted to use the simplest available model, and confirmed that all model as-
sumptions and residual diagnostic tests were verified. Changes through time were

estimated as continuous and discrete functions of time.

5.4 Results

5.4.1 Changes in Physical Variables over Time

Estimated changes in physical oceanographic drivers over the past century (1890
to 2010) revealed coherent spatial patterns of change among several variables. SST
increased over the majority of the ocean, particularly in the Atlantic and North Indian
oceans, and closer to coastlines in all oceans (Figure 5.1). These spatial patterns of
SST change appeared to broadly correspond to changes in stratification and wind
stress. Increases in SST tended to coincide with increasing stratification over most

of the ocean, and increases in wind stress appeared to have had a countervailing
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Table 5.2: Summary of linear model estimation of the factors influencing
phytoplankton time trend variability.

Variable Mean Mean SE % Cells increasing Upper 95% CI  Lower 95% CI
SST 0.004 0.007 72.0 74.0 70.0
EKE 0.004 0.007 72.0 74.0 70.0
MLD 0.002 0.004 66.0 68.0 64.0
Stratification -0.000 0.001 30.0 33.0 28.0
Wind 0.001 0.002 72.0 74.0 70.0
Salinity 0.003 0.004 86.0 88.0 84.0
Cloud 0.006 0.007 87.0 89.0 85.0
SSTG 0.000 0.000 59.0 61.0 56.0
Ice -0.005 0.014 19.0 22.0 16.0

effect (Figure 5.1). Spatial gradients in SST, here used as a proxy for thermal fronts,
were estimated to have increased over most of the global ocean, with the largest
increases observed in the open ocean gyres, and in the Southern Ocean (40° S to 70°
S). Estimated changes in KE revealed increasing eddy kinetic energy over most of
the ocean, particularly in the mid-latitudes (~20° to 40° N and S latitude). KE has
declined over large areas of the low-latitude ocean, especially in the Western Central
Pacific. Cloud cover is estimated to have increased over most of the ocean, except
for the Southern Ocean, where patches of decreasing cloud cover were observed. Ice
cover mostly declined across polar oceans, with some increase in parts of the Southern
Ocean. Salinity was estimated to have increased over most of the ocean with the
largest increases observed in the open ocean gyres of the Pacific Ocean. Global
average rates of change calculated from individual 5° x 5° cell estimates suggested
that SST, wind stress, salinity, SST, and cloud cover have increased since 1890, while
stratification and ice cover have decreased, on average (Table 5.2; see discussion for

explanation).

5.4.2 Effect of Oceanographic Drivers on Long-term Phytoplankton
Changes

Estimated corresponding long-term changes in physical oceanographic variables and
Chl within each 10° x 10° cell over identical time intervals yielded insight into the
influence of oceanographic variables on long-term Chl change. Increasing long-term

trends in SST, KE, and cloud cover and declining trends in Chl were observed in
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58.2%, 50.9%, and 63.9% of 10° x 10° cells, respectively, where sufficient data per-
mitted analysis (Figure 5.2). Long-term changes in stratification and wind did not
appear to be correlated to changing Chl. Many of the cells where SST has increased
and Chl has declined were located in low- and mid-latitude and coastal waters, and
cells where SST has increased and Chl has increased were located at high latitudes
and nearshore waters. The majority of the cells where cloud cover has increased and
Chl has declined appeared to be located in waters far from coasts. Model II ranged
major axis (RMA) regression analyses revealed negative relationships between esti-
mated changes in SST, stratification, and ice cover and changes in Chl, and positive

relationships between changes in wind stress and Chl, as well as ice cover and Chl

(Figure 5.2).

5.4.3 Effect of Physical Drivers on Phytoplankton

Examination of all available data suggested that SST, KE, and salinity are negatively
related to Chl, while SST¢ and Chl were positively related (Figure 5.3A). The rela-
tionship between stratification and Chl was negative over most of the stratification
range, but became positive as stratification levels increased (Figure 5.3A). Using this
exploratory approach, the strongest relationship was found between SST and Chl, and
was best approximated by a functional (i.e. non-linear) trend line. The nature of
most relationships was similar after accounting for seasonal, inter-annual, or climate
variability, except for wind and ice cover, which became more positive after seasonal
effects were accounted for (Figure C.1).

Relationships between physical variables and Chl aggregated globally represent
the net effect of specific regional relationships occurring throughout the global ocean
(Figure C.2). To better understand such regional relationships, Chl estimated as

a univariate log-linear function of each driver separately within each 10° x 10° cell

Figure 5.1 (preceding page): (A) Estimated linear rate of Chl change in each 5°
x 5° cell estimated for (A) SST, (B) stratification anomaly, (C) wind stress, (D) KE,
(E) SSTg, (F) salinity, (G) cloud cover, and (H) ice cover. All trends are estimated
from 1890 to 2010; model details are presented in Table C.1. Colors indicate the
average rate of change over the available time series. White cells indicate cells with
insufficient data.
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provided information regarding the spatial variability of the relationships observed
globally. Using this approach SST), stratification, and salinity were observed to have
negative impacts on, and to explain, a large proportion of the variability in Chl across
large areas of the oceans (Figure 5.3B). Wind also explained a large proportion of Chl
variability in many locations, and ice was a strong predictor of Chl at high latitudes
(>70° N and S). The observed spatial pattern in the effect of SST, stratification, and
wind on Chl was also apparent in this study; in waters where SST and stratification
effects were negative, wind effects tended to be negative. These relationships were also
manifest along a global latitudinal gradient, such that negative SST and stratification
effects, but positive wind effects on Chl were observed at mid- and low-latitude waters
(~40° S to ~40° N), and smaller but opposite effects were observed at high latitudes
(Figure 5.3C). Latitudinal gradients were not observed for the remaining variables.
Estimating Chl as a univariate linear function of each driver (n=8) in each in-
dividual 10° x 10° cell suggests that SST is the strongest single predictor of Chl
concentration globally (Figure 5.4). Prior to accounting for any sources of variability
in the drivers or Chl, SST explained the greatest proportion of the variability in Chl
in 25.5% of 10° x 10° cells where adequate data permitted analysis (n=337); (Figure
5.4C). Salinity, stratification, and wind were also strong drivers of Chl, and explained
the largest proportion of the variability in Chl in 18%, 11.6 %, and 10.7 % of cells
examined, respectively. Although ice cover was not a strong source of influence glob-

ally, it was an important determinant of Chl concentration at high latitudes. After

Figure 5.2 (preceding page): (A) Spatial patterns of estimated long-term changes
in physical oceanographic variables and Chl over the available record in each 10° x
10° cell. Yellow indicates cells where both the oceanographic variable and Chl have
declined through time, red where they both have increased, green where the oceano-
graphic variable has declined as Chl has increased, and blue where the variable has
increased and Chl has declined. White cells indicate cells with insufficient data.
(B) The proportions of cells where long-term changes in oceanographic variables and
Chl have been synchronous or non-synchronous are illustrated using the same color
representation as in A). The horizontal lines denote the 95% Wilson confidence in-
tervals. (C) Estimated long-term changes in oceanographic variables (z-axes) are
plotted against changes in Chk. Model II linear regression and spline regression lines
are plotted. For A, B, and C, only statistically significant long-term trends spanning
at least 35 years are used.
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accounting for the effects of spatial, seasonal, inter-annual, and climate variability in
both the drivers and Chl, SST remained the strongest single driver of Chl in 20.1%
of cells examined (n=334). Again, wind, stratification, and salinity also emerged as
strong univariate predictors of Chl, and were the strongest predictor in 12.6%, 12%,
and12 % of cells examined, respectively. After removing sources of variability SSTq
also emerged as a strong explanatory variable, and was the strongest driver in 9.7% of
cells. Accounting for spatial, seasonal, temporal, or climate variability did not greatly
influence the proportional representation of the drivers (Figure 5.4C), but the spatial
locations where the various effects were dominant did change. SST effects were also
statistically significant in the majority of the cells where data permitted analysis,
prior to accounting for seasonal effects (Figure 5.4D). Although salinity and ice cover
were strong drivers in many cells (Figure 5.4C), they were only statistically signifi-
cant explanatory variables in ~40% of cells prior to accounting for seasonal effects.
Alternately, while SSTs was a weak influence, it was statistically significant in ~60%
of cells prior to accounting for seasonal effects (Figure 5.4D). The proportion of vari-
ance explained by the strongest drivers was also generally reduced after accounting
for different sources of variability (Figure C.6). These findings were insensitive to the
model used or to the specification of Chl as a linear or non-monotonic function of the
physical variable. Prior to accounting for seasonal effects, Chl was found to vary as
a non-monotonic function of several oceanographic drivers; however, accounting for

seasonal influences resulted in linear relationships.

5.5 Discussion and Conclusions

Our results suggest that globally averaged values of SST, wind, salinity, cloud cover,
and SST¢g have increased from 1890 to 2010, while stratification and ice cover have
declined (Figure 5.1 and Table 5.2). The observed long-term warming trend is con-
sistent with previous estimates over similar timescales (Boyce et al., 2010; Levitus,
2000). Estimated increased wind stress and reduced stratification globally are consis-
tent with past estimates of wind and mixed layer depth (MLD) over similar timescales
(1958 to 2009 and 1955 to 2009, respectively). It is perhaps surprising, given the find-
ings of recent studies (Behrenfeld et al., 2006; Martinez et al., 2009; Polovina et al.,
2008), that when averaged globally, vertical stratification has declined as SST has
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increased over the past century. However, much of the reduction in global vertical
stratification is driven by large changes occurring at high latitudes, especially in the
Southern Hemisphere (<50° S), where wind stress has also increased. It appears that
the effects of increasing SST on stratification are outweighed by corresponding in-
creases in wind stress over large regions of the ocean, particularly at high latitudes.
This theory is consistent with analyses of long-term (Boyce et al., 2010) and contem-
porary (Montes-Hugo et al., 2009) time series, showing consistently increasing winds
in the Southern Ocean, and reduced stratification. The observed global increases in
cloud cover were similar to previous estimates covering the time period from 1948
to 2002, except at low latitudes (<20° N and S), where estimates of cloud cover are
uncertain (Bedacht et al., 2007). The estimated global long-term declines in ice cover
observed here are consistent with independent estimates (Post et al., 2013), some of
which suggest that sea ice declines have been exceeding model projections (Stroeve
et al., 2012), and may be accelerating (Perovich and Richter-Menge, 2009).

Within these average global trends, relationships between the location-specific
rates of long-term change for several oceanographic variables were observed. Glob-
ally, rates of long-term SST change were negatively related to changes in wind stress
(r=-0.43), and ice cover (r=-0.14), and positively related to stratification changes

(r=0.35). Generally, the strong relationships between changes in SST, stratification,

Figure 5.3 (preceding page): (A) All available space- and time-matched oceano-
graphic variables (z-axes), are plotted against Chl (y-axes). Colors depict the number
of observations per pixel. Dashed lines show the linear trend, and the dashed lines
show the non-linear (spline) trend fitted to the data. Variables have been transformed
to approximate the normal distribution where necessary. (B) Spatial distribution in
the univariate effects of oceanographic variables on Chl. blue denotes negative effects
of the driver on Chl and red denotes positive effects. The size of each circle depicts
the proportion of variance explained by the oceanographic variable (range: 0 to 1).
White areas contain insufficient data from analysis. (C) Latitudinal gradient in the
univariate effects of the oceanographic variables on Chl estimated on a 10° x 10° grid.
Points are the estimated effect of the variable on Chl within each 10° x 10° cell. The
shaded bars are the median effect values for each 10° latitude bin. Trend lines are
GAM estimates of the effects as weighted smooth functions of latitude; weightings
are the inverse of the individual estimate standard errors. Blue shaded regions are
the 95% confidence intervals for the trend lines.
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Figure 5.4: Strongest univariate drivers of chlorophyll.

(A and B) The oceanographic variables explaining the largest proportion of Chl vari-
ability within each 10° x 10° cell are plotted spatially. Colors depict the oceanographic
driver and the size of each circle depicts the proportion of Chl variance explained by
that oceanographic variable. This procedure was undertaken (A) using the raw data,
and (B) after accounting for spatial, seasonal, inter-annual, and climate variability.
(C and D) Shaded bars depict the proportion of 10° x 10° cells where (C) each oceano-
graphic variable was the strongest single predictor of Chl, and (D) the effect of each
oceanographic variable on Chl was statistically significant (P<0.05). For C and D,
only the cells where analysis was possible were used. Colors depict the variability
accounted for prior to the analysis, where dark blue is the raw data, and light blue is
the data after accounting for spatial, seasonal, inter-annual, and climate variability.
Vertical lines represent the 95% Wilson score confidence intervals for the proportions.
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and wind suggest increasing SST and wind stress have countervailing effects on ver-
tical stratification. Further analysis suggested that the positive correlation between
SST and stratification was greater at low- and mid-latitudes (~40° N and S). The
relationship between estimated changes in stratification and surface salinity were also
strongly related (r=-0.72).

Of the oceanographic variables examined, SST, stratification, and wind consis-
tently explained a large fraction of Chl variability (Figures 5.2 to 5.4), both before
and after accounting for spatial, seasonal, inter-annual, or climate variability (Figure
C.1). The strong spatial and/or latitudinal gradients in the effects of SST, stratifi-
cation, and wind observed here have also been observed previously, and have been
linked to large-scale temporal changes in Chl in the North Pacific Ocean (Venrick
et al., 1987), and globally (Behrenfeld et al., 2006; Boyce et al., 2010; Martinez
et al., 2009; Polovina et al., 2008). These effects are believed to be a function of the
countervailing effects of SST and wind on vertical stratification and mixing. Over
most of the ocean, rising SST generally leads to enhanced stratification and reduced
nutrient flux from deeper waters to phytoplankton in the euphotic zone, negatively
affecting their growth. These effects may be less important in nearshore waters where
land-based nutrients tend to dominate (Jickells, 1998; Peierls et al., 1991), or at high
latitudes, where waters are generally well-mixed. Increased wind at higher latitudes
may negatively influence phytoplankton by transporting them below their critical
depth (Sverdrup, 1953). Substantial evidence for this SST-induced mechanism has
emerged from analyses of the recent satellite record (Behrenfeld et al., 2006; Mc-
Clain et al., 2004; Polovina et al., 2008) and from climate models (Boyd and Doney,
2002; Sarmiento et al., 2004). Given the limited timescales of observation for these
studies, some of these relationships may reflect decadal climate variability (Beaulieu
et al., 2013; Henson et al., 2010) rather than reflecting sustained long-term trends.
Indeed, observed SST-induced expansions of the major oligotrophic gyres since 1997
(McClain et al., 2004; Polovina et al., 2008) were not observed over multi-decadal
time scales (Antoine et al., 2005). Another analysis of observational data from the
North Atlantic subtropical gyre also found that stratification was strongly linked to
primary production at seasonal timescales, but only weakly on a year-to-year basis

(Lozier et al., 2011). Such findings emphasize the need for long-term time series and
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the use of appropriate analysis methods to more accurately account for the influence
of seasonal and climate variability.

Our findings also suggest that rising SSTs negatively affect Chl via stratification
through seasonal and climate forcing, but more weakly through long-term forcing. If
SST and wind are influencing Chl indirectly by modifying vertical stratification, it
would be expected that stratification would be the strongest correlate of Chl. Al-
though stratification is a strong influence, SST consistently explains the largest pro-
portion of Chl variability. Further, while long-term SST increases and Chl declines
were observed in 58.2% of 10x10 cells, similar changes were not observed for changes
in stratification or wind (Figure 5.2). This suggests that although there is a negative
effect of increasing SST on Chl via increasing vertical stratification, other mechanisms
may also be important. For example, theory and experimentation have shown that
rising SST also speeds up heterotrophic metabolic processes faster than autotrophic
ones, thus altering ecosystem dynamics (Klauschies et al., 2012). It is still uncertain if
this will benefit marine phytoplankton by increasing nutrient recycling (Taucher and
Oschlies, 2011), or negatively affect them by increasing grazing pressure (O’Connor
et al., 2009).

Surface salinity also emerged as a strong correlate of Chl in many regions (Fig-
ure 5.4), and salinity effects were observed to co-vary with the effects of SST and
stratification, likely because both SST and salinity determine the strength of vertical
stratification. It is probable that part of the observed salinity effects are mediated by
the stratification effects on Chl. For instance, surface water freshening can strengthen
stratification and limit nutrient exchange (Ji et al., 2008). However, after accounting
for any stratification effects on Chl, salinity continued to explain a large fraction of
Chl variability (Figure C.6). Many of the locations where salinity effects were strong
were located near major river outflows (Figure 5.4A), where salinity gradients are
high and possibly co-vary with terrestrial nutrient inputs via river transport. This
hypothesis is supported by the observed large negative effects of increasing salinity
on Chl in regions close to major river outflows (Figure 5.3). In areas of river outflow,
large river inputs would lower salinity, while providing terrestrial nutrient inputs, and
hence increased Chl. After accounting for seasonal influences, the spatial pattern of

these salinity effects appeared weaker, but persistent (Figure 5.4B).
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At high latitudes, ice cover explained a large fraction of Chl variability through
spatial, seasonal, and climate effects (Figure 5.4), but only weakly through long-term
temporal forcing (Figure 5.2). Ice cover may influence phytoplankton through a range
of pathways. Declining sea-ice exposes the ocean to the influence of wind, which in
turn influences vertical stratification, nutrient supply, and light availability (Mitchell
and Holm-Hansen, 1990; Montes-Hugo et al., 2009). However, melting sea-ice also
freshens the upper ocean and has been linked with increased stratification, reduced
nutrient availability and negative effects on phytoplankton (Lee et al., 2012). Ice-
induced freshening of the upper oceans may also lead to reduced phytoplankton cell
sizes, which would reduce the transfer efficiency to higher trophic levels (Li et al.,
2009). Declining ice also reduces surface albedo which may lead to increased ocean
warming, thus leading to further reductions in ice cover (positive feedback). Lastly,
large phytoplankton concentrations have recently been observed beneath substantial
ice cover (0.5 to 1.8 m thickness) in the Arctic Ocean (Arrigo et al., 2012). These
under-ice phytoplankton blooms are likely widespread (Fortier et al., 2002; Mundy
et al., 2009; Strass and Niithig, 1996), and strongly depend on the amount of light
transmitted through the overlying ice. As such, the nature and thickness of overlying
ice are likely important determinants of phytoplankton concentration in addition to
ice cover (Arrigo et al., 2012).

We observed weak positive effects of increasing SST¢, a proxy for thermal fronts,
on Chl across most of the ocean (Figure 5.4), and the effect of long-term SSTg
change on Chl was equivocal (Figure 5.2). Previous work has suggested that ocean
fronts may be associated with enhanced primary production, likely via entrainment or
advection of nutrients and phytoplankton from adjacent, higher productivity waters
(Hyrenbach et al., 2000; Polovina et al., 2001). Turtles and predatory fish also use
fronts as migration routes (Polovina et al., 2001, 2000), and additional species may be
attracted by elevated primary production and habitat heterogeneity (Etnoyer et al.,
2004; Haney, 1986; Sund et al., 1981). It is possible that this elevated concentration of
consumers regulates phytoplankton via grazing pressure. Further, some fronts, such
as the transition zone chlorophyll front (TZCF), are associated with weak downwelling
of phytoplankton to depths of over 50 m (Polovina et al., 2001), which is significantly
below the maximum depth sampled by the chlorophyll database used here (20 m).
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The observed relationships between most oceanographic variables and Chl became
progressively weaker after accounting for different sources of variability (i.e. equation
4). Despite this, the overall relationships between the variables and Chl remained
broadly consistent both at local scales and globally (Figure C.1). This suggests that
the effects of changing oceanographic variables are not solely due to a single source
of variability such as spatial gradients or seasonal cycle.

Most oceanographic variables used in this analysis were estimated from process-
based models applied to empirical observations (Carton and Giese, 2008), and thus
contain both measurement and model error. While the use of such analyses is com-
mon and necessary to provide more complete oceanographic databases, the error in-
troduced in the estimation process may influence subsequent analyses. Further, while
the process-based component of this method estimates oceanographic conditions for
many dates and locations where empirical observations are lacking, the final oceano-
graphic database remains incomplete. For example, stratification measurements were
lacking for many times and locations where Chl measurements were available. Al-
though we made efforts to account for these missing observations, it is still possible
that missing physical measurements may influence the analyses.

Because long-term, large-scale time series of zooplankton, fish, or other organisms
are scarce, in this study we focused on the effect of oceanographic variables in driving
Chl change. However, numerous studies have found that "top-down’ effects can also
be strong drivers of Chl (Frank et al., 2005). Consumers can influence phytoplankton
both directly through grazing, or indirectly by modifying grazing pressure (Frank
et al., 2005) or more subtly via ecosystem conditioning (Durham et al., 2009; Ro-
man and McCarthy, 2010). Such top-down effects on phytoplankton are potentially
important, but remain unexplored here.

The use of Chl as an indicator for phytoplankton biomass is long standing and
widespread, yet the C-to-Chl relationship is non-linear and subject to the influences
of light, nutrients, and temperature (Geider, 1987). Variation in the C:Chl ratio
often occurs in the context of ‘acclimation’ to changing conditions, e.g. over a sea-
sonal cycle. Although models to correct for acclimation exist, their applicability over
long time scales is constrained by data availability. However, with all other factors

held constant, increasing temperatures are expected to result in an overestimation
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of phytoplankton C biomass (reduced C:Chl ratio); (Eppley and Sloan, 1965; Epp-
ley, 1972). In practical terms this suggests that as temperatures increase, Chl may
be biased upward relative to phytoplankton C due to the temperature effect on the
C:Chl ratio. Thus, the negative relationships observed between SST and Chl likely
did not arise from the influence of SST on the C:Chl relationship; this effect, however,
depends on the constancy of other influential variables such as light and nutrients.

The effects of the oceanographic variables on phytoplankton may be more com-
plex than the simple univariate linear models used here permit. For instance, there
is evidence that the phytoplankton response to turbulence may also depend on wind
strength and direction (McGillicuddy et al., 2007), and the response to ice cover may
also depend on the type and thickness of ice (Arrigo et al., 2012). Additionally, since
the response of phytoplankton to oceanographic change is generally rapid (Taylor
et al., 2002), we did not explore any lagged relationships in our analysis. However,
due to the potential for complex and interactive effects of oceanographic change on
phytoplankton, it is possible that lagging effects may be present. Complex interac-
tions between oceanographic drivers and lagged effects could not be fully explored in
our analysis due to the very large number of models that would need to be fitted (364
10° cells x 9! full models per cell=1.3 x 107 models).

We conclude that SST is a predominant variable that explains a large proportion
of the variability in chlorophyll concentrations across the global oceans. We observed
consistent negative effects of SST on Chl via seasonal, inter-annual, and climate forc-
ing. These negative effects were strongest at mid- and low-latitudes and tended to be
weaker and slightly positive at higher latitudes. Over most of the ocean, increasing
SSTs lead to increased vertical stratification, thus reducing deep mixing and the sup-
ply of nutrients to phytoplankton in near surface waters, negatively influencing them
(Behrenfeld et al., 2006; Boyce et al., 2010; Martinez et al., 2009; Polovina et al.,
2008). Our results support this mechanism, but the weak coupling between long-
term stratification and Chl changes suggests that SST may be influencing long-term
Chl trends through additional pathways. It is likely that rising ocean temperatures
will also influence phytoplankton, and consumer growth rates. It is, however unclear
if this effect will positively (Taucher and Oschlies, 2011) or negatively (O’Connor
et al., 2009; Olonscheck et al., 2013) influence phytoplankton. It is also likely that
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rising SSTs will reduce phytoplankton size structure (Li et al., 2009; Moran, 2010;
Polovina and Woodworth, 2012) and alter phytoplankton seasonal cycles (Edwards,
2004), which may modify trophic structure and control. Lastly, rising SSTs may al-
ter the distribution and abundance of consumers, leading to altered grazing pressure
(Atkinson et al., 2004; Frank et al., 2005), and possible effects on phytoplankton via
ecosystem conditioning (Durham et al., 2009; Roman and McCarthy, 2010; Smetacek,
2008). Our present analysis identifies rising sea surface temperatures as a strong cor-
relate of observed phytoplankton declines over the past century, but does not resolve
the multifarious pathways by which changing temperatures influence phytoplankton.
Resolving the various responses of marine phytoplankton to ocean warming will be
increasingly important, given that average sea surface temperatures are predicted to

increase between 1 and 6° C by 2100 (I.P.C.C., 2007; Rosenzweig et al., 2008).
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Chapter 6

Effects of Sea Surface Warming on Marine Plankton

6.1 Abstract

Global warming affects communities through many different pathways. Here, we
implement results from global circulation models in a mesocosm experiment to de-
termine the direct and indirect effects of ocean warming on marine phytoplankton.
Our analysis reveals nutrients as a key factor controlling phytoplankton response to
warming. In nutrient-limited ecosystems warming had positive direct effects on phy-
toplankton biomass, but these were overcompensated by the negative indirect effects
via increasing nutrient limitation. In nutrient-replete ecosystems warming had neg-
ative effects on phytoplankton biomass via increased zooplankton grazing rates. We
conclude that the negative effects of warming on nutrient availability and trophic
interactions determine the overall response of phytoplankton biomass to sea surface
warming, overriding direct positive effects. Effects on primary productivity were
equivocal, however, likely due to more rapid turnover and nutrient recycling under
warm conditions. Our results provide a mechanistic basis for improving predictive

models and understanding global change in marine ecosystems.

6.2 Introduction

Marine phytoplankton contribute approximately half of the global primary produc-
tion, form the basis of marine food webs, and strongly influence biogeochemical pro-
cesses in the ocean (Field et al., 1998). Recently, there has been growing evidence that
ocean warming is negatively affecting global phytoplankton biomass and productivity.
Despite counter-examples showing increasing primary productivity in some regions
(Chavez et al., 2011), observations, experiments and physical models suggest that at

large scales, average phytoplankton biomass will decline as the oceans continue to

In review as: Lewandowska, A.M. Boyce, D.G. Hofmann,M. Matthiessen, B., Sommer,U., Worm,
B. 2013. Effects of sea surface warming on marine plankton. Ecology Letters.
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warm (Behrenfeld et al., 2006; Boyce et al., 2010; Henson et al., 2010; Steinacher
et al., 2010; Sommer et al., 2012). At least two mechanisms drive this trend: a
physically-mediated effect of upper-ocean warming on vertical mixing and nutrient
supply, and a biologically mediated-effect on plankton metabolic rates.

The physically-mediated effect of temperature on phytoplankton is associated with
enhanced vertical stratification, reduced mixed layer depth (MLD), and consequently
reduced nutrient flux into the upper oceans (Behrenfeld et al., 2006; Doney, 2006;
Boyce et al., 2010). This mechanism is believed to explain observed spatial expansion
of the oligotrophic gyres of the ocean (Polovina et al., 2008), and reduced phyto-
plankton production in the Eastern Central Pacific during El Nino years (Behren-
feld2006). In a global model simulation progressive warming induced a shoaling of
MLD, reduced vertical mixing, and weakening of deep-water circulation. This led to
a projected 50% decline in average global chlorophyll a concentration from the year
2000-2200 (Hofmann et al., 2011).

The biologically-mediated effect of temperature on phytoplankton is driven by a
growing imbalance between photosynthesis and respiration rates as temperature in-
creases. Heterotrophic processes are more sensitive to temperature than autotrophic
ones, leading to higher grazing rates by zooplankton and consequent reduction of
phytoplankton biomass under warmer conditions (Sommer and Lengfellner, 2008;
O’Connor et al., 2009). This mechanism may be partly offset by faster nutrient recy-
cling by bacteria, which increases phytoplankton productivity (Taucher and Oschlies,
2011).

It is presently unclear how these two mechanisms interact, and what the cumula-
tive effects on marine phytoplankton biomass and productivity will be. Here we com-
bine global model simulations and mesocosm experiments to examine the strength
and possible interactions between both physically-, and biologically-mediated effects
of warming on a marine plankton community. Experimental treatments were es-
tablished to mimic physical ocean conditions under continued global warming, as

projected by a published ocean general circulation model (POTSMOM-C).
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6.3 Methods

6.3.1 General Circulation Model

We employed a coarse-resolution ocean general circulation model (OGCM) which
includes a state-of-the-art model of the ocean carbon cycle and marine ecosystem.
While the former derives from an improved version of the Modular Ocean Model
version 3.1 (Hofmann and Maqueda, 2006) the latter follows the parametrization of
Six and Maier-Reimer (Six, 1996) utilizing a fixed elementary Redfield ratio between
carbon, nitrogen, and phosphate. The model was extended to account for the effects
of mineral ballast on the vertical export of organic matter (Hofmann et al., 2011).
The horizontal resolution was 3.75° x 3.75° while the water column was sub-divided
into 24 vertical layers, increasing in thickness with depth. Primary production was
assumed to be constrained to the four uppermost layers with a uniform thickness of
25 m. In the steady state the model exports about 8.6 Pg of POC across the 100 m
horizon into the deep ocean while an atmospheric CO, partial pressure of 282 atm is
established.

The atmospheric forcing of the ocean is provided by the climatological NCEP /NCAR-
reanalysis database (Kalnay, 1996). In order to consider the transient effects of
anthropogenic global warming between years 1800 and 2100 in our simulations, we
have utilized the atmospheric anomalies of surface temperature, precipitation and rel-
ative humidity from a former model run of the coupled Earth climate system model
CLIMBER-3 (Kuhlbrodt et al., 2009), as forced by an IPCCs A1FI emissions scenario
(Nakicenovic and Swart, 2000). The procedure is described in detail by Hofmann
(Hofmann et al., 2011).

6.3.2 Experiment

We simultaneously filled twelve mesocosms (1500 1 volume, 1 m depth) with sea wa-
ter containing natural plankton communities from the Baltic Sea. Mesocosms were
placed in temperature-controlled climate chambers. Mesozooplankton dominated by
copepods were obtained from net catches (200 pm mesh) and added to each meso-
cosm in natural concentrations of 6 ind. 17!. Computer-controlled light conditions

mimicked daily and seasonal irradiance patterns calculated from astronomic equations
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for above-cloud irradiance (Brock 1981), light reduction by clouds and attenuation
coefficient typical for Baltic Sea waters. Six mesocosms were cooled by 3 °C and
six were warmed by 3 °C above ambient sea temperatures to simulate a total 6 °C
temperature gradient. Nitrate (NaNOj), phosphate (KHyPOy) and silicate (NayO3Si)
were added every third day to simulate projected changes in nutrient lux. We ran
the experiment over five weeks from 16 May to 18 June 2012 with six nutrient treat-
ments: 100% (control, no nutrients added), 106%, 112%, 119%, 126%, and 134% of
total nitrogen (TN).

Water temperature, pH, salinity and fluorescence were measured daily. Meso-
cosms were sampled three times per week for bacteria, phytoplankton, heterotrophic
nanoflagellates (HNF), chlorophyll, TN, total phosphorous (TP), particulate organic
carbon, nitrogen, and phosphorous (POC, PON, POP) and dissolved inorganic nu-
trients (NOy~ and NO3~, NH,*, PO,?~, SiO4*7). Zooplankton, primary production
and respiration were measured weekly. Bacteria and phytoplankton <5 pm cell size
were counted using a flow cytometer (FACScalibur, Becton Dickinson), larger phy-
toplankton and microzooplankton were fixed with Lugol’s iodine and counted after
Utermohl (1958), using an inverted microscope. Biomass contribution of different
phytoplankton and microzooplankton species were estimated from carbon content
(Stoecker, 1989; Menden-Deuer and Lessard, 2000) after approximation of cell biovol-
umes to geometric standards (Hillebrand, 1999). Copepods were identified to genus
level and counted with a binocular microscope. HNF were fixed with formaldehyde
(2% final solution), stained by DAPT (1 pg 17! final concentration) and counted using
a fluorescence microscope. For estimation of primary production and community res-
piration rates, samples (100 ml) were incubated inside the mesocosms at mid depth
(light bottles) or in closed containers inside the climate chambers (dark bottles) for 24

h. Subsequently, concentrations of dissolved oxygen were measured (Hansen, 1999).

6.3.3 Statistical Analyses

To quantitatively explore the linear relationships between temperature or nutrients
and the plankton community a multivariate principal component analysis (PCA) was
performed (Rao, 1964). The PCA analysis was estimated from the correlation matrix,

so that the relative strength of effects could be better interpreted.
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To test the effects of experimental treatments on individual variables (fluorescence,
phytoplankton biomass etc.), we used generalized least squares (GLS) models with
temperature and nutrients, as well as their interaction, as covariates. GLS models
were selected in order to account for time dependence of the response variable within

each mesocosm. Models were fit to the data according to

y=XB+ €

where y is the response vector, X is a matrix of model covariates, f are the model
parameters estimated by maximum likelihood, and ¢ are the model errors which are

specified as,
e~ N(0,9)

where 0 is the mean and ¢ is the error-covariance matrix. To account for autocor-
relation, the covariance parameters of § were assumed to follow a time-dependent
autoregressive process (AR1). All ARI parameters were estimated from the raw data
a priori to model fitting. All response variables were checked for normality and trans-
formed prior to model fitting where required. GLS model assumptions were verified
by examination of the residuals. For each dependent variable, the best-fit model was
selected using Akaike’s Information Criterion (AIC) which takes into account both

goodness of fit and model complexity.

6.4 Results and Discussion

6.4.1 Model Simulation.

We ran the POTSMOM-C model under the IPCC SRES A1F1 scenario. This business-
as-usual scenario assumes continuing exponential increase in global carbon emissions
until the year 2100 (for details see methods section), and approximates current trends
in emission growth. Because our experiment was conducted using a North Atlantic
(Kiel Bay, Baltic Sea) plankton community we simulated changes in average sea sur-
face temperature (SST, Figure 6.1A), as well as average annual nutrient fluxes (Figure
6.1B) across the North Atlantic (0-60° N), for the years 1800, 2000, and 2100. Aver-
age SS'T there increased from 23.7 °C in 1800 to 24.6 °C in 2000, and was projected to
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reach 29.8 °C in 2100 (Figure 6.1). Average dissolved inorganic nitrogen (DIN) flux
into the North Atlantic surface layer (0-100 m) was 0.193 mol m~—2 yr~—!in 1800. With
increasing SST and stratification this average annual flux of DIN diminished by 13%
until the year 2000 (0.168 mol m~2 yr~1), and by 44% until 2100 (0.108 mol m~2 yr—1,
Figure 6.1B). In relative terms, this DIN flux equates to a renewal of ~12% of the
total nitrogen pool per month (TN=dissolved plus particulate nitrogen) in 1800 and
2000, and 10% in 2100. These values varied by region: total DIN flux into the surface
layer can be as high as 30-40% of TN per month in some upwelling and coastal regions
(Figure 6.1B). Model-simulated SST and nutrient trends in the North Atlantic were
similar to those in other oceans, with the exception of polar seas, which showed very

large, and possibly unrealistic, projected temperature increases by 2100 (Figure 6.1).

6.4.2 Mesocosm Experiment

Our mesocosm experiment was initiated during the period of seasonal thermal strati-
fication during summer 2012. Initial conditions were typical for the temperate North
Atlantic summer (T=15 °C, low dissolved nutrient concentrations, dominance by
small-sized flagellates and copepods, see Appendices). Experimental temperature
and nutrient treatments covered the range of model outcomes from 1800-2100, i.e. a
temperature range of 6 °C (6 treatments were cooled 3 °C below and 6 treatments
were warmed 3 °C above ambient temperature), and a monthly enrichment flux of
DIN ranging between 0-34% of the TN pool. Other macronutrients (phosphate, sil-
icate) were added in proportions 16N:1P:115i, as they would during vertical mixing
events in the ocean.

Results suggest that the net response of marine phytoplankton to ocean warm-
ing was mainly driven by temperature-driven changes in nutrient availability, rather
than temperature per se. Principal component analysis (PCA) was used to explore
multivariate response of the community to experimental treatments (Figure 6.2).
This analysis suggested that nutrient supply was linked to changes in fluorescence,
chlorophyll @ concentration, POC, gross primary production (GPP) and community
respiration. In contrast, changes in the abundance of consumers were more strongly
related to temperature, but in opposite direction: copepods increased with warming,

while ciliates and HNF were favored by cool conditions (Figure 6.2). Combined effects
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Figure 6.1: Ocean general circulation model.

(A) Absolute annual mean temperature changes projected from 1800-2000, and (B)
from 1800 to 2100. Color bar indicates temperature increase in °C. (C) Relative
changes in dissolved nitrogen flux into the euphotic zone 1800-2000, and (D) 1800-
2100. Color bar indicates nitrogen flux increases (red) or decreases (blue) in percent,
relative to the baseline year. Results from this model for the North Atlantic (0-60°N)
were used to parameterize mesocosm experiments simulating future ocean conditions.
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Figure 6.2: Principal component analysis of the experimental plankton
community.

Positioning of a dependent variable close to colored regions indicates positive ef-
fects of experimental warming (red), cooling (blue) or nutrient enrichment (green).
POC=Particulate organic carbon, GPP=Gross primary production, NPP=Net pri-
mary production, HNF=Heterotrophic nanoflagellates, Chl=Chlorophyll.
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of nutrients and temperature were observed on phytoplankton biomass, and bacteria
abundance.

Over the course of the experiment we observed an increase in phytoplankton
biomass and a subsequent bloom, especially in treatments with a positive nutrient
flux (Figure 6.3A, B). Maximum bloom biomass was nutrient-dependent, with a larger
peak at higher nutrient supply. Generalized least squares (GLS) analysis accounting
for temporal dependence of the individual time series showed a significant positive ef-
fect of nutrients on phytoplankton biomass, fluorescence, chlorophyll a concentration,
and POC (Figure 6.2; Table 6.1). Temperature increase also had a positive effect on
phytoplankton biomass. The timing of the bloom was temperature dependent, with
more rapid development and an earlier peak in warm treatments.

Net primary production (NPP) followed the trajectory of phytoplankton biomass
(Figure 6.3A, B). However, no statistically significant changes in NPP were observed
in response to changes in temperature or nutrient supply (Table 6.1). Community
respiration declined over the experimental period, (Figure 6.3) but trended higher in
the warm treatments (non-significant trend, P=0.056). Both respiration and gross
primary production (GPP) increased significantly with nutrient supply (Table 6.1).

Copepod abundance also increased over the course of the experiment (Figure 6.3A,
B), due to new production of copepod nauplii larvae which rapidly developed into
copepodites. This growth was accelerated in warm mesocosms (Figure 6.3B), and
likely resulted in periodically increased grazing pressure there. Ciliates, in contrast,
trended downwards over the course of the experiment (Figure 6.3A, B), and their
abundances were strongly negatively correlated with copepods (model II major axis
regression: r=-0.21, 2-tailed P < 0.001). This observation suggests copepods feeding
heavily on ciliates, and less so on phytoplankton, which showed a positive correlation
with copepod abundance (model IT major axis: r=0.18, 2-tailed P=0.001). In addition
to the effects of temperature on plankton abundance and biomass, temperature also
increased temporal variability in most plankton groups (Figure 6.3A, B), significantly
so for phytoplankton biomass, copepods, ciliates, and HNF (ANOVA, P < 0.05, see
Appendices for details).
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Figure 6.3: Time trends and responses of plankton community to changes in
temperature and nutrient supply.

(A-B) Interpolated time series for the main biological variables are plotted for each
mesocosm treatment (n=12). Blue trend lines depict cold mesocosm treatments and
red lines depict warm treatments. The shading of the trend lines identifies the meso-
cosm nutrient treatment level (% of total nitrogen). (C) Generalized least squares
model predicted trends in main biological variables as functions of temperature and
nutrient treatment levels. Shaded areas represent the 95% confidence limits about

the trend lines. Generalized least square statistical analysis results are reported in
6.1.
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6.4.3 Discussion

Our results contrast with experiments conducted with plankton of the same geo-
graphic origin during winter. These previous trials tracked the spring phytoplank-
ton bloom under identical warming treatment (up to 6 °C temperature range), but
produced opposite results (Sommer et al., 2012). There, warming caused a sharp
increase in copepod grazing pressure which depressed phytoplankton biomass (Fig-
ure 6.4). Nutrients were abundant at that time, due to strong vertical mixing in
the winter. Under such conditions (cold, mixed, nutrient-rich) warming increased
consumer grazing rates and top-down regulation of phytoplankton biomass. In con-
trast, our summer experiment indicated that phytoplankton biomass was nutrient
limited, and affected primarily by the rate of nutrient delivery via vertical mixing, as
simulated here using nutrient delivery rates projected by ocean circulation models.
Warming under such conditions (warm, stratified, nutrient-poor) had positive effects
on phytoplankton biomass (Table 6.1). There was no evidence for increased top-down
regulation of phytoplankton biomass, but some evidence of increased copepod grazing
on ciliates, with possible cascading effects on the microbial loop. Copepods often feed
on microzooplankton such as ciliates when large phytoplankton (20-200 pm) such as
diatoms are rare (Stibor, 2004). Ciliates in turn, prey on HNF which consume bacte-
ria in a food chain called the microbial loop (Azam et al., 1983). The countervailing
trajectories of these trophic groups over time (Figure 6.3A, B) are consistent with
a temperature-driven trophic cascade from copepods to bacteria, with ciliates and
HNF as intermediary links. Yet, the effects of temperature on the microbial loop
were statistically non-significant in the GLS analysis.

It has been suggested that the microbial loop might ‘speed up’ with warming,
thereby supporting photosynthesis due to the faster turnover of nutrients (Taucher
and Oschlies, 2011). However, the present results complicate this story: when cope-
pods feed mainly on ciliates instead of phytoplankton, HNF's are released from grazing
pressure by ciliates, and will reduce bacteria abundance. Consequently nutrients will
not necessarily be recycled faster, except if that function is supplied by HNF's rather
than by bacteria (Pane, 2003).

Our findings illustrate how sea surface warming affects marine plankton communi-

ties through both physical and biological mechanisms (Figure 6.4). We suggest these
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Figure 6.4: Trophic interactions in marine pelagic ecosystems in response to sea
surface warming.

(A) In well mixed, nutrient-rich waters phytoplankton is dominated by medium to
large diatoms, these are heavily grazed by copepods. (B) In stratified, nutrient lim-
ited waters small flagellates dominate phytoplankton biomass, copepods feed mainly
on ciliates, increasing the relative importance of the microbial loop for energy flows.
Warming (symbolized by gradient arrows) gradually elevates the thermocline, de-
creases nutrient supply and increases grazing pressure. This always leads to a reduc-
tion in phytoplankton biomass, with grazer effects on phytoplankton dominant in (A)
and nutrient effects dominant in (B).

marked seasonal differences in phytoplankton response to warming are explained pri-
marily by the large contrast in nutrient supply under well-mixed versus stratified con-
ditions. Physical mechanisms (related to stratification and nutrient supply) tend to
control phytoplankton biomass in ecosystems with low nutrient concentrations (Fig-
ure 6.3B), such as in the oligotrophic ocean or seasonally stratified shelf seas. Here
bottom-up regulation via nutrient supply primarily drives phytoplankton growth and
abundance. Low nutrient concentrations favor small phytoplankton, such as flagel-
lates (Edwards et al., 2012). Due to the lack of preferred food, such as large diatoms
(20-200 pm), copepods switch to feed on ciliates. Warming increases nutrient limita-
tion, which results in reduction of phytoplankton biomass. Interestingly, there were
no significant effects of warming on NPP in this experiment (Table 6.1), indicating
that observed changes in plankton biomass may not necessarily impact oceanic uptake
of carbon dioxide.

Biological mechanisms via increased grazing of phytoplankton may prevail in nu-

trient replete waters such as most coastal regions or seasonally mixed shelf seas (Figure
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6.4A). In such systems the presence of overwintering consumers strongly influences
phytoplankton response to warming as shown in mesocosm experiments with spring
plankton (Sommer et al., 2012). Here phytoplankton communities are dominated
by large diatoms (20-200 pm), which are the main food source for copepods. Warm-
ing acts primarily on plankton metabolic rates, specifically by creating a growing
imbalance between grazing and phytoplankton growth that progressively reduces the
standing stock of phytoplankton. This, in turn, may reduce food availability for higher
trophic levels. Perhaps one of the most important challenges for next-generation earth
system modeling is to suitably parameterize trophic interactions and their strengths.
Our results provide a mechanistic basis for improving these models and could lead to
improved predictions of the effects of climate change on oceanic biomass and produc-

tivity.
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Chapter 7

Patterns, Drivers and Ecosystem Consequences of Marine

Phytoplankton Change

7.1 Abstract

Marine phytoplankton production strongly influences the structure and functioning of
marine ecosystems, and establishes the biological carrying capacity of ocean ecosys-
tems. There is growing evidence that average global phytoplankton concentrations
have been changing over the past century, yet published trajectories of change are
divergent. Here, we review and analyze 115 published phytoplankton trend estimates
and time series to shed light on underlying patterns, drivers, and ecosystem con-
sequences of long-term change. Our study integrates satellite- and in situ-derived
chlorophyll measurements, Continuous Plankton Recorder measurements, and other
methods to estimate marine phytoplankton change. Generally, observed phytoplank-
ton concentrations tended to increase over time in nearshore waters and over more
recent time periods, and decline in the open oceans and over longer time periods.
Most published evidence suggests that changes in temperature and nutrient supply
rates as leading causes of phytoplankton change. In nearshore waters, altered coastal
runoff and increased nutrient loading are a dominant driver of change and may explain
widespread increases in phytoplankton observed there. In the open oceans increasing
surface temperatures are strengthening water column stratification, reducing nutri-
ent flux from deep waters and negatively influencing phytoplankton. Multiple lines of
evidence suggest that temporal phytoplankton change may in part be driven by bio-
logical processes, such as changes in grazing regimes and nutrient cycling, but these
effects are less well studied. Documented ecosystem consequences of observed phyto-
plankton changes include altered species composition and abundance across multiple

trophic levels, effects on fisheries yield, and changing patterns of export production.

In review as: Boyce, D. G., and B. Worm. 2010. Patterns, drivers and ecosystem consequences
of marine phytoplankton change. Global Change Biology.
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We conclude that there is broad empirical evidence for substantial changes in phy-
toplankton concentration over the past century, but that the overall magnitude of
these changes remains uncertain. Rising temperatures are predicted to drive further
declines in phytoplankton biomass and production over the coming century, with

consequences for ecosystem structure and function.

7.2 Introduction

Marine phytoplankton are a diverse group of pelagic photosynthetic microbes that
provide over 90% of marine primary production (Charpy-Roubaud and Sournia,
1990). Phytoplankton cells range over three orders of magnitude in size (~2 to 200
pm; Figure 7.1A) and are distributed across the uppermost layers of the global oceans.
Although marine phytoplankton account for only 0.2% of global photosynthetic car-
bon (C) biomass, they generate 46.2% of the primary production (Field et al., 1998).
To achieve this, the global standing stock of phytoplankton turns over every two to
six days on average (Behrenfeld and Falkowski, 1997). Due to this rapid turnover
(Figure 7.1A), phytoplankton growth often depletes available nutrient resources.
Over a century of scientific research has shown that marine phytoplankton play
an important role in determining the structure and functioning of marine ecosystems
(Chavez et al., 2003; Richardson and Schoeman, 2004), and can have large effects
on fisheries yields (Ryther, 1969; Chavez et al., 2003; Ware and Thomson, 2005;
Chassot et al., 2007, 2010), biogeochemical cycles (Redfield, 1958; Falkowski, 1998),
climate regulation (Charlson et al., 1987; Murtugudde et al., 2002), and weather
patterns (Gnanadesikan et al., 2010). Reflecting this scientific interest, the propor-
tion of peer-reviewed scientific studies of marine phytoplankton has increased over
time (7.1B). Also apparent is a shift from phytoplankton studies largely focussed on
ecological aspects to those aimed at understanding phytoplankton in the context of
biogeochemical cycles, climate, the economy, and global change (Figure 7.1C).
Despite these increased research efforts, one of the most fundamental questions
in phytoplankton research remains poorly resolved: How are marine phytoplankton
biomass concentrations changing over the long term? Answering this seemingly sim-
ple question is complicated by the fact that phytoplankton concentrations are highly

variable in space and time and are difficult to distinguish from other marine microbes
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and particles, making it difficult to obtain direct measurements of their C biomass.
As a consequence, the total concentration of the light-harvesting pigment chlorophyll
(Chl), which is present in all phytoplankton cells, has been used as a first-order proxy
of abundance and biomass. Despite documented variability in the phytoplankton
Chl-to-carbon ratio (Geider, 1987), Chl continues to be the most practical and ex-
tensively used proxy of phytoplankton C biomass over large spatial scales (Huot
et al., 2007; Henson et al., 2010). This review deals with large-scale changes in phy-
toplankton concentrations as indexed by changes in ocean color and chlorophyll. We
do not attempt to integrate the literature on phytoplankton cell counts and species
composition, and make only limited inferences on changes in primary production.
The natural variability of plankton coupled with the numerous challenges of quan-
titative sampling have contributed to a scarcity of consistent, long-term time series of
phytoplankton standing stock and may partially explain the variable and sometimes
conflicting estimates of change. Additionally, inter-annual phytoplankton changes are
small when referenced to natural variability, and any long-term trends are confounded
by transient seasonal or climate-driven variability (Behrenfeld et al., 2006; Martinez
et al., 2009; Boyce et al., 2010; Chavez et al., 2011). Thus, the detection of long-term
phytoplankton change requires accurate, consistently sampled measurements over a
sustained period of time; it has been estimated that time series of between 27 and
40 years are required to separate any long-term trends from short-term variation
(Henson et al., 2010; Beaulieu et al., 2013). Phytoplankton time series derived from
satellite measurements of ocean color are spatially comprehensive but are currently
decades too short (1978-1983 and 1997-present). Alternatively, phytoplankton series
derived from shipboard measurements are available beginning in the late 19th cen-
tury, but are unevenly distributed across time and space. Although several studies
have combined time series to estimate phytoplankton changes over broader scales,
the accuracy of the blended series can be difficult to empirically verify. In this study,
we synthesize all published marine phytoplankton time series to identify patterns of
phytoplankton change over the available observational record. We then review the
drivers of such long-term marine phytoplankton change and conclude by summarizing

some potential ecosystem consequences.
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Figure 7.1: Phytoplankton in the scientific literature.

(A) Dominant space and time scales of major groups of marine organisms.

2005 2010

The

average size range (z-awxis) is plotted as a function of the average doubling time (y-
azis) for various marine groups. Phytoplankton are represented in green. Figure was
adapted after (Murphy et al., 1988). (B) Temporal trends in the scaled proportion of
major marine species groups (1985-2010; see Appendices for details). (C) Temporal
trends in the scaled proportion of marine phytoplankton publications associated with
different key words. Taxonomic groups and fields of study are represented as colors
with the linear rates of change reported in brackets.
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7.3 DMaterials and methods

7.3.1 Patterns of Phytoplankton Change

We systematically searched scientific databases to identify peer-reviewed studies of
temporal marine phytoplankton change. Our literature search covered a minimum of
~22 million titles from over 16,500 peer-reviewed journals. We limited our search to
publications estimating phytoplankton change from chlorophyll concentrations (Chl;
mg m~3) collected from the upper ocean at multi-year scales (>5 years). Studies con-
ducted in fresh or brackish waters were not included. We extracted 115 phytoplank-
ton time series and estimates of temporal phytoplankton change from 24 publications
(Table 7.1).

To standardize measurements that were reported in different units, we extracted
the estimated total percentage change in phytoplankton over the available time span
as reported by the authors. In some cases data extraction software was used to
extract and calculate these rates'. Where we extracted the time-series from the
publication, we fitted linear time series models to the observations, and calculated
the total percentage change as the difference between the start and end of the fitted
time series referenced to the initial value. The percent change was then divided by
the length of the time series to yield the standardized percent change per year. To
spatially standardize the rates of change, we binned all estimates into 5° x 5° cells.
This resolution was selected because the majority of published phytoplankton time
series were estimated over spatial domains equal or greater than 5°.

Studies of temporal phytoplankton trends are often widely conflicting in both the
direction and magnitude of reported change (i.e. Wernand et al., 2013; Boyce et al.,
2010; Behrenfeld et al., 2006; Antoine et al., 2005; Gregg et al., 2005; Conkright and
Gregg, 2003; Falkowski and Wilson, 1992; Venrick et al., 1987). To better understand
the factors that may explain these differences, we estimated the phytoplankton trend

variability within each 5° x 5° cell as

cv, =1 (7.1)

g;

where C'V;is the coefficient of variation, p; is the mean trend (% yr™'), and o; is

Lwww.getdata-graph-digitizer.com
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Table 7.1: Published phytoplankton time series and associated metadata.

Reference Start year End year Span Platform Driver
Aebischer et al. 1990 1955 1987 32 CPR BU
Aksnes & Ohman, 2009 1949 2007 58 Secchi BU
Antoine et al. 2005 1979 2002 23 Satellite -
Behrenfeld et al. 2006 1997 2006 9 Satellite BU
Boyce et al. 2010 1899 2008 109 Blended BU
Boyce et al. 2013 1890 2010 120 Blended BU
Chavez et al. 2011 1989 2009 20 In situ -
Falkowski & Wilson, 1992 1900 1981 81 Secchi -
Frank et al. 2005 1962 2002 40 CPR TD
Goes et al. 2005 1997 2004 7 Satellite BU
Gregg & Conkright 2002 1979 2000 21 Blended -
Gregg et al. 2005 1998 2003 5 Satellite -
Head et al. 2010 1998 2006 8 CPR -
Karl et al. 2001 1969 1998 29 In situ BU
Lomas et al. 2010 1990 2007 17 In situ B
Mcquatters-gollop et al. 2007 1948 2003 55 CPR -
Mcquatters-gollop et al. 2011 1948 2008 60 CPR -
Montez-hugo et al. 2009 1978 2006 28 Satellite BU
Motoda et al. 1987 1949 1969 20 In situ B
Raitsos et al. 2005 1948 2002 54 CPR -
Shiomoto et al. 1997 1985 1994 9 In situ TD
Sugimoto & Tadokoro, 1998 1972 1993 21  In situ B
Suikkanen et al. 2007 1979 2003 24 In situ BU
Venrick et al. 1987 1968 1985 17 In situ BU
Wernand et al. 2013 1889 1999 110 Forel-Ule -

Note: BU=bottom-up, TD=top-down.
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the trend standard deviation within cell . To explore which factors are most related
to the variability of the trends, we estimated the trend variability as a function of

several covariates within a linear model as
In(CV), = Bo+ BiDriver; + ¢, (7.2)

where ;are the individual observations, In(CV), is the coeflicient of variation, 3,
is the model intercept, (5 is the rate of response change as a function of the driver
in question, and ¢; are the model errors. Using this approach, we quantitatively esti-
mated which factors may be most related to discrepancies among phytoplankton time
trend estimates. Based on this analysis, we calculated the mean rate of phytoplank-
ton change from the extracted trend estimates for each individual 5° x 5° cell while
accounting for the major factors influencing trend variation (see the Results and Dis-
cussion section for details). As a sensitivity check, we also calculated weighted mean

rates of phytoplankton change, but this did not influence the results.

7.4 Results and Discussion

7.4.1 Patterns of Phytoplankton Change

The median trend length of the extracted phytoplankton trends was 23 years, with
most estimates distributed over more recent years (Figure 7.2A). The majority of
the trends were derived using in situ sampling (36%) or satellite remote sensing
(32%); (Figure 7.2A, inset). The remaining trends were inferred from water column
transparency measurements (15%); (Secchi, 1886), Continuous Plankton Recorder
data (CPR; 13%), or semi-quantitative assessments of ocean color using the Forel-
Ule color scale (3%); (Forel, 1890). A large fraction (31%) of the phytoplankton
trend estimates were obtained by combining measurements from two or more of these
methods. Although remote sensing is considered as a single observational platform,
measurements from different satellite sensors collected over different time intervals are
often combined (Gregg and Conkright, 2002; Antoine et al., 2005; Montes-Hugo et al.,
2009). The extracted trend estimates were globally distributed, but concentrated in
the Northern Hemisphere and closer to the coasts, and were sparsely distributed at

high latitudes and in the Southern Hemisphere (Figure 7.2B).
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Figure 7.2: Time series data.

(A) Standardized number of phytoplankton trend estimates as a function of the trend
length. Inset depicts the number of phytoplankton time trends estimated using dif-
ferent observational methods. (B) Spatial distribution of all phytoplankton trend
estimates. Colors depict the number of trends per 5° x 5° cell. (C) Standardized phy-
toplankton change as a function of trend length. Long-term trends that transcend
scales of cyclical variability (35 years Beaulieu et al., 2013; Henson et al., 2010)
are shown as squares; all others are shown as triangles. Colors depict the source
publication. The horizontal dashed line denotes no change.
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The extracted estimates of change were observed to be larger and more variable
when estimated over shorter time intervals (Figure 7.2C). We also observed increased
variability in the Southern Hemisphere and in waters further from the coastlines
(Figure 7.3A). Linear model analyses suggested that the observed variability in the
estimates of temporal phytoplankton change was best explained by the number of
observational platforms used and the mean temporal span of the trend (Figure 7.3;
Table 7.2). The average rates of phytoplankton change within each 5° x 5° cell were
more variable when calculated from estimates obtained from different observational
platforms (Figure 7.3B), when the trend was estimated over more recent time periods
(Figure 7.3C), or when the average temporal span of the estimates was shorter (Fig-
ure 7.3D). The specific type of observational platform used for trend analysis did not
influence the variability. This suggests that the results of combining estimated rates
of phytoplankton change derived from multiple observational platforms or estimated
over different time intervals are highly variable and could be difficult to interpret.
Accordingly, we calculated average rates of phytoplankton change by combining ex-
tracted trend estimates which were available over comparable time intervals, and/or
using the same observational platforms. This allowed us to estimate time trends in

phytoplankton over four intervals:

1. 1890-1920 to 1980-2010, derived from ocean color, Secchi, and @n situ Chl

measurements (4 studies).
2. 1975 to 2000-2010, derived using remote sensing measurements (3 studies).

3. 1995-2005 to 2005-2010, derived using remote sensing measurements (3 stud-

ies).
4. 1945-1955 to 1990-2010, derived using CPR measurements (4 studies).

This procedure reduced the number of extracted trends used in the trend analysis,
but was necessary in order to minimize the influence of any biases on the average rates
of phytoplankton change. Notably, most estimates of phytoplankton change derived
from in situ measurements could not be incorporated into our analysis, because they

tended to be available over a highly variable range of spatial and temporal scales.
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Further, the long-term average rates of change were derived from multiple observa-
tional platforms; this was necessary in order to obtain average rates of change over
these time intervals.

Long-term rates of change suggested declining trends over much of the ocean,
except for the North Atlantic Ocean, where large increases were driven by possi-
bly inflated estimates (6.7% yr—!) derived from semi-quantitative ocean color mea-
surements (Wernand et al., 2013); (Figure 7.4A). Most estimates over this period
suggest declining trends across the North and Equatorial Pacific oceans. This con-
trasts greatly with satellite-derived estimates since the late 1970s, suggestive of large
phytoplankton increases, except in the Southern Ocean (Figure 7.4B). Again, these
trends were largely driven by one study, which reported large and coherent increases
in phytoplankton biomass since 1979 (Antoine et al., 2005). Satellite estimates since
1997 suggest spatially variable rates of change, with declines in open ocean regions
and increases in nearshore areas (Figure 7.4C). Lastly, estimates derived from CPR
measurements indicate large increases across the North Atlantic Ocean since ~1950
(Figure 7.4D).

Although the observed patterns of phytoplankton change were variable (Figure
7.4), some general patterns were identified. The rates of phytoplankton change were
of greater magnitude and more variable when estimated over shorter intervals (Figures
2C, 3D, and 4). This likely reflects transient climate variability, which may strongly
influence shorter-term (less than 27 to 35 years) trends (Behrenfeld et al., 2006;
Martinez et al., 2009; Boyce et al., 2010; Henson et al., 2010; Chavez et al., 2011;
Beaulieu et al., 2013). As such, some of the trends reported here (Figures 4B and 4C)
may reflect climate-driven phytoplankton variability rather than sustained long-term
changes. Phytoplankton trend estimates were observed to switch from negative to
positive through time and with proximity to the nearest coastline (Figure 7.5), similar
to the findings of other long-term studies (Boyce et al., 2010, 2013). Phytoplankton
declines in open oceans have also been observed previously (Gregg and Conkright,
2002; McClain et al., 2004; Polovina et al., 2008), and are predicted to continue into
the future (Polovina et al., 2011). Increases in nearshore waters have also been
observed previously, and are likely related to increasing coastal eutrophication there

(see environmental conditioning section below for further details). The direction of
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Figure 7.3: Influences on phytoplankton trend variability.

(A) The coefficient of variation for extracted trends within each 5° x 5° cell. Colors
depict the log-transformed coefficient of variation calculated within each cell using
all available phytoplankton trend estimates. (B-D) Strongest single predictors of
phytoplankton trend variability across all 5° x 5° cells. (B) The number of sampling
platforms present in the cell, (C) the average baseline year (initial year) for all trends
in the cell, and (D) the average length of time spanned by all trends in a cell. For
B-D, the points and trends lines are model-predicted phytoplankton trend variability
values (coefficient of variation), and the vertical lines (B) or shaded regions (C-D) are
the 95% confidence limits. All relationships are statistically significant (P<0.0001).
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Figure 7.4: Average phytoplankton change over different space and time scales.
Average rate of phytoplankton change from (A) 1890-1920 to 1980-2010, (B) 1975
to 2000-2010 derived using remote sensing measurements, (C) 1995-2005 to 2005-
2010 derived using remote sensing measurement, and (D) 1945-1955 to 1990-2010
derived using CPR measurements. Colors within the maps depict the average rate
of phytoplankton change within each 5° x 5° cell; white depicts no data. The plots
below each map are the distributions of the start (blue) and end (red) years for all
trends. The long vertical lines represent the averages and the vertical ticks are the
actual start and end values.
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Figure 7.5: Effects of location and baseline year on phytoplankton trends.

Shown are the modelled effects of distance from the nearest coastline and baseline
year of time series on all extracted rates of phytoplankton change. Color depicts the
magnitude of the mean rate of phytoplankton change.

the extracted phytoplankton trends from different studies within each 5° x 5° cell were
generally different, except for at high latitudes (>60° N or S), where four spatially
overlapping studies reported phytoplankton declines.

Similar to our estimates, predicted patterns of future phytoplankton change from
process-based ocean models are variable. At global scales, 14 out of 17 studies (82%)
predict a global phytoplankton decline over the next century (Table 7.3). Most pre-
dictions suggested phytoplankton increases at high latitudes and declines at low- and
mid-latitudes (Schmittner et al., 2008; Henson et al., 2010; Steinacher et al., 2010;
Hofmann et al., 2011). Some of the largest and most variable declines are predicted
to occur in the North Atlantic Ocean (i.e. Henson et al., 2010; Steinacher et al.,
2010), where our estimates are also highly variable. This suggests that temporal phy-
toplankton dynamics in the North Atlantic are particularly difficult to represent in

both empirical and process-based models.
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7.4.2 Drivers of Phytoplankton Change

To first order, phytoplankton growth is determined by the availability of sunlight
and macronutrients (bottom-up processes), as well as grazing, viral infection, auto-
catalyzed programmed cell death (PCD); (Agusti et al., 1998; Bidle and Falkowski,
2004), pathogenic bacteria, and fungi (top-down processes). Based on this, we discuss
drivers of plankton change in the context of changes in (i.) physical forcing and (4i.)
biological forcing, which may alter the strength of bottom-up and top-down processes

on marine phytoplankton.

Physical forcing

Particularly in the open oceans, which account for 90% of the ocean surface, studies
have observed phytoplankton growth and productivity to be strongly driven by phys-
ical forces which control nutrient flux, such as mixing and upwelling (Oschlies and
Garcon, 1998; McGillicuddy et al., 2007). Passive diffusion across the thermocline
(Chavez and Toggweiler, 1995), biological nitrogen fixation (Capone et al., 1997),
and the atmospheric deposition of iron, are often of regional importance (Behrenfeld
et al., 1996). Hence it is likely that the observed declines in open ocean regions (Fig-
ures 7.4C and 7.5) are driven by factors affecting these processes. Primary among
these is increasing sea surface temperature (SST), which generally leads to reduced
mixing depth, enhanced stratification, and reduced nutrient flux from deeper waters.
Studies using observational measurements have reported strong temperature-driven
stratification (TDS) effects on phytoplankton concentration at seasonal (Lozier et al.,
2011), inter-annual (Behrenfeld et al., 2006), and multi-decadal (Martinez et al.,
2009) time scales. Stratification has also been observed to influence phytoplankton
trajectories over geological time scales (Vermeij, 2011; Romero et al., 2011). Analy-
ses of satellite observations suggest that TDS may also be leading to an expansion of
the low-chlorophyll gyres of the open oceans (McClain et al., 2004; Polovina et al.,
2008); bio-physical models also predict this expansion to continue over the coming
century (Polovina et al., 2011). Studies using empirical observations (Behrenfeld
et al., 2006; Boyce et al., 2010) and process-based models (Henson et al., 2010) have
provided strong empirical evidence that TDS effects on phytoplankton also vary by

latitude, with strong negative effects at low- and mid-latitudes, but positive effects
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at high latitudes. This pattern of change is partly at odds with our observations,
which mostly suggest declining trends at high latitudes (>70° N or S; Figures 7.4A
and 7.4B). In well-mixed high latitude oceans, increasing TDS may positively influ-
ence phytoplankton growth by retaining phytoplankton cells above the critical depth
(Sverdrup, 1953; Jacobs et al., 2002; Montes-Hugo et al., 2009; Arrigo et al., 2012).
Process-based models also predict that over the coming century rising SST's will lead
to reduced ice cover and increased light availability, and a longer growing season may
lead to increased phytoplankton biomass and productivity at high latitudes (Schmit-
tner et al., 2008; Henson et al., 2010; Steinacher et al., 2010). Phytoplankton trends
are generally less available at these high latitudes (Figure 7.2B), likely contributing
to the variability of the empirical estimates of change there.

Experimental, field, and modeling studies suggest that TDS may also lead to
declines in the concentration of larger species (i.e. diatoms), and increases in smaller
phytoplankton species (i.e. cyanobacteria). These effects may be related to different
nutrient uptake strategies between large and small phytoplankton species (Bopp
et al., 2005; Cermeno et al., 2008; Li et al., 2009), the temperature-size rule (TSR)
(Atkinson, 1994; Atkinson et al., 2003; Moran, 2010), or increased sinking rates of
larger phytoplankton species (Rodriguez et al., 2001).

Changes in a range of additional physical variables such as wind intensity or
salinity may modify the influence of temperature on stratification and nutrient flux
in some locations. For instance, observations of changing wind intensity over the past
century will have large effects on upwelling intensity, including highly productive
Eastern Boundary Current systems (Bakun, 1990; Vecchi et al., 2006). In the Indian
Ocean, warming of the Eurasian land mass has been linked to intensifying monsoon
winds and upwelling, leading to reported phytoplankton increases of 300-350% (Goes
et al., 2005); (Figures 7.4B and 7.4C; Table 7.1). Wind-driven atmospheric deposition
of iron is of regional importance to phytoplankton growth (Behrenfeld et al., 1996).
In polar oceans, melting sea ice has been linked to increased irradiance and reduced
surface salinity, which may have stronger effects on phytoplankton than TDS (Lee
et al., 2012; Post et al., 2013).
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Biological forcing

Trophic control Consumers may drive phytoplankton change through their trophic
(feeding) behaviour. These effects may be caused by modified grazing pressure (di-
rect), or by changes to other consumers, which may propagate across multiple trophic
links, ultimately modifying grazing pressure (indirect). For instance, the removal of
a top predator from the Northwest Atlantic ecosystem led to cascading trophic ef-
fects which may have driven a long-term (~40 year) increase in phytoplankton there
(Table 7.1); (Frank et al., 2005). Such trophic cascades have been observed across di-
verse ecosystems but often attenuate at the plankton level (Baum and Worm, 2009),
and it is unclear what factors determine their occurrence and strength. It is possible
that short food chains with fewer trophic transfers between predators and produc-
ers may be more susceptible to cascading effects, with reduced diversity and lower
functional redundancy rendering the systems generally less stable (i.e. Casini et al.,
2008; Worm et al., 2006). High phytoplankton biomass during blooms may also affect
the strength of trophic control. Grazing pressure (Loeb et al., 1997; Sommer et al.,
2007), heterotrophic bacterial activity (Llewellyn et al., 2008), and viral infection
(Suttle, 1994) can all be influential in controlling phytoplankton blooms. Experi-
mental and modeling studies also suggest that ocean warming may induce metabolic
changes, thereby increasing grazer control of phytoplankton (O’Connor et al., 2009;
Lewandowska et al., 2013). Lastly, heavily exploited marine systems may be more

susceptible to cascading effects (Baum and Worm, 2009).

Environmental conditioning Marine organisms further modify their environment
through a range of non-trophic activities, thereby promoting or inhibiting phytoplank-
ton growth in a process termed environmental conditioning (Smetacek, 2008). For
instance, whales and seals forage at depth and excrete fecal plumes which float and
become concentrated in surface waters. In this manner, essential macronutrients such
as nitrogen and iron are transported from deeper to surface waters, promoting phy-
toplankton growth. Changes in this so-called ‘whale pump’ have been suggested as
a possible driver of phytoplankton change (Smetacek, 2008; Roman and McCarthy,
2010). Particularly, long-term reductions in whale biomass in the Northwest Atlantic

(Roman and Palumbi, 2003) and Southern Ocean (Smetacek, 2008) may have led
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to reduced efficiency of the whale pump, and may explain (at least in part) observed
long-term phytoplankton declines there (Boyce et al., 2010, 2013).

The activities of biological organisms may also influence phytoplankton through
their effects on ocean mixing (Munk, 1966). Kinetic energy generated by swimming
organisms could account for 33% of global ocean mixing; this is comparable to wind
or tidal driven mixing (Dewar et al., 2006). Observational studies have also reported
that the swimming activities of krill may induce four orders of magnitude increases in
turbulence in nearshore waters (Kunze et al., 2006). Given the global distribution and
large biomass of vertically migrating marine organisms (Gjosaeter and Kawaguchi,
1980), biologically generated turbulence may have larger impacts on the global flux
of nutrients to phytoplankton in surface waters than is currently recognized. The
harvesting of large-bodied consumers (Estes et al., 2011) may have disproportionately
reduced ocean mixing, with possible effects on phytoplankton (Behrenfeld et al., 2006;
Polovina et al., 2008; Boyce et al., 2010). This mechanism may have contributed to
part of the observed phytoplankton declines in the open oceans (Figure 7.5), where
vertical mixing is a particularly strong driver of phytoplankton change.

By accounting for 20% of all marine microorganism mortality, viruses may have
large effects on nutrient fluxes in the oceans, with consequences for phytoplankton
(Suttle, 2007). Viruses may negatively influence phytoplankton directly via cell lysis,
or their presence may trigger phytoplankton programmed cell death (PCD) as an
antiviral defence mechanism (Bidle and Falkowski, 2004).Viruses may also infect
consumers ranging from bacteria to whales, thereby increasing the amount of dissolved
and particulate organic matter available for phytoplankton growth (Suttle, 2007).

Lastly, the activities of humans provide perhaps the clearest example of environ-
mental conditioning. Some examples concern strong effects on coastal nutrient inputs
stemming from soil erosion, agriculture, and industrial activities. For instance, an-
thropogenic activity has led to global increases in the riverine deposition of nitrate
(N) and phosphate (P) to nearshore waters by up to 300% (Duce et al., 1991) or
more in some regions (Howarth et al., 1996), while atmospheric deposition of N has
increased by up to 50% in some regions (Brimblecombe and Pitman, 1980). Such
large-scale environmental conditioning by humans in nearshore oceans is likely driving

the large phytoplankton increases observed there (Figures 7.4 and 7.5).
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Synergistic forcing

Much of the physical and biological forcing of phytoplankton change is likely highly
synergistic. For instance, despite the mostly negative effects of rising SST via TDS,
some studies also suggest that ocean warming could lead to increased rates of phy-
toplankton growth (Sarmiento et al., 2004) or microbial metabolism (Taucher and
Oschlies, 2011), both of which ultimately lead to increased phytoplankton biomass
or production and could outweigh TDS effects. However, the metabolic theory of
ecology (MTE; Brown et al., 2004), and experimental results (Sommer and Lengfell-
ner, 2008; O’Connor et al., 2009), suggest that rising SST increases grazer metabolic
rates faster than phytoplankton metabolic rates, leading to reduced phytoplankton
through increased grazing pressure. It is important to distinguish clearly between
the physically-mediated SST effects on phytoplankton via changes in stratification
and nutrient delivery, and the biologically-mediated SST effects on phytoplankton
via altered phytoplankton and consumer metabolism. One experimental study com-
pared the relative importance of these processes, and found that that this varied
depending on the nature of the ecosystem (Lewandowska et al., 2013). In nutrient-
limited systems the effect of rising temperature on nutrient delivery was dominant,
while in nutrient-replete systems, the effect of rising temperature on grazing pres-
sure was stronger. However, in both systems, the overall effect of increasing SST
on phytoplankton was negative. Such synergistic effects on phytoplankton may be

widespread.

Case study: Global patterns of phytoplankton, nutrients, and grazers

To quantitatively explore selected controls on phytoplankton biomass, we examined
spatial gradients in Chl (mg m~3), in conjunction with spatial data for nitrate con-
centration (N; gmol 171), and total zooplankton C biomass (mg m~?) at global scales.
This approach has been used to show the strong positive relationship between phy-
toplankton and zooplankton concentration across the Atlantic Ocean (Irigoien et al.,
2004), but to our knowledge had not yet been applied globally. All data were ex-
tracted from publicly available sources (see Appendices for details).

Based on this simple approach, global patterns in Chl appeared similar to those of

nitrate and zooplankton (Figures 7.6A, 7.6B and 7.6C). Elevated levels in nearshore,
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high latitude, and upwelling regions are well-delineated, as are the oligotrophic gyres
of the major ocean basins, where nitrate and phytoplankton concentrations are lesser.
Ordinary least-squares (OLS) regressions of log-transformed mean nitrate or zoo-
plankton on phytoplankton measurements for each 1° x 1° cell statistically confirmed
this relationship, a result suggestive of bottom-up control of both phytoplankton
and zooplankton concentrations by nitrate (Figures 7.6D and 7.6F). The relationship
between nitrate and chlorophyll was strongly positive (r=0.51, p<0.0001), and was
best approximated by a polynomial regression (r?=0.39; p<0.0001; Figure 7.6D). The
non-linearity of the relationship likely relates to the phytoplankton requirement for
additional resources such as phosphate, silicate, carbon, and iron. For example, de-
spite high available nitrate concentrations in some regions, phytoplankton biomass
is limited by, and responds strongly to, the addition of iron across 20-40% of the
ocean (Behrenfeld et al., 1996; Boyd et al., 2000; Moore et al., 2009). It is therefore
possible that changes in physically- or biologically-driven iron deposition may have
influenced the observed phytoplankton trends, particularly in the Pacific, Atlantic,

and Southern oceans (Figure 7.4).

7.4.3 Ecological Consequences of Phytoplankton Change
Ecosystem partitioning of primary production

Phytoplankton-generated primary production ultimately supports virtually all life in
the oceans. There are three fundamental pathways by which phytoplankton produc-
tion is channelled through the food web: (i.) the grazer food chain via zooplankton
and fish, (7.) the microbial food chain via bacterial processing of plankton organic
matter, and (#:.) detrital export to deeper waters. Here, we focus on the importance
of phytoplankton biomass and production with respect to these pathways and the
possible consequences of phytoplankton changes for the structure and functioning of
marine ecosystems.

By entering the grazer food chain, phytoplankton sustains pelagic organisms at
higher trophic levels. As observed above, spatial gradients in phytoplankton con-
centration are positively related to zooplankton (r=0.63, p<0.0001), suggesting that
phytoplankton biomass strongly influence zooplankton via bottom-up control (Fig-

ures 6B and 6C). The non-linear nature of the relationship may relate to different
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Figure 7.6: Global scaling of phytoplankton, zooplankton, and nutrient
concentrations.

Averaged nitrate (A), Chl (B), and zooplankton (C) concentration per 5° x 5° cell
depicted as colors. White represents areas with no data. (D) Chl as a function of ni-
trate, and (E) zooplankton as a function of Chl. All variables are (logl0)-transformed
average concentrations per 1° x 1° cell. Colors depict the number of measurements
per pixel. Relationship in (D) was best approximated by a polynomial function and
relationship in (E) by a quadratic function. Shading represents the 95% confidence
limits.
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controls of zooplankton across ecosystems. For instance, consumers may have strong
effects on grazers in some ecosystems, while phytoplankton availability may dominate
in others. We were unable to determine empirically if these observed relationships
(Figures 7.6B and 7.6C) were maintained between adjacent higher trophic levels, but
the strong positive relationship between zooplankton and fish for both the larval
and adult stages is well-established (Lasker, 1975; Cushing, 1990; Beaugrand et al.,
2003). Additionally, bottom-up linkages between phytoplankton primary production,
zooplankton, and fish catches have been observed at regional (Ware and Thomson,
2005; Chassot et al., 2007) and global (Chassot et al., 2010) scales. Such correlations
do not necessarily imply causation, but support the hypothesis that phytoplankton
biomass sets the carrying capacity of the grazer food web via bottom-up control
(Figures 7.6B and 7.6C).

However, other approaches have been used to show strong bottom-up regulation
of the grazer food web by phytoplankton affecting such taxonomically distant or-
ganisms as leatherback turtles (Saba et al., 2008), octopuses (Otero et al., 2008),
seabirds (Frederiksen et al., 2006), and fishes (Richardson and Schoeman, 2004).
Phytoplankton concentrations also influence higher trophic levels via changes in the
timing and magnitude of phenological cycles (Hjort, 1914; Cushing, 1990). Observa-
tional studies have demonstrated that the amount, species composition, and timing
of phytoplankton blooms can strongly influence the survival of larvae and the sub-
sequent population size of fish (Lasker, 1975; Platt et al., 2003). Such phenological
changes in the concentration and quality of phytoplankton may be manifest as tem-
poral changes in overall biomass and can also affect ecosystem structure from the
bottom-up (Edwards, 2004).

Deep-sea ecosystems are almost entirely sustained by the rain of particulate or-
ganic matter (POM) from surface waters, the majority of which is produced by phyto-
plankton (Ruhl et al., 2008). The downward flux of particulate organic carbon (POC)
accounts for up to 67% of deep-sea benthic biomass in some regions (Johnson et al.,
2007). Studies have also documented positive relationships between spatial gradients
of surface chlorophyll, POC flux, and deep-sea macro-faunal abundance (Johnson
et al., 2007; Ruhl et al., 2008). Phytoplankton-derived POC flux may also influ-

ence inter-specific body size distributions of deep-sea macrofauna (Ruhl et al., 2008)
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and diversity of deep-sea ecosystems. There is broad consensus among physically-
based models, which predict declining export production over the coming century
to be driven in part by rising temperature and changes in phytoplankton biomass
and community composition (Steinacher et al., 2010). The strong dependence and
the already food-stressed nature of deep-sea ecosystems would likely render them
particularly sensitive to such reductions in export production.

Changes in phytoplankton concentration and composition will also affect the struc-
ture and functioning of the microbial food chain or ‘microbial loop’” (Azam et al.,
1983). This is composed of pico-phytoplankton, viruses, bacteria, and small het-
erotrophic protists. Although a small fraction of the primary production entering
the microbial chain reaches the traditional grazer chain, the majority is recycled and
re-mineralized by heterotrophic bacteria, producing inorganic matter which fuels phy-
toplankton growth. Ultimately, this microbial loop increases the recycling efficiency
of phytoplankton and other dissolved organic matter, but reduces the amount of
primary production available to both the grazer and deep-sea ecosystems. Due to
size-based predation constraints (Barnes et al., 2010), the microbial loop is more
prevalent in systems where pico-phytoplankton are abundant, such as in the olig-
otrophic oceans (Pomeroy, 1998). In addition to changes in total phytoplankton
standing stock, process-based models, field, and experimental studies suggest that
continued warming will lead to increases in the abundance of pico-phytoplankton
(Cermeno et al., 2008; Polovina and Woodworth, 2012), expansions of the oligotrophic
oceans (Polovina et al., 2008, 2011), and increased microbial metabolism (Taucher
and Oschlies, 2011). Such changes may increase the relative importance and turnover
rate of the microbial loop, thereby increasing overall primary production, but limiting

channeling to the grazer and deep-sea food chains.

Consequences of phytoplankton change across ecosystems

Our results thus far suggest that the phytoplankton biomass places first-order con-
straints on the carrying capacity of ecosystems, and that large-scale changes in phy-
toplankton biomass would alter the average biomass of zooplankton and likely fish
across marine ecosystems (Frank et al., 2005; Ware and Thomson, 2005; Chassot

et al., 2007, 2010). Within such broad phytoplankton biomass-driven alterations in
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carrying capacity, additional factors such as the structure of the ecosystem, the degree
to which productivity is affected, altered phenology, and changes in species composi-
tion and size structure will modify the ecological response to phytoplankton biomass
changes across ecosystems.

In the open ocean oligotrophic gyres phytoplankton biomass is low, and is com-
prised mainly of pico- and nano-phytoplankton (<2 to 20 pm diameter). Due to
the constraints of size-based predation (Barnes et al., 2010), primary production in
the open ocean is inefficiently channelled to higher trophic levels through numerous
trophic transfers (Ryther, 1969), limiting the overall size of top predators (Norris
et al., 2013). Due to low nutrient availability, efficient recycling of organic matter,
and long, complex flows of primary production from producers to grazers, fishery
landings per unit area and export production of open ocean ecosystems are low (Ry-
ther, 1969); hence they are sometimes referred to as biological deserts (Polovina
et al., 2008). Since the open oceans are already food-stressed, ecosystems there may
be particularly sensitive to any reductions in phytoplankton biomass. Declines in
overall biomass in the oligotrophic open oceans may be exacerbated by predicted
temperature-driven reductions in phytoplankton diversity over the coming century
(Thomas et al., 2012). Such diversity losses may alter the structure (Hooper et al.,
2012) and stability (Worm et al., 2006) of open ocean ecosystems, and may fur-
ther reduce primary productivity in these ecosystems through the loss of productive
species (Tilman, 1996), reduced complementarity (Reich et al., 2012), or increased
grazer pressure (Hillebrand, 2004). Resolving the consequences of phytoplankton
changes on the oligotrophic ocean ecosystems will be important, since studies suggest
past (Boyce et al., 2010, 2013), present (McClain et al., 2004; Polovina et al., 2008),
and future (Polovina et al., 2011) expansions of these already vast ocean regions.

In contrast to oligotrophic waters, nearshore ecosystems are supported by an abun-
dance of large micro-phytoplankton species (~20 to 200 pm in diameter); (Cermeno
et al., 2008). These ecosystems often have shorter food chains and are thought to
be more efficient, with fewer trophic transfers between phytoplankton and predators.
Large blooms of rapidly sinking diatoms, slower turnover, and ‘sloppy grazing’ by
large zooplankton result in large fluxes of POC to benthic ecosystems (Ryther, 1969;
Cermeno et al., 2008; Guidi et al., 2009; Chavez et al., 2011; Norris et al., 2013).
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Our results suggest that phytoplankton may have increased in most nearshore waters
(Figure 7.5), likely due to human-derived nutrient input (Jickells, 1998). Increasing
phytoplankton in these nearshore systems is hypothesized to have a positive effect
on global fishery landings, ~50% of which derive from nearshore and shelf systems
(FAO, 2010), but may also trigger negative effects in some regions. For instance, large
phytoplankton blooms are known to increase heterotrophic bacterial activity and can
lead to large subsurface anoxic regions known as ‘dead zones’ (Grantham et al.,
2004). Such effects have been linked with decreased secondary biomass and fishery
yield (Diaz and Rosenberg, 2008), particularly in nearshore waters. Additionally,
some phytoplankton species can form harmful algal blooms, which negatively affect
secondary production and fisheries (Nixon and Pilson, 1983).

Upwelling ecosystems occur in both nearshore and oceanic waters and contain
characteristics of both systems. These ecosystems are predominantly driven by the
wind-driven upwelling of nutrient-rich waters, resulting in large blooms of micro-
phytoplankton, which support some of the world’s largest fisheries and export large
amounts of POM to the deep sea. Contrary to nearshore systems, phytoplankton
trends in upwelling systems are largely driven by changes in upwelling intensity as
driven by changes in wind, temperature, and stratification. Any increases in TDS
here would reduce total phytoplankton biomass but may have disproportionate nega-
tive effects on larger phytoplankton, which are out-competed by pico-phytoplankton
under conditions of warming, stratification, or prolonged nutrient limitation (Atkin-
son et al., 2003; Cermeno et al., 2008; Li et al., 2009; Moran, 2010). Since large
grazers in these systems are often incapable of consuming pico-phytoplankton (Som-
mer, 2002; Sommer and Sommer, 2006), a shift towards smaller phytoplankton may
decrease the transfer efficiency of primary production through the grazer food chain
(Barnes et al., 2010; Ryther, 1969; Chavez et al., 2011). These size-selective negative
effects are predicted to be strongest in the North Atlantic and tropical upwelling sys-
tems, possibly due to the proportionally larger contribution of micro-phytoplankton
to phytoplankton standing stock (Cermeno et al., 2008). Studies of the relationship
between phytoplankton changes and fisheries landings confirm these observations,
with the average effect of changing Chl on fish yield being strongest in upwelling,

temperate, and nearshore marine ecosystems (Ware and Thomson, 2005; Chassot
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et al., 2007, 2010). Although model predictions for upwelling systems are variable
and uncertain (Wang et al., 2010), many predict temperature-driven future declines
in phytoplankton biomass and size (i.e. Henson et al., 2010; Steinacher et al., 2010).

Such changes are hypothesized to have strong and negative effects on productivity.

Case study: Ecological effects of climate-driven phytoplankton variability

Some of the clearest examples of the drivers and ecological consequences of marine
phytoplankton change stem from studies of the effects of transient climate variability
on marine ecosystems (Barber and Chavez, 1986; Chavez et al., 1999; Behrenfeld
et al., 2006; Martinez et al., 2009). Climate fluctuations wax and wane over short
time scales, and hence represent ‘natural experiments’ which can be used to examine
the drivers and consequences of climate-driven phytoplankton change.

One example of the effects of climate variability propagating up the food web
comes from the North Sea (Aebischer et al., 1990). Here, the positive correspon-
dence between standardized long-term (1955 to 1987) time series of westerly weather,
phytoplankton, zooplankton, herring Clupea harengus, and breeding success of kit-
tiwakes Rissa tridactyla, suggests that environmental effects are transmitted up the
food chain. Although the study accounted for the influence of weather patterns, the
potential effects of periodic climate variability were not realized at the time. The
North Atlantic Oscillation (NAQO) is a major mode of climate variability in the region
and is characterized by shifting patterns of westerly wind and SST between 40° and
60° N. Although the mechanisms are unresolved, the NAO is negatively related to the
concentrations of phytoplankton (Boyce et al., 2010) and zooplankton (Fromentin
and Planque, 1996) in the North Atlantic. Alternatively, the Atlantic multi-decadal
oscillation (AMO) may be the dominant mode of climate variability in the Atlantic
Ocean (Martinez et al., 2009; Chavez et al., 2011). The AMO captures low-frequency
(20- to 40-year cycle) SST variability in the North Atlantic Ocean and is positively re-
lated to marine phytoplankton concentration in the region (Martinez et al., 2009). To
further examine the interplay between climate and ecosystem structure, we extracted
time series of westerly weather, phytoplankton, zooplankton, herring, and kittiwake
chicks (Aebischer et al., 1990), as well as time series for the NAO and AMO. All

series were smoothed to remove any high-frequency variability and re-scaled such that
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they ranged over the same interval (see Appendices for data source and full methods).
Westerly weather was smoothed to linearity and had a low explanatory power and
was thus removed from the analysis. All series were positively related (Figure 7.7A).
The AMO emerged as the strongest climate driver of observed ecological change,
showing a much tighter correlation than the NAO or westerly weather. However, it is
unclear if it affects the ecosystem directly through physical processes, or indirectly by
changing phytoplankton concentration. For instance, zooplankton may be influenced
by climate-mediated changes in phytoplankton concentration, or by climate-mediated
changes in ocean currents.

To more quantitatively address this issue, we examined the linear correlation be-
tween all series. If climate is driving consumer abundance via changes in phytoplank-
ton, the correlation between adjacent trophic levels should be stronger than between
individual trophic levels and climate. Using this simple approach, we observed strong
evidence of bottom-up effects mediated by the influence of climate on phytoplankton
(Figure 7.7B). Climate indices were the strongest predictors of phytoplankton con-
centration. For example, the AMO shows almost perfect positive correlation (NAO:
r=-0.596; AMO: r=0.998). Zooplankton and herring were best predicted by the con-
centration of phytoplankton on which they graze (zooplankton: r=0.961; herring:
r=0.781). Lastly, the number of Kittiwake chicks was most strongly predicted by
their primary food source, herring (r=0.989). While these correlations do not imply
causation, they do provide observational support for the hypothesis of climate-induced
control of the ecosystem, and suggests that long-term changes in phytoplankton could
cascade up the food web, ultimately influencing apex predators and humans. The
strong influence of the AMO particularly highlights the importance of temperature

variation in determining phytoplankton concentration in the upper ocean.

7.5 Summary and Outlook

Our analysis suggests that estimates of changes in marine phytoplankton over the
past century have been variable, with this variability related to the number of ob-
servation platforms used and the time period over which the trend was estimated.
Generally, we observed declines in studies conducted over longer time scales, in the

open oceans, and at higher latitudes. Phytoplankton increases tended to occur in
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Figure 7.7: A bottom-up cascade driven by low-frequency climate effects on
phytoplankton.

(A) Time series of climate and abundance across multiple trophic levels in the North
Sea. Dashed lines represent climate indices and colors depict different trophic levels
within the food web. Biological time series were extracted from Aebischer et al.,
(1990). Series were smoothed and normalized between -1 and 1 (see Appendices for
full details). (B) Linear correlation between time series of climate and abundance
presented in (A). The shape and color of the ellipses represent the strength and direc-
tion of the relationships. Blue depicts negative relationships and red depicts positive
relationships. Flatter ellipses represent stronger relationships. White represents cor-
relations of 1.
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studies that concerned recent time periods, and were conducted in nearshore waters.
Regionally, our analysis suggests that phytoplankton concentrations have declined
across the North and Equatorial Pacific Oceans and at high latitudes, and increased
in the South Indian Ocean. Estimates of change in the North Atlantic Ocean and
in the Southern Hemisphere were highly variable, emphasizing the need for consis-
tent measurements spanning multiple decades (Henson et al., 2010; Saulquin et al.,
2013). While empirical estimates vary, most predictive models suggest that global
phytoplankton concentrations will decline over the coming century (Table 7.3). De-
spite increases at high latitudes and in nearshore waters, future global phytoplankton
declines are dominated by phytoplankton declines across the low- and mid-latitude
oceans, and in the open oceans, where 82% of annual global ocean primary production
occurs (Ryther, 1969).

Multiple lines of evidence suggest that SST is a dominant driver of contemporary
phytoplankton changes. Increasing SST's are predicted to induce shifts in phytoplank-
ton diversity (Thomas et al., 2012), phenology (D’Ortenzio et al., 2012), species
composition (Cermeno et al., 2008; Li et al., 2009), and expanding ‘desertification’
of the oceans (Polovina et al., 2008, 2011). The pathways by which temperature
changes influence phytoplankton are multifarious, but temperature-driven stratifi-
cation (TDS) emerges as a strong driver of global phytoplankton change over the
geological record (Schmittner, 2005) and contemporary (Boyce et al., 2010) and
future (Henson et al., 2010; Hofmann et al., 2011; Olonscheck et al., 2013) time
horizons. This is supported by process-based models, which predict global declines
in phytoplankton and primary production over the coming century, driven by TDS
phytoplankton declines across the low- and mid-latitude oceans if the current rate of
ocean warming is unabated (Schmittner et al., 2008; Steinacher et al., 2010; Hofmann
et al., 2011). Warming is also shifting the balance of autotrophic to heterotrophic
metabolism, which may exacerbate (O’Connor et al., 2009; Olonscheck et al., 2013)
or counterbalancing (Taucher and Oschlies, 2011) any declines in biomass driven by
TDS.

Such changes will likely propagate up the ocean food web and have large effects
on the structure and functioning of both pelagic and deep-sea ecosystems. Declines in

phytoplankton will reduce the overall carrying capacity of marine ecosystems, but this
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will play out differently across regions. A robust examination of future phytoplank-
ton change and the ecological consequences therein will depend on better resolving
critical uncertainties, such as the influence of consumers on marine phytoplankton,
the net effect of changing metabolic rates in a warmer ocean, and the effects of
size-restructured phytoplankton communities on ecosystem functioning. Further, de-
spite ample evidence to suggest strong biological effects on phytoplankton via trophic
control or environmental conditioning, the scarcity of consistent, long-term measure-
ments of consumer abundance across trophic levels limits any rigorous analysis of
their relevance as drivers of long-term phytoplankton change. Such challenges and
limitations may explain why relatively few studies have considered the importance
of such effects. Further investigation may be facilitated by combining process-based

models with experimentation and field observation.
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Chapter 8

Conclusions

The overarching goal of this thesis was to better understand the nature, causes, and
consequences of long-term changes in marine phytoplankton standing stock over the
past century. In this final chapter, I attempt to synthesize the major findings of my
thesis. Firstly, I will summarize the results of my thesis and interpret these in the
context of previous work. Next, I will discuss the possible policy or management
implications of my thesis research. Lastly, I will identify some remaining knowledge

gaps in this field and discuss some directions for future work.

8.1 Thesis Summary

8.1.1 Publicly Available Databases

In chapters chapter 2 (Global phytoplankton decline over the past century) and 3 (In-
tegrating global chlorophyll data from 1890 to 2010), I generated long-term, global Chl
databases that are available for public use. To achieve this, all available shipboard
measurements of upper ocean Chl, ocean colour, and transparency collected through-
out the global ocean since from 1890 to 2010 were inter-calibrated and standardized.
A range of sensitivity analyses and comparisons against widely used satellite remote
sensing measurements of Chl were undertaken and suggested that the Chl values in
this database were strongly correlated with Chl from SeaWiFS (r=0.81; ranged major
axis slope=1). While publicly available databases of oceanographic measurements are
now increasingly common, those generated during my thesis are currently the longest
running and most spatially comprehensive available; the measurements span over 120
years in some locations and are globally distributed. This information within these
databases represents millions of individual measurements painstakingly collected by
hundreds of ocean-going marine researchers. The databases provide a much-needed

resource, which may be used by the scientific community to explore phytoplankton

148
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dynamics over the pre-satellite era. The use of such data will be a key component
of understanding long-term changes in phytoplankton, particularly as the available
satellite record is still decades too short to separate secular change from transient

climate-driven variability (Beaulieu et al., 2013; Henson et al., 2010).

8.1.2 Changes in Phytoplankton Standing Stock over the Past Century

In chapter 2 (Global phytoplankton decline over the past century) and chapter 4 (Global
chlorophyll changes over the past century) 1 estimated the nature and magnitude of
marine phytoplankton (as indicated by Chl) change over the past century. Trajec-
tories of Chl change were estimated across spatial scales ranging from local (~1000
km?) to regional (ocean basin), using generalized additive models. Estimating Chl
trends at local spatial scales revealed increasing Chl trends across the tropical warm
pool region, throughout the Indian Ocean, in the Northeast Atlantic Ocean, and
in closer proximity to coastlines. Alternately, large swaths of declining Chl trends
were observed across most of the Atlantic Ocean, in the Western Pacific, and in the
open oceans. These local scale estimates of change were generally consistent with
the regional-scale estimates, which indicated Chl increase in the South Indian, and
Northeast Atlantic regions and decline in the Arctic, Northwest Atlantic, Equatorial
Atlantic, South Atlantic, North Pacific, and Equatorial Pacific regions. Estimates of
change for the North Indian and South Pacific were particularly variable and uncer-
tain, likely due to the limited amount of measurements available. These local- and
regional-scale estimates corresponded to an average global Chl decline of between
-0.006640.001 and -0.000940.0027 mg m 3 yr~! over the past century. Although the
direction of global Chl change was insensitive, the magnitude of change was depen-
dent upon the method of spatial aggregation and the statistical weighting used. Thus,
although an overall conclusion of Chl decline is supported, the precise magnitude of
this decline remains uncertain.

Alternate empirical estimates of Chl change over the 20 century have been in-
terred from in situ, ocean colour, or remote sensing observations, but are different
in spatial and/or temporal scope to my estimates making comparisons difficult (An-
toine et al., 2005; Behrenfeld et al., 2006; Gregg and Conkright, 2002; Gregg et al.,
2003; Montes-Hugo et al., 2009; Raitsos et al., 2005; Reid et al., 1998). Published
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long-term (~80 to 100 years) estimates derived from ocean transparency or Forel-
Ule measurements in the North and Equatorial Pacific Ocean are similar in direction
and magnitude to mine and suggest sustained phytoplankton declines over the past
century (Falkowski and Wilson, 1992; Wernand et al., 2013). Observed Chl changes
across the North Atlantic (>40° N) agree with long-term (~50 years) continuous
plankton recorder (CPR) derived changes from the North Sea and Northeast Atlantic
(Raitsos et al., 2005; Reid, 1975; Reid et al., 1998), but are at odds with estimates
from the Central Northeast Atlantic (~52° to ~58° N and ~10° to ~20° E). My
estimates in the North and Equatorial Atlantic Ocean are also at odds with large,
and possibly unrealistic increases derived from Forel-Ule measurements. However,
it is worth noting that comparisons with these alternate estimates of phytoplank-
ton change should be interpreted with caution. For instance, the CPR only retains
the largest plankton cells (>270 pm) and under-samples smaller cells (Dippner and
Krause, 2013). The spatial and temporal resolution of the Forel-Ule-, and CPR-
derived trends are also different to mine, which may explain some of the discrepancy.
Indeed, the observationally-based estimates of phytoplankton change presented in this
thesis are among of the most spatially and/or temporally extensive available in the
scientific literature to date (Figure 8.1), making any comparisons difficult. However,
the availability of phytoplankton measurements over the past century may continue

to grow, possibly allowing for further validation.

8.1.3 Drivers of Observed Marine Phytoplankton Change

In chapter 2 (Global phytoplankton decline over the past century), I observed strong
correspondences between several leading inter-annual to multi-decadal climate oscil-
lations and Chl trends at the scale of ocean basins. Previous to this, the relationship
between Chl and the El Nino Southern Oscillation were firmly established, but the
effect of climate variability on phytoplankton in other ocean basins and over longer-
timescales were unknown.

These findings, in combination with studies using contemporary remote sensing
time-series (Behrenfeld et al., 2006; Martinez et al., 2009) have highlighted the impor-

tance of climate variability in driving short-term marine Chl trends and have further
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Figure 8.1: Contribution of thesis trend analyses to our understanding of
phytoplankton change.

Points are the maximum spatial (z-azis) and temporal (y-axis) extent of available
published estimates of phytoplankton change from chapter (7). Trend estimates
within the yellow shaded region may be strongly influenced by transient climate
variability, while estimates within the white are more likely to represent sustained
climate-independent changes. Estimates of phytoplankton change derived in this
thesis are denoted in red.
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emphasized the need for continuous, long-term time-series to accurately resolve sus-
tained climate-seperable trends (Beaulieu et al., 2013; Henson et al., 2010; Saulquin
et al., 2013). As highlighted in my chapter 7 analysis, the majority of published
estimates of phytoplankton change span less than 20 years, and therefore may not
represent sustained long-term change (Figure 8.1).

In chapters 2 (Global phytoplankton decline over the past century), chapter 5
(Oceanographic drivers of chlorophyll change over the past century) 1 used a com-
prehensive suite of long-term oceanographic variables and integrated climate indices
to explore the factors driving temporal Chl change over the past century. The corre-
spondence between estimated long-term changes in oceanographic variables and Chl
were quantitatively examined. Subsequent to this, the strength of oceanographic vari-
ables in explaining Chl variability before and after accounting for different sources
of variability was estimated. Using this approach, sea surface temperature (SST)
emerged as the strongest single correlate of Chl change via spatial, seasonal, climate,
stochastic, and inter-annual forcing. My analyses revealed a strong latitudinal pat-
tern to the SST effects on Chl, which co-varied to those of wind, mixed-layer depth,
and stratification. This suggested that rising SST negatively influences Chl by inten-
sifying vertical stratification and reducing nutrient delivery at low- and mid-latitudes,
where phytoplankton growth is strongly driven by the rate of mixing which delivers
nutrients from deeper waters. At higher latitudes, where waters are already well
mixed, rising SSTs had weak positive effects on Chl. The SST-induced stratification
effects on phytoplankton were generally weaker in nearshore waters, where land-based
processes are a stronger determinant of phytoplankton growth (Jickells, 1998).

These observations are consistent with analyses of satellite observations (Behren-
feld et al., 2006; Martinez et al., 2009) and models (Hofmann et al., 2011; Schmittner
et al., 2008; Steinacher et al., 2010) which have also observed or predicted negative
effects of rising SSTs on phytoplankton via stratification and nutrient flux. Satellite
observations also suggest that this mechanism is inducing an expansion of the lowest
productivity ‘deserts’ of the ocean (McClain et al., 2004; Polovina et al., 2008), a
trend which is projected to continue over the next century (Polovina et al., 2011).
Rising SSTs are also predicted to induce shifts in phytoplankton diversity (Thomas
et al., 2012), phenology (D’Ortenzio et al., 2012), and species composition (Cermeno
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et al., 2008; Li et al., 2009). The negative effects of rising SSTs on phytoplankton
via stratification will possibly be exacerbated by increased grazing pressure as het-
erotrophic metabolism will speed up (O’Connor et al., 2009). However, increasing
SSTs may lead to faster turnover rates of phytoplankton and the microbial loop,
which may modify or outweigh the effect of temperature on grazing rates (Taucher
and Oschlies, 2011). There is evidence that rising SSTs will influence marine phyto-
plankton both by changing nutrient supply (physically forced) and metabolic rates
(biologically forced), however it is unclear what the magnitude of the effects will be
or how they will interact.

Based on the above condition, in chapter 6 (Effects of sea surface warming on
marine plankton) 1 worked collaboratively at the GEOMAR facility in Germany to
explore the effects of ocean warming on a plankton community. To complement
the correlative approaches used in chapters 2 and 5, I used theory and experimen-
tation to separate different mechanisms by which SST affects phytoplankton. The
POTSMOM-C ocean general circulation model was run to project ocean tempera-
ture and nutrient changes between 1800 and 2100. These changes were then imple-
mented as temperature and nutrient treatments to mimic the physically-mediated of
nutrient limitation via stratification, as well as biologically-mediated effects of SST
on plankton metabolic rates. A large mesocosm experiment containing a natural
plankton community of bacteria, heterotrophic nanoflagellates, phytoplankton, and
zooplankton was run over a 6 week period. Using this approach, we found that the
effects of SST on phytoplankton were dependent upon the nature of the ecosystem.
In nutrient-limited systems the effect of rising temperature on nutrient delivery was
dominant. This is consistent with empirical (Behrenfeld et al., 2006; McClain et al.,
2004; Polovina et al., 2008) and process-based studies (Polovina et al., 2011), which
have found strong temperature-driven stratification effects on phytoplankton in olig-
otrophic systems, such as the ocean gyres. In nutrient-replete systems, the effect of
rising temperature on grazing pressure was stronger. This is consistent with empiri-
cal studies, which have observed strong grazing effects triggered by increased nutrient
availability, such as during phytoplankton blooms (Loeb et al., 1997; Sommer and
Lengfellner, 2008). However, in both nutrient-limited and replete systems, the over-

all effect of increasing SST on phytoplankton was negative. This work emphasizes
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the strength of merging experimental and theoretical modeling approaches to better
understand the mechanistic underpinnings of any correlations and patterns observed
in field data.

8.1.4 Thesis Results in the Context of the Oceans’ Past and Future

My estimates of global phytoplankton decline over the past century using observa-
tional measurements are generally similar to predictions of phytoplankton changes
over the next century using process-based general circulation models. Although the
models generally agree on the direction of global phytoplankton change, the magni-
tude and spatial patterns of predicted change are highly variable (i.e. Henson et al.,
2010; Steinacher et al., 2010). Most studies predict increases in phytoplankton con-
centration and primary production at high latitudes but widespread declines across
low- to mid-latitudes and in the open oceans (i.e. Henson et al., 2010; Polovina et al.,
2011; Steinacher et al., 2010). This is partially at odds with my results, which suggest
sustained declines in phytoplankton concentration at high latitudes. Similar to empir-
ical analyses, process-based model estimates of phytoplankton change in the North
Atlantic Ocean are also highly variable. The North Atlantic is a dynamic ocean,
strongly influenced by human use (Frank et al., 2011, 2005; Roman and Palumbi,
2003), and resolving phytoplankton change here appears to be particularly challeng-
ing. Similar to my thesis results, models suggest that if unabated, rising temperatures
will drive global phytoplankton decline over the next century. Particularly, rising tem-
peratures are predicted to reduce the productivity of vast areas in the open oceans
(Polovina et al., 2011; Steinacher et al., 2010), and cause a shift towards smaller phy-
toplankton species (i.e. Moran, 2010; Woodworth-Jefcoats et al., 2013). Lastly, while
process-based models are valuable for exploring physical forcing and future changes
in marine phytoplankton, they are limited in some respects. For instance, with few
exceptions (i.e. Olonscheck et al., 2013; Taucher and Oschlies, 2011), such models
do not account for any biological effects, which may also drive observed phytoplank-
ton change (Frank et al., 2005; Sommer and Lengfellner, 2008). These models also
require assumptions regarding important, but unknown parameters, which may have
large effects on the predictions and render them highly subjective. For instance, the

variation in the assumed biological temperature-sensitivity within these models may



155

induce large changes in both the direction and magnitude of predicted phytoplankton
trajectories (Taucher and Oschlies, 2011).

It is also important to interpret phytoplankton change over the past and coming
centuries in the context of changes which have occurred over geologic or 'deep’ time.
Studies suggest that phytoplankton changes over geologic time are strongly driven
by processes operating over longer timescale than those encompassed by the observa-
tional record used in this thesis. Such processes include, for instance, nutrient inputs
by rock weathering, plate tectonics, change in the thermohaline circulation (Sachs
and Anderson, 2005), or insulation cycles (Beaufort et al., 1997). The phytoplankton
trends estimated in my thesis over the past century are also influenced by these slowly
evolving processes. As such, the phytoplankton trends explored in my thesis as well
as future trends over the coming century may be regarded as transient in the context
of deep time.

While temporal phytoplankton trends over the past century and those over the
deep time are not strictly comparable, insight can be gained by examining the in-
fluence of climate on phytoplankton and ecosystem structure over past eras. For
instance, comparing past periods of warming and cooling allows for a ‘natural experi-
ments’ whereby the effects of temperature on phytoplankton and other processes may
be explored. One such comparison has been made between the warmer ‘greenhouse’
world (34 to 66 Ma), and the colder ‘icehouse’” world (0 to 34 Ma); (Norris et al.,
2013). During the greenhouse world, when maximum ocean temperatures reached 34
°C, the oligotrophic gyres were larger than today, and ecosystems there were largely
based on small phytoplankton cells, which limited the size of top predators (Norris
et al., 2013). Organic matter was tightly cycled in these systems, thus reducing ex-
port production and limiting the carrying capacity of deep sea ecosystems. Subsurface
anoxic zones were also likely more expansive than today. In the icehouse world, when
maximum temperatures reached 31 °C, marine ecosystems were supported by larger
phytoplankton cells (diatoms) which resulted in shorter food chains, with greater
export production. The diatom-based food chains are believed to have fueled the
recent diversification of whales, seals, fish, and seabirds (Fulton and Strobeck, 2010;

Houben et al., 2013; Norris et al., 2013). Similar to my thesis results and predictive
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models, temperature-driven stratification was a driver of phytoplankton declines dur-
ing such past periods of warming (Norris et al., 2013; Vermeij, 2011). Such effects of
increasing SST on marine systems are consistent with those over the past century and
predicted into the future, and provide robust evidence that temperature is a leading

driver of marine phytoplankton change.

8.1.5 Consequences of Changing Marine Phytoplankton Standing Stock

Due to the many interactive pathways by which phytoplankton influences climate
processes, ecosystem dynamics, and biogeochemical cycles (Figure 8.2), predicting
the consequences of a long-term decline in phytoplankton standing stock is extremely
challenging. The ecological consequences of changing phytoplankton concentration
will vary regionally, but documented effects include altered species composition and
abundance across multiple trophic levels (Aebischer et al., 1990), effects on fisheries
yield (Chassot et al., 2010), and changing patterns of export productivity (Steinacher
et al., 2010). Declining phytoplankton trends may have particularly strong effects
on the oligotrophic open oceans or deep-sea ecosystems, which are already tightly
constrained by bottom-up processes. The ecological consequences of changing phy-
toplankton will also depend on changes in phytoplankton community composition,
which is a strong determinant of ecosystem structure and export production (Barnes
et al., 2010; Rodriguez et al., 2001; Ryther, 1969). Global changes in phytoplank-
ton concentrations will also have important effects on climate systems, but again,
the exact nature of these effects is unresolved. By contributing a large fraction of
export production, phytoplankton production influences the oceanic drawdown and
possible sequestration of atmospheric CO,. Declining phytoplankton may lead to
reduced pumping to the deep sea and more CO, in the atmosphere, with effects on
climate systems (Falkowski, 2012). By producing dimethylsulphide, phytoplankton
may also have effects on marine cloud formation (Charlson et al., 1987; Quinn and
Bates, 2011). While the exact magnitude of such effects remain unclear (Quinn and
Bates, 2011), long-term declines in phytoplankton may lead to altered cloud forma-
tion, with corresponding effects on albedo and upper ocean penetrative radiation.
Since increasing temperatures are negatively related to phytoplankton concentration

over much of the oceans, such changes may lead to a feedback on phytoplankton.
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While it is clear that a sustained decline of phytoplankton standing stock over the
past century will have certain effects on ecosystem dynamics and climate systems, the
magnitude of these effects is unclear. This uncertainty provides strong motivation to
increase our phytoplankton observational capabilities in order to better understand

the consequences of phytoplankton change.

8.1.6 Caveats

The use of Chl as an indicator for phytoplankton biomass is widespread, yet the C-
to-Chl relationship is non-linear and subject to the influences of light, nutrients, and
temperature (Geider, 1987). Variation in the C:Chl ratio often occurs in the context
of ‘acclimation’ to changing conditions, e.g. over a seasonal cycle. Although models
to correct for acclimation exist, their applicability over the time scales encompassed
by this thesis is constrained by data availability. However, with all other factors
held constant, increasing temperatures are predicted to result in an overestimation
of phytoplankton C biomass from Chl due to a reduced C:Chl ratio; (Eppley and
Sloan, 1965; Eppley, 1972). In the context of my thesis findings, this suggests that
as temperatures have risen over the past century (Levitus, 2000), the estimated Chl
declines over this same period may be biased upward relative to phytoplankton C,
thus potentially rendering our estimated global rates of decline conservative. This is,
however, based on the strong assumption that SST has increased as other influential
variables such as light, and nutrients have remained constant. This is certainly an
unrealistic assumption in nearshore waters, where nutrient deposition has increased
(Jickells, 1998). While efforts are being directed towards developing more accurate
assessment methods (Siegel et al., 2013), Chl remains the most and best available
metric to assess phytoplankton biomass changes over large spatial scales and multi-
decadal time scales.

In this thesis, I compiled a database of Chl observations spanning 120 years in
some locations and distributed globally. To accomplish this, measurements of ocean
Chl and transparency were inter-calibrated and combined into a single database. The
Chl and transparency observations were available at different spatial and temporal

densities, and our trend analysis was based on the assumption that the relationship
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Figure 8.2: Ecosystem linkages of marine phytoplankton.

The organic matter generated through marine phytoplankton photosynthesis (green
arrows) sustains virtually all marine ecosystems, as well as influencing ocean-
atmosphere processes (red arrows).
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between them was constant at all times and locations. In chapters 2 to 4, I per-
formed a range of analyses and sensitivity checks which suggested that combining
Chl and transparency observations did not influence the trend analysis. Despite this,
corresponding Chl and transparency matchups were unavailable for many times and
locations and it was thus impossible to directly test this assumption for some regions.

Despite the comprehensive spatial and temporal coverage of the Chl database gen-
erated in my thesis, many spatial locations and time periods remain under-sampled.
Notably, measurements were less available prior to 1950, in the Southern Hemisphere,
and in waters further from coastlines. The greater uncertainty of our estimates in
these times and locations were accounted for as much as was possible in our analyses,
and sensitivity analyses were undertaken to explore the robustness of our analyses.
Despite this, yet the effect of under-sampling on the estimated trends could not be

directly quantified and may influence the accuracy of the analysis.

8.2 Management Implications

Several potential management or policy implications emerge from this thesis. Al-
though some of these are discussed in the individual chapters, I will briefly expand
upon them here.

The consequences of the century-long decline of marine phytoplankton observed
here may be of interest to marine managers and policy makers alike. Because the ac-
tivities of phytoplankton are influential in many global processes, several of which are
connected, the exact consequences of declining phytoplankton are difficult to predict.
However, reduced phytoplankton concentrations are predicted to reduce the aggregate
biomass available to fisheries (Chassot et al., 2010, 2007; Ware and Thomson, 2005),
and altered ecosystem structure and function. The aggregate effect of phytoplankton
declines on climate are likewise difficult to predict since changes in phytoplankton
may influence carbon sequestration (Pollard et al., 2009), solar radiance distribu-
tion (Murtugudde et al., 2002), and marine cloud formation (Charlson et al., 1987;
Quinn and Bates, 2011). This broad importance of phytoplankton coupled with the
poorly constrained consequences of changing phytoplankton concentrations should
provide a strong incentive for managers and policy makers to better monitor marine

phytoplankton stocks.
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One possible method of mitigating declining trends in marine Chl observed in
this thesis and predicted into the future (Beaulieu et al., 2013; Henson et al., 2010;
Hofmann et al., 2011; Olonscheck et al., 2013), would be to mitigate rising ocean
temperatures. Throughout my thesis, I observed consistently negative effects of rising
sea surface temperature on phytoplankton. Such negative effects of rising SST on
phytoplankton have also been estimated over contemporary, (Behrenfeld et al., 2006;
Li et al., 2009; Polovina et al., 2008; Thomas et al., 2012), geological (Finkel et al.,
2005; Vermeij, 2011), and predicted future eras (Henson et al., 2010; Olonscheck
et al., 2013; Steinacher et al., 2010). Although these effects were weaker or positive at
high latitudes, the overall global effect or rising temperature was negative. (Chavez
et al., 2011; Ryther, 1969). Additional temperature-driven shifts towards smaller
phytoplankton species have also have effects on fisheries by limiting to overall size
of marine predators (Norris et al., 2013). Sea surface temperature increases over
the past century far exceed any of the previous 10,000 years (Marcott et al., 2013),
and although human activities are likely contributing to this trend (I.P.C.C., 2007)
the issue remains contentious and debated. Under circumstances such as this, where
no consensus exists, taking the precautionary approach may be the best option. In
this instance, the precautionary approach would entail taking efforts to limit future
greenhouse gas emissions with the aim of mitigating global temperature increase.

In addition to mitigating declining phytoplankton trends, restoration may also
be a desired objective. Particularly, the key roles of marine phytoplankton in the
global carbon cycle has led some to advocate the ‘fertilization’ of vast areas of the
ocean with iron for the purpose of stimulating phytoplankton growth and increasing
carbon sequestration (Ney and Schoor, 2000). Indeed, there is strong evidence that
iron availability and phytoplankton production are strongly related at regional scales
over the past 1 million years (Murray et al., 2012). Contemporary studies using
field measurements have also observed strong relationships between iron addition
and phytoplankton (Behrenfeld et al., 1996; Martin and Fitzwater, 1988; Martin
et al., 1994). However, while fertilization increases production, it is unclear how
export production responds. Further, ocean fertilization has been the subject of
much debate and controversy (Chisholm et al., 2001), and some rightly claim that a

better understanding of the causes and consequences of altered marine phytoplankton
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production is an important prerequisite to any fertilization efforts (Chisholm et al.,
2001). Thus, better resolving how and why marine phytoplankton standing stocks
are changing may assist policy makers in making more informed decisions regarding
ocean fertilization and similar efforts.

Phytoplankton concentrations were observed to decline globally, yet increasing
trends were apparent in many coastal locations and were hypothesized to be related
to increases in land-based human activities and eutrophication (Jickells, 1998). Such
increasing phytoplankton concentrations in coastal locations can lead to subsurface
hypoxic regions or 'dead zones’ and are associated with altered ecosystem structure
and function. Our finding of coastal phytoplankton increase is indirectly supported by
observations of an exponential increase in marine dead zones since the 1960’s (Diaz
and Rosenberg, 2008). Mitigating the spread of these dead zones may be possible by

reducing the amount of land-based nutrient inputs.

8.3 Future Research Directions

Many interesting research questions have emerged from my thesis work. First and
foremost, my thesis highlights the need for continued ocean- and space-borne ob-
servational platforms to assess marine phytoplankton abundance. As re-iterated
throughout my thesis, the lack of consistently sampled and long-term phytoplank-
ton time-series continues to severely constrain our ability to understand how marine
phytoplankton is changing (Beaulieu et al., 2013; Henson et al., 2010; Saulquin et al.,
2013). At the time of this thesis, the length of the currently available remote sensing
Chl time-series is decades too short to accurately resolve sustained phytoplankton
changes. Yet, continued space-borne monitoring is the most promising method to
accurately assess future global marine phytoplankton dynamics. However, as is the
case now the accuracy and validity of these remotely sensed observations will need
to be verified against direct ship-based measurements. Further, Secchi depth mea-
surements have been collected using standardized methods for over 120 years (Sec-
chi, 1886), and provide accurate estimates of phytoplankton concentration which are

closely comparable with in situ or remote sensing measurements (Boyce et al., 2010,
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2012; Falkowski and Wilson, 1992; Lewis et al., 1988). Recent efforts to increase citi-
zen participation in Secchi depth sampling worldwide (i.e. Secchi App') may further
increase the utility of these valuable data. Efforts such as these will ultimately enable
the full and accurate resolution of long-term phytoplankton change.

Secondly, while my thesis addressed changes in marine phytoplankton standing
stock and the drivers and consequences of this change, it did not explore any species-,
or functional group-specific dynamics. Resolving the consequences of phytoplankton
change on processes such as climate, geochemical cycles, or the structure and func-
tioning of ecosystems will strongly depend on these species-specific dynamics. At the
time of this thesis, resolving such dynamics over centennial timescales was unfeasible.
However, recent methodological advances using remote sensing observations (Alvain
et al., 2008, 2005; Masotti et al., 2011; Uitz et al., 2010, 2009), theoretical model-
ing (Bopp et al., 2005), and empirical observations (Cermeno et al., 2008) have
increased our understanding of how phytoplankton functional groups are changing
over contemporary timescales. These advances may pave the way for examination
of these dynamics over longer and larger scales, ultimately yielding insight into the
consequences of phytoplankton change.

Thirdly, in my thesis work I attempted to explore the drivers of marine phy-
toplankton change. Due to the limited availability of long-term, large-scale time-
series of zooplankton or fish, my analysis of phytoplankton drivers was limited to
oceanographic variables which influence phytoplankton through ‘bottom-up’ pro-
cesses. While this approach is common, grazer abundance has also been found to
regulate phytoplankton abundance via ‘top-down’ processes in some instances (i.e.
Frank et al., 2005). These top-down processes are less frequently explored and are thus
poorly understood, but there is a pressing need to resolve the nature and relevance
of top-down regulation of phytoplankton, particularly as rising ocean temperatures
may increase grazing pressure (O’Connor et al., 2009).

Lastly, one of the strengths of the experimental approach is control, while one of
the drawbacks is scalability. The GEOMAR facility where the experiment was run is
state-of-the-art, and every attempt was made to establish a realistic representation

of a plankton community. Despite this, some ecological complexities could not be

Lwww1.plymouth.ac.uk/marine/secchidisk /Pages/default.aspx
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incorporated. It would be fruitful to attempt to ‘scale-up’ such experiments to more
accurately represent the real world. Including higher trophic level predators in the
experiments for instance may yield new information of the effects of warming on rates
of predation and how these effects may propagate to phytoplankton. Mitigating the
effects of algal wall growth on the experimental units may allow longer experiments to
be run, and enable temporal community dynamics to be better resolved. Lastly, the
experiment in my thesis was performed using a nearshore plankton community. Yet
since 90% of the ocean is open ocean and the majority of primary production occurs
there (Ryther, 1969), resolving the effects of ocean warming and climate change here
will be important. Running experiments on an open ocean plankton community may
be one way to achieve this.

Ultimately, fully resolving the patterns, drivers, and consequences of long-term
marine phytoplankton change requires the collection and analysis of field observa-
tions. For over 120 years, scientists have invested incredible amounts of effort and
expense to attain such data. Although such measurements are scattered in space and
time, my thesis demonstrates that with careful and appropriate analysis, clear pat-
terns and processes may be observable. This approach may be augmented by further
experimentation, process-based predictive modelling, and examination of patterns

over deep time, opening a wide arena for further investigation.
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Appendix A

Global Phytoplankton Decline Over the Past Century

A.1 Supplementary Methods

A.1.1 Overview.

An overview figure that summarizes data compilation and analyses steps and their

rationale is presented as Figure A.1.

A.1.2 Chl Data Compilation.

Publicly available upper ocean transparency- and in situ-derived total chlorophyll
(Chl) measurements were extracted from the National Oceanographic Data Center
(NODC), the Worldwide Ocean Optics Database (WOOD), and the Marine Informa-
tion Research Center (MIRC); (Table A.1). All duplicated Chl measurements were
removed. These data were collected over the course of a century by different institu-
tions and methods, hence their precision and accuracy may vary. The accuracy of in
situ- (Chly) and transparency-derived (Chly) Chl concentration may be affected by
several factors, including weather conditions, instrumentation, collection technique,
collection depth, and temporal changes in sampling methodology. Furthermore, all
Chl data sources can be subject to errors associated with data transcription and dig-
itization. Both Chlrand Chl; data were systematically filtered to remove measure-
ments associated with these sources of error. While some erroneous measurements
may possibly persist, analysis indicates that these represent a small fraction of the
total measurements and can be considered as random variation.

Only Chl; collected in the upper 20 m were extracted. Mean Chl values were calcu-
lated over depth for each sampling cast to minimize statistical dependence. Following
data extraction, we examined Chl; to investigate the effect of collection methods on

their accuracy. Chl collected using underway collection methods contained atypical
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frequency distributions. The remainder of collection methods yielded log-normal dis-
tributions, which are more typical. Since the accuracy of underway data could not
be empirically verified they were removed from the analysis (n=110,935).

All nearshore measurements (< 25 m depth or < 1 km from the nearest coastline)
were removed from the analysis (n1=252,640). Chl values which exceeded >50 mg
m~3 globally or >5 mg m~ in open ocean waters (> 200 m depth or >200 km from
the nearest coastline) were flagged as biologically improbable outliers and removed
(n=23,379). Chl measurements were also examined by their accession number (sub-
mitting institution) and cast number to determine the proportion of measurements
which were outliers within each accession number and cast. If over 25% of measure-
ments within a given accession number were flagged as questionable, all data from
that accession number were removed. This same technique was applied to each indi-
vidual in situ cast. This was aimed at removing data gathered from casts where the
instrumentation might not have been calibrated correctly or from accession numbers

where systematic data entry errors might have occurred.

A.1.3 Similarity of Chl Data.

For comparison, Chl; and Chlywere individually binned into 0.25° x 0.25° cells. For
each cell, monthly mean values were calculated individually for both Chl; and Chlrfor
each available year. Mean Chl values were calculated using a modified objective
weighting algorithm developed for scatterometer data (Levy and Brown, 1986; Lewis

et al., 1988). Spatial weighting functions were calculated as,

(5% — sij?)

Ws.,ij =
(82 4+ 57;)

(A.1)
Where S is the chosen value for the spatial distance scale (0.25°), and s;; is the
distance of the jth observation from the center of the ith cell. Temporal weightings

were calculated as,
(T3 — i)

Wrii = ——2=
T

(A.2)

Where T is the number of days in the kth month, and tj; is the time separation

of the jth observation from the center of the kth month. Weightings were combined
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for each unique cell and month as,

(Wsij + Wk
2

Chl; ), = (A.3)

This produces weightings of 1 at the center of the grid point and middle of the
month to near 0 at periphery of the cell and ends of the month. Great circle distances
between observations and the center of each cell (s;; ) were calculated using the
Haversine formula (Smart, 1960). Pearson correlation coefficients were then calculated
to examine the strength of the linear relationship between Chl; and Chly. Strong
positive relationships were observed between mean Chl; and Chly (r=0.52; P<0.001),
with increasing strength through time. The linear relationship was insensitive to
proximity to the coast, although the variability in Chl was slightly higher for shelf
areas.

To further explore the linear scaling of these data, model II linear regression
models were used (Legendre and Legendre, 1998; Sokal and Rohlf, 1995). Model
IT regression analysis is appropriate when both variables in the regression equation
are random (i.e. subject to error). We log-transformed both Chl data sets in order
to achieve bivariate normality and fitted major axis (MA) model II regressions to
the data. If Chl estimates from the two data sources were identical, one would
expect a Pearson correlation coefficient of 1, a linear slope of 1, and an intercept
of 0. We observed strong linear relationships between Chl; and Chly in shelf and
oceanic regions, and globally (Figure A.2). To further examine spatial patterns of
similarity, we extracted the standardized residuals from these regressions fitted to
the entire dataset and calculated the absolute mean residual for each 5° x 5° cell.
This value corresponds to the average difference between Chly and Chl; minimizing
the confounding effects of spatial and temporal variation. Spatial examination of the
mean residuals indicated that there was a greater discrepancy between Chl; and Chly
in more coastal areas (Figure A.2B). Excluding more coastal Chlrmeasurements had
a minor effect on the linear regression statistics and the higher residual variability
remained in coastal regions. Linear regression techniques were also used to examine
the effects of in situ collection methods on the linear agreement between Chly and
Chl;. These differences were negligible.

Blended Chl were compared against satellite-derived Chl concentrations extracted
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from the Sea-viewing Wide Field-of-view (SeaWiF§S; Figure A.3A), and Coastal Zone
Color Scanner projects (CZCS; Figure A.3B). Spatial patterns of the blended Chl
data broadly approximated those from remote sensing radiometry and major spatial
features such as the oligotrophic gyres, equatorial upwelling, and enhanced phyto-
plankton production in coastal and high latitude regions were well reproduced (Figure
A.30).

The similarity of Chly and Chl; was also examined using regression trees. Re-
gression trees use recursive partitioning to split data to explain the largest amount
of variation possible. Regression trees were fit to each of our 10 focal regions and
globally using the main model covariates and a dummy variable (5p) corresponding
to the data type (0=in situ; 1=transparency). This data type variable only appeared
in 2 of 11 regression trees and was confined to the lowest branches, indicating that

data type explained very little variation in overall Chl concentration.

A.1.4 Estimation of Chl Trends.

Trends in relative Chl concentration for each ocean region and 10° x 10° cell were
estimated from blended data using generalized additive models (GAMSs); (Hastie and
Tibshirani, 1986). GAMs are a flexible extension of generalized linear models that
allow the specification of the linear predictor (response) as a generalized linear or
smooth function of covariates. This approach can be advantageous when it is sus-
pected that the response varies as a complex non-monotonic function of covariates, or
where one expects complex interactions among covariates. The application of GAMs
to ecological data is rapidly growing in recently published works, especially in the

field of biological oceanography (Polovina et al., 2008; Walsh and Kleiber, 2001).

A.1.5 Statistical Models

The model covariates were selected to explain the largest proportion of the variation
in Chl while remaining parsimonious. Phytoplankton growth and abundance vary
spatially and temporally with changes in photosynthetically active radiation and nu-
trient availability, among other factors. We attempted to explain variability related
to these processes by including model covariates for mean seasonality (day or month

of the year), the water depth of sampling locations where Chl observations were taken
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(bathymetry), temporal change (year), and spatial changes (latitude and longitude).

Local-scale Chl trends were estimated by fitting individual GAMs to data in each
10° x 10° cell. For these models, we specified Chl as a linear function of year, as
a smooth function of bathymetry, and as a discrete function of month of the year.
Spatial Chl variability was explained by using individual smooth functions of latitude
and longitude. Following this, local Chl trends for each cell containing adequate data

(n=364) were estimated as follows:

n(w;) = Po+ B1Year;+ SaMonth; + fi(Bathymetry;) + fo(Lat;) + fs(Lon;) +¢; (A.4)

where 7 is the monotonic link function of the expected mean Chl concentration
1i, By is the model intercept, B; are parametric and f; are nonparametric effects
estimated from the data and ¢; is the model error term. A Gamma distributed error
structure and a log link were used.

To estimate regional Chl trends, more abundant data within each basin-scale re-
gion (n=10) led to modified covariate specification. For bathymetry, we used a 3-level
discrete variable defined as: i) less than 200 m, i) between 200 and 1000 m depth,
or 71) greater than 1000 m). Seasonality relates to variation in both sunlight and nu-
trients throughout each year. To explain variation in Chl associated with seasonality
we assumed that Chl varied as a smooth function of day of the year. This allowed
different patterns of seasonality to be fitted within each region. Since many regional
patterns of phytoplankton seasonality are well-known (i.e. Arctic, versus temperate
and tropical regions), examination of the estimated seasonality patterns provided a
useful verification to ensure the model was correctly specifying mean seasonal Chl
variability. Statistical dependence, whereby observations are not independently dis-
tributed, arises frequently in ecological data. For phytoplankton, spatial dependence
not captured by bathymetry or seasonality may be due to physical oceanographic
features such as fronts and eddies, or localized enrichment due to upwelling or an-
thropogenic contributions. A smooth spatial variable (latitude, longitude) was used
to capture potential spatial dependence not explained by bathymetry or seasonality.
The inclusion of this term also captured variability associated with spatial differ-
ences in sampling effort. Regional Chl trends were estimated by fitting GAMs to the

blended data in each region, in order to estimate Chl as a log-linear function of time



171

Table A.2: Regional trends in Chl estimated by GAMs as a continuous log-linear
time trend.

Region Byear SE P Deviance R? GCV EDF Scale Span

Arctic -0.01 0.00 0.00 0.57 041 0.57 25547 0.55 1899 - 2003
N.Atlantic -0.00 0.00 0.00 0.49 0.22 077 15527 0.74 1903 - 2006
E.Atlantic -0.01 0.00 0.00 0.70 046 0.72 13223 0.68 1911 - 1999
S.Atlantic  -0.04 0.00 0.00 0.62 037 091 5647 0.84 1911 - 1994
N.Indian -0.03 0.00 0.00 0.79 048 0.55 15210 0.52 1942 - 1997
S.Indian 0.03 0.00 0.00 0.73 051 1.16 9375 1.07 1941 - 2000
N.Pacific ~ -0.00 0.00 0.00 0.60 0.25 0.52 49067 0.52 1907 - 2008
E.Pacific -0.01 0.00 0.00 0.85 047 045 36987 0.43 1907 - 2005
S.Pacific -0.04 0.00 0.00 0.92 057 040 8002 0.36 1956 - 2003
Southern  -0.07 0.00 0.00 0.60 0.88 0.89 13293 0.83 1912 - 2002

Notes: The slope is the estimated instantaneous linear rate of change in abundance, SE=standard error, P is probability that
the slope is not different from zero, R2= the proportion of variance explained by the covariates, GCV=generalized cross validation score.

as

n(u;) = Bo + f1Year; + BaMonth; + fi(Bathymetry;) + fo(Lat;, Lon;) + ¢ (A.5)

and to estimate Chl as a log-smooth function of time as

n(u;) = Bo + fri¥ear; + BoMonth; + fi(Bathymetry;) + fo( Lat;, Lon;) +¢;  (A.6)

Additional details regarding the specification of parametric and nonparametric
effects for local and regional models are presented in Table S2. Summary statistics
for the regional model are also detailed in table A.2.

Global rates of phytoplankton change were derived by estimating the random-
effects meta-analytic means (Cooper and Hedges, 1994) across the 10 individual re-
gional estimates A.2. Global rates were estimated as both inverse variance- and ge-
ographic area-weighted means, but results obtained by these weightings were almost

identical. Inverse variance-weighted means were used for inference.

A.1.6 Additional Robustness Analyses

Regional trends were estimated for Chly and Chl; separately as a smooth function of
time in each region to determine if trends were similar between data types. Despite

large differences in the spatial and temporal coverage of the individual data types,
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estimated regional Chl trends appeared similar (Figure A.4). There were minor dis-
crepancies between trends derived from the two data sources in some regions. These
differences were likely the result of limited data availability in these regions, rather
than differences between data types. Regional models were also fitted to the blended
dataset for global and open ocean areas individually for each region (Figure A.5).
Although the overall global rate of change was similar, several Southern Hemisphere
region estimates were different in the open oceans. Spatial analysis of the resid-
uals from these regional models indicated more outlying residuals in the Southern
Hemisphere (Figure A.5C). An emergent pattern from these analyses is an elevated
degree of uncertainty for trends estimated for Southern Hemisphere regions where
data availability is relatively low.

Local-scale trends were estimated for Chly and Chl; individually as well (Figure
A.6). Despite the variable temporal coverage of the data within each 10° x 10° cell,
trends estimated from each data source individually were broadly similar in most
areas. The magnitude of change in each cell was generally greater when estimated
from Chl;, which may reflect greater Chl changes over more recent time periods.

After blending in situ and transparency data, the temporal availability of data
within each 10° x 10° cell was variable. Following our robustness approach for the
regional models, we estimated local-scale trends from blended data using only data
since 1950 as well as the full series (Figure A.7). The spatial patterns of Chl trends was
largely unchanged. The linear correlation between estimates using all data against
those using only data since 1950 was high (r=0.985; P<0.0001), and the estimated
direction of temporal change different in only 2% (n=4) of all cells showing statistically
significant effects (n=198). Using only data since 1950 resulted in 61% (n=120) of
cells showing statistically significant declines and appeared to amplify the trends
observed when using all data.

For in situ data, we also tested the effect of Chl sampling depth (m) and temporal
changes in sampling methodologies within the local and regional model frameworks.
Results indicated that there is little variability in Chl concentration associated with

sampling depth within the upper 20 m.
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A.1.7 Notes on Model Inference, Specification and Diagnostics

Because maximum likelihood (ML) estimation is inappropriate when including smooth
functions as model covariates, all GAMs were fit using penalized likelihood (PL) ap-
proximation by penalized iteratively re-weighted least squares (P-IRLS). In PL ap-
proximation the model negative log likelihood is modified by adding a penalty which
is scaled by a smoothing parameter () for each nonlinear function. The A\ parameter
represents the tradeoff between model fit and model smoothness and is estimated by
generalized cross-validation (GCV) or Un-biased Risk Estimation (UBRE). Because
overfitting is common when using GCV estimation, the influence of the effective de-
grees of freedom on nonlinear estimation was inflated by a factor of 1.4 (ref. Kim
and Gu, 2004). All additive and generalized additive models were estimated using
the statistical software R (V. 2.10) and packages (mgcv) developed by Wood (Wood
and Bretherton, 2006).

Model assumptions were checked for all regions and all individual 10° x 10° cells,
and residuals were examined against all covariates to determine if they were ade-
quately specified. Regional model residuals were also examined spatially to examine
any factors affecting model fits (Figure A.5C). Most outlying residuals occurred in
the Southern Hemisphere, likely reflecting the relative scarcity of data in these re-
gions, rather than improper model specification. The presence of collinearity among
model covariates was examined by calculating the variance inflation factor (VIF);
(ref. Heiberger and Holland, 2004) for all models. VIF values over 5 were considered
evidence of collinearity.

Statistical autocorrelation, which violates the assumption of independence among
observations, is common in spatio-temporal data sets. If not properly accounted for,
autocorrelation can artificially inflate the degrees of freedom and bias the significance
test. We accounted for temporal autocorrelation by including a temporal smooth ef-
fect and for spatial autocorrelation by including a latitudinal and longitudinal smooth
effect within all GAMs. We then tested the effectiveness of these measures by exam-
ining the model residuals. If autocorrelation was still present, spatial and temporal
patterns would be apparent in the model residuals. Omni-directional semi-variogram

and correlogram analyses (Cressie, 1993) of model residuals in each region before and

thttp://cran.r-project.org
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after fitting the spatial variable indicated that our modeling approach was very ef-
fective at minimizing spatial autocorrelation (Figure A.8A). Although residuals from
models without spatial effects exhibited clear spatial structure (Figure A.8B), those
from models including spatial effects did not (Figure A.8C). Temporal autocorrelation
was examined by calculating the mean model residual at 10-day intervals and fitting
temporal autoregressive models. No significant temporal structure was observed in

the model residuals.

A.1.8 Physical and Climate Data and Analyses.

To calculate the bathymetry associated with each Chl sampling station, we used
global gridded bathymetry data (30-arc second resolution), extracted from the Gen-
eral Bathymetric Chart of the Oceans database (GEBCO_08). To calculate the
distance from the nearest coastline, we used data extracted from the Global Self-
consistent, Hierarchical, High-resolution Shoreline Database (GSHHS v1.10). The
bathymetry and distance from the nearest coastline were calculated for each Chl
measurement using Generic Mapping Tools software? (GMT); (Table A.1).

We extracted climate anomalies corresponding to the El Ninio Southern Oscillation
(ENSO); (Dec-Mar average), the Pacific Decadal Oscillation (PDO), the North At-
lantic Oscillation Index (NAO), the Atlantic Multidecadal Oscillation (AMO), the In-
dian Ocean Dipole Index (IOD), the Arctic Oscillation Index (AOI), and the Antarctic
Oscillation Index (AAO) from the standard sources listed in Table A.1. The bivari-
ate ENSO index represents reconstructed SST anomalies and Southern Oscillation
Index (SOI) anomalies. The IOD represents the normalized anomalous SST gradi-
ent between the Western Equatorial Indian (50°E to70°E and 10°S tol10°N) and the
South Eastern Equatorial Indian Oceans (90°E to 110°E and 10°S to 0°N) termed
the Dipole Mode Index (DMO); (ref. Saji et al., 1999). The NAO represents the
first principle component from a rotated principle components analysis (RPCA) ap-
plied to monthly standardized pressure anomalies across the North Atlantic (20° to
90°N); (ref. Barnston and Livezey, 1987). The AMO represents the area-weighted
SST average over the North Atlantic (0° to 70°N). The PDO is described by the

leading principal component of monthly SST anomalies in the North Pacific Ocean

http://gmt.soest.hawaii.edu
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(>20°N). The Arctic Oscillation (AO) index or Northern Annular Mode, represents
sea level pressure anomalies across the Arctic and North Atlantic Oceans (>20°N).
The Antarctic Oscillation (AAO) index or Southern Annular Mode represents the
leading principle component of geopotential height anomalies south of 20°S (ref.
Thompson and Wallace, 2000). High-pass convolution filters (window=9) were ap-
plied to all indices to remove high-frequency variability from the series.

We examined the effects of climate indices by taking yearly model predicted Chl in
each of 10 regions (i.e. with seasonal, spatial, and depth effects controlled for), con-
verting these to de-trended, normalized anomalies and cross-correlating them against
relevant climate indices in each region.

Sea surface temperature (SST) data were extracted from the Hadley Centre Sea
Surface Temperature data set (HadISST; 1899-2009); (ref. Rayner et al., 2003). Wind
intensity data were extracted from the National Oceans and Atmospheric Administra-
tion (NOAA) Objectively Analyzed Air-Sea Fluxes (OAFlux) from the Global Oceans
database (1958-2009); (ref. Yu et al., 2007). We calculated mixed layer depth (MLD)
from subsurface ocean profiles of temperature and salinity extracted from Hadley EN3
v.2a (Met office; 1950 -2009); (Table A.1); (ref. Ingleby and Huddleston, 2007). We
used a finite MLD definition based on A density (o;)=0.125 kg m (refs. Levitus,
1982; Kara et al., 2000). The finite difference criterion was chosen opposed to a gra-
dient criterion to estimate MLD because it has been experimentally shown to be more
stable (Bainerd and Gregg, 1995). The initial temperature and density values were
chosen at a depth of 10 m to eliminate any potential bias in the profile due to ‘skin
effects’” at the ocean surface (Fairall et al., 1996). Linear interpolation was used to
calculate the exact values for MLD.

Global changes in physical variables were estimated by fitting linear models con-
taining covariates for year and month to data in each 1° x 1° and 10° x 10° cell
(Figure A.9). Regional changes were estimated by fitting additive models containing
covariates for year, month, and location (latitude, longitude) in each region. Since
these data were extracted on a global 180° x 360° grid, each individual 1° x 1° grid cell
was area-weighted to account for this. To examine the effects of changing SST, MLD,
and wind intensity on Chl, all datasets were merged by location (1° x 1° cell), year,

and month, and both local and regional models were re-fitted with a physical driver
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effect estimated. This approach allows isolation of the effects of physical drivers on
Chl while removing variability associated with other model covariates (i.e. year, day,
latitude, longitude and depth). Since VIF analysis indicated collinearity among some

physical variables, individual models containing each physical variable were fit.

A.1.9 Potential Sources of Error.

Limitations in spatial and temporal data availability increase uncertainty in model
inference. In the Southern Hemisphere for instance, confidence intervals were wider,
estimates fluctuated more, and model residuals were greater, indicating increased
uncertainty in these areas due to a relative scarcity of data. We have accounted
for this uncertainty by inverse variance-weighting regional estimates when deriving
the global mean Chl trends, and also by providing trend estimates using only post-
1950 data for comparison. Despite these measures, the patchy nature of the data
remains a potential source of uncertainty, especially in the Southern Hemisphere.
Furthermore we note that our regional models estimate Chl trends averaged over
larger spatial scales and provided little insight into mesoscale differences in trends.
We attempted to partly remedy this issue by estimating ‘local-scale’ phytoplankton
trends at 10° x 10° resolution (Figure A.2). Yet, these local-scale models made
spatial comparisons difficult due to the different temporal data coverage among cells.
Likewise, inconsistency of temporal sampling effort between provinces and cells raises
the possibility that sampling intensity was not adequate to fully resolve temporal
changes in some regions.

Another potential source of error may be associated with the change in filters used
to separate phytoplankton for the extraction of Chl. The earlier use of Whatman
GF/C glass fiber filters may have underestimated the concentration of Chl (ref.
Venrick et al., 1987). This potential bias is only relevant for in situ data and would
result in an apparent increase in Chl. Hence, if there were any biases introduced by

changes in filters, it would render our estimates of Chl decline conservative.
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Figure A.1: Schematic of statistical analyses.
Flowchart and table depicting the data processing steps, their objectives, rationale,
and implementation.
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Figure A.2: Comparison between transparency- and in situ-derived Chl data.

(A) Linear relationship between transparency- and in situ-derived Chl represented by
model IT major axis regression model (red line). Points are logl0 mean Chl per year,
month, and 0.25 degree cell. Color of the points represents the number of observations
within each bin. Dashed line represents an idealized slope of 1. Pearson correlation
coefficient (r) and sample size (n) are shown. (b) Absolute standardized mean model
residuals from linear models in (A) binned to 5 degree cells. White areas are cells
where no matchups exist.
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Figure A.3: Chl climatology comparisons.

(a-c) Averaged Chl concentration derived from (A) the Sea-viewing Wide Field of
view Sensor (SeaWiFS), (B) the Coastal Zone Color Scanner (CZCS), and (C) blended
transparency and in situ data. All data were log-transformed and averaged per 5
degree cell for comparison. Seasonal effects were not removed.
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Figure A.4: Regional Chl trends by data source.

Estimated smooth rates of Chl change from GAM models fitted to each data source
(n=2) and basin (n=10). Blue colors indicate trends estimated using transparency
data and green using in situ data. Shaded areas are the 95% confidence limits for
each trend.
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Figure A.5: Chl trends by ocean zone.

Estimated rates of Chl change in each region (n=10) from GAM models fitted to
all available data (A), and using data in open ocean areas, where water depths are
>200 m (B). Means and 95% confidence intervals are shown. (C) Mean standardized
residuals from 10 regional models in (A) plotted on a 1° X 1° degree grid. Colors
depict the mean magnitude of unexplained residual variation in each cell. Grey colors
depict missing data.
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Figure A.6: Local Chl trends separated by data source.

Mean instantaneous rates of Chl change estimated for each 10°x10° cell containing
adequate data. Trends were estimated for in situ (A) and transparency data (B).
Yellow and red represent cells where Chl concentration has increased, blue represents
Chl decrease, and white indicates cells lacking sufficient data.
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Figure A.7: Spatial variability in phytoplankton trends using post-1950 data.

(a) Baseline year and temporal span of Chl data used in local models. (B) Mean
instantaneous rates of Chl change estimated for each 10° x 10° cell (squares; n=358).
Yellow and red indicate cells where Chl concentration has increased, blue indicates
Chl decrease, and white indicates cells lacking sufficient data. Cells bordered in black
denote statistically significant rates of change (P<0.05).
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Figure A.8: Effects of removing spatial autocorrelation.

(a) Omnidirectional correlogram analysis of mean model residuals from all regional
models per 1° cell before (dashed line) and after (solid line) including the spatial
effect. (b-c) Spatial examination of regional GAM residuals before (B) and after (C)
including the spatial effect. Colors depict the mean model residual in each 1° X 1°
cell.
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Figure A.9: Physical drivers.

(a) Estimated changes in SST (1° resolution 1899-2009), (B) MLD (1° resolution
1955-2009), and (C) Wind intensity (1° resolution 1958-2009) over the available time
periods. Blue depicts declines and yellow and red depict increases.



Appendix B

Boyce et al. Reply

In their thoughtful responses to our article on global chlorophyll (Chl) trends (Boyce
et al., 2010), Mackas (Mackas, 2011), Rykaczewski and Dunne (RD);(Rykaczewski and
Dunne, 2011), and Mcquatter-Gollop and colleagues (McQuatters-Gollop et al., 2011)
suggest that some of the variation observed in our analysis may be explained by a pos-
sible bias, whereby transparency-derived chlorophyll (Chly) measurements overesti-
mate phytoplankton abundance relative to direct in situ chlorophyll (Chl;) measurements.
While we cannot entirely discount the possibility that changes in sampling methods
may introduce fractional bias, extensive sensitivity analyses detailed below show that
this is not responsible for the observed Chl declines. Furthermore, the accuracy of
Chly as a proxy of surface Chl has been independently verified (Lewis et al., 1988;
Falkowski and Wilson, 1992), and indicate that Chly explains only 0.5-1.5% less of
the variance in surface Chl than precision measurements of water-leaving radiance
(remotely sensed ocean color)(Falkowski and Wilson, 1992).

Mackas and RD suggest that a systematic bias between Chly and Chl;, combined
with unbalanced temporal sampling effort may have influenced the direction of Chl
trends. However, multiple lines of evidence indicate that this is not the case. We
adjusted Chly using the corrective algorithm suggested by Mackas (Mackas, 2011,
Eqn. 3a, 3b) and re-estimated Chl trends. This improved the agreement between Chly
and Chl; (6=0.98; r*=0.6) and did not change the direction of Chl trends in any of
the regions. The magnitude of change varied in some regions and the proportion of
declining cells dropped from 59% to 53%; however, our original conclusions remained
valid. (2) In our paper we compared Chly and Chl; using model II major axis
regression, assuming error in both variables (Boyce et al., 2010, Figure 2A). However,
the simulations performed by RD use our model II regression parameters to predict

simulated Chl values using model I ordinary least squares (OLS) regression, which is

Published as: Boyce, D. G., M. R. Lewis, and B. Worm. 2011. Boyce et al. reply. Nature 472:
ESE9.
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based on a different set of statistical assumptions and will therefore bias their analysis
(Ripley and Thompson, 1987). There are two ways to avoid this problem. First,
simulated values can be computed using model I regression as RD have done, but
using parameters estimated from a model I regression of Chly and Chl; matchups.
Such model I analysis reveals that Chly are lower on average than Chl; (6=0.83;
r’=0.6); hence the simulation should adjust Chly measurements downward, rather
than upward as RD have done. Alternatively, simulated values can be computed
using model IT regression with the appropriate parameters of our fitted model (Boyce
et al., 2010). The error introduced by application of an inappropriate model is further
highlighted by the observation that the Chl trends simulated by RD (Rykaczewski
and Dunne, 2011, Fig. 2) appear opposite to our results! across much of the ocean; for
example, their simulated declines in coastal areas were not reproduced by our analyses
(Boyce et al., 2010, Figure 2B). Furthermore, while RD attribute Chl increases in the
Indian Ocean to an increasing proportion of Chly measurements through time, we did
not observe such a pattern in our database: like other regions, both Indian basins show
a decreasing proportion of Chly and an increasing proportion of Chl; measurements
through time. (3) By removing all Chl measurements collected in shelf regions (<200
m depth) the agreement between Chly and Chl; was improved (b=1.016, n=11,329
matchups). Re-fitting models to this filtered data set (n=283,681) did not alter the
direction of trends in any of the regions examined, nor did it change the local trends,
suggesting that the observed declines are robust. (4) Lastly, our statistical models
reproduced with high fidelity the well-known seasonal cycles of Chl in different regions
and demonstrated clear coherence between Chl and leading climate indicators; this
would not be expected if a systematic bias were confounding the data.

In a related comment McQuatters et al. (MG); (McQuatters-Gollop et al., 2011)
claim that the removal of all Chly observations changes the trends to positive in the
Atlantic and Pacific regions. We caution that comparing trends from Chly or Chl;
individually may be misleading, since the length of time series, spatial coverage, and
availability of data can be very different. However, estimating trends using only Chl;
measurements, changed the Chl trend to positive in the South Atlantic (P=0.10; 73%
of all measurements) and North Pacific (P<0.05; 26% of all measurements) regions

only. Likewise, estimating trends since 1980 (as suggested by MG) did not affect the
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direction of change in any of the Atlantic regions.

Furthermore, MG present Continuous Plankton Recorder (CPR) color index data
suggesting that phytoplankton abundance in the North Atlantic has increased, rather
than decreased as we reported. However, there are important differences between
the CPR data and those used in our analysis, which may explain some of the ob-
served discrepancies. As MG mention, the CPR retains the largest phytoplankton
cells (>270 pm; (refs. McQuatters-Gollop et al., 2011), and the vast majority of phy-
toplankton cells — which are much smaller - are not sampled quantitatively (Tarran
et al., 2000). Thus a CPR-derived color index may not be strictly comparable to
direct Chl or transparency measurements. Additionally, the CPR dataset almost ex-
clusively contains measurements sampled north of 40° latitude (McQuatters-Gollop
et al., 2011, Fig. la) , and many observations from inshore areas, which is contrary
to our approach. The suggested phytoplankton increase across the Atlantic is also
not supported by an independent analysis of in situ and satellite data collected over
similar timescales (Gregg et al., 2003).

MG also observe that some shorter-term (~20 yr) localized time series show in-
creases rather than decreases in Chl. We do not dispute this but suggest that com-
paring such series to the longer-term (>50 yr), basin-scale trends we report may be
misleading. Ours (Boyce et al., 2010) and others’ (Behrenfeld et al., 2001; Martinez
et al., 2009; Behrenfeld et al., 2006; Henson et al., 2010) analyses demonstrate that
large-scale, long-term data sets are needed to isolate low-frequency trends from the
yearly to decadal fluctuations which are often driven by climate oscillations. Compar-
isons of ours and other long-term regional estimates indicate broad agreement (Gregg
et al., 2003; Gregg and Conkright, 2002; Falkowski and Wilson, 1992). Furthermore,
since we included the cited BATS, HOTS, and CalCOFI time series in our analysis,
the important contributions that these data make are fully accounted for. As shown
both in our paper (Figure A.2B; Boyce et al., 2010), and in the CPR time series
(McQuatters-Gollop et al., 2011; Reid et al., 1998), phytoplankton has increased in
some areas and thus it should not be surprising that some time series reproduce this
trend.

In conclusion, we welcome the critical suggestions offered by the authors and agree

that the inter-calibration of different Chl measurement techniques is an ongoing and
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important topic. The above-mentioned requirement for long time-series, the relatively
low coverage of historic Chl measurements across the global oceans, and the multitude
of available Chl measurement techniques necessitate the use of synthetic Chl time
series for any global long-term analysis. Based on the extensive robustness analyses
reported here and previously, we conclude that the observed global decline in Chl
is independent of the data source used, and is not biased as a result of combining

transparency and in situ data.



Appendix C

Oceanographic Drivers of Global Chlorophyll Changes Over
the Past Century

Table C.1: Published phytoplankton time series and associated metadata.

Variable Model used Distribution Link
EKE GLM Gamma Log
Ice GLM Binomial Logit
Salinity Linear Gaussian

SST Linear Gaussian

Frontal energy Linear Gaussian
Stratification =~ GLM Gamma Log
Wind GLM Gamma Log
Cloud Linear Gaussian
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Figure C.1: Relationships between oceanographic variables and Chl.

All available space-, and time-matched oceanographic variables (x-axes), are plotted
against Chl (y-axes). Columns are (A) Raw data, (B) seasonal and spatial variability
accounted for, (C) seasonal, spatial, and long-term variability accounted for, and (D)
seasonal, spatial, long-term, and climate variability accounted for. Colours depict the
number of observations per pixel. Dashed line is the linear trend, and the dashed line
is a non-linear (spline) trend fitted to the data. Variables have been transformed to
approximate the normal distribution where necessary.
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Figure C.2: Relationships between oceanographic variables and Chl as a function
of latitude

Univariate linear relationships between all oceanographic variables and Chl in each
10° x 10° degree cell as a function of latitude. Columns are (A) Raw data, (B) seasonal
and spatial variability accounted for, (C) seasonal, spatial, and long-term variability
accounted for, and (D) seasonal, spatial, long-term, and climate variability accounted

for. Colours depict the 10° latitude band where the relationship was observed.
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Figure C.3: Spatial distribution in the effects of oceanographic variables on Chl.
Spatial distribution in the univariate effects of oceanographic variables on Chl.
Columns are (A) Raw data, (B) seasonal and spatial variability accounted for, (C)
seasonal, spatial, and long-term variability accounted for, and (D) seasonal, spatial,
long-term, and climate variability accounted for. Red denotes negative effects of the
driver on Chl and red denotes positive effects. The size of the symbol depicts the
proportion of variance explained by the oceanographic variable (range: 0 to 1). White
areas contain insufficient data from analysis.
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Figure C.4: Effects of the oceanographic variables on Chl as a function of latitude.
Latitudinal gradient in the univariate effects of the oceanographic variables on Chl
estimated on a 10° x 10° grid. Columns are (A) Raw data, (B) seasonal and spatial
variability accounted for, (C) seasonal, spatial, and long-term variability accounted
for, and (D) seasonal, spatial, long-term, and climate variability accounted for. Points
are the estimated effect of the variable on Chl within each 10° x 10° cell. The shaded
bars are the median effect values for each 10° latitude bin. Trend lines are GAMs
estimates of the effects as weighted smooth functions of latitude; weightings are the
inverse of the individual estimate standard errors. Blue shaded regions are the 95%
confidence intervals for the trend lines.
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Figure C.5: Oceanographic variables explaining the largest proportion of Chl
variability.

The oceanographic variables explaining the largest proportion of Chl variability within
each 10° x 10° are cell plotted spatially. Rows are (A) Raw data, (B) seasonal
and spatial variability accounted for, (C) seasonal, spatial, and long-term variability
accounted for, and (D) seasonal, spatial, long-term, and climate variability accounted
for. Colours depict the oceanographic driver and the size of the symbol depicts the
proportion of Chl variance explained by that oceanographic variable. This procedure
was undertaken (A) using the raw data, and (B) after accounting for spatial, seasonal,
inter-annual, and climate variability.
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Figure C.6: Effect of oceanographic drivers on Chl after accounting for
stratification effect.

Shaded bars depict the proportion of 10° x 10° cells where (C) each oceanographic
variable was the strongest single predictor of Chl, and (D) the effect of each oceano-
graphic variable on Chl was statistically significant (p<0.05) after accounting for the
effects of stratification on Chl. Only the cells where analysis was possible were used.
Colours depict the variability accounted for prior to the analysis, where dark blue
is the raw data, and light blue is the data after accounting for spatial, seasonal,
inter-annual, and climate variability. Vertical lines represent the 95% Wilson score
confidence intervals for the proportions.



Appendix D

Effects of Sea Surface Warming on Marine Plankton

D.1 Mesocosm Experiment: Initial Conditions.

Table S1. Initial values of physical, chemical, and biological components. Start

temperature in the cold treatment=8°C, and in the warm treatment=14°C.

D.2 Effects of Warming on Plankton Stability.

Here we interpret and discuss the effect of temperature on the temporal stability
of measured variables. We calculated the coefficient of variation (CV) of each mea-
sured variable within each individual mesocosm as a measure of normalized temporal
stability.

For each measured variable we used ordinary least squares regression equations to
estimate temporal stability as a linear function of nutrients, temperature, and their
interaction. Backward model selection was undertaken according the Akaike informa-
tion criteria (AIC) score. Using this analysis, positive model effects are destabilizing
and negative effects are stabilizing (Table S2).

Our analysis of temporal stability suggest that ocean warming has destabilizing
effects on plankton communities, significantly on heterotrophs (copepods, ciliates and
HNFs) and phytoplankton biomass (Figure D.2). This suggests that warming has not
only an impact on the productivity, but it may also increase variability within pelagic
ecosystems making future changes in the ocean productivity harder to predict.

Table S2. Temporal variability of selected biological components estimated as
linear functions of warming. Significant model effects (p<0.05) are denoted in bold

text.
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Appendix E

Patterns, Drivers and Ecosystem Consequences of Marine

Phytoplankton Change

E.1 Data Sources and Methods

All data used in this were extracted from publicly available sources. Publication
statistics used to produce figure 1 were extracted from SciVerse Scopus! and the
Thomsom ISI Web of Science?, which represent two of the largest abstract and citation
data bases for peer-reviewed scientific literature. To standardize the proportion of
publications for each marine taxa, the number of articles published in each year was
divided by the total number of published articles in the same year and multiplied by
100. Temporal trends in the scientific literature on phytoplankton were estimated
using generalized additive models (GAMs); (Hastie and Tibshirani, 1986). GAMs are
an extension of generalized linear models (GLMs) which enable the specification of
the response as a smooth function of covariates.

Phytoplankton abundance as indicated by chlorophyll-a (Chl; mg m~3) was de-
rived from remotely-sensed ocean-leaving radiances measured by the Sea-viewing
Wide Field-of-view Sensor (SeaWiF'S; (McClain et al., 2004). Climatological surface
nitrate concentrations (N; pmol L-') were extracted from the NODC World Ocean
Atlas (2009) and are available as global 1 by 1° objectively analyzed measurements.
Zooplankton biomass measurements (mg C m—?) were extracted from the COPEPOD
database (O’Brien, 2005) and are available at a near-global 1° by 1° resolution.

Standardized time series of westerly weather, phytoplankton, zooplankton, her-
ring, and kittiwake breeding success as reported by (Aebischer et al., 1990) were

extracted as yearly averages using data digitization software®. Indices of the North

Atlantic Oscillation Index (NAO), and the Atlantic Multidecadal Oscillation (AMO)

Lwww.info.sciverse.com /scopus
2www.apps.webofknowledge.com
3www.getdata-graph-digitizer.com
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were extracted from the sources listed in Table S1. The NAO represents the first
principle component from a rotated principle components analysis (RPCA) applied
to monthly standardized pressure anomalies across the North Atlantic (20° to 90°N);
(ref. Barnston and Livezey, 1987). The AMO represents the area-weighted SST av-
erage over the North Atlantic (0° to 70°N). To remove high-frequency temporal vari-
ability, all series were smoothed using GAMs. Following this smoothing procedure,

all series were re-scaled such that they were represented on the same scale (between
-1 and 1).
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