
ULTRAFAST QUANTUM CONTROL OF EXCITON DYNAMICS IN
SEMICONDUCTOR QUANTUM DOTS

by

Angela Gamouras

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

September 2013

© Copyright by Angela Gamouras, 2013



“If you have an opportunity, you must take it!” - M. Senba, 2006

ii



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations and Symbols Used . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Semiconductor Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Qubit Encoding and Control in Quantum Dots . . . . . . . . . . . . . . . 7

1.4 Experimental Approaches for Characterization and Optical Control . . . . 12

1.5 Experimental Demonstrations of Optical Control: Previous Work . . . . . 14
1.5.1 Coherent Control in Single Quantum Dots . . . . . . . . . . . . . 14
1.5.2 Coherent Control Experiments in Quantum Dot Ensembles . . . . 20

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Optical Properties of Semiconductor Nanostructures . . . . . . 25

2.1 Electronic Structure of III-V Semiconductors . . . . . . . . . . . . . . . 25

2.2 Linear Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Coherent Optical Control of Excitonic Transitions . . . . . . . . . . . . . 33
2.3.1 Optimal Quantum Control Using Pulse Shaping . . . . . . . . . . 37
2.3.2 Test Gates for Optimal Quantum Control . . . . . . . . . . . . . 38
2.3.3 Pulse Shaping Mask Optimization . . . . . . . . . . . . . . . . . 42

2.4 Optical Microcavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Microcavity Transmission and Reflection . . . . . . . . . . . . . 43
2.4.2 Angle Dependence of Microcavity Transmission and Reflection . 45

Chapter 3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Self-Assembled Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Continuous-Wave Photoluminescence and Photoluminescence Excitation 51

iii



3.3 Femtosecond Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Dispersion Compensation and Pulse Characterization . . . . . . . . . . . 53

3.5 Optical Control Experiments . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Pump-Probe Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.1 Differential Transmission . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 Optically Engineered Ultrafast Pulses for Controlled Rotations

of Exciton Qubits in Semiconductor Quantum Dots . . . . . . 63

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Numerical Pulse Shape Optimization for Controlled Rotations . . . . . . 66

4.4 Experimental Implementation of Optimized Pulse Shapes . . . . . . . . . 71
4.4.1 Quantum Control Apparatus . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Dispersion Compensation . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Shaped Pulse Characterization . . . . . . . . . . . . . . . . . . . 74

4.5 Experimental Limits on Quantum Gate Performance . . . . . . . . . . . 78

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5 Simultaneous Deterministic Control of Two Solid State Qubits

Using Engineered Optical Pulses . . . . . . . . . . . . . . . . . 81

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Description of Model . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.3 Experimental Limitations on Gate Fidelity . . . . . . . . . . . . 96

Chapter 6 Energy-Selective Qubit Encoding in InAs/InP Quantum Dot En-

sembles Using a One-Dimensional Optical Microcavity . . . . . 98

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . 107

iv



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix A Copyright Permission . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix B Multimedia Descriptions . . . . . . . . . . . . . . . . . . . . . 127

B.1 Movie S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 Movie S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

v



LIST OF TABLES

Table 4.1 Optimum pulse parameters, including operation gate time (GT),
obtained for the amplitude shaping protocol for a range of biexciton
binding energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 4.2 Optimum pulse parameters, including operation gate time (GT),
obtained for the phase shaping protocol for a range of biexciton
binding energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 4.3 Calculated change in fidelity for the C-ROT gate associated with
different sources of error determined from the measured pulse char-
acteristics. The deviation from the ideal pulse shape is estimated
using the ratio τ /τTL=1.002, which describes the accuracy of the
applied dispersion compensation. Peak to peak pulse fluctuations
(0.5%) and wavelength instabilities (±0.2 nm) reflect the character-
istics of the OPO used in our experiments and may not represent
fundamental limits. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



LIST OF FIGURES

Figure 1.1 (a) Energy level diagram of two-level system with ground state |0〉
and excited state |1〉. (b) Bloch sphere representation of occupation
and coherence in the two-level system. The components of the
Bloch vector �S are given by Sx = 2Re{c1c

∗
0}, Sy = −2Im{c1c

∗
0},

and Sz = |c1|2 − |c0|2 which describe the real and imaginary com-
ponents of the ensemble average coherence and state occupation
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 (a) Schematic diagram of the discrete energy band structure re-
sulting from three-dimensional quantum confinement, where Ev

and Ec are the valence and conduction bands respectively, and z
indicates the growth direction of the structure. (b) AFM image of
InAs SAQDs grown on GaAs. Image courtesy of D. G. Deppe. . . 5

Figure 1.3 Examples of qubit states in semiconductor quantum dots: (a) Two-
qubit excitonic transitions in an individual QD. (b) C-ROT energy
level diagram, where |00〉, |01〉, |10〉 and |11〉 are the ground state,
oppositely polarized exciton states, and the biexciton respectively.
The biexciton binding energy is given by Δ. (c) π-pulse excitation
populating trion spin state. (d) A 2π-pulse in this level scheme
does not change the state occupation, but results in a rotation of
electron spin. (e) Electron qubit level scheme indicating transitions
between valence-band states |mz = ±3/2〉 and conduction band
states |mx = ±1/2〉 in the presence of a magnetic field. . . . . . . 8

Figure 1.4 (a) Dressed state representation of population transfer between
the ground state |0〉 and |X0〉. (b) Energy level diagram show-
ing neutral exciton (X0) excitation and negatively charged exciton
emission (X−). (c) Measured (circles) and modeled (solid curve)
Rabi oscillations using TL pulse excitation. Squares denote popu-
lation of X0 with strongly chirped pulse excitation. . . . . . . . . 9

Figure 1.5 (a) Single electron energy-level diagram depicting a CWPL experi-
ment. Injected carriers (i.e., electron-hole pairs) radiatively relax
and emit photons from the QD energy states. The downward arrow
indicates emission on the ground state optical transition. (b) Exam-
ple PLE energy diagram, shown in a two-particle picture, in which
|1〉 and |2〉 are excitons excited on the ground and first excited state
transitions, respectively. Laser excitation populates state |2〉 which
decays non-radiatively to state |1〉. The radiative PL emission from
state |1〉 is detected. . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



Figure 1.6 Differential transmission data collected by Stievater et al. demon-
strating Rabi oscillations in a single quantum dot. (a) Measured
and calculated differential transmission signals for various pump
powers and pulse areas. (b) Differential transmission data versus
pump power with associated calculated pump-probe signal versus
pulse area at a fixed delay. . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.7 (a) Energy level diagram indicating the optical control scheme
used by Wang et al., involving excitation of the first excited state
transition and detection of PL from the ground state transition.
(b) Results of Rabi rotation experiments by Wang on oppositely
polarized exciton transitions in a singe InGaAs QD. . . . . . . . . 16

Figure 1.8 (a) Exciton level scheme used by Zrenner et. al. (b) Optically
generated electron-hole pair within the intrinsic region of the pho-
todiode structure. Tunneling of the electron and hole from the dot
results in the change of the photocurrent signal. (c) Sketch of QDs
embedded within GaAs n-i-Schotty diode structure with optical
excitation restricted to a single QD. . . . . . . . . . . . . . . . . . 17

Figure 1.9 (a) (i) Graph of time-integrated differential transmission probe
intensity for various excitation pulse durations. The dotted lines
indicate two-photon absorption in the waveguide sample structure.
(ii) Measured Rabi oscillation with narrowed pulse spectrum (inset).
(b) Level diagram of charged QDs (i) without an applied magnetic
field and (ii) in magnetic field B=Bx. (c) Quantum oscillation
signal of the initialized spin polarization. (d) (i, ii, iii), Bloch
sphere representations of spin dynamics, where the upper sphere
represents the trion-spin and the lower represents the initialized
spin polarization. (iv, v, vi) Simulated quantum beats in the optical
control scheme used by Wu et al. . . . . . . . . . . . . . . . . . 21

Figure 2.1 (a) Energy band structure of InAs. The horizontal axis corresponds
to the electron wavevector k and the vertical axis to the allowed elec-
tron energies (eV). The energy bands of interest are highlighted. (b)
Brillouin zone of InAs face centered cubic lattice. High-symmetry
points are denoted by Γ (zone center), X, L and K, and high-
symmetry lines joining some of these points are labeled Λ, Δ, and
Σ. The three high symmetry directions [100], [111], and [110]
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ABSTRACT

Controlling the quantum states of charge (excitons) or spin-polarized carriers in semi-

conductor quantum dots (QDs) has been the focus of a considerable research effort in

recent years due to the strong promise of using this approach to develop solid state quan-

tum computing hardware. The long-term scalability of this type of quantum computing

architecture is enhanced by the use of QDs emitting in the telecom band, which would

exploit the established photonic infrastructure. This thesis reports the use of all optical

infrared experimental techniques to control exciton dynamics in two different QD samples

consisting of InAs/GaAs QDs and InAs/InP QDs within a planar microcavity.

An infrared quantum control apparatus was developed and used to apply optimized

shaping masks to ultrafast pulses from an optical parametric oscillator. Pulse shaping

protocols designed to execute a two-qubit controlled-rotation operation on an individual

semiconductor QD were demonstrated and characterized. The quantum control apparatus

was then implemented in simultaneous single qubit rotations using two uncoupled, distant

InAs/GaAs QDs. These optimal control experiments demonstrated high fidelity optical

manipulation of exciton states in the two QDs using a single broadband laser pulse,

representing a step forward on the path to a scalable QD architecture and showcasing the

power of pulse shaping techniques for quantum control on solid state qubits.

As an alternative to single QDs, which have very low optical signals, subsets of QDs

within an ensemble can be used in quantum computing applications. To investigate the

mediation of inhomogeneities in a QD ensemble, pump-probe experiments were performed

on InAs/InP QDs within a dielectric Bragg stack microcavity. Two different excitation

geometries showed that the angle dependence of the microcavity transmission allowed for

the spectral selection of QD subsets with transition energies resonant with the cavity mode.

The microcavity mitigated inhomogeneities in the ensemble while providing a basis for

addressing QD subsets which could be used as distinguishable quantum bits. This thesis

work shows significant advances towards an optical computing architecture using quantum

states in semiconductor QDs.
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Å Angstrom (Unit of Length)

A Transfer Matrix

AM(ω) Amplitude Pulse Shaping Mask

A0 Amplitude Factor

axy Elements of Transfer Matrix

AC Alternating Current

AFM Atomic Force Microscope

AlGaAs Aluminum Gallium Arsenide

ARP Adiabatic Rapid Passage

BBO Beta Barium Borate

BS Beam Splitter

C Conduction Band

CdSe Cadmium Selenide

c Speed of Light in Vacuum

cn Complex Time-Dependent Coefficient

CCD Charged Coupled Device

CISC QC Complex Instruction Set Quantum Computing

C-ROT Controlled Rotation Operation

CWPL Continuous Wave Photoluminescence

Δ Laser Detuning

Δ0 Spin-Orbit Splitting Energy

ΔT Pump Induced Change in Transmission

δ Multiphoton Intrapulse Interference Phase Scan Scanning Parameter

δp Phase Accumulation

D Detector

d Dielectric Layer Thickness

xvi



∂
∂t

Partial Derivative With Respect to Time

E Electric Field
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CHAPTER 1

INTRODUCTION

1.1 Overview

Our world is becoming increasingly dependent on computers for the storage, processing

and transfer of information. This ongoing accumulation of data and need for faster

processing has motivated the progressive miniaturization of traditional computing hardware

components, an approach that has worked very well up to the present. Despite these

advances, there are certain computational problems that remain intractable on todays

computers because of the way the computational time scales with the size of the problem.

For example, the time taken to factor an integer scales exponentially with the number of

digits in the integer. The simulation of quantum systems is also very time intensive because

the resources required scale exponentially with the number of particles in the system.

Quantum computing emerged as an alternative to the usual approach to the manipulation,

transmission and storage of data with the development of quantum algorithms for the

factorization of integer numbers into prime factors (developed by Shor [1]) as well as

searching an unsorted database (developed by Grover [2]). In such algorithms, the compu-

tation time would only scale as a polynomial in the problem size. The traditional storage

of information in bits that are in one of two states (0 or 1) is replaced with a quantum

bit, often called a qubit, corresponding to a coherent superposition of two quantum states

(|ψ〉 = c0 |0〉 + c1 |1〉). A qubit is commonly depicted in a Bloch sphere representation, as

shown in Fig. 1.1. In this case, |c0|2 and |c1|2 are the occupations of the states |0〉 and |1〉,
respectively. In contrast to a classical bit, the phase of the quantum state is also utilized.

This phase arises from the fact that c0 and c1 are complex coefficients. The computing

resources scale very differently in quantum computing compared to classical computing.
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Figure 1.1: (a) Energy level diagram of two-level system with ground state |0〉 and excited
state |1〉. (b) Bloch sphere representation of occupation and coherence in the two-level
system. The components of the Bloch vector �S are given by Sx = 2Re{c1c

∗
0}, Sy =

−2Im{c1c
∗
0}, and Sz = |c1|2 − |c0|2 which describe the real and imaginary components of

the ensemble average coherence and state occupation respectively.

One qubit can be in both states |0〉 and |1〉 at once, and similarly a system of n qubits can

be in an arbitrary superposition of all possible 2n classical states simultaneously.

Quantum computation is carried out by evolving the wavefunction describing the entire

system of qubits in time. An implemented algorithm would correspond to a series of

gates that may include the controlled modification of the quantum states of individual

qubits, called single qubit gates, and the introduction of controlled interactions between

qubits that cause their quantum states to be entangled (two-qubit gates). At the end of

the computation, a measurement of the state of the system of qubits, which collapses the

wavefunction into one of the 2n states, yields the answer to the problem being solved.

The technique used to measure the final quantum state of the system depends on the

physical system used to encode the qubits. For example, the simplest instance of Shor’s

factoring algorithm (factoring 15 into prime factors three and five) was realized using

nuclear magnetic resonance techniques, in which seven qubits involved in the computation

were represented using the states of various spin-1
2

nuclei within a molecule [3]. The

solution to the problem in this case was determined by the final spin configuration of

the nuclei, which is measured through phase sensitive detection of oscillating voltages in

radiofrequency coils placed near the sample. A multiple-input AND gate has also been

carried out using six qubits encoded in the rovibrational states of a lithium molecule [4].

In this case, different sets of input values of the qubits were encoded by exciting with a
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shaped optical pulse, and the answer was determined by photoionizing the molecule at a

particular time delay relative to the encoding pulse, which has the effect of projecting the

superposition of possible system states into a single ionic final state. The Deutsh-Jozsa

algorithm, corresponding to testing whether a function is balanced or constant, was also

experimentally demonstrated using a single qubit encoded in an exciton (i.e., a bound

state of an electron-hole pair) in a semiconductor quantum dot [5]. In this case, the final

quantum state was measured through the intensity of photoluminescence indicating the

presence or absence of an exciton at the end of the calculation.

Since the phase of the qubit is utilized in quantum computing, decoherence processes

that randomize the phase are detrimental. Decoherence is caused by either relaxation of

the system from |1〉 to |0〉 (changing the occupations |c0|2 and |c1|2) or by a scattering

interaction that only changes the phase of the qubit. For a two-level system such as that

shown in Fig. 1.1(a), the time scale associated with the former process is called the T1 or

longitudinal relaxation time. The decay of coherence is characterized by the T2 time. In

quantum computing, all relevant quantum gates must be completed within the T2 time,

including possible error correction routines which require additional gates. This represents

one of the challenging constraints in the development of quantum computing systems.

DiVincenzo proposed a set of requirements for the physical implementation of quantum

computation [6]. A physical system must be chosen that allows quantum states forming

qubits to be identified and characterized. Experimental methods for initializing the qubits

must be developed, as well as approaches for reading out the state of each qubit at the

end of the computation. As discussed above, decoherence times in the chosen physical

system must be longer than the gate operation time. Finally, a universal set of quantum

gates must be identified. The word universal in this context refers to the fact that this

set allows one to construct any other gate and thereby carry out any quantum algorithm

using this minimal set of gates. This is analogous to classical computing where a NAND

gate, which produces a negative output only if all inputs are positive, is called a universal

gate as a combination of NAND gates can be used to implement any boolean function.

Satisfying all of DiVincenzo’s criteria in a single physical system represents a formidable

technical challenge. The investigation of various candidate systems has been the subject of

a worldwide research effort spanning more than a decade.

DiVincenzo also showed that a combination of single qubit and controlled NOT (C-NOT)
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two-qubit gates, which invert the second qubit only if the control qubit is present, can be

used to implement arbitrary unitary operations, creating a set of universal quantum gates

[7, 8]. This approach is often referred to as reduced instruction set quantum computing

(RISC QC). An alternative approach was suggested by Sanders et. al. [9] in which a

single unitary matrix that encodes the overall computation replaces series of gates with

a single complex instruction. This approach is called complex instruction set quantum

computing (CISC QC). For example, such an approach was demonstrated by Amitay et.

al. [4] in molecular qubit systems. In CISC QC, the requirement of long decoherence

times is alleviated by the ability to apply a single complex instruction using a customized

pulse shape, instead of a pulse sequence. This benefit comes at the expense of the need to

generate complex pulse shapes.

The realization of a universal quantum computer is the central objective of quantum

information science, which encompasses the development of quantum algorithms for

computation, cryptography, and the development of quantum computing hardware. Several

choices of qubits within different quantum computing architectures have been proposed

and experimentally realized, including ion traps, superconducting circuits, the rovibrational

states or nuclear spin states in molecules, N-V centers in diamond, and semiconductor

quantum dots. The electronic states of confined ions act as qubits in trapped ion systems.

Superconducting qubits are based on current loops containing Josephson junctions, where

the qubit is stored in the quantized flux in these current loops. In nuclear magnetic

resonance systems, the spin states of nuclei in molecules act as qubits, or one can use the

rovibrational states in molecules detected by selective optically-induced ionization. The

spin state of an electron on the N-V− point defect can be used as a fundamental qubit

in diamond. In semiconductor quantum dots, qubits are realized using discrete energy

states resulting from quantum confinement. The focus of this thesis work is to further the

long-term prospect of a scalable quantum computer based on semiconductor quantum dots.

1.2 Semiconductor Quantum Dots

Semiconductor quantum dots (QDs) are nanoscale structures that exhibit three-dimensional

quantum confinement through the introduction of a local potential well with finite barriers.

This confinement transforms the energy bands in bulk semiconductors into discrete levels,

as illustrated schematically in Fig. 1.2(a). By controlling the QD size or the material
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Figure 1.2: (a) Schematic diagram of the discrete energy band structure resulting from
three-dimensional quantum confinement, where Ev and Ec are the valence and conduction
bands respectively, and z indicates the growth direction of the structure. (b) AFM image
of uncapped InAs SAQDs grown on GaAs. Image courtesy of D. G. Deppe.

composition, the spacing between the energetic states can be adjusted. The confinement

energy is the energy separation between the lowest conduction level (or highest valence

level) and the associated barrier. Due to their discrete density of states, QDs act as artificial

atoms. The dipole moment of a QD, which is the matrix element of the dipole operator

−e�r and reflects the strength of coupling to a light field, is much larger than the dipole

moment of atoms. These unique features make QDs attractive for a variety of applications

including QD lasers [10, 11], all-optical switches [12], and cellular imaging [13]. For

example, the discrete energy level structure reduces the threshold current density relative to

similar quantum well structures in QD laser applications [10], and the large dipole moment

leads to a large optical response in all-optical switching applications [12].

There are several types of semiconductor QDs: (i) lateral; (ii) colloidal; (iii) interface

fluctuation; and (iv) self-assembled QDs. In lateral QDs, confinement is achieved through

electrical gating in patterned two-dimensional electron gas structures. Colloidal QDs are

synthesized from the nanocrystal growth of compounds dissolved in solution. Interface

fluctuation quantum dots (IFQDs) and self-assembled quantum dots (SAQDs) are both

fabricated using epitaxial growth techniques, which involve the deposition of one material

onto another bulk material. Epitaxial growth can occur in one of three main growth modes:

monolayer growth, the Volmer-Weber growth mode, and the Stranski-Krastanow growth

mode [14]. In monolayer growth, the atoms of the deposited material are more strongly

attracted to the bulk material substrate than to each other. The deposited atoms form
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monolayer high islands which expand and fuse together, forming the first monolayer.

This growth mode is used for IFQDs, which consist of randomly-formed monolayer-high

islands of a semiconductor material at an interface (e.g. GaAs on an AlGaAs interface).

Overgrowth with additional AlGaAs leads to random monolayer-high regions that act as

QDs. In Volmer-Weber mode, the deposited atoms are more strongly attracted to each

other than to the substrate material. The atoms will initially aggregate to form islands and

ongoing deposition will result in the formation of a continuous film. SAQDs are fabricated

using the Stranski-Krastanow growth mode, in which the self-assembly process exploits

the natural lattice mismatch between two semiconductors. The Stranski-Krastanow growth

mode starts with the monolayer growth of either a single or small number of monolayers

of deposited atoms forming a thin film. As deposition continues, strain build-up leads

to spontaneous reorganization into three-dimensional islands. Since this self-assembly

process is strain driven, the number of monolayers that can be deposited before the strain

in the system induces break-up of the layer into islands depends on the material system

considered. For InAs QDs in GaAs, island formation occurs after about three monolayers.

An atomic force microscope (AFM) image of self-assembled InAs QDs is shown in Fig.

1.2(b). The yellow areas are the islands of InAs on top of a monolayer flat surface of

GaAs. More GaAs is grown on top of the InAs islands, leading to three-dimensionally

confined QDs. The lateral dimensions of SAQDs are ∼5 times smaller than IFQDs which

can be ∼100 nm in diameter [15]. This size difference leads to a ∼5 times larger optical

dipole moment for IFQDs [16]. However, the development of a scalable architecture for

quantum computing is a challenge for IFQDs due to the random nature of their formation.

In contrast, advanced epitaxial growth techniques may be used to grow patterned arrays of

SAQDs [17].

The many advantages of semiconductor QDs (discrete energy states, large dipole mo-

ments, and ease of fabrication) come with the challenges associated with understanding

and mitigating decoherence and determining how to control fundamental quantum states

in the complex solid state environment (considering phonons, defects, many body effects,

etc.). For these reasons, implementations of qubits in other systems such as ion traps and

superconducting circuits are presently more advanced than qubit systems in semiconductor

QDs. Nonetheless, QDs offer the promise of long-term scalability through exploitation

of state-of-the-art semiconductor fabrication and processing. Together with progress in
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the integration of III-V semiconductors with Si-based systems [18], this also suggests

the feasibility of integration of a QD based quantum computing platform with existing

computing technology. Such integration would be much more challenging in non-solid

state qubit realizations such as in ion traps and molecular qubit systems. As a result,

advances in the implementation of QDs as a quantum computing platform are of relevant

interest.

1.3 Qubit Encoding and Control in Quantum Dots

Various schemes for the implementation of elementary single- and two-qubit quantum gates

using semiconductor quantum dots have been proposed [19, 20, 21, 22, 23, 24, 25, 26].

The choice of a two-level quantum system to use as the fundamental qubit varies from

proposal to proposal. For example, the presence or absence of an exciton [21, 22, 23] or

the spin-up and spin-down states of a single electron [19, 20, 24, 25, 26] have been put

forward as candidate physical qubits (i.e., the |0〉 and |1〉 states in Fig. 1.1). In addition, the

combination of both exciton and spin qubits could be utilized, where exciton states could

be implemented for computation and spins for the storage of information [27]. Single-

qubit gates correspond to an arbitrary manipulation (both occupation and phase) of the

quantum state of a single qubit, and two-qubit gates involve the generation of controlled

entanglement between two quantum bits. The methods of control used to carry out these

operations vary considerably from one proposed quantum computing scheme to another.

There are several approaches that involve the optical control of qubit states in SAQDs

[20, 21, 22, 23, 24, 25, 26]. A few schemes in which exciton qubits are utilized are shown

in Fig. 1.3(a) and (b). Single qubit gates involving excitons may be carried out using

a resonant Rabi rotation (which changes the state occupations) and the AC Stark effect

(which changes the phase of the qubit). In the former case, a coherent optical field resonant

with the exciton transition leads to oscillations of the state occupations in time, a process

that is described in more detail in Sec. 2.3. The final quantum state is determined by the

total area of the laser pulse, defined as Θ(t) =
∫ t

0
dt

′
μE0(t

′
)

h̄
where μ is the dipole moment,

and E0(t) is the time-dependent electric field of the laser pulse. The notation Θ used for

the pulse area captures the motion of the Bloch vector during a Rabi oscillation; it is the

total angle (in radians) that the Bloch vector rotates about the X axis (see Fig. 1.1) as

a result of coherent driving by the optical pulse. For example, a pulse that rotates the
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Figure 1.3: Examples of qubit states in semiconductor quantum dots: (a) Two-qubit
excitonic transitions in an individual QD. Adapted from Ref. [28]. (b) C-ROT energy level
diagram, where |00〉, |01〉, |10〉 and |11〉 are the ground state, oppositely polarized exciton
states, and the biexciton respectively. The biexciton binding energy is given by Δ. Adapted
from Ref. [28]. (c) π-pulse excitation populating trion spin state. Adapted from Ref.
[29]. (d) A 2π-pulse in this level scheme does not change the state occupation, but results
in a rotation of electron spin [29]. (e) Electron qubit level scheme indicating transitions
between valence-band states |mz = ±3/2〉 and conduction band states |mx = ±1/2〉 in
the presence of a magnetic field [20].

Bloch vector by π radians is called a π-pulse. The optical Stark effect corresponds to a

similar coherent interaction, except that the center frequency of the pulse is detuned from

resonance (i.e., the center frequency of the laser pulse ω is not equal to ω01 in Fig. 1.1(a)).

The resulting dynamics may be understood in terms of a transient shift of the transition

energy of the exciton that results in an accumulated phase of the exciton qubit. This phase

depends sensitively on the size of the detuning and the pulse area.

Another method used to control an exciton qubit is adiabatic rapid passage (ARP), and
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Figure 1.4: (a) Dressed state representation of population transfer between the ground state
and X0. (b) Energy level diagram showing neutral exciton (X0) excitation and negatively
charged exciton emission (X−). (c) Measured (circles) and modeled (solid curve) Rabi
oscillations using TL pulse excitation. Squares denote population of X0 with strongly
chirped pulse excitation. Adapted from Ref. [30].

is illustrated in Fig. 1.4(a). In ARP, the optical control pulse is characterized by a time-

dependent instantaneous frequency, called chirp, which is used to control the population

transfer between the two quantum states representing the qubit. Such a chirped control

pulse is distinct from the usual case of a pulse with a constant frequency and phase, called

a transform-limited (TL) pulse. (In Fig. 1.4, |0〉 and |1〉 are represented as |0〉 and |X0〉,
reflecting the exciton.) The time-dependent frequency leads to a slow evolution of the

ground state of the system taking the light field into account. The population transfer

results from the evolution of the two quantum states through an anti-crossing, where the

frequency of the control pulse is swept through the transition resonance. In a Bloch sphere

representation, the Bloch vector adiabatically follows the torque vector associated with the

laser field and stays in the upper state when the pulse over. Unlike Rabi rotations, ARP is

robust against system variations (e.g., laser power); however, the magnitude of linear chirp

required for qubit control can result in longer (∼picosecond) optical pulses, extending the

operation time.

An example of an exciton based two-qubit gate is the controlled-rotation gate, or C-ROT

gate involving excitons in the same QD, and is presented in Fig. 1.3(a) and (b). This

scheme was first proposed by Troiani et. al. [21]. The two-exciton basis states are depicted

in Fig. 1.3(a), and consist of the presence or absence of excitons with opposite spin
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orientations. The spin state of an exciton is determined by the spin states of the constituent

electron and hole. The associated optical transition is described by selection rules, as

discussed further in Sec. 2.2, through which the polarization of the light field can be used

to select the spin of the optically injected exciton. In Fig. 1.3(a), |00〉 is the vacuum ground

state (no exciton), |01〉 and |10〉 correspond to the occupation of one of each of the two

oppositely spin polarized exciton states, and |11〉 is the bound biexciton state. Figure 1.3(b)

depicts the level scheme for this system. The C-ROT operation implements a π rotation on

the second qubit if and only if the control qubit is present. It can be achieved in this system

by exploiting the optical selection rules, together with spectral selection afforded by the

non-zero biexciton binding energy (Δ in Fig. 1.3(b)). In particular, a Πx polarized laser

pulse resonant with the |00〉 to |01〉 transition would be off-resonant with the |01〉 to |11〉
transition by an amount equal to Δ as the resonant energy from the exciton-to-biexciton

transition is lower than that required to take the system from the ground state to one of

the single exciton transitions. For example, Li et. al. [28] used a two-colour excitation

scheme to demonstrate a C-ROT gate. A pre-pulse tuned to an exciton transition (e.g. the

|00〉 to |01〉 transition) prepared the control qubit to be present for this conditional gate. A

second laser pulse, tuned to the exciton-to-biexciton transition, was used to manipulate the

state of the second qubit.

Loss and DiVincenzo [19] were the first to devise a computational architecture using

the spin state of a single electron in a negatively charged quantum dot as the fundamental

qubit. In this approach, single qubit gates are carried out through controlled evolution of

the spin state of each QD in an external magnetic field, and two-qubit gates are achieved

through electrical gating of a tunneling barrier between two adjacent lateral QDs. The

disadvantage of lateral gate patterned QDs is that spin control is relatively slow (≥ ns).

It is possible to control spin qubits optically on much shorter time scales in SAQDs.

Schemes for optically-mediated single qubit gates involving electron spin are shown in

Fig. 1.3(c) and (d). In this case, the relevant optical transition connects a single electron

spin state to a spin-polarized charged exciton state, called a trion (represented by |↑↓⇑〉 in

Fig. 1.3(c)). The transitions between the single electron spin states and the trion states are

subject to optical selection rules, as in the case of exciton transitions in neutral QDs. Spin

initialization and control in this system is carried out using stimulated Raman transitions,

in which the spin-up and spin-down states of the electron with respect to an external
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magnetic field and the trion state form a three-level Λ system, and the electron spin states

are coupled using circularly polarized light. Excitation of this transition with a π-pulse

can be used for spin initialization, while a 2π pulse can be used to change the phase of the

qubit. In the later case, the phase change is proportional to the dipole moment and laser

detuning from the optical transition. A similar stimulated Raman transition can also be

used to realize a two-qubit gate involving spins in different QDs when this transition is

assisted by an optical microcavity mode, as depicted in Fig. 1.3(e). An optical microcavity

is a micron-scale structure used to confine light. The modes of the microcavity describe

the allowed standing waves that can exist in such a structure.

The possibility of exploiting optical microcavities as a means of tailoring the light-matter

interaction for a QD inside of the cavity is another advantage of implementing SAQDs

as a quantum computing architecture. There are several types of optical microcavities

distinguished by the approach used to confine light (e.g. planar mirrors, photonic bandgap

structures, etc.), and the dimensionality (1D, 2D or 3D). A one-dimensional microcavity is

formed using two mirrors. These mirrors are typically realized using alternating high- and

low-refractive index layers, forming what is called a Bragg stack. In this case, the QDs

would be contained in a spacer layer between the mirrors [31]. Coupling of the QD with the

dominant Fabry-Pérot cavity mode can be used to enhance the probability of spontaneous

emission into the growth direction of the Bragg stack and QD structure, where spontaneous

emission corresponds to the decay of the exciton to the ground state with the emission of a

photon [32]. In this case, the enhanced spontaneous emission rate results from the larger

optical density of states corresponding to emission in the vertical direction [33]. A two-

dimensional microcavity can be formed by etching a periodic array of nanoscale holes in a

semiconductor wafer. This periodic structure forms an effective mirror at light frequencies

within the so-called photonic bandgap. In this case, the QDs would be located where one

or more holes is missing, as such a location represents a cavity [34]. A whispering gallery

mode microcavity [35] is another example of a 2D microcavity, in which a two-dimensional

structure is etched into a pillar shape, resulting in circularly orbiting confined modes. A 3D

optical microcavity can be realized by incorporating a Bragg stack 1D cavity with either

of the above two approaches for introducing in-plane optical confinement. Microcavities

play a central role in several quantum computing proposals involving the optical control of

charge or spin qubits in SAQDs [20, 26]. The rapidly advancing progress in the fabrication
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of microcavities, which now allows a single QD to be placed in a well-defined spatial

location relative to the peak of the light intensity within the microcavity mode [34], will

further the long-term goal of realizing these proposals. The ability to exploit established

photonic and telecommunication infrastructure further enhances the prospect of scaling

such an architecture to a large number of qubits.

Among quantum computing proposals, schemes for controlling the qubit state using

femtosecond optical pulses are favorable as the quantum operations can take place on

the time scale of the optical pulse. Decoherence in quantum computation is detrimental

as it destroys the phase of the qubit and therefore destroys the stored information. A

typical requirement for quantum error corrections schemes, proposed by Preskill [36],

is that the decoherence time must be at least 104 times greater than the operation time.

This condition makes long decoherence times especially attractive since sufficient time is

required to operate on the qubit as well as impose fault tolerant quantum error correction.

It also points to the need for developing fast approaches to manipulating the qubit state.

Decoherence times (T2) for exciton states of approximately a nanosecond have been

reported [37]. The spin state of a single electron in a semiconductor QD has an even longer

decoherence time, in the range of milliseconds [38]. Incorporating femtosecond optical

control schemes would permit the use of either exciton or spin states as the fundamental

qubit in a fault-tolerant computational platform due to the high speed of the elementary

gates.

1.4 Experimental Approaches for Characterization and

Optical Control

In order to carry out optically-mediated fundamental quantum gates in QDs, one needs to

first characterize the QD electronic structure. The energies of the optical transitions (e.g.

ground state transition and first excited state transition) are determined using continuous-

wave photoluminescence (CWPL). This type of experiment involves the use of continuous-

wave laser excitation to optically inject electron-hole pairs into the barrier semiconductor

layer surrounding the QDs. These injected carriers will relax into the discrete QD energy

states before recombining and emitting photons with frequencies associated with the

allowed optical transitions. An energy level diagram of a CWPL experiment is illustrated

in Fig. 1.5(a).
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Figure 1.5: (a) Single electron energy-level diagram depicting a CWPL experiment.
Injected carriers (i.e., electron-hole pairs) radiatively relax and emit photons from the
QD energy states. The downward arrow indicates emission on the ground state optical
transition. (b) Example PLE energy diagram, shown in a two-particle picture, in which |1〉
and |2〉 are excitons excited on the ground and first excited state transitions, respectively.
Laser excitation populates state |2〉 which decays non-radiatively to state |1〉. The radiative
PL emission from state |1〉 is detected.

A combination of CWPL and photoluminescence excitation (PLE) spectroscopy can be

used to investigate the electronic states of SAQDs in greater detail. PLE measurements

also utilize the radiative recombination of carriers; however, in this case, the laser is

used to excite electron-hole pairs directly into the excited state transitions within the

QDs. The excitation laser is tuned throughout a range of energies while detecting the PL

from the ground state transition. In this way, the energy separation between the ground

state and excited state optical transitions can be determined. A sample PLE energy-level

diagram is shown in Fig. 1.5(b). The results of these electronic structure characterization

measurements can then be incorporated into the design of optical control experiments.

There are several experimental approaches to demonstrating ultrafast optical manipula-

tion of fundamental qubits in QDs [39, 40, 41]. Quantum state read-out can be monitored

using time-averaged PL measurements. In this type of experiment, a control pulse is used

to excite the chosen quantum state transition. The state occupation is then observed by

the PL emission. The detected PL signal results from excitation by a number of optical

pulses, dictated by the repetition rate of the excitation laser, and so this is a time-averaged

technique. Time-resolved pump-probe experiments can also be used to implement optical
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control schemes on spin and exciton based qubits. In a pump-probe experiment, one excites

the sample using an intense pump pulse and measures the change in the optical properties

of the system detected by a weaker probe pulse at some later time. The probe pulse can

be used to investigate a variety of dynamics depending on the property of the probe pulse

that is measured. For example, the change in the probe transmission indicates a change

in absorption, referred to as a bleaching signal. Such a signal can be used to detect the

occupation of the upper level of the qubit. In addition, spin-dependent measurements are

performed by monitoring the change in the linear polarization of the probe pulse, which

exploits the optical selection rules of the QDs. These optical selection rules are described

in more detail in Sec. 2.2.

1.5 Experimental Demonstrations of Optical Control:

Previous Work

This section contains a review of the relevant body of literature for this thesis. This review

includes an overview of quantum control experiments involving individual and ensembles

of semiconductor quantum dots. The literature relevant for coherent control in single QDs

(Sec. 1.5.1) sets the stage for the projects described in Chapters 4 and 5. The previous

work on optical control in QD ensembles (Sec. 1.5.2) provides appropriate context for the

experiments described in Chapter 6.

1.5.1 Coherent Control in Single Quantum Dots

1.5.1.1 Rabi Rotations of Excitons Qubits

The first demonstrations of coherent control of fundamental electronic excitations in single

semiconductor QDs involved Rabi rotations of exciton qubits [42, 43, 44, 45, 46, 47].

As discussed in Sec. 1.3, a Rabi rotation corresponds to the rotation of the Bloch vector

describing an exciton induced by excitation using a coherent optical pulse resonant with

the associated optical transition. This was first demonstrated by Stievater et. al. [42]

in IFQDs using differential transmission techniques, in which the pump-induced change

in the transmission of the probe pulse is detected. The signal in such an experiment

indicates the instantaneous occupation of the exciton. In the experiments of Stievater et.

al., the near-infrared transition energy of the QDs permitted the use of Si-based detectors,

which have low dark current compared to InGaAs detectors operating in the infrared.
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Figure 1.6: Differential transmission data collected by Stievater et al. demonstrating Rabi
oscillations in a single quantum dot. (a) Measured and calculated differential transmission
signals for various pump powers and pulse areas. (b) Differential transmission data versus
pump power with associated calculated pump-probe signal versus pulse area at a fixed
delay. Adapted from Ref. [42].

Together with the relatively large dipole moment of an IFQD, this enabled the differential

transmission signal from an individual QD to be large enough to be detected. The results

of these experiments are shown in Fig. 1.6. The pump and probe pulses were tuned to

the ground state optical transition in these experiments. Changing the pump pulse area

resulted in variation in the magnitude of the differential transmission signal. The strongest

signal was detected when pulses that correspond to an area of π radians were used. The

authors were able to observe a full 2π Rabi rotation (Fig. 1.6(b)).

Rabi rotations have also been achieved in In(Ga)As SAQDs [43, 45, 46, 47]. The weaker

dipole moment in SAQDs compared to IFQDs required an alternative approach to the

resonant non-linear spectroscopy technique used by Stievater et. al. for quantum state

read-out. Kamada et. al. [43] and later Htoon et. al. [45] demonstrated that one can

detect the steady-state PL from the ground state optical transition (often called the s-shell

transition) while carrying out coherent optical control on the first excited state transition

(often called the p-shell transition). This approach allows one to spectrally reject the strong

scattered laser light from the control pulse, permitting the weak PL emission from the

ground state of a single QD to be detected. This approach also exploits the rapid decay of

the carriers in the excited QD energy levels to the ground energy levels, which occurs on

the timescale of a few picoseconds and conserves the carrier spin [48]. Wang et. al. [47]
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Figure 1.7: (a) Energy level diagram indicating the optical control scheme used by Wang
et al. [46], involving excitation of the first excited state transition and detection of PL from
the ground state transition. (b) Results of Rabi rotation experiments by Wang et al. on
oppositely polarized exciton transitions in a singe InGaAs QD. Adapted from Ref. [46].

later showed that the optical selection rules can be exploited to achieve tailored excitation

of oppositely-spin-polarized excitons with appropriate choice of polarization of the control

laser pulse (Fig. 1.7). In these experiments, the single QD PL was collected using a high

resolution monochromator and two-dimensional Si CCD array detector, capable of imaging

the location of individual QDs. In all of the above experiments, the QDs were subject

to tailored growth conditions and/or post-growth processing (e.g. annealing) to ensure

that the first excited state transition was within the tuning range of a standard Ti:Sapphire

laser system (corresponding to near-infrared (NIR) wavelengths) and the ground state PL

emission was in the range of highly efficient Si detectors, greatly aiding in the successful

execution of these difficult experiments. These experiments were also carried out using

relatively long (∼ several ps) optical control pulses.

Another approach was taken by Zrenner et. al. [44], who realized single qubit rotations

in an individual InGaAs/GaAs QD using a photocurrent detection scheme, as illustrated in
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Figure 1.8: (a) Exciton level scheme used by Zrenner et. al. (b) Optically generated
electron-hole pair within the intrinsic region of the photodiode structure. Tunneling of
the electron and hole from the dot results in the change of the photocurrent signal. (c)
Sketch of QDs embedded within GaAs n-i-Schotty diode structure with optical excitation
restricted to a single QD. Adapted from Ref. [44].

Fig. 1.8. A layer of QDs was embedded within the intrinsic region of a GaAs n-i-Schottky

diode structure (Fig. 1.8(c)). The applied laser excitation was resonant with the ground

state optical transition in a single QD, which was selectively excited by depositing a

shadow mask of apertures (100-500 nm diameter) on the sample surface. The Schottky

diode structure was used to apply a bias along the growth direction, creating an internal

electric field. This electric field causes the excited exciton to dissociate into its constituent

electron and hole, which are then detected as photocurrent. This non-optical detection

scheme eliminates the challenge associated with detecting the low optical response of a

single QD, but relies on a fast carrier tunneling time for quantum state read-out, which

must be shorter than the radiative lifetime (i.e., recombination time T1) within the QD. This

reduces the coherence decay time for exciton qubits, which is a drawback of this approach.

Along with all of the other experiments described in this section, the QD structure was

tailored to allow optical control to be carried out using a standard Ti:Sapphire laser system

producing relatively long (∼ several ps) NIR optical control pulses.
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1.5.1.2 Other Quantum Gates Involving Exciton Qubits

Rabi oscillations have also been carried out on the optical transition from the ground state

to the biexciton using a coherent two-photon process involving CdSe SAQDs [49] and in

InGaAs SAQDs [50]. By tuning the excitation laser to half of the biexciton creation energy,

two-photon absorption is induced on the biexciton transition, resulting in controlled Rabi

oscillations similar to the above experiments on excitons. Li et al. [28] also demonstrated

a C-ROT gate using the scheme described in Sec. 1.3 on optical transitions within a single

GaAs/AlGaAs IFQD. These experiments were carried out using 5 ps long pulses from a

Ti:Sapphire laser system using a similar experimental technique as in Ref. [42]. The gate

fidelity, which characterizes the quality of the quantum gate, achieved in these experiments

was 0.7, which was limited by the long optical pulses used, together with the short exciton

coherence decay time in IFQDs. The fidelity is defined as F = Tr[ρphρid] where ρph and

ρid are the physical (i.e., actual) and ideal density matrices at the end of the laser pulse. As

described in Sec. 2.3, the density matrix at a given time t describes the ensemble average

quantum state, including information about the occupations of the levels involved as well

as the presence (or absence) of coherence between these levels. The fidelity describes the

performance of the unitary transformation induced by the laser pulse (i.e., the extent to

which the transformation brings the state of the system to the intended one). The authors of

Ref. [28] pointed to the possibility of using shorter control pulses subject to pulse shaping

in experiments on InGaAs SAQDs, which have longer coherence times than IFQDs due to

the larger confinement energies, as a direction for improving the fidelity.

Demonstrations of quantum gates based on adiabatic passage [30, 51], where the

population transfer between two states is controllable by the second order phase of the

optical pulse (i.e., linear chirp), also emphasizes the potential for applications of pulse

shaping techniques in quantum computing applications. As described in Sec. 1.3, the

coherent control of excitons via adiabatic passage results from the evolution of the quantum

state through an anti-crossing arising from chirped pulse excitation (Fig. 1.4(a)). ARP

was only very recently demonstrated experimentally by Simon et al. [30] and Wu et al.

[51]. In both cases, optical control was carried out on the ground state optical transition

using a Ti:Sapphire laser source and a standard grating stretcher was used to introduce

chirp. Unlike a spatial light modulator (SLM) based pulse shaper such as the one used

in this thesis work (described in Chapters 2 and 3), which permits the application of an
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arbitrary phase profile, a grating stretcher can only be used to apply a linear chirp. The

chirped optical control pulses in both the experiments of Wu and Simon were also quite

long (15 ps and 40 ps, respectively). A sample of the experimental results of Simon et

al. are shown in Fig. 1.4(c). In these experiments, a Schotty diode structure was used

that allowed for controllable charging of an exciton in a QD through tunneling of excess

carriers from a back gate. By optically exciting the X0 state and detecting the emitted

photons from X−, experimental complications arising from resonant optical excitation,

such as scattered laser light, were avoided. Figure 1.4(c) shows the population of the X0

state using optical pulses of increasing pulse areas. Rabi oscillations are clearly shown in

the case of TL pulse excitation, while the chirped pulse excitation shows no oscillation of

the populated X0 state.

1.5.1.3 Optical Control of Spin Qubits

Ultrafast optical control experiments have been carried out on qubits encoded in the spin

state of a single electron in a charged QD [40, 52, 53, 54, 55]. For exciton qubits, no

initialization is necessary since an exciton always starts off in the vacuum ground state.

In contrast, for spin qubits, an extra initialization step is required in order to ensure that

an electron spin state is well-defined prior to optical control. Spin initialization has been

demonstrated for electron spins [53] and makes use of a weak relaxation of the usual optical

selection rules associated with the single electron to trion transitions due to mixing between

the heavy-hole and light-hole valence states. Continuous driving of one spin-polarized

trion transition leads to a shelving of the spin of the excess electron in the opposite spin

state. Partial spin initialization has also been achieved by pumping spin-polarized carriers

into the bulk semiconductor barrier layer surrounding the QDs followed by capture of

a single spin polarized electron in the QD [40]. This latter approach has a low fidelity

because the statistical capture process only happens for a small fraction of the excitation

pulses in the pulse train from the laser, but may still be used for demonstrations of optical

control. Ultrafast optical manipulation of initialized electron spins has been demonstrated

by several groups [40, 54, 55]. As described in Sec. 1.3, optical control is carried out by

pumping the trion transition (single electron to positively charged exciton) using circularly-

polarized light, which induces a stimulated Raman transition. Using off-resonant pulses,

this approach was used by Berezovsky et al. [40] and Press et al. [54] to perform Rabi

rotations of the spin state of a single electron. Kim et al. [55] also showed that pure phase
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rotations are possible by using a 2π rotation on the trion transition, where the amount of

phase shift is determined by the detuning between the laser pulse and the trion transition.

The focus of the single QD control experiments in this thesis work is on exciton qubits.

1.5.2 Coherent Control Experiments in Quantum Dot Ensembles

Ensembles of QDs in optical quantum control experiments have the advantage of increased

optical coupling, in comparison to single QDs, allowing for ease of quantum state read-out

from the system. The optical control of quantum coherence within QD ensembles has

been demonstrated using exciton [56, 57, 58] and electron spin states [29, 59, 60, 61, 62].

The challenge associated with implementing ensembles of QDs in control experiments is

that the fluctuations in QD size, tied to self-assembled growth, lead to inhomogeneities in

transition energies, dipole moments, and g-factors throughout the ensemble. As described

in the sections below, these inhomogeneities reduce the fidelity of optical control.

1.5.2.1 Rabi Rotations of Excitons in Quantum Dot Ensembles

Borri et al. [57] measured Rabi oscillations of the ground-state-to-exciton transition

in an ensemble of InGaAs SAQDs at low temperature using differential transmission

pump-probe experiments (Fig. 1.9(a)). In these experiments, the sample contained three

layers of QDs within a waveguide structure, characterized by a 60 meV full width at half

maximum inhomogeneous broadening of excitonic ground-state transition energies. The

Rabi oscillations were found to be strongly damped, with only a few cycles of oscillation

observable, as seen in Fig. 1.9(a). Borri et al. carried out experiments under various

conditions (e.g. laser detuning, excitation pulse width, etc.) in order to investigate the

cause of the observed oscillation damping. Together with a detailed comparison with

theoretical calculations, these experiments indicated that the oscillation damping was

caused by a distribution (≈ 20%) of transition dipole moments within the ensemble. This

inhomogeneity in the dipole moments would therefore limit the fidelity of exciton qubit

control in ensembles of QDs.

1.5.2.2 Optical Control of Spin in Quantum Dot Ensembles

Optical control of electron spin qubits has also been achieved in ensembles of semicon-

ductor QDs [29, 61]. As in the case of control of spin in single QDs, these experiments

exploited the fact that the QD energy structure in an applied magnetic field is a three-level
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Figure 1.9: (a) (i) Graph of time-integrated differential transmission probe intensity for
various excitation pulse durations. The dotted lines indicate two-photon absorption in the
waveguide sample structure. (ii) Measured Rabi oscillation with narrowed pulse spectrum
(inset). Adapted from Ref. [57]. (b) Level diagram of charged QDs (i) without an applied
magnetic field and (ii) in magnetic field B=Bx. Adapted from Ref. [61]. (c) Quantum
oscillation signal of the initialized spin polarization. Adapted from Ref. [61]. (d) (i, ii,
iii), Bloch sphere representations of spin dynamics, where the upper sphere represents the
trion-spin and the lower represents the initialized spin polarization. (iv, v, vi) Simulated
quantum beats in the optical control scheme used by Wu et al. Adapted from Ref. [61].

system controlled through stimulated Raman transitions driven through the trion state. The

experiments of Wu et al. [61] are depicted in Fig. 1.9(b), (c), and (d) and were carried

out on GaAs/AlGaAs IFQDs using pump-probe differential transmission experiments.

The pump pulse was used to initialize the spin state of the QDs and the probe pulse

facilitated quantum state read-out. The pump-probe signal in this case yields quantum beat

oscillations in the time-resolved signal, shown in Fig. 1.9(c). By applying a π-pulse at

specific delay times relative to the pump pulse, the initialized spin population was rotated.

Figure 1.9(d) (i, ii, iii) illustrates the spin population dynamics using the Bloch sphere

representation for three cases of control pulse delay and Fig. 1.9(d) (iv, v, vi) are the

associated simulated quantum beats. A full 2π rotation of the spin vector, as required for a
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spin phase gate, was achieved later by Greilich et al. [29] in InAs SAQDs.

In both of the above experiments, the fidelity of optical control was fairly low due to the

inhomogeneity of the transition energy and dipole moment of the trion transition across

the QD ensemble. In these experiments, periodic optical excitation was used to mitigate

inhomogeneity in the g-factor for different QDs by restricting the optical detection signal

to spins with a procession period that is an integer multiple of the laser repetition rate,

referred to as spin mode-locking. Nevertheless, high fidelity control of the full ensemble

requires a precise value of the pulse area and detuning for every QD, a condition that is

not achievable due to inhomogeneity in the dipole moments and transition energies.

1.6 Outline of the Thesis

All of the optical control experiments highlighted in the preceding section have utilized

optical pulses with a duration of several picoseconds or longer. This restriction was

introduced in order to avoid unintentional dynamics associated with nearby energetic

transitions. These experiments have also been limited to QDs that have optical transition

energies in the wavelength range of conventional Si detectors. Achieving optical control

in QDs with emission in the telecom band, despite the increased technical challenges,

is an important requirement for long-term scalability as it would enable the existing

telecommunications infrastructure to be exploited. The main wavelengths used in optical

fiber communications are 1.3 μm and 1.5 μm due to weak dispersive broadening and

low power losses in silica fibers. Optical control in QDs with transition energies in these

ranges would take advantage of the current photonics framework, utilizing existing fiber

optic components which operate efficiently at these wavelengths. In addition, with the

exception of recent demonstrations of ARP, existing optical control experiments in single

QDs have all been carried out using TL optical pulses, which have a constant frequency

and phase, as discussed above. The use of shorter optical pulses (on the order of 100 fs)

would allow us to move beyond the simple chirp used in ARP experiments and explore

the power and flexibility of general pulse engineering for optimizing the performance of

optically-mediated quantum gates. This general approach is referred to as optimal quantum

control, and has been applied to optimizing quantum gates in atomic and molecular systems

[4, 63, 64]. Femtosecond pulse shaping techniques have also found widespread use in

more general quantum control processes, including the coherent control of atomic and
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molecular systems [65, 66, 67, 68, 69], chemical reactions [70, 71] and non-linear optics

[72, 73, 74]. The application of these techniques in systems of single solid state qubits

would be an important step forward for the prospect of developing solid state quantum

computing hardware.

Quantum control experiments carried out on individual QDs can be very challenging

due to the low optical signals involved. This difficulty becomes even worse when working

with QDs emitting in the telecom band because of high dark current in the associated

detectors. An alternate approach is to use QD ensembles as qubits since the large optical

signal makes quantum state read-out much easier; however, inhomogeneities in the QD

sample that lead to low-fidelity optical gates must be addressed.

This thesis work is composed of three projects which have furthered progress in the first

use of pulse shaping in solid state qubit systems as well as in the development of strategies

for mitigation of inhomogeneities in QD ensembles. These projects have involved the

development of apparatus and extensive optical investigations of SAQDs with emission

wavelengths in the 1.3 μm and 1.5 μm telecom bands, unlike the demonstrations of

optical qubit control discussed above, which occur in the NIR wavelength range. Exciton

qubits in control schemes have been the focus of this work as optical techniques can

be efficiently applied in this case. The first project involved the design, construction,

characterization, and initial testing of an infrared quantum control apparatus. The second

project implemented the infrared quantum control apparatus in optimal quantum control

experiments, performing simultaneous single-qubit operations on two distinct SAQDs.

The third project investigated the efficacy of a one-dimensional microcavity in the spectral

selection of QD subsets within an ensemble of SAQDs to be used as qubits while reducing

the deleterious effects of inhomogeneity.

This thesis is organized as follows: Chapter 2 discusses the background related to the

optical properties of semiconductor nanostructures, including multilayer one-dimensional

cavity structures. The experimental techniques used in this thesis work are presented in

Chapter 3. The results of testing the new quantum control apparatus developed in this thesis

work are presented in Chapter 4 and were published in the Journal of Applied Physics.

Chapter 5 contains the results of the second project in this thesis work, which involved

the application of this newly constructed quantum control apparatus to the demonstration

of parallel single qubit gates in different QDs. This research has been published in Nano
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Letters. The results of the third project, concerning pump-probe experiments on ensembles

of QDs, are presented in Chapter 6 as a manuscript submitted to Applied Physics Letters.

Conclusions to this thesis work and future outlook are presented in Chapter 7.



CHAPTER 2

OPTICAL PROPERTIES OF

SEMICONDUCTOR NANOSTRUCTURES

The following sections will give a brief description of the optical properties of semiconduc-

tor structures as well as the transmission characteristics of planar microcavity structures.

The experiments performed in this thesis work involve the study of the interaction of

ultrafast optical pulses with quantum-confined electronic states within self-assembled

semiconductor quantum dots. An introduction to quantum confinement in the context

of InAs self-assembled quantum dots is provided in Sec. 2.1. In Sec. 2.2 the linear

optical response of quantum dots will be described, including a presentation of the optical

selection rules. Section 2.3 contains a discussion of the optical control of excitons using

resonant Rabi rotations, the use of pulse shaping techniques in optimal quantum control

experiments, as well as a summary of the test gates used in this work. In Sec. 2.4, a transfer

matrix approach describing the optical response of a one-dimensional optical cavity is

provided.

2.1 Electronic Structure of III-V Semiconductors

The allowed energies of electrons in a bulk semiconductor material are described by

valence and conduction energy bands. The highest-energy valence bands are separated

from the lowest-energy conduction bands by a band gap, a region where no allowed

electron energies exist. The allowed energies are determined by solving the Schrödinger

equation including the periodic potential associated with the lattice. The resulting solutions

25
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Figure 2.1: (a) Energy band structure of InAs. The horizontal axis corresponds to the
electron wavevector k and the vertical axis to the allowed electron energies (eV). The energy
bands of interest are highlighted. (b) Brillouin zone of InAs face centered cubic lattice.
High-symmetry points are denoted by Γ (zone center), X, L and K, and high-symmetry
lines joining some of these points are labeled Λ, Δ, and Σ. The three high symmetry
directions [100], [111], and [110] are given by Γ̇ Δ Ẋ, Γ̇ Λ L̇ and Γ̇ Σ K̇ respectively.
Adapted from Ref. [75]. (c) Simplified band diagram of InAs showing states of interest.
Here, Eg is the band gap and Δ0 is the spin-orbit splitting energy.

are Bloch functions:

ψν�k(�r) = uν�k(�r)e
i�k·�r. (2.1)

Bloch functions are a product of a plane wave with wavevector �k and cell function uν�k(�r)

which contains the periodicity of the lattice, where ν is the band index. Figure 2.1(a)

displays the energy band structure of InAs. Figure 2.1(c) is a simplified band diagram

which displays the energy bands of interest to this thesis work for energies near the band

gap region. These include the lowest energy conduction band and the three valence bands:
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heavy-hole, light-hole and spin-orbit split-off bands. Each band is characterized by the

total angular momentum J , of the charge carrier, as well as its projection onto the z axis

characterized by the quantum number mj .

Quantum confinement arises as a result of the band offsets between dissimilar semicon-

ductors, such as InAs and GaAs, giving potential steps at the interfaces. In the treatment

of quantum confined semiconductor heterostructures, one commonly invokes the envelope

function approximation, for which the influence of these potential steps on the plane wave

part of the Bloch function is taken into account and the cell function corresponding to

the bulk semiconductor is retained. In order to gain insight into the electronic structure

of SAQDs, one can consider a box with lateral dimensions Lx, Ly, and Lz and infinite

potential barriers. Treating the plane wave part of the Bloch function using a free electron

model, the Schrödinger equation is given by

− h̄2

2m
∇2ψ(�r) = Eψ(�r), (2.2)

where m is the mass of the electron, ∇2 is the Laplacian, ψ(�r) is the wavefunction, and

E is the energy. The boundary conditions for this system require that ψ(�r) vanishes at

the edges of the box (e.g., for the x direction, this boundary condition corresponds to

ψ(x = 0, y, z) = ψ(x = Lx, y, z) = 0). In this simplified system, solving Eq. 2.2 yields

the allowed electronic wavefunctions which are given by:

ψ(z) =

√
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Lz
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where nx = 1, 2, 3..., ny = 1, 2, 3..., and nz = 1, 2, 3...

The corresponding energies are given by:

E = Enx + Eny + Enz (2.4)

where

Enx =
h̄2π2n2

x

2mL2
x

, nx = 1, 2, 3... (2.5)

Eny =
h̄2π2n2

y

2mL2
y

, ny = 1, 2, 3... (2.6)
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Enz =
h̄2π2n2

z

2mL2
z

, nz = 1, 2, 3... (2.7)

which are all discrete single energy levels, where nx, ny, and nz are the principle quantum

numbers. These energies are illustrated in Fig. 2.2(c). The density of states is given by

D(E) = 2Σnxnynzδ
(
E − [

Enx + Eny + Enz

])
(2.8)

and is shown in Fig. 2.3(d).

Figure 2.2: (a) Diagram of three-dimensional confinement with lateral dimensions Lx, Ly,
and Lz. (b) Allowed electron wavefunctions and(c) discrete energy states corresponding to
the electron wavefuntions.

Figure 2.3: Confinement effects on the density of states. Diagrams and density of states
versus energy profiles of (a) unconfined bulk material, (b) one-dimensional confinement,
(c) two-dimensional confinement, and (d) three-dimensional confinement.
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Figure 2.4: (a) STM image of five layers of InAs SAQDs grown on GaAs. The atoms
forming the wetting layers underneath the QD structures are resolved. Adapted from Ref.
[76]. (b) Simplified energy band structure of InAs/GaAs quantum dots. The energies of the
valence band (Ev) and conduction band (Ec) are shown as a function of growth direction
z. Ground state and excited state optical transitions are indicated by the solid and dashed
arrows respectively. (c) Simplified diagram of layered structure of self-assembled InAs
quantum dots.

In practical SAQD systems, the dots are lens shaped and have a finite potential barrier

dictated by the band edge offsets between the dot material (InAs) and the bulk (GaAs). A

series of discrete states will exist corresponding to each band ν in the bulk semiconductor.

For example, the conduction band states can be represented as C1, C2, etc., the heavy-hole

valence states as HH1, HH2, etc., and the light-hole valence states as LH1, LH2 and so on.

The self assembly process also leads to a one-dimensionally confined region around the

quantum dot, referred to as the wetting layer. A scanning tunneling microscope (STM)

image of five layers of stacked InAs SAQDs grown on GaAs is shown in Fig. 2.4(a). In this

image, the bright regions correspond to individual indium atoms. The band edge diagram

appropriate for SAQDs is shown in Fig. 2.4(b). The wetting layer region represents a

quantum well with a graded indium composition. The associated energy states correspond

to a sub-band for each confined level in the growth direction (z) since the carriers are

unconfined in the plane of the heterostructure (i.e., the x-y plane). These delocalized

sub-band states are represented in Fig. 2.4(b) by the shaded rectangles. For this thesis

work, only the lowest (highest) energy confined electron (hole) levels are of interest.
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2.2 Linear Optical Properties

Optical excitation may be used to promote an electron from a valence state to a conduction

state in the semiconductor, leaving behind a hole. With appropriate choice of photon energy,

the resulting electron-hole pair may be created in the bulk GaAs surrounding the quantum

dots, the wetting layer, or inside the quantum dot. For optical excitation within the dot,

light will primarily cause transitions between quantum dot states with the same principle

quantum number (i.e., HH1-C1, HH2-C2, etc.), due to the approximate orthogonality of

states with different n. (In real structures with finite barrier height forbidden transitions

with different principle quantum umbers are partly allowed since the different degrees of

penetration of the electron and hole wavefunctions into the barrier regions prevent the

envelope functions from being perfectly orthogonal.) The ground state and excited state

optical transitions are indicated in Fig. 2.4(b) by the solid and dashed lines, respectively.

This optical excitation process is dependent on the polarization of the light field. The

optical selection rules are determined by the matrix elements of the electric-dipole operator

�μ = - e�r between the cell functions of the initial and final states of the optical transition. The

conduction and valence band cell functions are eigenstates of the total angular momentum

operator �J = �L + �S, and of �J2, where �L and �S are orbital angular momentum and spin

angular momentum operators, respectively. The quantization axis for angular momentum

is taken in the growth (z) direction of the semiconductor heterostructure. The cell functions

can be expressed in terms of linear combinations of direct products of the eigenstates of �L2

and �S2. For III-V semiconductors, the allowed conduction states have quantum numbers

s = 1
2

and ms = ±1
2
. The allowed valence states are given by the heavy-hole band (j = 3

2

and mj = ±3
2
), the light-hole band (j = 3

2
and mj = ±1

2
), and the spit-orbit split-off

band (j = 1
2

and mj = ±1
2
), giving a total of eight energy bands, as each conduction and

valence band has two spin bands. The zone center cell functions uν�k(�r) = 〈�r|ν�k〉 with
�k = �0 for the conduction band are given by:

|C〉↑ = |s〉 |s = 1
2

ms = 1
2
〉 (2.9)

|C〉↓ = |s〉 |s = 1
2

ms = −1
2
〉 (2.10)

where ↑ and ↓ denote the spin-up and spin-down bands respectively. The zone center
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heavy-hole, light-hole and spin-orbit split-off valence band cell functions are given by:

|HH〉⇑ = |j = 3
2

mj = 3
2
〉

=
(
− 1√

2

)
[|x〉 + i |y〉] ∣∣s = 1

2
ms = 1

2

〉 (2.11)

|HH〉⇓ = |j = 3
2

mj = −3
2
〉

=
(

1√
2

)
[|x〉 − i |y〉] ∣∣s = 1

2
ms = −1

2

〉 (2.12)

|LH〉⇑ =
∣∣j = 3

2
mj = 1

2

〉
=

(
1√
3

) (
− 1√

2

)
[|x〉 + i |y〉] ∣∣s = 1

2
ms = −1

2

〉
+

(√
2
3

)
|z〉 ∣∣s = 1

2
ms = 1

2

〉
(2.13)

|LH〉⇓ =
∣∣j = 3

2
mj = −1

2

〉
=

(
1√
3

) (
1√
2

)
[|x〉 − i |y〉] ∣∣s = 1

2
ms = 1

2

〉
+

(√
2
3

)
|z〉 ∣∣s = 1

2
ms = −1

2

〉
(2.14)

|SO〉⇑ =
∣∣j = 1

2
mj = 1

2

〉
=

(
− 1√

3

)
[|x〉 + i |y〉] ∣∣s = 1

2
ms = −1

2

〉
+

(
− 1√

3

)
|z〉 ∣∣s = 1

2
ms = 1

2

〉
(2.15)

|SO〉⇓ =
∣∣j = 1

2
mj = −1

2

〉
=

(
− 1√

3

)
[|x〉 − i |y〉] ∣∣s = 1

2
ms = 1

2

〉
+

(
1√
3

)
|z〉 ∣∣s = 1

2
ms = −1

2

〉 (2.16)

where 〈�r|x〉, 〈�r|y〉, and 〈�r|z〉 correspond to wavefunctions that are odd with respect to the

three Cartesian axes and 〈�r|s〉 is spherically symetric. The conduction band cell functions

have spherical (s-type) symmetry, and are even functions with respect to the three Cartesian

axes. The valence band cell functions are p-type and are odd functions with respect to

a single Cartesian axis, and are even functions with respect to the other two directions.

The matrix elements of the electric-dipole operator can be evaluated using the properties

of even and odd functions, which results in three non-zero matrix elements 〈s|μx |x〉,
〈s|μy |y〉, and 〈s|μz |z〉. Considering the transition from the spin-up heavy-hole valence

band to the spin-up conduction band, the matrix element is given by:

〈C↑|μx|HH�0⇑〉 = − 1√
2
[〈s|�μx |x〉 + i〈s|�μx |y〉]

= − 1√
2
x̂

(2.17)

〈C↑|μy|HH�0⇑〉 = − 1√
2
[〈s|�μy |x〉 + i〈s|�μy |y〉]

= − i√
2
ŷ

(2.18)
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Figure 2.5: Optical selection rules of III-V semiconductor quantum dots showing the first
confined level for each of the conduction, heavy-hole, and light-hole valence bands. The
numbers (J , Jz) for each level are indicated and the orientation and relative magnitude of
the matrix elements of the dipole operator are indicated beside the arrows representing the
allowed optical transitions σ̂± = x̂±iŷ√

2
and � = ẑ [77].

〈C↑|�μ = μxx̂ + μyŷ|HH�0⇑〉 = − 1√
2

(x̂ + iŷ) . (2.19)

The optical selection rules for the heavy-hole-to-conduction and light-hole-to-conduction

bands are illustrated in Fig. 2.5. The matrix element in Eq. 2.19 and the diagram in

Fig. 2.5 show that resonant excitation of the lowest heavy-hole to conduction transition

(HH1 - C1) with circularly-polarized light will result in a pure spin state for the resulting

electron-hole pair. If linearly-polarized light is used, one will excite both spin up and down

carriers with equal populations. The effects of strain and quantum confinement lift the

degeneracy of the heavy-hole and light-hole valence bands, which have a relative transition

strength of 3:1, as shown in Fig. 2.5.

Following excitation by a short optical pulse, the electron-hole pair may undergo a

cascade of relaxation processes before ultimately recombining. The type of relaxation

processes that occur depend on the type of excitation created (charge or spin) and the initial

energy of the electron-hole pair. In general, carriers may interact with phonons, defects in

the material, or other carriers during this relaxation process. For charge excitations (i.e.,

an exciton or unbound electron-hole pair), the first scattering process to occur will lead

to dephasing. The non-thermal (mono-energetic) carrier distribution will then thermalize

to a Fermi distribution with an initial temperature determined by the initial energy of the

electron and hole in the electron-hole pair relative to the associated band edges. This
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is followed by energy relaxation through phonon emission which equalizes the carrier

temperature with that of the lattice. Radiative recombination occurs when a photon is

emitted as a result of the energy lost from an electron falling from a higher energy level to

a lower energy level (e.g., the conduction level to the valence level) in a semiconductor

structure. This type of electron-hole recombination generates the emission detected in

CWPL experiments used to characterize the electronic structure of semiconductor quantum

dots.

2.3 Coherent Optical Control of Excitonic Transitions

Prior to the dephasing process described in the previous section, the evolution of the

electron hole pairs are said to be in the “coherent regime”. Optical excitation and subse-

quent manipulation of the quantum state of the electron-hole pair during this regime is

referred to as “coherent control”. We will consider the ground state-to-exciton transition

as a simple two-level system, where the ground state is represented by |0〉 and the exciton

state by |1〉. We assume that the energy of the exciton is h̄ω01, as shown in Fig. 2.6(a).

In the presence of a monochromatic plane wave of frequency ω, the system can undergo

transitions between |0〉 and |1〉. The Hamiltonian describing the system is:

Ĥ = Ĥ(0) + Ĥint (2.20)

where Ĥ(0) is the unperturbed Hamiltonian with Ĥ(0)|0〉 = E
(0)
0 |0〉 and Ĥ(0) |1〉 = E

(0)
1 |1〉,

(i.e., so that h̄ω01 = E
(0)
1 − E

(0)
0 ) and where Ĥint describes the time-dependent interaction

with the electric field of the applied light. Within the electric-dipole and rotating-wave

approximations, this interaction is of the form:

Ĥint =

[
0 {− (�μ10· �E0)

2
e−iωt}

{− (�μ10· �E0)∗
2

eiωt} 0

]
. (2.21)

In Eq. 2.21, E0 is the field amplitude and �μ01 and �μ10 are the matrix elements of the

electric-dipole operator �μ = - e�r between |0〉 and |1〉. In the presence of Ĥint, the state of

the system is

|ψ(t)〉 = c0(t) |0〉 + c1(t) |1〉 . (2.22)
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Figure 2.6: (a) Energy level diagram of two-level system with ground state |0〉 and excited
state |1〉. (b) Bloch sphere representation of the precession of the Bloch vector about �Ω in
the presence of a driving monochromatic electric field.

The interaction of the laser pulse with the two-level system can be described using a density

matrix formalism, where the Liouville equation is given by

∂ρ

∂t
=

i

h̄

[
ρ, Ĥ

]
, (2.23)

and ρ is the density matrix which describes the ensemble average of quantum state. In

matrix form, ρ can be expressed as

ρ =

[
ρ11 ρ10

ρ01 ρ00

]
=

[
|c1|2 c1c

∗
0

c0c
∗
1 |c0|2

]
. (2.24)

The diagonal elements in Eq. 2.24 are the occupation probabilities of the two energy levels

and the off-diagonal elements describe the coherence of the system. One can solve for the

time-dependent density matrix using Eq. 2.23, which gives four equations for the two-level

system. However, as the elements of ρ are related (ρ10 = ρ∗01 and ρ00 + ρ11 = 1), only

two equations are needed to describe the system dynamics. Within the electric dipole,

rotating wave, and relaxation-time approximations, these equations, called the Optical

Bloch equations, are given by:

∂ρ̃10

∂t
= −iΔρ̃10 + i

χR

2
(2ρ̃11 − 1) − ρ̃10

T2

(2.25)

∂ρ̃11

∂t
= −i

[
χR

2
ρ̃01 − ρ̃10

χ∗R
2

]
− ρ̃11

T1

(2.26)
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where Δ ≡ ω01 − ω is the laser detuning and χR = −�μ10· �E0

h̄
is the Rabi frequency. The

change of variables

ρ10(t) = ρ̃10(t)e
−iωt (2.27)

ρ01(t) = ρ̃01(t)e
iωt (2.28)

ρ11(t) = ρ̃11(t) (2.29)

ρ00(t) = ρ̃00(t) (2.30)

is a result of invoking the rotating wave approximation and removes the fast variations

in the coherences. T1 is the longitudinal decay time, reflecting the time evolution of the

occupation in |1〉 and T2 is the transverse decay time, reflecting the decay of coherence.

This two-level system may be characterized by the value of three variables Sx, Sy, and

Sz which form the X̂, Ŷ and Ẑ components of the optical Bloch vector �S=(Sx,Sy,Sz).

These components are given by [78]:

Sx = ρ10 + ρ01 = c1c
∗
0 + c0c

∗
1 = 2Re{c1c

∗
0} (2.31)

Sy = i(ρ10 − ρ01) = i(c1c
∗
0 − c0c

∗
1) = −2Im{c1c

∗
0} (2.32)

Sz = ρ11 − ρ00 = |c1|2 − |c0|2. (2.33)

Since the Bloch vector is normalized, the tip always lies on the unit sphere. All points on

the sphere uniquely determine a state of the two-level system. In the presence of Ĥint, the

Bloch vector satisfies
d�S

dt
= �Ω × �S (2.34)

where
�Ω =

(
−μE0

h̄
, 0, Δ

)
. (2.35)

Here we have assumed that the electric field is polarized in the x-direction and μ01x ≡ μ.

The Bloch vector precesses about the field vector �Ω at frequency
∣∣∣�Ω∣∣∣ as shown in Fig. 2.6.

Thus, the electric field of the applied light provides an effective means of controlling the

state of the two-level system.

For resonant excitation of the two-level system (Δ = 0), and assuming that the Bloch

vector is initially pointing downward (so that Sz (t = 0) = -1, and the system is in state
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|0〉) one can show that Eq. 2.34 has solutions of the form:

Sy(t) = − sin

(
μE0t

h̄

)
(2.36)

Sz(t) = − cos

(
μE0t

h̄

)
. (2.37)

These solutions correspond to oscillations of the Bloch vector around the Bloch sphere

about the -X̂ direction at a rate of (μE0/h̄). This corresponds to a time-dependent oscilla-

tion of the state occupations, and is referred to as a resonant Rabi oscillation. From the

definition of �S, this gives:

ρ00 =
1

2

(
1 + cos

(
μE0t

h̄

))
(2.38)

and

ρ11 =
1

2

(
1 − cos

(
μE0t

h̄

))
. (2.39)

In the case of pulsed optical excitation, the field amplitude E0 is not constant. Provided

the pulse phase is constant and E0 (t) varies slowly compared to an optical cycle, the above

solution is still valid. The degree of rotation is then represented by an integral, called the

pulse area, given by:

Θ(t) =

∫ t

0

dt
′
μ

E0(t
′
)

h̄
. (2.40)

The pulse area determines the change in state occupation, or the degree of rotation as

represented on the Bloch sphere. From Eq. 2.38 and Eq. 2.39, we can see that a pulse area

of π will rotate the Bloch vector by 180◦ and invert the occupation of the two-level system

(i.e., control the occupation of the exciton level |1〉).
The above development corresponds to the case of a real electric field. In the more

general case, the field vector is given by

�Ω =

(
−Re

[
μE0

h̄

]
, Im

[
μE0

h̄

]
, Δ

)
. (2.41)

One can utilize the phase of the optical pulse as a means to rotate the Bloch vector about

an arbitrary axis in the XY plane. This approach is used to measure decoherence times

[79] and provides a way to perform full quantum state tomography [80]. In these types
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of experiments, a pair of phase-locked π/2-pulses are used. The first pulse rotates the

Bloch vector about -X̂ and the second pulse rotates the Bloch vector about a second axis,

defined by the relative phase of the two pulses. In the case of quantum state tomography,

the in-plane components of the Bloch vector are projected onto the Z-axis by a suitable

laser pulse. Measurement of the occupation then provides a measurement of that in-plane

component. For example, if the phase of the field is π/2, one projects the X-component

of the Bloch vector onto the Z-axis. Ultrafast pulses can be engineered to have specific

wavelength, amplitude and spectral phase components. In this case, the trajectory on the

Bloch sphere can be much more complex compared to that for a real electric field. This

capability allows one to tailor the quantum state dynamics in a flexible way, as described

in the next section.

2.3.1 Optimal Quantum Control Using Pulse Shaping

In the ultrafast control of the two-level system, the pulse area can be modified by controlling

the average pulse power, or by changing the pulse duration through adjustments at the

laser source or through external optical components. In order to realize a general target

state in a quantum dot system (i.e., a particular point on the Bloch sphere), one can fine

tune the phase and/or amplitude components of the applied laser field using femtosecond

pulse shaping techniques, through which one achieves complete control over the phase

and amplitude of the individual frequency components of the optical pulse.

As in Eq. 2.21, the interaction of the laser field and the two-level system is described

by Hint = −�μ · �E(t), where �E(t) = 1
2
ε̂E0(t)[exp (−iωt − iφ(t)) + exp (iωt + iφ(t))] is

the electric field of the optical pulse, and here we have allowed the amplitude E0(t) and

the phase φ(t) to be time-dependent. Full control of the pulse amplitude and phase can be

achieved by using a spatial light modulator (SLM) as the spatial mask within a 4-f pulse

shaper geometry, shown in Fig. 2.7(a). An SLM uses a nematic liquid crystal (LC) array

(Fig. 2.7(b)) in which the pixels have an electrically tunable index of refraction, allowing

for control over the phase of the incident light. Within the SLM, the phase retardance

caused by the applied voltage V is given by

Δφ = ωΔn(V )l/c (2.42)

where Δn(V) is the voltage dependent index of refraction, l is the thickness of the LC layer,
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Figure 2.7: (a) Programmable 4-f pulse shaper geometry with a liquid crystal array for
phase modulation. Here, f refers to the focal length of the lenses involved, creating a
geometry which is four times f in length. (b) Diagram of electronically addressable liquid
crystal array. Adapted from Ref. [81].

ω is the angular frequency of the incident light and c is the speed of light in vacuum [82].

In the frequency domain, the SLM can be used to impose a mask function M(ω), given by

the product of the frequency-dependent amplitude AM(ω) and phase ΦM(ω) masks

M(ω) = AM(ω) exp [iΦM(ω)]. (2.43)

The Fourier transform of the ultrafast pulse exiting the shaper is described by

Ẽout (ω) = Ẽin (ω) M (ω) , (2.44)

where Ẽin(ω) is the Fourier transform of the transform-limited (TL) input pulse, E(t) =

|E0|sech(1.76t/τ) exp(iωt), and τ is the pulse duration. The SLM used in this work has

128 pixels. The mask M(ω) is designed to be sufficiently slowly varying with ω that the

focused spot sizes of the individual frequency components at the mask are small compared

to these variations.

2.3.2 Test Gates for Optimal Quantum Control

Two test gates were chosen in order to assess the application of optimal quantum control to

SAQDs. The first test gate considered in this work was the C-ROT gate, a two-qubit gate

that utilizes excitonic states in an individual QD. The C-ROT is achieved using a four-level

system created by the vacuum ground state |00〉, two oppositely-polarized exciton states

(|01〉 and |10〉), and the bound biexciton state |11〉. The C-ROT implements a π rotation
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Figure 2.8: Level diagrams for C-ROT gate where |00〉, |01〉, |10〉, |11〉, and Δb are the
ground state, oppositely polarized exciton states, the biexciton state, and the biexciton
binding energy respectively. (a) Diagram for a QD with an elongated structure, lifting
the degeneracy between the oppositely polarized exciton states by an amount equal to the
exchange splitting δ. (b) Diagram for a QD with cylindrical symmetry with degenerate
exciton states. The selection rules in (a) permit Πx or Πy linearly polarized excitation,
while circularly polarized σ± excitation is used in (b).

on the second qubit if and only if the control qubit is present. Figure 2.8 shows two energy

level schemes for the C-ROT gate in QDs with different shapes. In InAs/GaAs SAQDs,

the anisotropic exchange interaction along with a slight elongation of the QD lifts the

degeneracy between the exciton states and leads to linearly-polarized optical selection rules

(Fig. 2.8(a)). For QDs with cylindrical symmetry, the oppositely-spin-polarized exciton

states are nominally degenerate and circularly-polarized optical selection rules are used

(Fig. 2.8(b)). The C-ROT is a unitary rotation described by the following transformation

matrix [28]:

ÛC−ROT =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ . (2.45)

The result of the C-ROT rotation is determined using matrix algebra: |ψf〉 = Û |ψi〉 where

|ψi〉 and |ψf〉 are the initial and final states of the system. Considering initial occupation
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in |00〉 as an example, for which the control qubit is absent:

|ψf〉 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎦ (2.46)

where the final state occupation is also in |00〉, as required. In the case where control qubit

is present, with initial occupation in the exciton state |10〉, we have:

|ψf〉 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎦ . (2.47)

The right side of Eq. 2.47 indicates that a π rotation was performed on the second qubit

and the final occupation is in the |11〉 state, as required. Similar to the C-ROT, a controlled-

NOT gate, or C-NOT operation, also inverts the target qubit if the control qubit is present;

however, the transformation matrix for the C-NOT contains only positive elements. The

C-ROT rotation is easier to experimentally realize than a C-NOT operation [22, 28] and is

considered in the first project of this thesis work. The C-ROT was experimentally realized

in elongated QDs (Fig. 2.8(a)) by Li et. al. [28] using TL optical pulses as discussed in

Sec. 1.3 and Sec. 1.5.1.2, where a two-colour excitation scheme was utilized. A pre-pulse

tuned to an exciton transition was used to prepare the control qubit (i.e., initialize the state

in |10〉). A second laser pulse tuned to the exciton-to-biexciton transition was then used to

manipulate the state of the second qubit (i.e., induce a transition from |10〉 to |11〉). Shaped

femtosecond pulses can also be used to implement a C-ROT gate on an individual QD, as

proposed theoretically by Chen et. al. [22]. Chapter 4 shows the experimental realization

and characterization of shaped femtosecond pulses optimized using optimal quantum

control considering the C-ROT level scheme in Fig. 2.8(b). A single shaped optical pulse

is designed to implement a C-ROT considering four initial states corresponding to unit

occupation of each of the basis states of the four-level system. The general approach used

to optimize the pulse shaping mask is discussed in the following section.

The second test gate considered in this thesis work involves parallel single qubit gates
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in two distinct QDs (i.e., QDs with distinct transition energies and dipole moments). In

particular, the gate consists of simultaneous π and 2π rotations on uncoupled exciton

qubits in distant QDs. These single qubit rotations are characterized by rotation operators,

which describe rotations about the Bloch sphere. The single qubit π rotation inverts the

state occupation of the two-level system, which rotates the Bloch vector about the X axis.

For an arbitrary angle of rotation, the rotation operator is given by:

Rx (θ) =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
, (2.48)

where θ is the angle of rotation. The single QD two-level system consists of the vacuum

ground state |0〉 and exciton state |1〉. A π rotation about X, considering initial occupation

in the ground state, is given by:

|ψf〉 =

[
cos π

2
−i sin π

2

−i sin π
2

cos π
2

] [
1

0

]
= −i

[
0

1

]
(2.49)

which transfers the state occupation from |0〉 to |1〉 with a change in the overall phase by

-i. For a 2π rotation with the same initial conditions,

|ψf〉 =

[
cos 2π

2
−i sin 2π

2

−i sin 2π
2

cos 2π
2

] [
1

0

]
= −

[
1

0

]
(2.50)

where the resulting state occupation is in |0〉, but with a negative sign representing a change

in the overall phase. These phase changes are characteristic of spin-1
2

systems. The parallel

control gate considered here (i.e., a π rotation on qubit 1 and 2π rotation on qubit 2) is a

four by four block diagonal matrix given by

Ûpar =

⎡⎢⎢⎢⎢⎢⎣
0 −i 0 0

−i 0 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦ . (2.51)

Single qubit rotations can be achieved using a TL optical pulse with a pulse area

corresponding to the desired degree of rotation. The accurate parallel control of two
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separate QDs with different transition energies and dipole moments is not possible with a

single TL pulse. By implementing optimal quantum control and pulse shaping techniques,

simultaneous control of two independent two-level systems in separate QDs is attainable

(Chapter 5).

2.3.3 Pulse Shaping Mask Optimization

In this work, femtosecond pulse shaping was used to optimize the fidelity of two quantum

gates: (i) a C-ROT gate involving two opposite-spin polarized excitons in the same QD,

and (ii) parallel single qubit gates on two distant distinct QDs. The fidelity of a gate is

given by:

F = Tr[ρphρid], (2.52)

where ρph is the physical density matrix at the end of the laser pulse and ρid is the ideal

density matrix for the quantum gate. In both cases, the quantum state dynamics were

optimized numerically by a fellow graduate student Reuble Mathew as a component of his

doctoral thesis work. In case (i), the optimized pulses were generated experimentally by the

author to provide a means of testing the functionality of the new quantum control apparatus

constructed by the author (Chapter 4). In case (ii), the optimized pulses were implemented

experimentally by the author in coherent control experiments on QDs (Chapter 5).

The optical Bloch equations for the four-level system of two excitons in a single QD

(Fig. 1.3(b)) is a direct extension of the single exciton treatment presented in Sec. 2.3 and

is detailed extensively in Ref. [83], and briefly in Ref. [84] (Chapter 4) and is omitted

here for brevity. The mathematical treatment of excitons in separate QDs involves the

simultaneous numerical evaluation of independent two-level systems (Sec. 2.3) under

excitation by the same optical pulse. For each of the target quantum state dynamics in

(i) and (ii), the optimization of the pulse shape was carried out numerically by choosing

a specific functional form for the mask applied to the SLM, with parameters that could

be adjusted to optimize the fidelity of the gate. For example, the following phase-only

shaping mask:

ΦM (ω) = α cos [γ (ω − ω0) − ϕ] , (2.53)

containing the free parameters α (the amplitude), γ (spectral frequency), and ϕ (phase

shift), and together with the pulse area Θ, form input vectors �qi = {αi, γi, ϕi, Θi}. The

optical Bloch equations were solved numerically for a set of ≈ 500 specific values of the
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input vectors �qi, within the experimentally accessible parameter space for the pulse shaping

system, to obtain the density matrix ρph at the end of the laser pulse. This density matrix

was used to evaluate the fidelity in Eq. 2.52. The optimum value of fidelity found within

the set of input vectors allowed the optimum mask function to be determined. Details of

experimental implementation are described in the Chapter 3.

2.4 Optical Microcavities

The focus of this thesis work is on a one-dimensional λ-microcavity in which the mirrors

are fabricated using eight period λ/4 SiO2/Ta2O5, with a final λ/2 layer of Ta2O5, Bragg

stacks. These Bragg stacks surround an InP spacer layer (thickness λ) containing the InAs

semiconductor QDs. This type of cavity is similar to the λ/2 structure shown in Fig. 3.4(a)

and is described in more detail in Sec. 3.1. In the third component of this thesis work, this

structure was studied using angle-resolved PL and pump-probe spectroscopy techniques.

These experiments investigated the efficacy of using the angle-dependent transmission

resonance of a planar microcavity for the spectral selection of subsets of QDs within

the ensemble. This section will summarize a transfer matrix approach to calculating the

transmission and reflection coefficients for this type of microcavity structure.

2.4.1 Microcavity Transmission and Reflection

The transfer matrix for a multilayer system can be found by multiplying the matrices which

describe each of the optical elements within the structure. There are two types of matrices

to consider, the first describes the reflection and transmission of an electric field at an

interface between two dielectric materials, and the second describes the phase accumulated

by an electric field when traveling through a dielectric material.

Figure 2.9(a) shows a diagram of an electric field normally incident on three dielectric

layers. Considering the first interface between regions 0 and 1, E0
+ and E0

− represent

the sum of all waves in region 0 at the interface, traveling to the right and to the left

respectively. Similarly, E1
+ and E1

− denote the fields in region 1, traveling to the right and

to the left respectively. The reflection and transmission coefficients at this interface are

given by:

r01 =
E0
−

E0
+

=
n0 − n1

n0 + n1

= −r10 (2.54)
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Figure 2.9: (a) Electric field at normal incidence to a multilayer dielectric system. (b)
Light propagating through two dielectric interfaces at non-normal incidence [85].

and

t01 =
E1

+

E0
+

=
2n0

n0 + n1

, (2.55)

where n0 and n1 are the refractive indices of the media forming the interface. Using

boundary conditions for electro-magnetic waves, the electric fields before and after an

interface can be expressed in matrix form:

[
E0

+

E0
−

]
=

1

t01

[
1 r01

r01 1

] [
E1

+

E1
−

]
. (2.56)

The electric field does not undergo any reflections while traveling through region 1;

however, E1
+ and E1

− accumulate a phase given by k1d, where d is the thickness of the

material, k1 = 2π/λ1, and the wavelength inside the dielectric material λ1 is dependent

on the wavelength of light in vacuum λ0, as λ1 = λ0/n1. This phase accumulation can be

written as [
EI

+

EI
−

]
=

[
e−ik1d 0

0 e+ik1d

] [
EII

+

EII
−

]
, (2.57)

where EI and EII are the electric fields at interfaces I and II respectively. Propagation

through the entire multilayer system is described by multiplying the 2 by 2 matrices which

represent each interface and region throughout the microcavity, such as the 2 by 2 matrices

in Eq. 2.56 and Eq. 2.57. The electric field transmitted by the microcavity, Et, can be
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calculated using matrix multiplication:

[
E0

+

E0
−

]
= A

[
Et

+

Et
−

]
(2.58)

where A is the transfer matrix for j optical elements, A = A1A2A3A4...Aj , and ts =

Et
+/E0

+ is the transmission coefficient of the system. By performing matrix algebra for

different values of λ0, the transmission spectrum of the microcavity may be calculated.

2.4.2 Angle Dependence of Microcavity Transmission and Reflection

Figure 2.9(b) illustrates the case where the light incident on the microcavity is at an angle.

At each interface, the angle of incidence will depend on Snell’s law (n0 sin θ0 = n1 sin θ1).

As in the previous section, the electromagnetic field develops a phase difference as it

propagates through the material. Considering region 1, the accumulated phase is given by:

δp =
2π

λ0

n1d cos θ1. (2.59)

In a matrix representation, the electromagnetic field at boundary I can be related to the

field at boundary II:

[
EI

BI

]
=

[
cos δp

i
γ1

sin δp

iγ1 sin δp cos δp

] [
EII

BII

]
=

[
a11 a12

a21 a22

] [
EII

BII

]
. (2.60)

The transmission coefficient of the multilayer system is given by

t =
2γ0

γ0a11 + γ0γ2a12 + a21 + γ2a22

. (2.61)

Here,

γ0 ≡ n0
√

ε0μ0 cos θ0 (2.62)

γ1 ≡ n1
√

ε0μ0 cos θ1 (2.63)

γ2 ≡ n2
√

ε0μ0 cos θ2. (2.64)

In this case, the polarization of the incident electric field is chosen to be perpendicular

to the plane of incidence of the cavity structure. For an incident electric field parallel to

the plane of incidence, γx = (nx
√

ε0μ0)/(cos θx) [85]. The angle-dependent transmission
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spectrum of the microcavity can be calculated using matrix algebra as discussed above.

For increasing angles of incidence, the microcavity mode increases in energy and could

be utilized for the optical encoding of qubits in a QD ensemble within a one-dimensional

microcavity by selectively addressing subsets of QDs with transition energies resonant

with the cavity mode.



CHAPTER 3

EXPERIMENTAL METHODS

This thesis work involved optical investigations of single semiconductor quantum dots

as well as a quantum dot ensemble. The following is a brief description of the types of

samples and spectroscopic techniques used. In Sec. 3.1, details of the self-assembled

quantum dot structures studied in this work are provided. Section 3.2 contains a description

of the continuous-wave photoluminescence and photoluminescence excitation techniques

used for the characterization of these quantum dot structures. Ultrafast pulse shaping is

presented in Sec. 3.3. Dispersion compensation and the experimental approach to optical

control experiments are described in Sec. 3.4 and Sec. 3.5, followed by time-resolved

pump-probe spectroscopy methods in Sec. 3.6.

3.1 Self-Assembled Quantum Dots

The semiconductor quantum dot samples investigated in this thesis work were grown

using epitaxial techniques by the research groups of Dennis Deppe at the University of

Central Florida and Robin Williams at the National Research Council of Canada. The

self-assembly technique is described here for clarity. One deposits a few monolayers of

one material onto another bulk material with a different lattice constant. For example,

consider InAs quantum dots fabricated inside of bulk GaAs. At the interface, the deposited

InAs monolayers will spontaneously form small islands due to the strain caused by the

lattice mismatch. More GaAs is then deposited on top of these islands, resulting in three

dimensional confinement of the InAs. The GaAs deposited directly after the InAs islands

does not form a pure interface with the previous layers of GaAs. The result is a graded

composition of InGaAs in the plane of the InAs islands, referred to as the wetting layer.

47
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This layer acts as a one-dimensionally confined region. A simplified energy band diagram

of the resulting InAs/GaAs quantum dots is shown in Fig. 2.4(b).

The self-assembled InAs/GaAs quantum dots investigated in the second project of this

thesis work were grown by the research group of Dennis Deppe at the University of Central

Florida. Figure 3.1 shows an atomic force microscopy image of a similar quantum dot

sample and a diagram of the layered structure. It consists of a single layer of InAs quantum

dots grown on top of a 200 nm layer of GaAs, which was overgrown with another 65

nm of GaAs. These layer are bounded by AlGaAs diffusion barriers. A unique feature

of this sample is that it contains a bimodal size distribution of QDs. The PL spectrum,

shown in Fig. 3.2(b), has three distinct peaks, one large peak at 1220 nm and two smaller

peaks at 1140 nm and 1290 nm. The origin of each of these peaks was determined by the

author using PL and PLE experiments. The large peak at 1220 nm and the smaller peak at

1290 nm result from emission from the ground state optical transition from two different

populations of QDs. The ground state to excited state transitions are separated by 75 meV

for the 1220 nm dots and by 95 meV for the 1290 nm population. The 1140 nm peak in

the ensemble PL is therefore the excited state corresponding to the 1220 nm ground state

QDs, while the excited state of the 1290 nm QD population is within the 1220 nm peak.

These distinct peaks in Fig. 3.2(b) show that the QD ensembles have good size uniformity.

The 1220 nm QDs have an areal density of 1010 cm−2 while the population at 1290 nm

has a density of approximately 109 cm−2. These densities were estimated by D. G. Deppe

using AFM measurements on a sample grown under similar conditions.

Individual QDs from this sample were isolated using a metallic mask of apertures, which

allowed for excitation of a relatively small number of QDs. The gold mask was fabricated

Figure 3.1: Atomic force microscopy image of InAs quantum dot sample. (b) Simplified
diagram of layered quantum dot structure.
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Figure 3.2: (a) Simplified band edge diagram of InAs/GaAs quantum dots. Free carriers in
the GaAs are excited and radiatively recombine at discrete energies. (b) Photoluminescence
spectrum of the InAs/GaAs quantum dot ensemble grown by the research group of Dennis
Deppe. Inset: Single QD PL collected using a mask of apertures and micro-PL apparatus.

by CMC Microsystems using electron beam lithography. This mask was designed by

the author to have numerous square sections containing apertures of the same diameter,

ranging from 1 μm to 100 nm, and is shown in Fig. 3.3. Micro-PL results, collected

through a 0.4 μm aperture, are shown as an inset in Fig. 3.2(b). Within such an aperture,

based on the estimated areal density, we expect to see emission from ∼12 QDs in the 1220

nm population and ∼1 QD in the 1290 nm population; however, micro-PL investigations

showed that the areal density of both QD populations is inhomogeneous from aperture to

aperture of the same diameter. Emission from the 1220 nm population within a 0.4 μm

aperture can vary from ∼10 to ∼20 QDs, while emission from the 1290 nm QD population

can vary from 0 to ∼10 QDs. The inset in Fig. 3.2(b) shows a collection of emission peaks

from the 1290 nm QD population.

The second QD sample used in this thesis work was grown by the research group of

Robin Williams at the National Research Council of Canada using experimental methods

that are described in detail in Ref. [31]. This sample contains InAs/InP QDs within

a dielectric Bragg stack λ cavity. The high reflectors which form the cavity are high-

low index pairs of SiO2 and Ta2O5 forming Bragg stacks on the top and bottom of the

semiconductor layer. These were fabricated by depositing the dielectric stack on the

surface of a semiconductor wafer containing the QDs, gluing the structure face down on
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Figure 3.3: Diagram of metallic mask with squares containing equal sized apertures
deposited on the QD sample. Inset: Photograph of masked QD wafer.

a glass substrate, removing the substrate by wet etching and depositing a second Bragg

stack on the bottom of the semiconductor layer. The QDs within the semiconductor layer

were grown by chemical beam epitaxy and have a low areal density of two dots per square

micrometer. The sample structure is similar to that shown in Fig. 3.4(a), but with a two

times thicker InP spacer layer to result in a λ cavity. This microcavity structure has a

transmission resonance that varies in energy with incident angle, as described in Sec. 2.4.2.

The experiments described in Chapter 6 exploit this cavity resonance to select different

subsets of the full QD ensemble for optical control. Angle-resolved PL data, shown in Fig.

3.4(b), show the energy shift of the cavity mode with angle. The observation of emission

for the full range of detection angles indicates the presence of QDs with the ground state

optical transition resonant with this mode. The rapid drop in PL emission strength is due

primarily to the effect of the optical density of modes in the microcavity, which increases

the probability of emission into the normal incidence mode at the expense of emission for

non-zero detection angle [32].
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Figure 3.4: (a) Scanning electron micrograph of dielectric cavity structure, adapted from
Ref. [31], similar to the sample used in this thesis. (b) PL spectra of the InAs/InP quantum
dot ensemble as a function of sample angle. Measured by the author.

3.2 Continuous-Wave Photoluminescence and

Photoluminescence Excitation

Continuous-wave photoluminescence (CWPL) investigations utilize the radiative recom-

bination of carriers in self-assembled semiconductor structures to determine the photon

energies for allowed optical transitions within the structure. A laser is used to excite

free electron-hole pairs into the surrounding bulk material. These carriers then relax

into the discrete energy levels of the confined system before recombining and emitting

photons, or photoluminescence, at frequencies associated with the allowed transitions. A

monochromator is used to spectrally resolve the emitted light. A simplified energy band

edge diagram demonstrating the optical excitation and a CWPL spectrum for InAs/GaAs

quantum dots is shown in Fig. 3.2(a) and (b).

In a typical CWPL experiment, the spot size of the excitation laser is ≈30 μm, leading to

excitation of a large number of quantum dots (≈105). If one combines this approach with

diffraction-limited light focusing and collection capabilities, the experimental technique is

called micro-PL and the emission lines from a single quantum dot can be observed using a

high resolution monochromator. In this thesis work, both ensemble and single quantum

dot CWPL experiments were carried out.

Photoluminescence Excitation (PLE) measurements, which were carried out under
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conditions of diffraction limited focusing, also utilize the radiative recombination of

carriers; however, in this case, the laser is used to excite carriers directly into one of the

excited state transitions in the QD. In particular, in order to determine the excited states of

a QD, the excitation laser is tuned throughout a range of higher energies while detecting

the PL from the ground state transition. PL and PLE measurements were performed

on individual InAs/GaAs QDs in order to characterize their ground state and excited

state optical transition energies. This information was used in the numerical pulse shape

optimization involved in the second project of this thesis work.

3.3 Femtosecond Pulse Shaping

Femtosecond pulse shaping techniques allow for the independent control of the amplitude

and phase of the frequency components in a femtosecond optical pulse, leading to a

customized ultrafast optical waveform. In this thesis, a reflective pulse shaper geometry

was used, as shown in Fig. 3.5. The input pulse is spread by a diffraction grating and

the spectrum is reflected by a curved mirror. The spectral components pass through a

spatial mask in the Fourier plane and are reflected back to the curved mirror and diffraction

grating, where the spectrum is recombined into the output pulse. By using a spatial light

modulator (SLM) as the mask, one can achieve programmable computer control of the

amplitude and/or phase of the output pulse. The SLM used here was purchased from

Cambridge Research & Instrumentation Inc. and contains 128 pixels in a dual mask

configuration. As described in Sec. 2.3.1, each pixel has an electrically variable index of

refraction that can be used to modulate the phase of the incident light. In the case of a

dual mask SLM, two liquid crystal arrays are oriented with extraordinary axes at 90◦ to

each other and at 45◦ relative to the incident light polarization. In combination with an

input and output polarizer, this configuration allows the SLM to control the total phase

retardation and act as an electrically tunable waveplate for amplitude modulation at each

wavelength. This computer controlled approach to femtosecond pulse shaping was utilized

in the first and second projects of this thesis, to realize optimized pulse shapes for optimal

quantum control experiments.
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Figure 3.5: Reflective pulse shaper geometry.

3.4 Dispersion Compensation and Pulse

Characterization

Dispersion compensation is crucial for the optimal quantum control experiments within

this work as the numerically optimized pulse shaping masks are designed to be applied

to transform-limited optical pulses. Ultrafast pulses from mode-locked sources are rarely

transform-limited and propagation through an optical apparatus can introduce additional

phase distortions, leading to an unknown pulse phase at the QD sample. The programmable

pulse shaper used for the optical control experiments in this thesis was also used for

dispersion compensation using an approach called multiphoton intrapulse interference

phase scan (MIIPS) [86]. MIIPS is a single beam pulse characterization technique that

utilizes the second harmonic spectrum of the pulse at the sample position (or an equivalent

focus) to carry out a measurement of the pulse phase. In particular, the second harmonic

spectrum is given by

S(2)(2ω) ∝
∣∣∣∣∫ |E(ω + Ω)| |E(ω − Ω)| ei[φ(ω+Ω)+φ(ω−Ω)]dΩ

∣∣∣∣2 , (3.1)

where Ω is an integration variable describing frequency components in the pulse. The

second harmonic power density at a particular frequency 2ω will be maximum when

the phase factor in the integrand in Eq. 3.1 is equal to unity, as would occur for a TL
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pulse. To measure the compensation phase required to make the initial pulse transform-

limited, the SLM is used to iteratively determine the extra phase at each ω required to

maximize the second harmonic power spectrum at 2ω. The extra phase added by the SLM

is systematically varied by using a reference function of the form:

ξ(ω, δ) = α cos[γω − δ(ω)] (3.2)

where α = 2π in this case, and determines the maximum imposed phase. To determine γ,

one first measures the pulse bandwidth using a spectrometer. This bandwidth is then used

to calculate the corresponding theoretical TL pulse duration. γ is equal to the inverse of

this pulse duration. Using these fixed values of α and γ, δ is then scanned to determine the

phase that maximizes the second harmonic power spectrum.

The essential optical components required to perform MIIPS are illustrated in Fig. 3.6(a),

including a non-linear βeta Barium Borate (BBO) crystal to create the second harmonic

spectrum. In optimal quantum control experiments, the BBO crystal is placed at the sample

position. Example MIIPS traces are shown in Fig. 3.6(b) and (c). The contour scale shows

the second harmonic intensity as a function of the wavelength and the scanning parameter δ.

For TL pulses, Fig. 3.6(b) shows evenly spaced features on the MIIPS trace which all have

the same slope [87]. Second and third order phase distortions appear on the MIIPS trace in

the form of unevenly spaced features and unequal slopes, respectively (Fig. 3.6(c)). The

software which carries-out the MIIPS routine was purchased from Biophotonic Solutions

Inc.

In this thesis work, autocorrelation techniques were used to characterize the optical

pulses in the quantum control experiments. The pulses were characterized before and

after dispersion compensation as well as after the intended optimum shaping mask was

applied. From a general perspective, correlation analysis is used to compare two signals to

determine their degree of similarity. In the case of an autocorrelation, the laser pulse is

compared to itself. This is accomplished by the interference of two copies of the pulse, one

at a controllable time delay relative to the other in a non-linear optical crystal (BBO). The

second harmonic intensity resulting from the two pulses is measured versus the time delay

between the pulses. There are two relevant configurations: (i) non-collinear (background-

free) autocorrelation; and (ii) collinear (or interferometric) autocorrelation. In the former

case, the full-width at half maximum of the autocorrelation is proportional to the pulse
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Figure 3.6: MIIPS traces of (a) Schematic diagram of MIIPS pulse characterization and
dispersion compensation apparatus. The laser source is an optical parametric oscillator
(OPO). Filter F is used to block the fundamental beam. (b) MIIPS trace of TL pulses with
optimized MIIPS phase compensation mask and (c) MIIPS trace of ultrafast pulses before
dispersion compensation. Adapted from Ref. [87].

duration with a proportionality factor determined by the pulse shape [88]. In the later case,

one gains insight into the phase characteristics of the optical pulse. An interferometer

was designed and constructed to enable both non-collinear and collinear autocorrelation

measurements, and is shown in Fig. 3.7(a). One may convert between the two alignment

geometries by removing mirror M3 from the optical path. The autocorrelation is obtained

using a rapid scan approach by controlling the length of one of the arms of the interferome-

ter dynamically using a light-weight retroreflector on the cone of a speaker. The speaker is

driven by a function generator followed by an amplifier. Background-free autocorrelations

before and after dispersion compensation are shown in Fig. 3.7(b) and (d) together with the

corresponding interferometric autocorrelations in Fig. 3.7(c) and (e). The pulse durations

obtained from these autocorrelations were determined assuming a pulse shape of the form

E0(t) = |E0|sech(1.76t/τ) and are indicated in each case. The raised wings present in

Fig. 3.7(c) are characteristic of a chirped pulse. These raised wings are absent in the

compensated pulse, as shown in Fig. 3.7(e), indicating that the chirp was removed.
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Figure 3.7: (a) Diagram of autocorrelator for laser pulse characterization. Zero-background
autocorrelations are measured with mirror M3 in the optical path. The removal of mirror
M3 allows for a collinear geometry, used to collect interferometric autocorrelations. The
detector is an optical fiber when MIIPS is performed. A photomultiplier tube was used
to detect the autocorrelation traces. (b)((d)) Background-free and (c)((e)) interferometric
autocorrelation traces from OPO laser source (with applied dispersion compensation). The
raised wings in (c) are characteristic of an interferometric autocorrelation of a chirped laser
pulse.

3.5 Optical Control Experiments

In this thesis work, a quantum control apparatus was designed, constructed and imple-

mented in the quantum control of the excitonic states of QDs with ground state transition

energies in the telecom frequency band. In these experiments, the objective is to tailor

the quantum state dynamics of excitons using pulse shaping. Excitation is carried out on

the first excited state transition, and the steady-state PL on the ground state transition is
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Figure 3.8: Schematic diagram of quantum control apparatus, including pulse shaper,
monochromator and InGaAs array detector.

used to read out the quantum state at the end of the laser pulse. A schematic diagram

of the complete quantum control apparatus used in these experiments is shown in Fig.

3.8 and photographs of the setup are shown in Fig. 3.9. The excitation laser beam is

focused onto the QD sample through an objective lens and ultra-thin cryostat window.

The objective lens is a Mitutoyo 100× high numerical aperture (NA=0.7) microscope

objective designed to operate at infrared wavelengths. The QD sample is mounted on an

attocube three-dimensional nanopositioning stage at 10 K in a continuous flow microscopy

cryostat (Janis Research ST-500). The second harmonic spectrum required for dispersion

compensation using MIIPS is detected at an equivalent focus. Figure 3.8 illustrates this

region, equivalent to the optical path used to access the QD sample; however, a BBO

second harmonic crystal is placed at the sample position in this case. This equivalent focal

path includes the same microscope objective lens and ultra-thin cryostat window used in

the QD excitation line (Fig. 3.9(b)). The dispersion compensation phase, determined using

MIIPS, was then added to the numerically optimized control pulse shape for each project.

The PL from the ground state was collected using a 0.75 m monochromator (Princeton

Instruments) and InGaAs liquid nitrogen cooled array detector (from HORIBA Jobin

Yvon). A long-pass filter placed in front of the monochromator was used to minimize the

detection of the scattered pump laser light.

The excitation laser spot size was determined using a blade-edge type measurement.

Using the attocube nanopositioners, the focused laser spot was stepped off of a straight
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Figure 3.9: Photograph of a section of the quantum control apparatus with extra compo-
nents. (a) The objective lens is placed above the microscopy cryostat window for QD
excitation and PL detection. Two pellicle beam splitters and one mirror, each on flip
mounts, allow for access to the three arms of the structure: for laser spot size measurement,
alignment of the laser to the mask of apertures, and an equivalent focus which duplicates
the optical path to the the QD sample. The masked QD sample within the optical cryostat
as well as the image captured by the alignment camera, of the mask of apertures and the
focused laser spot, are inset. (b) Equivalent focus arm providing feedback to pulse shaper.

edge present on the metallic mask deposited on the QD sample (Sec. 3.1). The change in

the intensity of the reflected beam was detected using a single channel InGaAs detector.
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Figure 3.10: (a) Example of reflected intensity data, from metallic mask step edge. (b)
Differentiated data from (a), fit to a Gaussian peak.

An example of the collected reflected intensity data is shown in Fig. 3.10(a). This data

was then numerically differentiated and fit to a Gaussian peak (Fig. 3.10(b)), allowing for

the radius of the focused laser spot to be determined. The portion of the apparatus used to

measure the spot size is shown in Fig. 3.9(a).

For the experiments in Chapter 4, the shaped pulses were characterized to verify accurate

pulse shape control within the apparatus. This included calculations of the autocorrelations

and MIIPS traces using a software package called femtoPulse Master which was purchased

from Biophotonic Solutions Inc. For the experiments in Chapter 5, the pulse shapes

were applied to quantum control of two excitons in two different QDs. The quantum

state dynamics for the optimal quantum control experiments were calculated using the

optical Bloch equations, discussed in Sec. 2.3, incorporating the experimentally measured

values of the exciton transition energies and dipole moments in each QD. The exciton

transition energies were measured using PLE experiments, which were performed using

the same quantum control apparatus. In this case, the excitation laser was the optical

parametric oscillator (OPO) laser source. The ground state PL emission was detected using

the monochromator and InGaAs array. In order to determine the dipole moments of the

QDs, Rabi rotations were performed by resonantly exciting the first excited state transition

of each QD with a TL femtosecond pulse and varying the pulse area by increasing the

excitation power at the sample. The fit to these oscillations, in addition to laser spot size

measurements, were used to extract the dipole moments for each QD.
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3.6 Pump-Probe Spectroscopy

Time-dependent phenomena in semiconductor quantum dots can be characterized using

an ultrafast spectroscopy technique called pump-probe. In this case, time resolution is

achieved by splitting a laser pulse in two and delaying one copy of the pulse with respect

to the other. The pump is the first copy of the pulse which excites the sample. The probe

pulse is much weaker than the pump (≥ 10 times weaker) so that the probe does not

cause significant excitation in the sample in comparison to the pump pulse. The probe

pulse is used to detect some optical property (e.g., transmissivity or Faraday rotation)

that is modified as a result of the excitation created by the pump pulse. The probe pulse

arrives at a later time, determined by the difference in path lengths of the two pulses. The

path difference between the two pulses can be adjusted, allowing the relaxation of the

system of electron-hole pairs to be observed in the time domain. There are a variety of

configurations for a pump-probe experiment, determined by: (i) what characteristic is

measured (for example transmissivity); (ii) whether the pump and probe beam are collinear

or non-collinear; and (iii) whether they have been derived from the same laser pulse

(referred to as a degenerate experiment) or pulses with different center wavelengths using

different output beams from an ultrafast laser system (a non-degenerate experiment). In

this thesis work, degenerate pump and probe pulses were used in a configuration referred

to as differential transmission, which measures the pump induced change in transmissivity.

This technique is described in detail in the next section. Figure 3.11(a) shows a basic

schematic diagram of a pump-probe experiment.

3.6.1 Differential Transmission

Differential transmission experiments were used in the third project of this thesis to measure

the carrier lifetime of InAs/InP QDs as well as to investigate the ability to spectrally

select QD subsets using angle-dependent pump-probe measurements. In a differential

transmission experiment, one detects the pump-induced change in the transmissivity of

the sample. The electron hole pairs injected by the pump pulse reduce the absorption

on optical transitions for which either the valence state or conduction state is occupied.

This effect is called state filling, and the associated reduction in absorption is commonly

referred to as bleaching. In the experiment, the transmission is increased by the reduced

absorption, resulting in a positive differential transmission signal. As described in Sec. 2.2,
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Figure 3.11: (a) Schematic representation of a pump-probe experiment shown in collinear
differential transmission geometry. Δt is the variable optical delay between the pump
and probe pulses. Inset: InAs QD energy level diagram with polarized excited state
selection. (b) Schematic representation of differential transmission experiment in non-
collinear geometry. The pump beam is at normal incidence and the probe beam is incident
at angle θ to the sample. (c) Diagram of pump-probe experiment set-up using IR OPA
laser source. The collinear excitation geometry is achieved when mirror M is removed.

the optical transitions excited by the pump pulse depend on its polarization. If the pump

pulse is linearly polarized, equal populations of spin-up and spin-down carriers are injected

and contribute equally to the bleaching signal. The decay of this signal with increasing

probe delay provides a measurement of the recombination time of the electrons and holes.

The schematic diagram of the pump-probe apparatus used in the the third component of

this thesis work is shown in Fig 3.11 (c). A beam splitter with a ratio of approximately

95:5 is used to split the laser beam into pump and probe beams. A retroreflector mounted

on a motorized delay stage with a minimum step size of 0.1 μm and a full range of 40 cm

is used to introduce a variable path length difference between the pump and probe pulses.

A double pass configuration was used, in which a quarter-wave plate is placed in front

of the retroreflector and the retroreflected beam is sent back onto the same path using a

planar mirror at normal incidence. This doubles the total accessible path length and results

in pump and probe beams with orthogonal linear polarizations. This aids in the rejection
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of scattered pump light and allows the two beams to be made collinear using a polarizing

beam splitter cube (PC) as shown in Fig. 3.11(c). The appropriate selection rules for the

QDs are shown as an inset in Fig. 3.11(a). By probing on the |0〉 to |y〉 transition, we can

detect a bleaching signal associated with the excitation of the |0〉 to |x〉 transition. The

two beams are then focused onto the same spot on the sample (approximately 90 μm in

diameter). The probe beam is spectrally resolved using a 0.25 m monochromator and

detected using an InGaAs photodiode. In order to reject scattered pump light, the probe

beam was passed through a polarizer placed in front of the monochromator. The probe

transmission in the absence of the pump pulse (T0) is measured by chopping the probe

beam using a mechanical chopper and detecting the amount of transmitted light through

the sample at each wavelength using a lock-in amplifier. This process is then repeated

with the sample removed. T0 is then determined as the ratio of the resulting spectra. After

removing the sample, the alignment into the monochromator and detector is carefully

re-optimized to account for beam steering by the sample substrate. The pump induced

change in transmission (ΔT ≡ T − T0) is then measured by moving the mechanical

chopper into the pump beam path and detecting the component of the probe detector signal

at the chopper frequency using a lock-in amplifier.

The experiments described in Chapter 6 involve the application of pump-probe differen-

tial transmission techniques on the one-dimensional microcavity structure described in Sec.

3.1. In these experiments, the differential transmission signal is compared for collinear

and non-collinear excitation geometries. In Fig. 3.11(c), the mirror M in the pump beam

path is used to switch between these geometries. A polarizing beamsplitter cube is used to

combine the pump and probe beams in the collinear case. Another cube is placed in front

of the monochromator to isolate the probe beam for detection.
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4.1 Abstract

Shaped ultrafast pulses designed for controlled-rotation (C-ROT) operations on exciton

qubits in semiconductor quantum dots are demonstrated using a quantum control appara-

tus operating at ∼1 eV. Optimum pulse shapes employing amplitude and phase shaping
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protocols are implemented using the output of an optical parametric oscillator and a pro-

grammable pulse shaping system and characterized using autocorrelation and multiphoton

intrapulse interference phase scan (MIIPS) techniques. We apply our pulse characterization

results and density matrix simulations to assess the fundamental limits on the fidelity of

the C-ROT operation, providing a benchmark for the evaluation of sources of noise in

other quantum control experiments. Our results indicate the effectiveness of pulse shaping

techniques for achieving high fidelity quantum operations in quantum dots with a gate

time below 1 ps.

4.2 Introduction

Semiconductor quantum dots (QDs) are strong candidates for future solid state quantum

computing architectures, in which the fundamental qubits may be realized using the

quantum states of excitons or individual carrier spins [19, 20, 21, 22, 23, 25, 26, 89, 90,

91, 92, 93, 94]. Such an approach offers the promise of long term scalability through

rapid advances in semiconductor growth and fabrication techniques, including tailored

coupling via optical microcavity and waveguide modes [20, 26, 93], as well as ease of

integration with conventional computing technology. The possibility of manipulating the

fundamental quantum states using optical techniques would exploit established photonic

technologies, and may lead to THz operation rates. This potential has led to an intensive

research effort in recent years dedicated to the pursuit of coherent optical control of

quantum states in semiconductor quantum dots, including demonstrations of single qubit

rotations involving excitons and single carrier spins [42, 43, 44, 45, 49, 50, 52, 54, 57],

entanglement [28, 95, 96], adiabatic passage [30, 51], and quantum state tomography [80].

Femtosecond pulse shaping techniques provide independent control of the temporal

characteristics of the phase and amplitude of an optical pulse [81], providing a means

to tailor the light-matter interaction responsible for quantum control. The benefits of

pulse shaping have been realized, for example, in the control of atomic and molecular

systems [65, 66, 67, 68, 69] and chemical reactions [70, 71]. It has recently been shown

theoretically that the application of pulse shaping techniques to optically-controlled quan-

tum operations in semiconductor quantum dots can lead to substantial improvements in

performance metrics such as gate fidelity and speed [22, 23, 83]. For these studies, the

pulse shaping method was applied to the controlled-rotation (C-ROT) operation involving
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Figure 4.1: (a) Energy level diagram showing excitonic transitions in semiconductor
quantum dots with cylindrical symmetry. The system ground state (no excitons) is |00〉.
Opposite circularly-polarized light (represented by σ+ and σ−) leads to the generation
of excitons with opposite spin (|01〉 and |10〉). The biexciton state |11〉 consists of two
excitons of opposite spin, with biexciton binding energy Δb. (b) Schematic diagram
of the portion of the quantum control apparatus used to generate and characterize the
pulse shaping protocols. Femtosecond pulses from the laser enter the pulse shaper where
amplitude or phase masks are implemented on TL pulses. The shaped pulses enter the
interferometric/non-collinear autocorrelator. Mirror M1 is mounted on a speaker driven
by a function generator, providing a rapid scan delay line. The retroreflected beam is
focused using lens L1 into a BBO crystal for second harmonic generation. Mirror M5
(beamsplitter BS2) is used for noncollinear (interferometric) autocorrelation measurements.
Filter F1 removes any remaining IR components. Detector D is a photomultiplier tube
used to collect autocorrelation traces or an optical fiber input connected to a spectrometer,
providing feedback to the pulse shaper.

exciton qubits, representing a useful prototype for the general application of shaping

techniques to optical control of charge and spin states in semiconductor quantum dots. The

C-ROT operation is achieved using a four-level system consisting of the vacuum ground

state |00〉, two exciton states |01〉 and |10〉, and the biexciton state |11〉 within a single

self-assembled semiconductor QD (Fig. 4.1(a)). Two qubits are represented by the single

exciton states |10〉 and |01〉 and the C-ROT operation is performed by implementing a π

rotation on the first (target) qubit if and only if the second (control) qubit is in state 1. For

the successful experimental implementation of optical control schemes employing pulse

shaping techniques, it is essential that the quantum control system be well characterized

using convenient, real-time pulse measurement tools.

Here we report the experimental demonstration of the pulse shaping protocols found

in Ref. [83] for C-ROT operations in quantum dots using a quantum control apparatus

operating in the infrared spectral region (∼1 eV, aimed at quantum dots with emission

wavelengths in the 1.3 μm telecom band), in contrast to existing quantum control demon-

strations in the visible and near infrared [65, 66, 67, 68, 69, 70, 71]. This apparatus is

also used to assess the experimental limitations on gate fidelity due to inaccuracies in the
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pulse shaping system and other laser instabilities, indicating the feasibility of high fidelity

(∼0.99) quantum operations with a gate time below 1 ps with the implementation of pulse

shaping. These findings thereby provide a useful benchmark in assessing noise limitations

in more general quantum control applications using shaped optical pulses. In this work,

the theoretical simulations in Ref. [83] are also extended to the application of shaping

protocols to C-ROT operations on quantum dots of cylindrical symmetry, for which the

exciton states are spin polarized, illustrating the universality of our approach. The pulse

shapes were characterized using interferometric and noncollinear (zero-background) auto-

correlation techniques as well as multiphoton intrapulse interference phase scan (MIIPS)

[86, 87]. We find that the MIIPS trace exhibits unique visual signatures that would greatly

aid in the implementation of real-time quantum control experiments. Our results lay the

foundation required for the experimental implementation of general phase and amplitude

pulse shaping protocols for application to a variety of quantum processes in semiconductor

quantum dots, including Rabi rotations [97], adiabatic passage [30, 51, 98], and schemes

for dynamical decoupling [27, 99, 100].

4.3 Numerical Pulse Shape Optimization for Controlled

Rotations

The interaction between the four-level system in Fig. 4.1(a) and the applied laser field is de-

scribed by the Hamiltonian Hint = −�μ· �E(t), where �E(t) = 1
2
ε̂E0(t)[exp (−iω t − iφ(t))+

exp (iω t + iφ(t))] is the electric field of the pulse and �μ is the electric dipole moment

operator. Femtosecond pulse shaping systems, which are readily available from a variety of

commercial sources [101], provide independent control over the temporal (or equivalently

spectral) characteristics of the amplitude E0(t) and phase φ(t) of the laser pulse. This

ability to finely tune the optical field provides a flexible tool for manipulating the quantum

control Hamiltonian Hint. In this work, we focus on a typical 4-f pulse shaper configuration

[81], in which the pulse characteristics are manipulated in the spectral domain using a

mask M (ω) placed in the Fourier plane. The Fourier transform of an ultrafast pulse exiting

the pulse shaping system is given by

Ẽout (ω) = Ẽin (ω) M (ω) (4.1)
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where Ẽin(ω) is the Fourier transform of the transform-limited (TL) input pulse, for which

φ = 0 and E0(t) = |E0|sech(1.76t/τ), with τ = 130 fs. The mask function M (ω) is

imposed using a spatial light modulator (SLM) and has the general form:

M(ω) = AM(ω) exp [iΦM(ω)]. (4.2)

Dual mask SLMs provide independent control of AM(ω) and ΦM(ω). In this work, we

apply the phase-only and amplitude-only shaping protocols developed in Ref. [83] to the

C-ROT operation on spin-polarized exciton qubits, as depicted in Fig. 4.1(a). Circularly-

polarized selection rules (and degenerate |01〉 and |10〉 single exciton states) occur in

cylindrically-symmetric quantum dots. The corresponding level scheme for excitons and

biexcitons in elongated quantum dots exhibiting linearly-polarized optical selection rules

and a nonzero exchange splitting δ between the single exciton states (typically ∼100

μeV) was considered in Ref. [83]. The exciton dipole moment, the ground state exciton

energy, and the biexciton binding energy were chosen to reflect typical values measured in

experiments [102, 103]. The amplitude-only shaping mask is given by

AM (ω) =

∣∣∣∣ exp

⎡⎣−(
ω − ωb

Δω1/ (2ln2)1/2

)2
⎤⎦

− A0 exp

⎡⎣−(
ω − ωa

Δω2/ (2ln2)1/2

)2
⎤⎦∣∣∣∣

(4.3)

where Ea = h̄ωa and Eb = h̄ωb are the transition energies from |00〉 to |10〉 and from |01〉
to |11〉, Δω1 and Δω2 are the Gaussian function bandwidths and A0 is an amplitude factor.

In this case, ΦM(ω) from Eq. 4.2 is set to zero for simplicity. The phase-only shaping

mask is given by

ΦM (ω) = α cos [γ (ω − ωb) − ϕ] . (4.4)

The fidelity of the C-ROT operation was maximized by varying Δω1, Δω2, A0 (amplitude

shaping scheme) or α, γ, and ϕ (phase shaping scheme) as well as the pulse area Θ =

(μ · ε̂/h̄)
∫ +∞
−∞ E0 (t) dt. The constraints on the free parameters are the same as in Ref. [83]

except that the initial TL pulse duration is taken to be 130 fs (corresponding to the full-

width-at-half-maximum (FWHM) of the experimental pulses) and Θ was allowed to vary
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Figure 4.2: Occupation dynamics and pulse characteristics for: (a) the optimum amplitude-
shaped control pulse and (b) the TL pulse with equivalent gate time (Δb = 2.5 meV). Panels
(i) and (ii) indicate the state dynamics for initial occupation in |01〉 and |00〉, respectively.
Only transitions coupled to the laser field are shown. Panels (iii) and (iv) show the temporal
and spectral characteristics of the optical pulses.

up to 8π radians, reflecting experimentally accessible values [104]. The chosen constraints

ensure that AM(ω) and ΦM(ω) are sufficiently slowly varying to be implemented with

high accuracy on a standard 128 pixel SLM. Only the fidelity associated with the C-ROT

gate is considered here: a fidelity of unity tied to quantum state initialization is assumed.

The quantum state dynamics are calculated using the rotating-wave approximation. Details

of the numerical optimization routine are provided in Ref. [83].

The results of simulations of the C-ROT gate are shown in Fig. 4.2(a) and Fig. 4.3(a)

for the optimum amplitude-shaped and phase-shaped pulses, respectively. In each case,

the gate performance is compared to that for an unshaped (TL) pulse with an equivalent

gate time [105]. The shaped pulses substantially outperform the unshaped pulses for both

phase and amplitude shaping protocols, leading to the intended final system state for initial
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Figure 4.3: Occupation dynamics and pulse characteristics for: (a) the optimum phase-
shaped control pulse and (b) the TL pulse with equivalent gate time (Δb = 2.5 meV). Panels
(i) and (ii) indicate the state dynamics for initial occupation in |01〉 and |00〉, respectively.
Only transitions coupled to the laser field are shown. Panels (iii) and (iv) show the temporal
and spectral characteristics of the optical pulses.

conditions corresponding to unity occupation of each of the four basis states. In contrast,

for the TL pulses there is an undesired change in the system state at the end of the pulse

when the system is initially in |00〉 or |10〉. The shaped pulses therefore provide a much

higher gate fidelity, corresponding to 0.999995 (amplitude-shaped pulse) and 0.999998

(phase-shaped pulse). The fidelities for the unshaped pulses are much lower (0.767445

and 0.944764 for the results in Fig. 4.2(b) and Fig. 4.3(b), respectively). The inclusion

of relaxation using measured recombination and dephasing times in similar quantum

dots [37] reduces our calculated fidelities by ≤ 0.004, reflecting a key advantage of the

subpicosecond gate times considered here. The poor performance of the TL pulses is

due to the lack of spectral selectivity between the |00〉 to |10〉 and |01〉 to |11〉 optical

transitions, which are both strongly driven (in phase) by separate spectral components
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Figure 4.4: (a) Gate fidelity of optimal phase-shaped (diamond), amplitude-shaped (circle),
and TL pulses with equivalent gate times for both phase (×) and amplitude (+) cases as a
function of biexciton binding energy. (b) Gate time of optimized phase-shaped (diamond)
and amplitude-shaped (circle) pulses as a function of biexciton binding energy.

within the bandwidth of the optical pulse. In contrast, engineering the control Hamiltonian

using pulse shaping allows one to tailor the evolution of the quantum state of the system.

In this case, transient dynamics can occur during the laser pulse, but the desired system

state is attained at the end of the quantum operation.

Figure 4.4(a) shows the variation of gate fidelity with biexciton binding energy (Δb).

The fidelity increases with Δb in all cases, reflecting the relaxed constraints on the C-ROT

performance due to the increasing energy difference between the |00〉 to |10〉 and |01〉 to

|11〉 optical transitions. The fidelities saturate close to unity for both shaping schemes

for Δb > 2.5 meV, although the amplitude-shaped pulses provide higher fidelities for Δb

between 1.0 meV and 2.0 meV. The gate times for the optimized pulses are shown in

Fig. 4.4(b). The operation times for the phase shaping protocol are up to 50 % longer

Table 4.1: Optimum pulse parameters, including operation gate time (GT), obtained for
the amplitude shaping protocol for a range of biexciton binding energies.

Δb (meV) F h̄Δω1 (meV) h̄Δω2 (meV) A0 Θ (π rad) GT (fs)
0.00 0.500 9.921 12.463 0.387 1.531 261.7
0.25 0.539 6.188 6.426 0.902 7.930 442.6
0.50 0.623 6.083 6.877 0.915 8.000 429.5
0.75 0.706 6.083 7.158 0.921 8.000 401.8
1.00 0.833 6.083 7.550 0.947 8.000 403.2
1.25 0.949 6.083 7.928 0.937 8.000 407.9
1.50 0.990 6.083 8.118 0.941 8.000 390.5
1.75 0.999 6.408 8.830 0.939 7.995 374.6
2.00 1.000 6.086 9.209 0.908 6.231 370.9
2.25 1.000 6.741 10.555 0.904 6.185 340.0
2.50 1.000 7.475 12.068 0.903 6.410 312.3
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Table 4.2: Optimum pulse parameters, including operation gate time (GT), obtained for
the phase shaping protocol for a range of biexciton binding energies.

Δb (meV) F α (π rad) γ (fs) ϕ (π rad) Θ (π rad) GT (fs)
0.00 0.500 1.000 303.8 1.000 3.471 773.5
0.25 0.571 0.737 304.3 -0.109 4.227 588.1
0.50 0.643 0.737 304.3 -0.100 4.233 589.1
0.75 0.714 0.736 304.3 -0.087 4.241 589.2
1.00 0.781 0.736 304.3 -0.075 4.242 589.4
1.25 0.843 0.735 304.3 -0.062 4.228 589.6
1.50 0.897 0.734 304.3 -0.050 4.223 589.6
1.75 0.941 0.734 304.3 0.962 4.219 590.7
2.00 0.974 0.734 304.3 -0.025 4.209 591.2
2.25 0.994 0.734 304.3 0.987 4.198 591.8
2.50 1.000 0.734 303.3 -1.000 4.185 592.0

than the gate times for the amplitude-shaped pulses, reflecting the complex shape of the

temporal envelope associated with the simple phase-shaping mask function used here.

Summaries of the optimized amplitude and phase mask parameters are given in Table 4.1

and Table 4.2, respectively.

4.4 Experimental Implementation of Optimized Pulse

Shapes

4.4.1 Quantum Control Apparatus

Previous work in quantum control has involved optical sources and experiments in the

visible or near-infrared spectral region [65, 66, 67, 68, 69, 70, 71]. As a result, the majority

of development efforts for pulse shaping systems and pulse characterization equipment

have been focused on this wavelength range. Self-assembled In(Ga)As quantum dots

offer considerable flexibility for quantum computing applications due to the ability to

fabricate ordered quantum dot arrays and composite microstructures [17, 106]. The

ground state optical transition in these quantum dots typically occurs in the range 0.8-

1.1 eV [31, 102, 103, 107]. The implementation of optically-controlled quantum gates on

exciton or spin states in these quantum dots therefore necessitates the development of a

quantum control apparatus and suitable characterization tools operating in the infrared. A

schematic diagram of the portion of the quantum control apparatus used for implementing
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the amplitude and phase shaping protocols and characterizing the resulting pulse shapes is

shown in Fig. 4.1(b). The optical source is an optical parametric oscillator (OPO) that is

synchronously-pumped by a mode-locked Ti:Sapphire oscillator. The center wavelength of

the OPO pulses was tuned to the |01〉 to |11〉 transition. The ground state optical transition

(|00〉 to |10〉) occurs at 1215 nm [102]. The biexciton binding energy was allowed to vary,

as in the theoretical calculations. The programmable pulse shaping system utilizes a 128

pixel dual-mask SLM in the Fourier plane to apply amplitude or phase masks to the incident

pulses. The shaped pulses were characterized using both interferometric and noncollinear

autocorrelation measurements using the same apparatus, as shown in Fig. 4.1(b). The

second harmonic signals were generated in a β-barium borate (BBO) crystal and detected

by a photomultiplier tube. In order to implement MIIPS, the photomultiplier was replaced

by an optical fiber input and fed into a spectrometer. The second harmonic spectrum

simultaneously provides feedback to the pulse shaper and measurement of the real-time

MIIPS trace.

4.4.2 Dispersion Compensation

The output of a typical ultrafast laser system is not an ideal transform-limited pulse, even

for a standard mode-locked femtosecond oscillator. When laser accessories such as optical

parametric oscillators and regenerative amplifiers are used, the phase distortions become

even larger. In addition, as a laser pulse travels through an experimental setup, dispersive

optics further distort the pulse phase. The ability to apply the desired pulse shape precisely

at the QD sample position, accounting for phase distortions accumulated from transit

through the apparatus, is imperative. This requires an accurate measurement of the pulse

phase so that appropriate dispersion compensation may be introduced. We employ a pulse

shaping system equipped with MIIPS [86, 87]. As MIIPS is a single beam technique, and

is insensitive to the optical mode, it is readily implemented at the QD sample position after

all dispersive optics in the apparatus, representing a significant advantage over other pulse

characterization techniques for this type of application [108, 109]. In order to implement

MIIPS, the QD sample at the laser focus is replaced by a nonlinear crystal and the second

harmonic (SH) spectrum is measured using an optical fiber connected to a spectrometer

(Fig. 4.1(b)). As described in Ref. [86], a sinusoidal reference phase function is imposed

on the input pulses using the SLM and the SH spectrum is measured as a function of

the phase argument (δ). Maxima in the resulting two-dimension plot of SH wavelength
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Figure 4.5: Results of pulse characterization before ((a), (c),and (e)) and after ((b), (d), and
(f)) the introduction of dispersion compensation using MIIPS. (a) and (b) show the results
of noncollinear autocorrelation measurements; (c) and (d) show results of interferometric
autocorrelation measurements; and (e) and (f) show the measured MIIPS traces.

versus δ provide a measure of the second derivative of the pulse phase φ′′(ω). Integration

then provides φ(ω), which can be compensated using the SLM to obtain TL pulses. For

completeness, the pulses in this work were also characterized using interferometric and

zero-background autocorrelation techniques.

The results of pulse characterization before and after dispersion compensation are shown

in Fig. 4.5. The FWHM of the zero-background autocorrelation trace before compensation

is 398 fs, corresponding to a pulse duration, assuming a hyperbolic secant shape, of 257

fs. After dispersion compensation, the pulse duration is reduced to 137 fs, indicating the

removal of a substantial amount of phase distortion. (Note the difference in the range

of the time delay axes on the left and right sides of Fig. 4.5.) The raised wings in the
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lower envelope of the interferometric autocorrelation in Fig. 4.5(c) is a characteristic

signature of linear chirp (second-order phase distortion), indicating that this type of phase

distortion dominates in the pulses prior to compensation. The observation of a clean

TL interferometric autocorrelation in Fig. 4.5(d) indicates that these second-order phase

distortions have been removed. The superior sensitivity to pulse chirp of the interferometric

autocorrelation over the noncollinear autocorrelation comes at the expense of an increased

complexity of optical alignment. The associated MIIPS traces are shown in Fig. 4.5(e)

(before compensation) and Fig. 4.5(f) (after compensation). The results in Fig. 4.5(f)

indicate evenly spaced (by π) parallel diagonal lines, as expected for a TL pulse [86].

The second-order phase distortion in the pulses prior to compensation is indicated in

Fig. 4.5(e) by the appearance of unequal spacing between the lines. A small difference

in the relative angle of the lines is also apparent in Fig. 4.5(e), reflecting a small amount

of third-order phase distortion. In contrast, no residual phase distortion is apparent in the

MIIPS trace for the compensated pulses (Fig. 4.5(f)). The dramatic difference between the

pulse characterization results shown on the left and right sides of Fig. 4.5 emphasizes the

essential role played by dispersion compensation in the implementation of optimized pulse

shapes for quantum control experiments.

4.4.3 Shaped Pulse Characterization

The spectral and temporal characteristics of the shaped pulses are shown in Fig. 4.6 for

the optimum pulse parameters corresponding to a biexciton binding energy of 2.5 meV

(see Table I and Table II). It is evident from Fig. 4.6(a) that the amplitude mask leads

to a large overall reduction in the total pulse area, representing an inefficient use of

laser resources in the application of quantum control. In contrast, for the phase-shaping

protocol, no loss of pulse area occurs in the ideal case. The characteristics of the shaped

pulses in the temporal domain are presented in Fig. 4.6(c)-(h). For each shaping protocol,

the measured noncollinear and interferometric autocorrelations are shown together with

corresponding calculated autocorrelation traces. These calculations were obtained by

numerically imposing the shaping masks onto the experimental laser spectrum assuming

the input pulses have zero initial phase at all wavelengths [110]. The application of

the amplitude mask introduces temporal structure on the pulse that is manifested in the

autocorrelation traces through the appearance of weak shoulders. The phase-shaped pulse

exhibits a complex temporal profile, leading to an autocorrelation trace with an oscillatory
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Figure 4.6: Shaped pulse characteristics for the optimized control pulses (Δb = 2.5 meV).
Results for the amplitude-shaped pulses are shown on the left ((a), (c), (e), and (g)) and the
phase-shaped pulses ares shown on the right ((b), (d), (f), and (h)). (a),(b): measured laser
spectrum before and after application of the shaping mask; (c),(d): measured and calculated
zero-background autocorrelations of shaped pulses; (e),(f): measured interferometric
autocorrelations of the shaped pulses; (g),(h): calculated interferometric autocorrelations
of the shaped pulses.

structure, as seen in Fig. 4.6(d) and Fig. 4.6(f).

Measurements of the pulse autocorrelation and spectrum provide an accurate real-time

characterization tool for verifying the proper application of the shaping protocols during
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Figure 4.7: Measured MIIPS traces of (a) amplitude-shaped and (b) phase-shaped control
pulses. Calculated MIIPS trace of (c) amplitude-shaped and (d) phase-shaped control
pulses (Δb = 2.5 meV).

quantum control experiments. The need for stable spatial and temporal overlap of the two

beams in the autocorrelator at the BBO crystal nevertheless makes this approach highly

sensitive to drifts in the optical system. In addition, duplication of much of the optical setup

is required in order to create an equivalent focus to the sample position at the location in

the setup where the autocorrelator is placed. This equivalent focus is needed to accurately

reproduce the dispersion effects of all optical elements in the setup. Measurements of the

shaped pulse characteristics using MIIPS were also performed to gauge the sensitivity of

this technique to the mask parameters. The MIIPS traces corresponding to the shaped

pulses in Fig. 4.6 are shown in Fig. 4.7. Calculated MIIPS traces are also shown, for

comparison. The observation of equally-spaced parallel lines in the MIIPS trace for the

amplitude-shaped pulse in Fig. 4.7(a) verifies that the spectral phase profile is constant.

This information is apparent from the MIIPS trace without the need for additional analysis,

unlike the autocorrelation traces in Fig. 4.6(c) and Fig. 4.6(e). The severe restriction in the

transmitted optical power through the shaper as a result of the imposed amplitude mask

limits the signal-to-noise ratio. It is clear from the measured results in Fig. 4.7(b) that the

phase mask leads to a dramatic change in the measured MIIPS trace when compared to the

corresponding TL result in Fig. 4.5(f). The appearance of a cross hatch pattern is reflective
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of the nonlinearity of the sinusoidal phase mask utilized for the phase shaping protocol.

The calculated MIIPS traces in Fig. 4.7(c) and Fig. 4.7(d) provide good agreement with

the measured MIIPS data.

The sensitivity of the MIIPS trace to the mask parameters for the phase-shaping protocol

is illustrated in Fig. 4.8, where the measured MIIPS results are shown as a function of

Δb. These traces all show a cross hatch pattern, however the locations on the trace where

Figure 4.8: Measured MIIPS traces of phase-shaped control pulses for various values of
Δb. The mask parameters at each Δb are listed in Table II.
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the intensity is a maximum varies for different values of Δb. It is clear from the pulse

parameters in Table II that the optimum values of α and γ are approximately constant for

all Δb. The variations in the visual features in the MIIPS traces in Fig. 4.8 are therefore

tied to variations in ϕ. In order to gain more insight into the dependence of the features in

the MIIPS trace on the mask parameters, we performed numerical simulations for a wide

range of values of α, γ and ϕ. These simulations show that α and γ have similar effect

on the trace. As the magnitude of either α or γ is increased from zero, the trace evolves

from parallel lines (TL case) to a cross hatch pattern. Further increasing the magnitude

then leads to dissociation into modulated horizontal lines. This dependence may be seen

by comparing the MIIPS traces in Fig. 4.8(a) and Fig. 4.8(e), which have different values

of α. As ϕ is varied from −π to π, the cross hatch pattern shifts diagonally to the lower

right in the MIIPS trace, and the relative intensity of alternating cross points reverses

twice. Variations in ϕ also lead to changes in the asymmetry of the bright regions, as

evident in the MIIPS results in Fig. 4.8. The high sensitivity of the MIIPS trace to the

mask parameters for the phase-shaping protocol makes it an excellent real-time diagnostic

tool in quantum control experiments on semiconductor quantum dots.

4.5 Experimental Limits on Quantum Gate

Performance

The pulse characterization results in Sec. 4.4.2 and 4.4.3 have allowed the authors to

quantify the experimental limits on the fidelity of the C-ROT gate considered here. As

other quantum processes (such as adiabatic rapid passage) are likely to be less sensitive

than the C-ROT to sources of noise, the calculated gate errors obtained from our detected

uncertainties represent a worst-case scenario for quantum control. There are three dominant

sources of error: (i) an uncertainty in the implementation of the desired pulse shape; (ii)

pulse to pulse intensity fluctuations; and (iii) fluctuations in the center wavelength. (We

note that some degree of spatial chirp is occasionally detected in the experimental MIIPS

traces (e.g. Fig. 4.7), however this does not represent a fundamental limitation unlike the

other effects listed above [111]). Numerical simulations of the C-ROT gate were performed

to determine the gate error associated with each of the above effects. The resulting changes

in the gate fidelity are shown in Table 4.3. For these simulations, the error associated with

(i) was estimated from the measured accuracy of dispersion compensation, as this takes
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into account both the uncertainty in the calibration of the SLM and the measurement of the

pulse phase prior to compensation. Using the MIIPS compensation approach (with a total

of six iterations), a typical value for the ratio between the measured pulse duration τ (after

compensation but before shaping) and the theoretical pulse duration τTL (based on the

measured pulse bandwidth) is 1.002 indicating a small deviation from the transform-limit.

The uncertainty in the imposed phase and amplitude mask was then modeled by including

an unintended residual chirp in the phase profile [112] and an associated percentage change

in the amplitude mask. Fluctuations in the pulse to pulse intensity reflect the stability of

the OPO laser source used in this work, and are <0.5%. Due to the active feedback of the

cavity length, the center wavelength typically fluctuates over the range ±0.2 nm.

It should be noted that the implementation of dispersion compensation (using MIIPS

or other approaches) requires an accurate measurement of the pulse characteristics at the

sample position, or at an equivalent focus. In this work, we envision quantum hardware in-

corporating one or more quantum dots in a lateral microcavity [20, 93], possibly extendable

to an array of such cavities coupled by optical waveguides [26]. Our estimated uncertain-

ties in the pulse shape implementation are appropriate for optical excitation parallel to

the growth direction in such a configuration provided that an anti-reflection coated wafer

is employed. The use of a structure incorporating a vertical microcavity would require

a separate analysis of the sources of error taking into account pulse propagation effects.

We note that the quantum dot selection rules do not represent a significant source of error

as we have shown that the shaping protocols are effective in both cases of cylindrically

symmetric and elongated quantum dots.

The results in Table 4.3 indicate that the C-ROT fidelity is more sensitive to sources

of error for the phase mask than for the amplitude mask. This is likely due to the fact

that the total pulse area is an adjustable parameter in the optimization routine, and for the

optimum phase mask, the pulse area induces multiple Rabi rotations. It may be possible to

reduce these sensitivities through use of a different mask function for the phase profile,

however our analysis was limited in this work to the mask function in Eq. 4.4. The

influences of experimental error are in all cases ∼1% or less, comparable to the effects of

decoherence, as discussed in Sec. 4.3 and in Ref [83]. These results reinforce the feasibility

of high-fidelity quantum operations in semiconductor quantum dots.
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Table 4.3: Calculated change in fidelity for the C-ROT gate associated with different
sources of error determined from the measured pulse characteristics. The deviation
from the ideal pulse shape is estimated using the ratio τ /τTL=1.002, which describes the
accuracy of the applied dispersion compensation. Peak to peak pulse fluctuations (0.5%)
and wavelength instabilities (±0.2 nm) reflect the characteristics of the OPO used in our
experiments and may not represent fundamental limits.

Source of Error Amplitude Mask Phase Mask
Pulse Shape Inaccuracy 0.0034 0.0096

Peak to Peak Intensity Fluctuations 0.00002 0.0002
Wavelength Instability 0.0008 0.011

4.6 Conclusions

The application of pulse shaping protocols in infrared quantum control experiments on

semiconductor quantum dots is investigated. Numerically-optimized pulse shapes for

C-ROT operations on exciton qubits are implemented in a 4-f pulse shaper geometry

using an apparatus operating at ∼1 eV, matching the optical transitions of In(Ga)As self-

assembled quantum dots. Our pulse characterization results show that accurate dispersion

compensation is essential to achieve the desired pulse shapes at the quantum dot sample,

and that MIIPS provides a sensitive real-time diagnostic tool in these experiments. Our

findings are used to evaluate reductions in fidelity associated with imperfections in the

pulse shaping system and other noise sources, indicating that these effects lead to only

∼1% change, comparable to the effects of decoherence. These results indicate that high

fidelity operations in semiconductor quantum dots are readily achievable with a gate time

below 1 ps with the implementation of pulse shaping techniques, laying the foundation for

the application of these techniques to a variety of other quantum processes.
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5.1 Abstract

In optimal quantum control (OQC) [9, 113, 114], a target quantum state of matter is

achieved by tailoring the phase and amplitude of the control Hamiltonian through fem-

tosecond pulse shaping techniques and powerful adaptive feedback algorithms [72, 73,

74, 115, 116, 117]. Motivated by recent applications of OQC in quantum information

science as an approach to optimizing quantum gates in atomic and molecular systems

[4, 63, 64], here we report the experimental implementation of OQC in a solid state system

consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous

high-fidelity π and 2π single qubit gates in two different quantum dots using a single

engineered infrared femtosecond pulse. These experiments enhance the scalability of

semiconductor-based quantum hardware and lay the foundation for applications of pulse

shaping to optimize quantum gates in other solid state systems.

5.2 Manuscript

Optical pulse shaping provides a versatile approach to tailoring the Hamiltonian gov-

erning the interaction of light with matter. For a quantum system containing dipole-

allowed optical resonances, this Hamiltonian is given by Hint = −�μ · �E(t), where
�E(t) = 1

2
ε̂E0(t)[exp (−iω0t − iφ(t)) + exp (iω0t + iφ(t))] is the electric field of the

pulse and �μ is the electric dipole moment operator. The central objective of optimal

quantum control (OQC) [9, 113, 114] is to manipulate the time-dependence of the phase

φ(t) and/or amplitude E0(t) to achieve a desired final state of the system at the end of the

laser pulse. This approach is now used routinely in the control of a variety of physical

processes (e.g., chemical reactions [115, 116], photosynthesis [117], and nonlinear optics

[72, 73, 74]).

Quantum information science provides a natural arena for applications of OQC. Indeed

in recent ground-breaking experiments, pulse shaping has been invoked to optimize a

single qubit π-gate [63] and a two-qubit Mølmer-Sørensen entanglement gate [64] in

trapped atoms, as well as a multiple-input AND gate in molecular qubits [4]. As solid state

quantum computing platforms offer a strong potential for scalability together with ease

of integration with classical computing hardware, the application of OQC to optimizing

quantum gates in such systems is highly desirable.
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Here we elucidate the utility of OQC for optimizing elementary quantum gates for

solid state implementations of quantum computing by applying this approach to the

simultaneous control of two solid state qubits. The solid state system considered here

consists of excitons in individual semiconductor quantum dots [21, 89, 93, 94]. The two

quantum states forming the quantum bit (or qubit) correspond to the presence or absence

of an exciton in each quantum dot. Because of the self-assembly process used to grow

the quantum dots, there is an intrinsic variability in the quantum dot size and concomitant

variations in the degree of quantum confinement. As a result, qubits in different quantum

dots are easily distinguishable by the optical transition energies of the associated excitons.

As a test case for OQC in this system, we select two quantum dots, referred to as QD1 and

QD2 (see Fig. 5.1(b)) and impose a gate pulse that simultaneously induces a π (2π) rotation

Figure 5.1: (a) Schematic diagram of the quantum control apparatus. Inset: Optical
control is carried out on the p-shell transition (|0〉 to |2〉) and final quantum state readout is
obtained from the time-averaged photoluminescence (PL) from the s-shell transition (|0〉
to |1〉). (b) Results of microphotoluminescence measurements showing the exciton peaks
for two quantum dots selected for OQC (labeled QD1 and QD2). Peaks associated with
the s-shell transitions of other QDs within the aperture are also visible. (Note: the noise
floor is limited by the dark current in the InGaAs array detector.) The transition energies
of the p-shell for each quantum dot were measured using photoluminescence excitation
(EQD1 = 1.0715 eV; EQD2 = 1.0746 eV). (c) Results of Rabi rotation measurements on
QD1. The dipole moment for each quantum dot was determined from the period of Rabi
oscillations (μQD1 = 29 Debye; μQD2 = 24 Debye).
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on the qubit in QD2 (QD1) using a single broad-bandwidth shaped femtosecond pulse.

The fidelity of the gate is maximized by optimizing the pulse shape. With an eye toward

future utilization of photonic infrastructure in solid state quantum hardware for enhanced

scalability, the gate was designed for (and implemented experimentally on) InAs quantum

dots with optical transitions near the telecommunications band at 1.3 μm with all-optical

quantum state control and readout. We also apply our results to quantify limitations in

gate fidelity associated with instabilities in the optical source and pulse shaping system,

experimental uncertainties in the measured parameters governing the excitonic transitions

in the quantum dots, and decoherence.

We utilize a phase-only shaping scheme implemented in the frequency domain using

a 4-f pulse shaper [81], as shown in Fig. 5.1(a) (see Supplementary Information). In

this case, the Fourier transforms of the input laser pulse (Ẽin (ω)) and the shaped pulse

(Ẽout (ω)) are related by Ẽout (ω) = Ẽin (ω) exp [iΦM(ω)], where the phase of the input

pulse is constant and the control phase ΦM(ω) is applied using a spatial light modulator in

the Fourier plane. In OQC, a particular functional form is chosen for the control phase

ΦM(ω) and the resulting parameters in the function (representing the elements of a vector)

are systematically varied to optimize some experimentally observable quantity (the target

quantity itself or other measured output that is indicative of the target final quantum state).

In this work, the quantity subject to optimization is the fidelity of the quantum gate, given

by F = Tr[ρphρid], where ρph is the physical density matrix at the end of the laser pulse

and ρid is the ideal density matrix. The time evolution of the p-shell exciton transitions

under excitation by the shaped control pulse is calculated using the optical Bloch equations

in the rotating wave-approximation [83, 84] using the experimentally measured transition

energies and dipole moments for each quantum dot. The control phase function used here

is ΦM (ω) = α cos [γ (ω − ω0) − ϕ], where the adjustable parameters used to optimize the

fidelity via a constrained optimization algorithm (see Supplementary Information) are α,

γ, ϕ and the pulse area. In the experiments, the final quantum state is read out by detecting

the s-shell photoluminescence from each quantum dot (see Fig. 5.1(a) inset).

The optimum control phase ΦM(ω) is shown in Fig. 5.2(a), together with the measured

spectrum of the laser pulses. The amplitude of ΦM(ω) is comparable to the phase distor-

tions associated with the laser source and dispersion introduced by the optical elements in

the experimental apparatus, highlighting the need for accurate dispersion compensation
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Figure 5.2: (a) Control phase ΦM(ω) determined using OQC (α = 0.9960π, γ = 307.1
fs, ϕ = -0.5751π) (dashed curve); laser pulse spectrum (solid curve). The thick (thin)
vertical lines indicate the spectral positions of the exciton transition in QD2 (QD1). (b)
Measured second harmonic spectrum MIIPS traces illustrating the experimental pulse
characteristics for (i) the applied control phase in (a); and (ii) dispersion compensation
only. The cross-hatch signature in the MIIPS trace for the shaped pulse is characteristic of
the cosine phase function used for OQC in this work. (c) Interferometric autocorrelation
of the shaped control pulse using the applied phase in (a). Inset: Schematic diagram
of the autocorrelation apparatus. BBO: Beta barium borate nonlinear crystal. (d), (e)
Measured dependence of the s-shell photoluminescence intensity on pulse area (triangles:
QD1; squares: QD2), together with the calculated exciton occupations (red dashed curve:
QD1; black solid curve: QD2) for the shaped control pulse (d) and the unshaped pulse (e).
The maximum pulse area is the theoretical optimum control pulse area determined using
OQC (Θ = 2.042π). The PL intensities are scaled to match the maximum PL observed in
resonant Rabi oscillations on each quantum dot within experimental uncertainty.

(see Supplementary Information). The dispersion compensation phase was determined us-

ing multiphoton intrapulse interference phase scan (MIIPS) [86, 87] (Fig. 5.2(b)) resulting

in an unshaped pulse with a duration within 1% of the corresponding transform-limited

value. This compensation phase was added to the calculated phase to obtain the experi-

mental shaped control pulse. ΦM(ω) increases the duration of the dispersion-compensated
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pulses from 130 fs to a few picoseconds, as seen in the interferometric autocorrelation in

Fig. 5.2(c).

The results of experimental execution of the quantum gate using the shaped control

pulse are shown in Fig. 5.2(d). The photoluminescence intensity from the s-shell of each

quantum dot is plotted together with the calculated exciton occupations as a function of

pulse area. The shaped control pulse executes a π (2π) rotation on the qubit in QD2 (QD1)

with high fidelity, in agreement with the theoretical simulations. In contrast, for excitation

using the unshaped pulse (Fig. 5.2(e)), the excitons in both quantum dots undergo a simple

Rabi oscillation at a rate determined by their individual dipole moments. The calculated

dynamics for both shaped and unshaped control pulses are shown in a Bloch sphere

representation in Fig. 5.3(a). Pulse shaping increases the fidelity of the quantum gate from

0.294 to 0.968. The ability to achieve simultaneous deterministic control of multiple qubits

in different quantum dots (with different dipole moments and optical transition energies)

using a single broadband optical pulse is enabled by femtosecond pulse shaping. These

results highlight the efficacy of OQC for optimizing the performance of quantum gates in

solid state systems.

The adjustable parameters α, γ, and ϕ determine the amplitude of ΦM(ω) as well as the

energetic locations of critical points (Fig. 5.2(a)). For the optimum phase in Fig. 5.2(a),

ΦM(ω) exhibits a minimum at the transition energy of QD2, where the magnitude of

the second derivative (Φ′′M(ω)) is maximum. In contrast, the transition energy of QD1 is

close to the point where Φ′′M(ω) = 0. This suggests that the shaped control pulse induces

adiabatic passage on the exciton in QD2, resulting in a π rotation, while the exciton in

QD1 undergoes an evolution that resembles a simple Rabi oscillation (reaching 2π by the

end of the control pulse). This interpretation was verified by shifting ΦM(ω) in energy

by -2 meV, placing QD1 near the extremum of the new control phase function. The

quantum state evolution using this shifted control phase is shown in Fig. 5.3(b), indicating

a reversal of the roles played by QD1 and QD2 in the gate. Adiabatic passage has been

demonstrated in atomic systems [67], and also recently in single semiconductor quantum

dots [30, 51]. In Refs. [30] and [51], a simple grating stretcher was used to create a linear

pulse chirp (constant value of Φ′′M(ω)). The simultaneous control of excitons in multiple

distinguishable quantum dots requires the implementation of OQC (in which general pulse

shape optimization is employed), as we demonstrate here.



87

Figure 5.3: (a) Calculated quantum state dynamics for the exciton in QD1 (red dashed
curve) and QD2 (black solid curve) in a Bloch vector (�σ) representation for excitation with:
(i) the shaped control pulse and (ii) an unshaped pulse (see Supplementary Movies S1, S2).
The pulse area is 2.041π, corresponding to the maximum gate fidelity for the shaped control
pulse. The tip of the Bloch vector at the end of the optical pulse is indicated by a cross,
for clarity. (b) Measured pulse area dependence of the s-shell photoluminescence (PL)
intensity (triangles: QD1; squares: QD2), together with the calculated exciton occupation
(red dashed curve: QD1; black solid curve: QD2) for a control pulse obtained by translating
the optimum control phase in Fig. 5.2(a) by -2 meV, placing QD1 close to the minimum of
the cosine phase function [118]. (c), (d) Calculated gate fidelity using the shaped control
pulse for deviations in the electronic structure parameters of the quantum dots relative to
the measured values. The experimental uncertainties are ±5% for the dipole moments
(c) and ±0.25 meV for the quantum dot transition energies (d), however the results are
shown over a broader range. The insensitivity of the gate fidelity to the dipole moment
and transition energy of QD2 is consistent with the robustness of adiabatic passage. The
fidelity drops as the transition energy of QD2 approaches QD1 since in this limit QD1 and
QD2 can no longer be resolved.

For quantum computing applications, it is imperative that unintended quantum state evo-

lution associated with imperfections in the gate be minimized. We have estimated the gate
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error associated with our measured experimental uncertainties by incorporating these uncer-

tainties into our numerical simulations of the quantum state dynamics (see Supplementary

Information). Limitations in gate accuracy arise from: (i) pulse to pulse fluctuations in the

laser source (intensity or wavelength); (ii) deviations from an ideal pulse shape associated

with imperfect dispersion compensation; and (iii) experimental uncertainty in the electronic

structure parameters of the quantum dots. We calculate associated reductions in fidelity of

ΔF = 0.01, 0.006, and 0.01 for each of these contributions, respectively. The reduction

in fidelity due to laser fluctuations is dominated by the wavelength stability of the OPO

laser source. The error associated with the electronic structure parameters is dominated by

the uncertainties for QD1 (Fig. 5.3(c), (d)), reflecting the robustness of adiabatic passage

carried out on QD2. Inclusion of measured decoherence (T2) and energy relaxation (T1)

times for similar quantum dots [37, 119] reduces the fidelity by a comparable amount

to these gate errors (ΔF = 0.005) (see Supporting Information). The small influence of

decoherence during the control pulse is due to the ultrafast time scale of the gate relative to

T2 [83, 84]. These small gate errors in conjunction with the implementation of strategies

for decoherence mitigation [27, 100, 120, 121, 122] are promising for the development of

solid state quantum computing hardware.

The achievement we report here of deterministic control of qubits in two uncoupled

QDs within the micrometer-scale control laser focal spot using OQC will aid in the devel-

opment of scalable solid state quantum computing hardware. We envision local quantum

simulators containing a small number of quantum dots in a single optical microcavity, such

as a whispering gallery mode structure incorporating lateral optical confinement with QDs

controlled by tailored femtosecond pulses incident from the top. Such a simulator could

exploit complex instruction sets to manipulate multiple qubits in parallel using suitably

shaped control pulses [4, 9] and may utilize local microcavity modes for entanglement

[20]. These small quantum simulators could be integrated into a larger computing platform

in which long-range entanglement between qubits in different simulators is achieved using

optical waveguide modes [26]. The number of quantum dots in the local simulators could

reach 10-20 with the use of more general phase functions in the OQC optimization scheme

and readily available high-resolution spatial light modulators. Together with recent ad-

vances in the ability to manipulate single exciton and spin qubits in semiconductor QDs

[30, 43, 51, 52, 54, 96, 123] as well as realization of entanglement between qubits and
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single photons [124, 125], the experimental demonstration we report here of high-fidelity

deterministic control of qubits in spatially distant, uncoupled QDs represents an important

step in achieving scalability for such a semiconductor-based quantum computing platform.

The achievement in this work of all-optical excitation and quantum state readout on QDs

with optical transitions near the telecommunications band at 1.3 μm further enhances this

potential for scalability by facilitating future utilization of photonic infrastructure. In addi-

tion to laying the groundwork for implementation of OQC involving other quantum gates,

our results open the door to applications of femtosecond pulse shaping to decoherence

mitigation in solid state quantum hardware [121, 122].
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5.3 Supplementary Information

5.3.1 Materials and Methods

5.3.1.1 Experimental Techniques

The optical source used in this work is a wavelength tunable 76 MHz optical parametric

oscillator laser system producing optical pulses around 1.2 μm. The self-assembled

InAs/GaAs quantum dot wafer was mounted on an attocube nanopositioning stage inside a

helium flow microscopy cryostat at 10 K, as shown in Fig. 5.4. A high numerical aperture

microscope objective (NA 0.7, 100×) designed for infrared wavelengths was used for both

laser excitation and collection of the emitted photoluminescence. The photoluminescence

spectrum was detected using a 0.75 m monochromator with 30 μeV spectral resolution

and a liquid nitrogen-cooled InGaAs array detector.

An ideal unshaped control laser pulse has a constant phase, leading to the shortest

possible temporal duration considering its frequency bandwidth. Such a pulse is referred to

as a transform-limited (TL) pulse. The typical output from ultrafast oscillator laser systems

is generally not an ideal TL pulse, but can exhibit significant linear and higher order phase

structure (i.e. the pulse phase has an unintended frequency dependence, called chirp).

In addition, the optical pulse can accumulate phase structure by propagating through

various optical components in the experimental apparatus. The associated unintended
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phase structure must be characterized and compensated for prior to application of the

optimum shaping mask. This process is called dispersion compensation, and is carried

out in this work using multiphoton intrapulse interference phase scan (MIIPS) [86]. The

pulse shaping system used in these experiments consists of an infrared 4f pulse shaper

incorporating a computer controlled dual mask 128 pixel spatial light modulator (SLM).

Feedback to the pulse shaping system for dispersion compensation using MIIPS was

provided by the second harmonic spectrum, in which a BBO nonlinear crystal was placed

at an equivalent focus to the sample position. Application of the dispersion compensation

phase mask determined using MIIPS resulted in an optimized unshaped pulse with a

duration of 130 fs, within 1 % of the TL value (i.e. τ/τTL ≤ 1.01, where τ = 130 fs and

τTL is the ideal pulse duration dictated by the measured pulse bandwidth). This dispersion

compensation phase mask was added to the calculated optimum phase mask for the phase

control experiments. Figure 5.5 shows calculated MIIPS traces for the TL as well as the

shaped optical pulses. The equally spaced parallel lines in Fig. 5.5(a) are characteristic of a

TL optical pulse, while the cross-hatched pattern in Fig. 5.5(b) is a signature of the cosine

phase function used here. The measured interferometric autocorrelation for the dispersion

compensated pulse is shown in Fig. 5.5(c), together with the corresponding calculated

autocorrelation in Fig. 5.5(d). Calculated MIIPS and autocorrelation plots for both TL

and shaped pulses are in agreement with the experimentally measured traces shown in

Figure 5.4: Diagram of quantum control apparatus showing alignment configurations for
laser spot size measurement and imaging of quantum dot sample surface.
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Figure 5.5: Calculated MIIPS traces of (a) the transform-limited pulse and (b) the phase
shaped control pulse. (c) Measured interferometric autocorrelation of the dispersion-
compensated pulse. Calculated autocorrelation traces of (d) the transform-limited pulse
and (e) the phase shaped control pulse.

Fig. 5.5(b) and Fig. 5.2 in the main text.

The Gaussian beam spot size of the focused excitation laser at the sample, required for

calculation of the electric dipole moments of the selected quantum dots, was determined

using a knife-edge type measurement. The focused laser beam was reflected off a laterally

translating metallic step edge on the masked quantum dot sample within the microscopy

cryostat. The resulting change in reflectivity was measured using an InGaAs photodiode.

The collected reflectivity data was differentiated and fit to a Gaussian function to extract

the laser spot size.

5.3.1.2 Sample

The InAs/GaAs quantum dot structure was grown by molecular beam epitaxy under

conditions optimized for a sparse quantum dot ensemble with the ground state optical

transition of the quantum dots near 1.3 μm. The single quantum dot layer was deposited on

top of 200 nm of GaAs under indium-rich conditions. The quantum dots were overgrown

with In0.2Ga0.8As at a low growth temperature to reduce intermixing, followed by 65 nm

of GaAs. AlGaAs carrier blocking layers were deposited above and below the GaAs
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Figure 5.6: Photoluminescence spectra from the InAs/GaAs QD structure at 10 K. (a)
Microphotoluminescence from the lower-energy QD subset. (b) Ensemble PL from the
unmasked QD structure. The rectangles indicate the energy ranges of microphotolumi-
nescence in (a) and (c). (c) Microphotoluminescence from the higher-energy QD subset.
(d)((e)) Power dependence of the s-shell emission observed in μPL for QD1 (QD2).

layers. The photoluminescence for this structure is shown in Fig. 5.6. From corresponding

photoluminescence excitation experiments, we determined that the peaks in Fig. 5.6(b) at

0.965 eV (1285 nm) and 1.017 eV (1220 nm) are due to ground state emission from two

distinct subsets of quantum dots within the ensemble. The separation between the ground

state and excited state transitions in these subsets are 95 meV and 75 meV, averaged over

the ensemble, respectively. As a result, the small peak at 1.083 eV (1145 nm) in Fig. 5.6(b)

is attributed to the excited state transition in the higher-energy subset of quantum dots.

The lower-energy quantum dot subset has an estimated areal density of 6 × 109 cm−2,

an average quantum dot height of 9 nm and a lateral size of 20 nm from cross-sectional

transmission electron microscopy and atomic force microscopy on similar structures. To

facilitate spectral isolation of individual quantum dots, a metallic mask containing an

array of apertures of varying sizes (0.1 μm to 1.0 μm) was deposited onto the sample

surface. Microphotoluminescence measurements, using 830 nm continuous wave laser

excitation, show single quantum dot peaks in both subsets of the ensemble (Fig. 5.6). The

experiments reported here were carried out on quantum dots within a 0.4 μm aperture

in the lower-energy subset. The power-dependence of the s-shell μPL for QD1 (QD2) is

shown in Fig. 5.6(d) (Fig. 5.6(e)). The saturation of the s-shell emission for high pump
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powers has been observed in similar QDs [126].

5.3.2 Description of Model

The theoretical model treats QD1 and QD2 as independent two-level systems, each con-

sisting of a vacuum state |g〉 and p-shell exciton state |e〉 with their respective transition

energies h̄ωeg. The quantum states are manipulated using the electric field of a laser pulse

given by,
�E(t) =

1

2
ε̂E0(t)[exp (−iω0t − iφ(t)) + exp (iω0t + iφ(t))], (5.1)

where ω0 is the center frequency of the laser pulse, φ(t) is the temporal phase, and E0(t)

is the electric field envelope. In the calculation, the envelope is taken to be in the form:

E0(t) = |E0|sech(1.76t/τ), (5.2)

where τ is the pulse width. For a transform-limited pulse, φ(t) = φ0 is constant. The

interaction of the electric field with each quantum dot is calculated using the Liouville

equation for the density matrix

ρ̇ =
i

h̄
[ρ, H0 + Hint], (5.3)

where H0 is the unperturbed Hamiltonian and Hint = −�μ · �E(t) is the interaction Hamilto-

nian with dipole moment operator �μ. The resulting optical Bloch equations in the rotating

wave approximation, with change of variables ρij → ρ̃ij to remove fast variations in the

coherences, are given by

˙̃ρee = (−i/2) [ΩRρ̃ge − ρ̃egΩ
∗
R] − Γeeρ̃ee, (5.4a)

˙̃ρeg = (−i/2) [2Δρ̃eg − ΩR(2ρ̃ee − 1)] − Γegρ̃eg, (5.4b)

where ΩR = −μegE0(t)/h̄ is the complex Rabi frequency, Δ ≡ ωeg − ω is the laser

detuning, ρee is the population in state |e〉, and ρeg is the coherence between states |e〉
and |g〉. Γee and Γeg are the constant population decay rate and constant dephasing rate,

respectively. The density matrix for the combined system is the direct product of the

density matrices for the two quantum dots (ρ = ρ1 ⊗ ρ2) and the fidelity of the operation

is defined as

F = Tr[ρphρid], (5.5)



94

where ρph is the physical density matrix for a given laser pulse and ρid is the ideal density

matrix for the quantum gate.

We engineer the quantum state evolution of QD1 and QD2 by manipulating E(t),

and hence Hint, using a 4-f pulse shaper, which provides independent control over the

frequency-dependent amplitude and phase of the pulse. The effect of the SLM in the pulse

shaper may be modeled as a linear filter with a frequency response M(ω) given by

M(ω) = AM(ω) exp [iΦM(ω)], (5.6)

where AM(ω) and ΦM(ω) are user-defined amplitude and phase functions. The Fourier

transform of the laser pulse after the shaper, Ẽout, is related to the input pulse, Ẽin, by

Ẽout(ω) = Ẽin(ω)M(ω). (5.7)

The use of MIIPS for dispersion compensation allows us to assume a transform-limited

input pulse Ẽin(ω). For the purposes of this study we set AM(ω) = 1 and use phase-only

control, which serves to conserve pulse power. The functional form of ΦM(ω) was chosen

to be

ΦM(ω) = α cos[γ(ω − ω0) − ϕ], (5.8)

where α is the amplitude, γ is the spectral frequency, and ϕ is the phase shift. The fidelity

F = f(α, γ, ϕ, Θ) of the operation is optimized as a function of α, γ, ϕ and the pulse area

(Θ = (�μ · ε̂/h̄)
∫ +∞
−∞ E0(t) dt).

During optimization, the parameters are subject to the following constraints

0 ≤ α ≤ π, (5.9a)

0 ≤ γ ≤ 315 fs, (5.9b)

−π ≤ ϕ ≤ π, (5.9c)

π/2 ≤ Θ ≤ 5π/2. (5.9d)

The constraints on α and γ serve to restrict the gradient in the phase to approximately

π/10 radians per pixel, a conservative restriction for the 128-pixel SLM used in this work,

while the constraint on Θ limits the optimized pulse shapes to relatively low pulse areas.

To optimize the fidelity of the quantum gate, we choose a mask function defined by
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Figure 5.7: Pulse characteristics and population dynamics for a shaped pulse ((a), (b), (c))
and a transform-limited pulse ((d), (e), (f)). (a) and (d) show the amplitude (solid black
curve) and phase (dashed blue curve). (b) and (e) show the temporal electric field intensity.
(c) and (f) show the population dynamics of the p-shell exciton state (ES) for QD1 (red
dashed curve) and QD2 (black solid curve).

a vector qi = {αi, γi, ϕi, Θi} within the parameter space defined by Eq. 5.9, apply the

mask to a TL pulse (with the experimentally measured pulse width of 130 fs), and calculate

the electric field which dictates the time dependence of the interaction Hamiltonian. We

then integrate the Bloch equations (Eq. 5.4) to determine the state dynamics and the

fidelity Fi (Eq. 5.5). The vector qi is driven towards a local optimum in fidelity Fopt

with associated vector qopt = {αopt, γopt, ϕopt, Θopt} using the constrained optimization by

linear approximations (COBYLA) algorithm [127]. We find that repeating this procedure

with 500 initial vectors qi, selected using a quasi-random Sobol’ sequence [128], provides

sufficient coverage of the parameter space to find a qopt vector with high fidelity (F > 0.95).

Shown in Fig. 5.7 is a comparison of the pulse characteristics and quantum state dynam-

ics for a TL pulse (Fig. 5.7(d), (e), (f)) and a shaped pulse (Fig. 5.7(a), (b), (c)) correspond-

ing to the highest gate fidelity found by the optimization algorithm. (The quantum gate is

the same as that described in the main text, i.e., a π rotation for QD2 and 2π rotation for

QD1.) The shaped pulse is defined by the vector q = {0.9960π, 307.1 fs,−0.5751π, 2.042π}.

The first column of panels in Fig. 5.7 shows the spectral amplitude and phase, and the

second column displays the electric field intensity as a function of time for both pulses. The

third column of panels presents the resulting occupation dynamics of the p-shell exciton

state |e〉 as a function of time for QD2 and QD1. The pulse area of the TL pulse is chosen
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to match that of the shaped pulse (i.e., Θ = 2.042π). The shaped pulse executes the gate

with a fidelity of 0.968 compared to 0.294 for the TL pulse.

5.3.3 Experimental Limitations on Gate Fidelity

Practical limits on the performance of the quantum gate considered in this work were

assessed by calculating the gate fidelity including sources of experimental error. This allows

us to gauge the sensitivity of quantum gates more generally for the physical implementation

of exciton qubits in self-assembled quantum dots. The laser source exhibits fluctuations in

pulse to pulse intensity (±0.5 %) and in centre pulse wavelength (±0.2 nm). The associated

reductions in fidelity are 0.005 and 0.01, respectively. The wavelength instability arises

from active feedback in the optical parametric oscillator laser source used in this work. The

accuracy of the applied pulse shape is limited by the quality of dispersion compensation,

which is indicated by the ratio τ/τTL, which is typically 1.002 in our experiments. Taking

a more conservative value of τ/τTL = 1.01 and including the associated residual phase

distortions in the theoretical calculations by adding a corresponding amount of linear

chirp, we obtain ΔF = 0.005. For experimental uncertainties in the quantum dot electronic

structure parameters (p-shell transition energy, dipole moment), the reduction in fidelity

was largest when including deviations from the measured values for QD1, reflecting the

robustness of adiabatic passage on QD2. For QD1, the ±0.25 meV uncertainty in the

transition energy (from photoluminescence excitation measurements) and ±5% for the

dipole moment (from Rabi oscillations), each result in a reduction in fidelity of 0.01. For

schemes involving optical control of the s-shell transition (using e.g. quantum state readout

via a resonance fluorescence configuration [129] or detection of the nonlinear optical

response [55]), the uncertainty in the transition energy would be smaller, limited only by

the ∼ 50-100 μeV linewidth of the s-shell due to spectral wandering [37]. The relevant

experimental error in the dipole moment for design of the gate pulse is the measurement

error for the laser power required for a Rabi oscillation. Decay and decoherence are

incorporated into the calculations within the relaxation time approximation [83]. For

the s-shell transition, four-wave mixing experiments on similar InAs QDs indicated a

radiatively-limited decoherence time of 1 ns at low temperature [119]. For the p-shell

transition, T2 is several tens of picoseconds, limited by energy relaxation to the s-shell

[130]. Due to the short time scale of the control pulse relative to these relaxation times, the

influence of decoherence on gate fidelity is small. For quantum computing applications,
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optical control of the s-shell is preferred due to the much longer lifetime of the qubit after

the control pulse is over. The reduction in fidelity due to decoherence and relaxation

using typical values of T1 and T2 for the s-shell in these quantum dots [37, 119] is 0.005,

similar to the calculated gate errors associated with other uncertainties, as described above.

These small errors are promising for the prospect of realising practical quantum computing

hardware based on self-assembled quantum dots.
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6.1 Abstract

We demonstrate the selective optical excitation and detection of subsets of quantum dots

within an InAs/InP ensemble using a SiO2/Ta2O5-based optical microcavity. The low

variance of the exciton transition energy and dipole moment tied to the narrow linewidth of

the microcavity mode is expected to facilitate effective qubit encoding and manipulation

in a quantum dot ensemble with ease of quantum state readout relative to qubits encoded

in single quantum dots.

6.2 Manuscript

Semiconductor quantum dots (QDs) are promising for the prospect of developing a scalable

quantum computing platform that would exploit rapidly advancing semiconductor and

photonic device fabrication technology and facilitate integration with classical computing

hardware. This strong potential has stimulated rapid progress in the control of fundamental

charge (exciton) and spin states in individual semiconductor QDs using coherent optical

techniques [40, 42, 43, 44, 45, 51, 52, 54, 55, 131, 132, 123]. In these experiments, a

variety of strategies have been developed to overcome the formidable technical challenge

associated with the low optical response of an individual quantum dot. Quantum state

readout via detection of photoluminescence (PL) from single QDs [43, 45] requires highly-

sensitive low-light detectors, a constraint that has hindered progress on QDs with emission

compatible with telecommunication infrastructure. Photocurrent detection methods [44]

eliminate this difficulty at the expense of a fast carrier tunnel rate, which can limit the

qubit coherence decay time. A phase-sensitive homodyne detection technique has recently

been developed that permits transmission-based measurements on single self-assembled

QDs [133], but the difficulty associated with the low optical signal relative to background

noise sources remains.

Encoding qubits in ensembles of QDs would greatly simplify quantum state readout,

facilitating the transition from fundamental optical control experiments to applications. A
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variety of coherent phenomena have been observed in QD ensembles, including quantum

beats between spin-polarized excitons [56, 134], the generation of Raman spin coherence

through optical pumping of trion transitions [135], spin mode-locking involving electrons

[60] and holes [136, 137] and resonant pumping of a dynamic nuclear spin polarization

[138]. Coherent qubit operations have also been demonstrated in ensembles involving

both excitons [57, 58, 139, 140] and spin-polarized electrons [29, 61] in recent years.

In these experiments, inhomogeneity in the electronic structure parameters of the QDs

(transition energy, dipole moment) was found to limit the fidelity of the control process.

Here we investigate the efficacy of a one-dimensional optical microcavity for reducing

the deleterious effects associated with inhomogeneity for qubit encoding and optical

manipulation in QD ensembles. Microcavities play a central role in many solid state

quantum computing proposals because they provide a means of establishing long-range

entanglement between qubits [20, 26], and are central to the development of efficient

single photon sources [141]. We present differential transmission measurements on an

ensemble of InAs/InP QDs within an optical microcavity based on SiO2/Ta2O5 Bragg

reflectors. Our results demonstrate that the angle dependent transmission resonance of

the microcavity permits separate excitation and detection of distinct subsets of QDs with

strongly diminished variances in exciton transition energy and dipole moment. Our findings

suggest that high-fidelity optical quantum gates on ensemble-encoded exciton (or spin)

qubits would be feasible in this system, with greatly simplified quantum state readout

relative to qubits encoded in single QDs.

The optical microcavity investigated here was fabricated using the methods described

in Ref. [31]. It contains an ensemble of InAs/InP QDs within a λ cavity formed from an

InP spacer layer and two SiO2/Ta2O5 Bragg stacks. The Bragg stacks contain 8 periods of

SiO2/Ta2O5, and have a stop band 200 meV wide centered on the microcavity resonance

at normal incidence. A schematic diagram of the layer structure is shown in the inset

of Fig. 6.1(a). The QD ensemble was grown using chemical beam epitaxy and has an

estimated areal density of 2 μm−2. Results of transmission and continuous-wave PL

measurements on this structure are shown in Fig. 6.1(a)-(c). For PL experiments, an

838 nm laser diode was used to inject electron-hole pairs into the InP barriers and the

resulting PL from the InAs QDs was resolved with a 0.75 m monochromator and InGaAs

array detector. For transmission experiments, the optical source was a tunable optical
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Figure 6.1: (a) QD photoluminescence as a function of detection angle relative to the
sample normal. The rapid decay of the PL emission strength is due to the reduced
spontaneous emission rate for large angles in a 1D λ microcavity [32]. Inset: Schematic
diagram of the sample structure. (b) PL emission with resolved polarization modes at a
detection angle of 50 degrees. (c) Angle-resolved peak cavity transmission (curves) and PL
(symbols) with TE (triangles) and TM (squares) mode dispersion. (d) Schematic diagram
of the differential transmission experimental appartus. A polarizing beam splitter cube
(PC) and quarter-wave plate (QWP) change the pump beam polarization from TM to TE.
Another PC is placed before the monochromator to block the pump beam and transmit the
TM polarized probe.

parametric oscillator and a single channel InGaAs photodetector was used in conjunction

with the same monochromator to measure the transmitted spectrum. The microcavity

mode at normal incidence is centered at 851 meV, with a linewidth from transmission

measurements of 550 μeV. The linewidths of the PL peaks are ∼200 μeV wider than the

measured transmission spectra due the finite angular resolution of the PL apparatus. The

TE mode shifts by 65 meV between 0 degrees and 50 degrees, as seen in Fig. 6.1(c). The
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PL splitting between TE and TM modes is clearly resolved at large angles, equal to 6 meV

at 50 degrees.

Due to the high finesse of the microcavity, optical pulses tuned to the ground state

optical transition of the QD ensemble will only excite QDs for which the exciton transition

energy is in resonance with the microcavity mode. The microcavity therefore provides a

means to selectively address a subset of QDs with a substantially-reduced variance in the

exciton transition energy (determined by the microcavity mode linewidth rather than the

inhomogeneous width of the ground state transition for the full ensemble (50 meV)). Here

we verify this selectivity by performing pump-probe differential transmission experiments

with pump and probe beams that are either collinear (exciting and detecting the same QD

subset) or non-collinear (exciting and detecting different subsets). The apparatus used

for these experiments is shown schematically in Fig. 6.1(d). The optical source was a

250 kHz optical parametric amplifier producing 130 fs pulses (70 nm bandwidth) tuned to

the cavity mode. A rotary stage was used to control the angle of the probe beam relative to

the sample normal, and the angle between the pump and probe beams was either 0 degrees

(collinear geometry) or 12 degrees (non-collinear geometry). The differential transmission

signal was spectrally resolved using a 0.25 m monochromator and detected using a single

channel InGaAs photodiode and lock-in techniques. All experiments were carried out with

the sample at room temperature.

Results of differential transmission measurements for collinear pump and probe beams

at normal incidence are shown in Fig. 6.2(a). The contour plot indicates the pump-induced

change in transmission (ΔT ≡ T − T0) as a function of the time delay between the pump

and probe pulses and the probe detection wavelength, where T0 (T ) is the transmission of

the probe pulse in the absence (presence) of the pump pulse. The overlaid plots indicate

T0 (dashed curve) and T at 10 ps delay (solid curve). The dominant influence of the

pump pulse is an increase in the transmission of approximately 10% at the peak of the

microcavity mode. We attribute this to state filling of excitons in QDs resonant with the

microcavity mode, consistent with the slow decay of the bleaching signal (Fig. 6.2(b)). The

microcavity mode is also red shifted (tied to a transient increase in the index of refraction)

by an amount that is barely detectable within the spectral resolution of the pump-probe

apparatus. These general features are reproduced in the collinear differential transmission

results for angles of incidence of 4 and 12 degrees (Fig. 6.2(c),(d)). The state-filling signal
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Figure 6.2: (a) Results of spectrally-resolved collinear differential transmission experi-
ments at normal incidence, showing ΔT versus probe detection wavelength and probe
pulse delay. Overlay: T0 (dashed curve); T at a probe pulse delay of 10 ps (solid curve).
The average power in the pump beam is 7 mW, corresponding to a pulse fluence of 400
μJ/cm−2. Power-dependent experiments (data not shown) indicate that ΔT is proportional
to the average pump beam power, verifying that the experiments are carried out within
the χ3 regime. (b) Differential transmission signal at normal incidence, averaged over the
linewidth of the microcavity mode. (c)((d)) Same as (a), but with incident angles of 4 (12)
degrees. The absolute magnitude of the differential transmission response for different
incident angles reflects conditions of equal absorbed power taking into account measured
variations of transmissivity and reflectivity with incident angle.

tracks the wavelength shifts of the microcavity mode with angle, reflecting pump excitation

of QDs with increasing exciton resonance energies.

Differential transmission measurements were also performed with the pump pulse at

normal incidence and the probe pulse at 12 degrees. In this configuration, the pump

and probe beams are addressing QDs with exciton transition energies approximately 4

meV apart, much larger than the 550 μeV width of the microcavity mode. The results

of these experiments are shown in Fig. 6.3(a). The large state filling signal in Fig. 6.2(d)

for collinear excitation conditions is suppressed in the non-collinear results in Fig. 6.3(a),

demonstrating the angle-selectivity of excitation and detection via the microcavity mode.

The shift in the mode observed in the collinear excitation geometry persists in the non-

collinear results of Fig. 6.3(a), although with a smaller magnitude. This shift decays on
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Figure 6.3: (a) Results of pump-probe differential transmission experiments in the non-
collinear excitation geometry. The contour scale and line plots are the same as in Fig. 6.2.
(b) ΔT at 10 ps for the collinear (Fig. 6.2(d)) and non-collinear pump-probe geometries.
In both cases, the probe beam is incident at 12 degrees.

the same time scale as the bleaching response for collinear excitation and is therefore tied

to excited QDs within the structure. For an isolated optical resonance, a nonlinear index of

refraction extends over a larger energy range than the corresponding nonlinear bleaching

signal, a feature that is useful for non-destructive quantum state readout [41]. Together

with the relatively low spectral resolution of the pump-probe apparatus, this suggests that

the residual shift detected in the mode centered at 855 meV in Fig. 6.3(a) may be tied to a

transient refractive index response associated with the resonantly excited quantum dots

at 851 meV. The mode shift dominates the nonlinear response in the non-collinear case

(Fig. 6.3(b)), but a small bleaching component persists (6× smaller than in Fig. 6.2(d)).

This suggests that a small fraction of the QDs centered at 855 meV may have been excited

indirectly, possibly through carrier escape and recapture into other quantum dots assisted

by wetting layer transitions [142, 143]. One could diminish these effects by working at

lower temperatures.

The reduced variance of the exciton transition energy (or the trion transition energy for

a similar structure containing charged QDs [40, 52, 54, 61]) enabled by the microcavity

mode improves the prospect of high fidelity optical control for a qubit stored in the

quantum dot ensemble. For excitons, ultrafast single qubit gates are carried out using

Rabi rotations [42, 43, 44, 45, 57], together with phase control via the optical Stark effect

[131, 132]. For single carrier spin qubits, full control is possible using stimulated Raman

transitions [29, 40, 54, 61, 144], for which the pulse center frequency and area must be

carefully selected to ensure that optical control is unitary within the single-spin subspace.
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Inhomogeneities in the resonance energy and dipole moment of the associated optical

transition (exciton or trion) have been shown to limit the fidelity of optical control using

the above approaches in QD ensembles [29, 57, 144]. Since the microcavity will lead to

a substantial reduction in the variance of both the exciton transition energy and dipole

moment (as they are both tied to variations in the quantum dot size [144, 145]), these

deleterious effects of inhomogeneity on the fidelity of optical control will be reduced

considerably. We note that controlled detuning of the optical gate pulse relative to the

exciton transition could be achieved for qubits encoded using the structure considered here

by exploiting the angle dependence of the microcavity mode energy.

Mode-locking of spin precession using periodic laser excitation [60, 136, 137, 146]

provides an alternative approach to mitigating inhomogeneity for qubit storage in an

ensemble of quantum dots. The mode-locking process reduces the influence of variations

in the g-factor and the effective magnetic field associated with the nuclei, leading to a

dramatic enhancement of the ensemble spin dephasing time [60]. The fidelity of optical

control of such spin qubits is nevertheless limited by inhomogeneities in the transition

energy and dipole moment [29], in contrast to the approach considered here.

In summary, we have applied pump-probe differential transmission experiments to

investigate the utility of a one-dimensional optical microcavity for reducing the deleterious

effects of inhomogeneity on the storage and manipulation of qubits in ensembles of

semiconductor QDs. Our results indicate that the microcavity mode enables the selective

excitation and detection of subsets of QDs that could be used for qubit encoding. The

substantial reduction in the variance of the dipole moments and transition energies for

the selected subset will further the objective of high-fidelity optical quantum gates on

ensembles while drastically reducing the technical challenge associated with quantum

state readout relative to qubits encoded in individual quantum dots. The angle-dependent

resonance energy of the microcavity mode would in principle permit storage of several

qubits in different quantum dot subsets, the number of which being determined by the

details of the implementation. The expected improvement in fidelity of single-qubit gates

enabled by the microcavity mode would also facilitate the implementation of decoherence

mitigation [27, 99, 100] for ensemble qubits in the structure considered here.



106

6.2.1 Acknowledgments

This research is supported by the Natural Sciences and Engineering Research Council of

Canada and Lockheed Martin Corporation.



CHAPTER 7

CONCLUSIONS AND OUTLOOK

The three research projects that constitute this thesis work have made substantial advances

in the control of fundamental quantum excitations in semiconductor QDs using ultra-

fast optical techniques. The development of the necessary experimental apparatus and

techniques for implementing coherent optical control using engineered optical pulses at

telecommunications wavelengths has built upon the past success of femtosecond pulse

shaping in atomic and molecular systems and laid the foundation for the extension of such

techniques to solid state systems. The application of these newly developed methods to

the first experimental realization of optimal quantum control in semiconductor QDs and

the first demonstration of parallel qubit gates on distant QDs are important stepping stones

on the path to achieving a functional quantum simulator based on this promising system.

The exploration of alternative means of encoding qubits using fundamental quantum states

in ensembles of QDs compliments the single QD experiments in this thesis work and

provides a direction for simplifying quantum state read-out. All of these advances will

further the long-term objective of realizing a scalable semiconductor-based solid state

quantum computing platform.

In the first component of this work, a quantum control apparatus designed to operate

in the infrared was constructed and tested. As a test case for this apparatus, ultrafast

pulses engineered to carry out a C-ROT operation on two excitons in a single QD were

generated and characterized using MIIPS and autocorrelation techniques. Phase-only and

amplitude-only shaping masks, designed for high-fidelity C-ROT operations on single InAs

QDs were applied to TL pulses using the SLM within the pulse shaper. The phase-shaped

pulses conserved optical pulse power at the expense of increasing the pulse duration from
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130 fs to approximately 2 ps. The amplitude shaping scheme resulted in shorter pulse

durations compared to the phase shaped pulses; however, the amplitude masks applied by

the SLM resulted in low optical power at the pulse shaper output. These first experiments

demonstrated the high accuracy of pulse shapes implemented by this new apparatus despite

the incorporation of diffraction-limited focusing and a sample in a cryogenic environment,

illustrating its applicability for quantum control experiments on solid state qubits.

A natural step forward from the first part of this thesis work was to implement optimized

pulse shapes in quantum control experiments on individual semiconductor QDs. The

versatility of femtosecond pulse shaping protocols was showcased in the execution of

parallel single qubit gates on exciton qubits in two distant, uncoupled InAs QDs. The InAs

QDs used in these experiments have ground state emission wavelengths of 1.3 μm at 10 K,

and were spatially and spectrally isolated from the QD ensemble. Phase-only pulse shaping,

using a cosine phase mask function, yielded high fidelity optimal quantum control of both

QDs simultaneously, performing concurrent π and 2π rotations. By shifting the cosine

phase mask by an amount approximately equal to the energy separation between the exciton

transitions in each QD, the reverse operation was achieved, solidifying an interpretation

based on combined Rabi rotations and adiabatic rapid passage as the mechanism for

control. By implementing a high resolution shaping system (e.g., using a 640 pixel SLM

and appropriate diffraction grating), one could extend this approach to control numerous

uncoupled QDs within the laser focal spot. For this first demonstration of pulse shaping

for optimal quantum control in semiconductor QDs, a simple cosine function was used. In

future work, one could incorporate more complex functions into the control scheme for

more flexibility in optimizing quantum gates.

In all single QD investigations, execution of high signal-to-noise measurements is

a challenge due to the small optical signal generated by an individual QD. This can

be overcome by using ensembles of QDs in optical experiments as the larger optical

signal greatly facilitates quantum state read-out. When working with QD ensembles, the

inhomogeneous size distribution within the population of QDs must be addressed. This

size distribution, inherent to the self-assembled growth of semiconductor QDs, leads to

variations in transition energy, dipole moment, and g-factor for different QDs within the

ensemble, which severely restricts the fidelity of optical gates on ensemble qubits. In an

effort to mitigate these challenges, in the third project of this thesis, a planar microcavity,
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containing an ensemble of InAs/InP QDs was studied. The transmission wavelength of

one-dimensional microcavities varies with the angle of the light incident on the cavity.

Angle-resolved PL and differential-transmission measurements revealed that energetic

subsets of QDs within the ensemble can be selectively addressed using angle-dependent

excitation. The dramatic reduction in the variance of the exciton transition energy and

dipole moment enabled by the microcavity will improve the prospect of achieving high

fidelity optically-mediated gates in this system. These results also suggest that the angle

dependent resonance of the microcavity could be used for off-resonant gates using the

Stark effect, and that multiple qubits could be encoded in distinct QD subsets.

This thesis work has laid the foundation for the application of optimal quantum control to

optimizing other optical quantum gates in semiconductor QDs. For example, the progress

made here involving parallel single qubit gates could be extended to a two-qubit C-ROT

gate and could form a starting point for developing a small quantum simulator using

complex instruction set quantum computing. In addition, the control of exciton states

in semiconductor QDs was the focus of this thesis work due to the relative simplicity

of optical control in this case. However, the general approach developed here could be

extended next to spin based qubits. In particular, hole spins have received considerable

attention recently due to the lower influence of hyperfine coupling to the lattice nuclei,

which leads to longer coherence lifetimes. The possible use of hole spin qubits for storage

and exciton qubits for computation would marry the benefits of the long spin lifetime in

the former case and the ease of optical control in the latter case. The optimized approach

developed here for single qubit gates involving excitons would find natural application in

such a hybrid computing platform in the realization of dynamical decoupling approaches

for extending the exciton coherence lifetime during the idle stages of a computation. The

utility of dynamical decoupling for exciton qubits had been highlighted in several recent

theoretical works, but has not yet been experimentally demonstrated. Optimal quantum

control for parallel qubit gates, as demonstrated here, could ultimately be realized in optical

microcavity structures, in which one could exploit the microcavity modes for long-range

entanglement between qubits.

Among the various physical platforms being pursued for the development of a scalable

quantum computer, N-V centers in diamond provide an attractive solid state alternative to
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the approach considered in this thesis work. Although semiconductor QDs offer consid-

erable advantages over N-V centers, such as the compatibility with existing computing

technology and the exploitation of semiconductor and photonic device fabrication capa-

bilities, the breathtaking pace of advances in optical control of qubits in QDs in recent

years has been paralleled by advances in the optical control of qubits in diamond. The

successful realization of either (or both) of these technologies would have wide-ranging

implications for society. The next decade will undoubtedly witness great strides in the

fundamental understanding and control of quantum systems.
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B.1 Movie S1

Duration: 15 s. First reference on page 87.

Dynamics of the pesudo spin vector on the Bloch sphere for the exciton states in QD1 (red

circles) and QD2 (black squares) under control by a shaped pulse. The orientation of the

Bloch sphere is identical to that in Fig. 3(a) in the main text. The time dependence of the

electric field is shown in Fig. S4(b).

B.2 Movie S2

Duration: 15 s. First reference on page 87.

Dynamics of the pesudo spin vector on the Bloch sphere for the exciton states in QD1 (red

circles) and QD2 (black squares) under control by an unshaped pulse. The orientation of

the Bloch sphere is identical to that in Fig. 3(a) in the main text. The time dependence of

the electric field is shown in Fig. S4(e).
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