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Abstract

Rampant lateral gene transfer (LGT) among prokaryotes, hybridization in plants and

other reticulate evolutionary processes invalidate typical phylogenetic tree models by

violating the assumption that organisms only inherit genetic information from a sin-

gle parent species. Comparing the different evolutionary histories of multiple genes

is necessary to identify and assess these processes. In this work I develop efficient

approximation and fixed-parameter algorithms for computing rooted maximum agree-

ment forests (MAFs) and maximum acyclic agreement forests (MAAFs) of pairs of

phylogenetic trees. Their sizes correspond to the subtree-prune-and-regraft (SPR)

distance and the hybridization number of these pairs of trees, which are important

measures of the dissimilarity of phylogenies used in studying reticulate evolution.

Although these MAFs and MAAFs are NP-hard to compute, my fixed-parameter

algorithms are practical because they scale exponentially with the computed distance

rather than the size of the trees. I contribute efficient fixed-parameter algorithms for

computing MAFs and MAAFs of two binary rooted trees and give the first efficient

fixed-parameter and approximation algorithms for computing MAFs of two multifur-

cating rooted trees. My open-source implementation of the MAF algorithms is orders

of magnitude faster than previous approaches, reducing the time required to compute

SPR distances of 46 between trees of 144 species to fractions of a second whereas

previous approaches required hours to compute SPR distances of 25.

These fast MAF–based distance metrics enable the construction of supertrees to

reconcile a collection of gene trees and rapid inference of LGT. Simulations demon-

strate that supertrees minimizing the SPR distance are more accurate than other

supertree methods under plausible rates of LGT. I constructed an SPR supertree

from a phylogenomic dataset of 40,631 gene trees covering 244 genomes from several

major bacterial phyla and inferred “highways” of gene transfer between these bacte-

rial classes and genera; a small number of these highways connect distantly related

genera and can highlight specific genes implicated in long-distance LGT. These fast

MAF algorithms are thus practical and enable new analyses of reticulate evolution.

ix
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ẽ pT1, T2, F q The number of edges that must be cut in F to reconcile it acyclicly

with T1 and T2

X-tree A tree with label set X

xii



Acknowledgements

This thesis is dedicated to my wife, Hallie, and beautiful daughters Emily and Leia.

Without your love and support this work would never have been completed.

I wish to thank my supervisors, Robert Beiko and Norbert Zeh, for their feedback,

brainstorming, proof-breaking, and the myriad other ways they have contributed to

my research. I also thank the other members of my committee, Christian Blouin and

Meng He, for their many helpful comments.

The Beiko lab has been instrumental to my success by listening to my work in

progress and offering suggestions and advice. Thanks go to Sylvia Churcher, Kathryn

Duffy, Kathryn Dunphy, Rob Eveleigh, Catherine Holloway, Morgan Langille, Norm

MacDonald, Timothy Mankowski, Conor Meehan, Brett O’Donnel, Donovan Parks,

Scott Perry, and Dennis Wong. I particularly wish to thank Joel Navarrete for his

work implementing and testing some of my supertree ideas.

Finally, I wish to thank the funding agencies that made this work possible. My re-

search was funded by generous support from the Tula Foundation, a Natural Sciences

and Engineering Research Council of Canada (NSERC) Postgraduate Scholarship,

and the Killam Trusts Predoctoral Scholarship.

xiii



Chapter 1

Introduction

Phylogenetic trees are a standard model to represent the evolutionary relationships

among a set of species and are an indispensable tool in evolutionary biology [54]. Early

methods of building phylogenetic trees used morphology, or structural characteristics

of species, to determine their relatedness. However, advances in molecular biology

have allowed the widespread use of DNA and protein sequence data to build phyloge-

nies based on homologous genes, that is, genes from separate organisms that have a

shared ancestry. Figure 1.1 shows, for example, the seminal tree constructed by Woese

et al. [108] that separated life into the three domains Bacteria, Archaea and Eucarya.

Molecular phylogenetics is particularly useful in the study of microscopic organisms

due to their high rates of evolution and subtle differences in appearance. However,

even good phylogenetic inference methods cannot guarantee that a constructed tree

correctly represents evolutionary relationships—and there may not even exist such a

tree—because not all groups of species follow a simple tree-like evolutionary pattern.

Collectively known as reticulation events, non-tree-like evolutionary processes, such

as hybridization, lateral gene transfer (LGT), and recombination, result in species

being composites of genes derived from different ancestors. For example, evidence

suggesting LGT between Archaea and Bacteria [75] challenges the tree in Figure 1.1,

which was constructed from a single “marker” gene. These reticulate processes al-

low species to rapidly acquire useful traits and adapt to new environments. This

includes harmful traits of pathogenic bacteria, such as antibiotic resistance, and LGT

appears to have contributed to the emergence of pathogens such as Mycobacterium

tuberculosis [84].

Due to reticulation events, phylogenetic trees representing the evolutionary his-

tory of different genes found in the same set of species may differ. To reconcile these

differing evolutionary histories, one can use phylogenetic distance metrics that deter-

mine how well the evolutionary hypotheses of two or more phylogenetic trees agree

1
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Bacteria

Green
Filamentous
bacteriaSpirochetes

Gram
positives

Proteobacteria

Cyanobacteria

Planctomyces

Bacteroides
Cytophaga

Thermotoga

Aquifex
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Methanosarcina
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Animals
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Microsporidia

Diplomonads

Archaea Eucarya

Figure 1.1: A phylogenetic tree based on small subunit ribosomal RNA genes as
developed by Woese et al. [108], proposing the three domains Bacteria, Archaea, and
Eucarya. Figure adapted from [71]. Reticulation events challenge the assumptions
behind such trees.

and often allow us to discover reticulation events that explain the differences between

the trees. To simultaneously represent these discordant topologies, one can use a phy-

logenetic network, which is a generalization of a phylogenetic tree that allows species

to inherit from more than one parent.

Several metrics are commonly used to define the distance between phylogenies.

The Robinson-Foulds distance [82] is popular, as it can be calculated in linear time [39].

Other metrics, such as the subtree prune-and-regraft (SPR) distances [54] and the

hybridization number [7], are more biologically meaningful but also NP-hard to com-

pute [3,23,25,53]. The SPR distance is equivalent to the minimum number of lateral

gene transfers required to transform one tree into the other [7, 13] and thus provides

a lower bound on the number of reticulation events needed to reconcile the two phy-

logenies. The hybridization number is the minimum number of edges that must be

added to one tree to transform it into a hybridization network of both trees and thus

provides a lower bound on the number of hybridization events in an evolutionary

history consistent with both trees [7].
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Multifurcations (alternatively, polytomies) are vertices of a tree with three or

more children. A multifurcation is hard if it indeed represents an inferred common

ancestor which produced three or more species as direct descendants, and is soft if

it simply represents ambiguous or uncertain evolutionary relationships [66]. Simul-

taneous speciation events are assumed to be rare, so the usual assumption is that

all multifurcations are soft. If we force the resolution of uncertain relationships into

binary trees, then we infer evolutionary relationships that are not supported by the

original data and may infer meaningless reticulation events. Thus, it is crucial to

develop efficient algorithms to compute these distances (and their associated series of

permutations) for multifurcating trees.

The minimum number of reticulation events required to reconcile two trees pro-

vides the simplest explanation for the difference between the trees. For this reason,

these metrics have been used regularly to model reticulate evolution [67,74], and the

development of efficient algorithms to compute the distance between two trees under

these metrics has been the focus of much research (see Section 1.1.1). The close rela-

tionship between SPR operations and reticulation events has also led to advances in

network models of evolution [7, 25, 74].

In addition, these distance metrics can be used as an optimality criterion to con-

struct supertrees. Supertree methods aim to reconcile a multitude of gene trees into

a single tree, which may serve as a hypothesis of organismal descent or relatedness,

by optimizing a similarity criterion. The Robinson-Foulds distance has been used in

this manner but, due to the lack of efficient algorithms for computing SPR distances

and hybridization numbers, these distance metrics have not. Section 1.1.2 discusses

related work on supertrees.

Each of these distance metrics can be modeled using appropriately defined agree-

ment forests (AFs); rooted maximum agreement forests (MAFs) for SPR, such as the

MAF of Figure 1.2, and rooted maximum acyclic agreement forests (MAAFs) for the

hybridization number. An agreement forest of two phylogenies has the property that

it can be obtained from either tree by cutting an appropriate set of edges. Given

an agreement forest obtained by removing k edges from each tree, a set of k SPR

operations that transform one tree into the other can be recovered easily. As such,

it captures the evolutionary relationships that are consistent between both trees. A
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T1

1 2 3 4 5 6 1 6 4 2 3 5

MAF

1 6 4 2 3 5

T2

Figure 1.2: An MAF of two phylogenetic trees. The MAF can be obtained by cutting
the dotted edges in both trees. Any such AF requires cutting at least two edges from
each tree, which is also the SPR distance between these trees.

maximum agreement forest is an agreement forest obtained by removing the min-

imum possible number of edges. The corresponding set of operations represents a

possible minimum set of reticulation events that reconcile the two trees. Similarly,

given an acyclic agreement forest of two trees (a restriction of an agreement forest

that disallows the donation of genetic information from descendant nodes to ancestor

nodes), a hybrid network with that many hybridization events can be constructed

quickly [25]. Thus, developing efficient algorithms for computing these MAFs and

MAAFs is the best way to enable the effective study of reticulation events.

1.1 Related Work

1.1.1 MAFs and MAAFs

While SPR distance and the hybridization number (and potentially TBR distance)

capture biologically meaningful notions of similarity between phylogenies, their prac-

tical use has been limited by the fact that they are NP-hard to compute [3,23,25,53].

There are several standard approaches for dealing with NP-hard optimization prob-

lems that have been employed to compare phylogenies using these distance measures.

Approximation algorithms. Hein et al. [51] claimed a 3-approximation algorithm

for computing SPR distances and introduced the notion of a maximum agreement

forest (MAF) as the main tool underlying both the approximation algorithm and a

proposed NP-hardness proof for computing SPR distances. The central claim was

that the number of components in an MAF of two phylogenies is one more than the
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minimum number of SPR operations needed to transform one into the other. Unfor-

tunately, there were subtle mistakes in the proofs. Allen and Steel [3] proved that the

number of components in an MAF is in fact one more than the closely related tree bi-

section and reconnection (TBR) distance between the two trees. Rodrigues et al. [83]

provided instances where the algorithm of [51] provides an approximation guarantee

no better than 4 for the size of an MAF, thereby disproving the 3-approximation claim

of [51]. They also proposed a modification to the algorithm, which they claimed to

produce a 3-approximation for the TBR distance. A counterexample to this claim

was provided by Bonet et al. [20], who showed, however, that both the algorithms

of [51] and [83] compute 5-approximations of the SPR distance between two rooted

phylogenies, and that the algorithms can be implemented to run in linear time. The

approximation ratio was improved to 3 by Bordewich et al. [22], but at the expense of

an increased running time of O pn5q.1 A second 3-approximation algorithm presented

in [83] achieves a running time of O pn2q. In [103] we improved the time required

by this algorithm to linear. Using entirely different ideas, Chataigner [28] obtained

an 8-approximation algorithm for TBR distances of two or more trees. There is

currently no constant factor approximation algorithm for the hybridization number

of two rooted phylogenies, and achieving such an algorithm is unlikely—Bordewich

and Semple [25] showed that this problem is APX-hard and Kelk et. al [56] showed

that it has a constant factor approximation algorithm if, and only if, the directed

feedback vertex set problem [56] has such an algorithm. Further, there has been no

previous work on developing approximation algorithms for these metrics on multifur-

cating trees other than a recently proposed polynomial time 4-approximation for the

multifurcating SPR distance [97].

Fixed-parameter algorithms. Fixed-parameter algorithms have a running time

that is exponential in some parameter that is specific to the problem but independent

of the input size. These algorithms are more attractive for determining reticulation

events than approximate methods, as they provide exact solutions. Given that the

identification of meaningful putative reticulation events from two phylogenetic trees

is possible only if the trees carry a strong vertical signal, that is, if the number of

1Using non-trivial but standard data structures, the running time can be reduced to O
`

n4
˘

.
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reticulation events is small compared to the size of the trees, the distance under

a given metric is a natural parameter for fixed-parameter algorithms that compute

distances between phylogenies.

The previously best fixed-parameter algorithm for the rooted SPR distance of bi-

nary phylogenies is due to Whidden and Zeh [103] and runs in O
`

3kn
˘

time, where k

is the distance between the two trees. Bordewich et al. [22] gave a previous algorithm

that runs in O
`

4k ¨ k4 ` n3
˘

time. A preprint by van Iersel et al. [97] extends the algo-

rithm of Whidden and Zeh [103] to nonbinary phylogenies and requires O
`

4k ¨ ppnq
˘

time, where pp¨q is a polynomial function. For TBR distance, the previous best result

is also due to Whidden and Zeh [103], who provided an algorithm with running time

O
`

4kn
˘

. Earlier algorithms for this problem by Hallett and McCartin [49] and Allen

and Steel [3] had running times O
`

4k ¨ k5 ` ppnq
˘

and O
`

k3k ` ppnq
˘

, respectively.

For unrooted SPR, Hickey et al. [52] first claimed a fixed-parameter algorithm, but

the correctness proof was flawed. Recently, St. John [89] proposed a correction of

the central technical lemma in Hickey et al.’s result. In [24], Bordewich and Sem-

ple provided a fixed-parameter algorithm for the hybridization number of two rooted

phylogenies with running time O
`

p28kqk ` n3
˘

. Linz and Semple [62] extended these

results to non-binary rooted phylogenies. Kelk et al. [56] provided an improved anal-

ysis of the kernel size for hybridization number, which reduces the running time of the

algorithm by Bordewich and Semple to O
`

p18kqk ` n3
˘

. Using a different approach of

‘terminals’, Piovesan et al [77] gave an algorithm for the hybridization number of non-

binary phylogenies with running time O
`

6kk! ¨ ppnq
˘

. Chen and Wang [31] recently

proposed an algorithm for computing all MAAFs of two or more binary phylogenies.

Their algorithm combines the O
`

3kn
˘

search for agreement forests of Whidden and

Zeh [103] with an exhaustive search based on an observation in the same paper that

a superforest of an MAAF can be refined to an MAAF by cutting appropriate edges

incident to the roots in the current forest. There have also been several recent fixed-

parameter algorithms for hybridization [2,33] that are extensions of the rooted MAF

algorithm from [100,102] (Chapter 3); however, their running times are O
`

314k ` n3
˘

and unbounded, respectively. These times are exponential in their reduced input size,

bounded by a function on k, unlike a bounded search tree algorithm with a running

time of O
`

bk ¨ ppnq
˘

where b is a small constant and ppnq is a polynomial function
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of n.

Heuristics. We distinguish two types of heuristic approach to solving NP-hard

problems. The first type of heuristic algorithms are similar to approximation algo-

rithms in that they provide approximate solutions efficiently, but they do not provide

a guaranteed approximation ratio. The second type of heuristic algorithms provide

exact solutions with no guaranteed running time bound.

LatTrans by Hallet and Lagergen [48] models lateral gene transfer events by a

restricted version of rooted SPR operations. It computes the exact distance under

this simpler metric in O
`

2kn2
˘

time. HorizStory by Macleod et al. [65] supports

multifurcating trees but does not consider SPR operations where the pruned subtree

contains more than one leaf. EEEP by Beiko and Hamilton [13] performs a breadth-

first SPR search on a rooted start tree but performs unrooted comparisons between

the explored trees and an unrooted reference tree. The distance returned is not

guaranteed to be exact due to optimizations and heuristics that limit the scope of

the search, although EEEP provides options to compute the exact unrooted SPR

distance with no non-trivial bound on the running time. More recently, RiataHGT

by Nakhleh et al. [73] and TNT by Goloboff [44] quickly calculate an (unbounded)

approximation of the SPR distance between rooted multifurcating trees.

Reductions. Two algorithms for computing rooted SPR distances, Sprdist [110]

and TreeSAT [19], express the problem of computing maximum agreement forests as

an integer linear program (ILP) and a satisfiability problem (SAT), respectively, and

employ efficient ILP and SAT solvers to obtain a solution. Sprdist has been shown to

outperform EEEP and Lattrans [110]. Although such algorithms draw on the close

scrutiny that has been applied to these problems, the conversion process may throw

away information that can be exploited, such as a fixed parameter.

1.1.2 Supertrees

Genomes contain a great deal of hereditary information in the form of homologous

genes, but histories of these genes can differ due to artifacts of phylogenetic inference
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Figure 1.3: An example of supertree inference.

and phenomena such as lateral gene transfer (LGT). Supertree methods aim to rec-

oncile a multitude of gene trees into a single tree, which may serve as a hypothesis

of organismal descent or relatedness, by optimizing a similarity criterion. Figure 1.3

shows an example of reconciling trees into a single supertree. Supertree approaches

have been used to build large-scale phylogenies including the first phylogeny of nearly

all extant mammals [17], the first family-level phylogeny of flowering plants [38], and

the first species-level phylogeny of non-avian dinosaurs [64]. They have also been used

to study the extent of LGT in prokaryotes [14] and to disentangle the origin of eu-

karyotic genomes [78]. One key advantage of supertree methods is that they can take

as input sets of gene trees sampled from overlapping but non-identical sets of taxa,

in contrast with consensus tree approaches, which require that all input trees contain

exactly the same set of leaves [1]. Simulations have shown that supertrees are more re-

liable in the presence of a moderate amount of misleading LGT than the supermatrix

approach which requires concatenated alignments of many gene sequences [59].
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Many optimality criteria have been proposed for supertree construction. Matrix

representation with parsimony (MRP) [8, 80] was among the earliest methods pro-

posed and remains the most commonly used, but detailed work with MRP has raised

several concerns with the approach. MRP converts input trees into a binary character

matrix and scores candidate supertrees with the parsimony problem on this matrix.

In the parsimony problem, each row of the matrix represents one species, each col-

umn is mapped onto the supertree leaves, and the parsimony score of a supertree is

the minimum number of character changes required in a mapping of characters to

the supertree interior nodes. Although it is NP-hard to find a supertree with the

minimum parsimony score, fast hill-climbing heuristics in PAUP* allow MRP to be

applied to large datasets [42, 85, 94]. MRP is very effective in practice, quickly con-

structing supertrees of competitive quality in every tested metric [18,30,40]. However,

it is not clear why the MRP approach performs so well and it may generate relation-

ships that do not belong to any of the source trees [79], has problems resulting from

unequal representation of taxa [16], and may include relationships contradicted by

the majority of source trees [43]. Other developed supertree criteria include consen-

sus supertrees [46], majority-rule supertrees [35], Quartet supertrees [76] and Triplet

supertrees [61]. However, like MRP, other supertree building methods that are not

based on symmetric tree-to-tree similarity measures may be unduly influenced by the

shapes of the input trees [107].

Bansal et al. [6] recently proposed Robinson-Foulds (RF) supertrees, which aim

to minimize the total RF distance [82] between the supertree and the set of input

trees. The RF measure captures the number of clusters (clades, in the binary case)

that differ between two trees, so the RF supertree approach aims to maintain as much

phylogenetic information from the input trees as possible. RF supertrees can be feasi-

bly computed from binary input trees with the fast hill-climbing heuristics of Bansal

et al. [6]; others have begun to extend the approach to unrooted trees with local search

heuristics [29]. While RF appears to be a good criterion for supertrees, it may not be

suitable for datasets with substantial amounts of LGT: a single “long-distance” LGT

event between distant taxonomic relatives will result in many discordant bipartitions

and a high RF distance. If many organisms participate in long-distance LGT, then

“phylogenetic compromise” trees [12] may emerge which reflect neither the correct
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Table 1.1: Running time improvement for computing the rooted SPR distance and
hybridization number.

Previous New

Binary SPR distance O
`

3kn
˘

time [103] O
`

2kn
˘

time
Multifurcating SPR distance O

`

4k ¨ polypnq
˘

time [97] O
`

2.42kn
˘

time
Hybridization number O

`

p18kqk ` n3
˘

time [24,56] O
`

3.18kn
˘

time

species relationships, nor the dominant pathways of gene sharing. The requirement

that all input trees be binary is also potentially limiting, as many relationships in trees

inferred from sequence data are unsupported by statistics such as the bootstrap, and

should be collapsed into multifurcations.

1.2 Contribution

My contribution is to develop substantially more efficient algorithms for computing

MAFs and MAAFs (and, thus, the SPR distance and hybridization number). Us-

ing a “shifting lemma” central to Bordewich et al.’s 3-approximation algorithm [22],

one can obtain a depth-bounded search algorithm for computing MAFs of binary

trees with running time O
`

3kn
˘

and a linear-time 3-approximation algorithm [103].

Building on my prior work, I developed efficient algorithms for computing rooted

MAFs of two binary trees, rooted MAAFs of two binary trees, and rooted MAFs of

two multifurcating trees. Table 1.1 shows these results in comparison with previous

work. The MAF algorithms were implemented and shown to be orders of magnitude

faster than previous approaches. The resulting software, RSPR, is available under the

open source GPL license [105]. Finally, these algorithms were applied to construct

supertrees based on the SPR distance and infer LGT between bacteria. The SPR

Supertrees software is also available under the GPL [106].

Chapter 2 introduces the technical notation and definitions used throughout this

thesis.

Chapters 3–6 present new theoretical results. In Chapter 3 I present an efficient

fixed-parameter algorithm for computing rooted MAFs of two binary trees that runs in

O
`

2.42kn
˘

time. By focusing on search paths that are guaranteed to find a solution,

this algorithm avoids searching the full space of solutions. A preliminary version

of this chapter (without proofs) was presented at the Symposium for Experimental
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Algorithms (SEA) [100] and the full version is the first half of an article that will

soon appear in the SIAM Journal on Computing [102]. The focus of Chapter 4 is on

extending the MAF algorithm to compute MAAFs in O
`

3.18kn
˘

time. Developing

the first bounded search tree algorithm for this problem required significant new

insights including an efficient new “refined cycle graph” data structure, a two-phase

search procedure with the novel concept of marking edges in the first phase to inform

the second phase, and a combined running time analyis of these two phases. This

chapter is the second half of the SIAM Journal on Computing article [102]. Chapter 5

extends the MAF algorithm to compute rooted MAFs of two multifurcating trees in

O
`

2.42kn
˘

time, matching the time for the binary case, and introduces an O pn log nq-
time 3-approximation for this problem. Again, maintaining extra information between

separate branches of the search procedure is the key in this algorithm, allowing it to

avoid duplicate subproblems. In Chapter 6 these ideas inspire the new concept of

“protecting” edges in some parts of the search and improve the time required to

compute binary MAFs to O
`

2kn
˘

.

Chapter 7 presents an efficient implementation of my MAF algorithms, RSPR [105],

which is available under the GNU GPL open source license. I demonstrate that my

MAF algorithms are orders of magnitude faster than previous approaches and thus

applicable to practical datasets. Some of these results were presented at the Sym-

posium for Experimental Algorithms (SEA) [100] and are reproduced here with the

kind permission of Springer Science+Business Media.

Chapter 8 demonstrates the applicability of my efficient MAF algorithms to large-

scale phylogenetic inference. My SPR Supertrees software [106], also available under

the GPL, constructs supertrees by minimizing their SPR distance to a collection of

gene trees. Experiments using simulated datasets with LGT show that the SPR ap-

proach is more accurate than RF and, for some realistic rates and regimes of LGT,

MRP as well. To demonstrate the application of the SPR supertree approach on

a dataset in which considerable LGT is expected, a phylogenomic data set of 244

bacteria covering 393,876 genes in 40,631 orthologous sets was used to analyze pref-

erential transfer of genes between bacterial lineages. A highly plausible supertree was

reconstructed and the SPR approach identified putative highways of gene sharing.

In Chapter 9, I present concluding remarks and suggest future work.



Chapter 2

Preliminaries

In this chapter, we introduce the definitions and notation used throughout this the-

sis. Most of these are standard in the literature from [3, 20, 22, 23, 83]. Additional

definitions and notation are introduced in following chapters as necessary.

A (rooted binary phylogenetic) X-tree is a rooted tree T whose nodes each have

zero or two children. The leaves are bijectively labelled with the members of a label

set X. As in [20, 22, 23, 83], we augment the tree with a labelled root node whose

label is distinct from the labels of all leaves and whose only child is the original root

of T ; see Figure 2.1(a). In the remainder of this thesis, we consider ρ to be part of

X. For a subset V of X, T pV q is the smallest subtree of T that connects all nodes

in V ; see Figures 2.1(b). The V-tree induced by T is the smallest tree T |V that can be

obtained from T pV q by suppressing unlabelled nodes with fewer than two children;

see Figure 2.1(c). Suppressing a node v deletes v and its incident edges; if v is of

degree 2 with parent u and child w, u and w are reconnected using a new edge pu, wq.

Each non-root internal node v of an X-tree T has an associated cluster CT pvq,
defined to be the set of leaf descendants of v. The set of clusters of T is denoted CT .

The Robinson-Foulds (RF) distance metric between two rooted trees is the normalized

count of the symmmetric difference between the sets of clusters of the two trees, that

is, for two trees T1 and T2, the RF distance dRF pT1, T2q is

dRF pT1, T2q “ | pCT1
z CT2

q Y pCT2
z CT1

q |
2

.

A subtree prune-and-regraft (SPR) operation on an X-tree T cuts an edge ex :“
px, pxq, where px denotes the parent of x. This divides T into subtrees Tx and Tpx

containing x and px, respectively. Then it introduces a new node p1
x into Tpx by

subdividing an edge of Tpx and adds an edge px, p1
xq, thereby making x a child of p1

x.

Finally, px is suppressed. See Figure 2.1(d).

12
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Figure 2.1: (a) An X-tree T . (b) The subtree T pV q for V “ t1, 2, 4u. (c) T |V . (d) An
SPR operation.

SPR operations give rise to a distance measure dSPR p¨, ¨q between X-trees, defined

as the minimum number of SPR operations required to transform one tree into the

other. The trees in Figure 2.2(a), for example, have SPR distance dSPR pT1, T2q “ 3.

A related distance measure for X-trees is their hybridization number, hyb pT1, T2q,
which is defined in terms of hybrid networks of the two trees. A hybrid network of

two X-trees T1 and T2 is a directed acyclic graph H with a single source ρ, whose

sinks are labelled bijectively with the labels in X z tρu, and such that both T1 and T2,

with their edges directed away from the root, can be obtained from H by deleting

edges and suppressing nodes. For a vertex x P H, let degin pxq be its in-degree. Then
the hybridization number of T1 and T2 is minH

ř

xPH,x‰ρpdegin pxq ´ 1q, where the

minimum is taken over all hybrid networks H of T1 and T2. This is illustrated in

Figure 2.2(c).

These distance measures are related to the sizes of appropriately defined agreement

forests. To define these, we first introduce some terminology. For a forest F whose
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{1, 2}

{3, 4} {5, 6}

{ρ}
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Figure 2.2: (a) SPR operations transforming T1 into T2. Each operation changes the
top endpoint of one of the dotted edges. (b) The corresponding agreement forest,
which can be obtained by cutting the dotted edges in both trees. This is an MAF
with 4 components, so m pT1, T2q “ 4 and e pT1, T2, T2q “ dSPR pT1, T2q = 3. Note that
this is not an MAAF, as its cycle graph, shown in (e), contains a cycle. (c) A hybrid
network of T1 and T2. This network has 4 nodes with an extra parent, so the hy-
bridization number is 4. (d) An MAAF of T1 and T2. ẽ pT1, T2, T2q “ hyb pT1, T2q “ 4.
Note that this is not an MAF of T1 and T2, as it has one more component than the
MAF in (b). (e) The cycle graph of the agreement forest in (b), which contains a
cycle. (f) The cycle graph of the agreement forest in (d), which does not contain a
cycle.
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components are rooted phylogenetic trees T1, T2, . . . , Tk with label setsX1, X2, . . . , Xk,

we say F yields the forest with components T1|X1, T2|X2, . . . , Tk|Xk; if Xi “ H, then

TipXiq “ H and, hence, Ti|Xi “ H. In other words, the forest yielded by F is the

smallest forest that can be obtained from F by suppressing unlabelled nodes with less

than two children. For a subset E of edges of F , we use F ´ E to denote the forest

obtained by deleting the edges in E from F , and F ˜ E to denote the forest yielded

by F ´ E. We say F ˜ E is a forest of F .

Given X-trees T1 and T2 and forests F1 of T1 and F2 of T2, a forest F is an

agreement forest (AF) of F1 and F2 if it is a forest of both F1 and F2. F is a

maximum agreement forest (MAF) of F1 and F2 if there is no AF of F1 and F2 with

fewer components. We denote the number of components in an MAF of F1 and F2 by

m pF1, F2q. For a forest F of F1 or F2, we use e pF1, F2, F q to denote the size of the

smallest edge set E such that F ˜E is an AF of F1 and F2. Bordewich and Semple [23]

showed that, for two X-trees T1 and T2, dSPR pT1, T2q “ e pT1, T2, T2q “ m pT1, T2q ´1.

An MAF of the trees in Figure 2.2(a) is shown in Figure 2.2(b).

The hybridization number of two X-trees T1 and T2 corresponds to an MAF of

T1 and T2 with an additional constraint. For two forests F1 and F2 of T1 and T2

and an AF F “ tCρ, C1, C2, . . . , Cku of F1 and F2, we define a cycle graph GF of F .

Each node of GF represents a component of F , and there is an edge from node Ci to

node Cj if Ci is an ancestor of Cj in one of the trees. Formally, we map every node

x P F to two nodes φ1pxq P T1 and φ2pxq P T2 by defining φipxq to be the lowest

common ancestor in Ti of all labelled leaves that are descendants of x in F . We refer

to φ1pxq and φ2pxq simply as x in this thesis, except when this creates confusion.

For two components Ci and Cj of F with roots ri and rj, GF contains the edge

pCi, Cjq if and only if either φ1priq is an ancestor of φ1prjq or φ2priq is an ancestor of

φ2prjq. We say F is cyclic if GF contains a directed cycle. Otherwise F is an acyclic

agreement forest (AAF) of F1 and F2. A maximum acyclic agreement forest (MAAF)

of F1 and F2 is an AAF with the minimum number of components. We denote its

size by m̃ pF1, F2q and the number of edges in a forest F of F1 or F2 that must be

cut to obtain an AAF of F1 and F2 by ẽ pF1, F2, F q. Baroni et al. [7] showed that

hyb pT1, T2q “ ẽ pT1, T2, T2q “ m̃ pT1, T2q ´ 1. An MAAF of the trees in Figure 2.2(a)

is shown in Figure 2.2(d). The cycle graphs for the MAF and MAAF of these trees
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Figure 2.3: A sibling pair pa, cq of two forests F1 and F2: a and c have a common
parent in F1, and both a and c exist also in F2.

shown in Figures 2.2(b) and 2.2(d) are shown in Figures 2.2(e) and 2.2(f).

For two nodes a and b of a forest F , we write a „F b if there exists a path between

a and b in F . An internal node of a path P in F is a node of P that is not an endpoint

of P ; a pendant node of P is a node not in P and whose parent is an internal node

of P . For a node x of a rooted forest F , F x denotes the subtree of F induced by all

descendants of x, including x. For two rooted forests F1 and F2 and a node a P F1, we

say that a exists in F2 if there is a node a1 P F2 such that F a
1 “ F a1

2 . For simplicity,

we refer to both a and a1 as a. For forests F1 and F2 and nodes a, c P F1 with a

common parent, we say pa, cq is a sibling pair of F1 if a and c exist in F2. Figure 2.3

shows such a sibling pair.

The correctness proofs of our algorithms make use of the following two lemmas.

Lemma 2.1 was shown by Bordewich et al. [22] and is illustrated in Figure 2.4. Sup-

pose we cut a set of edges E from a forest F to obtain F ˜ E, and there is an edge e

of F such that F ´ pE Y teuq has a component without labelled nodes. This lemma

shows that the forest F ˜ pE z tfu Y teuq obtained by replacing any edge f P E on

the boundary of this “empty” component with e is the same as F ˜ E.

Lemma 2.1 (Shifting Lemma). Let F be a forest of an X-tree, e and f edges of F ,

and E a subset of edges of F such that f P E and e R E. Let vf be the end vertex of

f closer to e, and ve an end vertex of e. If vf „F´E ve and x F´pEYteuq vf , for all

x P X, then F ˜ E “ F ˜ pE z tfu Y teuq.
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Figure 2.4: Illustration of the Shifting Lemma. (a) The lemma applies because e and
f are on the boundary of an “empty” component of F ´ pE Y teuq, shown in grey.
(b) The lemma does not apply because the component with e and f on its boundary
contains a labelled leaf y: vf „F´pEYteuq y.

Let F1 and F2 be forests of X-trees T1 and T2, respectively. Any agreement forest

of F1 and F2 is an agreement forest of T1 and T2. Conversely, an agreement forest of

T1 and T2 is an agreement forest of F1 and F2 if it is a forest of F2 and there are no

two leaves a and b such that a „F2
b but a F1

b. This is formalized in the following

lemma. Our algorithms ensure that any intermediate forests F1 and F2 they produce

have this latter property. Thus, we can reason about agreement forests of F1 and F2

and of T1 and T2 interchangeably.

Lemma 2.2. Let F1 and F2 be forests of X-trees T1 and T2, respectively. Let F1 be

the union of trees 9T1, 9T2, . . . , 9Tk and F2 be the union of forests 9F1, 9F2, . . . , 9Fk such that

9Ti and 9Fi have the same label set, for all 1 ď i ď k. A forest of F2 is an AF of T1

and T2 if and only if it is an AF of F1 and F2.

A triple ab|c of a rooted forest F is defined by a set ta, b, cu of three leaves in the

same component of F and such that the path from a to b in F is disjoint from the

path from c to the root of the component. A triple of a forest F1 is compatible with a

forest F2 if it is also a triple of F2; otherwise it is incompatible with F2. An agreement

forest of two forests F1 and F2 cannot contain a triple incompatible with either of the

two forests. Thus, we have the following observation.

Observation 2.3. Let F1 and F2 be forests of rooted X-trees T1 and T2, and let F be

an agreement forest of F1 and F2. If ab|c is a triple of F1 incompatible with F2, then

a F b or a F c.
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For two forests F1 and F2 with the same label set, two components C1 and C2 of

F1 are said to overlap in F2 if there exist leaves a, b P C1 and c, d P C2 such that the

paths from a to b and from c to d in F2 exist and are nondisjoint. When considering

binary trees, this means the two paths share an edge. The following lemma is an easy

extension of a lemma of [22], which states the same result for a tree T2 instead of a

forest F2.

Lemma 2.4. Let F1 and F2 be forests of two X-trees T1 and T2, and denote the label

sets of the components of F1 by X1, X2, . . . , Xk and the label sets of the components

of F2 by Y1, Y2, . . . , Yl. F2 is a forest of F1 if and only if (1) for every Yj, there exists

an Xi such that Yj Ď Xi, (2) no two components of F2 overlap in F1, and (3) no

triple of F2 is incompatible with F1.



Chapter 3

Bounding the Search: Computing MAFs of Binary Trees in

O
`

2.42kn
˘

-time

In this chapter, we present an algorithm for computing MAFs of two binary rooted

X-trees (and, hence, their SPR distance) that runs in O
`

2.42kn
˘

time. Chapter 6 en-

hances the algorithm and reduces the running time to O
`

2kn
˘

. A preliminary version

of this chapter (without proofs) was presented at the Symposium on Experimental

Algorithms (SEA) [100] and the full version is the first half of an article that will

soon appear in the SIAM Journal on Computing [102]. It will be obvious from the

description of the algorithm that it also produces a corresponding MAF. We do not

discuss this further in the remainder of this chapter and focus only on computing

dSPR pT1, T2q.
Using Lemma 2.1, one can obtain a depth-bounded search algorithm for computing

the SPR distance with running time O
`

3kn
˘

[103]. We analyze the structure of

rooted agreement forests further and identify three distinct subcases that allow us

to improve the algorithm’s running time to O
`

2.42kn
˘

. By combinining this result

with kernelization rules by Bordewich and Semple [23], we obtain an algorithm with

running time O
`

2.42kk ` n3
˘

. We note here that the approach discussed in this

chapter also leads to linear-time 3-approximation algorithms for rooted SPR distance

and unrooted TBR distance, as well as to an O
`

4kk ` n3
˘

-time algorithm for unrooted

TBR distance. Details can be found in [103,104].

As is customary for FPT algorithms, we focus on the decision version of the

problem: “Given two X-trees T1 and T2 and a parameter k, is dSPR pT1, T2q ď k?”

To compute the distance between two trees, we start with k “ 0 and increase it until

we receive an affirmative answer. This does not increase the running time of the

algorithm by more than a constant factor, as the running time depends exponentially

on k and will be determined by the largest examined k. The following theorem states

the main result of this chapter.

19
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Theorem 3.1. For two rooted X-trees T1 and T2 and a parameter k, it takes

O
´

`

1 `
?
2
˘k

n
¯

“ O
`

2.42kn
˘

time to decide whether e pT1, T2, T2q ď k.

Using reduction rules by Bordewich et al. [23], we can improve the running time

in Theorem 3.1 for values of k such that k ě 2 log2.42 n and k “ o pnq. Given two

trees T1 and T2, these reduction rules take O pn3q time to produce two trees T 1
1 and

T 1
2 of size at most c ¨ e pT1, T2, T2q each, for some constant c ą 0 (determined by

Bordewich et al.), and such that e pT 1
1, T

1
2, T

1
2q “ e pT1, T2, T2q. If one of the trees has

size greater than ck, then e pT1, T2, T2q ą k, and we can answer “no” without any

further processing. If both trees have size at most ck, we can apply Theorem 3.1 to

T 1
1 and T 1

2 to decide in O
`

2.42kk
˘

time whether e pT 1
1, T

1
2, T

1
2q ď k. Thus, we obtain

the following corollary.

Corollary 3.2. For two rooted X-trees T1 and T2 and a parameter k, it takes

O
`

2.42kk ` n3
˘

time to decide whether e pT1, T2, T2q ď k.

In the remainder of this section, we prove Theorem 3.1. Our algorithm is recursive.

Each invocation takes two forests F1 and F2 of T1 and T2 and a parameter k as

inputs, and decides whether e pT1, T2, F2q ď k. We denote such an invocation by

Maf pF1, F2, kq. The forest F1 is the union of a tree 9T1 and a forest F disjoint from 9T1,

while F2 is the union of the same forest F and another forest 9F2 with the same label

set as 9T1. We maintain two sets of labelled nodes: Rd (roots-done) contains the roots

of F , and Rt (roots-todo) contains roots of (not necessarily maximal) subtrees that

agree between 9T1 and 9F2. We refer to the nodes in these sets by their labels. For the

top-level invocation, Maf pT1, T2, kq, F1 “ 9T1 “ T1, F2 “ 9F2 “ T2, and F “ H; Rd is

empty, and Rt contains all leaves of T1.

Maf pF1, F2, kq identifies a small collection tE1, E2, . . . , Equ of subsets of edges

of 9F2 such that e pT1, T2, F2q ď k if and only if e pT1, T2, F2 ˜ Eiq ď k ´ |Ei|, for at

least one 1 ď i ď q. It makes a recursive call Maf pF1, F2 ˜ Ei, k ´ |Ei|q, for each

subset Ei, and returns “yes” if and only if one of these calls does. The steps of this

procedure are as follows.

1. (Failure) If k ă 0, there is no subset E of at most k edges of F2 such that F2 ´ E

yields an AF of T1 and T2: e pT1, T2, F2q ě 0 ą k. Return “no” in this case.
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2. (Success) If |Rt| ď 2, then 9F2 Ď 9T1. Hence, F2 “ 9F2 Y F is an AF of F1 and F2

and, by Lemma 2.2, also of T1 and T2. Thus, e pT1, T2, F2q “ 0 ď k. Return “yes”

in this case.

3. (Prune maximal agreeing subtrees) If there is a node r P Rt that is a root in 9F2,

remove r from Rt and add it to Rd, thereby moving the corresponding subtree of

9F2 to F ; cut the edge er in 9T1 and suppress r’s parent in 9T1; return to Step 2. This

does not alter F2 and, thus, neither e pT1, T2, F2q. If no such root r exists, proceed

to Step 4.

4. Choose a sibling pair pa, cq in 9T1 such that a, c P Rt.

5. (Grow agreeing subtrees) If pa, cq is a sibling pair of 9F2, remove a and c from Rt;

label their parent in both forests with pa, cq and add it to Rt; return to Step 2. If

pa, cq is not a sibling pair of 9F2, proceed to Step 6.

6. (Cut edges) Distinguish three cases (see Figure 3.1):

6.1. If a F2
c, call Maf pF1, F2 ˜ teau, k ´ 1q and Maf pF1, F2 ˜ tecu, k ´ 1q re-

cursively.

6.2. If a „F2
c and the path from a to c in 9F2 has only one pendant node b, call

Maf pF1, F2 ˜ tebu, k ´ 1q recursively.

6.3. If a „F2
c and the path from a to c in 9F2 has q ě 2 pendant nodes b1, b2, . . . , bq,

call Maf
`

F1, F2 ˜ teb1 , eb2 , . . . , ebqu, k ´ q
˘

, Maf pF1, F2 ˜ teau, k ´ 1q, and

Maf pF1, F2 ˜ tecu, k ´ 1q recursively.

Return “yes” if one of the recursive calls does; otherwise return “no”.

To prove that the algorithm achieves the running time stated in Theorem 3.1,

we show that each invocation takes linear time (Lemma 3.3) and that the algorithm

makes O
´

`

1 `
?
2
˘k

¯

recursive calls (Lemma 3.4). The correctness of the algorithm

will be shown in Lemmas 3.6, 3.7 and 3.8.

Lemma 3.3. Each invocation Maf pF1, F2, kq, excluding recursive calls it makes,

takes linear time.
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ba
c

ba
c

Step 6.2

One Pendant Node

ac

a

a c

c

Separate Components

Step 6.1 Step 6.3

Multiple Pendant Nodes

cb2
a b1

b3

cb2
a b1

b3

cb2
a b1

b3cb2
a b1

b3

Figure 3.1: The cases in Step 6 of the MAF algorithm. Only 9F2 is shown. Each box
represents a recursive call.

Proof. We represent each forest as a collection of nodes, each of which points to its

parent, left child, and right child. In addition, every labelled node (i.e., each node in

Rt or Rd) stores a pointer to its counterpart in the other forest. For 9T1, we maintain

a list of sibling pairs of labelled nodes. Every labelled node of 9T1 stores a pointer to

the pair it belongs to, if any. For 9F2, we maintain a list R1
d Ď Rt of nodes that are

roots of 9F2. This list is used to move these roots from Rt to Rd in Step 3.

It is easily verified that, using this representation of F1 and F2, each execution of

Steps 1–5 takes constant time and that Step 6, excluding recursive calls it spawns,

takes linear time. Steps 1 and 6 are executed only once per invocation. Steps 2–5

form a loop, and each iteration, except the first one, is the result of finding a root

of 9F2 in Step 3 or merging a sibling pair in Step 5. In the former case, Step 3 cuts

an edge in F1, which can happen only O pnq times because F1 has O pnq edges. In

the latter case, the number of nodes in Rt decreases by one, which cannot happen

more than n times because the algorithm starts with the n leaves of T1 in Rt and the

number of nodes in Rt never increases. Thus, Steps 2–5 are executed O pnq times,

and the cost of the entire invocation is linear.

Lemma 3.4. An invocation Maf pF1, F2, kq spawns O
´

`

1 `
?
2
˘k

¯

recursive calls.



23

Proof. Let Ipkq be the number of recursive calls spawned by an invocation with

parameter k. By inspecting the different cases of Step 6, we obtain

Ipkq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 if Step 6 is not executed

1 ` 2Ipk ´ 1q Case 6.1

1 ` Ipk ´ 1q Case 6.2

1 ` 2Ipk ´ 1q ` Ipk ´ qq Case 6.3

ď 1 ` 2Ipk ´ 1q ` Ipk ´ 2q

because Case 6.3 dominates the other two cases and q ě 2 in this case. Simple

substitution shows that this recurrence solves to Ipkq “ O
´

`

1 `
?
2
˘k

¯

.

It remains to prove the correctness of the algorithm, which we do by induc-

tion on k. An invocation Maf pF1, F2, kq with k ă 0 correctly returns “no” in

Step 1, so assume k ě 0. In this case, the invocation produces its answer in

Step 2 or 6. If it produces its answer (“yes”) in Step 2, this is correct because

F2 is an MAF of T1 and T2. If it produces its answer in Step 6, it suffices to

prove that e pT1, T2, F2q ď k if and only if e pT1, T2, F2 ˜ Eiq ď k ´ |Ei|, for at

least one of the recursive calls Maf pF1, F2 ˜ Ei, k ´ |Ei|q the invocation makes in

Step 6. This in turn follows if e pT1, T2, F2 ˜ Eiq ě e pT1, T2, F2q ´ |Ei|, for all re-

cursive calls Maf pF1, F2 ˜ Ei, k ´ |Ei|q, which is trivial, and e pT1, T2, F2 ˜ Eiq “
e pT1, T2, F2q ´ |Ei|, for at least one recursive call Maf pF1, F2 ˜ Ei, k ´ |Ei|q. Lem-

mas 3.6, 3.7, and 3.8 below prove the latter for each case of Step 6. For Cases 6.1

and 6.3, we prove also that ẽ pT1, T2, F2 ˜ Eiq “ ẽ pT1, T2, F2q ´ |Ei|, for at least one
recursive call Maf pF1, F2 ˜ Ei, k ´ |Ei|q. This will be used in the correctness proof

of the MAAF algorithm in Chapter 4.

In Step 6, pa, cq is a sibling pair of 9T1 but not of F2—otherwise Step 5 would

have replaced a and c with their parent in Rt—and neither F a
2 nor F c

2 is a component

of F2—otherwise Step 3 would have removed a or c from Rt. Note that a and c belong

to 9F2 because 9T1 and 9F2 have the same label set. Let b be a’s sibling in F2. If a and

c belong to the same component of F2, we assume w.l.o.g. that a’s distance from the
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root of this component is no less than c’s. Since a and c are not siblings in F2, this

implies that c R F b
2 . If a F2

c, we also have c R F b
2 because a „F2

b.

Our first lemma shows that we can always cut one of ea, eb, and ec to make

progress towards an MAF or MAAF of T1 and T2 in Step 6. In [103], we used this

as a basis for a simple O
`

3kn
˘

-time MAF algorithm. Here, we need this lemma as a

basis for the proofs of Lemmas 3.6, 3.7, 3.8, and 4.1.

Lemma 3.5. If pa, cq is a sibling pair of F1 and (i) a F2
c and neither F a

2 nor F c
2

is a component of F2 or (ii) a „F2
c but a and c are not siblings in F2, then there

exists an edge set E of size e pT1, T2, F2q (resp. ẽ pT1, T2, F2q) and such that F2 ˜E is

an AF (resp. AAF) of T1 and T2 and E X tea, eb, ecu ‰ H.

Proof. Consider an edge set E of size e pT1, T2, F2q and such that F2 ˜ E is an AF

of F1 and F2, and assume E contains the maximum number of edges from tea, eb, ecu
among all edge sets satisfying these conditions. Assume for the sake of contradiction

that E X tea, eb, ecu “ H.

If a1 F2´E a, for all leaves a1 P F a
2 , then we choose an arbitrary such leaf a1 P F a

2

and the first edge f on the path from a to a1. Lemma 2.1 now implies that F2 ´ E

and F2 ´ pE z tfu Y teauq yield the same forest, which contradicts our choice of E.

The same argument leads to a contradiction if b1 F2´E b, for all leaves b1 P F b
2 , or

c1 F2´E c, for all leaves c1 P F c
2 . Thus, there exist leaves a

1 P F a
2 , b

1 P F b
2 , and c1 P F c

2

such that a1 „F2´E a, b1 „F2´E b, and c1 „F2´E c.

Since pa, cq is a sibling pair of 9T1, a
1c1|b1 is a triple of F1, while c R F b

2 implies that

either a1b1|c1 is a triple of F2 or a
1 F2

c1. In either case, the triple a1c1|b1 is incompatible

with F2 and, by Observation 2.3 and because a1 „F2´E b1, we have a1 F2´E c1 and,

hence, a2 F2´E c1, for every leaf a2 P F a
2 . Now, if there existed a leaf x R F c

2 such

that c1 „F2´E x, then the components of F2 ˜ E containing a1 and c1 would overlap

in F1: they would both include epa because b1, x R F
pa
1 . By Lemma 2.4, this would

contradict that F2 ˜ E is an AF of F1 and F2. Thus, no such leaf x exists. On the

other hand, since F c
2 is not a component of F2, there exists a leaf x R F c

2 such that

c1 „F2
x. Since x F2´E c1, at least one edge on the path from c1 to x belongs to E.

Let f be the first such edge. Since c „F2´E c1, f does not belong to F c
2 . Hence, edges

ec and f satisfy the conditions of Lemma 2.1, and F2 ´ E and F2 ´ pE z tfu Y tecuq
yield the same forest, contradicting the choice of E.
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The second claim of the lemma follows using the same arguments after choosing

E of size ẽ pT1, T2, F2q and such that F ˜ E is an AAF of T1 and T2.

The last three lemmas of this chapter now establish the correctness of each case

in Step 6 of the algorithm and conclude the proof of Theorem 3.1.

Lemma 3.6 (Case 6.1—Separate Components). If pa, cq is a sibling pair of F1,

a F2
c, and neither F a

2 nor F c
2 is a component of F2, then there exists an edge

set E of size e pT1, T2, F2q (resp. ẽ pT1, T2, F2q) and such that F2 ˜ E is an AF (resp.

AAF) of T1 and T2 and E X tea, ecu ‰ H.

Proof. Consider an edge set E of size e pT1, T2, F2q and such that F2 ˜ E is an AF

of F1 and F2, and assume E contains the maximum number of edges from tea, ecu
among all edge sets satisfying these conditions. Assume for the sake of contradiction

that E X tea, ecu “ H.

By the arguments in the proof of Lemma 3.5, there exist leaves a1 P F a
2 and c1 P F c

2

such that a1 „F2´E a and c1 „F2´E c. Since pa, cq is a sibling pair of F1 but a F2
c

and, hence, a1 F2´E c1, we must have a1 F2´E x, for every leaf x R F a
2 , or c

1 F2´E x,

for every leaf x R F c
2 . W.l.o.g. assume the latter. As shown in the proof of Lemma 3.5,

this implies that F2 ´ E and F2 ´ pE z tfu Y tecuq yield the same forest, where f

is the first edge on the path from c1 to a leaf x R F c
2 and such that c1 „F2

x. This

contradicts the choice of E.

The second claim of the lemma follows using the same arguments after choosing

E of size ẽ pT1, T2, F2q and such that F ˜ E is an AAF of T1 and T2.

Lemma 3.7 (Case 6.2—One Pendant Node—MAF). If pa, cq is a sibling pair of F1,

a „F2
c, and the path from a to c in F2 has only one pendant node b, then there exists

an edge set E of size e pT1, T2, F2q and such that F2 ˜ E is an AF of T1 and T2 and

eb P E.

Proof. Again, consider an edge set E of size e pT1, T2, F2q and such that F2˜E is an AF

of F1 and F2, and assume E contains the maximum number of edges from tea, eb, ecu
among all edge sets satisfying these conditions. By Lemma 3.5, EXtea, eb, ecu ‰ H. If

eb P E, there is nothing to prove, so assume eb R E. Let v “ pa “ pb, and u “ pv “ pc.

If F2 ˜ pE z tea, ec, evu Y tebuq is an AF of F1 and F2, we are done because

E X tea, ecu ‰ H and, hence, |E z tea, ec, evu Y tebu| ď |E| “ e pT1, T2, F2q. So
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assume F2 ˜ pE z tea, ec, evu Y tebuq is not an AF of F1 and F2. We prove that

F2 ˜ pE z tea, ec, evu Y teb, euuq is an AF of F1 and F2 and that |E X tea, ec, evu| ě 2

in this case. The latter implies that |E z tea, ec, evu Y teb, euu| ď |E|, that is, F2 ˜
pE z tea, ec, evu Y teb, euuq is an MAF of F1 and F2.

If F2 ˜ pE z tea, ec, evu Y tebuq is not an AF of F1 and F2, then either two of its

components overlap in F1 or it contains a triple incompatible with F1. First consider

the case of overlapping components. Observe that F2˜pEYtebuq is an AF of F1 and F2

because it is a refinement of F2˜E. The only component of F2˜pE z tea, ec, evuYtebuq
that is not a component of F2 ˜ pE Y tebuq is the one containing a and c. Call this

component C. Thus, if two components of F2 ˜ pE z tea, ec, evu Y tebuq overlap in F1,

one of them must be C. Call the other component C 1. For any two leaves x and y

in C such that x, y R F
pa
1 , the path P between x and y also exists in F2 ˜ pE Y tebuq

and, thus, cannot overlap C 1. Thus, w.l.o.g. x P F
pa
1 . Now, if the edge e shared by

P and C 1 belonged to F
pa
1 , P and C 1 would also overlap in F2 because F

pa
1 is the

same as the subtree of F2 ˜ tebu with root u. This, however, is impossible because

F2 ˜ pE z tea, ec, evu Y tebuq is a forest of F2. Thus, the edge e shared by P and

C 1 cannot belong to F
pa
1 , and we have y R F

pa
1 . This implies that the path from

x1 to y, for any leaf x1 P F a
2 Y F c

2 , includes e. Therefore, since F2 ˜ pE Y tebuq is

an AF of F1 and F2, we have x1 F2´pEYtebuq y, for every leaf x1 P F a
2 Y F c

2 . Since

x „F2˜pE z tea,ec,evuYtebuq y, the path from u to y in F2 contains no edge in E. Thus,

since x1 F2´pEYtebuq y, for all leaves x1 P F a
2 Y F c

2 , the choice of E and Lemma 2.1

imply that E must include ec and at least one of ea or ev, that is, |EXtea, ec, evu| ě 2.

In F2´pE z tea, ec, evuYteb, euuq, C is split into two components C1 “ CXF u
2 and

C2 “ C z F u
2 . All other components are the same as in F2 ´ pE z tea, ec, evu Y tebuq.

Since x, y P F
pa
1 , for all leaves x, y P C1, and x, y R F

pa
1 , for all leaves x, y P C2, the

same argument as in the previous paragraph shows that neither C1 nor C2 overlaps

a component C 1 R tC1, C2u. C1 and C2 do not overlap either because C1 Ď F
pa
1 and

C2 X F
pa
1 “ H. Thus, no two components of F2 ´ pE z tea, ec, evu Y teb, euuq overlap

in F1.

Now assume F2 ˜ pE z tea, ec, evu Y tebuq contains a triple incompatible with F1.

Then, once again, this triple has to be part of C and must involve a leaf in F a
2 Y F c

2

and a leaf not in F a
2 YF c

2 because any other triple is either a triple of F2˜pEYtebuq or
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a triple of F pa
1 ; in either case, it is a triple of F1. F2˜pE z tea, ec, evuYteb, euuq cannot

contain a triple with one leaf in F a
2 YF c

2 and one leaf not in F a
2 YF c

2 because the path

between any two such leaves includes eu. Thus, F2˜pE z tea, ec, evuYteb, euuq contains
no triples incompatible with F1. Since we have just shown that no two components

of F2 ˜ pE z tea, ec, evu Y teb, euuq overlap in F1, F2 ˜ pE z tea, ec, evu Y teb, euuq is an
AF of F1 and F2.

It remains to prove that |EXtea, ec, evu| ě 2 if F2˜pE z tea, ec, evuYtebuq contains
a triple xy|z incompatible with F1. Since this triple needs to involve a leaf in F a

2 YF c
2

and one not in F a
2 Y F c

2 , we have (i) x, y P F a
2 Y F c

2 and z R F a
2 Y F c

2 , (ii) x P F a
2 Y F c

2

and y, z R F a
2 YF c

2 or (iii) x, y R F a
2 YF c

2 and z P F a
2 YF c

2 . The first case cannot arise

because x, y P F
pa
1 and z R F

pa
1 in this case, that is, xy|z is also a triple of F1.

In the second case, assume for the sake of contradiction that |E X tea, ec, evu| “ 1,

and assume w.l.o.g. that x P F a
2 . Since every triple x1y|z with x1 P F a

2 would also

be incompatible with F1, F2 ˜ pE z tebuq cannot contain such a triple. Hence, the

choice of E and Lemma 2.1 imply that E X tea, evu ‰ H and, therefore, ec R E. As

in the proof of Lemma 3.5, this implies that there exists a leaf c1 P F c
2 such that

c1 „F2´E c „F2´E u, by the choice of E and Lemma 2.1. Since xy|z is a triple of

F2 ˜ pE z tea, ec, evu Y tebuq, we have y „F2´E u „F2´E z. Hence, c1y|z is a triple

of F2 ˜ E and this triple is incompatible with F1 because xy|z is, x, c1 P F
pa
1 , and

y, z R F
pa
1 . This is a contradiction, that is, |E X tea, ec, evu| ě 2.

In the last case, if we assume w.l.o.g. that z P F a
2 , an analogous argument as for

the second case shows that, if |EXtea, ec, evu| “ 1, then F2 ˜E contains a triple xy|c1

with c1 P F c
2 . This triple is incompatible with F1, which is again a contradiction.

Lemma 3.8 (Case 6.3—Multiple Pendant Nodes). If pa, cq is a sibling pair of F1,

a „F2
c, and the path from a to c in F2 has q ě 2 pendant nodes b1, b2, . . . , bq,

then there exists an edge set E of size e pT1, T2, F2q (resp. ẽ pT1, T2, F2q) and such

that F2 ˜ E is an AF (resp. AAF) of T1 and T2 and either E X tea, ecu ‰ H or

teb1 , eb2 , . . . , ebqu Ď E.

Proof. We prove the lemma by induction on q. For q “ 1, the claim holds by

Lemma 3.5, so assume q ą 1 and the claim holds for q ´ 1. Assume further that b1 is

the sibling of a. By Lemma 3.5, there exists a set E2 of size e pT1, T2, F2q and such that

F2 ˜E2 is an AF of F1 and F2 and E2 X tea, eb1 , ecu ‰ H. If E2 X tea, ecu ‰ H, we are
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done. Otherwise eb1 P E2 and e pT1, T2, F
1
2q “ e pT1, T2, F2q´1, where F 1

2 :“ F2˜teb1u.
In F 1

2, the path from a to c has q ´ 1 pendant nodes, namely b2, b3, . . . , bq. Thus, by

the induction hypothesis, there exists an edge set E 1 of size e pT1, T2, F
1
2q and such

that F 1
2 ˜ E 1 is an AF of F1 and F 1

2 and E 1 X tea, ecu ‰ H or teb2 , eb3 , . . . , ebqu Ď E 1.

The set E :“ E 1 Y teb1u has size |E 1| ` 1 “ e pT1, T2, F2q, F2 ˜ E “ F 1
2 ˜ E 1 is an AF

of F1 and F2, and either E X tea, ecu ‰ H or teb1 , eb2 , . . . , ebqu Ď E.

The second claim of the lemma follows using the same arguments, since Lemma 3.5

holds for both AF and AAF.



Chapter 4

Analyzing and Avoiding Cycles: Computing MAAFs of

Binary Trees in O
`

3.18kn
˘

-time

In this chapter, we present our algorithm for computing the hybridization number

of two X-trees. This is the second half of an article that will soon appear in the

SIAM Journal on Computing [102]. As in Chapter 3, we focus on deciding whether

hyb pT1, T2q ď k, as hyb pT1, T2q can be computed by trying increasing values of k and

this does not increase the running time by more than a constant factor. Also as in

Chapter 3, it will be obvious from the description of our algorithm that it produces

a corresponding AAF when it answers “yes”.

Every AAF of T1 and T2 can be computed by first computing an AF F of T1 and

T2 and then cutting additional edges in F as necessary to break cycles in F ’s cycle

graph GF . This suggests the following strategy to decide whether hyb pT1, T2q ď k:

We modify the MAF algorithm from Chapter 3 called with parameter k. Note that

this algorithm may find AFs that are not maximum when k ą dSPR pT1, T2q, so we do

not restrict our search to refinements of MAFs. For every invocation Maf pF1, F2, k
2q

of the algorithm that would return “yes” in Step 2, F2 is an AF of T1 and T2 ob-

tained by cutting k1 :“ k ´ k2 edges. F2 may not be an AAF of T1 and T2, but it

may be possible to break all cycles in GF2
by cutting at most k2 additional edges,

in which case hyb pT1, T2q ď k1 ` k2 “ k. Thus, instead of unconditionally returning

“yes” in Step 2, we invoke a second algorithm Refine pF2, kq, which decides whether

F2 can be refined to an AAF of T1 and T2 with at most k ` 1 components, and re-

turn its answer. We use Maaf pF1, F2, k
2q to denote an invocation of this modified

MAF algorithm. We refer to the part of the algorithm consisting of these invocations

Maaf pF1, F2, k
2q as the branching phase of the algorithm and to the part that con-

sists of the invocations Refine pF2, kq as the refinement phase. We also refer to a

single invocation Refine pF2, kq as a refinement step. Note that this is not a linear

process—our algorithm performs a refinement step for each agreement forest it finds

29
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and thus cycles between the branching phase and refinement phase.

Now let us call an invocationMaaf pF1, F2, k
2q viable if there exists an MAAF F of

T1 and T2 that is a forest of F2. Below we show how to ensure that there exists a viable

invocation Maaf pF1, F2, k
2q such that F2 is an (not necessarily maximum) AF of T1

and T2 if hyb pT1, T2q ď k. The invocation Refine pF2, kq made by Maaf pF1, F2, k
2q

returns “yes”, so the whole algorithm returns “yes” in this case. If on the other hand

hyb pT1, T2q ą k, the algorithm either fails to find an AF of T1 and T2 with at most

k ` 1 components or none of the AFs it finds can be refined to an AAF with at most

k ` 1 components. Thus, it returns “no” in this case. In either case, the algorithm

produces the correct answer.

So assume hyb pT1, T2q ď k. We prove that every viable invocation

Maaf pF1, F2, k
2q such that F2 is not an AF of T1 and T2 has a viable child invocation.

This immediately implies that there exists a viable invocation Maaf pF1, F2, k
2q such

that F2 is an AF of T1 and T2 because the top-level invocation Maaf pT1, T2, kq is

trivially viable and the number of invocations the algorithm makes is finite. If F2 is

not an AF of T1 and T2 in a viable invocation Maaf pF1, F2, k
2q, this invocation ap-

plies one of Cases 6.1–6.3. If it applies Case 6.1 or 6.3, Lemmas 3.6 and 3.8 show that

one of its child invocations is viable. In Case 6.2, on the other hand, the child invo-

cation Maaf pF1, F2 ˜ tebu, k2 ´ 1q is not guaranteed to be viable. The next lemma

shows that either Maaf pF1, F2 ˜ tebu, k2 ´ 1q or Maaf pF1, F2 ˜ tecu, k2 ´ 1q is a vi-
able invocation in this case. Thus, we modify the algorithm to make two invocations

Maaf pF1, F2 ˜ tebu, k2 ´ 1q andMaaf pF1, F2 ˜ tecu, k2 ´ 1q in Case 6.2. Even with

two recursive calls made in Case 6.2, the recurrence bounding the number of recur-

sive calls made by the algorithm in the proof of Lemma 3.4 remains dominated by

Case 6.3. Thus, the algorithm continues to make O
`

2.42k
˘

recursive calls.

Lemma 4.1 (Case 6.2—One Pendant Node—MAAF). If pa, cq is a sibling pair of F1,

a „F2
c, and the path from a to c in F2 has only one pendant node b, then there exists

an edge set E of size ẽ pT1, T2, F2q and such that F2 ˜ E is an AAF of T1 and T2 and

E X teb, ecu ‰ H.

Proof. Let E 1 be an edge set of size ẽ pT1, T2, F2q and such that F2 ˜ E 1 is an AAF

of T1 and T2. Assume further that there is no such set containing more edges from

tea, eb, ecu than E 1 and that b is a’s sibling in F2. By Lemma 3.5, E 1 Xtea, eb, ecu ‰ H.
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If E 1 X teb, ecu ‰ H, we are done. So assume E 1 X teb, ecu “ H and, hence, ea P E 1.

As in the proof of Lemma 3.7, let v “ pa “ pb and u “ pc “ pv. If tea, evu Ď E 1,

Lemma 2.1 implies that we can replace ev with eb in E 1 without changing F2˜E 1. This

contradicts the choice of E 1, so ev R E 1. As in the proof of Lemma 3.5, the choice of E 1

and Lemma 2.1 imply that there exist leaves b1 P F b
2 and c1 P F c

2 such that b1 „F2´E1 b

and c1 „F2´E1 c because E 1 X teb, ecu “ H. Now let E :“ E 1 z teau Y tebu. We have

|E| “ |E 1| “ ẽ pT1, T2, F2q and eb P E. Moreover, since E 1 X tea, ec, evu “ teau, the
proof of Lemma 3.7 shows that F2 ˜ E is an AF of T1 and T2. Next we show that

F2 ˜ E is acyclic.

Since F2 ˜ E and F2 ˜ E 1 are agreement forests of T1 and T2, the mapping φ1p¨q
maps each node of these two forests to a corresponding node in T1. However, a node

x P F2 that belongs to both F2 ˜ E and F2 ˜ E 1 may map to different nodes in T1

if it has different sets of labelled descendant leaves in F2 ˜ E and F2 ˜ E 1. For the

remainder of this proof, we use φ1pxq to denote the node in T1 a node x P F2 maps

to based on its labelled descendant leaves in F2 ´ E, and φ1
1pxq to denote the node it

maps to based on its labelled descendant leaves in F2 ´ E 1.

Now assume for the sake of contradiction that F2˜E is not acyclic, and let O be a

cycle of GF2˜E. We assume O is as short as possible, which implies in particular that

O contains every component of F2˜E at most once and that for any three consecutive

components Ci, Ci`1, and Ci`2 in O either Ci is an ancestor of Ci`1 in T1 and Ci`1 is

an ancestor of Ci`2 in T2 or vice versa. Since F2 ˜ E 1 is acyclic, the root r of at least

one component in O either is not a root in F2 ˜ E 1 or satisfies φ1prq ‰ φ1
1prq. The

only root in F2 ˜E that does not exist in F2 ˜E 1 is a result of cutting edge eb and is

a descendant z of b in F2. Let Cz be the component of F2 ˜ E with root z. The only

root in F2 ˜ E 1 that has a different set of labelled descendant leaves in F2 ˜ E is the

root u1 of the component Cu that contains u, and φ1pu1q ‰ φ1
1pu1q only if u1 “ u. For

any other component root x, we have φ1pxq “ φ1
1pxq. Thus, any cycle O in GF2˜E

contains at least one of Cu and Cz. Next we prove that no such cycle exists in GF2˜E,

by using the following five observations.

(i) Since u „F2˜E1 z and z is the only root of F2 ˜ E that does not exist in

F2 ˜ E 1, there is no root x R tu, zu of F2 ˜ E on the path from u to z in T2.
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(ii) Since u „F2˜E1 z and z P F u
2 , we have φ1

1pzq P T
φ1
1

puq
1 . Any component Cx

with root x such that x R tu, zu satisfies φ1
1pxq “ φ1pxq. If φ1

1pxq belonged to the path

from φ1
1puq to φ1

1pzq, then Cx would overlap the component of F2 ˜ E 1 containing u

in T1. Since F2 ˜ E 1 is a forest of T1, no such component Cx can exist.

(iii) Since u „F2˜E1 c1, we have c1 P T
φ1
1

puq
1 and, by the same arguments as in (ii),

there is no root x R tu, zu such that φ1
1pxq “ φ1pxq belongs to the path from c1 to

φ1
1puq in T1.

(iv) Since all labelled descendants of u in F2 ˜ E belong to F a
2 Y F c

2 , with at

least one descendant in each of F a
2 and F c

2 , we have φ1puq “ pa “ pc. In particular,

c1 P T
φ1puq
1 . Since u has c1 and at least one labelled leaf in F b

2 as descendants in F2˜E 1,

φ1
1puq is a proper ancestor of φ1puq.

(v) φ1
1pzq “ φ1pzq is neither an ancestor nor a descendant of φ1puq. The latter

follows because z has a labelled descendant leaf in F2 ˜ E that belongs to F b
2 , while

all labelled descendant leaves of φ1puq belong to F a
2 Y F c

2 . To see the former, observe

that this would imply that φ1
1pzq is not a leaf and, hence, that there are two labelled

descendant leaves b1 and b2 of z in F2 ˜E 1 such that b1, b2 P F b
2 and the path from b1

to b2 in T1 includes φ1
1pzq. Since u „F2˜E1 c1 and u „F2˜E1 z, this would imply that

F2 ˜ E 1 contains the triple b1b2|c1, while these leaves would form the triple b1c
1|b2 or

b2c
1|b1 in T1. This is a contradiction because F2 ˜ E 1 is a forest of T1.

We now consider the different possible shapes of O. We use Cx1
and Cx2

to denote

Cu’s predecessor and successor in O, respectively, and Cy1 and Cy2 to denote Cz’s

predecessor and successor in O, respectively. First observe that y2 ‰ u and, hence,

x1 ‰ z. Indeed, z P F u
2 , which implies that y2 “ u only if φ1pzq is an ancestor of φ1puq.

By (v), this is impossible.

If y1 “ u (and y2 ‰ u), then φ1pzq “ φ1
1pzq is an ancestor of φ1py2q “ φ1

1py2q
because, by (v), φ1puq is not an ancestor of φ1pzq and the edges in O alternate

between T1 and T2. By (ii), this implies that φ1
1puq is an ancestor of φ1

1py2q in T1.

Also, for the predecessor Cx1
of Cu in O, φ1

1px1q “ φ1px1q is an ancestor of φ1puq
and, hence, by (iii) and (iv), an ancestor of φ1

1puq. This implies that we would obtain

a cycle in GF2˜E1 by removing Cz from O, which contradicts the assumption that

F2 ˜ E 1 is acyclic. This shows that y1 ‰ u.
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It remains to consider the case when Cu and Cz are not adjacent in O. In this

case, all edges of O except those incident to Cu or Cz exist also in GF2˜E1 because

φ1
1pxq “ φ1pxq, for every root x R tu, zu. Next we show that, if Cu P O, then the edges

pCx1
, Cuq and pCu, Cx2

q also exist in GF2˜E1 , and if Cz P O, then the edges pCy1 , Cuq
and pCu, Cy2q exist in GF2˜E1 . Thus, by replacing Cz with Cu in O (if Cz P O), we

obtain a cycle in GF2˜E1 , a contradiction because F2 ˜ E 1 is acyclic.

If Cu P O, then either φ1px1q “ φ1
1px1q is an ancestor of φ1puq and x2 is a descen-

dant of u, or x1 is an ancestor of u and φ1px2q “ φ1
1px2q is a descendant of φ1puq. In

the former case, (iii) and (iv) imply that φ1
1px1q is an ancestor of φ1

1puq. In the latter

case, (iv) implies that φ1
1px2q is also a descendant of φ1

1puq. In both cases, the edges

pCx1
, Cuq and pCu, Cx2

q exist in GF2˜E1 .

If Cz P O, then either φ1py1q “ φ1
1py1q is an ancestor of φ1pzq “ φ1

1pzq and y2 is

a descendant of z, or y1 is an ancestor of z and φ1py2q “ φ1
1py2q is a descendant of

φ1pzq “ φ1
1pzq. In the former case, (ii) implies that φ1

1py1q is an ancestor of φ1
1puq and

y2 is a descendant of u. In the latter case, (i) and (ii) imply that y1 is an ancestor of u

and φ1
1py2q is a descendant of φ1

1puq. In both cases, the edges pCy1 , Cuq and pCu, Cy2q
exist in GF2˜E1 .

We have shown how to construct a corresponding cycle in GF2˜E1 for every cycle

O P GF2˜E. Since F2 ˜ E 1 is acyclic, this shows that F2 ˜ E is acyclic.

We have thus shown that the branching phase of our algorithm will find at least

one (not necessarily maximal) AF, F , that can be refined to an MAAF.

In the remainder of this section, we develop an efficient implementation of

Refine pF, kq. To do so, we need several new ideas. Each of the following sec-

tions discusses one of them. The tools introduced in Sections 4.1–4.3 suffice to obtain

a fairly simple implementation of Refine pF, kq that leads to an MAAF algorithm

with running time O
`

9.68kn
˘

. Sections 4.4 and 4.5 then introduce two refinements

that improve the algorithm’s running time first to O
`

4.84kn
˘

and then to O
`

3.18kn
˘

.

In Section 4.1, we introduce an expanded cycle graph G˚
F . In G˚

F , every node

of GF is replaced with the component of F it represents. This allows us to identify

exactly which edges in a component C need to be cut if we want to break a cycle

in GF by removing C from this cycle. Moreover, if F has k1 ` 1 components, G˚
F
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contains only 2k1 of the edges of GF . This ensures that G˚
F has size O pnq, which is

the key to keeping the MAAF algorithm’s dependence on n linear.

In Section 4.2, we identify components of F that are essential for the cycles in

G˚
F in the sense that at least one essential component of each cycle O in G˚

F has to

be eliminated to break O (as opposed to replacing it with a shorter cycle). For every

essential component C in such a cycle O, we identify one node in C, called an exit

node, and show that there exists a component C in O such that cutting all edges on

the path from C’s exit node to C’s root reduces ẽ pT1, T2, F q by the number of edges

cut. We call the process of cutting these edges fixing the exit node.

In Section 4.3, we show how to mark a subset of at most 2k nodes in F such that,

if F can be refined to an AAF of T1 and T2 with at most k ` 1 components, then

fixing an appropriate subset of these marked nodes produces such an AAF. We call

these marked nodes potential exit nodes because they include the exit nodes of all

essential components of all cycles in G˚
F . We obtain a first simple implementation

of Refine pF, kq by testing for each subset of potential exit nodes whether fixing it

produces an AAF with at most k ` 1 components. Since this test can be carried out

in linear time for each subset and there are 22k “ 4k subsets to test, the running time

of this implementation of Refine pF, kq is O
`

4kn
˘

. Since we make at most one invo-

cation Refine pF2, kq per invocation Maaf pF1, F2, k
2q of the MAAF algorithm and

the MAAF algorithm makes O
`

2.42k
˘

invocations Maaf pF1, F2, k
2q, the resulting

MAAF algorithm has running time O
`

2.42k
`

n ` 4kn
˘˘

“ O
`

9.68kn
˘

.

The bound of 2k on the number of potential exit nodes is obtained quite naturally:

We can obtain F from both T1 and T2 by cutting the edges connecting the roots of

the components of F to their parents in these trees. There are at most k component

roots of F that are not roots in T2. Each such component has two corresponding

parent edges, one in T1 and one in T2. The potential exit nodes are essentially the

top endpoints of these at most 2k parent edges, and the top endpoints of the two

parent edges of each component root form a pair of potential exit nodes. In Section

4.4, we augment the search for agreement forests to annotate the component roots of

each found agreement forest F with information about how F was obtained from T2.

Using this information, we mark one potential exit node in each pair of potential exit

nodes and show that it suffices to test for each subset of marked potential exit nodes
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whether fixing it produces an AAF with at most k ` 1 components. Since at most

k potential exit nodes get marked, this reduces the cost of Refine pF, kq to O
`

2kn
˘

and, hence, the running time of the MAAF algorithm to O
`

4.84kn
˘

.

In Section 4.5, we tighten the analysis of our algorithm. So far, we allowed both

phases of the algorithm to cut k edges. However, k is the total number of edges we are

allowed to cut. Thus, if the number k1 of edges we cut to obtain an AF is large, there

are only k2 :“ k´k1 edges left to cut in the refinement step, allowing us to restrict our

attention to small subsets of marked potential exit nodes and thereby reducing the

cost of the refinement step substantially. If, on the other hand, k1 is small, then there

are only few marked potential exit nodes and even trying all possible subsets of these

nodes is not too costly. By analyzing this trade-off between the number of edges cut

in each phase of the algorithm, we obtain the claimed running time of O
`

3.18kn
˘

.

4.1 An Expanded Cycle Graph

The expanded cycle graph G˚
F of an agreement forest F of two rooted phylogenies T1

and T2 is a supergraph G˚
F Ą F with the same vertex set as F ; see Figure 4.1(c). Let

E1 and E2 be minimal subsets of edges of T1 and T2 such that F “ T1 ˜E1 “ T2 ˜E2.

In addition to the edges of F , G˚
F contains one hybrid edge per edge in E1 Y E2.

To define these edges, we define mappings from nodes of F to nodes of T1 and T2

and vice versa. As in the definition of the original cycle graph GF in Chapter 2, we

map each node x in F to nodes φ1pxq in T1 and φ2pxq in T2 such that φipxq is the

lowest common ancestor of all labelled leaves in Ti that are descendants of x in F .

For the reverse direction, we define a function φ´1
i p¨q mapping nodes in Ti to nodes

in F ; φ´1
i pxq is defined if and only if x is labelled or belongs to the path between two

labelled nodes a and b in Ti such that a „F b. In this case, φ´1
i pxq is the node in F

that is the lowest common ancestor of all labelled leaves y in T x
i such that the path

between x and y does not contain any edges in Ei. These mappings are well defined

in the sense that φ´1
i pφipxqq “ x, for all x P F and i P t1, 2u.

The hybrid edges in G˚
F are now defined as follows. There are two such edges per

root node y of F , except ρ, one induced by T1 and one induced by T2. Let zi be the

lowest ancestor of φipyq in Ti such that φ´1
i pziq is defined. Then

`

φ´1
1 pz1q, y

˘

is a T1-

hybrid edge and
`

φ´1
2 pz2q, y

˘

is a T2-hybrid edge. See Figure 4.1(c) for an illustration
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Figure 4.1: (a) Two trees T1 and T2. (b) An agreement forest F of T1 and T2 obtained
by cutting the dotted edges in T1 and T2, and its cycle graph GF . The component of
F represented by each node of GF is drawn inside the node. (c) The expanded cycle
graph G˚

F . Dotted edges are T1-hybrid edges, dashed ones are T2-hybrid edges.

of these edges. Note that neither φ´1
1 pz1q nor φ´1

2 pz2q is a root of F . Our first lemma

shows that the forest F is an AAF of T1 and T2 if and only if G˚
F contains no cycles,

that is, we can use G˚
F in place of GF to test whether F is acyclic.

Lemma 4.2. G˚
F contains a cycle if and only if GF does.

Proof. First observe that G˚
F can be obtained from GF by choosing a subset of the

edges of GF and then replacing each vertex of GF with a component of F . Since the

components of F do not contain cycles, this shows that G˚
F is acyclic if GF is.

Conversely, for two nodes u and v of F , G˚
F contains a path from u to v if φ1puq

is an ancestor of φ1pvq or φ2puq is an ancestor of φ2pvq. Along with the fact that tree
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edges are directed away from the root of their component, this implies that every

edge in GF can be replaced by a directed path in G˚
F , so that G˚

F contains a cycle if

GF does.

In the remainder of this section, we show that G˚
F can be constructed in linear

time from T1, T2, and F , a fact we use in our algorithms in Sections 4.3, 4.4, and 4.5.

Lemma 4.3. The expanded cycle graph G˚
F of an agreement forest F of two rooted

phylogenies T1 and T2 can be computed in linear time.

Proof. Our construction of G˚
F starts with F and then adds the hybrid edges. To

add the hybrid edges induced by T1, we perform a postorder traversal of T1 that com-

putes the mappings φ1p¨q and φ´1
1 p¨q, and the hybrid edges induced by T1. A similar

postorder traversal of T2 then computes φ2p¨q, φ´1
2 p¨q, and the hybrid edges induced

by T2.

We can assume each labelled node of T1 or T2 stores a pointer to its counterpart

in F and vice versa. Thus, for each leaf x, φ1pxq, φ2pxq, φ´1
1 pxq, and φ´1

2 pxq are given.
In addition, we associate a list Lx with each leaf x, where Lx :“ txu if x is a root

of F , and Lx “ H otherwise. In general, after processing a node x, Lx stores the set

of roots of F that map to descendants of x and have proper ancestors of x as the tails

of their T1-hybrid edges. (It is not hard to see that this is the same ancestor of x, for

every root in Lx.)

After setting up this information for the leaves of T1, the postorder traversal

computes the same information for the nonleaf nodes of T1 and uses it to compute the

T1-hybrid edges inG˚
F . For a nonleaf node x with children l and r, the mappings φ´1

1 plq
and φ´1

1 prq and the root lists Ll and Lr of l and r are computed before processing x.

Hence, we can use them to compute the mapping φ´1
1 pxq and the root list Lx. We

distinguish four cases.

If neither φ´1
1 plq nor φ´1

1 prq is undefined or a root of F , then they must have a

common parent p in F (because l and r are siblings in T1 and F is a forest of T1).

In this case, we set φ´1
1 pxq “ p and φ1ppq “ x. If p is a root other than ρ, we set

Lx “ tpu; otherwise Lx “ H.



38

If both φ´1
1 plq and φ´1

1 prq are undefined or a root of F , then φ´1pxq is undefined

(as x can belong to a path between two labelled nodes a and b such that a „F b only

if this is true for at least one of its children) and we set Lx “ Ll Y Lr.

If only φ´1
1 plq is undefined or a root of F , we set φ´1

1 pxq :“ φ´1
1 prq and add a T1-

hybrid edge
`

φ´1
1 pxq, y

˘

to G˚
F , for every root y in Ll. Then we set Lx “ H (x cannot

be the image φ1px1q of a root x1 of F and Lr “ H in this case).

The final case in which only φ´1
1 prq is undefined or a root of F is symmetric to

the previous case.

It is easy to see that this procedure correctly constructs G˚
F because it directly

follows the definition of G˚
F . The running time of the algorithm is also easily seen

to be linear. Indeed, computing the mappings φ´1
1 pxq and possibly φ1ppq from φ´1

1 plq
and φ´1

1 prq takes constant time per visited node x, linear time in total. In the case

when Lx is computed as the union of Ll and Lr, Ll and Lr can be concatenated in

constant time. In the case when we add a hybrid edge to G˚
F , for every node in Ll

or Lr, this takes constant time per node, and we then pass an empty list Lx to x’s

parent. The latter implies that every root added to a list Lx leads to the addition of

exactly one hybrid edge to G˚
F . Since every node adds at most one root to Lx that is

not already present in Ll or Lr, this shows that the addition of hybrid edges to G˚
F

also takes linear time in total for all nodes of T1. The running time of the traversal of

T2 is bounded by O pnq using the same arguments. Hence, the entire algorithm takes

linear time.

One thing to note about the algorithm for constructing G˚
F is that it does not

require knowledge of the edge sets E1 and E2, even though we used these sets to

define G˚
F . This implies in particular that, even though there may be different edge

sets E1 and E2 such that T1 ˜ E1 “ T2 ˜ E2 “ F , all of them lead to the same cycle

graph—G˚
F is completely determined by F alone.

4.2 Essential Components and Exit Nodes

In this section, we define the essential components of a cycle in G˚
F and their exit

nodes. Our goal is to prove that, if F can be refined to an AAF of T1 and T2 with at
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most k ` 1 components, this is possible exclusively by cutting the edges on the paths

from exit nodes to the roots of their components in F .

Let H1 be the set of T1-hybrid edges in G˚
F , and H2 the set of T2-hybrid edges

in G˚
F , and assume G˚

F contains a cycle O. Let h0, h1, . . . , hm´1 be the hybrid edges

in O, and consider the components C0, C1, . . . , Cm´1 of F connected by these edges.

More precisely, using index arithmetic modulo m, we assume the tail and head of

edge hi belong to components Ci and Ci`1, respectively. The cycle O enters each

component Ci at its root and leaves it at the tail of the edge hi. We say a component

Ci is essential for O if hi´1 P H1 and hi P H2 or vice versa. We say a component C of

F is essential if it is essential for at least one cycle in G˚
F . A node x of a component

C of F is an exit node of C if C is an essential component Ci for some cycle O in

G˚
F and x is the tail of edge hi in this cycle. Figure 4.2(c) illustrates these concepts.

Our first result in this section shows that there exists an exit node of an essential

component such that cutting its parent edge in F reduces ẽ pT1, T2, F q by one, that

is, by cutting this edge, we make progress towards an MAAF of T1 and T2.

Lemma 4.4. Let O be a cycle in G˚
F , let C0, C1, . . . , Cm´1 be its essential components,

and let vi be the exit node of component Ci in O, for all 0 ď i ď m ´ 1. Then

ẽ pT1, T2, F ˜ teviuq “ ẽ pT1, T2, F q ´ 1, for some 0 ď i ă m.

Proof. Let E be an arbitrary edge set of size ẽ pT1, T2, F q and such that F 1 :“ F ˜ E

is an AAF of T1 and T2. If E X tev0 , ev1 , . . . , evm´1
u ‰ H, the lemma holds. If

E X tev0 , ev1 , . . . , evm´1
u “ H, we show that there exists an edge f P E such that

F 1 “ F ˜ pE z tfu Y teviuq, for some 0 ď i ă m, which again proves the lemma.

Let ri be the root of component Ci, for all 0 ď i ă m. To avoid excessive use of

modulo notation in indices, we define Ti, φip¨q, etc. to be the same as T2´pi mod 2q,

φ2´pi mod 2qp¨q, etc. in the remainder of this proof.

First suppose there exist leaves ai P Cvi
i and ci P Ci z Cvi

i such that ai „F 1 ci,

for all 0 ď i ă m, and let li be the LCA of ai and ci in F 1. Further, for every node

x P F 1 and for i P t1, 2u, let φipxq and φ1
ipxq be the nodes in Ti x maps to based on

its descendants in F and F 1, respectively. Since C0, C1, . . . , Cm´1 are the essential

components of O, m is even and, w.l.o.g., the hybrid edge with head ri is Ti´1-hybrid

and the hybrid edge with tail vi is Ti-hybrid. This implies that the lowest ancestor

xi of φipri`1q such that φ´1
i pxiq is defined and belongs to Ci satisfies φ

´1
i pxiq “ vi.



40

T1 T2

C1

C2

C4

C3

ρ

C2

C3 C1

C4

ρ

(a)

F

C2

C3 C1

C4

ρ

(b)

G∗

F

C2

C3 C1

C4

(c)
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C3 C1
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Figure 4.2: (a) Two trees T1 and T2. (b) An agreement forest F of T1 and T2. (c)
G˚

F (with ρ’s component removed for clarity) contains a cycle of length 4. White
nodes indicate exit nodes. (d) Fixing the exit node of component C4 (cutting the
bold edges) removes the cycle because none of the resulting subcomponents of C4 is
an ancestor of C1 in T2.

Now observe that φ1
ipliq is a descendant of φipriq and an ancestor of xi in Ti. The

former follows because (i) the set of li’s descendants in F 1 is a subset of li’s descendants

in F and, thus, φ1
ipliq is a descendant of φipliq, and (ii) li is a descendant of ri in F

and, hence, φipliq is a descendant of φipriq. The latter follows because φ1
ipaiq “ φipaiq

is a descendant of xi, while φ1
ipciq “ φipciq is not. Since xi is an ancestor of φipri`1q,

for all i, this implies that φ1
ipliq is an ancestor of φ1

ipli`1q, for all i, which shows that

the components of F 1 containing these nodes form a cycle in GF 1 , contradicting that

F 1 is acyclic.

Thus, there exists a component Ci such that a F 1 c, for all labelled leaves a P Cvi
i

and c P Ci z Cvi
i . This in turn implies that either a F 1 vi, for all labelled leaves

a P Cvi
i , or c F 1 vi, for all labelled leaves c P Ci z Cvi

i . W.l.o.g., assume the former.
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We choose an arbitrary labelled leaf a1 P Cvi
i and let f be the first edge in E on the

path from vi to a1. Since a F 1 vi, for all a P Cvi
i , this edge f and the edge e “ evi

satisfy the conditions of Lemma 2.1 and, hence, F ˜ E “ F ˜ pE z tfu Y teviuq is an

AAF of T1 and T2.

The following corollary of Lemma 4.4 shows that we can in fact make progress

towards an AAF by cutting all edges on the path from an appropriate exit node to

the root of its component. We call this fixing the exit node. Removing a cycle by

fixing an exit node is illustrated in Figure 4.2(d).

Corollary 4.5. Let O be a cycle in G˚
F , let C0, C1, . . . , Cm´1 be its essential compo-

nents, let vi be the exit node of component Ci in O, let Fi be the forest obtained from

F by fixing vi, and let ℓi be the length of the path in Ci from vi to the root of Ci, for

all 0 ď i ď m ´ 1. Then ẽ pT1, T2, Fiq “ ẽ pT1, T2, F q ´ ℓi, for some 0 ď i ď m ´ 1.

Proof. The proof is by induction on ẽ pT1, T2, F q. By Lemma 4.4, there exists some

exit node vi such that ẽ pT1, T2, F
1q “ ẽ pT1, T2, F q´1, where F 1 :“ F ˜evi . Cutting evi

splits Ci into two components Ai and Bi containing the leaves in Cvi
i and in Ci z Cvi

i ,

respectively.

If ẽ pT1, T2, F q “ 1, then ẽ pT1, T2, F
1q “ 0. This implies that the path from vi to ri

in Ci cannot contain any edges apart from evi because otherwise C0, C1, . . . , Ci´1, Bi,

Ci`1, . . . , Cm´1 would form a cycle in GF 1 , that is, ẽ pT1, T2, F
1q ą 0. Thus, the

corollary holds for ẽ pT1, T2, F q “ 1.

If ẽ pT1, T2, F q ą 1, we can assume by induction that the corollary holds for F 1. If

ℓi “ 1, then the path from vi to ri consists of only evi , and the corollary holds for F .

Otherwise C 1
0, C

1
1, . . . , C

1
i´1, C

1
i, C

1
i`1, . . . , C

1
m´1 :“ C0, C1, . . . , Ci´1, Bi, Ci`1, . . . , Cm´1

is a cycle O1 in GF 1 . Note that, for j ‰ i, the exit node v1
j of C 1

j in O1 is vj; the

exit node v1
i of C

1
i is vi’s sibling in Ci. By the inductive hypothesis, there exists some

C 1
j, 0 ď j ă m, such that ẽ

`

T1, T2, F
1
j

˘

“ ẽ pT1, T2, F
1q ´ ℓ1

j, where F 1
j is obtained

from F 1 by fixing v1
j and ℓ1

j is the length of the path from v1
j to the root of C 1

j. In

particular, ℓ1
j “ ℓj, for j ‰ i; and ℓ1

i “ ℓi ´ 1. If j ‰ i, we have F 1
j “ Fj ˜ teviu

and ẽ pT1, T2, Fj ˜ teviuq “ ẽ
`

T1, T2, F
1
j

˘

“ ẽ pT1, T2, F
1q ´ ℓ1

j “ ẽ pT1, T2, F q ´ ℓj ´ 1.

Hence, ẽ pT1, T2, Fjq ď ẽ pT1, T2, F q ´ ℓj. Since Fj is obtained from F by cutting ℓj

edges, we also have ẽ pT1, T2, Fjq ě ẽ pT1, T2, F q ´ ℓj. Thus, the corollary holds in this
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case. If j “ i, we have F 1
j “ Fj and ẽ pT1, T2, Fjq “ ẽ

`

T1, T2, F
1
j

˘

“ ẽ pT1, T2, F
1q´ℓ1

j “
ẽ pT1, T2, F q ´ ℓj. Thus, the corollary holds in this case as well.

4.3 Potential Exit Nodes and a Simple Refinement Algorithm

In this section, we introduce the concept of potential exit nodes and show that a

first simple refinement algorithm can be obtained by testing for each subset of po-

tential exit nodes whether fixing these nodes produces an AAF with at most k ` 1

components.

Given an agreement forest F of T1 and T2, we mark all those nodes in F that are

the tails of hybrid edges in G˚
F . Since this includes all exit nodes of F , we call these

nodes potential exit nodes. If F has k1 components, there are 2pk1 ´ 1q potential exit

nodes. If F is a forest produced by the branching phase of our algorithm, it has at

most k ` 1 components and, thus, at most 2k potential exit nodes. The main result

in this section is Lemma 4.6, which shows that the set of potential exit nodes of the

forest obtained by fixing a potential exit node in F is a subset of F ’s potential exit

nodes. We use this lemma to prove that, if F can be refined to an AAF with at most

k ` 1 components, then fixing an appropriate subset of potential exit nodes produces

such a forest.

Lemma 4.6. Let F be an agreement forest of two trees T1 and T2, let V be the set

of potential exit nodes of F , and let v be an arbitrary node in V . Let F 1 be the forest

obtained from F by fixing v, and let V 1 be the set of its potential exit nodes. Then

V 1 Ă V .

Proof. Since fixing v removes v’s parent edge, v is a root of F 1, which implies that

v R V 1 because potential exit nodes are not component roots. Thus, V 1 ‰ V , and it

suffices to prove that V 1 Ď V . So let u P V 1, and let pu, wq be a hybrid edge in G˚
F 1

with tail u. Assume w.l.o.g. that pu, wq is a T1-hybrid edge, let φ1p¨q and φ´1
1 p¨q be

defined as before with respect to F , and let φ1
1p¨q and φ1´1

1 p¨q be the same mappings

defined with respect to F 1. By the definition of a hybrid edge, w is the root of a

component of F 1 and u “ φ1´1
1 pxq, for the lowest proper ancestor x of φ1

1pwq such that

φ1´1
1 pxq is defined.



43

Now let E1 Ă E 1
1 be edge sets such that F “ T1 ˜E1 and F 1 “ T1 ˜E 1

1, and let E

be the set of edges cut in F to fix v, that is, F 1 “ F ˜ E. We prove that a „T1´E1
x

if and only if a „T1´E1
1
x, for every labelled leaf a P T x

1 . This implies in particular

that φ1´1
1 pyq “ φ´1

1 pyq, for all nodes y P T x
1 such that x „T1´E1

y.

Clearly, if a „T1´E1
1
x, then a „T1´E1

x because E1 Ă E 1
1. So assume a „T1´E1

x

but a T1´E1
1
x, for some labelled leaf a P T x

1 . Since φ1´1
1 pxq is defined, there exist

labelled nodes b and c such that b „F 1 c and x is on the path from b to c in T1 ´ E 1
1.

This implies that b „T1´E1
1
x „T1´E1

1
c and, hence, b „T1´E1

x „T1´E1
c. Together

with a „T1´E1
x, this implies that a, b, and c belong to the same connected component

of T1 ´ E1 and, hence, to the same connected component of F , while a belongs to a

different connected component of F 1 than b and c. Now observe that, since x is an

ancestor of a and is on the path from b to c, the lowest common ancestor of b and c in

T1 is an ancestor of a. Since F is a forest of T1, this implies that the lowest common

ancestor l of b and c in F also is an ancestor of a. Since b „F 1 l „F 1 c and a F 1 c,

the path from a to l must contain at least one edge in E. By the choice of E, this

implies that one of the child edges of l also belongs to E and, hence, that b F´E c,

a contradiction because F 1 “ F ˜ E and b „F 1 c.

To finish the proof, let y be the first node after x on the path from x to φ1
1pwq

and such that φ´1
1 pyq is defined. Since φ1´1

1 pφ1
1pwqq “ w, φ1´1

1 pφ1
1pwqq and, hence,

φ´1
1 pφ1

1pwqq is defined, that is, such a node y exists. If x T1´E1
y, then φ´1

1 pyq is a root
of F and pφ´1

1 pxq, φ´1
1 pyqq is a hybrid edge in G˚

F . Since φ´1
1 pxq “ φ1´1

1 pxq “ u, this

proves that u is also a potential exit node of F . If x „T1´E1
y, then φ1´1

1 pyq “ φ´1
1 pyq,

that is, φ1´1
1 pyq is defined. By the choice of x, this implies that y “ φ1

1pwq. Since

φ1´1
1 pφ1

1pwqq is defined, there exists a leaf a P T
φ1
1

pwq
1 such that a „T1´E1

1
φ1
1pwq and,

hence, a „F 1 w and a „T1´E1
φ1
1pwq. Together with φ1

1pwq „T1´E1
x, the latter implies

that a „T1´E1
x, while pu, wq being a hybrid edge implies that u F 1 w and, hence,

a F 1 u and a T1´E1
1
x. This is a contradiction, that is, the case x „T1´E1

y cannot

occur.

By Corollary 4.5, if F can be refined to an AAF F 1 with at most k ` 1 compo-

nents, we can do so by fixing an appropriate exit node in F0 “ F , then fixing an

appropriate exit node in the resulting forest F1, and so on until we obtain F 1. Let

F “ F0, F1, . . . , Fk`1 “ F 1 be the sequence of forests produced in this fashion. For



44

0 ď i ď k, the exit nodes of Fi are included in the set of Fi’s potential exit nodes and,

by Lemma 4.6, these potential exit nodes are included in the set of F ’s potential exit

node. Thus, F 1 can be obtained from F by choosing an appropriate subset of F ’s

potential exit nodes and fixing them. Now it suffices to observe that fixing a subset

of exit nodes one node at a time produces the same forest as simultaneous cutting all

edges in the union of the paths from these exit nodes to the roots of their components

in F .

This leads to the following simple refinement algorithm: We mark the potential

exit nodes in F , which is easily done in linear time as part of constructing G˚
F . Then

we consider every subset of potential exit nodes. For each such subset, we can in

linear time identify the edges on the paths from these potential exit nodes to the

roots of their components, cut these edges and suppress nodes with only one child,

construct the expanded cycle graph G˚
F 1 of the resulting forest F 1, and test whether

F 1 has at most k ` 1 components and G˚
F 1 is acyclic. We return “yes” as soon as we

find a subset of potential exit nodes for which this test succeeds. If it fails for all

subsets of potential exit nodes, we return “no”. If F cannot be refined to an AAF

with at most k`1 components, this test fails for every subset of potential exit nodes.

Otherwise, as we have argued above, it will succeed for at least one subset of potential

exit nodes. Thus, this implementation of Refine pF, kq is correct.

If F has k1 ď k ` 1 components, there are at most 22pk1´1q ď 22k “ 4k subsets of

potential exit nodes to test byRefine pF, kq. Thus, the running time ofRefine pF, kq
is O

`

4kn
˘

. As we argued at the beginning of this section, using this implementation

of Refine pF, kq for the refinement phase of our MAAF algorithm results in a running

time of O
`

2.42k
`

n ` 4kn
˘˘

“ O
`

9.68kn
˘

, and we obtain the following result.

Theorem 4.7. For two rooted trees T1 and T2 and a parameter k, it takes O
`

9.68kn
˘

time to decide whether ẽ pT1, T2, T2q ď k.

4.4 Halving the Number of Potential Exit Nodes

In this section, we show how to mark half of the at most 2k potential exit nodes

defined in Section 4.3 and show that it suffices to test for every subset of marked

potential exit nodes whether fixing it produces an AAF of T1 and T2 with at most
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k ` 1 components. Since this reduces the number of subsets to be tested from 4k to

2k, the running time of the refinement step is reduced to O
`

2kn
˘

, and the running

time of the entire MAAF algorithm is reduced to O
`

4.84kn
˘

.

In general, the result of marking only a subset of potential exit nodes is that we

may obtain an AF F of T1 and T2 that can be refined to an AAF of T1 and T2 with

at most k`1 components but cannot be refined to such an AAF by fixing any subset

of the potential exit nodes marked in F . Intuitively, the reason why this is not a

problem is that, whenever we reach such an AF F where a potential exit node u

should be fixed but is not marked, there exists a branch in the branching phase’s

search for AFs that cuts a subset of the edges cut to produce F and then cuts eu.

Thus, if it is necessary to fix u in F to obtain an AAF F 1 of T1 and T2 with at most

k ` 1 components, there exists an alternate route to obtain the same AAF F 1 by first

producing a different AF F 2 and then refining it. While this is the intuition, it is in

fact possible that our algorithm is not able to produce F 1 from F 2 either. What we

do prove is that, if ẽ pT1, T2, T2q ď k, then there exists a “canonical” AF FC produced

by the branching phase of our algorithm and which can be refined to an AAF F 1
C of

T1 and T2 with at most k ` 1 components by fixing a subset of the marked potential

exit nodes in FC .

We accomplish the marking of potential exit nodes as follows. The branching

phase assigns a tag “T1” or “T2” to each component root other than ρ of each AF F

it produces. After constructing G˚
F , the refinement step marks a potential exit node

u if there exists a Ti-hybrid edge pu, wq in G˚
F such that w’s tag is “Ti”. Finally, the

refinement step checks whether an AAF of T1 and T2 with at most k ` 1 components

can be obtained from F by fixing a subset of the marked potential exit nodes.

To tag component roots during the branching phase of the algorithm, we augment

the three cases of Step 6 to tag the bottom endpoints of the edges they cut in F2.

When a tagged node x loses a child l by cutting its parent edge el, x is contracted into

its other child r; in this case, r inherits x’s tag. This ensures that at any time exactly

the roots in the current forest F2 are tagged. The following is the pseudocode of the

MAAF algorithm, which shows the tags assigned to the component roots produced in

Step 6. Note that Case 6.2 has an additional branch that cuts both ea and ec. This

is necessary to ensure we find an AAF of T1 and T2 with at most k ` 1 components
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in spite of considering only subsets of marked potential exit nodes in the refinement

phase (if such an AAF exists). In the description of the algorithm, we use k to denote

the parameter passed to the current invocation (as in the MAF algorithm), and k0

to denote the parameter of the top-level invocation Maaf pT1, T2, k0q. Thus, k0 ` 1

is the number of connected components we allow the final AAF to have.

1. (Failure) If k ă 0, there is no subset E of at most k edges of F2 such that F2 ´ E

yields an AF of T1 and T2: ẽ pT1, T2, F2q ě 0 ą k. Return “no” in this case.

2. (Refinement) If |Rt| ď 2, then F2 “ 9F2 Y F is an AF of T1 and T2. Invoke

an algorithm Refine pF2, k0q that decides whether F2 can be refined to an AAF

of T1 and T2 with at most k0 ` 1 components. Return the answer returned by

Refine pF2, k0q.

3. (Prune maximal agreeing subtrees) If there is a node r P Rt that is a root in 9F2,

remove r from Rt and add it to Rd, thereby moving the corresponding subtree of

9F2 to F ; cut the edge er in 9T1 and suppress r’s parent from 9T1; return to Step 2.

This does not alter F2 and, thus, neither ẽ pT1, T2, F2q. If no such root r exists,

proceed to Step 4.

4. Choose a sibling pair pa, cq in 9T1 such that a, c P Rt.

5. (Grow agreeing subtrees) If pa, cq is a sibling pair of 9F2, remove a and c from Rt;

label their parent in both trees with pa, cq and add it to Rt; return to Step 2. If

pa, cq is not a sibling pair of 9F2, proceed to Step 6.

6. (Cut edges) Distinguish three cases:

6.1. If a F2
c, make two recursive calls:

(i) Maaf pF1, F2 ˜ teau, k ´ 1q with a tagged with “T2” in F2 ˜ teau, and
(ii) Maaf pF1, F2 ˜ tecu, k ´ 1q with c tagged with “T2” in F2 ˜ tecu.

6.2. If a „F2
c and the path from a to c in 9F2 has one pendant node b, swap the

names of a and c if necessary to ensure that b is a’s sibling. Then make three

recursive calls (see Figure 4.3):

(i) Maaf pF1, F2 ˜ tebu, k ´ 1q with b tagged with “T1” in F2 ˜ tebu,
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ba
c

ba
c

ba
c

ba
c

Figure 4.3: Case 6.2 of Step 6 of the rooted MAAF algorithm. (Cases 6.1 and 6.3 are
as in the rooted MAF algorithm and are illustrated in Figure 3.1). Only 9F2 is shown.
Each box represents a recursive call.

(ii) Maaf pF1, F2 ˜ tecu, k ´ 1q with c tagged with “T2” in F2 ˜ tecu, and
(iii) Maaf pF1, F2 ˜ tea, ecu, k ´ 2q with c tagged with “T1” and a tagged

with “T2” in F2 ˜ tea, ecu.

6.3. If a „F2
c and the path from a to c in 9F2 has q ě 2 pendant nodes b1, b2, . . . , bq,

make three recursive calls:

(i) Maaf
`

F1, F2 ˜ teb1 , eb2 , . . . , ebqu, k ´ q
˘

with each node bi, 1 ď i ď q,

tagged with “T1” in F2 ˜ teb1 , eb2 , . . . , ebqu,
(ii) Maaf pF1, F2 ˜ teau, k ´ 1q with a tagged with “T2” in F2 ˜ teau, and
(iii) Maaf pF1, F2 ˜ tecu, k ´ 1q with c tagged with “T2” in F2 ˜ tecu.

Return “yes” if one of the recursive calls does; otherwise return “no”.

To give some intuition behind the choice of tags in Step 6, and as a basis for

the correctness proof of the algorithm, we consider a slightly modified algorithm that

produces the same set of forests: When cutting an edge ex, x P ta, cu, in Step 6,

x becomes the root of a component of F2 that agrees with a subtree of F1. Hence,

the first thing Step 3 of the next recursive call does is to cut the parent edge of x

in F1. In the modified algorithm, we cut the parent edges of x in both F1 and F2 in

Step 6 instead of postponing the cutting of x’s parent edge in F1 to Step 3 of the next

recursive call.

Now consider a labelled node x of F2, and let y1 and y2 be x’s siblings in F1

and F2, respectively. If a case of Step 6 cuts the edge ex, x becomes a root and, in the

absence of further changes that eliminate x, y1 or y2 from the forest, x is the head of
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a T1-hybrid edge py1, xq and of a T2-hybrid edge py2, xq, making y1 and y2 potential

exit nodes that may need to be fixed to obtain a certain AAF of T1 and T2. The first

step in fixing a potential exit node is to cut its parent edge, and an alternate sequence

of edge cuts that produce the same AAF starts by cutting this parent edge instead

of ex. Thus, if apart from cutting ex, the current case includes a branch that cuts the

parent edge of y1 or y2, we do not have to worry about fixing this exit node in the

branch that cuts ex—there exits another branch we explore that has the potential of

leading to the same AAF. To illustrate this idea, consider Case 6.1. Here, when we

cut ea, c becomes the tail of the T1-hybrid edge pc, aq because a and c are siblings

in F1. Since the other branch of this case cuts ec, we do not have to worry about fixing

c in the branch that cuts ea. On the other hand, neither of the two cases considers

cutting the parent edge of a’s sibling b in F2, which is the tail of the T2-hybrid edge

with head a. Thus, we need to give the refinement step the opportunity to fix b. We

do this by tagging a with “T2”, which causes the refinement step to mark b. The

same reasoning justifies the tagging of c with “T2” in the other branch of this case

and the tagging of a and c with “T2” in Case 6.3. The tagging of every node bi with

“T1” in Case 6.3 is equally easy to justify: Cutting an edge ebi makes bi a root in

F2. Thus, either bi is itself a root of the final AF we obtain or it is contracted into

such a root z after cutting additional edges; this root z inherits bi’s tag. At the time

we cut edge ebi , we do not know which descendant of bi will become this root z, nor

whether any branch of our algorithm considers cutting the parent edge of the tail of

z’s T1-hybrid edge. On the other hand, the tail of z’s T2-hybrid edge is either a or c,

and we cut their parent edges in the other two branches of Case 6.3. Unfortunately,

the tagging in Case 6.2 does not follow the same intuition and is in fact difficult to

justify intuitively. The proof of Theorem 4.9 below shows that the chosen tagging

rules lead to a correct algorithm.

We assume from here on that hyb pT1, T2q ď k0 because otherwise Refine pF, k0q
returns “no” for any AF F the branching phase may find, that is, the algorithm gives

the correct answer when hyb pT1, T2q ą k0. Among the AFs of T1 and T2 produced

by the branching phase, there may be several that can be refined to an AAF of

T1 and T2 with at most k ` 1 components. We choose a canonical AF FC from

among these AFs. The proof of Theorem 4.9 below shows that the potential exit
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nodes in FC that need to be fixed to obtain such an AAF are marked. Since FC is

produced by a sequence of recursive calls of procedure Maaf p¨, ¨, ¨q, we can define

FC by specifying the path to take from the top-level invocation Maaf pT1, T2, k0q to

the invocation Maaf pF1, F2, kq with F2 “ FC . We use F i
1 and F i

2 to denote the

inputs to the ith invocation Maaf pF i
1, F

i
2, kiq along this path. We also compute an

arbitrary numbering of the nodes of T1 and denote the number of x P T1 by νpxq. This
number is used as a tie breaker when choosing the next invocation along the path

of invocations that produce FC . The first invocation is of course Maaf pT1, T2, k0q,
that is, F 0

1 “ T1 and F 0
2 “ T2. So assume we have constructed the path up to the ith

invocation with inputs F i
1 and F i

2. The pi`1qst invocation is made in Step 6 of the ith

invocation. We say an invocation Maaf pF1, F2, kq is a leaf invocation if F2 is an AF

of T1 and T2. Recall the definition of a viable invocation from the beginning of this

section and recall that Maaf pT1, T2, k0q is viable and that every viable invocation

that is not a leaf invocation has a viable child invocation. If there is only one viable

invocation made in Step 6 of the ith invocation Maaf pF i
1, F

i
2, kiq, then we choose

this invocation as the pi ` 1qst invocation Maaf
`

F i`1
1 , F i`1

2 , ki`1

˘

. Otherwise we

apply the following rules to choose Maaf
`

F i`1
1 , F i`1

2 , ki`1

˘

from among the viable

invocations made in Step 6 of invocation Maaf pF i
1, F

i
2, kiq. We distinguish the three

cases of Step 6.

Case 6.1. In this case, Maaf pF i
1 ˜ teau, F i

2 ˜ teau, ki ´ 1q and

Maaf pF i
1 ˜ tecu, F i

2 ˜ tecu, ki ´ 1q are both viable invocations. For x P ta, cu, let Fx

be the agreement forest found by tracing a path from

Maaf pF i
1 ˜ texu, F i

2 ˜ texu, ki ´ 1q to a viable leaf invocation using recursive appli-

cation of these rules, and let Ex be an edge set such that Fx “ T1 ˜ Ex. Let y be

the sibling of x in F i
1 (i.e., y “ c if x “ a and vice versa). Now let φ1pyq once again

be the LCA in T1 of all labelled leaves that are descendants of y in F i
2, and let φxpyq

be the LCA in Fx of all labelled leaves l that are descendants of φ1pyq in T1 and

such that the path from l to φ1pyq in T1 does not contain an edge in Ex. In other

words, φxpyq is the node of Fx that y is merged into by suppressing nodes during the

sequence of recursive calls that produces Fx from F i
2. Finally, if φxpyq is the root of

a component of Fx, let λ1pyq :“ φ1pyq; otherwise let λ1pyq be the LCA in T1 of all

labelled leaves that are descendants of the parent of φxpyq in Fx. In other words, if
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φxpyq is not a root in Fx, then λ1pyq is the node in T1 where φxpyq and its sibling in

Fx are joined by an application of Step 5 in some recursive call on the path to Fx.

Now let d1pyq ą 0 be the distance from the root ρ of T1 to λ1pyq if λ1pyq ‰ φ1pyq, and
d1pyq “ 0 otherwise. If d1paq ą d1pcq or d1paq “ d1pcq and νpaq ă νpcq, we choose

the invocation Maaf pF i
1 ˜ teau, F i

2 ˜ teau, ki ´ 1q as the pi`1qst invocation, that is,
FC “ Fa. If d1paq ă d1pcq or d1paq “ d1pcq and νpaq ą νpcq, we choose the invocation
Maaf pF i

1 ˜ tecu, F i
2 ˜ tecu, ki ´ 1q as the pi` 1qst invocation, that is, FC “ Fc. This

is illustrated in Figure 4.4.

Case 6.2. In this case, if Maaf pF i
1 ˜ tea, ecu, F i

2 ˜ tea, ecu, ki ´ 2q is viable, we

choose it as the pi ` 1qst invocation. If the invocation Maaf pF i
1 ˜ tea, ecu, F i

2˜
tea, ecu, ki ´ 2q is not viable, then the invocations Maaf pF i

1, F
i
2 ˜ tebu, ki ´ 1q and

Maaf pF i
1 ˜ tecu, F i

2 ˜ tecu, ki ´ 1q are both viable. In this case, we choose the latter

as the pi ` 1qst invocation.
Case 6.3. Since there is more than one viable invocation in this case, at least

one of the invocations Maaf pF i
1 ˜ teau, F i

2 ˜ teau, ki ´ 1q and Maaf pF i
1 ˜ tecu, F i

2

˜tecu, ki ´ 1q is viable. If exactly one of them is viable, we choose it to be the

pi ` 1qst invocation. If both are viable, we define λ1paq and λ1pcq as in Case 6.1. If

λ1paq ‰ λ1pcq, we choose the pi ` 1qst invocation as in Case 6.1. If λ1paq “ λ1pcq, we
define λ2pxq and d2pxq, for x P ta, cu, analogously to λ1pxq and d1pxq but using φ2p¨q
and T2 in place of φ1p¨q and T1. Now we choose the pi`1qst invocation as in Case 6.1

but using d2p¨q instead of d1p¨q.

Lemma 4.8. If hyb pT1, T2q ď k0, then FC can be refined to an AAF of T1 and T2

with at most k0 ` 1 components by fixing a subset of the marked potential exit nodes

in FC.

Proof. Let E be an edge set such that F 1 :“ FC ˜ E is an AAF of T1 and T2 with at

most k0 ` 1 components. By Corollary 4.5, we can assume E is the union of paths

from a subset of potential exit nodes to the roots of their respective components

in FC . These potential exit nodes may or may not be marked. Now let M be the

set of nodes m P FC such that every edge on the path from m to the root of its

component in FC is in E and m or its sibling in FC is marked. We say an edge is

marked if it belongs to the path from a node m P M to the root of its component,

that is, if it is removed by fixing this node m. Next we prove that all edges in E are
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φ1(a) φ1(c)

φ1(b)

φ1(d)λ1(a)

λ1(c)

(a)

φ1(a) φ1(c) = λ1(c)

φ1(b)

λ1(a)

(b)

Figure 4.4: Two applications of Case 6.1 where we choose the invocation
Maaf pF i

1 ˜ teau, F i
2 ˜ teau, ki ´ 1q on the path to FC . Both figures show the rel-

evant portion of T1. Dotted edges have been removed to obtain F i
1, making a and

c siblings in F i
1. The bold portion of T1 yields F i

1. Node b is a’s sibling in Fc. In
Figure (a), d is c’s sibling in Fa, and the highest node λ1pcq on the path from φ1pcq to
φ1pdq is an ancestor of the highest node λ1paq on the path from φ1paq to φ1pbq. Hence,
d1paq ą d1pcq. In Figure (b), φapcq is assumed to be a root of Fa. Hence φ1pcq “ λ1pcq
and d1paq ą 0 “ d1pcq.

marked. Since fixing a node or its sibling in FC results in the same forest and every

node in m is itself marked or has a marked sibling, this implies that there exists a

subset of marked potential exit nodes such that fixing them produces F 1, that is, the

refinement step applied to FC finds F 1.

Assume for the sake of contradiction that there is an unmarked edge in E. Since

all ancestor edges of a marked edge are themselves marked, this implies that there

exists a potential exit node u P G˚
FC

whose parent edge eu belongs to E but is not

marked, which in turn implies that neither u nor its sibling u1 in FC is marked. The

sequence of invocations that produce FC from T1 and T2 gives rise to a sequence of

edges the algorithm cuts to produce FC . For a step that cuts more than one edge,

we cut these edges one by one. For Step 3 and branch (i) of Case 6.3, this ordering is

chosen arbitrarily. For every branch of Step 6 that cuts an edge ex with x P ta, cu, we
choose the ordering so that the parent edge of x in F1 is cut immediately after cutting

ex in F2. Finally, in branch (iii) of Case 6.2, we cut ec after ea. In the remainder of this

proof, we use F i
1 and F i

2 to refer to the forests obtained from T1 and T2 after cutting
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the first i edges. (This is a slight change of notation from the definition of FC , where

we used F i
1 and F i

2 to denote the forests passed as arguments to the ith invocation.)

Since FC is a refinement of F i
1 and F i

2, every node x P FC maps to the lowest node y

in F i
j such that the labelled descendant leaves of x in FC are descendants of y in F i

j .

This is analogous to the mappings φ1p¨q and φ2p¨q from FC to T1 and T2. To avoid

excessive notation, we refer to the nodes in F i
1 and F i

2 a node x P FC maps to simply

as x.

With this notation, the common parent pu of u and u1 in FC is the lowest common

ancestor of both nodes in any forest F i
j . Since u is a potential exit node of FC , there

is at least one hybrid edge in G˚
FC

induced by cutting a pendant edge of the path

from u to pu in some forest F i
j . There may also be a hybrid edge induced by cutting

a pendant edge of the path from u1 to pu in some forest F i
j . Either of these two types

of edges are pendant to the path from u to u1 in F i
j . Let i be the highest index such

that the ith edge we cut is pendant to the path from u to u1 in F i´1
1 or F i´1

2 , and let

ey be this edge. Let j P t1, 2u so that we cut ey in F i´1
j . Since u and u1 are siblings in

FC , the choice of index i implies that u and u1 are siblings in F i
1 and F i

2. In particular,

y is the only pendant edge of the path from u to u1 in F i´1
j and either u or u1 is y’s

sibling in F i´1
j . We use x to refer to this sibling, and x1 to refer to x’s sibling in FC

(that is, x1 “ u1 if x “ u and vice versa). We make two observations about x, x1,

and y:

(i) Since fixing a node in FC or its sibling produces the same forest, F 1 can be

obtained from FC by fixing a subset of nodes that includes x or x1. In particular,

ẽ
`

T1, T2, F
i
j ˜ texu

˘

“ ẽ
`

T1, T2, F
i
j ˜ tex1u

˘

“ ẽ
`

T1, T2, F
i
j

˘

´ 1, for j P t1, 2u.

(ii) Since edge eu is not marked, neither u nor u1 is marked, that is, x is not

marked in FC and, hence, y is not tagged with “Tj” in FC .

Now we examine each of the steps that can cut ey and prove that these observations

lead to a contradiction. Thus, E cannot contain an unmarked edge, and the lemma

follows.

First assume ey belongs to F i´1
1 . Then ey is cut by an application of Step 3 or ey is

the parent edge in F i´1
1 of a node y P ta, cu whose parent edge in F i´2

2 is the pi´ 1qst
edge we cut. First assume the former. Then y is a root in F i´1

2 , which implies that
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there exists an i1 ă i such that the i1th edge we cut is an edge ez in F i1´1
2 such that

z is an ancestor of y in F i1´1
2 and z is a node b or bi in this application of Step 6.

We choose the maximal such i1. This implies that no edge on the path from y to z

is cut by any subsequent step. Indeed, if we cut such an edge in a forest F i2´1
2 , for

i1 ă i2 ă i, it would have to be an edge ez1 with z1 P ta, cu, by the choice of i1. If

z1 “ y, then ey would be cut in Step 6; if z1 ‰ y, then ey would belong to a subtree

of F i2´1
1 whose root is the member of a sibling pair, and ey would never be cut. In

either case, we obtain a contradiction. Now observe that any case of Step 6 that cuts

an edge eb or ebi tags b or bi with “T1”, that is, z is tagged with “T1” immediately

after cutting ez. Since we have just argued that no edges are cut on the path from z

to y and y is a root in F i´1
2 , our rules for maintaining tags when suppressing nodes

imply that y inherits z’s “T1” tag, a contradiction.

Now suppose ey belongs to F
i´1
1 and is cut in Step 6, that is, y P ta, cu. Since Step 6

cuts an edge in F1 immediately after cutting the corresponding edge in F2, the pi´1qst
edge we cut is y’s parent edge in F i´2

2 . If ey is cut by an application of Case 6.1, assume

w.l.o.g. that y “ c and, hence, x “ a. Since the invocation Maaf
`

F i´2
1 , F i´2

2 , k
˘

that

cuts ey is viable and ẽ
`

T1, T2, F
i´2
2 ˜ texu

˘

“ ẽ
`

T1, T2, F
i´2
2

˘

´ 1, the invocation

Maaf
`

F i´2
1 ˜ texu, F i´2

2 ˜ texu, k ´ 1
˘

is also viable. Since we apply Case 6.1, x

and x1 are siblings in FC , and FC is a refinement of F i´2
2 , we have x1 „F i´2

2

x F i´2

2

y.

Since Fx is also a refinement of F i´2
2 , this implies that x1 Fx

y. In particular, x1 and

y are not siblings in Fx. Since ey is the only pendant edge of the path from x to x1

in F i´2
1 , this implies that either y is a root in Fx or its parent in Fx is a proper ancestor

in F i´2
1 of the common parent of x and x1 in Fy “ FC . In both cases, d1pyq ă d1pxq,

contradicting that we chose the invocation Maaf
`

F i´2
1 ˜ teyu, F i´2

2 ˜ teyu, k ´ 1
˘

instead of the invocation Maaf
`

F i´2
1 ˜ texu, F i´2

2 ˜ texu, k ´ 1
˘

on the path to FC .

If ey is cut by an application of Case 6.2, y is tagged with “T1” unless y “ a

and we apply the third branch of this case, or y “ c and we apply the second

branch of this case. If y “ a and we apply the third branch, then x “ c and the

pi ` 2qnd edge we cut is edge ec in F i`1
1 , which contradicts the fact that x “ c

has a sibling in FC . If y “ c and we apply the second branch of this case, then

x “ a. However, since ẽ pT1, T2, FC ˜ texuq “ ẽ pT1, T2, FCq´1 and we cut edge ey to

obtain FC from F i´2
2 , we have in fact ẽ

`

T1, T2, F
i´2
2 ˜ tea, ecu

˘

“ ẽ
`

T1, T2, F
i´2
2

˘

´ 2,
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that is, the invocation Maaf
`

F i´2
1 ˜ tea, ecu, F i´2

2 ˜ tea, ecu, k ´ 2
˘

is viable. This

contradicts that we chose the invocation Maaf
`

F i´2
1 ˜ tecu, F i´2

2 ˜ tecu, k ´ 1
˘

as

the next invocation on the path to FC .

Finally, suppose ey is cut by an application of Case 6.3. If x1 and y are not

siblings in Fx, then the same argument as for Case 6.1 leads to a contradiction to the

choice of FC . So assume that x1 and y are siblings in Fx, that is, that d1pxq “ d1pyq.
Since ey is the last pendant edge of the path from x to x1 in either of the two forests

F1 and F2, x and x1 are siblings in F i´1
2 . This implies that either x and x1 are

siblings also in F i´2
2 or ey is the only pendant edge of the path from x to x1 in F i´2

2 .

In the first case, we have d2pyq ă d2pxq, contradicting that we chose the invocation

Maaf
`

F i´2
1 ˜ teyu, F i´2

2 ˜ teyu, k ´ 1
˘

on the path to FC , even though the invocation

Maaf
`

F i´2
1 ˜ texu, F i´2

2 ˜ ex, k ´ 1
˘

is viable. In the second case, cutting ey in F i´2
2

tags y with “T2”. Since y is the sibling of x or x1 in F i´2
2 , this implies that x or x1 is

marked in FC , again a contradiction.

Finally, assume ey belongs to F i´1
2 . Then ey is cut by an application of Case 6.2

or Case 6.3 because Case 6.1 tags the bottom endpoint of each edge it cuts with “T2”,

contradicting that y is not tagged with “T2”.

In Case 6.2, ey is either eb or ec because, when edge ea is cut, a is tagged

with “T2”. First suppose ey “ eb. Since ey is the last pendant edge of the path

from x to x1 we cut in either of the two forests F1 and F2, we have x “ a and

x1 “ c. However, since the current invocation Maaf
`

F i´1
1 , F i´1

2 , k
˘

is viable and

ẽ
`

T1, T2, F
i´1
2 ˜ tecu

˘

“ ẽ
`

T1, T2, F
i´1
2 ˜ tex1u

˘

“ ẽ
`

T1, T2, F
i´1
2

˘

´ 1, the invoca-

tion Maaf
`

F i´1
1 ˜ tecu, F i´1

2 ˜ tecu, k ´ 1
˘

is also viable, which contradicts that we

chose the invocation Maaf
`

F i´1
1 , F i´1

2 ˜ tebu, k ´ 1
˘

as the next invocation on the

path to FC .

If ey “ ec, it must be an application of branch (iii) of Case 6.2 that cuts ey because

branch (ii) tags c with “T2”. In this case, x “ b because we cut ea before ec. Then,

however, b is a’s sibling in F i´3
2 and the tail of a’s T2-hybrid edge. Since a is tagged

with “T2” in this case, this implies that x “ b is marked in FC , a contradiction.

In Case 6.3 we tag a or c with “T2”. So ey must be ebh , for some pendant edge

ebh of the path from a to c in F
i´q
2 . Along with the fact that ey is the last pen-

dant edge of the path from x to x1 we cut, this implies that x “ c or x1 “ c.
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Since the invocation Maaf
`

F
i´q
1 , F

i´q
2 , k

˘

that cuts edges b1, b2, . . . , bq is viable and

ẽ
`

T1, T2, F
i´q
2 ˜ texu

˘

“ ẽ
`

T1, T2, F
i´q
2 ˜ tex1u

˘

“ ẽ
`

T1, T2, F
i´q
2

˘

´ 1, the invocation

Maaf
`

F
i´q
1 ˜ tecu, F i´q

2 ˜ tecu, k ´ 1
˘

is also viable, contradicting that we chose the

invocation Maaf
`

F
i´q
1 , F

i´q
2 ˜ teb1 , eb2 , . . . , ebqu, k ´ q

˘

as the next invocation on the

path to FC .

By Lemma 4.8, the algorithm returns “yes” if hyb pT1, T2q ď k0, and it cannot

return “yes” if hyb pT1, T2q ą k0. Thus, our MAAF algorithm is correct. Case 6.2

makes an additional recursive call compared to the algorithm from Section 4.3, but

the number of recursive calls in this case is still given by the recurrence Ipkq “
2Ipk´1q`Ipk´2q, which is also the worst case of Case 6.3 in the MAF algorithm (see

Lemma 3.4). Thus, the number of recursive calls made during the branching phase of

the algorithm remains O
`

2.42k0
˘

. Since at most k0 of the potential exit nodes of an

AF F found during the branching phase are marked (one per root of F other than ρ),

Refine pF, k0q takes O
`

2k0n
˘

time to test whether fixing any subset of these marked

potential exit nodes yields an AAF of T1 and T2 with at most k0 ` 1 components.

Thus, the total running time of the algorithm is O
`

2.42k0
`

n ` 2k0n
˘˘

“ O
`

4.84k0n
˘

,

and we obtain the following theorem.

Theorem 4.9. For two rooted X-trees T1 and T2 and a parameter k0, it takes

O
`

4.84k0n
˘

time to decide whether ẽ pT1, T2, T2q ď k0.

4.5 Improved Refinement and Analysis

The algorithm we have developed so far finds a set of agreement forests with marked

potential exit nodes such that at least one of these AFs F can be refined to an MAAF

F 1 by fixing a subset of the marked exit nodes in F . The algorithm then fixes every

subset of these marked potential exit nodes for each agreement forest it finds. If k1 is

the number of edges we cut to obtain F , there are k1 marked potential exit nodes and

2k
1
subsets of marked potential exit nodes to check. When k1 is small, the resulting

time bound of O
`

2k
1
n

˘

for the refinement step is substantially better than the bound

of O
`

2kn
˘

obtained using the naive upper bound of k1 ď k we used so far. For

large values of k1, we observe that F has k1 ` 1 components because we always cut

edges in a fully contracted forest (i.e., a forest without degree-2 vertices other than its
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component roots). When fixing a set of k2 potential exit nodes in the refinement step,

we cut at least k2 edges, and this increases the number of connected components by

at least k2, again because we cut edges along paths in fully contracted forests. Thus,

if k1 `k2 ą k, we cannot possibly obtain an AAF with at most k`1 components: the

refinement step applied to F needs to consider only subsets of at most k2 :“ k ´ k1

potential exit nodes. Since there are k1 marked potential exit nodes to choose from,

this reduces the running time of the refinement step applied to such a forest F to

O
´

řk2

j“0

´

k1

j

¯

n
¯

. For large values of k1, k2 is small and the sum is significantly less

than O
`

2k
1
n

˘

“ O
`

2kn
˘

. Thus, we obtain a substantial improvement of the running

time of the refinement step also in this case, without affecting its correctness. In

summary, the only change to the MAAF algorithm from Section 4.4 we make in this

section is to inspect all subsets of at most k2 marked potential exit nodes in the

refinement step, where k2 :“ minpk1, k ´ k1q.

To analyze the running time of our algorithm using this improved refinement step,

we split each refinement step into several refinement steps. A refinement step that

tries all subsets of between 0 and k2 marked potential exit nodes is replaced with

k2 ` 1 refinement steps: for 0 ď j ď k2, the jth such refinement step tries all subsets

of exactly j marked potential exit nodes. Its running time is therefore O
´´

k1

j

¯

n
¯

, and

the total cost of all refinement steps remains unchanged. Now we partition the refine-

ment steps invoked for the different AFs found during the branching phase into k ` 1

groups. For 0 ď h ď k, the hth group contains a refinement step applied to an agree-

ment forest F if the number k1 of edges cut to obtain F and the size j of the subsets of

marked potential exit nodes the refinement step tries satisfy k1 `j “ h. We prove that

the total running time of all refinement steps in the hth group is O
`

3.18hn
˘

. Hence,

the total running time of all refinement steps is O
´

řk

h“0 3.18
hn

¯

“ O
`

3.18kn
˘

, which

dominates the O
`

2.42kn
˘

time bound of the branching phase, that is, the running

time of the entire MAAF algorithm is O
`

3.18kn
˘

.

Now consider the tree of recursive calls made in the branching phase. Since a

given invocation Maaf pF1, F2, k
2q spawns further recursive calls only if F2 is not an

AF of T1 and T2, and we invoke the refinement step on F2 only if F2 is an AF of

T1 and T2, refinement steps are invoked only from the leaves of this recursion tree.

Moreover, since every refinement step in the hth group satisfies k1 `j “ h and, hence,
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k1 ď h, refinement steps in the hth group can be invoked only for agreement forests

that can be produced by cutting at most h edges in T2. Thus, to bound the running

time of the refinement steps in the hth group, we can restrict our attention to the

subtree of the recursion tree containing all recursive calls Maaf pF1, F2, k
2q such that

F2 can be obtained from T2 by cutting at most h edges, that is, k2 ě d :“ k ´ h.

Since we want to obtain an upper bound on the cost of the refinement steps in the

hth group, we can assume that the shape of this subtree and the set of refinement

steps invoked from its leaves are such that the total cost of the refinement steps is

maximized. We construct such a worst-case recursion tree for the refinement steps in

the hth group in two steps.

First we construct a recursion tree without refinement steps and such that, for each

d ď k2 ď k, the number of invocations with parameter k2 in this tree is maximized.

As in the proof of Lemma 3.4, this is the case if each recursive call with parameter

k2 ě d ` 2 makes three recursive calls, two with parameter k2 ´ 1 and one with

parameter k2 ´ 2, and each recursive call with parameter k2 “ d ` 1 makes two

recursive calls with parameter k2 ´1. As in the proof of Lemma 3.4, this implies that

every recursive call with parameter k2 has a tree of Θ
´

`

1 `
?
2
˘k2´d

¯

recursive calls

below it, and the size of the entire tree is O
´

`

1 `
?
2
˘k´d

¯

“ O
´

`

1 `
?
2
˘h

¯

. The

second step is to choose a subset of recursive calls in this tree for which we invoke

the refinement step instead of spawning further recursive calls, thereby turning them

into leaves. In effect, for each such node with parameter k2, we replace its subtree

of Θ
´

`

1 `
?
2
˘k2´d

¯

recursive calls with a single refinement step of cost O
´´

k1

j

¯

n
¯

,

where k1 :“ k ´ k2 “ h ` d ´ k2 and j :“ h ´ k1 “ k2 ´ d. By charging the cost

of this refinement step equally to the nodes in the removed subtree, each node in

this subtree is charged a cost of Θ
´´

k1

j

¯

n{
`

1 `
?
2
˘k2´d

¯

“ Θ
´´

k1

j

¯

n{
`

1 `
?
2
˘j

¯

.

The total running time of all refinement steps in the hth group is the sum of the

charges of all nodes removed from the recursion tree. Since we can remove at most

O
´

`

1 `
?
2
˘h

¯

nodes from the tree, the cost of all refinement steps in the hth group

is therefore

O

¨

˝

´

1 `
?
2
¯h

´

k1

j

¯

n

`

1 `
?
2
˘j

˛

‚“ O

ˆ

´

1 `
?
2
¯k1

ˆ

k1

j

˙

n

˙

, (4.1)
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where k1 and j are chosen so that
´

k1

j

¯

{
`

1 `
?
2
˘j

is maximized subject to the con-

straints 0 ď j ď k1 and k1 `j “ h. It remains to bound this expression by O
`

3.18hn
˘

.

First assume that k1 ď 2h{3. Then we can bound
´

k1

j

¯

by 2k
1
, and

`

1 `
?
2
˘k1

¨
´

k1

j

¯

by
`

2 ` 2
?
2
˘k1

ď 4.842h{3 ď 2.87h, that is, (4.1) is bounded by O
`

2.87hn
˘

. For k1 “ h,

we have j “ 0 and, hence, (4.1) is bounded by O
`

2.42hn
˘

in this case. To bound

(4.1) for 2h{3 ă k1 ă h, we make use of the following observation.

Observation 4.10.

ˆ

x

y

˙

“ O

˜

ˆ

x

y

˙y ˆ

x

x ´ y

˙x´y
¸

.

Observation 4.10 allows us to bound (4.1) by

O

˜

´

1 `
?
2
¯k1

ˆ

k1

j

˙j ˆ

k1

k1 ´ j

˙k1´j

n

¸

“

O

¨

˝

˜

´

1 `
?
2
¯α

ˆ

α

1 ´ α

˙1´α ˆ

α

2α ´ 1

˙2α´1
¸h

n

˛

‚,

where α :“ k1{h and, hence, k1 “ αh and j “ p1 ´ αqh. It remains to determine the

value of α such that 2{3 ă α ă 1 and the function

bpαq “
´

1 `
?
2
¯α

ˆ

α

1 ´ α

˙1´α ˆ

α

2α ´ 1

˙2α´1

is maximized. Taking the derivative and setting to zero, we obtain that bpαq is

maximized for α “ 1
2

`
?

7`6
?
2

10`2
?
2
, which gives bpαq ď 3.18. This finishes the proof that

the total cost of the refinement steps in the hth group is O
`

3.18hn
˘

, which, as we

argued already, implies that the running time of the entire algorithm is O
`

3.18kn
˘

.

Thus, we have the following theorem.

Theorem 4.11. For two rooted X-trees T1 and T2 and a parameter k, it takes

O
`

3.18kn
˘

time to decide whether ẽ pT1, T1, T2q ď k.

As with the MAF algorithms, we can use known kernelization rules [24] to trans-

form the trees T1 and T2 into two trees T 1
1 and T 1

2 of size O pe pT1, T2, T2qq. However,
unlike the kernelization rules used for SPR distance, these kernelization rules produce

trees that do not have the same hybridization number as T1 and T2. One of these
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rules, the Chain Reduction, replaces a chain of leaves a1, a2, . . . with a pair of leaves

a, b. Bordewich and Semple [24] showed that in an MAAF of the resulting two trees,

either a and b are both isolated or neither is. A corresponding MAAF of T1 and T2

can be obtained by cutting the parent edges of a1, a2, . . . in the first case or replacing

a and b with the sequence of leaves a1, a2, . . . in the second case. The difference in size

between these two MAAFs is captured by assigning the number of leaves removed by

the reduction as a weight to the pair pa, bq. The weight of an AAF of the two reduced

trees T 1
1 and T 1

2 then is the number of components of the AAF plus the weights of all

such pairs pa, bq such that a and b are isolated in the AAF. This weight equals the

size of the corresponding AAF of T1 and T2.

It is not difficult to incorporate these weights into our MAAF algorithm. When-

ever the refinement algorithm would return “yes”, we first add the sum of the weights

of isolated pairs to the number of components in the found AAF. If, and only if,

this total is less than or equal to k0, we return “yes”. Any AF F of T 1
1 and T 1

2 with

weight wpF q “ ẽ pT1, T2, T2q has at most wpF q components and thus will be examined

by this strategy. Similarly, the depth of the recursion is bounded by the number of

components, and thus by k0. Thus, we obtain the following corollary.

Corollary 4.12. For two rooted X-trees T1 and T2 and a parameter k, it takes

O
`

3.18kk ` n3
˘

time to decide whether ẽ pT1, T2, T2q ď k.



Chapter 5

Incorporating Uncertainty: Computing MAFs of

Multifurcating Trees in O
`

2.42kn
˘

-time

Recall that multifurcations (or polytomies) are vertices of a tree with two or more

children. A multifurcation is hard if it indeed represents an inferred common ancestor

which produced three or more species as direct descendants; it is soft if it simply

represents ambiguous evolutionary relationships [66]. Simultaneous speciation events

are assumed to be rare, so a common assumption is that all multifurcations are soft.

If we force the resolution of multifurcating trees into binary trees, then we infer

evolutionary relationships that are not supported by the original data and may infer

meaningless reticulation events. Thus, it is crucial to develop efficient algorithms to

compare multifurcating trees directly.

In this chapter, we extend the approximation and fixed-parameter algorithms for

computing MAFs of binary rooted trees from Chapter 3 to multifurcating trees (thus

showing that computing MAFs for multifurcating trees is fixed-parameter tractable).

The size of an MAF of two binary trees is equivalent to their SPR distance. In

keeping with the assumption that multifurcations are soft, we define an MAF of two

multifurcating trees so that its size is equivalent to what we call the soft SPR distance:

the minimum number of SPR operations required to transform a binary resolution of

one tree into a binary resolution of the other. This distinction avoids the inference

of meaningless differences between the trees that arises, for example, when one tree

has a set of resolved bifurcations that are part of a multifurcation in the other tree.

This is similar to the extension of the hybridization number to multifurcating trees

by Linz and Semple [62]. At the time of writing this chapter has been submitted for

publication but has not yet been published.

Our fixed-parameter algorithm achieves the same running time as in the binary

case. Our approximation algorithm achieves the same approximation factor as in

the binary case at the cost of increasing the running time from linear to O pn lg nq.

60
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These results are not trivial extensions of the algorithm for binary trees. They require

new structural insights and a novel method for terminating search branches of the

depth-bounded search tree, coupled with a careful analysis of the resulting recurrence

relation.

The rest of this chapter is organized as follows. Section 5.1 introduces the nec-

essary terminology and notation for agreement forests of multifurcating trees. Sec-

tion 5.2 presents the key structural results for multifurcating agreement forests. Sec-

tions 5.3 and 5.4 present our fixed-parameter and approximation algorithms, respec-

tively, based on these results. Finally, in Section 5.5, we present closing remarks and

discuss open problems and possible extensions of this work.

5.1 Preliminaries

To represent and analyze multifurcating trees we require several new definitions and

notation. In this section we reintroduce several concepts from Chapter 2 for context

and extend these concepts to multifurcating trees.

Recall that a (rooted phylogenetic) X-tree is a rooted tree T whose leaves are the

elements of a label set X and whose non-root internal nodes have at least two children

each; see Figure 5.1(a). T is binary (or bifurcating) if all internal nodes have exactly

two children each; otherwise it is multifurcating. For a subset V of X, T pV q and

T |V generalize to nonbinary trees as in Figures 5.1(b)and 5.1(c). An expansion is the

opposite of a contraction: It splits a node v into two nodes v1 and v2 such that v1 is

v2’s parent and divides the children of v into two subsets that become the children

of v1 and v2, respectively. For brevity, we refer to this operation as expanding the

subset of v’s children that become v2’s children.

Let T1 and T2 be two X-trees. We say that T2 resolves T1 or, equivalently, T2 is

a resolution of T1 if T1 can be obtained from T2 by contracting internal edges. T2 is

a binary resolution of T1 if T2 is binary. See Figure 5.1(d).

A subtree prune-and-regraft (SPR) operation on a binary rooted X-tree was de-

fined in Chapter 2. It cuts an edge xpx, dividing T into subtrees Tx and Tpx . Then

it introduces a node p1
x into Tpx by subdividing an edge of Tpx and adds an edge xp1

x,

thereby making x a child of p1
x, and, finally, px is removed using a contraction. On
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ρ

(a)

1 2 4

(b)

1 2 4

(c)

1 2 3 4 5 6

ρ

(d)

Figure 5.1: (a) An X-tree T with a multifurcation containing leaves 4, 5 and 6.
(b) The subtree T pV q for V “ t1, 2, 4u. (c) T |V . (d) A binary resolution of T .

1 2 3 4 5 6

ρ

1 4 5

ρ

2 3 6 1 2 34 5 6

ρ

(a)

1 2 34 5 6

ρ

(b)

Figure 5.2: (a) SPR operations transforming the tree T from Figure 5.1(a) into
another tree. Each operation changes the top endpoint of one of the dotted edges.
The hard SPR distance between the two trees is 2. (b) The MAF representing only
the first transfer of (a). The second transfer is unnecessary if the multifurcation
represents ambiguous data rather than simultaneous speciation. Thus, the soft SPR
distance is 1.

a multifurcating tree, an SPR operation may also use any existing node of Tpx as p1
x

and contracts px only if it has only one child besides x.

For binary trees, SPR operations gave rise to the distance measure dSPR p¨, ¨q,
defined as the minimum number of such operations required to transform one tree

into the other. An analogous distance measure, which we call the hard SPR distance,

could be defined for multifurcating X-trees; however, under the assumption that

most multifurcations are soft, this would capture differences between the trees that

are meaningless. Instead, we define the soft SPR distance dSPR pT1, T2q between two

multifurcating trees T1 and T2 to be the minimum SPR distance of all pairs of binary

resolutions of T1 and T2.
1 For simplicity, we simply refer to this as the SPR distance

1This is similar to the generalization of the hybridization number used by Linz and Semple [62]
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in the remainder of this chapter. These two distance measures are illustrated in

Figure 5.2. Note that the soft SPR distance is not a metric but captures the minimum

number of SPR operations needed to explain the difference between the two trees.

Given X-trees T1 and T2 and forests F1 of T1 and F2 of T2, a forest F is an

agreement forest of F1 and F2 if it is a forest of a binary resolution of F1 and of a binary

resolution of F2. F z E and F ˜ E generalize from binary forests. As with binary

trees, F is an MAF of F1 and F2 if there is no AF of F1 and F2 with fewer components.

An MAF of two trees is shown in Figure 5.2(b). We continue to denote the number of

components in an MAF of F1 and F2 by m pF1, F2q, and now e pF1, F2, F q is the size of
the smallest edge set E such that F 1˜E is an AF of F1 and F2, where F is a forest of F2

and F 1 is a binary resolution of F . Recall that Bordewich and Semple [23] showed that,

for two binary rooted X-trees T1 and T2, dSPR pT1, T2q “ e pT1, T2, T2q “ m pT1, T2q´1.

This implies that dSPR pT1, T2q “ e pT1, T2, T2q “ m pT1, T2q´1 for two arbitrary rooted

X-trees because dSPR pT1, T2q, e pT1, T2, T2q, and m pT1, T2q are taken as the minimum

over all binary resolutions of T1 and T2. Thus, to determine the SPR distance between

two rooted X-trees, we need to compute a binary MAF of the two trees.

Much of our previous notation also generalizes to multifurcating trees, such as

a „F b, denoting that there exists a path from a to b in F , and F x, the subtree of

F induced by all descendants of x, inclusive. The definition of a sibling pair pa, cq
remains unchanged, it is a pair of siblings of a forest F1 such that a and c exist in

another forest F2. Figure 5.3 shows such a sibling pair. However, we denote such a

sibling pair by ta, cu in this chapter, for consistency with its generalization. We say

ta1, a2, . . . , amu is a sibling group if tai, aju is a sibling pair of F1, for all 1 ď i ă j ď m,

and a1 has no sibling not in the group.

The correctness proofs of our algorithms in the next sections make use of the

following three lemmas. Recall that Lemma 2.1 was shown by Bordewich et al. [22]

for binary trees. The proof trivially extends to multifurcating trees. We restate the

lemma here:

Lemma 2.1 (Shifting Lemma). Let F be a forest of an X-tree, e and f edges of F ,

and E a subset of edges of F such that f P E and e R E. Let vf be the end vertex of

f closer to e, and ve an end vertex of e. If (1) vf „F´E ve and (2) x F´pEYteuq vf ,

for all x P X, then F ˜ E “ F ˜ pE z tfu Y teuq.
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Let F1 and F2 be forests of X-trees T1 and T2, respectively. Any agreement

forest of F1 and F2 is clearly also an agreement forest of T1 and T2. Conversely, an

agreement forest of T1 and T2 is an agreement forest of F1 and F2 if it is a forest of F2

and there are no two leaves a and b such that a „F2
b but a F1

b. This is formalized

in the following lemma which extends Lemma 2.2. Our algorithms ensure that any

intermediate forests F1 and F2 they produce have this latter property. Thus, this

lemma allows us to reason about agreement forests of F1 and F2 and of T1 and T2

interchangeably, as long as they are forests of F2.

Lemma 5.1. Let F1 and F2 be forests of X-trees T1 and T2, respectively. Let F1 be

the union of trees 9T1, 9T2, . . . , 9Tk and F2 be the union of forests 9F1, 9F2, . . . , 9Fk such that

9Ti and 9Fi have the same label set, for all 1 ď i ď k. Let F 1
2 be a resolution of F2.

F 1
2 ˜ E is an AF of T1 and T2 if and only if it is an AF of F1 and F2.

To use Lemma 2.1 to prove structural properties of agreement forests, which are

defined in terms of resolutions of forests, we also need the following lemma, which

specifies when an expansion does not change the SPR distance.

Lemma 5.2. Let F1 and F2 be resolutions of forests of rooted X-trees T1 and T2, and

let F ˜E be a maximum agreement forest of F1 and F2, where F is a binary resolution

of F2. Let a1, a2, . . . , ap, ap`1, . . . , am be the children of a node in F2 and let F 1
2 be

the result of expanding tap`1, ap`2, . . . , amu in F2. If a1
i F˜E a1

j, for all 1 ď i ď p,

p`1 ď j ď m, and all leaves a1
i P F ai

2 and a1
j P F

aj
2 , then e pF1, F2, F2q “ e pF1, F2, F

1
2q.

Proof. The only difference between F2 and F 1
2 is the expansion of tap`1, ap`2, . . . , amu

in F 1
2, so e pF1, F2, F2q ď e pF1, F2, F

1
2q. Since F ˜E is an MAF of F1 and F2, it suffices

to show that F ˜E is an AF of F1 and F 1
2 to prove that e pF1, F2, F

1
2q ď e pF1, F2, F2q.

Assume the contrary. Then, since F ˜E is a forest of F1, it cannot be a forest of F 1
2.

Since the only difference between F2 and F 1
2 is the expansion of tap`1, ap`2, . . . , amu,

this implies that some component of F ˜ E contains leaves a1
i P F ai

2 and a1
j P F

aj
2 ,

for some 1 ď i ď p and p ` 1 ď j ď m, contradicting that a1
i F˜E a1

j for all such

leaves.

A triple ab|c of a rooted forest F is again defined by a set ta, b, cu of three leaves in

the same component of F and such that the path from a to b in F is disjoint from the
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Figure 5.3: A sibling pair ta, cu of two forests F1 and F2: a and c have a common
parent in F1, and both subtrees F a

1 and F c
1 exist also in F2.

path from c to the root of the component. Multifurcating trees also allow for triples

a|b|c where a, b, and c share the same lowest common ancestor (LCA). A triple ab|c
of a forest F1 is compatible with a forest F2 if it is also a triple of F2 or F2 contains

the triple a|b|c; otherwise it is incompatible with F2.

An agreement forest of two forests F1 and F2 cannot contain a triple incompatible

with either of the two forests. Thus, Observation 2.3 extends to multifurcating trees:

Observation 2.3. Let F1 and F2 be forests of rooted X-trees T1 and T2, and let F be

an agreement forest of F1 and F2. If ab|c is a triple of F1 incompatible with F2, then

a F b or a F c.

Recall that, For two forests F1 and F2 with the same label set, two components

C1 and C2 of F2 are said to overlap in F1 if there exist leaves a, b P C1 and c, d P C2

such that the paths from a to b and from c to d in F1 exist and are not edge-disjoint.

Lemma 2.4 thus extends to multifurcating trees:

Lemma 2.4. Let F1 and F2 be binary resolutions of forests of two X-trees T1 and T2,

and denote the label sets of the components of F1 by X1, X2, . . . , Xk and the label sets

of the components of F2 by Y1, Y2, . . . , Yl. F2 is a forest of F1 if and only if (1) for

every Yj, there exists an Xi such that Yj Ď Xi, (2) no two components of F2 overlap

in F1, and (3) no triple of F2 is incompatible with F1.
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Figure 5.4: Tree labels for a sibling group ta1, a2, . . . , amu such that a1, a2, . . . , ar
share a minimal LCA l.

5.2 The Structure of Multifurcating Agreement Forests

This section presents the structural results that provide the intuition and formal basis

for the algorithms presented in Section 5.3 and 5.4. All these algorithms start with

a pair of trees (T1, T2) and then cut edges, expand sets of nodes, remove agreeing

components from consideration, and merge sibling pairs until the resulting forests are

identical. The intermediate state is that T1 and T2 have been resolved and reduced to

forests F1 and F2, respectively. F1 consists of a tree 9T1 and a set, F0, of components

that exist in F2. F2 has two sets of components. One is F0. The other, 9F2, has the

same label set as 9T1 but may not agree with 9T1. The key in each iteration is deciding

which edges in 9F2 to cut next or which nodes to expand, in order to make progress

towards an MAF of T1 and T2. The results in this section identify small edge sets in

9F2 such that at least one edge in each of these sets has the property that cutting it

reduces e pT1, T2, F2q by one. Some of these edges are introduced by expanding nodes.

The approximation algorithm cuts all edges in the identified set, and the size of the

set gives the approximation ratio of the algorithm. The FPT algorithm tries each

edge in the set in turn, so that the size of the set gives the branching factor for a

depth-bounded search algorithm.

Let ta1, a2, . . . , amu be a sibling group of 9T1. If there exist indices i ‰ j such that

ai and aj are also siblings in F2, we can expand this sibling pair tai, aju and replace

ai and aj with their parent node pai, ajq in the sibling group. If there exists an index
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i such that F ai
2 is a component of F2, then we can cut ai’s parent edge in F1, thereby

removing ai from the sibling group. Thus, we can assume ai and aj are not siblings

in F2, for all 1 ď i ă j ď m, and F ai
2 is not a component of F2, for all 1 ď i ď m.

We have ai P 9F2, for all 1 ď i ď m, because 9T1 and 9F2 have the same label set. Let

Bi “ tbi1, bi2, . . . biqiu be the siblings of ai in F2, for 1 ď i ď m. We use ex to denote

the edge connecting a node x to its parent px, eBi
to denote the edge introduced by

expanding Bi, and pBi
to denote the common parent of the nodes in Bi. F2 ´ teBi

u
denotes the forest obtained from F2 by expanding Bi and then cutting eBi

, and we

use FBi

2 to denote the subforest of F2 comprised of the subtrees F bi1
2 , F bi2

2 , . . . , F
biqi
2 .

Consider a subset tai1 , ai2 , . . . , airu of a sibling group ta1, a2, . . . , amu. We say

ai1 , ai2 , . . . , air share their LCA l if l “ LCAF2
pai, ajq, for all i, j P ti1, i2, . . . , iru, i ‰ j.

If, in addition, LCAF2
pai, ajq is not a proper descendant of l, for all 1 ď i ă j ď m,

we say that ai1 , ai2 , . . . , air share a minimal LCA l. For simplicity, we always order

the elements of the group so that tai1 , ai2 , . . . , airu “ ta1, a2, . . . , aru and assume the

subset that shares l is maximal, that is, ai is not a descendant of l, for all r ă i ď m.

We use Bl to denote the set of children of l that do not have any member ai of the

sibling group as a descendant. Note that Bl Ď Bi when ai is a child of l. These labels

are illustrated in Figure 5.4.

Our first result shows that at least one of the edges ea1 , ea2 , eB1
, and eB2

has the

property that cutting it reduces e pT1, T2, F2q by one. This implies that cutting ea1 ,

ea2 , epa1 , and epa2 reduces e pT1, T2, F2q by at least 1.

Theorem 5.3. Let F1 and F2 be forests of rooted X-trees T1 and T2, respectively,

and assume F1 consists of a tree 9T1 and a set of components that exist in F2. Let

ta1, a2, . . . , amu be a sibling group of 9T1 such that either a1, a2, . . . , ar share a minimal

LCA l in F2 or a2, a3, . . . , ar share a minimal LCA l in F2 and a1 F2
ai, for all

2 ď i ď m; a1 is not a child of l; a2 is not a child of l unless r “ 2; ai and aj are

not siblings in F2, for all 1 ď i ă j ď m; and F ai
2 is not a component of F2, for all

1 ď i ď m. Then

(i) e pT1, T2, F2 ´ texuq “ e pT1, T2, F2q ´ 1, for some x P ta1, a2, B1, B2u.

(ii) e
`

T1, T2, F2 ´ tea1 , ea2 , epa1 , epa2 u
˘

ď e pT1, T2, F2q ´ 1.
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Proof. (ii) follows immediately from (i) because cutting tea1 , ea2 , epa1 , epa2 u is equiva-

lent to cutting tea1 , ea2 , eB1
, eB2

u. For (i), it suffices to prove that there exist a binary

resolution F of F2 and an edge set E of size e pT1, T2, F2q such that F ˜E is an MAF

of T1 and T2 and E X tea1 , ea2 , eB1
, eB2

u ‰ H.

So assume F ˜ E is an MAF of T1 and T2 and E X tea1 , ea2 , eB1
, eB2

u “ H. By

Lemma 5.1, F ˜E is also an MAF of F1 and F2. We prove that we can replace some

edge f P E with an edge in tea1 , ea2 , eB1
, eB2

u without changing F ˜ E.

First assume b1
1 F˜E x, for all leaves b1

1 P FB1

2 and x R FB1

2 . By Lemma 5.2,

expanding B1 does not change e pF1, F2, F2q, so we can assume F contains this expan-

sion.2 Now we choose an arbitrary leaf b1
1 P B1 and the first edge f P E on the path

from pB1
to b1

1. By Lemma 2.1, F ˜ E “ F ˜ pE z tfu Y teB1
uq. If b1

2 F˜E x, for all

leaves b1
2 P FB2

2 and x R FB2

2 , a1
1 F˜E pa1 , for all leaves a

1
1 P F a1

2 , or a1
2 F˜E pa2 , for

all leaves a1
2 P F a2

2 , then the same argument shows that F ˜E “ F ˜pE z tfuYtexuq,
for x “ B2, x “ a1, and x “ a2, respectively. Thus, we can assume there exist leaves

a1
1 P F a1

2 , a1
2 P F a2

2 , b1
1 P FB1

2 , and b1
2 P FB2

2 such that a1
1 „F˜E pa1 „F˜E b1

1 and

a1
2 „F˜E pa2 „F˜E b1

2.

Now recall that either a1, a2, . . . , ar share the minimal LCA l and a1 is not a child

of l or a2, a3, . . . , ar share the minimal LCA l and a1 F2
ai, for all 2 ď i ď m. In

either case, ai R FB1

2 , for all 1 ď i ď m. Since ai also is not an ancestor of pB1
, this

shows that b1
1 R F ai

2 , for all 1 ď i ď m. Thus, F1 contains the triple a1
1a

1
2|b1

1, while

F2 contains the triple a1
1b

1
1|a1

2 or a1
1 F2

a1
2. By Observation 2.3, this implies that

a1
1 „F˜E pa1 „F˜E b1

1 F˜E a1
2 „F˜E pa2 „F˜E b1

2 and, hence, b1
2 R F a1

2 . Since a2 is

not a child of l unless r “ 2, we also have b1
2 R F ai

2 , for all 2 ď i ď m. Thus, F1 also

contains the triple a1
1a

1
2|b1

2, which implies that the components of F ˜ E containing

a1
1, b

1
1 and a1

2, b
1
2 overlap in F1, a contradiction.

Theorem 5.3 covers every case where some minimal LCA l exists. If there is no such

minimal LCA, then each ai must be in a separate component of F2. In the following

lemma we show the stronger result that cutting ea1 or ea2 reduces e pT1, T2, F2q by

one in this case (which immediately implies that claims (i) and (ii) of Theorem 5.3

also hold in this case).

2In fact, using the same ideas as in the proof of Lemma 5.2, it is not difficult to see that this
expansion never precludes obtaining the same forest F ˜ E by cutting a different set of |E| edges.
We discuss the importance of this to hybridization and reticulate analysis in Section 5.5.
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Lemma 5.4 (Isolated Siblings). If a1 F2
ai, for all i ‰ 1, a2 F2

aj, for all j ‰ 2,

and F ai
2 is not a component of F2, for all 1 ď i ď m, then there exist a resolution F

of F2 and an edge set E of size e pT1, T2, F2q such that F ˜ E is an AF of T1 and T2

and E X tea1 , ea2u ‰ H.

Proof. Consider an edge set E of size e pT1, T2, F2q and such that F ˜ E is an AF of

F1 and F2, and assume E is chosen so that |E X tea1 , ea2u| is maximized. Assume

for the sake of contradiction that E X tea1 , ea2u “ H. Then, by the same arguments

as in the proof of Theorem 5.3, there exist leaves a1
1 P F a1

2 and a1
2 P F a2

2 such that

a1
1 „F˜E a1 and a1

2 „F˜E a2. Since ta1, a2, . . . , amu is a sibling group of F1 but

a1 F2
ai, for all i ‰ 1, and a2 F2

aj, for all j ‰ 2, we must have a1
1 F´E x, for

all leaves x R F a1
2 , or a1

2 F´E x, for all leaves x R F a2
2 . W.l.o.g. assume the former.

Since F a1
2 is not a component of F2, there exists a leaf y R F a1

2 such that a1 „F2
y

and, hence, a1
1 „F2

y. For each such leaf y, the path from a1
1 to y in F contains

an edge in E because a1
1 F˜E y, and this edge does not belong to F a1

2 because

a1
1 „F˜E a1. We pick an arbitrary such leaf y, and let f be the first edge in E on the

path from a1
1 to y. The edges ea1 and f satisfy the conditions of Lemma 2.1, that is,

F ˜ E “ F ˜ pE z tfu Y tea1uq. This contradicts the choice of E.

Theorem 5.3 and Lemma 5.4 are all that is needed to obtain a linear-time 4-

approximation algorithm and an FPT algorithm with running time O
`

4kn
˘

for com-

puting rooted MAFs, an observation made independently in [97]. To improve on this

in our algorithms in Section 5.3, we exploit a useful observation from the proof of

Theorem 5.3: if there exists an MAF F ˜ E and leaves a1
1 P F a1

2 and b1
1 P FB1

2 such

that a1
1 „F˜E b1

1, then a1
2 F˜E b1

2, for all a1
2 P F a2

2 and b1
2 P FB2

2 . This implies

that, if we choose to cut ea2 or eB2
and keep both ea1 and eB1

in a branch of our

FPT algorithm, then we need only decide which edge, eaj or eBj
, to cut in each pair

teaj , eBj
u, for 3 ď j ď r, in subsequent steps of this branch. This allows us to follow

each 4-way branch in the algorithm (where we decide whether to cut ea1 , eB1
, ea2 or

eB2
) by a series of 2-way branches. We cannot use this idea when a sibling group

consists of only two nodes. The following lemma addresses this case.

Lemma 5.5. Let T1 and T2 be rooted X-trees, and let F1 be a forest of T1 and F2 a

forest of T2. Suppose F1 consists of a tree 9T1 and a set of components that exist in F2.
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Let ta1, a2u be a sibling group of 9T1 such that neither F a1
2 nor F a2

2 is a component of

F2 and, if a1 and a2 share a minimal LCA l, then a1 is not a child of l. In particular,

a1 and a2 are not siblings in F2. Then

(i) e pT1, T2, F2 ´ texuq “ e pT1, T2, F2q ´ 1, for some x P ta1, a2, B1u.

(ii) e
`

T1, T2, F2 ´ tea1 , ea2 , epa1 u
˘

ď e pT1, T2, F2q ´ 1.

Proof. As in the proof of Theorem 5.3, (ii) follows immediately from (i), so it suffices

to prove that there exist a binary resolution F of F2 and an edge set E of size

e pT1, T2, F2q such that F ˜E is an MAF of T1 and T2 (and, hence, of F1 and F2) and

E X tea1 , ea2 , eB1
u ‰ H. Once again, we show that, if E X tea1 , ea2 , eB1

u “ H, we can

replace an edge f P E with an edge in tea1 , ea2 , eB1
u without changing F ˜ E.

This follows from the same arguments as in the proof of Theorem 5.3 unless there

exist leaves a1
1 P F a1

2 , a1
2 P F a2

2 and b1
1 P FB1

2 such that a1
1 „F˜E pa1 „F˜E b1

1

and a1
2 „F˜E pa2 . In this case, since a1 is not a child of l, we have a2 R FB1

2 .

Thus, since ta1, a2u is a sibling pair in F1, F1 contains the triple a1
1a

1
2|b1

1. Since F2

contains the triple a1
1b

1
1|a1

2 and a1
1 „F˜E b1

1, this implies that a1
1 F˜E a1

2. Thus,

we also have a1
2 F˜E x, for all x P F l

2 z F a2
2 , as otherwise the components of

F ˜ E containing a1
1, b

1
1 and a1

2, x would overlap in F1. We choose an arbitrary leaf

b1
2 P B2 and the first edge f P E on the path from pa2 to b1

2. Lemma 2.1 implies that

F ˜ E “ F ˜ pE z tfu Y tea2uq.

Next we examine the structure of a sibling group more closely as a basis for a

refined analysis that leads to our final FPT algorithm with running time O
`

2.42kn
˘

.

First we require the notion of pendant subtrees that we will be able to cut in unison.

Let a1, a2, . . . , ar be the members of a sibling group ta1, a2, . . . , amu that share a

minimal LCA l in F2, and consider the path from ai to l, for any 1 ď i ď r. Let

x1, x2, . . . , xsi be the nodes on this path, excluding ai and l. For each xj, let Bij be

the set of children of xj, excluding the child that is an ancestor of ai, and let F
Bij

2

be the subforest of F2 consisting of all subtrees F b
2 , b P Bij. Note that Bi1 “ Bi,

and FBi1

2 “ FBi

2 , if si ą 0. Analogously to the definition of eBi
, we use eBij

, for

1 ď j ď si, to denote the edge introduced by expanding the nodes in Bij in F2 and

F2 ´ teBij
u to denote the forest obtained by expanding Bij and cutting edge eBij

.

Note that expanding Bij turns the forest F
Bij

2 into a single pendant subtree attached
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to xj. We distinguish five cases for the structure of the subtree of F2 induced by the

paths between a1, a2, . . . , ar and l:

Isolated Siblings: a1 F2
ai, for all i ‰ 1, and a2 F2

aj, for all j ‰ 2.

At Most One Pendant Subtree: a1, a2, . . . , ar share a minimal LCA l in F2, si “
1, for all 1 ď i ă r, and ar is a child of l.

One Pendant Subtree: a1, a2, . . . , ar share a minimal LCA l in F2 and si “ 1, for

all 1 ď i ď r.

Multiple Pendant Subtrees, m “ 2: a1 and a2 share a minimal LCA l in F2 and

s1 ` s2 ě 2.

Multiple Pendant Subtrees, m ą 2: a1, a2, . . . , ar share a minimal LCA l in F2

and s1 ě 2.

Since we assume F ai
2 is not a component of F2, for all 1 ď i ď m, and no two

nodes ai and aj in the sibling group are siblings in F2, we need only consider cases

where at most one ai is a child of some minimal LCA l, and we always label it ar.

Hence, si ą 0, for all i ă r such that ai „F2
l. Thus, the five cases above cover every

possible configuration of a sibling group where we must cut an edge of F2.

The following four lemmas provide stronger statements than Theorem 5.3 about

subsets of edges of a resolution F of F2 that need to be cut in each of the last four

cases above in order to make progress towards an AF of T1 and T2. All four lemmas

consider a sibling group ta1, a2, . . . , amu of 9T1 as in Theorem 5.3 and assume F ai
2 is

not a component of F2, for all 1 ď i ď m. Lemma 5.4 above covers the first of the

five cases.

Lemma 5.6 (At Most One Pendant Subtree). If a1, a2, . . . , ar share a minimal LCA l

in F2, si “ 1, for 1 ď i ă r, and ar is a child of l, then there exist a binary resolution F

of F2 and an edge set E of size e pT1, T2, F2q such that F ˜E is an AF of T1 and T2 and

either teB1
, eB2

, . . . , eBr´1
u Ď E or teB1

, eB2
, . . . , eBi´1

, eBi`1
, eBi`2

, . . . , eBr´1
u Ď E

and a1
i „F˜E b1

i, for some 1 ď i ď r ´ 1 and two leaves a1
i P F ai

2 and b1
i P FBi

2 .

Proof. Let F be a binary resolution of F2, and E an edge set of size e pT1, T2, F2q
such that F ˜ E is an AF of F1 and F2, and assume F and E are chosen so that
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|E X tea1 , ea2 , . . . , ear , eB1
, eB2

, . . . , eBr´1
u| is maximized. Let I :“ ti | 1 ď i ď r ´

1 and E X teai , eBi
u ‰ Hu and I 1 :“ ti | 1 ď i ď r ´ 1 and eai P Eu.

First observe that |I| ě r ´ 2. Otherwise there would exist two indices 1 ď i ă
j ď r ´ 1 such that E X teai , eBi

, eaj , eBj
u “ H. By the choice of E and Lemma 2.1,

this would imply that there exist leaves a1
i P F ai

2 , b1
i P FBi

2 , a1
j P F

aj
2 , and b1

j P F
Bj

2

such that a1
i „F˜E b1

i and a1
j „F˜E b1

j. If a
1
i „F˜E a1

j, then a1
ib

1
i|a1

j would be a triple of

F ˜ E incompatible with F1. If a
1
i F˜E a1

j, the components of F ˜ E containing a1
i

and a1
j would overlap in F1. In both cases, F ˜ E would not be an AF of F1 and F2,

a contradiction.

Since |I| ě r ´ 2 and i R I implies that there are two leaves a1
i P F ai

2 and b1
i P FBi

2

such that a1
i „F˜E b1

i, the lemma follows if we can show that there exist a resolution

F 1 of F2 and an edge set E 1 of size |E 1| ď |E| such that (i) F 1 ˜ E 1 is an AF of F1

and F2, (ii) teBi
| i P Iu Ď E 1, and (iii) for any 1 ď i ď r ´ 1, there exist leaves

a1
i P F ai

2 and b1
i P FBi

2 such that a1
i „F 1˜E1 b1

i if and only if there exist leaves a2
i P F ai

2

and b2
i P FBi

2 such that a2
i „F˜E b2

i .

Let Y be the set of leaves in all trees F ai
2 , i P I 1 Y tru, and FBi

2 , i P I 1, let

Z :“ X z Y Y ta1
ru, for an arbitrary leaf a1

r P F ar
2 , let l1 be the LCA in F of all nodes

in Y , and let E2 be the set of edges in E that belong to the paths between l1 and

the nodes in tai | i P I 1 Y truu. Since eai P E, for all i P I 1, we have |E2| ě |I 1|. We

construct F 1 from F2 by resolving every node set Bi where i P I 1, resolving the set

taru Y tpai | i P I 1u, and resolving all remaining multifurcations so that F |Y “ F 1|Y
and F |Z “ F 1|Z. We define the set E 1 to be E 1 :“ E z E2 YteBi

| i P I 1u if |E2| “ |I 1|;
otherwise E 1 :“ E z E2 Y teBi

| i P I 1u Y tel2u, where l2 is the LCA in F 1 of all nodes

in Y . It is easily verified that F 1 and E 1 satisfy properties (ii) and (iii) and that

|E 1| ď |E|. Thus, it remains to prove that F 1 ˜ E 1 is an AF of F1 and F2.

Any triple of F 1 ˜E 1 incompatible with F1 has to involve exactly one leaf a1
i P F ai

2 ,

for some i P I 1, because any other triple exists either in F ˜ E or in F1 and, thus, is

compatible with F1. Thus, any triple a1
i|xy or a1

ix|y of F 1 ˜ E 1 incompatible with F1

must satisfy x, y R pF 1ql2 because eBi
P E 1, for all i P I 1. If |E2| ą |I 1|, no such triple

exists because el2 P E 1. If |E2| “ |I 1|, observe that x, y R pF 1ql2 implies that a1
r|xy or

a1
rx|y is also a triple of F 1 ˜E 1 incompatible with F1. By the construction of F 1, this

triple is also a triple of F , and since E z E 1 “ teai | i P I 1u and x, y R F ai
2 , for all
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i P I 1, it is also a triple of F ˜ E incompatible with F1, a contradiction.

If two components of F 1 ˜ E 1 overlap in F1, let u, v, x, y be four leaves such that

u „F 1˜E1 v F 1˜E1 x „F 1˜E1 y and the two paths Puv and Pxy between u and v and

between x and y, respectively, share an edge. Let Y 1 be the set of leaves in the

subtrees F ai
2 , i P I 1 Y tru, and assume Puv has no fewer endpoints in Y 1 than Pxy.

If both endpoints of Puv are in Y 1, the two paths cannot overlap because

a1, a2, . . . , ar are siblings in F1 and our choices of E and E 1 ensure that all leaves

in the same subtree F ai
2 belong to the same component of F 1 ˜ E 1.

If both Puv and Pxy have one leaf in Y 1, their corresponding paths in F 1 ˜ E 1

include l2. Thus, u „F 1˜E1 x.

If neither Puv nor Pxy has an endpoint in Y 1, then u „F˜E v and x „F˜E y.

If Puv has one endpoint in Y 1, say u P Y 1, and Pxy does not have an endpoint in

Y 1, then x „F˜E y and, by the same arguments we used to show that no triple of

F 1 ˜ E 1 is incompatible with F1, there exists a leaf a1
r P F ar

2 such that a1
r „F˜E v

and the path from a1
r to v in F1 overlaps Pxy. Thus, in both cases we have two paths

Pu1v, u
1 P tu, a1

ru, and Pxy in F1 such that u1 „F˜E v and x „F˜E y and the two

paths overlap. Since no two components of F ˜ E overlap in F1, these two paths

belong to the same component of F ˜ E and w.l.o.g. form the quartet u1x|vy, while
u1 „F 1˜E1 v F 1˜E1 x „F 1˜E1 y. Since E 1 z E Ď teBi

| i P I 1u Y tel2u, we either have

x, y P FBi

2 and u1, v R F ai
2 Y FBi

2 , for some i P I 1, or u1, v P pF 1ql2 , u1, v R FBi

2 , for all

i P I 1, and x, y R pF 1ql2 . In the former case, these four leaves form the quartet u1v|xy
in F ˜ E, a contradiction. In the latter case, we have u1, v P Y 1, and we already

argued that this case is impossible.

Lemma 5.7 (One Pendant Subtree). If a1, a2, . . . , ar share a minimal LCA l in

F2, m ą 2, and si “ 1, for all 1 ď i ď r, then there exist a resolution F of F2

and an edge set E of size e pT1, T2, F2q such that F ˜ E is an AF of T1 and T2

and either tea1 , ea2 , . . . , earu Ď E, teB1
, eB2

, . . . , eBr
u Ď E or there exists an index

1 ď i ď r and two leaves a1
i P F ai

2 and b1
i P FBi

2 such that a1
i „F˜E b1

i and either

tea1 , ea2 , . . . , eai´1
, eai`1

, eai`2
, . . . , earu Ď E or teB1

, eB2
, . . . , eBi´1

, eBi`1
, eBi`2

, . . . , eBr
u

Ď E.

Proof. Let F be a resolution of F2, and E an edge set of size e pT1, T2, F2q such

that F ˜ E is an AF of F1 and F2, and assume F and E are chosen so that |E X
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tea1 , ea2 , . . . , ear , eB1
, eB2

, . . . , eBr
u| is maximized.

If there exists an index 1 ď j ď r such that eBj
P E, then assume w.l.o.g. that

j “ r. The forests F1 and F 1
2 :“ F2 ˜ teBr

u satisfy the conditions of Lemma 5.6.

Hence, there exist a resolution F 1 of F 1
2 and an edge set E 1 of size e pT1, T2, F

1
2q “

e pT1, T2, F2q ´ 1 such that F 1 ˜E 1 is an AF of F1 and F 1
2 and, thus, of F1 and F2 and

either teB1
, eB2

, . . . , eBr´1
u Ď E 1 or a1

i „F 1˜E1 b1
i and teB1

, eB2
, . . . , eBi´1

, eBi`1
, eBi`2

,

. . . , eBr´1
u Ď E 1, for some index 1 ď i ď r´ 1 and leaves a1

i P F ai
2 and b1

i P FBi

2 . Thus,

the resolution F 2 of F2 such that F 2 ˜ teBr
u “ F 1 and the edge set E 1 Y teB1

u satisfy

the lemma.

If E X teB1
, eB2

, . . . , eBr
u “ H, then by the same arguments as in Lemma 5.6, we

can have at most one index 1 ď i ď r such that a1
i „F˜E b1

i, for two leaves a
1
i P F ai

2 and

b1
i P FBi

2 . If such an index i exists, then tea1 , ea2 , . . . , eai´1
, eai`1

, eai`2
, . . . , earu Ď E.

If no such index exists, then tea1 , ea2 , . . . , earu Ď E.

Lemma 5.8 (Multiple Pendant Subtrees, m “ 2). If ta1, a2u is a sibling group such

that a1 and a2 share a minimal LCA l in F2 and s1 `s2 ě 2, then there exist a resolu-

tion F of F2 and an edge set E of size e pT1, T2, F2q such that F ˜E is an AF of T1 and

T2 and either EXtea1 , ea2u ‰ H or teB11
, eB12

, . . . , eB1s1
uYteB21

, eB22
, . . . , eB2s2

u Ď E.

Proof. We prove this by induction on s “ s1 ` s2. The base case is s “ 13 and the

claim follows from Lemma 5.5.

Having established the base case, we can assume s ą 1 and the lemma holds for

all 1 ď s1 ă s. By Theorem 5.3, there exist a resolution F of F2 and an edge set E of

size e pT1, T2, F2q such that F ˜E is an AF of F1 and F2 and E X tea1 , ea2 , eB1
, eB2

u ‰
H. Assume F and E are chosen so that |E X tea1 , ea2 , eB1

, eB2
u| is maximized. If

E X tea1 , ea2u ‰ H, the lemma holds, so assume the contrary. If s2 “ 0 and E X
tea1 , ea2 , eB1

, eB2
u “ teB2

u, the choice of F and E and Lemma 2.1 imply that there

exist leaves a1
1 P F a1

2 , b1
1 P FB1

2 , a1
2 P F a2

2 , and x R F a2
2 such that a1

1 „F2˜teB2
u b1

1 and

a1
2 „F2˜teB2

u x. Thus, a1 and a2 satisfy the conditions of Lemma 5.4 after cutting

edge eB2
, which implies that we can choose F and E so that E X tea1 , ea2u ‰ H in

addition to eB2
P E, a contradiction. Now assume s2 ‰ 0 or E X tea1 , ea2 , eB1

, eB2
u ‰

3We excluded this case from the statement of the lemma, in order to keep the cases covered by
the different lemmas disjoint, but the lemma also holds for s “ 1. A similar comment applies to
Lemma 5.9.
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teB2
u. In this case, E X teB11

, eB21
u ‰ H. Assume w.l.o.g. that eB11

P E. Then

the inductive hypothesis shows that there exist a resolution F 1 of F2 and an edge

set E 1 of size e pT1, T2, F2q such that F 1 ˜ E 1 is an AF of F1 and F2 ˜ teB11
u (and,

hence, of F1 and F2) such that either E 1 X tea1 , ea2u ‰ H or teB11
, eB12

, . . . , eB1s1
u Y

teB21
, eB22

, . . . , eB2s2
u Ď E 1. Thus, the lemma also holds in this case.

The proofs of the following two lemmas are similar to that of Lemma 9.

Lemma 5.9 (Multiple Pendant Subtrees, m ą 2 and r ą 2). If a1, a2, . . . , ar share

a minimal LCA l in F2, m ą 2, r ą 2, and s1 ě 2, then there exist a resolution F

of F2 and an edge set E of size e pT1, T2, F2q such that F ˜ E is an AF of T1 and T2

and E X tea1 , ea2u ‰ H, teB11
, eB12

, . . . , eB1s1
u Ď E or teB21

, eB22
, . . . , eB2s2

u Ď E.

Proof. As in the proof of Lemma 5.8, we prove this using induction on s “ s1 ` s2.

The base case is s “ 2 and, hence, s1 “ s2 “ 1 because r ą 2 implies that s1 ą 0

and s2 ą 0. In this case, Theorem 5.3 proves the lemma. So assume s ą 2 and

the claim holds for all 1 ď s1 ă s. By Theorem 5.3, there exist a resolution F of

F2 and an edge set E of size e pT1, T2, F2q such that F ˜ E is an AF of F1 and F2

and E X tea1 , ea2 , eB11
, eB21

u ‰ H. Using an inductive argument as in the proof

of Lemma 5.8, it follows that there exist a resolution F 1 of F2 and an edge set E 1

satisfying the lemma.

Lemma 5.10 (Multiple Pendant Subtrees, m ą 2 and r “ 2). If a1, a2, . . . , ar share

a minimal LCA l in F2, m ą 2, r “ 2 and s1 ě 2, then there exist a resolution F

of F2 and an edge set E of size e pT1, T2, F2q such that F ˜ E is an AF of T1 and T2

and E X tea1 , ea2u ‰ H, teB11
, eB12

, . . . , eB1s1
u Ď E or teB21

, eB22
, . . . , eB2s2

, eB1
2
u Ď E,

where B1
2 is the set of siblings of ai after cutting eB21

, eB22
, . . . , eB2s2

.

Proof. First consider the case when s2 “ 0, which is possible because r “ 2. Then

B1
2 “ B2 and, by Theorem 5.3, there exist a resolution F of F2 and an edge set E of size

e pT1, T2, F2q such that F ˜E is an AF of T1 and T2 and E X tea1 , ea2 , eB11
, eB2

u ‰ H.

If E X tea1 , ea2 , eB2
u ‰ H, the lemma holds. Otherwise eB11

P E and an inductive

argument similar to the one in the proof of Lemma 5.8 proves the lemma.

If s2 ą 0, we observe that the proof of Lemma 5.9 did not use the assumption

that r ą 2 but only that it implies s2 ą 0. Hence, this proof shows that there exist a
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resolution F of F2 and an edge set E of size e pT1, T2, F2q such that F ˜E is an AF of

T1 and T2 and EXtea1 , ea2u ‰ H, teB11,eB12
,...,eB1s1

u Ď E or teB21
, eB22

, . . . , eB2s2
u Ď E.

Among all such resolutions and edge sets, choose F and E so that E X tea1 , ea2u ‰ H
or teB11

, eB12
, . . . , eB1s1

u Ď E if possible. If we can find such a pair pF,Eq, the lemma

holds. Otherwise teB21
, eB22

, . . . , eB2s2
u Ď E. Let F 1 be the forest obtained from F2

by resolving B21, B22, . . . , B2s2 and cutting edges eB21
, eB22

, . . . , eB2s2
. In F 1, we have

r “ 2 and s2 “ 0. Hence, by the argument in the previous paragraph, there exist a

resolution F 2 of F 1 and an edge set E2 of size e pT1, T2, F
1q such that F 2 ˜E2 is an AF

of T1 and T2 and E2 X tea1 , ea2u ‰ H, teB11
, eB12

, . . . , eB1s1
u Ď E2 or eB1

2
P E2. In the

first two cases, we obtain a contradiction to the choice of F and E. In the latter case,

the set teB21
, eB22

, . . . , eB2s2
u Y E2 has size s2 ` e pT1, T2, F

2q “ e pT1, T2, F2q, F2 ˜
pteB21

, eB22
, . . . , eB2s2

u Y E2q is an AF of T1 and T2, and teB21
, eB22

, . . . , eB2s2
, eB1

2
u Ď

teB21
, eB22

, . . . , eB2s2
u Y E2. Thus, the lemma holds in this case as well.

5.3 MAF Algorithms

In this section, we present an FPT algorithm for computing MAFs of multifurcating

rooted trees. This algorithm also forms the basis for a 3-approximation algorithm

with running time O pn log nq, which is presented in Section 5.4.

As is customary for FPT algorithms, we focus on the decision version of the

problem: “Given two rooted X-trees T1 and T2 and a parameter k, is dSPR pT1, T2q ď
k?” To compute the distance between two trees, we start with k “ 0 and increase it

until we receive an affirmative answer. This does not increase the running time of the

algorithm by more than a constant factor, as the running time depends exponentially

on k.

Our FPT algorithm is recursive. Each invocation Maf pF1, F2, k, a0q takes two

(partially resolved) forests F1 and F2 of T1 and T2, a parameter k, and (optionally) a

node a0 that exists in F1 and F2 as inputs. F1 is the union of a tree 9T1 and a forest F0

disjoint from 9T1, while F2 is the union of the same forest F0 and another forest 9F2 with

the same label set as 9T1. The output of the invocation Maf pF1, F2, k, a0q satisfies

two conditions: (i) If e pT1, T2, F2q ą k, the output is “no”. (ii) If e pT1, T2, F2q ď k

and either a0 “ nil or there exists an MAF F of F1 and F2 such that a0 is not a
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root of F and a0 F ai, for every sibling ai of a0 in F1, the output is “yes”. Since

the top-level invocation is Maf pT1, T2, k, nilq, these two conditions ensure that this

invocation decides whether e pT1, T2, T2q ď k.

The representation of the input to each recursive call includes two sets of labelled

nodes: Rd (roots-done) contains the roots of F0, Rt (roots-todo) contains the roots

of (not necessarily maximal) subtrees that agree between 9T1 and 9F2. We refer to

the nodes in these sets by their labels. For the top-level invocation, F1 “ 9T1 “ T1,

F2 “ 9F2 “ T2, and F0 “ H; Rd is empty and Rt contains all leaves of T1; a0 “ nil.

Maf pF1, F2, k, a0q uses the results from Section 5.2 to identify a small collec-

tion tE1, E2, . . . , Equ of subsets of edges of 9F2 such that e pT1, T2, F2q ď k only if

e pT1, T2, F2 ˜ Eiq ď k ´ |Ei|, for at least one 1 ď i ď q. It calls

Maf pF1, F2 ˜ Ei, k ´ |Ei|, a1
iq recursively, for each subset Ei and an appropriate pa-

rameter a1
i, and returns “yes” if and only if one of these recursive calls does.

A näıve use of the structural results from Section 5.2 would explore many over-

lapping edge subsets. For example, one branch of the algorithm may cut an edge eai

and then an edge eaj , while a sibling branch may cut eaj and then eai . As we hinted

at in Section 5.2, if we cut edge eai or its sibling edge eBi
in two sibling invocations,

then there is no need to consider cutting either of these two edges in their sibling

invocations or their descendants. Using the results of Lemmas 5.6–5.10, we obtain

more generally: if we cut eai or its set of progressive siblings teBi1
, eBi2

, . . . , eBisi
u in

two sibling invocations, then we need not consider these edge sets in their sibling in-

vocations or their descendants. Thus, we set a0 “ ai in these sibling invocations and

thereby instruct the algorithm to ignore these edges as candidates for cutting. An

invocation Maf pF1, F2, k, a0q with a0 ‰ nil (Step 7 below) makes only two recursive

calls when it would make significantly more recursive calls if a0 “ nil (Step 8 below).

This is not a trivial change, as it is required to obtain the running time claimed in

Theorem 5.12. The steps of our procedure are as follows.

1. (Failure) If k ă 0, then e pT1, T2, F2q ě 0 ą k. Return “no” in this case.

2. (Success) If |Rt| “ 1, then F1 “ F2. Hence, F2 is an AF of T1 and T2, that is,

e pT1, T2, F2q “ 0 ď k. Return “yes” in this case.
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3. (Prune maximal agreeing subtrees) If there is no node r P Rt that is a root in F2,

proceed to Step 4. Otherwise choose such a node r P Rt; remove it from Rt and

add it to Rd, thereby moving the corresponding subtree of 9F2 to F0; and cut the

edge er in F1. If r’s parent pr in F1 now has only one child, contract pr. If a0 ‰ nil

and pr’s only child before the contraction was a0, set a0 “ nil. Note that these

changes affect only F1. Thus, e pT1, T2, F2q remains unchanged. Return to Step 2.

4. Choose a sibling group ta1, a2, . . . , amu in 9T1 such that a1, a2, . . . , am P Rt. If two

or more members of the sibling group chosen in this invocation’s parent invocation

remain in 9T1, choose that sibling group.

5. (Grow agreeing subtrees) While there exist indices 1 ď i ă j ď m such that ai and

aj are siblings in 9F2, do the following: Remove ai and aj from Rt; resolve ai and

aj in 9T1 and 9F2; label their new parent in both forests with pai, ajq and add it to

Rt. The new node pai, ajq becomes a member of the current sibling group and m

decreases by 1. If m “ 1 after resolving all such sibling pairs tai, aju, contract the
parent of the only remaining member of the sibling group and return to Step 2;

otherwise proceed to Step 6.

6. If ai F2
aj, for all 1 ď i ă j ď m, proceed to Step 7. Otherwise there exists a

node l that is a minimal LCA of a group of nodes in the current sibling group. If

the most recent minimal LCA chosen in an ancestor invocation is a minimal LCA

of a subset of nodes in the current sibling group, choose l to be this node; otherwise

choose l arbitrarily. Now order the nodes in the sibling group ta1, a2, . . . , amu so

that, for some r ě 2, a1, a2, . . . , ar are descendants of l, while, for all 1 ď i ď r ă
j ď m, either the LCA of ai and aj is a proper ancestor of l or ai F2

aj. Order

a1, a2, . . . , ar so that s1 ě s2 ě ¨ ¨ ¨ ě sr. (Recall that si is the number of nodes

on the path from ai to l, excluding ai and l.) The order of ar`1, ar`2, . . . , am is

arbitrary.

7. (Two-way branching) If a0 “ nil, proceed to Step 8. Otherwise distinguish four

cases, where x “ 1 if a1 ‰ a0, and x “ 2 otherwise (see Figure 5.5).

7.1. If a1 F2
ai, for all i ‰ 1, and a2 F2

aj, for all j ‰ 2, call

Maf pF1, F2 ˜ teaxu, k ´ 1, a0q.
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Case 7.1

a2a1 a1 a2

a2a1 a2a1

Case 7.3

Case 7.2

a2a1 a3 a2a1 a3 a2a1 a3

Case 7.4

a2a1 a3 a2a1 a3 a2a1 a3

Figure 5.5: The different cases of Step 7. Only the subtree of 9F2 rooted in l is
shown. The left side shows a possible input for each case, the right side visualizes the
cuts made in each recursive call. The node a0 is shown as a hollow circle (if it is a
descendant of l).
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7.2. If a1, a2, . . . , ar share the minimal LCA l in F2 and a0 is not a descendant of l,

call Maf
`

F1, F2 ˜ teB11
, eB12

, . . . , eB1s1
u, k ´ s1, a0

˘

. If s1 ą 1 or sr ą 0, also

call Maf pF1, F2 ˜ tea1u, k ´ 1, a0q.

7.3. If r “ 2, sx “ 0, a0 is a descendant of l, and either l is a root of F2

or its parent has a member ai of the current sibling group as a child, call

Maf pF1, F2 ´ teBx
u, k ´ 1, a0q.

7.4. If a1, a2, . . . , ar share the minimal LCA l in F2, a0 is a descendant of l,

and Case 7.3 does not apply, call Maf pF1, F2 ˜ teaxu, k ´ 1, a0q. If m ą 2

and r ą 2, make another recursive call Maf
`

F1, F2 ˜ teBx1
, eBx2

, . . . , eBxsx
u,

k ´ sx, a0q. If m ą 2 but r “ 2, the second recursive call is Maf pF1,

F2 ˜ teBx1
, eBx2

, . . . , eBxsx
, eB1

x
u, k ´ psx ` 1q, a0

˘

, where B1
x is the set of sib-

lings of x after cutting eBx1
, eBx2

, . . . , eBxsx
.

Return “yes” if one of the recursive calls does; otherwise return “no”.

8. (Unconstrained branching) Distinguish seven cases and choose the first case that

applies (see Figure 5.6):

8.1. If a1 F2
ai, for all i ‰ 1, and a2 F2

aj, for all j ‰ 2, call

Maf pF1, F2 ˜ tea1u, k ´ 1, nilq and Maf pF1, F2 ˜ tea2u, k ´ 1, nilq.

8.2. If si “ 1, for 1 ď i ă r, and ar is a child of l, call

Maf
`

F1, F2 ˜ teB1
, eB2

, . . . , eBr´1
u, k ´ pr ´ 1q, nil

˘

and Maf pF1, F2˜
teB1

, eB2
, . . . , eBi´1

, eBi`1
, eBi`2

, . . . , eBr´1
u, k ´ pr ´ 2q, ai

˘

, for all 1 ď i ď
r ´ 1.

8.3. If m “ 2, and s1 ` s2 ě 2, call Maf pF1, F2 ˜ tea1u, k ´ 1, nilq,
Maf pF1, F2 ˜ tea2u, k ´ 1, nilq, and Maf

`

F1, F2 ˜ teB11
, eB12

, . . . , eB1s1
u

YteB21
, eB22

, . . . , eB2s2
u, k ´ ps1 ` s2q, nil

˘

.

8.4. If m ą 2, r “ 2, and s1 “ s2 “ 1, call Maf pF1, F2 ˜ tea1 , ea2u, k ´ 2, nilq,
Maf pF1, F2 ˜ teB1

, eB2
u, k ´ 2, nilq, Maf

`

F1, F2 ˜ teB1
, eB1

1
u, k ´ 2, a2

˘

, and

Maf
`

F1, F2 ˜ teB2
, eB1

2
u, k ´ 2, a1

˘

, where B1
i is the set of siblings of ai af-

ter cutting edge Bi. If l is a root, l’s parent pl has at least one child that

is neither l nor a member aj of the current sibling group or l’s grandpar-

ent has at least one child that is neither pl nor a member ah of the current
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sibling group, make two additional calls Maf pF1, F2 ˜ tea1u, k ´ 1, a2q and

Maf pF1, F2 ˜ tea2u, k ´ 1, a1q.

8.5. If m ą 2, r ą 2, and si “ 1, for all 1 ď i ď r, call Maf pF1, F2˜
tea1 , ea2 , . . . , earu, k ´ r, nilq, Maf pF1, F2 ˜ teB1

, eB2
, . . . , eBr

u, k ´ r, nilq,
Maf

`

F1, F2 ˜ tea1 , ea2 , . . . , eai´1
, eai`1

, eai`2
, . . . , earu, k ´ pr ´ 1q, ai

˘

, for all

1 ď i ď r, and Maf
`

F1, F2 ˜ teB1
, eB2

, . . . , eBi´1
, eBi`1

, eBi`2
, . . . , eBr

u,
k ´ pr ´ 1q, aiq, for all 1 ď i ď r.

8.6. If m ą 2, r “ 2, s1 ě 2, s2 “ 0 and either l is a root of F2 or its parent has a

member ai of the current sibling group as a child, call Maf pF1, F2 ´ tea1u,
k ´ 1, nilq, Maf

`

F1, F2 ´ teB11
, eB12

, . . . , eB1s1
u, k ´ s1, nil

˘

, and

Maf pF1, F2 ´ teB2
u, k ´ 1, nilq.

8.7. If m ą 2, s1 ě 2, and Case 8.6 does not apply, call

Maf pF1, F2 ˜ tea1u, k ´ 1, nilq, Maf pF1, F2 ˜ tea2u, k ´ 1, a1q, and

Maf
`

F1, F2 ˜ teB11
, eB12

, . . . , eB1s1
u, k ´ s1, nil

˘

. If r ą 2, call Maf pF1, F2˜
teB21

, eB22
, . . . , eB2s2

u, k ´ s2, a1
˘

. If r “ 2, call Maf pF1, F2˜
teB21

, eB22
, . . . , eB2s2

, eB1
2
u, k ´ ps2 ` 1q, a1

˘

, where B1
2 is defined as in

Lemma 5.10.

Return “yes” if one of the recursive calls does; otherwise return “no”.

Lemma 5.11. Each invocationMaf pF1, F2, k
1, aoq, excluding recursive calls it makes,

takes O pnq time

Proof. We represent each forest as a collection of nodes, each of which points to its

parent, to its leftmost child, and to its left and right siblings. This allows us to cut

an edge in constant time, given the parent and child connected by this edge. Every

labelled node (i.e., every node in Rt or Rd) stores a pointer to its counterpart in the

other forest. For 9T1, we maintain a list of sibling groups of labelled nodes. For each

such group, the list stores a pointer to the parent of the sibling group, which allows

us to access the members of the sibling group by traversing the list of the parent’s

children. To detect the creation of such a sibling group, and add it to the list, each

internal node of 9T1 stores the number of its unlabelled children. When labelling a

non-root node, we decrease its parent’s unlabelled children count by one. If this count
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is now 0, the children of this parent node form a new sibling group, and we add a

pointer to the parent to the list of sibling groups. For 9F2, we maintain a list R1
d Ď Rt

of labelled nodes that are roots of 9F2. This list is used to move these roots from Rt

to Rd.

Steps 1–4 are implemented similarly to the algorithm for binary trees [100]. Step 1

clearly takes constant time. In Step 2, we can test in constant time whether |Rt| ď 1

by inspecting at most two nodes in the first two sibling groups. Step 3 takes constant

time to test whether the root list R1
d is empty and, if it is not, cut the appropriate

edge in 9T1 and update a constant number of lists and pointers. Step 4 takes contant

time using the list of sibling groups. We always choose the next sibling group from the

beginning of this list and append new sibling groups to the end. This automatically

gives preference to the most recently chosen sibling group as required in Step 4.

Step 5 requires some care to implement efficiently. We iterate over the members

a1, a2, . . . , am of the current sibling group and mark their parents in 9F2. Initially,

all nodes in 9F2 are unmarked. When inspecting a node ai whose parent pai in 9F2

is unmarked, we mark pai with ai. If pai is already marked with a node aj (j ă i),

then ai and aj are siblings in 9T1 and 9F2. We resolve them in constant time and mark

pai (which is now the grandparent of ai) with the new parent pai, ajq of ai and aj.

Since we spend constant time per member ai of the sibling group, this procedure

takes O pmq time. Once it finishes, the remaining members of the sibling group are

not siblings in 9F2. Performing a contraction if the remaining sibling group has only

one member takes constant time.

In Step 6, we perform a linear-time traversal of 9F2 to label every node x with the

number rx of members of the current sibling group among its descendants. Then, if

the previously chosen minimal LCA l still exists in 9F2 and has at least two descendants

in the current sibling group, we keep this choice of l. Otherwise a node x is a minimal

LCA of a subset of the current sibling group if and only if rx ě 2 and ry ď 1, for

each child y of x. If there is no such node x, we proceed to Step 7 without choosing

l because ai F2
aj, for all 1 ď i ă j ď m. Otherwise we pick any node x satisfying

this condition as the new minimal LCA l. No matter whether l is the previously

chosen minimal LCA or a new node, we set r “ rl and traverse the paths from l to

its descendant members of the sibling group, a1, a2, . . . , ar. We do this by visiting all
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descendants y of l such that ry “ 1. For all 1 ď i ď r, the length of the path from l to

ai, excluding l and ai, is si. We sort a1, a2, . . . , ar by their path lengths s1, s2, . . . , sr

using Counting Sort [34]. Since si ď n, for all 1 ď i ď r, this takes linear time.

To distinguish between Steps 7 and 8, it suffices to examine a0. We distinguish

between the cases in Steps 7 and 8 using the values of r, m, and s1, s2, . . . , sr and,

in Step 7, by testing whether a0 is among the descendants of l. In each case, we can

easily copy the forests, cut the appropriate edges, and update our lists and pointers

in linear time for each of the recursive calls.

To summarize: Each execution of Steps 1–4 takes constant time. Step 1 is executed

once per invocation. Steps 2–4 are executed at most a linear number of times per

invocation because each execution, except the first one, is the result of finding a root

of 9F2 in Step 3 or resolving sibling pairs in Step 5, both of which can happen only

O pnq times. Each execution of Step 5 takes O pmq time. In a given invocation, Step 5

is executed at most once per sibling group (because we either proceed to Step 6 or

return to Step 2 after completely resolving the sibling group). Thus, since the total

size of all sibling groups is bounded by | 9T1|, the total cost of all executions of Step 5

per invocation is O pnq. Steps 6–8 are executed at most once per invocation and take

linear time. Thus, each invocation of the algorithm takes linear time.

Theorem 5.12. Given two rooted X-trees T1 and T2 and a parameter k, it takes

O
`

p1 `
?
2qkn

˘

“ O
`

2.42kn
˘

time to decide whether e pT1, T2, T2q ď k.

Proof. We use the algorithm in this section, invoking it as Maf pT1, T2, k, nilq. We

leave its correctness proof to a separate lemma (Lemma 5.13 below) and focus on

bounding its running time here. As we showed in Lemma 5.11, each invocation

Maf pF1, F2, k
1, a0q takes O pnq time. Thus, it suffices to bound the number of invo-

cations by O
`

p1 `
?
2qk

˘

. Let Ipk, tq be the number of invocations that are descen-

dants of an invocation Maf pF1, F2, k, a0q in the recursion tree, where t “ 1 if the

invocation executes Step 7 but not Step 8; otherwise t “ 0. We develop a recurrence

relation for Ipk, tq and use it to show that Ipk, tq ď p1 `
?
2q2`maxp0,k´t`3q ` 2pt ´ 1q,

which proves our claim.4

An invocation with t “ 0 by definition either executes neither Step 7 nor Step 8,

or it executes Step 8. By considering the different cases of Step 8, we obtain the

4This is a fairly loose bound on Ipk, tq, but it is easy to manipulate.
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following recurrence for the case when t “ 0:

Ipk, 0q ď

$
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’

%

1 no recursion

1 ` 2Ipk ´ 1, 0q Case 8.1

1 ` Ipk ´ 1, 0q ` Ipk, 1q Case 8.2

1 ` 2Ipk ´ 1, 0q ` Ipk ´ 2, 0q Cases 8.3, 8.6

1 ` 2Ipk ´ 2, 0q ` 2Ipk ´ 1, 1q

` 2Ipk ´ 2, 1q Case 8.4

1 ` 2Ipk ´ 3, 0q ` 3Ipk ´ 2, 0q

` 3Ipk ´ 2, 1q Case 8.5

1 ` Ipk ´ 1, 0q ` Ipk ´ 2, 0q

` 2Ipk ´ 1, 1q Case 8.7

The values of the first arguments of all Ip¨, ¨q terms are easily verified for Cases 8.1,

8.3, 8.4, and 8.6. For Case 8.2, we observe that r ě 2 and the worst case arises when

r “ 2, giving the claimed recurrence. For Case 8.7, we observe again that r ě 2. If

r ą 2, then s2 ą 0, giving the recurrence for this case. If r “ 2, then s2 may be 0,

but the fourth recursive call cuts s2 ` 1 edges, thereby giving the same recurrence

as when r ą 2. For Case 8.5, finally, we have r ě 3 and, once again, the minimum

value, r “ 3, is the worst case, which gives the recurrence.

Next we argue about the correctness of all second arguments that are 1 in these

recurrences. Each such term Ip¨, 1q corresponds to a recursive call with a0 ‰ nil.

Thus, in order to justify setting t “ 1, we need to show that each such invocation

executes Step 7 but not Step 8, which follows if in this child invocation, the current

invocation’s sibling group exists and at least one additional edge cut in F2 is required

to makes this sibling group agree between F1 and F2—we say that the sibling group

agrees between F1 and F2 if F2 does not contain a triple incompatible with F1 and

involving descendants of at least two members of the sibling group, and there are

no two paths between leaves in F2 that (i) belong to different components of F2, (ii)

overlap in F1, and (iii) have at least one endpoint each that is a descendant of a

member of the current sibling group. The only cases that make recursive calls with
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Case 8.1

Case 8.2

Case 8.3

Case 8.4

a1 a2 a1 a2

a2a1 a3 a2a1 a3 a2a1 a3

a2a1 a2a1 a2a1

a2a1

a2a1 a3

a2a1

a2a1 a2a1a2a1a2a1a2a1

a2a1a2a1

Case 8.6

Case 8.7

a2a1 a2a1 a2a1

a2a1 a3 a2a1 a3 a2a1 a3 a2a1 a3

a2a1

a2a1 a3

Case 8.5

. . . . . .

a2a1 a3a2a1 a3a2a1 a3a2a1 a3a2a1 a3

Figure 5.6: The different cases of Step 8. Only the subtree of 9F2 rooted in l is shown.
The left side shows a possible input for each case, the right side visualizes the cuts
made in each recursive call. Whenever a0 ‰ nil in a recursive call, it is shown as a
hollow circle. The last two calls in Case 8.4 may or may not be made.
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a0 ‰ nil are Cases 8.2, 8.4, 8.5 and 8.7. We consider each case in turn.

In Case 8.2, consider a recursive call that cuts edges eB1
, eB2

, . . . , eBi´1
, eBi`1

,

eBi`2
, . . . , eBr´1

, for some 1 ď i ď r ´ 1. Assume w.l.o.g. that i “ 1. After cut-

ting edges eB2
, eB3

, . . . , eBr´1
, there still exist leaves a1

1 P F a1
2 , b1

1 P FB1

2 , and a1
r P F ar

2

such that F1 contains the triple a1
1a

1
r|b1

1 while F2 contains the triple a1
1b

1
1|a1

r. Thus,

the sibling group does not agree between F1 and F2 yet.

In Case 8.4, if we make only four recursive calls, we can ignore whether setting

a0 “ a1 or a0 “ a2 in the third and fourth recursive calls translates into t “ 1 for these

recursive calls because even the recurrence Ipk, 0q “ 1`4Ipk´2, 0q is bounded by the

recurrence Ipk, 0q “ 1` 2Ipk ´ 2, 0q ` 2Ipk ´ 2, 1q ` 2Ipk ´ 1, 1q for the case when we

make six recursive calls. If we make six recursive calls, there exists a member a3 of the

current sibling group that is not a descendant of l. Thus, the conditions for making

the fifth and sixth recursive calls imply that there exist leaves a1
3 P F a3

2 and b1
3 R F ai

2 ,

for all 1 ď i ď m, such that a1
3 „F2

b1
3 and the path from a1

3 to b1
3 in F2 is disjoint

from F l
2. After cutting eB1

and eB1
1
, there exist leaves a1

2 P F a2
2 and b1

2 P FB2

2 such

that a1
2 „F2˜teB1

,eB1
1

u b
1
2. Thus, we have two paths in different connected components

(between a1
2 and b1

2 and between a1
3 and b1

3) that overlap in F1, and the sibling group

does not agree between F1 and F2 yet. After cutting ea1 , we obtain overlapping paths

as above if a2 F2
a3; otherwise a1

2b
1
2|a1

3 is a triple of F2 incompatible with F1. Thus,

once again the sibling group does not agree between F1 and F2. Similar arguments

show that setting t “ 1 is correct when cutting edge ea2 or edges eB2
and eB1

2
.

In Case 8.5, we claim that it is correct to set t “ 1 for each recursive call that

cuts edges eB1
, eB2

, . . . , eBi´1
, eBi`1

, eBi`2
, . . . , eBr

, for some 1 ď i ď r. Assume w.l.o.g.

that i “ 1. After cutting edges eB2
, eB3

, . . . , eBr
, there exist leaves a1

1 P F a1
2 , b1

1 P FB1

2 ,

and a1
2 P F a2

2 such that a1
1a

1
2|b1

1 is a triple of F1 and a1
1b

1
1|a1

2 is a triple of F2. Thus, the

sibling group does not agree between F1 and F2 yet.

In Case 8.7, observe that l is not a root and its parent does not have a member of

the current sibling group as a child. Thus, since m ą 2, there exists an index j and

two leaves a1
j P F

aj
2 and b1

j R F ah
2 , for all 1 ď h ď m, such that a1

j „F2
b1
j and the path

from a1
j to b1

j in F2 is disjoint from the path between any two leaves in F a1
2 and FB11

2 .

After cutting ea2 , there exist leaves a1
1 P F a1

2 and b1
1 P FB11

2 such that a1
1 „F2˜tea2u b

1
1.

If a1
1 „F2

a1
j, we thus have a triple a1

1b
1
1|a1

j of F2 incompatible with F1. If a1
1 F2

a1
j,
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the path between a1
1 and b1

1 overlaps the path between a1
j and b1

j in F1. In either case,

the current sibling group does not agree between F1 and F2 yet. This concludes the

correctness proof of the recurrence for Ipk, 0q.

For t “ 1, we distinguish whether or not the current invocation I makes a recursive

call with t “ 0 and whether it makes one or two recursive calls. If I makes no recursive

call with t “ 0, we obtain Ipk, 1q ď 1`2Ipk´1, 1q because each case of Step 7 makes

at most two recursive calls, with parameters no greater than k ´ 1. If I makes only

one recursive call, with t “ 0, we obtain Ipk, 1q ď 1`Ipk´1, 0q because this recursive
call has parameter no greater than k ´ 1. Finally, if I makes two recursive calls, at

least one of them with t “ 0, I must have applied Case 7.2 or 7.4. Let I 1 be one of

the invocations I makes with t “ 0. If t “ 0 for invocation I 1 because I 1 terminates

in Step 1 or 2, we obtain Ipk, 1q ď 2 ` Ipk ´ 1, 0q by counting invocations I and

I 1 and the number of recursive calls spawned by the sibling invocation of I 1, which

cannot be more than Ipk ´ 1, 0q. So assume that t “ 0 for invocation I 1 and that

I 1 does make further recursive calls. Then the sibling group chosen in invocation I

must agree between the input forests of invocation I 1.

If invocation I applies Case 7.2 and makes two recursive calls, we observe that

m ě 3 because a0 is a member of I’s sibling group, a0 is not a descendant of l,

and l has at least two descendants in the sibling group. Furthermore, s1 ą 0.

Thus, after cutting ea1 , a2 has a sibling forest B1
2 that does not include a0. Since

a0 also has a sibling forest B0 that does not include a2, I’s sibling group can-

not agree between 9T1 and 9F2 after cutting ea1 . This implies that t “ 1 for the

first recursive call Maf pF1, F2 ˜ tea1u, k ´ 1, a0q, and I 1 is the second recursive call

Maf
`

F1, F2 ˜ teB11
, eB12

, . . . , eB1s1
u, k ´ s1, a0

˘

. This gives the recurrence Ipk, 1q “
1`Ipk´1, 1q`Ipk´s1, 0q. Since no two members of I’s sibling group are siblings in F2

and a0 is not a descendant of l, cutting edges eB11
, eB12

, . . . , eB1s1
can make I’s sibling

group agree between F1 and F2 only if r “ 2, s2 “ 0, and either l is a root of F2 or the

only pendant nodes of the path from l to the root of its component in F2 are members

of I’s sibling group. Thus, since we assume we make two recursive calls, we must

have s1 ě 2, that is, the recurrence for this case is Ipk, 1q ď 1`Ipk´1, 1q`Ipk´2, 0q.

Finally, if invocation I applies Case 7.4, observe that, since a0 is a descendant of

l and has a group of sibling trees B0 that do not contain any member ai of I’s sibling
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group, this sibling group can be made to agree between F1 and F2 only by cutting

eax . Moreover, since no member ai of I’s sibling group is a root of F2, cutting eax

can make this sibling group agree between F1 and F2 only if m “ 2. Thus, Case 7.4

makes only one recursive call and we obtain Ipk, 1q “ 1 ` Ipk ´ 1, 0q in this case.

By combining the different possibilities for the case when t “ 1, we obtain the

recurrence

Ipk, 1q ď maxp1 ` 2Ipk ´ 1, 1q, 2 ` Ipk ´ 1, 0q,

1 ` Ipk ´ 1, 1q ` Ipk ´ 2, 0qq.

Simple substitution now shows that Ipk, tq ď p1 `
?
2q2`maxp0,k´t`3q ` 2pt ´ 1q.

Lemma 5.13. For two rooted X-trees T1 and T2 and a parameter k, the invocation

Maf pT1, T2, k, nilq returns “yes” if and only if dSPR pT1, T2q “ e pT1, T2, T2q ď k.

Proof. We use induction on k to prove the following two claims, which together imply

the lemma: (i) If e pT1, T2, F2q ą k, the invocation Maf pF1, F2, k, a0q returns “no”.

(ii) If e pT1, T2, F2q ď k and either a0 “ nil or there exists an MAF F of F1 and F2

such that a0 is not a root of F and a0 F ai, for every sibling ai of a0 in F1, the

invocation Maf pF1, F2, k, a0q returns “yes”.

(i) Assume e pT1, T2, F2q ą k. If k ă 0, the invocation returns “no” in Step 1. If

k ě 0, assume for the sake of contradiction that the invocation returns “yes”. If it

does so in Step 2, then F2 is an AF of T1 and T2, that is, e pT1, T2, F2q “ 0 ď k, a

contradiction. Otherwise it returns “yes” in Step 7 or 8. Thus, there exists a child

invocationMaf pF 1
1, F

1
2, k

1, a1
0q that returns “yes”, where F 1

2 “ F2˜E and k1 “ k´|E|,
for some non-empty edge set E. By the inductive hypothesis, we therefore have

e pT1, T2, F
1
2q ď k1 and, hence, e pT1, T2, F2q ď k1 ` |E| “ k, again a contradiction.

(ii) Assume e pT1, T2, F2q ď k and either a0 “ nil or there exists an MAF F of

F1 and F2 such that a0 is not a root of F and a0 F ai, for every sibling ai of a0 in

F1. In particular, k ě 0 and the invocation Maf pF1, F2, k, a0q produces its answer in
Step 2, 7 or 8. If it produces its answer in Step 2, it answers “yes”. Next we consider

Steps 7 and 8 and prove that at least one of the recursive calls made in each case

returns “yes”, which implies that the current invocation returns “yes”.
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In Step 7, a0 ‰ nil, that is, a0 is not a root of F and a0 F ai, for every sibling ai

of a0 in F1. In Case 7.1, ax F2
ai and, hence, ax F ai, for all i ‰ x. Thus, ax is a

root of F because otherwise the components of F containing ax and a0 would overlap

in F1. This implies that there exists an edge set E such that eax P E and F “ F2 ˜E,

that is, the recursive call Maf pF1, F2 ˜ teaxu, k ´ 1, a0q returns “yes”.

In Case 7.2, a1
1 F b1

1, for all leaves a
1
1 P F a1

2 and b1
1 P F

B1j

2 , 1 ď j ď s1, because the

path between a1
1 and b1

1 would overlap the component containing a0. Thus, there exists

an edge set E such that F2 ˜E “ F and either ea1 P E or teB11
, eB12

, . . . , eB1s1
u Ď E.

If we make two recursive calls in Case 7.2, this shows that one of them returns “yes”.

If we make only one recursive call, we have s1 “ 1 and sr “ 0. Assume this recursive

call returns “no”. Then ea1 P E. Let F 1 be the forest obtained by cutting eB1
instead

of ea1 , resolving the pair ta1, aru, cutting edge epa1,arq instead of ear if ear P E, and

otherwise cutting the same edges as in E. F and F 1 are identical, except that in F 1, a1

and ar are siblings and no leaf in FB1

2 can reach a leaf not in FB1

2 . The former cannot

introduce any triples incompatible with F1 because a1 and ar are siblings in F1. The

latter cannot introduce any overlapping components because this would imply that

a1
1 „F b1

1, for two leaves a1
1 P F a1

2 and b1
1 P FB1

2 , and we already argued that no such

path can exist. Thus, F 1 is also an MAF of F1 and F2. Finally, a0 is not a root in

F 1 and a0 F 1 a1 because otherwise a0 „F ar. Thus, since there exists an edge set E 1

such that F 1 “ F2 ˜E 1 and eB1
P E 1, the recursive call Maf pF1, F2 ˜ teB1

u, k ´ 1, a0q
returns “yes”, a contradiction.

In Case 7.3, there exists an edge set E such that F “ F2 ˜E and E X teax , eBx
u ‰

H. Otherwise we would have ax „F a0 or a1
x „F b1

x, for two leaves a1
x P F ax

2 and

b1
x R F ai

2 , for all 1 ď i ď m, but we have ax F a0 and the path between a1
x and b1

x

would overlap the component of F that contains a0. Now, if eBx
R E, we construct an

MAF F 1 of F1 and F2 such that a0 is not a root in F 1 and a0 F 1 ai, for all 1 ď i ď m,

and an edge set E 1 such that F 1 “ F2 ˜ E 1 and eBx
P E 1 as in Case 7.2. Thus, the

invocation Maf pF1, F2 ˜ teBx
u, k ´ 1, a0q returns “yes”.

In Case 7.4, finally, one of the two recursive calls Maf pF1, F2 ˜ teaxu, k ´ 1, a0q
or Maf

`

F1, F2 ˜ teBx1
, eBx2

, . . . , eBxsx
u, k ´ sx, a0

˘

must return “yes”, by the same

arguments as in Case 7.2. Thus, if m ą 2 and r ą 2, one of the recursive calls

we make returns “yes”. If m ą 2 and r “ 2, we observe that after cutting edges
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eBx1
, eBx2

, . . . , eBxsx
, ax and a0 satisfy the conditions of Case 7.3, which shows that

we can cut edge B1
x immediately after cutting these edges. Thus, if the recur-

sive call Maf pF1, F2 ˜ teaxu, k ´ 1, a0q returns “no”, the recursive call Maf pF1, F2˜
teBx1

, eBx2
, . . . , eBxsx

, eB1
x
u, k ´ sx, a0

˘

must return “yes” in this case. Finally, if m “
2, since ax F a0 and any path between two leaves a1

x P F ax
2 and b1

x R F ax
2 YF a0

2 would

overlap the component of F that contains a0, ax is a root in F . Thus, the invocation

Maf pF1, F2 ˜ teaxu, k ´ 1, a0q returns “yes” in this case.

Now consider Step 8. In Cases 8.1, 8.2, 8.3, and 8.5, Lemmas 5.4, 5.6, 5.8, 5.7

and the inductive hypothesis show that one of the recursive calls returns “yes” and,

thus, the current invocation returns “yes”.

In Case 8.4, Lemma 5.7 and the inductive hypothesis show that one of the re-

cursive calls Maf pF1, F2 ˜ tea1 , ea2u, k ´ 2, nilq, Maf pF1, F2 ˜ teB1
, eB2

u, k ´ 2, nilq,
Maf pF1, F2 ˜ teB1

u, k ´ 1, a2q,Maf pF1, F2 ˜ teB2
u, k ´ 1, a1q,Maf pF1, F2 ˜ tea1u,

k ´ 1, a2q or Maf pF1, F2 ˜ tea2u, k ´ 1, a1q would return “yes”. Thus, we need to ar-

gue only that we can cut both eBi
and eB1

i
in the third and fourth recursive calls, and

that the last two recursive calls are not necessary when we do not make them.

First consider cutting eB1
and setting a0 “ a2 in the third recursive call. We

require this call to return “yes” only if the other calls return “no”. The forest F 1
2 “

F2 ˜ teB1
u contains a triple a1

1|a1
2b

1
2, where a1

1 P F a1
2 , a1

2 P F a2
2 , and b1

2 P FB2

2 , while

F1 contains the triple a1
1a

1
2|b1

2. Thus, in order to obtain an MAF of F1 and F 1
2 where

a2 exists and is not a root, we need to cut either ea1 or eB1
1
. Since the first and fifth

recursive calls return “no”, however, we know that cutting a1 cannot lead to an MAF

of F1 and F2, and we can cut eB1
1
along with edge eB1

. The case when we cut eB1
2

along with edge eB2
is analogous.

If we do not make the recursive call Maf pF1, F2 ˜ tea1u, k ´ 1, a2q, then l has

exactly one sibling, ai, and its parent pl is either a root or has exactly one sibling, aj.

Thus, the forest F 1
2 “ F2 ˜ tea1u contains a triple a1

2b
1
2|a1

i, where a1
2 P F a2

2 , b1
2 P FB2

2 ,

and a1
i P F ai

2 , while F1 contains the triple a1
2a

1
i|b1

2. In order to obtain an MAF of

F1 and F 1
2 where a2 exists and is not a root, we therefore need to cut either eai

or eBi
“ el. If pl is a root, cutting either edge has the same effect. If pl has a

sibling aj and we cut eai , we can obtain an alternate MAF by cutting el instead
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of eai , resolving tai, aju, cutting edge epai,ajq instead of eaj if eaj P E, and other-

wise cutting the same edges as in E. Thus, we can always replace the recursive call

Maf pF1, F2 ˜ tea1u, k ´ 1, a2q with the call Maf pF1, F2 ˜ tea1 , elu, k ´ 2, a2q with-

out affecting the correctness of the algorithm. If this call returns “yes”, however,

then so does the call Maf
`

F1, F2 ˜ teB1
, eB1

1
u, k ´ 2, a2

˘

because we can yet again

obtain an alternate MAF by cutting edges eB1
and eB2

instead of edges ea1 and

el, resolving ta1, aiu, cutting epa1,aiq instead of eai if eai P E, and otherwise cut-

ting the same edges as in E. Thus, the call Maf pF1, F2 ˜ tea1u, k ´ 1, a2q can be

eliminated altogether. An analogous argument shows that we can eliminate the call

Maf pF1, F2 ˜ tea2u, k ´ 1, a1q.
In Case 8.6, Lemma 5.10 and the inductive hypothesis show that one of the recur-

sive callsMaf pF1, F2 ˜ tea1u, k ´ 1, nilq,Maf pF1, F2 ˜ tea2u, k ´ 1, nilq,Maf pF1, F2˜
teB11

, eB12
, . . . , eB1s1

u, k ´ s1, nil
˘

orMaf pF1, F2 ˜ teB2
u, k ´ 1, nilq would return “yes”.

We need to show that the call Maf pF1, F2 ˜ tea2u, k ´ 1, nilq is not necessary. To see

this, observe that, if l is a root, then cutting ea2 or eB2
has the same effect. If l is

not a root but has a member ai of the current sibling group as a sibling, then we

can obtain an alternate MAF by cutting eB2
instead of ea2 , resolving ta2, aiu, cutting

epa2,aiq instead of eai if ai P E, and otherwise cutting the same edges as in E.

In Case 8.7, finally, the correctness follows from Lemmas 5.9 and 5.10 if we can

show that setting a0 ‰ a1 is correct for the second and fourth recursive calls. This,

however, follows because, if neither the first nor the third recursive call returns “yes”,

then in every MAF F of F1 and F2, a1 exists and there exist two leaves a1
1 P F a1

2 and

b1
1 P F

B1j

2 , for some 1 ď j ď s1, such that a1
1 „F b1

1.

5.4 A 3-Approximation Algorithm for Rooted MAFs of multifurcating

trees

We now show how to modify the FPT algorithm from Section 5.3 to obtain a 3-

approximation algorithm with running time O pn log nq. This algorithm is easy to

implement iteratively, and this may be preferable in practice. In order to minimize

the differences to the FPT algorithm, however, we describe it as a recursive algorithm.

There are four differences to the FPT algorithm:
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• Instead of deciding whether e pT1, T2, F2q ď k, an invocation Maf pF1, F2q re-

turns an integer k2 such that e pT1, T2, F2q ď k2 ď 3e pT1, T2, F2q. Thus, there

is no need for a parameter k to the invocation or for an equivalent of Step 1 of

the FPT algorithm, and whenever Step 2 of the FPT algorithm would have re-

turned “yes”, we now return 0 as our approximation k2 of e pT1, T2, F2q because
F2 is an AF of T1 and T2.

• We execute Step 5 only if the immediately preceding execution of Step 4 chose a

new sibling group. This ensures that this step is executed only once per sibling

group. As discussed in Lemma 5.11, the cost per sibling group ta1, a2, . . . , amu is
O pmq. Thus, the total cost of all executions of Step 5 in all recursive invocations

is O pnq. After executing Step 5, implemented as discussed in Lemma 5.11,

every node p in F2 has at most one node ai as a child, which is stored as p’s

representative rp. This allows us to merge sibling pairs tai, aju that arise as

a result of edge cuts after we executed Step 5 without re-executing this step:

Whenever we contract a degree-2 vertex whose only child is a node ai in the

current sibling group and whose parent is p, we set rp :“ ai if rp “ nil; otherwise

we resolve the sibling pair tai, rpu as in Step 5 and store pai, rpq as p’s new

representative.

• We do not execute Step 6, as this would require linear time per invocation.

Instead, we assign a depth estimate dx to each node x and use it to choose the

order in which to inspect the members of the current sibling group. Initially, dx

is x’s depth in T2, which is easily computed in linear time for all nodes x P T2. In

general, dx is one more than the depth of px in T2, where px is x’s parent in F2.

In particular, dx is an upper bound on x’s depth in F2 and, for two nodes x and

y with LCA l, we have dy ą dx if x is a child of l and y is not. When choosing

a new sibling group in Step 4, we insert all group members into a max-priority

queue Q, with their depth estimates as their priorities. When contracting the

degree-2 parent px of a node x, we set dx :“ dpx . If x is a member of the

current sibling group, we update its priority in Q. When resolving a sibling

pair tai, aju, we remove ai and aj from Q, set dpai,ajq :“ dai , and insert pai, ajq
into Q. Finally, when cutting an edge eai , for a member ai of the current sibling
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group, we remove ai from Q. These updates take O plog nq time per modification

of F2. Since we modify F2 at most O pnq times, the total cost of all priority

queue operations is O pn log nq.

• We do not distinguish between Steps 7 and 8 (having no concept of a0) and also

do not distinguish between the various cases of the steps. Instead, we have a

single Step 7 with four cases that each make one recursive call (see Figure 5.7).

7.1. If m “ 2 and this sibling group was chosen in Step 4 of the current invo-

cation, make one recursive call Maf
`

F1, F2 ˜ tea1 , epa1 , ea2u
˘

and return 3

plus its return value.

7.2. If m “ 2 and this sibling group was chosen in Step 4 of a previous invoca-

tion, make one recursive call Maf
`

F1, F2 ˜ tea1 , epa1 , ea2 , epa2 u
˘

and return

4 plus its return value.

7.3. If m ą 2 and this sibling group was chosen in Step 4 of the current in-

vocation, let a1 and a2 be the two entries with maximum priority in Q,

ordered so that da1 ě da2 . If a2’s parent has a single sibling, this sibling

is a member aj of the current sibling group, and a1’s parent is either a

root or has a sibling that is not a member of the current sibling group, let

x “ 2; otherwise let x “ 1. Remove ax from Q, make one recursive call

Maf
`

F1, F2 ˜ teax , epax u
˘

, and return 2 plus its return value.

7.4. If m ą 2 and this sibling group was chosen in Step 4 of a previous invoca-

tion, delete the node a1 with maximum priority from Q, make one recursive

call Maf
`

F1, F2 ˜ tea1 , epa1 u
˘

, and return 2 plus its return value.

Using these modifications, we obtain the following theorem.

Theorem 5.14. Given two rooted X-trees T1 and T2, a 3-approximation of e pT1, T2, T2q “
dSPR pT1, T2q can be computed in O pn log nq time.

Proof. We use the algorithm just described. This algorithm consists of Steps 2–5 of

the FPT algorithm plus the modified Step 7 above. In addition, there is a linear-time

preprocessing step for computing the initial depth estimates of all nodes of T2. We

argued already that all executions of Step 5 take linear time in total. In Lemma 5.11,
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(a) m = 2: A single application of Case 7.1 resolves the sibling group {a1, a2}.

(b) m = 4: A single application of Case 7.3 resolves the sibling group {a1, a2, a3, a4}.

(c) The set of edges cut on the same input if we did not give preference to a2 in Case 7.3.
Since cutting edge eB2

makes the sibling group agree with F1 in this case, this would
not give a 3-approximation.

a2a1

7.1

a2a1

7.3

a1 B1
a2

B2

a3

a4

a1 B1
a2

B2

a3 a4

(d) m = 4: The optimal solution needs to cut 2 edges, while our algorithm cuts 6.

(e) The sequence of cuts on the same input if we did not give preference to a2 in Case 7.3.
Note that we obtain the same forest.

7.3 7.2
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B11
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Figure 5.7: Illustration of the various cases of Step 7 of the approximation algorithm.
Only 9F2 is shown. Edges that are cut in each step are shown in bold.
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we showed that each execution of Step 2, 3 or 4 of the FPT algorithm takes constant

time. In the approximation algorithm, if Step 4 chooses a new sibling group, it

also needs to insert the members of the sibling group into the priority queue. This

takes O pm logmq time, O pn log nq in total for all sibling groups. Each execution of

Step 7 takes O plog nq time, constant time for the modifications of F2 it performs and

O plog nq time for the O p1q corresponding priority queue operations. Thus, to obtain

the claimed time bound of O pn log nq for the entire algorithm, it suffices to show that

each step of the algorithm is executed O pnq times.

This is easy to see for Steps 3, 5, and 7: Each execution of Step 5 reduces the

number of nodes in Rt by one, the number of nodes in Rt never increases, and initially

Rt contains the n leaves of T1. Each execution of Step 3 or 7 cuts at least one edge

in F1 or F2, and initially these two forests have O pnq edges.

For Steps 2 and 4, we observe that they cannot be executed more often than

Steps 3, 5, and 7 combined because any two executions of Step 2 or 4 have an

execution of Step 3, 5 or 7 between them.

It remains to bound the approximation ratio of the algorithm. First observe

that the value k1 returned by the algorithm satisfies k1 ě e pT1, T2, T2q because the

input forest F2 of the final invocation Maf pF1, F2q is an AF of T1 and T2 and the

algorithm returns the number of edges cut to obtain F2 from T2. To prove that

k1 ď 3e pT1, T2, T2q, let r be the number of descendant invocations of the current

invocation Maf pF1, F2q, not counting the current invocation itself, and let k2 be its

return value. We use induction on r to prove that k2 ď 3e pT1, T2, F2q if Maf pF1, F2q
chooses a new sibling group in Step 4. We call such an invocation a master invocation.

We also consider the last invocation of the algorithm to be a master invocation.

For two master invocations without another master invocation between them, all

invocations between the two invocations are slave invocations of the first of the two

master invocations, as they manipulate the sibling group chosen in this invocation.

As a base case observe that, if r “ 0, then e pT1, T2, F2q “ 0 and the invocation

Maf pF1, F2q returns k2 “ 0 in Step 2. For the inductive step, consider a master

invocation I “ Maf pF1, F2q with r ą 0, and let I 1 “ Maf pF 1
1, F

1
2q be the first

master invocation after I. By the inductive hypothesis, I 1 returns a value k3 such

that k3 ď 3e pT1, T2, F
1
2q.
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If m “ 2 in invocation I, we invoke Case 7.1, which cuts edges ea1 , epa1 , and ea2

and, thus, makes the sibling group agree between F1 and F2 (see Figure 5.7(a)). This

implies that k2 “ k3 ` 3. By Lemma 5.5, we have e pT1, T2, F
1
2q ď e pT1, T2, F2q ´ 1.

Since k3 ď 3e pT1, T2, F
1
2q, this shows that k2 ď 3e pT1, T2, F2q.

If m ą 2 in invocation I, this invocation applies Case 7.3, each of its slaves

applies Case 7.2 or 7.4, and Case 7.2 is applied at most once. Since the sibling

group ta1, a2, . . . , amu does not agree between F1 and F2, at least one edge cut in

F2 is necessary to make the sibling group agree between F1 and F2. We distinguish

whether one or more edge cuts are required.

If one cut suffices (Figures 5.7(b) and 5.7(c)), then there are at most two com-

ponents of F2 that contain members of the current sibling group because resolving

overlaps in F1 between q components of F2 requires at least q ´ 1 cuts in F2. Conse-

quently, exactly one component C contains at least two members of the sibling group.

The existence of at least one such component follows because m ą 2. If we had an-

other component C 1 containing at least two members of the current sibling group,

then at least one cut would be required in each of C and C 1 to make the sibling group

agree between F1 and F2, but we assumed that one cut suffices.

For a single cut to suffice to make the current sibling group agree between F1 and

F2, C must consist of a single path of nodes x1, x2, . . . , xt such that, for 1 ď j ă t,

xj has two children: xj`1 and a member aij of the current sibling group; xt has a

member ait of the current sibling group as a child, as well as a group Bit of siblings

of ait such that no member ah of the current sibling group belongs to F
Bit

2 . Thus,

cutting edges eait and epait
makes the sibling group agree between F1 and F2. Now

observe that ait and ait´1
are the two members of the current sibling group with

the greatest depth estimates in C. If there exists another component C 1 of F2 that

contains a member ah of the current sibling group, then ah is the only such node

in C 1. Thus, the two maximum priority entries in Q are either ait and ait´1
or ait

and ah. In both cases, invocation I cuts edges eait and epait
because ah either has

no parent or its parent does not have a member of the current sibling group as

a sibling, and ait is preferred over ait´1
by invocation I because ait ’s parent does

have a member of the current sibling group as its only sibling (namely ait´1
) and

has a greater depth estimate than ait´1
. Thus, in I’s child invocation, the current
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sibling group agrees between F1 and F2, which implies that this child invocation is

I 1 and k2 “ k3 ` 2. Moreover, since the sibling group does not agree between F1

and F2 in invocation I, we must have e pT1, T2, F
1
2q ď e pT1, T2, F2q ´ 1 and, hence,

k2 “ k3 ` 2 ď 3e pT1, T2, F
1
2q ` 2 ď 3e pT1, T2, F2q.

For the remainder of the proof assume at least two cuts are necessary to make the

sibling group ta1, a2, . . . , amu agree between F1 and F2 (Figures 5.7(d) and 5.7(e)), and

assume the members of the sibling group are ordered by their depth estimates. Let

i1, i2, . . . , is be the indices such that invocation I and its slaves cut edges teaij , epaij |
1 ď j ď su and, for all 1 ď j ď s, let Bij be the set of aij ’s siblings at the time we cut

edges eaij and epaij
. Assume for now that invocation I cuts edges ea1 and epa1 . Then,

for all 1 ď j ď s, F
Bij

2 contains no member of the current sibling group because such

a member ah would have a greater depth estimate than aij and hence eah would have

been cut before eaij . This implies that there exists an edge set E such that F2 ˜E is

an MAF of F1 and F2 and |E X teaij , eBij
| 1 ď j ď su| ě s ´ 1. Since cutting edges

eaij and eBij
produces the same result as cutting edges eaij and epaij

, this shows that

e pT1, T2, F
1
2q ď e pT1, T2, F2q ´ ps ´ 1q.

If s ě 3, we have 2s ď 3ps´ 1q and, hence, k2 ď k3 ` 3ps´ 1q ď 3pe pT1, T2, F
1
2q `

s ´ 1q ď 3e pT1, T2, F2q. If s ă 3, we observe that e pT1, T2, F
1
2q ď e pT1, T2, F2q ´ 2

because the current sibling group agrees between F1 and F 1
2 and we assumed that at

least two cuts are necessary in F2 to make this sibling group agree between F1 and

F2. Thus, k
2 ď k3 ` 2s ď 3e pT1, T2, F

1
2q ` 4 ď 3e pT1, T2, F2q.

It remains to deal with the case when invocation I cuts edges ea2 and epa2 . If

a1 R FB2

2 , then again F
Bij

2 contains no member of the current sibling group, for

all 1 ď j ď s, and the same argument as above shows that k2 ď 3e pT1, T2, F2q. If

a1 P FB2

2 , then observe that either the path in F2 between a1 and pa2 has at least

two internal nodes or a2 has at least two siblings because otherwise invocation I

would prefer a1 over a2 because a1 has the greater depth estimate. This implies

that a2 has the same parent before and after cutting edges ea1 and epa1 , and a1 has

the same parent before and after cutting edges ea2 and epa2 . Thus, I and its child

invocation cut the same four edges ea1 , epa1 , ea2 , and epa2 as would have been cut if

invocation I had not preferred a2 over a1. The same argument as above now shows

that k2 ď 3e pT1, T2, F2q.
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5.5 Conclusions

We developed efficient algorithms for computing MAFs of multifurcating trees. Our

fixed-parameter algorithm achieves the same running time as in the binary case and

our 3-approximation algorithm achieves a running time of O pn log nq, almost match-

ing the linear running time for the binary case. Implementing and testing our algo-

rithms will be the focus of future work.

Two other directions to be explored by future work are practical improvements

of the running time of the FPT algorithm presented here and extending our FPT al-

gorithm so it can be used to compute maximum acyclic agreement forests (MAAFs)

and, hence, the hybridization number of multifurcating trees. To speed up our FPT

algorithm for computing MAFs, it may be possible to extend the reduction rules used

by Linz and Semple [62] for computing MAAFs of multifurcating trees so they can

be applied to MAF computations, and combine them with the FPT algorithm in this

chapter. The fastest fixed-parameter algorithms for computing MAAFs of binary

trees [2, 33, 102], including the algorithm of Chapter 4, are extensions of the binary

MAF algorithms of Whidden and Zeh [103] and Whidden et al. [100] (Chapter 3).

These algorithms were developed by examining which search branches of the binary

MAF algorithm get “stuck” with cyclic agreement forests and consider cutting ad-

ditional edges to avoid these cycles [2] or refine cyclic agreement forests to acyclic

agremeent forests [33, 102]. Similarly, Chen and Wang [31] recently extended the

MAF fixed-parameter algorithm for two binary trees to compute agreement forests

of multiple binary trees using an iterative branching approach. The proofs of various

structural lemmas in this chapter prove that any MAF can be obtained by cutting

an edge set that includes certain edges. To prove this, we started with an arbitrary

MAF and an edge set such that cutting these edges yields this MAF, and then we

modified this edge set so that it includes the desired set of edges without changing

the resulting forest. As in the binary case [102] (Chapter 4), the same lemmas apply

also to MAAFs; since the modifications in the proofs do not change the resulting AF,

the only needed change in the proof is to start with an edge set such that cutting it

yields an MAAF. Thus, numerous lemmas in this chapter may also form the basis for

an efficient algorithm for computing MAAFs.
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Finally, we note that our fixed-parameter algorithm becomes greatly simplified

when comparing a binary tree to a multifurcating tree. This is common in practice

when, for example, comparing many multifurcating gene trees to a binary reference

tree or binary supertree, as will be shown in Chapter 8. To see this, suppose F1 is

binary, that is, m “ 2 in every case of the FPT algorithm. Then only Cases 8.1,

8.2 and 8.3 apply in Step 8 and Step 7 never applies. Using our observation that

cutting eB2
is not necessary in Case 8.2 when m “ 2, our algorithm becomes similar

to the MAF algorithm for binary trees [100] (Chapter 3). We further note, in the

interest of practical efficiency, that cutting a2 is unnecessary in this case when the

parent of a1 is a binary node (and, indeed, our algorithm is then identical to the

algorithm of [100] (Chapter 3) when applied to two binary trees).



Chapter 6

Edge Protection: Computing MAFs of Binary Trees in

O
`

2kn
˘

-time

6.1 Introduction

In this chapter, we present an algorithm for computing the SPR Distance of two binary

rooted trees in O
`

2kn
˘

time. This algorithm is a refinement for our earlier algorithm

with running time O
`

2.42kn
˘

(Chapter 3) and achieves its improved running time

using a novel edge protection scheme that reduces the search space to be explored by

the algorithm. This is stated formally in the following theorem.

Theorem 6.1. Given two rooted binary phylogenetic trees with n leaves, it takes

O
`

2kn
˘

time to decide whether their SPR distance is at most k.

As with our previous algorithms, Theorem 6.1 can be used to compute the SPR

distance between two given phylogenies by starting with a guess of k “ 0 for the

distance and repeatedly trying larger values of k until the algorithm returns an affir-

mative answer. Since the last invocation dominates the running time, this gives the

following corollary.

Corollary 6.2. Given two rooted binary phylogenetic trees with n leaves, it takes

O
`

2kn
˘

time to compute their SPR distance, where k is the computed distance.

6.2 Preliminaries

In this section we introduce three new lemmas that will allow us to state our subse-

quent proofs in an intuitive way. The first is a simplification of Lemma 2.4; Lemma 6.3

states that forests of other forests do not contain incompatible triples and overlapping

components. The second, Lemma 6.4 shows that after cutting a set of edges that are

sufficient to obtain an agreement forest and any set of additional edges the result is

100
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still an agreement forest. The third, Lemma 6.5, shows that, for a tree T1 with sibling

pair pa, cq and a forest F2, if we cut each pendant edge between a and c in F2 then it

is either unnecessary to cut any edges on the path between a and c in F2 or all such

edges can be replaced by cutting the parent edge of the LCA of a and c in F2.

Lemma 6.3. Given two forests F1 and F2 with label set X, F2 is a forest of F1 if and

only if all triples of F2 are compatible with F1 and no two components of F2 overlap

in F1.

Lemma 6.4. Assume T1 and T2 are two X-trees, F2 is a forest of T2, and E is a

subset of edges of F2 such that F2 ˜ E is an agreement forest of T1 and T2. Then

F2 ˜ E 1 is also an agreement forest of T1 and T2, for any superset E 1 Ě E.

Proof. It suffices to prove the lemma for the case when |E 1 z E| “ 1. The claim

for arbitrary E 1 Ě E then follows by applying this case inductively. By Lemma 6.3,

we have to prove that all triples of F2 ˜ E 1 are compatible with T1 and that no two

components of F2 ˜ E 1 overlap in T1. The former is obvious because the triples of

F2 ˜ E 1 are a subset of the triples of F2 ˜ E and F2 ˜ E is an AF of T1 and T2. To

prove the latter, let E 1 z E “ teu, let C be the component of F2 ˜ E that contains

e, and let C1 and C2 be the two components of C ˜ teu. C1 and C2 are the only

two components of F2 ˜ E 1 that are not components of F2 ˜ E. Now assume two

components C 1 and C2 of F2 ˜ E 1 overlap in T1. If tC 1, C2u X tC1, C2u “ H, then C 1

and C2 are also components of F2 ˜ E, a contradiction because no two components

of F2 ˜ E overlap in T1. If |tC 1, C2u X tC1, C2u| “ 1, then w.l.o.g. C 1 “ C1 and

C2 R tC1, C2u. Since C1 and C2 overlap in T1, so do C and C2, a contradiction again

because C and C2 are components of F2 ˜ E. Finally, if C1 and C2 overlap in T1,

then there exists an edge e1 of T1 and four leaves u, v P C1 and x, y P C2 such that e1

belongs to the paths from u to v and from x to y. Thus, w.l.o.g. ux|vy is a quartet of

C. On the other hand, since e splits C into C1 and C2, C also contains the quartet

uv|xy. This is a contradiction because C cannot contain both quartets. This shows

that no two components of F2 ˜ E 1 overlap in T1. Since we argued above that all

triples of F2 ˜ E 1 are compatible with T1, F2 ˜ E 1 is an AF of T1 and T2.

Lemma 6.5. Assume T1 and T2 are two X-trees, F1 is a forest of T1, F2 is a forest

of T2, and E is a subset of edges of F2 such that F2 ˜ E is an agreement forest of
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T1 and T2. Assume further there exists a subset of edges E2 Ď E such that pa, cq is

a sibling pair of F1 and F2 ˜ E2, let E 1 be the set of edges in E that belong to the

path from a to c in F2, and let u be the LCA of a and c in F2. Let E0 :“ E z E 1 if

|E 1| ď 1, and E0 :“ E z E 1 Y teuu if |E 1| ě 2. Then F2 ˜ E0 is also an agreement

forest of T1 and T2.

Proof. Consider edge sets E, E 1, E2, and E0 as in the lemma. We can assume w.l.o.g.

that E 1 ‰ H because otherwise E0 “ E. By Lemma 6.3, we have to prove that all

triples of F2 ˜ E0 are compatible with T1 and that no two components of F2 ˜ E0

overlap in T1.

First consider the triples of F2 ˜ E0. Every such triple that is also a triple of

F2 ˜E is compatible with T1 because F2 ˜E is an AF of T1 and T2. Every triple xy|z
of F2 ˜ E0 that is not a triple of F2 ˜ E involves at least one leaf in F a

2 Y F c
2 . If all

three leaves of xy|z belong to F a
2 YF c

2 , the triple is compatible with T1 because pa, cq
is a sibling pair of both F1 and F2 ˜ E2 Ě F2 ˜ E0. If |E 1| ě 2, then eu P E0. Thus,

if at most two leaves of xy|z belong to F a
2 Y F c

2 , we must have |E 1| “ 1. If exactly

two leaves of xy|z belong to F a
2 Y F c

2 , we must have x, y P F a
2 Y F c

2 and z R F a
2 Y F c

2 .

This implies that xy|z is also a triple of F1, and hence of T1. Finally, if exactly one

leaf belongs to F a
2 Y F c

2 , assume w.l.o.g. that x P F a
2 Y F c

2 and y, z R F a
2 Y F c

2 . Since

|E 1| “ 1 and pa, cq is a sibling pair of F2 ˜ E0, there exists a leaf x1 P F a
2 Y F c

2 such

that x1 „ F2 ˜ Eu. Since xy|z is a triple of F2 ˜ E0 and E and E0 contain the same

edges outside of F u
2 , we also have y „ F2 ˜ Eu „ F2 ˜ Ez. Thus, x1y|z is a triple of

F2 ˜E. This triple is incompatible with T1 because xy|z is and x and x1 are the only

two leaves in the two triples that belong to F a
2 YF c

2 . However, this is a contradiction

because F2 ˜ E is an AF of T1 and T2.

It remains to show that no components of F2 ˜ E0 overlap in T1. If |E 1| ď 1, the

only component of F2 ˜ E0 that is not a component of F2 ˜ E is the component C

containing a and c. Thus, if two components of F2 ˜E0 overlap in T1, one of them is

C. Let C 1 be the other component, and let C2 be the component of F2 ˜E containing

the leaf x1 from the previous paragraph. Since pa, cq is a sibling pair of F1 and F2˜E0,

the edge of T1 shared by C and C 1 does not belong to F
pa
1 . Hence, C2 also contains

this edge, and C 1 and C2 also overlap, a contradiction because F2 ˜E is an AF of T1

and T2.
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If |E 1| ě 2, we have eu P E0, and the only two components of F2 ˜ E0 that may

not be components of F2 ˜E are the ones containing u and pu. Let C1 and C2 denote

these two components. C1 cannot overlap any component of F2 ˜ E0 because all its

leaves belong to F a
2 Y F c

2 and pa, cq is a sibling pair of F1. C2 cannot overlap any

component of F2 ˜ E0 because we have just argued that C2 does not overlap C1 and

any other component C 1 overlapped by C2 would also have to overlap the component

C of F2 ˜E containing pu, but this is impossible because no two components F2 ˜E

overlap in T1.

6.3 The Algorithm

Our new algorithm is an extension of our previous algorithm with running time

O
`

2.42kn
˘

(Chapter 3). We summarize this algorithm in Section 6.3.1, using more

intuitive notation that generalizes to the cases of the new algorithm. In Section 6.3.2,

we discuss our edge protection scheme and introduce refinements of the branching

rules used in the algorithm in Section 6.3.1. In Section 6.3.3, we present the complete

algorithm using edge protection and the new branching rules. The analysis of the

algorithm, and thus the proof of Theorem 6.1, is presented in Section 6.3.5.

6.3.1 The Previous Algorithm

Our previous O
`

2.42kn
˘

-time algorithm for computing an MAF of two phylogenetic

trees applied a depth-bounded search approach. An invocation m pF1, F2, kq of our

algorithm takes a forest F1 of T1, a forest F2 of T2, and a parameter k as inputs and

returns True or False depending on whether or not e pT1, T2, F2q ď k. To make

this decision, the algorithm identifies a small number of edge sets E1, E2, . . . , Ek of

F2 such that e pT1, T2, F2q ď k if and only if e pT1, T2, F2 ˜ Eiq ď k ´ |Ei|, for at least
one such edge set Ei. We therefore make a recursive call m pF 1

1, F2 ˜ Ei, k ´ |Ei|q,
for each such edge set Ei, and return True if and only if one of these recursive calls

does. F 1
1 is a forest F 1

1 :“ F1 ˜ E 1 obtained by cutting an appropriate set E 1 of edges

of F1. This edge set is chosen so that we make progress towards obtaining an AF

of T1 and T2 also from F1 while maintaining the property that, for every invocation

m pF1, F2, kq and every subset E of edges of F2, F2 ˜ E is an AF of T1 and T2 if
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and only if it is an AF of F1 and F2. The top-level invocation of the algorithm is

m pT1, T2, kq and thus decides whether dSPR pT1, T2q “ e pT1, T2, T2q ď k.

Each recursive call m pF1, F2, kq considers a sequence of sibling pairs of F1 until it

finds a sibling pair that is “non-trivial” in a sense we make precise below. To help the

invocation decide which sibling pairs to consider, the input forests F1 and F2 passed

to the invocation are represented as follows: The set of components of F1 can be

divided into two sets. The first set contains a single tree 9T1. All components in the

second set are also components of F2. We denote the forest of these components by F .

Similarly, the components of F2 can be divided into two sets. The components in the

first set form a forest 9F2 with the same label set as 9T1, while the components in the

second set are the components of F . We now represent F by the set Rd (roots-done)

of roots of its components. For the representation of 9T1, we use a set Rt (roots-todo)

of nodes of 9T1 that exist also in 9F2 and such that every leaf of 9T1 has exactly one

ancestor in Rt. For the top-level invocation m pT1, T2, kq, Rt contains all leaves of T1,

and Rd is empty.

An invocation m pF1, F2, kq only considers sibling pairs that have both their mem-

bers in Rt. For such a sibling pair pa, cq of F1, if a is a root of F2, we can make

progress towards an AF of F1 and F2 by cutting edge ea in F1 and moving a from Rt

to Rd. In other words, we move the component F a
1 “ F a

2 to F . The same analysis

applies if c is a root of F2. Cutting ea or ec eliminates the sibling pair pa, cq, and we

continue to consider the next sibling pair. If a and c are siblings in F2, we eliminate

the sibling pair pa, cq by removing a and c from Rt and adding their parent to Rt

and again continue to consider the next sibling pair. We consider these two types of

sibling pairs to be trivial. A non-trivial sibling pair is a sibling pair pa, cq of F1 such

that neither a nor c is a root of F2 and a and c are not siblings in F2. Such a sibling

pair allows us to identify sets of edges to cut in F2, in order to make progress towards

an AF of T1 and T2. In [101, 102] (Chapter 3), we distinguished the following three

cases:

Separate components (AC): If a F2
c, then make two recursive calls m pF 1

1,

F2 ˜ teau, k ´ 1q and m pF 1
1, F2 ˜ tecu, k ´ 1q and return True if and only if

one of these recursive calls does.
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One pendant subtree (B): If a „F2
c and the path from a to c in F2 has exactly

one pendant node b, then make one recursive call m pF 1
1, F2 ˜ tebu, k ´ 1q and

return its answer.

Multiple pendant subtrees (ABC): If a „F2
c and the path from a to c in

F2 has q ě 2 pendant nodes b1, b2, . . . , bq, then make three recursive calls

m pF 1
1, F2 ˜ teau, k ´ 1q, m

`

F 1
1, F2 ˜ teb1 , eb2 , . . . , ebqu, k ´ q

˘

, and m pF 1
1,

F2 ˜ tecu, k ´ 1q and return True if and only if one of these recursive calls

does.

In all three cases, F 1
1 is the forest obtained from F1 by dealing with trivial sibling pairs

as described above before finding the non-trivial sibling pair pa, cq that triggers the

recursive calls. Since the members of a non-trivial sibling pair cannot be siblings in

F2, one of these three cases applies to every non-trivial sibling pair. The case labels

in parentheses refer to the sets of edges the algorithm cuts in each of these cases.

The correctness of these three cases follows from the following three lemmas shown

in [101,102] (Chapter 3).

Lemma 6.6 (Separate components). If pa, cq is a non-trivial sibling pair of F1

and a F2
c, then e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1 or e pT1, T2, F2 ˜ tebuq “

e pT1, T2, F2q ´ 1.

Lemma 6.7 (One pendant node). If pa, cq is a non-trivial sibling pair of F1, a „F2
c,

and the path from a to c in F2 has exactly one pendant node b, then e pT1, T2, F2 ˜ tebuq
“ e pT1, T2, F2q ´ 1.

Lemma 6.8 (Multiple pendant nodes). If pa, cq is a non-trivial sibling pair of F1,

a „F2
c, and the path from a to c in F2 has q ě 2 pendant nodes b1, b2, . . . , bq,

then then e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1, e
`

T1, T2, F2 ˜ teb1 , eb2 , . . . , ebqu
˘

“
e pT1, T2, F2q ´ q or e pT1, T2, F2 ˜ tebuq “ e pT1, T2, F2q ´ 1.

The base case of the recursion (when no further recursive calls are made) is reached

when either k ă 0 or Rt ď 2. In the former case, the algorithm can immediately

answer False because e pT1, T2, F2q ě 0 ą k, for any forest F2 of T2. In the latter

case, it can answer True because Rt ď 2 implies that 9F2 is a forest of 9T1, that is, F2

is a forest of F1 and thus an agreement forest of T1 and T2.
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As shown in [101, 102] (Chapter 3), each recursive call of the algorithm we have

just sketched takes linear time, the number of recursive calls is a function of k, and

the worst case is when each recursive call applies Case ABC with q “ 2. In this

case, the number of recursive calls is given by the recurrence Ipkq “ 1 ` 2Ipk ´ 1q `
Ipk´2q “ O

`

p1 `
?
2qk

˘

“ O
`

2.42k
˘

, and the running time of the algorithm follows.

An important observation to be made is that the number of recursive calls would

be bounded by the recurrence Ipkq “ 1 ` 2Ipk ´ 1q if we did not use Case ABC.

This would give Ipkq “ O
`

2k
˘

and, thus, a running time of O
`

2kn
˘

. Thus, the main

challenge in obtaining a faster algorithm is to reduce the cost of Case ABC.

6.3.2 Edge Protection and New Branching Rules

In order to improve on the running time of our previous algorithm, we introduce

the concept of protected edges we do not need to consider cutting in recursive calls.

The intuition is the following: Consider Case ABC. Its first recursive call cuts edge

ea, its third recursive call cuts edge ec. Denote these two invocations by Ia and

Ic, respectively. The branch of the search started by invocation Ic does not need

to consider cutting edge ea because, if it is necessary to cut this edge in order to

obtain an AF of the desired size, such an AF would be found in the branch started by

invocation Ia. Thus, we protect edge ea in invocation Ic and thereby forbid invocation

Ic and all its descendant invocations to cut edge ea. This reduces the exploration of

identical combinations of edge cuts in different branches of the algorithm. We used

this idea before in [99] (Chapter 5), in order to obtain an O
`

2.42kn
˘

-time algorithm

for computing the SPR distance between multifurcating trees. The main difference

to [99] (Chapter 3) is that in [99] (Chapter 3) the input to any recursive call contained

at most one protected edge, while it seems necessary to introduce potentially many

protected edges in order to achieve a running time of O
`

2kn
˘

even for binary trees.

This complicates the analysis substantially.

The exact rules for dealing with protected edges in a given invocation m pF1, F2, kq
are as follows: In addition to the representation of F1 and F2 discussed in Section 6.3.1,

the input of this invocation includes a labelling of the edges of F1 and F2 as protected

or not. The invocation now processes trivial sibling pairs as in Section 6.3.1 and

thereby constructs a forest F 1
1. Once it finds a non-trivial sibling pair pa, cq, it decides
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which of the three cases AC, B or ABC applies to it. However, if the applicable case

specifies that a recursive call m pF 1
1, F2 ˜ Ei, k ´ |Ei|q should be made, we make this

recursive call only if Ei does not contain any protected edge, nor an edge incident

to a root of F2 whose sibling edge is protected. When we do make a recursive call

m pF 1
1, F2 ˜ Ei, k ´ |Ei|q, cutting each edge xpx in Ei turns px into a degree-2 node

that is suppressed in F2 ˜ Ei. This effectively replaces the remaining two edges e1

and e2 incident to px with a single edge e in F2 ˜ Ei. If at least one of e1 and e2 is

protected in F2, then e inherits this protection in F2 ˜ Ei.

While it should be clear now how the edge protection affects the set of recursive

calls an invocation can make, we have not discussed how edges become protected

in the first place. Only Case ABC introduces protected edges. We also split it

into two sub-cases, depending on whether the path from a to c in F2 has q “ 2 or

q ě 3 pendant subtree. This gives us the following four cases of the algorithm (see

Figure 6.1). In the description of these cases, we use F ˛ E to indicate that the

edges in E should be labelled as protected in F . When we say “make a recursive call

m pF 1
1, F2 ˜ Ei, k ´ |Ei|q”, this should from now on be read as “make this call unless

Ei includes a protected edge”.

Separate components (AC): If a F2
c, then make two recursive calls m pF 1

1,

F2 ˜ teau, k ´ 1q and m pF 1
1, F2 ˜ tecu, k ´ 1q and return True if and only if

one of these recursive calls does.

One pendant subtree (B): If a „F2
c and the path from a to c in F2 has exactly

one pendant node b, then make one recursive call m pF 1
1, F2 ˜ tebu, k ´ 1q and

return its answer.

Two pendant subtrees (A2BC): If a „F2
c and the path from a to c in F2 has

two pendant nodes b1 and b2, we distinguish whether or not ec is protected in F2.

If ec is not protected, then make three recursive calls m pF 1
1, F2 ˜ teau, k ´ 1q,

m pF 1
1, F2 ˜ teb1 , eb2u, k ´ 2q, andm pF 1

1 ˛ teau, F2 ˛ tea, eb1 , eb2u ˜ tecu, k ´ 1q. If
ec is protected, then make two recursive calls m pF 1

1, F2 ˜ teb1 , eb2u, k ´ 2q and

m pF 1
1, F2 ˛ teb1 , eb2u ˜ teau, k ´ 1q. In either case, return True if and only if

one of these recursive calls does.
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Multiple pendant subtrees (A3BC): If a „F2
c and the path from a to c in

F2 has q ě 3 pendant nodes b1, b2, . . . , bq, then make three recursive calls

m pF 1
1, F2 ˜ teau, k ´ 1q, m

`

F 1
1, F2 ˜ teb1 , eb2 , . . . , ebqu, k ´ q

˘

, andm pF 1
1 ˛ teau,

F2 ˛ teau ˜ tecu, k ´ 1q and return True if and only if one of these recursive

calls does.

The effect of protecting edges is to reduce the number of recursive calls made in the

different cases of our algorithm. This idea is nearly sufficient to achieve the desired

running time of O
`

2kn
˘

, except in a small number of special cases. We deal with

these special cases by introducing additional branching rules that deal with these

cases explicitly (see Figures 6.2 and 6.3).

Reverse Case B (RB): If a’s sibling b in F2 exists in F1 and is a sibling of a and

c’s common parent in F1, then make one recursive call m pF 1
1, F2 ˜ tecu, k ´ 1q

and return its answer. Otherwise, if c’s sibling d in F2 exists in F1 and is

a sibling of a and c’s common parent in F1, then make one recursive call

m pF 1
1, F2 ˜ teau, k ´ 1q and return its answer.

Chained Reverse Case B (RB*): This case applies only if a „F2
c. Assume that

c is a child of a and c’s LCA in F2 and, hence, that a is not. Let b1, b2, . . . , bq

be the pendant nodes of the path from a to c in F2, numbered in their order of

appearance along the path from a to c. If nodes b1, b2, . . . , bq exist in F1 and the

sibling x of a and c’s common parent in F1 is the root of a subtree consisting

of a path of nodes x1, x2, . . . , xq´1 “ x such that b1 and b2 are the children of

x1 and, for 1 ă i ă q, xi is the parent of xi´1 and bi`1, then make one recursive

call m pF 1
1, F2 ˜ teau, k ´ 1q and return its answer.

Two pendant subtrees and a common uncle (2B): If a „F2
c, the path from

a to c has exactly two pendant nodes b1 and b2, and the sibling x of a and c’s

common parent in F1 exists in F2 and is the sibling of the LCA of a and c in F2,

then make one recursive call m pF 1
1, F2 ˜ teb1 , eb2u, k ´ 2q and return its answer.

Protected uncle (BCY): Assume a „F2
c, the sibling x of a and c’s commont

parent in F1 exists in F2, and x’s parent edge ex is protected in F2. If the

path from a to c in F2 has q ě 2 pendant nodes b1, b2, . . . , bq and x is a
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m pF1, F2, kq:

1. (Failure) If k ă 0, return False.

2. (Success) If |Rt| ď 2, return True.

3. Choose a sibling pair pa, cq according to the depth rule.

4. If a and c are siblings in F2, remove a and c from Rt and add their parent to
Rt, return to Step 2.

5. If a is a root of F2, cut edge ea in F1 and move a from Rt to Rd, return to
Step 2.

6. If c is a root of F2, cut edge ec in F1 and move c from Rt to Rd, return to Step 2.

7. Consider cases SC, B, RB, RB*, 2B, BCY, A2BC, and A3BC in order and
choose the first case that applies. Make the recursive calls specified in this case
and return True if and one of them does; otherwise return False.

Figure 6.5: The algorithm for deciding whether e pT1, T2, F2q ď k.

of 9F2 or whose deepest member has the greater depth in 9F2. Remaining

ties are broken arbitrarily.

This gives us the algorithm in Figure 6.5. The order in which the different cases are

considered in Step 7 is important because, for example, Case A2BC or A3BC applies

also if Case 2B or BCY applies, but we need to give preference to the latter two cases

if we want to guarantee a running time of O
`

2kn
˘

.

6.3.4 Correctness

We split the correctness proof into two parts. First we argue that, if we ignore the

protection of edges, our algorithm succeeds in finding an AF of size at most k ` 1

if such an AF exists. Then we show that, even though edge protection leads us to

ignore a number of search branches that would have been explored in the absence of

edge protection, we still succeed in finding an AF of size at most k ` 1.

The correctness of Cases AC, B, A2BC, and A3BC is established by Lemmas 6.6,

6.7, and 6.8 because, ignoring the protected edges they introduce, Cases A2BC

and A3BC are special cases of Case ABC in Section 6.3.1. The correctness proof
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of Case RB is identical to that for Case B given in [101, 102] (Chapter 3) after ex-

changing the roles of F1 and F2. Thus, it remains to establish the correctness of

Cases RB*, 2B, and BCY. The next lemmas cover these cases.

Lemma 6.9 (Collapsible chain). Let pa, cq be a non-trivial sibling pair of F1, assume

a „F2
c, assume c is a child of the LCA of a and c in F2, and let b1, b2, . . . , bq, q ě 2,

be the pendant nodes of the path from a to c, numbered by increasing distance from

a. If nodes b1, b2, . . . , bq exist in F1 and the sibling x of a and c’s common parent in

F1 is the root of a subtree consisting of a path of nodes x1, x2, . . . , xq´1 “ x such that

b1 and b2 are the children of x1 and, for 1 ă i ă q, xi is the parent of xi´1 and bi`1,

then e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1.

Proof. Nodes b1 and b2 exist in F1 and are siblings in F1, while the path from b1 to b2

in F2 has a as a pendant node. Thus, Lemma 6.7 applied to the sibling pair pb1, b2q
shows that e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1.

Lemma 6.10 (Two pendant nodes and a common uncle). If pa, cq is a non-trivial

sibling pair of F1, a „F2
c, the path from a to c in F2 has two pendant nodes b1 and

b2, and the sibling x of a and c’s common parent in F1 exists in F2 and is the sibling

of the LCA of a and c in F2, then e pT1, T2, F2 ˜ teb1 , eb2uq “ e pT1, T2, F2q ´ 2.

Proof. By Lemma 6.8, we have e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1, e pT1, T2,

F2 ˜ teb1 , eb2uq “ e pT1, T2, F2q ´ 2 or e pT1, T2, F2 ˜ tecuq “ e pT1, T2, F2q ´ 1. In the

second case, the lemma holds, so assume we have the first or third case. Since a and c

are interchangeable, we can assume the first case applies. After cutting edge ea, px, cq
is a sibling pair of F 1

1 :“ F1˜teau such that the path from x to c in F 1
2 :“ F2˜teau has

one or two pendant nodes, depending on whether or not b1 and b2 were both pendant

nodes of the path from a to the LCA of a and c in F2. Thus, by Lemmas 6.7 and 6.8,

we have e pT1, T2, F
1
2 ˜ tecuq “ e pT1, T2, F

1
2q ´ 1, e

`

T1, T2, F
1
2 ˜ teb1

1
, eb1

2
, . . . , eb1

q
u
˘

“
e pT1, T2, F

1
2q ´ q or e pT1, T2, F

1
2 ˜ texuq “ e pT1, T2, F

1
2q ´1, where b1

1, b
1
2, . . . , b

1
q are the

pendant nodes of the path from x to c in F 1
2. In each case, we obtain an edge set

E Ě teau such that |E| ě 2, all edges in E belong to the subtree of F2 with leaves a,

b1, b2, c, and x, and such that e pT1, T2, F2 ˜ Eq “ e pT1, T2, F2q ´ |E|. In particular,

there exists an edge set E0 Ě E of size e pT1, T2, F2q such that F2 ˜ E0 is an AF

of T1 and T2. Let u be the LCA of a and c in F2. We split E into three subsets
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E1 :“ E X tex, euu, E2 :“ E X teb1 , eb2u, and E3 :“ E z pE1 YE2q. Note that ea P E3,

that is, E3 ‰ H. By Lemmas 6.4 and 6.5, F2 ˜ E 1
0 is an AF of T1 and T2, where

E 1
0 :“ E0 z E3 Y teb1 , eb2u if |E3| “ 1 and E 1

0 :“ E0 z E3 Y teb1 , eb2 , euu if |E3| ě 2.

Now let F 2
2 :“ F2 ˜ teb1 , eb2u Ě F2 ˜E 1

0, and let E 1
1 :“ E 1

0 X tex, euu. The sibling pair

px, uq exists in F1 and F 2
2 . Thus, by Lemma 6.5, F2 ˜E2

0 is an AF of T1 and T2, where

E2
0 :“ E 1

0 z E 1
1 if |E 1

1| ď 1 and E2
0 :“ E 1

0 z E 1
1 Y tepxu if |E 1

1| ě 2. We distinguish two

cases to bound the size of E2
0 .

If |E3| “ 1, then |E 1
0| “ |E0| ` 1 ´ |E2| and E 1

1 “ E1. The latter implies that

|E2
0 | “ |E 1

0| ´ |E1| if |E1| “ 1 or |E2
0 | “ |E 1

0| ´ |E1| ` 1 if |E1| ą 1. Since |E| ě 2 and

|E3| “ 1, we have |E1| ` |E2| ě 1, and we obtain |E2
0 | “ |E0| if |E1| ` |E2| “ 1, and

|E2
0 | ď |E0| ` 2 ´ p|E1| ` |E2|q ď |E0| if |E2| ` |E2| ą 1.

If |E3| ą 1, then |E 1
0| “ |E0| ` 3 ´ p|E2| ` |E3|q ď |E0| ` 1 and |E 1

1| ě 1. Hence,

|E2
0 | ď |E 1

0| ´ 1 ď |E0|.
Since we obtain that |E2

0 | ď |E0| “ e pT1, T2, F2q in each case, and teb1 , eb2u Ď E2
0 ,

this proves that e pT1, T2, F2 ˜ teb1 , eb2uq “ e pT1, T2, F2q ´ 2.

Lemma 6.11 (Protected uncle). Let pa, cq be a non-trivial sibling pair of F1, let

x be the sibling of a and c’s common parent in F1, and assume a „F2
c. Assume

further that x exists in F2, that the path from a to c in F2 has q ě 2 pendant nodes

b1, b2, . . . , bq, and that x is a child of b1. Then e pT1, T2, F2 ˜ texuq “ e pT1, T2, F2q ´
1, e

`

T1, T2, F2 ˜ teb1 , eb2 , . . . , ebqu
˘

“ e pT1, T2, F2q ´ q or e pT1, T2, F2 ˜ tec, eyuq “
e pT1, T2, F2q ´ 2, where y is x’s sibling in F2.

Note that Case BCY never makes the recursive call corresponding to the case

when e pT1, T2, F2 ˜ texuq “ e pT1, T2, F2q´1 in Lemma 6.11 because edge ex is always

protected in this case.

Proof. By Lemma 6.8, we have e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1, e pT1, T2,

F2 ˜ teb1 , eb2 , . . . , ebqu
˘

“ e pT1, T2, F2q ´ q or e pT1, T2, F2 ˜ tecuq “ e pT1, T2, F2q ´ 1.

In the second case, the lemma holds. In the third case, observe that pa, xq is a sib-

ling pair of F 1
1 :“ F1 ˜ tecu such that the path from a to x in F 1

2 :“ F2 ˜ tecu has

y as its single pendant node. Thus, by Lemma 6.7, we have e pT1, T2, F
1
2 ˜ teyuq “

e pT1, T2, F
1
2q ´ 1, that is, e pT1, T2, F2 ˜ tec, eyuq “ e pT1, T2, F2q ´ 2. It remains to

consider the first case. F 2
1 :“ F1 ˜ teau has pc, xq as a sibling pair and the path



114

from c to x in F 2
2 :“ F2 ˜ teau has pendant nodes y, b2, b3, . . . , bq. By Lemma 6.8, we

have e pT1, T2, F
2
2 ˜ tecuq “ e pT1, T2, F

2
2 q ´ 1, e

`

T1, T2, F
2
2 ˜ tey, eb2 , eb3 , . . . , ebqu

˘

“
e pT1, T2, F

2
2 q ´ q or e pT1, T2, F

2
2 ˜ texuq “ e pT1, T2, F

2
2 q ´ 1. In the first case, we

also have e pT1, T2, F2 ˜ tecuq “ e pT1, T2, F2q ´ 1 because F 2
2 Ď F2. As we argued

above, this implies that e pT1, T2, F2 ˜ tec, eyuq “ e pT1, T2, F2q ´ 2. In the third

case, we obtain e pT1, T2, F2 ˜ texuq “ e pT1, T2, F2q ´ 1 because F 2
2 Ď F2. Finally,

in the second case, we obtain that e pT1, T2, F
2
2 ˜ teyuq “ e pT1, T2, F

2
2 q´1 and, hence,

e pT1, T2, F2 ˜ teyuq “ e pT1, T2, F2q´1. Case RB applies to the sibling pair pa, cq after
cutting edge ey in F2, with pa, xq being a sibling pair in F3

2 :“ F2 ˜ teyu and c being

the only pendant node of the path from a to x in F1. Thus, e pT1, T2, F
3
2 ˜ tecuq “

e pT1, T2, F
3
2 q ´ 1 and, hence, e pT1, T2, F2 ˜ tec, eyuq “ e pT1, T2, F2q ´ 2.

Using Lemmas 6.6–6.11, we can now prove the correctness of our algorithm.

Theorem 6.12. The invocation m pT1, T2, k0q returns True if and only if

e pT1, T2, T2q ď k0.

Proof. First consider a variant of our algorithm where Cases A2BC and A3BC do not

protect any edges and Case BCY includes an additional recursive callm pF 1
1, F2 ˜ texu,

k ´ 1q. Consider the recursion tree T defined by the set of recursive calls made by

this algorithm. Each leaf of this tree corresponds to an invocation that does not make

any further recursive calls and thus returns False in Step 1 or True in Step 2. The

algorithm returns True if and only if at least one of these leaf invocations returns

True.

First we prove that e pT1, T2, T2q ď k0 if our algorithm returns True. Since

each recursive call m pF 1
1, F2 ˜ E, k1q made by an invocation m pF1, F2, kq satisfies

k1 “ k ´ |E|, it is easily verified that each leaf invocation m pF1, F2, kq satisfies |F2| ď
k0 ´ k ` 1. If our algorithm returns True, then there exists such a leaf invocation

that returns True, which implies that k ě 0 and F2 is an AF of T1 and T2. Thus,

|F2| ě e pT1, T2, T2q ` 1, that is, e pT1, T2, T2q ď k0 ´ k ď k0.

Next assume e pT1, T2, T2q ď k0. We call an invocation m pF1, F2, kq promis-

ing if |F2| ` e pT1, T2, F2q “ 1 ` e pT1, T2, T2q and k0 ´ k “ |F2| ´ 1. By Lem-

mas 6.6–6.11, every promising invocation m pF1, F2, kq has a promising child invo-

cation m pF 1
1, F

1
2, k

1q. Since the root invocation e pT1, T2, T2q is itself promising, this
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shows that T has at least one promising leaf invocation I “ m pF1, F2, kq. Since this

is a leaf invocation, we either have k ă 0 or F2 is an AF of T1 and T2. However,

k “ k0 ´ |F2| ` 1 “ k0 ´ e pT1, T2, T2q ` e pT1, T2, F2q ě 0 because k0 ě e pT1, T2, T2q
and e pT1, T2, F2q ě 0. Thus, k ě 0 and F2 is an AF of T1 and T2, that is, invocation

I, and hence the whole algorithm, returns True.

It remains to consider the effect of edge protection. First observe that the intro-

duction of protected edges can only reduce the number of recursive calls made by

each invocation. Thus, if the algorithm returns False without using edge protection,

it also returns False using edge protection, that is, our algorithm gives the correct

answer if e pT1, T2, T2q ą k0. For the remainder of the proof assume e pT1, T2, T2q ď k0.

Consider the subtree T 1 of T defined by promising invocations. Our argument in the

previous paragraph implies that every leaf invocation of T 1 is a leaf invocation of T

that returns True. Consider the leftmost root-leaf path I1, I2, . . . , Ih in T 1, where

the children of each invocation I in T 1 are ordered left to right in the order invo-

cation I makes these recursive calls. We prove that the introduction of protected

edges cannot prevent our algorithm from exploring this path, which implies that our

algorithm returns True if e pT1, T2, T2q ď k0 even using edge protection.

Assume the contrary. Then there exists an index 1 ď j1 ă h such that our algo-

rithm makes invocations I1, I2, . . . , Ij1 but does not make invocations Ij1`1, Ij1`2, . . . ,

Ih. Then we have Ij1 “ m pF 2
1 , F

2
2 , k

2q and Ij1`1 “ m pF3
1 , F

2
2 ˜ E2, k2 ´ |E2|q, for

some edge set E2 that includes a protected edge of F 2
2 or an edge incident to a

root of F 2
2 whose sibling edge is protected. In the former case, let e be a pro-

tected edge in E2; in the latter case, let e be the protected sibling edge of an

edge in E2 incident to a root of F 2
2 . Since both invocations Ij1 and Ij1`1 are

promising, we have e pT1, T2, F
2
2 ˜ E2q “ e pT1, T2, F

2
2 q ´ |E2|, which implies that

e pT1, T2, F
2
2 ˜ teuq “ e pT1, T2, F

2
2 q ´ 1 because either e P E2 or e’s sibling is in E2

and both are incident to a root in F 2
2 , in which case cutting e or its sibling produces

the same forest. Since T2 does not contain any protected edges, there exists an index

1 ď j ă j1 such that the invocations Ij “ m pF1, F2, kq and Ij`1 “ m pF 1
1, F

1
2, k

1q have
the property that edge e is protected in F 1

2 but not in F2. Therefore, invocation Ij ap-

plies Case A2BC or A3BC and Ij`1 “ m pF 1
1, F2 ˛ tea, eb1 , eb2u ˜ tecu, k ´ 1q or Ij`1 “

m pF 1
1, F2 ˛ teau ˜ tecu, k ´ 1q. In particular, e P tea, eb1 , eb2u. If invocation Ij applies
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Case A3BC, then e “ ea, which implies that the invocation m pF 1
1, F2 ˜ teau, k ´ 1q

is also promising because F 2
2 is a forest of F2 and, hence e pT1, T2, F

2
2 ˜ teuq “

e pT1, T2, F
2
2 q ´ 1 implies that e pT1, T2, F2 ˜ teuq “ e pT1, T2, F2q ´ 1. This contra-

dicts the assumption that I1, I2, . . . , Ih is the leftmost root-leaf path in T 1. So as-

sume invocation Ij applies Case A2BC. Since pa, cq is a sibling pair of F 1
1 and the

path from a to c in F2 has b1 and b2 as pendant nodes, Lemma 6.8 shows that

e pT1, T2, F2 ˜ teauq “ e pT1, T2, F2q ´ 1, e pT1, T2, F2 ˜ teb1 , eb2uq “ e pT1, T2, F2q ´
2 or e pT1, T2, F2 ˜ tecuq “ e pT1, T2, F2q ´ 1. In the first two cases, we obtain a

contradiction because this would imply that invocation m pF 1
1, F2 ˜ teau, k ´ 1q or

m pF 1
1, F2 ˜ teb1 , eb2u, k ´ 2q is promising, contradicting that I1, I2, . . . , Ih is the left-

most root-leaf path in T 1. In the last case, let E be the largest subset of tea, eb1 , eb2 , ecu
such that ec P E and e pT1, T2, F2 ˜ Eq “ e pT1, T2, F2q ´ |E|. We have ea R E

and teb1 , eb2u Ę E. If E “ tecu, we arrive at a contradiction because in this

case e pT1, T2, F2 ˜ tec, e1uq “ e pT1, T2, F2 ˜ tecuq, for all e1 P tea, eb1 , eb2u, but e P
tea, eb1 , eb2u and e pT1, T2, F

2
2 ˜ teuq “ e pT1, T2, F

2
2 q ´ 1 implies that e pT1, T2,

F2 ˜ tec, euq “ e pT1, T2, F2 ˜ tecuq ´ 1. Thus, since ea R E and teb1 , eb2u Ę E,

we have E “ tebi , ecu, for some i P t1, 2u. Let E0 Ě E be an edge set of size

e pT1, T2, F2q such that F2 ˜ E0 is an AF of T1 and T2. By Lemmas 6.4 and 6.5,

F2 ˜ E 1
0 is also an AF of T1 and T2, where E 1

0 :“ E0 z tecu Y teb1 , eb2u. Since

E0 X teb1 , eb2u ‰ H, we have |E 1
0| ď |E0| “ e pT1, T2, F2q. Since teb1 , eb2u Ď E 1

0,

this implies that e pT1, T2, F2 ˜ teb1 , eb2uq “ e pT1, T2, F2q ´ 2, that is, the invocation

m pF 1
1, F2 ˜ teb1 , eb2u, k ´ 2q is once again promising, a contradiction.

6.3.5 Analysis

In this section, we prove the following theorem, which, together with Theorem 6.12

proves Theorem 6.1.

Theorem 6.13. The invocation m pT1, T2, k0q takes O
`

2k0n
˘

time.

The running time per invocation of the algorithm, excluding the recursive calls it

makes, is easily shown to be O pnq using a straightforward adaptation of the arguments

in [101,102] to encompass the new cases. Thus, it suffices to prove that the invocation

m pT1, T2, k0q makes O
`

2k0
˘

recursive calls.
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To prove this, we augment the algorithm so that each invocation m pF1, F2, kq
takes two additional arguments P and Q. P is a set of up to two nodes whose

parent edges are protected in F1; Q is a subset of P . Thus, this invocation becomes

m pF1, F2, k, P,Qq. The two additional arguments are used only in the analysis, not

by the algorithm, and are defined recursively. For the top-level invocation, we have

P “ Q “ H. The sets passed to any other invocation are chosen by its parent

invocation using the rules we specify below. For most invocations, P “ Q “ H.

Let Ipk, P,Qq be the number of descendant invocations of an invocation I “
m pF1, F2, k, P,Qq. We prove that Ipk, P,Qq ď αp2k´|P | `|Q|2k´|P |´1q`|P |´3, where

α ě 0 is an appropriate constant. This shows that the total number of recursive calls

of our algorithm is Ipk0,H,Hq ď α2k0 ´3 “ O
`

2k0
˘

. The proof is by induction on k.

Base case. For ´3 ď k ă 0, an invocation m pF1, F2, k, P,Qq has O p1q descendant

invocations, so we can find an appropriate α ě 0 such that Ipk, P,Qq ď α2k´2 ´ 3 in

this case.1

Inductive step. For the inductive step, assume k ě 0 and the bound on Ipk1, P q
holds for all k1 ă k and P “ H. Consider an invocation I “ m pF1, F2, k,H,Hq.
If I applies Case AC, B, RB, RB*, 2B or BCY, we set P “ Q “ H in each of its

child invocations. Since I makes at most two recursive calls, each with parameter at

most k´ 1, the inductive hypothesis implies that Ipk,H,Hq ď 1` 2Ipk´ 1,H,Hq ď
1 ` 2pα2k´1 ´ 3q ă α2k ´ 3.

If I applies Case A2BC or A3BC to a sibling pair pa, cq, consider the subtree of F1

rooted in a’s great-grandparent r. By the depth rule, this tree is a subtree of the tree

shown in Figure 6.6. We need to consider only cases where a has a great-grandparent

because otherwise F1 has constant size and I has O p1q descendant invocations; for

an appropriate choice of α and k ě ´3, this is bounded by α2k ´ 3.

We can divide the descendant invocations of I into six groups:

G1. Invocation I itself.

G2. Invocations that consider sibling pairs in F d
1 .

G3. Invocations that consider the sibling pair pa, dq.
1We only need to consider k ě ´3 because the inductive step is applied only for k ě 0, and we

only consider recursive calls with parameter no less than k ´ 3 in the inductive step.
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with parameter at most k1 ´ 2, we set P “ Q “ H in both recursive calls and, thus,

obtain Ipk1, tau, Q1q ď 1`2Ipk1´2,H,Hq ď 1`2pα2k1´2´3q ă αp2k1´1`|Q1|2k1´2q´2

for the number of descendant invocations of I 1.

If I 1 makes two recursive calls using Case AC, A2BC or A3BC, we set P “ P 1 and

Q “ Q1 in its two child invocations. In these two child invocations, d merges with

one or both of its children. In both cases, we denote the merged node as d, and both

child invocations consider the sibling pair pa, dq, that is, belong to group G3. Thus,

the number of descendant invocations of I 1 is given by Ipk1, tau, Q1q ď 1 ` 2Ipk1 ´
1, tau, Q1q ď 1 ` 2pαp2k1´2 ` |Q1|2k1´3q ´ 2q ă αp2k1´1 ` |Q1|2k1´2q ´ 2.

If I 1 applies Case A2BC or A3BC and makes three recursive calls, we set P “ P 1

and Q “ Q1 in the two child invocations that cut eu and the pendant edges of

the path from u to v in F 1
2, respectively. For the last branch, which cuts ev and

protects edge u, we set P “ P 1 Y tuu and either Q “ Q1, if I 1 applies Case A2BC,

or Q “ Q1 Y tvu, if I 1 applies Case A3BC. Note that, once again, all three child

invocations consider the sibling pair pa, dq next and, thus, belong to group G3. Thus,

if I 1 applies Case A2BC, the number of descendant invocations of I 1 is given by

Ipk1, tau, Qq ď 1`Ipk1´1, tau, Qq`Ipk1´2, tau, Qq`Ipk1´1, ta, uu, Qq ď 1`αp2k1´2`
|Q|2k1´3q´2`αp2k1´3`|Q|2k1´4q´2`αp2k1´3`|Q|2k1´4q´1 ă αp2k1´1`|Q|2k1´2q´2. If

I 1 applies Case A3BC, we obtain Ipk1, tau, Qq ď 1`Ipk1´1, tau, Qq`Ipk1´3, tau, Qq`
Ipk1 ´ 1, ta, uu, Q Y tuuq ď 1 ` αp2k1´2 ` |Q|2k1´3q ´ 2 ` αp2k1´4 ` |Q|2k1´5q ´ 2 `
αp2k1´3 ` p|Q| ` 1q2k1´4q ´ 1 ă αp2k1´1 ` |Q|2k1´2q ´ 2.

G3: The sibling pair pa, dq. Let I 1 “ m pF 1
1, F

1
2, k

1, P,Qq be a descendant invo-

cation of I that considers the sibling pair pa, dq with P ‰ H. We argue first that a

and d are not siblings in F 1
2.

If I 1 is a child of I, then it is the root of I’s C-branch. Thus, if a and d were

siblings in F 1
2, d would be a or c’s sibling in F2. This, however, would imply that I

applies Case RB instead of Case A2BC or A3BC.

If I 1 is not a child of I, it is a grandchild of I and its parent I2 “ m pF 2
1 , F

2
2 , k

2, P 1,

Q1q applies Case AC, A2BC or A3BC. Thus, to obtain F 1
2 from F 2

2 , we cut either eu,

ev or all the pendant edges of the path from u to v in F 2
2 . If cutting eu makes a and

d “ v siblings, then a is a sibling of u or v in F 2
2 , which implies that I2 would have
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applied Case RB. We obtain a similar contradiction if cutting ev makes a and d “ u

siblings. Finally, if cutting the pendant edges of the path from u to v makes a and d

siblings, then a must be the sibling of the LCA of u and v in F 1
2. Thus, u is deeper in

F 1
2 than a and is also deeper in F2 than a. Since a is deeper in F2 than c, this implies

that u is deeper in F2 than both a and c. Since a, c, u, and v all have the same depth

in F1, this contradicts that we chose the sibling pair pa, cq over the sibling pair pu, vq
in invocation I.

We have shown that a and d are not siblings in F 1
2. Hence, invocation I 1 branches

on the sibling pair pa, dq. We distinguish whether P 1 “ tau or P 1 “ ta, uu. The latter
happens in the C-branch of I2 if I2 applies Case A2BC or A3BC.

First assume P 1 “ tau. If I 1 applies Case AC, B, RB, RB*, 2B or BCY, the

protection of edge ea ensures that I 1 makes at most one recursive call, with param-

eter at most k1 ´ 1. We set P “ Q “ H in this recursive call and, thus, obtain

Ipk1, tau, Qq ď 1 ` Ipk1 ´ 1,H,Hq ď 1 ` α2k
1´1 ´ 3 ď αp2k1´1 ` |Q|2k1´2q ´ 2 for the

number of descendant invocations of I 1. We obtain a similar analysis with P “ Q “ H
if I 1 applies Case A2BC or A3BC but makes only one recursive call due to protected

edges.

If I 1 applies Case A2BC or A3BC and makes two recursive calls corresponding to

cutting ed and cutting the pendant edges of the path from a to d in F 1
2, respectively,

we distinguish whether I applied Case A2BC or A3BC. If I applied Case A3BC,

we set P “ Q “ H in both of these recursive calls. This gives Ipk1, tau, tauq ď
1`Ipk1 ´1,H,Hq`Ipk1 ´2,H,Hq ď 1`α2k

1´1´3`α2k
1´2´3 ă αp2k1´1`2k

1´2q´3

for the number of descendant invocations of I 1. If I applied Case A2BC, we set

P “ P 1 “ tau in the recursive call that cuts ed and P “ Q “ H in the other recursive

call; we set Q “ H in the recursive call that cuts edge ed if I
1 applies Case A2BC, and

Q “ tau otherwise. This gives Ipk1, tau,Hq ď 1`Ipk1 ´1, tau,Hq`Ipk1 ´2,H,Hq ď
1 ` α2k

1´2 ´ 2 ` α2k
1´2 ´ 3 ă α2k

1´1 ´ 3 or Ipk1, tau,Hq ď 1 ` Ipk1 ´ 1, tau, tauq `
Ipk1 ´ 3,H,Hq ď 1 ` αp2k1´2 ` 2k

1´3q ´ 2 ` α2k
1´3 ´ 3 ă α2k

1´1 ´ 3 for the number

of descendant invocations of I 1.

Finally consider the case when P 1 “ ta, uu. Since d “ u in this case, this means

that both edges ea and ed are protected. Thus, if this invocation makes any recursive

calls at all, it must cut all pendant edges of the path from a to d in F 1
2. We prove
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that this path has at least two pendant edges. This allows us to set P “ Q “ H in

this recursive call, which gives Ipk1, P 1, Q1q ď 1 ` Ipk1 ´ 2,H,Hq ď 1 ` α2k
1´2 ´ 3 ă

αp2k1´2 ` |Q1|2k1´3q ´ 1 for the number of descendant invocations of I 1.

Consider the parent invocation I2 “ m pF 2
1 , F

2
2 , k

2, P 2, Q2q of I 1. Since invocation

I2 applies Case A2BC or A3BC in this case, the path from u to v in F 2
2 has at least

two pendant nodes. Let x be the LCA of u and v in F 2
2 . We observe that the path

from u to x has at least one pendant node because otherwise v would have greater

depth in F 2
2 than u, contradicting how we order the members of each sibling pair we

consider. If a is not in pF 2
2 qx, all pendant nodes of the path from u to x in F 2

2 become

pendant nodes of the path from u to a in F 1
2, while the pendant nodes of the path

from v to x, if any, merge to become a single pendant node of the path from u to a.

Since the path from u to x has at least one pendant node and the path from u to

v has at least two pendant nodes, this implies that the path from a to u in F 1
2 has

at least two pendant nodes. If a belongs to the subtree of some pendant node b of

the path from u to v, we distinguish two cases. First observe that b ‰ a in this case

because we set P 1 “ ta, uu in invocation I 1 only if a is not a pendant node of the

path from u to v in F 2
2 . Thus, if b is not u’s sibling, the path from a to u in F 2

2 has

at least two pendant nodes other than v. These nodes are also pendant nodes of the

path from a to u in F 1
2. If b is u’s sibling and a is b’s child, invocation I2 would have

applied Case BCY. Thus, a has distance at least two from b, which implies that the

path from a to u in F 2
2 has at least two pendant nodes. Cutting ev does not affect

the subtree below pu, so these nodes are also pendant nodes of the path from a to u

in F 1
2.

G4: Sibling pairs in F e

2
. Consider a descendant invocation I 1 “ m pF 1

1, F
1
2, k

1, P 1,

Q1q of I such that all descendant invocations of I that are proper ancestors of I 1 be-

long to groups G1–G3. We prove that, if P 1 ‰ H, a and e belong to the same

connected component in F 1
2. Thus, we do indeed consider at least one sibling pair in

group G4 or G5 before moving on to group G6. Note that P 1 ‰ H only if this is true

for every ancestor invocation of I 1 that is a proper descendant of I and only if invo-

cation I applied Case A2BC. For j P t1, 2, 3u, let Ij “ m
´

F
pjq
1 , F

pjq
2 , kpjq, P pjq, Qpjq

¯

be the ancestor invocation of I 1 in group Gj.
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I1 “ I. Thus, only the branch that cuts edge ec sets P ‰ H, and cutting this

edge clearly cannot separate a and e.

I2 branches on the sibling pair pu, vq. We set P ‰ H in a child invocation only

if we apply Case AC, A2BC or A3BC. A branch that cuts edge eu or ev once again

cannot separate a and e. Cutting the pendant edges of the path from u to v in F2,

however, could cut ee because e may be a pendant node of this path. To have P 1 ‰ H
in I 1, we require that a „

F
p3q
2

d and that none of the pendant edges of the path from

a to d in F
p3q
2 are protected because otherwise I3 makes at most one recursive call,

and we set P “ H in this recursive call. Since invocation I applies Case A2BC, it

protects the edge eb1 , where b1 is a’s sibling in F
p1q
2 . Thus, for none of the pendant

edges of the path from a to d in F
p3q
2 to be protected, it is necessary that d is a

descendant of b1 in F
p1q
2 , and the same must therefore also be true for u and v. This,

however, implies that u is deeper than a and c in F
p1q
2 and has the same depth as a

and c in F
p1q
1 . Thus, we obtain a contradiction to the depth rule because we chose

the sibling pair pa, cq over pu, vq in invocation I.

I3, finally, branches on the sibling pair pa, dq and sets P ‰ H only in the branch

that cuts edge ed, which once again cannot separate a and e. Thus, a „F 1
2
e, as

claimed.

Now we divide the invocations in group G4 into three categories. If an invocation

makes at most one recursive call, which includes an application of Case B, RB, or

RB*, we set P “ Q “ H in this child invocation and obtain Ipk1, tau, Q1q ď 1`Ipk1 ´
1,H,Hq ď 1`α2k

1´1´3 ď αp2k1´1`|Q1|2k1´2q´2. Similarly, if the invocation applies

Case BCY and makes two invocations, we set P “ Q “ H in both invocations, which

gives Ipk1, tau, Q1q ď 1`2Ipk1 ´2,H,Hq ď 1`2pα2k1´2´3q ă αp2k1´1`|Q1|2k1´2q´2.

If an invocation makes two recursive calls but does not apply Case BCY, which

includes an application of Case AC, we set P “ P 1 and Q “ Q1 in its two child

invocations, which gives Ipk1, tau, Q1q ď 1 ` 2Ipk1 ´ 1, tau, Q1q ď 1 ` 2pαp2k1´2 `
|Q1|2k1´3q ´ 2q ă αp2k1´1 ` |Q1|2k1´2q ´ 2.

Finally, if the invocation makes three recursive calls, it applies Case A2BC or A3BC.

This invocation I 1 “ m pF 1
1, F

1
2, k

1, P 1, Q1q and all its descendant invocations operate

on a subtree of F e
2 which, due to the depth rule, has at most four leaves. Thus, we can

divide the descendant invocations of I 1 in group G4 into three subgroups G4.1–G4.3
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that are the equivalent of groups G1–G3. G4.1 is invocation I 1. Let pa1, c1q be the

sibling pair I 1 branches on. G4.2 is either empty or contains a single invocation that

branches on a sibling pair pu1, v1q, where d1 “ pu1 “ pv1 and pa1 “ pc1 are siblings in

F 1
1. G4.3 is either empty or contains a single invocation that branches on the sibling

pair pa1, d1q. These node labels are illustrated in Figure 6.6.

The analysis of the invocations in these three groups is identical to the analysis

of groups G1–G3 with a1, c1, d1, u1, and v1 playing the roles of a, c, d, u, and v.

However, whenever we choose particular values of P and Q in a child invocation of

an invocation in groups G1–G3, we now need to replace these values with P YP 1 and

Q Y Q1, where P 1 and Q1 are the input sets of the invocation I 1 above that branches

on the sibling pair pa1, c1q. There are two exceptions to this rule. One exception is

invocation I 1 itself (in group G4.1). If I 1 applies Case A3BC, we set P “ P 1 and

Q “ Q1 in the branch that cuts edge ea1 , P “ Q “ H in the branch that cuts the

pendant edges of the path from a1 to c1 in F 1
2, and P “ P 1 Y ta1u and Q “ Q1 Y ta1u

in the branch that cuts edge ec1 . The other exception is an application of Case 2B,

which sets P “ Q “ H in its only child invocation.

G5: The sibling pair pa, eq. If we reach an invocation I 1 “ m pF 1
1, F

1
2, k

1, P 1, Q1q
in group G5 with P 1 ‰ H, we have P 1 “ tau or P 1 “ ta, a1u. In the former case, edge

ea is protected. In the latter case, edges ea and ee are both protected. Also, invocation

I in group G1 must have applied Case A2BC and the invocation in group G3 must

have applied Case A2BC or A3BC because otherwise the invocation in group G3 sets

P “ Q “ H in all its child invocations. First we prove that a and e cannot be siblings

in F 1
2 in both cases. Then we analyze the recurrences for these two cases.

Nodes a and e cannot be siblings in F2 after the invocation in group G3, which

branches on the sibling pair pa, dq. This is true because the invocation I2 in this

group sets P “ H except in the branch of Case A2BC or A3BC that cuts edge ed.

If cutting ed makes a and e siblings, however, then invocation I2 would have applied

Case RB.

If a and e become siblings after an invocation I2 “ m pF 2
1 , F

2
2 , k

2, P 2, Q2q in

group G4, assume this invocation branches on a sibling pair px, yq. The path from x

to a in F 2
1 has either one or two pendant nodes. If this path has two pendant nodes,
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y and z, observe that, no matter whether we cut ex, ey or the pendant edges of the

path from x to y, at least two of x, y, and z merge with e before a and e become

siblings. Thus, x belongs to a’s sibling subtree of F 2
2 and is not its root. Let b1 be this

root. If b1 is a’s sibling in F2, we obtain a contradiction to the depth rule because x

is deeper than a in F2 and has the same depth as a in F1. If b1 is not a’s sibling in F2,

then it cannot be a’s sibling in F 2
2 either because invocation I applied Case A2BC

and, thus, protected a’s sibling edge in F2, that is, a can merge only with nodes in

this sibling subtree. Thus, we obtain a contradiction.

If the path from x to a in F 2
1 has one pendant node, assume first that I2 has no

ancestor invocation in group G4 that applies Case A2BC or A3BC. If a and e become

siblings as a result of cutting edge ey, then the sibling pair px, yq would have satisfied

Case RB, so we would have P 1 “ H. The same argument applies if a and e become

siblings as a result of cutting edge ex. Finally, assume a and e become siblings as a

result of cutting the pendant edges of the path from x to y in F 2
2 . This path has at

least three pendant edges because otherwise Case 2B would have applied and P 1 “ H.

Thus, invocation I2 applies Case A3BC and sets P “ Q “ H in the branch that cuts

these pendant edges, a contradiction.

Finally, consider the case when I2 does have an ancestor invocation I3 in group G4

that applies Case A2BC or A3BC. By the same arguments as in the previous para-

graph, a and e becoming siblings after invocation I2 implies that invocation I2 applies

Case RB, 2B or A3BC and, if it applies Case A3BC, it must cut the pendant edges

of the path from x to y. In the latter two cases, we have P “ Q “ H in the child

invocation of I2 that is an ancestor of I 1, a contradiction. If invocation I2 applies

Case RB and does not set P “ H in its only child invocation, then I3 is the invoca-

tion that branches on the sibling pair pa1, c1q and I2 is in the branch of I3 that cuts

edge c1, protects edge a1, and sets P “ ta, a1u. This implies that w.l.o.g. x “ a1, ex

is protected in invocation I2, and x initially had the same depth in F1 as a. Once

again, let b1 be a’s sibling in F2. If x R F b1
2 , then a and x cannot merge after cutting

y because eb1 is protected. Thus, since a and e merge after applying Case RB to the

sibling pair px, yq, we must in fact cut x to let a and x “ e merge. This, however, is a

contradiction because x is protected. If x P F b1
2 , we must have x “ b1 because other-

wise our choice of the sibling pair pa, cq in invocation I would violate the depth rule.
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Since we also have x “ a1, however, this implies that a is a pendant node of the path

from a1 to c1 in invocation I3. Therefore, I3 makes at most two child invocations,

which contradicts that we set P “ ta, a1u in the branch that cuts edge ec1 . Since this

exhausts all possible cases, we conclude that a and e cannot be siblings in F 1
2 at the

beginning of invocation I 1. We finish the analysis by considering whether P 1 “ tau
or P 1 “ ta, a1u in invocation I 1.

If P 1 “ tau and invocation I 1 applies Case AC, B, RB, RB*, 2B or BCY, it has

only one child invocation, with parameter at most k1 ´ 1. We set P “ Q “ H in this

child invocation, which gives Ipk1, tau, Q1q ď 1`α2k
1´1 ´ 3 ď αp2k1´1 ` |Q1|2k1´2q ´ 2.

If invocation I 1 applies Case A2BC or A3BC and Q1 ‰ H, we set P “ Q “ H in

both child invocations of I 1, which gives Ipk1, tau, Q1q ď 1 ` Ipk1 ´ 1,H,Hq ` Ipk1 ´
2,H,Hq ď 1`α2k

1´1 ´3`α2k
1´2 ´3 ă αp2k1´1 ` |Q1|2k1´2q ´2. Finally, if invocation

I 1 applies Case A2BC or A3BC and Q1 “ H, then the invocations I1 and I3 in groups

G1 and G3 must both have applied Case A2BC. Moreover, I3 must have made two

recursive calls. Now consider F2. The path from a to c in F2 has two pendant nodes

b1 and b2, which both become protected after cutting edge ec. If d R F b1
2 , then b1 is

also a pendant node of the path from a to d in invocation I3, and I3 would in fact

make only one recursive call. Thus, d P F b1
2 . Since we set P “ H when cutting the

pendant edges of the path from a to d, we must in fact have cut edge ed and protected

the pendant edges of the path from a to d. Let b1
1 and b1

2 be the bottom endpoints

of these two pendant edges. Now consider the possible locations of e. If e P F
b1
1

2 ,

then eb1
2
is a protected pendant edge of the path from a to e in F 1

2, contradicting that

invocation I 1 makes two recursive calls. We obtain a similar contradiction if e P F
b1
2

2 .

Finally, if e R F b1
2 , then eb1 is a protected pendant edge of the path from a to e in F 1

2,

again contradicting that I 1 makes two recursive calls. Thus, the case when I1 and I3

both apply Case A2BC and I 1 applies Case A2BC or A3BC cannot arise.

If P 1 “ ta, a1u, observe first that a1, c1 P F e
2 in invocation I, where pa1, c1q is the

sibling pair on which the invocation I2 “ m pF 2
1 , F

2
2 , k

2, P 2, Q2q that adds a1 to P 1

branches. We distinguish whether a1 is a child of e or has distance two from e. (By

the depth rule, a greater depth of a1 is not possible and, since both a1 and c1 are in

F e
2 , a

1 ‰ e.)



126

If a1 has distance two from e in F2, then observe that a and a1 have the same

depth in F1. Let b1 be a’s sibling in F2. If a1 P F b1
2 , then we must have a1 “ b1

because otherwise we would not have chosen the sibling pair pa, cq in invocation I.

This implies that c1 R F b1
2 and a is a pendant edge of the path from a1 to c1 in F 2

2 .

Since ea is protected, however, this implies that I2 makes at most two recursive calls,

contradicting that we add a1 to P in one of them. Thus, a1 R F b1
2 .

If a1 R F b1
2 , b1 is a pendant node of the path from a to a1 in F 1

2. Since ea, ea1 , and

eb1 are all protected in F 1
2, invocation I 1 cannot make any recursive calls at all. Thus,

we obtain Ipk1, ta, a1u, Q1q “ 1 ă αp2k1´2 `|Q1|2k1´3q´1 for the number of descendant

invocations of I 1.

If a1 is e’s child in F2, we distinguish whether a1 P F b1
2 . If a1 R F b1

2 , we can apply the

argument from the previous paragraph, so assume a1 P F b1
2 . We argued above that we

obtain a contradiction if c1 R F b1
2 , so c1 P F b1

2 . Since invocation I2 applied Case A2BC

or A3BC, the path from a1 to c1 in F 2
2 has at least two pendant nodes. Since at least

one of them is attached to the path from a1 to the LCA of a1 and c1, this implies that

the path from a to a1 in F 1
2 has at least two pendant nodes. Now, since ea and ea1 are

protected in F 1
2, invocation I 1 can make at most one recursive call, which cuts the

pendant edges of the path from a to a1. We set P “ Q “ H in this recursive call and

obtain Ipk1, ta, a1u, Q1q ď 1`Ipk1 ´2,H,Hq ď 1`α2k
1´2´3 ă αp2k1´2`|Q1|2k1´3q´1.

G6: Sibling pairs outside F r

1
. Observe that our analysis of groups G1–G5 above

did not consider any invocations outside groups G1–G5 and with P ‰ H. Therefore,

we only require that Ipk1,H,Hq ď α2k
1 ´ 3 for every invocation m pF 1

1, F
1
2, k

1,H,Hq
in group G6, which holds by induction. This concludes the proof of Theorem 6.13

and, thus, of Theorem 6.1.

6.4 Conclusions

Our novel edge protection scheme along with several new edge cases greatly improves

the running time bound of our MAF algorithm. As we show in Chapter 7, this

also provides a great improvement in practice. This scheme and the techniques we

introduced to prove its correctness and running time may be of great utility for

developing and analyzing improved algorithms for many other exponential search
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problems. In particular, these techniques should be applied in future work to improve

the MAAF algorithm of Chapter 4.



Chapter 7

RSPR: Experimental Evaluation of the Binary MAF

Algorithm and Associated Heuristics

In this chapter, we evaluate experimentally the efficiency of our MAF algorithms

from Chapters 3, 5, and 6. These algorithms have been implemented in the software

program RSPR with the C++ programming language and their source code is avail-

able under the open source GPL license [105]. Section 7.1 evaluates version 1.01 of

RSPR, an implementation of the MAF algorithm in Chapter 3. These results were

presented at the Symposium for Experimental Algorithms (SEA) [100] and are re-

produced here with kind permission of Springer Science+Business Media. Section 7.2

evaluates version 1.2.0 of RSPR, an implementation of the binary MAF algorithm

in Chapter 6 and a partial implementation of the multifurcating MAF algorithm in

Chapter 5 that quickly computes MAFs of a pair of trees such that one tree is binary

and the other may be multifurcating. This restricted case is common in supertree

analysis when comparing a binary supertree to a set of multifurcating gene trees and

this implementation is vital to the supertree and LGT analyses in Chapter 8.

The MAF algorithm of Chapter 3 introduced improved branching rules to be used

in the algorithms of [103]. These branching rules, Step 6 of the algorithm, reduce

the running times of that O
`

3kn
˘

algorithm for SPR distance to O
`

2.42kn
˘

. While

these theoretical improvements are valuable in their own right, our main contribution

from [100] was to evaluate the practical performance of the algorithm of [103] and the

impact of our improved branching rules. An additional optimization we apply is to

use the linear-time 3-approximation algorithm for SPR distance of [83,103] to prune

branches in the search tree that are guaranteed to be unsuccessful. This reduces the

size of the search tree substantially and leads to a corresponding decrease in running

time. We demonstrate that each of the improved branching rules and the pruning of

unsuccessful branches have a marked and distinct effect on the performance of the

algorithm. Our experiments confirm that our algorithm is orders of magnitude faster

128
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than the previous best exact alternatives [19,110] based on reductions to integer linear

programming and satisfiability testing, respectively. The largest distances reported

using implementations of previous methods are a hybridization number of 14 on 40

taxa [21] and an SPR distance of 19 on 46 taxa [110]. In contrast, our method took

less than 5 hours to compute SPR distances of up to 46 on trees with 144 taxa and

99 on synthetic 1000-leaf trees. This represents a major step forward towards tools

that can infer reticulation scenarios for the thousands of genomes that have been fully

sequenced to date.

The MAF algorithm of Chapter 6 introduced the novel technique of edge pro-

tection to further reduce the time required for MAF computation to O
`

2kn
˘

. This

technique can be combined with the special case of the multifurcating MAF algo-

rithm from Chapter 6, noted in Section 5.5, where only one of the compared trees

must be binary. See Section 8.2.4 for more information. As an additional optimiza-

tion we use the cluster reduction of Linz and Semple [63] to partition the two trees

into subproblems that can be solved iteratively. This reduction greatly improves the

performance of the MAF algorithm as the time required to compute an MAF scales

with the SPR distance computed for each cluster, rather than the full distance be-

tween the trees. We extended the cluster reduction to compute general MAFs rather

than the weighted MAFs of Linz and Semple and reduced the time required to com-

pute the cluster reduction from O pn3q to O pnq. See Section 8.2.5 for details. These

improvements accelerate our algorithm by orders of magnitude, computing distances

of 46 on trees with 144 taxa in an average of 0.0275 seconds. These computations

required an average of 2538.462 seconds with the MAF algorithm of Chapter 3, more

than 90,000 times longer, and would be infeasible with previous algorithms.

7.1 Evaluation of the O
`

2.42kn
˘

-time SPR Distance Algorithm

In this section, we present an experimental evaluation of our MAF (SPR distance)

algorithm that compares the algorithm’s performance to that of two competitors us-

ing the protein tree data set examined in [13, 14] and using synthetic trees. We

also investigate the impact of the improved branching rules in Step 6 on the per-

formance of our algorithm. Our competitors were sprdist [110] and treeSAT [19],

which reduce the problem of computing SPR distances to integer linear programming
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(ILP) and satisfiability testing, respectively. We do not provide a comparison with

EEEP [13] because sprdist outperformed it and other heuristics at finding the exact

SPR distance between binary rooted phylogenies [110].

For sprdist and treeSAT, we used publicly available implementations of these

algorithms. Note that the publicly available implementation of sprdist uses the open

source GLPK ILP solver. Wu [110] observed that the commercial CPLEX ILP solver

provided a speedup between 3–9x over GLPK, but such an improvement would not

materially affect the results obtained below, reaching only the performance of our

previous O
`

3kn
˘

-time algorithm.

For our own algorithm, we developed an implementation in C++ that allowed

us to individually turn the optimized branching rules in Step 6 on and off. When

the optimized branching rule in one of the cases is turned off, the algorithm uses the

3-way branching of [103] in this case. In particular, with all optimizations off, the

algorithm is the one of [103]. Source code for our algorithm is available at [105].

We also implemented the linear-time 3-approximation algorithm for MAF of [103]

and used it to implement two additional optimizations of our FPT algorithm. The

FPT algorithm searches for the correct value of e pT1, T2, T2q by starting with a lower

bound k of e pT1, T2, T2q and incrementing k until it determines that k “ e pT1, T2, T2q.
If the 3-approximation algorithm returns a value of k1, then e pT1, T2, T2q ě rk1{3s;

by using this as the starting value of our search, we can skip early iterations of

the algorithm and thereby obtain a small improvement in the running time. The

same approach can be used in a branch-and-bound strategy that prunes unsuccessful

branches from the search tree. In particular, we extended Step 1 of the FPT algorithm

as follows:

11. (Failure) If k ă 0, return “no”. Otherwise compute a 3-approximation k1 of

e pT1, T2, F2q. If k1 ą 3k, then e pT1, T2, F2q ą k; return “no” in this case.

We allowed this optimization of Step 1 to be turned on or off in our algorithm

to investigate its effect on the running time, but our implementation always uses the

3-approximation algorithm to provide a starting guess of e pT1, T2, T2q.
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7.1.1 Data Sets

The protein tree data set of [13,14] contains 5689 protein trees with 10 to 144 leaves

(each corresponding to a different microbial genome); each of these was compared

in turn to a rooted reference tree covering all 144 genomes. The protein trees were

unrooted, so we selected a rooting for each tree that gave the minimum SPR distance

according to the 3-approximation algorithm of [103].

The synthetic tree pairs were created by first generating a random tree T1 and

then transforming it into a second tree T2 using a known number of random SPR

operations. Note that the SPR distance may be lower because the sequence of SPR

operations we generated may not be the shortest such sequence. For n taxa, the label

set of T1 was represented using integers 1 through n, and T1 was generated by splitting

the interval r1, ns into two sub-intervals uniformly at random, recursively generating

two trees with these two intervals as label sets and then adding a root to merge

these trees. Random SPR operations were generated by choosing an edge xpx to cut

uniformly at random and then choosing the new parent p1
x of x uniformly at random

from among all valid locations of p1
x. We constructed pairs of 100-leaf trees with 1–20

SPR operations and with 25, 30, . . . , 50 SPR operations. We also constructed pairs

of 1000-leaf trees with 1–20 SPR operations and with 25, 30, . . . , 100 SPR operations.

For each tree size and number of SPR operations we generated ten pairs of trees.

7.1.2 Results

Our experiments were performed on a 3.16Ghz Xeon system with 4GB of RAM and

running CentOS 2.6 Linux in a Rocks 5.1 cluster. Our code was compiled using

gcc 4.4.3 and optimization -O2. Each run of an algorithm was limited to 5 hours

of running time. If it did not produce an answer in this time limit, we say the

algorithm did not solve the given input instance in the following discussion. We refer

to the FPT algorithm with all optimizations off as fpt, and with only the branch-

and-bound optimization turned on as bb. The activation of the improved branching

rules in Step 6 is indicated using suffixes sc (Case 6.1: separate components), cob

(Case 6.2: cut only b), and cab (Case 6.3: cut a or b). Thus, the algorithm with all

optimizations on is labelled bb cob cab sc.
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Number of instances solved.

Figure 7.1 shows the number of solved protein tree instances for the given ranges of

tree sizes. Our experiments showed that the average SPR distance for trees of the

same size ranged between one sixth and one third of the number of leaves. All of the

algorithms solved all instances with 20 or fewer leaves and only treeSAT did not

solve all instances with 40 or fewer leaves. sprdist solved most of the instances with

41-50 leaves, and half of the instances with 51-100 leaves, but very few of the larger

instances. fpt performed similarly to sprdist but solved all of the instances with

41-50 leaves and more of the larger instances than sprdist. bb improved upon this

somewhat. However, adding our new branching rules improved the results greatly. In

particular, bb cob cab sc solved all of the instances in this data set.

Figure 7.2 shows the number of protein trees found with a given SPR distance from

the reference tree. The “number solved” axis is a log3-scale to allow easy comparison

of the trees with small and large SPR distances, as the majority had small SPR

distances. treeSAT was unable to solve any instances with SPR distance greater

than 8. sprdist and fpt solved instances with a distance as large as 20. Since

bb cob cab sc solved all the instances in this data set, including instances with an

SPR distance of 46, we were able to verify that sprdist and fpt solved all instances

with SPR distance up to 15 and 18, respectively.

Running time.

Figure 7.3 shows the mean running time of the algorithms on solved protein tree

instances with the given SPR distance. The time axis here and in the following

figures is a log3-scale to highlight the exponential running time of the algorithms and

to allow easy comparison of the runs. The curves for some of the algorithms ‘dip”

for higher distance values, which is a result of taking the average running time only

over solved instances. In addition, the curves for larger k values are not smooth due

to the small number of samples with these large distances. The slope of the curve for

fpt is close to 1, indicating that the algorithm is close to its worst-case running time

of O
`

3kn
˘

. bb shows a marked improvement over fpt; however, the improvement

achieved using the new branching rules is much more dramatic. treeSAT was much

slower than all the other algorithms and although sprdist solved a similar number
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of instances as fpt, as shown in Figure 7.2, it took much longer to solve them on

average. The two instances that sprdist solved with an SPR distance of 19 and

20 are an exception to this, but that is likely an artifact of considering only solved

instances. bb cob cab sc solved all input instances with SPR distance of up to 20

in 5.5 seconds or less, and solved instances with SPR distance up to 46 in well under

2 hours, while none of the previous methods was able to solve instances with SPR

distance greater than 20 in under 5 hours.

Figure 7.4 shows the mean running time of the fixed-parameter algorithms on the

random data set. As expected, fpt took 10 times longer on average for the 1000-leaf

trees as for the 100-leaf trees, given the same SPR distance. fpt cob cab sc did not

show this difference, which suggests that the improved branching rules have a more

pronounced impact on larger trees. bb cob cab sc was able to solve instances with

SPR distances up to 99 on the 1000-leaf trees, while a distance of 42 was the limit on

100-leaf trees. We believe that, since the proportion of SPR operations to the number

of leaves is smaller for the bigger trees, the randomly generated SPR operations are

more likely to operate on independent subtrees, which brings the approximation ratio

of the approximation algorithm closer to its worst-case bound of 3 on these inputs.

In our case, this provides better lower bounds on the true SPR distance and, thus,

allows us to prune more branches in the search tree than is the case for the smaller

trees.

Figure 7.5 shows the mean running time of the fixed-parameter algorithms without

branch-and-bound on the protein tree data set and using only some of the improved

branching rules. Case 6.1, Case 6.3, and Case 6.2 provide small, moderate and large

improvements, respectively. Using all of the cases gives another large improvement,

since each occurs under different conditions.

7.1.3 Conclusions

Our theoretical results improve on previous work, and our experiments confirm that

these improvements have a tremendous impact in practice. Our algorithm efficiently

solves problems with up to 144 leaves and an SPR distance of 20 in less than a

second on average; for distance values up to 46, the running time was less than two

hours. Our branch-and-bound approach showed a marked improvement on larger
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Figure 7.6: Mean running time of the binary MAF algorithms on the protein tree
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trees, allowing us to compute distance values up to 42 on 100-leaf synthetic trees and

99 on 1000-leaf synthetic trees.

7.2 Evaluation of the O
`

2kn
˘

-time SPR Distance Algorithm

In this section, we extend the experimental evaluation of our O
`

2.42kn
˘

-time MAF

(SPR distance) algorithm in Section 7.1 to the full O
`

2kn
˘

-time MAF algorithm in-

cluding edge protection (Chapter 6) and the cluster reduction (Section 8.2.5). We

show that these optimizations provide an enormous improvement in practice, decreas-

ing the time required to compute an SPR distance of 46 between two trees with 144

leaves from 2538 seconds to 0.0275 seconds.

Figure 7.6 shows the mean running time of the MAF algorithms on protein tree

instances with the given SPR distance. As in Figure 7.3, the time axis is a log3-scale
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to highlight the exponential running time of these algorithms. We compared the

O
`

2.42kn
˘

and O
`

2kn
˘

algorithms with and without the cluster reduction.

The cluster reduction alone provided a large improvement, reducing the time re-

quired to compute large SPR distances from hours to seconds. We observed, however,

that the overhead of computing the cluster reduction increased the running time for

SPR distances of 15 or less and the improvement with larger distances varied greatly

with how “clusterable” the data was. In particular, the two instances with an SPR

distance of 41 were solved in an average of 73.7 seconds (a 62x speedup), while the

two instances with an SPR distance of 46 were solved in average of 0.276 seconds (a

9,196x speedup).

The O
`

2kn
˘

MAF algorithm alone provided a tremendous improvement, requir-

ing at most 0.633 seconds for any instance. For example, the mean running times

for an SPR distance of 41 and 46 was only 0.202 seconds (a 22,926x speedup) and

0.0485 seconds (a 52,330x speedup), respectively. The cluster reduction increased the

running time of the O
`

2kn
˘

algorithm on instances with an SPR distance less than

30 but provided some improvement on more difficult instances, requiring an aver-

age of 0.0275 seconds to compute SPR distances of 46 (a 92,307x speedup over the

O
`

2.42kn
˘

algorithm). The combined algorithm will likely be useful when computing

much larger SPR distances.

We found that the O
`

2kn
˘

MAF algorithm with clustering greatly reduced the

time required to compare evolutionary trees in practice; for large SPR distances we

observed an improvement of nearly 5 orders of magnitude—hours to fractions of a

second. Extending the MAAF algorithm of Chapter 4 with these improvements and

testing it remain for future work. In Section 8.3 we show that the algorithm performs

just as efficiently when comparing a binary and multifurcating tree. Our efficient MAF

algorithm thus makes the SPR distance a practical metric for meaningful datasets

and enables new evolutionary analyses such as the supertree and LGT analysis of

Chapter 8.



Chapter 8

SPR Supertrees: Inferring Trees of Life and Highways of

Gene Sharing

In this chapter, we present the first method to construct supertrees by using the sub-

tree prune-and-regraft (SPR) distance as an optimality criterion. Supertree methods

reconcile a set of phylogenetic trees into a single structure that is often interpreted

as a branching history of species. A key challenge is combining conflicting evolution-

ary histories that are due to artifacts of phylogenetic reconstruction and phenomena

such as lateral gene transfer (LGT). The SPR distance, a measure of LGT, is thus

an ideal distance measure to reconcile such conflict. Although they often work well

in practice, existing supertree approaches use optimality criteria that do not reflect

underlying processes, have known biases and may be unduly influenced by LGT.

Although calculating the rooted SPR distance between a pair of trees is NP-hard,

our new maximum agreement forest-based methods can reconcile trees with hundreds

of taxa and more than 50 transfers in fractions of a second, which enables repeated

calculations during the course of an iterative search. Our approach can accommodate

trees in which uncertain relationships have been collapsed to multifurcating nodes.

Using a series of simulated benchmark datasets, we show that SPR supertrees are

more similar to correct species histories under plausible rates of LGT than supertrees

based on parsimony or Robinson-Foulds distance criteria. We successfully constructed

an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244

genomes representing several major bacterial phyla. Our SPR-based approach also

allowed direct inference of highways of gene transfer between bacterial classes and

genera; a small number of these highways connect genera in different phyla and can

highlight specific genes implicated in long-distance LGT.
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8.1 Introduction

An organism’s genome, typically comprising many thousands of genes, provides a

detailed record of its past. While sets of homologous genes from a set of genomes can

provide evidence about organismal relationships, individual gene trees covering these

genomes may be influenced by processes including paralogy and gene loss, lineage

sorting and lateral gene transfer (LGT) [41,68]. One approach to reconcile trees that

differ due to these processes and to artifacts of the phylogenetic inference process is

to construct a single tree that aims to reflect the relationships in the input trees.

Supertree methods generate a single tree, which may serve as a hypothesis of organis-

mal descent or relatedness, by optimizing a similarity criterion. Supertrees have been

used to represent large-scale phylogenies including the first phylogeny of nearly all

extant mammals [17], the first family-level phylogeny of flowering plants [38], and the

first species-level phylogeny of non-avian dinosaurs [64]. They have also been used to

study the extent of LGT in prokaryotes [14] and to disentangle the origin of eukaryotic

genomes [78]. One key advantage of supertree methods is that they can take as input

sets of gene trees sampled from overlapping but non-identical sets of taxa, in contrast

with consensus tree approaches, which require that all input trees contain exactly the

same set of leaves. Simulations have shown that supertrees are more reliable in the

presence of a moderate amount of misleading LGT than the supermatrix approach

which requires concatenated alignments of many gene sequences [59].

Many optimality criteria have been proposed for supertree construction. Matrix

representation with parsimony (MRP) [8, 80] was among the earliest methods pro-

posed and remains the most commonly used, but detailed work with MRP has raised

several concerns with the approach. MRP converts input trees into a binary character

matrix and solves the parsimony problem on this matrix. Although the parsimony

problem is NP-hard, fast hill-climbing heuristics in PAUP* or TNT allow MRP to be

applied to large datasets [42, 85, 94]. MRP is very effective in practice, quickly con-

structing supertrees of competitive quality in every tested metric [18,30,40]. However,

it is not clear why the MRP approach performs so well and it may generate relation-

ships that do not belong to any of the source trees [79], has problems resulting from

unequal representation of taxa [16], and may include relationships contradicted by
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the majority of source trees [43]. Other developed supertree criteria include consen-

sus supertrees [1], majority-rule supertrees [35], Quartet supertrees [76] and Triplet

supertrees [61]. However, like MRP, other supertree building methods that are not

based on symmetric tree-to-tree similarity measures may be unduly influenced by the

shapes of the input trees [107].

Bansal et al. [6] recently proposed Robinson-Foulds (RF) supertrees, which aim

to minimize the total RF distance [82] between the supertree and the set of input

trees. The RF measure captures the number of clusters (clades, in the binary case)

that differ between two trees, so the RF supertree approach aims to maintain as much

phylogenetic information from the input trees as possible. Fast hill-climbing heuristics

make computing rooted RF supertrees feasible from binary input trees and others

have begun to extend this to unrooted trees with local search heuristics [29]. While

RF appears to be a good criterion for supertrees, it may not be suitable for datasets

with substantial amounts of LGT: a single ”long-distance” LGT event between distant

taxonomic relatives will result in many discordant bipartitions and a high RF distance.

If many organisms participate in long-distance LGT, then ”phylogenetic compromise”

trees [12] may emerge which reflect neither the correct species relationships, nor the

dominant pathways of gene sharing. The requirement that all input trees be binary

is also potentially limiting, as many relationships in trees inferred from sequence data

are unsupported by statistics such as the bootstrap, and should be collapsed into

multifurcations.

Another well-studied criterion for expressing differences between trees is the sub-

tree prune-and-regraft (SPR) distance [51]. The SPR operation involves splitting a

pendant subtree from the rest of the tree, and reattaching it at a different location,

with the rooting of the subtree preserved. Since SPR operations allow the pruned

subtree to be reattached anywhere, they can accommodate long-distance transfers in

a single step; such a transfer would increase the SPR distance by only 1, whereas

the RF distance could be drastically increased. The SPR distance is the minimum

number of such operations required to reconcile two trees. The relationship between

an SPR operation and the topological consequences of an LGT event [13] makes SPR

a natural criterion for assessing a supertree whose constituent trees contain a large
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number of LGT events. Given its relationship with the RF distance, the SPR crite-

rion may also be suitable for datasets where a phenomenon other than LGT is the

principal confounding factor. To date, no SPR-based supertree approach has been

developed, in part because computing the SPR distance between two phylogenetic

trees is NP-hard [23,53].

Combining two recent advances makes SPR supertrees feasible. First, using the

equivalence between Maximum Agreement Forests (MAFs) and rooted SPR dis-

tance [23, 51], Whidden and Zeh [103] and Whidden et al. [100, 102] developed an

algorithm with running time O
`

2.42kn
˘

(Chapter 3). The resulting implementation

was orders of magnitude faster than any previous algorithm and is able to compute

SPR distances of up to 46 on trees with 144 prokaryotic taxa, and 99 on synthetic

1000-leaf trees, in less than 5 hours (Chapter 7). We have extended this algorithm

with several enhancements that improve the running time to O
`

2kn
˘

for binary input

trees (Chapter 6), and allow the inclusion of input trees in which uncertain relation-

ships have been collapsed into multifurcating nodes (Chapter 5). Second, Linz and

Semple [63] developed a cluster reduction technique which can reduce the computa-

tion of an MAF into several subproblems, yielding an exponential reduction of the

running time in practice. The approach taken by Linz and Semple is similar to the

cluster reduction rule of Baroni et al. [7] for computing the hybridization distance

but requires more care in choosing which maximum agreement forest to take for each

subproblem to build the complete MAF. We have also reduced the time required to

compute a cluster reduction to linear from the originally published O pn3q . Neither re-
finement alone is fast enough to compute the thousands of SPR distances required to

build an SPR-based supertree on interesting numbers of taxa. However, by combining

the cluster reduction with our improved MAF-based approach we obtain dramatic im-

provements in running time, processing tree pairs that previously required 1-5 hours

to reconcile in one second or less, thus enabling the many SPR distance computations

needed to iteratively construct a supertree.

Our heuristic approach uses a greedy hill-climbing strategy to build an initial su-

pertree, then refines this supertree using iterative global SPR rearrangements. We

use a bipartition-based heuristic to identify and ignore proposed rearrangements that
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violate relationships that are well-supported in many trees, greatly reducing the num-

ber of rearrangements that need to be evaluated. These algorithms are implemented

in the SPR Supertree software version 1.2.0 [106]. The software is freely available,

open source and licensed under the GNU GPL version 3. Here we describe the steps

in our approach, and demonstrate the speedups achieved using the algorithmic refine-

ments described above. Our experiments using simulated datasets with LGT show

that the SPR approach is more accurate than RF and, for some realistic rates and

regimes of LGT, MRP as well. Comparisons based on the eukaryotic datasets used

by Bansal et al. [6] for benchmarking show that the SPR approach yields supertrees

with lower total SPR distances to the input trees than either RF or MRP, and with

slightly higher RF and parsimony scores. To demonstrate the application of the SPR

supertree approach on a dataset in which considerable LGT is expected, we also used

a phylogenomic data set of 244 bacteria covering 393,876 genes in 40,631 ortholo-

gous sets to analyze preferential transfer of genes between bacterial lineages. We

were able to reconstruct a highly plausible supertree, and with the SPR approach we

identified putative highways of gene sharing. Interestingly, preference for alternative

hypotheses of the relatedness between bacterial phyla depended on the choice of gene

tree rootings, suggesting that unrooted supertree methods may be ignoring plausible

hypotheses.

8.2 Methods

8.2.1 Calculating the Subtree Prune-and-Regraft Distance Between a

Pair of Rooted Trees

We can compute the SPR distance between a pair of rooted trees quickly in prac-

tice, despite the NP-hardness of the problem [23], using our efficient fixed-parameter

bounded search tree algorithm in combination with our linear-time formulation of

Linz and Semple’s cluster reduction [63] to solve the equivalent Maximum Agreement

Forest problem. The MAF problem is a static version of the SPR distance problem

that is easier to manipulate and analyze. An agreement forest of two trees is a forest

on the same label set that can be created by cutting (deleting) edges from either tree.

Bordewich and Semple [23] showed that a maximum agreement forest—an agreement
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Figure 8.1: The equivalence between the SPR distance and MAF size. (a) The species
tree S and gene tree G differ only in the placement of the grey subtree. The roots of
these trees are denoted by ρ. (b) The MAF of S and G is produced by cutting the
dotted edge in both trees. (c) Each component of an MAF other than the component
containing ρ represents an SPR move. A single SPR move transforms S into G by
moving the grey subtree in S to its position in G. (d) Each SPR move models an LGT
event in the reverse direction. From the MAF of S and G we infer that a transfer of
gene G has occurred from an ancestor of taxon 1 to an ancestor of taxon 4.

forest that requires the fewest edge cuts—requires exactly as many edge cuts as the

SPR distance between the trees. Indeed, each edge cut represents a transfer and the

proposed series of transfers can be quickly inferred from the MAF (Figure 8.1). Our

algorithms, like most recent work on the SPR distance, compute such MAFs.

Our published MAF algorithm [100, 102] (Chapter 3) operates in a bottom-up

fashion in the first tree, denoted T1, and reduces the second tree to a forest, denoted

F2. During the algorithm we identify subtrees that are identical in T1 and F2 and, in

particular, pairs of such trees that are siblings in T1 (sibling pairs). If any identical

subtree is a component of F2 we cut its corresponding parent edge in T1. If any sibling

pair in T1 is also a sibling pair of F2 we note that their parent nodes are identical in T1

and F2. If neither of these two situations applies, we identify at most three possible

edge cutting scenarios and explore each recursively. We explore each scenario in

turn, thus using very little memory, and use our 3-approximation algorithm (which

operates similarly but simply cuts all three possible edges so that its running time

scales linearly and may return at most 3 times the correct distance) to avoid exploring

scenarios that are guaranteed to not return an optimal MAF.

We have enhanced our MAF algorithm to prioritize non-branching edge cut scenar-

ios and ignore duplicate search branches through edge protection. First, we examine

each sibling pair to select a sibling pair with only one edge cutting scenario, if any
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exist. This limits the exponential explosion of our search when possible. Second,

we protect edges that have been cut in previously rejected scenarios. If we have two

scenarios that cut edges e1 and e2, respectively, and the e1 scenario fails to find an

MAF, then the e2 scenario will not find an MAF by cutting e1 so we protect e1 to

indicate this and ignore any scenario that would cut e1. This prevents us from ex-

ploring duplicate edge sets and increases the chance of finding a non-branching edge

cut scenario. When no non-branching sibling pairs remain, we select a sibling pair

with a protected member, if possible, to capitalize on this effect. For further details

see Section 8.2.4.

We have also extended our MAF algorithm to allow for reconciliation of multifur-

cating gene trees with the reference supertree (see Section 8.2.4). For such gene trees

we define the soft SPR distance [62, 99] to be the minimum number of SPR opera-

tions required to transform the reference tree into some binary resolution of the gene

tree. This definition accounts for the general assumption that multifurcations imply

uncertainty rather than simultaneous speciation. Our algorithm proceeds similarly to

the binary case (as the reference tree, required to be T1, is binary) with modifications

to our considered edge scenarios that allow the resolution of multiple siblings and

cutting the resulting edge.

The cluster reduction of Linz and Semple [63] splits the input trees into smaller

subproblems that can be solved iteratively (but not independently). As our algo-

rithms’ running times scale exponentially with the computed distance, this reduction

has an enormous impact in practice. Two subtrees of the input trees on the same

leaf sets represent a cluster. A cluster MAF with its root edge removed (representing

a transfer prior to the LCA of the leaf set) is guaranteed to be part of some com-

plete MAF of the two trees, if any such cluster MAF exists. Alternatively, if every

MAF of the cluster must maintain its root edge, every cluster MAF will be part of a

complete MAF. We thus modified our search strategy to prefer MAFs with their root

edge removed in order to accommodate this reduction. In addition, we removed the

complicated weighting scheme of the original cluster reduction method and improved

the time required to compute such a cluster reduction to linear in the size of the trees

from the cubic scaling reported by Linz and Semple (see Section 8.2.5).
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Recently, Chen and Wang proposed a separate improvement to our previous SPR

distance algorithm for binary trees called UltraNet [32]). We do not compare our

algorithms with UltraNet in detail as UltraNet requires binary trees and failed to

find the correct SPR distance in 30 of our tests. However, our improved algorithm

for the SPR distance even without the cluster reduction was significantly faster than

UltraNet and our previous algorithm with clustering outperformed UltraNet on 65 of

our tests.

8.2.2 Supertree Construction

We attempt to find the minimal SPR supertree for a given set of gene trees, that is,

the binary rooted tree on the union of the label sets of the gene trees with the minimal

cumulative SPR distance to the gene trees (hereafter, simply minimal SPR distance).

When the leaf set of the (partially constructed) supertree differs from that of a gene

tree, we ignore unique taxa when computing this distance. If no starting tree is pro-

vided to initiate the search, we construct an initial SPR supertree through stepwise

addition of taxa and then use global SPR rearrangements to optimize the tree. To

construct the initial tree, we begin with the four most common taxa in the input

trees and select the tree shape on these four taxa with minimal SPR distance to the

projected input trees. We then successively add taxa to the supertree, in decreasing

order according to the frequency of occurrence in the gene trees. Each taxon is added

in the location that minimizes the SPR distance. When determining this location, we

only compute the SPR distance to gene trees containing the new taxon, as the SPR

distance between the supertree and other gene trees is unchanged. Once we have

constructed an initial SPR supertree (or, alternatively, are supplied an initial tree

by the user) we begin the SPR rearrangement phase. For a prespecified number of

iterations, we look at the O pn2q trees that can be obtained from the current supertree

of n leaves by one SPR operation and select from these the tree with minimal SPR

distance. Many of these SPR rearrangements will be obviously flawed, so we incorpo-

rate a bipartition clustering approach to ignore such rearrangements. Any bipartition

of the supertree that is supported by at least half of the gene trees containing two or

more taxa from each of the two sets induced by the bipartition is considered ”fixed”,
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and SPR rearrangements that disrupt it are disallowed. This greatly decreases the

number of considered bipartitions with little effect on the accuracy of the tree search.

Our methods were developed for rooted gene trees, but we provide three options

to accommodate the unrooted gene trees that are typically produced by maximum-

likelihood and Bayesian phylogenetic approaches. Our first method is to compute

the minimal SPR distance between the supertree and any rooting of each gene tree

using an exhaustive search of all possible rootings. Second, given a rooted (partial)

supertree and unrooted gene tree we use each bipartition of the gene tree to try and

identify the root bipartition of the supertree. We root the gene tree at the bipartition

that best matches the supertree root bipartition according to the balanced accuracy

score, an average of the similarities between each matching side of the bipartitions.

Suppose that the supertree root bipartition splits the taxa into two groups A and

B and a gene tree bipartition splits the taxa into two groups C and D. Then the

balanced accuracy of the C|D bipartition as compared to the A|B bipartition is the

larger of
|A X C|

2p|A Y C|q ` |B X D|
2p|B Y D|q or

|A X D|
2p|A Y D|q ` |B X C|

2p|B Y C|q ,

depending on whether A and C or A and D are more closely matched. Third, we

can root the gene trees at a set of predetermined outgroup taxa, throwing away trees

where this outgroup is not monophyletic. We then build a supertree of this reduced

tree set and can then, if desired, root the remainder of the trees using our balanced

accuracy approach to build a final supertree.

8.2.3 Comparative Evaluation and Data Sets

We evaluated the performance of our SPR supertree algorithm against two other ap-

proaches: the widely used matrix representation with parsimony (MRP) approach of

Baum [8] and Ragan [80] and the recently published Robinson-Foulds (RF) supertree

algorithm [6]. Since the RF supertree approach is also based on topological distances

between trees, it is an appropriate comparator for our SPR-based method. To con-

struct MRP supertrees we used the Clann 3.2.2 [36] software package to generate

matrices for a PAUP* version 4.0b10 [94] parsimony search using 25 iterations of

SPR rearrangements (to match the SPR and RF approaches). RF supertrees were

constructed using version 1.8.4 of the software described by Bansal et al. [6] which
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uses 25 iterations of SPR rearrangements interleaved with partial data ratchet itera-

tions. The three methods were compared in terms of their running time on various

datasets as well as their accuracy, either against the known phylogeny in the case

of simulated data sets or the three supertree criteria when empirical data sets were

used.

Unless otherwise specified, our experiments were performed on a 3.16Ghz Xeon

system with 4GB of RAM and running CentOS 2.6 Linux in a Rocks 5.1 cluster. Our

code was compiled using gcc 4.4.3 and optimization -O2.

We built simulated data sets to evaluate the accuracy of SPR, MRP and RF on

gene trees generated from a completely known species history. EvolSimulator [11]

version 2.2 was used to generate 15 replicated speciation and extinction histories in

populations limited to 25 extant genomes. 10,000 simulation iterations were run in

all cases. For each of the 15 distinct histories, multiple runs were carried out in

which the rate of LGT was varied between 0 (no LGT) and 2.5 events per iteration in

increments of 0.1. We also simulated two different LGT regimes: random, in which

transfers between any donor/recipient pair were equally probable; and divergence-

biased, where donor/recipient exchanges were more likely between closely related

genomes (i.e., genomes that share a recent common ancestor), with no LGT at all

between genomes that diverged less than 5000 generations in the past. The ancestral

genome in each simulation (i.e., iteration 1) had 150 genes, and lineages could gain

and lose genes to a minimum of 100 and a maximum of 200. The resulting gene

trees were used to infer supertrees under the SPR, MRP and RF criteria: supertree

accuracy was evaluated based on dissimilarity with the known species tree, and the

total distance between the supertree and all gene trees.

We also compared the three methods using published eukaryotic supertree datasets

of marsupials [27], seabirds [57], placental mammals [9] and papilionoid legumes [109]

obtained from http://www.cs.utexas.edu/~phylo/datasets/supertrees.html.

These datasets cover between 121-558 taxa in 7-726 trees and were used to compare

the supertree methods according to their respective supertree optimization criteria,

as was done by Bansal et al. [6].

Finally, we constructed a 244-taxon bacterial SPR supertree from a 40,631-tree

subset of the 159,905 unrooted multifurcating prokaryotic phylogenetic trees from
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Beiko [10], compared it with an MRP supertree and used the SPR supertree to infer

“highways of gene sharing”, that is, frequently implied pathways of LGT among major

bacterial lineages. From the 1179 taxa in the original dataset, we randomly selected

15 Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria, 14 Epsilonpro-

teobacteria, 13 Gammaproteobacteria, 40 Bacilli, 34 Clostridia, 74 Actinobacteria, 2

Deferribacteres, 11 Thermotogae, 7 Aquificae, 2 Nitrospira and 2 Synergistetes for a

total of 244 taxa (listed in Supplemental Table A.1) covering a subset of well-sampled

and sparsely sampled classes of bacteria and restricted the 159,905 trees to this sub-

set. We then collapsed all branches with a bootstrap support value of less than 0.8

and discarded all star trees and trees with fewer than 4 taxa. After this procedure,

40,631 trees remained. In total, there were 393,876 leaves in the trees for an average

of 9.7 taxa per tree. To construct a supertree from the set of unrooted gene trees, we

used our rooting method described above with the Aquificae as outgroup. Unlike our

other results, this supertree construction was performed on a 12-core 2.93Ghz Xeon

system with 12GB of RAM and running Ubuntu 12.04.2 LTS Linux. We used all

12 cores in parallel with openMP to quickly compute aggregate SPR distances. We

first constructed an initial guiding supertree from the 40 largest gene trees that con-

tained a monophyletic Aquificae group [47]. This required 13 global rearrangement

iterations and 87 CPU hours to converge on a local minimum. The remaining trees

were then rooted using our balanced accuracy approach, and we constructed our SPR

supertree from this data set using the guiding supertree as a base, which required 16

iterations to converge and 1198 CPU hours.

Once the final supertree was obtained, LGT events were inferred using MAF

comparisons between our SPR supertree and the gene trees. We computed a single

MAF for each gene tree and determined the equivalent sequence of implied LGT

events in less than one minute. Transfers where both the putative donor and recipient

were contained within two distinct genera were counted, and the results visualized

as a heatmap and LGT affinity graph constructed using Cytoscape 2.8.3 [88]. We

ignored directionality as it is often possible to identify partners but not the direction

of transfer [12]. Heatmap values were scaled such that each row had a mean of 0 and

standard deviation of 1 and relationships with fewer than 5% of the maximum transfer

events for a row or only a single transfer event were filtered out. Two genera were
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connected by an edge if the number of inferred LGT events between them exceeded

5% of the total number of homologous genes common to at least one member of both

genera.

8.2.4 Fast MAF Algorithm

In this section we discuss the efficiency and practicality improvements of our new

MAF algorithm. We first introduce our previous algorithm [100, 102] (Chapter 3)

whose running time is bounded by O
`

2.42kn
˘

for two binary trees with n leaves

and an SPR distance of k. We then introduce our novel concept of “protecting”

edges during the search for an MAF. This “edge protection” scheme allows us to

avoid exploring the same edge cutting scenarios multiple times and greatly speeds up

the search for an MAF, as we demonstrated in Figure 8.9. In a forthcoming paper

(Chapter 6) we give the full details of this algorithm and prove that its running time is

bounded by O
`

2kn
˘

. Finally, we explain how we extended our algorithm to compute

MAFs of a binary and multifurcating tree and thereby account for uncertainty in the

gene trees input to our supertree method. In a recently submitted manuscript [99]

(Chapter 5) we gave the full details of this algorithm as applied to two multifurcating

trees and proved that its running time remains bounded by O
`

2.42kn
˘

. However,

by requiring that one tree be binary and applying edge protection our new MAF

algorithm requires roughly the same time in practice to compute an MAF regardless

of whether the other tree is multifurcating, as we demonstrated in Figure 8.9.

Previous MAF Algorithm

Our previous MAF algorithm [100, 102] (Chapter 3) takes two binary trees T1 and

T2 as input along with a parameter k and returns an agreement forest with at most

k ` 1 components (and thus k edge cuts) if and only if such an agreement forest

exists. To find an MAF, we run this algorithm with increasing values of k from 0

until an agreement forest is found. Since the running time of the algorithm scales

exponentially with k, this entire procedure only takes a small constant factor more

time than the invocation that finds the MAF. Our algorithm proceeds in a bottom-up

fashion from the leaves of T1. T1 remains a tree through this procedure but T2 may

become a forest, denoted F2. We maintain a set of sibling pairs, sibling subtrees pa, cq
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in T1 such that identical subtrees a and c exist in F2. The algorithm examines each

such sibling pair in turn and applies one of three cases:

1. If a and c are also siblings in F2, then the subtree rooted at their parent is

identical in T1 and F2 and so becomes a candidate for membership in a sibling

pair,

2. If a or c is a component of F2 then it must be cut off in T1,

3. We identify at most 3 sets of edges in F2 such that cutting one of these edge

sets will lead to an MAF and try each edge set recursively in turn.

Case 3, which defines multiple edge sets to consider for cutting, requires detailed

explanation. Assume that a is the deeper subtree of F2, if a and c are in the same

component, and let b be the sibling of a in F2. If a and c are in separate components

of F2 then cutting off a or c will lead to an MAF. If a and c are in the same component

but only one subtree, b, is on the path between them then cutting off b will always

lead to an MAF. Otherwise, cutting off a, c, or simultaneously cutting off all of the

subtrees between a and c in F2 will lead to an MAF. Note that this last case is the

worst case of our algorithm as it splits our computation into three branches cutting

one, one, or at least two edges respectively. We previously showed in [100] (Chapter 3)

that this last case bounds our running time of O
`

2.42kn
˘

with a recurrence relation

analysis.

New MAF Algorithm

Our improved algorithm introduces the concept of edge protection to alleviate the

bottleneck of the 3-way branching case of our previous MAF algorithm. Observe that

if some MAF can be found by a recursive invocation of this case that cuts off subtree

a in F2 then an MAF will be found by this invocation. Thus, we can assume that

cutting off subtree a does not lead to an MAF in the recursive invocation that cuts off

subtree c, or we would have already found it. We protect edge a in this search branch

to denote this and ignore any recursive invocations that cut a protected edge. By

ignoring these search paths we reduce the running time of the algorithm to O
`

2kn
˘

.

The proof of this bound is highly technical, as it relies on showing that this edge
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protection either forces our best case, cutting subtree b without branching, or avoids

enough search branches to achieve this bound and requires some additional boundary

cases. In a forthcoming paper (Chapter 6) we will provide the full details of our

algorithm and prove this bound.

We have also developed a theory for MAFs of multifurcating trees to incorporate

uncertainty in gene trees. In a recently submitted manuscript [99] (Chapter 5) we

developed a general MAF algorithm for two multifurcating trees. This algorithm is

based on our O
`

2.42kn
˘

algorithm for binary trees and achieves the same running

time but is significantly more complicated and requires many more cases. For the

purposes of constructing SPR supertrees, however, we only need to allow that the

gene trees be multifurcating; the supertree is binary. By requiring that T1 be binary

in our MAF algorithm these extra cases disappear and we can use the same overall

algorithm structure but with the ability to resolve multifurcations as well as cut edges.

Our MAF algorithm when T2 is multifurcating still examines each sibling pair in turn

and applies one of three cases:

1. if a and c are also siblings in F2, then either the subtree rooted at their parent is

identical in T1 and F2 and so becomes a candidate for membership in a sibling

pair or we resolve the multifurcation of their parent in F2 to separate them so

that this occurs.

2. If a or c is a component of F2 then it must be cut off in T1.

3. We identify at most 3 sets of edges in F2 such that cutting one of these edge

sets will lead to an MAF and try each edge set recursively in turn.

We again assume that a is the deeper subtree of F2, if a and c are in the same

component. Since F2 is multifurcating, a may now have multiple siblings and we

represent them collectively by B which we call a pendant subtree. If a and c are in

separate components of F2 then cutting off a or c will again lead to an MAF. If a

and c are in the same component separated only by B then either cutting off c or

resolving B separately from a and cutting the introduced edge will lead to an MAF.

Otherwise, cutting off a, c, or resolving and cutting off all pendant subtrees of the

path from a to c in F2 will lead to an MAF. We further apply edge protection to this

last case as in our improved binary algorithm. Note that this procedure is essentially
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identical to our prior binary algorithm with the exception that our previous best

case, where we could bring a and c together in F2 with a single cut now requires us

to branch into two possibilities. Fortunately, cutting off c is never necessary when a’s

parent is binary, that is, B is a single node b, so this has a negligible running time

impact in practice, as we demonstrated in Figure 8.9. This does, however, preclude

the argument we used to prove that edge protection reduces the running time of the

binary MAF algorithm to O
`

2kn
˘

so the running time of our MAF algorithm when

one tree is multifurcating remains O
`

2.42kn
˘

in the worst case.

8.2.5 Linear-time Cluster Reduction

In this section we explain how to accelerate the computation of MAFs (and, thus,

the SPR distance) using the Cluster Reduction of Linz and Semple [63]. This reduc-

tion partitions the input trees into pairs of subtrees, or clusters, that can be solved

iteratively and reassembled into a full solution. The time required to solve these

clusters with our MAF algorithms scales exponentially with the maximum number of

components in an MAF of any cluster rather than the full MAF of the trees so this

strategy greatly accelerates the recovery of MAFs in practice. The Cluster Reduction

as originally formulated is only suitable to compute an MAF variant, weighted MAFs,

that cannot be computed with our algorithms. We first extend the Cluster Reduction

to apply to ordinary MAFs and then show how to identify clusters in linear time,

greatly improving on the previous cubic time algorithm.

Linz and Semple defined a cluster of two trees T1 and T2 to be a pair of subtrees

T e
1 and T

f
2 , for appropriate edges e in T1 and f in T2 such that both trees have the

same set of labelled leaves. A cluster sequence of T1 and T2 is a sequence of tree

pairs T “ pT 1
1 , T

1
2 q, pT 2

1 , T
2
2 q, . . . , pT t

1, T
t
2q, pT ρ

1 , T
ρ
2 q defined inductively as follows: if

t “ 0, then T
ρ
1 “ T1 and T

ρ
2 “ T2. If t ą 0 then pT 1

1 , T
1
2 q is a cluster of T1 and

T2 with at least two taxa, the roots of T 1
1 and T 1

2 are labelled with a new label

ρ1, and pT 2
1 , T

2
2 q, . . . , pT t

1, T
t
2q, pT ρ

1 , T
ρ
2 q is a cluster sequence of the two trees obtained

from T1 and T2 by replacing the subtrees T 1
1 and T 2

2 with a single labelled leaf a1.

This is illustrated in Figure 8.2. Clearly, ρ is the root of T ρ
1 and T

ρ
2 . An agreement

forest F of T is the disjoint union of forests F “ F1 Y F2 Y . . . Y Ft Y Fρ, where

Fi is an agreement forest of T i
1 and T i

2, for all i in t1, 2, . . . , t, ρu. The weight of F
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1

4

2 3

1

2 3

4

1

4

2 3

1

2 3

4

ρ1 ρ1

a1 a1

Figure 8.2: One application of the cluster reduction. The subtrees on leaves 1, 2, 3,
and 4 are not identical but cover the same leaf set. Thus, they can be split from the
trees and solved independently. The original locations of the removed subtrees are
represented by a new leaf a1 and their roots are labelled ρ1. It is preferable to cut ρ1
in any sub-MAF as we can then cut the equivalent edge above a1.

is defined to be wpF q “ |F | ´ |tppi, aiq : pi and ai are singletons in F u| ´ t, where

|F | denotes the number of trees in F . We say that F is an MAF of T if it has

minimum weight among all agreement forests of T . The key result proved by Linz

and Semple is that the weight of an MAF of any cluster sequence is exactly the

number of components in an MAF of the original trees. They also provided a divide-

and-conquer approach for computing an MAF of T : Process the clusters in order, for

each i computing an agreement forest Fi of T
i
1 and T i

2. If F “ F1 Y F2 Y . . . Y Fi´1

is the union of forests computed so far (for i “ ρ, let i ´ 1 “ t), then Fi is computed

to be an agreement forest of T i
1 and T i

2 that minimizes wpFiq “ |Fi| ´ |tpρj, ajq :

ρj is a singleton in F and aj is a singleton in Fiu|. This weight corrects for the fact

that we have cut the same edge twice; ρj and aj are nodes introduced by the cluster

reduction to represent the intersection of two clusters so the edge below ρj and above

aj are the same edge. Thus, for i ‰ p, we choose Fi to be an agreement forest of

T i
1 and T i

2 that minimizes this weight and such that ρi is a singleton, if possible, to

capitalize on this correction. The final forest defined in this way is an MAF of T1
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and T2.

We used the key observation of the cluster reduction, that it is best to cut the root

edge of each cluster when possible, to modify this procedure to compute unweighted

MAFs. We first compute the cluster sequence as above. We then apply a modification

(described below) of our MAF algorithm that returns an MAF of the current cluster

such that it has the root edge cut if and only if any MAF of the current cluster i has

an isolated ρi. If the root edge, below ρi, was cut in this MAF then we separate the

two clusters by simply cutting the edge above ai in its corresponding cluster and then

removing ai and ρi completely to avoid counting this double cut. If the root edge

is not cut then we reattach the two clusters by cutting this root edge, removing ρi,

and then replacing ai with the subtree formerly rooted by ρi (thereby removing this

subtree from the agreement forest of the current cluster). We apply this procedure

iteratively to the cluster sequence and then take the union of these forests as our

MAF. We have removed each ρi and ai so this is an unweighted MAF. To see that

this is indeed an MAF, observe that we apply the same procedure as Linz and Semple

for each cluster other than our treatment of ρi and ai. If ρi is not isolated in a given

cluster, then we remove one component from our forest by replacing ai, whereas the

weighted algorithm applies a weight of ´1 (from the ´t factor) to compensate. If

ρi is isolated in a given cluster then we remove ρi (equivalent to the ´1 weight)

and remove ai (equivalent to the singleton portion of the weight calculation, this

reduces the weight by 1 if pi and ai are singletons in some weighted MAF). Thus,

our computed forest has exactly as many components as the weight of some weighted

MAF and is indeed an MAF.

We now explain how we modified our MAF algorithm to prefer MAFs with isolated

roots. Recall that each recursive step of our algorithm identifies at most three edge

sets to cut from the intermediate forests and tries each edge set in turn. If more

than one of these edge set choices lead to an MAF then our algorithm arbitrarily

chooses one of them. We simply modified our algorithm to instead select between

these at most three MAFs by preferring MAFs with their root edge cut. Since our

algorithm does not find all MAFs of the two trees, it is not immediately obvious

that this change is sufficient to find one MAF where the root edge is cut if such

an MAF exists. However, the correctness proof of our previous MAF algorithm [102]
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(Chapter 3) and our forthcoming correctness proofs start with an arbitrary agreement

forest F and construct an agreement forest F 1 from F that has no more components

than F and such that our algorithms find F 1. If we choose F to be an agreement

forest where ρi is a singleton, then this construction ensures that F 1 also contain ρi

as a singleton. In other words, if there exists an MAF that has ρi as a singleton, our

algorithms find one such MAF.

Finally, we developed a linear-time algorithm for computing a cluster sequence,

greatly improving on the näıve cubic algorithm. Let n be the number of leaves in

T1 and T2. The cubic algorithm compares each of the subtrees of T1, starting at the

leaves, to each subtree of T2 and appends each found cluster to the cluster sequence.

There are O pnq subtrees in each tree and it takes O pnq time to compare two leaf sets

so this procedure requires O pn3q time. We improve on this by using least common

ancestors (LCAs). The LCA of two or more nodes in a tree is their common ancestor

furthest from the root. Let s1 be a subtree of T1 with leaf set L1 and s2 be a subtree

of T2 with leaf set L2. Observe that these subtrees have the same leaf set if and only

if the LCA of L1 in T2 is s2 and the LCA of L2 in T2 is s1. Efficient least common

ancestor (LCA) query structures exist (e.g., [15]) that can be built in O pnq time and

that allow for constant time LCA queries of two nodes. We use such a structure to

compute a mapping M of T1 subtrees to the LCAs of their leaf sets in T2. First,

for each leaf x in T1, we set Mpxq to the corresponding leaf x of T2. Then, for any

node n of T1 with children c1 and c2 such that the mapping Mpc1q and Mpc2q have

been defined, we compute Mpnq “ LCApMpc1q,Mpc2qq. We apply this procedure

again with T1 and T2 reversed to compute the mapping M´1 of T2 subtrees to the

LCAs of their leaf sets in T1. Finally, for each subtree s1 of T1 in a bottom-up

postorder traversal we check if s1 is a cluster by checking if M´1pMps1qq “ s1 and, if

so, appending s1 and Mps1q to the cluster sequence.

8.3 Results

8.3.1 Bacterial SPR Supertree and Large-Scale Analysis of LGT

We first present our supertree of 244 bacterial taxa that was constructed from 40,631

unrooted input gene trees using our two-stage outgroup procedure. The taxa selected
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Figure 8.3: The SPR supertree constructed using Aquificae as outgroup. Genera such as Mycobacterium with multiple
representatives are shown as collapsed subtrees for brevity. Colours indicate the classes of bacteria.
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for our bacterial supertree analysis were chosen to examine several interesting phy-

logenetic questions in Bacteria. For example, there are two competing hypotheses

for the placement of the Aquificae. Informational genes such as 16S small subunit

ribosomal RNA suggest that the Aquificae are deep-branching and either external

to or sister with the Thermotogae but the majority of other proteins suggest that

the Aquificae are sister to the Epsilonproteobacteria (or other groups such as the

Deltaproteobacteria) and not the Thermotogae [26]. It has been suggested that the

Aquificae may be closely related to the Epsilonproteobacteria with either LGT or a

thermophilic G+C bias and long-branch attraction responsible for the observed affin-

ity for Thermotogae [47]. Informational proteins are thought to be transferred infre-

quently, so it has been more recently suggested that there have been large amounts

of lateral gene transfer between the Aquificae and Epsilonproteobacteria [26]. Our

dataset also includes members of many other groups implicated in LGT, including the

Deltaproteobacteria and Clostridia: both of these groups show evidence of frequent

LGT with other lineages [10, 37, 50]. Other genera frequently associated with high

LGT rates including Pseudomonas and Burkholderia are also included. Finally, sev-

eral lineages such as Deferribacteres and Synergistetes with relatively few sequenced

representatives and an uncertain phylogenetic position [55] were included to assess

their placements in the SPR supertree.

Figure 8.3 shows our SPR supertree of the 244-taxon bacterial dataset. The SPR

supertree largely recovered the major bacterial classes as monophyletic groups with

several notable exceptions. The Deltaproteobacteria are separated from the other

Proteobacteria by the Actinobacteria. The Deltaproteobacteria are also split into a

group containing theMyxobacteria and Candidatus “Nitrospira defluvii”, and a group

containing all other orders of the class. Although assigned to phylum Nitrospirae, Ca.

N. defluvii has strong affinities to other phylogenetic groups, with deltaproteobac-

terial genomes constituting seven of the 15 most frequently observed phylogenetic

partners. This is an interesting link as Sorangium cellulosum has the largest known

bacterial genome [87] and both Candidatus Nitrospira defluvii and Anaeromyxobacter

dehalogenans are gram-negative nitrite reducers. Further, it has been suggested that

Ca. N. defluvii evolved from microaerophilic or even anaerobic ancestors [60] and

Anaeromyxobacter dehalogenans exhibits aerobic and anaerobic growth [86]. Two
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other proteobacteria are separated from their classes: Bdellovibrio bacteriovorus, a

Deltaproteobacterium that parasitizes other gram-negative bacteria [91] and appears

to have acquired genes from the protebacterial cells it parasitises [45], and Candida-

tus Hodgkinia cicadicola, an alphaproteobacterial cicada symbiont with the smallest

known genome [70], form a pairing that is sister to the Epsilonproteobacteria.

Among other phylogenetic groups, Veillonella parvula and Acidaminococcus fer-

mentans, initially assigned to class Clostridia, are sister to the Bacilli. Veillonel-

laceae and Acidaminococcaceae have a peculiar cell wall composition which stains

Gram-negative, unlike most Firmicutes, and have been suggested to belong to a class

Negativicutes, separate from the Bacilli and Clostridia, by Marchandin et al. [69]. Co-

prothermobacter proteolyticus groups with the Thermotagae rather than the Clostridia.

C. proteolyticus was assigned to class Clostridia using small subunit ribosomal

RNA [81] but phylogenomic analysis [10,111] and newer phylogenetic trees built from

many more samples of small subunit ribosomal RNA agree with a closer relationship

between C. proteolyticus and Thermotogae [72]. With Aquificae as the outgroup, the

next-deepest branches in the bacterial tree are Thermodesulfovibrio yellowstonii, the

other member of phylum Nitrospirae, and the Deferribacteres, followed by Thermo-

togae. The Synergistetes are sister to the Firmicutes in this tree.

We then inferred LGT events between these bacteria by computing a single MAF

for each gene tree and determining the equivalent sequence of implied LGT events.

This entire analysis of the 40,631 gene trees required less than one minute using

our refined MAF algorithms. Transfer events with source and endpoints both in a

monophyletic subtree of the same genus or different genera were identified to focus

on relatively recent transfers. Directionality was ignored as it is often possible to

identify partners but not the direction of transfer [12]. Figure 8.4 shows the results

of this analysis. Clustering based on the strength of their LGT affinities still groups

most genera by class and phylum, and the majority of inferred LGT events occur

within clusters of taxonomically related genera. However, there are also many linkages

between genera of distinct phyla and clusters of genera with distinct classes and phyla.

Figure 8.5 shows a heatmap of the relative LGT trends between classes.

A genus-level LGT affinity graph (Figure 8.6) between genera was used to fur-

ther explore these relationships and identify paths of gene sharing between distinct
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Figure 8.4: Inferred LGT events between 135 distinct bacterial genera as an LGT
heatmap. The coloured side bars indicate class using the colour mapping of Figure 8.3.
The row and column genus order is the same. The number of transfers is shown in
a white-yellow-red colour scale with darker colours indicating a higher proportion of
transfer events. Colour intensity is relative to the largest number of transfers in a
row. Relationships with fewer than 5% of the maximum transfer events for a row or
only a single transfer event were filtered out.
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Figure 8.5: Inferred LGT events between 13 bacterial classes as an LGT heatmap.
The colour side bars indicate class. The row and column order is the same. The
number of transfers is shown in a white-yellow-red colour scale with darker colours
indicating a higher proportion of transfer events. Colour intensity is relative to the
largest number of transfers in a row. Relationships with fewer than 5% of the maxi-
mum transfer events for a row or only a single transfer event were filtered out.
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Figure 8.6: Inferred LGT events between 135 distinct bacterial genera as an LGT
affinity graph. Each node of the graph represents a bacterial genus, colored by class
and scaled relative to the number of genomes representing that genus (1-15). Two
genera are connected by an edge if the number of inferred LGT events between them
exceeds 5% of the number of homologous genes common to both genomes. The shade
of an edge is proportional to this ratio of LGT events to common genome size; black
edges indicate relationships with at least as many LGT events as the size of their
common genome. The thickness of an edge scales relative to the actual number of
inferred transfers (between 2 and 370) with thicker edges indicating more transfers.
The graph is shown with a spring-loaded layout.
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Figure 8.7: Inferred LGT events between 13 bacterial classes as an LGT affinity
graph. Each node of the graph represents a bacterial class scaled relative to the
number of represented taxa (2-75). Two genera are connected by an edge if the
number of inferred LGT events between them exceeds 5% of their shared genes. The
shade of an edge is proportional to this ratio of LGT events to shared genes; black
edges indicate relationships with at least as many LGT events as shared genes. The
thickness of an edge scales relative to the actual number of inferred transfers (30-1414)
with thicker edges indicating more transfers.
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Figure 8.8: The LGT affinity neighbourhood of genus Clostridium. Each node of the
graph represents a bacterial genus coloured by class and scaled relative to the number
of represented taxa (1-13). Two genera are connected by an edge if the number of
inferred LGT events between them exceeds 5% of their shared genes. The shade of an
edge is proportional to this ratio of LGT events to shared genes; black edges indicate
relationships with at least as many LGT events as shared genes. The thickness of
an edge scales relative to the actual number of inferred transfers (2-125) with thicker
edges indicating more transfers.



164

lineages. Genera were connected by edges representing transfer events exceeding 5%

of their total number of shared homologous genes. As in Figure 3a, the majority of

inferred LGT events connect members of the same class or phylum. Yet many link-

ages connect different classes and phyla such that all of the genera but two, Ehrlichia

and Wolbachia, are connected. The large and diverse genus Clostridium, in particu-

lar, connects Actinobacteria, Thermotogae, four of the five classes of Proteobacteria,

Thermoanaerovibrio (phylum Synergistetes), and has many strong connections with

Bacilli and other Clostridia (Figure 8.8(b)). Family Coriobacteriaceae, comprising

Slackia, Eggerthella, and Cryptobacterium, had linkages with the other Actinobac-

terial genera Corynebacterium and Bifidobacterium but was also connected to the

Firmicute genera Clostridium, Eubacterium, and Streptococcus. There are numerous

pathways of gene sharing between actinobacterial genera such as Acidimicrobium,

Corynebacterium and Mycobacterium on the one hand, and proteobacterial genera

such as Helicobacter, Sorangium, Xanthomonas and Mesorhizobium on the other. A

single path between Nitratiruptor and Persephonella connects the Epsilonproteobac-

teria with the Aquificae. Many connections are observed between the different classes

of Proteobacteria, highlighting the numerous LGT events that occur between distinct

lineages of phylum Proteobacteria. The connectedness of higher taxonomic groups

is supported by the class-level affinity graph (Figure 8.7, in which each class is con-

nected to 3.92 other classes on average, with the Actinobacteria connected to a total

of ten.

8.3.2 Validation of Efficiency and Accuracy

We next demonstrate the improved performance of our MAF algorithms with a single

SPR distance analysis of our 244-taxon bacterial supertree as compared to each of

the 40,631 gene trees. Figure 8.9 shows the mean running time for tree comparisons

with a given SPR distance on a log scale. Our improved algorithms reduced the

time required for individual calculations from 5 hours to a maximum of 0.8 seconds

on the initial set of binary gene trees. Both the cluster reduction and our improved

algorithms are necessary to achieve these running times. Our algorithm requires

slightly more time to compare the supertree with multifurcating trees for a given SPR

distance but this is balanced by the reduction in SPR distance caused by collapsing
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Figure 8.9: Mean time required to compare gene trees with a given SPR distance from
an SPR supertree of a 244-genome dataset. The time axis is on a log scale as the time
required increases exponentially with the SPR distance. The left panel compares our
previous (2.42k) and new (2k) algorithms, with (C) and without clustering, on the
set of binary trees. The right panel compares our new algorithm with and without
clustering on the set of trees with unsupported bipartitions collapsed. Note that
collapsing bipartitions reduces the SPR distance.

unsupported bipartitions; clustered comparisons required at most 0.76 seconds. As

mentioned previously, a full LGT analysis now requires just 34 seconds on a single

CPU. Without our new algorithms, such an analysis would be limited to binary trees

and require more than 65 hours.

8.3.3 Validation with Simulated Datasets

We next compared the ability of SPR, RF, and MRP based supertrees to recover

the species tree in a series of simulated datasets. EvolSimulator [11] was used to

evolve sets of genomes under a model of lineage duplication and extinction, with each

lineage capable of gene duplication, gene loss, and LGT. Varying the rate of LGT in

different sets of replicated simulations allowed us to explore the effectiveness of SPR,

RF and MRP at relatively low or high levels of LGT. We also simulated two regimes

of LGT: random LGT, which can interfere with the recovery of correct branching

patterns, and divergence-biased LGT, which can actually reinforce the true tree due

to preferential sharing between close relatives [12].

Simulated LGT rates varied between 0 (no LGT) and 2.5 events per iteration (see

Methods for details). To give context to our LGT rate simulation parameter, we
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Figure 8.10: A comparison of our LGT rate simulation parameter to the bacterial
dataset. Supertrees of empirical data have the same mean SPR distance to leaf ratio
(within 95% confidence intervals) as our simulations with a random LGT rate less
than 0.2 and a divergence-biased LGT rate less than 0.4.

computed the mean ratio of SPR distance to number of leaves in the simulated trees,

to similar values inferred for the 244-taxon SPR supertree (Figure 8.10). The inferred

frequency of LGT in our empirical data equated to a simulated random LGT rate

between 0.1 and 0.2 and a simulated divergence-biased LGT rate between 0.3 and

0.4. Since the bacterial supertree has 244 leaves rather than 25, we also restricted our

bacterial supertree and gene trees to 25 randomly sampled subsets of 25 leaves and

computed this ratio. We found these subsampled supertrees corresponded to lower

simulated rates of LGT. This suggests that our simulations with lower rates of LGT

are biologically plausible; also, since the distribution of LGT events is non-uniform

across bacterial lineages [14, 58, 96] the higher rates are likely to be relevant to the

inference of some relationships in the supertree.

Having established the relevance of our simulated rates of LGT, we then assessed

the ability of different supertree algorithms to recover the correct organismal history

based on analysis of the gene trees. Figure 8.11 shows the mean SPR difference

between the simulated species histories and the RF supertree, SPR supertree, SPR

supertree seeded with an MRP starting tree, and SPR supertree seeded with the

correct species tree. SPR supertrees were significantly more similar to the simulated

species tree than RF supertrees for the LGT rates seen in our bacterial dataset and

higher (p ă 0.05 for random LGT rates of 0.2–1.4 and divergence-biased LGT rates
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Figure 8.11: A comparison of the mean supertree error (as measured by the SPR
distance) of RF supertrees (RF) to SPR supertrees using the default parameters
(SPR), seeded with an MRP starting tree (SPR-MRP), or seeded with the correct
tree (SPR-C).

of 0.7,0.8 and 1.0 with a 2-tailed paired students t-test; p ă 0.01 for random LGT

rates of 0.2–0.7, 0.9, 1.3, 1.4; the overall results were significant with p ă 10´5 for

both types of LGT). Seeding the SPR supertree search with an MRP tree did not

substantially change these results. Seeding the SPR supertree search with the correct

tree does not substantially change the results for divergence-biased LGT or plausible

rates of random LGT. We see that the SPR supertree and the simulated species tree

diverge as the random LGT rate increases, even when seeded with the species tree.

These results suggest that datasets with substantially higher rates of LGT than our

bacterial data would require a better search strategy or a network-based analysis

rather than a supertree.

Figure 8.12 compares the accuracy of SPR and MRP supertrees. As MRP con-

structs unrooted supertrees, the error is measured here as the minimum SPR distance

between the simulated species history and any rooting of the inferred supertrees. The

upper panels of Figure 8.12 show the mean supertree error between the simulated

species histories and the MRP supertree, SPR supertree, SPR supertree seeded with

an MRP starting tree, and SPR supertree seeded with the correct species tree. The

SPR supertrees were significantly more similar to the simulated species history than

the MRP trees under biologically plausible rates of LGT (p ă 0.01 for random LGT

rates of 0.3–0.5 with a two-tailed paired students t-test; the divergence-biased results
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Figure 8.12: A comparison of the accuracy of SPR and MRP supertrees with known
or unknown gene tree roots. The upper panels compare the mean supertree error (as
measured by the minimal SPR distance to any rooting of a supertree) when the gene
trees are correctly rooted. We compared MRP supertrees (MRP) to SPR supertrees
using the default parameters (SPR), seeded with an MRP starting tree (SPR-MRP),
or seeded with the correct tree (SPR-C). The lower panels compare the mean error of
the MRP supertree to SPR supertrees when the gene tree roots are unknown, using
our balanced accuracy based simple unrooted comparison without and with an MRP
seed tree (SPR-SU and SPR-MRP-SU, respectively).
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Figure 8.13: A comparison of the accuracy of SPR, RF and MRP supertrees as
measured by the minimal SPR distance between simulated species histories and any
rooting of the supertree under varying rates of random or divergence-biased simulated
LGT events.

were not significantly different for individual rates other than 0.6 and 1.0 due to the

small supertree error but were significantly better overall with p ă 0.001). At higher

simulated rates of LGT the accuracy of SPR supertrees matches that of the MRP

trees. We observed that this occurs when the accuracy of the SPR supertree and the

SPR supertree seeded with the correct tree diverge, suggesting that a better search

strategy may improve these results. We also examined the accuracy of RF supertrees

with this unrooted measure and found similar results to the unrooted comparison,

that is, SPR supertrees and MRP supertrees were both significantly more similar to

the simulated species tree than the RF supertrees (Figure 8.13). The lower panels

of Figure 8.12 show the mean supertree error between the simulated species histories

and the MRP supertree and SPR supertrees using our balanced accuracy based sim-

ple unrooted comparison without and with an MRP seed tree. The accuracy of our

SPR supertrees when the gene tree roots are unknown matches that of the MRP trees

for plausible rates of LGT but the performance of our SPR supertrees declines with

increasing rates. Using an MRP seed tree prevented this decline which suggests that

our initial tree construction step is not well suited to gene trees with unknown roots.

Developing an improved method for building starting trees from unrooted gene trees

could improve these results.
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8.3.4 Comparison with MRP and RF Supertrees on Eukaryotic Datasets

Bansal et al. [6] validated their RF supertree approach on a series of eukaryotic

datasets that varied substantially in the number of input trees and total number of

taxa. We compared the accuracy of each supertree method on these datasets as mea-

sured by their ability to minimize the three supertree criteria of SPR distance, RF

distance, and parsimony score to the gene trees. In addition to the three basic meth-

ods, we tested a variant of SPR supertrees that uses the RF distance as a secondary

optimization criterion to break ties when multiple supertrees have the same SPR dis-

tance, and tested the SPR and RF supertree methods when the MRP supertree was

used as the initial tree. As MRP supertrees are unrooted, we computed the RF and

SPR distances for each rooting of the MRP supertree and show the minimum value.

For these tests each supertree method was run with its default parameters to match

the comparisons of Bansal et al. [6] so we used the SPR and RF methods with 25

iterations of SPR rearrangements and the MRP method with 10 iterations of TBR

rearrangements. Due to excessive running times (more than 3 days) for the MRP

method on the marsupial and legume datasets we disabled the ’multrees’ option on

these runs which would otherwise retain multiple trees per iteration.

The performance of each approach according to all optimality criteria is shown in

Table 8.1. Each supertree method was best at minimizing its respective optimization

measure, suggesting that each method has merit and a well-balanced analysis should

either include a justification for the choice of method (e.g. the presence of LGT for the

SPR distance) or consider multiple optimization criteria. The MRP method required

the least amount of time and the SPR method the most. However, the SPR method

converged rapidly in 3, 1, 5 and 3 iterations on the marsupial, seabird, placental mam-

mal, and legume datasets respectively and thus produced an optimal result in only a

fraction of the reported time. Seeding the search with the MRP tree greatly reduced

the time required by the SPR method and reduced the resulting parsimony scores at

the expense of increasing the SPR distance. Starting with the MRP tree reduced the

time required by the RF method and found supertrees with better RF and MRP scores

on the marsupial and placental mammal datasets but increased RF and MRP scores

on the legume dataset. Using the RF distance as a tie-breaker with the SPR method

found lower SPR distances, RF distances and parsimony scores in a shorter period of
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Table 8.1: Experimental results comparing the performance of the SPR supertree
method to RF and MRP supertree methods. Six analyses are shown: The SPR
supertree method starting from an SPR greedy addition tree (SPR) or MRP supertree
(SPR-MRP), the SPR supertree method breaking ties with the RF distance using a
greedy addition tree (SPR-RF-TIES), the RF supertree method starting from random
addition sequence trees (RF-Ratchet) or MRP supertree (RF-MRP), and MRP with
TBR global rearrangements (MRP-TBR). The best optimization criteria or running
times for a dataset are shown in bold.

Data Set Supertree Method SPR Dis-
tance

RF-Distance Parsimony
Score

Time (s)

Marsupial
(267 taxa; 158 trees)

SPR 382 1604 2203 1097.79
SPR-RF-TIES 373 1536 2149 767.01
SPR-MRP 380 1534 2126 219.64
RF-Ratchet 394 1520 2145 2150.30
RF-MRP 379 1502 2116 2044.07
MRP-TBR 379 1514 2112 20.52

Sea Birds
(121 taxa; 7 trees)

SPR 17 109 235 31.15
SPR-RF-TIES 17 63 208 29.44
SPR-MRP 17 61 208 2.04
RF-Ratchet 17 61 208 10.43
RF-MRP 17 61 208 9.16
MRP-TBR 17 61 208 1.03

Placental Mammals
(116 taxa; 726 trees)

SPR 1715 5908 8946 5561.84
SPR-RF-TIES 1713 5902 8934 5040.03
SPR-MRP 1713 5876 8921 1819.08
RF-Ratchet 1790 5738 8827 801.92
RF-MRP 1780 5692 8810 659.32
MRP-TBR 1783 5702 8809 34.27

Legumes
(558 taxa; 19 trees)

SPR 108 651 1175 21130.08
SPR-RF-TIES 92 471 1037 12376.00
SPR-MRP 110 511 903 276.49
RF-Ratchet 117 401 1102 1349.56
RF-MRP 130 429 1068 1558.60
MRP-TBR 140 519 891 579.76

time over the basic method and avoided an issue with the seabird dataset where many

supertrees have the same SPR distance but poor RF distances and parsimony scores.

These results suggest that blended methods have merit even when only considering a

single optimization criterion. In particular, the SPR distance with RF as a tie-breaker

should be used when nontrivial amounts of lateral gene transfer are expected.
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Figure 8.14: Comparison of SPR and MRP supertrees of 244 bacterial genomes. The SPR supertree on the left was constructed
with the Aquificae as an outgroup while the MRP supertree on the right is unrooted and places the Aquificae as neighbours
of the Epsilonproteobacteria. Both figures show the largest monophyletic group of each class as a collapsed subtree and all
members of a given class with the same color.
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8.3.5 Comparison of SPR and MRP Supertrees of 244 Bacterial

Genomes

To contrast with the SPR supertree described above and examine the influence of

tree rootings, we constructed an MRP supertree from the 244-taxon bacterial dataset

using 25 iterations of an SPR rearrangement search and compared it to our SPR

supertree (Figure 8.14). The MRP supertree does not recover the same arrangement

of hyperthermophiles as the SPR supertree; notably, it places the Epsilonproteobac-

teria in close proximity to the Aquificae. If we place the root somewhat arbitrarily

between the Firmicutes and all other Bacteria, the MRP supertree like the SPR

supertree places the Thermotogae and C. proteolyticus as sisters, although this pair-

ing is sister to the Synergistetes and not the Deferribacteres in the MRP supertree.

The two Nitrospirae are again split, with Nitrospira sister to the Deltaproteobacteria

and Thermodesulfovibrio with the Aquficae and Deferribacteres. As with the SPR

supertree, the Deltaproteobacteria are separated from the other Proteobacteria.

The rooted nature of MAFs allowed the evaluation of our chosen rooting and

alternative rootings on inferring phylogenetic relationships from this dataset. We

have already described the MRP supertree rooted to separate the Firmicutes from

the other taxa (MRP), the SPR supertree constructed from the 40 largest trees with

a monophyletic Aquificae group (40-Aquificae) and the SPR supertree constructed

using the SPR-Aquificae supertree (SPR-Aquificae). Three more supertrees were

constructed to test the influence of starting topology and rooting. The first was an

SPR supertree seeded with the MRP supertree (SPR-MRP). We then rooted the

gene trees with both the MRP supertree and SPR-Aquificae tree using our balanced

accuracy measure and constructed an SPR supertree from these two sets of rooted

gene trees (SPR-MRP-Rooting and SPR-Aquificae-Rooting, respectively).

These six supertrees were compared to the two sets of rooted gene trees (see

Table 8.2). The three MRP-rooted supertrees had a much smaller aggregate SPR

distance (nearly 11% smaller) to the MRP-rooted gene trees than the Aquificae-

rooted supertrees but the three Aquificae-rooted supertrees had a much smaller SPR

distance (more than 8% smaller) to the Aquificae-rooted gene trees than the three

MRP-rooted supertrees. Thus, it is impossible to determine which supertree is more

similar to the gene trees without choosing a specific rooting of the gene trees.
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Table 8.2: Aggregate SPR distance to supertrees constructed from different rootings
of the bacterial protein trees. Six different construction methods were compared:
The MRP supertree (MRP), the SPR supertree constructed from the 40 largest trees
with a monophyletic Aquificae group (40-Aquificae), the SPR supertrees constructed
using the MRP supertree (SPR-MRP) or SPR-Aquificae supertree (SPR-Aquificae),
and the SPR supertrees constructed by only rooting the gene trees using the MRP
supertree (SPR-MRP-Rooting) or SPR-Aquificae tree (SPR-Aquificae-Rooting) and
building a greedy addition supertree. Each supertree was compared to the MRP
rooted gene trees or SPR-Aquificae rooted gene trees with the SPR distance.

MRP rooted gene trees
SPR Distance

SPR-MRP-Rooting 52867
SPR-MRP 52896
MRP 52896
SPR-Aquificae-Rooting 58539
SPR-Aquificae 59561
40-Aquificae 60611

SPR-Aquificae rooted gene trees
SPR Distance

SPR-Aquificae-Rooting 53534
SPR-Aquificae 54488
40-Aquificae 55570
SPR-MRP-Rooting 58023
SPR-MRP 58057
MRP 58057

The four SPR supertrees constructed from the full bacterial dataset were compared

by measuring their pairwise SPR distances (see Table 8.3). The two Aquificae-rooted

supertrees differed by only 10 SPRs, despite the fact that one was constructed from

the 40-Aquificae tree and the other was constructed with our usual greedy addition

procedure and no a priori information other than the gene tree roots. Even more

telling, the two MRP-rooted supertrees were essentially identical, differing by only

2 SPRs. The SPR-MRP-Rooting supertree also differed from the MRP supertree

by only 2 SPRs, so we were able to essentially recover the MRP supertree just by

biasing the gene tree roots. This suggests that MRP infers relationships that are

consistent with certain gene tree roots despite not implicitly assuming any rooting.

As these relationships are also inconsistent with plausible alternative roots, it may be

that unrooted supertree methods such as MRP are insufficient to distinguish between

controversial evolutionary hypotheses such as the placement of the Aquificae.

8.4 Discussion

Large phylogenies are being built from multiple sequence datasets to reconstruct the

histories of many groups of living organisms, and supertrees offer the means to carry

this out in a rigorous fashion. The known limitations of widely used approaches



175

Table 8.3: Dissimilarity of supertrees constructed from the same rooting of bacte-
rial protein trees. We compared the minimal SPR distance between any rooting of
the SPR supertree constructed from the 40 largest trees with a monophyletic Aquifi-
cae group (40-Aquificae), the SPR supertrees constructed using the MRP supertree
(SPR-MRP) or SPR-Aquificae supertree (SPR-Aquificae), and the SPR supertrees
constructed by only rooting the gene trees using the MRP supertree (SPR-MRP-
Rooting) or SPR-Aquificae tree (SPR-Aquificae-Rooting) and building a greedy ad-
dition supertree.

SPR-Aquificae SPR-Aquificae-
Rooting

SPR-MRP SPR-MRP-
Rooting

SPR-Aquificae 0 10 34 33
SPR-Aquificae-Rooting 10 0 27 25
SPR-MRP 34 27 0 2
SPR-MRP-Rooting 33 25 2 0

such as MRP have motivated the development of new strategies, such as the use

of Robinson-Foulds distance as an alternative optimality criterion. Although RF is

frequently used to assess the dissimilarity of phylogenetic trees, it is not based on a

specific phylogenetic process and can be heavily influenced by shifts in the position of

single taxa. A single LGT event will influence the RF distance (and parsimony score)

in proportion to the number of branches in the path between the donor and recipient

lineages, and many LGT events are likely to confound RF-based supertree inference.

The SPR distance is an alternative optimality criterion that is particularly well-suited

to analyzing phylogenomic data where LGT or other reticulate evolutionary processes

are expected to play an important role in generating phylogenetic discordance. Each

SPR operation is equivalent to an LGT event, and the degree of separation between

donor and recipient in the tree does not influence the SPR score. The SPR distance

may thus avoid some of the phylogenetic compromises of other supertree methods.

Using simulations, we verified that SPR supertrees were significantly more similar

to the known species history than RF supertrees given biologically plausible rates

of simulated LGT. The effect was more pronounced for random LGT, which pro-

duces more “long-distance” transfers, than for divergence-biased LGT. The improved

performance of SPR with random LGT events suggests that penalizing phylogenetic

discordance in a manner that is insensitive to the number of impacted bipartitions

may be preferable to the alternative RF criterion. However, in the future this asser-

tion should be tested under a wider range of scenarios, with larger trees and different
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types of phylogenetic discordance modelled. SPR also outperformed MRP in a nar-

rower, but still biologically relevant, range of LGT rates. However, the advantage of

SPR disappeared when the gene tree roots were unknown, demonstrating that the

obligately rooted SPR approach is influenced by alternative rootings of the reference

and gene trees. We also verified that each of the three supertree methods is best at

minimizing its own criterion. Combining multiple supertree criteria, such as using

the RF distance to break ties in an SPR supertree approach, yielded better results

than any method did alone. This finding suggests that combinations of criteria that

consider different types of phylogenetic discordance may provide even greater accu-

racy.

Although the history of bacteria may be better represented with a phylogenetic

network than a single tree, the supertree we inferred offers a useful backdrop for

the inference of highways of gene sharing. As shown in Figures 8.3 and 8.12, both

SPR and MRP recovered a majority of bacterial classes as monophyletic groups, re-

gardless of the choice of rooting. Many of the topological differences between the

SPR and MRP supertrees are minor, including subtle shifts in the position of taxa

such as Nitrospira defluvii and the Negativicutes. One point of substantial difference

between the two trees related to the controversial placement of Aquificae and the

Epsilonproteobacteria: MRP, being unrooted, placed these two groups adjacent to

one another, corresponding to a sister relationship under the reasonable assumption

that the root of the supertree is placed somewhere outside of this pairing. When the

SPR supertree was constructed from trees rooted to reflect the MRP tree topology

in the manner described above, the two supertrees were nearly identical; however, if

Aquificae were treated as the outgroup then the SPR supertree produced a topol-

ogy that placed other groups with many thermophiles, such as Thermotogae, as early

branches. These results suggest that unrooted supertree criteria such as MRP provide

hypotheses that are consistent with certain rootings despite not implicitly assuming

any rooting. Furthermore, the Aquificae SPR supertree was much more similar to

the Aquificae rooted gene trees than the MRP supertree, but the MRP supertree

was much more similar to the MRP-rooted trees. It was thus impossible to distin-

guish between these two hypotheses of Aquificae placement; either could be plausible

given knowledge of the correct gene tree roots. This is a practical example of the
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fundamental limits of unrooted supertree methods identified by Steel et al. [90].

Using the tree in Figure 8.3 as a basis for LGT inference, we searched for high-

ways of LGT between classes and genera. Not surprisingly, connections were more

frequently associated with specific lineages such as Clostridium and interactions be-

tween the Proteobacteria and other phyla varied considerably. In addition, larger

gene trees (those shared by many taxa) required proportionately more transfers to

explain, including ribosomal proteins. Such biased LGT could muddy or completely

obscure the vertical evolutionary signal. Our improved SPR algorithm allowed the

entire set of more than 40,000 trees to be reconciled with the supertree in less than

one minute: a similar analysis could have been carried out using any rooted reference

tree, regardless of what method was used to construct this tree. The rapid inference

of LGT highways raises the possibility of using information about lateral connec-

tions to construct phylogenetic networks with reticulations explicitly based on major

directions of LGT [13,65,73].

The scaling of runtimes with the number and size of trees is a central concern in

phylogenomics. The analysis of Beiko et al. [14] required over 20,000 CPU hours to

reconcile 22,432 gene trees with a 144-taxon supertree, and the largest trees could

not be reconciled at all due to limitations of the breadth-first search of EEEP [13].

Alternative methods of inferring highways of LGT have been proposed based on

quartets [5], but such methods are limited to finding the most obvious highways

and required on the order of two days to analyze the same dataset of 22,432 gene

trees. Repeated applications of SPR distances in large phylogenomic data sets were

heretofore not feasible due to the complexity of the algorithm, but our efficient new

methods for computing the SPR distance made the computation of these supertrees

feasible even for hundreds of taxa and tens of thousands of gene trees. Of particular

importance is the adaptation of the clustering strategy of Linz and Semple [63] to

subdivide the construction of an MAF for a given pair of trees. Clustering yields no

improvement in theoretical runtime, because there is no guarantee that more than

one cluster will be identified between a pair of trees. However, our results clearly

demonstrate that clustering is effective in practice, because LGT connections are not

random and consistent partitioning can usually be identified and used as the basis for

subdivision. We are optimistic that our approach will be applicable to much larger
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phylogenomic data sets with thousands of taxa, for two reasons: first, our fixed-

parameter algorithm scales exponentially with the distance between a pair of trees

and not their size; and second, as the timing results of Figure 8.9 suggest, clustering

increases the speed of the algorithm and reduces the rate of increase of running times

with increasing SPR distance. With only a small number of exceptions, all trees with

SPR distance less than 60 were resolved in less than one second, with the time of MAF

construction dominated by the single cluster with the largest distance. We expect

that most large trees will have a cluster size distribution similar to that of the trees

we tested here; consequently the size of the largest cluster and the corresponding

computational burden may increase only slightly. This hypothesis remains to be

tested on larger phylogenomic data sets.

Our methods could be expanded and refined in several ways. As we identified

in our results, our current supertree search method could potentially be improved

with a better strategy for constructing the initial guide tree such as SuperFine [93],

methods for avoiding local optima such as ratchet searches, or using prior knowledge

to constrain the supertree search [98]. An RF supertree method has been recently

proposed for multi-labelled gene trees [29]; extending our SPR distance algorithms

to accept such trees would enable their inclusion in SPR supertrees. The rooting

problem remains to be resolved. While in many cases rooting can be performed

using an appropriate outgroup taxon, the bacterial case considered here lacks an

obvious outgroup: the Archaea could be used to root the Bacteria and vice versa,

but many gene trees have shown evidence of interdomain LGT and rooting between

domains may be invalid or even impossible. Finally, our approach considers only the

history of observed genes, and does not attempt to account for processes such as gene

duplication and loss. Methods of reconciling multiple evolutionary processes such as

duplications, losses, transfers and incompatible lineage sorting (ILS) show a great

deal of promise [4, 95], but are currently limited to smaller datasets [92].
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Conclusion

Maximum agreement forests provide a solid theoretical foundation for the analysis

of lateral gene transfer, hybridization, and other reticulate evolutionary processes

but have heretofore seen limited application due to the time required for their com-

putation. I developed efficient algorithms to compute MAFs of both binary and

multifurcating trees as well as MAAFs of binary trees. The size of these forests is

equivalent to the SPR distance and hybridization number, respectively, measures of

LGT and hybridization, and these forests can be used to propose a minimal set of

such events. The MAF algorithms were shown to be many orders of magnitude faster

than previous approaches, reducing the time required to compute MAFs representing

46 LGT events between two 144-leaf trees to fractions of a second. This enabled new

evolutionary analyses including a 244-leaf supertree constructed from 40,631 bacterial

genomes to minimize the effect of LGT and a large-scale analysis of the inferred LGT

events between bacterial classes and genera.

My efficient fixed-parameter bounded search tree algorithms for computing MAFs

and MAAFs represent a significant improvement over previous work and their devel-

opment required several novel theoretical insights. My MAF algorithm for two binary

trees takes O
`

2kn
˘

time, where n is the number of leaves in the trees and k is their

SPR distance, a substantial improvement over the previous best algorithm with run-

ning time O
`

3kn
˘

. My MAF algorithm for two multifurcating trees takes O
`

2.42kn
˘

time, where k is the “soft SPR distance” between the trees, the minimal SPR dis-

tance between some binary resolutions of the two trees. This new measure allows for

uncertaintly in evolutionary analyses, and my algorithm is substantially better than a

recently proposed O
`

4kn
˘

algorithm, the only other algorithm for this problem. My

accompanying O pn log nq-time 3-approximation algorithm enables the rapid estima-

tion of this measure for massive datasets. My MAAF algorithm for two binary trees

179
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runs in O
`

3.18kn
˘

time, where k is the hybridization number, and is the first algo-

rithm with a running time bounded by O
`

ckn
˘

where c is a small constant. These

algorithms make use of several novel strategies—edge protection to carry a small

amount of useful information throughout an exponential search, bimodal searches to

seamlessly combine varied structural information, and favouring provably viable so-

lutions to avoid becoming bogged down by multiple optima—that will be of great use

for efficiently solving other exponential search problems.

The MAF algorithms have been implemented as the open source RSPR software

package. This software makes use of several additional heuristics—branch-and-bound,

prioritizing nonbranching search options, the cluster reduction—and is the first SPR

distance algorithm able to compare each 144-leaf tree of the protein tree dataset of

Beiko et al. [14]. Previous methods required more than 5 hours to compute any

SPR distance greater than 25 on this dataset while my algorithms required no more

than 0.764 seconds for any tree pair; computing the maximum distance of 46 in

this dataset would be infeasible with previous methods. RSPR can also be used to

compare a binary and multifurcating tree with a negligible increase in running time.

These efficient algorithms enable the computation of SPR supertrees that mini-

mize the number of inferred LGT events. Simulations showed that this SPR-based

approach is more accurate than RF and MRP approaches given plausible rates and

regimes of LGT. A highly plausible supertree was reconstructed for a phylogenomic

dataset of 244 bacteria and the inferred highways of gene sharing showed several in-

teresting trends corroborated by other evidence; the majority of inferred LGT events

were between taxonomically related genera but substantial amounts of LGT appear

to connect disparate classes and phyla. Interestingly, different rootings of the gene

trees supported different placements of class Aquificae, suggesting that some evolu-

tionary relationships may not be resolvable with unrooted trees. The effect of gene

tree roots requires further investigation.

This body of work is a significant advancement and enables use of the SPR distance

to analyze practical datasets. However, like all fixed-parameter algorithms, limita-

tions may arise when the computed distances grow too large due to their exponential

scaling on running time. The performance increase from branch-and-bound grew with

tree size, somewhat offsetting this effect, but the approximation algorithms should
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be used to estimate distances in order to test the feasibilty of the fixed-parameter

algorithms on large trees.

Several open challenges and avenues of expansion remain. First, I concentrated my

implementation efforts on MAFs and the SPR distance to develop practical and useful

software, so my MAAF algorithm remains unimplemented. Furthermore, extending

my advancements such as edge protection and methods for handling multifurcating

trees to quickly compute MAAFs of multifurcating trees would enable the effective

study of hybridization. Second, I used a standard greedy addition and SPR treespace

search approach to construct SPR supertrees, with the exception of my bipartition-

based clustering measure, so there is much room for improvement of the supertree

framework. New methods will be necessary to analyze the thousands of bacterial

and archaeal genomes currently sequenced and tens of thousands that will be. Third,

and finally, the insights and techniques developed in this thesis should be applied to

the efficient construction of phylogenetic networks. An MAAF of two trees suffices

to construct a minimal phylogenetic network of those trees, but this does not hold

for generalized MAAFs of three or more trees. Efficiently constructing a minimal

phylogenetic network to represent three or more trees remains a major open problem

in the field of phylogenetics.
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Table A.1: List of 244 Bacterial Genomes included in this work.

Class Taxon

Actinobacteria Acidimicrobium ferrooxidans DSM 10331

Acidothermus cellulolyticus 11B

Amycolatopsis mediterranei U32

Arcanobacterium haemolyticum DSM 20595

Arthrobacter aurescens TC1

Arthrobacter sp. FB24

Beutenbergia cavernae DSM 12333

Bifidobacterium adolescentis ATCC 15703

Bifidobacterium animalis subsp. lactis AD011

Bifidobacterium animalis subsp. lactis Bl-04

Bifidobacterium longum NCC2705

Bifidobacterium longum subsp. infantis ATCC 15697

Bifidobacterium longum subsp. longum JDM301

Catenulispora acidiphila DSM 44928

Cellulomonas flavigena DSM 20109

Clavibacter michiganensis subsp. michiganensis NCPPB 382

Corynebacterium aurimucosum ATCC 700975

Corynebacterium efficiens YS-314

Corynebacterium glutamicum ATCC 13032 DSM 20300

Corynebacterium glutamicum R

Corynebacterium jeikeium K411

Corynebacterium kroppenstedtii DSM 44385

Corynebacterium pseudotuberculosis FRC41

Corynebacterium urealyticum DSM 7109

Cryptobacterium curtum DSM 15641

Eggerthella lenta DSM 2243

Frankia alni ACN14a

Gardnerella vaginalis 409-05

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Geodermatophilus obscurus DSM 43160

Gordonia bronchialis DSM 43247

Jonesia denitrificans DSM 20603

Kribbella flavida DSM 17836

Kytococcus sedentarius DSM 20547

Leifsonia xyli subsp. xyli str. CTCB07

Mobiluncus curtisii ATCC 43063

Mycobacterium avium 104

Mycobacterium avium subsp. paratuberculosis K-10

Mycobacterium bovis AF2122/97

Mycobacterium bovis BCG str. Pasteur 1173P2

Mycobacterium bovis BCG str. Tokyo 172

Mycobacterium gilvum PYR-GCK

Mycobacterium leprae Br4923

Mycobacterium leprae TN

Mycobacterium marinum M

Mycobacterium smegmatis str. MC2 155

Mycobacterium sp. KMS

Mycobacterium tuberculosis F11

Mycobacterium tuberculosis H37Ra

Mycobacterium tuberculosis H37Rv

Mycobacterium vanbaalenii PYR-1

Nakamurella multipartita DSM 44233

Nocardia farcinica IFM 10152

Nocardioides sp. JS614

Propionibacterium acnes KPA171202

Propionibacterium freudenreichii subsp. shermanii CIRM-BIA1

Rhodococcus erythropolis PR4

Rhodococcus jostii RHA1

Rothia mucilaginosa DY-18

Salinispora arenicola CNS-205

Salinispora tropica CNB-440

Sanguibacter keddieii DSM 10542

Segniliparus rotundus DSM 44985

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Slackia heliotrinireducens DSM 20476

Stackebrandtia nassauensis DSM 44728

Streptomyces avermitilis MA-4680

Streptomyces griseus subsp. griseus NBRC 13350

Streptomyces scabiei 87.22

Streptosporangium roseum DSM 43021

Thermobifida fusca YX

Thermobispora bispora DSM 43833

Thermomonospora curvata DSM 43183

Tropheryma whipplei TW08/27

Tsukamurella paurometabola DSM 20162

Xylanimonas cellulosilytica DSM 15894

Alphaproteobacteria Bradyrhizobium sp. BTAi1

Candidatus Hodgkinia cicadicola Dsem

Candidatus Pelagibacter ubique HTCC1062

Ehrlichia canis str. Jake

Ehrlichia chaffeensis str. Arkansas

Erythrobacter litoralis HTCC2594

Gluconacetobacter diazotrophicus PAl 5

Mesorhizobium loti MAFF303099

Ochrobactrum anthropi ATCC 49188

Parvularcula bermudensis HTCC2503

Rickettsia akari str. Hartford

Rickettsia canadensis str. McKiel

Rickettsia peacockii str. Rustic

Rickettsia rickettsii str. Sheila Smith

Wolbachia endosymbiont of Culex quinquefasciatus Pel

Aquificae Aquifex aeolicus VF5

Hydrogenobacter thermophilus TK-6

Hydrogenobaculum sp. Y04AAS1

Persephonella marina EX-H1

Sulfurihydrogenibium azorense Az-Fu1

Sulfurihydrogenibium sp. YO3AOP1

Thermocrinis albus DSM 14484

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Bacilli Bacillus anthracis str. Sterne

Bacillus cereus 03BB102

Bacillus cereus AH187

Bacillus cereus ATCC 10987

Bacillus cereus G9842

Bacillus cereus Q1

Bacillus clausii KSM-K16

Bacillus thuringiensis BMB171

Bacillus thuringiensis str. Al Hakam

Enterococcus faecalis V583

Exiguobacterium sibiricum 255-15

Exiguobacterium sp. AT1b

Geobacillus sp. WCH70

Lactobacillus acidophilus NCFM

Lactobacillus casei ATCC 334

Lactobacillus casei str. Zhang

Lactobacillus crispatus ST1

Lactobacillus reuteri JCM 1112

Lactobacillus rhamnosus Lc 705

Lactobacillus salivarius UCC118

Lactococcus lactis subsp. cremoris MG1363

Leuconostoc kimchii IMSNU 11154

Listeria monocytogenes HCC23

Listeria monocytogenes serotype 4b str. CLIP 80459

Listeria monocytogenes serotype 4b str. F2365

Staphylococcus aureus RF122

Staphylococcus carnosus subsp. carnosus TM300

Staphylococcus lugdunensis HKU09-01

Streptococcus gordonii str. Challis substr. CH1

Streptococcus mitis B6

Streptococcus mutans NN2025

Streptococcus pneumoniae 670-6B

Streptococcus pneumoniae JJA

Streptococcus pyogenes MGAS10270

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Streptococcus pyogenes MGAS10394

Streptococcus pyogenes MGAS10750

Streptococcus pyogenes NZ131

Streptococcus pyogenes str. Manfredo

Streptococcus suis 98HAH33

Streptococcus thermophilus LMD-9

Betaproteobacteria Azoarcus sp. BH72

Bordetella parapertussis 12822

Burkholderia ambifaria MC40-6

Burkholderia sp. 383

Burkholderia vietnamiensis G4

Candidatus Accumulibacter phosphatis clade IIA str. UW-1

Gallionella capsiferriformans ES-2

Methylibium petroleiphilum PM1

Methylobacillus flagellatus KT

Methylotenera mobilis JLW8

Methylotenera sp. 301

Nitrosomonas europaea ATCC 19718

Ralstonia pickettii 12D

Ralstonia solanacearum CFBP2957

Thiobacillus denitrificans ATCC 25259

Clostridia Acetohalobium arabaticum DSM 5501

Acidaminococcus fermentans DSM 20731

Ammonifex degensii KC4

Caldicellulosiruptor obsidiansis OB47

Caldicellulosiruptor saccharolyticus DSM 8903

Caldicelulosiruptor becscii DSM 6725

Clostridiales genomosp. BVAB3 str. UPII9-5

Clostridium acetobutylicum ATCC 824

Clostridium botulinum A str. ATCC 19397

Clostridium botulinum B str. Eklund 17B

Clostridium botulinum Ba4 str. 657

Clostridium botulinum E3 str. Alaska E43

Clostridium cellulovorans 743B

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Clostridium difficile CD196

Clostridium kluyveri DSM 555

Clostridium kluyveri NBRC 12016

Clostridium perfringens ATCC 13124

Clostridium perfringens SM101

Clostridium tetani E88

Clostridium thermocellum ATCC 27405

Coprothermobacter proteolyticus DSM 5265

Desulfotomaculum acetoxidans DSM 771

Eubacterium rectale ATCC 33656

Finegoldia magna ATCC 29328

Halothermothrix orenii H 168

Heliobacterium modesticaldum Ice1

Natranaerobius thermophilus JW/NM-WN-LF

Pelotomaculum thermopropionicum SI

Syntrophothermus lipocalidus DSM 12680

Thermincola potens JR

Thermoanaerobacter mathranii subsp. mathranii str. A3

Thermoanaerobacter tengcongensis MB4

Thermosediminibacter oceani DSM 16646

Veillonella parvula DSM 2008

Deferribacteres Deferribacter desulfuricans SSM1

Denitrovibrio acetiphilus DSM 12809

Deltaproteobacteria Anaeromyxobacter dehalogenans 2CP-1

Anaeromyxobacter sp. Fw109-5

Bdellovibrio bacteriovorus HD100

Desulfotalea psychrophila LSv54

Desulfovibrio desulfuricans subsp. desulfuricans str. G20

Desulfovibrio salexigens DSM 2638

Desulfovibrio vulgaris str. Miyazaki F

Desulfurivibrio alkaliphilus AHT2

Geobacter bemidjiensis Bem

Geobacter lovleyi SZ

Geobacter uraniireducens Rf4

Continued on next page
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Table A.1 – continued from previous page

Class Taxon

Lawsonia intracellularis PHE/MN1-00

Pelobacter carbinolicus DSM 2380

Pelobacter propionicus DSM 2379

Sorangium cellulosum So ce 56

Epsilonproteobacteria Arcobacter nitrofigilis DSM 7299

Campylobacter concisus 13826

Campylobacter jejuni subsp. doylei 269.97

Campylobacter jejuni subsp. jejuni 81116

Campylobacter jejuni subsp. jejuni NCTC 11168

Helicobacter acinonychis str. Sheeba

Helicobacter hepaticus ATCC 51449

Helicobacter mustelae 12198

Helicobacter pylori B38

Helicobacter pylori HPAG1

Helicobacter pylori J99

Helicobacter pylori Shi470

Nautilia profundicola AmH

Nitratiruptor sp. SB155-2

Gammaproteobacteria Acinetobacter baumannii AB0057

Acinetobacter baumannii ATCC 17978

Actinobacillus pleuropneumoniae serovar 3 str. JL03

Escherichia coli BW2952

Escherichia coli HS

Francisella tularensis subsp. tularensis FSC198

Pseudomonas fluorescens Pf-5

Shewanella halifaxensis HAW-EB4

Shigella flexneri 2a str. 2457T

Xanthomonas albilineans

Xenorhabdus bovienii SS-2004

Yersinia pestis Antiqua

Yersinia pestis CO92

Nitrospirae Candidatus Nitrospira defluvii

Thermodesulfovibrio yellowstonii DSM 11347

Synergistetes Aminobacterium colombiense DSM 12261

Continued on next page
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Class Taxon

Thermanaerovibrio acidaminovorans DSM 6589

Thermotogae Fervidobacterium nodosum Rt17-B1

Kosmotoga olearia TBF 19.5.1

Petrotoga mobilis SJ95

Thermosipho africanus TCF52B

Thermosipho melanesiensis BI429

Thermotoga lettingae TMO

Thermotoga maritima MSB8

Thermotoga naphthophila RKU-10

Thermotoga neapolitana DSM 4359

Thermotoga petrophila RKU-1

Thermotoga sp. RQ2
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