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A complete solution to the problem of orthogonal separation of variables of the
Hamilton–Jacobi equation in three-dimensional Minkowski space is obtained. The
solution is based on the underlying ideas of Cartan geometry and ultimately devel-
oped into a general new algorithm that can be employed in the study of Hamil-
tonian systems defined by natural Hamiltonians within the framework of Hamilton–
Jacobi theory. To demonstrate its effectiveness, we investigate from this viewpoint
the Morosi–Tondo integrable system derived as a stationary reduction of the
seventh-order Korteweg–de Vries flow to show explicitly that the system in ques-
tion is an orthogonally separable Hamiltonian system. The latter result is a new
characterization of the Morosi–Tondo system. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3094719�

I. INTRODUCTION

The main purpose of this work is to solve the problem of orthogonal separation of variables
for the Hamilton–Jacobi �HJ� equation in three-dimensional Minkowski space M3 by making
explicit use of the underlying ideas of Cartan’s geometry.6,7,34 In his classic 1934 paper, Eisenhart9

employed Cartan’s approach implicitly to solve the corresponding problem in three-dimensional
Euclidean space E3 for the special case of a geodesic Hamiltonian. Using similar techniques,
Olevsky continued the program in 1950 by studying orthogonal separation of variables in three-
dimensional Riemannian spaces of constant �nonvanishing� curvature.29 The results presented in
these influential articles laid the groundwork for the development of the theory in the decades that
followed. For more details, we refer to Refs. 2, 18, 26, and 31, as well as the references therein.

Many aspects of Cartan’s approach to geometry have inevitably resurfaced in the related
literature. In 1965, Winternitz and Friš38 computed the isometry group invariants of second-order
symmetries of the Laplace equation defined on the Euclidean plane E2. These invariants were then
used to classify the �orthogonal� separable webs of E2. In 2002, the results of Ref. 38 were
independently reproduced and extended by McLenaghan et al.25 in the language of Killing two-
tensors which appear naturally in the study of classical Hamiltonian systems. The latter paper also
saw the implicit use of the moving frame map, a fundamental concept of Cartan geometry �see
Refs. 10, 11, and 30 for more details�. Another notable work is the classical 1976 paper by Boyer
et al.4 The authors explicitly described the problem of equivalence30 for the separable coordinate
systems for the Helmholtz equation in E3 as the problem of classification of the orbits of the
isometry group acting in the algebra of second-order symmetry operators of the equation. Not-

a�Electronic mail: joshua.horwood@numerica.us.
b�Electronic mail: rgmclena@uwaterloo.ca.
c�Electronic mail: smirnov@mathstat.dal.ca.

JOURNAL OF MATHEMATICAL PHYSICS 50, 053507 �2009�

50, 053507-10022-2488/2009/50�5�/053507/41/$25.00 © 2009 American Institute of Physics

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:23:59

http://dx.doi.org/10.1063/1.3094719
http://dx.doi.org/10.1063/1.3094719
http://dx.doi.org/10.1063/1.3094719


withstanding this description, in the present paper as well as in many others written on the subject,
the orbits of the corresponding Killing two-tensors �or the orbits of the isometry group acting in
the algebra of second-order symmetry operators� are represented by the simplest canonical ele-
ments only, namely, those obtained by intersecting the orbits with the cross section corresponding
to the unity element of the isometry group. We conclude therefore that from the viewpoint of the
orbit analysis described in Ref. 4, Eisenhart9 solved the corresponding canonical form problem.30

The application of Cartan’s geometry makes perfect sense when one studies, for example, the
orthogonal separation of variables of the HJ equation for a geodesic Hamiltonian �as in Ref. 9�. In
such a situation, one can choose any orthogonal coordinate system corresponding to any element
of any orbit to perform orthogonal separation of variables of the associated HJ equation and
ultimately find exact solutions of the Hamiltonian system. Clearly, the obvious choice in this case
would be to use the simplest canonical elements in the orbit space. However, the situation changes
drastically when the same problem is considered for natural Hamiltonians. The presence of a
potential acts as an obstruction as far as orthogonal separation of variables of the HJ equation is
concerned. The Calogero–Moser potential in E3 is a prime example in which this obstruction is
manifested. As is well known, the corresponding HJ equation is multiseparable; however, the
separable webs no longer correspond to the simplest canonical elements in the orbit space.3,16,31

This observation validates the development of a more general theory than the one introduced by
Eisenhart.9 In brief, given a separable web generated by a Killing two-tensor, it is essential to
know �i� the orbit to which it belongs and �ii� its location in the orbit in terms of the corresponding
moving frames map. Recently, the authors solved a more general problem for E3 involving natural
Hamiltonian systems and exposed the usefulness of various techniques from Cartan’s geometry in
the process.16 Indeed, in the language of orbit analysis, the main result presented in Ref. 16 is a
solution to the corresponding equivalence problem. The results of Ref. 16 were later revisited by
Horwood in Ref. 14 who employed various tools from algebra and geometry, including the fiber
bundle approach to the study of the orbit problem described above, first introduced by Adlam et
al.1

In the present paper, we extend our study to the case of three-dimensional Minkowski space
M3 and make the application of Cartan’s geometry more transparent. Our paper is a continuation
of the projects initiated by Kalnins,17 Kalnins and Miller, Jr.,20–23 Boyer et al.,5 Hinterleitner,13 and
Horwood and McLenaghan.15 In the latter, the authors solved the corresponding canonical forms
problem for orthogonal separation of variables of the HJ equation in M3, in analogy with the
classical solution in E3 presented by Eisenhart.9 The outcome of the present paper is a complete
solution to the corresponding problem of equivalence in the framework of the invariant theory of
Killing tensors. The main result is a general procedure to systematically solve the HJ equation in
M3 via orthogonal separation of variables. To illustrate the effectiveness of our results, we apply
our procedure to an integrable Hamiltonian system introduced by Morosi and Tondo in Ref. 27
describing a stationary reduction of a higher-order flow of the Korteweg–de Vries �KdV� equation.

The article is organized as follows. In Sec. II, we describe the HJ theory of orthogonal
separation of variables from the viewpoint of Cartan’s geometry. In Sec. III, we begin to apply the
general theory to spaces of Killing tensors defined in M3, culminating in the derivation of sets of
fundamental isometry group invariants. We then employ the concept of a web symmetry in Sec. IV
to compute additional sets of invariants for several invariant subspaces of Killing two-tensors in
M3. In Sec. V, we apply the invariants computed in the previous two sections to build an invariant
classification scheme for the separable webs in M3, thereby completely solving the equivalence
problem. In Sec. VI, we give the explicit construction of the moving frame map for the space of
Killing vectors and Killing two-tensors in M3. Our algorithm for computing orthogonally sepa-
rable coordinates for the HJ equation in M3 is then summarized in Sec. VII. Finally, in Sec. VIII,
we apply our results to the study of the integrability of the Hamiltonian system presented by
Morosi and Tondo.27 Concluding remarks are made in Sec. IX. There are two appendixes. Appen-
dix A lists the canonical forms for the Killing two-tensors characterizing the separable webs in M3

previously derived in Ref. 15. In Appendix B, we present some useful formulas and tools for
computing moving frame maps for spaces of Killing tensors.
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II. HAMILTON–JACOBI THEORY VIA CARTAN GEOMETRY

Let �M ,g� be an n-dimensional pseudo-Riemannian manifold of constant curvature. Refer-
ring to Ref. 18 for specific details and references, we recall that the geodesics on �M ,g� can be
defined as the integral curves of the Hamiltonian vector field XH given by

XH = �P0,H� , �2.1�

where P0=�i=1
n � /�qi∧� /�pi is the canonical Poisson bivector and H is the geodesic Hamiltonian,

H�q,p� = 1
2gij�q�pipj . �2.2�

The usual summation convention applies in �2.2� and throughout the paper. Note also that both P0

and H are given in terms of the position-momenta coordinates �q ,p�= �q1 , . . . ,qn , p1 , . . . , pn� of the
cotangent bundle T*�M�, while �,� in �2.1� and gij in �2.2� as well as throughout this paper denote
the Schouten bracket33 and the contravariant components of the metric tensor g, respectively. To
find the geodesic equation, one may consider �in terms of the Hamiltonian given by �2.2�� either
the corresponding second-order Euler–Lagrange equations or the first-order canonical Hamilton
equations. In the latter case, one can employ the associated HJ equation to determine the equations
satisfied by the geodesics of �M ,g�. More specifically, the geodesic flow splits the cotangent
bundle T*�M� into the level sets of constant energy,

ME � ��q,p� � T*�M��H�q,p� = E	 .

The problem may be solved by finding a complete integral W for the associated HJ equation,

H�q,p� = E, pi =
�W

�qi , i = 1, . . . ,n . �2.3�

A function W is a complete integral of �2.3� if and only if �iff� the Lagrangian submanifold
S�T*�M� defined by the equations pi=�W /�qi , i=1, ... ,n, belongs to the level sets ME defined
above. Finding such a function W is what is understood by “solving” in this context. As is well
known from classical mechanics, once W is found, one can in principle solve the original canoni-
cal Hamilton equations for q and p defined by the Hamiltonian vector field �2.1�. However, solving
the problem in terms of the original position-momenta coordinates �q ,p� without making any
assumptions on W is a rare occurrence. Instead, the problem normally extends to finding a ca-
nonical transformation to separable coordinates, viz., �q ,p�→ �u ,v� in which the equation can be
solved under the additive separation ansatz

W�u;c� = �
i=1

n

Wi�ui;c�

and the nondegeneracy condition

det
 �2W

�ui�cj
�

n�n
� 0,

where c= �c1 , . . . ,cn� is a constant vector. Orthogonal separation of variables occurs in the case
when the transformation to separable coordinates is a point transformation and the metric tensor g
is diagonal with respect to the coordinates �u ,v� of separation �see, for example, Refs. 2, 9, and 18
for more details and references�. The following definition is vital for further considerations.

Definition 2.1: A Killing tensor field K of valence p defined in �M ,g� is a symmetric �p ,0�
tensor field satisfying the Killing tensor equation

�K,g� = 0. �2.4�

When p=1, K is said to be a Killing vector field �infinitesimal isometry� and �2.4� reduces to
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LKg = 0, �2.5�

where L denotes the Lie derivative operator.
Since the Schouten bracket �,� is R-bilinear, the set of solutions to the system of overdeter-

mined partial differential equations �PDEs� given by �2.4� form a vector space over R. Further-
more, since �M ,g� is of constant curvature, the dimension of such a vector space is maximal �see
the relevant references in Ref. 16 for more details�. In what follows, we shall use the notation
Kp�M� to denote the vector space of valence p Killing tensor fields defined on M.

The geometric and algebraic properties of Killing tensors of valence two are essential for the
considerations that follow.2,9,16,18 Firstly, a function F�T*�M� which is quadratic in the momenta
according to

F�q,p� = Kij�q�pipj �2.6�

is a first integral of �2.1� iff the functions Kij above are the components of a Killing tensor field
K�K2�M�. Secondly, the following version of the Eisenhart theorem on orthogonal separation of
variables9 gives a set of necessary and sufficient conditions for the Hamiltonian system �2.1�
defined by the geodesic Hamiltonian �2.2� to be orthogonally separable in the sense described
above.

Theorem 2.2. �Eisenhart�: The Hamiltonian system (2.1) defined by the geodesic Hamiltonian
(2.2) is orthogonally separable iff it admits n−1 functionally independent first integrals of motion
of the form (2.6), such that (i) all of the corresponding Killing tensors of valence two have real
and pointwise simple (almost everywhere) eigenvalues, (ii) the eigenvectors (or eigenforms) of
these Killing two-tensors are normal, and (iii) the Killing two-tensors defined by the n−1 first
integrals have the same eigenvectors (eigenforms).

Remark 2.3: Let K1 , . . . ,Kn−1 be the Killing two-tensors of Theorem 2.2. Then
�g ,K1 , . . . ,Kn−1	 generates an n-dimensional vector subspace of K2�M�. The generic Killing
tensor

K = g + �
i=1

n−1

Ki �2.7�

has pointwise distinct eigenvalues and the same eigenvectors as any of the Ki, i=1, . . . ,n−1. The
normality of the eigenvectors of each of the n−1 Killing tensors means that the eigenvectors
generate n foliations that consist of �n−1�-dimensional hypersurfaces orthogonal to the eigenvec-
tors of the Killing tensor. Such a geometric construction is called an (orthogonal) separable web
which defines the coordinates of separation for the HJ equation �2.3�. Thus, one can associate
either �g ,K1 , . . . ,Kn−1	 or any linear combination thereof having distinct eigenvalues �such as K
given by �2.7�� with the corresponding separable web.

Remark 2.4: A Hamiltonian system �2.1� can admit more than one vector subspace of K2�M�
consisting of the metric in addition to n−1 Killing two-tensors with the properties prescribed by
Theorem 2.2. In turn, this entails orthogonal separation of variables for the associated HJ equation
in more than one coordinate system. For example, Eisenhart9 showed that in the case of M=E3

the associated HJ equation for the geodesic Hamiltonian �2.2� is orthogonally separable in 11
coordinate systems.

The HJ theory of orthogonal separation of variables has been extended to the study of Hamil-
tonian systems defined by a natural Hamiltonian

H�q,p� = 1
2gij�q�pipj + V�q� . �2.8�

The analogue of the Eisenhart Theorem 2.2 for such natural Hamiltonian systems is due to
Benenti.2

Theorem 2.5 �Benenti�: The natural Hamiltonian system defined by (2.8) is orthogonally
separable iff there exists a valence-two Killing tensor K with (i) pointwise simple and real eigen-
values, (ii) normal eigenvectors (eigenforms), and (iii) such that
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d�K̂dV� = 0, �2.9�

where the (1,1)-tensor K̂=Kg−1.
A Killing tensor satisfying conditions �i� and �ii� of Theorem 2.2 or 2.5 is called a character-

istic Killing tensor (CKT).2

Remark 2.6: When V=0 in �2.8� the Killing two-tensor K of Theorem 2.5 is simply the
Killing tensor �2.7� of Theorem 2.2 �see Remark 2.3�. Hence, the latter is a special case of the
former.

Remark 2.7: The HJ theory of orthogonal separation of variables applied to a natural Hamil-
tonian �2.8� is more restrictive than the application of the theory to a geodesic Hamiltonian �2.2�.
Thus, if the natural Hamiltonian system �2.1� is orthogonally separable �as per the associated HJ
equation� then the corresponding Hamiltonian system obtained by letting V=0 in �2.8� is also
orthogonally separable with respect to the same coordinate systems. However, the converse state-
ment is not true.

Remark 2.8: The left-hand side of the compatibility condition �2.9� written in local coordi-
nates yields the Bertrand–Darboux PDEs of classical and quantum mechanics �see, for example,
Ref. 19 and the references therein�. The condition �2.9� implies that there exists a first integral F
of the Hamiltonian flow defined by �2.8� of the form

F�q,p� = 1
2Kij�q�pipj + U�q� , �2.10�

where Kij�q� are the components of the CKT K and dU= K̂dV.
In light of Theorem 2.5, given a natural Hamiltonian �2.8� defined on the cotangent bundle

T*�M� of a pseudo-Riemannian manifold �M ,g� of constant curvature, the following problems
are essential for a satisfactory HJ theory of orthogonal separation of variables:

�i� How many “inequivalent” coordinate systems afford orthogonal separation of variables in
the corresponding HJ equation?

�ii� If the answer to �i� is nonzero, how can one characterize intrinsically the coordinate sys-
tems that afford separation of variables in the HJ equation?

�iii� What are the canonical coordinate transformations

�q1,q2, . . . ,qn� → �u1,u2, . . . ,un�

from the given position coordinates of �2.8� to the coordinate systems that afford orthogo-
nal separation of variables of the HJ equation?

A careful look at the above problems suggests that one can naturally link the algebraic and
geometric properties of CKTs. More specifically, the analysis we shall review strongly suggests
that one can naturally employ and exploit geometric ramifications of the properties of CKTs in the
more general framework of Cartan geometry. The resulting invariant theory of killing tensors
(ITKT) that naturally follows from it is precisely the link between the algebraic and geometric
properties of CKTs. In fact, as we shall demonstrate, the HJ theory of orthogonal separation of
variables is one of the areas of mathematics where Cartan’s approach to geometry via moving
frames manifests itself most strikingly. Indeed, because �M ,g� is a space of constant curvature,
we can make the identification M�G /H, where G is its isometry group I�M� and H is a closed
Lie subgroup of G. As a homogeneous space, M�G /H is the base manifold in the �tautological�
principal bundle projection

�1:G → G/H � M

�i.e., G is the principal H-bundle over G /H�. Furthermore, the considerations above give rise to
the �trivial� vector bundle projection
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 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:23:59



�2:K2�M� � M → M � G/H .

The problem �i� is thus a problem of equivalence involving the study of the orbit space K2�M� /G
of the group action G�K2�M�.4,16,25,38 Indeed, the isometry group G that acts as an automor-
phism in K2�M� maps CKTs to CKTs, since the algebraic and geometric properties of CKTs are
preserved under the action of G. Therefore, two CKTs K1 and K2 that are connected by an action
of G via the corresponding push-forward map �pull-back map if the CKTs are covariant� belong to
the same orbit in the orbit space K2�M� /G. As far as orthogonal separation of variables is
concerned, this fact entails that the normal eigenvectors of K1 and K2 respectively generate the
same separable web. The problem of equivalence of the 11 separable webs generated in E3 by
CKTs is in essence the orbit problem K2�E3� /SE�3� explicitly stated in Ref. 4 �but not solved�.
Here and below, SE�3� is the Lie group of �orientation-preserving� isometries of E3. Note that in
his classical 1934 work, Eisenhart9 showed �implicitly� that there were exactly 11 orbits in this
setting and derived a set of canonical forms representing each of them. A complete solution for the
orbit problem K2�E3� /SE�3� for CKTs is presented in Ref. 16 and later in Ref. 14 where a
different method is used.

To continue our discussion of the general problem in the setting of Cartan geometry, we
proceed following the ideas developed by Adlam et al.1 and Horwood.14 The orbit space
K2�M� /G can also be studied from the larger orbit space �K2�M��M� /G of the group action
G� �K2�M��M�, since the former is contained in the latter. Thus, we have the structure of a
principal G-bundle with the total space K2�M��M and a projection �3 into the base space
�K2�M��M� /G, such that

�3:K2�M� � M → �K2�M� � M�/G .

The orbit �3
−1�b� is called the fiber over b� �K2�M��M� /G. The group G acts freely and

transitively on the orbits. Additionally, since �M ,g� is a pseudo-Riemannian manifold, it is natu-
rally equipped with the oriented quasiorthonormal frame bundle. Here and in what follows we
shall only consider oriented frame bundles, since the mathematical consequences of this arrange-
ment are sufficient for the development of a HJ theory from this perspective. Furthermore, con-
sider a CKT K�K2�M� at a nonsingular point x�M �i.e., the eigenvalues of K are all real and
distinct at x�. Indeed, K gives rise to a quasiorthonormal frame EK,x�M� of eigenvectors
�e1 , . . . ,en	 of K at x�M, which is also a quasiorthonormal basis for Tx�M�. Denoting E�M� as
the corresponding bundle of frames generated by CKTs in M, it follows that �E�M� ,M , �̃2�
defines a quasiorthonormal �oriented� frame bundle, where

�̃2:E�M� → M .

The fibers �̃2
−1�x� correspond to sets of all possible quasiorthonormal frames at x�M generated

by the eigenvectors of CKTs. Finally, our construction leads to the fiber bundle projection

�̃3:K2�M� � M → E�M� .

For example, if K�K2�E3�, then G=SE�3�, H=SO�3�, and the set of all oriented orthonormal
frames at a nonsingular point x�E3 generated by K and its images under the action of SE�3� is an
SO�3�-torsor.

Finally, to bring our arrangements in line with the postulates of Cartan’s geometry, we intro-
duce a lift f : �K2�M��M� /G→G such that the following diagram commutes:
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G
π1 �� G/H � M

(K2(M) ×M)/G

f

��

K2(M) ×Mπ3

��

π2

��

π̃3

�� E(M)

π̃2

�������������

�2.11�

Let g be the Lie algebra of G and let � denote the g-valued left-invariant Maurer–Cartan form on
G satisfying the Maurer–Cartan equation

d� = � ∧ � .

The existence of such a lift f is assured by the fact that G acts transitively on the bundle of frames
E�M� for a given CKT K�K2�M� and the classical Cartan lemma:12

Lemma 2.9 Cartan: Suppose that � is a g-valued one-form on a connected (or simply con-
nected) manifold M. Then there exists a C� map F :M→G with F*�=� iff

d� = � ∧ � .

Moreover, the resulting map is unique up to left translation.
In view of Lemma 2.9, we define the map F :E�M�→G to be F= f ��3 � �̃3

−1 �see the diagram
�2.11��. One can now solve the equivalence problem for the orbit space �K2�M��M� /G �or
K2�M� /G� for CKTs using the classical calculus of differential forms. More specifically, the
problem of invariant classification of the orbit�s� generated by a CKT K�K2�M� reduces to
fixing a quasiorthonormal frame of eigenvectors �e1 , . . . ,en	 and considering in the frame the
corresponding Cartan structure equations

dea + �a
b ∧ eb = Ta, �2.12�

d�a
b + �a

c ∧ �c
b = �a

b, �2.13�

together with the Killing tensor equations for the components Kab of K,

K�ab;c� = 0,

and the integrability conditions

ea ∧ dea = 0 �no sum� .

In these equations, �a
b=�cb

aec are the connection one-forms, Ta= 1
2Ta

bce
b∧ec are the torsion

two-forms, Θa
b= 1

2Ra
bcdec∧ed are the curvature two-forms, �e1 , . . . ,en	 is the dual basis of one-

forms, the connection coefficients �cb
a correspond to the Levi–Civita connection � �and hence

Ta=0 in �2.12��, and Ra
bcd are the components of the curvature tensor. We also note that, with

respect to this frame, the components of the metric g and CKT K are given by

gab = diag��1, . . . ,�n�, Kab = diag��1�1, . . . ,�n�n� ,

respectively, where �a= 	1, a=1, . . . ,n, and �a, a=1, . . . ,n, are the eigenvalues of K. The differ-
ential invariants characterizing the orbits in question are determined by the connection one-forms
�a

b that are found from a fixed quasiorthonormal frame �e1 , . . . ,en	. We emphasize that such a
problem may be extremely complicated computationally. To alleviate such computational difficul-
ties, we can proceed by making use of the fact that the group G acts transitively in the bundle of
frames E�M�. Thus, one can essentially solve the problem “in the group” using an alternative
version of the moving frames method.10,11,30 In this setting, we first determine explicitly the
corresponding action of the group G in the parameter space of K2�M� and then find algebraic
invariants to be used in solving the equivalence problem. The algebraic invariants are the coor-
dinates of the canonical forms obtained by intersecting the orbits with an appropriate cross section.
Indeed, choosing a frame via the above considerations corresponds to choosing a cross section
through the orbits of the group G acting in the parameter space of K2�M�.
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In order to obtain a complete solution to the equivalence problem, in many instances one also
has to employ algebraic covariants of Killing tensors, introduced in Ref. 35. More specifically, the
extended action of the isometry group G� �K2�M��M� yields, in general, n additional funda-
mental covariants which are functions of both the parameters of the vector space K2�M� and the
base manifold M. From the viewpoint of the diagram �2.11�, covariants are the natural invariant
functions which arise in the ITKT. The covariants also possess a remarkably simple geometric
meaning: they are functions of the eigenvalues of Killing two-tensors. It is easy to see that the n
fundamental covariants are functions of the eigenvalues of the generic element of K2�M�. The
covariants �eigenvalues� play a pivotal role in the general procedure for solving the equivalence
problem. Indeed, the dimension of the orbits generated by CKTs in the orbit space K2�M� /G is
determined by the number of eigenvalues of CKTs which are functionally independent. For ex-
ample, the orbits in K2�E3� /SE�3� corresponding to the asymmetric separable webs are generated
by those CKTs having three functionally independent eigenvalues. Those corresponding to the
translational and rotational webs are generated by the CKTs having two functionally independent
eigenvalues, in exception to the circular cylindrical and Cartesian webs. The former is generated
by the CKTs possessing only one functionally independent eigenvalue, while the CKTs associated
with the latter have all three eigenvalues constant �see Ref. 16 for more details�.

The concept of a web symmetry, which signifies that the web is invariant under at least a
one-parameter group of isometries, is another interesting geometric consequence stemming from
the properties of covariants �eigenvalues� of CKTs. Suppose, for example, that K is a CKT in
K2�M� having n−1 functionally independent eigenvalues �i, i=1, . . . ,n−1. It follows that there
exists a vector field V�K1�M� �V is necessarily a Killing vector�, such that LV�K�=0. Indeed,
the integral curves of V are given by the common level sets

�
i=1

n−1

��i = const	 .

The relationship between web symmetries and eigenvalues of CKTs will be explored in a subse-
quent paper.

We also note that the concept of a web symmetry is used to determine the dimension of the
orbits of K2�M� /G. More specifically, recall that37

dim G = dim Ox + dim Gx,

where G is a group acting on M, x�M, Ox is the orbit through x, and Gx is the isotropy
subgroup of G through x. The existence of nontrivial web symmetries indicates, the existence of
isotropy subgroups and their number is equal to the dimension of the corresponding isotropy
subgroup �see Sec. IV for more details�.

In view of the above, solving the equivalence problem for the CKTs of a given vector space
K2�M� consists of the following steps. Given a Killing tensor K�K2�M�, the first step is to
verify if it is characteristic. The computational details of this procedure are outlined in the next
section. If K is a CKT, we proceed next to verify whether the eigenvalues of K admit any
functional dependencies �or, equivalently, web symmetries�, which determine the dimension of the
corresponding orbit�s�. Finally, we employ any relevant invariants to determine the type of orbit to
which K belongs to. Finally, when the equivalence problem is solved with the aid of differential or
algebraic invariants, one can proceed to determine the moving frame map. Such an equivariant
map sends any given point on an orbit �or any given CKT K�K2�M�� to the corresponding
canonical form obtained by intersecting the orbit with a cross section. Finding such a map corre-
sponds to solving the problem �iii� outlined earlier, namely, the determination of the canonical
coordinate transformation �q1 , . . . ,qn�→ �u1 , . . . ,un� from the given position coordinates of �2.8�
to the coordinates permitting orthogonal separation of variables of the HJ equation.

In what follows we shall employ these ideas to completely solve the problem of orthogonal
separation of variables of the HJ equation of a natural Hamiltonian �2.8� defined in three-
dimensional Minkowski space.
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III. INVARIANT THEORY OF KILLING TENSORS IN MINKOWSKI SPACE

A representation of the group acting on a vector space of Killing tensors is the central object
used in the generation of group invariants. As elaborated in Sec. II, the orientation-preserving
isometry group I�M� is a natural choice of group to employ in ITKT; it acts transitively on M and
induces a nontransitive action on any space of Killing tensors. As proved in Ref. 24, the map


:I�M� → GL�Kp�M��

defines a representation of I�M�. The general Killing tensor field K of Kp�M� may be represented
by d arbitrary parameters a1 , . . . ,ad, with respect to a given basis. As each element h� I�M�
induces a �nonsingular� transformation 
�h� of Kp�M�, one may compute the group action
I�M��Kp�M� in terms of the parameters a1 , . . . ,ad, yielding the explicit form of the transfor-
mation h ·K�
�h�K. An algebraic invariant is thus any smooth real-valued function of the param-
eters ai which is invariant under the action of I�M�. More precisely, the definition of such
invariant functions is as follows.

Definition 3.1: Let �M ,g� be a pseudo-Riemannian manifold of constant curvature and p
�1 be fixed. A smooth function I :Kp�M�→R is said to be an I�M�-invariant of Kp�M� iff it
satisfies

I�h · K� = I�K� �3.1�

for all K�Kp�M� and for all h� I�M�.
The study of group covariants �first introduced in ITKT by Smirnov and Yue35� naturally fits

into the framework of this section. An I�M�-covariant of Kp�M� is an I�M�-invariant of the
product space Kp�M��M. Thus, unlike an invariant, a covariant may also depend on the coor-
dinates of the base manifold M. We have also seen in Sec. II that covariants arise naturally in the
Cartan approach to ITKT.

The description of the entire space of group invariants of a vector space, the fundamental
problem of any invariant theory, is known explicitly for Kp�M�, for any valence p, and for any
flat pseudo-Euclidean space M of any dimension or signature. This general result was recently
developed by Horwood.14 For the remainder of this section, we shall specialize the results of Ref.
14 to three-dimensional Minkowski space M3, culminating in a set of fundamental
I�M�-covariants of Kp�M3� for the p=1 and p=2 cases. In what follows, we work exclusively
with the Minkowski metric

gij = diag�− 1,1,1� ,

defined with respect to canonical pseudo-Cartesian coordinates xi= �t ,x ,y�. Throughout this paper,
we employ the summation convention: any repeated upper and lower Latin indices is summed
from 0 to 2. Moreover, we use the covariant metric gij and its inverse gij to lower and raise tensor
indices.

Any Killing tensor of valence p defined on a manifold of constant curvature is expressible as
a sum of symmetrized tensor products of Killing vectors �see, for example, Ref. 24�. In M3, a basis
for the space of Killing vectors may be written in pseudo-Cartesian coordinates xi according to

Xi =
�

�xi , Ri = �k
jix

jXk �3.2�

for i=0,1 ,2, where �ijk is the Levi–Civita tensor with �012=1. An arbitrary linear combination of
these basis elements leads to the general Killing vector in K1�M3� given by

K = AiXi + BiRi, �3.3�

where Ai and Bi are constants referred to as the Killing vector parameters. The general Killing
tensor in K2�M3� may be expressed as
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K = AijXi�X j + 2BijXi�R j + CijRi�R j , �3.4�

where Aij, Bij, and Cij, the Killing tensor parameters, are constants and satisfy the symmetry
properties Aij =A�ij� and Cij =C�ij�. On account of the syzygy gijXi�R j =0, only 20 of the 21
Killing tensor parameters are independent. As �3.4� is unaffected by the addition of an arbitrary
multiple of this syzygy, one can always fix the “trace” of Bij. Without loss of generality, we shall
assume that

Bi
i = Bijgji = 0. �3.5�

In the HJ theory of orthogonal separation of variables, it is the CKTs which play the primary
role, as they characterize the associated separable webs. An arbitrary Killing tensor in K2�M3�
need not be a CKT; not every Killing tensor has real and distinct eigenvalues and normal eigen-
vectors. It is straightforward to verify if a given Killing tensor K�K2�M3� is characteristic. If the
discriminant of the characteristic polynomial of K is not identically nonpositive, then it generally
has real and distinct eigenvalues �at least on an open subset of M3�. The verification of the
normality of the eigenvectors is facilitated by the celebrated Tonolo–Schouten–Nijenhuis (TSN)
conditions.28,32,36 Indeed, a symmetric tensor field Kij has normal eigenvectors iff

N�
�jk�g�i�� = 0,

N�
�jk�K�i�� = 0,

N�
�jk�K�i�mKm

� = 0, �3.6�

where Ni
jk are the components of the Nijenhuis tensor28 of Kij defined by

Ni
jk = Ki

�K�
�j,k� + K�

�j�K
i
�k�,�. �3.7�

The special pseudo-Euclidean group SE�2,1�=SO�2,1�›Rn, where SO�2,1� is the Lie group
of Lorentz transformations with positive unit determinant, is the isometry group of M3. The group
SE�2,1� acts transitively on M3 according to

xi = �i
jx̃

j + 
i, �3.8�

where �i
j �SO�2,1�, 
i�R3, and xi and x̃i denote the original and transformed sets of pseudo-

Cartesian coordinates, respectively. Acting on the basis �3.2� of Killing vectors, the group SE�2,1�
induces the transformation rules

Xi = �i
jX̃ j, Ri = �i

jR̃ j + �i
jX̃ j , �3.9�

where

�i
j = �k

�i�k
j
�. �3.10�

The nontransitive action of SE�2,1� on K1�M3� or K2�M3� can now be derived using the
transformation rules �3.9� in conjunction with �3.3� or �3.4�. Explicitly, it follows that the action
SE�2,1��K1�M3� is given by

Ãi = � j
iAj + � j

iBj, B̃i = � j
iBj , �3.11�

while the action SE�2,1��K2�M3� is

Ãij = �k
i��

jAk� + 2�k
�i���

�j�Bk� + �k
i��

jCk�,
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B̃ij = �k
i��

jBk� + �k
i��

jCk�,

C̃ij = �k
i��

jCk�. �3.12�

Having explicit forms of the representation of SE�2,1� on the two spaces of Killing tensors,
we can now proceed to compute group invariants and covariants. For the case of K1�M3�, let us
define

Ki = Ai + �i
kjB

jxk. �3.13�

We note that the Ki are the components of the general Killing vector in K1�M3� with respect to the
natural basis. Moreover, the components �3.13� are consistent with the group action �3.11� since

Ki= �Ãi��i
j=
i

j,

i=xi. Consequently, the general theory from Ref. 14 is applicable concerning the

generation of SE�2,1�-covariants. Indeed, any scalar formed from contractions of gij, �ijk, Ki, and
Bi is an SE�2,1�-covariant of K1�M3�. A set of functionally independent covariants is given by

C1 = BiBi, C2 = KiBi = AiBi, C3 = KiKi. �3.14�

To generate SE�2,1�-covariants of K2�M3�, we define

Kij = Aij + 2��i�
�kB

�j�kx� + �i
mk�

j
n�Ck�xmxn, �3.15�

Lij = Bij + �i
�kC

jkx�, �3.16�

noting that they are obtained from the Ãij and B̃ij transformation rules in �3.12�, restricted to
�i

j =
i
j and 
i=xi. Further, the Kij defined in �3.15� are the components of the general Killing

tensor in K2�M3� with respect to the natural basis. By the general theory of Ref. 14, we therefore
conclude that any scalar formed from contractions of gij, �ijk, Kij, Lij, and Cij is an SE�2,1�-
covariant of K2�M3�. Although the space K2�M3� admits 17 functionally independent SE�2,1�-
covariants, it turns out that only 12 fundamental covariants are required in the construction of our
invariant classification scheme for the associated separable webs. In terms of the Killing tensor
parameters Cij and the Kij and Lij defined in �3.15� and �3.16�, respectively, these 12 covariants are
given by

C1 = Tr�C�, C2 = Tr�C2�, C3 = Tr�C3� ,

C4 = Tr�L2�, C5 = Tr�LLt�, C6 = Tr�LCLt� ,

C7 = Tr�LC2L�, C8 = Tr�KC�, C9 = Tr�KCKC� ,

C10 = Tr�KLKLt�, C11 = Tr�KL2�, C12 = Tr�K2L2� . �3.17�

The covariants C1 , . . . ,C12 in �3.17� are defined in terms of traces of the matrices C, K, and L with
components �L�i

j =Li
j =Likgkj, �Lt�i

j =L j
i=gjkL

ki, etc. We remind the reader that trace operator is
defined with respect to the Minkowski metric, e.g., Tr�C�=Ci

i=Cijgji. The application of the
covariants �3.14� and �3.17� to the problem of classifying the group orbits of the spaces K1�M3�
and K2�M3� is treated in the next two sections.

IV. WEB SYMMETRIES, INVARIANT SUBSPACES, AND REDUCED INVARIANTS

The problems of equivalence and canonical forms are pivotal in the study of an invariant
theory.30 For the space K2�M3�, the former involves establishing if a group element h�SE�2,1�
exists such that h ·K1=K2, given K1 ,K2�K2�M3�. The solution to the equivalence problem there-
fore amounts to studying the orbit space K2�M3� /SE�2,1�. The concept of an orbit space evidently
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defines an equivalence relation on K2�M3�. Thus, the canonical form problem seeks a suitably
“simple” representative in each equivalence class. The selection of representatives is often deter-
mined by choosing an appropriate cross section through the orbits or fixing the frame. Eisenhart9

employed precisely this idea to obtain canonical forms for the CKTs in Euclidean space E3. By
solving the Killing tensor equations in the rigid frame of �normal� eigenvectors of Killing tensors,
Eisenhart implicitly chose a cross section. Eisenhart’s method was recently extended to M3 in Ref.
15 culminating in 39 classes of canonical CKTs each characterizing a separable web. We shall now
invariantly characterize each of the 39 classes, thereby proving their inequivalence.

The 39 canonical CKTs of M3 derived in Ref. 15 are tabulated in Appendix A. One could
attempt to classify the orbits of these CKTs using SE�2,1�-invariants or covariants alone. This
approach was successfully employed in Ref. 14 for the analogous problem in E3, resulting in a
purely algebraic based invariant characterization of the 11 separable webs. However, several of the
invariants used in the classification were rather lengthy and resource intensive Gröbner basis-type
calculations were required to find them. These computational issues present in the E3 case suggest
that it might not be efficient to seek a purely invariant based classification of the 39 separable
webs in M3. To compound matters, the noncompactness of the isotropy subgroup SO�2,1� of
SE�2,1� does not even guarantee that any two inequivalent group orbits can be separated by
invariants! We are thus led to find an alternate method for classifying the separable webs of M3.
Indeed, we shall adopt the strategy of Ref. 16 in which the 11 separable webs in E3 were classified
using the concepts of web symmetries and reduced invariants. To apply the program of Ref. 16 to
M3, we shall first group the 39 CKTs into invariant subspaces according to the type of web
symmetry they admit. Then, on each invariant subspace we will compute a new set of invariants
and use these reduced invariants to classify the respective CKTs. For the sake of computation, it
is more efficient to use the definition of a web symmetry first provided by Chanachowicz et al.8

rather than the definition formulated in Sec. II in terms of eigenvalues of CKTs.
Definition 4.1: A separable web defined by a CKT K on a pseudo-Riemannian manifold

�M ,g� admits a web symmetry iff there exists a one-parameter subgroup �t of I�M� such that

�t*�K� = K ,

where �t* denotes the corresponding push-forward map.

A separable web satisfying the above definition is said to be �t-symmetric. We shall also say
that any CKT defining a �t-symmetric web admits a web symmetry. The infinitesimal version of
Definition 4.1 is useful for computations and is given by the following proposition.8

Proposition 4.2: Let V be an infinitesimal generator of a one-parameter subgroup �t of
I�M�. A separable web defined by a CKT K is �t-symmetric iff

LVK = 0. �4.1�

Remark 4.3: Definition 4.1 and Proposition 4.2 can be extended to the case when a CKT K
admits a homothetic web symmetry.8 For the case of CKTs defined in M3, the generators of
homothetic �dilatational� web symmetries are of the form D= �xi+ai�Xi where the ai are constant.
The Lie derivative condition �4.1� generalizes to

LDK = cK , �4.2�

where c is a nonzero constant.
It follows from Proposition 4.2 and Remark 4.3 that 29 of the 39 CKTs listed in Appendix A

admit a web symmetry. Of these 29 separable webs, 24 admit an isometry group symmetry, while
the other 5 admit a conformal dilatational symmetry. For the 24 webs admitting an SE�2,1� web
symmetry, we can further divide them into five groups according to the type of Killing vector they
admit using �4.1�. This classification is described in Table I.

Remark 4.4: The construction of Table I is not unique as some CKTs in M3 admit more than
one web symmetry. Indeed, the spacelike translational web I also admits timelike and null trans-
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lational symmetries, the spacelike translational web II admits a spacelike rotational symmetry, the
timelike translational web I admits a timelike rotational symmetry, and both the spacelike, time-
like, and null rotational web I admits dilatational symmetries.

It is still necessary to prove the invariance of Table I. In other words, we must show that a
CKT contained in one of the seven groups in Table I remains in that same group under the action
of SE�2,1�. Clearly, a dilatational symmetry is preserved under the isometry group. For the re-
maining five groups of CKTs admitting a symmetry, it suffices to show that the orbits of the
associated Killing vectors can be separated by invariants. This procedure can be accomplished by
first classifying the space of Killing vectors using the fundamental SE�2,1�-covariants �3.14� of
K1�M3�. An invariant classification scheme for K1�M3� is depicted in the flowchart of Fig. 1. The
figure thus demonstrates that the Killing vectors associated with the web symmetries in Table I are
inequivalent. Without loss of generality, we may assume henceforth that if a given CKT admits a
web symmetry, then its associated generator is one of the canonical vector fields in Table I.

The equivalence problem for the 39 separable webs in M3 can thus be reduced to seven
simpler problems. Indeed, we can classify the CKTs in each of the seven groups in Table I using
an appropriate set of invariants. For the ten asymmetric classes of CKTs, we shall employ the full
SE�2,1�-covariants �3.17� and shall present this classification in the next section. For the six other
types of web symmetries in Table I, we can determine the most general CKT which admits the
given web symmetry by imposing either �4.1� or �4.2�. Such CKTs define invariant subspaces of
K2�M3� under the action of the subgroup which preserves the CKT �i.e., the action which maps the
subspace to itself�. Once these subgroups are known, the corresponding group action on the

TABLE I. Web symmetries of the separable webs in Minkowski space.

Symmetry Canonical vector field Number of webs

Spacelike translational X2 10
Timelike translational X0 3
Spacelike rotational R2 4
Timelike rotational R0 4
Null rotational R0+R2 3
Dilatational xiXi 5
Asymmetric ¯ 10

3 > 0

= 0

= 0

= 0

< 0

= 0

= 0

2

1

= 0

> 0

< 0

= 0

= 0

= 0

= 0

2

2

3

timelike rotational

timelike helicoidal

spacelike rotational

null helicoidal

null translational

null rotational

spacelike translational

spacelike helicoidal

timelike translational

FIG. 1. Invariant classification of Killing vectors in Minkowski space. The quantities C1, C2, and C3 refer to the SE�2,1�-
covariants �3.14�.
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invariant subspace can be derived and reduced invariants can be computed. For the remainder of
this section, we present the invariant subspaces for each of the six types of web symmetries and
then give a set of reduced invariants. The classification schemes for these invariant subspaces are
relegated to the next section.

Remark 4.5: It is straightforward to determine the subgroup H of I�M� which maps an
invariant subspace S of CKTs to itself. Let V denote a generator corresponding to the web
symmetry of S. Clearly, U is a generator of H iff

LV�LUK� = 0 �4.3�

for all K�S. By the Jacobi identity, �4.3� is equivalent to

�U,V� = cV �4.4�

for some constant c�R. Therefore, H is generated by those Killing vectors of M whose com-
mutator with V is proportional to V.

A. The spacelike translational invariant subspace

The components of the most general CKT Kij satisfying LX2
Kij =0 are given by

K00 = a0 − 2b02x + c2x2, K11 = a1 − 2b12t + c2t2, K22 = a2,

K01 = �2 − b12x − b02t + c2tx, K12 = K20 = 0. �4.5�

To derive �4.5�, we impose the Lie derivative condition �4.1� using the components �3.15� of the
general Killing tensor in M3. This condition yields a set of linear equations in the Killing tensor
parameters which are straightforward to solve. We then impose the TSN conditions �3.6� which
guarantee the normality of the eigenvectors of the Killing tensor. Although the TSN conditions
lead to nonlinear equations in the Killing tensor parameters, their solution is nevertheless tractable
and yields �4.5�.

The subgroup of SE�2,1� which maps �4.5� to itself is spanned by the Killing vectors Xi,
i=0,1 ,2, and R2, as follows from the commutation relation �4.4�. Therefore, the restricted group
action on M3 is of the form �3.8� where

�i
j = 
��

� 0

0 1
�, 
i = 

�

0
� ,

��
��SO�1,1�, and 
��R2. Here and in what follows, all Greek indices take on the values of either

0 or 1 and the usual summation convention applies.
The study of the restricted group action on the spacelike translational invariant subspace is

isomorphic to the study of the action SE�1,1��K2�M2�. Indeed, the general valence-two Killing
tensor on the Minkowski plane M2 is of the form

k = a��X��X� + 2b�X��R + cR�R ,

where a��=a����, b� and c are constants, X�=� /�x�, and R=��
�x�X�. From these definitions, it

follows that the components of the general Killing tensor are

k�� = a�� + 2b�������
�x� + c��

���

x�x
. �4.6�

Making the identification
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a�� = 
a0 �2

�2 a1
�, b� = 
b02

b12
�, c = �c2� ,

we observe that the upper 2�2 block of �4.5� coincides with �4.6�. The group action
SE�1,1��K2�M2� can be derived analogously to the M3 case leading to

ã�� = ��
��


�a�
 + 2��
�������b� + c����,

b̃� = ��
�b� + c��,

c̃ = c , �4.7�

where ��=��
���

�
�. The group action �4.7� is in the form amenable to the general theory of Ref.
14. Defining

�� = b� + c��
�x�, �4.8�

it follows that any scalar formed from contractions of g��, ���, k��, ��, and c is an SE�1,1�-
covariant of K2�M2� or, equivalently, a set of reduced covariants of the spacelike translational
invariant subspace of K2�M3�. A set of fundamental covariants is given by

C1 = c, C2 = ����, C3 = k�
�, C4 = k������, C5 = k��k��. �4.9�

B. The timelike translational invariant subspace

The components of the most general CKT Kij satisfying LX0
Kij =0 are given by

K00 = a0, K11 = a1 + 2b10y + c0y2, K22 = a2 − 2b20x + c0x2,

K12 = �0 + b20y − b10x − c0xy, K20 = K01 = 0. �4.10�

The subspace of SE�2,1� which leaves �4.10� invariant is spanned by the vectors Xi, i=0,1 ,2, and
R0. Thus, the restricted group action on M3 is of the form �3.8� where

�i
j = 
1 0

0 �A
B
�, 
i = 
 0


A � ,

�A
B�SO�2�, and 
A�R2. Here and in what follows, all uppercase Latin indices take on the values

of either 1 or 2 and the usual summation convention applies.
Like the spacelike translational case, the study of the restricted group action on the timelike

translational invariant subspace is also isomorphic to the study of an action on space of Killing
tensors defined on a two-dimensional manifold, namely, the action SE�2��K2�E2�. Indeed, the
general valence-two Killing tensor on the Euclidean plane E2 is of the form

k = aABXA�XB + 2bAXA�R + cR�R ,

where aAB=a�AB�, bA and c are constants, XA=� /�xA, and R=�B
AxAXB. From these definitions, it

follows that the components of the general Killing tensor are

kAB = aAB + 2b�A���B�
CxC + c�A

C�B
DxCxD. �4.11�

Making the identification
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aAB = 
a1 �0

�0 a2
�, bA = 
b10

b20
�, c = �c0� ,

we observe that the lower 2�2 block of �4.10� coincides with �4.11�. It follows that the group
action SE�2��K2�E2� is

ãAB = �C
A�D

BaCD + 2�C
�A���B�bC + c�A�B,

b̃A = �B
AbB + c�A,

c̃ = c , �4.12�

where �A=�B
C�B

A
C. It is straightforward to show from �4.12� that the following quantities define
SE�2�-invariants of K2�E2� or, equivalently, a set of reduced invariants of the timelike translational
invariant subspace of K2�M3�:

I1 = c, I2 = bAbA − caA
A, I3 = �bAbB − caAB��bAbB − caAB� . �4.13�

C. The spacelike rotational invariant subspace

The components of the most general CKT Kij satisfying LR2
Kij =0 are given by

K00 = − a1 + 2b01 + c1y2 + c2x2, K11 = a1 − 2b01 + c2t2 − c1y2,

K22 = a2 − c1x2 + c1t2, K01 = c2tx ,

K12 = b01x + c1xy, K20 = b01t + c1yt . �4.14�

The only nontrivial Killing vector satisfying the commutation relation �4.4� is X2; hence the
restricted group action on M3 is simply

t = t̃, x = x̃, y = ỹ + k ,

where k�R. It follows that the restricted group action on the spacelike rotational subspace is

ã1 = a1 − 2b01k − c1k2, b̃01 = b01 + c1k, ã2 = a2, c̃1 = c1, c̃2 = c2. �4.15�

Using the action �4.15�, it is straightforward to derive reduced invariants of the spacelike rotational
subspace. Two such invariants used in the classification scheme detailed in the next section are
given by

I1 = c1, I2 = − b01
2 + c1�a2 − a1� . �4.16�

D. The timelike rotational invariant subspace

The components of the most general CKT Kij satisfying LR0
Kij =0 are given by

K11 = a2 − 2b12t + c2t2 + c0y2, K22 = a2 − 2b12t + c0x2 + c2t2,

K00 = a0 + c2y2 + c2x2, K12 = − c0xy ,
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K20 = − b12y + c2yt, K01 = − b12x + c2tx . �4.17�

As in the spacelike rotational case, the subgroup of SE�2,1� which leaves �4.17� invariant is
spanned by a single translational Killing vector, namely, X0; hence the restricted group action on
M3 is

t = t̃ + k, x = x̃, y = ỹ ,

where k�R. It follows that the restricted group action on the timelike rotational subspace is

ã2 = a2 − 2b12k + c2k2, b̃12 = b12 − c2k, ã0 = a0, c̃0 = c0, c̃2 = c2. �4.18�

We can apply the action �4.18� to obtain reduced invariants of the timelike rotational subspace.
Two such invariants are given by

I1 = c2, I2 = − b12
2 + c2�a0 + a2� . �4.19�

E. The null rotational invariant subspace

The components of the most general CKT Kij satisfying LR0+R2
Kij =0 are given by

K00 = − a0 + 2�1 + 2b01y + c1y2 + ��1 + c1�x2,

K11 = a0 − �1 + 2b01�t − y� + ��1 + c1�t2 + ��1 − c1�y2 − 2�1yt ,

K22 = a0 + 2b01t + ��1 − c1�x2 + c1t2,

K12 = b01x + �1tx − ��1 − c1�xy ,

K20 = �1 + b01�y + t� + �1x2 + c1yt ,

K01 = b01x − �1xy + ��1 + c1�tx . �4.20�

The subspace of SE�2,1� which leaves �4.20� invariant is spanned by the vectors X0+X2, R1, and
R0+R2; the restricted group action on M3 can be parametrized in the form


 t

x

y
� = 
� cosh � 0 sinh �

0 1 0

sinh � 0 � cosh �
�
 t̃

x̃

ỹ
� + 
k

0

k
� ,

where �= 	1 and � ,k�R. The restricted group action on the null rotational subspace can be
computed as in the previous subsections. It can be shown that the function

C1 = �b01
2 − �1c1��t − y�2 �4.21�

is a reduced covariant. In the next section, we shall use the covariant �4.21� to characterize the
three classes of null rotational webs in M3.

F. The dilatational invariant subspace

The most general CKT K satisfying LDK=cK, where D=xiXi and c is a constant, can be
written in the form
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K = a0gijXi�X j + CijRi�R j , �4.22�

where a0 and Cij =C�ij� are constant and the Xi and Ri, i=0,1 ,2, are the six basis Killing vectors
of M3 defined in �3.2�. Clearly, the group SO�2,1� leaves �4.22� invariant and its action on M3 is

xi = �i
jx̃

j , �4.23�

where �i
j �SO�2,1�. Moreover, it follows that the action of SO�2,1� on the dilatational invariant

subspace is

ã0 = a0, C̃ij = �k
i��

jCk�. �4.24�

By the elementary properties of the group SO�2,1�, we conclude from �4.23� and �4.24� that any
scalar formed from contractions of the Minkowski metric gij, the Levi–Civita tensor �ijk, xi and Cij

is an SO�2,1�-covariant of the space of dilatational Killing tensors. A set of fundamental covariants
used in the classification of the dilatational webs is given by

C1 = Ci
i, C2 = Ci

jC
j
i, C3 = Ci

jC
j
kC

k
i,

C4 = Cijx
ixj, C5 = CikC

k
jx

ixj, C6 = gijx
ixj . �4.25�

Remark 4.6: The study of the dilatational Killing tensors in M3 is equivalent to the study of
the space of valence-two Killing tensors defined on two-dimensional hyperbolic space or two-
dimensional de Sitter space under the action of SO�2,1�. Both of these manifolds are examples of
homogeneous spaces of constant curvature embedded in M3. Two-dimensional hyperbolic space
H2 is a Riemannian manifold defined by one sheet of the two-sheet hyperboloid −t2+x2+y2=
−r2, where r�0 is the radius of the “pseudosphere;” its curvature is −r−2 everywhere. Two-
dimensional de Sitter space dS2 is a Lorentzian manifold of constant positive curvature defined by
the hyperboloid of one sheet −t2+x2+y2=r2, where r�0 is constant. Viewed as homogeneous
spaces,

H2 � SO�2,1�/SO�2�, dS2 � SO�2,1�/SO�1,1� .

Equation �4.22� represents the most general Killing tensor in K2�H2� and K2�dS2�, as seen in the
ambient three-dimensional Minkowski space. In this section, we have also encountered Killing
tensors defined in two-dimensional Euclidean and Minkowski space, as characterized by the
translational invariant subspaces. Thus, the study of the orbits of all homogeneous subspaces of
K2�M3�, namely, valence-two Killing tensors defined on lower dimensional manifolds of constant
curvature �i.e., M2, E2, H2, and dS2�, is paramount to the study of the full orbit space
K2�M3� /SE�2,1�.

V. INVARIANT CLASSIFICATION OF SEPARABLE WEBS IN MINKOWSKI SPACE

In this section, we use the invariants derived in the previous two sections to study the orbits
of the CKTs in M3 under the action of SE�2,1� leading to the promised classification of the
associated 39 separable webs. As demonstrated in Sec. IV, one can simplify the study of the orbit
space and hence the derivation of a classification scheme by considering separately each of the six
invariant subspaces of CKTs. We now give the invariant characterization of the associated sepa-
rable webs in each of the six subspaces using the appropriate set of reduced invariants and classify
the ten asymmetric webs using the full group covariants �3.17�.

A. The spacelike translational Killing tensors

The study of the spacelike translational invariant subspace is isomorphic to the study of
K2�M2� under the action of SE�1,1�. A classification for the associated ten separable webs of M2

using group covariants was first developed by Smirnov and Yue.35 For the sake of brevity, we shall
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not give full details of this classification. Nevertheless, these ten webs can be characterized in
terms of the reduced covariants �4.9� and two auxiliary covariants defined by

A1 = C1
2C3

2 + 4C1C4 − 2C1
2C5 − C2

2 − 2C1C2C3, �5.1�

A2 = C2
2 − 2C1C4 + C1C2C3. �5.2�

An invariant classification of the ten spacelike translational separable webs is depicted in the
flowchart of Figs. 2. It is straightforward to verify by evaluating the required covariants on the
canonical CKTs tabulated in Appendix A 1.

B. The timelike translational Killing tensors

The study of the timelike translational invariant subspace is isomorphic to the study of K2�E2�
under the action of SE�2�. Invariant characterizations of the four separable webs of E2 are well
known �see, for example, Ref. 25� and so it is not necessary to provide full details here. For the
purpose of completeness, we remark that the timelike translational Killing tensors can be classified
using the reduced invariants �4.13� and one additional auxiliary invariant given by

A1 = I2
2 − 2I3. �5.3�

The classification of the three timelike translational separable webs is depicted in the flowchart of
Fig. 3. As mentioned in Remark 4.4, the spacelike translational web I �i.e., the pseudo-Cartesian
web� also admits a timelike translational symmetry. It satisfies I1=0 and A1=0 and hence can also
be inserted into the flowchart.

1

< 0= 0

VIII

> 02

< 0 > 0

II IX X

2

< 0 > 0

VI VIIIVIII

2

= 0

> 0 < 0

= 0

4

= 0 = 0

I V

= 0
1

= 0

FIG. 2. Invariant classification of the spacelike translational Killing tensors in Minkowski space. The quantities C1, C2, and
C4 refer to the reduced covariants �4.9�. The auxiliary covariants A1 and A2 are defined by �5.1� and �5.2�.

1

= 0 = 0

I III

1

= 0

II

= 0

FIG. 3. Invariant classification of the timelike translational Killing tensors in Minkowski space. The reduced invariant I1

and the auxiliary invariant A1 are defined by �4.13� and �5.3�, respectively.
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C. The spacelike rotational Killing tensors

Let K1 , . . . ,K4 denote the four canonical spacelike rotational Killing tensors listed in Appen-
dix A 3. The reduced invariants �4.16� distinguish between the orbits of this invariant subspace.
Indeed, I1=0 for K2 and I1=c1�0 for the other three. For K1, I2=0, while for K3 and K4, I2

=c1�a2−a1� which is positive and negative on these respective Killing tensors. This classification
is summarized in Fig. 4.

D. The timelike rotational Killing tensors

Let K1 , . . . ,K4 denote the four canonical timelike rotational Killing tensors listed in Appendix
A 4. The reduced invariants �4.19� distinguish between the orbits of this invariant subspace.
Indeed, I1=0 for K2 and I1=c2�0 for the other three. For K1, I2=0, while for K3 and K4, I2

=c1�a0+a2� which is positive and negative on these respective Killing tensors. This classification
is summarized in Fig. 4.

E. The null rotational Killing tensors

The reduced covariant C1 defined by �4.21� characterizes the three null rotational separable
webs. Indeed, let K1, K2, and K3 denote the three canonical null rotational Killing tensors listed in
Appendix A 5. It follows that C1=0 for K1, C=−c1

2�t−y�2�0 for K2, and C1=c1
2�t−y�2�0 for K3.

We note that c1�0 for the latter two cases; otherwise the CKTs would have a repeated eigenvalue.
This classification is depicted in the flowchart of Fig. 5.

F. The dilatational Killing tensors

Let K1 , . . . ,K5 denote the five canonical dilatational CKTs tabulated in Appendix A 6. We can
characterize the orbits of these Killing tensors using several auxiliary covariants defined in terms
of the reduced covariants �4.25�. Let

A1 = C1
2 − 3C2, A2 = C1

3 − 9C3.

The pair �A1 ,A2� vanishes identically for K1 and we claim that �A1 ,A2��0 for the other four.
Indeed, for K2 and K3, A1=−2�2

2, while for K4,

2

= 0 > 0 < 0

I III IVII

1

= 0

= 0

FIG. 4. Invariant classification of the spacelike or timelike rotational Killing tensors in Minkowski space. The reduced
invariants I1 and I2 refer either to �4.16� or �4.19� depending on whether one is considering the spacelike or timelike case.

1

= 0 < 0 > 0

II IIII

FIG. 5. Invariant classification of the null rotational Killing tensors in Minkowski space. The reduced covariants C1 is
defined by �4.21�.
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A1 = − 2�c0 + 1
2c1 + 1

2c2�2 − 3
2 �c1 − c2�2.

Clearly, A1�0 for K2 , . . . ,K4; otherwise these Killing tensors would have a repeated eigenvalue.
Finally, for K5,

A1 = 6�2
2 − 2�c0 + c2�2.

If A1 were to vanish for K5, then A2=−8�c0+c2�3. Thus, �A1 ,A2��0 for K5; otherwise c0=−c2

and �2=0 forcing the CKT to have repeated eigenvalues. To distinguish between K2 , . . . ,K5, we
define

A3 = C1
6 − 9C1

4C2 + 8C1
3C3 + 21C1

2C2
2 − 36C1C2C3 − 3C2

3 + 18C3
2.

It follows that A3=0 for K2 and K3, while for K4 and K5,

A3 = − 6�c0 + c1�2�c0 + c2�2�c1 − c2�2 � 0 �5.4�

and

A3 = 24�2
2��2

2 + �c0 + c2�2�2 � 0, �5.5�

respectively. Finally, to distinguish between K2 and K3, we define

A4 = �C1C2 − 3C3�C4 − �C1
2 − 3C2�C5 + �C1C3 − C2

2�C6.

Evaluating A4 on K2 and K3, we find that A4= �2�2
4�t+x�2, respectively. The invariant classifi-

cation of the dilatational separable webs is summarized in the flowchart of Fig. 6.
Remark 5.1: As discussed in Remark 4.6, a separable web in M3 admitting a dilatational web

symmetry also defines a separable web on H2 or dS2 when appropriately restricted. With the
inclusion of the classification of the dilatational CKTs in M3, we essentially have a complete
description of the orbit spaces K2�H2� /SO�2,1� and K2�dS2� /SO�2,1�. Recall that on each dilata-
tional separable web, there exists an atlas of coordinate patches with corresponding three-metrics
with respect to a system of local separable coordinates. These atlases are described explicitly in
Ref. 15 for all 39 separable webs in M3. For those atlases covering the dilatational webs, the
separable metrics have one of two forms:

ds2 = − du2 + u2�A�v� + B�w���dv2 + dw2� , �5.6�

4

> 0< 0

II III

= 0

3

IV

< 0

V

> 0

I

= 0

= 0

,( )21

FIG. 6. Invariant classification of the dilatational Killing tensors in Minkowski space. The auxiliary reduced covariants
A1 , . . . ,A4 are defined in Sec. V F.
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ds2 = w2�A�u� + B�v���− du2 + dv2� + dw2. �5.7�

Here, u, v, w denote the separable coordinates and A and B are real analytic functions. The
corresponding two-metrics obtained by setting u=r=const in �5.6� and w=r=const in �5.7� have
constant curvature of −r−2 and +r−2, respectively, and hence define separable metrics on H2 and
dS2, respectively. Thus, by examining the metrics for each of the dilatational separable webs, one
can determine whether the corresponding coordinate patch covers H2 or dS2. This procedure is
summarized in Table II. We conclude from this table that both H2 and dS2 admit seven distinct
classes of separable webs.

G. The asymmetric Killing tensors

We now complete our study of the orbit space K2�M3� /SE�2,1� by invariantly classifying the
ten asymmetric separable webs in M3 which admit no web symmetry. Let K1 , . . . ,K10 denote the
ten canonical asymmetric CKTs listed in Appendix A 7. It is necessary to define “degenerate”
versions of these classes of CKTs as the nondegenerate and degenerate cases will often need to be
treated separately. That being said, we define

K̂1 = �K1�c1=0, K̂2 = �K2�c0=0, K̂3 = �K3�c2=0,

K̂4 = �K4�c0=0, b12+b21=0, K̂5 = �K5�c2=0, b10+b01=0, K̂6 = �K6�c2=0, �1=0,

K̂7 = �K7�c0+2�0=0, K̂8a = �K8��2=0, K̂8b = �K8�c0+�2=0, a0+a2+�2=0,

K̂9 = �K9�c0+c2=0, c1−c2=0, K̂10 = �K10�c0−c2=0, �2=0.

Note that the “unhatted” Killing tensors defined in Appendix A 7 are just the complement of the
set of “hatted” tensors defined above �e.g., for the CKT K1, c1�0�. An unhatted CKT and its
hatted counterpart still define the same type of separable web. In what follows, the quantities
C1 , . . . ,C12 will refer to the full SE�2,1�-covariants of K2�M3� defined in �3.17�.

TABLE II. Dilatational separable webs in Minkowski space and their cor-
responding separable metrics. The metrics listed in the second column are
given in Ref. 15. The third column of the table specifies whether the corre-
sponding coordinate patch covers H2 or dS2.

Dilatational separable web Separable metric Manifold

Spacelike rotational I Family 5.3 H2

Family 6.2 dS2

Family 7.1 dS2

Timelike rotational I Family 5.2 H2

Family 6.3 dS2

Null rotational I Family 5.1 H2

Family 6.1 dS2

Dilatational I Family 10.3 H2

Family 11.3 dS2

Dilatational II Family 10.2 H2

Dilatational III Family 11.2 dS2

Dilatational IV Family 10.1 H2

Family 11.1 dS2

Dilatational V Family 10.4 H2

Family 11.4 dS2
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To begin, we define an auxiliary invariant

A1 = C1
6 − 9C1

4C2 + 8C1
3C3 + 21C1

2C2
2 − 36C1C2C3 − 3C2

3 + 18C3
2.

This invariant vanishes for all of the asymmetric CKTs in exception to K9 and K10. For these
CKTs, A1 evaluates to the right-hand sides of �5.4� and �5.5�, respectively. Therefore, A1 is
negative for K9 and positive for K10. Next, we evaluate C2 and note that it vanishes identically for

K1, K̂1, K2, K̂2, K̂3, K̂4, K̂5, K̂6, and K̂7. It is straightforward to show that C2�0 for the remaining
CKTs. We now split the analysis into two cases: C2=0 and C2�0.

Case I: Suppose C2=0. We define another auxiliary covariant given by

A2 = C4 + C5.

It follows that A2=0 for K̂1 , . . . , K̂6, while for K1, K2, and K̂7, A2 evaluates to 192c1
2, −16c0

2�t
−x�, and 3�0

2�t+x�2, respectively, all of which are nonvanishing. There are now two subcases to
consider.

Case I.1: Suppose A2=0. The covariant C4 vanishes for K̂1 and K̂2, while for K̂3, K̂5, and K̂6,

C4=2b01
2�0, and for K̂4, C4=−2b01

2�0. To distinguish between K̂1 and K̂2, we observe that

C11=0 for the former and C11=−8�a0+a2�3�0 for the latter. Finally, to distinguish between K̂3, K̂5,

and K̂6, we define

A3 = C11
2 + C4C10.

It follows that A3=0 for K̂3, while for K̂5, and K̂6, A3=b01
4�a0+a1�2�0 and A3=−4�2

2b01
4�0,

respectively.
Case I.2: Suppose A2�0. We define the auxiliary covariant

A4 = C4 − 2C8.

For K1 and K2, A4=0, while for K̂7, A4=6�0
2�t+x�2�0. Finally, to distinguish between K1 and

K2, we note that C6=0 for the former and C6=64c0
3�0 for the latter.

Case II: Suppose C2�0 and define

A5 = C1
2 − 3C2.

It can be verified that A5=0 for K7, K̂8a, K̂9, and K̂10, and is nonvanishing for K3 , . . . ,K6, K8 and

K̂8a. We now split the analysis into two subcases.
Case II.1: Suppose A5=0. Evaluating A2 �as defined in Case I� on the CKTs contained in this

case, we find that it vanishes for K̂8a, K̂9, and K̂10, while A2=3�0
2�t+x�2�0 for K7. To distinguish

between K̂8a, K̂9, and K̂10, a rather complicated auxiliary covariant is required which is defined in
terms of other covariants and transvectants. We let

A6 = C4
2 − 2C9, A7 = �A6, A8 = ��gij��iA6��� jA6�� ,

A9 = Hess A6, A10 = 3C4
3 − 4C2C12,

A11 = 128C1
4�A10 − 3C4A6� + 243C4�A7

2 − 2A8�, A12 = �A11,

A13 = A7A12�A7
3 + 20A9� − 54C1

2�A8
3 − 5A7

2A8
2 − 88A7A8A9 − 432A9

2� .

In these definitions, � and Hess refer to the d’Alembertian and Hessian determinant invariant
differential operators, defined by
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�C = gij�i� jC, Hess C =
1

3!
�ikm� j�n��i� jC���k��C���m�nC� .

The auxiliary covariants or “transvectants” A7, A8, A9, and A12 are indeed SE�2,1�-covariants
because the partial derivative operator �i transforms like a tensor, i.e., �̃i=� j

i� j. It follows that

A13=0 for K̂8a, while for K̂9 and K̂10,

A13 = − 223 · 35c2
20�a0 + a1�2�a0 + a2�2�a1 − a2�2 � 0

and

A13 = 225 · 35c2
20�2

2��2
2 + �a0 − a2�2�2 � 0,

respectively.
Case II.2: Suppose A5�0. We define two additional auxiliary invariants given by

A14 = C1
2 − C2, A15 = C1

3 − C3.

The pair �A14,A15� vanishes identically for K3 , . . . ,K6 and K̂8a, while for K8

A14 = 2�c0 + �2��3c0 + 5�2�, A15 = − 6�c0 + �2��2c0 + 3�2�2.

Clearly, �A14,A15��0 for K8; otherwise it would reduce to K̂8a. We now let

A16 = C1C6 − C2�C4 + C5� + 2C7.

This auxiliary covariant vanishes for K3 and K̂8a, while for K5, A16=c2
2�b01+b10�2�0, for K4,

A16=−c0
2�b12+b21�2�0, and for K6, A16=−4c2

2�1
2�0. It remains to distinguish between the pair

K3 and K̂8a and the pair K4 and K6. For the former, we note that C7=0 for K3 and C7=−�2
4�t

+x�2�0 for K̂8a. It does not appear possible to distinguish between the orbits of K4 and K6 using
covariants alone. The lack of discriminating power in the covariants is manifested by the fact that
no SE�2,1�-covariant can distinguish between the quadratics x2+y2 and −t2+x2. Indeed, the
d’Alembertian and Hessian determinant of these quadratics are identical and all other transvectants
are proportional to the original quadratics. To complete the classification of the asymmetric webs,
we can extend the definition of a web symmetry to a covariant. If we evaluate the covariant C6 on
the canonical CKTs K4 and K6, then it follows that �LR0

C6�K4
=0 and �LR2

C6�K6
=0. Therefore, the

covariant C6 admits a timelike rotational symmetry for K4 and a spacelike rotational symmetry for
K6; this is a manifestly invariant statement.

We have now invariantly characterized the orbits of the asymmetric separable webs in M3. A
flowchart depicting the classification scheme is given in Fig. 7.

VI. THE MOVING FRAME MAP

At the heart of Cartan geometry and the problem of equivalence is the construction of the
moving frame map. In the previous section, we addressed the problem of how to determine if two
given CKTs K1 ,K2�K2�M3� are equivalent by constructing a purely algebraic invariant classifi-
cation scheme for the associated 39 separable webs in M3. If K1 and K2 are equivalent in the sense
that they characterize the same separable web, then it is desirable to determine the explicit group
action h�SE�2,1� which maps K1 to K2. In particular, if one of the two CKTs is one of the 39
classes of canonical forms, then the group element h is the moving frame map, i.e., the map which
sends any point on a orbit to its canonical form. The moving frame map is also of key importance
in the solution of the HJ equation by orthogonal separation of variables. As a separable web is
defined up to an isometry, there is no guarantee that its associated CKT is in one of the canonical
forms. The transformation of the CKT to canonical form leads directly to the transformation to
separable coordinates for the HJ equation.
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The moving frame map is found by determining the explicit Lorentz transformation �i
j

�SO�2,1� and translation 
i�R3 which casts a given CKT Kij to its appropriate canonical form

K̃ij. The group action SE�2,1��K2�M3� given by �3.12� relates the Killing tensor parameters Aij,

Bij, and Cij of Kij to the transformed parameters Ãij, B̃ij, and C̃ij of the canonical form K̃ij through
the group parameters. In order to efficiently solve the resulting system of algebraic equations for
the group parameters �i

j and 
i, an appropriate parametrization of SO�2,1� is required. Such a
parametrization is trivial when the Killing tensor admits an isometry group web symmetry in
which case the determination of the moving frame map amounts to simple algebra. In what
follows, we shall only present the results for these cases and not give full details of the derivation.
For those CKTs admitting a dilatational web symmetry or no symmetry at all, an appropriate
parametrization for the Lorentz transformation �i

j can usually be deduced from the eigenvectors
of the Cij parameter matrix. Moreover, it is usually necessary to transform one of the eigenvectors
into a canonical spacelike, timelike, or null vector. Upon substituting this parametrization of
SO�2,1� back into the group action, the solution to the resulting system of nonlinear equations for
the parameters of the Lorentz transformation, the translation components, and the Killing tensor
parameters of the canonical form is tractable in all cases. We review the solution to the generalized
eigenproblem and the problem of transforming a Lorentz three-vector to canonical form in Ap-
pendix B.

The section is structured as follows. In Sec. VI A, we discuss the moving frame map for the
space K1�M3� in view of Table I describing the types of web symmetries. For the five invariant
subspaces of CKTs admitting SE�2,1� web symmetries, we give the explicit moving frame map in
Secs. VI B–VI F. Finally, the moving frame map is derived for the dilatational and asymmetric
cases in Secs. VI G and VI H, respectively.

A. The space of Killing vectors

Although one could give the moving frame map corresponding to all nine classes of Killing
vectors in M3 �see Fig. 1�, for the sake of brevity, we shall only consider those Killing vectors
which characterize web symmetries of CKTs. We have already seen that if a CKT admits an
isometry group web symmetry, then its associated generator �Killing vector� could be spacelike or
timelike translational or spacelike, timelike, or null rotational. Canonical forms for each of these
five classes are given in Table I. We now give the moving frame map for each of these cases using

= 0

5

= 0

= 0

VIII IX X

> 0< 0

13

2

= 0

= 0

14( , 15)

= 0

= 0
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= 0 = 0

III VIII

= 0

16

V IV or VI

> 0 < 0

VIII VII

= 0 = 0

I II

6

4

= 0
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VIIIV

4
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= 0 = 0

I II

3

> 0 < 0

III V VI

= 0

> 0= 0

< 0

= 0

2

= 0

= 0 = 0

2

= 0

1

> 0< 0

IX X

FIG. 7. Invariant classification of the asymmetric Killing tensors in Minkowski space. The auxiliary covariants A1 , . . . ,A16

are defined in Sec. V G.
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the group action SE�2,1��K1�M3� specified by �3.11�. For all cases, let Ai and Bi denote the

parameters of the given Killing vector, as defined in �3.3�, and Ãi and B̃i denote the parameters of
the canonical form.

�1� For a spacelike translational Killing vector, Ãi= �0,0 , ã2� and B̃i=0, where ã2= �gijA
iAj�1/2.

The components of �i
j are given by �B3� with vi=Ai / ã2; the parameters � and � are arbi-

trary. The components of the translation 
i are also arbitrary.

�2� For a timelike translational Killing vector, Ãi= �ã0 ,0 ,0� and B̃i=0, where ã0= �−gijA
iAj�1/2.

The components of �i
j are given by �B4� with vi=Ai / ã0; the parameter � is arbitrary. The

components of 
i are also arbitrary.

�3� For a spacelike rotational Killing vector, Ãi=0 and B̃i= �0,0 , b̃2�, where b̃2= �gijB
iBj�1/2. The

components of �i
j are given by �B3� with vi=Bi / b̃2; the parameters � and � are arbitrary.

The transformation rule for the Ai in �3.11� is a system of linear equations for the compo-
nents of the translation 
i which can be solved.

�4� For a timelike rotational Killing vector, Ãi=0 and B̃i= �b̃0 ,0 ,0�, where b̃0= �−gijB
iBj�1/2. The

components of �i
j are given by �B4� with vi=Bi / b̃0; the parameter � is arbitrary. As in the

spacelike rotational case, the components of 
i are determined from the transformation rule
for the Ai in �3.11�.

�5� For a null rotational Killing vector, Ãi=0 and B̃i= �1,0 ,1�. The components of �i
j are formed

from the composition of two Lorentz transformations, viz. �=�2�1. Here, �1 is the el-
ementary rotation

�1 = 
1 0 0

0 0 1

0 − 1 0
�

and �2 is formed from �B5+� with vi=Bi /B0. The parameter � in �2 may be arbitrarily
chosen while �e��=B0. Finally, the components of the translation 
i are determined from the
transformation rule for the Ai in �3.11�.

B. The spacelike translational Killing tensors

The restricted group action on the spacelike translational invariant subspace is given by �4.7�.
We parametrize the subgroup SO�2,1� according to

�i
j = 
� cosh � sinh � 0

sinh � � cosh � 0

0 0 1
� ,

where ��R and �= 	1. We now give the boost parameter �, the sign �, and the translation
components 
0 and 
1 for each of the ten classes of spacelike translational CKTs.

�I� The components of such a CKT are constant �it characterizes the pseudo-Cartesian web�
and the group action �3.12� reduces to Ãij =�k

i��
jAk�, where Ãij is diagonal. Therefore, the

moving frame map can be computed by solving an eigenproblem, as detailed in Appendix
B 1. The translation 
i can be arbitrarily chosen.

�II� � and � are arbitrary, 
0=b12 /c2, and 
1=b02 /c2.
�III�

tanh �� =
b02

b12
, 
0 =

b12�a0 + a1� − 2�2b02

2�b12
2 − b02

2�
, and 
1 =

b02�a0 + a1� − 2�2b12

2�b02
2 − b12

2�
.

�IV� As in �III� but with tanh ��=b12 /b02.
�V�
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e�� = 2�/b02, 
0 − 
1 =
�a0 + a1 + 2�2�b02

4 − 16b02
2 − 16�a0 + a1 − 2�2�

64b02
, and


0 + 
1 =
a0 − a1

2b02
.

�VI� 
0=b12 /c2, 
1=b02 /c2, and e4��=�1 /�2 where

�1 = b12
2 + b02

2 − c2�a0 + a1� + 2�b12b02 − �2c2� ,

�2 = b12
2 + b02

2 − c2�a0 + a1� − 2�b12b02 − �2c2� .

�VII� As in �VI�.
�VIII� As in �VI� and �VII� but with e4��=−�1 /�2.
�IX� As in �VI�-�VIII� but with e2��=−�1 /c2

2.
�X� As in �VI�-�IX� but with e2��=�1 /c2

2.

C. The timelike translational Killing tensors

The restricted group action on the timelike translational invariant subspace is given by �4.12�.
We parametrize the subgroup SO�2,1� according to

�i
j = 
1 0 0

0 cos � − sin �

0 sin � cos �
� ,

where ��R. We now give the rotation parameter � and the translation components 
1 and 
2 for
each of the three classes of spacelike translational CKTs.

�I� � is arbitrary, 
1=b20 /c0, and 
2=−b10 /c0.
�II� tan �=−b10 /b20 for b20�0, �=� /2 �unique mod �� for b20=0,


1 =
b20�a2 − a1� + 2�0b10

2�b10
2 + b20

2�
and 
2 =

b10�a2 − a1� − 2�0b20

2�b10
2 + b20

2�
.

�III� As in �I� but with tan �= ��1−��1
2+4�2

2� / �2�2�, where

�1 = b20
2 − b10

2 + c0�a1 − a2�, �2 = b20b10 − �0c0.

If �2=0, then �=0 for �1�0; otherwise �=� /2 �unique mod ��.

D. The spacelike rotational Killing tensors

The restricted group action on the spacelike rotational invariant subspace is given by �4.15�.
Since the invariant subgroup acting in this case involves only a single translation in terms of a
parameter k, the computation of the moving frame map becomes a trivial calculation. For the
spacelike rotational CKTs �I�, �III�, and �IV�, it follows that k=−b01 /c1, while for the CKT �II�,
k= �a1−a2� / �2b01�.

E. The timelike rotational Killing tensors

The restricted group action on the timelike rotational invariant subspace is given by �4.18�. As
in the spacelike rotational case, the action is parametrized in terms of a single parameter k. For the
timelike rotational CKTs �I�, �III�, and �IV�, the moving frame map is found to be k=b12 /c2, while
for the CKT �II�, k= �a0+a2� / �2b12�.
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F. The null rotational Killing tensors

Although we did not provide explicit details of the restricted group action on the null rota-
tional invariant subspace in Sec. IV E, the calculation of the moving frame map is nevertheless
straightforward to compute for all three classes of null rotational CKTs. We parametrize the
subgroup SO�2,1� according to

�i
j = 
� cosh � 0 sinh �

0 1 0

sinh � 0 � cosh �
� ,

where ��R and �= 	1 and the translation, viz. 
i= �k ,0 ,k�, where k�R. It follows that k=
−b01 /c1 in all three cases. For the null rotational CKT �I�, � and � can be arbitrarily chosen, while
for the CKTs �II� and �III�, e��= ��1c1−b01

2� /c1
2 and e��= �b01

2−�1c1� /c1
2, respectively.

G. The dilatational Killing tensors

As developed in Sec. IV F, the restricted group action on the dilatational invariant subspace is
given by

C̃ij = �k
i��

jCk�. �6.1�

Note that only the subgroup SO�2,1� acts on this subspace; thus 
i=0 in the moving frame map.
Moreover, the transformation rules �6.1� for the Cij Killing tensor parameter matrix are in the form
of a generalized eigenproblem, the solution of which is reviewed in Appendix B 1. Indeed, if the
matrix product gCg �whose components are Cij, i.e., the given Cij with both indices lowered with
the Minkowski metric� is diagonalizable, then its eigenvectors �when suitably normalized�
uniquely determine the Lorentz transformation �i

j. If gCg is not diagonalizable, it will still admit
one nontrivial eigenvector which can be used to suitably parametrize �i

j. These parametrizations
are derived in Appendix B and are given by one of �B3�–�B5�. Upon substituting the compatible
parametrization back into �6.1�, one can solve for the unknown group parameters as well as the

Killing tensor parameters appearing in the canonical form parameter matrix C̃ij. Although the
resulting equations are nonlinear, they nevertheless reduce to polynomial equations and can al-
ways be solved in closed form. We shall not give the explicit solution to these equations. In what
follows, for each of the five classes of dilatational CKTs, we give the correct parametrization for

the Lorentz transformation �i
j, which can be deduced from the eigenvectors of gC̃g.

�I� gC̃g admits one null eigenvector ṽi= �1,−1,0�; �i
j is parametrized by �B5−�, where vi is

the null eigenvector of gCg normalized such that v0=1.
�II� gC̃g admits one spacelike eigenvector ṽi= �0,0 ,1�; �i

j is parametrized by �B3�, where vi is
the spacelike eigenvector of gCg normalized such that gijviv j =1.

�III� As in �II�
�IV� The eigenvalues of gC̃g are necessarily real and distinct; �i

j is uniquely determined by
solving the associated eigenproblem for gCg, as detailed in Appendix B 1. Note that it
might be necessary to relabel the parameters c̃1 and c̃2 in the canonical form, so that the
constraints −c̃0� c̃2� c̃1 or −c̃0� c̃2� c̃1 are satisfied.

�V� As in �II� and �III�

H. The asymmetric Killing tensors

The Killing tensor parameter matrices associated with an asymmetric CKT are generally
arbitrary and the full group action �3.12� is required in order to compute the moving frame map.
As in the dilatational case, we begin with the transformation rules for the Cij parameter matrix �see
�6.1�� by computing the generalized eigenvectors of the matrix gCg. This calculation imposes
restrictions on the components of the Lorentz transformation �i

j and, in many cases, determines
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�i
j up to a single parameter. Once this parametrization is substituted back into the remaining

transformation rules in �3.12�, one can solve for the Lorentz transformation parameter�s�, the
components of the translation 
i, and the Killing tensor parameters appearing in the canonical
form. This final step usually requires solving a system of nonlinear equations, but the solution is
always tractable for the ten classes of asymmetric CKTs. We now show how an appropriate
parametrization for �i

j can be found for each of the ten cases. In what follows, the functions Ci

refer to the full SE�2,1�-covariants defined in �3.17� and the Ai refer to the auxiliary covariants
defined in Sec. V G.

�I� If A2=0, then C̃ij =0 in the canonical form. In this case, the transformation rules for the Bij

collapse to an eigenproblem. It follows that gB̃g has a zero eigenvalue with a one-
dimensional eigenspace spanned by the null eigenvector ṽi= �1,−1,0�. Therefore, �i

j is
parametrized by �B5−�, where vi is the null eigenvector of gBg normalized such that v0

=1. Similarly, for the case A2�0, we have C̃ij�0. Indeed, gC̃g also admits the null
eigenvector ṽi= �1,−1,0�; �i

j is parametrized by �B5−�, where vi is the null eigenvector of
gCg normalized such that v0=1.

�II� As in �I�, except that the null eigenvector of gB̃g �for the case A2=0� and gC̃g �for the case
A2�0� is ṽi= �1,1 ,0�; �i

j is parametrized by �B5+�.
�III� If C2=0, then c̃2=0 in the canonical form and the transformation rules for the Bij collapse

to an eigenproblem. It follows that gB̃g admits one zero eigenvalue with a spacelike
eigenspace spanned by ṽi= �0,0 ,1�; �i

j is parametrized by �B3�, where vi is the spacelike
eigenvector corresponding to the zero eigenvalue of gBg normalized such that gijviv j =1. If

C2�0, then gC̃g admits one nonzero eigenvalue with a spacelike eigenspace spanned by
ṽi= �0,0 ,1�; �i

j is parametrized by �B3�, where vi is the spacelike eigenvector correspond-
ing to the nonzero eigenvalue of gCg, normalized such that gijviv j =1.

�IV� As in �III�, except that the corresponding one-dimensional eigenspaces are now timelike;
�i

j is parametrized by �B4�, where vi is the timelike eigenvector corresponding to the zero
eigenvalue of gBg �when C2=0� or the timelike eigenvector corresponding to the nonzero
eigenvalue of gCg �when C2�0�. In both cases, vi is normalized such that gijviv j =−1.

�V� As in �III�.
�VI� As in �III� and �V�.
�VII� The canonical form and moving frame map depend on the covariant C2. If C2 is zero

�nonzero�, then c̃0+2�̃0 is zero �nonzero� in the canonical form. In both cases, gC̃g only
admits one nontrivial null eigenvector ṽi= �1,−1,0�. Thus, �i

j is parametrized by �B5−�,
where vi is the null eigenvector of gCg normalized such that v0=1.

�VIII� There are three cases to consider, namely,

�A� A5=0 ��̃2=0�,
�B� A5�0, �A14,A15�=0 �c̃0+ �̃2=0, ã0+ ã2+ �̃2=0�,
�C� A5�0, �A14,A15��0 �c̃0+ �̃2�0, �̃2�0�.

For Case �A�, C̃ij is a multiple of the metric. The group action �3.12� implies that Cij =−c̃0gij and
hence c̃0=C00. Using this simplification in the transformation rules �3.12� for the Bij, we can
obtain the components of the translation explicitly, viz.,


i = 1
2 c̃0

−1�i
jkB

jk. �6.2�

Substituting everything back into the transformation rules for the Aij and simplifying yields

Aij + c̃0�
i
 j − gijgk�
k
�� = �i
k�

j
�Ãk�, �6.3�

which is in the form of a generalized eigenproblem. It follows that gÃg admits one spacelike
eigenvector ṽi= �0,0 ,1�. Thus, �i

j is parametrized by �B3�, where vi is the spacelike eigenvector
of the left-hand side of �6.3� �with both indices lowered�, normalized such that gijviv j =1. For both
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Cases �B� and �C�, gC̃g admits the spacelike eigenvector ṽi= �0,0 ,1�; �i
j is parametrized by �B3�,

where vi is the spacelike eigenvector of gCg, normalized such that gijviv j =1.

�IX� If A1=0, then C̃ij =−c̃0gij. As in Case �A� of �VIII�, c̃0=C00, the components of the trans-

lation 
i are given by �6.2�, and �6.3� is also satisfied. Moreover, as the eigenvalues of Ãij

are necessarily real and distinct �otherwise the CKT would admit a web symmetry�, the
associated eigenvectors of the left-hand side of �6.3� �with both indices lowered� uniquely

determine the components of �i
j. If A1�0, then the eigenvalues of gC̃g are necessarily

real and distinct; �i
j is uniquely determined by solving the associated eigenproblem for

gCg.

�X� If A1=0, then C̃ij = c̃0gij and hence c̃0=−C00. Moreover, gÃg admits one spacelike eigen-
vector given by ṽi= �0,0 ,1�. Therefore, we may proceed in analogy to Case �A� of �VIII�.
If A1�0, it follows that gC̃g admits a complex conjugate pair of eigenvalues and one real
eigenvalue with a spacelike eigenspace spanned by ṽi= �0,0 ,1�. Therefore, �i

j is param-
etrized by �B3�, where vi is the spacelike eigenvector of gCg, normalized such that
gijviv j =1.

VII. MAIN ALGORITHM

The results of the previous sections lead to a systematic method for determining orthogonally
separable coordinates and first integrals of motion quadratic in the momenta for natural Hamil-
tonian systems in M3. Given that M3 admits a total of 39 separable webs with 58 corresponding
separable coordinate systems �contrast this to E3 where the number of webs and coordinate
systems is only 11�, it is not surprising that our algorithm is rather involved. Computationally,
however, our algorithm is purely algebraic and hence is straightforward to implement in a com-
puter algebra system. We now summarize the main steps of the algorithm.

�1� Impose the compatibility condition. Using the components Kij of the general Killing tensor in
K2�M3� specified in �3.15� and the given potential V with respect to pseudo-Cartesian coor-
dinates xi, impose the compatibility condition �2.9�. In components, this condition reads

��i��K
k
�j��kV� = 0. �7.1�

The compatibility condition �7.1� places linear constraints on the Killing tensor parameters
Aij, Bij, and Cij which are readily solved in any computer algebra system.

�2� Extract the CKTs. Using the compatible Killing tensor obtained in step �1�, impose the
condition that the Killing tensor be characteristic, as described in the paragraph preceeding
Eq. �3.5�. These conditions give rise to nonlinear �polynomial� constraints in the Killing
tensor parameters, in particular, the TSN conditions �3.6� governing the normality of the
eigenvectors. In some cases, a general solution to these conditions might not always be
tractable. Nevertheless, one can always attempt to solve the conditions for special cases
thereby enabling one to proceed in the algorithm.

�3� Search for web symmetries. Determine if the CKT obtained in step �2� admits an isometry
group web symmetry by imposing the Lie derivative condition �4.1� using the components Vi

of the general Killing vector in K1�M3� specified in �3.13�. This condition leads to a system
of linear equations in the Killing vector parameters Ai and Bi. If a nontrivial solution exists,
classify the resulting Killing vector using Fig. 1. Then, determine the group element h1
�SE�2,1� which casts the Killing vector to canonical form using the moving frame map
construction detailed in Sec. VI A. If a group web symmetry does not exist, determine if the
CKT admits a dilatational web symmetry by imposing the Lie derivative condition �4.2�,
where V= �xi+ai�Xi is the general dilatational vector field. This condition generates a system
of linear equations in the parameters ai. If a solution for the ai exists, then the CKT admits
a dilatational web symmetry. In this case, construct h1�SE�2,1�, viz., ��i

j ,

i�= �
i

j ,a
i�,

otherwise set h1=identity. Finally, compute the transformed CKT h1 ·K using the standard
tensor transformation rules or, alternatively, the explicit group action �3.12�. It follows that
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the resulting transformed Killing tensor is contained in one of the six invariant subspaces
listed in Table I �in the case when the CKT admits a web symmetry� or is asymmetric.

�4� Classify the CKT and determine the moving frame map. For the transformed CKT h1 ·K
computed in step �3�, classify it using the scheme detailed in Sec. V. This calculation deter-
mines the type of separable web in M3 which is characterized by the CKT. Then, using the
moving frame map construction detailed in Sec. VI, determine the group element h2
�SE�2,1� which casts the classified CKT to canonical form.

�5� Construct the transformation to separable coordinates and the first integrals of motion. Let
�i

j and 
i be the corresponding Lorentz transformation and translation of the composition
h2 �h1. The transformation from pseudo-Cartesian coordinates xi to separable coordinates ui

is

xi = �i
jT

j�uk� + 
i, �7.2�

where xi=Ti�uj� is �one of� the canonical coordinate transformations associated with the
separable web. These coordinate patches and transformations to separable coordinates are
given explicitly in Ref. 15 for each of the 39 separable webs in M3. Finally, the most general
first integral quadratic in the momenta compatible with the potential V is given by �2.10�,
where Kij is the general solution obtained from step �1� and the potential function U is
obtained by integrating the system of PDEs �iU=Kj�i

jV.

VIII. APPLICATION: A STATIONARY FLOW OF THE KORTEWEG–de VRIES HIERARCHY

Hamiltonian systems often arise naturally from the stationary flows of soliton equations, such
as the celebrated KdV equation. Morosi and Tondo27 considered the integrability of the natural
Hamiltonian system defined by

H = 1
2 �2pupv + py

2� − 5
8u4 + 5

2u2v + 1
2uy2 − 1

2v2, �8.1�

which is obtained as a stationary reduction of the seventh-order KdV flow. The Hamiltonian �8.1�
is defined on the base manifold M3 with respect to the position-momenta coordinates qi

= �u ,v ,y� and pi= �pu , pv , py�. Before we can apply the algorithm of Sec. VII to this Hamiltonian
system, we must first convert the null coordinates u and v to pseudo-Cartesian coordinates t and
x because we have assumed throughout that the M3 metric is the diagonal Minkowski metric gij

=diag�−1,1 ,1�. Upon defining

u = −
1
�2

�t + x�, v =
1
�2

�t − x� ,

it follows that potential in �8.1� is transformed to

V = −
5

32
�t + x�4 +

5�2

8
�t + x�2�t − x� −

�2

4
�t + x�y2 −

1

4
�t − x�2. �8.2�

We now apply our method to the potential �8.2�.
The general solution of the compatibility condition �7.1� subject to the potential �8.2� is the

Killing tensor

Kij = a1K1
ij + a2K2

ij + a3K3
ij , �8.3�

where a1, a2, and a3 are arbitrary constants and

K1
ij = 
 1 + 2�2x 1 + �2�t − x� − �2y

1 + �2�t − x� 1 − 2�2t �2y

− �2y �2y − 2�2�t + x�
� ,
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K2
ij = 
 − 2 − 2�2x − 1 − �2�t − x� �2y

− 1 − �2�t − x� 2�2t − �2y

�2y − �2y 1 + 2�2�t + x�
� ,

K3
ij = 
 − y2 y2 − y�t + x + �2�

y2 − y2 y�t + x − �2�

− y�t + x + �2� y�t + x − �2� − �t + x�2 − 2�2�t − x�
� .

The TSN conditions �3.6� are identically satisfied for the Killing tensor �8.3� and hence it has
normal eigenvectors for all a1, a2, and a3. The discriminant of the characteristic polynomial of
�8.3� is a lengthy polynomial in the constants ai and the pseudo-Cartesian coordinates; neverthe-
less it is generally nonzero and vanishes only if a1=a2 and a3=0, in which case �8.3� reduces to
a multiple of the metric. Therefore, we conclude that �8.3� generally has normal eigenvectors and
real and distinct eigenvalues, thereby defining a CKT.

Imposing the Lie derivative condition �4.1� on the CKT �8.3�, as described in step �2� of the
algorithm in Sec. VII, we conclude that �8.3� admits no web symmetry for any values of the
constants ai. The search for a dilatational web symmetry proves equally unsuccessful. Therefore,
the CKT �8.3� characterizes one of the ten asymmetric separable webs in M3.

We now proceed to classify the asymmetric Killing tensor �8.3� using the scheme detailed in
Sec. VI. It follows that A1=0, C2=0 and

A2 = 4�2a3
2�t + x� .

There are two cases to consider, namely, a3=0 and a3�0. Firstly, if a3=0, then A4=0 and A11

=−8�a1−a2�3�0 �otherwise the CKT would reduce to the metric�. Therefore, the CKT �8.3� with
a3=0 characterizes the asymmetric web II. Secondly, if a3�0, then A4=0 and A6=−8a3

3; thus in
this case the CKT also characterizes the asymmetric web II.

We now compute the moving frame map for �8.3� which transforms it to the canonical form
tabulated in Appendix A 7. Following the procedure detailed in Sec. VI H, it follows that for the
case when a3=0, the parameter matrix gBg admits a null eigenvector vi= �1,−1,0�. �Note that if
�8.3� was in canonical form to begin with, this null vector would be �1, 1, 0�.� Therefore, �i

j is
parametrized by �B5+�, where vi is the aforementioned null vector. Solving the system of equa-
tions induced by the group action �3.12� for the parameters appearing in �i

j, the components of the
translation 
i and the Killing tensor parameters appearing in the canonical form, we find that

�i
j =

1

2�2
− 3 − 1 0

1 3 0

0 0 − 2�2
�, 
i = 0, �8.4�

defines the moving frame map. Similarly, for the case a3�0, we also find that the parameter
matrix gCg admits the null eigenvector vi= �1,−1,0�. It follows that the moving frame map for
this case is also given by �8.4�.

We conclude that the CKT �8.3� compatible with the potential �8.2� characterizes only one of
the 39 separable webs in M3, namely, the asymmetric web II, for any �nontrivial� values of the
constants a1, a2, and a3. Referring to Ref. 15 the coordinate system �F12.9� is the only such system
of coordinates which covers this web. The transformation from canonical pseudo-Cartesian coor-
dinates �t ,x ,y� to separable coordinates �� ,� ,�� is given by

t + x = 1
8 ��2 + �� + ��2���2 + �� − ��2�, t − x = �2 + �2 − �2, y = ��� . �8.5�

Equation �7.2� in conjunction with �8.4� and �8.5� implies that the transformation to separable
coordinates for the Hamiltonian �8.1� is
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u = −
1
�2

�t + x� =
1

2
��2 + �2 − �2� ,

v =
1
�2

�t − x� = −
1

8
��2 + �� + ��2���2 + �� − ��2� ,

y = − ��� . �8.6�

In closing, we remark that it is possible to construct the most general first integral quadratic in
the momenta for the Hamiltonian �8.1� using the Killing tensor �8.3�, as described in step �5� of the
algorithm in Sec. VII. This computation yields a three-parameter family of first integrals in the
constants a1, a2, and a3. It is possible to extract two additional functionally independent first
integrals �e.g., with �a1 ,a2 ,a3�= �1,0 ,0� and �a1 ,a2 ,a3�= �0,0 ,1��, thereby showing that the
Hamiltonian system �8.1� is completely integrable, in agreement with the results of Morosi and
Tondo.27

IX. CONCLUSION

This work concludes the program of studying orthogonal separation of variables for natural
Hamiltonians defined in three-dimensional Euclidean and Minkowski spaces pursued by different
authors over the years. Geometrically, the program in each case consists of solutions to the
corresponding canonical forms and equivalence problems. Table III encapsulates the presentation
of the solutions to each problem in the corresponding papers.
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APPENDIX A: CANONICAL CHARACTERISTIC KILLING TENSORS

In this appendix, we give 39 classes of canonical forms for the CKTs in M3, each of which
characterizes one of the 39 separable webs in M3. These canonical forms were first derived in Ref.
15 by Eisenhart’s method. We shall express these canonical forms by giving the components of the
Killing tensor parameter matrices Aij, Bij and Cij, as defined in Eq. �3.4�. The components Kij of
the corresponding Killing tensor can then be reconstructed from �3.15�. Unless indicated other-
wise, any component not given explicitly is zero and any parameters appearing in the components
are unconstrained.

1. Spacelike translational CKTs

�I� Aij =diag�a0 ,a1 ,a2�, Bij =0, Cij =0.

TABLE III. Solutions to the canonical forms and equivalence problems.

Euclidean space E3 Minkowski space M3

Canonical forms
problem

Eisenhart �Ref. 9�
Boyer et al. �Ref. 4�

Horwood and McLenaghan
�Ref. 16�

Equivalence
problem

Horwood et al. �Ref. 16�
Horwood �Ref. 14�

Present article
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�II� Aij =diag�−a0 ,a0 ,a2�, Bij =0, Cij =diag�0,0 ,c2�.
�III� Aij =diag�−a0 ,a0 ,a2�, B12=b12, Cij =0.
�IV� Aij =diag�−a0 ,a0 ,a2�, B02=b02, Cij =0.
�V�

Aij = 
− a0 �2 0

�2 a0 + 2�2 0

0 0 a2
�, Bij = 
0 0 2�2

0 0 − 2�2

0 0 0
�, Cij = 0.

�VI� Aij =diag�a0 ,a1 ,a2�, Bij =0, Cij =diag�0,0 ,c2�, �a0+a1�c2�0.
�VII� As in �VI� but with �a0+a1�c2�0.
�VIII�

Aij = 
− a0 �2 0

�2 a0 0

0 0 a2
�, Bij = 0, Cij = diag�0,0,c2�, �2c2 � 0.

�IX�

Aij = 
− a0 �2 0

�2 a0 + 2�2 0

0 0 a2
�, Bij = 0, Cij = diag�0,0,4�2� .

�X�

Aij = 
− a0 �2 0

�2 a0 + 2�2 0

0 0 a2
�, Bij = 0, Cij = diag�0,0,− 4�2� .

2. Timelike translational CKTs

�I� Aij =diag�a0 ,a1 ,a1�, Bij =0, Cij =diag�c0 ,0 ,0�.
�II� Aij =diag�a0 ,a1 ,a1�, B20=b20, Cij =0.
�III� Aij =diag�a0 ,a1 ,a2�, Bij =0, Cij =diag�c0 ,0 ,0�, �a1−a2�c0�0.

3. Spacelike rotational CKTs

�I� Aij =diag�−a1 ,a1 ,a1�, Bij =0, Cij =diag�−c1 ,c1 ,c2�.
�II� Aij =diag�−a1 ,a1 ,a1�, B01=−B10=b01, Cij =diag�0,0 ,c2�.
�III� Aij =diag�−a1 ,a1 ,a2�, Bij =0, Cij =diag�−c1 ,c1 ,c2�, �a2−a1�c1�0.
�IV� As in �III� but with �a2−a1�c1�0.

4. Timelike rotational CKTs

�I� Aij =diag�−a0 ,a0 ,a0�, Bij =0, Cij =diag�c0 ,c2 ,c2�.
�II� Aij =diag�−a0 ,a0 ,a0�, B12=−B21=b12, Cij =diag�c0 ,0 ,0�.
�III� Aij =diag�a0 ,a2 ,a2�, Bij =0, Cij =diag�c0 ,c2 ,c2�, �a0+a2�c2�0.
�IV� As in �III� but with �a0+a2�c2�0.
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5. Null rotational CKTs

�I�

Aij = diag�− a0,a0,a0�, Bij = 0, Cij = 
�1 − c1 0 �1

0 c1 0

�1 0 �1 + c1
� .

�II�

Aij = 
− a0 + c1 0 c1

0 a0 0

c1 0 a0 + c1
�, Bij = 0, Cij = 
�1 − c1 0 �1

0 c1 0

�1 0 �1 + c1
� .

�III�

Aij = 
− a0 − c1 0 − c1

0 a0 0

− c1 0 a0 − c1
�, Bij = 0, Cij = 
�1 − c1 0 �1

0 c1 0

�1 0 �1 + c1
� .

6. Dilatational CKTs

�I�

Aij = diag�− a0,a0,a0�, Bij = 0, Cij = 
 c0 0 − �0

0 − c0 �0

− �0 �0 − c0
� .

�II�

Aij = diag�− a0,a0,a0�, Bij = 0, Cij = 
− c2 − 2�2 �2 0

�2 c2 0

0 0 c2
� .

�III�

Aij = diag�− a0,a0,a0�, Bij = 0, Cij = 
− c2 �2 0

�2 c2 − 2�2 0

0 0 c2
� .

�IV� Aij =diag�−a0 ,a0 ,a0�, Bij =0, Cij =diag�c0 ,c1 ,c2�, −c0�c2�c1 or −c0�c2�c1.
�V�

Aij = diag�− a0,a0,a0�, Bij = 0, Cij = 
c0 �2 0

�2 − c0 0

0 0 c2
� .
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7. Asymmetric CKTs

�I�

A00 = − a0, B00 = − B11 = 4c1,

A11 = a0 + 2c1, B22 = 8c1, C00 = 16c1,

A22 = a0 + c1, B01 = − B10 = 4c1, C11 = 16c1,

A01 = c1, B12 = − B21 = − 4b02, C01 = − 16c1.

A02 = A12 = − b02, B20 = − B02 = − 4b02,

�II�

A00 = 2a0, B02 = − a0 − a2,

C00 = c0,

A11 = 2a0 + 4a2, B12 = − a0 − a2,

C11 = c0,

A22 = 2a2, B20 = a0 + a2 + 4c0,

C01 = c0.

A01 = − 2a0 − 2a2, B21 = a0 + a2 − 4c0,

�III�

A00 = − a0, B00 = − c2,

A11 = a0 + 2b01 + 2c2, B11 = − c2,

C22 = c2

A22 = a0 + b01 + c2, B01 = b01,

A01 = b01 + c2, B10 = − b01 − 2c2,

.

�IV�

Aij = diag�a0,a1,a2�,
B12 = b12,

B21 = b21,
Cij = diag�c0,0,0� ,

b12�b12 + b21� + c0�a0 + a1� = 0 and b12�a0 + a2� + 2b21�a0 + a1� = 0.

�V�

Aij = diag�a0,a1,a2�,
B01 = b01,

B10 = b10,
Cij = diag�0,0,c2� ,

b01�b01 + b10� − c2�a0 + a2� = 0 and b01�a2 − a1� + 2b10�a0 + a2� = 0.

�VI�

Aij = 
− a0 �2 0

�2 a0 0

0 0 a2
�, Bij = 
− �1 b01 0

− b01 − �1 0

0 0 0
�, Cij = diag�0,0,c2� ,

b01�1 − �2c2 = 0 and �1
2 + c2�a0 − a2� = 0 if �1

2 + c2
2 � 0,

a0 − a2 = 0 if �1
2 + c2

2 = 0.
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�VII�

A00 = a0, C00 = c0,

A11 = − a0 + 16c0 + 24�0, C11 = − c0 − 4�0,

A22 = − a0 + 8c0 + 12�0, Bij = 0, C22 = − c0 − 2�0,

A01 = − 8c0 − 12�0, C01 = 2�0,

A02 = − A12 = 4c0 + 8�0, C02 = − C12 = − �0.

�VIII�

A00 = a0, C00 = c0,

A11 = − a0 − 2�2, C11 = − c0 − 2�2,

Bij = 0,

A22 = a2, C22 = − c0 − 2�2,

A01 = �2, C01 = �2,

�a0 + a2��c0 + 2�2��2 + �2�2c0 + 3�2��2 = 0.

�IX� Aij =diag�a0 ,a1 ,a2�, Bij =0, Cij =diag�c0 ,c1 ,c2�, �a0+a1�c0c1+ �a1−a2�c1c2− �a2+a0�c2c0

=0.
�X�

Aij = 
− a0 �2 0

�2 a0 0

0 0 a2
�, Bij = 0, Cij = 
− c0 �2 0

�2 c0 0

0 0 c2
� ,

�2�2
2 + c2�2�a2 − a0� − c0�2�c2 − c0� = 0.

APPENDIX B: THE GENERALIZED EIGENVALUE-EIGENVECTOR PROBLEM

The majority of the calculations required to compute the moving frame map for a space of
Killing tensors in M3 amounts to the use of elementary linear algebra and properties of the Lorentz
group SO�2,1�. In particular, we frequently require the generalized eigenvalues and eigenvectors
of a 3�3 matrix with respect to the Minkowski metric. We review the steps required for this
computation in Appendix B 1. In the case when the matrix fails to be diagonalizable or has a
repeated eigenvalue, one can find a natural parametrization of SO�2,1� from one of the �nonzero�
eigenvectors by determining the Lorentz transformation which maps the eigenvector to either the
spacelike vector �0,0,1�, the timelike vector �1,0,0�, or the null vectors �1, 	1,0�. We derive the
explicit transformation for each of these four cases in Appendixes B 2–B 4.

1. Solution to the eigenproblem in Minkowski space

For motivation, let us consider the group action SE�2,1��K2�M3� given in �3.12� and its
effect on the Cij Killing tensor parameter matrix. It follows that the transformation rule for the Cij

can be written in the form

�i
jC̃

jkgk� = Cijgjk�
k
�,

where �i
j �SO�2,1�. In matrix form, this equation reads

�C̃g = Cg� ⇔ ��C̃g� = g−1�gCg�� , �B1�

where ���ij =�i
j, �C̃�ij = C̃ij, etc.
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Let us now recall the generalized eigenproblem from linear algebra. Let A and B be real �or
complex� n�n matrices, where the latter is also assumed to be invertible. The matrix A is said to
admit a generalized eigenvalue k with respect to the matrix B if there exists a nonzero vector v
such that Av=kBv. The vector v is called a generalized eigenvector of A with respect to B. If A
admits n linearly independent generalized eigenvectors, then A is said to be diagonalizable with
respect B. In this case, there exists an invertible matrix S, whose columns are the n generalized
eigenvectors, and a diagonal matrix D, whose elements are the corresponding generalized eigen-
values, such that

AS = BSD ⇔ SD = B−1AS . �B2�

Comparing Eqs. �B1� and �B2�, we see that the transformation rule for the Cij parameter
matrix is in the form of a generalized eigenproblem with

A = gCg, B = g, D = C̃g, S = � .

Moreover, if C is diagonalizable �e.g., it has distinct eigenvalues�, then S can be formed so that it

is a proper Lorentz transformation. Let us review the steps required to determine the matrices C̃
and �.

�1� Solve the characteristic equation det�gCg−kig�=0 to obtain a set of eigenvalues ki, i
=0,1 ,2.

�2� For each eigenvalue ki, compute a nonzero generalized eigenvector vi satisfying gCgvi
=kigvi �no sum�.

�3� If C �or equivalently, gCg� is diagonalizable, then one of the three vi is necessarily timelike
while the other two are spacelike. That being said, reorder the vi so that v0 is timelike and v1
and v2 are spacelike. Finally, rescale the vi so that gk�vi

kvi
�= 	1.

�4� Form the matrix � whose ith column is vi.
�5� Compute the determinant of � and verify that it is equal to 	1. If the determinant is

negative, multiply one of the columns of � by an overall sign.

�6� Construct C̃=diag�−k0 ,k1 ,k2�.

If C fails to be diagonalizable, then it is possible to use one of its generalized eigenvectors to
write � in terms of one or more arbitrary parameters. For example, if C admits a spacelike
generalized eigenvector v, then one can parameterize � in terms of a boost parameter � in the
plane whose normal is v. The construction of such a one-parameter family of Lorentz transfor-
mations requires one to transform such an eigenvector v to some canonical form. We discuss these
computations in the remaining subsections of this appendix.

For the sake of brevity, we shall drop the use of the word “generalized” when discussing
generalized eigenvalues and eigenvectors. Throughout this paper, an eigenvalue �eigenvector� of
some matrix will always mean a generalized eigenvalue �generalized eigenvector� of the said
matrix with respect to the Minkowski metric gij =diag�−1,1 ,1�.

2. Transformation of a constant vector to „0,0,1…

Let vi be the components a constant spacelike vector in M3, normalized so that gijviv j =1. We
seek the most general Lorentz transformation �i

j �SO�2,1� which maps the vector ṽi= �0,0 ,1� to
vi or, equivalently, a general Lorentz transformation characterizing a boost in the plane whose
normal is vi. To begin, let us first determine a rotation which maps vi→v�i= �v�0 ,0 ,v�2� and then
a boost which maps v�i→ ṽi= �0,0 ,1�. Indeed, for the former, S1v=v�, where

S1 = 
1 0 0

0 cos �1 − sin �1

0 sin �1 cos �1
� ,

and
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cos �1 =
v2

��v1�2 + �v2�2
, sin �1 =

v1

��v1�2 + �v2�2
,

so that v�i= �v0 ,0 ,��v1�2+ �v2�2�. For the latter, S2v�= ṽ, where

S2 = 
cosh �2 0 sinh �2

0 1 0

sinh �2 0 cosh �2
� ,

and

cosh �2 = ��v1�2 + �v2�2, sinh �2 = − v0.

Finally, we note that the Lorentz transformation

S0 = 
� cosh � sinh � 0

sinh � � cosh � 0

0 0 1
� ,

a boost in the tx-plane, where �= 	1, maps ṽ to itself. Therefore, the required Lorentz transfor-
mation is �= �S2S1�−1S0 or, explicitly,

�i
j =


���v1�2 + �v2�2 cosh � ��v1�2 + �v2�2 sinh � v0

�v0v1 cosh � + v2 sinh �

��v1�2 + �v2�2

v0v1 sinh � + �v2 cosh �

��v1�2 + �v2�2 v1

�v0v2 cosh � − v1 sinh �

��v1�2 + �v2�2

v0v2 sinh � − �v1 cosh �

��v1�2 + �v2�2 v2� . �B3�

3. Transformation of a constant vector to „1,0,0…

Let vi be the components of a constant timelike vector in M3, normalized so that gijviv j =
−1. We seek the most general Lorentz transformation �i

j �SO�2,1� which maps the vector ṽi

= �1,0 ,0� to vi or, equivalently, a general Lorentz transformation characterizing a rotation whose
axis of rotation is vi. The derivation of such a Lorentz transformation is analogous to the spacelike
case in the previous subsection. It follows that the required Lorentz transformation is

�i
j =
v0 v0v2 sin � + v1 cos �

�1 + �v2�2

v0v2 cos � − v1 sin �

�1 + �v2�2

v1 v1v2 sin � + v0 cos �

�1 + �v2�2

v1v2 cos � − v0 sin �

�1 + �v2�2

v2 �1 + �v2�2 sin � �1 + �v2�2 cos �

� . �B4�

4. Transformation of a constant vector to „1, ±1,0…

Let vi be the components of a constant null vector in M3, rescaled so that v0=1. We seek the
most general Lorentz transformation �i

j �SO�2,1� which maps the vector ṽi= �1, 	1,0� to vi. To
begin, let us first find the rotation which maps v→ ṽ. Indeed, S1v= ṽ, where
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S1 = 
1 0 0

0 cos �1 − sin �1

0 sin �1 cos �1
� ,

and

cos �1 = 	 v1, sin �1 = � v2.

Finally, let S0 be the most general proper Lorentz transformation which maps ṽ to itself. To
determine S0, we first impose the condition S0ṽ= ṽ, which places restrictions on the components
of S0. Next, we impose the condition that S0 be a proper Lorentz transformation. Although these
conditions are quadratic, they can nevertheless be solved systematically. One finds that

S0 = 
1 + 1
2�2 �

1
2�2 �

	
1
2�2 1 − 1

2�2 	�

� �� 1
�

for any ��R. Therefore, the required Lorentz transformation is �=S1
−1S0.

We remark that there is a further degree of freedom one could impose on the derived Lorentz
transformation. The null vectors ṽ and kṽ are equivalent for any k�0. We observe that any boost
in the tx-plane given by

S̄ = 
� cosh � sinh � 0

sinh � � cosh � 0

0 0 1
�

satisfies S̄ṽ=kṽ, where k=�e	�� and �= 	1. Therefore, the Lorentz transformation �=S1
−1S̄S0

or, explicitly,

�0
0 = ��1 + 1

2�2�cosh � 	
1
2�2 sinh � ,

�0
1 = �

1
2��2 cosh � + �1 − 1

2�2�sinh � ,

�0
2 = �� cosh � 	 � sinh � ,

�1
0 = 1

2��2v1 cosh � 	 �1 + 1
2�2�v1 sinh � � �v2,

�1
1 = 	 ��1 − 1

2�2�v1 cosh � − 1
2�2v1 sinh � + �v2,

�1
2 = ��v1 cosh � 	 �v1 sinh � � v2,

�2
0 = 1

2��2v2 cosh � 	 �1 + 1
2�2�v2 sinh � 	 �v1,

�2
1 = 	 ��1 − 1

2�2�v2 cosh � − 1
2�2v2 sinh � − �v1,

�2
2 = ��v2 cosh � 	 �v2 sinh � 	 v1 �B5�

maps the vector �1, 	1,0� to the null vector �e	��v with v0=1.
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