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We solve the equivalence problem for the orthogonally separable webs on the 3-sphere
under the action of the isometry group. This continues a classical project initiated by
Olevsky in which he solved the corresponding canonical forms problem. The solution
to the equivalence problem together with the results by Olevsky forms a complete
solution to the problem of orthogonal separation of variables for the Hamilton–Jacobi
equation defined on the 3-sphere via orthogonal separation of variables. It is based
on invariant properties of characteristic Killing tensors in addition to properties of
the corresponding algebraic curvature tensor and the associated Ricci tensor. The
result is illustrated by a nontrivial application to a natural Hamiltonian defined on the
3-sphere. C© 2011 American Institute of Physics. [doi:10.1063/1.3578773]

I. INTRODUCTION

This paper presents a complete solution to the equivalence problem for orthogonally sepa-
rable webs (OSWs) generated by the characteristic Killing tensors (CKTs) defined on the three-
dimensional sphere S3. In addition, we lay the ground work for solving the analogous problem
for three-dimensional hyperbolic space H3 as well as the spaces of constant nonzero curvature
of higher dimensions. This work continues and generalizes our studies of the OSWs defined in
flat (pseudo-)Riemannian spaces (see, for instance Refs. 1, 14, and 16 and the relevant references
therein).

Reportedly, the study of OSWs generated by Killing two-tensors was conceived in various
classical articles published throughout the 19th century. A list of such works should include, among
many others, Liouville,21 Neumann,26 Bertrand,3 Morera,25 and Stäckel.34 The research in the area
continued throughout the last century to make this study more systematic and develop new results.
Of note was the celebrated 1934 paper by Eisenhart.8 In this paper, the author completely solved
the canonical forms problem for the OSWs generated by CKTs defined in E3 by showing that
there were exactly eleven inequivalent (in some sense) such OSWs and represented each of them
with the corresponding canonical form. Furthermore, he gave a general criterion linking orthogonal
separability with geometric and algebraic properties of Killing two-tensors. In addition to E3, he
also partially solved the canonical forms problem for S3. This problem, as well as the case of
hyperbolic space H3, was later completed by Olevsky in 1950. In his paper,28 Olevsky determined
the number of orbits corresponding to the orthogonally separable coordinates on S3 and H3, listing
the metrics in these coordinates and the transformations to separable coordinates in each case.
Kalnins et al.20 completed Olevsky’s work on S3 by also listing the CKTs (using the language of
differential operators) in their respective canonical forms representing the OSWs. In recent years, the
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research in the area has been successfully continued yielding many important results in connection
with the study of integrable and superintegrable classical and quantum Hamiltonian systems (see,
for example, Refs. 4, 14, 16, 19, 30, and 35 and the relevant references therein).

It must be noted, however, that many of the aforementioned investigations concerned the
canonical forms problems for the CKTs in question, while the applications arising in the field of
classical and quantum Hamiltonian systems often involve the properties of the CKTs in their general
form as far as the action of the corresponding isometry groups are concerned (see Ref. 14, for
example). From this perspective, the main goal of this paper is to extend the results by Olevsky and
others and solve the equivalence problem for the CKTs defined on S3.

The paper is organized as follows. Section II contains a brief review of the required mathematical
tools defined in the framework of the invariant theory of Killing tensors (ITKTs) that will be used
in solving the main problem. In Sec. III we determine the form of the general Killing tensor on Sn

by considering it as an imbedded hypersurface in En+1. We also obtain algebraic conditions for the
orthogonal integrability of the eigendirections of the CKTs. In Sec. IV we formulate and solve the
equivalence problems for CKTs defined on S3. Section V is devoted to applications to problems
of classical mechanics that subsume the results of the previous sections. Section VI contains the
conclusion.

II. INVARIANT THEORY OF KILLING TENSORS

In what follows we formulate and solve the equivalence problem for the OSWs generated by
CKTs defined onS3 within the framework of the invariant theory of Killing tensors, which is a natural
extension of the classical invariant theory of homogeneous polynomials (see Ref. 18 for more details
and relevant references). Thus, the study of OSWs is based on algebraic and geometric properties
of Killing two-tensors in which invariant theory comes into play as the natural link between algebra
and geometry. Moreover, recently it has been shown explicitly (see Ref. 16 for more details and
references) that in the case of Killing two-tensors generating OSWs the study can be naturally cast
into the general setting of Cartan’s geometry.5, 6, 12

Let (M, g) be an n-dimensional (pseudo-)Riemannian manifold of constant curvature.

Definition II.1: A (contravariant) Killing tensor of valence p defined in (M, g) is a symmetric
(p, 0) tensor field satisfying the Killing tensor equation

[K , g] = 0, (2.1)

where [ , ] denotes the Schouten bracket.32 When p = 1, K is said to be a Killing vector field
(infinitesimal isometry) and (2.1) reduces to

LK g = 0, (2.2)

where L denotes the Lie derivative operator.

Since the Schouten bracket [ , ] isR-bilinear, the set of solutions to the system of overdetermined
partial differential equations given by (2.1) forms a vector space over R. Furthermore, since (M, g)
is of constant curvature, the dimension of such a vector space is maximal (see the relevant references
in Ref. 14 for more details). In what follows, we shall use the notation Kp(M) to denote the vector
space of valence p Killing tensor fields defined on M.

Remark II.2: Note that Eq. (2.1) can be equivalently rewritten in the more familiar (covariant)
form as follows:

K(i1...i p ;i p+1) = 0, (2.3)

where Ki1...i p denotes the covariant components of the Killing tensor K , ; the covariant derivative
with respect to the Levi–Civita connection defined by g, and (. . .) symmetrization over the enclosed
indices.
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As is well-known the Killing tensors defined on spaces of constant curvature are sums of
symmetrized tensor products of Killing vectors forming finite-dimensional vector spaces. Denote
by d the dimension of the vector space Kp(M) and recall that d is given by (see reference 16 for
details)

d = dimKp(M) = 1

n

(
n + p

p + 1

)(
n + p − 1

p

)
, p � 1. (2.4)

Therefore the general element of Kp(M) may be represented by d arbitrary parameters a1, . . . , ad

with respect to a given basis. Let G denote the isometry group of (M, g). Our next observation is
that the group G acting on M induces, via the pushforward map, a linear transformation of Kp(M)
which defines a representation of G.23 Moreover, the action G � K2(M) is not transitive. These
observations are the crux of the invariant theory of Killing tensors allowing us to formulate the
canonical forms and equivalence problems for the Killing tensors defined on spaces of constant
curvature.

Of particular importance for applications are the elements of K2(M) enjoying additional geo-
metric and algebraic properties. More specifically, let K ∈ K2(M) be such that its eigenvalues are
pointwise simple and real, and the eigenvector fields are normal (orthogonally integrable). Such a
Killing tensor K is called a characteristic Killing tensor.2, 8 The remarkable property of CKTs is
that their eigenvalues and eigenvectors generate OSWs, which are n foliations of the space M that
consist of (n − 1)-dimensional hypersurfaces orthogonal to the eigenvectors of the CKT in question.

The action G � K2(M), thus defined, foliates the vector space K2(M) into the orbit space
K2(M)/G. These orbits represent Killing tensors of valence 2 that share the geometric (and alge-
braic) properties that are equivalent modulo the group action G � K2(M). Of particular importance
in applications are the orbits that correspond to the CKTs belonging to the vector space K2(M).
It must be noted at this point that, in general, the topology of the orbit space K2(M)/G (or
(K2(M) × M)/G) is far from being trivial which makes the problem of invariant classification
of the orbits fairly complicated. The problem consists of two “subproblems,” namely, the canoni-
cal forms problem and the equivalence problem which can briefly be formulated in this setting as
follows:

1. Canonical forms problem: Consider the action G � K2(M). The problem is to determine
the number of inequivalent orbits corresponding to the CKTs defined on (M, g) as well as the
canonical forms representing each of them.

2. Equivalence problem: Consider again the action G � K2(M). Let K ∈ K2(M). First, the
problem is to determine whether or not K is a CKT. If the answer is “yes,” the main problem
is to determine the corresponding orbit in the quotient space K2(M)/G to which K belongs.
Finally, we also want to determine the moving frame map9, 10 that maps K to its respective
canonical form.

Recall that Eisenhart8 outlined the solution to the canonical forms problem for CKTs formulated
above and solved it for the case M = E3. In Ref. 16 (see also the relevant references therein)
Horwood et al. reformulated Eisenhart’s approach in the language of the Cartan geometry (which
Eisenhart employed implicitly). Note that the canonical forms problems for the cases M = S3 and
M = H3 were solved by Olevsky in Ref. 28, while the case M = M3 was treated by Horwood
and McLenaghan in Ref. 15. Moreover, these solutions have been used to solve the corresponding
equivalence problems. Thus, Horwood et al.14 and Horwood17 employed two different methods
to solve the equivalence problem for the CKTs defined on E3, while Horwood et al.16 solved the
equivalence problem for the case M = M3.

In order to set the stage for our theory and in what follows solve the equivalence problem for
K2(S3), we now employ the fundamental ideas from Cartan’s approach to geometry. Observe first
that M � G/H , where G is the isometry group of M and H is a closed subgroup of G. Thus, for
example, S3 � SO(4)/SO(3). Next, we observe that in view of this identification the homogeneous
space G/H can be treated as the base manifold in the tautological principal bundle projection π1 :
G → G/H � M (i.e., G is the principal H -bundle over G/H ). Similarly, consider the vector bundle
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Kp(M) × M; then π2 : Kp(M) × M → M � G/H is the vector bundle projection with the same
base manifold. Upon noticing that the transitive action of the isometry group I (M) = G inM yields
the nontransitive action of G inKp(M), where G acts as an automorphism, we consider next the orbit
space (Kp(M) × M)/G leading to the third projection π3 : Kp(M) × M → (Kp(M) × M)/G,
having the structure of a principal G-bundle with Kp(M) × M as the total space. Following Ref.
16, we introduce the lift f : (K2(M) × M)/G → G, so that the following diagram commutes:

(2.5)

Geometrically, the existence of f is equivalent to the existence of a cross section through the
orbits of the orbit-space (Kp(M) × M)/G. The intersections of such a cross section with the orbits
are the corresponding canonical forms, and their coordinates are covariants (invariants) which play
an important role in the considerations that follow.

Consider now the case of p = 2.
Let K ∈ K2(M) be a CKT at a nonsingular point x ∈ M (i.e., the eigenvalues of K are all

real and distinct at x). Indeed, K gives rise to a quasi-orthonormal frame EK ,x(M) of eigenvectors
{e1, . . . , en} of K at x ∈ M, which is also a quasi-orthonormal basis for Tx(M). Denoting E(M)
as the corresponding bundle of frames generated by CKTs in M, it follows that (E(M),M, π̃2)
defines an (oriented) quasi-orthonormal frame bundle, where π̃2 : E(M) → M. The fibres π̃2

−1(x)
correspond to sets of all possible quasi-orthonormal frames at x ∈ M generated by the eigenvectors
of CKTs. Finally, this arrangement leads to the fibre bundle projection π̃3 : K2(M) × M → E(M).
Accordingly, our diagram (2.5) now assumes the following form:

(2.6)

The existence of such a lift f is assured by the fact that G acts transitively on the bundle of frames
E(M) for a given CKT K ∈ K2(M) and the classical Cartan lemma:12

Lemma II.3 (Cartan): Suppose that ϕ is a g-valued one-form on a connected (or simply con-
nected) manifold M. Then there exists a C∞ map F : M → G with F∗ω = ϕ iff

dϕ = ϕ ∧ ϕ,

where ω is the Maurer–Cartan form on G. Moreover, the resulting map is unique up to left translation.

Furthermore, we define the map F : E(M) → G to be F = f ◦ π3 ◦ π̃3
−1. Clearly, in this case

G may be identified with the set of frames associated with the CKT K in question, or alternatively,
cross sections of the fibration G → G/H over K . In view of Lemma II.3 the Maurer–Cartan form on
G can be restricted to this choice of frames and thus produces a complete set of invariants (covariants)
to solve the equivalence problem, which one can now solve for the orbit space (K2(M) × M)/G
(or K2(M)/G) for CKTs using the classical calculus of differential forms. More specifically, the
problem of invariant classification of the orbit(s) generated by a CKT K ∈ K2(M) reduces to fixing a
quasi-orthonormal frame of eigenvectors {e1, . . . , en} and considering in the frame the corresponding
Cartan structure equations

dea + ωa
b ∧ eb = T a, (2.7)

dωa
b + ωa

c ∧ ωc
b = �a

b, (2.8)
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together with the Killing tensor equations for the components Kab of K (2.3) and the integrability
conditions

ea ∧ dea = 0 (no sum). (2.9)

In these equations, ωa
b = �cb

a ec are the connection one-forms, T a = 1
2 T a

bc eb ∧ ec are the torsion
two-forms, �a

b = 1
2 Ra

bcd ec ∧ ed are the curvature two-forms, {e1, . . . , en} is the dual basis of
one-forms, the connection coefficients �cb

a correspond to the Levi–Civita connection ∇ [and hence
T a = 0 in (2.7)] and Ra

bcd are the components of the curvature tensor. Note that (2.9) are the
integrability conditions for the normality of the eigenvectors ea . We also note that, with respect to
this frame, the components of the metric g and CKT K are given by

gab = diag(ε1, . . . , εn) and Kab = diag(ε1λ1, . . . , εnλn), (2.10)

respectively, where εa = ±1, a = 1, . . . , n, and λa , a = 1, . . . , n, are the eigenvalues of K . The
differential invariants characterizing the orbits in question are determined by the connection one-
forms ωa

b that are found from a fixed quasi-orthonormal frame {e1, . . . , en}. More specifically,
solving the Killing tensor Eq. (2.3) for Kab in this case modulo the integrability conditions (2.9) will
produce a set of canonical forms (thus solving the canonical forms problem) corresponding to the
orbits, while finding the connection one-forms ωa

b will provide a means to distinguish between the
orbits, thus solving the equivalence problem (or, rather, most of it). However, at this point we would
like to point out that solving the equivalence problem in this way (i.e., by finding a complete set of
differential invariants) may be extremely challenging computationally. Instead, one can make use of
the fact that the group G acts transitively on the bundle of frames and try to solve it “in the group,”
employing an algebraic approach to Cartan’s method of moving frames.9, 10, 29 More specifically, via
the tensor transformation laws, we can determine the action of G on the parameters a1, . . . , ad (and
the local coordinates of M if necessary) that determine the vector space K2(M) (or the product
space K2(M) × M) and then find a set of complete invariants (covariants) as algebraic functions
of the parameters (parameters and local coordinates). This approach (analogous to the classical
invariant theory of homogeneous polynomials) is also more preferable from the applications point
of view, because the Killing two-tensors in Classical Mechanics (for example) normally appear in
terms of local coordinates on M, rather than in the frame of its eigenvectors as in (2.10).

The concept of a web symmetry, which signifies that the web is invariant under at least a
one-parameter group of isometries, is another interesting geometric consequence stemming from
the properties of covariants (eigenvalues) of CKTs. Suppose, for example, K is a CKT in K2(M)
having n − 1 functionally independent eigenvalues λi , i = 1, . . . , n − 1. It follows that there exists
a vector field V ∈ K1(M) (V is necessarily a Killing vector), such that LV (K ) = 0. Indeed, the
integral curves of V are given by the common level sets

n−1⋂
i=1

{λi = const.}.

Now we can be more specific about solving the equivalence problem outlined above. Let
K ∈ K2(M). We first verify whether or not the Killing two-tensor K in question is a CKT. This
requires verifying that the eigenvalues of K are real and distinct and that the eigenvector fields of K
are normal. The latter step can be accomplished by verifying the vanishing of the Haantjes tensor
(H condition)13 (see Ref. 18 for more details):

H K̂ (X, Y ) := K̂
2
N K̂ (X, Y ) + N K̂ (K̂ X, K̂Y ) − K̂ (N K̂ (X, K̂Y ) + N K̂ (K̂ X, Y )) = 0, (2.11)

where the (1, 1)-tensor K̂ = K g−1, N K̂ is the Nijenhuis tensor27 and X, Y are arbitrary vector fields
on M. Thus, the vanishing of the Haantjes tensor defined by (2.11) is equivalent to the Killing tensor
K being a CKT. Alternatively, the formula (2.11) can be given in index form as follows:

Hi
jk = N i

�m K �
j K m

k + 2N �
m[ j K m

k] K
i
� + N �

jk K m
�K i

m = 0, (2.12)

where K i
j denotes the components of the (1, 1)-tensor K̂ and [. . .] denotes skew symmetrization

over the enclosed indices.
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One can also employ the Tonolo–Schouten–Nijenhuis (TSN) conditions to verify the normality
of the eigenvectors of a symmetric tensor field K of valence (0,2). Indeed, K with real distinct
eigenvalues has normal eigenvectors iff the following conditions are satisfied:

N �
[i j gk]� = 0,

N �
[i j Kk]� = 0, (2.13)

N �
[i j Kk]m K m

� = 0,

where N i
jk are the components of the Nijenhuis tensor27 of K i

j defined by

N i
jk = K i

�K �
[ j,k] + K �

[ j K i
k],�. (2.14)

In the index-free form, the formula (2.14) can be obtained from the formula (2.11) by replacing the
operator N K̂ (·, ·) with the Lie bracket [ , ].

Remark II.4: If the eigenvalues of K are real and distinct, the H condition and the TSN
conditions are equivalent. If the multiplicity of some of the eigenvalues of K is greater than one, the
TSN conditions no longer apply. However, in this case the following more general result13 needed in
Sec. IV is true: the distributions defined by the eigenspaces of K in a Riemannian space are
orthogonally integrable if and only if the H condition is satisfied. Recall that orthogonal integrability
signifies that the distribution defined by the orthogonal complement of the eigenspace is integrable.

If K ∈ K2(M) is a CKT, our next step is to determine which orbit in K2(M)/G it belongs
to, noting that the corresponding canonical form for the orbit in question is known from solving
the canonical forms problem. This problem can in principle be solved by employing a number of
mathematical tricks and tools, although it is hard in general due to the fact that the group action
G � K2(M) is not regular and thus the orbits have different dimensions.

To solve the problem, one can employ algebraic invariants of the group action G � K2(M).
These are the invariants of the group G acting in the parameter space of the vector space K2(M),
or more specifically, functions of the parameters that remain unchanged under the induced action of
the group G (see, for example, Refs. 14 and 35 for more details). It must be noted, however, that the
problem can normally be solved in relatively simple cases using only algebraic invariants, that is,
when one has to deal with few types of orbits (e.g., dimM is small). Recall that algebraic invariants
of the CKTs were first introduced by Winernitz and Friš35 and later rediscovered in McLenaghan
et al.22 in a different context. More generally, one has to recover more information about the
orbits and their degeneracies. One way to deal with the problem is to “improve” the group action
by considering it in the extended space K2(M) × M. After appropriate computations, this yields
algebraic covariants of Killing tensors, which are functions of both the parameters of the vector
space K2(M) and coordinates of M. The covariants of Killing tensors were introduced by Smirnov
and Yue in Ref. 33 and have been successfully employed to solve a number of equivalence problems
(see, for example, Horwood17). The degeneracies of the orbits in K2(M)/G (or (K2(M) × M)/G)
manifest themselves in the orbits having different dimensions—a fact which for our problem has
appropriate group theoretical, geometric, and algebraic interpretations. Thus recall that in general
the dimension of an orbit is determined by the formula dim G = dim Ox + dim Gx , where G is
a group acting on M, x ∈ M, Ox is the orbit through x, and Gx is the isotropy subgroup of
G through x. The existence of isotropy subgroups indicates the degeneracies of the orbits (i.e.,
their dimensions drop), which in our case of M = K2(M)/G from the geometric perspective is
equivalent to the CKTs corresponding to the degenerate orbits admitting web symmetries (see below).
Algebraically this means that the CKTs corresponding to the degenerate orbits have functionally
dependent eigenvalues. Note that if all the eigenvalues of a CKT K are functionally independent they
can be taken as the orthogonal coordinates (see Ref. 16 for more details). Degeneracies of the orbits
can also be characterized by singular points of the CKTs in question, that is the points where the
eigenvalues coincide. Unfortunately, most of the orthogonal coordinate webs used in applications
come from the CKTs with degeneracies.
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Solving the equivalence and canonical forms problems described above forms the mathematical
foundation for applications arising in Classical Mechanics, in particular in the Hamilton–Jacobi
theory of orthogonal separation of variables for the natural Hamiltonians defined in spaces of
constant curvature (see Ref. 16 for relevant references and details). Let a Hamiltonian system be
defined by a natural Hamiltonian of the form

H (q, p) = 1

2
gi j (q)pi p j + V (q). (2.15)

The following theorem (Benenti2), which is a generalization of the corresponding result due to
Eisenhart concerning geodesic Hamiltonians,8 establishes an important link between orthogonal
separation of variables in the associated Hamilton–Jacobi equation for the Hamiltonian system
defined by (2.15).

Theorem II.5: A Hamiltonian system defined by (2.15) is orthogonal separable iff there exists
a CKT K such that

d(K̂dV ) = 0, (2.16)

where the (1, 1)-tensor K̂ = K g.

In the light of Theorem II.5 the canonical and equivalence problems formulated above can be
reformulated in the language of orthogonal separation of variables for natural Hamiltonian systems
defined by (2.15) in spaces of constant curvature as follows:

(i) How many “inequivalent” coordinate systems afford orthogonal separation of variables in the
corresponding HJ equation?

(ii) If the answer to (i) is nonzero, how can one characterize intrinsically the coordinate systems
that afford separation of variables in the HJ equation?

(iii) What are the canonical coordinate transformations

(q1, q2, . . . , qn) → (u1, u2, . . . , un)

from the given position coordinates of (2.15) to the coordinate systems that afford orthogonal
separation of variables of the HJ equation?

In what follows we employ some of the tools and techniques described above to solve the
equivalence problem for the CKTs defined on S3 employing the results obtained by Olevsky28 and
Kalnins et al.20 who solved the corresponding canonical forms problem.

III. KILLING TWO-TENSORS ON Sn ⊂ En+1

To fully explore the algebraic and geometric properties of Killing two-tensors defined on a
sphere, we employ the (Cartesian) coordinates of the corresponding ambient Euclidean space. In
this view the vector space of Killing two-tensors K2(Sn) is viewed as a subspace of K2(En+1) whose
elements are defined in terms of the Cartesian coordinates of En+1.

Indeed, since every Killing tensor defined in a space of constant curvature is expressible as a
sum of symmetrized products of Killing vectors, let us begin by defining basic Killing vectors of
a Euclidean space Em in terms of the corresponding Cartesian coordinates. For our purposes, we
also need to define the dilatational vector field D (Euler vector field). Thus, the translational X i and
rotational Ri j Killing vectors and the vector D in terms of a system of Cartesian coordinates xi can
be defined as follows:

X i = ∂

∂xi
, Ri j = 2δk�

i j g�m xm Xk, D = xi X i , (3.1)

where gi j = diag(1, . . . , 1), denotes the Euclidean metric of the Euclidean space in question and
δk�

i j = δk
[iδ

�
j], the generalized Kronecker delta. Note that the translational and rotational Killing vectors

defined above form a basis for the Lie algebra K1(Em) of the group of rigid motions of Em . Next,
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the commutation relations among these vectors are given by

[X i , X j ] = 0, [X i , R jk] = 2δ�m
jk gmi X�, [X i , D] = X i ,

[Ri j , Rk�] = 4δmn
i j δ

pr
k� gmp Rnr , [D, Ri j ] = 0.

(3.2)

The Killing vectors also satisfy the following algebraic identities (syzgies):

X [i 
 R jk] = 0, Ri[ j 
 Rkl] = 0, (3.3)

where 
 denotes the symmetric tensor product. The general Killing vector thus has the form

K = Ai X i + Bi j Ri j , (3.4)

where the constants Ai and Bi j , called the Killing vector parameters, satisfy the symmetry relation

B(i j) = 0. (3.5)

From (3.1) and (3.4) we obtain the covariant components of K with respect to the natural basis dxi :

Ki = Ai + 2Bi j x
j . (3.6)

Similarly, the general valence two Killing tensor thus has the form

K = Ai j X i 
 X j + Bi jk X i 
 R jk + Ci jk� Ri j 
 Rk�, (3.7)

where the constants Ai j , Bi jk , and Ci jk� called the Killing tensor parameters satisfy the following
symmetry relations:

A[i j] = 0,

Bi( jk) = 0, B[i jk] = 0, (3.8)

C (i j)k� = 0, Ci jk� = Ck�i j , Ci[ jk�] = 0.

A key observation is that the parameter set Ci jk� has the same symmetries as the Riemann curvature
tensor. For this reason it is sometimes called an algebraic curvature tensor. From (3.1) and (3.7) we
find that the covariant components of K with respect to the natural basis are given by

Ki j = Ai j + 2B(i j)k xk + 4Cik j�xk x�. (3.9)

This result is consistent with that obtained in Ref. 23 by the use of representation theory.
Now we may determine the form of the general Killing tensor on Sn by considering it as an

imbedded hypersurface in Em with m = n + 1 defined implicitly by the equation

x · x = 1, (3.10)

where x = (x1, . . . , xn+1), and · denotes the Euclidean inner product. Let

x = f (u1, . . . , un), (3.11)

be a local parametrization of Sn . Then from (3.10) and (3.11) we obtain by differentiation

x · xα = 0, xαβ · x = −gαβ, (3.12)

where xα = ∂x
∂uα , (xi

α = ∂xi

∂uα ), and

gαβ = xα · xβ, (3.13)

denotes the pullback of the Euclidean metric to Sn . The characterization is given by the following
proposition:

Proposition III.1: The general Killing vector and general valence two Killing tensor fields on
Sn are given by

Kα = xi
α Ki , Kαβ = xi

αx j
β Ki j , (3.14)
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where

Ki = 2Bi j x
j , Ki j = 4Cik j�xk x�. (3.15)

Proof: The pullback to Sn of the covariant derivative of any smooth tensor field Ki1...i p defined
on En+1 is given by

xi1
α1

. . . x
i p
αp x

i p+1
αp+1 Ki1...i p,i p+1 = Kα1...αp ;αp+1 + pxi Ki(α2...αp−1 gαp)αp+1 . (3.16)

If Ki1...i p is any solution of the KT Eq. (2.3), it follows that

K(α1...αp ;αp+1) + pxi Ki(α1...αp−1 gαpαp+1) = 0. (3.17)

We conclude that K will define a Killing tensor field on Sn if and only if

xi Ki(α1...αp−1 gαpαp+1) = 0. (3.18)

This condition is clearly satisfied if

x j K ji1...i p−1 = 0, (3.19)

on En+1. For the cases p = 1, 2 this condition takes the form

xi Ki = 0, x j Ki j = 0. (3.20)

It follows from (3.5), (3.6), (3.8), and (3.9) that

Ai = 0, Ai j = 0, B(i j)k=0. (3.21)

These conditions imply that Ki and Ki j have form given by (3.15). We note that, with the use of
(3.2), the conditions (3.21) are equivalent to the invariant condition

[D, K ] = 0. (3.22)

It remains to demonstrate that (3.14) and (3.15) indeed define the general Killing vector and
general valence two Killing tensor on Sn . This may be achieved by a dimensional argument. From
(2.4) it follows, respectively, for p = 1, 2 that

d = 1

2
n(n + 1),

1

12
n(n + 1)2(n + 2). (3.23)

For the case p = 1, the number d is identical to the number of independent components of the
Killing vector parameter Bi j , while for the case p = 2, d is identical to the number of independent
components of the algebraic curvature tensor Ci jk� in a (n + 1)-dimensional space. �

Remark III.2: Proposition III.1 is closely related to a result proved by Delong7 which states
that the valence p Killing tensors (considered as functions on the cotangent bundle of En+1) that
are in involution with the Euclidean distance function and the function xi pi , where pi denotes the
canonical momenta, are Killing tensors on Sn . Delong’s conditions are equivalent to (3.20) and
(3.22), respectively, only one of which seems to be required to obtain the result. Furthermore, our
proposition goes beyond his by giving the explicit form of the general valence one and two KTs
on Sn in terms of the appropriate KTs in the ambient space En+1. Our proposition may be easily
generalized to valence p Killing tensors by the use of the results of Horwood.17

Remark III.3: Note that the image of the contravariant metric gαβ on Sn with respect to spherical
coordinates under the pushforward induced by the parametrization gives rise to a Killing tensor C
called the Casimir tensor with the property that it commutes with every element of the vector
subspace of K2(En+1) given by (3.15). In view of the above C ∈ K2(En+1) is degenerate as an
element of the vector subspace determined by 4Cik j�xk x�. We also note that C is a CKT for the
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spherical web on Sn . The explicit form of the Casimir tensor is given by

C = kgik g�j Ri j 
 Rk�, (3.24)

or with respect to the natural basis by

Ci j = kgi[ j g�]k xk x�, (3.25)

where k is some constant. It may be shown by direct calculation that [C, K ] = 0, which verifies the
above mentioned commutation property.

The next step is to determine the KTs among those given by (3.14) and (3.15) that are CKTs, that
is which have pointwise distinct eigenvalues and normal eigenvectors. To effect this determination
we use the fact that the eigenvalues of Kαβ are also eigenvalues of Ki j and that the pushforward of
the eigenvectors of Kαβ are eigenvectors of Ki j . These results follow by contracting both sides of
the eigenvalue equation

Ki j X j = λgi j X j , (3.26)

with xi
α , which yields

Kαβ Xβ = λgαβ Xβ, (3.27)

where X j in (3.26) is the pushforward of Xβ :

X j = x j
β Xβ. (3.28)

We conclude that if Ki j has distinct eigenvalues then so does Kαβ . The converse is not true since if
Kαβ has a zero eigenvalue then by (3.20) Ki j will have zero as a repeated eigenvalue. However, the
remaining eigenvalues will be nonzero and distinct. We also observe by (3.12) that the eigenvector
xi corresponding to the zero eigenvalue of Ki j pulls back to the zero vector on Sn .

We next show that the pullback of a normal covector field on En+1 is a normal vector field on
Sn . To see this consider any covector field Ei on En+1 which satisfies the normality condition

E[i, j Ek] = 0. (3.29)

We note that (3.29) is the component form of the integrability condition (2.9). An easy computation
shows that

Ei, j Ek xi
αx j

β xk
γ = Eα,β Eγ − xi

αβ Ei Eγ . (3.30)

It follows from (3.29) and (3.30) that

E[α,β Eγ ] = 0, (3.31)

which implies that the pullback Eα is a normal vector field. The above results imply that the pullback
of a characteristic KT on En+1 is a characteristic KT on Sn . In view of the above results we are able
to study CKTs on Sn as pullbacks of CKTs on En+1.

We observe that the use of (2.9) to determine whether the eigenvector fields of K are normal
is impractical since it requires the explicit determination of the eigenvector fields, an intractable
problem. However, alternatively we may utilize either the TSN conditions (2.13) or the H condition
defined by (2.12). We first consider the TSN conditions for a KT of the form (3.15). These conditions
impose the corresponding algebraic conditions on the algebraic curvature tensor C :

C�
(pq[i C jk]r )� = 0, (3.32)

C�(pq
mC�

r [i j Ck]st)m − 2C�(pq[i C j
�|r |mCk]st)m = 0, (3.33)

3C�(pq
mC�

r |n|sCn
t[i j Ck]uv)m + 2C�(pq

mC|n|rs[i C j |t |n�Ck]uv)m +

2C�(pq
mC|n|rs[i C j

n |t |�Ck]uv)m = 0, (3.34)
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where | . . . | denotes exclusion of the enclosed indices from the symmetrization process. The first
TSN condition (3.32) implies

C�(pq
mC�

r [i j Ck]st)m + 2C�(pq[i C j
�|r |mCk]st)m = 0. (3.35)

This equation together with the second TSN condition (3.33) yields the two equations

C�(pq
mC�

r [i j Ck]st)m = 0, (3.36)

C�(pq[i C j
�|r |mCk]st)m = 0. (3.37)

These equations replace the second TSN condition (3.33). We now show that the third TSN condition
is a consequence of the first and second conditions. The cyclical identity implies

C�(pq
mC|n|rs[i C j

�|t |nCk]uv)m = −C�(pq
mC|n|rs[i C j |t |n�Ck]uv)m + C�(pq

mC|n|rs[i C j
n |t |�Ck]uv)m .

(3.38)

From the above equation and (3.37) we obtain

C�(pq
mC|n|rs[i C j |t |n�Ck]uv)m = 0, (3.39)

and

C�(pq
mC|n|rs[i C j

�|t |nCk]uv)m = C�(pq
mC|n|rs[i C j

n |t |�Ck]uv)m . (3.40)

Now from the first TSN condition and (3.40) we find

C�(pq
mC�

r |n|sCn
t[i j Ck]uv)m − 2C�(pq

mC|n|rs[i C j
n |t |�Ck]uv)m = 0. (3.41)

On the other hand (3.36) implies

C�(pq
mC�

r |n|sCn
t[i j Ck]uv)m + 2C�(pq

mC|n|rs[i C j
n |t |�Ck]uv)m = 0. (3.42)

These equations together imply

C�(pq
mC�

r |n|sCn
t[i j Ck]uv)m = 0, (3.43)

C�(pq
mC|n|rs[i C j

n |t |�Ck]uv)m = 0. (3.44)

Finally (3.39) and (3.43), and (3.44) imply that the third TNS condition (3.34) is identically satisfied.

Remark III.4: This result was first proven in E3 by Czapor14 using Gröbner basis theory
and computer algebra. Schöbel31 extended the result to n-dimensional spaces of nonzero constant
curvature using representation theory of the symmetric group. However, it seems that our proof,
based on standard indicial tensor algebra, is simpler and more concise.

Substituting the Killing tensor (3.15) into the H condition (2.12) we obtain the following
condition on the coefficients:

4C�(pq
kCm

rs|i C j |tunC�
v)mn + 2C�(p|m|kCn

qr [i C j]st
mC�

uv)n

−5C�(pq
kCm

rs[i C j]|m|t nC�
uv)n + C�(pq

kCm
rs[i C j]

�
t
nC|n|uv)m

+C�(pq
kCm

rs[i C j]tu
nC|n|v)m

� − 3C�(pq
kCm

r |i j |Cn
st |m|C�

uv)n

−2C�(pq
kCm

rs[i C j]t |m|nC�
uv)n = 0. (3.45)

Using this condition we can verify whether or not a given Killing tensor defined onSn is characteristic.
It may be shown that that the first and second TSN conditions (3.32) and (3.33) imply that the H
condition (3.45) is satisfied.

We next examine the pullback of the quadratic first integral

K = K i j pi p j + U. (3.46)
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The vanishing of the Poisson bracket implies that Ki j satisfies (2.3) for p = 2, and that

∂U

∂xi
= gi j K j� ∂V

∂x�
, (3.47)

where V is the potential function. The pullback to Sn is given by

∂U

∂xi
xi

α = gi j K βγ x j
β x�

γ

∂V

∂x�
xi

α, (3.48)

which may be written as

∂U

∂uα
= gαβ K βγ ∂V

∂uγ
. (3.49)

We conclude this section by studying the action of SE(m) on the Killing vector and Killing
tensor parameters.17 The action SE(m) � Em is given by

xi = �i
j x̃

j + δi , (3.50)

where �i
j ∈ SO(m), δi ∈ Em , and x̃ i denote the transformed Cartesian coordinates. This transfor-

mation induces by (3.1) the following transformation of the Killing vectors:

X i = � j
i X̃ j , Ri j = �k

i�
�

j R̃k� + μi j
k X̃k, (3.51)

where

μi j
k = 2δ�m

i j gmn�
k
�δ

n. (3.52)

It follows that the Killing vector and parameters transform as

Ãi = �i
j A j + μ jk

i B jk, B̃i j = �i
k�

j
� Bk�, (3.53)

while the valence two Killing tensor parameters transform as

Ãi j = �i
k�

j
� Ak� + 2�(i

kμ�m
j) Bklm + μk�

iμmn
j Cklmn,

B̃i jk = �i
��

j
m�k

n B�mn + μmn
i� j

p�
k

qCmnpq ,

C̃ i jk� = �i
m� j

n�
k

p�
�

qCmnpq . (3.54)

In order to make our formulas more compact we introduce a multi-index notation where any upper-
case index represents a pair of skew-symmetric lower-case indices. Thus R I will represent Ri j .
Using this notation we may rewrite (3.51) as

R I = �J
I R̃ J + μI

k X̃k, (3.55)

where �I
K = �i

[k�
j
�], represents the second compound of �i

j . With the same notation (3.53)
reads

Ãi = �i
j A j + μJ

i B J , B̃ I = �I
J B J , (3.56)

whereas (3.54) reads

Ãi j = �i
k�

j
� Ak� + 2�(i

kμL
j) BkL + μK

iμL
j C K L ,

B̃i J = �i
��

J
M B�M + μL

i�J
M C L M ,

C̃ I J = �I
L�J

MC L M . (3.57)

We are now in a position to give an invariant classification of the translational Killing vectors
on Em under the action of SE(m). The invariant needed to effect this classification is I1 = Bi j Bi j .

A translational Killing vector in Em is invariantly defined by the condition I1 = 0, which
implies Bi j = 0. Thus by (3.4) a translational KV has the form

K = Ai X i , (3.58)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:13:23



053509-13 Orthogonally separable webs on the 3-sphere J. Math. Phys. 52, 053509 (2011)

where it is assumed that not all the Ai are zero so that K is nontrivial. It follows from the transfor-
mation formula (3.53) that, by an appropriate choice of �i

j ∈ SO(m),14 we can transform (3.58) to
the form

K = A1 X1, (3.59)

for some A1 �= 0, where the tildes have been dropped.
The case when I1 �= 0, characterizes the nontranslational Killing vectors the analysis of which

will be left to a future paper.
However, we are in a position to classify the rotational Killing vectors in E4 given by (3.15)

that define KVs on S3. For this we need the additional invariant I2 = εi jkl Bi j Bkl . We utilize the
property11 that the skew-symmetric matrix Bi j , assumed to be not the 0 matrix, may, by use of the
second formula of (3.53), be transformed to the following canonical form by an element of O(4):

Bi j =

⎛
⎜⎜⎝

0 κ1 0 0
−κ1 0 0 0

0 0 0 κ2

0 0 −κ2 0

⎞
⎟⎟⎠ , (3.60)

where κ1, κ2 ∈ R. If I1 �= 0 and I2 = 0, then κ2
1 + κ2

2 �= 0 and κ1κ2 = 0. It follows by use of the
first formula of (3.53), under the assumption κ2 = 0, that there exists δi ∈ Em and �i

j ∈ SO(m)
such that the KV may be written as

K = A3 X3 + b12 R12, (3.61)

where A3 and b12 = 2κ1 are constant. We now assume I2 �= 0, which implies that κ1κ2 �= 0. In this
case the matrix Bi j is rank four from which it follows by use of (3.53) that the KV may be expressed
as

K = b12 R12 + b34 R34, (3.62)

where b12 = 2κ1 and b12 = 2κ2 are constant. The Eqs. (3.61) and (3.62) via Proposition III.1 give
the two possible canonical forms for the rotations on S3.

IV. THE EQUIVALENCE PROBLEM FOR KILLING TENSORS ON S3

To solve the equivalence problem outlined in Sec. III for the CKTs on S3 we employ the
Cartesian coordinates of the ambient Euclidean space E4 ⊃ S3. In terms of these coordinates, the
general Killing tensor of S3 is given by

K = 4Ci jk� Ri j 
 Rk�, (4.1)

where

Ri j = δm
i jk xk Xm, δm

i jk = δm
i g jk − δm

j gik, (4.2)

i, j, k, �, m = 1, . . . , 4,

x1, . . . , x4 are Cartesian coordinates of E4, X i = ∂i , gi j are the components of the metric and 

is the symmetric tensor product. Note that (4.2) defines the six generators of so(4), the Lie algebra
of the isometry group SO(4) of S3 (no reflections). Therefore the RHS of (4.1) represents a vector
space of Killing tensors on S3. Furthermore, the dimension d of this space is determined by the
tensor Ci jk� which has the same symmetries as that of the Riemann curvature tensor, hence d = 20.

The special orthogonal group SO(4) is a Lie subgroup of the orthogonal group O(4) consisting
of all orthogonal matrices � with positive unit determinant. The transitive action of SO(4) on E4

can be specified by

xi = �i
j x̃

j ,
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where �i
j ∈ SO(4) and xi denote Cartesian coordinates. This, in turn, induces the following trans-

formation

Ri j = �k
i�

�
j R̃k�, K i j = �i

k�
j
� K̃ k�, (4.3)

on the Killing vectors (4.2) and Killing tensors (4.1) of E4. At the same time, this action induces the
following transformations:

B̃i j = �i
k�

j
� Bk�, C̃ i jk� = �i

p�
j
q�

k
r�

�
sC pqrs, (4.4)

on the Killing vector and Killing tensor parameters.
To make our formulas more compact, we will once again adopt a multi-index notation (i.e., R I

will represent Ri j ). Using this notation we may rewrite the first equation of (4.3) as

R I = �J
I R̃ J , (4.5)

where �I
K = �i

[k�
j
�], represents the second compound of �i

j . With the same notation (4.4) reads

B̃ I = �I
J B J , C̃ I J = �I

K �J
LC K L . (4.6)

To obtain the invariants and covariants of the group action SO(4) � K2(S3), we apply the theory
developed in Ref. 17. In particular, by taking contractions of products of the general Killing tensor,
the Euclidean metric, and the coefficient tensor, we can obtain a complete set of SO(4)-covariants
and invariants. Using matrices K and C, where (K)i

j = K i
j , and (C)I

J = Ci j
k�, as well as the trace

operator Tr, we can express these covariants Ci and invariants Ii as follows:

C1 = Tr(K), C2 = Tr(K2), C3 = Tr(K3), C4 = gi j x
i x j ,

I1 = Tr(C), I2 = Tr(C2), I3 = Tr(C3), . . . , I14 = Tr(C14),

where, for example, Tr(K) = K i
i and Tr(C) = C I

I .
As we stated in Sec. II, the action SO(4) � K2(S3) foliates the vector space K2(S3) into the

orbit space K2(S3)/SO(4). Each orbit is represented by a canonical form, and the solution to the
equivalence problem requires determining such canonical forms as well as a classification scheme
for finding which orbit a given CKT belongs to. As we mentioned in the introduction, the canonical
forms problem has been solved. Please refer to the appendix for a list of six canonical forms for the
orbit space K2(S3)/SO(4).

Let us now develop a classification scheme for the orbit space K2(S3)/SO(4). The set of
invariants and covariants listed above could be used to try and classify the orbits of these CKTs.
This approach was successfully implemented in the solution to the equivalence problem of Killing
tensors defined on E3,17 although the calculations were quite cumbersome. Indeed, the difficulty
in this approach lies in finding certain combinations of the above invariants and covariants which
distinguish between the orbits. To reduce many of these difficulties, the method of web symmetries
can be used as an initial step in developing a classification scheme. The central idea of this method
is to use the symmetry properties of the associated orthogonal separable web of a canonical CKT to
characterize its orbit. As a result, webs are first categorized according to their symmetry properties
and then in each symmetry subspace a new set of “reduced invariants” is determined to classify the
webs of the category. In Sec. II we stated that the web symmetries of a Killing tensor K are generated
by Killing vectors on the manifold. Thus, to determine all of the symmetry generators of a given
web we impose the following condition:

LVK = 0 (4.7)

on the Killing tensor K defining the web using the general Killing vector V of our manifold.
In what follows we demonstrate the surprising result that the six CKTs of S3 can be classified

based purely on the symmetry properties of their associated webs. To this end, we are interested in
obtaining the symmetry properties of a web before we impose the spherical constraint, which will
yield additional web symmetries for the CKTs. Visually, this corresponds to capturing all of the
symmetry properties of a web before it is intersected with the surface of S3.
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TABLE I. Symmetry classification of the six webs of S3 under the action of
SO(4).

Category Symmetry Separable webs Generators

1 2 rotations cylindrical R12, R34

2 1 translation & 1 rotation spherical R12, X4

3 1 translation spheroelliptic X4

4 1 rotation elliptic-cylindrical I R12

elliptic-cylindrical II
5 none ellipsoidal

To achieve this, we impose condition (4.7) on each of the six CKTs using the general Killing
vector of the ambient space E4. This will enable us to determine if a web is rotationally and/or
translationally symmetric before it intersects the surface of S3. Upon applying this method, we
find that four of the six webs admit at least one rotational web symmetry. We can go even further
by noting the number of rotational symmetries a CKT admits, which effectively divides the six
canonical forms into three categories. Lastly, we find that two of the six webs admit translational
symmetry, which provides the final distinguishing feature between each of the six webs. Please refer
to Table I for a summary of these results.

Remark IV.1: In an application problem, it is possible that a given CKT K may have the Casimir
tensor present. Specifically,

K = αC + K1,

where C is the Casimir tensor (3.24) and K1 is a CKT. If K1 is translationally symmetric, then the
addition of the rotationally symmetric Casimir tensor destroys this translational symmetry. Thus in
order to determine all of the symmetries of K with or without the presence of the Casimir tensor, it
is necessary to check the more general condition

LV(K + αC) = 0,

for arbitrary α ∈ R.
It is necessary to prove that the aforementioned symmetry properties of a Killing tensor are

invariant under the action of SO(4). To do so, it suffices to solve the equivalence problem of Killing
vectors of K1(E4) under the action of the group SO(4). To begin, we note that the general Killing
vector of E4 is given by

K = Ai Xi + B I RI ,

where Ai and B I denote the Killing vector parameters, and Xi and RI are the Killing vector fields
defined previously. The action of SO(4) on K induces the following transformations:

Ãi = �i
j A j , B̃ I = �I

K BK ,

on the Killing vector parameters. Therefore, it follows that

I1 = B I BI , I2 = Ai Ai

are invariants in the orbit space K1(S3)/SO(4). Using either of these two invariants it is possible
to distinguish between two different types of symmetry generators. Please refer to Table II for a
summary of these results. We can conclude that the translational and rotational web symmetries as
defined by the Killing vectors of K1(E4) are inequivalent under the action of SO(4).

In addition to a classification scheme, a solution to the equivalence problem also requires a
method for determining the moving frames map which identifies the group action required to return
a given CKT to the canonical form of its orbit. On the two-dimensional manifolds E2,M2, and
S2 algebraic formulas have been derived18, 22, 24 for determining the moving frame map of a given
CKT. On E3 and M3, a combination of web symmetry and eigenvalues and eigenvectors of the
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TABLE II. Invariant classification of Killing vectors on E4 under the action
of SO(4).

Category Canonical form I1

1 R12 �= 0
2 X1 0

parameter matrices has been used to determine such a map.14, 16 In our case, however, the situation
is complicated by the fact that our coefficient tensor, Ci jk�, has order 6 when regarded as a matrix.
As such, we will need to devise a different strategy for determining the moving frame map of a CKT
on S3.

It has been noted in Sec. III [see formula (3.8)] that the coefficient tensor Ci jk� has the same
symmetries as the curvature tensor, and thus can be called an algebraic curvature tensor. In light of
this property, let us lower the last three indices of Ci jk� and contract on the first and third indices

Ric = Ci
ji� = R j�,

to obtain an algebraic Ricci tensor. The coefficient tensor for each of the six canonical forms listed
in the Appendix can be contracted to define a canonical Ricci tensor in each case. The following
proposition demonstrates that the Ricci tensor can be used to define the moving frame map for a
given CKT.

Proposition IV.2: A Killing tensor (4.1) is in canonical form if and only if its Ricci tensor is in
canonical form.

Proof 2: Since the canonical form of the Ricci tensor is defined by the canonical form of K, the
“if” part of the proof is trivial. To prove the “only if” part, we argue by contradiction. Suppose the
Ricci tensor of a Killing tensor K is in canonical form, but K is not. Since SO(4) acts transitively on
the orbits of K2(S3)/SO(4), we can find a group action � ∈ SO(4) which sends K to its canonical
form K̃. In particular, the components of K transform according to (4.3) which induces the following
transformation:

C̃ i
jk� = �i

m�n
j�

p
k�

q
�Cm

npq ,

on the coefficient tensor Ci
jk�. At the same time, this action on C induces the following transforma-

tion:

R̃ j� = �m
j�

n
�Rmn,

on its Ricci tensor R. Since the Ricci tensor of a canonical Killing tensor is necessarily canonical,
we must have R̃ = R, which is a contradiction. �

According to Proposition IV.2, the moving frame map of a CKT can be constructed by determin-
ing the moving frame map of the corresponding Ricci tensor. Note that each canonical Ricci tensor
can be represented by a diagonal matrix of order 4. Therefore, the determination of the moving frame
map for the Ricci tensor is an eigenvalue–eigenvector problem for matrices of order 4. Before we
illustrate this technique with the application in Sec. V, we summarize our results in the following
algorithm:

1. Compatibility condition. Begin by substituting the potential into the compatibility condition
(2.16) to determine the most general Killing tensor compatible with the potential. Using this
Killing tensor determine the subspace of CKTs.

2. Classification. Next, we classify a CKT K by determining whether it admits any symmetry.
Namely, impose the constraint

LV(K + αC) = 0,
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where α is an arbitrary parameter, C is the Casimir tensor, and V is the general Killing vector
of E4,

V = Ai Xi + B I RI .

If K does admit symmetry, determine which type and the number of generators for each type.
Consult Table I to classify the CKT.

3. Moving frame map. To determine the moving frame map for K find the Ricci tensor R of
the coefficient tensor. Diagonalize R by solving the corresponding eigenvalue–eigenvector
problem. The matrix �, which diagonalizes R defines the moving frame map.

4. Orthogonally separable coordinates. Finally, define the orthogonally separable set of coordi-
nates corresponding to K by substituting � found in the previous step into the equation

xi = �i
j T

j (uk),

where xi = T j (uk) denote the canonical orthogonally separable coordinates corresponding
to K.

V. APPLICATION

Consider the following Hamiltonian

H = 1

2
Ci j pi p j + 1

(x − y)2
,

defined on S3, where Ci j denotes the Casimir tensor and x, y, z, w are the Cartesian coordinates of
the ambient space E4. Using this Hamiltonian, we will now demonstrate how to apply the theory
outlined in this paper.

First, we impose the compatibility condition (2.16) to obtain a family of Killing tensors which
are compatible with the potential. Of this family, the following restrictions on the parameters yield
a subfamily of Killing tensors which satisfy the Haantjes condition (2.11) and generally admit three
distinct eigenvalues:

C1212 = C3434, C1313 = C2323, C1414 = C2424,

C1323 = C1313 − C1212, C1424 = C1212 − C1414.

Therefore we conclude that K must characterize at least one of the six orthogonally separable webs
of S3. After a direct calculation, we find that K admits the following family of rotational Killing
vectors:

V = (c3z + c6w)
∂

∂x
+ (c6w − c3z)

∂

∂y
+ (c3 y − c3x)

∂

∂z
− (c6 y + c6x)

∂

∂w
,

for arbitrary constants c3 and c6. Using the classification scheme outlined in Table I we conclude
that K characterizes a noncanonical cylindrical web.

In order to determine the orthogonally separable coordinates for this Killing tensor, we need to
determine the transformation which maps K to its canonical form. As discussed in Sec. IV, such
a map can be constructed by diagonalizing the Ricci tensor of the coefficient tensor. Contracting
indices, we obtain the following noncanonical Ricci tensor for this family of characteristic Killing
tensors

R jk =

⎛
⎜⎜⎜⎜⎜⎝

C1212 + C1313 + C1414 C1414 − C1313 0 0

C1414 − C1313 C1212 + C1313 + C1414 0 0

0 0 2C1313 + C1212 0

0 0 0 2C1414 + C1212

⎞
⎟⎟⎟⎟⎟⎠

.
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TABLE III. Solutions to the canonical forms and equivalence problems.

Canonical forms problem Equivalence problem

Euclidean space E3 Eisenhart, (Ref. 8) Horwood et al. (Ref. 14)
Boyer et al., (Ref. 4) Horwood, (Ref. 17)

Minkowski space M3 Horwood and Horwood et al. (Ref. 16)
McLenaghan, (Ref. 15)

Sphere S3 Olevsky, (Ref. 28) The present paper

After calculating the eigenvalues and corresponding eigenvectors of R jk and applying the Gram–
Schmidt orthonormalization procedure, we obtain an orthogonal matrix

�i
j =

⎛
⎜⎜⎜⎜⎜⎝

−√
2

2 0 0
√

2
2

√
2

2 0 0
√

2
2

0 −1 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

which brings the Ricci tensor into canonical form

R̃ jk = diag(2C1313 + C1212, 2C1313 + C1212, 2C1414 + C1212, 2C1414 + C1212).

Therefore, we conclude that

x = −
√

2
2 cos t cos u +

√
2

2 sin t sin v,

y =
√

2
2 cos t cos u +

√
2

2 sin t sin v,

z = − cos t sin u,

w = sin t cos v

is a system of orthogonally separable coordinates for this Hamiltonian.

VI. CONCLUSION

The results presented in this paper conclude an important project within the framework of a
more general program on the development of the Hamilton–Jacobi theory of orthogonal separation
of variables for natural Hamiltonians defined in spaces of constant curvature (see Table III). Having
solved the equivalence problem, thus extending the classical result of Olevsky,28 we have developed a
general algorithm for solving natural Hamiltonians defined on the 3-sphere via orthogonal separation
of variables. In addition we give a simple and concise proof of the fact that the validity of the first
and second TSN conditions imply the validity of the third. We have also derived a set of analogous
algebraic conditions following from the vanishing of the Haanjes tensor which can be used to study
and characterize algebraic and geometric properties of Killing two-tensors defined in spaces of
nonzero constant curvature. These conditions provide an alternative characterization of CKTs to the
one derived in Ref. 31 and this paper based on the TSN criterion.

The results presented here lay the groundwork for a project that concerns orthogonal separation
of variables afforded by characteristic Killing two-tensors defined in three-dimensional hyperbolic
space which is the subject of a forthcoming paper.
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APPENDIX. SEPARABLE METRICS AND KILLING TENSOR CANONICAL FORMS

1. Orthogonally separable metrics and coordinate systems

The following is a list of the orthogonally separable metrics and associated coordinate systems
for S3. In each case, the coordinate systems define a transformation from the separable coordinates
(t, u, v) to Cartesian coordinates (x, y, z, w).

I. Spherical coordinates ⎧⎪⎪⎨
⎪⎪⎩

ds2 = dt2 + sin2 t(du2 + sin2 udv2)
x = sin t sin u cos v, y = sin t sin u sin v,

z = sin t cos u, w = cos t
0 � t � π, 0 � u � π, 0 � v < 2π

II. Cylindrical coordinates ⎧⎪⎪⎨
⎪⎪⎩

ds2 = dt2 + cos2 tdu2 + sin2 tdv2

x = cos t cos u, y = cos t sin u,

z = sin t cos v, w = sin t sin v

0 � t � π, 0 < u � 2π, 0 < v � 2π

III. Elliptic-cylindrical coordinates of type 1⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds2 = (dn2(u; k̃) − k2sn2(t ; k))(dt2 + du2) + sn2(t ; k)dn2(u; k̃)dv2

x = sn(t ; k) dn(u; k̃) cos v, y = sn(t ; k) dn(u; k̃) sin v,

z = dn(t ; k) sn(u, k̃), w = cn(t ; k) cn(u, k̃)

0 � t � 2K (k), −K̃ (k) � u � K̃ (k), 0 � v < 2π,

0 < k2 < 1, k2 + k̃2 = 1

IV. Elliptic-cylindrical coordinates of type 2⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds2 = (dn2(u; k̃) − k2sn2(t ; k))(dt2 + du2) + cn2(t ; k)cn2(u; k̃)dv2

x = cn(t ; k)cn(u; k̃) cos v, y = cn(t ; k)cn(u; k̃) sin v,

z = sn(t ; k)dn(v; k̃), w = dn(t ; k)sn(u; k̃)

0 � t � 2K (k), −K̃ (k) � u � K̃ (k), 0 � v < 2π,

0 < k2 < 1, k2 + k̃2 = 1

V. Spheroelliptic coordinates⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ds2 = dt2 + sin2 t(dn2(u; k) − k̃2sn2(v; k̃))(du2 + dv2)

x = sin t sn(u; k) dn(v; k̃), y = sin t cn(u; k) cn(v; k̃),

z = sin t dn(u; k) sn(v; k̃), w = cos t

0 � t � π, −K (k) � u < K (k), −2K̃ (k) � v � 2K̃ (k),

0 < k2 < 1, k2 + k̃2 = 1

VI. Ellipsoidal ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds2 = (t − u)(t − v)

4(t − a)(t − b)(t − 1)
dt2 + (u − v)(u − t)

4(u − a)(u − b)(u − 1)
du2+

(v − t)(v − u)

4(v − a)(v − b)(v − 1)
dv2

x2 = (t − 1)(u − 1)(v − 1)

(a − 1)(b − 1)(−1)
, y2 = (t − a)(u − a)(v − a)

−a(1 − a)(b − a)
,

z2 = (t − b)(u − b)(v − b)

−b(1 − b)(a − b)
, w2 = tuv

ab

0 < v < 1 < u < b < t < a
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2. Canonical forms

The following is a list of canonical forms for the six orthogonally separable coordinate systems
of S3. The cylindrical, elliptic-cylindrical types 1 and 2, and ellipsoidal webs are defined by K
= αK1 + βK2 + γC, where K1, K2 come from Eisenhart’s equations, C is the Casimir tensor, and
α, β, γ ∈ R. Since it is possible to determine the presence of the Casimir tensor for the spherical and
spheroelliptic webs, and thus subtract it, these webs are defined by K = αK1 + βK2, where K1, K2

come from Eisenhart’s equations and α, β ∈ R.

3. Category 1

Cylindrical web

K = c1R12 
 R12 + c2(R13 
 R13 + R14 
 R14 + R23 
 R23 + R24 
 R24) + c3R34 
 R34.

Ri j = diag(c1 + 2c2, c1 + 2c2, 2c2 + c3, 2c2 + c3).

4. Category 2

Spherical web

K = c1R12 
 R12 + c2(R13 
 R13 + R23 
 R23),

Ri j = diag(c1 + c2, c1 + c2, 2c2, 0)

5. Category 3

Spheroelliptic web

K = c1R12 
 R12 + c2R13 
 R13 + c3R23 
 R23.

Essential parameter: k ′2 = c2 − c3

c1 − c3

Ri j = diag(c1 + c2, c1 + c3, c2 + c3, 0)

6. Category 4

Elliptic-cylindrical webs of type 1 and type 2

K = c1R12 
 R12 + c2(R13 
 R13 + R23 
 R23) + c3(R14 
 R14 + R24 
 R24) +
c4R34 
 R34.

Discriminating parameter: δ = c4 − c2

c4 − c3

Essential parameters: k2, k̃2 = 1 − k2

Type 1: δ > 0, k2 = c4 − c2

c4 − c3

Type 2: δ < 0, k2 = c4 − c3

c2 − c3
Ri j = diag(c1 + c2 + c3, c1 + c2 + c3, 2c2 + c4, 2c3 + c4).

7. Category 5

Ellipsoidal web

K = c1R12 
 R12 + c2R13 
 R13 + c3R14 
 R14 + c4R23 
 R23 + c5R24 
 R24 +
c6R34 
 R34,
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where the ci satisfy the constraint

(c3 + c4)(c1c6 − c2c5) + (c2 + c5)(c3c4 − c1c6) + (c1 + c6)(c2c5 − c3c4) = 0.

Essential parameters:

a = c1(c2 − c4) + c6(c2 − c3) − c2(c3 + c4) + 2c3c4

c1(c2 − c4) + c4(c6 − c2) + c5(c4 − c6)
,

b = c2(c1 − c4) + c1(c5 − c4) − c3(c1 + c5) + 2c3c4

c1(c2 − c4) + c4(c6 − c2) + c5(c4 − c6)

Ri j = diag(c1 + c2 + c3, c1 + c4 + c5, c2 + c4 + c6, c3 + c5 + c6)
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Pures Appl. 11, 345 (1846).
22 McLenaghan, R. G., Smirnov, R. G., and The, D., “Group invariant classification of separable Hamiltonian systems in

the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun,” J. Math. Phys. 43, 1422 (2002).
23 McLenaghan, R. G., Milson, R., and Smirnov, R. G., “Killing tensors as irreducible representations of the general linear

group,” Acad. Sc. Paris, C. R. 339, 621 (2004).
24 McLenaghan, R. G., Smirnov, R. G., and The, D., “An extension of the classical theory of algebraic invariants to

pseudo-Riemannian geometry and Hamiltonian mechanics,” J. Math. Phys. 45, 1079 (2004).
25 Morera, G.,” Sulla separazione delle variabili nelle equazioni del moto di un punto materiale su una superficie,” Atti Sci.

di (Torino) 16, 276 (1881).
26 Neumann, C., “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur,” J.

Reine Angew. Math. 56, 4663 (1859).
27 Nijenhuis, A., “Xn−1-forming sets of eigenvectors,” Ned. Akad. Wet. Proc. 51A, 200 (1951).
28 Olevsky, M. N., “Three orthogonal systems in spaces of constant curvature in which the equation �2u + λu = 0 admits a

complete separation of variables,” Math. USSR. Sb. 27, 379 (1950).
29 Olver, P. J., Classical Invariant Theory (Cambridge University Press, Cambridge, 1999).
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