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POLYNOMIALS RELATED TO EXPANSIONS OF CERTAIN RATIONAL
FUNCTIONS IN TWO VARIABLES*

KARL DILCHER?

Abstract. A difference equation corresponding to a certain partial differential equation leads to a "Pascal
type" triangle. The entries of a row of this triangle can be regarded as coefficients of a polynomial; the
sequence of these polynomials is studied, together with its generating function and related polynomials.
The entries of a more general class of number triangles are explicitly determined, as well as asymptotic
expressions for the columns of the triangles. Chebyshev and Gegenhauer polynomials, as well as hyper-
geometric functions are used in the proofs.
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1. Introduction. Let u u(x, t) be a function in two variables, and consider the
(hyperbolic) partial differential equation

O2U O2U OU

OX Ot2 Ot

If we change this into a difference equation, we get

2u(x, + 1) u(x 1, t) + u(x, t) + u(x + 1, t) u(x, 1).

This suggests the "Pascal type" triangle (after normalizing)

1

1

2 1 2

3 2 3 2 3 1

1 4 4 4 5 4 4 4 1

1 5 7 6 9 7 9 6 7 5

(1.1)

where each element in the nth row is the sum of the three closest elements in the
(n- 1)th row, minus twice the closest element in the (n- 2)th row.

Now we expand

G(z, t):= E fn(z) tn"
1--t(l+z+z2)+2z2t2

,=

it is clear that the fn(z) are polynomials of degree 2n, and their coefficients are the
rows of the triangle (1.1).

More generally, let u > 1/2 and A be real parameters. We expand

Ga’(z,t):=(1-(l+z+z2)t+Az2t2)-= Z fa,’(z) t".
rl:0
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If we compare this with the generating function

(1-2zt + t2) ’, C(2)t
n=0

for the ultraspherical (Gegenhauer) polynomials C,(z), we find

(1 2) f.’(z)=A"/-z"C( 1 +z+z2
-\ 1

Using the recurrence relation for the ultraspherical polynomials (see, e.g., 1, p. 782]),
we get f)’(z)= 1, f(’(z)= v(1 + z + z2), and

(1.3) f.’(z)= 1+ (l+z+z)j."l(Z)- 1+2’ Azf._2(z).

The polynomials f’(z) are self-inverse, i.e., f’"(z)= z2"f’’(1/z). If we denote

(1.4) f’(z) ’ C’z"+’ h’z2",C.. + C.,._lz + + C.:oZ + .. +...+

we get the triangle

(1.5)

where

A,v A,vc:c:c_,0 c_,, c,

A,v A,v A,v A,v

with C C,,-k. For A 2 and v 1, the triangle (1.5) has the form (1.1).
The main purpose of this paper is to study the coefficients C,,,k. We derive the

following explicit and asymptotic expressions.
THEOREM 1.

1 [(n -k)/2]c.:- r() E
s=0 s!(n-2s)! s=o \ j 2j+k]

Here [x] denotes, as usual, the greatest integer function.
THEOREM 2. For fixed real v > 1/2 and A, and integer k >-O, we have asymptotically

(a) /fA

(b) if A

2nF(v)v/-

"-a/

(3 + x/9- 4A)
"+"

2

F(z,)x/ (x/4A-1)’/:-cos (a+cr)n+va+ k+4
+ (x/4A 9)
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where

where

Cos-’ (k).

Next we fix u= 1 and expand Gt’l(z, t) according to powers of z. If we set
1-a-, we get

Gx"(z,t)=l_(a_l)z+{(A_l)a+(l_2A)+Aa-}z2=a E g(a)z"

We have g(a) 1, g (a) a 1, and

(1.7) gn+(a) (a 1){g(a)+ (Aa-’ + 1 A )g_(a)}.

In 2 we find explicit expressions for the zeros of the f’(z) and the g’(a) for
all values of A. In 3-5, Theorems and 2 are proved, and 6 contains some further
remarks and generalizations.

2. The zeros. The Chebyshev polynomials of the second kind Un (z) can be defined
by the recursion Uo(z)-- 1, Ul(z)= 2z, and

(2.1) U,,+(z) 2zU,,(z)- U,,_,(z).

By taking z--p(x)/2x/q(x) we get the following lemma.
LEMMA 1. Let p(x) and q(x) be arbitrary functions, and define the sequence V,(x)

recursively by Vo(x) 1, V(x) p(x), and

V,,+(x) p(x) V,,(x) q(x) Vn_l(X ).

Then, if q(x) O,

V,,(x) q(x) "/2 U,,(p(x)/2x/q(x)).

To find the zeros of g(a), we take p(a):=a-1 and
-(a-1)(Aa-+l-A). With (1.7) and Lemma 1 we find that

g()={(-l)(ac-+l-a)}/U ac--r+l-a
Hence g(a) has zeros when

q(a) :=

a 1
-4 COS

2 kzr
ha-l+l-h n+l’

i.e., the zeros are given by

1 kr
a 2(1 h cos2

2 n+l
+ 4(1-A2) COS4

n+l +1 +



476 KARL DILCHER

(k 1, 2,. ., n). It is easy to see that these zeros are real unless

l+A-2v/ (kTr) l+A+2x/
4(A-1)2 <sin2 n+l <

4(-1)2,

in which case they lie on the circle

y2+ x- (a=x+iy).
;t- \-11

To find the zeros off,’(z), we use the facts that C,(z)= U,(z), and that the zeros
of U,(z) are given by cos (kTr/(n+ 1)), k= 1,2,.’., n. Hence with (1.2) we find that
the 2n zeros of f,’(z) are

kr 1 ( kw k :)1/2Z =-- COS e a COS + COS
n+l 2 n+l n+l

for k 1, 2,. ., n. We note that these zeros are real except when

-3 kTr 1
<COS<2v/ n + 1 2,,/"

in which case they lie on the unit circle.

3. Proof of Theorem 1. Using the well-known explicit expression for the ultra-
spherical polynomials (see, e.g., [1, p. 775]) and (1.2), we get

(3.1) f2’(z)
1 t21 r(v+n-s) + z +

F(v) .=o/’ s n 2s

If r is a positive integer, the binomial theorem, applied twice, gives

(lnt_znt_z2)r L L (r)()z2j-’i
j=o i=o j

=2zm2
,,=o j=o m-j m-2j

and with (3.1) we obtain

1 F(v+n-S)z2*f2’(z) F(/Y) s=0 m=0 j=o m -j / m 2j

L n-k
[(n-k)/2]

)sz 2 (-a
k= =0

F(l,’nt-H--S)[(n-k-2s)/2] ( n--2s )s n 2s o n k -j 2s

.( n-k-j-2s]
n-k-2j-2s/"

The theorem now follows if we compare the last equation with (1.4) and note that the
product of the two binomial coefficients in the last line is equal to that in Theorem 1.

4. Lemmas. We can rewrite Theorem 1 in the form

(4.1) Cn’k 1-’(P)
a’" [(n-k)/2]s=OZ (--A.) (n-k-s) r(u+n-s)B"-k-2")sk!(n-k--!
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where

Bk") := t2](25)(m)/(k+j)s=o j 2j j /

LEMMA 2.

B(k") (-iv)m
m + 2k)

Proof We have

tm/2] (2j)!m!j!k!

s=o j (m-2j)!(2j)!(k+j)!

tw/2l (-m)2s t.,/21 (-m/2)((1- m)/2)s 22s

s=o (k+l)sj! s=o (k+l)s j!

m 1-m
k+l 4)=F

2’ 2

where (a) is the Pochhammer symbol (a) a(a + 1) (a +j-1) and (a)o 1 and
F(a, b; c; x) =2Fl(a, b; c; x) is the Gauss hypergeometric series (see, e.g., [1, p. 556]).
The ultraspherical polynomials can be expressed as

(ml-m 1 -2)C,(x) (2V)mxmF v+; 1 -x
m! 2’ 2

this gives the lemma, with v k +1/2, x i/x/.
If we combine (4.1) with Lemma 2, we get
LEMMA 3.

5. Proof of Theorem 2. First we determine the generating functions for the C n,k,

where k, A, and u are fixed. To simplify notation, we write C, := CI. We denote

r(v)k*
(5.1)

F(k+ v)

and

-1 -1
tl := -(1 -x/1 -4A), t2 := -(1 +x/1 4A),

1 1
t3 := -(3 +x/9- 4A), t4 := -(3 x/9- 4A);

note that tit2 1 t3t4.
LEMMA 4. For real v> 1/2 and A, and for k=O, 1,..., we have

Fk(t) := tk[(1 + ttl)(1 + tt2)]-k-l[(1 ttl)(1 tt2)(1 tt3)(1 tt4)] 1/2-

k-v+2 k-v+l
F

2 2
4t2/A )--,k+l;(t2-(t/x/-)+l)2 =,,=kE
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Proof We use Lemma 3, change the order of summation, and apply the binomial
theorem

Y (33)
"-k F(v)k’" C,t" {[(n-)12]() r(v+ n-s) ck+l/2n_k_2s (3)},=k (2k)! ,= .,=o s(n + k 2s)

+l/() F(+m+)(v )m=k :0 s[(m+ 3
t2

+l/Z() F(u+m) F(u+m+s)( )
=E C_

r(+) ()(1-(A/3)t2)k+ (2k)’. m=O C+/2

(k+v)( )(2k+l) 1-(/3)t2

where we have used (x), F(x + n)/F(x). After changing the variable to -it/A,
we get

(5.2) E d,t"= E ck+l/2
.=k (1 +)k+v =o (2k+ 1) 1 + J

Now we are going to use the following generating function for ultraspherical poly-
nomials (see, e.g., [3, p. 279]),

(5.3) =o2 (2a) kz 2 ’a+; (l_xz)2j.

it/A/(1 + t2), (5.2) becomesWithy=k+v,a=k+,x=i,andz=-
k

(k+v k+v+l )(5.4) dt k+ F k + l" y
= (-(/)+1) 2 2

where

4t2/A
Y t2-- t/x/-) + l 2"

Using Euler’s identity

F(a, b; c; y)=(1--y)c-a-bF(c--a, c-b; c; y)

(for [Yl < 1; see [3, p. 60]), we get

Now it is easy to verify that

1 -y [(1 + ttl)(1 + tt2)]-2(1 tt,)(1 tt2)(1 tt3)(1 tt4);

the lemma now follows from (5.4) and (5.5).
Proofof Theorem 2. To find asymptotics for d,, we apply Darboux’s method (see,

e.g., [2, p. 310]) on the generating function Fk(t). Possible singularities of Fk(t) are
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at tj, j 1,. -, 4, and at -tl, =-t2. To examine the behaviour of Fk(t) in the
neighbourhood of-tl and -t2, we apply the identity (see, e.g., [1, p. 559])

F(a, b; c; z)= dl(-z)-aF(a, 1 c+a;1- b+a; ")

where d and d are constants depending on a, b, c, to the right-hand side of (5.4). We
find

Fk(t)=dl t_F
k+ v -k+ v

+ d2 t__ t2 k + + 1 -k + + 1

which shows that the singularities at =-t and -t2 are removable.
Now we denote

F;)( t) := (1- tt;)-l/2Fk( t) (j= 1,... ,4)
and

F5)(t) := {(1 tt3)(1 tt4)}-l/2Fk(t).
Using the Gauss summation formula (see, e.g., [3, p. 49])

( - ) F(k+l)F(v-1/2)k v+2 k v+l
k+l;1

k v k+v+l
F

2 2 F/ +... \F/ \

)2

which holds for v > 1/2, we find

(5.6)

(5.7)

(5.8)

(5.9)

F(kl>(t) (--x/1 4A )l/2-v(g/’-)k+v --1 +x/1 -4A

F(k2)(1) (41 --4/ )l/2-v(-)k+v --1 --1 --4/

2x/- F,

F(3(t4) (x/9 4A 1/_ (x/-) k+ 3 +x/9-4A
2x/-- F,

F4)(3) (_x/9 4A 1/2_ (x/-) k+ 3-9-4A

the arguments of these (in general multi-valued) expressions will be determined later.
We note that
(a) if A <, then It41 < [tl for j 1, 2, 3;
(b) if A > , then It l- 1 (j 1,..., 4) and no two t are equal;
(c) if A =-, then t4: 1, Itll It21 1, tl # t, tl # 1, t2 # 1.

We prove Theorem 2 according to this distinction.
(a) Let A <-94. Then according to Darboux’s method the coefficients in the

MacLaurin expansion of

f(t) := F(k3)(t4)(1 tt3) 1/2-

are asymptotics to the d., as n-. The binomial theorem gives

(5.10) (1-tt3)l/--=F(v-1/2+n)(3+x/9-4A)n=oF(v 1/2)n 2x/- tn’
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and we obtain from (5.1), (5.8), and (5.10)

(5.11) C, A2-k-(x/9 4h)1/2- (3 + v/9-- 4X) "+2

where all the gamma function and factorial terms from (5.1), (5.8) and (5.10) are
collected in A. Using the duplication formula (see, e.g., [3, p. 24])

r(2z) 22z-1
(5.12)

r(z)r(z

we find

22k+,-1r(v-+n)
(5.13) A

r()n! 4-

Stirling’s formula now gives

F(v--+ n)/n!--- n -3/2 (as n o),

so finally we get with (5.11) and (5.13)

’ ( )C. F(v)v/- n’-3/2(9-41)l/4-v/2
3 +/9 41

2

which implies Theorem 2(a).
(b) Let A > . Asymptotics to the d (as n c) are given by the coefficients of

the expansion of

4

g(t):= E F(kJ)(t-fl)(1-- ttj) ’/2-.
j=l

We note that, in general, the values in (5.6)-(5.9) are not uniquely determined. However,
the powers (1-xz)-r and (l-y)1/2- in (5.3), resp. (5.5) are to be taken with their
principal values. With this in mind, we find that we have to take (5.6) and (5.7) with
arguments

)el := kr- va v )82:-- krr+ v + - v

respectively, where a := arg ((1 + iv/4h 1)/2x/-). Using the equivalent of (5.10) for t
and t2, and with (5.1), (5.6), and (5.7), we find that the combined contribution from
the first and second term of g(t) is

(5.14)
A2-k-"(V’4a-1)’/2-"(v/-)"+"{e’’(-l+iv/4a’2v i)" +ei2 (- 1 i/4A 1)}2/

r(v)(44a 1)’/2-(/)"+ cos (a+rr)n+ va+ k+4 rr

Similarly, we find that we have to take (5.8) and (5.9) with arguments

)
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respectively, where 3 := arg ((3 + ix/4A 9)/2V-). With (5.10) and its equivalent for t4,
and with (5.1), (5.8), and (5.9) we find the combined contribution from the third and
fourth term of g(t) to be

A2__(/4, _9)/_(-),+ e% 3+ i41-9 +e 3- i41 -9

(4-9)/-()+ cos

This and (5.14) lead to Theorem 2(b).
(c) Let A . Since t4-- 1, we have to find the coefficients of the expansion of

h(t) := F(kl)( tm)(1 ttl)/- -t- F(k)( tl)(1 tt)/-- + F(kS)(1) (1 t) 1-.
9The contribution from the first two terms of h(t) is the same as in (5.14), with A =z.

Furthermore,

(5.15) F5(1) 21/-F

for I =, and the binomial theorem gives

)1_ oF(2,-,_, 1 + n)
t"(5.16) (1

F(2,-1)n!

Hence the contribution to the asymptotics of C, from the third term of h(t), with
(5.16), (5.15), and (5.1)is

F(2-l+n) F(k+ ,)F(,-1/2)f3"-’/221_k_(5.17) + !\/ )r/ )
By applying the duplication formula (5.12) twice, we get

r(k+ )r(- 1/2) 1

and Stirling’s formula gives

F(2u 1 + n)/n!--- n2- (as n --) oo);

hence (5.17) is asymptotically equal to

(r())

This and (5.14) for - finally gives Theorem 2(c).

6. Further remarks. (1) Darboux’s method can actually be used to find a complete
asymptotic expansion for the C.;; this would be a stronger result than Theorem 2.
See, e.g., [5, Thm. 8.4].

(2) The sum ofthe elements ofthe nth row in the triangle (1.5) is easy to determine.
Since the C,I are the coefficients off,’(z), this sum is in factf,’(1). Now (1.2) implies

f’(1 (x/-)’C , (3/2v/).
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More can be said in the case v= 1, since C,(x) U,(x). From (2.1) we get with a
standard method (Binet’s formula)

and therefore

(6.1)

U.(x) 24X- 1
..{(x +,,Ixz- 1)’+’- (x -x/X2 1)"+’},

f"a"(1) /9- 4A 2x/ - ,]
As examples, we have

f,"(1) 3",

fnl,1 (1) --5 { (3 +2X/)
n+

(3 --2’V@)
n+

}
(the odd-index Fibonacci numbers 1, 3, 8, 21,...);

fn2.1(1) 2n+1-- 1

(see 1.1 ), and

fg/4"(1)=(n+ 1)

If A > then (6.1) can be rewritten as

(6.2) f2"l(1)=2(4A-9)-/2(v/-)"+ sin {(n + 1)0}

where 0 is such that exp(iO)=(3+i/4-9)/2x/-, or 0=Cos- (3/2v-). (6.2) gives
easy explicit formulas for =3(0= r/6), = (0= r/4), =9 (0= r/3).

(3) The generating function Ga’(z, t) of 1 can be generalized as follows. Let
p(z):=ao+az+.. "+arz and q(z)=bo+bz+...+bsz and expand

1
G(z, t) := Z Q,(z)(z)t".

1- tp(z)+ t2q(z) ,,=o

Then Qo(z)= 1, Q(z)=p(z), and

(6.3) q.+,(z) p(z)O,(z) q(z)O,_,(z),

and we see that Q,(z) is a polynomial of degree <-nr. If we denote

((n)_nrQ.(z) Co")+C?z+ +.o,
we have the recursion

k k

(6.4) C("+’)= E ajC)-j E bjC’)

=o =o

where aj := 0 forj < 0,j > r, and b := 0 forj < 0,j > s. We note the following special cases.
(a) p(z):= 1 + z, q(z):= 0 gives Q,(z) (1 z)", and the C") are the binomial

coefficients.
(b) p(z):= 1 + z + z2, q(z) Az2; this is the case dealt with in this paper, with u 1.
(c) To generalize (b), we set p(z) := 1 + z +. + z’, q(z) := Azm. After reindexing

zZnm-I (6.4)(so that Qn(z) (")+ C(nn)m_l z -- -Jr- C(on)z + + C(nn)m_l -]- C(nn)m Z2nm)
becomes

(6.5) C("+’) C)--m 2V + C(kn)-t- "lt- C(n)k+m --/C(kn-1);
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this is the analogue to (1.6). No attempt has been made to determine the C(n) explicitly
or asymptotically. However, it is easy to derive the sums of the elements in the rows
ofthe triangle generated by (6.5). In analogy to and as a generalization of (6.1) we obtain

Q,(1)
x/(Zrn + 1)2- 4h

{(2rn+l+x/(2rn+l)2-4h) "+’ (2rn+l-x/(2rn+l)Z-4h) "+’}2 2
For h =< (2m + 1 )2/4, Qn( is positive for all n, and for h > (2rn + 1)2/4 it is an alternating
sequence.

(4) K. B. Stolarsky [4] recently studied the recurrence po(X)= 1, pl(x)=x, and

p.(x) x"p._(x-)+p._z(X).

He showed that for n _-> 0

pzn+l(X)-’xf+l(X)

(in our notation), i.e., the p2,+(x) are self-inverse polynomials, or in other words, the
coefficients are "centrally symmetric." However, it is easy to see that the p2,(x) do
not have this property; in fact, it is shown in [4] that the coefficients of Pzn(X) are
"strongly noncentrally symmetric."
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that led to this paper, and for useful discussions. I also thank the referee for suggesting
various improvements.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, National Bureau of
Standards, Washington, DC, 1970.

[2] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974.
[3] E. D. RAINVILLE, Special Functions, MacMillan, New York, 1960.
[4] K. B. STOLARSKY, A recurrence with deviating arguments that generates intermittent symmetry, preprint.
[5] G. SZEG(5, Orthogonal Polynomials, 4th ed., American Mathematical Society, Providence, RI, 1975.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


