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In this article we are concerned with an analysis of nonmetric theories of gravity, and,
in particular, with an analysis of a class of theories called metric-affine theories of gravi-
ty (MATG’s). The purely gravitational laws of these theories are written down. We then
establish a suitable set of laws representing electromagnetism in the presence of a gravita-
tional field in metric-affine theories of gravity. We find that these laws simplify if we as-
sume the gravitational field to be spherically symmetric and static. Consequently we de-
fine the concepts of spherical symmetry and staticity in the context of MATG’s, and we
calculate the form of the connection I" and the (3) tensor g explicitly in such a gravita-
tional field generated by a central mass. Finally, the laws that are established are investi-

gated.

I. INTRODUCTION

This paper is the first in a series of articles in-
volved in a systematic analysis of nonmetric
theories of gravity. The class of metric theories of
gravity (MTG’s) is well defined in the literature.!?
A nonmetric theory of gravity is a theory not be-
longing to the class of MTG’s. Although the tech-
niques and ideas to be used in this analysis are
quite general, they are primarily applied to a sub-
class of the class of all nonmetric theories of gravi-
ty, called metric-affine theories of gravity
(MATG?’s). The precise definition of an MATG is
given in Ref. 1, but such a theory is essentially
characterized by the following:

(a) It is a geometric theory of gravity; that is,
spacetime is characterized by a four-dimensional,
Hausdorff, differentiable manifold of signature
2.

(b) It is an affine theory of gravity (ATG).
Essentially an ATG is a theory in which the space-
time manifold is endowed with a connection T,
and the gravitational field is represented (at least in
part) by I'. The unique curves of freely falling test
bodies are then associated with the natural )
geometric curves in the spacetime manifold, called
paths. That is, the motion of freely falling parti-
cles is governed by the (path) equation given by

d*x° o dx® dx®
7 T e =
dA d\A dA

0, (L.1)

where A is an affine parameter.

(¢) In addition, the spacetime manifold is en-
dowed with a () tensor field g. The gravitational
field is represented (completely) by I" and g. (Note
that an MTG is a special case of an MATG with
'={ }, where { } denotes the metric connection.
We are specifically interested in the case where
r=£{ 1)

These conditions represent the purely gravita-
tional laws of the theories, an analysis of which
would include a theoretical investigation into the
structure of these laws (see Ref. 1) and an investi-
gation concerning their experimental verification or
nonverification. In the case of the latter a
parametrized post-Newtonian (PPN)-type analysis
might be appropriate; unfortunately, for a general
MATG, the PPN-type expansion would include far
too many independent terms for the analysis to be
useful.! However, the number of independent
terms reduces considerably if we restrict attention
to spherically symmetric and static (SSS) gravita-
tional fields. We shall find that a useful analysis
of the class of theories of gravity can be made
within the SSS idealization. In Sec. II we shall
discuss the concepts of spherical symmetry and
staticity in the context of MATG’s, and we shall
calculate the general forms of I and g in an SSS
gravitational field due to a central, spherically
symmetric mass. The question of solar-system ex-
periments within this framework will be dealt with
in a later paper.

728 ©1983 The American Physical Society



In actual fact, an analysis of the purely gravita-
tional laws of an MATG turns out to be rather
limited. However, in order for an MATG to be
complete it must also specify how other physical
fields act in a gravitational field. When other
fields are included in the analysis the results that
are obtained are far more interesting.

In this paper we shall discuss the laws of elec-
tromagnetism in a gravitational field. In particu-
lar, we wish to establish a set of such laws in a
general (or generalized) form in order to include
the possible laws of electromagnetism in a gravita-
tional field for nonmetric theories of gravity. [We
shall call these the gravitationally generalized laws
of electromagnetism (laws of GGEM), and these
laws consist of the gravitationally generalized
Maxwell equations (GGM equations) and the grav-
itationally generalized Lorentz equations (GGL
equations).] We require that these laws of GGEM
must be general enough to include all possible laws
of GGEM for MATG’s. (We also require that the
laws of GGEM should reduce to the special rela-
tivistic laws of electromagnetism in the appropriate
limit, and that the laws of electromagnetism in
MTG?’s are a special case.)

We shall find that the laws of GGEM will be
written in terms of a (3) tensor field g, and arbi-
trary functions of the gravitational field. If we do
not assume that g is the metric (which is not neces-
sary here; g could simply be a tensor occurring in
the laws of GGEM), and we assume that the arbi-
trary functions are completely general, the class of
nonmetric theories under investigation is very gen-
eral. If we assume that g is the metric tensor, and
the arbitrary functions are in fact functions of g
and I', we are specifically investigating MATG’s.

It is instructive to consider the laws of elec-
tromagnetism in an MTG. The Lorentz force law

is given by

dx® . ,dx®dx® e _ ,dx"

— =—F,°"—, 1.2

d7~2+{b¢}d'r dr m " dr (1.2)
where F;, is the electromagnetic tensor (indices are
raised using the metric), m is the mass of the test
particle and e its electromagnetic charge.

The Maxwell equations in an MTG are

Fab,c +Fbc,a +Fca,b=0 s (1.3)
and

F,=4mje, (1.4)

where a semicolon denotes covariant differentiation
with respect to the Christoffel symbol and J* is the
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electromagnetic four-current given by .
J%=(p, j)—p is the charge density and j the elec-
tromagnetic three-current.

Equation (1.3) guarantees the existence of a
four-vector 4,, called the electromagnetic four-
potential, such that

Fay=Apo—Agp . (1.5)

We obtain the equation for the conservation of
charge by covariantly differentiating (1.4), viz.,

Jo,=0. (1.6)

First let us consider the gravitationally general-
ized Lorentz (GGL) law. Equation (1.2) suggests
that we take this law in the form

d*® . dxbdx¢ - dx® | e . ,dx"
a2 Tl g =L (srav. Ty T
(1.7)

where L is some function of the gravitational field
and the four-velocity dx°/dA. Equation (1.7) will
reduce to the special-relativistic Lorentz law in the
“absence” of gravity providing that in this limit
L{grav,dx’/dA) is unity. This equation has the
following points in its favor: (1) it reduces to the
path equation in the “absence” of electromagne-
tism; (2) the “metrically” modified Lorentz law
(1.2) is a special case; and (3) all the possible forms
for the specific GGL equations investigated by the
author are special cases of (1.7).!

Next we consider the first of the gravitationally
generalized Maxwell (GGM) equations. Since we
require that (a) the appropriate equation should
agree with special relativity as gravity is “turned
off”, and (b) F; can be written in terms of the
electromagnetic four-potential so that the laws of
GGEM are gauge invariant (ensuring the photon
can be interpreted as a massless, spin-1, elementary
particle®), we again take Eq. (1.3) to be valid. That
is, we assume that the first of the GGM equations
does not couple to gravity, as is the case in MTG’s.
(This is precisely the assumption that Hehl et al.*
make in their theory with nonzero torsion—they
refer to it as the “principle of minimal coupling.”)

Finally, we consider the second of the GGM
equations. Using the “Lorentz” gauge condition
defined by

gbcAb,c =0 ) (1.8)
we can rewrite Eq. (1.4) as

—g%A4, . +A%, (8,8 )4y =4m], , (1.9)
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where A%, is defined by
Abca = _gbc,a _gmn{ ?nn }82 +g™" fnn }52
—&"" (am} +8 " (am} -

Working with the electromagnetic four-potential
and again demanding the correct special-relativistic
limit, the appropriate form for the GGM equations
is

(1.10)

—gbcAa,bc + Hbca (nag,g,d’r)Ab,c =4nJ, ,
(1.11)

where I1%, is a general function of the gravitation-
al field, and depends on the Minkowski tensor 7,8
and its first derivatives and I" [and must be such
that (1.11) reduces to the special relativistic
Maxwell equations in the appropriate limit].
Equation (1.11) has the following favorable
features: (1) the “metrically” modified Maxwell
equations are a special case; (2) in the optical limit,
the equation is conformally invariant and elec-
tromagnetic waves are null; and (3) all the possible
forms for the specific GGM equations investigated
by the author are special cases of (1.11).

It will sometimes be convenient to write the
GGM equations in terms of F,;. Using the
“Lorentz” gauge condition, (1.11) becomes

gchab,c+Ebcanc=47TJa ’ (1.12)
where
b, =3¢, _3bc, _gbe . (1.13)

In the remainder of this paper we shall be con-
cerned with an analysis of these laws of GGEM,
and, in particular, with an analysis of the laws of
GGEM in an SSS gravitational field (whose form
will be calculated explicitly in Sec. III).

Finally, a few brief comments on notation. We
shall use indices (a,b,c) to range from O to 3, and
greek indices (u,v,0) to range from 1 to 3 (alterna-
tively, we shall use three-vector notation). When
considering an electromagnetic source consisting of
charged point particles, we shall use the subscript
k to denote the kth particle.

II. SPHERICAL SYMMETRY AND STATICITY

There are numerous problems in gravitational
physics in which the simplification to a spherically
symmetric and static (SSS) idealization is useful.
First we need to define the concepts of spherical
symmetry and staticity in the context of a metric-

\
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affine theory of gravity. We can then calculate the
general form of the connection T and the metric g

in an SSS gravitational field. The forms of I" and

g simplify further when we consider an SSS gravi-

tational field generated by a spherically symmetric

central mass.

The concepts of spherical symmetry and staticity
are discussed in some detail in Ref. 1. The out-
come of this discussion is that the following defini-
tions of spherical symmetry and staticity appear as
the most appropriate.

If a spacetime is stationary, then

and

fxrzo (2.2)

for some timelike vector field X. (.# denotes the
Lie derivative.) The spacetime is static if, in addi-
tion, the timelike vector field is orthogonal to a
family of spacelike hypersurfaces.

A spacetime is spherically symmetric if both g
and I are Lie invariant with respect to the three
spherically symmetric vector fields (denoted £,
A=1,2,3), that is, if

L8 =0 2.3)

and

#¢ =0, 2.4)

where [in a spherical polar coordinate system

(t,r,6,¢)]

9
a¢ ’
—sing-0_ 9
&3=sing 30 +cotf cosd 3

In components, .#g=0 yields
98ap o9& oE*
& ac +8ac 5 T8, =0.
X ox x

The proof of this is given in most modern text-
books on general relativity. In components,
Z L' =0 yields

a .
&=cosd 30 cotf sing (2.5)

(2.6)

Ol % ag? ag?
(L), = d re I
60 = a § g e e
a 2¢a
e 280, e

ax? " axboxe @7
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The proof of this is straightforward and can be
found in Ref. 1.

In order to determine the required form of g and
T, we invoke the conditions of spherical symmetry
and staticity, as defined above. However, since the
coordinates in which we work are not completely
specified, g and I" will retain a degree of arbitrari-
ness. Consequently, we invoke not only the SSS
conditions, but also four coordinate conditions
(thus completely fixing the coordinate system).

The conditions imposed on g and T by spherical
symmetry are found by solving Egs. (2.3) and (2.4)
[or, rather, Egs. (2.6) and (2.7)] for the three spher-
ically symmetric vector fields given by (2.5); these
conditions are given by [in a (¢,x,y,z) coordinate
system related to the (¢,7,0,¢) coordinate system by
t =t, x =r sinf cos¢, y =r sinfdsingd, z =r cosd]

g00=gn=f(r:t) ’
a

g0a=l(r9t)x7 ’ (28)

a.B
8ap=8(r08g+h (1,1) "r’;

and
[up= AxxPx5+ (B8Sx P+ C85 x*+ Db ,5x?)
+(Eesaux"xﬁ+Fesﬁyx“x“+Geﬁaﬂx“x5) ,
[a0=Hxx%+ Iegqx* + 8¢ |
| =KJt:"x5-i—Le&mx“—{-MG},S ,
¥y=Nx?, (2.9)
[Op=PxxP+ Qeg, X" + R, ,
s =Sx%,
Mso=Tx?%,
My=W,
where f, g, h, I, and the 20 functions 4,B, ..., W
(omitting O and U) are arbitrary functions of » and
t. The proof of (2.8) is well known, and can be
found in many modern textbooks. The outline of

the proof of (2.9) is as follows. Solving Eq. (2.7)
for &, [in (2.5)] yields

ore,

a4
Solving (2.7) for &, and &; then consists of solving
two (corresponding to &, and £3) simultaneous sets

of 64 (a,b,c=1,2,3,4) simultaneous, first-order dif-
ferential equations (this solution is given in Ref. 1).

=0. (2.10)

The result is then obtained by transforming these
results, given in the (¢,7,0,¢) coordinate system, to
the (¢,x,y,z) coordinate system, using the equation
of transformation of a connection

. Ox® axc 3%x° i
bc Py Py =
ax'f ax'* " axox'k

Ix*
JK axfi *
(2.11)

We note that in obtaining the results given by
Egs. (2.8) and (2.9) we have used up two of our
coordinate conditions (essentially specifying 6 and
é).

Next we impose the conditions due to staticity.
Choosing a coordinate system so that the timelike
vector field has components

X°=(1,0,0,0), (2.12)

the conditions that .# yg=0 and that the time-like
vector field X is orthogonal to a family of space-
like hypersurfaces are sufficient to prove that there
is an appropriate coordinate system in which

gOa=0 . (2.13)

[Essentially the “proof” is as follows. The form of
the vector field given by (2.12) is invariant under a
change of coordinates represented by x *—x'"®=x?,
x% 5>x"0=x%4 f(x®), where f is some function of
the spatial coordinates; we can then choose f,
which is equivalent to completely specifying the ¢
coordinate, such that conditions (2.13) holds.!]

Finally, the conditions imposed by Egs. (2.1) and
(2.2) [with X° given by (2.12)] are

agab
ar =0 (2.14)
and
ore
—t _p. (2.15)
ot

Applying these conditions to the general form of

- g and I', we find that T is given by (2.9), where

the arbitrary functions appearing [in (2.9)] are now
functions of 7 only, and g is given by
800 =f (r),

a.p
ga,,=g(r)5a5+h(r)"r’2‘ .

To summarize, two conditions of staticity were
used to obtain Eqgs. (2.14) and (2.15). The third
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condition of staticity, plus one coordinate condi-
tion (the fixing of the ¢ coordinate) is used to ob-
tain result (2.13).

We have one more coordinate condition to use,
essentially the fixing of the » coordinate. Assum-
ing that g (r) in (2.16) is nonzero, it can then be
shown that this last condition can be used to speci-
fy a coordinate system in which g,g takes on the
form g,z=g(r)8,p, for some arbitrary function g.
[Moreover, it can be shown that the form of T'
given by (2.9) is the same in this “new” coordinate
system.']

We have now completed the calculation, and we
have found the general form of I" and g in an SSS
spacetime (in a completely fixed coordinate sys-
tem). The general form of I is given by (2.9),
where 4,B, . . . , W (omitting O and U) are arbi-
trary functions of » only. The general form of g is
given by

g00=f(r) ’

gaﬂ=g(r)6aﬁ .

Next we shall argue that for the physically sig-
nificant situation of an SSS gravitational field gen-
erated by a spherically symmetric central mass (at
rest with respect to the coordinate system), the
form of T simplifies further.

In the special case of a spherically symmetric,
central mass, we assume that I" is a function of a
single dimensionless variable U and its first deriva-
tives only. (Note that we are using ‘“gravitational”
units in which ¢ =G =1, so that M /R is dimen-
sionless—M denotes mass and R length.) This as-
sumption is justified on physical grounds. Also,
the following dimensional analysis argument sup-
ports this. From the field equations, crudely
speaking, we expect the first derivatives of I" to be
related to the energy density p, viz.,

T M

(2.17)

——p . 2.18
RP R (2.18)
consequently,
M1 v fo
Fr~——~—~ . 2.1
RR R R (" 9

Therefore, we assume that I" is a function of U
and its first derivatives only. In addition, we also
assume that the form of I is such that there are
no contributions to the acceleration d?x%/dt? of a
test particle in the gravitational field of the spheri-
cally symmetric central mass [calculated from Eq.
(1.1)] of the form eag,,xﬁ dx?/dt (since there are no
mechanisms that could realistically generate contri-

butions to the acceleration in the X ® V direction).
Consequently, I takes on the following simplified
form:

8,5 =(a) g8us + (@) o8g5 +(B) 550z »

My=(7)5 ,
F00a=(8),a , (2.20)
I‘anz(s-),az

(all other components of I" are zero) ,

where a, @, B, 7, 8, and 8 are arbitrary functions
of U (rather than r), and replace the arbitrary
functions given in (2.9).5

We also note that in this situation g takes on the
form

f(U) 0

0 —g(Uby|- (2.21)

8ij=

It is always possible to decompose I" according
to
I‘abr: = {gc } +4 abc ’ (2.22)

where {}.} denotes the Christoffel symbol con-
structed from g,,,, and A%, is a tensor (sometimes
called the difference tensor). In an SSS gravita-
tional field { } is constructed from f and g, and
the decomposition takes on the form [see (2.20)]

1 A = 1 2
a,= E‘g_g,u ta,, o= Egg,ll +a,,
1 A 1
B,y,= - Eg_g,p, +B,;u Y= Eg_f,p, +§>,/,z , (2.23)

A

1 a 1 A
8’“=2_ff’“ +8;l" 8#“=?‘f—f’“+8;ﬂ

where the caret denotes the part of I correspond-
ing to 4 in (2.22).

III. THE GRAVITATIONALLY GENERALIZED
EQUATIONS OF ELECTROMAGNETISM IN
AN SSS GRAVITATIONAL FIELD

First we consider the GGL equations. In terms
of the three-position x? and the coordinate time
t=x9 equation (1.7) becomes (for a =0)
d*x° 4T dx" dxP o dx? dx" dx”

dr? " dt dt " dt dt dt
dx" _F odx? dx"
dt "odt dt |’

(3.1

—dA
L dt

F,°
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where L dA/dt now takes on the form of the arbi-
trary “nonmetric” multiplying factor representing
possible gravitational coupling. For an SSS gravi-

tational field, with T" and g taking on the forms
given by (2.20) and (2.21) this equation becomes

d*x° _ = dxt dx° dx* dx”
dr? )o@ t@=8-8),= ===+ Blo |\ =
e dxP 1 dx" 1 dx" dx?
Yl g "dt f"dt oar |’ (3.2)
where
dx? —dA
_par 3.3
L U,U,p, dr Ldt (3.3)

Writing this in terms of the electromagnetic four-potential [using (1.5) and 4, =(—¢,A)] we obtain the

simplified GGL equations (in vector notation)

2_) —> b g — —>
%+V(y)+[V(a+<Y—8——8)-V]V+V(B)Vz
e = 1|08 &, =
= U’ ’_’ —— |5 -
e AUALAYN Bl b R R LR

(A V)+(V-V)A

A =
5 TV

v

V”, (3.4)

1
.

where V=dX /dt is the coordinate three-velocity and V is the usual gradient operator. The two terms in
bold parentheses on the right-hand side of Eq. (3.4) are generalizations of the Lorentz force.
The GGM equations simplify a great deal in an SSS gravitational field. Immediately we can write (1.12)

as
1
fa

Only the antisymmetric part of 2%, occurs in
the above equation. In the SSS idealization Z[%],
will take on the form

3%l —o, (3.6)
3, = 2 (g8 —g5)

in terms of just two arbitrary functions (of the
gravitational field) & and #. (g” represents the
pth component of g, i.e., g?=0U /dx —do not
confuse this with g defined by g, = —88,,.) The
“proof” of this is as follows. =%, is constructed
from terms such as g”‘,a and I'*,; consequently
3%, will take on the form represented by (2.20)
and (2.23) in an SSS gravitational field. Antisym-
metrization then gives the result.

Using (3.6), Eq. (3.5) becomes for a=0

_ gLS“"FOF,V —dndy— i;’lFo,,gP , (3.72)

—Fu0,0— éS‘"’FaM’V +2”°,,(f,g,a,&,B,y,6,5 and their spatial derivatives)Fy,, =4nJ, . 3.5)

and for a =0

L Fooo—L8F,, =47, — 2 F, ¢ .
f g g

(3.70)

We can write (3.7) in terms of the electromag-
netic four-potential. Using (1.5), 4, =(—¢,A) and
the “Lorentz” gauge condition

%%?‘FV'K:O, (3.8)

in vector notation (3.7a) becomes

2 _&ﬁz_‘ﬁ 3. f“_‘_ Vo | —
Vo= o TE [ 3 TV | 4780,
(3.92)
and (3.7b) becomes
- PA fewalg
VA= £ LvA)vV|E
f ar? +g f
+B(VXA)XE+4mgT , (3.9b)
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where T=J o

As mentioned above, .« and & are general func-
tions of the gravitational field. In particular, <
and # are functions of f, g, a, @, B, 7, 8, and &
and their derivatives with respect to U. For each
different type of GGM equations .« and # would
take on (different) explicit forms. For example,
suppose we take the GGM equations in an MATG
to be

8%F o =47, . (3.10)

Using the definition of the covariant derivative
with respect to I" (denoted by the bar), this be-
comes

gbc(Fab,c “rmacFmb “rmcham )=4nJ, .

ALAN A. COLEY

Expanding this equation using (2.20) and (2.21),
and writing it in terms of the electromagnetic
four-potential [using (3.8)], in the SSS limit Eq.
(3.11) then takes on the form of (3.9) with .« and
# defined by

o =8'+a'+a’'+3p8,

(3.12a)
£=2a’+2,3’+a'—§7/’ ,

where the prime denotes differentiation with
respect to U (i.e., df /dU =f").
Other possible GGM equations would yield the

(3.11) following values for «# and #:
|
B
Ff o =(8%F )| . =4ml,: g (3.12b)
B=2-—8"-2a"—-a'-2p";
4
M=§-+%_5'_3a'—a'—ﬁ’ ,
Fo |, =4m]" : (3.12¢)
B=28 _8'—4a'—2p’;
g
d=f7_§}’—+25'-2§'+a'+a'+3ﬁ' :
gchab (c =4’ITJaI g, EZL (312d)
B==—2—+4a'-2a'+2B';
g f
1 gl ’
d=—— L,
218 f ]
8% Fap;c =4, . (3.12¢)
a=L|8_L |
2\ f
T
This last example is the “metrically” modified tional field (3.13) becomes for a=0
Maxwell equations. That is, the modified Maxwell f172
equations for an MTG in an SSS gravitational field Jo="57 Jead X—%), (3.14a)
take on the form of (3.9) with .« and # given by &7
(3.12¢). and for a =0
Finally, an electromagnetic source consisting of i
electromagnetic point particles is defined by I=J,=— fl—/ngE % e 83 (X —Xp )V .
= 123w v IXE
J™X)= ex[ —det(ggy)]1™ /%87 (X —Xy) ar (3.14b)
k
(3.13)

where k denotes the kth particle, ¢, its charge, X
its three-position and dx; ™ /dt its four-velocity.
Consequently, using J, =g,,,J™, in an SSS gravita-

IV. CHARGE CONSERVATION

Since we have insisted that the GGM equations
reduce to the special-relativistic equations in the
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appropriate limit, charge will be conserved in the
“absence” of gravity. Indeed, charge conservation
in special relativity is a very-well-tested law of
physics. However, it is possible to put forward
theories in which charge is not conserved in the
presence of a gravitational field. In general, charge
is not conserved with respect to the GGM equa-
tions as given by (1.11) or (1.12).

But it may be felt that charge should be con-
served. This would then lead to constraints on the
form of the GGM equations. In this section we
shall investigate the constraints obtained by impos-
ing charge conservation.

It is convenient to take the GGM equations in
the form given by (1.12), viz.,

g%F o+ 2%, Fyo =4mJ, . 4.1)

What form should the equation for charge con-
servation take in the presence of gravity? We cer-
tainly want the equation to be covariant. Also the
equation should reduce to the special-relativistic
equation in the correct limit. Hence, we take the
following equation as appropriate:

gamJa:m =gam(Ja,m _LnamJn )=0 ’ 4.2)

where the colon denotes covariant differentiation
with respect to some “connection” L (L is assumed
to depend on the gravitational field). L could be
the metric connection { }, or the affine connection
T, but for the moment we shall assume that L is
any “general connection.”
Therefore, taking the covariant derivative of

(4.1) with respect to L, and using (4.2), we obtain
(after some simplification)

(Zabc,mg “m—L ncm 2"abng “MF, ab
+(gbc,mgam+2abmgmc_L anmgbcgnm)Fab,c =0.
4.3)

Since this equation must be satisfied for all pos-
sible electromagnetic fields, each term must be zero
independently, viz.,

(zlebl, ,, —L",, =[] )gmF, =0 (4.42)

and
(gbc,mg“m +2 [ab]mgm—L anmgbcg"m )Fap,c =0 .
(4.4b)

These two equations represent constraints on =
(in terms of g and L) in order for charge to be con-
served. For general L and = no more information
can be obtained. For a particular theory, where L

and X are given, we could work out explicitly the
conditions imposed by (4.4).

In the case of an SSS gravitational field the
forms of g, I', L, and 2 simplify considerably, and
Egs. (4.4) reduce to a very simple form. Indeed, in
such a gravitational field the forms of g and X are
given by (2.21) and (3.6), respectively, and the form
of L is given by

La;w:(ll ),VSZ+(12 ),yaz+(l3 ),05;41/ ’
Lo%=(l4), , (4.5)
Lo()v=(15),1" Loy_o:(lﬁ),“ ’

where the /;’s are functions of U. Consequently,
equations (4.4a) and (4.4b) become, after some tedi-
ous algebra (using the symmetries of g and F),

0=0, (4.6a)
and
1 ’
T
1 |8 o v
+—2 -g-~.@—~l F,w,,,S"g =0, (4.6b)
4

where / is defined by

g ’ ’ ’ ’
==, -1 -1, -313, 4.7
FaTTh 3
and (for example)
_4f 38U _ . o
(f),o— dUu ax° _fg ’ (48)

where the prime denotes differentiation with
respect to U.

Equation (4.6a) indicates that (4.4a) is redundant
in an SSS gravitational field. If charge is to be
conserved, it must be so for all possible charge dis-
tributions, and hence, for all possible electromag-
netic fields F,,. Therefore, the constraints im-
posed on X by (4.6b) are

fl
7 —-1=0, (4.9a)
f

and
£ _z-1-0. (4.9b)
g

If we demand that charge should be conserved
“with respect to” the metric connection [so that

from (2.23) Iy =5 f"/g and I =15 = —13 =+g'/g],
then
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=+, (4.10)

2f 2¢
Sl 1 @.11)
2g 2f

(that is, the GGM equations take on their metric
form).

If, on the other hand, we demand that charge
should be conserved “with respect to” the affine
connection I [so that from (2.20) I}, =7/, ] =d’,
I3 =a’, and I3 =/], then

=&y o —a-3p, 4.12)
f
and (4.9) becomes
f’ g ] ’ - i’
A === +a +a +3B ’
Frt

- (4.13)
_8 8 "= '
B ==+ —a'—a’'-383".
e faf B

We note from (4.9) that we have one constraint
that is independent of the form of L (by eliminat-
ing / from the equations). That is, in order for
charge to be conserved for any arbitrary L (the
most general form of charge conservation), the fol-
lowing condition must be satisfied:

a—z-L & 0. 4.14)
foz

In Sec. III we considered some possible forms of
the GGM equations, calculating the explicit values
of o7 and # in each case [see Eq. (3.12)]. Equa-
tions (4.13) and (4.14) could then be used to con-
strain the form of T in each of these particular
sets of GGM equations.

V. THE OPTICAL LIMIT

In this section we shall discuss the geometric op-
tics approximation, or the optical limit, of the laws
of electromagnetism. In this appproximation we
are essentially looking for wavelike solutions for
the electromagnetic potential 4,, by splitting up
the potential into a very slowly changing complex-
amplitude part, and a rapidly changing real-phase
part, viz.,

A, =Re(4,0e™) (5.1)

(@ is sometimes called the eikonal, and the approxi-
mation scheme referred to as the eikonal approxi-
mation).

Therefore, we are looking for a high-frequency
(or short-wavelength) approximation. More pre-
cisely, geometric optics is valid whenever the wave-
length A is very short compared with the typical
length [ over which the amplitude (and polariza-
tion) vary, and compared with the typical radius of
curvature R of the spacetime through which the
waves propagate.

We wish to expand (5.1) in powers of A. We in-
troduce the dummy parameter € ~A to qualify the
approximation scheme. Expanding the amplitude
in powers of €, and putting 6=6/€ (since the
phase is proportional to A™!), 4, therefore expands
according to

Ay =Re[(a, +eb,+€%c,+ - - )e¥€] . (5.2)

The key results of geometric optics are then ob-
tained by substituting 4, [given by Eq. (5.2)] into
the source-free GGM equations [given by Eq.
(1.11)]. In particular, collecting together the
highest-order or € ~?-order terms of the “expanded”
GGM equations, we find that

Re(e g% ,0 a,e’®€)=0. (5.3)

Defining the “wave vector” k, by k, =0 ,, (5.3)
becomes

gbckbkc =0. (5.4)

Light rays are then defined to be curves normal
to surfaces of constant phase 6. Since k, =6, is
the normal to these surfaces, the differential equa-
tion for a light ray is

a
= =k%=g%k, . (5.5
g

Therefore, Eq. (5.4) tells us that light rays are null.
This is the main result of geometric optics (and the
only result that we shall use here). For a discus-
sion of the other laws of geometric optics see Ref.
6.

Taking the covariant derivative of (5.4) with
respect to the metric connection, and using the fact
that k.. =0 .. =k..;, we find that

2..a b c
dx’ @), s
do

do do
so that light rays are null geodesics (o is an affine
parameter with respect to the geodesic).
We recall that in MATG’s the motion of time-
like test particles is governed by the path equation

k% pkb=
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(1.1) (do not confuse the affine parameter A in (1.1)
with wavelength). In general, Egs. (1.1) and (5.6)
are not equivalent. However, it may be felt that
the equations of motion governing photons should
be the limit (as mass —0 or speed — 1) of the
equations of motion governing timelike particles.
(Note that if this is not the case the equivalence
principle is broken.) Consequently, it may be as-
sumed that for particles with dx®/do satisfying
(5.4), Eqgs. (1.1) and (5.6) are identical. In order to
make a comparison of these two equations we
rewrite Eq. (1.1) as

d*x° baxe . dx®ax*
aor Tl }d do T, dU+Ado_O’

(5.7

where T has been decomposed according to (2.22),
and A =(d%0/dA*)(dA/da)? is a scalar associated
with the change in parametrization. Therefore, the
equivalence of (5.6) and (5.7) yields

dx® dx°¢ dx*®
a —_— =
Abe do do +A do

For general connections (i.e., general 4%,), Eq.
(5.8) is in its simplest form. For special connec-
tions (5.8) reduces to a more simple expression. In
particular, it reduces to a very simple form in the
case of an SSS gravitational field. That is, for
A%, given by (2.23), (5.8) becomes for a=0

(5.8)

2 5 dx* dt dt
(8+48) = — do do +Ada =0. (5.9a)
and fora=y
A dx* ~ dx” dxf
(+)vd da B"“'pda do
dx*
+®P) +A Jo =0. (5.99)

Equations (5.9) are subject to Eq. (5.4), which can
be written as [using (2.21)]

dt dx* dx"
f do gﬁ,wd 1o =0. (5.10)
Using (5.9a) and (5.10), Eq. (5.9b) becomes
A 2 A R dxt dx¥
(@+a—85— 8)”a’a do
+ ?,,‘+f/3 d’ o, (5.11)

Therefore, in an SSS gravitational field, the con-

straints on I', imposed by demanding that Eq. (1.1)
is equivalent to equation (5.6) for particles satisfy-
ing (5.4), take the form

(@ ,+8 48, —5,)=0 (5.12a)

and

(5.12b)

?,,ﬁﬁﬁ,,‘ =

The question as to whether Eq. (5.11) is realized
is open to experiment. In particular, experiments
in the solar system that test, on the one hand, the
motion of planets and satellites, and, on the other,
the motion of electromagnetic radiation, do verify
Eq. (5.11), at least up to first order within the PPN
approximation scheme (we shall discuss this in
more detail in a later paper).

V1. THE EQUIVALENCE PRINCIPLE

As we have already stated, we require the laws
of electromagnetism to take on their special-
relativistic form in the “absence” of gravity. But
the principle of equivalence says rather more than
this. It states that the laws of physics should take
on their special relativistic form (approximately) in
freely falling (or locally inertial) coordinate frames.

For MATG?s, the local inertial frames are the
Riemann-normal (RN) frames,’ in which

8bc =Mbc +0 (¥),Ip0y=040(y) ,
{6}~ % @l
where o (y) denotes a “small” correction, the order
of magnitude of the coordinate axes y°, and hence
the size of the region under consideration. As this
region becomes smaller, the accuracy of the ap-
proximation therefore increases. In an RN coordi-
nate system the equation of motion of a freely fal-
ling test particle in a gravitational field becomes
d*x°/d\*=0, and so the gravitational laws of
physics approximately take on their special-
relativistic form.

Here we shall consider the principle of
equivalence with respect to laws of GGEM, and in
particular, the GGM equations. That is, we shall
examine the form of the GGM equations in a local
inertial frame and see whether (approximately)
they take on their special-relativistic form. Indeed,
if we contrast (6.1) with the corresponding condi-
tions in MTG’s, where the local inertial frames are

e ~Tlej~o0(y
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represented by geodesic-normal coordinate frames
in which’
8o =Noc+0 ("), {3} ~g%c~0(p),  (62)

we see that gy, T[4}, and g% . are an order of
magnitude larger than their metric counterparts.
Therefore, we might anticipate that in an RN
coordinate system the GGM equations will not
take on the correct form, and the equivalence prin-
ciple will consequently be broken.

We wish to rewrite the GGM equations. We put
%, =11,%, + I,%, +I1,%,, where the first term
depends on the symmetric part of the connection I'
(and g% and nbc only), the second on the first
derivatives of the metric, and the third on the an-
tisymmetric part of . We also expand g% by a
Taylor series about the center of the RN coordi-
nate system, so that g*=2%4+a%,y% 40 (y?),
where the a®;’s are constants. Therefore, we can
write (1.11) as

_nbcAa,bc "'abcha,bcyd'f'o (yz)Aa,bc
+bbcaAb,c +0(y)Ab,c=47TJa ’ (6.3)

where the b%,’s are the constant values of

I1,%, + 3%, (evaluated at the center of the coor-
dinate system). Furthermore, we do not expect all
the constants a%,; and b%; to be zero [since they
depend on g"c,d, and we could not have g”",d ~o(y)
and I'%(s)~o0 (y) simultaneously].

The analogous equation [to (6.3)] in an MTG
would not contain the terms ab‘dAa, pey® and
b%,4, .. Since the first term contains the y¢ fac-
tor, in general it will not contribute to any viola-
tion of the equivalence principle. It is the second
term which gives rise to such violations.

As an illustration we look for a wavelike solu-
tion (propagating in the z direction) to a source-
free equation (6.3) of the form
A, ~expli(kz —wz)]. For simplicity, we take as
the only nonzero components of the constants b%,,
b™o=£,, and b*,=£,8,,+£,8,, [£,=(£x.£,,6,)].
From (6.3) we obtain the dispersion relation
k?—w?=+&,ki. Since this relation does not ap-
proach the special-relativistic relation as we restrict
attention to smaller regions of spacetime, it
represents a theoretical violation of the equivalence
principle. (Note, however, that the relations only
differ significantly for extremely small wavelengths
and therefore such a violation is probably not ob-
servable.) If we define the electromagnetic energy
in the usual way, the above violation of the
equivalence principle is accompanied by a break-
down in the conservation of energy.

VII. GRAVITATIONAL RED-SHIFT

The gravitational red-shift is usually calculated
using the equation governing ideal clocks in a
gravitational field. However, such an equation is a
(theoretical) idealization. Real clocks, made up of
actual atomic systems, are subject to the various
laws of physics. With sufficient knowledge of
such systems and the corresponding physics, we
could determine the gravitational red-shift directly
from the underlying physics. In particular, we
might expect that the GGM equations would give
us information on the frequency shift of radiation
when regarded as a wavelike phenomenon.

The wavelike properties of radiation are obtained
by considering the optical limit of the source-free
GGM equations (see Sec. V). The essential part of
these equations are the terms involving second
derivatives of 4,, viz.,

g%4,4.=0. 7.1

If we look for a wavelike solution of Eq. (7.1)
(propagating in the z direction) of the form

A ~Agexpli(kz —wt)] , (7.2)
then using the result that radiation travels on null
geodesics, in an SSS gravitational field we find that

A ~Agexpli(g!%z —f11)] . (7.3)

Here A, a function of the gravitational field, is a
slowly varying amplitude part. The wave vector
k, is given by

k,=(f1%0,0,g'?) . (7.4)

Due to the static nature of the coordinate time,
any stationary observer will have a four-velocity
U*® given by

U%=(1,0,0,0) . (7.5)

Consequently, a wave will undergo a frequency
shift with respect to an emitter and a receiver at
rest in an SSS gravitational field, according to

Uk, (em)— U®k,(rec)
Uk,

_ fl/z(ern)—fl/2(rec)
- f1/2 :
In nonmetric theories of gravity there is no

universal equation for the gravitational red-shift; a
study of the phenomenon can only be made with a

(7.6)
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complete theory of measurement and a knowledge
of the actual measuring instruments involved
(which is beyond the scope of the present investiga-
tion). However, one would expect that the results
of any such study would have to be consistent with
the above analysis concerning the frequency shift
calculated from the GGM equations.
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