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Equations of state and plane-autonomous systems in Bianchi V imperfect 
fluid cosmology 

Alan A. Coley 
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Scoti~B3H3J~Canada 

(Received 12 July 1989; accepted for publication 7 March 1990) 

A new general approach for investigating imperfect fluid cosmological m.odels is introduced in 
which the equations of state are completely "dimensionless." Such equatIons of state are the~ 
utilized to reduce the Einstein field equations governing Bianchi V imperfect fluid cosmologtes 
to a plane-autonomous system of equations, thus enabling the qualitative behavior of these 
cosmological models to be analyzed in a straightforward manner. ~e res.ulti~g plane- . 
autonomous system is investigated. Finally, exact solutions of the Blanchl V Imperfect flUld 
field equations in the case when the equations of state take on a particularly simple form are 
discussed. 

I. INTRODUCTION 

In a recent paper! (hereafter referred to as paper I) 
Bianchi V imperfect fluid cosmology was investigated. [For 
brevity, we will adopt the notation that an equation or refer­
ence in paper I will be referred to using a label I]. It is of 
interest to study cosmological models with a richer struc­
ture, both geometrically and physically, than the standard 
perfect fluid Friedmann-Robertson-Walker (FRW) mod­
els. Bianchi V models are of particular interest since they are 
sufficiently complex (e.g., the Einstein tensor has off-diag­
onal terms) while, at the same time, they are a simple gener­
alization of the negative-curvature FRW models. Cosmolo­
gical models that include viscosity have been investigated in 
an attempt to explain the currently observed highly isotropic 
matter distribution (11-13) and the high entropy per baryon 
in the present state of the Universe (14, IS), and in order to 
further study the nature of the initial singularity (16) and 
the formation of galaxies (13). Models that include heat con­
duction have also been studied in spatially homogeneous 
cosmologies (in particular, see 17). The motivation and 
background for this research is discussed in more detail in 
Ref. I. 

In MacCallum2 a general class of Bianchi models were 
studied [all class A models, and the set of class B with 
n~ = 0 (a = 1,2,3)]. In this class (that contains the Bianchi 
V models) the general exact (two-parameter) orthogonal 
perfect fluid solution is known up to quadratures3

• Collins4 

has investigated a certain subclass of this class of models 
whose equations reduce to an autonomous system and are 
therefore susceptible to a qualitative analysis utilizing geo­
metric techniques. More precisely, Collins studied a subclass 
of perfect fluid, nonrotating, spatially homogeneous cosmo­
logical models with equation of state p = (r - l)p and zero 
cosmological constant. In particular, this subclass includes 
the (not necessarily LRS) Bianchi V models (see Fig. 3, in 
Ref. 4). Later, this subclass was extended to include perfect 
fluid LRS Bianchi models (again including type V models) 
with tilt.s 

Here, we shall use the techniques and notation of Refs. 
2-5 to reduce the differential equations governing the Bian­
chi V imperfect fluid cosmological models under considera-

tion to a plane-autonomous system of equations. 
More precisely, in this paper we will investigate a class 

of phenomenological equations of state (for the pressure and 
coefficients of bulk and shear viscosity) in imperfect fluid 
cosmological models. This general class of equations of state 
is characterized by the fact that completely dimensionless 
quantities are inter-related (i.e., the equations of state are 
"dimensionless"). It is noted that this class includes as spe­
cial cases all the most commonly considered equations of 
state. This procedure amounts to introducing a new ap­
proach for dealing with equations of state in cosmology, an 
approach that is quite general, but for illustrative purposes 
we restrict our attention to Bianchi V cosmologies. The fea­
ture of this class of greatest interest here is that equations of 
state of this type are the most general under which the result­
ing Einstein field equations reduce to a plane-autonomous 
system. 

The analysis will consequently enable us to write the 
Bianchi V imperfect fluid field equations as a plane-autono­
mous system. This in tum will enable us to analyze the quali­
tative behavior ofthese cosmological models in a straightfor­
ward manner. The plane-autonomous system is studied 
further in the case that the equations of state are of a special 
(power law) form; the resulting system in a particularly sim­
ple subcase is displayed in the final section for illustration. 

In Sec. IV we shall look for exact solutions of the Bian­
chi V imperfect fluid field equations in the case when the 
equations of state take on the simple form p = (r - 1 )p, 
; = ;ofJ, and 11 = 1700 [see Eqs. (4.1)]. Exact solutions will 
of course be very useful in concert with any qualitative anal­
ysis. A simple, general first integral of the field equations is 
found. Using this first integral it is then shown that the field 
equations reduce to a single, second-order, ordinary differ­
ential equation for a single variable. In the particular case of 
r = 2 (stiffmatter), a simple (albeit unphysical) solution is 
exhibited. 

II. THE MODELS 

We shall study LRS Bianchi type V spatially homoge­
neous cosmology, where the metric is given by 

di2 = - dt 2 + a2(t)dx2 + b2(t)~(dy + dr), (2.1) 
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in which the source of the gravitational field is a viscous fluid 
with heat conduction, so that the energy-momentum tensor 
is given by 

Tab = (p + p)uaub + pgab - 2rWab + qaub + uaqb' 
(2.2) 

with 

p=p- to, (2.3) 

where p is the thermodynamic pressure and t and 1] are the 
coefficients of bulk and shear viscosity, respectively, thereby 
allowing dissipative processes to be included in the models. 

The Einstein field equations for a comoving fluid then 
yield an equation defining the energy density (I.8a), 

b 2 ilb 3 
P = b2 + 2 --;;b - a2 ' (2.4) 

an equation that defines the only nonzero component of the 
heat conduction vector qa (I.8b), 

q1 = 2[b Ib - ilia], (2.5) 

and the remaining nontrivial equations (I.8c) and (l.8d), 

l..-~-2 b =p_'±'1][~_l], (2.6) 
a2 b 2 b 3 a b 

:2 - : - ! -!! = p - ~ 1][! -! l (2.7) 

We recall, that for the Bianchi V models under consider­
ation, 

and 

02 = Hilla - bib ]2, 

0= ilia + 2(b Ib), 

(2.8) 

(2.9) 

3R = _ 6a- 2 , (2.10) 

where 3 R denotes the Ricci curvature of the hypersurfaces of 
homogeneity. (Note that when alb = const, the heat con­
duction vector and the shear are consequently both zero-­
this case is discussed in some detail in Ref. I.) We also recall 
the identity (the "generalized Friedmann equation" or "first 
integral") , 

(2.11 ) 

where use has been made of (2.10). By adding Eq. (2.6) to 
two times Eq. (2.7), we obtain [using (2.11)] the Ray­
chaudhuri equation: 

(2.12) 

The second independent equation we shall write as 

i7 = - 21]u - uO, (2.13) 

which is obtained by subtracting Eq. (2.7) from Eq. (2.6). 
Finally, from the conservation law (Tab;bua = 0), we find 
that 

p = - (p + p){} + t0 2 + 41]02 + (4/..[3) 

XUB02 - 02 - p]. (2.14 ) 

Now, we define the new variables /3 and x, and the new 
time coordinate 0, as follows: 

1699 J. Math. Phys., Vol. 31, No.7, July 1990 

(2.15a) 

so that /3 measures the rate of shear in terms of the expan­
sion, 

(2.15b) 

so that x measures the dynamical importance of the matter 
content, and 

dO 1 
-= --0 
dt 3' 

(2.15c) 

where t is the representative length scale with 0 = 311 e. 
Therefore, using Eqs. (2.15) and Eq. (2.12), we can write 
Eq. (2.13) as 

d/3 =l../3[4-/32_ x - 9p +..2(+ 12!l.] 
dO 2 0 2 0 0 ' 

(2.16) 

and we can write Eq. (2.14) as 

-=x[I-X-/32] +/3 2x-2+-dx [/3
2

] 

dO 2 

+ 9...L.(1-x) - 9i.(1-X) 
02 0 

-3!l./32 
o (2.17) 

[where we have used Eq. (2.12) forp]. Finally, we note that 
from (2.11) we are only interested in the region 

/3 2 + 4x<4, 
x>o. 

(2.18) 

III. EQUATIONS OF STATE 

In order to complete the system of equations we need to 
specify three equations of state for p, t, and 1]. In principle, 
these equations of state can be derived from kinetic theory6--
8 • For example, Collins and Stewart9 considered a class of 
nonrotating Bianchi models (that included Bianchi type 
V's) with shear viscosity (but no bulk viscosity) in which 
1] = iPtcoll' where the harmonic mean of the collision times 
for the various reactions, tcoll , is assumed to be given by 

tcoll = 1/ Jin~, where n is the number density and ~ is the 
mean total scattering cross section (related to the tempera­
ture by a suitable approximate relationship). SUbject to 
some additional, physically motivated assumptions, Collins 
and Stewart9 concluded from a qualitative analysis that for 
arbitrary initial conditions the shear anisotropy could be ar­
bitrarily large now, and that the Universe need not have been 
in thermal equilibrium during the early stages. These con­
clusions are relevant in determining whether strong dissipa­
tive mechanisms in the early Universe (such as neutrino vis­
cosity) could produce the observed highly isotropic matter 
distribution. 10,11 

However, in practice, it is necessary to specify phenome­
nological equations of state subject to a set of thermodyna­
micallaws. 12 Of course, specification of p, t, and 1] requires 
special conditions for which there may be no physical foun­
dations. This specification should be subject to physical con­
straints such as p, t, and1] should tend to zero as the density 
tends to zero and must be subject to the energy conditions. It 
goes without saying that the behavior of the fluid (e.g., it's 
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asymptotic behavior) depends on the assumptions made on 
the form of these physical quantities. We also note that in 
writing down the energy-momentum tensor for a viscous 
fluid with heat conduction in the form of Eq. (2.2) we have 
assumed that 1Tab = - 2'1/Uab' where 1Tab is the tensor of 
anisotropic stress. This assumption (the "viscosity assump­
tion") is valid whenever the anisotropy is small (i.e., 
l1Tablpl~I). 

There are some equations of state that are commonly 
used that, although not widely applicable, are obtained as a 
result of approximate estimates for particular fluids. The 
barotropic equation of state, p = (r - l)p is often assumed. 
Here, 1..;; r..;;2 is necessary for the existence oflocal mechani­
cal stability and for the speed of sound in the fluid to be no 
greater than the speed of light. Belinskii and Khalatni­
kOV13

,14 consider viscous fluids in which the viscosity coeffi­
cients depend on powers of the energy density. It is argued 
that this approach will be valid whenever the kinetic coeffi­
cients that arise at a higher order of approximation will be 
proportional to the energy taken to a power greater than the 
one characterizing the coefficients of t and '1/. Consequently, 
this approach ought to be valid (at least) near the initial 
singularity when the energy density is very small. Moreover, 
it is argued that the qualitative picture ought not to change 
substantially from that obtained from this approach. 13 

As noted above, in order to complete the system of equa­
tions three equations of state must be given, specifying p, t, 
and '1/ in terms of the other physical quantities. Since we are 
considering a viscous fluid with heat conduction, in general 
all physical quantities depend on two independent thermo­
dynamical variables, one of which will be chosen asp and the 
second of which will be denoted by X (e.g., temperature or 
entropy density), viz., 

p =p( poX), 

t = t( pox), 

'1/ = '1/( pox). 

(3.1) 

As also noted earlier, in principle these equations can be 
obtained from kinetic theory, but in practice phenomenolog­
ical equations of state need to be assumed. In addition, we 
also recall the variables P and x occurring in Eqs. (2.16) and 
(2.17), viz., 

P = 2../3(ul(J), 

x = 3pl(J2, 

(3.2a) 

(3.2b) 

and note that, firstly, P and x are dimensionless, and, sec­
ondly, in the absence of viscosity and with p = (r - 1 )p, 
Eqs. (2.16) and (2.17) form a plane-autonomous system in 
pandx. 

Here, we are going to consider equations of state of the 
following form: 

pl(J2 = F( Pox), 

tl(J=G(P,x), (3.3) 

'l/I(J = H( P,x). 

Let us argue in favor of these equations: 
(i) First, Eqs. (3.3) are completely dimensionless equa­

tions since, as noted above, P and x are dimensionless, and 
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the ratios pl(J 2, t I(J, and 'l/I(J are dimensionless. It can be 
argued that dimensionless equations of state are the most 
physically natural. In particular, it might be expected that 
such equations will be valid whenever the physics is scale 
invariant. Scale-invariant solutions in classical hydrodyna­
mics have been a fruitful source of models for physical sys­
tems having no intrinsic units oflength, mass, or time. More­
over, this situation might be especially pertinent in the 
qualitative analysis that we intend to carry out, where it will 
be of interest to study physical systems that have no intrinsic 
scale in an asymptotic sense. 

We note that our particular "choice" of dimensionless 
physical quantities (3.3) is to some extent arbitrary, and the 
choice has been made for convenience. However, Eqs. (3.3) 
are independent of this choice. For example, if u is nonzero, 
and if we assume that pla2 =f( P,x) and 'l/Iu = h( P,x), 
then 

pl(J2 = [a21(J2lf( P,x) = F( Pox), 

and 

'l/I(J = [ul(J]h( P,x) = H( P,x). 

In addition, pip = h( P,x) implies that pl(J2 
= (pl(J2)h( P,x) = H( P,x). 

(ii) Second, Eqs. (3.3) are the most general equations of 
state such that Eqs. (2.16) and (2.17) reduce to a plane­
autonomous system, enabling us to study the viscous models 
under consideration qualitatively in a straightforward man­
ner. In general, it may be possible for the system of equations 
under investigation to reduce to an autonomous system of 
dimension greater than two even if Eqs. (3.3) are not as­
sumed. However, it is strongly suggested by Eqs. (2.16) and 
(2.17) that equations of state (3.3) are clearly the most nat­
ural in any attempted reduction to an autonomous system, 
and, moreover, from the above comments Eqs. (3.3) are 
perhaps suggested by dimensional considerations. 

(iii) Next, since we are considering spatially homoge­
neous models it is natural for all the physical quantities p, p, 
t, '1/ (etc.) and the kinematical quantities (J and u to depend 
only on t, so that pl(J 2, t I(J, 'l/I(J, p, and x are function of t 
alone, and the equations of state can be considered in the 
form (3.3) in all generality. 

(iv) Equations (3.3) are completely general for phys­
ical systems in whichP and x can be regarded as independent 
thermodynamical variables. 

(v) The most commonly considered equations of state 
are ofthe form (3.3). For example, the barotropic equation 
of state p = (r - l)p is equivalent to 
pl(J2= (r-1)pl(J2=j(r-1)x, and is consequently of 
the form (3.3), where F is simply given by 
F( P,x) =!( r - 1 )x. Also, t = tcPII2 and '1/ = 'l/cP l12 are 
equivalent to t I(J = to [pl(J 2] 112 and 'l/I(J = 'I/o [pl(J 2] 112, 

which are simple examples of Eqs. (3.3) with 

G( P,x) = (tol../3)xIl2 andH( P,x) = ('l/01../3)x I/2. In par­
ticular, Belinskii and Khalatnikov13 have studied viscous 
fluid models in which the equations of state are asymptoti­
cally of this form. In addition, since these "common" equa­
tions of state (particularly the barotropic equation of state) 
are derived from kinetic theory, it can be argued that there is 
some kinetic theoretical basis for Eqs. (3.3). 
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(vi) Finally, FRW models can be written in terms ofa 
plane-autonomous system of equations in ( p,O) space. Mur­
phyl5 included bulk viscosity in isotropic and spatially ho­
mogeneous cosmologies, and it can be shown that the plane­
autonomous character of the resulting field equations can be 
retained if the bulk viscosity dissipation is modeled by means 
of an equation of state p = p( p,O) (wheret = - 3jJ/aO).1t 
is known that FR W cosmological models are structurally 
unstable.5 Golda et al. 16 have shown that if the equation of 
state p = (y - l)p - to with t( p) = to( p)m is assumed, 
then the only possible solutions that are structurally stable 
are those with m = ! [ that is, those in which 
t /0 = to( p/(2) 112 ,which is of the form of (3.3)]. 

It should be noted once again that the analysis, and, in 
particular, the discussion above, is quite general, and is 
equally applicable in all Bianchi-type models. For illustra­
tion, we are considering only Bianchi V imperfect fluid mod­
els here; the analysis will be extended elsewhere. 

No qualitative analysis can be undertaken unless F, G, 
and H are further specified. Here we shall assume for simpli­
city that F, G, and H are independent of {3. This, of course, 
still enables us to write the equations as a plane-autonomous 
system. In addition, if it is possible for p and 0 to be regarded 
as the two independent thermodynamical variables (recall 
the baryon conservation law in the form it + nO = 0, where 
n is the particle number density), then this assumption is the 
special case guaranteeing that the equations of state are di­
mensionless. Finally, in general, this will always be possible 
if all the quantities of interest are functions of t only, as is 
expected in the spatially homogeneous models under consi­
deration. 

Moreover, for simplicity we shall consider the case 
when F(x), G(x), and H(x) are functions that depend on a 
power of the argument; namely, 

p/02 = PoXi
, 

t /0= toXm
, 

"1/0 = "loX", 

(3.4a) 

(3.4b) 

(3.4c) 

where I, m, and n are constants. Such equations may be valid, 
at least in an approximate sense, and ought to be applicable 
in a qualitative analysis. In addition, these equations are con­
sistent with the "common" examples alluded to above. Us­
ing Eqs. (3.4), Eqs. (2.16) and (2.17) reduce to a plane­
autonomous system. [We note that since 3R <0 [Eq. 
(2.10)] it follows that 0 2 >0 [Eq. (2.11)] and 0<0 [Eq. 
(2.12)] imply that if 00 > 0 (at present) then 0> 0 for all t; 

hence all quantities in equations (3.4) are well defined. Care 
must be taken in extending this analysis to Bianchi IX mod­
els in which 3 R > 0 since 0 is no longer always positive.] 

IV. EXACT SOLUTIONS 

In a series of papers cosmological models have been ex­
amined in which the condition rr/0 2 = const. is assumed 
(111,112, and 116-21), and Balj17 has investigated Bianchi I 
viscous fluid cosmology with magnetic field under the as­
sumption"1 = "100 and has found an exact solution (in which 
limt _ o u/O = 0). In this section we shall investigate exact 
solutions of Eqs. (2.6) and (2.7) with equations of state 
given by (3.4). In particular, we shall consider the simple 
case in which 1= 1, m = 0, and n = 0 in Eqs. (3.4), i.e., 

P = (y- l)p, 

t = toO, ( 4.1) 

"1 = "100 

(where y = 3po + 1), in which first integrals of Eqs. (2.6) 
and (2.7) can be obtained by the method of decomposable 
operators of Maartens and Nel. 18 Exact solutions will be 
extremely useful in combination with any possible qualita­
tive analysis. 

Using equations of state (4.1) [and employing Eqs. 
(2.3), (2.4), and (2.9)], Eqs. (2.6) and (2.7) become, re­
spectively, 

- i6 + [to + ~ "10] il
2 
+ [ - y + 4to - .!. "10]~ 

b 3 a2 3 b 2 

+ - 2 (y - 1) + 4to + - "10 ~ [ 
4 ]. b 
3 ab 

1 
+2"(3y-2) =0, (4.2) 

a 
and 

-~--+ to--"1o ~ .. b [ 2] '2 

a b 3 a2 

+ [ (1 - y) + 4to + : "10] !: 
[ 

2 ] ilb 1 + (1- 2y) + 4to -3""10 ~+ a2 (3y - 2) = O. 

(4.3) 

These equations constitute two independent (coupled, non­
linear, second-order, ordinary) differential equations for a 
and b. Multiplying Eq. (4.2) by the constant a, and Eq. 
(4.3) by the constant {3, and adding, yields the equation 

i:i b il2 b2 

[ - {3]~ + [ - 2a - {3]"b + a2 [(a + P>to + i(2a - {3)"10] + bT[{3(1 - y) - ay + 4(a + {3)to + t({3 - 2a)"10] 

ilb + ~[( - 2a)(y - 1) + (1 - 2y){3 + 4(a + {3)to + ~(2a - {3)"10] + (1/a2 )(3y - 2)(a + {3) = o. (4.4) 

Using the method of decomposable differential opera­
tors l8

, we can find a first integral of this equation [and hence 
Eqs. (4.2) and (4.3)] whenever the following algebraic 
equation is satisfied: 

1701 J. Math. Phys., Vol. 31, No.7, July 1990 

I 
{3(a + {3) (4a + {3) (y - 2) 

+ (a + {3)(2a - {3)2 [to + t"1o] = O. (4.5) 

The solutions of this equation are: 
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(i) a + P = 0, and (ii) a 

=' {2 (to + ~1/0) - I [ <So + ~1/0 - (r - 2» 

± .J (2 - r) (2 + 3to + 41/0 - r) ]}p (to + ~1/0#0). 

(i) Taking a + P = 0 [i.e., subtracting Eq. (4.3) from 
(4.2)] yields the general first integral: 

(4.6) 

(where K is an integration constant). Defining the new time 
coordinate T by 

dT _= (ab 2)-(2'7o+ l ) 
dt ' (4.7) 

Eq. (4.6) integrates to 

(alb) = Cexp(KT). (4.8) 

(ii) We define l:: = ![1 + k ± .Jk(3 + k)], where 
k = (2 - r)/(to + ~1/0) is non-negative (since r<2 and 
to> 0 and 1/0> 0) ensuring two real values for l: (l: + and 
l: _ ). Taking a = l:P yields the general first integral (s ); 

!i.-{al - (1: + 0"" - (2/3)(21: - I )'7"lb I - 4(1: + I)"" - (4/3)( I - 21:)'7" + y(l + 1:) - (41:' + 21: + 1)](21: + I) -, !i.-(ab 21: + I)} 

~ ~ 

= (3r - 2)(l: + 1)a l - (1:+ 1)",,- (2/3)(21:-I)'7,,-llb I -4(1:+ 1)",,- (4/3)(l-21:)'7,,+y(l +1:) +21:](21:+ I) -I. (4.9) 

Defining the new variable B: = eKTb 2(1: + I), and using the 
general first integral given by Eq. (4.8) in terms of the time 
coordinate T, Eq. (4.9) yields the following differential 
equation for B: 

B " ( B ' )2 ( B ' ) -Ii+ P Ii +q Ii =CeNBs, (4.10) 

where the constants C, p, q, r, and s are given by 

C= (3r- 2)(l: + 1)C 4
'7", 

r 2(2l: - 1) 2 
K = (l: + 1) 1/0 - 1 + l: ' 

s= 61/0/(l: + 1) + 2/(1 + l:), ( 4.11) 

- (5 + 2l:)(to + ~1/0) + (r - 2) 
p= 2(2l:+1) -1, 

!L - (2l: + 3)(2l: - l)(to + ~1/0) + (r - 2) 

K 2(2l: + I) 

In the above, a prime denotes differentiation with respect to 
T. Equation (4.10) is a (single) second-order, ordinary dif­
ferential equation for the (single) variable B. 

(iii) Let us consider the case r=2 (corresponding to 
stiff matter) separately. In this case k = 0 and l: =! [this 
case corresponds to a double root for alp in Eq. (4.5)]. 
Taking 2a - P = 0 when r = 2 [i.e., adding twice Eq. (4.3) 
to Eq. (4.2)] yields the first integral: 

( 4.12) 

Again, employing the first integral a = CeKTb and defining 
the new variable Xby ~ = b 3eKT, in terms ofthe time coor­
dinate T defined by (4.7) Eq. (4.12) reduces to a "simple" 
second-order differential equation for X, which we can at­
tempt to solve in order to obtain a solution of the Bianchi V 
imperfect fluid field equations in the particular case of stiff 
matter. Alternatively, defining X by ~ = B, when r = 2 
(l: =!> Eq. (4.10) becomes 
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X" - [go + 21/0] (X,)2 = Cexp{[41/0 + nX - ~KT}. 
(4.13) 

If a solution for X is found to this second-order differential 
equation, a and b are then obtained by 

a = Ce(1I3)(X+2KT), 

b = e(1I3)(X - KT). 

We note the simple solution 

X = Xo + [K 1(31/0 + 1) ]T, 

to Eq. (4.13), where the constant Xo satisfies 

C exp [ ( 41/0 + PXo] 

= - [(3to + 41/0)12(31/0 + 1)2]K2, 

whence 

a = C expBXo + [(21/0 + D/(31/0 + 1) ]KT], 

b=exp[!Xo - [1/0/(31/0+ 1)]KT]. 

and t and T are related by 

(to - t) = Clee,T, 

where 

C
I 

= - (31/0+ 1) 
K(21/0 + I) 

X [ - (3to + 41/o)K 2C 4/3 ](2'7"+ 1)/(4'7,,+4/3) 

12(31/0 + 1)2 ' 

and 

(4.14 ) 

( 4.15) 

( 4.16) 

( 4.17) 

( 4.18) 

( 4.19a) 

(4.19b) 

Unfortunately, a straightforward calculation using Eq. 
(2.4) shows that this solution is unphysical since it leads to a 
negative energy density. 

V. PLANE-AUTONOMOUS SYSTEMS AND DISCUSSION 

Collins4
•
S was the first to use geometric techniques of 

standard differential equations theory, analyzing both non-
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rotating and tilting Bianchi-type models in the case of a per­
fect fluid source. Roy and Prakesh 19 derived some results for 
viscous fluid models of Petrov type D, under the unphysical 
assumption of constant shear and constant ~. Belinskii and 
Khalatnikov13

•
14 were the first to consider the qualitative 

behavior of spatially homogeneous viscous fluid cosmologi­
cal models in any generality. In particular, they investigated 
viscous fluid Bianchi I models with barotropic equation of 
state p = (y - l)p and in which the viscosity coefficients 
depend (only) on the powers of the energy density, in which 
case the field equations reduce to a plane-autonomous sys­
tem. 

In this article we have introduced a new approach for 
dealing with equations of state in Bianchi-type cosmologies 
and we have shown by way of illustration that the field equa­
tions in LRS Bianchi V imperfect fluid cosmologies can be 
written as a plane-autonomous system, facilitating a qualita­
tive analysis of such cosmological models. This work there­
fore generalizes the previous results in nonrotating and 
(LRS) tilting perfect fluid Bianchi-type (including type V) 
models4

•
s , and in viscous fluid Bianchi I models,13 to the 

imperfect Bianchi-V case. 
As noted above, Eqs. (2.16) and (2.17) reduce to a 

plane-autonomous system when Eqs. (3.3) or (3.4) are em­
ployed. For illustration, if we consider the equations of state 
in the form 

p/02 = !(y - 1)x, 

~ /0 = ~oXll2, 
(5.1a) 

(5.1b) 

'TI/O = 'TJc)X1l2 , (5.1c) 

then Eqs. (2.16) and (2.17) reduce to 

df3 = ~ [4 - {32 - (3y - 2)x + 3xll2[3~0 + 4'T10]], 
dO 2 

(5.2) 

and 
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-=x[(3y-2)(1-x) _f32] +f3 2x-2+-dx [f3
2

] 

dO 2 

- 3X1l2[3( 1 - x)~o + 'TIc/P]. (5.3) 

We shall analyze the qualitative nature of Bianchi V imper­
fect fluid cosmological models in a future paper. 
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