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Anisotropic fluid spherically symmetric space—times admitting a kinematic self-
similar vector are investigated. The geodesic case is considered, and some special
subcases in which the anisotropic fluid satisfies additional physical conditions are
investigated in detail. A number of other special cases are studied. Particular atten-
tion is focused on the possible asymptotic behavior of the models, and it is shown
that the models considered always asymptote towards an exact homothetic solution,
which is in general either a perfect fluid model or a static solution. 1999
American Institute of Physic§S0022-24889)01602-3

I. INTRODUCTION

In a recent paper spherically symmetric space—times which admit a kinematic self-similarity
of the secondor zeroth kind were studied when the source of the gravitational field was assumed
to be a perfect fluid.In that paper several particular subclasses of models were studied in depth,
including the subcasesM;=0"" and ‘** M,=0"" (which includes the static models as a further
subcasg Note that these particular subcases refer to specific forms for the first inte@rgl of
the EFEs. The precise definitions of these subcases in termgraf are not necessary here; see
Benoit and Coley for more details. These subclasses of models, in which exact solutions were
obtained, were found to be of particular interest since their qualitative properties were represen-
tative of the asymptotic behavior of more general models.

The metric, in comoving coordinates, is given by

ds?=—e?#dt?+ e?/dr2+r2s2dQ?, (1.2
where the functions),  andS and depend only on the self-similarity coordinate
E=r(at) Ve, (1.2
wherea is the self-similar indeXand we shall assume henceforward that0). The kinematic

self-similar generator is given by

=@ —=at—+r—. :
=g =atgdr e (1.3

It follows from (1.1) and(1.3) that

Lehgp=2hgy, (1.9
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and
LsUp=aly, (1.5

where h,,=0,,1 UaU, is the projection tensor. Henc& as given by(1.3) with a#1, is a
kinematic self-similarvector and corresponds to the natural relativistic counterpart of self-
similarity of the more general second kiRdVe note that in the case=1, £ is a homothetic
vector, corresponding to self-similarity of the first kind. We shall adopt the notation and termi-
nology of Benoit and Coléyand for brevity we shall not repeat here the motivation or the
discussion of self-similarity given in that paper.

In this paper we shall generalize the perfect fluid solutions in Benoit and Cml¢lye case of
an anisotropic fluid, in which stress-energy tensor is given by

Tap= mUaUp+ PN+ P, (Japt UaUp—NaNp), (1.6

whereu? is the comoving fluid velocity vector anaf is a unit spacelike vector orthogonal wé
(i.e.,un?=0). The stress-energy tenddr.6) possesses and eigenvalue degenefaagt hence is
not the most general anisotropic fluid stress-energy termmmsistent with the assumption of
spherical symmetrysee metrig1.1)). For the metriq1.1), n is given by

a J _¢a 1.7
n=nN"——=e "—. .
ox& ar

Using Eqgs.(1.1)—(1.3), it therefore follows immediately that
Lena=ny (1.8

is satisfied identically, so that the form foris consistent with the similarity assumption. The
scalarsp, andp, are the pressures parallel to and perpendicula®taespectively, ang. is the
energy-density. The perfect fluid case corresponds to the case in pyfsigh, .

Fluids with an anisotropic pressure have been studied for many re@smnthe discussion in
Coley and Tuppeér’ For example, in several cases in which the stress-energy tensor is more
general than that of a perfect fluidiue to, e.g., a two perfect fluid source, an imperfect fluid
source or in the region of interaction of two colliding plane impulsive gravitation wavks
energy-momentum tensor is formally of the foffn6). In particular, a strong magnetic field in a
plasma in which the particle collision density is low can cause the pressure along and perpendicu-
lar to the magnetic field lines to be uneqfidf the source of the gravitational field can be
represented by the sum of a perfect fluid and a local magneticHigtdHn? (as measured hy?),
then the stress-energy tensor can be written in the fdr® with

M:;+ ™, pu=5— ™, pL:E—’_ T, (1.9

where 7=3\H? and \ is the magnetic permeability. Other possible sources of anisotropic
stresses, in addition to cosmological magnetic and electric fields, include, for example, populations
of collisionless particles like gravitorfsphoton§ or relativistic neutrinog, Yang—Mills fields®
axion fields in low-energy string theoly,long wavelength gravitational wavésand topological
defects like global monopoles, cosmic strings, and domain Wils.

Most anisotropic models that have been studied are also spherically sym(setrieferences
cited in Ref. 5, and have applications especially in relativistic astrophy&gs., stellar modejs
in particular, static anisotropic spheres have received much atténiioaddition, such models
with additional symmetries, including homothetic vectors and conformal Killing vectors, have also
been studiedsee Refs. 6, 5, and references within

For the metriq1.1) the Einstein field equation&FES yield the following expressions for the
physical variables:
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WH(x)  WA(x)
=

r2 2
Pi(x) PZ(x)
pI=— o, (1.10
r t
PL(x) P3(x)
p.=

r2 2’
where
1 .
W(x)= g—e*2¢[(1+y)2+ 2yo],

-2¢

) :e .
W=(x) yly+24],

a2
Pll(x):—évLe2‘/’(1+y)[1+y+2<}5],

-2¢

s © : 2 o
Pi(x)= [2y+2ay+3y°—2y¢],

a2

PH(x)=e 2/[2yp+ ¢*+ d— o],

e 2¢ .o L
PZ(x)=~ —l(a=Dy+2yy+ gt ayt WP+ = ), (1.1

and WherQ/ES/S, x=In¢ andf=df/dx. The final EFE(that ensures that the Einstein tensor is
diagona) becomes

y=y+(§—y)(1+y). (112
Clearly there exists a variety of anisotropic fluid spherically symmetric kinematic self-similar

space—times satisfying Eqd..10-(1.12).
If we assume that the physical quantities also obey similarity conditions of the form

Lep=ap, Lep=bpy, Lgp,=b,p,, (1.13
wherea, b, andb, are constants, then it can easily be shown that:
(i) W'=0 or W2?=0
and
(i) Pl=0 or P?=0
and

(i) P1=0 or P2=0.
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The special subcas®¥ =0 with eitherP|#0 or P} #0 (i=1,2) are not of physical interest. The
special subcase/!= PH1= Pi=0 corresponds to the special subcadé=0.” Finally, the spe-
cial subcasaN?= sz szo is related to the special subcasé’;,=0,” and the static models
are included within this subclass of models.

It turns out(Benoit and Coley,in particular, see the Appendix thergimat all static spheri-
cally symmetric kinematic self-similar solutions belong to the subcldds=0,” regardless of
the form of the stress-energy tensor, and, moreover, that all such static spacetimes necessarily
admit ahomothetic vectorConsequently, no new static anisotropic solutions can be obtained that
admit a proper kinematic self-similarity. Hence we shall concentrate here on the special subcase
“M;=0."

Il. GEODESIC MODELS

The geodesic case, in which the acceleration of the comoving fluid velocity vector is zero, is
characterized byp=0 and is equivalent to the special subcadé,=0" considered in Benoit
and Coley* In this model, Eq(1.12) gives (for S+ S#0)

- S+S_ y+y2+y

e26=1, y=—o =22 7 2.1
S+S 1+y @3

whence the metri¢1.1) becomes
ds?= —dt?+ (S+9)2dr?+r22d02. (2.2

Assuming the first of condition$2.1), the second condition guarantees the resulting Einstein
tensor is diagonal and hence the remaining EFEs simply yield the following expressignsgpr
andp, :

p=WO)t~%  p=P)t"% p, =P (0)t? (2.3
(where we have now omitted the index “2” for conveniehcso that Eqs(1.13 are automati-

cally satisfied witha=b,=b, = —2«, where

EL 24 9y
WOX)= By 3y 29),

Py(x)=—(3y*+2ay+2y)/a?, (2.4)

(1+y)(2y+3y2+2ay)+3yy+ay+y
a?(1+y) '

P, (x)=

Equations2.2)—(2.4) represent a class of anisotropic fluid solutions depending upon the arbitrary
function S(x).
We note that the following relationships result from the definitions given in E48):

Py

PP Ty

_ —y[(2a—3)y+a?P]

W
a2(1+y)
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A. Perfect fluid models

In the perfect fluid case we have thBj=P, , and hence from Eqg2.4) we obtain the
following differential equation for the functiop(x) [and henceS(x)] in the metric(2.2):

2y+3y?+2ay+ a’py=0. (2.5

In Eq.(2.5) pg is an arbitrary integration constant. In the perfect fluid gass obtained from Egs.
(2.3) and(2.4) and we have that

p=pot 2, (2.6)

and hence the significance pf is that it constitutes a dimensional constéappearing in the
pressurg characterizing the physical problem; this property is characteristic of self-similarity of
the second kind.It can be shown that these perfect fluid solutidfts o+ 1) cannot, in general,
admit any homothetic vectofs.

The perfect fluid solutions were studied in detail in Benoit and Cbleyfact, exact solutions
were obtained and the qualitative properties of the whole class of models were studied. In par-
ticular, in the pressure-free case we obtain the exact dust solution of the Tolman family studied by
Lynden-Bell and Lemd$ and Carter and Henriksénand we found that all solutions are
asymptotic to exact, power-lagiat) FRW models(which admit a homothejy

B. Solutions with S+ S=0

In Benoit and Coley(19989 we showed that the cas®+S=0, which implies thatS
=spe” %, could be factored out of the analysis as it could not lead to a perfect fluid solution. For
that reason, we consider it as a special case Hgrgs case is not contained in the geodesic
models studied above.

WhenS=sye * (i.e.,y=—1), the EFEs yield

¢=0, 2.7

whence we can choose coordinates so é34t=1, and
w=5y2e¥r 24+ (1-2¢) a2, (2.9
pi(X)=—s2e?r 2+ (2a—3)a" %2, (2.9
P 0=-[(1-a) (1= + ¢+ Jla"?t"% (2.10

The fluid described by these equations will further satisfydL3 in one of two cases. Eithér)

a=1, and the solution admits a homothetic vector(ior ¢y=1/2, a=3/2.
In the first case, i.eq=1, the solution is given by

ds?=—dt?+e?/dr?+ set~2d0?, (2.11)
with
w=(sy2+1-2¢)t72, (2.12
1= (S 2+t 72, (2.13
p.=— (Pt ? (2.14

where the functiony(x) is arbitrary.
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In the second case the solution is giv@fter a coordinate redefinitipry

ds?=—dt?+t~23dr2+t*3d0?, (2.15
with
w=pot ™43, (2.16
pi=—wu, (2.17
p.=0, (2.18

where uq is a constant. It can be easily shown that the mgRid5 does not admit a proper

homothetic vector. Curiously, cosmic strings satisfy “equations of state” of the forap,=0,
17

p, =0.

lll. SPECIAL CASES

There are a variety of models which satisfy additional constraints. We consider here two such
models.

A. Case A: Dimensional constants

If we assume thaP, =pg, a constant, then Eq§2.4) yield
Pi(x)=2(1+y)(po—Py(X)). (3.1)
This equation can be integrated to yield
Py(x)=po+ce >*S7?, (3.2

wherec is an arbitrary constant. Using this expressionfgr we obtain

W(x)= L[y(s—za)— a’py—ca’e 2*S7?], (3.3
a?(1+y)
and the differential equation
2y+3y?+2ay=—a®py— alce ¥*S 2, (3.9

Note that wherc=0 (i.e., P;=P, =pg, corresponding to a perfect fljidEq. (3.4) is related to
Eq. (2.56 in Benoit and Coley.
If we had begun the analysis of this section with the assumptiorRfap,, then Eqs(2.4)
automatically imply thaP, =P, =p,, the perfect fluid case considered in Benoit and Coley.
The pressurep, andp, are positive if the constants, andc are non-negative. The energy
conditions will constrain these constants furtir a given value ofx) through(3.3).
B. Case B: Equations of state

We can also consider the subclass of solutions which satisfy equations of state of the form:
pH:fH(/-L)! pL:fL(M)u (35)
for arbitrary functionsf; andf, . From Eqgs.(2.3), conditions(3.5 automatically yield

p)=cu and p,=c,u, (3.6)

wherec; andc, are constants. Substituting these conditions into the definit@#ds then yields
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p=pot2[Se] 2 me i (3.7
and the differential equation for.
2y+3y%+2ay=— a’Cyuo[ S&] 21 cLlen, (3.9

Once again we note that wham=c, (i.e., the perfect fluid cagewe recover Eq(2.5 as
expected.

A positive value for the constant, guarantees that the energy density is positivec|f
<puo and|c, |<ugq, the energy conditions are satisfied. The pressures are non-negatjweQif
andc, =0.

IV. ANALYSIS OF SPECIAL CASES

The behavior of each of the special cases derived in Sec. Il can be studied qualitatively since
each of the ordinary differential equations governing the model is autonomous.

The special cases(dimensional constant&and Bequations of stajecan be considered si-
multaneously using the following change of variables:

v=b[Se&] 2", (4.9)
whereb is a non-negative constant. The resulting system is then

y=— (3y?+2ay+k+), 4.2

v=—2nv(1+y). 4.3

Using these definitions, case A is characterizesbyl, k= a’p,, and case B is characterized by
n=1+c, /c, andk=0.

It is important to note that the invariant se&0 of Eqgs.(4.2)/(4.3) defines the perfect fluid
solutions. We also note thgt=0 represents the static solutions. Each of these cases is examined
in detail in Benoit and Coley.

If we consider only the case of positive pressures and positive energy density, we can impose
the necessarythough not necessarily sufficigntondition that the parameters in our equations
must satisfyk=0, n=1 andv=0. With these restrictions, we find that there are at most three
singular points at finite values. We note that 0 is an invariant set of the syste(#.2)/(4.3), as
is the setv>0. As a result we need only consider the dynanfésd hence the singular poinis
the half-planev=0.

The finite singular pointsy(,vy) are given by:

Q:=(3(—a+(a?-3k)*20),
Q2= (5(—a—(a?-3k)"20),
Qs=(-1,2a—3—K).

The nature of these singular points, which can be determined using standard tecHhitgpes)ds

upon the relationship between the parameterandk. The results are summarized in Table |I.
Note that only those singular points which are located in the physical phase space are listed in this
table. It is important to note that each of the cases I-1V is possible when considering the Eqs.
(4.2/(4.3) in case A. In case B, however, we find that only the cases lal§Bleahd (1) in Table

| yield consistent constraints on the parameter
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TABLE I. Summary of the nature of the finite singular points for the system
(4.2)/(4.3). “N/A” indicates that the given point is not located in the physi-
cal regionv=0. The two casesi) o?=3k, 2a—3>k and (i) a?<3Kk,
2a—3=k are omitted since they do not give any real solutionskfand «.

a®>3k

a?=3k a?<3k
2a—3=<k 2a—3>k 2a—3=<k 2a—3<k
| Il I} \Y
Q; sink sink saddle-node N/A
Q, source saddle £ Q) N/A
Q3 saddle N/A N/A N/A

We can complete the qualitative analysis of these two cases by considering the stability of the
singular points at infinity. To perform the analysis at infinity, we apply the following Poincare
transformation to our systei@.2)/(4.3) in order to compactify the phase space:

Yy 14

Y (1+y2+V2)1/2' (1+y2+V2)1/2

(4.9

In these new variables, the phase space has been compactified to the@égidn- (Y2+V?)
=0, and all infinite points of the original system are found on the boun@a#y0. The restriction
thatvy=0 implies thatv=0, and all finite singular points remain at finite value/afndV and are
of the same sign in the new coordinate systefm\).

The transformed Eqg4.1)/(4.2) are then given by:

Y'=3(4n—3)Y?V?+O[:Y+(2n—a)V]— 1O 3Y?+kV?]- 0O aY+ IV]-1k04,
(4.9

V'=-34n-3)Y3V+OYViV-(2n—a)Y]+ :®?YV[k—4n]-2nVO?3, (4.6)

wheref’=@f. There are four singular points at infinity located on the boundéry V2=1,
which are given by

R.=(0,=1), S.=(=1,0). 4.7

The pointsS.. correspond to perfect fluid solutions, aRd correspond to static solutions. A local
stability analysis shows that the poirs are both saddle®, is a nonhyperbolic point contain-
ing both stable and unstable manifolds for all valuesraindk. The stable manifold oR, lies
in an elliptic sector oR, and corresponds to homoclinic orbits. The fixed pétntis not in the
physical phase space.

The phase portraits in the compactified phase sp®ée-¥?><1,V=0) are given in Fig. 1.
From these portraits it is immediately evident that the only stable singular goiits to the past
and the futurgeither lie in theV=0 invariant set, occur at the infinite singular pdmt , or occur
at Qs (when it exists in the phase spacRecall that the invariant s&=0 represents the perfect
fluid solutions studied previouslywhere in the equivalent M;=0" case the solutions were
shown to asymptote towards a flat FRW model. The fixed geinhasy= 0, and hence is a static
solution. Finally, the fixed poin®; has the property=—1 (or S+ S=0), which was examined
in Sec. 11 B. Since all of the solutions in the phase space, and in particular those asymptoting to the
point Qz, have the property that,=P,(x)t "2, p, =P, (xX)t~2, andu=W(x)t "2, by continuity
so must the solution &5. Therefore the solution represented by the pQigtmust be given by
the metric(2.11).
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R+ R+

S- Q 2 Q, S+ s- - Q 2 Q, - S+
Case I Case I
R+ R+

S- ¢ Q * S+ s - | S+
Case I11 Case IV

FIG. 1. Phase portraits. The phase portraits for the sy$teBy(4.6) for various ranges of values of andk are given,
where the particular cases are as listed in Table I.

Consequently we see that in the analysis of the two cases considered in Sec. IllA and 111 B
above the asymptotic behavior is described by either a flat FRW perfect fluid model, a static
model, or by that of the metri2.11). In all cases these exact asymptotic models admit a homo-
thetic vector.

V. DISCUSSION
We note that in the cases studied in this paper the dynamics of the models is governed by a
system of the form:

y=— 1(3y?+2ay)+f(v), (5.1

v=—2np(1+y). (5.2

The variablev is defined by Eq(4.1) and the functionf(») depends on the specific case being
studied. In the cases considered in Sec. Ill we had that:

Case A: Dimensional Constantd (v)=— 3(v+ a?py).

Case B: Equations of Statef(v)=—1v.
The system5.1)/(5.2) results whenever we impose the condition

Pi(X)=—2a ?f(»). (5.3
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In the cases examined in Sec. lll it was shown that all solutions necessarily asymptote to an exact
solution admitting a homothetic vector. It is of interest to consider whether there are any possible
asymptotic states for the geodesic anisotropic models which satisfibEjjthat donot admit a
homothetic vector.

As was the case in Sec. IV, the perfect fluid solutions are located in the invariant efThe
definition of v requires that it be greater than or equal to zero. In the relevant phase space there are
then(at mosj three finite singular points of the systgf1)/(5.2). These singular points, equiva-
lent to those studied in Sec. IV, are given by:

Q:1=(3[—a+(«’+6f(0))"],0),
Qz2=(3[—a—(a’+6f(0))'?,0),

Qz=(—1f%32—a)).

The singular point€); and Q, represent perfect fluid models, a@} (as in Sec. IV is repre-
sented by the metri(2.11). In each case the model represented by the finite singular point admits
a homothetic vector.

The only possibility for the asymptotic behavior not to be governed by an exact homothetic
model is ther(i) the model is represented asymptotically by a periodic orbit in the phase space, or
(i) the model is represented by a singular point at infinity not located on one of the coordinate
axesy=0 ory=0.

In the first case we can impose necessary conditions for the existence of a periodic orbit. Any
periodic orbit in a plane must necessarily enclose a singular point. As a result we must have that
the pointQyg is in the phase space in which case we necessarily havé théd/2— a) is positive.

The energy conditions requiring that the pressures and density are positive will result in the further
condition thatf(»)=<0, and thereforer=3/2 andy=0. We consider the existence of a periodic
orbit which enclose®; by examining the horizontal and vertical isoclines of the systér)/

(5.2). The horizontal isoclines are located @ v=0, an invariant line, andii) y=—1. The
second case indicates that if there exists a periodic orbit about the @gititen there must be
vertical isoclines on either side of the line= —1. Solving Eq.(5.2), we find that the vertical
isoclines are given by

y.=1(—ax(a?+3f(v)?). (5.4)

Imposing the energy condition v) <0 and «=3/2, we find that they-values of the vertical
isoclines must satisfy

—1<y=Q0; (5.5

i.e.,y+ cannot take on values less thatl. Therefore, there can be no periodic orbits enclosing
the pointQ; if the energy conditions are to be satisfied.

If there is an asymptotic solution at infinite valuesyadnd/orv which is not homothetic then
the corresponding singular point at infinity must be such a0 or v+ 0. This will occur when
lim,_..f(v)»~2#0. In such cases the infinite fixed point may represent a nonhomothetic
asymptotic solution. Therefore, geodesic models for which(E®) and the energy conditions are

satisfied will not admit a nonhomothetic asymptotic solution whenevey Jigh(v) v~ 2 is exactly
zero.
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VI. OTHER MODELS

Additional anisotropic fluid models can be investigated. For example, we can consider the
case in which the source is a combinationagperfect fluid and a magnetic fiekhtisfying Egs.

(1.9). Assumingp=(y—1)u (wherey is a constant in the geodesic case we can immediately
derive the governing system as:

y=—3(3y*+2ay) - 30’7, 6.9
n=—41+n)yn—4(n—1)(3—2a)a" %y?, (6.2

wheren=—a~?(3y?+ 2ay+2y)=P, andn=1/y. The systen(6.1)/(6.2) is of a similar form to
Egs. (5.1 and(5.2) and can be analyzed using similar techniques. In the special gas&s(n
=1) anda=3/2, Eq.(6.2) can be integrated immediately and exact solutions can be obtained. We

note that at the equilibrium points of the syst¢t1)/(6.2), P,= constant F’HZO), and hence
from Egs.(1.9), (2.3) and (2.4 we have that

O < N 6.3
=5 (P. pH)_2t2(1+y)_ ; :

hence these equilibrium points correspond to perfect fluid models.

However, in order to study the physics of this particular model we notesthak H?/2 and
Egs.(6.1) and(6.2) need to be supplemented by an additional differential equéfitorH, derived
from Maxwell’'s equationsand an assumption on the form of the magnetic permeabhility,

Finally, we note that in the case in whieh= constant 7y (with an unrestricted equation of
statg it can be shown that the governing equations reduce to

y=— 1(3y?+2ay)— a?myIn(v), (6.4

v=—p(1+y). (6.5

This system is of the same form as that (6f1)/(5.2) with f(v)=—a?myIn(¥) and with the
constanin=13. Since(6.3)/(6.4) is of the same form we can immediately conclude that the only
asymptotic states of the system necessarily admit a homothetic vector. Note that in tHigidase
is not analytic atv=0; however the physical phase space ha<0.
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