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Anisotropic fluid spherically symmetric space–times admitting a kinematic self-
similar vector are investigated. The geodesic case is considered, and some special
subcases in which the anisotropic fluid satisfies additional physical conditions are
investigated in detail. A number of other special cases are studied. Particular atten-
tion is focused on the possible asymptotic behavior of the models, and it is shown
that the models considered always asymptote towards an exact homothetic solution,
which is in general either a perfect fluid model or a static solution. ©1999
American Institute of Physics.@S0022-2488~99!01602-3#

I. INTRODUCTION

In a recent paper spherically symmetric space–times which admit a kinematic self-similarity
of the second~or zeroth! kind were studied when the source of the gravitational field was assumed
to be a perfect fluid.1 In that paper several particular subclasses of models were studied in depth,
including the subcases ‘‘M150’’ and ‘‘ M250’’ ~which includes the static models as a further
subcase!. Note that these particular subcases refer to specific forms for the first integralm(r,t) of
the EFEs. The precise definitions of these subcases in terms ofm(r,t) are not necessary here; see
Benoit and Coley1 for more details. These subclasses of models, in which exact solutions were
obtained, were found to be of particular interest since their qualitative properties were represen-
tative of the asymptotic behavior of more general models.

The metric, in comoving coordinates, is given by

ds252e2fdt21e2cdr21r 2S2dV2, ~1.1!

where the functionsf, c andS and depend only on the self-similarity coordinate

j5r ~at !21/a, ~1.2!

wherea is the self-similar index~and we shall assume henceforward thataÞ0). The kinematic
self-similar generator is given by2

j5ja
]

]xa
5at

]

]t
1r

]

]r
. ~1.3!

It follows from ~1.1! and ~1.3! that

Lj hab52hab , ~1.4!

a!Electronic mail: pbenoit@stfx.ca
b!Electronic mail: aac@mscs.dal.ca

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 5 MAY 1999

24580022-2488/99/40(5)/2458/12/$15.00 © 1999 American Institute of Physics

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

15:45:28



and

Lj ua5aua , ~1.5!

where hab5gab1uaub is the projection tensor. Hencej, as given by~1.3! with aÞ1, is a
kinematic self-similarvector and corresponds to the natural relativistic counterpart of self-
similarity of the more general second kind.3 We note that in the casea51, j is a homothetic
vector, corresponding to self-similarity of the first kind. We shall adopt the notation and termi-
nology of Benoit and Coley1 and for brevity we shall not repeat here the motivation or the
discussion of self-similarity given in that paper.

In this paper we shall generalize the perfect fluid solutions in Benoit and Coley4 to the case of
an anisotropic fluid, in which stress-energy tensor is given by

Tab5muaub1pinanb1p'~gab1uaub2nanb!, ~1.6!

whereua is the comoving fluid velocity vector andna is a unit spacelike vector orthogonal toua

~i.e., uana50). The stress-energy tensor~1.6! possesses and eigenvalue degeneracy~and hence is
not the most general anisotropic fluid stress-energy tensor! consistent with the assumption of
spherical symmetry~see metric~1.1!!. For the metric~1.1!, n is given by

n5na
]

]xa
5e2c

]

]r
. ~1.7!

Using Eqs.~1.1!–~1.3!, it therefore follows immediately that

Lj na5na ~1.8!

is satisfied identically, so that the form forn is consistent with the similarity assumption. The
scalarspi andp' are the pressures parallel to and perpendicular tona, respectively, andm is the
energy-density. The perfect fluid case corresponds to the case in whichpi5p' .

Fluids with an anisotropic pressure have been studied for many reasons~see the discussion in
Coley and Tupper!.5 For example, in several cases in which the stress-energy tensor is more
general than that of a perfect fluid~due to, e.g., a two perfect fluid source, an imperfect fluid
source or in the region of interaction of two colliding plane impulsive gravitation waves!, the
energy-momentum tensor is formally of the form~1.6!. In particular, a strong magnetic field in a
plasma in which the particle collision density is low can cause the pressure along and perpendicu-
lar to the magnetic field lines to be unequal.6 If the source of the gravitational field can be
represented by the sum of a perfect fluid and a local magnetic fieldHa5Hna ~as measured byua),
then the stress-energy tensor can be written in the form~1.6! with

m5m̄1p, pi5 p̄2p, p'5 p̄1p, ~1.9!

where p5 1
2lH2 and l is the magnetic permeability. Other possible sources of anisotropic

stresses, in addition to cosmological magnetic and electric fields, include, for example, populations
of collisionless particles like gravitons,7 photons8 or relativistic neutrinos,9 Yang–Mills fields,10

axion fields in low-energy string theory,11 long wavelength gravitational waves,12 and topological
defects like global monopoles, cosmic strings, and domain walls.13–15

Most anisotropic models that have been studied are also spherically symmetric~see references
cited in Ref. 5!, and have applications especially in relativistic astrophysics~e.g., stellar models!;
in particular, static anisotropic spheres have received much attention.5 In addition, such models
with additional symmetries, including homothetic vectors and conformal Killing vectors, have also
been studied~see Refs. 6, 5, and references within!.

For the metric~1.1! the Einstein field equations~EFEs! yield the following expressions for the
physical variables:
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m5
W1~x!

r 2
1

W2~x!

t2
,

pi5
Pi

1~x!

r 2
1

Pi
2~x!

t2
, ~1.10!

p'5
P'

1 ~x!

r 2
1

P'
2 ~x!

t2
,

where

W1~x!5
1

S2
2e22c@~11y!212yḟ#,

W2~x!5
e22f

a2
y@y12ċ#,

Pi
1~x!52

1

S2
1e22c~11y!@11y12ḟ#,

Pi
2~x!52

e22f

a2
@2ẏ12ay13y222yḟ#,

P'
1 ~x!5e22c@2yḟ1ḟ21f̈2ḟċ#,

P'
2 ~x!52

e22f

a2
@~a21!y12yċ1ċ1aċ1ċ21c̈2ḟċ#, ~1.11!

and wherey[Ṡ/S, x[ ln j and ḟ 5d f /dx. The final EFE~that ensures that the Einstein tensor is
diagonal! becomes

ẏ5yḟ1~ ċ2y!~11y!. ~1.12!

Clearly there exists a variety of anisotropic fluid spherically symmetric kinematic self-similar
space–times satisfying Eqs.~1.10!-~1.12!.

If we assume that the physical quantities also obey similarity conditions of the form

Lj m5am, Lj pi5bipi , Lj p'5b'p' , ~1.13!

wherea, bi andb' are constants, then it can easily be shown that:

~i! W150 or W250

and

~ii ! Pi
150 or Pi

250

and

~iii ! P'
1 50 or P'

2 50.

2460 J. Math. Phys., Vol. 40, No. 5, May 1999 P. M. Benoit and A. A. Coley

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

15:45:28



The special subcasesWi50 with eitherPi
i̇Þ0 or P'

i̇ Þ0 (i 51,2) are not of physical interest. The
special subcaseW15Pi

15P'
1 50 corresponds to the special subcase ‘‘M150.’’ Finally, the spe-

cial subcaseW25Pi
25P'

2 50 is related to the special subcase ‘‘M250,’’ and the static models
are included within this subclass of models.

It turns out~Benoit and Coley,1 in particular, see the Appendix therein! that all static spheri-
cally symmetric kinematic self-similar solutions belong to the subclass ‘‘M250,’’ regardless of
the form of the stress-energy tensor, and, moreover, that all such static spacetimes necessarily
admit ahomothetic vector. Consequently, no new static anisotropic solutions can be obtained that
admit a proper kinematic self-similarity. Hence we shall concentrate here on the special subcase
‘‘ M150.’’

II. GEODESIC MODELS

The geodesic case, in which the acceleration of the comoving fluid velocity vector is zero, is
characterized byḟ50 and is equivalent to the special subcase ‘‘M150’’ considered in Benoit
and Coley.1 In this model, Eq.~1.12! gives ~for S1ṠÞ0)

e2f51, ċ5
Ṡ1S̈

S1Ṡ
5

ẏ1y21y

11y
, ~2.1!

whence the metric~1.1! becomes

ds252dt21~S1Ṡ!2dr21r 2S2dV2. ~2.2!

Assuming the first of conditions~2.1!, the second condition guarantees the resulting Einstein
tensor is diagonal and hence the remaining EFEs simply yield the following expressions form, pi

andp' :

m5W~x!t22, pi5Pi~x!t22, p'5P'~x!t22, ~2.3!

~where we have now omitted the index ‘‘2’’ for convenience!, so that Eqs.~1.13! are automati-
cally satisfied witha5bi5b'522a, where

W~x![
y

a2~11y!
~3y13y212ẏ!,

Pi~x![2~3y212ay12ẏ!/a2, ~2.4!

P'~x![2
~11y!~2ẏ13y212ay!13yẏ1a ẏ1 ÿ

a2~11y!
.

Equations~2.2!–~2.4! represent a class of anisotropic fluid solutions depending upon the arbitrary
function S(x).

We note that the following relationships result from the definitions given in Eqs.~2.3!:

P'5Pi1
Ṗi

2~11y!
,

W5
2y@~2a23!y1a2Pi#

a2~11y!
.
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A. Perfect fluid models

In the perfect fluid case we have thatPi5P' , and hence from Eqs.~2.4! we obtain the
following differential equation for the functiony(x) @and henceS(x)# in the metric~2.2!:

2ẏ13y212ay1a2p050. ~2.5!

In Eq. ~2.5! p0 is an arbitrary integration constant. In the perfect fluid casem is obtained from Eqs.
~2.3! and ~2.4! and we have that

p5p0t22, ~2.6!

and hence the significance ofp0 is that it constitutes a dimensional constant~appearing in the
pressure! characterizing the physical problem; this property is characteristic of self-similarity of
the second kind.3 It can be shown that these perfect fluid solutions~for aÞ1) cannot, in general,
admit any homothetic vectors.4

The perfect fluid solutions were studied in detail in Benoit and Coley;1 in fact, exact solutions
were obtained and the qualitative properties of the whole class of models were studied. In par-
ticular, in the pressure-free case we obtain the exact dust solution of the Tolman family studied by
Lynden-Bell and Lemos16 and Carter and Henriksen,2 and we found that all solutions are
asymptotic to exact, power-law~flat! FRW models~which admit a homothety!.

B. Solutions with S1Ṡ50

In Benoit and Coley~1998! we showed that the caseS1Ṡ50, which implies thatS
5s0e2x, could be factored out of the analysis as it could not lead to a perfect fluid solution. For
that reason, we consider it as a special case here.~This case is not contained in the geodesic
models studied above.!

WhenS5s0e2x ~i.e., y521), the EFEs yield

ḟ50, ~2.7!

whence we can choose coordinates so thate2f51, and

m5s0
22e2xr 221~122ċ !a22t22, ~2.8!

pi~x!52s0
2e2xr 221~2a23!a22t22, ~2.9!

p'~x!52@~12a!~12ċ !1ċ21c̈#a22t22. ~2.10!

The fluid described by these equations will further satisfy Eq.~1.13! in one of two cases. Either~i!
a51, and the solution admits a homothetic vector, or~ii ! ċ51/2, a53/2.

In the first case, i.e.,a51, the solution is given by

ds252dt21e2cdr21s0t22dV2, ~2.11!

with

m5~s0
221122ċ !t22, ~2.12!

pi52~s0
2211!t22, ~2.13!

p'52~ ċ21c̈ !t22, ~2.14!

where the functionc(x) is arbitrary.
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In the second case the solution is given~after a coordinate redefinition! by

ds252dt21t22/3dr21t4/3dV2, ~2.15!

with

m5m0t24/3, ~2.16!

pi52m, ~2.17!

p'50, ~2.18!

wherem0 is a constant. It can be easily shown that the metric~2.15! does not admit a proper
homothetic vector. Curiously, cosmic strings satisfy ‘‘equations of state’’ of the formm1pi50,
p'50.17

III. SPECIAL CASES

There are a variety of models which satisfy additional constraints. We consider here two such
models.

A. Case A: Dimensional constants

If we assume thatP'5p0 , a constant, then Eqs.~2.4! yield

Ṗi~x!52~11y!~p02Pi~x!!. ~3.1!

This equation can be integrated to yield

Pi~x!5p01ce22xS22, ~3.2!

wherec is an arbitrary constant. Using this expression forPi , we obtain

W~x!5
y

a2~11y!
@y~322a!2a2p02ca2e22xS22#, ~3.3!

and the differential equation

2ẏ13y212ay52a2p02a2ce22xS22. ~3.4!

Note that whenc50 ~i.e., Pi5P'5p0 , corresponding to a perfect fluid! Eq. ~3.4! is related to
Eq. ~2.56! in Benoit and Coley.1

If we had begun the analysis of this section with the assumption thatPi5p0 , then Eqs.~2.4!
automatically imply thatPi5P'5p0 , the perfect fluid case considered in Benoit and Coley.1

The pressurespi andp' are positive if the constantsp0 andc are non-negative. The energy
conditions will constrain these constants further~for a given value ofa) through~3.3!.

B. Case B: Equations of state

We can also consider the subclass of solutions which satisfy equations of state of the form:

pi5 f i~m!, p'5 f'~m!, ~3.5!

for arbitrary functionsf i and f' . From Eqs.~2.3!, conditions~3.5! automatically yield

pi5cim and p'5c'm, ~3.6!

whereci andc' are constants. Substituting these conditions into the definitions~2.4! then yields
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m5m0t22@Sex#22~12c' /ci ! ~3.7!

and the differential equation fory:

2ẏ13y212ay52a2cim0@Sex#22~12c' /ci !. ~3.8!

Once again we note that whenci5c' ~i.e., the perfect fluid case!, we recover Eq.~2.5! as
expected.

A positive value for the constantm0 guarantees that the energy density is positive. Ifuciu
<m0 and uc'u<m0 , the energy conditions are satisfied. The pressures are non-negative ifci>0
andc'>0.

IV. ANALYSIS OF SPECIAL CASES

The behavior of each of the special cases derived in Sec. III can be studied qualitatively since
each of the ordinary differential equations governing the model is autonomous.

The special cases A~dimensional constants! and B~equations of state! can be considered si-
multaneously using the following change of variables:

n5b@Sex#22n, ~4.1!

whereb is a non-negative constant. The resulting system is then

ẏ52 1
2 ~3y212ay1k1n!, ~4.2!

ṅ522nn~11y!. ~4.3!

Using these definitions, case A is characterized byn51, k5a2p0 , and case B is characterized by
n511c' /ci andk50.

It is important to note that the invariant setn50 of Eqs.~4.2!/~4.3! defines the perfect fluid
solutions. We also note thaty50 represents the static solutions. Each of these cases is examined
in detail in Benoit and Coley.1

If we consider only the case of positive pressures and positive energy density, we can impose
the necessary~though not necessarily sufficient! condition that the parameters in our equations
must satisfyk>0, n>1 andn>0. With these restrictions, we find that there are at most three
singular points at finite values. We note thatn50 is an invariant set of the system~4.2!/~4.3!, as
is the setn.0. As a result we need only consider the dynamics~and hence the singular points! in
the half-planen>0.

The finite singular points (y0 ,n0) are given by:

Q15~ 1
3 ~2a1~a223k!1/2,0!,

Q25~ 1
3 ~2a2~a223k!1/2,0!,

Q35~21,2a232k!.

The nature of these singular points, which can be determined using standard techniques,18 depends
upon the relationship between the parametersa and k. The results are summarized in Table I.
Note that only those singular points which are located in the physical phase space are listed in this
table. It is important to note that each of the cases I–IV is possible when considering the Eqs.
~4.2!/~4.3! in case A. In case B, however, we find that only the cases labeled~I! and~II ! in Table
I yield consistent constraints on the parametera.
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We can complete the qualitative analysis of these two cases by considering the stability of the
singular points at infinity. To perform the analysis at infinity, we apply the following Poincare´
transformation to our system~4.2!/~4.3! in order to compactify the phase space:

Y5
y

~11y21n2!1/2
, V5

n

~11y21n2!1/2
. ~4.4!

In these new variables, the phase space has been compactified to the regionQ2512(Y21V2)
>0, and all infinite points of the original system are found on the boundaryQ50. The restriction
thatn>0 implies thatV>0, and all finite singular points remain at finite values ofY andV and are
of the same sign in the new coordinate system (Y,V).

The transformed Eqs.~4.1!/~4.2! are then given by:

Y85 1
2 ~4n23!Y2V21Q@ 1

2 Y1~2n2a!V#2 1
2 Q2@3Y21kV2#2Q3@aY1 1

2 V#2 1
2 kQ4,

~4.5!

V852 1
2 ~4n23!Y3V1QYV@ 1

2 V2~2n2a!Y#1 1
2 Q2YV@k24n#22nVQ3, ~4.6!

where f 85Q ḟ . There are four singular points at infinity located on the boundaryY21V251,
which are given by

R65~0,61!, S65~61,0!. ~4.7!

The pointsS6 correspond to perfect fluid solutions, andR6 correspond to static solutions. A local
stability analysis shows that the pointsS6 are both saddles.R1 is a nonhyperbolic point contain-
ing both stable and unstable manifolds for all values ofa andk. The stable manifold ofR1 lies
in an elliptic sector ofR1 and corresponds to homoclinic orbits. The fixed pointR2 is not in the
physical phase space.

The phase portraits in the compactified phase space (V21Y2<1,V>0) are given in Fig. 1.
From these portraits it is immediately evident that the only stable singular points~both to the past
and the future! either lie in theV50 invariant set, occur at the infinite singular pointR1 , or occur
at Q3 ~when it exists in the phase space!. Recall that the invariant setV50 represents the perfect
fluid solutions studied previously,1 where in the equivalent ‘ ‘M150’’ case the solutions were
shown to asymptote towards a flat FRW model. The fixed pointR1 hasy50, and hence is a static
solution. Finally, the fixed pointQ3 has the propertyy521 ~or S1Ṡ50), which was examined
in Sec. II B. Since all of the solutions in the phase space, and in particular those asymptoting to the
point Q3 , have the property thatpi5Pi(x)t22, p'5P'(x)t22, andm5W(x)t22, by continuity
so must the solution atQ3 . Therefore the solution represented by the pointQ3 must be given by
the metric~2.11!.

TABLE I. Summary of the nature of the finite singular points for the system
~4.2!/~4.3!. ‘‘N/A’’ indicates that the given point is not located in the physi-
cal regionn>0. The two cases~i! a253k, 2a23.k and ~ii ! a2,3k,
2a23>k are omitted since they do not give any real solutions fork anda.

a2.3k
a253k a2,3k

2a23<k 2a23.k 2a23<k 2a23,k
I II III IV

Q1 sink sink saddle-node N/A
Q2 source saddle ([ Q1) N/A
Q3 saddle N/A N/A N/A
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Consequently we see that in the analysis of the two cases considered in Sec. III A and III B
above the asymptotic behavior is described by either a flat FRW perfect fluid model, a static
model, or by that of the metric~2.11!. In all cases these exact asymptotic models admit a homo-
thetic vector.

V. DISCUSSION

We note that in the cases studied in this paper the dynamics of the models is governed by a
system of the form:

ẏ52 1
2 ~3y212ay!1 f ~n!, ~5.1!

ṅ522nn~11y!. ~5.2!

The variablen is defined by Eq.~4.1! and the functionf (n) depends on the specific case being
studied. In the cases considered in Sec. III we had that:

Case A: Dimensional Constants :f (n)52 1
2(n1a2p0).

Case B: Equations of State :f (n)52 1
2n.

The system~5.1!/~5.2! results whenever we impose the condition

Pi~x!522a22f ~n!. ~5.3!

FIG. 1. Phase portraits. The phase portraits for the system~4.5!/~4.6! for various ranges of values ofa andk are given,
where the particular cases are as listed in Table I.
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In the cases examined in Sec. III it was shown that all solutions necessarily asymptote to an exact
solution admitting a homothetic vector. It is of interest to consider whether there are any possible
asymptotic states for the geodesic anisotropic models which satisfy Eq.~5.3! that donot admit a
homothetic vector.

As was the case in Sec. IV, the perfect fluid solutions are located in the invariant setn50. The
definition ofn requires that it be greater than or equal to zero. In the relevant phase space there are
then~at most! three finite singular points of the system~5.1!/~5.2!. These singular points, equiva-
lent to those studied in Sec. IV, are given by:

Q15~ 1
3 @2a1~a216 f ~0!!1/2#,0!,

Q25~ 1
3 @2a2~a216 f ~0!!1/2#,0!,

Q35~21,f 21~3/22a!!.

The singular pointsQ1 and Q2 represent perfect fluid models, andQ3 ~as in Sec. IV! is repre-
sented by the metric~2.11!. In each case the model represented by the finite singular point admits
a homothetic vector.

The only possibility for the asymptotic behavior not to be governed by an exact homothetic
model is then~i! the model is represented asymptotically by a periodic orbit in the phase space, or
~ii ! the model is represented by a singular point at infinity not located on one of the coordinate
axesn50 or y50.

In the first case we can impose necessary conditions for the existence of a periodic orbit. Any
periodic orbit in a plane must necessarily enclose a singular point. As a result we must have that
the pointQ3 is in the phase space in which case we necessarily have thatf 21(3/22a) is positive.
The energy conditions requiring that the pressures and density are positive will result in the further
condition thatf (n)<0, and thereforea>3/2 andy>0. We consider the existence of a periodic
orbit which enclosesQ3 by examining the horizontal and vertical isoclines of the system~5.1!/
~5.2!. The horizontal isoclines are located at~i! n50, an invariant line, and~ii ! y521. The
second case indicates that if there exists a periodic orbit about the pointQ3 then there must be
vertical isoclines on either side of the liney521. Solving Eq.~5.2!, we find that the vertical
isoclines are given by

y65 1
3 ~2a6~a213 f ~n!!1/2!. ~5.4!

Imposing the energy conditionsf (n)<0 and a>3/2, we find that they-values of the vertical
isoclines must satisfy

21<y<0; ~5.5!

i.e., y6 cannot take on values less than21. Therefore, there can be no periodic orbits enclosing
the pointQ3 if the energy conditions are to be satisfied.

If there is an asymptotic solution at infinite values ofy and/orn which is not homothetic then
the corresponding singular point at infinity must be such thatyÞ0 or nÞ0. This will occur when
limn→` f (n)n22Þ0. In such cases the infinite fixed point may represent a nonhomothetic
asymptotic solution. Therefore, geodesic models for which Eq.~5.3! and the energy conditions are
satisfied will not admit a nonhomothetic asymptotic solution whenever limn→` f (n)n22 is exactly
zero.
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VI. OTHER MODELS

Additional anisotropic fluid models can be investigated. For example, we can consider the
case in which the source is a combination ofa perfect fluid and a magnetic fieldsatisfying Eqs.
~1.9!. Assumingp̄5(g21)m̄ ~whereg is a constant!, in the geodesic case we can immediately
derive the governing system as:

ẏ52 1
2 ~3y212ay!2 1

2a
2h, ~6.1!

ḣ524~11n!yh24~n21!~322a!a22y2, ~6.2!

whereh[2a22(3y212ay12ẏ)5Pi andn[1/g. The system~6.1!/~6.2! is of a similar form to
Eqs. ~5.1! and ~5.2! and can be analyzed using similar techniques. In the special casesg51 (n
51) anda53/2, Eq.~6.2! can be integrated immediately and exact solutions can be obtained. We
note that at the equilibrium points of the system~6.1!/~6.2!, Pi5 constant (Ṗi50), and hence
from Eqs.~1.9!, ~2.3! and ~2.4! we have that

p5
1

2
~p'2pi!5

Ṗi

2t2~11y!
50; ~6.3!

hence these equilibrium points correspond to perfect fluid models.
However, in order to study the physics of this particular model we note thatp5lH2/2 and

Eqs.~6.1! and~6.2! need to be supplemented by an additional differential equation~for H, derived
from Maxwell’s equations! and an assumption on the form of the magnetic permeability,l.

Finally, we note that in the case in whichp5constant5p0 ~with an unrestricted equation of
state! it can be shown that the governing equations reduce to

ẏ52 1
2 ~3y212ay!2a2p0 ln~n!, ~6.4!

ṅ52n~11y!. ~6.5!

This system is of the same form as that of~5.1!/~5.2! with f (n)52a2p0 ln(n) and with the
constantn5 1

2. Since~6.3!/~6.4! is of the same form we can immediately conclude that the only
asymptotic states of the system necessarily admit a homothetic vector. Note that in this casef (n)
is not analytic atn50; however the physical phase space hasn.0.
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