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Cosmic microwave background and scalar-tensor theories of gravity
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We show that if all observers see an isotropic cosmic microwave background in an expanding geodesic
perfect fluid spacetime within a scalar-tensor theory of gravity, then that spacetime must be isotropic and
spatially homogeneous. This result generalizes the Ehlers-Geren-Sachs theorem of general relativity, and serves
to underpin the important result that any evolving cosmological model in a scalar-tensor theory that is com-
patible with observations must be almost Friedmann-LeeRobertson-Walker.
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I. INTRODUCTION usual tensor fields present in Einstein’s theory. Such theories
of gravitation, and especially the simple Brans-Dicke theory
The extremely high isotropy of the cosmic microwave (BDT) of gravity [7], are perhaps the most natural alterna-
background(CMB), which is isotropic to one part in 20  tives to GR. Observational limif$8] on the present value of
provides the strongest evidence that the Universe is isotropi¢he Brans-Dicke paramedew, need not constrain the value
about us. Unfortunately, the spatial homogeneity of the Uniof » at early times in more general scalar-tensor theories
verse cannot then be inferréffom our observations of the (than BDT) with a variablew(¢) [9]. Hence, more recently
CMB) without the Copernican principléor some equiva- there has been greater focus on the early Universe predic-
lent). However, if we assume the Copernican principle, intions of scalar-tensor theories of gravity. Scalar-tensor theo-
that we assume that all observers in the Universe see thées with a “free” scalar field are perhaps not well motivated
CMB to be as isotropic as we see it, we can then ask: can waince, often, quantum corrections produce interactions result-
infer spatial homogeneity on the basis of the CMB observaing in a non-trivial potential (¢).
tions alone? The first attempt to answer this question within Scalar-tensor gravity theory is currently of particular in-
general relativity (GR) resulted in a theorem by Ehlers, terest since such theories occur as the low-energy limit in
Geren and Sach&GS[1]) which states that if all observers supergravity theories from string theofyl0] and other
in a dust universe see an isotropic radiation field then thahigher-dimensional gravity theori¢$l]. Perhaps cosmology
spacetime is spatially homogeneous and isotropids the ideal setting in which to study possible stringy effects.
[Friedmann-Lemdane-Robertson-WalketFLRW)], in which ~ However, lacking a full non-perturbative formulation which
the isotropic radiation field may be implicitly identified with allows a description of the early Universe close to the Planck
the CMB. time, it is necessary to study classical cosmology prior to the
The EGS theorem can be generalized trivially to the casgrand unified theory epoch by utilizing the low-energy effec-
of a geodesic and barotropic perfect flj]. However, as tive action induced by string theory. To lowest order in the
has been emphasizé8,4] the resulting spacetime will be inverse string tension the tree-level effective action in four
FLRW only if the matter content is of perfect fluid form and dimensions for the massless fields includes the non-
the observers are geodesic and irrotational. Indeed, the EGBinimally coupled graviton, the scalar dilaton and an anti-
theorem has recently been investigated in inhomogeneowymmetric rank-two tensor resulting in a four-dimensional
universe models with non-geodesic obsery8isinhomoge-  scalar-tensor theory of gravity, thereby generalizing GR by
neous spacetimes have been found which also allow everycluding other massless fields. As a result, BDT includes the
observer to see an isotropic CMB. It has also been showdilaton-graviton sector of the string effective action as a spe-
that a significant subset of these models are consistent wittial case = —1) [10].
other observational constraints, regardless of observer posi- The general form of the extended gravitational action in
tion [5]. This means that these models are consistent witlscalar-tensor theories is
observations even when the Copernican principle is taken

) - L . ) 1
into account—and yet the models are significantly inhomo o FJ d4x\/—_g[¢R— ()

geneous. 7(V¢)2_U(¢)+2£matte :

The purpose of this paper is to investigate cosmological (1)
models which allow an isotropic radiation field in more gen-
eral theories of gravitythan GR. In particular, we shall where L. iS the Lagrangian for the matter fields, which
study scalar-tensor theories of gravii6;7], in which gravity  we shall assume here corresponds to a comoving perfect
is mediated by a long-range scalar field in addition to thefluid. We use units in whiclt=G=1. BDT corresponds to
the particular choice of) =0 andw= const. (strictly speak-
ing, U(¢®) must be set to zero in order to ensure a Newtonian
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but w=0 is equivalent to higher-order gravity theorig®2] = without change. The first part of conditidb) allows us to

with Yukawa type corrections to the Newtonian potential.  defineV,Q=u,— % 6u,, for some scalar functio® (propor-
The field equations, obtained by varying the action®&#. tional to the logarithm of the energy density of the radiatjon

with respect to the metric and the fied are so we see that the first conditi@h) is equivalent to
8 ) T .
_°" el u,=V,Q, 6=3Q, 6
Gap= ) Tapt ¢2 a aQ Q (6)
) and it follows that spacetimes admitting an isotropic radia-
X(VadVpdp—30apVcpV o) tion field are conformally stationarias may be seen by con-
1 _ c sidering a conformal transformation of the congruence, with
T (VaVod—GanVeV ) e? as the conformal factor multiplying a stationary metric,
—19.0U(9) (20 with the velocity fields of the two spacetimes parallel—see
[24]).
. ., adu We shall restrict our attention to the case in which the
(3+2w)V,Vip=87T—-V,0V ¢+@ (3 physical fluid is geodesiti.e., acceleration-freewhich then
implies that the rotation ofi®, w,,, must also vanish: fol-
where the energy-momentum tendd’=2(8Lmated 9ap),  lOWING the argument in3], from Eq.(6) we can write
will take the form of a perfect fluifisee Eq(8), below]. It is L
known that scalar-tensor theories can be rewritten in the con- u,=VvV,Q=0

formally related “Einstein” frame. However, we shall not do

this here and we shall work in the so-called “Jordan” frame.so that

In the scalar-tensor gravity theories the principle of equiva-

lence is guaranteed by requiring that all matter fields are OZ%[anF%[ﬁmQ:wbaQ:%wabB, @)

minimally coupled to the metricg,,. Thus energy-

momentum is conserved: and we see thab,,=0 when6+0. In this case there exist

a comoving coordinates in which the metric takes the form

VT ap=0. (4) given in[15].

In the following section we prove thah scalar-tensor o
theories of gravity, the only geodesic perfect fluid spacetimes B. The matter and the Einstein tensor
admitting an isotropic radiation field are non-expanding or  We are assuming the matter may be described by a perfect
have a Robertson-Walker (RW) geomeffize procedure is fluid, so the energy momentum tensor has the form:
to first show that the fluid congruence must be irrotational,
from which it follows from the field equations that the effec- Tap= UaUp+ 3 uhap+ pUgUp+ Phyp, (8)
tive energy flux of the Einstein tensddiscussed below
must vanish. Further study of the evolution of the effectivei-€., the matter is a mixture of radiatiéwhich may, without
anisotropic pressure tensor reveals that it too must vanish ¢@ss of generality, be considered as a test field, thereby con-
the spacetime must be stationary. Thus we arrive at the aboJ#buting nothing to the gravitational fielcand some other

conclusion. type of perfect fluid satisfying/ ,p=0 [which, via Eq.(4),
ensures the observers are geode3ibe Einstein tensor must
Il. SPACETIMES ADMITTING AN ISOTROPIC then satisfy Eq(2), with the matter given by Eq8).
RADIATION FIELD In general, the Einstein tensor can formally be decom-

A. Isotropic radiation and kinematics posed with respect to a timelike vector fiald according to

In GR, assuming that all observers on some congruence Gap=uuaUp+ p*hap+ a5 up+ g5 U, + mop=Tag,
u? see an exactly isotropic radiation field, this velocity field 9
has two important properties:

_ where
Va(Up — 3 0ug)) =0,
qcfu=0, hzf=0, #MyP=0. (10
O'ab:O, (5) off - . . .
T,p IS now aneffectiveenergy-momentum tensor, which is

where6, u? ando,, are, respectively, the expansion, accel-not related to the physical fluid given by E@) other than

eration and the shear for the timelike congruemée(we by Eq.(2). In this formal decompositiop.®”, p, 3" and
follow the notation of[13] throughou}. This “isotropic ra- wjf,‘; are given by

diation field theorem” may be derived from the Einstein-

Boltzmann equations for photons in a curved spacetime  u®"=G ,uduP, (11)
[13,1,9. As the theorem does not involve Einstein’s field

equations, it may be carried over to scalar-tensor theories pefi=1h3bG,,, (12
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qgff: —h, G qu, (13)  tointerchange the order of “time” and “space” derivatives
of scalars. Equatiofil8) may be integrated to give
7en=h"hpIG 4= 3 (h°Geg)hap=Gapy - (14 -
. | Vah=D()F,, (20)
(Angled brackets denote the projected, symmetric, and trace-
free part of tensors, as defined by Efj4); see[13].) Fora  where
fluid with four-velocity u?, these quantities denote, via the

field equations, the energy density, isotropic pressure, energy d¢
flux and anisotropic pressure, respectively, as measured by O(p)=exp — © 5 ) (21)

an observer comoving with the fluid. Using this decomposi-

tion, we may decompose E) into the effectiveenergy g ra s an arbitrary spatial vector field such that=0
density and pressure, energy flux and anisotropic pressure, ueF, . Now thaté must satisfy Eq(20), the total effective

Using this decomposition of Eq2), given by EAs.(9—  anisotropic pressure tensor from E¢@) and (14),
(14), we may now use the field equations of GR in the 1

+3 covariant formalism[13], but replacing the relevant 1o - 0~ -
guantities with their effective counterpartse., so thatu WSE:_V(aVb>¢+ —V<a¢Vb>¢, (22
—>,u,9ﬁ, etc). ¢ ¢*
Whenu, and w,, are zero, Eq(5) becomes becomes
V[a(ﬁub])=u[bVa]0=O, P
eff =

~ . Ton=—"VaFp . 23

which implies(sinceV 6=V ,6— 6u,) that b g @b 23
hV5aH=0 (15) In order to proceed, let us now use the field equations to

find further restrictions onp. From the evolution equation
(i.e., the expansion is spatially homogeneo#&#som the con-  for the electric Weyl tensor, and the shear evolution equation,
straint equation relating the divergence of the shear to othewve obtain
kinematical quantitie§Eq. (32) in [13]] we see that any en-
ergy flux component of the Einstein tengor, equivalently, Eab=3T5p (24)
of T with respect to the perfect fluid velocity field must

vanish: so therefore

2~ i =—20mh. (25
_ _ (ab) 3 b
qgﬁ—gvae—o. (16) 2 2 | o
However, from Eq(23) we may calculate the time derivative
However, from Eq(2), and using Eq(13), we see that the of m,p,
effective energy flux of the Einstein tensor is
~_eff _

D[ g - -
A=~ Glayp’= (Voo 16— (I §) 1= V1) =0. Tan =g | T gLVt (VaFy) [ (20
a7

i i i Using the Ricci identities, and the fact trﬁ;<bc>duaFd=O
Note that we now have a spacetime whose Einstein tensgf or case. we find that

may be written, using Eqg11)—(14), as a fluid with zero

heat flux with respect to a geodesic, shearfree and irrotational = _ 1

congruence; hence, the effective anisotropic pressure vanish- (ViaFp)' = =50V (aFp), (27)
ing is a necessary and sufficient condition for the spacetime . '
to be RW[13,15, and we now show that this must be the and so, using Eq$25),(26), we find that
case. )
¢ 1 1=
$(1+w)—§9}V<an>=O. (28)

C. Proof of the main result

From Eq.(17) we see that these spacetimes must satisfy ~ o off
Hence we have th&t ;F,y=0, which implies thatr;,=0

(g $) =—w(n (;S)'AV‘ b (19) and consequently the spacetime is RW, or

a a¥

in order to admit an isotropic radiation field, where we have b

used the identity 0:35(1+“’)' (29)
VaE=h2(Vpé) = Elat 2OV o+ 022V &+ ape®V O, If we now take the spatial gradient of this expression we

(19) obtain, using Eq(17),
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_ ~ the Brans-Dicke field equatiof8) to substitute foiV,V2¢,
0=V, 0=30'-V, ¢, (300  we obtain two expressions which can be written, using the
¢ equations above, as a sum of terms each of which has a
. - articular (separablg dependence on time, space or a func-
where o'=dw/dé. Now, if V,¢$=0, then map=0, and 'Ei)onal depengence ofh. Féetting these two exgressions equal
again the spacetime is RW. =0 then the expansion is to zero, it is then straightforward to show that these two
zero, and the spacetime is stationpigcall that if=0 then  equations can only be satisfied in general fE ¢(t).
the rotation need not vanish E€f)]. The only other possi- Hence it follows that all physical quantities can only depend

bility remaining is thatw is constant and tha¥,¢/¢=0. on time alone.
Integrating this expression we find thatis a separable func-
tion (in time and space in the coordinates[@b]), whence Ill. CONCLUSIONS

on inserting this |£1t0 Eq(20) we find that forw = constant We have discussed some of the consequences of the isot-

#— 1 this leads t&V ,¢=0 Of'<'1>=0; i.e., the spacetime must ropy of the CMB in Universe models in scalar-tensor theo-
again be either RW or stationafpnd in the cas@=—1, ries of gravity. We have shown that, if we assume geodesic

Eq. (29) ensures the spacetime is non-expangling motion and a perfect fluid matter source, any expanding
spacetime must have RW geometry, which is also the situa-
D. Discussion tion in GR. As is the case in GR, we would expect that this

Consequently we have shown that in all cages space- result will have a perturbed equivalent, in that the near isot-
ropy of the CMB will imply a nearly homogeneous and iso-

time must be non-expanding or RW particular, all evolv- . logical del in th it tive theori f
ing spacetimes must necessarily have an isotropic and spE[pp'C cosmological model In these alternative theories o

tially homogeneous geometry. This implies that the total9ravity [1?]' Thus we _conclude that if we wish to consider
energy-momentum tensor must be of perfect fluid formcosmologlcal implications of scalar tensor theories of grav-
whose components depend on cosmic time only. This doé€! L’R(\iVMB c()jb?ervg}rlobnstrl]mply thatt thedclan:)nlcal almozt d
not, however, imply that each of the separate components MOdEIS will be the correct models 1o Use, provide
the energy-momentum tensor, such as for example the scal t other observations fulfill the assumptions used here.
field ¢, need individually be functions of time alorj&6].

We note that the preceding calculation did lead to additional

restrictions onp, namely Eqs(18) and(20) must be satisfied ACKNOWLEDGMENTS

and’6<an>=0. However, if we take the field equatiof2) We would like to thank Roy Maartens for useful com-
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[1] J. Ehlers, P. Geren, and R. K. Sachs, J. Math. PBy4344  [11] T. Applequist, A. Chodos, and P. G. O. Freundpdern

(1968. Kaluza-Klein TheoriegAddison-Wesley, Redwood City, CA,
[2] G. F. R. Ellis, D. R. Matravers, and R. Treciokas, Ann. Phys. 1987.

(N.Y.) 150, 455(1983; G. F. R. Ellis, R. Treciokas, and D. R. [12] D. Wands, Class. Quantum Grak. 269 (1994).

Matravers,ibid. 150, 487 (1983. [13] G. F. R. Ellis and H. van Elst, ifTheoretical and Observa-
[3] C. A. Clarkson and R. K. Barrett, Class. Quantum GrE,. tional Cosmology M. Lachieze-Rey, NATO Science Series
3781(1999. (Kluwer Academic, Dordrecht, 1998gr-qc/9812046v4; G. F.

[4] J. J. Ferrando, J. A. Morales, and M. Portilla, Phys. Re46D
578(1992.

[5] R. K. Barrett and C. A. Clarkson, Class. Quantum Grkx.
5047(2000; C. A. Clarkson, Ph.D. thesis, University of Glas-
gow, 1999.

[6] P. Jordan, Z. Physl57, 112 (1959; P. G. Bergmann, Int. J.
Theor. Phys., 25 (1968; R. V. Wagoner, Phys. Rev. D, [15] A. A. Coley and D. J. McManus, Class. Quantum Grai,

3209(1970: K. Nordtvedt, Astrophys. J161, 1059(1970). 1261(1994.
[7] C. Brans and R. H. Dicke, Phys. Reh24, 925 (1967). [16] A. A. Coley and B. O. J. Tupper, Astrophys.271, 1 (1983;

[8] C. M. Will, Theory and Experiment in Gravitational Physics J. Math. Phys27, 406 (1986. )
(Cambridge University Press, Cambridge, England, 1993 [17] W. R. Stoeger, R. Maartens, and G. F. R. Ellis, Astrophys. J.

R. Ellis, in General Relativity and Cosmologroceedings of
XLVII Enrico Fermi Summer School, edited by R. K. Sachs
(Academic, New York, 19711

[14] D. Krameret al., Exact Solutions of Einstein’s Field Equations
(Cambridge University Press, Cambridge, England, 1980

[9] J. D. Barrow and P. Parsons, Phys. Re\56%) 1906 (1997. 443 1(1995; R. Maartens, G. F. R. Ellis, and W. R. Stroeger,
[10] M. B. Green, J. H. Schwarz, and E. WitteSyperstring Theory Phys. Rev. D61, 1525(1999; 51, 5942(1995; Astrophys. J.
(Cambridge University Press, Cambridge, England, 1987 Lett. 309, L7 (1996.

063510-4



