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Cosmic microwave background and scalar-tensor theories of gravity
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We show that if all observers see an isotropic cosmic microwave background in an expanding geodesic
perfect fluid spacetime within a scalar-tensor theory of gravity, then that spacetime must be isotropic and
spatially homogeneous. This result generalizes the Ehlers-Geren-Sachs theorem of general relativity, and serves
to underpin the important result that any evolving cosmological model in a scalar-tensor theory that is com-
patible with observations must be almost Friedmann-Lemaıˆtre-Robertson-Walker.
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I. INTRODUCTION

The extremely high isotropy of the cosmic microwa
background~CMB!, which is isotropic to one part in 105,
provides the strongest evidence that the Universe is isotr
about us. Unfortunately, the spatial homogeneity of the U
verse cannot then be inferred~from our observations of the
CMB! without the Copernican principle~or some equiva-
lent!. However, if we assume the Copernican principle,
that we assume that all observers in the Universe see
CMB to be as isotropic as we see it, we can then ask: can
infer spatial homogeneity on the basis of the CMB obser
tions alone? The first attempt to answer this question wit
general relativity ~GR! resulted in a theorem by Ehlers
Geren and Sachs~EGS@1#! which states that if all observer
in a dust universe see an isotropic radiation field then
spacetime is spatially homogeneous and isotro
@Friedmann-Lemaıˆtre-Robertson-Walker~FLRW!#, in which
the isotropic radiation field may be implicitly identified wit
the CMB.

The EGS theorem can be generalized trivially to the c
of a geodesic and barotropic perfect fluid@2#. However, as
has been emphasized@3,4# the resulting spacetime will be
FLRW only if the matter content is of perfect fluid form an
the observers are geodesic and irrotational. Indeed, the
theorem has recently been investigated in inhomogene
universe models with non-geodesic observers@3#; inhomoge-
neous spacetimes have been found which also allow e
observer to see an isotropic CMB. It has also been sho
that a significant subset of these models are consistent
other observational constraints, regardless of observer p
tion @5#. This means that these models are consistent w
observations even when the Copernican principle is ta
into account—and yet the models are significantly inhom
geneous.

The purpose of this paper is to investigate cosmolog
models which allow an isotropic radiation field in more ge
eral theories of gravity~than GR!. In particular, we shall
study scalar-tensor theories of gravity@6,7#, in which gravity
is mediated by a long-range scalar field in addition to
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usual tensor fields present in Einstein’s theory. Such theo
of gravitation, and especially the simple Brans-Dicke theo
~BDT! of gravity @7#, are perhaps the most natural altern
tives to GR. Observational limits@8# on the present value o
~the Brans-Dicke parameter! v0 need not constrain the valu
of v at early times in more general scalar-tensor theo
~than BDT! with a variablev(f) @9#. Hence, more recently
there has been greater focus on the early Universe pre
tions of scalar-tensor theories of gravity. Scalar-tensor th
ries with a ‘‘free’’ scalar field are perhaps not well motivate
since, often, quantum corrections produce interactions res
ing in a non-trivial potentialU(f).

Scalar-tensor gravity theory is currently of particular i
terest since such theories occur as the low-energy limi
supergravity theories from string theory@10# and other
higher-dimensional gravity theories@11#. Perhaps cosmology
is the ideal setting in which to study possible stringy effec
However, lacking a full non-perturbative formulation whic
allows a description of the early Universe close to the Pla
time, it is necessary to study classical cosmology prior to
grand unified theory epoch by utilizing the low-energy effe
tive action induced by string theory. To lowest order in t
inverse string tension the tree-level effective action in fo
dimensions for the massless fields includes the n
minimally coupled graviton, the scalar dilaton and an an
symmetric rank-two tensor resulting in a four-dimension
scalar-tensor theory of gravity, thereby generalizing GR
including other massless fields. As a result, BDT includes
dilaton-graviton sector of the string effective action as a s
cial case (v521) @10#.

The general form of the extended gravitational action
scalar-tensor theories is

S5
1

16pE d4xA2gFfR2
v~f!

f
~¹f!22U~f!12LmatterG ,

~1!

whereLmatter is the Lagrangian for the matter fields, whic
we shall assume here corresponds to a comoving pe
fluid. We use units in whichc5G51. BDT corresponds to
the particular choice ofU50 andv5const.~strictly speak-
ing, U(f) must be set to zero in order to ensure a Newton
weak field limit!. The post-Newtonian parameters of gene
relativity are also recovered in the limit thatv→` and
(f/v3)(dv/df)→0 @8#. The case whereU(f) is non-zero
©2001 The American Physical Society10-1
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but v50 is equivalent to higher-order gravity theories@12#
with Yukawa type corrections to the Newtonian potential.

The field equations, obtained by varying the action Eq.~1!
with respect to the metric and the fieldf, are

Gab5
8p

f
Tab1

v

f2

3~¹af¹bf2 1
2 gab¹cf¹cf!

1f21~¹a¹bf2gab¹c¹
cf!

2 1
2 gabU~f! ~2!

~312v!¹a¹af58pT2¹av¹af1
dU

df
~3!

where the energy-momentum tensorTab52(dLmatter/dgab),
will take the form of a perfect fluid@see Eq.~8!, below#. It is
known that scalar-tensor theories can be rewritten in the c
formally related ‘‘Einstein’’ frame. However, we shall not d
this here and we shall work in the so-called ‘‘Jordan’’ fram
In the scalar-tensor gravity theories the principle of equi
lence is guaranteed by requiring that all matter fields
minimally coupled to the metricgab . Thus energy-
momentum is conserved:

¹aTab50. ~4!

In the following section we prove thatin scalar-tensor
theories of gravity, the only geodesic perfect fluid spacetim
admitting an isotropic radiation field are non-expanding
have a Robertson-Walker (RW) geometry. The procedure is
to first show that the fluid congruence must be irrotation
from which it follows from the field equations that the effe
tive energy flux of the Einstein tensor~discussed below!
must vanish. Further study of the evolution of the effect
anisotropic pressure tensor reveals that it too must vanis
the spacetime must be stationary. Thus we arrive at the ab
conclusion.

II. SPACETIMES ADMITTING AN ISOTROPIC
RADIATION FIELD

A. Isotropic radiation and kinematics

In GR, assuming that all observers on some congrue
ua see an exactly isotropic radiation field, this velocity fie
has two important properties:

¹ [a~ u̇b]2
1
3 uub] !50,

sab50, ~5!

whereu, u̇a andsab are, respectively, the expansion, acc
eration and the shear for the timelike congruenceua ~we
follow the notation of@13# throughout!. This ‘‘isotropic ra-
diation field theorem’’ may be derived from the Einstei
Boltzmann equations for photons in a curved spacet
@13,1,2#. As the theorem does not involve Einstein’s fie
equations, it may be carried over to scalar-tensor theo
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without change. The first part of condition~5! allows us to
define¹aQ[u̇a2 1

3 uua , for some scalar functionQ ~propor-
tional to the logarithm of the energy density of the radiatio!,
so we see that the first condition~5! is equivalent to

u̇a5¹̃aQ, u53Q̇, ~6!

and it follows that spacetimes admitting an isotropic rad
tion field are conformally stationary~as may be seen by con
sidering a conformal transformation of the congruence, w
eQ as the conformal factor multiplying a stationary metr
with the velocity fields of the two spacetimes parallel—s
@14#!.

We shall restrict our attention to the case in which t
physical fluid is geodesic~i.e., acceleration-free!, which then
implies that the rotation ofua, vab , must also vanish: fol-
lowing the argument in@3#, from Eq. ~6! we can write

u̇a5¹̃aQ50

so that

05¹̃ [au̇b]5¹̃ [a¹̃b]Q5vbaQ̇5 1
3 vabu, ~7!

and we see thatvab50 whenuÞ0. In this case there exis
comoving coordinates in which the metric takes the fo
given in @15#.

B. The matter and the Einstein tensor

We are assuming the matter may be described by a pe
fluid, so the energy momentum tensor has the form:

Tab5muaub1 1
3 mhab1ruaub1phab , ~8!

i.e., the matter is a mixture of radiation~which may, without
loss of generality, be considered as a test field, thereby c
tributing nothing to the gravitational field! and some other

type of perfect fluid satisfying¹̃ap50 @which, via Eq.~4!,
ensures the observers are geodesic#. The Einstein tensor mus
then satisfy Eq.~2!, with the matter given by Eq.~8!.

In general, the Einstein tensor can formally be deco
posed with respect to a timelike vector fieldua according to

Gab[meffuaub1peffhab1qa
effub1qb

effua1pab
eff5Tab

eff ,
~9!

where

qa
effua50, habpab

eff50, pab
effub50. ~10!

Tab
eff is now aneffectiveenergy-momentum tensor, which

not related to the physical fluid given by Eq.~8! other than
by Eq. ~2!. In this formal decompositionmeff, peff, qa

eff and
pab

eff are given by

meff5Gabu
aub, ~11!

peff5 1
3 habGab , ~12!
0-2
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qa
eff52ha

cGcdu
d, ~13!

pab
eff5ha

chb
dGcd2 1

3 ~hcdGcd!hab5G^ab& . ~14!

~Angled brackets denote the projected, symmetric, and tr
free part of tensors, as defined by Eq.~14!; see@13#.! For a
fluid with four-velocity ua, these quantities denote, via th
field equations, the energy density, isotropic pressure, en
flux and anisotropic pressure, respectively, as measure
an observer comoving with the fluid. Using this decompo
tion, we may decompose Eq.~2! into the effectiveenergy
density and pressure, energy flux and anisotropic press
Using this decomposition of Eq.~2!, given by Eqs.~9!—
~14!, we may now use the field equations of GR in the
13 covariant formalism@13#, but replacing the relevan
quantities with their effective counterparts~i.e., so thatm
→meff, etc.!.

When u̇a andvab are zero, Eq.~5! becomes

¹ [a~uub] !5u[b¹a]u50,

which implies~since¹au5¹̃au2 u̇ua) that

¹̃au50, ~15!

~i.e., the expansion is spatially homogeneous!. From the con-
straint equation relating the divergence of the shear to o
kinematical quantities@Eq. ~32! in @13## we see that any en
ergy flux component of the Einstein tensor~or, equivalently,
of Tab

eff) with respect to the perfect fluid velocity field mu
vanish:

qa
eff5

2

3
¹̃au50. ~16!

However, from Eq.~2!, and using Eq.~13!, we see that the
effective energy flux of the Einstein tensor is

qa
eff52G^a&bub5f21~¹̃af@ 1

3 u2v~ ln f!•#2¹̃aḟ !50.
~17!

Note that we now have a spacetime whose Einstein te
may be written, using Eqs.~11!–~14!, as a fluid with zero
heat flux with respect to a geodesic, shearfree and irrotati
congruence; hence, the effective anisotropic pressure van
ing is a necessary and sufficient condition for the spacet
to be RW@13,15#, and we now show that this must be th
case.

C. Proof of the main result

From Eq.~17! we see that these spacetimes must sati

~¹̃af!•52v~ ln f!•¹̃af, ~18!

in order to admit an isotropic radiation field, where we ha
used the identity

¹̃aj̇5ha
b~¹̃bj!"2 j̇u̇a1 1

3 u¹̃aj1sa
b¹̃bj1habcv

b¹̃cj,

~19!
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to interchange the order of ‘‘time’’ and ‘‘space’’ derivative
of scalars. Equation~18! may be integrated to give

¹̃af5F~f!Fa , ~20!

where

F~f!5expS 2E v
df

f D , ~21!

and Fa is an arbitrary spatial vector field such thatḞa50
5uaFa . Now thatf must satisfy Eq.~20!, the total effective
anisotropic pressure tensor from Eqs.~2! and ~14!,

pab
eff5

1

f
¹̃^a¹̃b&f1

v

f2
¹̃^af¹̃b&f, ~22!

becomes

pab
eff5

F

f
¹̃^aFb& . ~23!

In order to proceed, let us now use the field equations
find further restrictions onf. From the evolution equation
for the electric Weyl tensor, and the shear evolution equat
we obtain

Eab5 1
2 pab

eff ~24!

so therefore

ṗ^ab&
eff 52 2

3 upab
eff . ~25!

However, from Eq.~23! we may calculate the time derivativ
of pab ,

ṗ^ab&
eff 5

F

f H 2
ḟ

f
~11v!¹̃^aFb&1~¹̃^aFb&!

•J . ~26!

Using the Ricci identities, and the fact thatRa^bc&duaFd50
in our case, we find that

~¹̃^aFb&!
•52 1

3 u¹̃^aFb& , ~27!

and so, using Eqs.~25!,~26!, we find that

F ḟ

f
~11v!2

1

3
uG ¹̃^aFb&50. ~28!

Hence we have that¹̃^aFb&50, which implies thatpab
eff50

and consequently the spacetime is RW, or

u53
ḟ

f
~11v!. ~29!

If we now take the spatial gradient of this expression
obtain, using Eq.~17!,
0-3
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05¹̃au53v8
ḟ

f
¹̃af, ~30!

where v8[dv/df. Now, if ¹̃af50, then pab
eff50, and

again the spacetime is RW. Ifḟ50 then the expansion i
zero, and the spacetime is stationary@recall that ifu50 then
the rotation need not vanish Eq.~7!#. The only other possi-

bility remaining is thatv is constant and that¹̃aḟ/f50.
Integrating this expression we find thatf is a separable func
tion ~in time and space in the coordinates of@15#!, whence
on inserting this into Eq.~20! we find that forv5constant

Þ21 this leads to¹̃af50 or ḟ50; i.e., the spacetime mus
again be either RW or stationary@and in the casev521,
Eq. ~29! ensures the spacetime is non-expanding#.

D. Discussion

Consequently we have shown that in all casesthe space-
time must be non-expanding or RW. In particular, all evolv-
ing spacetimes must necessarily have an isotropic and
tially homogeneous geometry. This implies that the to
energy-momentum tensor must be of perfect fluid fo
whose components depend on cosmic time only. This d
not, however, imply that each of the separate component
the energy-momentum tensor, such as for example the s
field f, need individually be functions of time alone@16#.
We note that the preceding calculation did lead to additio
restrictions onf, namely Eqs.~18! and~20! must be satisfied

and ¹̃^aFb&50. However, if we take the field equations~2!
and ‘‘contract’’ them usinguaub andgab, respectively, using
ys
.

s-

.

s
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the Brans-Dicke field equation~3! to substitute for¹a¹af,
we obtain two expressions which can be written, using
equations above, as a sum of terms each of which ha
particular~separable! dependence on time, space or a fun
tional dependence onf. Setting these two expressions equ
to zero, it is then straightforward to show that these t
equations can only be satisfied in general forf5f(t).
Hence it follows that all physical quantities can only depe
on time alone.

III. CONCLUSIONS

We have discussed some of the consequences of the
ropy of the CMB in Universe models in scalar-tensor the
ries of gravity. We have shown that, if we assume geode
motion and a perfect fluid matter source, any expand
spacetime must have RW geometry, which is also the si
tion in GR. As is the case in GR, we would expect that t
result will have a perturbed equivalent, in that the near is
ropy of the CMB will imply a nearly homogeneous and is
tropic cosmological model in these alternative theories
gravity @17#. Thus we conclude that if we wish to consid
cosmological implications of scalar tensor theories of gr
ity, CMB observations imply that the canonical ‘‘almos
FLRW models will be the correct models to use, provid
that other observations fulfill the assumptions used here.
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