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Stability of Einstein-aether cosmological models
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We use a dynamical systems analysis to investigate the future behavior of Einstein-Aether cosmological
models with a scalar field coupling to the expansion of the aether and a noninteracting perfect fluid. The
stability of the equilibrium solutions are analyzed, and the results are compared with the standard
inflationary cosmological solutions and previously studied cosmological Einstein-aether models.
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L. INTRODUCTION

Attempts to construct theories of gravity with a UV
cutoff on the degrees of freedom have led to interest in
the possibility of Lorentz violation at high energies [1].
Einstein-aether theory is an effective field theory that
preserves general covariance and the successes of general
relativity while at the same time providing the structure
sufficient to accomodate a local UV cutoff [2,3]. It consists
of general relativity coupled, at second derivative order, to
a dynamical timelike unit vector field—the aether. The
aether determines a preferred rest frame at each point of
spacetime. In this approach, the aether vector field, u,, and
the metric tensor, g,;,, together determine the local space-
time structure. For background on Einstein-aether theory
and the Lagrangian of the aether field, see Ref. [2].

We shall discuss the late-time dynamics of Einstein-
aether cosmological models; in particular, we explore the
impact of Lorentz violation on the inflationary scenario [4],
which provides one of the simplest ways to describe vari-
ous aspects of the physics of the early universe in standard
cosmology. More precisely, we study the inflationary sce-
nario in the scalar-vector-tensor theory, where the vector is
constrained to be unit- and timelike, and investigate
whether an example of the large class of the inflationary
solutions proposed [3] is stable when spatial curvature
perturbations are considered.

A. Einstein-aether Cosmology

In an isotropic and spatially homogeneous Friedmann
universe with expansion scale factor a(t) and comoving
proper time ¢, the aether field will be aligned with the
cosmic frame and is related to the expansion rate of the
universe 6, according to

6
vaub = g(gab - uaub)-

The energy-momentum of the aether is proportional to the
Einstein tensor in this case and can be removed by a

*patrik.sandin @aei.mpg.de
Taac @mathstat.dal.ca

1550-7998/2013 /87(4)/044031(7)

044031-1

PACS numbers: 04.50.Kd, 02.30.0z, 98.80.—k

rescaling of the gravitational constant G ([2], Secs. II and
VII). If the Universe also contains a single self-interacting
scalar field ¢ (e.g., a scalar inflation which would domi-
nate in any inflationary epoch), with a self-interaction
potential V, we should allow for the potential to couple
to the aether, such that V can now be a function of ¢ and
the expansion rate 6§ = 3a/a = 3H. The modified stress
tensor is [2],

1
Ty, = V.V, — (zvc¢vc¢ -V+ 9V0)gab

+ Voluaup = gap). ey

This corresponds to an effective fluid with pressure p
and density p of the form p =1 ¢> +V — 0V, and p =
%(,132 —V + 6Vy + V,, where V(¢, 6).

The energy-momentum conservation law or Klein-
Gordon equation is

b+0¢+Vy=0. )

The augmented Friedmann equation (where 87G = 1 = c,
and G is the renormalized gravitational constant) is
given by
1
3

where k is the normalized curvature parameter, and the
Friedmann metric is given by

1. k
02 =S+ V=0V~ 3)

dr?
1 — kr?

ds* = dr* — az(t){ + r2d9* + rzsinzﬁdgoz}. 4)
(In Ref. [3] k was set equal to zero). The Raychaudhuri
equation follows from the differentiation of the Friedmann
equation.

B. Exponential potentials

Exponential potentials of the form Vye % arise natu-
rally in various higher-dimensional frameworks, such as in
Kaluza-Klein theories and supergravity [5], and the
dynamical properties of the positive exponential potentials
leading to inflation in the Friedmann-Robertson-Walker
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(FRW) model have been widely studied [6-8]. In Einstein-
aether theories there might exist a coupling between the
scalar field and the aether field through the aether expan-
sion scalar 6, which requires one to consider more general
types of potentials than the standard exponential form. In
Ref. [3] Barrow proposes an ansatz of the form

V(6, &) = Voexpl-Ad] + 3 4,07 expl(r — 2)A6/2],
r=0

(&)

where V,, A and {a,} are constants, and concludes that
there exist power law solutions of the Einstein-aether
generalized combined Friedmann-Klein Gordon system
on the form

2

¢ =S, 6)

a=15 %

0=3%=13p, (8)
a

where B is a solution of the polynomial equation

1 r—1 — =
B+ 3 Z ra,(3B) . 9)

u 2
- A

r

He presents two potentials for which explicit solutions to
(9) can be found, namely potentials where a; = 0V i and
potentials where only a, is different from zero. This cor-
responds, respectively, to the ordinary exponential poten-
tial and the exponential potential plus a term quadratic in
the expansion. We shall consider one of Barrow’s ex-
amples, where the exponential part couples to the expan-
sion scalar.

II. THE MODEL
We shall study the case

V(0, p) = Voe A + aj\[Vobe ™ + 62, (10)

where, for convenience, we have renormalized the constant
a; (the constant a, can be absorbed [2] and will not play an
essential role in the dynamical analysis). The potential
V(6, ) can be assumed to be positive definite, but this
does not imply that the constants a;, a, necessarily are
positive, as can be seen in the positive definite potential
(e7¢ —16)? where a, is negative and a, = a,?/4.

If a,, a, are small, the potential can be thought of as a
perturbation of the standard exponential potential. For very
large constants a;, a,, we can study nonperturbative
generalizations.

For the potential (10) the augmented Friedmann
equation (3) becomes
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3 (¢)z 3V, e 3k 1
2(1 + 3a,)\ 8 1+3a, 6> (1+3a,) a?6*
(11)

where we have normalized the equation with a factor
proportional to the square of the expansion. The normal-
ized Friedmann equation suggests a suitable set of expan-
sion normalized variables,

i —Ap/2
Po— 3 é, O = 3‘/0 e ’
2(1 + 3ay) 6 (1+3a,) 6

3k 1

K=— —— _ 12
(1 + 3ay) a*6%’ (12)

assuming that Vj, is a positive constant and that a, is larger
than —1/3. In terms of these variables the Friedmann
equation assumes the simple form

1 =92+ @ - K, (13)

and the Raychaudhuri equation (expressed in terms of the
deceleration parameter ¢) becomes
6 1
=35+ =) =292 - P2 -
I <02 3)

3/\611

22

Using the Raychaudhuri equation, one can express the
Klein-Gordon equation as a first-order ordinary differential
equation completely in terms of the following expansion
normalized variables and an expansion normalized time,
dr _ —1.

=307

dv

== —(2 =292 + P)V¥ + AP? + a(1 — V)P, (15)
.

VYo, (14)

where the constants @ and A are defined through
3Aa 1
g=_""1

- +
’ P [3(1 3a2)'
22 2

The evolution equation for @ is directly given from the
definition of ® and the Klein-Gordon and Raychaudhuri
equations,

ddo ) , - -

e (1+2¥2 - P2 - g¥d — \V)D. (16)

The equations (15) and (16) constitute an autonomous
system of first-order differential equations. The invariant
set @ = 0 corresponds to a model with a free scalar field,
and it divides the two-dimensional (2D) state space into a
region with an expanding universe (¥ = 0) and one cor-
responding to a contracting universe (¥ = 0).

The curvature K is determined from the Friedmann
equation (13), but an auxiliary evolution equation can be
derived from (15) and (16), dK/dr = [4¥? — 2% —
2aV®d]K, showing that K = 0 is an invariant set that also
partitions the state space into two disjoint regions—a
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bounded negative curvature region (W2 + ®2 < 1) and an
unbounded positive curvature region (V2 + ®? > 1),

Note that a, does not explicitly appear in the equations;
it corresponds to a term in the potential proportional to the
square of the expansion and can be absorbed by a rescaling

|
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of the expansion scalar, but the expansion normalized
system is invariant under such rescalings.

Defining |A| = /(9 — A% + @2), the equilibrium points

(p;) of the system are given as follows.

Equilibria K, q
pr ¥ =0, O =0, -1,0
Da: V= =*], o =0, 0,2
ps: g 3AtlaAl o - —Ad +3lakl o AalAl =9 +382 - a2
9+a* ’ O +aa ’ 9 +a%
P4 34 —laA] Aa® +3laAl| XalAl +9 - 3X2 + @
V= — d=-"" 0, — —
19+a (9 +a*)a (9 + a?)
psi Y= —a+VJa&+3 R -6-a+ava+8
1 22 ' 20 ’
Pe: =3 _—a-va’+38 “2 6+ +av@ +8
o 2h 7 2A2 e

The stationary solution pg has @ <0 for all values of
a € R, X € R" and corresponds to a contracting universe.
We shall, in the following, only consider expanding solu-
tions with vanishing or negative curvature and will there-
fore ignore this point since it lies outside the region of
interest K = 0, ® = 0. Points p; and p, always satisfy
these conditions. p; is always a saddle, p; saddle or
source, and p, always a source. We are most interested
in the equilibra ps, p4, and ps. The points ps3, p4, and ps
are contained in this region only for a restricted, partially
overlapping, range of values in (A, @) space.

Equilibrium Point p5

Range of validity:

®, =0 when(A=3a=
(A=3a=

—VA2 —09). (17)

Eigenvalues:
—5|A|2 + 422 + 3X|aA| + VB +C
pe 209 + @) ’
where
B = a* + 18a” + 15a*A*> + 81 + 54A% — X*a?
+ A2a* + 924,

C=2XBA2+a*+9)aAl.

Discussion: The point p5 is a sink and inflationary when
0<aand A><1(@*+6—ava*+3).

Equilibrium Point py

Range of validity:

®, =0 when(a=0, a*= X -9). (18)
Eigenvalues:
—5|A12 + 422 + 3MaAl = VB -C
M+ = .

2(9 + a?)

Discussion: The point p, is a sink when @ < 0 and A?> <
3(@® + 6 —a+a* + 8). It is inflationary only for the sub-
set of this region where A? <1(a> + 6 + a+a> + 8).
Equilibrium Point ps
Range of validity:

®, = Oalways, butK, = Oonly when

2N =6+a—ava:+38.

(19)

Eigenvalues:

1

=]
e 22

\/48 +22a% — 12A% + 2a* — 2a%A? — 2a(7 + a® — A®Wa? + 8.

Discussion: The point ps is a sink when A> >1(a? + 6 — a+a* + 8).
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Sink Properties and Bifurcation Lines

Eq. Point py
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FIG. 1.
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The first figure shows the properties of the local sink and the curves where bifurcations occur in parameter space. Region I

corresponds to a spatially flat inflationary universe, region II to a flat decelerating universe, and region III to a negatively curved
universe with a constant expansion rate. The next three pictures show the sink (dark)/saddle (medium)/ source (light) properties of the

individual equilibrium points (only p; is ever a source here).

Figure 1 shows the relevant properties of the future attrac-
tor of the system and the stability properties of the equi-
librium points ps, p4, ps-

III. THE MODEL WITH MATTER:

If, in addition to the scalar field, there also exists a
barotropic perfect fluid with linear equation of state, p =
(y = Dp (satisfying 2 < y < 2), we will get extra terms in
the equations corresponding to the fluid energy density.
Assuming that there is no transfer of energy between the
scalar field and the fluid except through gravitation, we get
an additional evolution equation for the fluid energy den-
sity coming from the matter energy conservation equation.
A normalized energy density is defined through

3p
(1 + 3(12)02 '

The augmented Friedmann and Raychaudhuri equations
become

1=0+¥2+ P2 -K, (20)
= —3(i + l) = l(3 -2)Q +2V¥? - ¢ - gVP
7 e 3) 277 =
2D
and the evolution equations become
v 1 -
ar_ —(2 — 292 + ®? — —(3y — 2)Q)‘If + AD?
dr 2
+ a(l — ¥, (22)
) - 1
fl— = (1 +2W2 — P2 — g¥d — AV + 5(37 - 2)Q>CI>,
T

(23)
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(chQ_ = (~(By = 2)(1 — Q) + 4V — 202 — 23V D)Q).
.
(24

Note that {) = 0 defines an invariant set of the three-
dimensional autonomous system of first-order differential
equations. The equilibrium points p; with {3 = 0 from the
previous section are also equilibrium points of the ex-
tended system (22)—(24). Linearization about the points
will result in the same eigenvalues as before for the eigen-
directions contained in the {) = 0 subspace, but will also
pick up a new eigenvalue from the influence of the fluid on
the dynamics. The additional eigenvalues are

pii m3=—-0CBy—-2)

pa(E): p3=-3(y -2
. _ 3y@H2Ty—6A2—24/a*@+9-1?)
P3- M3 = T 0+ a2
. _ 3y@H2Ty—6A2+244/aA@+9-12)
Ps M3 = T 0T a2

ps: 3= —0By—2).

Equilibrium points p;, p,, and ps all gain an eigenvalue
that is negative for all y > % The new eigenvalue trans-
forms the source(s) to saddle(s) but retains ps as a sink in
the same range as before. How it affects the points p; and
P4 1s not immediately obvious, but as we shall see below it
does not affect the properties of the sinks when v is in the
range (%, 2).

Equilibrium Point ps

The point remains a sink if, in addition to the conditions
in the previous section, also

202 + %XI&AI <vy(@+9). (25)
Solving for A? we get
202 <@ + 9y — lalya* + 18y — 992,
For y = £ this condition reduces to
E <%(a2 +6-ava +8)

which is the same restriction as before. Since the rhs of (25)
is increasing with 7y, we have that p; is a sink in the same
range as before for all y = %

Equilibrium Point p,

The third eigenvalue is negative if

_ 2
2A% — g)tlc"zA | < vy(@ +9), (26)
which implies

A2 <@+ 9y + |a|\/52 + 18y — 992,

For y = % this inequality also coincides with one of the
previous restrictions on A required for p, to be a sink.
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Larger y gives a weaker restriction and hence p, is a sink
in the same range as before if we have y = %

A. Equilibrium points with Q # 0

There are also additional equilibrium points with {) # 0.
Corresponding to the flat FRW solution is

pr¥=0 d=0 Q=1

with eigenvalues

3 3
=37 My =3y =2, M3=§7—3- (27)
Hence p; is a saddle in the entire range considered,
I<y<2.

Equilibrium Point pg
There is an equilibrium point, pg, representing the
matter scaling solution [8].

1 3y
® = ——(—a++a + 992 — 7)), =z,
x(Tatva =) 21

| (28)
Q= —ﬁ(97+&2—(} @ +9y2—1y) + 1.

The point pg has zero curvature and the deceleration
parameter is given by

1
9ps = — 8(3')’ - 2)r

which is negative for y > 2.
Linearization of the system (22)—(24) about the equilib-
rium point pg yields the following eigenvalues:

Mtz_%(2_7)t%mr ps =3y =2,
(29)
where
D = 819y2A% — 108yA% + 36A% — 324y3 — 72y%a>
+ 648y% + 180ya®> — 8a*A*> + 8a*

£=4a +9—9(1 — 236> — 108y + 812 — 8a2).

The last eigenvalue is negative for all the values of y that
we consider in this paper. The value of p, can be both
positive and negative depending on the values of y, a, and
A. But since the terms under the square root in £ always are
positive and hence £ real, we have that the expression
vD + a€ is either positive or purely imaginary. The
eigenvalue p_ will therefore always have a negative real
part, and the point pg will always be a saddle.

IV. NOTES ON MORE GENERAL POTENTIALS

We also briefly take a look at more general potentials. In
particular, we consider the potential of the form (5) with a
single nonzero a, (r an arbitrary integer),
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(r=2)

V=Vee * + a0y, T (30)

where a, here is normalized by an appropriate power of V.
Defining normalized variables ¥ and @ as before,

Bé - e
S 2TV

the normalized Friedmann equation becomes

A
2

T =

1=92+ &> +2(1 - nad> " -k, (31)

where @ = 1(3)2a, and we shall define A = 715/\.
The normalized Raychaudhuri equation then becomes

g=2—(1+r(r— 1)d<'132”)*1<2 —2W? + §?
+ 2(1 - %r)(l —Na®* " +BAar2 - r)\iffi)zfr)

and the evolution equations become

3W = —(1+r(r— Dad* ")~ '[2 292 + §?
+(2 =301 = Nad> " +Brra2 — r)Pd* T
+3A0? — Bha(r—2)d* (32)

3D = —(1 + r(r — Dad®* ") [VIAT -1 — 292 + §?
+2(1 — nad®> " + VBrarvd* 1. (33)

For r = 1 these equations reduce to the equations studied
earlier.

Let us consider equilibrium points with zero curvature.
If K = 0, we obtain from (31)

P2 =1-®%-2(1 — rad* . (34)

Setting the right-hand sides of (32) and (33), to zero to
obtain the equilibrium values ®, ¥ and using (34), assum-
ing ® # 0, we find after some algebra that ® satisfies the
polynomial equation,

2
&> =1-2(1—-rad> " — %(1 + ra®> "2, (35)

whence we obtain

A
Na

It can easily be checked that these values for ®, ¥ do
indeed satisfy the zero-curvature condition (34) and are
equilibrium values of the system (32) and (33). For vanish-
ing d, we obtain the usual zero-curvature inflationary
power-law equilibrium solution P in standard exponential

potential cosmology (® = ‘[1 - %XZ, V= 7%), which is

asymptotically stable to the future. Linearization of the

¥ =_"(1+ra®>"). (36)
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system (32) and (33) is more complicated with a general
power r, but an approximate linearization for small a
around the zero-curvature solution is possible.'

V. DISCUSSION

We have analyzed the dynamical evolution and stability
of inflationary solutions of homogeneous and isotropic
Einstein-aether cosmologies containing a scalar field,
under the assumption that the scalar field interacts
with itself and the aether through a potential given by
(10). The potential is of the general form (5) proposed in
Ref. [3] and more general than the examples explicitly
studied therein.

We find that the scalar field-aether interaction term
only slightly affects the stable solution of the system for
small values of the normalized scalar field self-interaction
coupling A, even when the normalized scalar field-eather
coupling a is large. When large scalar field self-
interactions are considered, there is a qualitative change
in the future stable equilibrium of the system compared to
the ordinary exponential potential case. For negative values
of the coupling a, there exists a region (region II, Fig. 1)
where the stable equilibrium is spatially flat but noninfla-
tionary, a situation that in the normal case requires fine
tuning of A. Even larger scalar field self-interactions de-
stabilize the flat equilibrium and drive the state towards a
spatially curved equilibrium, like in the normal exponen-
tial potential case.

When we also include a matter source term in the form
of a perfect fluid with linear equation of state that does not
couple directly to the other fields, we find equilibrium
states corresponding to the usual FRW model and matter
scaling solution. The precise value of the normalized field
variables of the latter equilibrium depend on the coupling
a, but the qualitative properties like its curvature and
deceleration parameter do not. The equilibrium point is a
saddle when curvature perturbations are considered, like in
the normal case, but even within the flat models it can
remain a saddle for some values of A and &, unlike the case
with an ordinary exponential potential where the matter
scaling solution is a late time attractor. The matter source
term do not qualitatively alter the stability of the sinks
found earlier, they all obtain a stable manifold of one
dimension larger than previously and thus remain sinks.

Also potentials with a coupling between the exponential
part and the expansion of general order are susceptible to a
dynamical systems analysis in the scale invariant variables.
The problem of finding a scale-invariant solution with zero
curvature can be reduced to solving a polynomial equation,
and the solutions all reduce to the standard inflationary
power-law solution when the coupling becomes arbitrarily
small.

'A work in progress by M. Stevens.
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