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Qualitative analysis of diagonal Bianchi type V imperfect 
fluid cosmological models 

A. A. Coley and R. J. van den Hoogen 
Department of Mathematics, Statistics, and Computing Science, Dalhousie University, 
Halifar, Nova Scotia B3H 3J5, Canada 

(Received 4 October 1993; accepted for publication 16 March 1994) 

The Einstein field equations for diagonal Bianchi type V imperfect fluid cosmo- 
logical models with both viscosity and heat conduction are set up as an autonomous 
system of differential equations using dimensionless variables and a set of dimen- 
sionless equations of state. Models with and without a cosmological constant, A, 
are investigated using the techniques from dynamical systems theory. It is shown 
that all models that satisfy the weak energy conditions isotropize. The introduction 
of viscosity (in particular) allows for a variety of different qualitative behaviors 
(including, for example, models with a negative deceleration parameter). Exact 
solutions that correspond to the singular points of the dynamical system are found. 
It is shown that the past asymptotic states are represented by self-similar cosmo- 
logical models and, if X=0, the future asymptotic states are also, in general, 
represented by self-similar cosmological models; in the exceptional cases the late 
time asymptotic state is represented by a de Sitter model with constant expansion, 
as is the case for solutions with X # 0. 

I. INTRODUCTION 

Perfect fluid cosmological models have been extensively studied.’ Recently, spatially homo- 
geneous perfect fluid models have been investigated using techniques from dynamical systems 
theory.*T3 It is of interest to take into account dissipative processes such as viscosity and heat 
conduction in cosmological models; for example, viscous fluid models have been used in an 
attempt to explain the currently observed highly isotropic matter distribution and the high entropy 
per baryon in the present state of the universe.475 Imperfect fluid Bianchi models, and particularly 
Bianchi type V models [which are simple generalizations of the negatively curved Friedmann- 
Robertson-Walker models (FRW)], have also been analyzed recently using techniques from dy- 
namical systems theory.6-9 The purpose of this paper is to further extend this analysis. 

The paper is organized as follows. In Sec. II, we study diagonal Bianchi type V imperfect fluid 
cosmological models with both viscosity and heat conduction. The energy momentum tensor 
contains a general source term which can be used to include a variety of different physical fields; 
for example, the general source term can represent an electromagnetic field or a cosmological 
constant. The Einstein field equations and the energy-momentum conservation equations are uti- 
lized to set up a system of ordinary differential equations governing the models. When the extra 
source term represents a cosmological constant or is identically zero, following Collins* and using 
the dimensionless equations of state introduced by Coley,’ this system becomes an autonomous 
system of ordinary differential equations, thus enabling us to use geometric techniques to deter- 
mine the qualitative behavior of the system. In Sec. III, we investigate the case where the extra 
source term represents a cosmological constant. In Sec. IV, we investigate the case where the extra 
source term is identically zero; this generalizes the work of Collins,* who assumed a perfect fluid, 
and the work of Coley and Dunn,8 who assumed, for simplicity, a locally rotationally symmetric 
(LRS) Bianchi type V metric and considered an imperfect fluid source with both viscosity and heat 
conduction. In Sec. V, we present a thorough discussion of the singular points and give the 
corresponding exact solutions. In Sec. VI, we conclude with a discussion and outline some av- 
enues for future research. 

0022.248W94/35(8)/4117128/$6.00 
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4118 A. A. Coley and Ft. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

Motivation for the use of dimensionless equations of state for the bulk and shear viscosity 
coefficients (in addition to the pressure), the primary assumption in this work, was given in Ref. 
5. In particular, such equations of state contain as a special case the physically important subclass 
(see Ref. 5 and references within) in which (in addition to, and in analogy with, the barotropic 
equation of state in which the pressure and the energy-density are linearly related) the bulk and 
shear viscosity coefficients are proportional to the square root of the energy-density [i.e., m=n 
= l/2 in Eqs. (2.22) below] and hence contain no explicit dependence on the expansion. Indeed, 
this special subclass of equations of state is found to play a central role in the exact solutions 
representing the asymptotic states of the models (see Sec. VI). 

However, the main reason for employing dimensionless equations of state is that they are the 
most general equations of state for which the governing equations of the Bianchi type V models 
(under investigation here) in particular, and of the orthogonal spatially homogeneous imperfect 
fluid models in general, reduce to an autonomous system of differential equations, thereby en- 
abling us to study the models qualitatively using standard geometrical techniques. Moreover, it has 
recently been shown that these are also the most general equations of state for which the asymp- 
totic states of the resulting system of differential equations are represented by self-similar cosmo- 
logical models (see the Appendix), whereby the present work is the natural generalization of 
recent work by Wainwright and his collaborators.3 

II. ANALYSIS 

The diagonal form of the Bianchi type V metric is given by 

ds2= -ddt*+u(t)* dx2+b(t)*e2’ dy*+c(t)*e** dz*. (2-l) 

The energy-momentum tensor considered in this work is due to an imperfect fluid that includes 
bulk viscosity, shear viscosity, and heat conduction, viz., 

Tab=(P+P)U,Ub+iig,b-2Ilaob+qaUb+qbUa+Xab, (2.2) 

where un is the fluid 4-velocity, p is the energy density, the quantity p is defined to be 2 =p - go, 
where p is the thermodynamic pressure, 5 is the bulk viscosity coefficient, 8 is the expansion 
scalar, 17 is the shear viscosity coefficient, (T,b is the shear tensor, and qa is the heat conduction 
vector such that qaua= 0 (which implies for a comoving fluid, along with the field equations, that 
the only nonzero component of qa is q i). The term X&, represents any additional sources; for 
example, the additional source term in the energy momentum tensor can be used to include a 
cosmological constant. 

For a comoving fluid u, = ( - 1 ,O,O,O) . The expansion scalar, which determines the volume 
behavior of the fluid, is then given by 

. . . o=; +$ +s. (2.3) 

The shear tensor, o&,, determines the distortion arising in the fluid flow leaving the volume 
invariant. The nonzero components of the shear tensor are 

be*” 
-3 (3&b@, CT,,=? (3i-CO), g22- 

and the shear scalar, u2= 4 tibo,b, is given by 

&$[ (;)*+(t)‘+( j2]$. 

(2.4) 

(2.5) 
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A. A. Coley and Ft. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4119 

In the case under consideration here, there is no rotation and no acceleration. 
The Einstein field equations are: 

cil; ai di 3 
ab +z +z - 1;z =p+ x00, 

ci t; c 
2; - b - ; =-41’ x01, 

-(~+~+ik)+;+-32~-~-;)+x;. 

From these equations one obtains the Friedmann equation 

e2=3cr2+ 3p+ 9/a* + 3x00, 

and the Raychaudhuri equation 

8=-2a*-) e’-; (p+ 3+-i (x00+ x;+ xi+ x& 

and defining 

ul=(g- !i), 

so that 

it can be shown that 

ai=-277u-i-&J-r+ xi-x;, 

a2=-2~~2-e~2+ X:-X:. 

From the energy conservation law Tab;+, = 0, we obtain 

2 d * 
p+ J&J=4?7a2- B(p+ PI-;;2 (41-x01)- @x00-9 xi-, xi-: xz. 

Equations (2.7) and (2.13) imply that 

-41+ xo1=a1+ c2. 

From the Friedmann equation (2.11), we also obtain the inequality 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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4120 A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

We define new dimensionless variables x, pi, &, and a new time variable KI as follows 
(Collins’): 

x=3pkP (2.20) 

(x measures the dynamical importance of the matter content), 

p,=2a,/e, p2=2a2/e (2.2 1) 

[pi and f12 measure the rate of shear (anisotropy) in terms of the expansion], and we define 1~8, 
where 0 = 3il1, SO that dWdt= - $0. 

In order to complete the system of equations we need to specify equations of state for the 
quantities p, 5, and 7. In principle these equations of state can be derived from kinetic theory, but 
in practice one must specify phenomenological equations of state which may or may not have any 
physical foundations. These phenomological equations of state must satisfy constraints such as p, 
5, and 77 should tend to zero as p tends to zero and they must also satisfy the energy conditions. 
Following Coley,5 we introduce dimensionless equations of state of the form 

(2.22a) 

ge = coxm, (2.22b) 

7718 = 77,~n, (2.22c) 

wherep,, 5,, and vO are positive constants, and I, m, and n are constant parameters (x is the 
dimensionless density parameter defined earlier). In the models under consideration, 0 is strictly 
positive, thus Eqs. (2.22) are well defined. The most commonly used equation of state for the 
pressure is the barotropic equation of state p=( y - l)p, hence p. = i( y - 1) and 1= 1 (where 
16 yS2 is necessary for local mechanical stability and for the speed of sound in the fluid to be 
no greater than the speed of light). We use these dimensionless equations of state because they are 
scale invariant and because the system reduces to an autonomous system of differential equations 
for appropriate &b . 

Using the new variables and the equations of state defined above, we obtain the following 
system of differential equations: 

$ =x((3y-2)( 1 -x)-p;-&+ &&,)-9&~~(l -X)-377$(&+ &-h/32) 

Pl+ P2 -- 
4 

(4-4X-P:-&+ PlP2)-; iOO+ 3 m+ P2+ 2) 
82 

xoo 

(l-x)(&a+ x:+ x;+ x:,+ $x:-2x:+ xZ)+ $x:+ x:-2x:) 7 
1 

(2.23) 

dP1 A - =--- 
dfl 

2 ((3y-2)x-4-9&,x m- 127LJR+ &+ &-P1P2)+ ; <xi-xt, 

3Pl 
-7g (x00+ xt+ x:+ x.3, (2.24) 
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A. A. Coley and Ft. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4121 

dP2 P2 6 - =-- 
di-l 

2 ((3y-2)x-4-95,~~ - 12770xn+ p:+ p;-P,P2)+ 3 (x:-x;) 

-$(X00+ xt+ xi+ x:,9 
where 

4++ &-p,p2+ 4x+ 
12 
3x00. 

(2.25) 

(2.26) 

If j&b = 0, these equations are autonomous. The above system of equations will be autonomous 
depending on the form of &b and ,&, , (the equations that govern the evolution of ,&b will be 
derived from the appropriate physical laws; for example, the Einstein-Maxwell equations). 

A. The extra source terin 

There are a number of forms that the extra source term Xab may take. 

7. 77/t 

A possible choice for the ,&b is to incorporate tilt into the cosmological model. Here the four 
velocity is noncomoving and is given by ~~~~~~~~~~~ = (-cash $, a sinh $,O,O), where $ is the 
tilt angle. If we let 

we obtain the desired result. Because of the extra degree of freedom, one further equation is 
needed to complete the system. This equation will determine &, and will come from the energy- 
momentum conservation equations. The analysis is complicated and it will not be considered here 
(the perfect fluid case is studied in Collins”). 

2. Electromagnetic field 

Another possible choice for Xab is for it to represent a uniform electric or magnetic field. In 
this case iab will be obtained from the Einstein-Maxwell equations. If we consider either a source 
free electric field or a source free magnetic field, we find that all components are identically zero 
in the Bianchi V case considered here (see also Jacobs and Hughston”). That is, we cannot include 
a nonzero uniform electric or magnetic field in the models presently under consideration. 

3. Cosmological constant 

It is also possible to include a cosmological constant, A, into the equations by defining 
,&b = - hg,b . Because of the extra degree of freedom, we need one more equation to complete 
the system. By defining a new variable z = 9/e2 and calculating dzldfl using Raychaudhuri’s 
equation, we complete the system (and hence we have a four-dimensional system to analyze). 

4. Extra source term identically zero 

In the simplest case Xab is identically zero. We will then have a three-dimensional system to 
analyze. This is the case when we have an imperfect fluid with viscosity and heat conduction and 
zero cosmological constant (for example, see Coley and Dunn*). 

In the remainder of this work we will consider two cases; the first is when the extra source 
term represents a cosmological constant (that is, Xab = - kg&), where the system of differential 
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4122 A. A. Coley and Ft. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

equations is four-dimensional (see Sec. III), and the second is when the extra source term is 
identically zero (that is, Xab = 0), where the system of differential equations is three-dimensional 
(see Sec. IV). 

111. THE CASE &b =- k&b 

In the case when ,& = - hg,b , we have the equivalent of the Einstein field eqUatiOnS with a 
positive cosmological constant X. A fourth equation is needed to complete the system (2.23)- 
(2.25), because of the extra degree of freedom. We define a new variable z and calculate its 
derivative as follows: 

2=9/e2, (3.1) 

(3 y-2)x+ 2-9&xmf ,@+ &-&p,-; hz (3.2) 

[Note z is just a new expansion variable and its derivative is basically the Raychaudhuri equation 
(2.12).] The remaining equations are 

(3 y-2)x-4-95,x”- 12v0x”+ ,@+ &-a,P,-5 AZ (3.3) 

(3 y-2)x-4-9&,xm- 1277,x”+ p:+ &-/31pz-5Az (3.4) 

(3y-2)(1-x)-/+&+ Pip=+ ;hz -95,xm(l-x)-3170xn 

Pl+ P2 
w:+ P5P1P2)- 4 

( 

4 
4-4x-p:+;+ P#2-3 AZ 9 

i 
(3.5) 

4++ p;-p,p2+ 4x+ $xz. (3.6) 

Equations (3.3) and (3.4) can then be integrated to obtain pi = kP2 for some constant k. We define 
a new variable p, 

/3-( x/i=%?)-‘(k/3,+ (1 -k)/12), (3.7) 

so that 

P2=& &-h/329 (3.8) 

a term which occurs frequently in the equations above. Each value of k represents a different 
surface in the 4-dimensional phase space. As k ranges from - ~0 to 00, the one parameter family of 
3-dimensional surfaces will cover the entire 4-dimensional phase space. Hence the 4-dimensional 
phase portrait is the union of all the 3-dimensional phase portraits. The 4-dimensional system of 
equations can be considered as a one parameter family of 3-dimensional systems as follows: 
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 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41

On: Wed, 26 Oct 2016 15:27:26



A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4123 

-$=x (3y-2)(1-x)+=+ ;kz -95,x”(1-X)-3q,~“~= 
i 

k+ 1 
p 

-&ST4 ( 
4-4x-p2-;hz , 

i 

dz 
dR- 

--z (3 y-2)x+ 2-95,xm+ p2-; AZ , 
i i 

dP P 
z=i=-5 

(3 y-2)x-4-9&,x”- 12voxn+ Bz-5 AZ 

(3.9) 

(3.10) 

(3.11) 

where 

4=#+ 4x+ $ AZ. (3.12a) 

From the definition of z we have that 

zao. (3.12b) 

Finally, assuming that the energy density is non-negative, we have 

x30. (3.12~) 

Equations (3.12) define a compact set in R3. This set is the physical region of interest and will be 
denoted by 8. In this case, Eq. (3.10) defines two invariant sets, z = 0 and z>O. The invariant set 
z = 0 is equivalent to case when the cosmological constant is zero and will be studied in detail in 
the next section (see also van den Hoogen7). Thus in this section, we need only investigate what 
happens in the invariant set z>O. 

In order to simplify the analysis, we define a new parameter 

(3.13) 

The parameter C (as a function of k) ranges between - 1 and 2; as k increases from - 00 to 1, C 
increases monotonically from - 1 to a maximum of 2, then as k increases from 1 to 00, C 
decreases monotonically from 2 to 1. When C= 0, k= - 1 and we have no heat conduction, and 
when C= 2, k = 1 and we have the system analyzed by Coley and Dunn’ with a positive cosmo- 
logical constant. Allowing this parameter C to range through all its possible values, the entire 
four-dimensional phase portrait will be obtained. By choosing various values of the constants 
501 ?lo7 m, n, and C, the complete qualitative structure of the system in question will be deter- 
mined. 
A. Qualitative analysis 

In the following analysis, the order of the coordinates is (x, z,p). 
7. m=n>l 

In this case there are at most seven singular points in 9% The point (0,3X - ’ ,O) is a repelling 
node. The point (C,3A-‘(1 - X),0) is a saddle point where c = (35,1y)1’(‘-m). The remain- 
ing singular points lie in the z= 0 plane and all have A,<0 except for the point ( 1 ,O,O); where 
A, is the eigenvalue associated with the positive z-direction. The point (1 ,O,O) may or may not 
have A,<0 depending on the sign of y - 3 5,. If y - 35,>0 then A,<0 and if y 

- 35,<0 then X,>O. 
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4124 A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

2. m=n=l 

In this case there are at most five singular points and under certain conditions there will be a 
line singularity (line of nonisolated singular points) in 95 The point (0,3X-*,0) is a repelling 
node if y Z 35, and if y=35*, the point becomes part of the line of singular points 
(x,3X-‘(1 - x),0), where OGx<l. When y=3&,, we find that forz>O, dzldln < 0, hence 
all trajectories are directed toward the z = 0 plane. The remaining singular points lie in the z = 0 
plane and all have A,< 0 except for the point ( 1 ,O,O) which behaves in the same manner as in the 
previous case (i.e., case I). When 95, - (3 y - 2)=0, there is a line singularity in the z=O, 
plane but for z>O, dzldfl < 0, thus, this line is an attractor. 

3. m=n=1/2 

In this case there are at most seven singular points in R. For any singular point with x = 0, the 
system becomes nonanalytic. By transforming to the variable u and time coordinate T, where 
u2=x; da/d7 = u, these points can be analyzed using analytic methods. The point 
(0,3 A - ‘,O) is degenerate, but closer analysis reveals that the point is nodelike in nature. The 
point (2,3X-‘(1 - x),0) is a repelling node where C=(~&,/Y)~. The remaining singular 
points lie in the z = 0 plane and all have A,< 0 except for the point ( 1 ,O,O) which behaves in the 
same manner as in the first case (i.e., case I). 

4. m=n=O 

In this case there are two separate situations depending upon whether I&, = 0 or 5, # 0. For 
5, = 0, the point (0,3 A - ‘, 0) is a repelling node and for 5, # 0 the point is no longer singular. If 
5, # 0 there exists a singular point (St3 A - ’ ( 1 - Z), 0) where 2 = (3 l,/ y) ; it is a repelling node. 
The remaining singular points lie in the z= 0 plane and all have A,<0 except for the point 
(1 ,O,O) which behaves in the same manner as in the first case (i.e., case I). 

In this case there are at most five singular points in R. The point (0,3X- * ,O) is a repelling 
node. The remaining singular points lie in the z = 0 plane and for y# 2 will have A, < 0. However, 
if y= 2 then there is a line singularity on the boundary in the plane z = 0. Calculating dz/dCl on 
the boundary, we found it to be negative, hence the boundary in the z=O plane is attracting 
trajectories from above the plane. 

B. Energy conditions 

The singular points that are not located in the z = 0 plane are located in the p= 0 plane and 
thus represent isotropic cosmological models. The dominant energy condition (DEC) and the 
strong energy condition (SEC) in the /3 = 0 plane are: 

DEC: OS yx-350x” <2x, 

SEC: yx - 3 l&xm 2$X. 
(3.14) 

The DEC and the SEC imply that the only singular point with a nonzero z, coordinate permitted is 
the point (0,3X -’ ,O). The remaining singular points with nonzero z coordinate do not satisfy the 
above energy conditions. 

Linearizing the system, we find for the case m = n > 1 the point (0,3 A - ’ ,0) is a repelling 
node. For the case m = n = 1, the point may be either a repelling node or a saddle, but if the energy 
conditions are satisfied, the point is a repelling node. For m=n= 3 , we have a degenerate case 
which is also found to be nodelike. For the remaining two cases m =n =0 and co= qO=O, the 
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A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4125 

point (0,3 X - I, 0) is a repelling node. Thus we have found that the point (0,3 X - ‘, 0) is a repelling 
node in the Bianchi V case considered here if the energy conditions are satisfied. 

The remaining singular points lie in the z= 0 plane. We again linearize the system and 
calculate the eigenvalue associated with the z direction. We find that X,<O for all singular points 
except for the point (1 ,O,O). At the point (l,O,O>, if 35,< y then X,<O, if 35,> y then A,>0 
and if 3 5, = y then AZ = 0. However, if we again assume that the DEC and the SEC be satisfied, 
then the inequality 3 l,< y must be satisfied, and therefore h,<O. Hence all eigenvalues associ- 
ated with the z direction X, , for all the singular points in the z = 0 plane are negative which means 
(combined with the previous result), that the z = 0 plane is an attractor. 

In conclusion, assuming both the SEC and DEC are satisfied, as t+a or (a+ -a) the point 
(0,3X -’ ,O) represents the late time behavior for the Bianchi V model with positive cosmological 
constant. This point is characterized by the fact that /3=0, which implies isotropy, x=0, which 
implies that the energy density is zero, and that z = 3 A - t , which implies that the expansion is 
constant. The point represents an empty, homogeneous and isotropic model with constant expan- 
sion 8= J3h and the corresponding exact solution is the empty de Sitter model. As t--+0 or 
(a -+m), the z = 0 plane attracts all trajectories and thus the z = 0 plane indicates the asymptotic 
early time behavior. Hence, for early times (that is, t -+ 0 or a-+~), the qualitative nature will be 
the same as if we have h = 0; this corresponds to the case when ,&b = 0, and is analyzed in detail 
in the following sections. 

The above is a special case of the cosmic no-hair theorem (Wald”) proven for all Bianchi 
types (except some Bianchi IX models). Wald’s proof simply assumes the dominant and strong 
energy conditions are satisfied for a general energy-momentum tensor. The energy conditions are 
not always satisfied if the cosmological constant is included in the calculation of these energy 
conditions. If the energy conditions are not satisfied then (0,3X- ’ ,0) is not the only possible 
attractor. Here in almost all cases the point ( 1 ,O,O) will become a late time attractor if 3 .&,> y and 
in some cases, and under certain conditions, the point (x,3X-‘( 1 --x),0), where 
C=(35,/y)1’(‘-m). may either be an attracting node or a saddle point for late times. With these 
conditions, there will exist trajectories that do not tend to the de Sitter model at (0,3X- ‘,O) but 
are attracted to one of the other singular points. The models corresponding to the singular points 
(l,O,O) and (2,3X-‘( 1 -C),O) are not discussed here. 

IV. THE CASE ,ya,,=O 

The system of equations when ,&b = 0 is as follows: 

& =x((3y-2)(1-x)-&-&+ P1P2)-950xm(l-x)-33?loxn(p:+ &-P,/%) 

Pl+ P2 
-~ (4-4x-&-&+ PlPd, 4 

01 xi- - -$ ((3y-2)x-4-9&,x”‘- 12voxn+ ,L?;+ &-/3,/32), 

dP2 82 -=-- 
dM 

2 ((3y-2)x-4-95,x m- 1277cYf PT-t Pb31P2h 

where 

4==p;+ p;-p&+ 4x. 
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-2 

g+ a;- pJ3,+ 4x : 4 

- 4 

\ $+ e” jtl,&= 4 (Kamer Ring) 

FIG. 1. The interior of the three-dimensional paraboloid represents the physical phase space. The two-dimensional shaded 
parabola represents a particular x - p plane for a unique value of the parameter k. As we let k range through -m to 00, 
the two-dimensional x - fi plane will cover the entire three-dimensional phase space. For each value of k the plane 
intersects the Kasner ring of singular points at two points, thus we have effectively isolated the singular points. 

From Eqs. (4.2) and (4.3) we again see that /I1 = kP2, for some constant k. As in the previous case 
one defines a new variable p [see Eq. (3.7)]. Each value of k represents a different surface in the 
3-dimensional phase space. As k ranges from --co to ~0, the one parameter family of 
2-dimensional surfaces will cover the entire 3-dimensional phase space. Hence the 3-dimensional 
phase portrait is the union of all the 2-dimensional phase portraits (i.e., all motion is “planar,” in 
that it is restricted to a plane p, = kP2, see Fig. 1). 

The system of equations reduces to the following l-parameter (k) family of 2-dimensional 
equations: 

-$ =~((3y-2)(1-x)-~~)-9&,x~(1-~)-3~~x~~~- 
k+ 1 

p (4-4x-@), 
@Tri4 

(4.5) 

dP 
- =-; ((3y-2)~-4-9&,~~-12~~~~+ p2), dR 

where 

4=#+ 4x, 

xzo. 

(4.6) 

(4.7a) 

(4.7b) 
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We note that Eqs. (4.7) define a compact set in R2. This set is the physical region of interest and 
will again be denoted by !?%. Equation (4.6), implies that /3 = 0 defines an invariant set. Hence, the 
line, p = 0, divides the phase space into three separate invariant sets, p<O, p = 0, and /3> 0. In 
each set, p<O and p>O, it can be shown that dj3ldx is never zero except at the singular points, 
hence there exists no closed orbits in !3L 

To simplify the analysis, the parameter C [see Eq. (3.13)] defined in the previous section is 
used. When C= 0, k= - 1 and we have no heat conduction thus we have an imperfect fluid with 
just viscosity (see Burd and Coley”), and when C= 2, k= 1 and we have the system analyzed by 
Coley and Dunn.’ By allowing this new parameter C to range through all its possible values, the 
entire three dimensional phase portrait will be obtained. Choosing various values of the constants 
509 70. m, n , and C, the complete qualitative structure of the system in question will be deter- 
mined. 

We note in Abolghasem6 an equation of state for the heat conduction vector of the form 

41 -- = 
e 

KXapb 

was assumed; as a particular case Abolghasem6 considered a = 0 and b = 1. In this paper, because 
of the fact that pt = kP2, Eq. (2.18) implies that 

41 -- = 
e g& P=CP. (4.9) 

Hence, an equation of state for the heat conduction vector cannot be independently made. [Note 
Eq. (4.9) was an assumption in the analysis of Abolghasem.@j 

A. Qualitative analysis 

Detailed analysis of the singular points (for example, their eigenvalues and eigendirections) 
can be found in van den Hoogen.’ Information about the stability and other properties of the 
singular points is summarized in Tables I-III and some appropriate phase portraits are given in the 
figures. In the following analysis the order of the coordinates is (x,/3). 

7. /rI=rl>l 

If y # 2, the point (0,2) is generally a stable two-tangent node, unless C= (3 y- 2)/2 in 
which case the point degenerates to a one-tangent node. When C= 2 the point is degenerate but 
the single sector in % is found to be hyperbolic in nature. Finally, if y= 2 the point behaves like 
a stable node. (See also Table A in Ref. 7.) 

The point (0, - 2) (for y # 2), is generally a stable two-tangent node, unless C= - (3 y 
-2)/2, in which case the point degenerates to a one-tangent node. There is also a degenerate case 
when y=2 in which case the point behaves like a stable node. 

The point (0,O) is generally an unstable two-tangent node unless y=4/3, in which case the 
point degenerates to a one-tangent node if C # 0 and a stellar node for C = 0. 

The point (1 ,O) will take on a variety of different natures depending on the sign of 
W,=95, - (37 - 2). If W,<O the point is a saddle point. When Wt=O the point (1,0) is 
degenerate but with a change to polar coordinates we find that the point is saddlelike. When 
tI’ t >O the point is generally an unstable two-tangent node unless q2 = 95, - (3 y - 2) 
- 4 - 12 v0 = 0, in which case the point degenerates to a stellar node. 

When !Pt>O we have a fifth singular point (X,0) where Z=(95,/(3y - 2))“(1-m). The 
point (Z,O) is found to be a saddle point. 
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TABLE I. Qualitative nature of the singular points for different values of the parameters (with respect to fI time), in the 
case ~~~-0. 

Km Q.0) (LO) KG9 (07-2) 
m=n>l yI,>o 

9,=0 

*,-co 

m=n= 1 yr,>o 
9,=0 
*,-co 

m=n= l/2 Q,>O 
P,=O 
4,<0 

m=n=O 
*,>o 
*‘,=o 
T,<O 

L= ?l0=0 

Yf2 
y=2 

Y#2 
y=2 

Y#2 
y=2 

5,=0 
I, + 0 
50 f 0 
5, + 0 
Y#2 
y=2 

R-N2’ 
R-N, 

R-N2’ 
R-N2 

R-N,’ 
R-N2 

s 
*** 

R-Nzh 
s* 
s* 

R-Nza 
R-N, 

S R-Nzb 
S R-Nzb 

S* 
S* 

S 
S 

R-Nzb 
*** *** 

S 
R-Nzb 
R-N* 

R-N2 S 
S 

R-Nzb 
R-N* 

R-Nzm S 
S 

*** 

A - N,=” 
A-N* d 

A - NzCsd 
A-N* d 

A - NzCvd 
A-N* d 

A - N2 I-d 
A-N,f”’ 
A - N,f,d 
A-N*’ 
A-N*’ 
A-N*’ 

A - Nzc*d 
*** 

A-Nze 
A-N* 

A-N2 = 
A-N* 

A-Nzc 
A-N* 

A-Nzg 
A-N,g 
A-Nzg 
A-&d 
A-N*i 
A-N*i 

A-N2= 
*** 

aIf y =4/3 for C # 0 the point becomes a R-N, , and for C=O the point becomes a R-SN. 
r’If qy,=O the point becomes a R - SN. 
If C=(3 y-2)/2 the point becomes a A-N,. 
dIf C=2 the point becomes a S*. 
‘IfC=-(3y-2)/2 thepointbecomesaA-N,. 
‘If C= -‘v, the point becomes a A -N, 
gIf C=qs the point becomes a A-N,. 
hIf ‘Pd’,=O for C # 0 the point becomes a R-N, , and for C=O the point becomes a R-SN. 
‘If C>O the point becomes a S*. 
jIf C<O the point becomes a S*. 
‘If C # 0 and V!s = 0 the point becomes a R -N, 
‘If C=O and ‘IIrssO the point becomes a R-SN. 
mIf ‘I”,=6 for C # 0 the point becomes a R-N, and for C=O the point becomes a R-SN. 

2. m=n=l 

The singular point (0,2) is generally a stable two-tangent node, unless *3 + C= 0 whence 
the point degenerates to a one-tangent node [where ~~ = i(95, - (3 y - 2) + 12 vO)]. There 
also exists a degenerate case when C= 2 which is found to be hyperbolic in FL (See also Table B 
in Ref. 7.) 

TABLE II. Definition of the quantities used in Table I. 

Conditional quantities 

*II 95, - (3Y - 2) 
T2 95, - (37 - 2) - 4 - 

f(95, - 
12% 

‘Iv3 (37 - 2) + 12%) 
w4 95, - (3y - 2)+ 2 
ws (3y - 2) - 2 - 671~ 
*II, 95-(3y-2)+ 2+ 6% 
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TABLE III. Notation used to describe the singular points in Table I. 

Notation 

R Repelling 
A Attracting 
S Saddle point 
S* Saddlelike’ 
NI One-tangent node 
N2 Two-tangent node 
N* Nodelikeb 
SN Stellar node 
*** Line singularity 
No entry Not singular 

aDegenerate point that has the qualitative nature of a saddle-point in the 
region of interest. 

‘Degenerate point that has the qualitative nature of a two-tangent node in the 
region of interest. 

The singular point (0, - 2) is generally a stable two-tangent node, unless q3 - C= 0 whence 
the point degenerates to a one-tangent node. There also exists a degenerate case when C = 2 which 
is found to be hyperbolic in 5% 

The point (0,O) has a variety of different natures depending on the sign of % 1 . If q 1 > 0, the 
point is a saddle point. When *I = 0 the point (0,O) actually becomes a singular point on a line 
singularity p= 0, and will be discussed later. When 1I’, < 0, the point (0,O) is generally an 
unstable two-tangent node unless y14 = 95, - (3 y - 2) + 2 = 0 in which case the point degen- 
erates to a one-tangent node for C # 0 and is a stellar node for C = 0. 

The point ( 1 ,O) in this case has the same qualitative behavior as in the case m = n > 1 except 
in the degenerate case when q I = 0 where it becomes part of a line singularity. 

In the case when q1 =0, we have a line singularity (x,0), where O=GX< 1. The line is an 
attracting singular line and the slope of the trajectories as p + 0 is 

dp -2 
lili 5 =-$1+ 3770)(l-X)-‘. 

If C<O, the slope of the trajectories as p -+ 0 is always positive, if C= 0 the slope of the 
trajectories becomes infinite and the trajectories cross the line at right angles, and if C>O the 
slope of the trajectories is negative. 

3. m=n=1/2 

In this case, there are at most five singular points in ‘5%. For the points (O,O), (0,2), and 
(0, - 2) the system becomes nonanalytic. By transforming to the variable u and time coordinate 7 
(u’=.x;dRldT = u), these points can be analyzed using analytic methods. All three points 
become degenerate, and by a change to polar coordinates, the qualitative behavior of the singular 
points is determined. 

The point (0,O) has invariant rays 8= 0 and 0= 8* where tan 0” = - 9 5,/C. We find from the 
analysis that drldT<O along the invariant ray B=O, and drldr>O along the invariant ray 
19= 8*, thus each sector is hyperbolic. (See also Table C in Ref. 7.) 

The point (0,2) has invariant rays 0=0 and 8=8* where tan 0*=(9[,+ 12v0)/2C. The 
region % in the new coordinates is now bounded by ( p - 2) (/? f. 2) + 4 u2 = 4, so the invariant 
ray 8= 0 corresponds to the trajectory along the boundary. If C>O, the single sector in ?J% is 
hyperbolic. If C= 0, then 8, = - 1~12, which corresponds to the u =x = 0 boundary where drldT 
CO; hence the trajectories are attracted to the point along the eigendirection x= 0. If C<O, then 
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9? is divided into two sectors. One can show that drldt<O along the invariant ray /3= 0”. The 
trajectories are attracted to the point along the eigendirection corresponding to the invariant ray 
e= e*. 

The point (0,-2) has invariant rays 8=0 and 8= 8* where tan 8* = (95,+ 12~,)/2C. If 
C<O, the single sector in !X is hyperbolic. If C= 0, then 8, = - rrl2 which corresponds to the 
u =x= 0 boundary where drldr<O; hence the trajectories are attracted to the point along the 
eigendirection x= 0. If C> 0, then Yl is divided into two sectors. One can show that drldr< 0 
along the invariant ray 8= 0*. The trajectories are attracted to the point along the eigendirection 
corresponding to the invariant ray 0= B*. 

The point ( 1 ,O) has the same character as it did in the previous two cases except in the 
degenerate case when q1 = 0. In the degenerate case, changing to polar coordinates, the two 
sectors in !X are found to be parabolic in nature, and hence the point behaves like an unstable 
node. 

When 1Ir,<O there is a fifth singular point (Z,O), where z=(910/(3 ~-2))~. The point 
(X,0) is an unstable two-tangent node, with the main eigendirection along the x axis. 

4. m=n=O 
In this case there are two separate situations depending upon whether c,=O or 5, # 0. If 

5,=0, there are two singular points (0,O) and (1 ,O). The point (1 ,O) is a saddle point. The point 
(0,O) is generally an unstable two-tangent node, unless q5 = (3 y - 2) - 2 - 6 7~~ = 0, whence 
the point degenerates to a one-tangent node for C # 0 and to a stellar node for C = 0. (See also 
Table D in Ref. 7.) 

If 5, # 0, we have at most two singular points depending on the sign of q, . If q i <O, 
there are two singular points, ( 1 ,O) and (x,0), where 2 = 95,/(3 y - 2) . In this case, the point 
(1 ,O) is a saddle point. The point (X,0) is generally an unstable two-tangent node, unless 
q\I’6 = 9 5, - (3 y - 2) + 2 + 6 v0 = 0, whence the point degenerates to an unstable one-tangent 
node for C # 0, and to a stellar node for C = 0. If !P i = 0, we have only one singular point. The 
point ( 1 ,O) becomes degenerate, but by changing to polar coordinates and using higher order 
terms in the variable r, we find that the point acts like an unstable node. If *I >O, the point ( 1,O) 
is again the only singular point where the qualitative behavior is the same as in the previous cases 
for *i>O. 

For y # 2 there are four singular points in 9% The points (0,2), (O,-2), and (0,O) behave 
in the same manner as the points in the case m = n > 1 for y # 2, and hence will not be summa- 
rized here. The point ( 1 ,O) is a saddle when y# 2. (See also Table E in Ref. 7.) 

However, in the case y= 2 every point on the boundary p2 + 4x= 4 becomes singular. The 
system of equations can be solved explicitly when y= 2. The solution is given by the line /I= 0 
and the family of parabolas Ap2 - Cp+ 2x = 0 (p # 0), where A is an arbitrary constant 
depending on initial conditions. 

B. Energy conditions 

We shall look at the conditions imposed on the parameters by the energy conditions (EC). A 
full and detailed analysis of the EC is difficult. For simplicity we shall look at the EC in a 
neighborhood of each individual singular point. All singular points in the model we are studying 
haveeitherx=Oorp=O.Thesingularpointswithx=Oare(0,2)and(0,-2),inwhichcasethe 
EC are identically satisfied. The remaining singular points lie in the /3= 0 plane and the EC are 
given by Eq. (3.14). The point (0,O) always satisfies the EC. The point (X,0) satisfies the DEC 
and marginally satisfies the SEC. For the point ( 1,O) two cases occur: 

a. 5, = 0, in which case the EC are trivially satisfied. 
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b. 5, # 0 , in which case the DEC implies y> 3 5, and the SEC implies q 1 G 0. 
Thus, the energy conditions put no direct constraints on the nature of the singular points 

(O,O), (Z,O), (0,2) and (0,-2). However, the EC put constraints on the nature of the point 
( 1 ,O). From the previous analysis, q 1 <O implies in all cases that the point is a saddle-point and 
V, = 0 is precisely the degenerate case where the point may be saddlelike or nodelike depending 
on the values of m and n. If the requirement that the SEC be satisfied is dropped, then the point 
( 1 ,O) may become an attracting node. 

V. DISCUSSION 

In the case xab=O, Eq. (4.6) implies that there exists three invariant sets 
%-={(x,p)lp<O}, !RO={(x,~)~~=O}, and R+ ={(x,p)//3>0}. We shall discuss what hap- 
pens in each invariant set and determine the exact solutions corresponding to each singular point. 
We will also show that most of these solutions represent space-times which are transitively 
self-similar (that is, there exists a homothetic vector field in addition to the three Killing vector 
fields). 

In the set TL there exists only one isolated singular point, (0, -2). It lies on the boundary 
/3* + 4x = 4, where 3R = 0, and hence the solution is of Bianchi type I. The point is part of the 
Kasner ring of singularities with Kasner coefficients pi : 

The solution is given by 

ds* = - dt* + t*P’dx* + t2p2dy2 + t*psdz*, (5.2) 

e= t-‘, c=o, p=o, Q=O, a=-(&)-‘, 41’0. (5.3) 

The space-time is transitively self-similar (Hsu and Wainwright13) with homothetic vector 

From a dynamical systems point of view, the singular point (0, - 2) is always a repellor in 
t-time (even when the sector in R- is hyperbolic in nature, since trajectories are repelled in 
t-time along an eigendirection that is not in RI-), which implies that this point represents an 
initial singularity. The singularity is generally of cigar type, but in the case when k = 0 or C = 1 
the singularity is of pancake type.14 For particular values of the parameters, there exist trajectories 
that start at (0, - 2) and leave %- at some finite time t, . There also exist trajectories that start 
from the singular point (0, - 2) and remain in !X for all time; these models expand from the 
Kasner singularity towards one of the isotropic models located on the x axis (i.e., these models 
isotropize as t--w). In some cases, there exist trajectories that enter 9% at some finite time t,; 
these models evolve towards one of the isotropic models and can only represent late time behavior. 

In the case m = n = 0’, there are no singular points in the invariant set %- . All trajectories 
enter R- at some finite time and evolve towards one of the isotropic models. Hence these models 
can only describe late time behavior. 

In the case lo= vO= 0 with y= 2, there is a line singularity on the boundary /?* + 4x= 4. The 
singular points represent stiff perfect fluid Bianchi I solutions (5.2) with coefficients pi : 

PI=; 
i 

1-Jg 1 x, ) 
Fi 

Pz=f 
i 

1-JE 1 x, , 
Fl 

(5.5) 
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p3=; 1-&(2;k; 1 1 x, , 
( Fi 

e=t-1, &+=o, p2r-*, 77=0, (T=- 
J 

(l-x,) -1 
31 , 41’0, (5.6) 

where the parameter X, is bounded by 0 <x 0G 1. The space-time is transitively self-simiG3 with 
homothetic vector (5.4) with the pi now defined by (5.5). For CGO all trajectories remain in 
R- for all time and evolve towards the isotropic model at (0,O). For C>O all trajectories leave 
!R- after some finite time and hence may only describe early time behavior. 

In the invariant set !&, there exists either 1, 2, 3, or a line of singular points. Points in this set 
represent negatively curved (i.e, x< 1) or flat (i.e., x = 1) FRW models with at most bulk viscosity. 

The point ( 1 ,O) is singular in all cases. The point lies on the boundary p* + 4x = 4 and hence 
the point represents a flat FRW model. It is a saddle-point for lair ’ < 0. However, when T1 > 0 the 
point becomes an attracting node and hence represents a late-time attractor (but note that in this 
case the SEC is violated and the corresponding asymptotic solution may not be physically accept- 
able). In the case q’ = 0, the point is saddle-like for m =n> 1 and nodelike in the remaining 
cases. The solution corresponding to this singular point depends upon whether y= 3 5, or not. 

For y # 35, the solution is 

ds*= -dt*+ (t) 4/(3Y-350) (dx2+ dy2+ dz2), (5.7) 

2 
(+- t-l, l= 2!LJ 4 

r-350 (y-35,) I-l9 P=3(y-35,)* t-* 
277.3 

’ 77=(y-3&) t 
-‘,(+=o, q,=o. 

68) 

The space-time (5.7) admits the homothetic vector (5.4) with p’ =p2=p3= 2/(3 y- 95,) , hence 
the space-time is transitively self-similar.‘3 

For y= 3 I&, the solution is 

ds*= -dt*+ e2H’(dx2+ dy*+ dz*), (5.9) 

8=3H, 5=9&,H*, p=3H2, 77=977*H*, cr=O, q,=O. (5.10) 

The space-time (5.9) does not admit a homothetic vector; the space-time is not self-similar 
(Maartens and MaharajJ5). 

When the point ( 1,O) is a saddle, models start from the matter dominated singularity at ( 1 ,O) 
and evolve towards either the Milne model at (0,O) or the FRW model at (2 ,O) . However, if the 
point is an attracting node, all models evolve towards the point ( 1 ,O). 

The point (x,0) represents a negatively curved FRW model with bulk viscosity where 2 
= ((95,/(3 y - 2))“(‘-m). The space-time is self-similar.‘3 The corresponding exact solution is 

ds*= -dt*+ (1 -x)-‘(t)*(dx*+ e*‘dy*+ e*‘dz*), (5.11) 

0=3t-‘, ~=3&%“t-‘, p=3%-*, q=3rj,C”t-‘, CT=O, q,=O, (5.12) 

with homothetic vector 

x=t&. 

J. Math. Phys., Vol. 35, No. 8, August 1994 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41

On: Wed, 26 Oct 2016 15:27:26



A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4133 

When the singular point (z,O) is a saddle, models start from this matter dominated singularity at 
(X,0) and evolve towards either the Milne model at (0,O) or the FRW model at ( 1 ,O) (however 
this latter model violates the SEC). However, if the point is a node, the solution is a late time 
asymptotic attractor (except in the degenerate case when there is a line singularity). 

The point (0,O) represents an empty cosmological model, commonly known as the Milne 
model. The space-time is transitively self-similar’3 with homothetic vector (5.13). The solution is 

ds*= -dt*+ (t)*(dx*+ e*“dy*+ e*Idz*), (5.14) 

e=3t-‘, (=O, p=o, 77’0, CT=o, 41’0. (5.15) 

(Note, there is one exception to the above solution; if m = n = 0 and 5, = 0, then v= 3 vote1 .) 
When point (0,O) is an attracting node, the matter dominated singularities at (2 ,O) or ( 1,O) 
evolve towards the Milne model at (0,O). However, when the point (0,O) is a saddle, the Milne 
model evolves towards one of the other isotropic models. 

In the set %+ there exists only one isolated singular point, (0,2). It lies on the boundary 
/3* + 4x= 4, where 3R = 0, and hence the solution is of Bianchi type I. The point is part of the 
Kasner ring of singularities. The solution is given by Eqs. (5.2) and (5.3) [except that 
o=( fit)-‘], with the pi defined as: 

The space-time is transitively self-similar with homothetic vector (5.4) with the pi defined by 
(5.16). From a dynamical systems point of view, the singular point (0,Z) is always a repellor in 
t - rime (even when the sector in %+ is hyperbolic in nature, since trajectories are repelled in 
t-time along an eigendirection that is not in !J?+ ), which implies that this point represents an 
initial singularity. The singularity is generally of cigar type, but in the case when k = 1 or C = 2 
(the LRS case), the singularity is of pancake type.14 For particular values of the parameters, there 
exist trajectories that start at (0,2) and leave ?X+ at some finite time t, . There also exist trajec- 
tories that start from the singular point (0,2) and remain in !X+ for all time; these models expand 
from the Kasner singularity towards one of the isotropic models located on the x axis (i.e., these 
models isotropize as t---too). In some cases, there exist trajectories that enter %+ at some finite 
time t, ; these models evolve towards one of the isotropic models and can only represent late time 
behavior. 

In the case m = n = 0, there are no singular points in the invariant set %+ . All trajectories 
enter 9I+ at some finite time and evolve towards one of the isotropic models. Hence these models 
can only describe late time behavior. 

In the case 5, = v0 = 0 and y= 2 there is a line singularity on the boundary p* + 4x = 4. The 
singular points represent stiff perfect fluid Bianchi I solutions (5.2) with coefficients pi : 

PI=; 1+ g& 1 x, , 
i ,i-1 

Pz=$ 1+ (1-2k) 1 x, ) 
i JFXTT F, 

(5.17) 

p,=; 1+ $YkY 1 1 x, , 
i 4 

e=t-‘, c=o, p=$ t-2, 77’0, ’ 
(5.18) 
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4134 A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

(a) c = 0, co = q. = 0, 1 < 7 < 2 (b) c = 0, co = rjo = 0, -y = 2 

FIG. 2. The phase portraits describe the behavior of the perfect fluid Bianchi type V models with no heat conduction or 
viscosity in the case I,= vO=O and C=O. In all figures, the arrows refer to increasing 0. time or decreasing t time. 

where the parameter x, is bounded by OGX 0S 1. The space-time is transitively self-similar with 
homothetic vector (5.4) with the pi defined by (5.17). For C>O all trajectories remain in IR+ for 
all time and evolve towards the isotropic model at (0,O). For C<O all trajectories leave R+ after 
some finite time and hence may only describe early time behavior. 

In the case of the perfect fluid Bianchi type V model with C= 0 and 5, = v,, = 0, we note that 
all trajectories remain in R for all time. The models evolve from the Kasner singularities at (0,2) 
and (0, - 2) towards the Milne model at (0,O). In this case there also exists exceptional trajec- 
tories; there are two trajectories along the boundary of 9% that evolve from the Kasner points 
towards the FRW model at ( 1,O) (these represent Bianchi I perfect fluid models), and one trajec- 
tory that evolves from the matter dominated FRW model at ( 1,O) towards the Milne model at 
(0,O). (See Fig. 2.) 

In the case of the imperfect fluid Bianchi type V model with viscosity and zero heat conduc- 
tion (C= 0), there are two cases depending upon whether m = II = 0 or not. If m = n # 0, Eq. 
(4.5) implies that x = 0 is an invariant set and hence no trajectories can cross the /? axis. Therefore, 
all trajectories remain in 8 for all time. The behavior of the phase portraits depends critically on 
the sign of 9 r as well as the parameters m and n . The models evolve from the Kasner singularities 
at (0,2) and (O,-2) towards one of the isotropic models either at (O,O), (X,0), or (1,0) 
depending on the sign of Ti . There exists exceptional trajectories emitting from (0,2) and 
(0, - 2) towards the FRW models either at ( 1 ,O) or (X,0). There also exists exceptional trajec- 
tories on the x-axis that remain on the axis for all time [see Figs. 2(a) and 31. 

However, in the case m=n=O, we find in all cases that the models start at some finite time 
t, and evolve towards one of the isotropic models depending critically on the value of 1I’t. Note 
that the initial Big Bang singularity is avoided in this case (see Figs. 4). 

With the introduction of heat conduction, x= 0 is no longer an invariant set, and hence 
trajectories may leave RI, and consequently the weak energy condition (WEC) is violated. Equa- 
tions (4.6) and (4.7) are invariant under the transformation p- - p, C-+ - C. Hence the phase 
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A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 4135 

(a) C = 0, 7n = 72 > 1, *r > 0 

(c) c=o, ?rL=II=l, Qr >o 

(b) C = 0, m = 71= i, *I < 0 

(d) C = 0, m = 72. = 1, @I = 0 

FIG. 3. The phase portraits describe the behavior of the Bianchi type V models with viscosity and no heat conduction in 
the case m=n#O and C=O. 

portraits for C>O are reflections over the x-axis of the phase portraits for C<O. Hence, in the 
remainder of the analysis only the case C<O will be considered. The specific case C= 2 is done 
by Coley and Dunn’ (see Figs. 2 in Coley and Dunn’). 

Let us investigate what happens when we have a perfect fluid with heat conduction (i.e., no 
viscosity). Assuming that the WC is satisfied for all time, for 1 =S y< 0 , the positive p quadrant 
has the same qualitative behavior as in the perfect fluid case. However when y> 0 the WEC is 
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/ 

c 

(a) c = 0, 711 = 71 = 0, (b) c = 0, na = 7) = 0, (c) c = 0, 7r1 = n = 0, 

co = 0, PI < 0 co # 0, a1 < fJ 6 # 0, 91 2 0 

FIG. 4. The phase portraits describe the behavior of the Bianchi type V models with viscosity and no heat conduction in 
the case m=n=O and C=O. 

violated for all trajectories at some finite time (except for those exceptional trajectories which are 
qualitatively the same as in the perfect fluid case). In the negative /3 quadrant, for 
CG - (3 y-2)/2 , all trajectories violate the WEC at some finite time (except again for those 

. exceptional trajectories) and for C> - (3 y- 2)/2 , the qualitative behavior is the same as in the 
perfect fluid case (see Fig. 5). 

Let us consider an imperfect fluid with both viscosity and heat conduction. In the case m = n 
=O, where all trajectories violate the WEC at some finite time and hence are only good for late 
time asymptotic behavior, we find in general that the qualitative behavior is the same as if we had 
viscosity and no heat (see Figs. 4). But when &,= 0 and *,a 0 there is a slight difference in 
behavior; in the positive p quadrant all trajectories violate the WEC, while the negative quadrant 
is the same as if we had no heat (see Fig. 6). 

When m = n = l/2 there are two different phase portraits depending on the sign of %‘, . If 
q 1 <O and C<O there is a fifth singular point at (2 ,O). The positive /? quadrant is the same as 
in the case where we had just viscosity (Fig. 4), but in the negative p quadrant all trajectories 
violate the WEC at some finite time [see Fig. 7(a)]. If *,20 and C<O, the positive p quadrant 
is the same as in the case where there was just viscosity [Fig. 3(c)], but in the negative p quadrant 
all trajectories violate the WEC at some finite time [see Fig. 7(b)]. 

In the case m = n = 1, only the degenerate case when *, = 0 is qualitatively different (to those 
already discussed). In this case, for C<O, the positive p quadrant is similar to that with just 
viscosity [Fig. 3(d)] but trajectories in the negative p quadrant will violate the WEC at some finite 
time (see Fig. 8). 

In the case when m = n > 1, C< 0, and 9 1 s 0 the qualitative behavior is the same as that for 
other cases [see Figs. 2(a), 5 (a)-(d)]. However in the case when ?I!,>0 there are different 
possibilities. Again there exists a fifth singular point. When 1 =S y<4/3 and C<O, the positive p 
quadrant is similar to the case when no heat was present [Fig. (aa)], however in the negative p 
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l ’ 

(e) C -c 0, Co = 71, = 0, 
7=2 

FIG. 5. The phase portraits describe the behavior of the Bianchi type V  models with heat conduction and no viscosity in 
thecase[,=q,=OandCf 0. 

quadrant some or ah trajectories will violate the WEC at some finite time [see Figs. 9(a) and 9(b)]. 
When y<4/3 and C<O in the negative p quadrant some or all trajectories will violate the WEC 
at some finite time, while in the positive /3 quadrant the only physically realistic models evolve 
from the point (0,2) towards (1,O) whence the SEC is violated [see Figs. 9(c) and 9(d)]. 
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(a) C < 0, 772 = 12 = 0, co = 0, Qs 2 0 

FIG. 6. The phase portrait describes the behavior of the Bianchi type V models with heat conduction and viscosity in the 
case m=n=O and C<O. 

(a) c < 0, 711 = 71 = f, \Ir, < 0 (b) c < 0, 7n= n = i, Ql 2 0 

FIG. 7. The phase portraits describe the behavior of the Bianchi type V models with heat conduction and viscosity in the 
casem=n=j:and C<O. 
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(a) c I @3, m=n=l, \Ir,=O 

FIG. 8. The phase portrait describes the behavior of the Bianchi type V models with heat conduction and viscosity for the 
degenerate case m = n = 1 and 9 L = 0. 

VI. CONCLUSION 

By using geometric techniques from dynamical systems theory we have been able to deter- 
mine the qualitative behavior of a class of spatially homogeneous cosmological models that 
contain viscous matter and heat conduction. 

With the introduction of viscosity into the fluid, the qualitative behavior of the models differ 
from that of the perfect fluid models (for example, in some instances an additional singular point 
is even created). In particular, it is the nature of qt and hence 5, that affects the global behavior 
of the models, while the values of C and 7, change only the local behavior near a singular point. 
With the introduction of heat conduction, solutions that violate the WEC at some finite time t, in 
the past (and, in some instances, in the future) arise. 

With the introduction of bulk viscosity, the deceleration parameter 4, defined by 

ii 1 
q-i2 =? (/12+ (3y-2)x-9&P), (6.1) 

may become negative (where 8= ill). A negative q indicates that there exists a region of phase 
space with an accelerated expansion; that is, inflation occurs. For q i > 0, in all cases, there exists 
some region of phase space such that q< 0, which implies that all models must inflate at some 
time in their evolution. For m = n <l andqr>O, theaccelerationoccursas t-a. Form=n>l, 
the models may inflate for all time t, or up to some finite time t, . For q i SO some models may 
inflate. In the perfect fluid case, inflation occurs, assuming an equation of state p = ( y- 1 )p, when 
Y<T* * l6 With the addition of bulk viscosity, the fluid effectively acts like a perfect fluid with an 
equation of state p= ( yeff - 1)~ where yeff = y- 58~~‘. Several authorsI have investigated 

J. Math. Phys., Vol. 35, No. 8, August 1994 
 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41

On: Wed, 26 Oct 2016 15:27:26



4140 A. A. Coley and R. J. van den Hoogen: Qualitative analysis of diagonal Bianchi V 

(a)C<-y, m=n>l 

Q,>O, 1<7<% 

(c) c = -1, 171 = 7l > 1, 

@* > 0, y = 4 

(b) - F < C < 0, 7n= n > 1, 

Q,>O, 157<; 

P 

(d) - 1 < C < 0, ni = n > 1, 

P, > 0, 7 = j 

FIG. 9. The phase portraits describe the behavior of the Bianchi type V models with heat conduction and viscosity in the 
case m=n>l and C<O. 

whether a nonvanishing bulk viscosity could drive an inflationary phase in the early universe. Bulk 
viscosity can only act as a source for inflation if the SEC is violated. Models that include bulk 
viscosity and in which the SEC is violated have also been studied’* since the initial singularity 
can, in a sense, be eliminated. 
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In both the cases X # 0 and X =O, except for the exceptional trajectories located on the 
x-axis (as well as the stiff perfect fluid case, y= 2, with 5, = q0 = 0), all models that satisfy the 
WEC for all time start their evolution from the Kasner ring of singularities. For X # 0, assuming 
all the EC are satisfied, all models evolve towards the de Sitter model. If the EC are not satisfied, 
then there exists other late time attractors. For the case X=0, assuming all EC are satisified, all 
models (except the exceptional trajectories) either evolve towards the Milne model at (0,O) or the 
FRW model at the point (‘c,O). If the EC are not satisfied, then the FRW model at ( 1 ,O) also 
becomes a late time attractor. In either case, models start from an anisotropic state and isotropize 
towards a flat or negatively curved FRW model. 

In the case h=O, using the equations of state (2.22), all asymptotic states represent self- 
similar cosmological models [unless y= 3 5, whence the point ( 1 ,O) is no longer self-similar]. In 
the case X # 0, the future asymptotic states are not self-similar, however the past asymptotic 
states are self-similar. This shows that the past asymptotic behavior of the imperfect fluid Bianchi 
V model with or without a cosmological constant is represented by self-similar solutions, and in 
the case with no cosmological constant if the EC are satisfied the future asymptotic states are also 
self-similar. 

A number of properties of the asymptotic states described in the previous section are, in fact, 
general properties not only of the Bianchi type V models under investigation here but also of all 
orthogonal spatially homogeneous imperfect fluid models. 

First, in general (in the case X = 0 and when the energy conditions are satisfied) at the singular 
points (where x, p,, and p2 are constant) the right-hand side of the Raychaudhuri equation (2.12) 
will be (a negative definite) constant, whence on integration we obtain 

e= es,-’ (6.2) 

(where the subscript ‘s’ indicates a constant value; i.e., 6, is a constant). Hence 

and Eqs. (2.22) then yield 

p= pst+, (6.3) 

p =pst-2, [=&t-l, v= v,t-? (6.4) 

Therefore, all exact solutions corresponding to singular points will have pzp, p - l@p, and 
?,7 M p’! 

Second, it has recently been shown” that dimensionless equations of state are necessary and 
sufficient for the asymptotic states of the governing system of differential equations to be repre- 
sented by self-similar cosmological models. A precise statement of this result and an outline of its 
proof will be given in the Appendix. 

We have shown in this paper that by using dimensionless variables (2.20), (2.21), and dimen- 
sionless equations of state (2.22), the Einstein field equations reduce to a system of autonomous 
ordinary differential equations. All models that satisfy the WEC for all time isotropize. Including 
viscosity (and heat conduction) in the models allow for processes such as inflation and the removal 
of the initial singularity. These models are sufficiently simple to allow us to analyze them quali- 
tatively. By considering general orthogonal Bianchi models, non-orthogonal Bianchi V models, or 
more complex equations of state, more realistic models may be analyzed using similar techniques, 
which may lead to interesting and different qualitative behavior. 
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APPENDIX: SELF-SIMILAR ASYMPTOTIC LIMITS OF THE EINSTEIN FIELD EQUATIONS 

A space-time is defined to be self-similar if it admits a homothetic vector, and transitively 
self-similar if it admits an H4 (Ref. 13) (that is, in addition to the homothetic vector, there exist 
three Killing vectors that act transitively on 3-dimensional hypersurfaces). In order to be consis- 
tent with previous work, we are using the term self-similarity to characterize the properties of the 
geometry, rather than, as is more conventional, to characterize the properties of the matter.” A 
space-time admits a simply transitive similarity group H4 if and only if there exists an orthonor- 
mal frame {e,} and a scalar field t such that yfrb = F&t- * and e,(t) =na , where Fzb and n, are 
constants that are not all zero (see theorem 4.1 in Hsu and Wainwright13). [Note: All quantities in 
this appendix are defined and given in either Ellis and MacCallum21 or in MacCallum’s Cargise 
lectures.** In particular, equations in these two papers will be referred to using EM or M, respec- 
tively; for example, M( 113) refers to Eq. (113) in Ref. 22.1 

Theorem. Let there be a G3 group of isometries acting transitively on a 3-dimensional 
hypersulface, and assume that the j&id is moving hypersulface orthogonal. Then, provided 
p + 3p 3 0, the asymptotic limits of the Einstein field equations are transitively self-similar if and 
only if the equations of state for the pressure p and anisotropic stress reB are homogeneous 

functions of degree two; that is, 

p(Ae, Au,p,An,B,ha,)=A*p(e, u,p,n,p,a,), 
(Al) 

rr,p(A8, Au,p,kn aprhJ=X2~,p(& a,p7n,p,a,) 

Indication of prooJ: (See ReJ 19 for details.) The Einstein field equations for the orthogonal 
spatially homogeneous models may be written in terms of an orthonormal tetrad {e,}. Let 
eo= u (u is the fluid four-velocity which is orthogonal to the spatial hypersurfaces), then the 
quantities y& defined by the commutator relation [e, , %I= yzbec are spatially independent and 
are functions of t only. The quantities y& may be written in terms of 8, amp, and new variables 
nap and aa (see Ref. 21). The generalized Friedmann equation, formally given by 

l9* 1 
- =a*+ p+ - 
3 2 

6a,a*+ nn@n+-- 642) 

is a first integral of the Bianchi field equations and serves to define p in terms of the remaining 
variables. In addition, the [Oa] field equations serve to define qcr . 

Let us assume the equations of state are given by (Al). The Einstein field equations M(113)- 
(115), the Jacobi identities M(116), (117), and the energy-momentum conservation equations 
M( 118), (119) constitute a dynamical system in the remaining physical variables (which we shall 
denote as the DS). The DS is invariant under the transformation 

84x8, a,+Xa,, P--‘X2P, t+X-‘t, 

hap--+ A cap 7 nap--‘&p, Qp~*~,p I 
C43) 

and this invariance implies that there exists a symmetry in the DS.23 With the following change of 
variables 

‘@=y, A$f, NaB=y, 

(A4) 
dt 1 

0 = In 8, FT=yj, 
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the new evolution equations for Z np, Nap, and A, become independent of the variable 0. Thus 
the DS can be considered as a reduced dynamical system for Cap, Nap, and A ~ coupled to the 
evolution equation for 0. 

In order for the pressure p and anisotropic stress rrGB to satisfy the conditions that p+ A*p 
and rr,p+X2~,B in Eq. (A3), the equations of state for p and m’ap must be homogeneous 
functions of degree two; that is, 

pt~e,~~,B,~nag,Aa,)=~2p(e,~,B.nop,a,), 65) 

~,8(he,Aa,B,An,p,Aa,)=A2rr,B(e,aop,n,8,a,). 646) 

At the singular points of the reduced dynamical system 2,, , Nap, and A, are constant and 
consequently the equation 

; c-f -x,,~“a-’ 2 (pe-*+ 3~) (A7) 

may be integrated to yield 8= B,t-’ provided the right-hand side of Eq. (A7) is nonzero, which is 
guaranteed if p + 3p >O. The remaining physical variables may then be integrated to yield 
u.rrp=tua&t-*, nap=tnap)of-l, ami aa=ta,),t - ’ , where the subscript ‘o ’ denotes a con- 
stant. These solutions imply that the commutation coefficients & are inverse functions of t. 
Therefore, using Hsu and Wainwright’s theorem, the singular points of the reduced system repre- 
sent transitively self-similar cosmological models. However, the singular points of the reduced 
dynamical system represents the asymptotic limits to the Einstein field equations. 

Conversely, if it is assumed that the asymptotic limit points are self-similar, Hsu and Wain- 
wright’s theorem implies that the commutation functions yzb are inverse functions of t. Therefore 
the physical variables 8, crap, nap, and a, are also inverse functions of t. The field equations 
then imply that the pressure p and anisotropic stress T+ are inverse square functions oft; that is, 
P(f) =PJ-* and r&t) = ( rap),t-*. If the pressure p has an equation of state of the form 
p=p(W,B,n,p,a,), then 

pw=pw), q&L n,ptth a,(t)), 
=p(te),t-1, tua&f-‘, (nap)of-l, (a&-‘). 

Thus, it follows that 

648) 

p(A-‘t)=p(At(e),t-‘), A(tc+ ,pLt-‘), V(n,&-1>9 Uta,),t-‘)I, 
=p(A@, Au,p,An,p,Aa,). (A9) 

But p(A-‘t)=A*p,t-*=A*p(t), thus the equation of state for p is of the form 
p(AB,Aa,~,An,~,Aa,)=A2p(f?,a,p,n,p,a,). Theresultissimilarforrr,P. Therefore,assum- 
ing that the space-time is transitively self-similar, the equations of state for the pressure p and 
anisotropic stress rr,p must be homogeneous functions of degree two in their arguments. q 

The equations of state in the new dimensionless variables (A4) are of the form 

P p(Rc+,p,n,p,a,) 
p’z= e* =P(&,,N,p,A,), (AlO) 

I-L/F $$ =Qd’C,,,&p,&). (All) 
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We note that P=pK* and II,8=:rrap0-2 are dimensionless and we shall call the corresponding 
equations of state (AIO), (All) ‘dimensionless’ equations of state.5 We also note from Eq. (A2) 
thatx=3pe-* isafunctionofZC,p, Nap, andA,. A discussion of when the self-similarity of the 
asymptotic limits of the Einstein field equations is broken is given in Ref. 19. 
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