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Viscous heat-conducting fluid and anisotropic fluid space-times admitting a special conformal 
Killing vector (SCKV) are studied and some general theorems concerning the inheritance of 
the symmetry associated with the SCKV are proved. In particular, for viscous fluid space­
times it is shown that (i) if the SCKV maps fluid flow lines into fluid flow lines, then all 
physical components of the energy-momentum tensor inherit the SCKV symmetry; or (ii) if 
the Lie derivative along a SCKV of the shear viscosity term 1]Uab is zero then, again, we have 
symmetry inheritance. All space-times admitting a SCKV and satisfying the dominant energy 
condition are found. Apart from the vacuum pp-wave solutions, which are the only vacuum 
solutions that can admit a SCKV, the energy-momentum tensor associated with these space­
times is shown to admit at least one null eigenvector and can represent either a viscous fluid 
with heat conduction or an anisotropic fluid. No perfect fluid space-times can admit a SCKV. 
These SCKV space-times and, also, space-times admitting a homothetic vector are used to 
illustrate the symmetry inheritance theorems. 

I. INTRODUCTION 

Homothetic vectors (HV's) and conformal Killing vec­
tors (CKV's) have been studied at length by various au­
thors. Cahill and Taub1 and Taub2 have discussed perfect 
fluid solutions which are self-similar, i.e., admit a HV. 
Wainwright and Yaremovich3 have studied charged perfect 
fluids and McIntosh4 has made a general study of HV's in 
general relativity, with an emphasis on vacuum and perfect 
fluid space-times. Herrera and co-workers5 have studied 
CKV's, with particular reference to perfect fluids and aniso­
tropic fluids; Mason and Tsamparlis6 have investigated 
spacelike CKV's; and Maartens et al. 7 have made a study of 
CKV's in anisotropic fluids, in which they are particularly 
concerned with special conformal Killing vectors 
(SCKV's). 

In this article we are principally interested in imperfect 
fluids (i.e., viscous, heat-conducting fluids) and, to a lesser 
extent, anisotropic fluids. The energy-momentum tensor for 
an imperfect fluid is 

Tab =f-lUaUb +phab -2rWab +qaUb +qbua' 0.1) 

wheref-l is the energy density,p is the isotropic pressure, qa is 
the heat flux vector relative to the four-velocity ua 

, 1] (;;;,0) is 
the shear viscosity coefficient, hab = gab + Ua Ub is the pro­
jection tensor, and Uab is the shear tensor. The energy-mo­
mentum tensor for an anisotropic fluid is 

Tab =f-lUaUb +Pllnanb +P1Pab' 0.2) 

where na is a unit spacelike vector orthogonal to Ua; Pab is 
the projection tensor onto the two-plane orthogonal to ua 

and na; and PII ,P 1 denote the pressures parallel to and per­
pendicular to na 

, respectively. 
The effect of a HV on space-times corresponding to the 

energy-momentum tensor ( 1.1) has been discussed by Hall 

and Negm,8 but only in the case when one of 1] and q a is zero. 
In fact, there has been no systematic study ofCKV's, HV's, 
or even Killing vectors (KV's) in fluids of type (1.1), al­
though fluids of type ( 1.2) were discussed in Refs. 5 and 7; in 
the latter reference the SCKV discussion was confined to the 
casef-l + PII #0. 

We shall consider space-times that admit a CKV 5' , i.e., 

(1.3 ) 

where !£ 5 signifies the Lie derivative along 5' and 1/I(xa ) is 
the conformal factor. If 1/I;ab = 0, but 1/I.a #0, then 5' is a 
SCK V; when 1/1 is a constant, S a is a HV and 1/1 = 0 corre­
sponds to a KV. Although our ultimate aim is to study the 
properties of proper CKV's (i.e., CKV's that do not degen­
erate into SCKV's or HV's in imperfect fluids, in this article 
we shall confine our attention to the simpler SCKV's and 
HV's. 

In Sec. II, the Lie derivatives of the various kinematical 
quantities are calculated and the results applied to the ener­
gy-momentum tensor (1.1) and, also, to (1.2) in the special 
case f-l + PII = O. In Sec. III, we define what we mean by 
symmetry inheritance for a SCKV and prove a number of 
theorems on the inheritance of the symmetry of a SCKV by 
the physical components of the energy-momentum tensor 
( 1.1). In particular, we prove the results that if either 
!£ 5 ua = 1/Iua or !£ 5 (1]Uab ) = 0, the symmetry of 5' is in­
herited by all physical quantities. We conclude Sec. III by 
discussing symmetry inheritance by an anisotropic fluid in 
the particular case f-l + PII = 0, which was omitted from a 
similar discussion in Ref. 7. 

In Sec. IV we find all space-times (irrespective of the 
field equations that they satisfy) which admit a proper 
SCKV, i.e., a SCKV for which 1/1 is not constant, and which 
satisfy the dominant energy condition. We find that (i) there 
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are no perfect fluid space-times admitting a proper SCKV; 
(ii) anisotropic fluid space-times admitting a proper SCKV 
must satisfy Il + PH = 0, Pi = 0; and (iii) there do exist im­
perfect fluid space-times admitting a proper SCKV. 

Result (i) invalidates that part of Ref. 5 in which it was 
assumed that perfect fluid space-times admitting SCKV's do 
exist and result (ii) invalidates a result in Ref. 7 since it 
shows that SCKV anisotropic fluids are not compatible with 
the assumptionll + PH #0 made in Ref. 7. The space-times 
admitting a proper SCKV form a very restricted class in that 
they must admit either two null eigenvectors, or a repeated 
null vector, of the energy-momentum tensor. Because of the 
limited number of proper SCKV solutions, the work de­
scribed here on symmetry inheritance has, perhaps, its great­
est relevance in the study of HV's, but is couched in the 
language of CKV's because of our intention to extend the 
work to proper CKV's. In Sec. V, we illustrate the theorems 
of Sec. III with examples of both the SCKV and HV and in 
Sec. VI we make some concluding remarks. 

II. KINEMATICAL AND DYNAMICAL RESULTS 

In order to discuss the effect on the various kinematical 
quantities of the Lie derivative along a CKV, we first note 
the following result proved by Maartens et ai., 7 namely, if X" 
is any unit vector (timelike or spacelike) and 5' is a CKV 
satisfying (1.3), then 

!fsxa= -t/JXa+ ya, 

!fsXa = t/JXa + Ya' 

(2.1) 

(2.2) 

where Y" is some vector orthogonal to Xa, i.e., xaYa = O. 
Applying this result to the fluid velocity vector ua 

, we have 

!f sua = - t/Jua + va , 

!f sUa = t/JUa + Va , 

(2.3 ) 

(2.4 ) 

where va is a spacelike vector with Ua va = O. Note that 
ua!f sua = - ua!f sUa = t/J. If va = 0, i.e., !f sua 
= - t/Jua, then fluid flow lines are mapped into fluid flow 

lines by the action of 5' . 
We first consider imperfect fluids with Tab of the form 

( 1.1 ). The heat flux vector qa is not a unit vector and if we 
define Q to be the magnitude of qa , i.e., qa qa = Q 2, then by 
an argument similar to that used in establishing (2.1) it can 
be shown that 

!fsqa= {Q- 1!fsQ_t/J)qa+ wa, (2.5) 

where waqa = O. Note that if 5' is a HV, i.e., t/J is a constant 
and if we require a self-similar solution (which does not au­
tomatically follow for an imperfect fluid), the dimensional 
requirements9 imply that !f s Q = - 2t/JQ and wa = O. 

Since Ua qa = 0, it follows that 

- ua!f sqa = - ua!f sqa = qa!f sua = qa!f sUa =Ll, 
(2.6) 

which serves as the definition of the scalar quantity Ll. Equa­
tion (2.6) implies that 

(2.7) 

If {b a c} is the metric affinity of gab' then 10 
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!f s {b aJ = 8: t/J,c + 8~t/J,b - gbc tfra 

and (2.4) and (2.8) give 

!f sUa;b = t/JUa;b + va;b + gab t/J.c Uc - t/J,a Ub , 

!f sa = - t/J9 + Va;a + 3t/J,a ua , 

!f shab = 2t/Jhab + 2U(aVb) , 

(2.8) 

(2.9) 

(2.1O) 

(2.11) 

where a = ua;a is the expansion scalar for the fluid velocity 
congruence. 

Recalling that the shear tensor is defined by 

(2.12) 

and using (2.9)-{2.13), after a long calculation we obtain 

!f sUab = t/Juab - jhabvC;c - ~aU(aVb) + V(aUb) 

+ v(a;b) + Uta Vb) + Uta Ub);C VC , (2.13 ) 

where the overdot indicates the covariant derivative in the 
direction of the fluid flow, i.e., X = X;a ua. Note that!f sUab 
is explicitly independent of the derivatives of t/J. Also, 
Uab~b = 0, Uab ub = 0, and ~b!f s-uab = 0, but 

(2.14 ) 

Note, also, that if !f sUa = t/Jua, i.e., Va = 0, then !f sUab 
= t/JUab' 

Turning now to dynamical results we note that if 5' is a 
CKV satisfying (1.3), then 7 

!f sRab = - 2t/J;ab - gabDt/J, 

!f sR = - 2t/JR - 6Dt/J , 

!f sGab = 2gabDt/J - 2t/J;ab , 

(2.15 ) 

(2.16) 

(2.17) 

where Dt/J=~b t/J;ab' We consider Einstein's field equations 
in the form 

Gab + Agab = Tab 

and so find 

(2.18 ) 

(2.19) 

We take Tab to be of the form (1.1) and, by taking the 
Lie derivative of ( 1.1) with respect to 5' , we obtain 

!f sll{UaUb) + !f sp{hab ) + 2t/J{p,uaub + phab) 

+ 2{1l + P)V(aUb) - 2uab!f s''l - 21J!f sUab 

+ 2{Q -1!f sQ + 2t/J)U(aqb) + 2q(aVb) 

+ 2U(a Wb) = 2{Dt/J + At/J)gab - 2t/J;ab , (2.20) 

where!f sUab is given by (2.13) and we have used (2.4) and 
(2.5). 

For the remainder of this article we shall confine our 
attention to HV's and SCKV's, i.e., we assume that t/J;ab = o. 
We shall also assume that A = 0; this is not a particularly 
restrictive assumption since the replacements Il-+ Il + A, 
P-+P - A will reproduce the effects of including A. Thus 
(2.19) becomes !f sTab = 0 and we focus our attention on 
(2.20) with zero rhs. 

Contracting (2.20) in tum with ua ub, h ab, uah bc' 
h aCh btl _ jh abh cd, qb, qaub, and qa qb ,and simplifying we ob­
tain 
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.Y sJ-l + 21/1J-l + 2il = 0 , 

.Y sP + 21/1p + jil = 0 , 

2rWab Vb = Wa - ilua + (J-l + p)va 

+ (Q-l.Y SQ+21/1)qa' 

.Y 5 (1]O"ab) = 21]O"c(a ub) VC 

(2.21 ) 

(2.22) 

(2.23 ) 

+ q(avb) - jilhab , (2.24) 

2qb'y 5 (1]O"ab) = jilqa + Q 2Va + [(J-l + p)il 

+ Q.YsQ+ 21/1Q 2]ua , (2.25) 

21]O"ab vbqa = Q(.Y sQ + 21/1Q) + (J-l + p)il, (2.26) 

2qaqb.Ys (1]O"ab) =~ilQ2. (2.27) 

The case in which Tab is given by (1.2) has been dis-
cussed in Ref. 7. However, Ref. 7 assumed that J-l + PII #0. 
As we shall see, space-times admitting a SCKV and satisfy­
ing the field equations for an anisotropic fluid must have 
J-l = - PII =!R and Pi = 0, so that the energy-momentum 
tensor is limited to the form 

Tab = !R(uaub - nanb) . (2.28) 

For a SCKV we have .Y sTab = 0, .Y sR = - 21/1R and 
since na is a unit vector, 

.Y sna = 1/Ina + ma , (2.29) 

where mana = O. From Eqs. (2.29) and (2.4), the Lie deriv­
ative of (2.28) yields 

0= !R(vaub + VbUa - manb - mbna ) . 

Since R cannot be zero for a non vacuum solution, this im­
plies that 

(2.30) 

where ~ = - ua ma = nava. It follows that either 
Va = ma = 0 or Va' ma are parallel to Ua, na' respectively. 
Thus the result that Va = ma = 0, given in Ref. 7 and based 
on the assumption J-l + PII #0, is not necessarily true. 

III. SYMMETRY INHERITANCE 

If a perfect fluid space-time is self-similar, i.e., admits a 
HV sa , the density, pressure, and fluid velocity must satisfy 

.Y sJ-l = - 21/1J-l, .Y sP = - 21/1p, .Y sUa = 1/Iua , 

and we say that these quantities inherit the space-time sym­
metry defined by sa . In contrast, if a space-time admitting a 
HV satisfies Einstein's field equations with Tab given by 
( 1.1 ), then in general, the symmetry is not inherited by the 
dynamical and kinematical quantities appearing in Tab' 
However, if we impose self-similarity on the complete solu­
tion, dimensional considerations9 will imply that the follow­
ing set of equations will hold: 

.Y sJ-l = - 21/1J-l, .Y sP = - 21/1p, .Y sUa = 1/Iua , 

.Y sqa = - 1/Iqa' .Y sO"ab = 1/IO"ab' .Y 51] = - 1/11] . 
(3.1 ) 

For a SCKV, there is no self-similarity unless the SCKV is in 
fact a HV. However, we will now make the following defini­
tion. 

Definition: If the space-time solution of Einstein's field 
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equations with Tab given by (1.1) admits a SCKV sa given 
by ( 1.3), then the solution will be said to inherit the symme­
try corresponding to sa ifthe set of equations (3.1) holds. 

In this section we investigate the conditions under 
which an imperfect fluid given by ( 1.1) will inherit the sym­
metries corresponding to a SCKV sa. We also comment on 
the symmetry inheritance for an anisotropic fluid ( 1.2), thus 
extending the work of Maartens et al. 7 to a crucial case 
which they omitted. Throughout this investigation we re­
quire that the fluid satisfies the dominant energy condition. 

We consider a number of possible cases. 
Case 1: In Ref. 7 it is shown that when qa = 0, Eqs. 

(3.1) will hold provided that J-l + p#O and either 
.Y sUa = 1/Iua (i.e., Va = 0) or .Y 5 (1]O"ab) = O. We now 
complete this result by considering the exceptional case 
J-l + P = O. Equation (2.23) becomes 21]O"ab Vb = 0, so that 
O"ab must be of the form O"ab = O"(xaxb - YaYb)' wherexa ,Ya 
are orthogonal unit spacelike vectors which are also orthog­
onal to Ua and Va' By applying the dominant energy condi­
tion to the resulting Tab' we find that 1]0" = 0, so that the 
fluid degenerates into a perfect fluid with J-l + P = O. Hence, 
Eqs. (3.1) hold for an imperfect fluid and we have the fol­
lowing theorem. 

Theorem 1: If qa = 0 and if either .Y sUa = 1/Iua or 
.Y 5 (1]O"ab) = 0, the symmetries of a SCKV sa are inherited . 

Case 2: Suppose that .Y 5 (1]O"ab) = O. Contracting Eq. 
(2.25) with qa yields ~ilQ 2 = 0, so that either il = 0 or 
Q = O. The latter case immediately leads to inheritance from 
Theorem 1, so we consider il = O. Equation (2.25) then be­
comes 

which implies that Va = 0 and .Y sQ + 21/1Q = O. Equation 
(2.23) then implies that Wa = 0, and so we have the follow­
ing theorem. 

Theorem 2: If .Y 5 ( 1]0" ab) = 0, the symmetries of a 
SCKV sa are inherited. 

Corollary 1: If 1]O"ab = 0, the symmetries of a SCKV sa 
are inherited. 

Case 3: Suppose that .Y 5 Ua = 1/Iua, i.e., fluid flow lines 
are mapped onto fluid flow lines. In this case Va = 0, il = 0, 
and Eq. (2.24) becomes.Y 5 (1]O"ab) = 0, so that Theorem 2 
leads to the following theorem. 

Theorem 3: If .Y 5 Ua = tPua, the symmetries of a SCKV 
Sa are inherited. 

Corollary 2: If a SCKV sa is parallel to ua
, then the 

symmetries of sa are inherited. 
Theorems 2 and 3 are the primary results in this paper; 

they are new results which generalize the work of Ref. 7 to 
viscous fluids with nonzero heat conduction. Theorems 2 
and 3 are definitive in that they give a complete characteriza­
tion of the SCKV inheritance problem for the fluid (1.1) . 
Note that from Theorems 1 and 2, the vanishing of the shear 
viscosity is sufficient to ensure inheritance, whereas the van­
ishing of the heat conduction is not sufficient. However, as 
we shall see in Case 4, there are conditions on qa which will 
ensure inheritance. 

Case 4: Suppose that qa is an eigenvector of the shear 
tensor, i.e., 
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(3.2) 

Equation (3.2) implies that, geometrically, qa and ua span a 
timelike invariant two-space of Tab 8 and, physically, there 
exist no shear velocities between neighborhood surface ele­
ments orthogonal to the direction of the heat flux. 11 Taking 
the Lie derivative of (3.2) and using Eqs. (2.21 )-(2.24) we 
obtain 

[Q(2'sQ+2t,bQ) - (,u+p)a]ua -aqa +Q 2va 

- AWa + 21/(fab Wb = 0, 

2' sA + Ut,b = ~a . 
(3.3 ) 

(3.4 ) 

Relations (3.3) and (3.4) do not imply inheritance. How­
ever, if we make the additional assumption 

(3.5) 

i.e., Wa = 0, a = 0, and 2' sQ = - 2t,bQ, then (3.3) shows 
that Va = 0, so that from Theorem 3, we have complete in­
heritance. 

Conversely, if we first assume (3.5), the Lie derivative 
of (2.23) contracted with qa Vb leads to 

VbVbQ2 + 21/(fabqa 2' svb = (,u + p)qa 2' sVa (3.6) 

and since (3.5) implies that qa 2' sVa = 0, this shows that 
the imposition of (3.2) leads to inheritance. On the other 
hand, when Va #0, i.e., if we have noninheritance, then (3.6) 
shows that qa cannot be an eigenvector of (fab' Thus we have 
proved the following theorem. 

Theorem 4: If qa is an eigenvector of (fab and, also, 
2' sqa = - t,bqa' then the symmetries of a SCKV 5' are 
inherited. If either of these conditions does not hold, then the 
symmetries are not inherited. Furthermore, if the symme­
tries are not inherited qa cannot be an eigenvector of (fab' 

Theorem 4 is a new result since it requires qa #0, a situa­
tion that has not been investigated for SCKV's. 

It should be emphasized that the results given here ap­
ply not only to SCKV's, but also to HV's. Indeed, when t,bisa 
constant, Theorems 2 and 3 give the definitive conditions 
under which the physical quantities constituting the energy­
momentum tensor ( 1.1) can inherit the self-similar symme­
try associated with a HV. 

These results apply also to KV's (t,b = 0) and are again 
new since no investigation has been made of KV's in a vis­
cous, heat-conducting fluid. The major results for KV's may 
be summarized in the following theorem. 

Theorem 5: If 5' is a KV of space-time satisfying Ein­
stein's field equations for an imperfect fluid with the energy­
momentum tensor (1.1), then the necessary and sufficient 
condition for the symmetry defined by 5' to be inherited by 
the physical quantities associated with the fluid, i.e., for the 
quantities 

2' s,u = 2' sP = 2' sUa = 2' s1/ = 2' s(fab = ° 
to hold, is that 2' s (1/(fab) = ° or, equivalently, 2' sUa = 0. 

We now turn to the case of an anisotropic fluid given by 
(1.2) and, in particular, to the special case ,u + PII = 0, 
Pi = 0, for which Tab is given by (2.28). Since 
,u = - PII = !R, it follows that 2' s,u = - 2t,b,u and 2' sPIl 
= - 2t,bPII ' so that,u and PII always inherit the symmetry of 
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the SCKV 5'. However, as shown in Sec. II, Va and rna [as 
defined by (2.29) ] are either zero or nonzero and parallel to 
na , Ua , respectively, so that the symmetry of the SCKV may 
or may not be inherited. Maartens et aJ.1 showed that in 
general, Va is given by 

Va = 2WabSb + aUa - a,bh ab , (3.7) 

where a = - Sa ua andwab is the vorticity tensor. Complete 
inheritance occurs when Va = 0; two special cases of this are 
when 5' is parallel to ua and, also, when 5' is orthogonal to 
ua and the fluid is vorticity-free, i.e., S aUa = ° and Wab = O. 
Hence we have the following theorem. 

Theorem 6: For an anisotropic fluid of the form (1.2) 
with,u + PII = O,Pi = 0, the symmetries ofa SCKV 5' are 
inherited if and only if expression (3.7) for Va is zero. 

IV. SPACE·TIMES ADMITTING A PROPER SCKV 

We now turn to the problem of determining those space­
times that admit a proper SCKV. A SCKV is defined by 
( 1.3) with t,b;ab = 0. This implies that t,b,a is a covariantly 
constant, hypersurface orthogonal, geodesic vector, result­
ing in considerable simplification ofthe space-time metric. 12 
It also implies that t,b.a is globally timelike, globally space­
like, or globally null. We consider these three possibilities in 
turn. 

A. The vector "'.8 timelike 

We can choose coordinates in which 

t,b.a = ( - 1,0,0,0) (4.1 ) 

and the metric is of the form 

dr= -dt 2+ga(3(xY )dxa dx(3= -dt 2+d0,2, (4.2) 

where a, p, r = 1, 2, 3. 
Equation (4.1) implies that t,b = - t and the metric 

(4.2) implies that ~ i k} = 0 if any of i, j, k = 0. Equations 
(1.3) take the form 

So.o = t, (4.3 ) 

So,a +Sa,o =0, (4.4 ) 

Sa;(3 + S(3;a = - 2tga(3 . (4.5) 

Integrating (4.3) yields 

So=!t 2+A(xY ), (4.6) 

where A is a scalar function and (4.4) and (4.6) yield 

Sa.o = -A,a , 

i.e., 

(4.7) 

where Ba is a vectorfunction. Substituting (4.7) into (4.5) 
yields 

- 2A;a(3t + Ba;(3 + B(3;a = - 2tga(3 

and equating coefficients of t we obtain 

Ba;(3 + B(3;a = 0, (4.8) 

so that Ba is a KV of the three-dimensional space and 

A;a(3=ga(3' (4.9) 

Petrov13 quotes a result due to Sinyukov,14 namely that 
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if a Vn admits a vector field <Pa satisfying <Pa;p = pgaP' 
where p is a nonzero scalar function, a system of coordinates 
exists in which the metric takes the form 

di;, =gll (dXI)2 + (lIgll)rpq(x2, ... ,xn)dxPdxq , (4.10) 

wherep, q# 1; gIl = [2fp(x l )dx l + C] -I; andp is now an 
arbitrary function of Xl only. Applying the result (4.10) to 
Eq. (4.9), in which <Pa = A.a and p = 1, we find that for the 
three-dimensional metric d02

, gil = (2x1 + C) -I and the 

transformation ~2XI + C -+X yields 

df!2 = dx2 + x2r AB (xc)d~ dxB
, 

where A, B, C take the values 2, 3. The two-dimensional 
metric r AB d~ dxB can be transformed into dy2 
+ j2(y,z)dr, so that the space-time metric takes the final 

form 

d? = - dt 2 + dx2 + x2[dy2 + j2(y,z)dr]. (4.11) 

After excluding linear combinations with the KV admitted 
by this metric, we find that only one SCKV exists, namely 

sa = ( _ !t2 - !X2, - tx,O,O) . 

which is timelike. 

B. The vector "'.8 spacelike 

We can choose coordinates in which 

¢,a = (0,1,0,0) , 

so that ¢ = x and the metric will be of the form 

ds2 = dx2 + gaP (xY)dxa dxP, 

( 4.12) 

(4.13) 

where, in this case, a, [J, r = 0, 2, 3. Following precisely the 
same argument as in the timelike case, we obtain two possi­
ble solutions, namely 

and 

ds2 = dx2 + dy2 + r[ - dt 2 + h 2(t,z)dr] . (4.15) 

However, the metric (4.15) does not satisfy the dominant 
energy condition and so will be discarded. 

The metric (4.14) admits only one proper SCKV, 
namely 

sa = (xt,!X2 + !t 2,0,0) ; 

this SCKV is spacelike. 

C. The vector "'.8 null 

(4.16) 

Since ¢,a is a gradient vector and a null KV, it follows 
that we have a generalized pp-wave space-timel5 with a met­
ric of the form 

ds2 = P-2(dx2 + dy2) - 2 du(dv - m dx + H du) , 
( 4.17) 

where H, P, and m are arbitrary functions of u, x, andy only. 
We label the coordinates (u,v,x,y) == (xo, Xl, x2, x3) and then 
the null KV ka = ¢ ,a is given by ka = (0,1,0,0), i.e., 
k a = ( - 1,0,0,0), so that 

¢ = - u . ( 4.18) 
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When R = 0, it can be shown that the general metric admit­
ting a covariantly constant null gradient vector is (4.17) 
with P = 1 and m = 0,15 i.e., 

( 4.19) 

However, in general, the imperfect and anisotropic fluids 
considered in this article will not have zero Ricci scalar, so 
we will use the metric (4.17). We require those metrics of 
this form which admit a SCKV. 

The nonzero components of the Ricci tensor for the 
metric (4.17) are 

Roo = p 2(Hxx + Hyy + mux + !m;p2) 

+ 2P-2(PPuu - 2P~) , 

R02 = - !myyp2 - myPPy + P -2 (PPux - PuPx ) , 

R03 = !mXy p 2 + myPPx + P -2(PPUY - PuPy ) , 

R22 = R33 = P -2 (PPxx + PPyy 

_P~_P;)=!P-2R. 

Recalling (4.18), the SCKV equations are 

So,o = (Hu + mmup2 + mHxp 2 )SI 

+ (mu + Hx )P 2S2 + HyP 2S3 + 2Hu , 

So, I + Seo = 2u , 

SO,2 +S2,O =2(Hx -mp-IPu)SI 

- 2P -IPuS2 - myp 2S3 - 2mu , 

SO,3 + S3,O = 2(Hy + !mymp2)SI 

(4.20) 

+myp2S2-2P-IPuS3' (4.21) 

SI,I = SI,2 +S2,1 = SI,3 + S3,I = 0, 

S2,2 = - (P- 3pu +mp-Ipx +mx)SI 
-P- IPxS2 +P- IPyS3 - up-2, 

S2,3 + S3.2 = - (my + 2mp- IPy )SI 

- 2P- IPyS2 - 2P- IpxS3 , 

S3,3 = - (P- 3pu - mp-IPy)SI 

+ p- IPA2 - P- IPyS3 - uP- 2
• 

Solving equations (4.21), we find that the most general 
form of the SCKV when R #0 is 

Sa = [ - (u2 + au + {J),av - D(u,x,y) + (2H + m 2p 2
) 

X (u2 + au + {J) + mP 2B(u,x,y) , 

mP 2 (u2 + au + [J) + p 2B(u,x,y),p 2C(u,x,y)] , 
( 4.22) 

where a and [J are arbitrary constants and B, C, and Dare 
three functions satisfying the differential equations 

Du = (Hu + mmup2 + mHxp 2) (u2 + au + [J) 

+ (mu + Hx )P 2B + HyP 2C + 2Hu, 

Bx = - (P- 3pu +mp-Ipx +mx )(u2+au+[J) 

- P-IPxB + p-IpyC - up-2 , 

Cy = - (P- 3pu -mp- IPx )(u2+au+[J) 
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+ P-IPxB - p-IpyC - uP -2, (4.23) 

Dx + Bu = 2(Hx - mP -Ipu )(u2 + au + /3) 

-2P- Ip B-m p 2C-2mu u y , 

Dy + Cu = 2(Hy + !mymp2) (u2 + au + /3) 

+ myp 2B - 2P -lpuC, 

By + Cx = - (my + 2mP -IPy )(U2 + au + /3) 

- 2P- Ip yB - 2P- Ip xC. 

By eliminating a, /3, B, C, and D from Eqs. (4.23), an expres­
sion connecting H, P, m, and their derivatives will be ob­
tained which delineates those members of the general set of 
space-times with the metric (4.17) which admit a SCKV. 

In the special case of the metric (4.19), i.e., when R = 0, 
the SCKV is of the form 

sa = [ - (u2 + au + /3) ,au _ !X2 _ !y2 

+ Jux + KuY + L(u), - ux + YY 

+J(u),-uy-yx+K(u)] , (4.24) 

where a, /3, and yare arbitrary constants and J, K, and L are 
arbitrary functions of u only. In order to admit a SCKV, the 
function H in the metric must satisfy 

Hu (u2 + au + /3) + Hx (ux - yy - J) 

+ Hy (uy + yx - K) 

+ 2H(u + a) - Juux - KuuY + Lu = o. (4.25 ) 

Thus far in this section, we have found all space-times 
admitting a SCKV irrespective of the field equations that 
they satisfy. These are the space-times with metrics given by 
( 4.11 ), (4.14), (4.15), and those metrics (4.17) that satisfy 
Eqs. (4.23). Of these, (4.15) and some members of the set 
( 4.17) do not satisfy the dominant energy condition; we 
shall confine our attention only to those space-times that do 
satisfy this condition. 

The integrability conditions for the existence of a covar­
iantly constant vector if;.a are 

by contraction, this implies 

Tabif;,a = - !Rif;,b , 

(4.26) 

(4.27) 

so that if;,a is an eigenvector of the energy-momentum ten­
sor. In the cases of the metrics (4.11) and (4,14), by calcu­
lating the Einstein tensor, each of these solutions possesses a 
timelike and a spacelike eigenvector in the tx plane which 
have the same eigenvalues, so that there are two independent 
null eigenvectors in the tx plane, namely 

ka = (l/J2)( -1,1,0,0), la = (1/~)(1,1,0,Q), (4.28) 

where we have normalized the null vectors to satisfy 
ka la = 1. Furthermore, there exist two spacelike eigenvec­
tors in the yz plane, each of which has a zero eigenvalue. 
Hence, it follows that for the two metrics (4.11) and (4.16), 
Tab is ofSegre type {( 1,1) (11 )}16 and can be written in the 
form 
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(4.29) 

In the case of the space-times with the metric (4.17), 
Eq. (4.27) shows that if;,a is a null eigenvector of the energy­
momentum tensor. Since we also require Tab to satisfy the 
dominant energy condition, this implies 16 that Tab must be 
either of Segre type {( 1,1 ) II} or {2, II} and so can be writ­
ten, respectively, in the forms 

(4.30) 

or 

(4.31 ) 

where ka, la are null vectors with ka I a = 1 and xa, Ya are 
mutually orthogonal unit spacelike vectors which are also 
orthogonal to ka and la. The quantities A, B, C, and Dare 
scalar functions of the coordinates. The eigenvectors are ka 
(= if;,a ), xa, andYa in the second case and, additionally, la in 
the first case. 

From (4.20), the nonzero components of the Einstein 
tensor are Goo, GOI ( = !R), G02' and G03• Equating Gab with 
Tab given by the more general expression (4.31) and using 
the fact that ka = (0, 1,0,0), so that II = 1, XI = YI = 0, we 
find that 

A = !R, C = D = 0 , 

so that Tab is given by 

Tab = - !R(kalb + kbla) + Bkakb , (4.32) 

which includes the form (4.29) when B = O. Thus Tab is 
either of Segre type {(1, 1 ) (11)} or {2 (11 )} and we have 
proved the following theorems. 

Theorem 7: A space-time that admits a SCKV and satis­
fies the dominant energy condition has an energy-momen­
tum tensor which admits two independent spacelike eigen­
vectors with zero eigenvalues and, also, admits either two 
independent null eigenvectors with the same eigenvalue or a 
repeated null eigenvector, i.e., the Segre type of the energy­
momentum tensor is either {(1, 1) (11 )} or {2 (11 )}. The 
energy-momentum tensor has the form (4.32), where B = 0 
or B # 0 according to whether Tab is {(1, 1 ) (11)} or 
{2( 11 )}, respectively. 

Theorem 8: There exist no perfect fluid space-times 
which admit a SCKV. 

Having established the Segre type of the energy-momen­
tum tensor, we shall investigate the field equations that are 
satisfied by the SCKV space-times. 

For the metric (4.11), the only nonzero components of 
the Einstein tensor are 

(4.33 ) 

and, assuming a comoving velocity ua = (1, 0, 0, 0), the 
metric satisfies the field equations for an anisotropic fluid, 
with Tab given by (1.2). We find that 

J..l= -PII = -x-2(1 +j-IJ;,y), PI =0, (4.34) 

and we must have 1 + j- "J;,y < 0 for the dominant energy 
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condition to be satisfied. Alternatively, if we assume a non­
comoving velocity of the form 

ua = (cosh t,b,sinh t,b,0,Q) , (4.35) 

where t,b = t,b(t,X) , then the metric satisfies the viscous fluid 
field equations, with Tab given by (1.1), with 

fL= -3p=21]X= -x-2(I+f- lhy)' Q=O, 
(4.36) 

where 

X = (t,b, - x-I)sinh t,b + t,bx cosh t,b. (4.37) 

Note that for fL > 0, 1]>0, we must have 1 + f-Ihy < ° and 
X>O. 

The space-time with the metric (4.14) has similar prop­
erties; the nonzero components of the Einstein tensor are 

Gg = G: = - t -2(1 - f-Ihy) (4.38) 

and the field equations for a comoving anisotropic fluid are 
satisfied, with 

fL= -PII =t-2(1-f- lhy)' Pl =0, (4.39) 

so that 1 - f-Ihy > ° for fL > 0. The space-time (4.14) also 
satisfies the viscous fluid field equations with ua of the form 
(4.35) and 

fL = - 3p = 21]X= t -2(1- f-1;,y), Q = 0, (4.40) 

where 

X = t,b, sinh t,b + (t,bx - t -I)cosh t,b (4.41) 

and we must have 1 - f-1hy < ° and X>O. 
Thus each of the space-times (4.11) and (4.14) may 

represent an infinite set of viscous fluid solutions depending 
on the choice of the "tilt function" t,b(t,x) and, in the particu­
lar case when t,b = 0, i.e., when ua is comoving, the viscous 
fluid solution degenerates into the anisotropic solution given 
by (4.34) or (4.39). 

We now investigate those members of the set of space­
times with the metric (4.17), if any, which satisfy the field 
equations for an anisotropic fluid. Since the rhs of ( 1.2) is 
obviously diagonalizable, those solutions for which Tab is of 
the type {2 ( 11 )} cannot represent an anisotropic fluid since 
a Tub of this Segre type is not diagonalizable. Hence, the only 
possibility for a SCKV space-time to satisfy the field equa­
tions with Tub given by (1.2) is for the energy-momentum 
tensor to be of the form (4.29), i.e., we must have 

fLUaU b +Pllnanb +Pl(xaXbYaYb) = -~R(kafb +kbfa) ' 
(4.42 ) 

where Xa , Ya are two mutually orthogonal spacelike unit 
vectors in the two-space orthogonal to that of Ua and nu' 

Contracting (4.42) with fb U U we obtain 

-fLUbfb= -~Ruafu 

and since Ua is timelike and fa is null, uafa #0, so that 

fL = ~R. (4.43) 

Contracting in turn with Ib na and k bnu we obtain 

Pili bnb = - ~Rfana, PII k bnb = - !RkanU , 

so that either PII = - ~R or fb nb = k bnb = 0. However, if 
we contract (4.42) with na nb we obtain 
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PII = - Rkanafbnb , 

so that fbnb = k bnb = ° implies that PII = O. Hence, we 
have two possibilities, namely 

or 

(ii) PII = 0, fbnb = kbnb = 0. 

These are two distinct possibilities since we discard the case 
when R = 0, which implies a vacuum solution. 

Noting that the contraction of (4.42) with g"b yields 

(4.44) 

and taking into account (4.43), possibility (i) leads to 
Pl = 0, while (ii) implies that Pl = - !R. Contracting 
(4.42) with kbxu we obtainp1k bXb = - !R~ XU and since 
Pl = -!R is not a possibility, it follows that k aXa = 0. Sim­
ilarly, we can show that k uYu = faxa = fa Ya = 0, so that ka, 
fa lie entirely in the two-plane of ua and n°. Since k a and fa 

are null vectors this implies that k ana and I ana cannot be 
zero, so that (i) is the only possibility. Hence, we have 
proved the following theorem. 

Theorem 9: If a space-time satisfies the field equations 
for an anisotropic fluid, with Tab given by (1.2), and also 
admits a SCKV, then, necessarily, 

fL = - PII = !R, P1 = ° , ( 4.45) 

i.e., the energy-momentum tensor is of the form 

(4.46) 

As we have seen, the assumption fL + PII # ° cannot hold 
for an anisotropic fluid admitting a SCKV and thus 
Theorem 9 invalidates some of the results given in Ref. 7, in 
which this specific assumption was made. 

We now show that the general class of metrics (4.17), 
satisfying conditions (4.23) for the existence of a SCKV, 
does indeed contain space-times with energy-momentum 
tensors of the forms (1.1) and (1.2). In the case of the vis­
cous fluid, it is known that the conformally flat null electro­
vac space-time, which is a special case of the simpler metric 
(4.19) with H =f(u) (X2 + r), where f is an arbitrary 
function of u, can be interpreted as representing a viscous 
fluid. I? Here we note that the space-time (4.17), with 

(4.47) 

admits the timelike SCKV 5' = ( - u2
, u2

, 0, 0) and satis­
fies the viscous fluid field equations, with Tab given by ( 1.1 ), 
with 

fL = 4p 2(P 2 + 1) -I [1 + 2p2(1 + X2 + y2)] , 

P=jp2(p2+ 1)-1[2p2(x2+r) -1], 

1] = 3X21/2 (p2 + 1)1/2[2p2(x2 + y2) - l]u, (4.48) 

Q= 4p4(p2 + 1)-1(1 + 2X2 + 2r), 

ua = [2 -1/2(p2 + 1) -1/2,0,0,0] , 

qa = Q [O,r 1I2(p2 + 1) -1/2,0,0] , 
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where, in order that 'Tj>0, the solution is confined to that 
region of space-time for which 2p2(X2 + .1»1, i.e., 
2(X2 + y2)e2

(X
2 
+.v') >u2. Note that this restriction also en­

suresp>O. 
To represent an anisotropic fluid, Tab must be ofSegre 

type {( 1,1 ) ( 11 )}; this will be the case for the metric (4.17) 
if the following contribution holds: 

RRoo = 2p2(R 62 + R 63)' R #0, (4.49) 

where the Ricci tensor components are given by (4.20). As 
an example, condition (4.49) is satisfied, with 
Roo = R02 = R03 = 0, by 

P=u-IeX'+.v', m=O, Hxx+Hyy=O; (4.50) 

and the space-time satisfies the field equations for an aniso­
tropic fluid with R = 8P 2, 

ua = (2- I /2H -1/2,0,0,0), 
(4.51 ) 

na = (2-1I2H-1/2,_2112H1I2,0,0) , 

andJ.l,PII' andpl given by Eq. (4.45). It is interesting to note 
that among this class of solutions given by Eq. (4.50), there 
are several possible behaviors for the SCKV 5'. For exam­
ple, the following three choices for H satisfying (4.50): 

(i) H = In(x2 + y2) , (4.52) 

(ii) H = u-2 In(x2 + y2) , 

(iii) H = u- 2
, 

lead to the following SCKV: 

(i) sa = [ - u2,u2 In(x2 + .1),0,0] , 

(ii) sa = ( - u2,0,0,0) , 

(iii) Sa = ( - u2 ,2,0,0) , 

(4.53 ) 

(4.54) 

(4.55 ) 

(4.56) 

(4.57) 

respectively. In case (i), 5' is null; in case (ii), 5' is timelike 
and parallel to ua 

; and in case (iii), 5' is spacelike and paral­
lel to na. Note that these space-times also admit a viscous 
fluid interpretation with a noncomoving velocity, as in the 
case of solutions (4.11) and (4.14). 

Finally, we note that the space-times (4.11) and (4.14) 
contain no nontrivial vacuum solutions since when Rab = 0, 
the space-times are flat. However, the metric (4.19) does 
contain vacuum space-times, namely the vacuum pp-wave 
solutions which satisfy the condition 

(4.58) 

Thus we have the following theorem. 
Theorem 10: The only vacuum space-times admitting a 

proper SCKV are thepp-wave solutions of the form (4.19) 
with (4.58), which also satisfy condition (4.25). 

v. EXAMPLES OF INHERITANCE PROPERTIES 

Having found all space-times admitting a SCKV and 
satisfying the dominant energy condition, we now illustrate 
the theorems of Sec. III by investigating the inheritance 
properties of these solutions. 

All the SCKV space-times can be intepreted as repre­
senting either viscous or anisotropic fluids, or both of these, 
except for the vacuum plane-wave solutions contained in the 
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metric (4.19). These SCKV space-times may also admit oth­
er physical interpretations, such as a null electromagnetic 
field [the general null electrovac conformally flat space-time 
is contained in (4.19)] and a perfect fluid with an electro­
magnetic field (it was shown in Ref. 7 that an anisotropic 
fluid may be so interpreted). However, none of the SCKV 
space-times can be interpreted as a perfect fluid solution and 
none can be interpreted as a non-null electrovac solution. We 
are concerned here only with the viscous and anisotropic 
fluid interpretations; possible electromagnetic interpreta­
tions and their properties will be investigated elsewhere. We 
note that all spacetimes admitting a SCK V admit at least one 
null eigenvector, so that they form a very restricted set when 
interpreted as fluid space-times since, in general, neither the 
viscous fluid energy-momentum tensor ( 1.1) nor the aniso­
tropic fluid energy-momentum tensor ( 1.2) admit a null ei­
genvector. For example, the FRW models, which have been 
shown to be solutions of the viscous fluid field equations, 18 
do not admit a null eigenvector, in general. Furthermore, 
while the FRW models do not admit a SCKV, the k = 0 
models with the scale factor R (t) = ~ admit a HV and thus 
will provide us further illustrative examples of the inheri­
tance theorems. 

We first consider the viscous fluid solutions. The solu­
tion (4.11), in its viscous fluid form given by (4.35 )-( 4.37), 
has qa = 0; thus from Eqs. (2.21) and (2.22) it follows that 
5t'sJ.l + 2t/JJ.l = 0 and 5t'sP + 2t/Jp = 0, a fact that is easily 
confirmed by calculating 5t' sJ.l and 5t't;P with respect to the 
SCKV (4.12). Upon calculating 5t't; uQ and 5t't; ('Tj(7ab ) we 
find that 

va = V( sinh <,6,cosh <,6,0,0) , (5.1) 

5t's ('TjO"oo) = j Vx- 2 sinh 2<,6 ( 1 + j-IJ;,y) , 

5t's('Tj(701) = -jVx- 2 cosh 2<,6(1 +j-IJ;,y) , (5.2) 

5t't; ('Tj(711) = j Vx- 2 sinh 2<,60 + j-1;,y) , 

where 

V = ~(t 2 + x 2 )<,6t + tx<,6x - x (5.3 ) 

and all other components of 5t's ("Wab) = O. It follows that 
if va = 0, then V = 0 and so 5t's ('TjO"ab) = 0 and vice versa. 
Thus the SCKV symmetry is inherited if either 5t' sua 

= - t/Jua or 5t't; ('TjO"ab) = 0, in accordance with Theorems 
1-3. Note that the condition V = 0 for inheritance implies 
that only those viscous models whose tilting velocity compo­
nents satisfy this condition can inherit the SCKV symmetry. 

The solution given by (4.14) and (4.39) to (4.41) be­
haves in a similar fashion. On the other hand, the solution 
given by (4.17), (4.47), and (4.48) cannot inherit the sym­
metry of the SCKV. 

In order to illustrate the inheritance theorems in the 
case of a viscous fluid with nonzero heat conduction we turn 
to the FRW models. These models have an energy-momen­
tum tensor of the Segre type {I, (1 1 I)} and are thus com­
monly regarded as perfect fluid solutions. However, they can 
satisfy Einstein's field equations with an energy-momentum 
tensor of the form (1.1).18 In such viscous fluid solutions, 
the four-velocity is necessarily tilting. While FR W models of 
any curvature can satisfy the viscous fluid field equations, we 
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will consider here only k = 0 models which admit a HV and, 
in particular, the Einstein-de Sitter model. 

The known viscous fluid solutions with the Einstein-de 
Sitter metric falls into two classes. One class, known as radi­
al solutions, is obtained by writing the metric in spherical 
polar coordinates and taking the four-velocity to have a non­
zero radial component, while the second class, known as 
axial solutions, is obtained by using cylindrical polar coordi­
nates and taking the four-velocity to have an axial compo­
nent in the z direction. For our example we shall consider 
only the radial case in which the metric has the form 

dsz = _dtz+t4/3(d~+~dez+~sinzedct>z) (5.4) 

and the four-velocity has the components 

ua = (cosh ¢,t -Z/3 sinh ¢,O,Q) , (5.5) 

where ¢ = ¢(t,r). The field equations then give the solution 
in the form 

J-l = jt -z coshz ¢, p = ~t -z sinhz ¢, 

TJX = - it -z sinhZ ¢, 

qa = jt -z sinh ¢ cosh ¢ 

x (sinh ¢, - t Z/3 cosh ¢,O,O) , 

where 

(5.6) 

X = ¢, sinh ¢ + t -2/3¢, cosh ¢ - r-1t -Z/3 sinh ¢. (5.7) 

The metric (5.4) admits the HV 

sa = (t,jr,O,O) , (5.8) 

corresponding to .,p = 1. Calculating 2' gUa, 2' gqa, and 
2' s (TJUab) we find that 

va = A (sinh ¢,t -Z/3 cosh ¢,O,Q) , (5.9) 

wa = jAt -Z[ (2 coshz ¢ 

+ sinhz ¢)cosh ¢,tz/3(coshz ¢ 

+ 2 sinhz ¢)sinh ¢,O,O] , 

2' s (TJuoo ) = 4A coth ¢TJuoo , 

2' g(TJUo1 ) =A(3 coth ¢ + tanh ¢)TJU01 , 

2' s ( TJU II) = 2A (coth ¢ + tanh ¢ ) TJU II , 

2' s (TJU2Z ) = 2A coth ¢TJUzz , 

2' s (TJU33 ) = 2A coth ¢TJU33 , 

where 

A = t¢, + jr¢, 

(5.10) 

( 5.11) 

(5.12) 

and all other components of 2' g (TJuab ) = O. In addition, we 
find that 2' sJ-l = - 2.,pJ-l + 2AJ-l tanh ¢ and 2' sp 
= - 2.,pp + 2AJ-l coth ¢. It follows that if va = 0, i.e., 

A = 0, we have complete inheritance, in accordance with 
Theorem 3. Furthermore, in this model qa is an eigenvector 
of Uab' so that ifwa = 0, i.e., A = 0, we again have complete 
inheritance, thus illustrating Theorem 4. 

Note that the inheritance condition t¢, + jr¢, = 0 im­
plies that ¢ = ¢(X' e, ct», where 

x = t l/3r- 1 (5.13 ) 

is the self-similar variable associated with the space-time 
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(5.4). In fact, any viscous fluid k = 0 FRW model with 
R(t) = ~ will inherit the symmetry of the HV admitted by 
such space-times if and only if the local Minkowskian com­
ponents of the four-velocity are functions of the self-similar 
variable associated with the HV (as well as other coordi­
nates not appearing in the self-similar variable), i.e., if and 
only if they are self-similar solutions. The perfect fluid solu­
tions, which have comoving four-velocity, i.e., ¢ = 0, are 
trivially self-similar and so inherit the symmetry. 

Turning now to anisotropic fluid solutions, we first con­
sider the solution (4.11) and its anisotropic fluid form given 
by (4.34). Using the SCKV sa given by (4.12) we find 

2' gUa = - .,pua + va, va = (O,X,O,O) , 

2' gna = - .,pna = rna, rna = (X,O,O,O) . 
(5.14 ) 

Note that ua and na do not inherit the SCKV symmetry and 
that, in accordance with (2.30), va and rna are indeed paral­
lel to na and ua

, respectively, thus illustrating the apparent 
contradiction, mentioned earlier, with a result of Ref. 7. 

The solution (4.14), in the form (4.39), and with the 
SCKV sa given by (4.16), leads to expressions (5.15), but 
with va and rna given by va = (0, - t, 0, 0) and rna = ( - t, 
0,0,0). 

The inheritance behavior of the solutions given by the 
metric (4.17) and Eqs. (4.50)-( 4.57) is as follows: Solution 
(i) is noninheriting with va = una and rna = uua; solution 
(ii), in which S a is parallel to ua ,obviously must inherit, i.e., 
va = wa = 0; and solution (iii), in which S a is orthogonal to 
ua

, is also an inheriting solution. The reason for inheritance 
incase (iii) isthatsincesaua = O,a = OinEq. (3.7) and, for 
this solution, the vorticity tensor Wab = O. Hence, Eq. (3.7) 
implies that Va = 0 and, from (2.30), rna = O. 

VI. CONCLUSION 

This work consists essentially of two parts. In one part, 
namely Sec. IV, we found all space-times which admit a 
SCKV and satisfy the dominant energy condition. None of 
these space-times can represent a perfect fluid and the only 
vacuum solutions are given by the pp-wave metric. However, 
in general, these SCKV space-times can represent either vis­
cous heat-conducting fluids or a special case of anisotropic 
fluids. In the second part, largely Sec. III, we derived theo­
rems concerning the inheritance of the symmetries associat­
ed with a SCKV sa by the physical components of a viscous 
imperfect fluid and also by those of the only type of aniso­
tropic fluid that can admit a SCKV. The main results of Sec. 
III show that in the viscous fluid case, the SCKV symmetries 
are completely inherited if and only if either ofthe equivalent 
statements 2' s (TJUab ) = 0 or 2' gUa = - .,pua (i.e., fluid 
flow lines are mapped conformally) is true. These results 
also apply to the symmetries associated with HV's and KV's. 

Various subcases of the general imperfect fluid source 
are also covered by these results. Apart from an imperfect 
fluid (TJ = qa = 0), which cannot admit a SCKV and for 
which the results are already known for HV's and KV's, 
these include a viscous fluid with no heat conduction 
(qa = 0), the results for which are already known?; the 
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models (4.11) and (4.14) are examples of such fluid space­
times admitting a SCKV. Another subcase is that of a heat­
conducting perfect fluid (rWab = 0) which will always in­
herit the symmetry; this result is the generalization to 
nonzero heat conduction of a known result.7 

The inheritance of symmetry results presented here can 
be extended to generalizations of the energy-momentum ten­
sor (1.1). For example, the actions ofKV's and HV's on an 
electromagnetic field and on an electromagnetic field with 
perfect fluid are well known3

; an investigation of the effect of 
SCKV's on an electromagnetic field with imperfect fluid 
would be a logical extension. Such fields have been the sub­
ject of a number of cosmological investigations l8,19 and, in 
the same way as it has been shown that FR W models can be 
interpreted as electromagnetic field plus imperfect fluid 
models,18 so, also, can some of the SCKV models found in 
Sec. IV be interpreted as such models. 

Another possible extension is to multifluid models and, 
in particular, to two-fluid models. Models in which one fluid 
is a radiation perfect fluid, representing the cosmic micro­
wave background, and the second fluid is either a perfect or 
an imperfect fluid, representing the galactic matter, have 
been studied extensively.20 Again, as in the case of FRW 
models, the SCKV models of Sec. IV can also be interpreted 
as two-fluid models. However, whether we consider the case 
when one fluid is a radiation perfect fluid or the case of two 
general imperfect fluids, the expression for Tab contains too 
many physical variables for the field equations to provide 
information on the inheritance properties of the separate 
physical quantities, although the inheritance theorems of 
Sec. III can be applied formally to suitable summed quanti­
ties. In the case when the four-velocities of the separate fluids 
are not parallel, the question of the symmetry inheritance is 
not well posed. 

As stated earlier, our intended goal is the study of prop­
er CKV's. Such a study is the natural mathematical general­
ization of work that has been done previously. Also, CKV's 
are of more physical interest than SCKV's. The results in 
this work will be useful in the proposed investigation. More­
over, some of the points made in this article serve to motivate 
the further study of CKV's and illustrate the potential prob­
lems inherent in such an investigation. 

We have shown that there are very few space-times ad­
mitting SCKV's. In particular, there exist no SCKV's in 
FRW space-times. However, it is known that there do exist 
properCKV's in FRW models21 (ninein general) including 
the simple timelike CK V 5' = R (a / at). This indicate the 
greater physical significance in the study of proper CKV's. 
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In the case of a proper CKV with tP;ab =I 0, it can be seen 
from Eqs. (2.19) that .!f s Tab is no longer zero. By studying 
the analog of Eq. (2.24), it can be shown that the equation 
for .!f s ("Wab) now includes the term tP;ab on the rhs and 
cannot be shown to be zero when tP;ab =I O. Thus in the case, it 
is impossible for the physical quantities to satisfy (3.1); con­
sequently, the symmetries cannot be inherited in the sense 
defined in Sec. III. In particular, it can be shown that even in 
the case of a perfect fluid source, a conformal motion will 
not, in general, map fluid flow conformally (i.e., 
.!f sua=l - ¢ua). Clearly, one of the starting points offuture 
research is a notion of what is actually meant by symmetry 
inheritance in space-times admitting CKV's and what modi­
fications are required to equations such as (3,1) for proper 
CKV's. 
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