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All space-times admitting a proper affine conformal vector (ACV) are found. By using a 
theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly 
constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine 
vector and a conformal Killing vector or (ii) the space-time is 2 + 2 decomposable, in which 
case it is shown that no ACV can exist (unless the space-time decomposes further). 
Furthermore, it is proved that all space-times admitting an ACV and a null covariantly 
constant vector (which are necessarily generalized pp-wave space-times) must have Ricci 
tensor of SegrC type {2,( 1,l )}. It follows that, among space-times admitting proper 
ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null 
Einstein-Maxwell space-times, and only the pp-wave space-times are representative of 
null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids 
and viscous heat-conducting fluids, but only with restricted equations of state in each 

1. INTRODUCTION 

There has been much recent interest in the existence 
of symmetries in the space-times manifold of general rel- 
ativity and in the corresponding symmetry vector fields 
r. These symmetries are often discussed in the context of 
fluid (perfect, anisotropic, or viscous heat-conducting) 
space-times and the effect of these symmetries on the ki- 
nematic and dynamic properties of the fluids is studied. 

In general, these symmetries may be characterized by 
the Lie derivative of the metric tensor gab along r, which 
can be written in the form 

2 gab = 21clg,b + Kab> 
s 

(1.1) 

where * = 4(x,> is a scalar function and &, is a sym- 
metric tensor not proportional to g,,. When Kab = 0, the 
various special symmetries of the form ( 1.1) are Killing 
vectors (KV), with $ = 0, homothetic vectors (HV), 
with tF, = const#O, special conformal Killing vectors 
(SCKV), with i&b = 0, $,,#O, and proper conformal 
Killing vectors (CKV), with qGab#O. (Note that the term 
“proper CKV” is usually used to exclude KV and HV; 
our use of the term also excludes SCKV.) When Kab is 
not zero and is covariantly constant, i.e., K+ = 0, the 
corresponding symmetries are atline vectors (AV), with 
$,a = 0, proper atline conformal vectors (ACV), with 
i&&O, and special affine conformal vectors (SACV), 
with $;,b = 0, $#O. 

All space-times admitting SCKV have been found by 
the present authors,’ who have also shown that these are 
the Ionly space-times admitting SACV.2 There are very 
few such space-times, none of which can represent a per- 
fect fluid or an Einstein-Maxwell field (other than the 
pp-wave null field), but they each can represent an aniso- 
tropic fluid with a particularly restrictive equation of 
state or a viscous heat-conducting fluid. Hall and da 
Costa3 have made a thorough study of AVs. The purpose 
of the present investigation is to complete the study of the 
last four of the above symmetries by considering the case 
of ACVs. 

An ACV or a CKV (which may be regarded as a 
special case of an ACV in which Kab is proportional to 
gab) generates a conformal collineation characterized by 

=-d&l = %+,c + &!+,b - &c$;. 
6 

(1.2) 

Conformal collineations and, in particular, ACVs have 
been the subject of a number of studies;“8 the problem of 
the existence of ACVs for positive definite manifolds has 
been solved completely,’ but no complete solution of the 
problem exists for space-times. In this article we shall 
present the complete solution by finding all space-times 
that admit ACV. In particular, we shall show that the 
Einstein static universe, which is known to admit an 
ACV,6 is the only perfect fluid space-time and also the 
only FRW model to do so; this is contrary to an assertion 
made in Ref. 8. 
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The exktenm Of the COVarkdy COnStant tenSOr &, 
imposes strong restrictions on the possible space-times. It 
has been shown3 that if a simply connected space-time 
admits a global, nowhere zero, covariantly constant sec- 
ond-order symmetric tensor, then one of the following 
three possibilities must occur. 

(a) There exists locally a timelike or spacelike no- 
where zero covariantly constant vector field qa = v,~, 
such that Kab = q,aq,b and the space-time is locally de- 
composable into a 1 + 3 space-time. 

(b) There exists locally a null nowhere zero covari- 
antly constant Vector field ~~=r],~, such that &,=q,,77b 
and the space-time 
space-time,‘*” 

is the generalized pp-wave 
which, in general, is not decomposable. 

(c) The space-time is locally decomposable into a 
2 + 2 space-time and no covariantly constant vector ex- 
ists unless the space-time decomposes further. If the 
space-time does decompose into a 1 + 1 + 2 space-time 
(which also can be regarded as a special case of a 1 + 3 
space-time), there exist two covariantly constant vectors 
~~m~,~ and &=A,=. 

In cases (a) and (b), Eq. ( 1.1) becomes 

5b;b + 6&a = 2@ab + v,a?l,b, (1.3) 

which, since q;ab = 0, can be written in the form 

((a - hq,a);b + (6b - !h,b>;a = 2$%?ab* 

so that 

(1.4) 

5a = (a + ra9 

where ca is a CKV; i.e., 

(1.5) 

sb;b + &a = 2&ab (1.6) 

and r, = &77r],, is an AV. Thus, in cases (a) and (b), the 
ACV is the sum of a CKV and an AV, the problem in 
these cases becomes one of finding space-times admitting 
both a CKV and a covariantly constant tensor. Note 
that in these cases Kab is generally given by 
Kab = 2vgab + v,aq,b, where v is a constant.3 However, an 
analysis similar to that above shows that the AV is then 
the sum of an HV and a proper AV, and this can hold 
only if the space-time admits an HV; if no HV exists, then 
v must be zero. (This fact is of particular relevance in 
Sec. VI.) Since we are interested only in proper ACV, i.e., 
ACV for which additive constants in +, corresponding to 
HV, are factored out, we can always take v = 0 even 
when an HV does exist. 

In Sees. II-IV of this paper we discuss, respectively, 
the cases when the covariantly constant vector is timelike, 
spacelike, and null, while in Sec. V, it is shown that no 
ACVs exist in the case of a 2 + 2 decomposable space- 
time. Concluding remarks are made in Sec. VI and the 

Appendix contains the proof of a result that is required in 
Sets. II and III. Throughout this investigation we are 
interested only in fluid space-times that admit proper 
ACV, so we shall discard the case in which $;,b = 0, i.e., 
in which p is a SACV. 

Finally, we note for future reference the expressions 
for the energy-momentum tensors corresponding to an 
anisotropic fluid and to a viscous heat-conducting tluid, 
respectively. The first of these is 

Tab = p”aub + Pllnanb +p~.Pab 

and the second is 

(1.7) 

Tab = puaub + Phab - 2qaab + qaUb + qb”a, (1.8) 

where p is the energy density, p is the isotropic pressure, 
hab = gab + u,ub is the projection tensor onto the hyper- 
surface orthogonal to the four velocity ua, qa is the heat 
conduction vector satisfying qaua = 0, q( 20) is the shear 
ViSCOSity coefficient, o,b iS the tensor, na iS a spacelike unit 
vector orthogonal to IL’, pab is the projection tensor onto 
the two-plane orthogonal to ua and na, and pII, pI denote 
pressure parallel to and perpendicular to na, respectively. 

II. THE TIMELIKE CASE 

Consider the case in which the covariantly constant 
vector q,a is timelike. Choosing coordinates such that 
q= -t(= -x0), i.e., v,a = - Sz, the metric takes the 
form 

dg = - d? + g&xY)dx” dti, (2.1) 

where the Greek suffixes take the values 1, 2, 3. We need 
to find the CKV, if any, admitted by this space-time. The 
CKV equations ( 1.6) for the metric (2.1) are 

~o,o = - $9 (2.2) 

5‘0,a + L,o = 09 (2.3) 

!&s + sp;a = W&p (2.4) 

Putting tF, = 8,,, where B = Z ( t,xa), and integrating 
Eq. (2.2), we obtain 

&I= ---,o+Aw). (2.5) 

Equation (2.3) then yields 

5‘a = &Y -Jut + &w), (2.6) 

and Eq. (2.4) becomes 

=;a8 - 2-+x$ + Ba;s + &;a = WrgaB. (2.7) 

Differentiating twice with respect to (wrt) t, we obtain 
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&?,oo = +,oo!L& 

i.e., 

&$ = +,m!Lfl, (2.8) 

which is Eq. (AlO), with E = - 1. Identifying x1, x2 of 
the Appendix, with t, x, Eqs. (A24)-(A26) show that 
the possible metrics are 

dg = - d? + dx’ + sin2 kxf2 (y,z) (d9 + dg ) , (2.9) 

dg = - dt2 + dx2 + cosh2 kxf2 (y,z) (dv’ + d2>, 
(2.10) 

d? = - d? + dx2 + sinh2 kxf2(y,z)(d$ + dg), (2.11) 

ds= -dt2+dg+x2f2(y,z)(d$+dz?. (2.12) 

The metric (2.12)) corresponding to a = 0 in the Ap- 
pendix, is one of the SACV space-times.2 In this case it is 
easily shown that, in order to satisfy all components of 
Fq. (2.7)) the constant fi in Eqs. (A29) and (A3 1) must 
be zero so that $ is a linear function oft, as shown in Ref. 
2. This implies that the space-times cannot admit any 
ACVs other than the SACV. The space-times (2.10) and 
(2.11) are listed for completeness but, since neither of 
them can satisfy the dominant energy condition (DEC), 
we shall exclude them from further discussion. Thus the 
metric (2.9) represents the only space-time that locally 
admits a proper ACV with timelike covariantly constant 
vector and that can also satisfy the DEC. From Eqs. 
(2.2)-(2.4) and (A15), (A24), (A27), and (A30), the 
expressions for 1c, and the ACV r corresponding to this 
space-time are 

e= (k-2coskxsinkt-$,k-2sinkxcoskt,0,0), 

$=k-‘coskxcoskt. 
(2.13) 

Note that, while the ACV given by Eq. (2.13) always 
exists for the metric (2.9)) in special cases, i.e., for par- 
ticular metric functions f2(y,z), additional CKV, and 
thus additional ACV, may exist. For example, the metric 
(2.9) includes the Einstein static universe which admits 
eight proper CKV, each one of which can be combined 
with the AV to produce an ACV. 

The space-time (2.9) satisfies then DEC if 

Af< - k2 cos 2kx, (2.14) 

where Af- AJy,z) is defined by 

Af=f-4(ffYY+ff=-ff:-fZ). (2.15) 

Note that the condition (2.14) is always satisfied if 
Afi-k2. 

The nonzero Einstein tensor components for the met- 
ric are 

Go0 = 2# - k2 cot2 kx - A,csc” kx, 

G; = # cot2 kx + Afcsc2 kx, (2.16) 

G;= G; = - kz, 

and these satisfy the Einstein field equations for a perfect 
fluid if and only if Af= - kz, i.e., the two-space 
f2(y,d Cd? + & must be a space of constant negative 
curvature. In this case, we can choose coordinates such 
that f = sech y and the space-time is the Einstein static 
universe which, without cosmological constant, satisfies 
the equation of state ,U + 3p = 0. 

From Eq. (2.16), the space-time (2.9) cannot repre- 
sent an Einstein-Maxwell field, but can represent an an- 
isotropic fluid with pl = - kz, or a viscous heat-conduct- 
ing fluid with p + 3p = 0, as in the case of SACV.2 

Ill. THE SPACELIKE CASE 

When the covariantly constant vector n,a is spacelike, 
we may choose coordinates such that 71 = z( =x3); i.e., 
q,a = Sz, and the metric takes the form 

d? = dz? + ga&x’)dxa dx? (3.1) 

where now the Greek suffixes take the values 0,1,2. The 
CKV equations ( 1.5) are 

5‘3,3 = 94 (3.2) 

c3,n + La,3 = 0, (3.3) 

!L;s + i&2 = w&p (3.4) 

Putting tF, = E,33, where E = E ( t,xa), and following the 
corresponding process of Sec. II, we obtain in place of 
Eqs. (2.5)-( 2.8) the following equations: 

63 = z,3 + cm, (3.5) 

5, = - E@ - C,$ + &WL (3.6) 

- 2X,, - 2C;ogz + DLlfi + DB;a = 2$;aa, (3.7) 

*;ap = - ~,33tLp, (3.8) 

the last of which is Eq. (AlO) with E = + 1. We identify 
x1 of the Appendix with z, but x2 of the Appendix can be 
identified either (i) with t, or (ii) with y (equivalently 
with x). The possible metrics in each case are 

(i) d2 = ds -d? + af(t)2(x,y>(dx2 + d$>, 
(3.9) 
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with a, = sin kt, cash kt, sinh kt, or t, and 

(ii) ds2=dZ+d3+a~(y)h2(t,x)( -d?+dg), 
(3.10) 

with av = sin ky, cash ky, sinh ky, or y. 
As in the case of the space-time with metric (2.12), 

case (i) with a, = t and case (ii) with a,, = y admit only 
SACV,2 while case (i) with a, = cash kt or sinh kt and all 
of the space-times of case (ii) cannot satisfy the DEC and 
so will not be considered further. Hence the metric (3.9) 
with a, = sin kt, i.e., 

dg = - d? + sin2 kt&x,y) (dx2 + dy2) + dg 
(3.11) 

represents the only space-time which locally admits a 
proper ACV with spacelike covariantly constant vector 
and which also can satisfy the DEC. From Eqs. (3.2)- 
(3.4) and(AlS), (A24), (A27), and (A30), the expres- 
sions for the ACV p and for $ corresponding to this 
space-time are 

$=k-‘coskzcoskt. 
(3.12) 

y = (k - 2 cos kz sin kt,O,O,k - 2 sin kz cos kt + iz), 

The space-time (3.11) satisfies the DEC if 

A,<# cos 2kt, (3.13) 

which is always true if A,< - k2, where A, is the expres- 
sion for g(x,y) corresponding to Eq. (2.15). The space- 
time cannot represent a perfect fluid or an Einstein- 
Maxwell field but can represent an anisotropic fluid 
satisfying ,u + pll - 2pl = 0 or a viscous heat-conducting 
fluid. 

Coo,2 + tC2,0 = 2W, - mp- ‘Pu)C1 - 2~ ‘PuC2 

- m$t3 + 2m*, 

IV. THE NULL CASE 

In the case when q,a is null, since it is a gradient 
vector and a null KV, it follows that we have a general- 
ized pp-wave space-time” with metric of the form 

d? = P-‘(dx2 + d$) - 2 du(dv - m dx + Hdu), 
(4.1) 

Co,3 + 53,o = 2 
( 

Hy + imp@ Cl+ q&T2 
1 

- 2P - ‘PuC3, (4.5) 

Cl,1 = Cl,2 + C2,l = Cl,3 + C3,l = 0, 

52,~ = - (P- 3Pu + mP- ‘P, + m,)iJ, - P- ‘PJ2 

+ p- lPJ3 + P- 2$, 

62,3 + c3,2 = - ( my + 2mP- ‘Py)cl - 2P- ‘PYS; 

- 2P- 1PXg3, 

where H, m, and P are arbitrary functions of u, x, and y 
only. Labeling the coordinates (u,u,x,y) G (x0,x1,x2,x3), 
the null KV k” = 7,’ is given by k” = Sq, i.e., k, = - St, 
so that 

C3,3 = - (Pe3P, - mP- ‘PJC, + P- ‘PXc2 

-P-1PJ3+P-2q. 

?j= -#. (4.2) 

When the Ricci scalar vanishes, the metric (4.1) can 
be transformed into 

d.?=dx2+d$-2dudv-2Hdu2; (4.3) 

From the ( 1,l) component of Eq. (4.5) we obtain 

Cl =A(v,Y), (4.6) 

and the ( 1,2) and ( 1,3) components then imply that 

!z2 = - A,v + NW,Y), (4.7) 

J. Math. Phys., Vol. 33, No. 5, May 1992 
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i.e., the metric (4.1) with P = 1 and m = 0, and Eq. 
(4.2) still holds. 

We require those members of the two sets of metrics 
(4.1) and (4.3) which admit CKV; we consider first the 
metric (4.1>, i.e., the case R#O. The nonzero compo- 
nents of the Ricci tensor for this metric are 

ROO = &H, + H,,,, + mux + $@I 

+ 2P-2(PPu, - 2p2,), 

Ro2= -~m,~-m~P,$P-2(Pp~~-p~~), 
(4.4) 

R03 = %m,p + m,PPx + Pe2(PP, - P,,P,,), 

R22 = R33 = $P- 2R = P- 2(PP, + PPyy - < - e), 

and the CKV equations ( 1.5 ) are 

CO,O = (H, + mmp + mHd%, + Cm,, + Hx)~g2 

+ 4J’2s-3 - 2W 

5‘0,l + Cl,0 = - w 
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63 = --Ay + a&&Y). (4.8) 

Now for a CKV, the Lie derivative of the Ricci tensor 
satisfies’ 

4” = 0, (4.21) 

and using this and Eq. (4.19) we obtain from Eqs. (4.16) 
and (4.17) 

y&b = - 2$;ab - gaboh (4.9) 
s 

where q $=tib$,, and (l,l), (1,2), and (1,3) compo- 
nents of this expression lead to 

*“” = 09 (4.10) 

$“X = $& *uy = -a, (4.11) 

Using Qs. (4.6H4.8) the (0,O) and (0,l) compo- 
nents of Eq. (4.5) become 

Co,o = Uf, + mmp + m&J%4 + Cm, + H,)p 

X(-A,V+B)+H~(-A~U+C)-~H~C~, 

(4.12) 

1cx = I& = 0; (4.22) 

i.e., + = $(u), and from Eq. (4.14), +, = --a,,; i.e., 

4 = ;(a: -A,), (4.23) 

where a is a constant and, consequently, q l$ = 0. 
Equation (4.13) now integrates to give 

CO = - av + D(v,y), (4.24) 

so that, when R#O, the CKV is of the form 

r= [ -A(u),av-D(u,x,y) + (2H+m2P2)A(u) 

+ mpB(u,x,y),mpA(u) 

50,1= -4=w (4.13) 

and the integrability condition <o,ol = &r. leads to 

A,, + Wn = Cm,, + HJ~4 + HP-$ + 2.fQL. 
(4.14) 

+~~(~,xY),~c(~,x,Y)l, (4.25) 

where the functions A, B, C, and D satisfy the following 
set of differential equations: 

D, = (H,, + mm> + mHp>A + Cm, + H,>pB 

Differentiating wrt v and using Eq. (4.10) results in 

*u, = 0. (4.15) 

Similarly, Eq. (4.13 ) , the (0,2) and (0,3) components of 
EZq. (4.5), and the integrability conditions co,21 = [o,l2 
and Co,31 = 50~3 lead to 

A, + 21c?, + 2~ ‘P,J, + m?A, + 2m& = 0, 
(4.16) 

+HpC-I-W-AA,), 

B, = - (P- 3P,, + mP- ‘P, + m,)A - P- ‘P,&l 

+ P- ‘P,,C + ;P- 2(a - A,), 

Cy = - (Pv3Pu - mP- ‘PJA + P- ‘P$ 

A,,,, + 21,6,, + 2P- ‘PJ,, + m?A, = 0. (4.17) 

Further differentiation wrt v yields 

1cI,= +uy=o (4.18) 

and this, combined with Eq. (4.11), and the fact that 
RfO, implies that 

A,=A,=O; (4.19) 

i.e., A = A(u) and so 51, c2, c3 are each independent of v; 
i.e., 

- P- ‘P,,C + iPY2(a - A,), (4.26) 

D, + B, = 2(H, - mP- ‘PJA - 2P- ‘P,$ 

- m,J’%+ m(a --A,), 

D,, + C, = 2(HY + fm,,mp)A + mpB - 2P- ‘PUG’, 

BY+ C,= - (m,+ 2mP-‘PJA - 2P-‘P,,B 

- 2P- ‘P,C. 

5‘1 =A(u), 52 = Nw,Y), 53 = C(W,Y>. (4.20) 

Differentiating the (2.2) component on Eq. (4.5) wrt v 
and using Fq. (4.20) we obtain 

Elimination of a, A, B, C, and D from these equations will 
result in an expression connecting H, m, P and their de- 
rivatives which specifies those members of the general set 
of space-times with metric (4.1) which admit CKV. Note 
that when A is a quadratic function of u, we have I,!I,, = 0; 
i.e., $;,b = 0, so that p is a SCKV; this case should be 
excluded. 
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The space-time with metric (4.1) has an energy-mo- 
mentum tensor that can be written in the form’ 

Tab = -$ ( k,lb + kbl,,) + Mb%,, (4.27) 

where k,,Eq,a is the null KV, 1, is a null vector satisfying 
k$’ = 1, and M is a scalar function of the coordinates. 
When M#O, Tab is of Segre type {2,( 1 1 )), while if M 
= 0, Tab is of Segre type {( I,1 ) ( 1 1)) where, in each 

case, the two bracketed spacelike eigenvectors have zero 
eigenvalue. Note that the metric (4.3), for which R = 0, 
always has Tab of Segrk type (2, ( 1 1)). 

Using Rq. (4.27) with M = 0, the expression (4.4) 
for Robl and the fact that I?’ = 6f, it is easily shown that 
Tab for the metric (4.1) will be of Segre type 
{ ( I,1 ) ( 1 1)) if and only if the second null eigenvector P 
is given by 

P= (- l,-R-‘Roo+2mpR-‘Ro2+H, 

2p2R - ‘Ro2,2pR - ‘Ro3), 

whence the condition I/ = 0 yields 

(4.28) 

2p2[ (Rd2 + (R03)~l - RR, = 0. (4.29) 

Now the left-hand side of this expression is a scalar quan- 
tity ($R*lJ’), so that 

.Y(R21,P) = cb(R21,1”),b = 0. 
c 

(4.30) 

Using Eqs. (4.5), (4.25), and (4.29), after a straight- 
forward but tedious computation, Eq. (4.30) simplifies to 
I,&, = 0, so that p is necessarily a SCKV and we have the 
following theorem. 

Theorem 1: The generalized pp-wave space-times 
given by the metric (4.1) and which have energy-momen- 
tum tensor of Segre type { ( I,1 ) ( 1 1)) cannot admit a 
proper CKV but may admit a SCKV. 

Alternatively, we may say that a necessary, but not 
sufficient, condition for the space-time with metric (4.1) 
to admit a proper CKV is that the corresponding energy- 
momentum tensor be of SegrC type {2, ( 1 1)). Thus a 
proper ACV, p, may exist only for Segre type {2, ( 1 1)) 
and is then given by 

r = 5” - fusq, (4.31) 

where 5” is given by Eq. (4.25). 
Turning to the case when R = 0, i.e., to the metric 

(4.3), we note that, unlike the R#O case, comparison of 
Eqs. (4.11) and (4.18) does not lead to A, = A,, = 0 and, 
consequently, * is not necessarily a function of u only. 
Maartens and Maharaj” have investigated the CKV 

equations for the metric (4.3) and have shown that the 
general CKV, c, and the conformal scalar, $, are of the 
form 

L?=ia(x2+#) +axfby+c, 

5’ = au2 + (ap - bg - c, + 2d)v + F( u,x,y), 

+f, (4.32) 

c3 = (ay + b)v - @3X2 + a&y + $b> - ex + dy 

+ g9 

$=av+ap+bbg+d, (4.33) 

where a is an arbitrary constant, a, b, c, d, e, f, and g are 
functions of u only, and the above expressions are subject 
to the following conditions: 

(ax + a)H, + (crv + b)H, - 2aH + a,& + b,a - c,, 

+ 2d, = 0, (4.34) 

Fu = 2(d - c,)H - [;a(,’ +$) + ax + by + c]H, 

- C~a~‘+b~y--a~+dx+ey+flH, 

- [ --b~2+alZCY+tb~-ex+dy+glH, 

(4.35) 

F,= -22((rx+a)H+~aa,~‘+b,~y--a,u3+d~ 

+ w+f,, (4.36) 

FY = - 2 (cry + b) H - ibup2 + au&y + bbu$ - es 

+ 0 + gw (4.37) 

The three integrability conditions F,, = F,,, FuY = F,,, 
FXY = FyX, together with Eq. (4.34), form a set of four 
conditions on the metric function H and its derivatives 
which satisfy those space-times with general metric (4.3) 
that admit CKV. Note that the case a = a, 
= 6, = d,, = 0; i.e., $a I(, should be discarded since it 

implies that the CKV is a SCKV.’ The equations (4.32)- 
(4.37) are all given in Ref. 11, where there are also two 
examples, one of which (the conformally flat null 
Einstein-Maxwell solution) admits seven CKV and so 
admits seven ACV, showing that space-times exist that 
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admit multiple ACV. The ACV is again given by Eq. 
(4.31) with c now given by Eq. (4.32). 

Since the ACV space-times with metric (4.1) or 
(4.3) necessarily have Tab of Segre type {2, ( 1 1 )), they 
cannot represent perfect fluids, anisotropic fluids of the 
form ( 1.6), or non-null Einstein-Maxwell fields. They 
can represent viscous heat-conducting fluids and, in the 
case R = 0 only, null Einstein-Maxwell fields. In the vis- 
cous fluid case, if we write the heat conduction vector as 
q” = Qe’, where e“ is a unit spacelike vector orthogonal to 
u”, and assume that ea is an eigenvector of the shear 
tensor u,b with eigenvalue il, then the viscous fluid inter- 
pretation of metric (4.1) must satisfy the conditions’2 

M=2Q=/i++p, p= -$, (4.38) 

where M is the scalar quantity in Eq. (4.27). In the case 
of the metric (4.3), these conditions hold together with 
p = 3p. 

An example of a space-time with metric (4.1) which 
is not conformally flat, admits a CKV, and has Tab of 
Segrh type {2, ( 1 1) ), is 

dz?= -du2-2ddudv+P-2(dx2+d3), (4.39) 

with P= z/‘$?+?, where - 1 <n<O, n# - $. The 
CKV is 

l+=--y -g+gjsf>, +&2-l. (4.40) 

This can be interpreted as a viscous fluid model with 

ua = s;, e, = SA, /~=4p-22n(n+ l)~-~, 

p= -y-$z(n+ 1)u-2 t 

Q= - 2n(n + l)~-~, (4.41) 

~=Pn-‘u+ (n+ 1)u-1. 

The conditions p > 0, Q > 0 always hold, while p > 0, 77 
>O hold in the region of space-time defined by 
ze2’X2 +A < - n(n + 1)u -2n-2. Note that n= - f is 
excluded because then 1c, = const, i.e., c is a HV. The 
ACV is given by 

p= -u-22”s~+f(U-2n-U)s;I. (4.42) 

V. THE 2+2 CASE 

When the space-time is locally decomposable into a 
2 + 2 space-time, Eq. ( 1.1) must be solved directly. The 
general 2 + 2 metric can be written in the form 

d.? = - 2e2q du dv + 2e2’ dc dE (5.1) 

where q = q( u,v) and r = r(<,& are real-valued func- 
tions, U,V ( =x0,x’) are real null coordinates and S,r 
( = x2,x3) are conjugate complex coordinates. The only 
possible form for the symmetric covariantly constant ten- 
sor &b for the metric ( 5.1) iS 

Ko1 = - he2q, K23 = ke2’, (5.2) 

where h,k are constants with h#k (otherwise, 
Kab = hgab). Without loss of generality, we may put k 
= 0. 

The nonzero Ricci tensor components for the metric 
(5.1) are 

Rol = - %w R23 = - 2rc& 

and the Ricci scalar is 

R = 4q,p-% - 4rcpm2’. 

1) for the metric (5.1 

(5.3) 

(5.4) 

The ACV equations ( 1. 
(5.2) are 

) with 

cy” = gu = c:= 6% = 09 

2”& = blew 

gqfi = e2T$, 

e24& = efu, 

2qg,k = 8s” 4’ 

t$, + 6,: + %ui? + %tC-’ = 2$ + h, 
l$ + C$+ 2rd2 + 2qiC’ = 24. 

Integrating Eq. (5.5) yields 

P = [A(u,f,~).),B(v,5;~‘),C(u,v,5‘>,c(u,v,;) 1 

and Eqs. (5.6)-(5.11) become 

gQAs = >Eu, e2qAg= PC,, 

e2qB 5 = e2rc u, e2qq= 2’C,. 

(e2qA)u + (e2QB), = e2q(2J1 + h), 

(e2’C)* + (e2’C)S= P2$. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

For an ACV, p, the Lie derivative along p of the 
Ricci tensor and the Ricci scalar satisfy 

y&b = - 2&ab - q kzb, (5.16) 
s 
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L?R = - 2$R - 601c, - K”bR,b. (5.17) 
E 

Setting a = 0, b = 2 in Eq. (5.16) yields 

-f-o2 = R& + Ro,& = - W4 

I.e., 
- 

f& = rgFti + h& 

Using Eq. (5.13) this becomes 

qb,,* = Ke2qB5 = Ke”?!,, 

where K is defined by 

(5.18) 

K(w&.) = quve-2q+ rgzu2’. (5.19) 

Differentiating Eq. (5.15) wrt u using Eq. (5.13), we 
obtain 

$, = e2q - 2rBs~ (5.20) 

and differentiating this expression wrt 5 and using Eq. 
(5.18) yields 

t,buc = 2q( e - 2’Bcr) 5 = Ke%Bg, (5.21) 

from which it follows that either Ku = 0 or Bc = 0. Sim- 
ilarly, by finding the mixed second partial derivatives $,s 
t,& r&in two ways and comparing the results, we find 
that either Ku = K, = KS = KF= 0 or 

Ac=A~=&=Q=C,,=C,=C,=C,=O. (5.22) 

However, if Eq. (5.22) holds, then Eqs. (5.14) and 
(5.15),-respectively, show that $ = @(u,v) and $ 
= $(&c); i.e., $ is a constant so that p is not an ACV 

but an AV. Hence, K must be a constant and, from Eq. 
(5.19), this implies that qug - 2q and rep - 2r are each 
constants, so that each two-space is a space of constant 
curvature. If K~ and ~~ are, respectively, the constant cur- 
vature of the (u,u)-space and the (&z)-space, then 

KI = 2&t?- 2p, K2 = - 2’$-2v, (5.23) 

K = ;(K, - K2). (5.24) 

Differentiating the third equation of Eq. (5.13) wrt < 
and using Eq. (5.13), again we obtain 

eQBcc = 2re2’cu = 2re2qB,; 

i.e., 

Bc5 = 2r5B,-; 

i.e., 
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Bcg~ = 2rgBg,- + 2rcFBc (5.25) 

From Eqs. (5.21) and (5.25) we find 

t,bus = e2q - 2r( Bc~c - 2rsB$ = e 2q - ‘“r&B6 , 

= K2e2qBc 

But, from Eqs. (5.18) and (5.24), we have 

(5.26) 

‘+hg = t (K1 - K2 > e2qBg (5.27) 

whence comparison with Eq. (5.26) shows that 

K1 + K2 = 0, (5.28) 

unless B5 = 0, which implies that C, = 0. If instead we 
use, for example, the first member of Eq. (5.13), we 
would again obtain Eq. (5.28) unless Ag = 0, which im- 
plies that C,, = 0. Thus, using all of Eq. (5.13), we find 
that either Eq. (5.28) holds or that Eq. (5.22) holds; i.e., 
$ = const. Hence, Eq. (5.28) is always true for ACV and 
this is precisely the condition required for the space-time 
(5.1) to be conformally flat and, from (5.4) and (5.23), 
also implies that R = 0. Thus the only possible space- 
times are the Bertotti-Robinson space-time, with K~ ~0, 
~~ > 0 and the “anti-Bertotti-Robinson” space-time with 
K~ > 0, ~~ < 0. The second of these solutions does not sat- 
isfy any required energy conditions. Note that this result 
is independent of the value of the constant h and so holds 
for CKV; i.e., h = 0. 

Having found the space-time, we need to complete 
the investigation by finding the ACV p. We note that the 
Lie derivative along p of the Weyl tensor cb& is given by 

ye,, = f(&&aeRec - gt,&%=cj - &,dRf -I- J&R:) 
c 

+ i’@$%j - a$&,c)R 

- ;@:t?bd - ~~bc>~f&p (5.29) 

Since for the space-time solutions found C& = 0, R = 0, 
Kab = 0, except for K,, = - he2q and R,, = 0, except for 
R,, = - /cle 2q R , 23 = K2e 2r, the (3,323) component of 
Eq. (5.29) is simply 

jhKle2’ = 0, 

and since ~~ = 0 implies that ~~ = 0, i.e., flat space-time, 
we conclude that h = 0, so that no ACV exists for a 
nonflat 2 + 2 space-time. 

Turning to the case of a 1 + 1 + 2 space-time, this is 
a special case of a 2 + 2 space-time in which one two- 
space is flat, i.e., there exist two covariantly constant vec- 
tor fields, ~~~77,~ and &~jl,~, which may be both space- 
like or one may be timelike and the other spacelike (or, 
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equivalently, both may be null). Hence, in the metric 
(5.1), either q = 0 or r = 0. Excluding multiples of gab, 
the general form of Kab in this case iS 

Kab = “&q,b + fi(q,&,b + V,d,a) + yA,&,h 

where a, /?, and y are arbitrary constants, and Eq. ( 1.1) 
can be written in the form 

to the mathematical problem of finding all space-times 
admitting ACV shows that these space-times are physi- 
cally less interesting ‘than envisioned by previous authors. 

Levine and Katzin have shown that if a nonflat con- 
formally flat space admits a covariantly constant symmet- 
ric second-rank tensor L,, then the two fundamental 
solutions for Lab are Lab = const xgab and 
Lab = sdarxRab, i.e., in general 

(&I - Ta);b + (6b - Tb);a = 2+lg,b, 

where 

7, = f qqa + f P(qA,, + h$ + $ W,=. 

Hence, g, = 5, + r,, where & is a CKV and 7, is an AV 
[see Eqs. (1.3)-( 1.6)]. Thus a 1 + 1 + 2 space-time ad- 
mitting an ACV must also admit a CKV. But we have 
shown that the only 2 + 2 space-times admitting CKV 
are those that are conformally flat and, since 1 two-space 
is flat, it follows that the 1 + 1 + 2 space-time must be 
flat Minkowski space-time. Hence, apart from this trivial 
case, 1 + 1 + 2 space-times do not admit CKV and so do 
not admit ACV. 

Lab = v&b + W&n (6.1) 

where V is a constant and W is a scalar function. Iden- 
tifying L,b with Kab = q,ar],b, it is clear that V and W are 
determined by Eq. ( 1.1) . The only two conformally flat 
space-times admitting ACV are the Einstein static uni- 
verse and the special case of the pp-wave space-time in 
which the metric function H is given by 

H=fb4(x2+y2L (6.2) 

where f( U) is an arbitrary function of U. For the Einstein 
universe we find that V = - 1, W = f; i.e., 

The results of this section may be summarized in the 
following theorem. 

Theorem 2. A 2 + 2 space-time cannot admit an 
ACV; this result holds true even if the space-time decom- 
poses into a 1 + 1 + 2 space-time. Furthermore, the only 
2 + 2 space-times admitting proper CKV are those which 
are conformally flat and, of these solutions, the Bertotti- 
Robinson solution is the only one that satisfies the energy 
conditions. 

&b = v,a?7,b = - gab + &zb. (6.3) 

Note that we cannot include the g,b term on the left-hand 
side, i.e., we cannot write 

Kob = q,aq,b + gob = i&b, (6.4) 

VI. CONCLUSION 

because this would imply the existence of a HV (see,Sec. 
I), which is not true of the Einstein universe. This shows 
that for a nonflat conformally flat space-time, Kab is not 
necessarily proportional to Rab, contrary to an assertion 
made in Ref. 8. For the conformally flat pp-wave case, we 
find that V = 0, W = $- t(u) so that in this case Kab is 
proportional to Ra6’ 

We have shown that the only space-times admitting 
proper ACV are those with metrics (2.9)-(2.12), (3.9), 
(3.10), (4.1) satisfying (4.26), but not (4.29), and (4.3) 
satisfying (4.34)-(4.37). Of these, only (2.9), (3.11), 
and some of (4.1) and (4.3) satisfy the dominant energy 
condition. In addition, there is the trivial case of flat 
Minkowski space-time that admits four proper CKV and 
four covariantly constant vectors and so admits many 
ACV given by the sum of any CKV with various combi- 
nations of the covariantly constant vectors. 

Finally, we note that as a by-product of our investi- 
gation, we have shown that the only 2 + 2 decomposable 
space-times admitting a proper CKV are those that are 
conformally flat and, of these, only the Bertotti-Robinson 
space-time satisfies the energy conditions. 
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APPENDIX 

Petrov13 quotes without proof a result due to 
Sinyukov, I4 namely, if an n-dimensional Riemannian 
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space of arbitrary signature, with metric tensor gab, ad- 
mits a gradient vector field #,a satisfying 

+;ab = p&h (AlI 

where p is a nonzero scalar function of the coordinates, 
then a system of coordinates exists in which the metric 
takes the form 

ds2, =gll(dx1)2 + (gll) -‘l-&&...,x”)dxJ’dx~, 
(AZ) 

where 

[I 1 
-1 

p,q#l, g,, = 2 pb*W’ + C , 

and p is now an arbitrary function of x1 only. Since the 
proof of this result is nontrivial, we shall present a proof 
here, which is as follows. 

Choose coordinates such that 4 = x1 and choose the 
remaining coordinates ti (p#l > to lie in the hypersur- 
face 4 = const. This implies that the metric tensor com- 
ponents gl, = 0, #,= = Sl, and g” = (grt) - ‘. The com- 
ponents of Eq. (Al) are then 

&II = 4,~ - b=d$,a = - llil = - k’h,l =pg,,, (A3) 

4;lp = 4,1/J - /p,1 = - $] = - idkll,p = 0, (A4) 

#Jpq = b,pq - &/+,I = - 1641 = i.dlgpq,, = P&q (A5) 

Equation (A4) implies that gll =gll(xl), while Eq. 
(A3) shows that 

-h) -2gll,l =p (A61 

so that p = p(x’) and, on integration, we obtain 

(g,,) - 1 = 2 
s 

p(x’)dx’ + C. (A7) 

Equation (A5) then becomes 

g11g,,1 +&1,1&q = 0; 

i.e., 

gpq = (Sll) - 1qq(x2,...,x”A (A81 

thus proving the result. 
In Sets. II and III we are required to find space-times 

of the form 

d~=~(dx1)2+gPq(x’)dxPdxq (E= ~1) (A9) 
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which admit a gradient vector field Jl,= satisfying 

*;pq = - 4,1&q? (Al01 

where p,q#l. This differs from Eq. (Al ) in that, for a 
space-time, gw is strictly three dimensional, whereas tc, 
can depend on all four coordinates. Unlike the previous 
case we cannot, in general, choose rj as a function of x1 
only, but we can choose $ to be a function of x1 and one 
other coordinate, say x2, i.e., in each x1 = const hyper- 
surface we can choose the coordinate x2 so that $ is a 
function of x2 only. We also choose the remaining coor- 
dinates 2 (A = 3,4) to lie in the x2 = const hypersur- 
faces which implies that gu = 0. Equation (AlO) then 
has the following components: 

111;22 = +,22 - -F2g22,2*,2 = - @,I lLT22, (All) 

$;2A = - -g”g,2,*$,2 = 0, (A121 

&4P = -F2gAE,2$,2 = - 4,l I&B. (A13) 

Now $,2#O; otherwise, Eq. (Al 1) implies that 
q,t, = 0 and thus Jt, = 0 so that fCf;& = 0 and the ACV 
becomes a SACV. Hence, Fq. (A12) implies that 
g2,=gZ2(x2). From Eqs. (All) and (A13), using the 
fact that gz2 = (g22) - ‘, we obtain 

gAB,2 = W,22/$,2 - g22,2&22kAi?7 (A14) 

which shows that $,22/$,2 is independent of x1; i.e., 

I) = a(x2>b(x1) + c(x’>. (A15) 

Equation (A14) then becomes 

gAB,2 = (2a22/a, 2 - 822,2&22kAB, 

which integrates to give 

(A161 

gAB = (a,2)2(g22> - ‘PAB(X’). (A17) 

Putting g2, = M(x2) and defining a new coordinate 
x2’ by 

M’” dx2 = dx2’ f (A181 

the metric (A9) becomes, on dropping the primes, 

dg = cz(dx’)2 + e(dx2)2 + (aZ)2pAB(xC)dti dg, 
(A19) 

where e = f 1 and at least one of e,e takes the value + 1. 
From Eqs. (All) and (A15), we obtain 

a,& = ab,ll + CJI 

and differentiation wrt x2 yields 

(4420) 
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a,222/a,2 = b,l I/b = X,const. (A211 

If x#O, the first of these equations integrates to give, 
after some resealing and translation of the coordinates 

a,22 = x4 (A221 

whereas, when x = 0, we obtain 

a,22 = const. (A23) 

After further coordinate manipulations, the solutions 
of Eqs. (A22) and (A23) are 

a,2 = sin kx2 (x= -e, (A241 

a,2 = cash kx2 or a,2 = sinh kx2 (x = k2), 
w5) 

a,2 = x2 (x = O), (A26) 

and, with suitable scaling, b takes the values 

b= -coskx’ (x= -k2), (A27) 

b=coshkx’ or b=sinhkx’ (x=#), (A28) 

b=fix’ (x=0), (A291 

where 0 is an arbitrary constant. 
From Eq. (A20), C,,, =0, whenx= *:r(?; i.e., 

c= yx’+s, (-430) 

but, when x = 0, C,tr = b; i.e., 

c=-$(x’)3+cFxl+oJ, (A31) 

where y, S, 0, w are arbitrary constants. In all cases tC, is 
given by Eq. (A15). 

Thus the space-times of the form (A9), which admit 
a gradient vector field $,= satisfying Eq. (AlO), are lo- 
cally of the form (A19) with a,2 given by one of the four 
expressions (A33)-( A35). The corresponding scalar $ is 
given by Eq. (A15), with a being the integral of the 
appropriate a2, b is given by one of the expressions 
(A36)-(A38) [note that either expression for b in Eq. 
(A37) can be associated with either expression for a ob- 
tained from Eq. (A34)], and c is given by the appropriate 
expression (A30) or (A31). 
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