
ENERGY EFFICIENT SECURITY FOR WIRELESS SENSOR NETWORKS

by

Abidalrahman Moh’d

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

June 2013

© Copyright by Abidalrahman Moh’d, 2013

ii

DALHOUSIE UNIVERSITY

DEPARTMENT OF ENGINEERING MATHEMATICS AND INTERNETWORKING

The undersigned hereby certify that they have read and recommend to the Faculty of

Graduate Studies for acceptance a thesis entitled “Energy Efficient Security for Wireless

Sensor Networks” by Abidalrahman Moh’d in partial fulfilment of the requirements for

the degree of Doctor of Philosophy.

Dated: 18 June 2013

External Examiner: _________________________________

Research Co-Supervisors: _________________________________

Examining Committee: _________________________________

Departmental Representative: _________________________________

iii

DALHOUSIE UNIVERSITY

DATE: 18 June 2013

AUTHOR: Abidalrahman Moh’d

TITLE: Energy Efficient Security for Wireless Sensor Networks

DEPARTMENT OR SCHOOL: Department of Engineering Mathematics and
Internetworking

DEGREE: PhD CONVOCATION: October YEAR: 2013

Permission is here with granted to Dalhousie University to circulate and to have copied
for non-commercial purposes, at its discretion, the above title upon the request of
individuals or institutions. I understand that my thesis will be electronically available to
the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted
material appearing in the thesis (other than the brief excerpts requiring only proper
acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

iv

DEDICATION PAGE

I dedicate this thesis to my parents, beloved wife, and unborn baby.

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. x

ABSTRACT ... xiii

LIST OF ABBREVIATIONS USED .. xiv

ACKNOWLEDGEMENTS... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION AND BACKGROUND ... 1

1.2 PROBLEM STATEMENT .. 4

1.3 LIST OF CONTRIBUTIONS... 5

1.4 THESIS OUTLINE ... 7

CHAPTER 2 OVERVIEW OF WSN SECURITY... 9

2.1 CHALLENGES TO WIRELESS SENSOR NETWORK SECURITY............................... 9

2.1.1 Energy constraints.. 9

2.1.2 Exposedness of wireless communication .. 10

2.1.3 Unattended sensor nodes ... 10

2.1.4 Cost and platform constraints .. 11

2.1.5 Intensive mathematical computations for cryptographic primitives 11

2.2 SECURITY THREATS FOR WSNS.. 12

2.2.1 Security Attacks... 12

2.2.2 Classification of attacks ... 23

2.3 SECURITY REQUIREMENTS FOR WSNS ... 27

2.4 Concluding remarks ... 28

CHAPTER 3 RELATED WORK... 29

3.1 THE TINYOS ... 29

3.2 OVERVIEW OF WSN ENCRYPTION PROTOCOLS ... 31

3.2.1 Zigbee security... 32

3.2.2 TinySec .. 33

3.2.3 Secure Network Encryption Protocol .. 35

3.2.4 MiniSec.. 36

3.2.5 Link Layer Security Protocol... 38

vi

3.2.6 SenSec.. 38

3.2.7 SecureSense ... 39

3.2.8 FlexiSec ... 40

3.2.9 WSNSec... 42

3.2.10 Comparison of related works .. 42

3.3 SELECTION OF HARDWARE IMPLEMENTED ENCRYPTION PRIMITIVES FOR
WSNS. .. 46

3.3.1 Symmetric encryption.. 46

3.3.2 Secure Hashing .. 49

3.3.3 Asymmetric primitives .. 51

3.4 CONCLUDING REMARKS .. 59

CHAPTER 4 THE COMPACT SECURITY PROTOCOL.................................... 61

4.1 PROTOCOL DESCRIPTION .. 62

4.2 SECURITY ANALYSIS... 68

4.2.1 Data Confidentiality and Semantic Security.................................... 68

4.2.2 Data Authentication and Integrity.. 70

4.2.3 Data Freshness and Replay Protection... 71

4.2.4 Other Security Issues ... 72

4.3 PERFORMANCE EVALUATION.. 72

4.3.1 Energy Analysis... 73

4.3.2 Computational Overhead ... 76

4.3.3 Delay and Queuing Analysis ... 79

4.3.4 Error probability .. 88

4.4 CONCLUDING REMARKS ... 97

CHAPTER 5 SN-Sec: SENSOR NODE SECURE PLATFORM.......................... 99

5.1 SECURITY WEAKNESSES OF CURRENT WSN PLATFORMS............................. 100

5.2 SN-SEC: SECURE HARDWARE PLATFORM DESIGN.. 105

5.3 SN-SEC IMPLEMENTATION.. 106

5.3.1 Advanced Encryption Standard ... 106

5.3.2 Secure Hashing Algorithm SHA-256 .. 109

5.3.3 Elliptic Curve Processor .. 111

5.3.4 THE SN-Sec .. 121

5.4 CONCLUDING REMARKS ... 127

vii

CHAPTER 6 CONCLUSION AND FUTURE WORK 130

6.1 CONCLUSION... 130

6.2 FUTURE WORK .. 132

BIBLIOGRAPHY .. 134

Appendix A –Sample run for encryption primitives .. 144

viii

LIST OF TABLES

Table 2.1 Classification of attacks on WSNs.. 26

Table 3.1 Header size comparison (Bytes) ... 43

Table 3.2 Encryption primitives comparison for related work ... 44

Table 3.3 Different AES data-path width comparison form [68] 49

Table 3.4 SHA algorithms comparison... 50

Table 3.5 SHA family implementation results ... 50

Table 3.6 Size of constants for SHA family members.. 51

Table 3.7: Elliptic curve coordinates systems comparison... 55

Table 3.8: Security status of curves in and . .. 57

Table 3.9 Elliptic curve hardware implementations for WSNs .. 58

Table 4.1 Node entry in cache .. 65

Table 4.2 Encryption and MAC algorithms for related work... 69

Table 4.3 Simulation Parameters .. 73

Table 5.1 Energy and time results for elliptic curve based operations using software

implementations on Mica2 wireless node [123]. .. 101

Table 5.2 AES synthesis results.. 108

Table 5.3 Synthesis results for SHA-256.. 110

Table 5.4 Elliptic curve operations in one iteration of the Montgomery ladder algorithm

in the XZ coordinate ... 113

Table 5.5 Synthesis results for elliptic curve processor.. 121

Table 5.6 New instructions added to the ZPU ISA... 123

Table 5.7 synthesis results for the ZPU .. 124

Table 5.8 Synthesis results for SN-Sec... 125

ix

Table 5.9: Hardware implementations results .. 126

Table 5.10 Comparison with other WSNs processors .. 127

x

LIST OF FIGURES

Figure 2.1 A) The PIC16F84 controller B) Decapsulated PIC16F84 controller C)

Location of the security fuse in the PIC16F84 controller [22]. 13

Figure 2.2 Wormhole Attack .. 18

Figure 2.3 Sinkhole Attack ... 19

Figure 2.4 Sybil Attack ... 20

Figure 2.5 PDoS Attack .. 22

Figure 3.1 TinyOS frame .. 31

Figure 3.2 Zigbee frame... 33

Figure 3.3 a) TinySec-Auth packet. b) TinySec-AE packet ... 34

Figure 3.4 SNEP packet.. 36

Figure 3.5 A) MiniSec-U packet. B) MiniSec-B packet.. 38

Figure 3.6. LLSP frame format... 38

Figure 3.7 SenSec frame format ... 39

Figure 3.8 SecureSense frame formats A) Only confidentiality. B) Without semantic

security. C) Maximum security level.. 40

Figure 3.9 FlexiSec frame formats: A) FlexiSecHASH B) FlexiSecAUTH32/

FlexiSecAUTH_REPP32, C) FlexiSecAUTH64, FlexiSecAUTH_REPP64,

FlexiSec_AUTH_ENC_REPP64.. 41

Figure 3.10 WSNSec frame format .. 42

Figure 3.11 AES Algorithm.. 47

Figure 3.12 a) Elliptic curve point addition. b) Elliptic curve point doubling.................. 53

Figure 4.1 The C-Sec conventional mode frame .. 62

Figure 4.2 C-Sec compact mode frame... 63

xi

Figure 4.3 The behavior of the C-Sec protocol... 64

Figure 4.4 The behavior of the C-Sec on the receiver side... 66

Figure 4.5 CFB encryption mode.. 70

Figure 4.6 C-Sec packet breakdown ... 74

Figure 4.7 Communication energy vs. payload size ... 75

Figure 4.8 Communication energy vs. load .. 76

Figure 4.9. Cache search algorithm in the receiving node cache...................................... 77

Figure 4.10. Computational overhead of the compact mode of C-Sec 78

Figure 4.11 Histogram of average end-to-end packet delay per node for C-Sec.............. 80

Figure 4.12 Histogram of average packet delay per node MiniSec.................................. 80

Figure 4.13 Markov Chain for C-Sec ... 81

Figure 4.14 Markov chain balance equation... 83

Figure 4.15 Expected value of waiting time in the system (=120 packets/sec).............. 86

Figure 4.16 Average C-Sec overhead time (=120 packets/sec)...................................... 88

Figure 4.17 Error event states ... 89

Figure 4.18 The state diagram for error events at decryption process.............................. 91

Figure 4.19 Various error event states and related mean error probability equations for C-

Sec protocol .. 93

Figure 4.20 Post decryption error probabilities for C-Sec and MiniSec........................... 96

Figure 4.21 Packet loss ... 97

Figure 5.1 Wireless node design using software cryptography over unsecure platform 101

Figure 5.2 Examples of non-secure use of encryption hardware. A) The CC2420 module

on the WISAN sensor node. B) The TPM module used with SecFleck C) The

ECC module used with the Cookie node .. 102

xii

Figure 5.3 Wireless node design using hardware cryptography over unsecure platform

and OS... 103

Figure 5.4 Secure node platform design with hardware encryption primitives.............. 104

Figure 5.5 Proposed secure platform design... 105

Figure 5.6 AES data path design... 107

Figure 5.8 SHA-256 Iteration ... 109

Figure 5.9 Dependency between elliptic curve operations ... 114

Figure 5.10 Interleaved Modular Multiplier ... 116

Figure 5.11 ECC design.. 120

Figure 5.12 SN-Sec architecture ... 122

Figure 5.13 Configuration of the Dual port memory for the secure key storage............ 124

Figure 5.14 Approximate device utilization breakdown... 126

Figure A.1 AES input ... 144

Figure A.2 AES output ... 144

Figure A.3 SHA-256 input.. 145

Figure A.4 SHA-256 output.. 145

Figure A.5 Elliptic curve point multiplication input... 146

Figure A.6 Elliptic curve point multiplication output... 146

xiii

ABSTRACT

This thesis presents two main achievements. The first is a novel link-layer encryption
protocol for wireless sensor networks. The protocol design aims to reduce energy
consumption by reducing security-related communication overhead. This is done by
merging security-related data of consecutive packets. The merging is based on simple
mathematical operations. It helps to reduce energy consumption by eliminating the
requirement to transmit security-related fields in the packet. The protocol is named the
Compact Security Protocol and is referred to as C-Sec. In addition to energy savings, the
C-Sec protocol also includes a unique security feature of hiding the packet header
information. This feature makes it more difficult to trace the flow of wireless
communication, and helps to minimize the effect of replay attacks. The C-Sec protocol is
rigorously tested and compared with well-known related protocols. Performance
evaluations demonstrate that C-Sec protocol outperforms other protocols in terms of
energy savings. The protocol is evaluated with respect to other performance metrics
including queuing delay and error probability.

The C-Sec operation requires fast encryption, which leads to a second major contribution:
The SN-Sec, a 32-bit RISC secure wireless sensor platform with hardware cryptographic
primitives. The security vulnerabilities in current WSNs platforms are scrutinized and the
main approaches to implementing their cryptographic primitives are compared in terms
of security, time, and energy efficiency. The SN-Sec secures these vulnerabilities and
provides more time and energy efficiency. The choice of cryptographic primitives for
SN-Sec is based on their compatibility with the constrained nature of WSNs and their
security. The AES implementation has the best data-path and S-Box design in the
literature. All SHA family members are implemented and compared to choose the most
compatible with WSN constraints. An efficient elliptic-curve processor design is
proposed. It has the least mathematical operations compared to elliptic-curve processors
proposed for WSNs in the literature. It also exploits parallelism among mathematical
operations to compute elliptic-curve point multiplication with minimal amount of clock
cycles. SN-Sec is implemented using VHDL. Experimental results using synthesis for
Spartan-6 low-power FPGA shows that the proposed design has very reasonable
computational time and energy consumption.

xiv

LIST OF ABBREVIATIONS USED

AES Advanced Encryption Standard

AM Active Message

APIs Application Programming Interfaces

ARQ Automatic Repeat Request

BF Bloom Filter

BGA Ball Grid Array

BGCD Binary Greatest Common Devisor Algorithm

C-Sec Compact Security protocol

CBC Cipher Block Chaining

CCM Counter with Cipher block chaining Message authentication code

CFB Cipher Feed Back

CPLD Complex Programmable Logic Device

CRC Cyclic Redundancy Check

CTS Clear To Send

Ctr Counter

Dest Destination Address

ECC Elliptic-Curve Cryptography

ECDH Elliptic Curve Diffie Hellman key exchange algorithm

ECDSA Elliptic Curve Digital Signature algorithm

FIFO First In First Out

FPGA Field Programmable Gate Array

GCM Galois Counter Mode

Grp Group

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

ISA Instruction Set Architecture

Len Length

LLSP Link Layer Security Protocol

xv

M Mode bit

MAC Message Authentication Code

MD5 Message Digest 5

MH Masked Header

MSB Most Significant Bit

NIST National Institute of Standards and Technology

OCB Offset Code Book

OS Operating System

PAN Personal Area Network

PDoS Path-based Denial of Service

PCB Printed circuit Board

QoS Quality of Service

Ran Random number

RC5 Rivest Cipher 5

RISC Reduced Instruction Set Computing

RTS Request To Send

SEA Scalable Encryption Algorithm

SEGC Securities Exchanges Guarantee Corporation

SCID Security Composition Identifier

SHA Secure Hashing Algorithm

SN-Sec Sensor Node Secure platform

SNEP Secure Network Encryption Protocol

Src Source Address

SoC System on Chip

T-MAC Timeout Medium Access Control

VHDL Very high speed integrated circuit Hardware Description Language

WSN Wireless Sensor Networks

ZPU Zylin Processor Unit

xvi

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. William Phillips, and Dr. Nauman Aslam, for
their guidance, support, encouragement, and the countless hours they spent with me
throughout the research of this work and publications. Dr. Phillips is a very friendly,
helpful, understanding, wise, and worm-hearted person. Dr. Aslam is a very energetic,
enthusiastic and active person. I am happy to be his first PhD student.

I would also like to thank the readers Dr. Bill Robertson and. Dr. Srini Sampalli. I am
honored to have them in my committee and grateful for their guidance and
encouragement throughout the process. I would also like to thank Dr. Anjali Agarwal
for agreeing to be a part of the examining committee as the external examiner.

I owe special thanks to Dr. Ashraf AbuSharekh for many useful insights and help with
the simulation experiments. I would also like to thank my PhD candidate friends Shadi
Shehadeh and Omar Al-Qattami for their great assistance, as we spent many late nights
together organizing the thoughts in my head.

Special thanks go to my family, especially my brothers and my sister, whom I have
missed these many years, being away from home. I am also indebted to my aunt and her
family for being supportive throughout the whole period of my PhD. I am very thankful
for their prayers and continued support.

I would especially like to thank the person who has endured the hardship of my absence,
and put up with my constant urgency to complete my work. I express heartfelt, unending
gratitude to my wife and the mother of unborn child for being a pillar of support standing
firm beside me throughout this journey.

Finally, I would like to express my sincere love and gratitude to my parents. I owe them
more than anyone could possibly imagine, notwithstanding my academic achievements. I
thank them for their love and infinite care, which has made the person I am today.

1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATION AND BACKGROUND

The future of wireless sensor networks (WSNs) is promising. They are extensively being

deployed in many real-world applications within many contexts, like ubiquitous

computing, ambient intelligence, and the Internet of Things (IoT) [1]. WSNs provide low

cost solutions to a wide range of real-life challenges. It is expected that new WSN

applications will have a greater share of the embedded systems market, with a growth

rate of up to 50% per year [2].

Security is an important requirement for many WSN applications, like healthcare [3],

structural [4], industrial [5] monitoring, military [6], and smart homes [7] . However, it is

difficult to provide security in most of these applications due to many factors. Some of

these factors are related to the constrained nature of WSNs, and others are related to

environments where sensor nodes are being deployed. However, the most critical factor is

energy. WSNs are expected to operate for long periods that extend to years using their

limited-power battery. Batteries are difficult or infeasible to replace in most cases. This

makes energy the most crucial resource in WSNs.

Wireless communication is a major source of energy consumption in WSNs. Applying

security protocols has additional overhead on wireless communication. This overhead is

classified in to two types. The first type is packets specifically generated for security

protocol operations i.e. packets carrying security information or security control packets.

This overhead occurs at the initial security setup stage, and it is repeated after periods to

refresh keys or rerun authentication algorithms because of changes in the network. This

type of overhead is considered small compared to the second type: the security data fields

added to the headers of all communicated data packets. Many research efforts have been

reported in the literature to improve the energy communication efficiency related to the

2

security of wireless sensor networks, covering almost all aspects of security algorithms

that involve communication overhead [8-16].

Another major source of energy consumption related to security is computational power

overhead. Most of this power is spent on intensive mathematical computations of

cryptographic primitives. Some of these primitives, such as symmetric encryption and

hashing primitives, are frequently used to secure each data packet. Asymmetric

primitives used to exchange keys and for digital signatures, which happens less often.

Reducing the computational power consumption of these primitives can be achieved by

implementing them in hardware rather than software. Hardware implementations are

more time-efficient than software implementation as well.

The manufacturing cost is a major factor that makes it difficult to provide security for

WSNs. Cost limit leads to constraints on the hardware platform. WSNs usually have

simple and cheap controllers with limited processing power and memory size. Running

computationally expensive primitives on them takes long time and consumes a lot of

energy. Adding new hardware to implement those primitives will solve the energy and

time overhead problems, but it increases the manufacturing cost.

Many other factors make it more difficult to provide adequate security for WSNs. WSNs

are usually deployed in hostile environments, operate in an open wireless medium, and

they are left unattended for their lifetime. In such conditions, sensor nodes can be easily

accessed by an adversary without being discovered. This makes WSNs more vulnerable

to security threats than traditional networks.

The research in this thesis is focused on two fundamental challenges: energy conservation

and providing adequate security services for WSNs. In this regard, the goal is to design a

secure encryption protocol based on a secure hardware platform to achieve the objectives

of providing security and preserving energy. The problem of energy conservation is

tackled at the physical hardware platform and data-link layer. This is done by designing

3

the Compact Security protocol (C-Sec) at the link layer level, which relies on the Sensor

Node Secure platform (SN-Sec) designed at the physical layer level.

The C-Sec [17] is a dual mode encryption protocol for WSNs, which is designed with an

objective of reducing security-related communication with a slight increase in processing.

Following Moore’s law, dramatic reduction in energy consumption can be achieved from

implementing the same hardware with a smaller process technology. In contrast,

improvements to energy consumption of communication in the wireless medium are

relatively small due to the modest improvements in transceiver technologies and the need

to achieve acceptable levels of signal-to-noise ratio at specific distance. The trade-off

between the energy costs of communication versus processing formulates the design

philosophy of the C-Sec protocol. This protocol is based on reducing an energy-costly

communication with a small increase in processing that has a much lower- and relatively

decreasing energy cost. A detailed description of the C-Sec protocol design is presented

in Chapter 4.

The C-Sec operation requires fast encryption primitives, which leads to a second major

contribution. The SN-Sec is a 32-bit Reduced Instruction Set Computing (RISC) secure

wireless sensor platform with hardware cryptographic primitives. The choice of

cryptographic primitives for SN-Sec is based on their compatibility with the constrained

nature of WSNs and their security. The Advanced Encryption Standard (AES) [18]

implementation has the best data-path and S-Box design in the literature. All Secure

Hashing Algorithm (SHA) family members are implemented and compared to choose the

most compatible with WSN constraints. An efficient elliptic curve processor design is

proposed. It has the least number of mathematical operations compared to elliptic curve

processors proposed for WSNs in the literature. It also exploits parallelism among

mathematical operations to compute elliptic curve point multiplication with minimal

amount of clock cycles. SN-Sec is implemented using Very high speed integrated circuit

Hardware Description Language (VHDL). Experimental results using synthesis for

Spartan-6 low- power Field Programmable Gate Array (FPGA) shows that the proposed

design has a very reasonable computational time and energy consumption.

4

1.2 PROBLEM STATEMENT

Implementation of security for WSNs is a very active research area with many

challenges, especially the limitation of energy. Unfortunately, existing link-layer

encryption protocols are unable to achieve an adequate level of security without a

significant increase of energy consumption for computation and communication. Many of

these protocols try to minimize communication costs by minimizing the size of the

security related traffic, especially the fields added to the header of each packet

transmitted in the wireless medium [8-16]. Some of these protocols proposed optional

security levels that provide partial security services to minimize the overhead of security

[10-12]. However, providing partial security leaves many vulnerabilities from which a

WSN can easily be attacked.

This thesis presents a solution to the problem of link-layer encryption protocols

communication overhead. This is done by proposing a link-layer encryption protocol that

not only minimizes the communication overhead to zero, but also reduces the size of

communicated packets to lower than the size of plain packets that do not implement

encryption protocols at all. The significant reduction of communication overhead does

not affect the security services provided by the proposed encryption protocol, but adds

new security features that did not exist in any of the related protocols.

The work in this thesis addresses the problem of infeasibility of asymmetric encryption

primitives. Security protocols avoid the use of asymmetric encryption algorithms to

minimize computational power and latency, and replace them with symmetric lightweight

encryption primitives that take less CPU cycles to run, consume less energy, and require

less memory resources. Avoiding asymmetric encryption raises many security

consequences related to key exchange, confidentiality, and authentication.

5

Many of the current security protocols rely on symmetric encryption primitives

implemented in software, which run on WSN controllers with weak processing

capabilities. Software implementations are costly in terms of computational time and

energy, and rely on the security of the operating system. Some security protocols used

hardware implementation of these primitives from “off the shelf” components used for

environments less constrained than WSNs [19-21]. Secure design for unique WSN

environments was not considered when they were manufactured. This makes sensor

nodes vulnerable to node compromise and other various types of attacks. Building

security protocols on top of insecure platforms will degrade their security, especially for

WSNs, because they operate unattended, in hostile environments, and with unlimited

access by adversaries. The work in this thesis addresses the security, energy-and time

efficiency of sensor node platforms.

1.3 LIST OF CONTRIBUTIONS

The research presented in this thesis has a number of contributions related to two main

topics that address energy saving, as well as WSN security. The first one is C-Sec, an

energy efficient link-layer encryption protocol. The second is SN-Sec, a secure sensor-

node platform design that provides secure key storage and energy efficient hardware

based encryption primitives for C-Sec. These contributions are summarized here and

discussed in detail in the following chapters:

The design of C-Sec [17]: a link-layer encryption protocol that manages to

provide all required security services of data authentication, integrity,

confidentiality, semantic security, and replay protection. C-Sec provides all of

these services with saving on energy consumption even over the plain packets

without security, instead of increasing energy consumption like other protocols. A

simulation model is provided to evaluate C-Sec and compare it with other related

protocols using Castalia simulator [22], with evaluation metrics including

communication energy consumption, error probability, and additional queuing

delay analysis.

6

The development of two analytical models: the first uses markov-chain

characterization to analyze the additional queuing delay introduced by C-Sec

compared to other related protocols. The analysis shows that the additional

queuing delay introduced by C-Sec is small and can be tolerated, as most of WSN

applications do not require hard real-time constraints [23]. The second analytical

model analyzes the effect of packet dependency introduced by C-Sec on the post-

decryption error probability compared to other related protocols. Results show

that the post-decryption error probability of C-Sec is slightly higher than related

protocols. The significance of the energy saving of C-Sec outweighs the small

increase of energy consumption due to a slightly higher post-decryption error

probability.

The design of an energy efficient elliptic-curve processor with the least number of

mathematical operations, as well as clock cycles per encryption among elliptic

curve processors proposed for WSNs in the literature. The proposed processor

exploits the parallelism in the XZ coordinate system to reduce number of cycles.

The design of SN-Sec [24]: a secure sensor node platform that provides energy

efficient hardware encryption primitives, based on a modified version of the Zylin

Processor Unit (ZPU) [25] by adding new instructions to operate the encryption

primitives. The SN-Sec platform design eliminates board level attacks and resists

non-invasive and semi-invasive attacks. It also provides secure key storage that is

independent for the operating system. SN-Sec components are implemented using

VHDL, tested for functional correctness testing using ModelSim, and synthesized

for Spartan 6 low power FPGA using Xilinx design suite. Results including

hardware area, frequency, time delay, and energy consumption are provided for

each component separately and for the integrated system.

7

1.4 THESIS OUTLINE

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview of the WSN’s security. It starts by explaining the

security challenges faced by WSN security. Then, it provides a review of different types

of security attacks against WSNs and explains their classification based on various

approaches. Lastly, it investigates the security services that should be provided to

guarantee a decent security level for WSNs.

Chapter 3 starts by providing a brief description of TinyOS, an operating system that is

used as a basis for most of the related link-layer encryption protocols. Then, it provides a

literature review of the related link-layer encryption protocols proposed for WSNs. A

comparison between these protocols is presented, based on the security services provided,

modes of operation, encryption primitives used, and their packet formats. In addition, a

literature review of encryption primitives implemented in hardware for WSNs is

provided. These primitives include symmetric, asymmetric and hashing primitives. Based

on this review, recommendations for the selection of encryption primitives for the SN-

Sec platform are provided.

Chapter 4 introduces C-Sec the proposed link-layer encryption protocol that reduces

energy consumption by eliminating the security related communication overhead. The

security services provided by C-Sec and the underlying cryptographic algorithms are also

analyzed. To prove the efficiency of the C-Sec, performance evaluations for energy,

queuing delay, and error probability based on mathematical models and simulations are

presented.

Chapter 5 explains the disadvantages, security vulnerabilities, and the approaches to

implementing security platforms for WSNs. It also presents SN-Sec, a secure hardware

platform design for WSNs. A detailed description of the designs of the security primitives

and other components used for SN-Sec platform is presented. Energy, time and hardware

8

area results using synthesis for Spartan-6 low-power FPGA are presented for each

component. Finally, synthesis results for the final design of the SN-Sec platform are

presented after integrating all components.

Chapter 6 summarizes the main topics of the thesis and provides conclusions and insights

to future research directions.

9

CHAPTER 2 OVERVIEW OF WSN SECURITY

This chapter overviews’ the security of wireless sensor networks, starting by studying the

security challenges that face WSN by reviewing the security attacks against WSNs and

their classification based on various approached from security perspective. The last

section of this chapter investigates the requirements that a security system should provide

to guarantee decent security level for WSNs.

2.1 CHALLENGES TO WIRELESS SENSOR NETWORK SECURITY

WSNs have many challenges compared to conventional computer networks. These

challenges arise from two main factors: their limited resources and the hostile

environments where they are being deployed. Because of these challenges, WSNs are

more vulnerable to security threats than traditional networks; as a result, it is not practical

to directly use existing security methodologies for WSNs. Hence, to develop adequate

security mechanisms for WSNs, it is necessary to recognize and understand the

challenges and constraints of WSNs [17]. This is the main objective of this section.

2.1.1 Energy constraints

WSNs are widely accepted because they do not require wired infrastructure. However,

this specific feature makes them energy constrained. Once a WSN is deployed, sensor

nodes cannot be easily recharged or replaced due to the high operating cost. As a result,

the energy stored in the battery must be preserved to lengthen the life of sensor nodes and

hence the entire sensor network.

The consequences of this hard energy constraint are the overall topic of this thesis. Of

particular concern are principles for energy efficient wireless communication for security

10

related data, and the energy-wise trade-off between computation and radio

communication. In addition, the energy consumed for encryption primitives needed to

run security protocols is addressed. For example, when a cryptographic function is

implemented within a sensor node, the energy cost of the additional security components

has to be considered.

Adding security to a wireless sensor network will affect the lifespan of the sensor nodes.

The extra energy spent by sensor nodes for security is consumed in a few operations:

computations related to essential cryptographic functions like encryption, decryption,

signing data, verifying signatures; and the energy required for transmitting the security

related data, especially the security data fields added to the headers of each

communicated packet; moreover, the energy required to store encryption parameters in a

secure way (e.g., secure key storage).

2.1.2 Exposedness of wireless communication

Due to the openness and the exposedness of the wireless medium, an adversary can easily

spy on the wireless communication and intercept data messages exchanged between

WSN nodes, and then launch attacks based on address spoofing to gain full access to the

WSN. In this regard, the proposed C-Sec protocol helps by hiding packet headers,

including addresses, for most of the traffic. This helps to defend against attacks that

depend on traffic analysis like homing attacks [18].

2.1.3 Unattended sensor nodes

Sensor nodes are usually left unattended for long periods of time; and in some

applications for the whole sensor network lifetime. This makes them more exposed to

physical attacks than typical computer networks, because they are deployed in an

environment that is open to adversaries. This makes it easier to launch attacks, capture

nodes and tamper with them to resolve data and security keys, and gives unlimited and

11

unrestricted access to the wireless medium. In addition, being unattended and remotely

managed makes it more difficult for sensor nodes to detect and resist physical tampering

attacks.

2.1.4 Cost and platform constraints

The cost of sensor nodes has a significant impact on their usage in different types of

applications. Lower cost sensor nodes will result in the ability to deploy a network with

higher node density, cover more area, and collect more data. However, decreasing the

cost will result in limitations in the type, size, and number of components a sensor node

can have. It forces the use of a cheap processor, limited memory, and smaller battery.

This makes it more difficult to provide processing power or add more components to

provide security, because it directly affects the cost of the sensor node.

2.1.5 Intensive mathematical computations for cryptographic
primitives

Security depends on encryption primitives. These primitives require intensive

mathematical computations. Because of energy, cost, and platform constraints, it became

a challenge to implement those primitives efficiently and cost effectively. Researchers

follow two approaches to implement them. The first approach is software

implementations as in [8-16]. Software implemented encryption primitives overwhelm

the weak sensor node processers and engage them in computations that could take several

seconds of processing and consume a lot of energy. The other approach is hardware

implementations of those primitives such as in [11] [19] [20], and the proposed SN-Sec

platform [24]. This approach is more time and energy efficient but it adds more

components to the sensor node, which increases the cost.

12

2.2 SECURITY THREATS FOR WSNS

In this section, security threats against WSNs are identified and a reviewed based on

which layer they are launched. In addition, classifications of these attacks are provided

based on various approaches in the literature. Finally, security services need to be

guaranteed to provide immunity against these threats are identified.

2.2.1 Security Attacks

Many security threats and attacks exist for WSNs. To make it easy to study these attacks

and provide adequate defense techniques against them, researches classified these attacks

based on different criteria, like the goal of the attack and its results, the methodology of

launching it, and its sophistication level. The main categories of WSNs attacks in the

literature are presented in this section. Some of these attacks cannot be prevented by the

work proposed in this thesis, like destroying nodes, jamming and collision attacks.

However, the majority of the presented attacks are based on node compromise and

identity theft, as well as the ability to forge or replay messages. These attacks can be

defended as the proposed work in this thesis provides immunity against node compromise

in software and hardware levels. In addition to the efficient security services provided by

C-Sec protocol.

2.2.1.1 Physical Attacks

Destroying nodes: Nodes are usually deployed in remote areas where they are

unreachable by the person who deploys them. However, it is assumed that the attacker

has unsupervised and unlimited time access to the nodes, and could simply find these

nodes and destroy them. These types of attacks are easy to launch, as they do not require

any special or expensive equipment. The defense strategy against them is to hide the node

by packaging it in a form similar to the surrounding environment, and minimizing or

shutting down the wireless communication if they are detected.

13

Tampering attacks: tampering attacks are a class of attacks that are launched on the

physical structure of the node, which requires direct physical access to the node. They

can be classified into three main categories: invasive, semi-invasive, and non-invasive

attacks [22]. Invasive attacks are sophisticated attacks that take relatively long time and

need expensive tools used in semiconductor manufacturing and testing. This requires

moving the sensor node from the deployment area to the laboratory where they get access

to the internals of chip, examples of such attacks include micro probing and reverse

engineering.

Semi-invasive attacks require less time, simpler tools and are usually less expensive than

invasive attacks. The access to the chip die is still required but with a non-penetrative

attack. An example of these attacks is fault generation with intensive light pulse,

radiation, and local heating. Figure 2.1 shows an example of this attack on the PIC16F84

controller. At first, the controller is decapsulated, then the security fuse is located and

deactivated using the fault injection attack [22].

Figure 2.1 A) The PIC16F84 controller B) Decapsulated PIC16F84 controller C)
Location of the security fuse in the PIC16F84 controller [22].

14

In non-invasive attacks, the data is stolen from the sensor node without causing any harm

to the attacked device, such as taking advantage of the hardware interfaces of sensor

nodes to obtain sensitive data. Non-invasive attacks require previous knowledge of the

structure and operation of the chip.

To defend against tampering attacks many precautions can be made. Implementing the

processing unit and other necessary hardware designs on Complex Programmable Logic

Devices (CPLDs) or FPGAs instead of microcontroller-based devices is recommended,

because it is much more expensive to attack and reverse engineer CPLDs and FPGAs.

“Even placing important algorithms inside a ‘non-secure’ SRAM-based FPGA makes its

reverse engineering very difficult“ [22]. Most of current processing units for WSNs are

well known micro-controllers that are not securely designed. They have well-known

designs, debugging procedures and hardware interfaces. The information available from

their venders facilitates launching non-invasive attacks in a short time and at a low cost.

The proposed secure sensor node platform SN-Sec is synthesized for a low power FPGA

chip.

Another precaution that increases the cost of reverse engineering is using multilayer

Printed circuit Boards (PCBs) and chips in Ball Grid Array (BGA) packages. Such

designs make the interconnections of the chips inaccessible and requires special tools and

skills to decapsulate the chips. Unmarking the common names and codes of the chips or

remarking them with misleading information, repackaging chips, destroying test

interface, burning access circuits are also recommended practices that make tampering

attacks more difficult [22].

2.2.1.2 Physical layer attacks

Jamming attacks: Jamming attacks address the radio frequencies of the wireless

medium used by sensor nodes in order to prevent wireless communication in the network.

A jamming attack could be powerful enough to disturb the scope of the entire network or

15

less powerful to disrupt part of it. Jamming can be detected if there is unusual noise

during normal operation that leads to degradation in the Quality of Service (QoS), along

with low packet delivery ratio and high signal strength levels.

Channel surfing and switching for a good frequency is one solution, but this requires the

node transceivers to work in a wide range of communication frequencies, which will

increase the node cost. It also has a lot of overhead, especially for flooding the network

with communications to follow the frequency band. Generally, sensor nodes are equipped

with single-frequency transceivers to maintain low cost and power requirements. This

makes them highly vulnerable to jamming attacks.

2.2.1.3 Data link layer attacks

Exhaustion: exhaustion attacks aim to drain the energy of the sensor node by

manipulating MAC protocol efficiency. An example of that is continuously sending

Request-To-Send (RTS) packets and forcing another node to reply with a Clear-To-Send

(CTS) packet and to stay awake expecting a packet. One solution is to encrypt control

messages [23], which makes it more difficult to clone them. Putting a limit on the

network requests could also help to reduce the effect of exhaustion attacks.

The C-Sec protocol uses the CFB encryption mode to provide confidentiality and

semantic security. This mode of operation supports variable block length messages.

Hence, C-Sec can encrypt the small-size RTS/CTS packets without increasing their size

to the size of the block cipher, which makes it more efficient to defend against exhaustion

attacks.

Collision attacks: Collision attacks aim to corrupt packets and cause retransmissions.

This is done by sending small packets in a carefully selected timing to create errors in the

payloads of legitimate packets, which causes checksum errors and hence retransmissions.

16

Collision attacks do not consume a lot of energy from the attacking device. However, it

causes a lot of interruptions and energy loss in network operation.

Defense mechanisms against jamming attack can also be used to defend against collision

attacks. The use of error correcting codes is can also be used, but it can correct limited

number of errors and it increases the energy consumption.

2.2.1.4 Network layer attacks

Attacks on routing information: These attacks aim to disrupt traffic in the network by

altering, replaying or spoofing routing packets. This could create routing loops, shorten

or extends routes, and increase end to end latency. The use of integrity, authentication,

and replay protection techniques is capable of defending against these attacks. The

proposed encryption protocol C-Sec provides these security services, in addition it hides

the packet header fields so that packets carrying routing information cannot be

differentiated from other traffic in the wireless medium.

Homing Attacks: The goal of homing attacks [18] is to shut down the entire network by

disabling special nodes like cluster heads or nodes responsible for key management.

Special nodes can be discovered by analyzing the communication in the wireless

medium. Disabling the key nodes can be done by physically destroying them, or by

launching any other denial of service attack on them. Homing attacks can be prevented

by encrypting packet headers and sending dummy packets to obscure the communication

in the network. Hiding the packet headers, including the addresses, the compact mode of

the proposed protocol C-Sec provide immunity against homing attacks.

Hello flood Attacks: In these attacks hello packets are transmitted to the whole network

by an attacker with high transmission capability. Nodes who receive the Hello packets

will consider the attacker as a neighbor and will attempt to transmit packets through it

although it could be out of their radio range. Node authentication requires nodes to verify

the identity of their neighbors, which helps to defend against hello flood attacks. The SN-

17

Sec provides energy efficient implementations of encryption primitives that can be used

to implement node authentication schemes. Especially schemes based on asymmetric

encryption primitives [30-33].

Selective Forwarding: In selective forwarding attacks, the adversary manages to insert a

malicious node to the network. This node can selectively forward certain messages and

drop others, or drop all traffic and create a black hole attack. This attack becomes more

serious if the malicious node is close to the sink i.e. handles a large amount of traffic. To

prevent this attack it is important to cover security vulnerabilities in the hardware

platform and make it immune to tampering attacks and node compromise, which is done

by the proposed SN-Sec platform. In addition, providing adequate authentication,

confidentiality, integrity, and replay protection in the security protocol helps to make the

node immune against compromise in the software level. These security services are

provided by the proposed C-Sec protocol.

If an attack has already happened, the use of malicious node detection techniques to

detect then exclude the malicious node from the network, and the use of routing data

from multiple paths are good practices to reducing the effect of selective forwarding

attacks [34].

Wormhole attacks: a wormhole refers to a low-latency link between two distant parts of

the network used to replay messages among these parts of the network convincing nodes

from each side that they are neighbors. Figure 2.2 shows an example of wormhole attack,

nodes on the two sides of the network communicate through a wormhole extending

between node A and node B, instead of communicating through the nodes in the middle

of the network. Wormholes change the logical topology of the networks, which affect

routing and help to apply other types of attacks on the traffic going through the

wormhole. A low-latency link could be established using one or more compromised

nodes, and it could be a wired or wireless connection [34].

18

Figure 2.2 Wormhole Attack

Protection against node compromise is the first defense line against wormhole attacks.

SN-Sec and C-Sec provides protection against node compromise in the software and

hardware levels. Many other mechanisms that depend on the knowledge of the physical

location of the nodes were presented in the literature to detect and then defend against

wormhole attacks, such as packet leaches [35], which use geographic leaches and

temporal leaches to detect wormholes, the use of directional antennas [36], multi-

dimensional scaling algorithm [37] and the MAD protocol [38].

Sinkhole attacks: In sinkhole attacks, an adversary tries to change routing information to

make a compromised node look more attractive to its neighbor nodes and redirect all

possible traffic through it. This will change the logical topology of the network and create

a false sink that could be used to launch other types of attacks, like blackholes or

selective forwarding attacks. The ability to change routing information and node

compromise are the bases for this attack.

19

Figure 2.3 Sinkhole Attack

Providing robust security protocols on the software level and robust sensor node

platforms against node compromise on the hardware level, which are provided by C-Sec

and SN-Sec, can prevent this attack from happening. If the attack has already happened,

the same defense mechanisms used to detect and defend against wormhole attacks could

be used to reduce its effect [34].

Sybil attacks: In Sybil attacks, the adversary inserts one or more malicious nodes to the

network. As Figure 2.4 shows, these nodes use identity fraud to present multiple

identities to their neighbors. This disturbs the network topology, and results in consuming

node energy and memory in storing information about non-existing nodes. It also affects

data aggregation, voting algorithms and many applications that are based on redundancy

of data, like fault tolerant algorithms and reliable distributed storage; or applications that

aim to eliminate redundancy of data to save power. In both cases, the only copy of the

data could be stored with a malicious node under single or multiple identities.

20

Figure 2.4 Sybil Attack

Node compromise and identity theft are the bases for this attack. Robust security

protocols with strong authentication algorithms and immunity against node compromise

in the software and hardware levels are the best defenses against Sybil attacks [39]. These

services are provided by the proposed C-Sec protocol and the SN-Sec platform.

2.2.1.5 Transport layer attacks

Flooding: flooding attacks target protocols that require maintaining the state of end-to-

end connections between nodes. An adversary uses compromised nodes to flood the

network with requests to create new connections with the aim of exhausting the storage,

processing, and energy resources of sensor nodes, and causing legitimate connection

requests to be ignored [30].

Immunity against node compromise in the software and hardware levels, which are

provided by C-Sec and SN-Sec, can prevent this attack. If the attack has already detected,

the use of client puzzle [41] is a defense mechanism against flooding attacks. In this

mechanism, the server node proposes solving a computationally expensive puzzle to the

client nodes in order to accept the connection. This keeps the attacking node busy, and

hence, reduces the connection request rate and protects legitimate node resources from

vanishing. Although puzzle solving has its own processing power overhead on legitimate

21

nodes as well, it is considered much better than wasting communication energy on fake

connection requests.

Desynchronization: In this attack, the adversary targets synchronization procedures in

existing connections between legitimate nodes. This can be done by sending fake

retransmission requests or spoofing messages with faulty sequence numbers. This wastes

node energy in retransmission and costly synchronization procedures and reduces

communication ability between nodes. The best solution to prevent desynchronization

attacks is to use strong authentication, confidentiality, integrity, and replay protection

techniques in the security protocol between nodes [30]. These services are provided by

the proposed C-Sec protocol.

2.2.1.6 Application layer attacks

Overwhelm Attack: In the overwhelm attack [32], an attacker creates a large amount of

stimuli by injecting forged or replayed query messages. This attack is so powerful

because a single stimulus message broadcast over the network will force all sensor nodes

who receive this message to report sensor measurements to the base station. This results

in forwarding a large volume of traffic to the base station, which consumes network

bandwidth and energy.

This attack depends on the ability to forge or replay query messages. Efficient replay

protection, confidentiality, integrity, and authentication algorithms and high resilience to

node compromise can prevent it. These services are provided by the proposed C-Sec

protocol and the SN-Sec platform. In addition, this attack can be prevented if sensor

readings are reported at fixed time intervals rather than data query requests. Reducing the

volume of network traffic can help in reducing the effect of this attack once it happens.

This can be done by rate limiting and data-aggregation algorithms [32].

Path-Based DoS (PDoS): In PDoS attacks [43], the adversary overwhelms nodes on the

path to the base station by flooding their multi hop end-to-end communication channel

22

with either replayed or forged packets. As Figure 2.3 shows, this will exhaust the nodes

along the targeted path; nodes downstream will not be able to communicate with the base

station. This attack depends on the ability to forge or replay query messages. Efficient

replay protection, integrity, and authentication algorithms and high resilience to node

compromise can prevent PDoS attacks. These services are provided by the proposed C-

Sec protocol.

Figure 2.5 PDoS Attack

Network programming attack: In-network programming is a useful feature that makes

it easy to remotely update the code running on sensor nodes. Network programming

attack addresses this feature. The adversary launches the attack by injecting a false

program to the node through forged packets or compromised nodes. The injected code

could lead to losing control of the network or returning altered sensor readings or sending

23

data reports to the adversary. Strong authentication schemes as in the hash-chaining

technique [44] where the program is divided into parts, and each part has hash of next

part. The proposed C-Sec protocol provides a hash-chaining scheme; each transmitted

packet has the hash code of the previous packet. This makes it more robust against

network programing attacks.

2.2.2 Classification of attacks

The classification of the attacks based on various criterion helps to understand them and

develop defense mechanisms against them. This section provides a description of the

various classifications of attacks on WSNs in the literature.

2.2.2.1 Attacks on availability

Also known as Interruption or Denial of Service (DoS) attacks. The main goal is to stop

or disturb the normal operation of the sensor network or exhaust any of its resources like

its energy, wireless bandwidth, processing power, and memory. The result of this could

make the sensor network or part of it unavailable permanently of for a period of time,

disturbing its functionality and operations and shortening its life time. The unattended

operation, limitations and constraints of WSNs make them vulnerable to a wide range of

DoS attacks that can be launched on different layers.

Destroying nodes, jamming attacks, exhaustion, collision attacks, wormhole, sinkhole,

Sybil, flooding, and desynchronization can be classified as DoS attacks because they

disrupt the operation of the WSN and reduce its lifetime.

2.2.2.2 Attacks on Secrecy

Also known as Interception attacks. The goal of these attacks is to get secret information

from the WSN. This information could be related to the data collected and computed by

24

sensor nodes or data related to the operation of the network, like the routing information

and encryption keys. If interception does not result in any changes in the data or

operation of the network, it is called Passive attacks, such as eavesdropping on

communication.

2.2.2.3 Attacks on Integrity

Also known as Modification attacks. These attacks result in changes in the data

communicated within the network. These changes could be in the measured date reported

by sensor nodes or in control data. That could result in changes in the topology,

operation, and functionality of the sensor network.

2.2.2.4 Attacks on Identity

Also known as Fabrication attacks. These attacks include violation of the authenticity of

communicated data. This is usually done by injecting new packets to the network. These

packets could carry wrong information about the phenomena being watched or control

packets such as exhaustion, hello flood, and desynchronization attacks.

2.2.2.5 Active attacks

Active attacks results in changes in the data or behavior of the WSNs. This includes

Interception like dropping packets in selective forwarding attack, as well as Modification

and Fabrication as in exhaustion, hello flood, and desynchronization attacks.

2.2.2.6 Internal attacks.

Internal attacks are launched by a compromised node that belongs to the WSN. Internal

attacks are more dangerous because it is hard to detect them. In addition, the attacking

25

node may have secret information about the network, like the encryption keys. Also it

could have the trust of other sensor nodes because it was originally a legitimate node.

2.2.2.7 External attacks

External attacks are launched by devices that do not belong to the WSN. These attacks

can be classified into two classes based on the strength of the attacking device. Laptop

class attacks where the attacking devise is powerful, and Mote class attacks where the

attacking device is a usual sensor node.

Table 2.1 provides a summary of the classification of WSNs security attacks discussed in

this section.

26

Table 2.1
C

lassification of attacks on W
SN

s

L
ayer of

operation
A

ttack on
A

vailability (D
oS)

A
ttack on
secrecy

A
ttacks on
Identity

Passive
/A

ctive
Internal
/E

xternal
N

ode class
/L

aptop class
D

estroying nodes
Physical

Y
es

N
o

N
o

A
ctive

N
/A

N
/A

Jam
m

ing
attacks

Physical
Y

es
N

o
N

o
A

ctive
external

Laptop class
E

xhaustion
D

ata link
Y

es
N

o
N

o
A

ctive
B

oth
B

oth
C

ollision attacks
D

ata link
Y

es
N

o
N

o
A

ctive
B

oth
B

oth
E

avesdropping
A

ll
N

o
Y

es
N

o
Passive

B
oth

B
oth

A
ttacks on routing

inform
ation

N
etw

ork
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth

T
raffic A

nalysis
N

etw
ork

N
o

Y
es

N
o

Passive
B

oth
B

oth
H

om
ing attacks

N
etw

ork
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
H

ello Flood
N

etw
ork

Y
es

N
o

Y
es

A
ctive

External
Laptop class

Selective Forw
arding

N
etw

ork
Y

es
N

o
N

o
A

ctive
B

oth
B

oth
W

orm
hole attacks

N
etw

ork
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
Sinkhole attacks

N
etw

ork
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
Sybil attacks

N
etw

ork
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
Flooding

Transport
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
D

esynchronization
Transport

Y
es

Y
es

Y
es

A
ctive

B
oth

B
oth

O
verw

helm
A

pplication
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth
N

etw
ork

program
m

ing attack
A

pplication
Y

es
Y

es
Y

es
A

ctive
B

oth
B

oth

PD
oS

attack
A

pplication
Y

es
Y

es
Y

es
A

ctive
External

Laptop class

26

27

2.3 SECURITY REQUIREMENTS FOR WSNS

As mentioned in the previous sections, WSNs have many limitations and constraints that

make them vulnerable to various types of attacks. To prevent these attacks or minimize

their effect on WSNs, security mechanisms are required to provide security services.

These services are:

Confidentiality: Confidentiality ensures that the data transmitted between

communication parties is not disclosed to unauthorized users. This can be achieved by the

use of encryption, with the encryption keys shared only between authorized users.

Semantic Security: Semantic security is a higher level of confidentiality which ensures

that the adversary cannot learn anything about a plaintext from its ciphertext. This is

usually achieved by using block cipher modes of operation that support semantic

security.

Integrity: Data integrity helps the receiver to ensure that the received data is not altered

by an adversary during transmission. Integrity can be accomplished by sending a message

digest that is impossible to reverse along with the message. This digest is produced using

a one-way hash function that combines all the bytes of the message with a secret key only

known to communication parties.

Authentication: Data authentication allows verifying that the data is sent by the claimed

sender. This is important to create a barrier between external and internal members of the

network. Without authentication, any attacker could claim to be a member of the

network. Authentication is accomplished by sending a message digest that is impossible

to reverse along with the message. This digest is produced using a one-way hash function

that combines all the bytes of the message with a secret key only known communication

parties.

28

Non-repudiation: aims to ensure that the transmitted message has been sent and received

by the communication parties claiming to be the actual sender and receiver of that

message. This guarantees that neither of them can later deny sending or receiving the

message. Non-repudiation is usually achieved by the use of digital signature.

Data Freshness and replay protection: Data freshness aims to ensure that the

transmitted messages are new and to prevent an adversary from replaying old messages.

This is usually achieved by explicitly sending a monotonically increasing freshness

counter with the message, Or by maintaining this counter on both sides of communication

and in the computation of the message digest.

Availability: aims to ensure that the network resources are accessible and functional

whenever they are needed. The loss of availability caused by an attack on the network or

one of its resources is referred to as Denial of Service attack. Providing availability is

difficult for WSNs because of unattended operation and its limited resources.

2.4 CONCLUDING REMARKS

This chapter provided an overview for the security of WSNs, starting by studying the

challenges that face WSN security, then reviewing the security attacks against WSNs and

their classification based on various approached from a security perspective. Some of

these attacks cannot be prevented by the work proposed in this thesis, like destroying

nodes, collision, and jamming attacks. However, the majority of the presented attacks are

based on node compromise and identity theft, as well as the ability to forge or replay

messages. These attacks can be defended as the proposed work in this thesis provides

immunity against node compromise in software and hardware levels, in addition to the

efficient security services provided by C-Sec. This chapter also investigated the essential

requirements that a security system should provide to guarantee adequate security level

for WSNs. As will be discussed in detail in Chapter 4, these requirements are provided by

C-Sec protocol.

29

CHAPTER 3 RELATED WORK

In this chapter, link layer encryption protocols proposed for WSNs are examined and

compared. This comparison includes the security services provided, modes of operation,

encryption primitives used and their packet formats. Most of the related protocols are

based on the TinyOS operating system. A brief description of TinyOS and its packet

format is presented in section 3.1. The comparison between WSN link-layer encryption

protocols is presented in section 3.2. In section 3.3, a review of encryption primitives

implemented in hardware for use of WSNs is presented. These primitives include

symmetric, asymmetric and hashing primitives. Based on this review, recommendations

for the selection of encryption primitives for the SN-Sec platform are provided.

3.1 THE TINYOS

The design of operating systems for WSNs is different from traditional operating

systems, due to the significant challenges of WSNs including sparse energy, cost

limitations, constrained processing and memory resources, and unattended operation.

These challenges impose special requirements for WSN operating systems, such as

flexibility, small kernel code footprint, runtime configurability of services, and

reprogramability. It also requires efficient execution model services like synchronization,

scheduling, and communication between system components. In addition, the operating

system should have clear Application Programming Interfaces (APIs) including

networking, sensing, memory management, power management, and process

management APIs [45].

TinyOS [36] is an open source WSN operating system widely used with different types of

commercially available sensor nodes known as “motes”. TinyOS can be easily adapted

with different types of hardware; this made it the best choice for various industrial

applications and academic research. It uses a component-based programming model

coded in nesC language [37] . This language supports complicated concurrent

30

programming with extremely limited resources and low memory requirements. The code

size of the basic core of the TinyOS is only 400 bytes. In addition, most of the

applications can fit with less than 16KB of memory, which is very efficient and facilitates

low-power operation.

The TinyOS scheduler follows a non-preemptive First In First Out (FIFO) policy.

Although this policy simplifies the handling of deadlocks, race conditions, and other

concurrency-related, it could result in serious problems in many cases, especially with

applications with long running tasks. These issues could significantly reduce the

responsiveness of the system and result in delaying priority tasks [38].

TinyOS uses synchronous acknowledgments protocol on the link level; a synchronous

communication protocol requires a response for each transmission before it starts the next

transmission. Only one transmission can be "on the flight" at a time. This is also known

as stop-and-wait or alternate-bit Automatic Repeat Request (ARQ). This mechanism is

used with most of the WSN operating systems [49] [40]. Because WSN applications

require low power as well as low bandwidth communication, and can resist moderate

packet latency.

The main source of power consumption is communication compared to computation and

sensing [41]. The high energy-cost of communication in WSNs imposes smaller packet

sizes, since that is optimal for communication-energy efficiency [42]. The TinyOS frame

format is shown in Figure 3.1. This format will be used as a baseline reference for the

comparison between the related encryption protocols. The TinyOS was used as a base for

most of these protocols. In addition, it is a widely used for WSN applications in general.

This frame has a maximum size of 43 bytes: 13 bytes of header and trailer fields, and a

maximum of 30 bytes of payload. The basic header fields are: a 6-byte preamble, 2-byte

destination address (Dest), a one byte Active Message (AM) field which plays a role like

the port number in TCP/IP networks, a one byte length field (Len), a one byte group field

(Grp) used as a unique network identifier to distinguish from other networks, and finally

a Cyclic Redundancy Check (CRC) trailer field.

31

 Preamble
6 bytes

Payload
0 - 29 bytes

Dest AM
1 byte

 Len
1 byte 2 bytes 1 byte

Grp CRC
2 bytes

Figure 3.1 TinyOS frame

Considering the small size of the TinyOS frame, the size of the header is relatively large.

Increasing the header size by adding more fields to implement security services will

dramatically increase the energy needed to transmit the packet. The proposed C-Sec

protocol eliminates the need to transmit all header fields related to security most of the

time.

3.2 OVERVIEW OF WSN ENCRYPTION PROTOCOLS

Link layer security is of a unique importance in Wireless Sensor Networks (WSNs).

Unlike traditional networks, similar data traffic is generated in nodes throughout the

network and addressed to one sink. Because this traffic has a high level of similarity,

sensor nodes aggregate it to minimize communication volume and save energy. The end-

to-end security schemes in traditional networks are not practical for WSNs, because the

data has to be inspected and aggregated on the way to the sink. In addition, link layer

based security minimizes the effect of security attacks. Security attacks can be discovered

on the next hop once they happen, but can only be discovered at the sink if end-to-end

security schemes are used.

Many link-layer security protocols were recently proposed for WSNs [8-16]. The design

of those protocols is challenging due to the constrained nature of WSNs that restricts

reserving additional resources to provide security services. These resources can be in the

form of energy consumption, processing overhead, additional hardware components, and

communicated data.

32

This section reviews the most recognized encryption protocols designed to implement the

basic security services for WSNs in the literature. From a security prospective, the

protocols are compared based on the security services they provide. Failing to provide all

security services leaves vulnerabilities from which a WSN can easily be attacked. The

security of the encryption and MAC algorithms used has large impact on the security

services provided. For example, the use of 80-bit encryption is vulnerable to brute force

attacks and CBC-MAC has security weaknesses for variable length messages.

From the energy efficiency prospective, the amount of header size overhead they add to

each packet is the main factor. The designers of related protocols tried to minimize the

amount of packet header overhead related to security in many ways; nevertheless, all of

them added fields to the headers of each packet to implement security services. In

addition, the computational complexity of the encryption and MAC algorithms used, its

implementation methodology and mode of operation plays important role in energy

efficiency.

3.2.1 Zigbee security

Although Zigbee protocol suite [11] is designed for wireless Personal Area Networks

(PANs), it is being used for wide range of applications that require low data rates (i.e. 20

to 250 kbps), long battery life, and secure networking. Zigbee is widely used for WSNs

because of its cheap price and efficient implementations. Most of its implementations

include hardware modules for encryption, which is computationally efficient.

Zigbee provides many security services. It provides authentication and confidentiality by

encrypting the packet payload with the AES-CCM (Counter with cipher block chaining

message authentication code) mode, which is a special NIST standard [43]. As Figure 3.2

shows, new fields were added to the packet to implement the required security services.

These fields include A two-byte source address field Src (instead of six-byte IEEE

address used with PANs), a four-byte Message Authentication code field MAC, which

has the minimum size of MAC supported by the AES-CCM standard.

33

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

 Len
1 byte

Payload
0 - 29 bytes

MACSrc
2 bytes 4 bytes

Ctr CRC
4 bytes 2 bytes

Figure 3.2 Zigbee frame

A four-byte counter field Ctr is also added to guarantee frame freshness and replay

protection. Notice that the group field Grp of the TinyOS frame was removed to save

energy. The functionality provided by the group field is implicitly implemented with the

keying mechanism associated with the MACs. This mechanism provides access control

and is sufficient to distinguish between networks.

Although Zigbee security design provides all of the basic security services, the additional

security related frame size overhead is considered high. The removal of the Grp field

saves one byte. However, the size of other additional fields related to security is 10 bytes

(4 MAC + 4 Ctr + 2 Src). The Zigbee frame size is quite large compared to the plain

TinyOS frame, which has a maximum size of 43-bytes.

3.2.2 TinySec

TinySec [10] is a link-layer security architecture that was implemented as part of the

TinyOS operating system. It provides tradeoffs between performance and security by

having optional two-level security modes. The TinySec-Auth mode only provides

message integrity and authenticity. As Figure 2.3-a shows, TinySec-Auth mode adds a

four-byte MAC field to the frame; this field is computed using the CBC-MAC produced

by running the Skipjack [54] algorithm over the packet header and payload.

While the TinySec-AE mode provides message confidentiality and replay protection in

addition to the message integrity and authenticity provided by the TinySec-Auth mode.

This is done by encrypting the payload, and adding a two-byte freshness counter field Ctr

to the packet to provide replay protection. The initial vector of the CBC mode of the

encryption algorithm consists of a concatenation of the Dest, AM, Len, Src, and Ctr

34

fields. The Skipjack algorithm was chosen for TinySec because of its smaller software

implementation code size compared to other encryption algorithms. It produces a 64-bit

block size using an 80-bit encryption key. This key size has been considered unsecure

against brute force attack since 2012 [55].

Neither of TinySec modes includes the Grp field as in the Zigbee security protocol. In

addition, the CRC field is removed. Its functionality is implicitly implemented with the

MAC field. Since MACs are used to detect malicious changes in communicated packets,

they can also be used to detect transmission errors as a replacement for the CRC.

Figure 3.3 shows the frame of both of the TinySec modes. The TinySec-Auth mode adds

only four bytes for the MAC field; with the removal of the Grp and CRC fields, these

results in a 44-byte frame, which is only one byte larger than the TinyOS plain frame.

However, the level of security that TinySec provides is inadequate, because it only

provides packet authentication.

The TinySec-AE mode is used for comparison with other protocols because it provides

all the basic security services. The TinySec-AE mode adds 8 bytes to the basic TinyOS

frame (4 MAC + 2 Ctr + 2 Src). The elimination of the Grp and CRC fields saves 3 bytes.

The final frame is 5 bytes larger than the TinyOS frame.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len Payload
0 - 29 bytes

MAC
4 bytes 1 byte

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes 2 bytes

Ctr

Figure 3.3 a) TinySec-Auth packet. b) TinySec-AE packet

35

3.2.3 Secure Network Encryption Protocol

The Secure Network Encryption Protocol (SNEP) was proposed as part of SPINS [8]; a

security protocol suite for WSNs. It aims to provide data confidentiality, two-party data

authentication, and data freshness, with low overhead. SNEP uses RC5 (Rivest Cipher 5)

[47] in the counter mode to provide data confidentiality through encryption. RC5 is a 64-

bit block, 128-bit key encryption algorithm. It was chosen over the AES because of its

small code size for software implementations. It also uses the CBC-MAC mode of the

RC5 to produce the MAC and provide authentication and integrity.

The SNEP protocol provides two levels of freshness. Weak freshness is automatically

provided by the RC5 encryption in the counter mode. Since the sender increases the

counter after sending each message, the receiver confirms weak freshness by verifying

that received messages have a monotonically increasing counter. In strong freshness, the

sender node creates a 64-bit random number and sends it in a request message to the

receiver. The receiver generates a response message and uses this number in the

computation of the MAC field. If the MAC of the response message verifies successfully,

the sending node recognizes that the response was generated by the receiver node and

hence strong freshness is achieved.

The SNEP protocol does not include the Grp and the CRC fields. It replaces their

functionalities with existing fields as in TinyOS. For further reduction in the header size,

the SNEP protocol updates the freshness counters on both sides of communication and

does not transmit them, which saves another two bytes. However, it uses an 8-byte MAC

field that is twice as large as other protocols.

Although 8-byte MACs are more secure, it is considered expensive for a sensor node to

transmit them in the wireless medium. All of the related protocols used 4-byte or less for

that purpose. With a 4 byte MAC, the attacker has 232 choices to try to get a valid MAC

for a particular frame. The average success rate for that is 231 tries. In other words, an

attacker has to send a forged packet to the receiver 231 times before it can succeed to pass

36

one forged packet. For low bit rate WSNs, sending 231 false packets will require

occupying the wireless medium for a very long time, which makes it easily discoverable.

In addition, the batteries of the sensor nodes will drain before it can receive such a large

number of messages.

Figure 3.4 shows the format of the SNEP frame. SNEP saves sending 5 bytes in the

header i.e. the Grp, CRC, and Ctr fields, but it requires sending a two-byte source address

Src and a lengthy 8-byte MAC filed. This makes it 7-bytes larger than the TinyOS plain

frame.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
8 bytes

Src
2 bytes

Figure 3.4 SNEP packet

3.2.4 MiniSec

MiniSec [48] uses the Offset Code Book (OCB) [49] encryption mode, which combines

authentication and confidentiality in one pass. This saves running the encryption

algorithm twice for encryption and then authentication as in other related protocols.

MiniSec uses software implementation of Skipjack algorithm with a 64-bit block size and

an 80-bit key. The designers of the MiniSec protocol suggested to switch to AES

algorithm when Skipjack becomes unsecure in 2012 [55] .

MiniSec has two modes of operation. MiniSec-U mode is used for unicast

communication and MiniSec-B mode for broadcast communication. The MiniSec-U tries

to strike a balance between two extremes, sending the whole freshness counter as in

TinySec and not sending it at all but updating it on both sides of communication as in

SNEP. The drawback of the TinySec approach is that it consumes extra communication

energy by sending 16 more bits in the wireless medium. The SNEP approach suffers from

a costly counter resynchronization problem in case the counter is wrongly updated

because of dropped packets. MiniSec-U keeps a synchronized increasing counter between

37

communication parties. However, it only sends the least x-bits of the counter with each

packet. By keeping x low (i.e. 3-bits), the energy consumption for communication is kept

almost as low as not sending the counter at all.

MiniSec-B mode addresses broadcast communication. It is expensive to run the counter

resynchronization protocol among many receivers. In addition, if a node simultaneously

receives packets from a large group of sender nodes it has to maintain a freshness counter

for each, resulting in high memory demand. MiniSec-B addresses these issues through

two approaches. The first is a sliding window approach where the time is divided in to

epochs. The receiver ignores packet from older epochs, which limits the window of the

replay attack to one epoch.

The second approach uses Bloom Filters (BFs). A Bloom Filter is “a space-efficient

probabilistic data structure that is used to test whether an element is a member of a set”

[50]. All nodes maintain two alternating BFs for the two most recent active epochs. All of

the received packets are stored in the associated BFs. The receiving node accepts the

packet if it does not belong to any of the BFs. If the packet is found in any of BFs, then it

is dropped because it is a replayed packet.

The MiniSec protocol uses the Most Significant Bits (MSB) of some header fields to

overload the freshness counter and save packet size. As shown in Figure 3.5, the

MiniSec-U mode provides weak replay protection through a 3-bit counter stored in the

MSBs of the length field. The MiniSec-B mode has a higher level of security; it uses an

8-bit freshness counter by adding the other 5-bits of the counter in the place of the five

MSBs of the destination address. However, this will reduce the address space to around

2k addresses instead of 64k addresses. Both MiniSec modes have a maximum frame size

of 46 bytes. This is 3-bytes larger than maximum frame size of TinyOS.

38

 Preamble
6 bytes

Dest AM
1 byte

Len Payload
0 - 29 bytes

MAC
4 bytes

Ctr2

3 bits 5 bits

Src
2 bytes 2 bytes

 Preamble
6 bytes

Dest
5 bits 11 bits

AM
1 byte

Len Payload
0 - 29 bytes

MAC
4 bytes

Ctr1 Ctr2

3 bits 5 bits

Src
2 bytes

Figure 3.5 A) MiniSec-U packet. B) MiniSec-B packet

3.2.5 Link Layer Security Protocol

The Link Layer Security Protocol (LLSP) [12] uses AES encryption in the CBC mode to

provide message confidentiality, and CBC-MAC to provide message authentication. It

also maintains a 4-byte counter on both sides of communication to provide replay

protection. To save communication energy the counter is not transmitted, and maintain on

both sides of communication. The initial vector of the CBC-MAC consists of a

combination of the Dest, AM, Len, Src, and Ctr fields. Figure 3.6 shows the LLSP frame

format, it is similar to the SNEP frame except that the MAC field is 4-bytes instead of 8-

bytes. The resulting frame size is 46-bytes. This is 3-bytes larger than the maximum size

of the TinyOS frame.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes

Figure 3.6. LLSP frame format

3.2.6 SenSec

The SenSec [52] defines a variation of the Skipjack algorithm called Skipjack-X. It also

defines the CBC-X mode of operation to provide confidentiality and authentication in one

pass and provide a padding technique that supports variable size messages. The SenSec

39

keeps the Grp field in the original TinyOS format and uses it as a part of the initial vector

of the CBC-X mode, which is defined as a concatenation of Dest, AM, Len, Grp, and Ran

fields, where Ran is a random number sent with the frame header. The first Ran is

generated by encrypting the first packet header with the Ran field set to zero. After that,

the three least significant bytes of the ciphertext are used to produce it. For the next

packets, the 3-byte Ran field is determined from the three least significant bytes of the

MAC of the previous frame. Figure 3.7 shows the frame format of the SenSec protocol. It

is 5-bytes larger than the TinyOS frame.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Ran
3 bytes

Grp
1 byte

Figure 3.7 SenSec frame format

3.2.7 SecureSense

SecureSense [11] is a link-layer security framework that provides different levels of

security services, depending on external environments situation, internal constraints and

application requirements. It uses RC5 in the CBC encryption mode and CBC-MAC to

produce the MAC.

SecureSense uses an eight-bit Security Composition Identifier (SCID) to specify the

security level. Four out of the eight bits are used to determine which of the four security

levels is used. The security levels are confidentiality, integrity, semantic security with

implicit counter and replay protection. Two bits are used to determine the strength of the

cipher and the other two bits are reserved for future use.

The SecureSense replaces the AM field with SCID to represent the type of security

composition for each packet; similar to TinySec, the Grp field is removed in SecureSense

since its functionality can be replaced with the keying mechanism. Either the MAC or the

CRC fields are used in the frame if the integrity and access control services are required.

40

Figure 3.8 shows the frame formats of the SecureSense protocol. The size of the frame

for the mode that provides the maximum-security level including confidentiality,

integrity, semantic security, replay protection, is 50 bytes, 7-bytes higher than the

maximum size of the TinyOS frame.

 Preamble
6 bytes

Dest
2 bytes

SCID
1 byte

Len
1 byte

Payload
0 - 29 bytes

CRC
2 bytes

 Preamble
6 bytes

Dest
2 bytes

SCID
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes

 Preamble
6 bytes

Dest
2 bytes

SCID
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes 4 bytes

Ctr

Figure 3.8 SecureSense frame formats A) Only confidentiality. B) Without semantic
security. C) Maximum security level

3.2.8 FlexiSec

The FlexiSec [12] protocol aims to provide a secure communication stack that is

configurable depending on the data rate, level of security desired and the security

attributes desired based on the nature of the application. It uses either XXTEA [53] or

AES ciphers – depending on the available resources. It also uses the OCB authenticated

encryption block cipher mode of operation instead of CCM or Galois Counter Mode

(GCM) [54] because OCB mode is more energy efficient for software implementation.

Bloom filters are used for authentication when encryption is not needed.

FlexiSec has nine modes of operation; the first mode is no security or security dependent

on hardware. FlexiSecHASH mode provides message integrity with un-keyed

authentication without any demands for the entity authentication. FlexiSecAUTH64

provides support for 8-bytes of MAC but without data encryption. FlexiSecAUTH32

41

offers authentication-only support for low data rate applications – with the provision of

only 4 bytes of MAC. FlexiSecAUTH_ENC64 and FlexiSecAUTH_ENC32 are the

options to support data confidentiality apart from the message integrity using 8-byte and

4-byte MACs respectively.

The FlexiSecAUTH_REPP64 and FlexiSecAUTH_REPP32 modes extend the security

properties in the previous modes with of replay protection. However, these modes could

be employed for applications demanding message authentication as well as replay

protection alone, without any encryption. Therefore, these modes are intended to employ

CBC-MAC as the message authentication scheme. The FlexiSec_AUTH_ENC_REPP64

offers all the security attributes listed above with an 8-byte MAC using the OCB mode.

Figure 3.9 shows the different packet formats of the FlexiSec protocol. The

FlexiSec_AUTH_ENC_REPP64 mode is the only mode that provides all the security

services. Its header size is 20 bytes; this makes it 7-bytes larger than the TinyOS header.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
8 bytes

Src
2 bytes

Figure 3.9 FlexiSec frame formats: A) FlexiSecHASH B) FlexiSecAUTH32/
FlexiSecAUTH_REPP32, C) FlexiSecAUTH64, FlexiSecAUTH_REPP64,

FlexiSec_AUTH_ENC_REPP64

42

3.2.9 WSNSec

WSNSec [55] uses Scalable Encryption Algorithm (SEA) in the counter mode, and CBC-

MAC to provide semantic security and authentication. The SEA algorithm is used

because it has 192-bit data-block and key size, with a small increase on the memory

usage and energy consumption compared to its counterparts. Figure 3.10 shows the frame

format do the WSNSec protocol. This format is very similar to the TinySec frame format.

The only difference is that the 4-byte MAC field is encrypted with the payload field for

more security. The WSNSec frame is 5 bytes larger than the TinyOS frame.

 Preamble
6 bytes

Dest
2 bytes

AM
1 byte

Len
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Src
2 bytes 2 bytes

Ctr

Figure 3.10 WSNSec frame format

3.2.10 Comparison of related works

Table 3.1 shows the header fields for the related protocols and the proposed C-Sec

protocol. The compact mode of the C-Sec protocol, which is used most often, has the

smallest header size of all related protocols. It is even 3-byte smaller than the TinyOS

plain header that does not include any fields to implement security services. Meanwhile,

it provides all the required security services at the MAC layer, in addition to hiding

header information. This will be explained in detail in chapter 4. The conventional mode

of the C-Sec, which is used less often, has a similar header-size to the smallest of the

related works that provide all required security services at the data-link layer.

Table 3.2 shows a comparison between encryption primitives used for each of the related

protocols. Some of the protocols trade off security with energy efficiency by providing

multiple security levels, like TinySec, MiniSec, SecureSense and FlexiSec. Many of

these levels do not include all the necessary security services. Providing partial security

leaves vulnerabilities from which a WSN can easily be attacked. An example of that is

the lack of encryption in the TinySec-Auth mode and some of the FlexiSec modes.

43

Table 3.1
H

eader size com
parison

(B
ytes)

Protocol
Pream

ble
M

A
C

Source
address

D
estination
address

Length
C

ounter
C

R
C

G
rp

A
M

SC
ID

R
andom

N

um
ber

H
eader
Size

Zigbee
6

4
2

2
1

4
2

0
1

0
0

22

TinySec-A
uth

6
4

2
2

1
2

0
0

1
0

0
18

TinySec-A
E

6
4

0
2

1
0

0
0

1
0

0
14

SN
EP

6
8

2
2

1
0

0
0

1
0

0
20

M
iniSec-U

6
4

2
2

5-bits
3-bits

0
0

1
0

0
16

M
iniSec-B

6
4

2
11-bits

5-bits
1

0
0

1
0

0
16

LLSP
6

4
2

2
1

0
0

0
1

0
0

16

SenSec
6

4
0

2
1

0
0

1
1

0
3

18

SecureSense
O

nly C
onf.

6
0

2
0

1
0

2
0

0
1

0
14

SecureSense
N

o
Sem

antic
6

4
2

2
1

0
0

0
0

1
0

16
SecureSense

M
ax

Sec
6

4
2

2
1

4
0

0
0

1
0

20
FlexiSec

H
A

SH
6

4
2

0
1

0
0

0
1

0
0

14

FlexiSec
A

U
TH

_R
EP32

6
4

2
2

1
0

0
0

1
0

0
16

FlexiSec
A

U
TH

_EN
C

_REPP64
6

8
2

2
1

0
0

0
1

0
0

20

W
SN

Sec
6

4
2

2
1

2
0

0
1

0
0

18
C

-Sec C
onventional

6
4

2
2

1
0

0
0

1
0

0
16

C
-Sec C

om
pact

6
0

0
15-bits

1
0

0
0

1
0

0
10

TinyO
S

6
0

0
2

2
0

2
1

1
0

0
13

43

44

Table 3.2
Encryption prim

itives com
parison for related

w
ork

Protocol
M

A
C

A

lgorithm
Encryption
A

lgorithm
Im

plem
entation

Encryption
B

lock/K
ey/R

ounds
R

A
M

C
ode

size
O

verhead over
TinyO

S
Energy
/Fram

e
N

otes

SN
EP

C
B

C
-M

A
C

R
C

5-C
TR

Softw
are

64/128/18
220

1594
29%

-
-

TinySec
C

B
C

-M
A

C
Skipjack-C

B
C

Softw
are

64/80/32
728

7146
10%

1.9
m

J
24 byte payload

Zigbee
C

B
C

-M
A

C
A

ES-C
C

M
H

ardw
are

128/128/10
N

/A
N

/A
-

9.7m
J*

Estim
ation based on

C
C2420 im

plem
entation and

30 bytes payload

M
iniSec

C
B

C
-M

A
C

Skipjack-C
B

C
Softw

are
64/80/32

874
16 K

B
8.3%

-
24 byte payload

LLSP
C

B
C

-M
A

C
A

ES-C
B

C
Softw

are
128/128/10

-
-

-
1.35m

J*
30 byte payload

SenSec
C

B
C

-X
Skipjack-X

Softw
are

64/80/32
-

-
-

1.21m
J*

SecureSense
C

B
C

-M
A

C
R

C
5-C

B
C

Softw
are

64/128/18
-

-
25%

0.35
m

J
20 byte fram

e,
M

ax security level

FlexiSec
SH

A
-1,

O
C

B
-M

A
C

X
X

TEA
/A

ES
Softw

are
64,128/128,128/

32,10
600,
1.3k

11k,
25k

-
-

M
ax security level

W
SN

Sec
C

B
C

-M
A

C
SEA

-C
TR

Softw
are

96,192/96,192/
94,176

-
-

-
-

-

C
-Sec

SH
A

-256
A

ES-C
FB

H
ardw

are
128/128/10

N
/A

N
/A

-6%
0.155

J
30 byte payload

B
ased on SN

-Sec

*
V

alues have converted units

44

45

The lack of encryption does not provide confidentiality for messages, which facilitate

message spoofing and makes it easy to launch many attacks, like attacks on routing

information, selective forwarding and overwhelm attacks. Another example is lack of

replay protection service in the TinySec-Auth, “Only confidentiality” mode of

SecureSense and FlexiSecAUTH_ENC64 mode. This facilitates attacks based on

replaying messages like desynchronization and Overwhelm Attacks. The MiniSec-U

mode provides weak replay protection through a 3-bit counter. This degrades the

protection against attacks based on replaying old messages.

Various encryption algorithms were used with the related protocols. Encryption

algorithms have a large impact on security and efficiency. The security of encryption

algorithms depends on the sophistication of the encryption operations and on the key size.

80-bit encryption algorithms used with TinySec, MiniSec, and SenSec are not secure

against brute force attacks [55]. The encryption modes of operation also have impact on

efficiency. For example, the CBC encryption mode does not support variable length

messages. C-Sec uses AES encryption algorithm, which is a 128-bit key encryption

algorithm that was selected as standard because of its high security level and efficient

implementations. It also uses the CFB encryption mode, because it supports encrypting

variable length messages, as well as precomputing the encryption/decryption of the next

block, which saves energy and time.

Most of the protocols used CBC-MAC compute MACs, which is not secure for variable

length messages [56]. FlexiSec uses SHA-1 to compute MACs. SHA-1 was reported to

be broken and it is no longer recommended by the NIST after 2010 [62]. C-Sec uses

SHA-256 to compute MACs. SHA-256 does not have any security weaknesses so far.

The C-Sec protocol uses efficient hardware implementations of the AES and SHA-256

algorithms provided by the SN-Sec platform. These algorithms have high security levels

and their implementations can run in parallel. The comparison between hardware-based

implementations and software-based implementations in Table 3.2 is not apple-to-apple

comparison, because hardware-based implementations are well known to be more

efficient. However, the implementations of encryption primitives for C-Sec are more

46

efficient than their hardware counterparts as will be shown in detail Section 3.3 and

Chapter 5.

3.3 SELECTION OF HARDWARE IMPLEMENTED ENCRYPTION PRIMITIVES

FOR WSNS.

This section provides a review of the main security primitives need to implement security

services for WSN platforms. This includes three types of primitives: symmetric,

asymmetric, and secure hash primitives. The review involves a comparison of algorithms

proposed in the literature for each type, the selection of the most suitable primitives for

WSNs based on their security, and an evaluation of their compatibility with the WSNs

constraints.

3.3.1 Symmetric encryption

Many symmetric algorithms exist in the literature, the most efficient and secure ones are

the AES finalists selected in the second AES conference to replace the Data Encryption

Standard (DES) [63]. The security and efficiency of the AES finalists’ algorithms has

been intensively scrutinized by a large number of cryptanalytic experts. In the third AES

conference, the Rijndael algorithm won the competition and was announced by the

National Institute of Standards and Technology (NIST) as the AES algorithm [18].

However, many other algorithms were used for security protocols in WSNs. These

protocols were chosen because they involve less computation, they have small key sizes,

and it consumes fewer resources to implement them on WSNs platforms. As Table 3.2

shows, some of these primitives’ uses 80-bit keys like the Skipjack algorithms used by

TinySec and its variant Skipjack-X used by the SenSec protocols. These algorithms

cannot be considered secure anymore because it is computationally affordable to break

80-bit key algorithms using brute force attack after 2012 [55].

47

Other algorithms like RC5, XXTEA, and SEA consume less memory resources than AES

in software implementations [64]. However, AES design is more secure than these

algorithms [65]. In addition, it has less number of rounds and it can be implemented more

efficiently in hardware [66].

AES has three variants, a 128-bit key-size variant with 10 rounds, a 192-bit key-size

variant with 12 rounds, and a 256-bit key-size variant with 14 rounds. Each round

consists for four transformations performed on a 4×4 matrix called the state; byte

substitution, shifting rows, mixing columns, and adding the round key. The last round of

encryption/decryption does not include mix columns transformation. Figure 3.11 shows

the 128-bit key variant of AES, it is the most suitable with constraint nature of WSNs.

Add Round Key

Sub. Bytes

Shift Rows

Mix. Columns

Add Round Key

Add Round Key

Sub. Bytes

Shift Rows

Plaintext

Ciphertext

9
ro

un
ds

Inv.Mix.Columns

Add Round Key

Add Round Key

Inv. Sub. Bytes

Inv. Shift Rows

9
ro

un
ds

Add Round Key

Inv. Sub. Bytes

Inv. Shift Rows
Encryption

De
cr

yp
tio

n

Plaintext

Ciphertext

Figure 3.11 AES Algorithm

48

Many hardware architectures for AES were proposed in the literature. Loop-unrolled

architectures are the fastest and pipelined architectures are the best in terms of high

throughput [67]. However, the energy and area requirements of these architectures

exceed the limitations of WSNs. The best choice for small area and energy constrained

implementations are the iterated architectures.

Two main variations between iterated architectures exist in the literature. The first one is

the data-path width; 8-bit, 32-bit, and 128-bit architectures were proposed. In general,

higher data-path width architectures will have larger area and power requirements but

smaller latencies. The authors in [68] provided energy per encryption comparisons

between the three data-path width choices using implementations on UMC 0.25

micrometer 1.8v hardware. As Table 3.4 shows, although the 128-bit data path has the

largest area and power usage; it has the smallest energy consumption per encryption. The

32-bit architecture has medium area and power consumption, but the worst energy

consumption per encryption.

Although 128-bit architecture has the least energy consumption per encryption; the 8-bit

architecture is considered to be a better choice, because it is the best in terms of area and

power. As a result, it will be the best choice in terms of static energy consumption

(energy consumed while the hardware is idle). The second variant between iterated

architectures is the number of S-boxes used and their architectures. The 8-bit data-path

design that uses two S-boxes in Table 3.4 completes one encryption in 160 cycles.

Feldhofer et al. [64] implemented 8-bit data-path architecture with one S-box. Their

design has an area size of 3400 gates. However, it takes 1016 clock cycles to perform one

encryption, resulting in a higher energy per encryption for their design compared to the

design with two S-boxes in [70]. A larger number of S-boxes are used with higher data-

path widths. However, this will lead to an increase in the area and energy consumption,

which is not suitable for WSNs constrained energy resources. It is shown by Mentens

et.al. [66], that implementing the S-box in the composite field rather than

the field is more energy efficient.

49

Table 3.3 Different AES data-path width comparison form [68]

Data-path
width S-Boxes Area

(gates)
Power
(mW)

Clock
cycles

Throughput
(Mbps)

Energy/Enc.
(nJ)

8-bit [64] 1 3400 0.045 1016 - -

8-bit 2 4023 1.06 160 8.1 169.6

32-bit 4 7732 3.73 54 23.7 200.5
128-bit 16 15980 11.61 11 116.4 127.7

3.3.2 Secure Hashing

Most WSN security protocols use encryption algorithms with cipher block chaining mode

to produce the MACs. This method does not require implementing a separate MAC

algorithm; however, it is not secure for variable-length messages [56]. Therefore, a

standard hashing algorithm is selected to produce the MAC. Another advantage of using

separate hash algorithm is that it can run in parallel with the encryption algorithm, which

saves computation time and energy.

The two most commonly used cryptographic hash functions in the literature are MD5 and

SHA-1. However, MD5 was recently broken with an attack against it used to break SSL

in 2008 [72]. Some theoretical weaknesses in SHA-1 were discovered [68] [69], and two

successful attacks were reported in 2005. As a result, it was decided that it will not be

used by USA government agencies after 2010 [62].

New security systems will be using more advanced hash functions, such as SHA-2

family, or techniques that do not require collision resistance, such as randomized hashing

[75]. NIST started a new competition to design a replacement for SHA-2 to ensure the

long-term robustness of hash functions. Keccak [76] algorithm was selected in 2012.

Table 3.4 shows a comparison between secure hashing algorithms, SHA-256 has the least

number of iterations, smaller block size, it operates on 32-bit words, and its security is

equivalent to 128-bit symmetric key encryption. However, compared to SHA-1, SHA-

256 has larger number of constants, this requires larger hardware area for their

50

implementation; it also has larger message digest i.e. 256, however, it can be truncated

required size.

Table 3.4 SHA algorithms comparison

Algorithm Block
Size Iterations Word

Size
Round

Constants
Digest
Size

Equivalent
Security

SHA-1 512 80 32 4 160 Broken

SHA-256 512 64 32 64 256 128

SHA-384 1024 80 64 80 384 192

SHA-512 1024 80 64 80 512 256

SHA-3 1600 96 64 32 256 128

To have a more clear choice all SHA family algorithms were implemented in VHDL and

synthesized for Xilinx low power Spartan 6 FPGA [77]. As Table 3.6 shows, SHA-256

has the least energy per block and running time per block results because it has only 64

iterations compared to 80 iterations for other algorithms. On the other hand, SHA-256

has 25% larger area than SHA-1 due to the large memory needed to store the algorithm

constants. SHA-256 uses 72 constants compared to only nine for SHA-1. SHA-3 is

showing the worst results due to the large hardware elements requirements. The details of

constant usage and memory sizes used to store them are shown in Table 3.7. All time

results are acceptable as WSNs have sparse and loosely coupled communication pattern.

Table 3.5 SHA family implementation results

Algorithm
Energy per Block

nJ
Frequency

MHz
Time per Block

ns
Area

Slices LUTs
SHA-1 12.23 119.8 676 960 1290

SHA-256 10.76 108.7 590 1071 1891

SHA-384 17.09 105.6 918 2410 3666

SHA-512 17.46 105.5 919 2410 3794

SHA-3 21.65 403.6 2448 2874 4280

51

SHA-384 and SHA-512 have more than twice the area of SHA-256 because they operate

on 64-bit words, and each one uses 88 constants. SHA-384 has less Look Up Tables

(LUTs) count than SHA-512 because the four right most words of the final hash are

truncated.

Table 3.6 Size of constants for SHA family members

Algorithm Round const. Initial hash
const.

Total
const. Const. size Total Size

SHA-1 4 5 9 32 288

SHA-256 64 8 72 32 2.304

SHA-384 80 8 88 64 5632

SHA-512 80 8 88 64 5632

SHA-3 96 8 104 64 6656

Although the memory consumption to store constants for SHA-256 is more than SHA-1;

the results show that SHA-256 has the better energy consumption per block because it

has less number of rounds. SHA-384 and SHA-512 have 60% more energy consumption

per block, and more than twice the area of SHA-256. That is because they operate on 64-

bit words for 80 rounds.

3.3.3 Asymmetric primitives

Many security mechanisms proposed for WSNs in the literature avoided asymmetric

primitives because of their high energy and time costs, especially for software

implementations. The notion of infeasibility of these primitives has been changed

partially due to the development of new asymmetric algorithms that are more efficient

than RSA [73]. For example, the Rabin signature algorithm [74] is very similar to RSA;

its main advantage is the speed of its encryption and signature verification operations. A

disadvantage is the signature size, as a single signature requires 512 bits. NTRU [80] is

much faster, for both encryption and verification operations than RSA. On the other hand,

it also shares the Rabin scheme disadvantage; its signature requires 1169 bits.

52

The SecFleck is the first recognized hardware platform that was used to provide

asymmetric encryption for WSNs [19]. It is based on a commodity Trusted Platform

Module (TPM) chip that extends the capability of a standard node. Although this

implementation can perform 2048 bit RSA encryption in 500ms with 11mJ of energy; it

has many shortcomings. Firstly, RSA has a large key size; this results in large hardware

area and energy consumption for the implementation. Secondly, transmitting a large key

on the wireless medium is expensive in terms of energy consumption. Thirdly, storing the

keys on an EEPROM makes it easy to compromise the node by resolving the keys.

The Elliptic Curve Cryptography (ECC) [76] is extensively considered as the most

suitable asymmetric cryptographic primitive for WSNs. The per-bit security for ECC is

higher than other asymmetric algorithms. For example, the security of a 160-bit key for

ECC is equivalent to 1024 bit key of RSA [82]. This relatively small key size results in a

small hardware area, short running time, and most importantly it reduces the energy

needed to transmit the key in a wireless medium. The energy cost of transmitting one bit

is equivalent to the energy consumed in more than a thousand CPU cycles of a standard

WSN node processor [83].

Elliptic curve cryptography is based on algebraic concepts related with elliptic curves

over Galois fields. An elliptic curve can be described as a set of points that satisfy a cubic

equation of a general form like in Equation 3.1, in addition to the point of infinity .

Elliptic curves can be defined over binary fields and prime fields .

(3.1)

Given a curve defined as in Equation 3.1 in a Galois field, point multiplication can be

defined as the repeated addition of a point on that curve for a scalar value

of . As shown in Equation 3.2. The security of the elliptic curve encryption is

determined by the intractability of defining from when values of and are

known, this is defined as the discrete logarithm problem.

53

(3.2)

As Figure 3.15-a shows, point addition is geometrically defined as taking two points on

the curve and computing where a line through them intersects the curve. The negative of

the intersection point is the result of the addition. The operation can be denoted by

(3.3)

P1

P2

Pr

P1
Pr

y2 = x3- 3x + 5

-Pr

-Pr

Figure 3.12 a) Elliptic curve point addition. b) Elliptic curve point doubling

This is algebraically computed by:

(3.4)

(3.5)

54

(3.6)

Substituting a zero value for , where is the multiplication factor of in the elliptic

curve at Equation 3.1, reduces the complexity of the equation. This is commonly used in

elliptic curve cryptography.

Figure 3.15-b shows the geometric definition of point doubling is the negative of the

intersection of the tangent of a single point on the elliptic curve. The algebraic definition

of point doubling is:

(3.7)

(3.8)

(3.9)

Adding a point to itself repeatedly as in Equation 3.2 requires point additions to

compute elliptic curve point multiplication. The double-and-add scalar point

multiplication algorithm shown in Algorithm 3.1 provides more efficiency because it

requires operations to compute scalar point multiplication. Many variations of

this algorithm exist in the literature, such as the Windowed method, and Sliding-window

method which trades slower point additions for point doublings. The Non-Adjacent Form

algorithm which uses the fact that point subtraction is just as easy as point addition to

perform the fewer of either as compared to a sliding-window method. The Montgomery

ladder algorithm [79], which has the same speed as the double-and-add approach,

however, it computes the same number of point additions and doubles at each iteration.

This means that it does not leak any information through timing or power.

55

Algorithm 3.1 Double-and-add scalar point multiplication

The main ECC primitive operation is the scalar point multiplication. It consists of a series

of point additions and doublings, which are of a series of modular: addition,

multiplication, squaring, and inversion operations; according to a specific coordinate

system. Many projective coordinate systems were proposed in the literature to avoid the

high cost of modular inversion that is repeated in each point addition and doubling in the

affine coordinates. Many new curve representations associated with projective

coordinates systems are being proposed. Montgomery coordinates [79] (also known as

XZ projective coordinates) is the most efficient so far [80]. Table 3.7 shows some

common coordinate systems and their costs in terms of number of inversions (I),

multiplications (M), squaring (S).

Table 3.7: Elliptic curve coordinates systems comparison

Coordinate system EC Doubling EC Addition

Affine 1I + 2M + 2S 1I + 2M + 1S

Standard Projective 7M + 3S 12M + 2S

Jacobian Projective 4M + 4S 12M + 4S

Lpez-Dahab projective 2M + 4S 4M+2S

XZ coordinate projective 2M + 2S 3M + 2S

Redundant interleaved modular multiplications [81], Barrett multiplication [82], and

Montgomery modular multiplication [83] with carry save addition are the most efficient

modular multiplication algorithms proposed. Redundant interleaved multipliers are

56

reported to have some advantage over Montgomery’s in area and speed. However, using

one carry save adder with Montgomery algorithm makes it similar to Redundant

Interleaved multipliers in area with small advantage over higher precision. However,

Montgomery modular multiplication calculates instead of

more operations are required to convert it back from the Montgomery domain [84].

Barrett multiplication and Montgomery multiplication have similar area and timing

results [85].

Choosing the domain parameters of the elliptic curve is another matter of security and

efficiency. The NIST and Securities Exchanges Guarantee Corporation (SEGC) proposed

curves and domain parameters for ECC [82] [91]. Table 3.8 shows the curve field sizes,

their symmetric equivalent strength. The Certicom ECC challenge [92] classified the

curves in to two levels. Level I curves are considered feasible to break, i.e. they could be

broken within a few months using brute force attack. In July 2009, a 112-bit prime field

ECC case was broken using a cluster of over 200 PlayStation 3 game consoles within 3.5

months [93]. Before that, a 109-bit key binary field case was broken in April 2004 using

260 computers for 17 months [89]. A current project in progress by Certicom is aiming at

breaking the 130 bit extension field using a wide range of different hardware and it is

expected to be broken soon [95].

Choosing a curve within a field size that is larger than 193 bits is recommended for both

prime and binary fields. Fields in the 163-bit extension fields security is marginal because

they are classified as equivalent to 80 bit symmetric encryption keys, which are not

considered secure after 2012 [55]. SEGC removed some of these curves in the latest

revision of their standards [91].

Choosing binary fields over prime fields is more attractive for energy efficient hardware

implementations. Firstly, bit additions within binary fields are done modulo 2; hence they

are represented in hardware by simple XOR gates. In addition, bit multiplications in the

binary fields are represented in hardware by AND gates. Finally, the one is its own

inverse in binary fields. Hence, implementing the elliptic curve processor in

57

binary fields simplifies computations and reduces both, the hardware area and energy

consumption. In addition, binary fields offer more options in terms of bases, irreducible

polynomials and fields [92].

Table 3.8: Security status of curves in and .

Prime Fields GF(109) GF(131) GF(163) GF(191) GF(239) GF(359)

Strength 56 64 80 96 112 128

Level I I II II II II

Broken In 2009 In progress No No No No

Binary Fields GF(109) GF(131) GF(163) GF(191) GF(238) GF(359)

Strength 47 64 80 96 112 128

Level I I II II II II

Broken In 2009 In progress No No No No

Some specialized ECC hardware implementations for WSNs have been proposed

recently. Table 3.9 shows the most well-known elliptic curve processors implementations

in hardware for WSNs. Comparing based on power consumption, frequency, and time

results does not give a true indication of the quality of the algorithm used to compute the

elliptic curve point multiplication. The variation in field size and process technology has

large effect on these factors.

Instead, the related works are compared based on the number of mathematical operations

needed to perform point addition and point doubling, and the total number of operations

needed to perform elliptic curve point multiplication. The processors in [98-101] make

use of affine coordinate system which includes inversion which is considered very

expensive compared to modular multiplication. The proposed elliptic curve processor has

the least number of operations for computing point addition and doubling. It also exploits

the use parallelism between operations with no dependency to reduce the number of

operations to compute elliptic curve point multiplication.

58

Table 3.9
Elliptic curve

hardw
are im

plem
entations for W

SN
s

Point
addition

Point
doubling

Point
M

ultiplication
C

oordinate
system

G
alois

Field
size

G
ate

equivalence
Pow

er

(m
W

)
Technology

Frequency

(M
H

z)

Tim
e

(m
s)

[93]
3M

 + I
3M

 + I
n(4.5M

 + 2I)
A

ffine
167

112K
150

0.5
m

20

4.4

[94]
3M

 + I
3M

 + I
n(4.5M

 + 2I)
A

ffine
101

18.7k
0.4

0.5
410

[100]
I+M

+S
I+M

+S
n(2M

+2I+2S)
A

ffine
193

18k
-

0. 35
13.56

38.8

[96]
3M

 + I
3M

 + I
n(6M

+I)
A

ffine
191

23k
-

68.5
18

[97]
2M

 + 4S
5M

+3S
I+n(7M

+4S)
C

om
m

on Z
Projective

163
12k

0.037
1.13

244

[98]
6M

 + 1S
3M

 + 5S
I+n(9M

+6S)
M

odified
Lopez-D

ahab
163

5k
-

-
1

500

[104]
4M

+S
2M

+5S
I+n(6M

+6S)
M

odified
Lopez-D

ahab
163

FPG
A

-
0.5

115

[20]
-

-
-

-
283

98k
854

-
25

0.75

Proposed
3M

+2S
2M

+2S
I+n(5M

)
X

Z
coordinate

193
FPG

A
27

-
58

3.2

58

59

3.4 CONCLUDING REMARKS

This chapter presented the security and energy efficiency factors related to the design of

link layer encryption protocols. The design of the proposed C-Sec protocol considers

these factors to avoiding security weaknesses of other protocols and to provide more

energy efficiency. It also provided guidelines for encryption primitives’ selection and

implementations for both the C-Sec and the SN-Sec.

Chapter 3 started by reviewing the TinyOS characteristics and frame format. TinyOS is

an operating system that is widely accepted for WSNs, and most of the related encryption

protocols are designed based on it. An extensive review for the most recognized link-

layer encryption protocols designed to implement the basic security services for WSNs

was also provided. The review included the encryption primitives used by each of these

protocols, their packet formats, modes of operation, security services provided, and the

mechanisms used by each protocol to minimize the size of header fields added to

implement security services.

A review of encryption primitives implemented in hardware for use of WSNs was

presented in section 3.3. These primitives include symmetric, asymmetric and hashing

primitives. Based on this review, recommendations for the selection of encryption

primitives for the SN-Sec platform were provided. For the symmetric encryption, we

found that AES has the highest level of security. It is also very efficient for hardware

implementations, with low energy consumption, latency, and hardware area. Hence, it is

the best choice for hardware implementations for WSNs. After reviewing the low power

hardware designs of AES in the literature, we found that the 8-bit data-path design with

two S-boxes to be the most efficient data-path design [70]. We also found that the most

efficient design for the S-box is in the composite field [66]. Combining the

8-bit data-path design in [70] with the S-box design in [66] will make the implementation

of the AES algorithm more efficient.

60

We implemented all SHA algorithm family members in VHDL and a comparison

between synthesis results of their implementations was performed. We found that the

SHA-256 has the least per block energy consumption and latency. It also has the least

number of rounds and it operates on 32-bit data-path compared to other SHA algorithms.

The implementations and comparisons performed prove that SHA-256 is the best choice

of secure hashing algorithms for WSNs.

Elliptic curve encryption has the highest per-bit security among asymmetric encryption

algorithms. It has a small key size and it operates on a smaller number of digits. Hence, it

has a smaller hardware area, a shorter running time, and most importantly less energy is

needed to transmit the ciphertext and other elliptic curve parameters over the wireless

medium. An overview of the elliptic curve operations, parameters, coordinate systems,

and security status of the fields was presented. And a comparison of elliptic curve

processors proposed for WSNs in the literature was performed and recommendations for

the proposed elliptic curve design were given.

61

CHAPTER 4 THE COMPACT SECURITY PROTOCOL

Communication energy is the main source of energy consumption for WSNs. As

explained in section 3.2, all encryption protocols proposed for WSNs in the literature aim

to reduce the security related communication overhead in different ways to save

communication energy.

The saving in communication energy for the C-Sec protocol is a result of the innovative

idea of excluding the requirement for explicitly transmitting all header fields related to

security most of the time, while keeping all related security services. Such fields include

the freshness counter, the source address, and the Message Authentication Code (MAC).

As shown in Table 3.1, the header size of the compact mode of the C-Sec protocol is at

least 6-bytes less than the header size of other encryption protocols that implement all the

basic security services. It is even 3-bytes less than the header size of the TinyOS packet,

which does not implement any security service. Using the compact mode most of the

time will result in reducing the communication energy to less than the energy consumed

if no encryption protocol is used at all.

The C-Sec protocol provides all the basic security services that are provided by other

security protocols in the literature, such as data authentication, integrity, confidentiality,

semantic security, and replay protection. However, it adds a new unique security feature

of hiding the packet header, making it more difficult to eavesdrop on the flow of wireless

communication between nodes and minimizes the cost of defending against replay

attacks. This feature does not exist in any previous protocol for WSNs in the literature.

In this chapter, a detailed description of the C-Sec protocol is provided and the security

services it provides and the underlying cryptographic algorithms it uses are analyzed. To

prove the efficiency of the C-Sec, performance evaluations for energy, queuing delay,

and error probability are presented based on simulations and mathematical models.

62

4.1 PROTOCOL DESCRIPTION

The C-Sec protocol operates in one of two modes, conventional or compact. Like all

other encryption protocols, the conventional mode of the C-Sec adds security related

fields, such as the source address and the MAC, to the packet header and trailer. The

conventional mode maintains the freshness counters on both sides of communication

without transmitting them, as in SNEP. It uses the most significant bit of the destination

address to transmit security related information. However, it uses only one bit, this will

not dramatically affect the address space as in MiniSec-B. Like most of the related

protocols, the conventional mode of C-Sec does not use the field because its

functionality is implemented in the keying mechanism. It also does not use the field

because its functionality is implicitly implemented with the field. As shown in

Figure 4.1, the header of the C-Sec conventional mode frame consists of the basic fields

only, such as the mode bit , which is used to differentiate between the conventional and

the compact mode of the C-Sec, a 15-bit Destination address , one-byte Active

Message , and the Length fields. The trailer consists of a four-byte field.

 MPreamble
6 bytes

Dest
1 bit 15 bits

AM
1 byte

LEN
1 byte

Payload
0 - 29 bytes

MAC
4 bytes

Figure 4.1 The C-Sec conventional mode frame

The conventional mode can be described with Equations 4.1-4.3. Where is the header

of the packet, is the trailer of the packet, is the payload, is the freshness

counter, is the authentication key, and is the encryption key:

(4.1)

(4.2)

(4.3)

63

To start the C-Sec protocol, node authentication-and encryption keys have to be

exchanged in advance. Communicating parties are assumed to have already exchanged

those keys using any key management protocol for WSNs. [105] provides a

comprehensive survey of key management protocols for WSNs.

The compact mode of the C-Sec has smaller frame size, because it does not explicitly

transmit the and the destination address fields, but merges them with other header

fields. This will result in hiding the header fields and it does not affect the basic security

services.

The C-Sec protocol is initiated in the conventional mode. On both sides of

communication, the sender and receiver should store the of the first packet

communicated in the conventional mode. The is computed by running a one-way

hashing algorithm, with the encrypted message , authentication key ,

and freshness counter as inputs. On the sender side, instead of adding the to the

message as a standalone field (the practice of all other protocols); the most significant 31-

bits of the of the previous encrypted message is XORed with the

header of the current message to produce a 31-bit Masked Header for the current

message . Figure 4.2 shows the frame format of the compact mode. Equations 4.4 and

4.5 illustrate its behavior.

 MPreamble
6 bytes

Masked Header
1 bit 31 bits

Payload
0 - 29 bytes

Figure 4.2 C-Sec compact mode frame

(4.4)

(4.5)

64

As Figure 4.3 illustrates, the conventional mode is denoted with a zero value of the bit

and the compact mode with the value of one. The compact mode of C-Sec is

automatically initiated starting from the second packet on the sender side. All following

packets are sent in the compact mode as long as the time between them and their previous

packets remains less than a specific time limit called the authentication-timer. If the

authentication-timer expires for any node, the next packet will be sent to it in the

conventional mode. The authentication-timer aims to limit the amount of delay overhead,

storage and computations introduced by C-Sec protocol. The conventional mode can also

be enforced on demand by the application layer in the case of high bit error rates or QoS

time constraints.

MACi(KAuth,EMi,Ci)

MACi+1(KAuth,EMi+1,Ci+1)

MACi+1(KAuth,EMi+1,Ci+1)

MACi(KAuth,EMi,Ci)

Sender Receiver

MACi,j == D j

MACi-1,j == D j

MACi-1(KAuth,EMi-1,Ci-1)1

1

 0 Hi-1 EMi-1 MACi-1

 0 Hi-1 EMi-1 MACi-1

 MHi EMi

 MHi+1 EMi+1

 1 MHi EMi

1 MHi+1 EMi+1

++

++

++

++

Figure 4.3 The behavior of the C-Sec protocol

For each peer-node being communicated with, an entry should be created to store the

information needed by C-Sec in the cache. This information includes its address, the

freshness counter, a time stamp of the last received packet, which can be used to compute

the authentication timer, and the MACs for the current and last received packets. Table

4.1 shows the node entry in cache.

65

Table 4.1 Node entry in cache

Peer node address MACi-1 MACi Freshness counter Time stamp

The flow diagram in Figure 4.4 shows the behavior of C-Sec protocol on the receiver

side. Once a packet is received at the destination, the mode of the packet is specified

based on the mode bit . If the packet is conventional, the sender address is looked up in

the cache. If a match for sender is found in the cache, the is verified and stored

and the packet is accepted. If the sender address is not found in the cache the

authentication algorithm must be run to decide whether the packet is authentic. If so, the

packet is accepted, a new entry is added for it in the cache, and the authentication timer is

set for sender . Otherwise, the packet is dropped.

If the mode is compact, the part of the masked header that maps to the destination

address is XORed with the corresponding part of the pre-computed of the last

received packets from all senders in the cache. If the result of any of the XOR operation

produces the receiver's address , the packet is held and attributed to the sender j

associated with that . The receiver will continue receiving the packet, set the

authentication timer, decrypt the payload using the session key , and update the

value of the freshness counter . The body of the packet will be pending for

authentication when the next packet header arrives. If the authentication timer expires

before the next packet from that sender arrives, the packet is dropped and the

authentication data associated with it is deleted from the cache. When the next packet

from sender arrives, the algorithm is repeated.

If none of the XOR operations produces the destination address D, the packet will be

“early dropped” for one of three reasons: Firstly, it could be addressed to another node.

Secondly, it could have a transmission bit error. Thirdly, it could be a malicious packet

injected by an attacker. The reason of dropping the packet can be estimated by the

receiving node based on many factors, like the control packets i.e. CS, RTS, and CTS,

sent by other nodes, the noise measure by the transceiver and the threat measures

66

evaluations at the application layer. Actions can be taken by the application layer in

response to the reason of dropping the packet.

Figure 4.4 The behavior of the C-Sec on the receiver side

To prevent active attacks in the compact mode, the body of the received packet will be

held back in order to be authenticated when the next packet header arrives. In cases of

high priority messages or quality of service constraints, the sender can flexibly switch

back and forth between the conventional and compact modes in order to prevent waiting

for the next packet. If the next packet is not expected to be ready within an acceptable

period, the authentication data can be sent with a standalone packet after a timeout

period.

In early overhearing avoidance mechanisms [106], if the packet is not addressed to a

receiver, it instantly stops receiving and moves the transceiver to a low power state

before the whole packet is received. This can be decided when the receiver starts

receiving the destination address and compares it to its own address. To gain the highest

advantages of this mechanism, MAC computation and lookup should be completed

67

within a limited period (i.e. the time between the end of receiving packet and the end of

receiving the preamble and the masked header of the next packet). Meeting this

time constraint requires implementing the MAC algorithm in hardware. Hardware

implementations are much faster and have much lower energy consumption than their

software counterparts up to a factor of 10-3 [24]. For example running a software

implementation of Cipher-based Message Authentication Code (CMAC) algorithm on

TelosB platform for a 24 bit data packet takes 2.5 and consumes 13.24 [107],

whereas running the hardware based MAC scheme proposed in SN-Sec [24] takes 1.1

and consume 30.9 .

Usually, nodes closer to the sink handle more traffic from the network than other nodes

and hence consume more energy and die first, resulting in a disconnected network with

potentially uncovered areas [108]. Our protocol helps to extend the lifetime of these

nodes. The amount and frequency of the traffic they handle allows them to use the

compact mode more often than other nodes, and hence save more energy and extend the

lifetime of the WSN.

Masking the header of the message with the MAC makes it confidential; as a result, it

will be more difficult to trace the flow of wireless communication. To get the header

information, an adversary needs to get the authentication key KAuth to re-compute the

MACi-1 and then XOR it with the masked header MHi to resolve the original header Hi.

This feature does not exist in any of the previously proposed protocols for WSNs in the

literature.

The C-Sec compact mode is built based on - and has the same level of reliability as - stop

and wait Automatic Repeat request (ARQ) strategy. Stop and wait is the most commonly

used ARQ strategy for WSNs [49] [40]. In this strategy, the sender waits for the

acknowledgment of the current packet before it sends the next one. Other ARQ strategies

such as window-based ARQ cannot be used in the C-Sec compact mode because in the

case of out of order messages, the header of the packet (i.e. destination address) cannot be

identified unless all pervious messages in the window have arrived. This requires storing

68

all traffic in the wireless medium, including traffic destined to other nodes, and

performing an exhaustive search for the correct message, which is not efficient.

4.2 SECURITY ANALYSIS

This section analyzes the security services C-Sec protocol provides based on the

underlying cryptographic primitives it uses and compares these services and primitives

with related protocols in the literature. The Security services include data confidentiality

and semantic security, data authentication and integrity, and data freshness and replay

protection.

4.2.1 Data Confidentiality and Semantic Security

Confidentiality is achieved by encrypting the data with a secret key that is only known by

the intended receivers. Semantic security ensures that the adversary cannot learn anything

about the plaintext from the ciphertext. This is usually achieved by using block cipher

modes of operation that support semantic security.

AES encryption algorithm is chosen for C-Sec. AES was selected as an NIST standard

algorithm because it has proven security and efficient implementation in hardware and

software [109]. However, hardware implementations of AES are more efficient in energy

and latency; and relatively more secure than software implementations [24]. Table 4.2

shows the encryption algorithms used by related encryption protocols for WSNs.

Encryption protocols other than the AES were used because of their small key size, like

the use of Skipjack algorithms for TinySec and its variant Skipjack-X used by the SenSec

protocol. These algorithms cannot be considered secure anymore because it is

computationally affordable to break 80-bit key algorithms using brute force attack after

2012 [47]. Other algorithms were selected by because of their relatively smaller code size

and efficient software implementations, like the use of RC5 for SNEP and SecureSense,

69

and the use of SEA for WSNSec. However, AES design is more secure than these

algorithms [81]. In addition, it has less number of rounds and it can be implemented more

efficiently in hardware [82].

Table 4.2 Encryption and MAC algorithms for related work

Protocol
MAC

Algorithm
Encryption
Algorithm

Implementation Encryption
Block/Key/Rounds

RAM
Code
size

SNEP CBC-MAC RC5-CTR Software 64/128/18 220 1594

TinySec CBC-MAC Skipjack-CBC Software 64/80/32 728 7146

Zigbee CBC-MAC AES-CCM Hardware 128/128/10 N/A N/A

MiniSec CBC-MAC Skipjack-CBC Software 64/80/32 874 16 KB

LLSP CBC-MAC AES-CBC Software 128/128/10 - -

SenSec CBC-X Skipjack-X Software 64/80/32 - -

SecureSense CBC-MAC RC5-CBC Software 64/128/18 - -

FlexiSec
SHA-1,

OCB-MAC
XXTEA/AES Software

64,128/128,128/
32,10

600,
1.3k

11k,
25k

WSNSec CBC-MAC SEA-CTR Software
96,192/96,192/

94,176
- -

C-Sec SHA-256 AES-CFB Hardware 128/128/10 N/A N/A

C-Sec provides semantic security by running the AES algorithm using Cipher Feed Back

(CFB) mode. This mode of operation has two advantages. Firstly, the message does not

need to be padded to a multiple of the cipher block size and can have a variable size [40],

which will save communication energy. The second advantage is the ability to pre-

compute the output of the AES algorithm. As Figure 4.5 shows, the encryption of the

next block will only require an XOR operation of the precomputed output with the

message without running the AES algorithm. The same procedure applies to the

decryption process. The initial vector used to initialize the CFB mode is defined as:

(4.6)

70

AES AESKEncr KEncr

Ti

Mi

Ei(KEncr,Mi)

Mi+1

Ti+1

Ei+1(KEncr,Mi+1)

AESKEncr

Mi-1

Ti-1

Ei-1(KEncr,Mi-1)

Figure 4.5 CFB encryption mode.

4.2.2 Data Authentication and Integrity

Data integrity helps the receiver to ensure that the received data is not altered by an

adversary during transmission. Data authentication allows verifying that the data is sent

by the claimed sender. In C-Sec, these properties are achieved by computing a message

authentication code using the secret authentication key that is only known by the

sender and the receiver. When the receiver verifies the correctness of the MAC of the

received message it ensures that the massage was sent by the claimed sender who has the

authentication key , and it was not altered during transmission.

As shown in Table 4.2, most of the protocols use an encryption algorithm with cipher

block chaining CBC-MAC to produce the MAC. This method does not require

implementing a separate MAC algorithm. However, it is not secure for variable-length

messages [56]. Thus, a standard hashing algorithm is chosen to produce the MAC.

Another advantage is that the hashing algorithm can run in parallel with the encryption

algorithm. This helps to meet the timing constraint of the compact mode. The MAC is

computed using SHA-256 algorithm for two reasons. First, both SHA-1 and MD5 have

known weaknesses and were reported to be broken [110-112]. Second, it has higher

implementation efficiency compared to other secure hashing algorithms [113]. To

produce the MAC, SHA-256 is run two times as stated in the Equation 4.7

71

(4.7)

Where and are paddings used to fit the key to the hashing algorithm key

block and M is the message to be authenticated.

4.2.3 Data Freshness and Replay Protection

Data freshness is used to prevent the adversary from playing old messages. This is

achieved by ensuring that the sent data is recent through maintenance of a freshness

counter on both sides of the communication. This counter is used in the computation of

the MAC of the message as shown in Equation 4.1.

In the case of traditional protocols, if a replayed packet is sent to a node, the node will not

discover that the packet is not legitimate until it completely receives the packet, run the

authentication algorithm with the freshness counter, and then compare the resulted MAC

with the MAC transmitted with the packet. However, if an old packet is being replayed in

the compact mode of C-Sec, the computed destination address will not be correct because

the counter is wrong and the packet can be dropped without completely receiving it and

without the need to run the authentication algorithm to evaluate its MAC. The cost of

replay attacks is reduced by the resulting energy savings.

The C-Sec can be used as an attack detection technique. An adversary cannot get any

information from a packet in the compact mode because the header is hidden and the

payload is encrypted. It has to jam the network to create timeouts in the authentication

timer to force the node to move to the conventional mode to at least get the packet

headers. The percentage of conventional packets and the pattern of forcing the traffic to

the conventional mode can give a good indication of attacks on the node.

72

4.2.4 Other Security Issues

C-Sec is a link layer protocol; its security is dependent on protocols and services in other

layers, e.g. key management protocols. C-Sec does not explicitly deal with node

compromise or physical tampering, and it does not address information leakage through

covert channels. However, certain hardware specific measures can be used to prevent

physical tampering, like the use of glue logic design to make reverse engineering much

harder and the use of multiple metal layers to block direct access to the chip [106].

4.3 PERFORMANCE EVALUATION

This section presents simulation and analytical models to evaluate the C-Sec protocol.

The C-Sec protocol is compared to other related protocols in the literature and with

TinyOS as a baseline. The analysis demonstrates that the C-Sec improves energy

efficiency over other protocols for different payload sizes and traffic densities. The

additional delay overhead introduced by C-Sec and its effect on the end-to-end delay are

examined, in addition to the effect of C-Sec on post-decryption error probability and

packet loss.

The simulation model used is based on the Castalia [22], a WSN simulator that

incorporates a realistic wireless channel, radio models, and node behavior, especially

relating to the radio access. The Castalia simulator is based on OMNeT++ [115], an event

driven simulation platform that is considered as a standard tool to study protocols for

wired and wireless networks.

The simulation is done for a multi-hop single sink data-gathering network of 30 randomly

deployed nodes in an area of 70x70 meters. The T-MAC is used as the underlying MAC

protocol. The value of the authentication timer is carefully chosen to cover more than two

T-MAC cycle times to allow reasonable time for contention on the wireless medium and

to limit the amount of processing and the size of authentication data stored at the sender

73

and receiver nodes. Table 4.3 shows the simulation parameters. All other parameters are

set to their default values in the Castalia simulator.

Table 4.3 Simulation Parameters

Parameter Value

Area Size 70 x 70

Number of nodes 30

Link layer protocol T-MAC

Transceiver CC2420

Payload size 30 bytes

Physical layer overhead 6 bytes

Sensitivity -95 dBm

Noise Floor -100 dBm

Event interarrival time 5 Sec

Packets generated by event 5

T-MAC frame time 610ms

Authentication timer 1750ms

4.3.1 Energy Analysis

As explained in Section 4.1, nodes executing the C-Sec protocol start communication in

the conventional mode initially, and then it switches to the compact mode. During

transmission, if the authentication timer expires, the communication goes back to the

conventional mode. To evaluate the energy savings by the C-Sec protocol the total

number of packets generated in the compact mode and the conventional mode are

observed. The simulation experiment is done for the first of 120 seconds of the network

lifetime, and repeated for on thousand times. The results with 95% confidence for this

experiment are illustrated in Figure 4.6 highlighting the variation of compact and

conventional mode packets with respect to time. At the beginning, it can be observed that

the conventional mode packets are approximately 42 percent of the total. However, a

74

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

% Conventional
% Compact)

rapid decrease is noted. Similarly, the percentage of compact packets increases very

rapidly and reaches approximately 94% of the total after 80 seconds.

Figure 4.6 C-Sec packet breakdown

More simulations for longer time show that the percentage of compact packets is stable at

around 96%. The remaining 4% of conventional packets result from timeouts of the

authentication timers and due to bit errors. It can be clearly observed that a large number

of compact packets contribute to significant energy savings because of their smaller size

compared to conventional packets. As a result, less energy is required to transmit and

receive them.

To compare the communication energy consumption of the C-Sec and the other related

protocols, the simulation was run for 1000 seconds and repeated with various packet

payload sizes and the average energy consumed by a transceiver is computed with a

Pe
rc

en
ta

ge
 o

f p
ac

ke
t t

yp
e

Time (sec)

75

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Zigbee
SNEP
TinySec
Minisec
TinyOS (no Encryption)
C-Sec

confidence level of 95%. As Figure 4.7 shows, the energy consumption increases with the

increase in the payload size. It is also observed that the energy consumption varies among

the protocols based on the amount of increase of the header size each protocol adds to the

packet. The C-Sec consumes less energy than the TinyOS; this means that the C-Sec

manages to provide all the required security services while saving on energy

consumption.

Figure 4.7 Communication energy vs. payload size

It can also be inferred from the results in Figure 4.7 that the C-Sec saves more energy

than all other protocols with smaller payload sizes, which are more common in WSNs.

For example the energy saving for the maximum payload size of 30 bytes is 11.7%

compared to MiniSec protocol. However, for a payload size of 5 bytes the energy savings

increases to 19.1%.

1

2

2

3

3

En
er

gy
 J

Payload size (Byte)

76

0 20 40 60 80 100 120
0

10

20

30

40

50

60

Zigbee
SNEP
TinySec
Minisec
TinyOS (no Encryption)
C-Sec

Figure 4.8 Communication energy vs. load

The energy consumption is also evaluated using different packet loads i.e. packets

received per second, a fixed payload size of 30 bytes, and 95% confidence. As shown in

Figure 4.8, the increase in the energy consumption depends on the amount of additional

header size overhead each protocol adds to the packet. The C-Sec protocol uses less

energy consumption than other protocols. The energy saving increases with higher packet

loads as a result of the increased percent of compact packets, the energy savings reaches

up to 11.7% at 50 packets per second compared to MiniSec, but the gap decreases again

to 9.5% when the network is more saturated.

4.3.2 Computational Overhead

The computational overhead of the compact mode of the C-Sec is defined as the number

of CPU cycles needed to unmask the received packet or to decide to drop it. This is a new

Load (Packet/Node/Second)

En
er

gy
 J

77

overhead added by the C-Sec and does not exist in other related works. Checking if the

received packet is destined to the receiver node involves comparing its masked header

with the MACs of the last received packet from each sender in the receiving node cache.

Figure 4-9 shows the cache search algorithm used to determine if a received packet in the

compact mode is accepted or rejected. Deciding if the packet is to be accepted or rejected

at any iteration of the algorithm takes a maximum of four clock cycles, assuming that

each condition of the algorithm can be checked with one clock cycle i.e. a 32-bit

processor.

1. j 1; j Cache size; jFor
2. If (jAuth. timer of MAC is expired)

3. Early drop the packet i
4. Delete jMAC from receiver cache

5. Break
6. Else
7. jTemp MH xor MACi

8. If (Temp Destination Address)
9. Accept the packet i as a unicast packet
10. Break
11. Else if (Temp Broadcast Address)
12. Accept the packet i as a broadcast packet
13. Break
14. End if
15. End if
16. End for

Figure 4.9. Cache search algorithm in the receiving node cache

The authentication timer is evaluated in the first clock cycle. If the authentication timer is

expired, the packet is dropped and the MAC being tested is deleted from the receiver

cache. If it did not expire, the result of XORing the masked header of the received packet

with the MAC being tested is computed in the second clock cycle. The third clock cycle

verifies if the result of the previous step is all ones, which means that the received packet

is a broadcast packet. If not, the fourth clock cycle verifies if the result is the destination

78

address of the receiving node, which means that the packet is a unicast packet destined to

the receiving node. Otherwise, the packet will be dropped. These steps are repeated for

each MAC in the receiving node cache.

To evaluate the computational complexity of the C-Sec protocol, simulations have been

conducted with variable node densities (number of nodes ranging from 15 nodes to 1200

in an area of 70 x70 m2). The packet size is set to one byte and the number of events per

second is set to one thousand in order to guarantee generating the maximum possible

packet load. The energy needed to run the cache search algorithm in Figure 4.9 was

computed by counting the clock cycles needed to run the algorithm, assuming that one

instruction consumes 1 nJ.

Figure 4.10. Computational overhead of the compact mode of C-Sec

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node density (Node/m2)

0

0

0

0

0

En
er

gy

J

79

As Figure 4.10 shows, the energy consumption to evaluate one received packet increases

as the node density increases. However, beyond the density of 0.2 nodes per square meter

it becomes stable at around 0.7 J because the maximum number of packets with various

destination addresses that can be sent within the authentication timer period is reached at

that point. Packets delivered outside the authentication timer window are sent in the

conventional mode. Considering that the energy needed to transmit one bit in the wireless

medium is equivalent to more than one thousand clock cycles for most of the WSN nodes

[3] the energy needed to compute that is small compared to the communication energy

gain of the C-Sec.

4.3.3 Delay and Queuing Analysis

The compact mode of C-Sec protocol introduces relations between packets; a packet

cannot leave the node before the next packet arrives if it is the only packet in the output

buffer. This will introduce additional delay overhead that did not exist before for such a

packet. To evaluate this delay, simulations were performed to evaluate the end-to-end

delay for C-Sec and MiniSec at 20 packets per second, for one thousand seconds. The

MiniSec protocol is used for comparison because it has the smallest header size among

other protocols and the closest to C-Sec packet.

Figure 4.11 and Figure 4.12 show the histograms for end-to-end packet delay results with

95% confidence. It can be observed that C-Sec introduces additional delay overhead of

200 ms on average, and more packets wait longer time than 800 ms for the C-Sec

compared to MiniSec. This is a direct result for the relation between packets introduced

by the C-Sec.

80

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

Figure 4.11 Histogram of average end-to-end packet delay per node for C-Sec

Figure 4.12 Histogram of average packet delay per node MiniSec

Packet Delay (ms)

Packet Delay (ms)

Pa
ck

et
 c

ou
nt

Pa
ck

et
 c

ou
nt

81

To study this delay more deeply, the mathematical queuing model and delay analysis

used in traditional protocols like the MiniSec is examined. These protocols follow the

M/M/1 queuing model, which represents a system having a single server, where arrivals

are determined by a Poisson process and service times have an exponential distribution

[108]. This model is compared to a modified model that considers the new condition

introduced by the C-Sec; a packet cannot depart until the next packet arrives even if the

service is finished. This restriction happens when there is only one packet in the queue.

An M/M/1 queue is described by the following parameters:

: Arrival rate, interarrival times are exponentially distributed with a mean of .

: Departure rate, service times are exponentially distributed with a mean of .

As Figure 4.13 shows, the C-Sec queuing model can be described as a variation of a

continuous time markov chain, which is defined by transition rates between states. The

states are the number of packets in the system.

54321

1

.

Figure 4.13 Markov Chain for C-Sec

Note that all transition rates from state to state are except for the case

where . To compute the transition rate for this case, it has to be taken into

account whether the packet is being processed or waiting for the next packet to arrive. To

solve the Markov chain system in Figure 4.13, let be the state of the system at time ,

and let be a small time interval. Then the probability of transition from state 1 to state

2 is given by:

82

(4.8)

The event is the union of the disjoint events and where:

: The packet is being served.

: The packet is waiting for the next arrival.

Then Equation 4.8 will be:

(4.9)

However, the first packet will not wait in the system if it finished processing and the next

packet has arrived, therefore:

(4.10)

If the first packet is being processed, then it has to wait even if the next packet arrives,

then:

(4.11)

Substituting 4.10 and 4.11 in 4.9:

83

(4.12)

However, there is a relation between and because:

(4.13)

(4.14)

AB

Figure 4.14 Markov chain balance equation

Substituting from the markov-chain balance equation in Figure 4.14 yields:

(4.15)

From 4.8 can be computed:

(4.16)

Let be the probabilities of each of the states. The global balance equation:

for each state yields:

AB

84

State 1:

State 2:

State j-1:

Now:

(4.17)

Substituting the probabilities of the states in to 4.16:

(4.18)

(4.19)

From 4.19, can be computed as:

(4.20)

Combining 4.17 and 4.20, we get:

(4.21)

From 4.20 and 4.21, the expected number of packet in the C-Sec system:

85

(4.22)

The expected value for the number of packets in the system for the M/M/1 queuing

model is:

(4.23)

Comparing Equation 4.22 and 4.23, it can be noted that the difference between the

queuing models is . This value is less than one, because . It can be concluded

that expected number of packets in the C-Sec system is one packet greater than the

M/M/1 system in the worst case and the difference approaches zero when the network is

more utilized.

Using Little’s law, the expected time in the C-Sec system is:

(4.24)

The expected value of waiting time for the M/M/1 system is given by:

86

(4.25)

Figure 4.15 shows the expected value of waiting time for both the C-Sec and the M/M/1

queuing models. The value of mainly depends on the bit rate of the wireless medium

i.e. 250-kbps, the size of the data and acknowledgment packets, and the duty cycle of the

TMAC protocol. The value of is chosen to be 120 packets per second based on

maximum of number packets that a node can handle in Castalia simulation. Compared to

the expected value of the waiting time for the M/M/1 queue, C-Sec has higher waiting

time for low arrival rates, because a single packet in the queue is held until the next

packet arrives. However, C-Sec approaches the M/M/1 queue behavior for larger arrival

rates because the likelihood of a single packet in the queue is small, which is the only

difference between C-Sec and M/M/1 queuing models.

Figure 4.15 Expected value of waiting time in the system (=120 packets/sec)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C-Sec System
M/M/1 System

0

0

0

0

0

0

0

0

Ex
pe

ct
ed

 w
ai

tin
g

tim
e

in
 th

e
sy

st
em

87

Equation 4.26 shows the difference of expected time in the system between the C-Sec

and M/M/1 models, which is the average waiting time introduced by the C-Sec over the

classic M/M/1 queuing model.

(4.26)

Figure 4.16 compares the value in Equation 4.26 with simulation results of the additional

waiting time introduced by C-Sec, i.e. the average period of time the current compact

packet waits until the next packet arrives when it is the only packet in the system. It can

be inferred that as the traffic load increases, the additional waiting time introduced by the

C-Sec queuing model decreases. The two curves have similar trends; however, the

additional waiting time introduced by the C-Sec protocol in the simulation results is

slightly higher. This is because it is affected by the duty cycle of the T-MAC and packet

retransmissions due to bit errors. For lower values of packet arrival time, the simulation

results shows less overhead time, that is because packets with waiting times larger than

the authentication timer are transmitted in the conventional mode, this puts a cap on the

maximum waiting time for compact packets.

Generally, most of WSN applications do not require hard real-time constraints [23], and

such additional packet delays can be tolerated. The importance of the energy savings the

C-Sec can achieve outweighs the additional packet delay it introduces.

88

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-Sec Simulation
C-Sec Analytical

Figure 4.16 Average C-Sec overhead time (=120 packets/sec)

4.3.4 Error probability

This section analyzes the impact of the dependency between packets introduced by the C-

Sec protocol on error probability. Stochastic models that measure the impact of block

cipher encryption on post decryption bit errors [117-119] are extended to measure the

impact of packet dependency introduced by C-Sec using Markov characterization

stochastic model.

For typical encryption protocols, the packet consists of two parts, the header block and

the encrypted message block. If a bit error occurs in the encrypted message block during

transmission in the wireless channel, this error will expand to all bits of the decrypted

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pe

ct
ed

 C
-S

ec
 p

ro
to

co
l o

ve
rh

ea
d

tim
e

89

H EM

H EM

H EM

H EM

Error free block Corrupted block

message with a probability of 50%. This is a result of the Strict Avalanche Criterion

(SAC) of the encryption algorithms [109]. Some researchers tried to avoid the effect of

SAC by inventing new encryption algorithms like [110] [122]. Such algorithms trade off

security with performance and are not scrutinized enough to be used for wireless

communication.

The packet can be divided in to two parts, an encrypted body that is affected by the SAC

and the header. If a bit error occurs in the encrypted body of the message, it will expand

as a result of the SAC effect. However, if it happens in the header of the message, only

that bit will be changed in the receiver side. As shown in Figure 4.15, this will result in

four different possibilities for the bit error.

.

Figure 4.17 Error event states

Let denote the -th bit of the header block. Let be the

transmitted header bits, and be received header bits.

Let denote the probability of receiving when is transmitted, and

denote the probability that that the received header is

90

when the transmitted header is: . Assuming reception of each bit is

independent of all the remaining bits, then:

(4.27)

If, in a certain received block, bits are in error, then bits are correct. Then the

probability of receiving this block will be . There are different

ways in which errors can occur in bits. Hence, if the header of the message is sent

and it contains i bits that had errors, then bits are correct. Then, the probability of

receiving a header with i errors is:

(4.28)

Where . The probability of a receiving correct header:

(4.29)

Similarly, the probability of receiving a correct encrypted message payload:

(4.30)

Depending on the state of the received header and message body at each decryption

cycle, the decryptor node can be in one of the four states described in Figure 4.15. The

probability of receiving a message with a correct header and body is:

(4.31)

91

Similarly:

(4.32)

(4.33)

(4.34)

Figure 4.18 The state diagram for error events at decryption process

Using these states, the state transition diagram in Figure 4.16 is created. The associated

transition probability matrix to denote the probability of moving from state to is given

as follows:

(4.35)

92

Then, the mean probability of error can be computed as:

(4.36)

Where and are the error rates associated with each of the states in Figure

4.16. The value of is zero, because the packet is error free at state A. The value of is

0.5 because in state B the decrypted body of the packet follows the SAC. The value of

is equal to because errors occur in the header at state C. Assuming that the bit

errors events in the header and bit errors in the decrypted message are independent, the

bit error rate in state D can be computed as:

(4.37)

Then the post decryption probability of error will be:

(4.38)

For C-Sec, the relations between packets introduce dependency in the error probability.

To model this dependency, all possible packets formats with different error events

associated with them are considered. This includes five different pairings of dependency

between packets with different formats. The error events associated with these cases,

labeled A to E, are shown in Figure 4.17. The shaded fields in the packets represent fields

with errors. The post decryption probability of error is computed for each case in a

similar manner, taking in to account the dependency in a stream of packets as follows:

I. The first packet is independent conventional, it follows the traditional post decryption

error probability model.

II. The second packet is independent from the first packet but it has dependency on the

masked header of the third packet. As shown in Figure 4.17 –B, this include eight error

events.

93

EM0H0 EM0 MAC0

EMi+j+1Hi+j+1 EMi+j+1 MACi+j MACi+j+1

MHi+jMHi+j EMi+j

MHi+j EMi+j

EM1

MH1 EM1

MH1

H0

H0 EM0 MAC0 H0 MAC0EM0

Hi+j+1

MACi+jHi+j+1 MACi+j+1

EMi+j

EMi+j+1

MHi+j EMi+j

MACi+jHi+j+1 MACi+j+1EMi+j+1

Hi+j+1 EMi+j+1 MACi+j MACi+j+1

MHi+j EMi+j

H0 EM0 MAC0

MH2 EM2

MH2 EM2

MH1

H0 EM0 MAC0

MH2 EM2

EM1

MH1

EM2

EM1

MH2

MH1

EM2

EM1

MH2

MH1

EM2

EM1

MH2

MH1

EM2

EM1

MH2

MH1

EM2

EM1

MH2

MHi+1 EMi+1

MHi+2 EMi+2

Mhi+1

EMi+2

EMi+1

MHi+2

MHi+1

EMi+2

EMi+1

MHi+2

MHi+1

EMi+2

EMi+1

MHi+2

MHi+j EMi+j

MHi+j EMi+jMHi+j EMi+j

MAC0

H0 EM0 MAC0 H0 EM0 MAC0

H0 EM0 MAC0 H0 EM0 MAC0

H0 EM0 MAC0 H0 EM0 MAC0

MACi+j MACi+j+1

MACi+jHi+j+1 MACi+j+1EMi+j+1

EMi+j+1Hi+j+1 MACi+j MACi+j+1

MACi+jHi+j+1 MACi+j+1EMi+j+1

A B

C D

E F

G H

A. Error in the header of the second packet, error free encrypted message of the second

packet, and error free header of the third packet. The probability of this event is:

(4.39)

Figure 4.19 Various error event states and related mean error probability
equations for C-Sec protocol

B. Error in the header and encrypted message of the second packet, and error free header

of the third packet. The probability of this event is:

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

H0

MH1C

MH

MHi+j

Hi

94

(4.45)

C. Error in the header of the second packet, error free encrypted message of the second

packet, and error in the header of the third packet. The probability of this event is:

(4.46)

D. Error in the header and encrypted message of the second packet, and error in the

header of the third packet. The probability of this event is:

(4.47)

E. Error free header of the second packet, error in the encrypted message of the second

packet and error in the header of the third packet. The probability of this event is:

(4.48)

F. Error free header of the second packet and third packet, error in the encrypted

message of the second packet. The probability of this event is:

(4.49)

G. Error free header and encrypted message of the second packet, error in the header of

the third packet. The probability of this event is:

(4.50)

H. Error free header and encrypted message of the second packet, error free header of

the third packet. The probability of this event is:

(4.51)

Then, the mean probability of error for these cases can be computed as:

95

(4.52)

The value of error rates , , and is because errors do not propagate in the

associated events as they occur in the headers of the packets. The , and involve

errors in the header and encrypted message, assuming that channel bit errors and errors

caused by SAC occur independently, they can be computed as:

(4.53)

The value of is 0.5 because the error occurs in the encrypted message which follows

the SAC, and is zero hence no errors occur. Substituting the error rates in Equation

4.47 will yield Equation 4.50 in Figure 4.17.

III. The header of the packet is already verified, it has dependency on the header

of the packet . As for II the value of is computed for this case. The

result is shown in Equation 4.51.

IV. The last compact packet depends on the header of the last conventional packet,

which has different size. The value of for this case is shown in Equation

4.52.

V. The last conventional packet is similar to the first conventional packet, but with

different header size. The value of for this case is shown in Equation 4.53.

To evaluate the performance of post decryption error probability for the C-Sec, a

weighted average of cases given by Equations 4.51- 4.55 is computed assuming a 96% of

compact packets. This value matches the percent of compact packets with a payload size

of 30 bytes given in the simulation results in Section 4.3.1. The post-decryption error

probability of the MiniSec protocol is given by Equation 4.36. The MiniSec is used to

compare with because it has the smallest packet size among other protocols and the

96

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

MiniSec
C-Sec
No Encryption

closest to C-Sec packet. Figure 4.18 shows the plots of post-decryption error probability

for both cases. The difference in output error probability is negligible and it does not

exceed 1%.

Figure 4.20 Post decryption error probabilities for C-Sec and MiniSec

Figure 4.19 shows the percentages of packet loss, with 95% confidence, for C-Sec and

MiniSec protocols, obtained from simulations using Castalia with varying noise floor (the

sum of all the noise sources and unwanted signals). The packet loss increases with the

increase of noise floor. The C-Sec has about 1% more dropped packets than the Minisec

in the active region. Compared to the high energy gain of the C-Sec, this amount of

packet loss is can be probably be tolerated in many applications. As mentioned in the

protocol description, the used of conventional mode can be enforced in case of high QoS

constraints or the use of packet loss sensitive applications.

Input error probability

1

1

1

1

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

97

-96-97-98-99-100-101-102-103-104-105
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

C-Sec
MiniSec

Figure 4.21 Packet loss

4.4 CONCLUDING REMARKS

This chapter provided a detailed description of the C-Sec protocol including the packet

formats for the conventional and compact modes, and the procedure of running them on

the sender and receiver sides. The evaluation of the security services C-Sec can provide

shows that the C-Sec does include all the security services provided by other protocols. In

addition, it hides the packet header in the compact mode, which makes it more difficult to

eavesdrop on the flow of wireless communication. It also reduces the effect of message

spoofing and replay attacks and works as an attack detection mechanism.

To evaluate C-Sec simulations using Castalia simulator were performed for C-Sec and

other related protocols with various packet sizes and loads. Simulation results show that

C-Sec saves more energy than all related protocols and the TinyOS under different packet

Pe
rc

en
ta

ge
 o

f p
ac

ke
t l

os
s

Noise floor

98

loads and packet sizes. The saving in energy can reach up to 19.1% compared to

MiniSec, the encryption protocol with the closest packet size to C-Sec.

Both the mathematical analysis of the C-Sec queuing model and the simulation results of

the additional overhead time introduced by C-Sec show that, as the traffic load increases,

the additional waiting time introduced by the C-Sec queuing model decreases. They also

show that C-Sec time overhead increases with lower traffic leads. However, this increase

is capped, because packets with waiting times larger than the authentication timer are

transmitted in the conventional mode. The additional packet delay overhead of C-Sec can

be tolerated, as most of WSNs applications do not require hard real-time constraints. The

significance of the energy savings the C-Sec can achieve outweighs the additional packet

delay it introduces.

Mathematical analysis of the post-decryption error probability of the C-Sec shows that it

slightly increases the post-decryption error probability. Compared to MiniSec, the

protocol smallest packet size among related protocols and the closest to C-Sec, the

difference in post-decryption error probability does not exceed 1% in the active region.

Simulation results show that packet loss increases with the increase of noise floor.

However, C-Sec has about 1% more dropped packets than the Minisec in the active

region. Compared to the high-energy gain of C-Sec, this amount of packet loss is can be

tolerated.

99

CHAPTER 5 SN-Sec: SENSOR NODE SECURE PLATFORM

Security was not considered when current wireless sensor nodes were designed. As a

result, providing a high level of security on current WSNs platforms is unattainable,

especially against attacks based on key theft and node compromise. This chapter

scrutinizes the security vulnerability in current WSN platforms and compares the main

approaches to implementing their cryptographic primitives in terms of security, time, and

energy efficiency. To address security weaknesses in other platforms and provide more

efficiency SN-Sec is proposed, a 32-bit RISC secure wireless sensor platform with

hardware cryptographic primitives.

The SN-Sec provides a system on chip solution that is invulnerable against board-level

attacks like bus probing. It is also immune to non-invasive and semi-invasive attacks, and

provides unique key storage that is independent from the OS; this means that even if the

node OS is compromised, the keys inside the key storage will not be resolved. Providing

efficient hardware implementation of asymmetric encryption facilitates energy efficient

solutions for key management, certification, and broadcast authentication. Solutions for

these problems in the literature tend to avoid asymmetric encryption because of its

computational cost. However, these solutions usually have high communication and

storage cost that exceed the computational cost of our design.

The choice of cryptographic primitives for SN-Sec is based on their compatibility with

the constrained nature of WSNs and their security. The proposed methodology of

implementing the encryption primitives for SN-Sec provides protection against power

analysis and timing attacks. SN-Sec platform is designed using VHDL. Experimental

results using synthesis for Spartan-6 low-power FPGA shows that the proposed design

has a very reasonable computational time and energy consumption compared to well-

known WSN processers. Being implemented on FPGA makes it more difficult to reverse

engineer it and make it more secure compared to microcontroller-based devices [22] used

with other WSN platforms.

100

This chapter is organized as follows: approaches to implementing WSN security

platforms, their advantages, disadvantages, and security holes are reviewed in Section

5.1. SN-Sec secure hardware platform is introduced in Section 5.2. Section 5.3 presents

the designs of the security primitives and other components used for SN-Sec platform

with experimental energy, time and hardware area results using synthesis for Spartan-6

low-power FPGA for each component and for the final SN-Sec platform design. Finally,

the concluding remarks are presented in section 5.4.

5.1 SECURITY WEAKNESSES OF CURRENT WSN PLATFORMS

Many researchers proposed mechanisms to provide security for WSNs in the literature.

These mechanisms are usually based on underlying implementations of encryption

primitives. Regardless of the effectiveness of these mechanisms, they will not provide

sufficient security if implemented on unsecure platforms. The current WSN platforms are

being made using “off the shelf" components designed for other environments. Secure

design for unique WSN environments was not considered in most of the cases.

Many researchers in the literature have addressed efficient implementations of security

primitives for WSNs [20] [68-71] [98-104] [113]. Generally, such primitives include

public key primitives, private key primitives, and hash functions. These implementations

are either software-oriented, or hardware-oriented. The main advantage of software-

oriented implementations is their flexibility, because changing them does not require any

modification in the hardware architecture of wireless sensor nodes. However, these

implementations have large processing overheads on WSN controllers with low

processing capacity.

Table 5.1 shows the energy consumption and execution time of elliptic curve based

operations implemented in software on the Mica2 wireless node [123]. The relatively

high processing time could result in missing some events or not reporting them in a

timely manner. It also affects the execution of other programs running on the node,

101

especially if a non-preemptive operating system, like TinyOS, is used. In addition, that

consumes large amount of energy compared to hardware implementations up to a factor

of 103 [123].

Table 5.1 Energy and time results for elliptic curve based operations using software
implementations on Mica2 wireless node [123].

Operation Key
Generation

ECDSA
signature

ECDSA
verification

D-H key
exchange

El-Gamal
encryption

El-Gamal
decryption

Time (s) 6.74 6.88 24.17 17.28 24.07 17.87

Energy (mJ) 101.1 103.2 362.6 259.2 361.1 268.1

Software implementations are not only less efficient in terms of energy and time, but

also are less secure. As Figure 5.1 illustrates, the security of software implementations is

dependent on the security of the OS and the underlying wireless node hardware platform,

neither of which was designed to be secure in most current WSN platforms.

Security
services
Software encryption primitives

Operating System

WSN Hardware Platform

Applications

Figure 5.1 Wireless node design using software cryptography over unsecure platform

Because software implementations are run on top of the OS and share memory space with

other running programs, they are vulnerable to ease of modification and compromising

keys. A clear example of such attacks is the Cache Collision Timing Attacks [124] on

software implementations of the AES algorithm. This attack is based on exploiting the

102

characteristics of AES table lookups. It requires direct observation of memory before and

after encryption by running the attacking process and the AES algorithm on the same OS.

Figure 5.2 Examples of non-secure use of encryption hardware. A) The CC2420 module
on the WISAN sensor node. B) The TPM module used with SecFleck C) The ECC
module used with the Cookie node

103

Compared to software implementations of cryptographic algorithms, hardware

implementations are not only much faster, but they also consume less energy up to a

factor of 10-3 [123]. Many sensor platforms use “off the shelf" hardware components to

provide security services for WSNs. Figure 5.2 provides such examples, like the use of

the Chipcon CC2420 transceiver chip [125] that includes a hardware implementation of

the AES algorithm in WISAN sensor mote [19], the use of commodity Trusted Platform

Module (TPM) chip for RSA public key encryption in the SecFleck platform [19], and

the use of the FPGA based elliptic curve processor in the Cookie node [20].

In all the platforms that use independent hardware to implement security primitives, the

communication between the security hardware and other wireless node hardware

components is done in plaintext. Launching attacks like bus probing can easily reveal

valuable data such as the encryption keys. Other attacks on hardware like Cold Boot

Attack [126] can also be used to get the content of the memory and resolve the encryption

keys, since the keys are stored in plaintext. Software attacks through the OS are possible

as well, because the keys are accessible by the OS in plaintext. Figure 5.3 illustrates the

security view of these implementations.

Hardware encryption primitives

WSN Hardware Platform

 S
ec

ur
ity

 se
rv

ic
es

 Operating System

Applications

Figure 5.3 Wireless node design using hardware cryptography over unsecure platform
and OS

104

All of the weaknesses and vulnerabilities of previously used schemes will be covered

with the SN-Sec platform design. The security view of proposed scheme is shown in

Figure 5.4. This scheme aims to redesign the wireless sensor platform from scratch with

the security as the main design goal. Many practices can easily help avoid the security

faults of other platforms. Designing a system on chip solution helps avoid most of the

board-level attacks. In addition, it reduces the cost of having different components on the

sensor node board and reduces the energy and latency costs compared to multi-

components systems.

 Operating System

 Applications

 S
ec

ur
ity

 S

er
vi

ce
s

Secure platform design with hardware
encryption primitives

Figure 5.4 Secure node platform design with hardware encryption primitives

Implementing encryption primitives in hardware from scratch facilitate choosing and

implementing the best configurations and designs of encryption primitives that meets the

constraint nature of WSNs; it frees the main processor from computationally expensive

encryption primitives. It also enables implementing secure key storage and encrypted off-

chip memory. Including asymmetric primitives helps solving many problems related to

key management and distribution and digital signatures

The cost of designing and additional hardware area needed for the security platform will

increase manufacturing cost. However, combining all components in one chip, and

105

producing a robust design that is reliable enough to be used in a mass production manner

is capable of reducing this cost.

5.2 SN-SEC: SECURE HARDWARE PLATFORM DESIGN

To avoid design weaknesses in previous approaches and guarantee maximum security

and energy efficiency for WSNs, SN-Sec is proposed; a secure hardware platform design

that provides hardware-based encryption and secure key storage. This design not only

avoids high processing overhead and energy consumption of the software

implementations, but also provides an advantage over other related hardware

implementations because of the careful selection of encryption primitives and their

efficient implementations. It also avoids the security weaknesses in previous approaches

by being closed and independent from the operating system security.

W
SN

 p
ro

ce
ss

or
 C

hi
p Processing

Unit
Internal
Memory

Crypto-Processor

Transceiver

Processing
Unit

Internal
Memory

Transceiver

Sensing
Hardware

Power
Supply

Encrypted
External
Memory

Crypto-Processor
Secure key Storage

Figure 5.5 Proposed secure platform design

106

The suggested hardware secure platform for WSNs is shown in Figure 5.5. The sensor

node processor unit consists of three main components: the main processor, internal

memory, and a crypto-processor. The only part of the data that can be in plaintext is the

data within the scope of the sensor node processor chip, like the data being processed

inside the main processor and the internal memory. All the other data outside the scope of

the sensor processor chip is encrypted, including external memory, communication

between WSN components on board like the transceiver, and the traffic in the wireless

medium.

5.3 SN-SEC IMPLEMENTATION

The selection of cryptographic primitives for SN-Sec hardware platform should comply

with WSN constraints. The implementation of these primitives should be optimized for

energy per encryption, power consumption, and hardware area. Speed and throughput

were the optimization goals for many implementations, these optimization goals are not

considered for WSNs because of their sparse and loose real-time communication. This

section evaluates the most efficient configurations and implementation methods of the

selected primitives, their security status, and reviews their specialized implementations

for WSNs in recent literature.

5.3.1 Advanced Encryption Standard

As mentioned in Section 3.3.1, AES is the best suited algorithm for hardware

implementations for WSNs, from security, energy efficiency, latency and hardware area

perspectives. It is also shown that the most efficient design for WSN constraints is the 8-

bit data-path design with two S-boxes [70], and the most efficient design for the S-box is

in the composite field [66]. The AES implemented for the SN-Sec

platform uses a combination of these designs.

The data-path of this design is shown in Figure 5.6. The design uses two S-boxes one for

the key expansion unit that generates a round key on the fly for each round of the

107

algorithm and another for the byte substitution transformation of the round. The design

includes a mix-column multiplier that computes the mix-column transformation and

produce 128-bit output at each round. This output is converted again to the 8-bit data-

path size using a parallel to serial converter unit. One round of the AES algorithm takes

16 cycles using this design. The AES algorithm runs for 10 rounds which requires 160

cycles.

Figure 5.6 AES data path design

The design shown in Figure 5.6 was coded using VHDL. It was verified for functional

correctness using Modelsim hardware simulation and verification tool. Appendix A

shows a sample run of the design. The design was synthesized for Spartan 6 low power

FPGA. Synthesis results are shown in Table 5.2. This design consumed about 3% of the

device resources and it runs on 98.373 MHz.

108

Table 5.2 AES synthesis results

Parameter Value

Number of Slice Registers 196

Number of Slice LUTs 338

Number of LUT Flip Flop pairs (LUT-FF) 369

Number of LUT-FF with an unused Flip Flop 173

Number of LUT-FF with an unused LUT 31

Number of fully used LUT-FF pairs 165

Maximum Frequency 98.373MHz

Device Utilization 3%

As will be explained in section 5.3.4, merging the AES algorithms with other designs on

the final version of the SN-Sec platform will reduce the running frequency to about

58MHz. The final design power consumption will be 28 mJ. Using the number of cycles

needed to run the AES algorithm, the AES running time can be computed as follows:

(5.1)

The energy consumption of SN-Sec processor for running the AES will be:

(5.2)

These values outperform the results of related implementations discussed in Table 3.3.

Running the AES hardware does not prevent the SN-Sec processor from performing other

109

operations during encryption. In addition, the energy consumption results provided are

for all components of the SN-Sec including AES.

5.3.2 Secure Hashing Algorithm SHA-256

As mentioned in section 3.4.2, SHA-256 is the most suitable secure hashing algorithm

that meets the security requirements as well as the energy constraints of WSNs. Figure

5.7 shows the SHA-256 iteration as described in the FIPS standard [127].

Figure 5.7 SHA-256 Iteration

Eight 32-bit constants are used to initialize the first iteration (i.e. A - F). SHA-256 has 64

iterations, and it uses 64 different 32-bit constants Kt for each iteration. On the other

hand, SHA-384 and SHA-512 have 80 iterations and they use 80 different 64-bit

constants for each iteration. SHA-3 operates on 1600-bit operands for 94 rounds. The

larger operand size and number of constants requires more memory resources, and leads

110

to higher energy consumption per block compared to SHA-256 [113]. According to the

comparison between hardware synthesis results of SHA algorithms presented in section

3.4.2, SHA-256 has the lowest per block of energy and latency. This makes it the best

choice for SN-Sec platform.

As for the design of the AES algorithm, the design in Figure 5.8 was coded using VHDL.

It was verified for functional correctness using Modelsim hardware simulation and

verification tool. Appendix A show a sample run of the design. The design was

synthesized for Spartan 6 low power FPGA. Synthesis results are shown in Table 5.3.

Table 5.3 Synthesis results for SHA-256

Parameter Value

Number of Slice Registers 1071

Number of Slice LUTs 1891

Number of LUT Flip Flop pairs (LUT-FF) 2005

Number of LUT-FF with an unused Flip Flop 934

Number of LUT-FF with an unused LUT 114

Number of fully used LUT-FF pairs 957

Maximum Frequency 59.977MHz

Device utilization 15%

The SHA-256 design consumes about 15% of the device resources and it runs on

59.977MHz. These values are higher than AES results because the SHA-256 design runs

on 32-bit data-path compared to 8-bit data-path for AES. It also requires more hardware

area to store and manipulate constants. This design requires 64 cycles to produce the

message digest. Applying Equation 5.1 and 5.2 for SHA-256 shows that it takes 1.1 s

and 30.9 nJ to run the SHA-256 on the final design of the SN-Sec.

111

5.3.3 Elliptic Curve Processor

Selecting the curve parameters is a very important factor in the efficiency of the elliptic

curve processor. The proposed elliptic curve processor operates in the 193 binary field

because the security of lower size fields is not guaranteed to last long against brute force

attack, as explained in section 3.4.3. The binary extension field was chosen because it

requires less hardware area and energy consumption compared to the prime field.

Another important parameter used to reduce the computations of the proposed design

compared to other designs proposed for WSNs is the choice of elliptic curve and

associated coordinate system. A very efficient family of curves called Montgomery

curves are used. They can be represented as in Equation 5.3:

(5.3)

A point on the Montgomery curve can be represented in the Montgomery

projective coordinates without as satisfying that for [79].

Given two points in the Montgomery projective coordinates and

, the sum of the two points can be defined where:

(5.4)

(5.5)

This operation has a time-cost of four modular multiplications and two modular

squaring’s, assuming that . The cost of point addition will be reduced to three

modular multiplications. If , the outcome becomes point doubling

which can be expressed as:

(5.6)

(5.7)

112

The cost of multiplying by in Equation 5.5 can be ignored if the value of is small,

hence the doubling operation will have a cost of two modular multiplications and two

modular squarings [128]. This is the most efficient coordinate system up to our

knowledge; it has fewer operations for point doubling and point addition than all the

coordinate systems used for related work in Table 3.9.

Unlike the Double-and-Add scalar point multiplication in Algorithm 3.1,

the Montgomery ladder algorithm [79] computes the scalar point multiplication in

a fixed amount of time and constant power consumption. This can be beneficial in WSNs

environments, where timing and power consumption of the sensor processor are exposed

to any adversary performing a side channel attack. The Montgomery ladder algorithm

does not leak any information through timing or power. Algorithm 5.2 shows the

Montgomery ladder algorithm.

Algorithm 5.1 Montgomery Ladder point multiplication

;

However, the Montgomery ladder algorithm will increase the number of arithmetic

operations because a point addition as well as a point doubling has to be accomplished at

each iteration of the algorithm. As shown earlier in this section, using the Montgomery

curve in the XZ coordinates point doubling is accomplished with two multiplications and

113

two squarings and point addition with three multiplications and two squarings. The total

is five multiplications and four squarings. Table 5.4 shows a detailed description of

elliptic curve operations in one iteration of the Montgomery ladder algorithm based on

Montgomery curve in the XZ coordinate. The operations start with the coordinates of the

input points and . It applies Equation 5.4 and 5.5 to produce the result

of point addition , and point doubling .

Table 5.4 Elliptic curve operations in one iteration of the Montgomery ladder algorithm
in the XZ coordinate

Operation Type Dependency

 A0
-

 S0 A0

 A1
-

 S1 A1

 A2 A1 A0

 A3
-

 A4
-

 M0 A4A0

 M1 A3A1

A5+ S2 M0M1

A6+ M2+ S3 M0M1

M3 S0,S1

M4+A7+C0 S0S1

Total 7A+4S+5M+C

Critical path 2A+5M

114

Figure 5.9 shows the critical path of the elliptic curve operations in Table 5.4. Assuming

that modular addition, squaring, and multiplication hardware is independent and can run

in parallel, and that modular multiplication in more costly than modular squaring, it can

be shown that one iteration of the Montgomery ladder algorithm can be implemented

within the critical path of five multiplications, and two additions i.e. A4A0 before M0.

Hence, the total cost for elliptic curve point multiplication will be: . This

is the best value compared to the elliptic curve hardware implementations proposed for

WSNs presented in Table 3.9.

S2

S3

M2

M3

M4

M0

M1

S0

S1

Step 1

Step 2

Step 3

Step 4

Step 5

Xadd XdoubleZadd Zdouble

Figure 5.8 Dependency between elliptic curve operations

115

Efficient implementation of multiplication squaring, and inversion algorithms are the

next important factors that play a role in the efficiency of the elliptic curve processor.

Redundant interleaved modular multiplier is used for modular multiplication for the SN-

Sec. Algorithm 5.3 shows the interleaved modular multiplication algorithm. The

multiplication and reduction steps overlap in each iteration of the algorithm. The

intermediate results are reduced after each iteration before resuming the multiplication

process in the next iteration.

Algorithm 5.2 Interleaved modular multiplication

;

The efficiency of interleaved multiplication can be improved by pre-estimating the

number of times M has to be subtracted at the last two steps of the algorithm, and

predicting if Y has to be added in the next iteration of the loop. All these choices can be

precomputed and stored in a lookup table. In each iteration of the loop, the estimation

from the previous step is added to the intermediate result. With the use of carry save

addition the complexity of computing multiplication can be reduced to cycles. Figure

5.10 shows the architecture of the interleaved modular multiplier, a more detailed

description of this architecture can be found in [129].

116

Carry Save Adder

Prediction Unit

C=2*(C mod 2n) S=2*(S mod 2n)

S=0 C=0

S C

Y+2*3*2n mod M

2*3*2n mod M

Y+2*2*2n mod M

Y+2*2n mod M

2*2n mod M

Y mod M

0

Loop Control

Figure 5.9 Interleaved Modular Multiplier

The computation of the modular squaring can be optimized compared to modular

multiplication due to the fact that cross terms of the intermediate results disappear

because they come in pairs and the underlying field is the binary field. Using the

polynomial representation for the elements of the field, an element of the field

is a polynomial of length , i.e. of degrees less than or equal , can be written as:

(5.8)

Where the coefficients . These coefficients can be referred to as the bits of

and the elements of can be represented as

(5.9)

117

Hence, it is easy to show that the squaring of the element will be:

(5.10)

The Montgomery squaring algorithm involves a polynomial with

degree :

(5.11)

(5.12)

Then can be reduced by computing . Algorithm 5.4

explains the steps of this procedure.

Algorithm 5.4 Montgomery modular squaring algorithm

The term is the least significant bit of . Its value is zero half of the time. The only

operation done in the loop when equals zero is shift right. Pre-computing , then

performing the loop only when its value is one, with the amount of shifts done on

equals to the amount of skipped zeros in . This will save half of the iterations on

118

average. Hence, the cost of squaring will be cycles on average. More about this

algorithm can be found in [120] [131].

Converting back to the affine coordinate system is necessary to produce the final elliptic

curve point multiplication results. This conversion requires one final modular division

operation. The extended Binary Greatest Common Devisor (BGCD) algorithm [122] is a

very efficient way to compute modular division. Algorithm 5.4 shows the detailed steps

of this algorithm.

Algorithm 5.3 Modular Division in

.

;
;

;
;

119

The division is performed by interleaving the procedure for finding the modular quotient

with that for calculating the greatest common divisor (GCD) of two numbers in the

binary extended field. More about this algorithm can be found in [133]. It is mainly based

on three rules:

 If and are even

 If is even and is odd

 If and are odd

Using only one redundant modular adder for the design; knowing that addition takes one

clock cycle, swapping each operand takes one clock cycle, and that all other shift,

increment and decrement operations are done on the fly, this algorithm will take

cycles.

The elliptic-curve point multiplication can be computed in cycles using

this design. Knowing that modular inversion takes cycles, modular addition takes

one cycle, and modular multiplication takes 193 cycles, and the field size is 193.
The total number of cycles to compute one point multiplication is:

Cycles.

The critical path of the proposed elliptic curve processor is the most efficient among

related work because it includes the least amount of computations, the most efficient

components designs, and it exploits parallelism between components to produce the

result in small number of cycles. As Figure 5.11 shows, the elliptic curve processor has

four modular components that can be run in parallel by the control unit.

120

Modular
Division

Modular
Adder

Modular
Multiplier

Modular
Squarer

ControlRegister file

Figure 5.10 ECC design

This design was coded in VHDL and verified for functional correctness using Modelsim

hardware simulation and verification tool. Appendix A shows a sample run of this

algorithm. Table 5.5 shows the synthesis results for the elliptic curve processor for the

Spartan 6 low power FPGA. It consumes 60% of the device resources and operates on

57.998MHz. As will be shown in the next section the SN-Sec operates at that frequency,

which indicates that the elliptic curve processor includes the longest critical path of the

SN-Sec. Applying Equation 5.1 and 5.2 for the elliptic curve processor show that it

requires 3.245 ms and consumes 90.86 J to compute one elliptic curve point

multiplication on the final SN-Sec processor.

121

Table 5.5 Synthesis results for elliptic curve processor

Parameter Value

Number of Slice Registers 2805

Number of Slice LUTs 5518

Number of LUT Flip Flop pairs (LUT-FF) 6132

Number of LUT-FF with an unused Flip Flop 3327

Number of LUT-FF with an unused LUT 614

Number of fully used LUT-FF pairs 2191

Maximum Frequency 57.998MHz

Device utilization 60%

5.3.4 THE SN-Sec

Figure 5.12 shows the design of the SN-Sec platform. It consists of three main parts, a

32-bit Reduced Instruction Set Computing (RISC) processor; an encryption processor

that contains the hardware implementations of AES, ECC and SHA with its own 32 kB

dual port memory for secure key storage that is not readable by the processor; and a 512

kB internal memory module readable by the processor to store the C-Sec caches and

encryption primitives input/output.

The ZPU processor is a modified version of the 32-bit RISC open source Zylin Processor

Unit (ZPU) [25]. New instructions were added to the Instruction Set Architecture (ISA)

of the ZPU, these instructions are shown in Table 5.6. The new instructions controls each

of the crypto-primitives implemented in the encryption processor and to provide the input

plaintext, location of encryption keys and the addresses where the output should be

placed. This is done by writing to specific locations in the dual port memory of the

122

encryption processor, the main processor can only write to that memory using the write

only port of the dual port memory.

SHA

AES

Elliptic
curve

processor

Key Storage

ZPU processor

Internal Memory

Write Only port

Figure 5.11 SN-Sec architecture

For each of the instructions that activate an encryption primitive, the location of the key

is stored in the secure-memory address register mReg, the address of input location is

stored in the input register iReg, and the address of the memory where the output has to

be written is stored in the output register oReg. The Mem_w instruction is used to write

the value in the address specified in the input register iReg to the secure-key storage

memory location stored in the mReg.

123

Table 5.6 New instructions added to the ZPU ISA

Instruction Op-code Description

SHA_en 1001 0000

Activate SHA Algorithm. Key is stored at location in
mReg of the secure key storage. Input location is in iReg
of the internal memory, write output to address in oReg
of the internal memory.

AES_en 1010 0001

Activate AES in encryption mode. Key is stored at
location in mReg of the secure key storage. Input
location is in iReg of the internal memory, write output
to address in oReg of the internal memory.

AES_de 1010 0010

Activate AES in encryption mode. Key is stored at
location in mReg of the secure key storage. Input
location is in iReg of the internal memory, write output
to address in oReg of the internal memory.

ECC_en 1011 0011

Activate ECC encryption. Public key is stored at
location in mReg of the secure key storage. Input
location is in iReg of the internal memory, write output
to address in oReg of the internal memory.

ECC_de 1011 0100

Activate ECC decryption. Private key is stored at
location in mReg of the secure key storage. Input
location is in iReg of the internal memory, write output
to address in oReg of the internal memory.

Mem_w 1100 0000
Write value in address stored in iReg of the internal
memory to the memory address to the mReg of the
secure key storage

The secure key storage memory is configured to be accessed by the ZPU in the write

mode only. This is done by keeping the read/write input of the memory port connected to

the ZPU processor on the write mode by assigning the we_0 <=’1’, and keeping the

output enable port disabled by assigning oe_0<=’0’, as shown in Figure 5.13. It is

assumed that the main processor is programmed to delete the keys after they are loaded to

that memory. This makes it difficult for the attacker to get the keys back if she manages

to take control of the OS, because physically she cannot read them back from the dual

124

port memory using any program running on the OS. This will help secure the key storage

and reduce the effect of compromising sensor nodes. The output of the encryption

processor can be written to specific locations on the internal memory.

Figure 5.12 Configuration of the Dual port memory for the secure key storage

The modified ZPU design was synthesized for Spartan 6 low power FPGA. Synthesis

results are shown in Table 5.7. This design consumed less than 1% of the device

resources and it runs on 227.095MHz.

Table 5.7 synthesis results for the ZPU

Parameter Value

Number of Slice Registers 23

Number of Slice LUTs 30

Number of LUT Flip Flop pairs (LUT-FF) 34

Number of LUT-FF with an unused Flip Flop 21

Number of LUT-FF with an unused LUT 5

Number of fully used LUT-FF pairs 8

Maximum Frequency 227.095MHz

Device utilization 1%

125

The components of the SN-Sec platform were integrated together. The synthesis results

for the whole design for the Spartan 6 xc6slx16 FPGA are shown in Table 5.8. The

design consumed 71% of the device resources. The internal memory consumed all the

RAM blocks of the device. The power results obtained from the Xilinx X-power analyzer

tool show that the device consumes 28 mJ.

Table 5.8 Synthesis results for SN-Sec

Parameter Value

Number of Slice Registers 4272

Number of Slice LUTs 7371

Number of LUT Flip Flop pairs (LUT-FF) 8715

Number of LUT-FF with an unused Flip Flop 4810

Number of LUT-FF with an unused LUT 519

Number of fully used LUT-FF pairs 3386

Block RAM/FIFO 32

Maximum Frequency 57.998MHz

Device utilization 71%

Table 5.9 shows the detailed results for the number of cycles, running time, and energy

consumption for each of the SN-Sec components. Figure 5.14 shows the approximate

breakdown of the device resources consumed by each of these components. Note that the

elliptic curve design consumes more than 60% of the device resources; on the other hand

the ZPU processing unit consumes only 1%. This gives an indication of the complexity

and large design of the elliptic curve processor architecture.

126

Table 5.9: Hardware implementations results

Component Frequency
(MHz)

Power
(mw) Clock Cycles Time

(s)
Energy

(nJ)
AES-128 160 2.76 77.28

SHA-256 57.998 28 64 1.1 30.9

ECC-193 188175 3245 90860

Figure 5.13 Approximate device utilization breakdown

Table 5.10 shows a list of well-known WSN processors. The SN-Sec outperforms these

processors in terms of the achieved level of security. In addition, the SN-Sec platform

implements complex encryption primitives in hardware that consume about 78% of the

device resources as shown in Figure 5.14. However, it has a reasonable power

consumption compared to these processors. This allows implementing highly secure

wireless nodes that run security protocols based on complex cryptographic primitives in

short periods of time, without affecting the execution of other programs running on the

sensor node processor, and without significantly affecting the life time of the wireless

sensor node.

ECC
60%

SHA
15%

AES
3%

ZPU
1%

unused
21%

Resources breakdown

127

Table 5.10 Comparison with other WSNs processors

Processor
Power
(mw)

Data-path
width (bit)

Memory
(kB)

Frequency
(MHz)

Energy
(pJ/Ins)

Technology
(nm)

Hardware
Encryption

SN-Sec 28 32 512 57.998 483 FPGA yes

Intel StrongARM 400 32 16 206 1942 350 No
Texas Instruments
MSP 430 6 16 10 8 750 350 No

BitSNAP [124] 43.6 16 8 200 218 180 No

[125] 1.78 16 128 0.434 27 65 No
Atmel ATmega
128L 75 8 4 16 3200 350 No

[126] 0.768 8 68 8 96 130 No

5.4 CONCLUDING REMARKS

Chapter 5 emphasized the security and energy efficiency of the SN-Sec, and

demonstrated the advantages of having energy efficient implementation of encryption

primitives in hardware, especially the elliptic curve processor included in the SN-Sec

implementation. The SN-Sec platform improves resilience against node compromise. If a

node’s operating system is compromised, then the key storage will not be accessible.

However, if a node that uses other architectures is compromised, then key materials

inside the node including shared keys with other nodes will be exposed.

In addition, SN-Sec provides resilience against board level attacks like bus probing and

on-board memory attacks. SN-Sec is a system on chip solution. All communication

between critical components of the system are done inside the scope of the chip, which

eliminates the chance of bus probing attacks. All other communication outside the chip

scope is encrypted; the onboard memory is encrypted as well, which eliminates the

possibility of onboard memory attacks. The cost of encrypting this memory is

dramatically reduced compared to other platforms because of the energy and time

efficient hardware implementation of the AES algorithm in SN-Sec, and because running

128

encryption primitives does not interrupt or block the operation of the main processor,

since the algorithm run on separate independent hardware.

The crypto-primitives designs proposed for SN-Sec are the most efficient compared to

other designs proposed for WSNs up to our knowledge. The implementation of AES

algorithm combines the most energy efficient data-path [70] and S-Box design [66] in the

literature. The SHA-256 implementation used has the least per block energy consumption

and latency compared to other SHA family algorithms. This makes it the best choice for

WSNs. The proposed elliptic curve processor has the least amount of modular operations

among all elliptic curve processors proposed for WSNs up to our knowledge. Its design

exploits parallelism among these operations to reduce the number cycles needed to

perform elliptic curve point multiplication, with a design immune to power analysis and

timing attacks.

The SN-Sec is implemented on an FPGA, which helps to resist tampering attacks.

Implementing the processing unit and other necessary hardware designs on an FPGA

instead of microcontroller-based devices makes it much more expensive for reverse

engineering. “Even placing important algorithms inside a ‘non-secure’ SRAM-based

FPGA makes its reverse engineering very difficult” [22].

Key management protocols handle the task of distributing, establishing, and managing

keys between sensor nodes. The SN-Sec platform facilitates implementing asymmetric

based key management protocols, which have higher security strength, scalability and

connectivity over other key management mechanisms that do not use asymmetric

encryption primitives. It also has low storage and communication complexity, high

scalability and resilience to node compromise [105]. The only drawback of asymmetric

based key management protocols is the computational complexity, which leads to

unacceptable energy and latency requirements; this issue has been resolved with the

energy and latency efficient hardware design of the SN-Sec.

129

The energy efficient asymmetric encryption provided by the SN-Sec facilitates

implementing many security services and mechanisms for WSNs, like providing the non-

reputation security service through certification, public key infrastructures [137],

broadcast authentication [138], ID-based key agreement schemes [105], and asymmetric

based homomorphic encryption [139]. These services were considered infeasible due to

the computational complexity of asymmetric encryption.

130

CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

This thesis presented solutions to security and its related energy efficiency in WSNs. This

was addressed at the link layer by proposing C-Sec, a dual mode encryption protocol that

reduces the energy cost of communication with a small increase in processing, which has

much lower-and relatively decreasing energy cost. This is done by excluding the

requirement for explicitly transmitting all header fields related to security most of the

time. An evaluation of the security services C-Sec can provide shows that the C-Sec does

include all the security services provided by other protocols. In addition, it hides the

packet header in the compact mode, which makes it more difficult to eavesdrop on the

flow of wireless communication. It also reduces the effect of message spoofing and

replay attacks and works as an attack detection mechanism.

An evaluation of C-Sec using the Castalia simulator shows that it saves more energy than

all related protocols and the TinyOS under different packet loads and sizes. The saving in

energy can reach up to 19.1% compared to MiniSec, the encryption protocol with closest

packet size to C-Sec. Both of the mathematical analysis of the C-Sec queuing model, and

the simulation results of the additional overhead time introduced by C-Sec, show that as

the traffic load increases, the additional waiting time introduced by the C-Sec queuing

model decreases. They also show that C-Sec time overhead increases with lower traffic

loads. However, this increase is capped, because packets with waiting times larger than

the authentication timer are transmitted in the conventional mode. The additional packet

delay overhead of C-Sec can be tolerated, as most of WSNs applications do not require

hard real-time constraints. The significance of the energy savings the C-Sec can achieve

outweighs the additional packet delay it introduces.

131

Mathematical analysis of the post-decryption error probability of the C-Sec shows that

the C-Sec has slightly increases the error probability. Compare to MiniSec, the protocol

smallest packet size among related protocols and the closest to C-Sec, the difference in

post-decryption error probability does not exceed 1% in the active region. Simulation

results show that packet loss increases with the increase of noise floor. However, C-Sec

has about 1% more dropped packets

WSN security and its related energy consumption was also addressed at the physical

layer by proposing SN-Sec, a secure sensor platform that is based on a modified version

of the ZPU processor by adding new instructions to operate hardware implemented

encryption primitives. SN-Sec provides immunity against board level attacks and resilient

to node compromise by having a secure key storage that is not accessible by the operating

system. SN-Sec uses the most energy efficient hardware implementations of encryption

primitives, to our knowledge. The implementation of the AES algorithm combines the

most efficient data-path design with the most efficient S-box design in the literature. All

the SHA family members were implemented in VHDL. A comparison between hardware

areas, energy consumption per block, and latency results for hardware synthesis of their

implementations was performed. It was found that SHA-256 has the least per-block

energy consumption and latency. An energy efficient elliptic-curve processor design was

proposed, it has the least number of operations, as well as, clock cycles per encryption

among elliptic curve processors proposed for WSNs. The proposed processor exploits the

parallelism in XZ coordinate to reduce number of cycles.

Each of the SN-Sec design components was implemented using VHDL, their functional

correctness was tested using ModelSim, and they were synthesized for Spartan 6 low

power FPGA using Xilinx design suite. This included providing hardware area,

frequency, time delay, and energy consumption for each algorithm separately and for the

integrated system.

132

6.2 FUTURE WORK

The following list contains a summary of several research topics that will be pursued in

the near future as a continuation of research work presented in this thesis:

Integrating a more comprehensive and energy efficient system on chip solution

for WSNs, by adding more energy efficient hardware components needed for

sensor node operation to the proposed SN-Sec platform, like adding an energy

efficient transceiver circuit, an analog to digital converter, and any other digital

signal processing components or computational intensive algorithms used in

WSN environments.

To implement the SN-Sec design using state of the art programmable devices, like

the new Artix 7 [140] devices manufactured by Xilinx. This will result in

significant power saving. The design cycle will be completed by downloading the

generated bit stream of the design to the FPGA device using the Xilinx

development board.

To develop a secure sensor node that uses the SN-Sec platform, and then

implement the C-Sec protocol on WSNs of these new nodes to conduct further

evaluation for its functionality and efficiency, and provide a complete WSN

solution that can be used in real life applications.

The energy efficient asymmetric encryption provided by the SN-Sec facilitates

implementing many security services and mechanisms for WSNs. These services

were determined to be infeasible due to the computational complexity of

asymmetric encryption. Continued research will be carried out in many directions

in this area, such as:

133

o To develop a public key infrastructure [137] that defines energy an

efficient mechanism for secret key distribution and provides non-

repudiation service through certification.

o To design energy efficient mechanisms for broadcast and multicast

authentication [138] for WSNs. Broadcast and multicast authentication are

fundamental to realizing the security of user commands and on demand

query functions, which are essential parts of the WSN operation.

o To develop new elliptic curve based key management schemes with high

security levels and minimal computation and communication cost. This

can be done after evaluating the security, communication overhead and

computational complexity of existing key management schemes, which

fall into three types: pure asymmetric schemes, hybrid schemes, and ID-

based schemes.

o To develop elliptic curve based homomorphic encryption mechanisms

[139] for concealed data aggregation. This is a very new field that is full

of research potential. The elliptic curve implementation provided by SN-

Sec can be optimised to support such mechanisms efficiently.

134

BIBLIOGRAPHY

[1] Tomas Sanchez, Damith Ranasinghe, Mark Harrison, Duncan McFarlane, "Adding
sense to the Internet of Things - An architecture framework for Smart Object
systems," Personal and Ubiquitous Computing, vol. 16, no. 3, pp. 291-308, 2012.

[2] Peter Harrop , "Wireless sensor networks 2009-2019," Technical Report,
IDTechEx, November, 2008.

[3] Martin Floeck, Lothar Litz, "Activity- and Inactivity-Based Approaches to Analyze
an Assisted Living Environment," in Emerging Security Information, Systems and
Technologies (SECURWARE), 2008.

[4] Venkata Kottapalli, Anne Kiremidjian, Jerome Lynch, Ed Carryer, Thomas Kenny,
Kincho Law, Ying Lei, "Two-tiered wireless sensor network architecture for
structural health monitoring," in SPIE 5057, Smart Structures and Materials 2003:
Smart Systems and Nondestructive Evaluation for Civil Infrastructures, San Diego,
2003.

[5] Kay Soon Low, Win Nu Nu Win, Meng Joo Er, "Wireless Sensor Networks for
Industrial Environments," in Computational Intelligence for Modelling, Control
and Automation, 2005 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, 2005.

[6] Sang Hyuk Lee, Soobin Lee, Heecheol Song, Hwang Soo Lee, "Wireless sensor
network design for tactical military applications : Remote large-scale
environments," in Military Communications Conference (MILCOM), 2009.

[7] Ali Maleki Tabar, Arezou Keshavarz, Hamid Aghajan, "Smart Home Care
Network using Sensor Fusion and Distributed Vision-based Reasoning," in 4th acm
international workshop on video surveillance and sensor networks, Santa Barbara,
2006.

[8] Abidalrahman Moh'd, Nauman Aslam, William Robertson, William Phillips, "C-
Sec: Energy efficient link layer encryption protocol for Wireless Sensor Networks,"
in Consumer Communication and Networking Conference (IEEE-CCNC), Las
Vegas, January, 2012.

[9] FIPS PUB 197, "Advanced Encryption Standard (AES)," National Institute of
Standards and Technology, U.S. Department of Commerce, 2001.

[10] Chris Karlof, Naveen Sastry, David Wagner, "Tinysec: A link layer security
architecture for wireless sensor networks," in Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, SenSys 2004, Baltimore,
MD, USA, November, 2004.

[11] Qi Xue, Aura Ganz, "Runtime security composition for sensor networks
(SecureSense)," in IEEE Vehicular Technology Conference, VTC, 2003.

135

[12] Devesh Jinwala, Dhiren Patel, Kankar Dasgupta, "FlexiSec: A Configurable Link
Layer Security Architecture for Wireless Sensor Networks," Journal of Information
Assurance and Security, vol. 4, pp. 582-603, 2009.

[13] Castalia Simulator. Available at: http://castalia.npc.nicta.com.au/.

[14] Holger Karl, Andreas Willig , Protocols and Architectures for Wireless Sensor
Networks, New York: John Wiley & Sons, 2007.

[15] Abidalrahman Moh’d, Nauman Aslam, William Phillips, William Robertson,
Hosein Marzi, "SN-SEC: A Secure Wireless Sensor Platform with Hardware
Cryptographic Primitives," Journal of Personal and Ubiquitous Computing, DOI
10.1007/s00779-012-0563-9, 2012.

[16] Zylin Processor Unit (ZPU), http://repo.or.cz/w/
zpu.git?a=blob_plain;f=zpu/docs/zpu_arch.html. Retrieved November 15, 2011.

[17] Walters, John Paul Liang, Zhengqiang Shi, Weisong Chaudhary, Vipin, Security in
Distributed, Grid, and Pervasive Computing, Yang Xiao EdsCRC Press, 2007.

[18] Anthony Wood,John Stankovic, "Denial of service in sensor networks," IEEE
Computer Magazine, vol. 35, no. 10, pp. 54-62, 2002.

[19] Wen Hu, Peter Corke, Wen Chan Shih, Leslie Overs, "secFleck: A Public Key
Technology Platform for Wireless Sensor Networks," in European Conference on
Wireless Sensor Networks, Cork, Ireland, 2009.

[20] Jorge Portilla, Andrés Otero, Eduardo de la Torre, Teresa Riesgo, Oliver Stecklina,
Steffen Peter, Peter Langendörfer, "Adaptable Security in Wireless Sensor
Networks by Using Reconfigurable ECC Hardware Coprocessors," International
Journal of Distributed Sensor Networks, vol. 2011, 2010.

[21] ZigBee Alliance, "ZigBee Specification," in Technical Report Document
053474r17, 2008.

[22] Sergei Skorobogatov, "Semi-invasive attacks - a new approach to hardware
security," Technical report, University of Cambridge, Computer Laboratory, 2005.

[23] Mika Stahlberg, "Radio Jamming attacks against two popular mobile networks,"
Helsinki University of Tech. Seminar on Network Security, 2000.

[24] Chris Karlof, David Wagner, "Secure routing in wireless sensor networks: Attacks
and countermeasures," Secure routing in wireless sensor networks: Attacks and
countermeasures, vol. 1, no. 2-3, pp. 293-315, 2003.

[25] Yih-Chun Hu, Adrian Perrig, David B. Johnson, "Packet leashes: A defense against
wormhole attacks in wireless networks," in INFOCOM, 2003.

[26] Lingxuan Hu, David Evans, "Using directional antennas to prevent wormhole
attacks," in NDSS, 2004.

136

[27] Weichao Wang, Bharat K. Bhargava, "Visualization of wormholes in sensor
networks," in Workshop on Wireless Security, 2004..

[28] Srdjan Capkun, Levente Buttyán, Jean-Pierre Hubaux, "Sector: secure tracking of
node encounters in multi-hop wireless networks," in SASN, 2003.

[29] James Newsome, Elaine Shi, Dawn Song, "The Sybil Attack in Sensor Networks:
Analysis and Defenses," in Third International Symposium on Information
Processing in Sensor Networks (IPSN), 2004.

[30] Anthony Wood,John Stankovic, "Denial of service in sensor networks," computer,
vol. 35, no. 10, pp. 54-62, 2002.

[31] Tuomas Aura, Pekka Nikander, Jussipekka Leiwo, "DOS-resistant authentication
with client puzzles," Lecture Notes in Computer Science, 2001.

[32] David Raymond, Scott Midkiff, "Denial-of-service in wireless sensor networks:
Attacks and defenses," in IEEE Pervasive Computing, 2008.

[33] Jing Deng, Richard Han, Shivakant Mishra, "Defending against path-based dos
attacks in wireless sensor networks," in 3rd ACM Workshop on Security of Ad Hoc
and Sensor Networks (SASN '05), 2005.

[34] Ioannis Krontiris, Tassos Dimitriou, "Authenticated In-Network Programming for
Wireless Sensor Networks," in In Proceedings of the 5th International Conference
on AD-HOC Networks and Wireless (ADHOC-NOW), 2006.

[35] Adi Mallikarjuna Reddy V AVU Phani Kumar, D Janakiram, G Ashok Kumar,
"Operating Systems for Wireless Sensor Networks: A Survey," Distributed and
Object Systems Lab, Indian Institute of Technology, Madras, India, 2007.

[36] Jason Hill, Robert Szewczyk, Alec Woo, Philip Levis, Sam Madden, Cameron
Whitehouse,Joseph Polastre, David Gay, Cory Sharp, Matt Welsh,Eric Brewer,
David Culler, "TinyOS: An operating system for sensor networks," In W. Weber, J.
M. Rabaey, and E. Aarts, editors, Ambient Intelligence, Springer, 2005.

[37] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, David
Culler, "The nesC language: A holistic approach to networked embedded systems,"
in Programming Language Design and Implementation (PLDI), June, 2003.

[38] Raffael Bloch, "Enhanced Task Scheduling in TinyOS 2.0 Channel Allocation in
AMUHR," in Semester Thesis, Distributed Computing Group, Zurich, Switzerland,
2006.

[39] Ian FuatAkyildiz, Mehmet Can Vuran, Wireless sensor networks, Chichester, West
Sussex, U.K.; Hoboken, NJ: Wiley, 2010.

[40] Pedro Wightman, Miguel Labrador, Topology control in wireless sensor networks:
with a companion simulation tool for teaching and research, New York: Springer,
2009.

137

[41] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, Kristofer
Pister, "System architecture directions for networked sensors," in Architectural
Support for Programming Languages and Operating Systems, 2000.

[42] Y. Sankarasubramaniam, I. F. Akyildiz, S. W. McLaughlin, "Energy Efficiency
based Packet Size Optimization in Wireless Sensor Networks," in The First IEEE
International Workshop on Sensor Network Protocols and Applications,
Anchorage, Alaska, USA, 2003.

[43] National Institute of Standards and Technology, "Recommendation for Block
Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality. NIST Special Publication 800-38C," 2004.

[44] United Stated National Security Agency, "Skipjack and KEA algorithm
specifications, Version 2.0," 1998.

[45] Arjen K. Lenstra and Eric R. Verheul, "Selecting cryptographic key sizes," Journal
of Cryptology, vol. 14, no. 4, p. 255–293, 2001.

[46] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, J. D. Tygar, "SPINS:
Security protocols for sensor networks," in Seventh Annual ACM International
Conference on Mobile Computing and Networks (MobiCom 2001),, Rome, Italy,
July, 2001.

[47] Ronald Rivest, "The RC5 encryption algorithm," in 1st Workshop on Fast Software
Encryption,, 1995.

[48] Mark Luk, Ghita Mezzour, Adrian Perrig, Virgil Gligor, "MiniSec: A secure sensor
network communication architecture," in In the Proceedings of ACM and IEEE
Conference on Information Processing in Sensor Networks (IPSN), Cambridge,
Massachusetts, USA, April, 2007.

[49] Phillip Rogaway, Mihir Bellare, John Black, Ted Krovetz, "OCB:A Block-Cipher
Mode of Operation for E cient Authenticated Encryption," in ACM TISSEC,
November, 2001.

[50] Burton Bloom, "Space/time trade-offs in hash coding with allowable errors," in In
Communications of the ACM, July 1970.

[51] Leonard Lighfoot, Jian Ren and Tongtong Li , "An Energy Efficient Link-Layer
Security Protocol for Wireless Sensor Networks," in IEEE EIT, Chicago, USA,
2007.

[52] Shiqun Li, Tieyan Li, Xinkai Wang, Jianying Zhou, Kefei Chen, "Efficient link
layer security scheme for wireless sensor networks," Journal of Information And
Computational Science, vol. 4, no. 2, p. 553–567, 2007.

[53] DJ Wheeler, RJ Needham, "Correction of xtea," in unpublished manuscript,
Computer Laboratory, Cambridge University, 1998.

138

[54] Morris Dworkin , "NIST Special Publication 800-38D. Recommendation for block
cipher modes of operation: Galois/Counter Mode (GCM and GMAC)," 2007.

[55] Necla Bandirmali, Ismail Erturk, "WSNSec: A scalable data link layer security
protocol for WSNs," Ad Hoc Networks, vol. 10, no. 1, p. 37 – 45, 2012.

[56] Mihir Bellare, Joe Kilian, Phillip. Rogaway, "The security of Cipher Block
Chaining," Advances in Cryptology, Crypto '94 Proceedings, Lecture Notes in
Computer Science, vol. 839, pp. 340-358, 1994.

[57] National Institute on Standards and Technology Computer Security Resource
Center, NIST's Policy on Hash Functions
http://csrc.nist.gov/groups/ST/hash/policy.html. Accessed: August, 2012..

[58] Lawrence Bassham, William Burr,Morris Dworkin, James Foti, Edward Roback,
"Report on the Development of the Advanced Encryption Standard (AES),"
National Institute of Standards and Technology, 2000.

[59]
"Performance evaluation of scalable encryption algorithm for wireless sensor
networks," Scientific Research and Essays, vol. 5, no. 9, pp. 856-861, 2010.

[60] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, Niels
Fergusonk,Tadayoshi Kohno, Mike Stay, "The Twofish Team’s Final Comments
on AES selection," NIST, 2000.

[61] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr,Morris
Dworkin, James Foti, Edward Roback, "Report on the Development of the
Advanced Encryption Standard (AES)," Computer Security Division, Information
Technology Laboratory, NIST, 2000.

[62] Xinmiao Zhang, Keshab K. Parhi, "An FPGA-Based Performance Evaluation of
the AES Algorithm," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 9, pp. 545- 557 , 2004.

[63] Lian Huai, Xuecheng Zou, Zhenglin Liu, Yu Han, "An Energy-Efficient AES-
CCM Implementation for IEEE 802.15.4 Wireless Sensor Networks," in
International Conference on Networks Security, Wireless Communications and
Trusted Computing, Wuhan, Hubei, April, 2009.

[64] Martin Feldhofer, Johannes Wolkerstorfer, Vincent Rijmen, "AES Implementation
on a Grain of Sand," in In IEEE Proc. on Information Security, 2005.

[65] Panu Hämäläinen, Timo Alho, Marko Hännikäinen,Timo D. Hämäläinen, Design
and implementation of low-area and low-power AES encryption hardware core.In
Proc.9th Euro micro Conf. Digital System Design (DSD2006),Cavtat,Croatia,
pp.577–583, 2006.

[66] Nele Mentens, Lejla Batina, Bart Preneel, Ingrid Verbauwhede, "A Systematic
Evaluation of Compact Hardware Implementations for the Rijndael S-Box," in in

139

Proc. CT-RSA, 2005.

[67] Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David Molnar,
Dag Arne Osvik, Benne de Weger, "MD5 considered harmful today: Creating a
rogue CA certificate," in In 25thChaos Communication Congress (25C3),
December, 2008.

[68] Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu, "Finding Collisions in the Full SHA-
1," in Advances in Cryptology, proceedings of CRYPTO 2005, Lecture Notes in
Compute Science 3621, 2005.

[69] Makoto Sugita, Mitsuru Kawazoe, Hideki Imai, "Basis Based Cryptanalysis of
SHA-1," Cryptology ePrint Archive, Report 2006/098, 2006.

[70] Shai Halevi, Hugo Krawczyk, "Strengthening Digital Signatures via Randomized
Hashing," Advances in Cryptology - CRYPTO ‘06, vol. 4117, pp. 41-59, 2006.

[71] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, "The Keccak
SHA-3 submission," http://keccak.noekeon.org/Keccak-submission-3.pdf, 2011.

[72] "http://www.xilinx.com/products/spartan6/index.htm".

[73] Ronald Rivest, Adi Shamir, Leonard Adleman, "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems," Communications of the ACM, vol. 21,
no. 2, p. 120–126, 1978.

[74] Michael Rabin, "Digital Signatures and Public Key Functions as Intractable as
Factoring," Technical Memo TM-212, Lab. for Computer Science, MIT, 1979.

[75] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, "NTRU: A Ring Based Public
Key Cryptosystem," in Algorithmic Number Theory (ANTS III), Portland, OR,
June, 1998.

[76] Ian Blake, Gadiel. Seroussi, Nigel Smart, Elliptic Curves in Cryptography,
Cambridge University Press, Cambridge University Press, 2000.

[77] National Institute of Standards and Technology. Recommended Elliptic Curves for
Federal Government Use. August, 1999..

[78] Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor
Networks, John Wiley & Sons: Chichester ISBN: 978-0-470-09510-2, June, 2005,
p. 44.

[79] Peter Montgomery, "Speeding the Pollard and Elliptic Curve Methods of
Factorizations," Math. Comp., vol. 48, pp. 243-264, 1987.

[80] Daniel Bernstein, Tanja Lange, "Faster addition and doubling on elliptic curves,"
Advances in Cryptology ASIACRYPT 2007, Lecture Notes in Computer Science
4833, 2007.

[81] George Robert Blakley, "A Computer Algorithm for Calculating the Product A.B

140

modulo M," IEEE Transactions on Computers, Vols. C-32, no. 5, p. 497–500, May
1983.

[82] Paul Barrett, "Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor," Advances inCryptology -
Crypto‘86, LNCS, vol. 263, p. 311–323, 1987.

[83] Peter Montgomery, "Multiplication without trial division," Mathematics of
Computation, vol. 44, p. 519–521, 1985.

[84] David Narh Amanor, Christof Paar, Jan Pelzl, Viktor Bunimov, Manfred
Schimmler, "Efficient hardware architectures for modular multiplication on
FPGAs," in Proc. 15th Int’l Conf. Field Programmable Logic and Applications
(FPL ’05), 2005.

[85] Miroslav Knezevi , Lejla Batina, Ingrid Verbauwhede, "Modular Reduction
without Precomputational Phase," in Proc. IEEE International Symposium on
Circuits and Systems (ISCAS), May, 2009.

[86] Standards for Efficient Cryptography Group (SECG). Recommended Elliptic Curve
Domain Parameters. SEC 2, september, 2000.

[87] Certicom ECC Challenge. November 10, 2009 update.
http://www.certicom.com/images/pdfs/challenge-2009.pdf.

[88] Fact Sheet NSA Suite B Cryptography, U.S. National Security Agency, (2009).
http://www.nsa.gov/ia/programs/ suiteb_cryptography/index.shtml .

[89] Daniel Bernstein, Irrelevant patents on elliptic-curve cryptography.
http://cr.yp.to/ecdh/patents.html. Retrived August 2011.

[90] Certicom, "http://www.ecc-challenge.info/," retrived Feb, 15, 2013.

[91] Certicom research, "SEC 2: Recommended Elliptic Curve Domain Parameters,"
Standards for Efficient Cryptography Group (SECG), 2010.

[92] Lejla Batina, Jorge Guajardo, Bart Preneel, Pim Tuyls, Ingrid Verbauwhede,
"Public-Key Cryptography for RFID Tags and Applications," in RFID Security:
Techniques,Protocols and System-On-Chip Design, 2008.

[93] Erdinc Ozturk,Berk Sunar, E. Savas, "Low-Power Elliptic Curve Cryptography
Using Scaled Modular Arithmetic," in Cryptographic Hardware and Embedded
Systems - CHES, 2004.

[94] Gunnar Gaubatz, Jens-Peter Kaps, Erdinc Ozturk, Berk Sunar, "State of the art in
ultra-low power public key cryptography for wireless sensor networks," in Third
IEEE International Conference on Pervasive Computing and Communications
Workshops, Workshop on Pervasive Computing and Communications Security–
PerSec'05, 2005.

[95] Sandeep S. Kumar, Christof Paar, "Are standards compliant Elliptic Curve

141

Cryptosystems feasible on RFID?," in Workshop on RFID Security, Graz, Austria,
2006.

[96] Harald Aigner,Holger Bock, Markus Hutter, Johannes Wolkerstorfer, "A low-cost
ECC coprocessor for smartcards," in Cryptographic Hardware and Embedded
Systems - CHES 2004, LNCS 3156, 2004.

[97] Yong Ki Lee, Kazuo Sakiyama,Lejla Batina, Ingrid Verbauwhede, "Elliptic Curve
Based Security Processor for RFID," IEEE Transactions on Computer, vol. 57, no.
11, p. 1514–1527, 2008.

[98] Pim Tuyls, Lejla Batina, "RFID-tags for Anti-Counterfeiting," Topics in
Cryptology - CT-RSA, vol. 3860, pp. 115-131, 2006.

[99] Lejla Batina, Nele Mentens, Kazuo Sakiyama,Bart Preneel, Ingrid Verbauwhede,
"Low-Cost Elliptic Curve Cryptography for Wireless Sensor Networks," in Third
European Workshop on Security and Privacy in Ad hoc and Sensor Networks,
Hamburg, Germany, 2006.

[100] Junqi Zhang, Vijay Varadharajan, "Wireless sensor network key management
survey and taxonomy," Journal of Network and Computer Applications, vol. 2010,
no. 33, p. 63–75, 2010.

[101] Siquan Hu, Mehul Motani, "Early Overhearing Avoidance in Wireless Sensor
Networks," NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet, vol. 4982, pp. 26-35, 2008.

[102] Marcos A. Simplicio Jr, Bruno T. de Oliveira, Cintia B. Margi, Paulo S.L.M.
Barreto, Tereza C.M.B. Carvalho, Mats Näslund, "Survey and comparison of
message authentication solutions on wireless sensor networks," Ad Hoc Networks,
2012.

[103] Paolo Santi, Janos Simon, "Silence is Golden with High Probability:Maintaining a
Connected Backbone inWireless Sensor Networks," Lecture Notes in Computer
Science, vol. 2920, pp. 106-121, 2004.

[104] James Nechvatal,Elaine Barker, Lawrence Bassham, William Burr,Morris
Dworkin, James Foti, Edward Roback, "Report on the Development of the
Advanced Encryption Standard (AES)," National Institute of Standards and
Technology, October 2, 2000.

[105] Abidalrahman Mohammad, H. Marzi, N. Aslam and L. Tawalbeh, "Hardware
Implementation of Secure hasing Functions on FPGAs for WSNs," in Third
International Conference on the Applications of Digital Information and Web
Technologies (ICADIWT), Istanbul, Turkey, July, 2010.

[106] Sergei Skorobogatov, "Physical Attacks on Tamper Resistance: Progress and
Lessons," in 2nd Army Research Office Workshop on Hardware Assurance,
Washington, DC, USA, April, 2012.

142

[107] Omnetpp. Available at: http://www.omnetpp.org/.

[108] Gunter Bolch, Stefan Greiner, Hermann de Meer, Kishor Shridharbhai Trivedi,
Queueing Networks and Markov Chains : Modeling and Performance Evaluation
With Computer Science Applications, Wiley-Interscience, 2006.

[109] Rkjane Forri, "The strict avalanche criterion: spectral properties of booleans
Advances in cryptology, Crypto’88, Lecture

Notes in Computer Science, vol. 403, p. 450–468, 1990.

[110] Walid Y. Zibideh, Mustafa M. Matalgah, "Modified-DES Encryption Algorithm
with Improved BER Performance in Wireless Communication," in Proceedings of
the 2011 IEEE Radio and Wireless Symposium (RWS 2011) part of the Radio
Wireless Week (RWW 2011), Phoenix, AZ, USA, January, 2011.

[111] Mohamed A. Haleem, Chetan Nanjunda Mathur, Rajarathnam Chandramouli, K. P.
Subbalakshmi, "Opportunistic Encryption: A Trade-Off between Security and
Throughput in Wireless Networks," IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 4, p. 313–324, 2007.

[112] E. Blaß, M. Zitterbart, "Efficient Implementation of ECC for Wireless Sensor
Networks," Telematics Technical Reports, University of Karlsruhe, March 2005.

[113] Joseph Bonneau, Ilya Mironov, "Cache-Collision Timing Attacks Against AES," in
Cryptographic Hardware and Embedded Systems CHES, Yokohama, Japan,
October, 2006.

[114] M. Healy, T. Newe, and E. Lewis, "Efficiently securing data on a wireless sensor
network," Journal of Physics: Conference Series, vol. 76, no. 1, 2007.

[115] Edward Sazonov, Ratneshwar Jha , Kerop Janoyan, Vidya Krishnamurthy, Michael
Fuchs, Kevin Cross, "Wireless Intelligent Sensor and Actuator Network (WISAN):
a scalable ultra-low-power platform for structural health monitoring," in Health
Monitoring and Smart Nondestructive Evaluation of Structural and Biological
Systems, 2006.

[116] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul,Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, Edward W.
Felten, "Lest We Remember: Cold Boot Attacks on Encryption Keys," in Proc.
17th USENIX Security Symposium, San Jose, CA, 2008.

[117] NIST, FIBS-PUB 180-2,Secure Hash Standard, August, 2002.

[118] Katsuyuki Okeya, Hiroyuki Kurumatani, Kouichi Sakurai, "Elliptic Curves with the
Montgomery-Form and Their Cryptographic Applications," Lecture Notes in
Computer Science, vol. 1751, pp. 238-257, 2000.

[119] Viktor Bunimov, Manfred Schimmler, "Area and Time Efficient Modular
Multiplication of Large Integers," in IEEE International Conference on
Application-Specific Systems, Architectures, and Processors, 2003.

143

[120] Cetin K. Koc, Tolga Acar , "Montgomery multiplication in GF(2k)," Designs,
Codes and Cryptography., vol. 14, no. 1, pp. 57-69, 1998.

[121] Darrel Hankerson, Alfred Menezes, Scott Vanstone, Guide to Elliptic Curve
Cryptography, Springer-Verlag, 2004.

[122] Marcelo E. Kaihara, Naofumi Takagi, "A VLSI algorithm for modular
multiplication/division," in IEEE 16th Symposium on Computer Arithmetic, Los
Alamitos, California, 2003.

[123] Chang Hoon Kim, Soonhak Kwon, Jong Jin Kim, Chun Pyo Hong, "A compact and
fast division architecture for a finite field GF(2m)," in The international conference
on Computational science and its applications, 2003.

[124] Virantha N. Ekanayake, Clinton Kelly, Rajit Manohar, "BitSNAP: Dynamic
Significance Compression For a Low-Energy Sensor Network Asynchronous
Processor," in Proceedings of the 11th International Symposium on Asyncronous
Circuits and Systems, March 2005.

[125] Joyce Kwong Yogesh Ramadass, Naveen Vermal, Markus Koeslerl, Korbinian
Huber, Hans Moormann, Anantha Chandrakasan, "A 65nm Sub-Vt,
Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC
Converter," in IEEE International Solid-State Circuits Conference (ISSCC),
February 2008.

[126] Bo Zhai, Leyla Nazhandali, Javin Olson, Anna Reeves, Michael Minuth, Ryan
Helfand,Sanjay Pant, David Blaauw, Todd Austin , "A 2.60 pJ/Inst subthreshold
sensor processor for optimal energy efficiency," in IEEE Symposium on VLSI
Circuits (VLSI-Symp), June 2006.

[127] David J. Malan, Matt Welsh, Michael D. Smith, "Implementing Public-Key
Infrastructure for Sensor Networks," ACM Transactions on Sensor Networks, vol.
4, no. 4, 2008.

[128] Kui Ren, Kai Zeng, Wenjing Lou, Patrick J. Moran, "On Broadcast Authentication
in Wireless Sensor Networks," in IEEE Transactions on Wireless Communications,
2007.

[129] Osman Ugus, Dirk Westhoff, Ralf Laue, Abdulhadi Shoufan, Sorin A Huss,
"Optimized Implementation of Elliptic Curve Based Additive Homomorphic
Encryption for Wireless Sensor Networks," in 2nd Workshop on Embedded
Systems Security, 2007.

[130] "Artix-7 FPGAs Data Sheets," Xilinx Corporation, 2013.

144

A
p

p
en

d
ix A

–
S

am
p

le ru
n

for
en

cryp
tion

 p
rim

itives

Figure A
.1

A
ES input

Figure A
.2

A
ES output

144

145

Figure A
.3

SH
A

-256 input

Figure A
.4

SH
A

-256 output

145

146

Figure A
.5

Elliptic curve point m
ultiplication input

Figure A
.6

Elliptic curve point m
ultiplication output

146

