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ABSTRACT

Based on results from a simple three-level quasi-geostrophic model, Lin and Derome suggested
that atmospheric predictability is influenced by the Pacific/North American (PNA) pattern. In
the present study, predictability experiments are conducted with the Canadian Centre for
Climate Modelling and Analysis general circulation model (CCCma GCM). A 47-yr integration
of the GCMwith specified sea surface temperature (SST) for the years 1948–94 is first performed.
Forecasts are initiated whenever the PNA pattern is in a strong positive or strong negative
phase during this simulation. For each forecast, an ensemble of six initial conditions is generated
with small random perturbations. Forecasts initiated when the PNA is in its positive phase
have smaller growth rates of ensemble standard deviation than forecasts initiated when the
PNA is in its negative phase. Regional characteristics of the prediction spread are also examined.
Similar experiments are conducted to determine the relationship between atmospheric predict-
ability and SST anomalies in the tropical Pacific. Forecasts initiated when tropical SST anomal-
ies are positive have smaller growth rates of ensemble standard deviation than forecasts initiated
when tropical SST anomalies are negative. However, cases with positive tropical SST anomalies
but without a strong PNA pattern show a similar prediction spread to cases with negative SST
anomalies. The results suggest that, in comparison to the PNA pattern, the influence of tropical
SST anomalies is only secondary. A set of three-layer diagnostic equations is used to analyze
the GCM results. It is speculated that the transient eddies have a stronger influence on the
circulation anomalies (and therefore reduce the atmospheric predictability more) in the negative
PNA phase than in the positive PNA phase.

1. Introduction nature of the dynamic system and an inevitable
presence of errors in the initial conditions, boundary
conditions and model equations. Early, perhapsIn his celebrated papers, Lorenz (1963, 1969)
overly optimistic estimates of the limit are aboutdiscussed the uncertainties related to the atmo-
two weeks for the predictions of synoptic-scale flowspheric governing equations, which lead to the
(Charney et al., 1966; Smagorinsky, 1969).concept of an ultimate time limit in which skilled
The uncertainties of atmospheric predictionspredictions of atmospheric evolution can be made
can be addressed by making an ensemble ofby a deterministic dynamic forecast model. The
forecasts started from slightly different initial con-existence of such a limit on atmospheric predictabil-
ditions. Epstein (1969) and Leith (1974) attemptedity results from the combination of the nonlinear
to measure the sensitivity of stochastic–dynamic
forecasts to initial condition errors and therefore,* Corresponding author.

e-mail: jian.sheng@ec.gc.ca evaluate the confidence of the forecasts. Spatial
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and time averages have been used to make filtered In the present paper, the relationship between
the predictability and the PNA pattern is investi-extended-range forecasts. When different average

processes are taken, rapid growth of initial errors gated in a perfect model context using the
Canadian Centre for Climate Modelling andassociated with the high-frequency eddies is

reduced, although the synoptic scale flow is no Analysis (CCCma) general circulation model
(GCM). Using a GCM to study atmosphericlonger predicted, as in a single forecast.

In a more recent effort (Derome et al. 2001), predictability has some advantages compared to
a simple model or an operational forecast model.forecasts made by a numerical weather prediction

model and by a general circulation model (GCM) The GCM has sophisticated physical parameteriz-
ation schemes in comparison to simple models,are linearly combined to extend the experimental

dynamic forecasts up to a season. The coefficients such as the quasi-geostrophic model of Lin and
Derome (1996) and therefore provides a moreof the linear combination depend on the coeffi-

cients of leading empirical orthogonal functions comprehensive platform to test the relationship
between the PNA pattern and predictability. The(EOFs) of the forecasts from the two models.

For a specific model, considerable case-to- CCCma GCM is a uniform test ground for multi-
year forecast experiments. As operational modelscase variations exist in the predictability of the

atmospheric evolution in the extended range. are frequently modified and presumably improved,
it is difficult to distinguish the effects of modelPresumably certain types of flow configurations

are inherently more predictable and hence amen- changes from that of PNA pattern when we com-
pare predictions for more than just a few years.able to deterministic forecast methods than other

types. Furthermore, model weaknesses may have In addition to the PNA pattern, the relationship
between the predictability and the sea surfacea less negative influence on the predictability of

some dynamic structures. Miyakoda et al. (1986) temperature (SST) anomalies in the equatorial
Pacific is also examined in the present study. Chendiscussed a number of one-month predictions

of the GFDL (Geophysical Fluid Dynamics (1990) showed that the prediction skill of the
National Meteorological Center medium-rangeLaboratory) model and reported significant vari-

ability on predictability from year to year. forecasts was higher over the PNA sector during
the El Niño winters than during non-El NiñoBranstator et al. (1993) attempted to identify low-

frequency circulation components that are highly winters. Since the PNA pattern has a good correla-
tion with the tropical SST anomalies (Horel andpredictable in medium- and extended-range

numerical forecasts. These studies generally sup- Wallace, 1981), the relative importance of the two
factors will be compared in our forecastport the notion that predictability can be enhanced

if favorable flow patterns prevail. experiments.
The paper is organized into sections as follows.Among other atmospheric configurations, the

Pacific/North American (PNA) pattern has The model and GCM experiments are described
in Section 2. In Section 3, the relationship betweenreceived particular attention. Palmer (1988) found

that the prediction skill of the medium-range the tropical SST anomalies and the PNA pattern
simulated by the GCM is investigated with theforecasts from the ECMWF (European Centre for

Medium-Range Weather Forecasts) is correlated singular value decomposition (SVD) analysis.
Prediction spread of model experiments for differ-with the PNA index. The increased instability was

explained with a barotropic model. More recently, ent PNA phases is presented Section 4. The results
are summarized in Section 5.Lin and Derome (1996) discussed changes in

predictability associated with the PNA pattern in
a three-level T21 quasi-geostrophic (Q-G) model.
They performed a large number of forecast experi- 2. Model and experiment design
ments showing that predictability is higher during
the positive PNA phase than that during the The prediction experiments in the present paper

are made with the Canadian Centre for Climatenegative phase. This was shown in the sense of a
global average, but the signal was particularly Modelling and Analysis second-generation general

circulation model (GCMII). The model has beenstrong over the North Pacific, North American
and the North Atlantic regions. documented by McFarlane et al. (1992) and used
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for climate change simulations as discussed by significance of our approach is that the results of
this study provide a method to assess the confid-Boer et al. (1992). CCCma GCMII has ten vertical

levels (L10) and a triangularly truncated spectral ence of extended-range forecasts before the predic-
tion actually starts.representation of 32 longitudinal waves (T32).

During the model integration, SST and sea-ice Once a month is selected for the prediction
experiment, an ensemble of six (6) forecasts isboundary are specified by observed mean monthly

values from the GISST (Global sea-Ice and Sea made with the same specified bottom boundary
condition but different initial conditions, per-Surface Temperature) data set, which is compiled

and processed by the Hadley Centre of the UK turbed by the introduction of small errors. To
generate the six different initial conditions, allMeteorological Office. CCCma GCMII uses an

improved scheme for the time interpolation of variables in the model ‘restart file’, which stores
all the variables necessary to continue an ongoingSST such that the observed mean monthly values

are preserved in the model output (Sheng and integration, are randomly perturbed. The formula
for the initial condition follows Schubert andZwiers, 1998). CCC GCMII has also been coupled

to a dynamic ocean general circulation model and Suarez (1989):
u! sed to perform a number of climate change

f *= f+e( f (2)− f (1)) , (1)
simulations (Flato et al., 2000; Boer et al., 2000a;
2000b). where, e=0.01, f (1) and f (2) are variables at the
Prior to the prediction experiment, a 47-yr same calendar day but two different, randomly

(1948–1994) integration of the model is carried chosen years. Perturbations introduced by Eq. (1)
out using the GISST sea surface temperature and generate six different initial states, which provide
sea-ice extent information as the boundary condi- the prediction uncertainties needed for the
tion. The climatology and low-frequency variabil- ensemble forecasts. The random perturbation
ity of the simulation are discussed in Zwiers et al. method turns out to be very successful, as all
(1999). This 47-yr GISST integration provides the branched time integrations restart quite smoothly
background atmospheric conditions for the without noticeable imbalances. This process is
extended forecast experiments. schematically illustrated in Fig. 1.
In the present study, a forecast experiment is Each forecast lasts 20 d, since no forecast skill

initiated for a winter month (December, January remains afterward. We take the perfect model
or February) only if the model atmosphere for approach as in Lin and Derome (1996), and the
the previous month (November, December or predictability is assessed by the standard deviation
January) is in a strong PNA phase or strong SST
anomalies exist in the tropical Pacific. The use of
PNA or SST information from the previous
months imitates the operational mode of long-
term forecasts, in which observed monthly means
are not available for the forecast period. The
persistence of PNA index implies that a strong
PNA pattern in the previous month will most
likely be followed by a similar pattern during the
current month, and so does the persistence of SST
anomalies. Detailed criteria for selecting the
months for the forecast experiments are discussed
in Section 4.
The experiments are designed such that the
predictions are started only after a strong PNA
pattern has already been established. This
approach is somewhat different from the one
adopted in Lin and Derome (1996), in which
predictions are compared in the same period a Fig. 1. Schematic illustration of the prediction

experiments.strong PNA pattern is in existence. The practical
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within each forecast ensemble: potential is interpolated from the model Gaussian
grid to a 51×55 Northern Hemisphere polar
stereographic grid. Mean monthly anomalies areS=C 1(n−1) ∑

j
Az:j− 1n ∑

k
z:kB2D1/2, (2)

obtained by removing the 47-yr climatology of
the month from the model monthly mean timewhere n is the size of the ensemble prediction, z is
series. The SVD analysis covers the November,the geopotential height at model vertical level g=
December and January period with 3×47=1410.542, subscripts j and k index the forecasts within
months in total.an ensemble, and (: ) is a 5 d time average. Under
Principal component analysis (PCA) is appliedthe perfect model approach, the standard devi-
to SST and geopotential prior to the SVD analysis,ation S is a measure of prediction spread, and
and only the first ten eigenvectors from eachtherefore a measure of forecast sensitivity to errors
dataset are retained as input for SVD. Retainedintroduced in initial conditions. A lower value of
eigenvectors explain 85 and 89% of the totalS indicates a higher confidence in the ensemble
variance for the SST and geopotential fields,forecasts, and therefore a higher predictability
respectively. A sensitivity study of SVD has beenwith a perfect model.
carried out with eight retained eigenvectors forThe ensemble size n=6 is used in the present
both SST and geopotential, and the results arestudy. Although a larger ensemble size is preferred
virtually unchanged (not shown).in calculating the prediction spread of individual
The covariance matrix for SVD is calculatedensemble, our results are reasonably stable because
with the retained eigenvectors as the input timeall calculations shown in Section 4 are based
series. The first mode explains roughly 66% of theon averages of 20 ensembles and each ensemble
squared covariance, and the temporal correlationcontains six forecasts.
coefficient between the time series of SST and
geopotential is about 0.38. We will ignore all other
modes in this study.3. SVD analysis of GCM Results
Figure 2a shows the structure of the first SVD
mode for the 500 hPa geopotential. It has theThe technique of singular value decomposition

(SVD) is applied to the SST anomalies and the familiar structure of the observed PNA pattern,
except that the subtropical center in the Pacific,500 hPa geopotential height fields simulated by

the CCCma GCMII. By objectively isolating pairs which is outside of the analysis grid, is not very
well defined. The first SVDmode of SST anomaliesof spatial patterns of SST and height fields that

have the highest covariance, the SVD analysis (Fig. 2b) is a warm temperature tongue in the
tropical eastern Pacific, reminiscent of the SSTidentifies patterns that tend to occur synchron-

ously with one another. Theoretical and practical structure during the El Niño episodes.
On summary, the SVD analysis shows that,aspects of SVD can be found in Bretherton et al.

(1992). with the bottom boundary conditions specified by
the GISST data set, the CCCma GCMII demon-The purpose of the SVD analysis is to verify

that the GCM simulates the well known PNA strates a reasonable simulation of the observed
midlatitude PNA pattern in terms of its spatialpattern in the 47-yr GISST integration and repro-

duces the positive correlation between the SST structure. The model PNA pattern is positively
correlated with the tropical Pacific SST anomalies,anomalies in the equatorial Pacific and the midlat-

itude PNA pattern (Horel and Wallace, 1981). In in agreement with the observations. Simulations
of the PNA and other low-frequency patterns inaddition, the SVD analysis generates time series

of the PNA pattern and SST anomalies as the CCCma GCMII have been reported in Zwiers
et al. (1999).projections of the original data sets onto the SVD

modes, which will be used later to select the Since the first mode of SVD represents the
combined signal of El Niño and PNA pattern inmonths for the prediction experiments.

The domain of SST for the SVD analysis is the model, we will use the two time series of the
SST and geopotential as indexes to select a monthlimited to the tropical Pacific between 20°N and

20°S. Monthly mean SST fields are projected onto as the period of strong PNA phase or SST
anomalies.the model Gaussian grid. Simulated 500 hPa geo-
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Fig. 3. Mean and standard deviation of the prediction
scores as functions of time. Units in meters.

lose their practical values, on average, althoughFig. 2. (a) Spatial height pattern of the first SVD modes
the implied correlation of 0.5 is not negligible foras the correlation between the height expansion coeffi-

cients and the height anomalies. (b) As in (a) but for SST some applications. As we will show next, however,
anomalies. Contour interval 0.1. the prediction spread varies considerably from

case to case.
In the first experiment (EXP1), we stratify indi-4. Results of prediction experiments
vidual months in the winter season according to
the strength of the PNA pattern. The time seriesIn Fig. 3 the solid curve shows the prediction

spread S as a function of forecast length, averaged of the first SVD mode for the SST and 500 hPa
geopotential are shown in Fig. 4 as a scatterover the polar cap north of 20°N and over all

prediction ensembles, including all the experiments diagram. The abscissa measures the amplitude of
tropical SST anomalies and the ordinate, the PNAin +PNA, −PNA, +SST and −SST (see defini-

tions below) groups. The vertical bars represent pattern. From the 141 months represented by
small crosses, a positive correlation can bethe standard deviation of S among the ensembles.

The horizontal dashed line of 74.6 m is the climato- observed between the PNA and SST time series
from the model simulation.logical standard deviation of the geopotential. The

model forecasts show considerable variability of The 20 months with the highest PNA projec-
tions are selected as Group +PNA. They areprediction spread in time. Since the prediction

spread is measured in terms of the standard devi- enclosed in the upper dashed box in Fig. 4.
Similarly, the 20 months with the lowest PNAation within each forecast ensemble, the rising

trend with time indicates the gradual increase of projections are enclosed in the lower dashed box
as Group −PNA. The difference of the meanuncertainty due to the initial random perturbation

and the loss of predictability. Figure 3 shows that projection coefficients between the +PNA and
−PNA groups is 2.3 for geopotential and 1.4 forduring the first 5 d the standard deviation

increases gradually. This increase accelerates SST (Fig. 4).
The months included in +PNA and −PNAbetween day 5 and day 15 and finally levels off

after day 15. It can be seen that the prediction are selected as the starting months of the forecast
experiments. For each month in the two groups,spread, on average, reaches the climatological

value at about 12.8 d. After that, the predictions six forecasts are started at the first day of the
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Fig. 4. EXP1. Scatter diagram of the time series of the first SVD mode for the SST and 500 hPa geopotential. The
abscissa represents SST and the ordinate, geopotential. Non-dimensional units. The 20 months of the highest and
the lowest PNA projections are enclosed in the upper and lower rectangular boxes, respectively. The 20 months of
the highest and the lowest SST projections are enclosed in the right and left boxes.

following month, with the perturbed initial condi- in the −PNA group. We see that during the first
a few days of the forecasts, the two curves aretions described in Section 2. Each forecast con-

tinues for 20 days, beyond which no predictability hard to separate. After day 5, however, the+PNA
group shows consistent lower prediction spreadexists based on the criteria of climatological stand-

ard deviation we adopted. during the rest of the 20-d forecast period. The
improvement on the time limit of skillful forecastFigure 5 shows the spread as a function of

prediction length, averaged over the polar cap is about 1.4 d, measured by the time for the
prediction spread to reach the value of the climato-north of 20°. The thick solid curve in Fig. 5

represents the mean spread for the 20 forecasts in logical standard deviation.
Similarly, we stratify individual months accord-the +PNA group, and the thin solid curve, that

Fig. 5. EXP1. Prediction score as functions of time.
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ing to the SST anomalies in the tropics. In the selected as the 20 months inclosed in the lower
dashed box in Fig. 6.scatter diagram (Fig. 4), the 20 months with the

highest ( lowest) SST projections are enclosed in The results of the +PNA and −PNA groups
are shown in Fig. 7 as functions of time. Thethe right ( left) solid box for the +SST (−SST)

group. The difference in the mean projection forecasts for the +PNA group again outperform
that for the−PNA group during most of the 20-dcoefficients between the +SST and −SST groups

is 0.9 for geopotential and 3.1 for SST (Fig. 4). forecast period, in good agreement with EXP1,
indicating that the phase of the PNA pattern hasResults for predictions made during winter

months with strong SST anomalies are also shown a strong impact on the predictability, with or
without the presence of strong SST anomalies inin Fig. 5. The +SST group, represented by the

dashed curve, outperforms the -STT group (the the tropical Pacific.
We also examined the relationship between thedotted curve) significantly after day 5 of the

forecast period. The improvement on the predict- predictability and the tropical SST anomalies
excluding the influence of the PNA and tropicalability is roughly 1.3 d.

In light of the positive correlation between the SST correlation. This was done by selecting the
+SST group as the 20 months which show thePNA pattern and the tropical SST anomalies, the

results for the +SST and −SST groups are not highest SST time coefficients but do not belong
to the group with top 20 PNA projections. Thesurprising, since many cases included in the+SST

(−SST) group are also found in +PNA −SST group is similarly selected. The +SST
group and the −SST group are inclosed in the(−PNA) group.

A second forecast experiment (EXP2) is right and left solid boxes in Fig. 6, respectively.
Figure 7 indicates that the prediction spread fordesigned to examine the relationship between the

predictability and initial conditions, excluding the the+SST group is not significantly different from
that of the −SST group, and there is almost nocorrelation between the PNA pattern and tropical

SST anomalies. In this experiment, the +PNA improvement for the time limit of predictability.
In fact, both +SST and −SST groups showgroup is selected as the 20 months which show

the highest PNA time coefficients but do not prediction spread close to the −PNA group. In
other words, even with the presence of strongbelong to the group with top 20 SST projections.

This is shown in Fig. 6 as crosses enclosed in the positive SST anomalies in the tropical Pacific,
atmospheric predictability may not improve if theupper dashed box. Similarly the −PNA group is

Fig. 6. Same as Fig. 4, except for EXP2. See text for more details.
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Fig. 7. Same as Fig. 5, except for EXP2.

PNA pattern is in a weak phase. These results group has better prediction spread than +PNA
from day 2 to day 9 and again from day 14 tostrongly suggest that the influence of the tropical

SST anomalies on the predictability is only sec- day 20, but a poorer spread from day 9 to day 14.
The northwestern Atlantic region (Area 3, Fig. 10c)ondary and indirect through the SST and PNA

correlation. shows very similar features as Area 1, except a
slight return of predictability! in the late predictionThe difference in prediction spread S between

the positive and negative phases of the PNA stage (after day 17), as indicated by the a decrease
of the thick solid curve in Fig. 10c. These featurespattern is averaged over the 10-d period between

the forecast day 5 and day 14 (mean ensemble highlight the variability of the prediction spread
on the regional scale.standard deviation in +PNA phase less that in

−PNA phase) for EXP1. Its geographic distribu- Considering the complexity of the GCM model
and the number of factors that may influence thetion is shown in Fig. 8. Most of the Northern

Hemisphere is characterized by negative values. predictability of the ensemble forecast, it is difficult
to conduct a comprehensive investigation of theThe largest negative contributions come from

northwestern Atlantic and northeastern Pacific, physical mechanisms that cause the difference in
error standard deviation between the positive andoffset by weaker positive values in the North

American continent. The difference map for the negative PNA phases. It is reasonable, however,
to speculate that the activities of transient synop-SST groups is very similar to Fig. 8 (not shown).

To investigate further the regional character- tic-scale eddies play an important role. Sheng et al.
(1998) studied the dynamic forcing of the PNAistics of the atmospheric predictability, three areas

are selected to represent the regions of north- pattern by the synoptic-scale eddies and found
that the vorticity flux divergence anomaly is posit-eastern Pacific, North American and northwestern

Atlantic regions (Fig. 9). The prediction spread in ively correlated with the PNA height field, especi-
ally in the upper troposphere. Transient eddiesEXP1 was spatially averaged for each of the three

areas and then plotted against time. In north- tend to strengthen the height anomalies associated
with the PNA pattern both in the positive andeastern Pacific (Area 1, Fig. 10a), the +PNA and

−PNA groups show their typical behavior, with negative phases. The high-frequency transients are
almost impossible to predict over long term andthe +PNA group consistently outperforms the

−PNA group over the entire period of the their nonlinear interactions are the very ca! use of
limited predictability of the atmosphere (Lorenz,forecast. It is noted that the predictability con-

tinues to deteriorate even at day 20. For the North 1963; 1969). In a straightforward attempt to
explain the predictability difference, we will dem-American continent (Area 2, Fig. 10b), the−PNA
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Fig. 8. EXP1. Spatial distribution of the difference in standard deviation for the +PNA and −PNA groups.

onstrate that the influence of eddy forcing on the balance equation
model height anomalies is stronger in the −PNA V2W−VΩ ( f Vx)=0,
group than in the +PNA group.

where the over-bar refers to the monthly averageTo calculate the forcing by the vorticity flux we
mean flow from the GCM, y is the stream function,use a set of global, linearized, steady-state, quasi-
J, the Jacobian operator, x, the velocity potential,nondivergent equations as a diagnostic model
W, the geopotential, s, the static stability parameter,(refer to Sheng et al., 1998 for details):
v, the vertical velocity in isobaric coordinates, p,

Vorticity equation
pressure, R, the gas constant, and D, vertical finite
difference. The horizontal biharmonic diffusionJ(y: , V2y)+J(y, V2y:+ f )+VΩ (F Vx)
coefficient is denoted by k1 , the coefficients of+k1V6yk2V2y−Ff=0, Rayleigh friction and Newtonian cooling, by k2 and
k3 , respectively, andFf , the sole forcing term, repres-thermodynamic equation
ents the eddy vorticity flux convergence. The linear-

J(y: , DW)+J(y, DW9 )+svDp+k1DW ized vorticity, balance and continuity equations are
applied to the 250, 550 and 850 hPa levels, while+k3DW=0,
the linearized thermodynamic equation is written

continuity equation
on the intermediate 400 and 700 hPa levels. The
system is expanded spectrally with a triangularV2xDp+Dv=0,
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Fig. 9. Areas selected for illustration of regional features of atmospheric predictability.

truncation at two-dimensional wavenumber 20 contribution from the transient eddies is smaller in
the positive PNA phase. It is also noted that the(T20). The details of the model can be found in

Sheng et al. (1998). most negative values are found in the eastern Pacific
and western Atlantic, with a positive region overThe forcing term F

f
is calculated from the GCM

output and averaged for the forecast period of the North American continent. This pattern is sim-
ilar to the distribution of the difference in prediction20 d. The response to the forcing as geopotential

height anomalies, denoted as z∞r , is solved from spread between the +PNA and −PNA groups
(Fig. 8). The sign and distribution of Cov(z∞, z∞r)the diagnostic model. This is done for every integ-

ration when the extended-range forecasts were indicate that, during the negative PNA phase, the
transient eddies contribute more to maintainingmade. According to Sheng et al. (1998), the

response represents the forcing on the mean anom- height anomalies. These results, therefore, are con-
sistent with our speculation that the atmosphericaly flow by the transient eddy vorticity flux. After

z∞r is obtained, its covariance with the model height predictability is related to the transient eddy activit-
ies during the different phases of the PNA patterns.anomaly z∞ is computed. Cov (z∞, z∞r ) is therefore a

measure of the contribution of transient eddy Lin andDerome (1996), using their three-level Q–G
model, found that low-frequency anomalies extractforcing to the predicted height anomalies.

Figure 11 shows the difference in Cov(z∞, z∞r) less kinetic energy from the synoptic-scale eddies
during the positive PNA phase. Their results arebetween the+PNA group and−PNA group. For

most of the Northern Hemisphere, the difference in supported by our diagnostic model for the GCM
prediction experiments.Cov(z∞, z∞r) is negative, indicating that the overall
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Fig. 10. EXP1. Prediction score as functions of time for selected areas.

5. Conclusions identify more predictable atmospheric states with
the PNA pattern as the main indicator. The results
can be summarized as follows:Based on the 47-yr GISST integration of

CCCma GCMII with specified boundary condi- (1) The CCCma GCMII reproduces, with reas-
onable fidelity in spatial structure, the PNAtions, predictability experiments are conducted

with selected initial conditions in an attempt to pattern in the GISST integrations. The model
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Fig. 11. Distribution of the difference in between the +PNA and −PNA groups. contour interval 10 m2.

PNA pattern has a good, although somewhat more systematic for periods of warmer tropical
SST anomalies.weak, correlation with the observed tropical SST

anomalies. (4) Cases with positive tropical SST anomalies
but a weak PNA pattern, however, do not show(2) Extended-range forecasts initiated from

strong positive PNA phases tend to have smaller a lower prediction spread than that with negative
SST anomalies. The impact of SST anomalies onprediction spread (higher predictability) than that

initiated from strong negative PNA phases. The the atmospheric predictability is only secondary
and indirect through tropical the SST’s correlationpredictability limit differs by 1.4 d between the

two groups. The GCM experiments on atmo- with the PNA pattern.
(5) The difference in predictability is negativespheric predictability confirm the results from the

three-level Q–G model obtained by Lin and in the northwestern Atlantic and northeastern
Pacific but positive over the North AmericanDerome (1996).

(3) Extended forecasts initiated from months continent.
(6) The steady-state solution of the three-levelwith strong positive tropical SST anomalies tend

to have a smaller prediction spread (higher pre- diagnostic model shows that the transient eddies
have a stronger influence on the model anomaliesdictability) than that with negative tropical SST

anomalies. Our results are consistent with the during the negative PNA phase than that during
the positive PNA phase.findings of Kumar et al. (2000) that changes in

the spread of the atmospheric seasonal means are In the present study, the CCCma GCMII with
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sophisticated dynamic and physical processes is prediction models, as well as whether more accur-
ate forecasts of observed atmospheric state can beshown to have an improved atmospheric predict-

ability in extended-range forecasts, if they are made during the positive PNA phase. Other tele-
connection patterns have also been searched forinitiated from a strong positive phase of PNA

pattern. It is noted that the predictability is meas- similar influence on predictability. With the excep-
tion of Western Pacific pattern, which has a goodured in the context of a perfect model approach.

Further studies are needed to investigate if this temporal correlation with the PNA pattern, we
have had little success.relationship holds for other GCMs and weather
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