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The interpretation of the metal-insulator transition phenomena in disordered two-dimensional electron sys-
tems in terms of density-dependent scaling variables suggests the existence of a quantum critical point at some
critical electron density. However a first principles scaling theory based on renormalization group(RG) meth-
ods predicts a strong temperature dependence of the dimensionless resistivityRsTd, even at smallRsTd, that
is not observed. The observed properties are in fact consistent with a weakly disordered Fermi liquid, and there
are no indications of strong temperature dependence induced by scaling. While the RG expansion in a power
series inRsTd has only been evaluated to lowest order, this should be sufficient to describe experiments in the
region of very smallR. A further apparent anomaly is a return from metal-like to insulating-like behavior for
increasing density. We explain these fundamental discrepancies between the first principles theory and experi-
ment. We find that theR!1 data in the currently attainable temperature range are in a weak scaling regime
described by the logarithmic approximation. We independently determine the density dependent prefactor of
the logarithm using data for the spin susceptibility and effective mass. We find good agreement between theory
and experiment forRsTd in the diffusive regime. We point out that there are corrections to the leading
logarithm approximation that should be observable at still lower temperatures.
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I. WEAK TEMPERATURE DEPENDENCE OF
RESISTIVITY AT SMALL R

Scaling equations based on renormalization group(RG)
methods have played an important part in theoretical inves-
tigations of the metal-insulator(MI ) transition phenomena
observed in two-dimensional electron systems(2DES) in
high purity semiconductor MOSFETs and heterostructures. A
scaling picture is relevant if the observed MI transition
anomalies at low temperature turn out to be due to a continu-
ous second order transition.1 While the bifurcation of the
temperature dependent resistivityRsTd observed at critical
carrier densitiesnc (Refs. 2–5) is a primary feature of the MI
transition, properties ofRsTd in the very low resistivity re-
gion at lowT have also remained puzzling.6

In this paper we consider this low resistivity region,
R!1 in the low temperature diffusive regimekBT!kBTt

=" /tel, wheretel is the Drude elastic scattering time. The
dimensionless resistivityR is proportional to the resistance
per square,R=se2/phdRh. It is the diffusive regime of in-
teracting diffusive modes that is described by RG methods
where a scaling picture is expected to apply. The ballistic
regime which occurs at largerT/Tt requires a separate
treatment,7 but this regime is not relevant near the zero tem-
perature limit.

A first principles RG theory based on a perturbation ex-
pansion in powers ofR has been proposed for the low tem-
perature diffusive regime.8–10 This takes into account the
long range effect of coupled diffusive modes for the 2DES
with Coulomb interactions. The electron-electronse-ed inter-
actions which can have a very strong effect in two dimen-
sions(2D) were treated nonperturbatively. Only the leading

term (one-loop approximation) of the series expansion in
powers ofR for the RG equations has been calculated so far
but this should be sufficient for small resistance. The result-
ing T dependence due to RG scaling in this theory is very
strong, and it is even singular for certain physical
quantities.8–10 However, measurements for smallR show no
indications of aT dependence induced by rescaling which
would be expected from an RG flow in the experimentally
accessible temperature range.11 On the contrary, experiments
at high conductivity can be interpreted in terms of a Fermi
liquid that is only weakly perturbed by quantum interference
and diffusion corrections.12

This result is surprising, particularly if the MI transition
phenomena are indeed due to a quantum critical point(QCP)
accompanied by critical fluctuations. Castellaniet al. noted
that the strong rescaling predicted for the dynamical energy
scale may restrict the observability of the RG scaling ofR to
temperatures so low that they are not currently accessible.13

However, this does not address the role of the tuning param-
eter if the primary bifurcation is due to a QCP with associ-
ated critical fluctuations. The tuning parameter in this case is
the relative density shiftdn=fsn−ncd /ncg.

In this paper we point out that even if the primary bifur-
cation is due to a QCP with associated critical fluctuations,
the properties in the very lowR region will still be those of
a Fermi liquid with weak disorder even at very low tempera-
ture. This result is consistent with the experimental observa-
tions of Ref. 12. There are two reasons for this Fermi liquid-
like behavior. First, the carrier density for lowR is far from
the primary critical densitync so the relative density shiftdn
is not small and hence lies well outside the critical regime.
The correlation lengthj,dn

−n must therefore remain micro-
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scopically small(n is a critical exponent). Effects of critical-
ity due to any QCP will not be observed at these noncritical
densities. No matter how low the temperature is taken, there
can be no critical fluctuations and no renormalization of the
kind associated with the primary transition.

The second reason for the Fermi liquid-like behavior is
the very slow evolution of scaling in the RG equations of
Refs. 8–10 whenR!1. This has the consequence that the
resistivity data forR!1 in the diffusive regime in the cur-
rently available temperature range all lie in the range of weak
scaling corrections. As described in Sec. III, the leadingT
dependence ofRsTd in the diffusive regime is then given by
the well known logT term.8–10,14The leadingT dependence
induced by scaling is similarly weak for all other RG func-
tions. Further evidence of weak scaling in this region is the
change of sign with density of the prefactor of the logT term
at the secondary reentrant insulator transition.

II. REENTRANT INSULATOR TRANSITION

A reentrant insulator, that is a second crossover from “me-
tallic” behavior s]R/]T.0d back to a reentrant “insulator”
behaviors]R/]T,0d as the density increases, was reported
for p-GaAs in Ref. 15. The primary MI bifurcation was ob-
served at a critical densitypc. In addition to this primary
transition, it was found that when the density was further
increased theT dependence ofRsTd reverts from “metallic-
like” back to “insulatorlike” behavior.

We first point out that this reentrant phenomenon cannot
be accounted for by the two-band model forp-GaAs. Recall
that for hole densitiesp.231011 cm−2 the Fermi energy
exceeds the energy where the degenerate hole band splits
into two subbands split by spin-orbit coupling. It has been
argued that the combination of inelastic intersubband scatter-
ing and hole-hole interactions causes the temperature depen-
dence ofRsTd to become metalliclike in behavior and this
picture was applied to the onset of metallic behavior with
increasing hole density and the magnetoresistance at the pri-
mary MI transition.16,17 Later experiments indicated that the
simple two-band model is incomplete and not sufficient to
account for all of the results.18 However, irrespective of the
success or otherwise of this two-band model in accounting
for phenomena at the primary transition, it is not relevant to
the secondary reentrant insulator transition. The two-band
model can only predict insulating to metallic behavior with
increasing density whereas the reentrant insulator effect goes
in the opposite direction, that is, from metallic to insulating
with increasing density.

The reentrant insulator phenomenon has also been re-
ported in conductivity datas=se2/hdG in Si (see Ref. 19).
The T dependence ofG was found to be logarithmic,
G=G0+Csndlog T, with a prefactorCsnd that increased as a
function of density. At low densitiesCsnd was found to be
negative corresponding to “metallic” dependence ofG on T.
However at a second critical densitync2

the Csnd vanished,
and forn.nc2

, Csnd was positive, corresponding to reentrant
“insulator” behavior.

A reentrant effect carries with it an implication thatT
dependent resistivity curves associated with different densi-

ties may cross as the temperature is lowered. Such a crossing
of lines does not occur at a conventional second order tran-
sition, and the reentrant phenomenon would be very puzzling
indeed if it were within the critical range of influence of the
presumed QCP. However this is not the case since the tuning
parameterdn!” 1 whenR!1. This is a further indication that
the reentrant insulator is outside the primary critical regime
and is a distinct additional feature of the disordered 2DES.

III. RG PREDICTIONS AT SMALL R AND WEAK
SCALING

We start by recalling the RG equation forR to leading
order for purely potential scattering,8–10

dR/dy= asg2dR2, s1d

asg2d = nv + f1 + ss2nvd2 − 1d

3h1 − ss1 + g2d/g2dlogs1 + g2dj − gcg. s2d

G2=Zg2 is the electron-hole scattering amplitude for the trip-
let spin state, withZ the dynamical energy scaling function,
andGc=Zgc the particle-particlesp-pd scattering amplitude.
nv is the number of valleys.20 y=log l−1, and rescaling of
momentum and energy is specified by integrating over the
momentum and energy shellslk0

2,k2, Zv /D,k0
2, with D

the diffusion constant.13 There are also coupled RG equa-
tions for G2,

dg2/dy= Rf1/2s1 + g2d2 + gcs1 + 3g2 + 2g2
2dg, s3d

and for Z and Gc.
8–10 A review of the solution to the set of

coupled differential equations for the RG scaling functions,
with emphasis on the strong scaling limit(largey) is given in
Ref. 21.p-p scattering plays no essential role in our discus-
sion so we neglectgc.

Although for the 2D case only a single term indR /dy has
been computed to date, Eq.(1) will nevertheless be valid in
the regime of parameters whereR!1 provided the other
coupled RG equations also remain valid. This is quite differ-
ent from the situation in the vicinity of the bifurcation, where
R,1. Reference 22 showed that higher order terms in the
series are essential for even a qualitative description in the
bifurcation region.

The set of coupled differential equations for the RG pa-
rameters is integrated upward iny and solved simulta-
neously. This leads to a renormalization of the parameters.
The energy scalekBT also renormalizes due to they depen-
dence of dynamical energy rescaling function energyZsyd.
The renormalizations with increasingy can then be inter-
preted in terms of the physical temperature dependence of
RG parameters asT decreases. The observation by Castellani
et al. that the physical temperature at which strong scaling
effects can be observed is sharply suppressed byZsyd (Ref.
13) is particularly important in the strong scaling regime but
is less relevant here since experimental results in the diffu-
sive range forR!1 all lie in the weak scaling regime.

The weak scaling regime is defined as having small scal-
ing induced corrections to all of the RG functions. From the
right-hand sides of Eqs.(1) and (3) it is clear that when
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Rsy=0d!1 the weak scaling regime can extend over a
considerable range ofy. In this range the leadingT depen-
dence ofRsTd is given by replacingasg2sydd in Eq. (1)
by asg2sy=0dd, integrating, and usingZs0d=1 to set
y=logsT0/Td. This yields the well-known logarithmic correc-
tion to the Drude conductivitys0,

DssTd = ssTd − s0 = se2/phdasg2dlogsT/Ttd. s4d

Equation(4) with asg2d given by Eq.(2) at y=0, its value
without rescaling, was first given by Finkelstein[see Eq.
(5.2) of Ref. 8 or Eq.(2.104) of Ref. 21]. The stronge-e
interactions were treated nonperturbatively. Logarithmic cor-
rections to the conductivity in 2D due toe-e interactions, in
addition to that due to weak localization, were considered
earlier by Altshuleret al.23 and by Fukuyama,24 but only to
first order in thee-e interactions. A derivation of Eq.(4) and
an interpretation of the relative contributions of particle-hole
singlet and triplet spin states was given in Ref. 14 using
conventional many-body theory to all orders rather than RG
methods. Reference 14 also explained why the lowest order
perturbation theory result23,24 differed from the correct weak
coupling limit of Ref. 8.

It is important to stress that Eq.(4) is only the leading
correction to the conductivity at the onset of the diffusive
regime. There are further corrections of higher order inR
arising both from higher order terms neglected in Eq.(1) and
from the scaling variation withy of g2syd and Zsyd. How-
ever, even though Eq.(4) gives only the leading quantum
contribution to the conductivity, this can still provide a good
quantitative description of the results of Refs. 15 and 19. The
reason is that the startingRsy=0d!1, so the temperature
range of validity of weak scaling is sufficiently large to cover
the experimental range.

IV. RESULTS AND COMPARISON WITH EXPERIMENT

We now determineg2 from the spin susceptibilityx which
contains the factor 1+g2, and therebyasg2d from Eq.(2). We
use a combination of experimental data and theoretical re-
sults. Attaccaliteet al.25 have calculatedx for the pure 2DES
with zero layer thickness and no disorder. However, for real
samples the effects of both disorder and finite layer thickness
must be taken into account.

A. Si

For Si MOSFETs, where significant disorder along the
interface is unavoidable, the calculated values ofx /x0 (Ref.
25) differ significantly from the values directly measured by
different experimental groups.26,27 The experimental values
are in mutual agreement for densitiesrs&6. x0 is the spin
susceptibility with the same bare band massmb but no Cou-
lomb interactions. Pudalovet al.27 also directly measured the
effective massm! /mb from Shubnikov de Haas oscillation
data. Forrs,5 it is a good approximation to assume the
Dingle temperatureTD, is constant since the change in the
resistance over the studied temperature range is small. The
resulting values ofm! are consistent with other measure-
ments. At lower densitiesrs.5, the parametersm! and TD

become progressively more correlated and this introduces
some uncertainty in the value ofm!.

In Fig. 1(a) we show the resultingg2=smb/m!dsx /x0d
−1 as a function of the density parameterrs using the values
of m! /mb andx /x0 given in Ref. 27. We use throughout the
assumption thatTD is a constant. Figure 1(b) compares our
calculated prefactor of logT with the prefactorCsnd taken
from Fig. 2 of Ref. 19. The measuredCsnd should be com-
pared with ourasg2d /p since Ds in Fig. 2 of Ref. 19 is
expressed in the formDssTd=se2/hdCsndlog T.

We see that theory and experiment are in good agreement
except in the regionrs&3. If we follow the alternate assump-
tion of Pudalovet al.27 that TD is proportional toRsTd, then
for rs.5 our Csnd decreases significantly faster withrs and
the agreement is much poorer in this low density region.

While it is not visible on the scale of this figure, the
measuredCsnd does indeed change sign.19 However it only
just crosses zero whereas our calculatedCsnd continues to
grow with decreasingrs. The high density limit of the theo-
retical Csnd is Csrs→0d=3/p for Si with its two valleys.
This is quite large and positive. It is not clear why the ex-
perimental data at smallrs appear not to extrapolate to this
theoretical limit(see Sec. V).

B. p-GaAs

For p-GaAs there are no measurements forx, and this
together with the second hole subband and the significant

FIG. 1. (a) Calculatedg2 for Si. (b) Dependence of the prefactor
Csnd in Si on density parameterrs. Solid line, from measurements
in Ref. 19. Dashed line, calculatedCsnd;asg2d /p.
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FIG. 2. (a) Calculatedg2 andasg2d as a function of inverse hole density forp-GaAs.(b) ConductivityssTd for p-GaAs for different hole
densities as indicated. Dashed lines, theoretical predictions for diffusive regionT/Tt,1. Dashed-dotted lines, measurements(from Ref. 15).
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anisotropy raise serious difficulties when extracting the data
we need. Therefore in this case we use thex calculated for
the disorder free system.25 That this is a reasonable approxi-
mation for the GaAs/AlGaAs system is supported by the
recent experiments of Vakiliet al.28 for AlAs narrow quan-
tum wells. These give values ofx consistent with Ref. 25.
Effects of disorder should be less important for these systems
since the dopants are remote from the interface.

Figure 2(a) shows the resultingg2 andasg2d as functions
of rs. We have used an effective mass to band mass ratio of
m! /mb=1.2, representing the effect ofe-e interactions. We
compare in Fig. 2(b) the solution of Eq.(4) using the calcu-
latedasg2d with the ssTd andDssTd measured in GaAs by
Hamiltonet al.15 The startings0 is sensitive to the properties
of each sample and so we have used thes0 values given in
Ref. 15. Following Ref. 15 we have used a band mass
mb=0.3 when relatingrs to the hole densityp. This proce-
dure gives the crossover back to insulating behavior at the
observed density, and in addition there is good agreement
between the theoretical and experimental temperature depen-
dences of the conductivity in the diffusive regime which is at
small T/Tt. Approximate values ofTt are identified from
experiment by the crossover from ballistic to diffusive
behavior.7

The temperature range 0.2 K&T&1 K lies outside the
diffusive region on which we are focused, and the experi-
mental curves exhibit a steeper gradient than that determined
from Eq.(4). This is due at least in part to a broad crossover
from diffusive to ballistic behavior at higherT. We note that
for experimentally reported temperatures below 0.1 K, the
carrierT can be higher than the latticeT.

V. CONCLUSION AND DISCUSSION

There is good agreement between theory and experiment
for Si for rs.3 but a discrepancy appears at higher densities.
We have established that the discrepancy is not removed
by including the Cooper channelgc in the determination
of asg2d. However, part of it may be accounted for by
slight changes in theT dependence of Eq.(4) since a
more complete treatment of the weak localization correction
to the conductivity yields the logarithmic factor logfstf

−1

+tel
−1d /tf

−1g. The additional parametertf is the phase relax-
ation rate.29 Equation (4) is the low T limit of this more

complete expression. The density dependence oftf intro-
duces density dependence into the logarithm, and this affects
any experimental determination ofCsnd. In addition, the use
of only a single “cutoff” parametertel in Eq. (4) may be
insufficient since differente-e scattering amplitudes should
strictly have different cutoffs.30 These modifications may
substantially reduce the discrepancy between experiment and
current theory in the case of Si at high densitiesrs,3 that
appears to be systematic.

The logarithmic behavior at lowT reported in Ref. 19 and
also in Ref. 15 is experimental evidence for weak rescaling
for small R. The resultingT dependence in the regime
R!1 is weak for a combination of two reasons. First any
strongT dependence due to a possible QCP will not be ob-
served because the values of the tuning parameter,dn, lie
outside the critical regime of the primary bifurcation. Second
the T dependence predicted by the RG Eqs.(1)–(3) is weak
because the currently available resistivity data forR!1 in
the diffusive regime are all in the range of weak scaling
corrections to all RG functions. The immediate consequence
is that the resistance data should be describable by the well-
known logT with a density dependent prefactor. We deter-
mined the prefactor from independent considerations. The
resulting low temperature diffusive behavior predicted by
Eq. (4) is quantitatively consistent with both Refs. 15 and 19,
and accounts for the reentrant metal to insulator phenomenon
in GaAs and Si. This verifies the consistency of the weak
scaling regime.

Finally, although Eq.(4) with the appropriateasg2d is a
good approximation in the currently accessible diffusive
temperature range, there are nevertheless additional scaling
corrections and these must be included when the temperature
becomes still lower. In particular the logT behavior of the
leading logarithmic approximation does not continue to the
limit of zero temperature and so provides only limited infor-
mation on the ground state itself. Experimental detection of
these higher order corrections will lead to new insight into
the very lowT properties of the 2DES.
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