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We show that the quantum critical point associated with the metal-insulator transition phenomenon in two
dimensions controls an extended critical region encompassing not only the usual quantum critical sector but
also a range of the low-temperature insulator region. The extended range of criticality permits a unified
analysis of data from the insulating region and quantum critical sector, allowing us to determine both the
dynamical critical exponent z and the correlation length critical exponent � from published data from a single
experiment in the insulator critical region. We show that the critical exponents determined from the insulator
sector consistently describe the temperature dependence of the resistance data from the same experiment in the
quantum critical sector. This provides evidence for the presence of a quantum critical point in these systems.
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Quantum phase transitions, which occur by tuning an ex-
ternal parameter at zero temperature, have sparked a great
deal of attention recently.1–3 Cases where static disorder
plays an important role are particularly interesting. This
Brief Report focuses on the metal-insulator �MI� transition
phenomena in two dimensions in the case where the disorder
is due to purely potential scattering. The tuning parameter is
the carrier density n. As n is decreased at low temperature
�T�, a bifurcation is observed in the T-dependent resistivity
��T� into regions with metal-like and insulatorlike slopes.
This occurs at a critical density nc and critical resistivity
�c.

4–9

An analysis of experimental results for the resistivity of Si
and GaAs two-dimensional �2D� semiconductor metal-oxide-
semiconductor field-effect transistor and heterostructures in
the vicinity of the observed separatrix is suggestive of a
quantum phase transition. However, the issue of whether the
metallic curves remain metallic or ultimately become insu-
lating at very low T is difficult to establish definitively. This
is partly due to the fact that the separatrix from which the
critical variation of ��T� with T should be measured is not
expected to be independent of T. Thus, an apparent upturn of
a metallic curve at low T may instead be an indication of a
separatrix which tilts upward. The fundamental question of
whether a 2D system of electrons in the absence of spin-
dependent scattering or magnetic fields has a metallic phase
in the low-T limit and, therefore, a critical point in the phase
diagram still has no definitive answer.

Theoretical work on MI transition phenomena in two di-
mensions has been carried on at two levels. First principles
calculations of properties of weakly disordered electron sys-
tems have been made by perturbative renormalization group
�RG� methods. An important achievement of the RG has
been the prediction that a metallic phase can be stabilized by
electron-electron interactions.10,11 However, the low order
perturbative RG results strictly apply only in the weak dis-
order limit where ��T�, in units of h /e2, is small compared to
unity. In contrast, the bifurcation which signals the putative

MI transition is observed, where ��T��1 is not small. This
strongly disordered regime is outside the range of low order
RG perturbation theory but is amenable to phenomenological
scaling arguments. In particular, it has been shown that scal-
ing theory accounts for the separatrix at the critical density
and for the MI transition phenomenon observed in its imme-
diate vicinity.9,12

In this Brief Report, we apply phenomenological scaling
arguments to develop a strategy to interpret experimental
data and to test for the existence of a quantum critical point
�QCP�. Assuming the observed MI transition phenomena to
be due to a continuous quantum phase transition, consider
the generic features of the phase diagram in the temperature
and density plane proposed in Fig. 1. The semiline n�nc at
T=0 corresponds to the metallic limit of a conducting state
with disorder. The semiline n�nc at T=0 is the ground state
insulating limit. The point �T=0,n=nc� is the QCP of the
transition. In the neighborhood of the QCP, where both T and
�n= �n−nc� /nc are both small, physical properties will
exhibit criticality.

FIG. 1. �Color online� Generic phase diagram with a QCP at a
critical density nc separating insulating and metallic phases at T
=0. For a finite range of nonzero T sufficiently close to the QCP,
thermal properties of both the quantum critical sector and the insu-
lating critical sector are determined by the critical exponents of the
QCP.
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In terms of scaling theory, we are assuming that the QCP
is a scale invariant repulsive fixed point and that n−nc is the
leading relevant perturbation. At T=0, n−nc determines the
correlation length scale ����n�−� in the vicinity of the MI
transition. At finite T, another length scale is relevant, the
thermal length LT�1/T1/z, where z is the dynamical critical
exponent. A critical behavior occurs when � and LT are both
much larger than microscopic length scales of the system. At
n=nc or for any LT��, the thermal length determines the
rate of decay of correlations. This is the usual quantum criti-
cal �QC� sector.1–3

In addition, the region of the phase diagram on the insu-
lating side of the transition, which is sufficiently close to the
QCP and has LT	�, must also exhibit criticality since both �
and LT are large. We refer to this neighborhood of the QCP
as the insulating critical �IC� region. It is well established
that critical exponents in the QC sector are determined by the
QCP.1–3,9 However, for the same reasons, the part of the in-
sulator which is sufficiently close to the QCP will have its
scaling properties determined by the exponents of the QCP.
The fact that the regions of the insulator near the QCP and
the QC sector share the same critical exponents will cease to
be true only if another fixed point becomes dominant as the
RG flow proceeds in the insulator at even lower T.

Critical properties on the metallic side of the transition,
n−nc�0, also reflect the influence of the QCP, but an addi-
tional feature contributes. On the metallic line, there is a
continuum of gapless electron-hole excitations. These soft
modes cause correlation functions to be nonanalytic in the
T=0 limit.13,14 This nonanalyticity is a general feature of
both pure and disordered many-fermion systems.3 In effect,
the soft electron-hole excitations cause generic scale invari-
ance along the entire metallic line. The overall critical be-
havior in the low-T limit near the MI transition for n−nc
�0 is thus determined by the combined effect of the QCP
and the metallic line, both of which exhibit scale invariance.
In this Brief Report, we focus on QC and IC sectors, so we
do not need to consider any specific properties of the metal-
lic phase.

The implications of these points are illustrated in Fig. 1.
We start at fixed density with n�nc in the QC sector and
reduce T. We exit the QC sector and cross over into the
region of the insulating phase. The analysis of experimental
resistivity data taken at points along such paths can reveal
the single universal ��T� as a function of LT /�. There can be
different forms for this function in the limiting cases of large
and small LT /�, but the critical exponents are the same, pro-
vided the path is sufficiently close to the QCP.

We next develop a scaling equation for the critical behav-
ior of ��T� in the IC region. Scaling equations for the resis-
tance can be expressed in the form d� /dx= f�
ee ,��, where
x=log L, with L as the length of the system or the thermal
length LT. The 
ee symbolically indicates dependence on the
e-e scattering amplitudes as additional variables.

The critical resistance �c is obtained as the limiting value
of � in the large LT limit when the density is fixed at n=nc. In
simplified scaling pictures, this dependence is neglected and
the separatrix is identified as the curve for which d��T� /dT
=0. However, this does not give the correct n=nc since 
ee
varies with the renormalization rescaling of LT. This causes

the bifurcation “point” to vary smoothly with T, so there is
no unique relation between the sign of �−�c and the sign of
n−nc and the separatrix is “tilted.” We will show below how
the effect of the tilted separatrix can be accounted for em-
pirically. After isolating this effect, the experimental data can
be described by scaling equations of the simpler form
d� /dx= f���.

The dominant variation of � with L is expected to be
exponential in the insulating limit, ��exp�L /��, with � as the
correlation length. In order to determine the prefactor of the
exponential, we require an explicit scaling equation. We take
d� /dx in the insulator to be represented as a series in powers
of � and log �. The series is positive and monotonically in-
creasing with �. The only a priori condition is that � must
remain finite for all finite L and can diverge only in the limit
L→�. We denote the leading term in this series at large L by
k���
�log ���, where 
, �, and k are all positive. The maxi-
mum allowed values of 
 and � are 
=�=1 since otherwise
� would diverge prior to the L→� limit. The solution of the
scaling equation at large L, d� /dx=k� log �, is then log �
�Lk. Taking the leading variation of � to be exponential in L
fixes k=1. Equivalently, � has a log-normal probability dis-
tribution in the strong disorder limit.

The prefactor of the leading exponential factor is obtained
by including subleading corrections in the scaling equation,
�1/��d� /dx=log �−a−b / log �+¯, where a and b are con-
stants. First, neglect the series in inverse powers of log �.
The solution is then ��L� /�0=exp�log���Ls� /�0��L /Ls��,
where a=log �0 sets the resistance scale and ��Ls� is the
resistance at an arbitrary starting point Ls. The right hand
side is independent of the starting point since
�log���Ls� /�0�� /Ls is 1 /�.

Including the corrections in inverse powers of log �, the
explicit solution becomes ��L�=�0 exp��L /��+b� / �2L�
+ ¯ �. To describe the resistance at finite T, we replace L by
the thermal length LT�1/T1/z, where z is the dynamical criti-
cal exponent of the QCP. The temperature dependence of the
resistance in the insulator is then given by

��T� = �0�1 + c�T/T1�1/z + ¯ �exp��T1/T�1/z� . �1�

We see that the subleading T dependence is very weak �rela-
tive to the leading exponential�, making it difficult to detect
at low T. Consequently, the prefactor is essentially �0 for T
�T1. Both �0 and T1 will be density dependent but are inde-
pendent of T.

The scaling equation for the resistivity in the QC sector
follows from the hypothesis of a QCP. After correcting for
the tilted separatrix, scale invariance at the critical density
implies d� /dx=0 when �=�c. Taking d� /dx to vanish lin-
early in �−�c with a slope of 1 /� then provides a scaling
equation. Dobrosavljević et al.12 have argued that an im-
proved description is given by applying this generic argu-
ment to the vanishing of log�� /�c� rather than of � /�c. In this
case, each L is raised to the power of 1 /�. Replacing L by
the thermal length LT then gives

��T� = �c exp�log���Ts�/�c��Ts/T�1/z�� . �2�

Equation �2� is similar to Eq. �1�, but with a T dependence
characterized by 1/ �z�� in the QC sector while only 1/z
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appears in the IC region. Also, the resistivity scale is fixed as
�c in the QC sector, while the scale �0 is unspecified in the
IC region.

If log���Ts� /�c� is further approximated by �� /�c	−c�n,
this gives ��T�=�c exp�−c�n /T1/z��.12 When the density and
electric field dependence is analyzed at a fixed low T, the
corresponding relation is ��E�=�c exp�−c��n /E1/�z+1���.
Thus, from data in the QC sector alone, two separate experi-
ments were required to determine z and �.

We now show that both z and � can be obtained in a
single experiment on ��T ,n� in the IC region. Experimental
results for the resistivity in the low-T insulating regime have
been reported for a variety of 2D systems.7,15–20 To compare
theory and experiment, we chose to analyze data for a Si
sample from Ref. 17. This contains T-dependent resistivity
data for both the IC region and the QC sector.

To allow for a tilted separatrix in the data, we start by
identifying the two curves that span the bifurcation. In Ref.
17, the n−=0.9554�1011 cm−2 curve exhibits a weak down-
turn at low T and the n+=0.9336�1011 cm−2 curve exhibits
an upturn. For the T dependence of the separatrix, we assume
a functional form �sep�T�=�c exp�msepT� since the n− and n+

curves are linear on a log � versus T plot at higher T. We fit
these two curves at higher T to straight lines, with �c and
msep being the fitting parameters. We define the separatrix as
the average of these two curves, weighted by the deviations
of the straight lines from the actual T-dependent curves. Ex-
trapolating this average to T=0, we deduce a critical resis-
tivity �c=3.757�h /e2� with a critical density nc=0.9481
�1011 cm−2, and a value for msep=−0.1608 K−1. Figure 2�a�
shows the tilted separatrix as the solid straight line in the QC
sector. In fitting to the scaling equations, we first divide all
the experimental data points by this �sep�T� to eliminate the
effect of the separatrix tilt.

For the insulating range of �, we fitted the resulting data
points to

��T� = �0�n�exp��T0�n�/T�1/z� . �3�

Equation �3� is the same as Eq. �1�, with the weakly
T-dependent prefactor replaced by �0�n� and with T1 re-
placed by T0�n�. To ensure that fitted data lie well inside the
IC region, we selected low T, high ��T� points by restricting
��T���cut=20. Numerical least squares methods determined
a value of z for each of the curves in this region. To test
consistency with respect to the range of fit, the procedure
was repeated for different values of �cut up to �cut=30. An
analysis of the resulting set of values of z gave a mean value
and standard deviation of z=2.05±0.10. The curves in the IC
region for ��T��20 in Fig. 2�a� show Eq. �3� for this value
of z.

We now demonstrate that the critical exponent � can also
be determined from data in the IC region. Taking z=2.05 to
be fixed, the least squares fits of all the IC data were made
into Eq. �3� to obtain T0�n� for each density curve. The fits to
the data are shown in Fig. 2�a�. The T0�n� are shown as the
triangle points in Fig. 2�b�. Since �T0�n� /T�1/z=LT /� in Eq.
�3�, it follows that T0�n� should vary as ��n�z�. Figure 2�b�
confirms this dependence. The solid line is the best fit of

�d�−�n��z� to the triangles, with z=2.05 fixed. The best fitting
parameters are d=14.9 and �=1.17. Repeating this fitting,
with z fixed at 1.95 and 2.15, yields �=1.20 and �=1.15,
respectively. Thus, data from the IC region can determine
both critical exponents of the QCP. The corresponding value
of z� is 2.4±0.1. The quality of the fits of Eq. �3� to the data
in the IC region is very good, as seen in Fig. 2�b�. All the
data points shown satisfy LT /��3.

We want to compare Eq. �1� with the predictions of the
variable range hopping �VRH� theory. These theories are ex-
plicit models of conduction in the hopping regime, but they
were not developed to describe a MI transition. We recall
that VRH models lead to an expression21,22 ��T�
=�0�T�exp��T0 /T�p�. When Coulomb interactions are
included,22 the exponent p is predicted to be p=1/2.

FIG. 2. �Color online� �a� Data points taken from Ref. 17. Points
in the IC region are for densities �in units of 1011 cm−2� from
0.7156 �top� to 0.8464. The cutoff is set at �cut=20 �in units of
h /e2�. All points shown are in the IC region. Solid lines for these
points are best fits using Eq. �3� with z and the density dependent
T0�n� as the fitting parameters. In the QC sector, the data points are
for densities from 0.8900 �top� to 1.0426. Solid lines for these
points show Eq. �2� using the value z�=2.4 determined from the IC
region and with �c=3.757 determined from the separatrix �solid
straight line�. QC sector curves terminate when the ratio LT /�
= �c��n� /T1/z��� exceeds 1/3. �b� Triangle points are our best fit val-
ues from Eq. �3� of T0�n�=T1�n� for the data from Ref. 17 lying in
the IC region. The solid line is the function d�−�n�z�. Rectangle
points show T0�n�= ���Ts� /�c�z�Ts for the Ref. 17 data in the QC
sector �see Eq. �2��.
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The VRH exponential T dependence agrees with
experiment.7,15,16,18–20 However, the VRH prefactor �0�T� has
a power law temperature dependence,23,24 in disagreement
with experiment. The experimentally observed prefactor in
the insulator at low T is T independent, as is predicted by our
scaling equation �Eq. �1��. This is a direct consequence of the
scaling description of the MI transition in terms of a QCP.

We now show that the critical exponents determined from
the IC region also describe the QC sector. Taking the value
z�=2.4 determined from the IC region and with �c deter-
mined from the separatrix, Eq. �2� then defines a ��T� for the
QC region with no free fitting parameters. Figure 2�a� shows
that this predicted ��T� is consistent with all the data points
from Ref. 17 lying within the QC region, defined by LT /�
= ���Ts� /�c���Ts /T�1/z�1/3. The good agreement is a confir-
mation �i� that z and � can both be determined from a single
experiment and �ii� that the values of z and � obtained from
the IC region are consistent with the z� for the QC sector.
This supports our premise that both regions are controlled by
the QCP.

The temperature scale T0�n� for the QC sector can also be
deduced. The rectangle points in Fig. 2�b� give T0�n�
= ���Ts� /�c�z�Ts for the ��T� data points from Ref. 17 for n
�nc in the QC sector. These rectangle points lie on the same
solid line as the triangle data, confirming that the two regions
have the same correlation length critical exponent. This is
further evidence that the QC sector and the IC region for this
finite range of T are both critical and controlled by the QCP.

The critical exponents z and � have previously been de-
termined only from the QC sector by an analysis of two
separate experiments on density-temperature and density–
electric field data.9 In this way, no consistency check can be
obtained for the values of z and �. Values of z range between
0.8 and 1.2, and those of � between 1.5 and 1.9. The major
source of the discrepancies with our values is the assumption
made previously that the separatrix is not tilted. This can
lead to an incorrect identification of the critical density, and
the critical exponents depend sensitively on this choice of nc.
This emphasizes the importance of the consistency check
comparing the values obtained in the IC region and the QC
sector.

In summary, we have presented a scaling picture of the
MI transition based on the phase diagram in Fig. 1. The QCP
controls two regions of criticality, the QC sector and the IC
region sufficiently close to the QCP at finite T. Hence, these
two regimes share the same critical exponents z and �. As a
result, it becomes possible to unify the analysis of transport
data for the QC sector and the IC regime and to obtain the
critical exponent � of the correlation length and the dynami-
cal critical exponent z of the thermal length from a single
experiment. A quantitative comparison with published
experimental results �Ref. 17� shows that values of z and � in
the IC region and the QC sector are consistent. This gives
support for the existence of a QCP in the 2D electron
transport.
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