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Surface-induced quantum density oscillations in the presence of an external magnetic field

D. J. W. Geldart and G. Gumbs
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada MH 3J5

M. L. Glasser
Department ofMathematics and Computer Science, Clarkson College of Technology, Potsdam, New York 13676

(Received 30 July 1984)

The electron number density and spin density near the surface of a model metal, semimetal, or
semiconductor are calculated in the presence of a uniform magnetic field. The magnetic field is ap-
plied in a direction perpendicular to the surface. In this model, the electrons are assumed to be
noninteracting and confined between plane parallel surfaces. Numerical results are presented for the
limit of a semi-infinite medium. The effect of a magnetic field on the electron density is calculated
when the confining potential forming the surface is either an infinite barrier or a finite barrier. The
thermal smearing effect of finite temperature is also considered. We conclude that experiments
designed to probe the magnetic field dependence of the spin polarization in the surface region would
be useful.

I. INTRODUCTION

The effects due to surfaces on the electronic density of
a metal, semimetal, or semiconductor, both in the absence
and presence of an external magnetic field, continue to re-
ceive considerable attention. ' The interesting applica-
tions which surface science has found have encouraged
both theoretical and experimental investigations leading to
the development of techniques which have provided in-
sight into bulk properties as well. We suggest that mag-
netic fields may be used as probes in providing additional
information concerning the effects which a surface has on
the electronic properties of metals, semimetals, and semi-
conductors.

Recently, a calculation of the linear response function
Xo(r, r ) for a degenerate semi-infinite electron gas in the
presence of an external magnetic field perpendicular to
the surface was reported. This result provides a means of
calculating the effect due to a magnetic field on the elec-
tron distribution surrounding an impurity or other static
defect embedded in a solid with a surface. In the present
study, we discuss two other quantities of interest, i.e., the
position-dependent number density n (r) and spin polari-
zation m(r) for a free-electron model with a surface, in
the absence of impurities. The surface induces quantum
density oscillations (@DO's) in both n (r) and m (r).

In Sec. II the single-particle eigenstates for the electron
gas bounded by potential barriers are calculated by solving
the Schrodinger equation in the presence of the magnetic
field. These solutions are discussed both with the Landau
gauge and the radial or circulating gauge for a uniform
magnetic field which is applied in the z direction, perpen-
dicular to the surface of the plasma. In the formal
development of the present calculation, we allow for the
possibility that the potential at the surface forms either a
finite or infinite barrier. The xy dependence of the eigen-
functions is found to be the same as for the bulk system.
The sums for the electron number density and spin densi-

ty are difficult to deal with analytically in the Landau
gauge, and we find it convenient to use the wave functions
corresponding to the radial gauge. In Sec. III we discuss
the infinite-barrier model (IBM). Results for the electron
number density for the low-field limit and the high-field
quantum limit are derived at zero temperature with this
model. These limits have previously been given by Bar-
deen and by Horing and Yildiz, respectively. We also
calculate the explicit temperature dependence for a physi-
cally relevant range of values of the temperature and mag-
netic field strength. Section IV is devoted to a discussion
of the finite-barrier model (FBM) at zero temperature. In
Sec. V numerical results are presented and discussed.

II. GENERAL FORMULATION
OF THE PROBLEM

n (r)=ufo(E )
~ P (r) i'. (2.1a)

Here, P are wave functions for the stationary states Ea
of electrons in a constant magnetic field in the z direction.
fo(E)=

I I+exp[P(E —p)] I
' is the Fermi function, p is

the (magnetic-field-dependent) chemical potential, and

/3=(kii T) '. With the use of a mathematical identity for
the step function in terms of

'

an inverse Laplace
transform, Eq. (2.1a) for n (r) is given by

Consider free electrons in a slab bounded by two paral-
lel planes separated by a distance L, and perpendicular to
the z axis. Assume periodic boundary conditions in the
xy plane parallel to the surface. The boundary conditions
are determined by potential barriers at z =0 and z =L.
In this model the confining potential energy U(z) is zero
inside the slab and equal to Vo, which can be either finite
or infinite, outside the slab.

The electron number density for fixed position r and
spin o is
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n (r)= —g f dco

s(a)—E~ )

~

~

~

y+p oo dS e
X

2&l S

(2.1b)
where y is a positive constant.

The wave functions P are solutions of the Schrodinger
equation

r

1 A e—V+ —A + U(z)+ —opoHo P (r)
2m 2

=E P (r) . (2.2)

Here, A is the vector potential, —e the charge, and m*
the effective mass of an electron. po ef——i/2m*c is the
spin Bohr magneton and o=+1 ( —1) for a spin-up
(spin-down) electron. All other symbols have their stan-
dard meanings. With the use of the Landau gauge
A=(O, Hox, O), Eq. (2.2) is transformed into the
Schrodinger equation of a simple harmonic oscillator,
yielding the energy levels explicitly. However, the Landau
gauge is inconvenient for calculating n (r) in Eq. (2.1) be-
cause of the coupling between the x and y quantum num-
bers.

We have found it convenient to use the radial gauge
A= —,HoXr. Expressing Eq. (2.2) in cylindrical polar
coordinates r=(p, 8,z),

The radial, angular, and z dependence of the wave function can be separated by substituting
sv8

P (r) =R (p) g(z)
27r

into Eq. (2.3), where v=O, +1,+2, . . . , and g and R satisfy the equations

A'zk,U(z)+, /=0,
2m dz 2m

r

e2 2
2

p +kz R + „vHo+ opoHo+ „—p —Eu R =0 .eA e IIo

p 2m c Sm*c
l d dR

2m p dp dp
p

a4 1 a'0, a'0 eH,
p + z z + z +, —. +—opoHo+, zp +U(z) E~ $~=0-.

pap ap p a8 az 2mc & Sm*c
(2.3)

(2.4)

(2.5a)

(2.5b)

The values of k, and the solutions g:—g(z;k, ) are determined by the surface boundary conditions. g is calculated and ap-
plied to the IBM and FBM in Secs. III and IV, respectively.

The solution of Eq. (2.5b) is

R (p) =—rV„,(g) =——g"+'"e -«'e(~ —~+ —,';2~+1;g), (2.6)
p

"'
p

where C is a normalization constant, the Whittaker function JF ~ and confluent hypergeometric function @ are ex-
pressed in terms of the variable g = (eHo/2fic)p,

1 l g2k2
E

2 po~o, 2m
——O.a —v

2
(2.7a)

(2.7b)

a =m'/m, and po =eh'/2m*c is the orbital Bohr magneton. We require the solution (2.6) to be regular at p= oo so that
A, —~+ —, = —M, where M =0, 1,2, . . . . The stationary-state solutions thus have eigenvalues

r

E = +%co, M+ —+
fi'k,'

+—era
2m

' 2 2 4
(2.8)

where we have introduced the cyclotron frequency co, —:2poHo/R. The energy spectrum of Eq. (2.8) is in agreement with
the results of the Landau gauge, of course. The normalization constant C is

1/2
2I (M+

~
(+1)

M!(I ( i
v

i
+1)) (2.9)

Substituting Eqs. (2.4) and (2.6)—(2.9) into Eq. (2.1b), we obtain the number density of electrons of spin o,
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n (r)=— m* ~ ~ ~)fo(ro) r+'~ ds 1
(poHo) f dc@ J . —exp s co—

2M' Bco r —
& oo 2mi s

fico, g
2 2

1 + 0'a

Ak
Xg ~

g(z;k, )
~

exp —s
k 2m

X + + e ~CM
i

lgl IC»( M ~v~+1.g)
v= —ooM =0

)& exp sfic—o, M+ (2.10)

The v and M sums are now discussed separately by making use of appropriate generating functions.
We express the confluent hypergeometric function @(—M;

~

v
~
+ 1;g) in terms of the Laguerre polynomial Lll

"l (g),
and then use Eq. 8.976.1 of Gradshteyn and Ryzhik,

g CM l„l @ ( —M;
) v( +I;g)exp( stick, M)—=2 exp Il„l

M=0 1 —t t —1

2gt 1/2

1 —t
(2.11a)

For convenience, we have introduced the quantity t =exp( —siitco, ). The v sum is given by Eq. 8.511.1 of Ref. 8,

t«nI 2gt ' '
V= —ao

Substituting Eq. (2.11) into Eq. (2.10), we obtain
T m*, " ~fo(a~) r+'" ds 1 ~c gn (r)=n (z)= —2 (poHo) de exp ' s co — 1+—Oa

2~A 0 Bco r—&~ 2+i s 2 2

(2.11b)

g ~
g(z;k, )

~
exp

1 —exp —sfuu,

sfi k

2m
(2.12)

The result for n in Eq. (2.12) is independent of the spatial coordinates parallel to the surface, as required by translation-
al symmetry along the surface. [It is easily verified that, as a consequence, Eq. (2.12) can be obtained by setting /=0 in

Eq. (2.10) and keeping only the v=0 contribution to the v sum. ] Further progress in evaluating Eq. (2.12) requires speci-
fication of the surface potential and the solution of Eq. (2.5a) in order to evaluate the k, sum. In the next section we dis-
cuss the IBM.

III. INFINITE-BARRIER MODEL

For the infinite-barrier model of a slab of thickness L, the potential energy U(z) is given by U(z) =0 for 0«(L, and
U(z) = oo for z ~ 0 and z & L. For this potential, the solution of Eq. (2.5a) &s

g(z;k, ) =(2/L)'~ sin(k, z), k, =(1,2, 3, . . .)(ir/L) . (3.1)

For the semi infinite system-(L = ~ ), we obtain, from Eqs. (2.12) and (3.1),
3/2m* „~fo(~o) r+' ds 1 gn (z) = —2 (poHo) exp s cu ——o.apollo27r62 0 r —I' 277i s 2

1 2m z
X 1 —exp

2 sinh(poHos ) As
(3.2)

Fo illustrative purposes of this model calculation, we set ag/2—=m "g/2m equal to u ity. g
poses no difficulties, but increases the number of parameters.

Making use of standard tables of inverse Laplace transforms the electron number density n =n, +n, and the spin

polarization taken as m:—(n, n, )/ns are give—n by
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n (z)=—
,
3/2

4 m*, &fo(~)
27Thin 2 0 Bco

0(6 (co/2p() Ho

(2 —5„0)(co —2n poHO )
' ~~

I

X '1 —Jo 2
2 (~ 2n—poHo)' (3.3)

m(z)=—
3/2

4 m*
n~m'/2 2wA2

1 /2.
2m'z

(iMOHp) des CO ' 1 —J0
Bco (3.4)

where jo(x) =sin(x)/x is a spherical Bessel function and
n~ is the electron density in the bulk. We now make use
of Eqs. (3.2)—(3.4) to study the electron number density
and spin polarization as functions of temperature and
magnetic fie1d strength.

iM(HO )/By=1''6 (poHO/eF ) +O(H(, ) (3.8)

where ez=—p(0) is the Fermi energy. The wave number
kF in Eqs. (3.6) and (3.7) depends on the magnetic field,
with

A. Zero-temperature regime

In the zero-temperature limit the co integration in Eqs.
(3.3) and (3.4) is trivial. The electron number density and
spin polarization are given by the value of the integrand
evaluated at co=p, . Of course, the chemical potential is
dependent on the magnetic field strength. However, the
explicit dependence of m(z) on Ho is only given by the
prefactor in Eq. (3.4) as a consequence of setting
ag/2=1. The dependence of n (z) on magnetic field
strength is more involved. We present results for this
quantity in two regimes.

The low-magnetic-field limit is easily obtained by ex-
panding the integrand [apart from the factor exp(see)] in

Eq. (3.2) in ascending powers of the s variable. This re-
sults in an asymptotic expansion in powers of the field
strength,

4 =kg(HO)—:(2m*p(HO)/A' )'~2 .

sin(2kFz)
nHFgL(z) =(m*poHO/7r fi )k~ 1—

2kFz
(3.9)

In the absence of a magnetic field, no(z) in Eq. (3.6) is ex-
actly Bardeen's result.

In the high-fidd quantum limit (HFQL), poHO &&p. In
this limit, the value of n (z) can be obtained by expanding
the s integral in Eq. (3.2) around s= oo. Each term in
this expansion correpsonds to the inclusion of one more
Landau level. The result when only the leading term is re-
tained,

ni F(z) =no(z)+(poHO/p) n, (z) ~ ~ . .

(LF denotes low field), where

(3.5)

was first calculated by Horing and Yildiz. Further dis-
cussion of the magnetic-field-dependent n (z) has not pre-
viously been given. Equation (3.9) corresponds exactly to
the n =0 term in Eq. (3.3), evaluated at zero temperature.

In the limit as z~oo, we must have nLF ——nHFq~ so
that, from Eqs. (3.6) and (3.9),

kF cos(2kFz)
no(z) =

~ 1+33~' (2kFz)

sin(2kFz)

(2k~z)
(3.6)

k~(HO) = , kF(0)r20— (3.10)

kF'
n, (z)= z [1—cos(2kFz)] .

3%2
(3.7) in the high-field regime, where r0 is the cyclotron radius

defined by r0 =—eH0/Ac. Therefore, near the surface we
—2=

have

We emphasize that the asymptotic expansion has isolated
only the explicit magnetic field dependence. There is ad-
ditional magnetic field dependence due to the fact that the
chemical potential p=p, (HO) is field dependent. That is,
the requirement that n(z) in Eq. (3.5) reproduces exactly
for z~ oo the known zero-field electron density,
n~ ——k~(0)/37r, implies

nHF&L/ni„- 27 [k~(0)ro]20 4 (3.1 1)

This means that the electron number density is reduced
near the surface in the presence of a high magnetic field
(also see Sec. V).
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B. Effect of temperature on the QDO

(2 5—„p)(co 2—n @AHp)
0(n (m/2poHO

2
l /2

2&l Z
1 —cos 2

g2

Integrating Eq. (3.3) by parts in a straightforward way, we obtain
3/2

n (z) =
&/2 2 (ppHp) f dt's fp(co)

m. l/2 21Tf12 0

(co 2n—ppHp)'" ~ . (3.12)

We now discuss the damping of the QDO in the high-
field quantum limit, and at sufficiently low temperature
when k~ T &&p &&~, . In this limit, with
n (z) =—n~+5n (z), we have

5n(z) = — (ppHp) f dk fp(ek )cos(2kz),
2m A

IV. FINITE-BARRIER MODEL

In this section we calculate the electron-spin density
n~(z) for the finite-barrier model. For this calculation we
need the energy eigenvalues and wave functions for an
electron confined by the potential barrier

(3.13a)
Vp for z & 0 and z & L,
0 for 0&z &L . (4.1)

where el, =—R k /2m*. Equation (3.13a) can be evaluated
by a contour integration. For any fixed, large value of z,
and at low temperatures, it is sufficient to approximate
the poles, in the upper half k plane, of the Fermi func-
tion, by +kF+(2n+1)mikes/2', , where n =0, 1,2, . . . .
This leads to the usual thermal damping factor
sinh(vrk~z/Pp), and results in

For simplicity, we first consider zero temperature. This
, means that we only need the class of eigenstates with en-
ergies less than the barrier height Vp. Of these, only ener-
gies less than the chemical potential will be required.

Since the potential barrier is symmetric about its rnid-
plane at z=L/2, the solutions of Eq. (2.5a) have either
even or odd parity with respect to the variable z. Let

5n (z) =— m* . kF mkFZ
(ppHp ) sin(2kFZ) slllh

27rA 2 p P
k =k —v k =2m V/4 (4.2)

(3.13b)

Note that the T=0 limit of Eq. (3.13b) reproduces exactly
the oscillatory part of Eq. (3.9), as should be expected, for
all z. When both z and T are small and rrkzz/P}M is not
small, the temperature dependence of n (z) can be
described by the usual small Sommerfeld corrections.

The exact result in Eq. (3.3) for the electron number
density in the presence of a magnetic field should be com-
pared with the corresponding result in the absence of a
magnetic field, at arbitrary temperature. Substituting

P(r) =exp(ik~~ p)sin(k, z)/(2m )'

0s(z)= '
(4.3a)

gs(L/2 —z) =ps(z L/2), — (4.3b)

1 1 L . L L
kz +sin kz cos kzk '2 '2 '2

The symmetric (S) and antisymmetric (A) solutions of
Eq. (2.5a) are given by'

r

I.
Nqcos k, z ——,0 &z —L/2&L/2

m*
n(z)= —2

2mri2
dco co

0 Bco

1
X I(—', )

into Eq. (2.1b), we obtain
' 3/2

J3/p( 2k„z )

(k„z)'"
and

+—cos k, —1 2 L
(4.3c)

(3.14)

where k„=(2m*co/fi )', and J3/p is a Bessel function of
the first kind. Just as for Eq. (3.13b), it can be shown
that, for pp »1 and large fixed z, the QDO's of n (z) in
Eq. (3.14) are also damped exponentially. Of course, this
thermal damping also applies to the spin polarization.

L.
N~ sin k z ——

2

ic(L —z)

gg (L /2 —z) = —g~ (z L /2), —

0&z —L/2&L/2

(4.4a)

(4.4b)
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1 1 L . L Lk, ——sin k, —cos k, —
Ã~ k, '2 '2 '2

k,
tan k,—= — (A solutions) .

2 K
(4.5b)

+—sin k, —1. 2 L
K

(4.4c)
With the use of Eqs. (4.5) in Eqs. (4.3c) and (4.4c), we ob-
tain

Ns, ~ =L/2+1« . (4.6)

The amplitudes inside and outside of the potential barrier
have been adjusted so that g is continuous at z=L. Ns ~
are normalization constants. Continuity of dg/dz at
z =L then quantizes the k, values. These are given by

(2/m)' sin(k, z+5), z &0
z

(2/m )
'~ sin(5)e", z & 0 (4.7)

Taking the limit L~ oo for a semi-infinite medium, we
may write both the even- and odd-parity states as

r

L
tan k, —= (S solutions),'2 k,

(4.5a)

where tan5=k, /x. Substituting Eq. (4.7) into Eq. (2.12),
we obtain the electron-spin density for the FBM at zero
temperature. For z )0, we have

4 m* „~+' ds 1 1
n (z)= — (poHo) 2~i & 2 sinh(poHos )

~ J dk, exp (k —k, ) sin (k,z)+ 2 cos(2k, z)+
ko

sin(2k, z)

(4.8)

where k =[2m*(p, —poHoo. )/A' ]'~ . For z &0 we have

&+i~ ds 1

2m' & 2sinh(poHos) 2m* ko

The inverse Laplace transform in Fqs. (4.8) and (4.9) may be calculated with the use of standard tables. We obtam

(4.9)

+im 1 00

2~i s 2sinh(poHos) 2m* „o (4.10)

The upper limit on the k, integrals of Eqs. (4.8) and (4.9) is thus correctly reduced to [k —2m (n + —,)~,/&], as»
appropriate at zero temperature. Taking the limit HO~0 in Eqs. (4.8) and (4.9), we obtain Stratton's result for the elec-
tron number density for the FBM in the absence of a magnetic field.

At finite temperature, electron states of energy larger than the chemical potential will contribute. The highly excited
states (including those with energy eigenvalues E & Vo) give exponentially small contributions to the electron density at
low temperatures, and thus can be neglected for present purposes. There will, of course, be thermal smearing (as in the
preceding section) of the @DO at large distances from the surface.

V. NUMERICAL RESULTS

In this section we present numerical results for the electron number density and spin polarization for both the IBM
and FBM. We first note that since the electron number density tends toward its bulk value nz well inside the medium,
the chemical potential must satisfy

3/2
Pl

ng = —2
2~%2

1

oo ~fo(~) @+i~ ds esto cosh(
& gpoH0$)

(poHO ) d co
2~& s sinh(poHos)

(5.1)

(5.2)
0& n &)M/2~oIIo

At zero temperature, Eq. (5.1) agrees with Eq. (3.8) of Ref. 11. When the electron g factor and electron effective mass
are chosen such that m "g/2m = 1 for the degenerate electron gas, Eq. (5.1) becomes

3/2

n~ =, (poHO) g (2—5„o)(p—2npoHO)'
2~a'
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In the high-field quantum limit, when only the lowest
Landau level is occupied, the n =0 term in Eq. (5.2) gives
the chemical potential"

'I

I ~Em =
9 (e~~s OHO)'. (5.3)

1.2-

k~ (0) z /2g

0.25

r
r

The purpose of the numerical calculations is to display
the characteristics of the electron density of a semi-
infinite degenerate plasma in the presence of a uniform
magnetic field. The calculations for n (z) are based on
Eq. (3.3) at T =0 for the IBM and Eqs. (4.8)—(4.10) for
the FBM.

Numerical results for the electron number density of
the degenerate, semi-infinite jellium model are presented
in Figs. 1 and 2. The electron number density in the bulk
plasma is chosen as n~ ——10' cm . The orbital effective
mass of an electron is chosen as m'=0. 01m. In the ab-
sence of a magnetic field, the Fermi energy e~-0. 1

eV and the Fermi wave number kF(0)=0.01 A . For
the FBM the surface potential barrier is set equal to
Vo ——2'. For a magnetic field of strength Ho=50 kG,
only the two lowest Landau levels are occupied. When the
magnetic field is increased to Ho ——1SO kG, the high-field
quantum-limit condition is achieved and the electrons oc-
cupy the lowest Landau level only.

We have plotted n (z) in Fig. 1 for the IBM and in Fig.
2 for the FBM, as a function of z for various field
strengths. The general features are similar for the IBM

Cl

0.6—
p=150 kG

p= 50kG
p=0
ng-Kohn

0.2—

0—
1.0 1.0 2.0

kF(0) z

3.0 5.0

FIG. 2. Same as Fig. 1, except that the surface potential bar-
rier is finite. The self-consistently calculated density of Lang
and Kohn (Ref. 13) for r, =6 is also shown in order to indicate
the modifications due to proper treatment of Coulomb interac-
tions. Details are given in the text.

0

l.2—

0.25
I

k~(0) z/27T

0.50
1

0.75
I

and FBM, except for the fact that n (z) vanishes at the
surface z =0 for the IBM, but decays exponentially in the
region z (0 f« the FBM. Note that for z in the surface
region [taken as

~
z

~
(k~ '(0)], n( )zis reduced in the

high-field quantum limit relative to its value in the ab-
sence of a magnetic field, as expected in Sec. III. The

O.
kF(0) z/2n

0.25
I

0.50 0.75

EO
c= 0

0
Ho~ 50kG
Ho= 0

1.0

0.4

0.8

0.2
0.6

E

pl
0 I.O 2.0 3.0

ago) z

4.0
~ 1 I I I I ~ I I

5.0 0.4

FICx. 1. Total number density for free electrons confined by
an infinite potential barrier to the semi-infinite domain z &0.
The curves are plotted as a function of the distance z from the
surface. The solid line is for zero magnetic field strength. The
two other curves illustrate the effects due to a magnetic field.
n~ is the electron number density in the bulk plasma. 2m. /k~(0)
is the Fermi wavelength in the absence of a magnetic field.

0 - I,O 1.0 2.0 3.0 4.0 5.0

FIG. 3. Spin polarization m (z) for the finite-barrier model.
Details are given in the text.
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electron number density increases as z increases and
reaches the bulk value far inside the sample in the usual
oscillatory way. The effect of the magnetic field on the
amplitude of the QDO is significant (-30%) in the re-
gion where z-kz '(0). In Fig. 3 we have plotted the spin
polarization, defined as

m (z) = [n, (z) n—, (z) j/ntt

for magnetic fields H =10, 50, and 100 kG as a function
of z for the FBM (again with Vo ——2'). Results for the
IBM are very similar. Note that n(z) and m(z) for both
the IBM and the FBM correctly reproduce the bulk num-
ber density and spin density, respectively, for z~ ae.

%'e are now in a position to draw some conclusions.
From the above results we see that the particle density
and spin polarization are not extremely sensitive to
Vo/e~, at least for the relevant range of parameters con-
sidered here. We find that the effect of the applied mag-
netic field on surface-induced QDO's can be as substantial
as the magnetic field effects on QDO's induced by static
impurities near surfaces. ' Finally, the spin polarization
has been found to be extremely sensitive to the applied
magnetic field, for both the IBM and FBM, except in the
high-field quantum limit, where the spin density essential-
ly saturates. This suggests that experiments designed to
probe the magnetic field dependence of the spin polariza-
tion in the surface region would be very informative.

We emphasize that the aim of the present work has
been to examine the degree of sensitivity to an applied
magnetic field of the electron number density and spin po-
larization for a plasma with a planar surface. As a first
step, the simplest model for noninteracting electrons was
used to obtain some numerical results, and the effect of
Coulomb interactions has been neglected. We expect on
general grounds that these affect the phase and, to a lesser

extent, the amplitude of the oscillations for n (z) and
m (z). Unfortunately, we know of no calculations for the
electron number density in a bounded plasma with
electron-electron interactions in the presence of an uter-
nal magnetic field. This is a very nontrivial problem.
However, there are results for n(z) in the absence of an
external magnetic field which have been obtained self-
consistently by Lang and Kohn, ' and which are illustrat-
ed in Fig. 2 for r, =6, the lowest density reported there
It is seen that in the presence of Coulomb interactions the
amplitude of the oscillations is roughly the same as for
noninteracting electrons, but the phase of these oscilla-
tions is shifted, as expected. It is expected that in the
presence of an external magnetic field the results for n (z)
would show comparable sensitivity to electron-electron in-
teractions. Regarding the spin polarization, we are not
aware of any calculations for an interacting bounded plas-
ma, except in the very-weak-magnetic-field limit. Again,
on quite general grounds, we expect that the phase and
amplitude of the QDO's in m (z) will be somewhat sensi-
tive to the details, including the electron-electron interac-
tions in some appropriate approximation. However, the
extreme sensitivity of m (z) to the strength of the applied
magnetic field will persist. Consequently, the present
model of noninteracting electrons should provide a useful
initial indication of the sensitivity of charge and spin den-
sities to applied magnetic fields.
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