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At sufficiently low density, quasi-two-dimensional electron systems in their ground state form
Wigner solids. In previous studies of the ground-state energy of such systems (in the absence of an
applied magnetic field), the finite extension of electron wave functions in the direction perpendicular
to the interface plane has not been considered. The efFect of the 6nite width of envelope functions on
the ground-state energy of quasi-two-dimensional Wigner solids is studied in this paper. We evaluate
the total Coulomb energy using numerically efficient Jacobi 8-function methods, for a variety of
assumed crystal structures. The ground-state energy is found to be rather sensitive to the envelope
wave-function width but the crystal structure remains hexagonal.

I. INTRODUCTION

Strongly correlated interacting many-electron systems
of reduced dimensionality have become increasingly im-
portant in recent years. Progress in fabrication tech-
niques have resulted in the development of new low-
dimensional electron systems and devices. In quasi-two-
dimensional systems, the intriguing quantum features of
these materials have been the subject of extensive exper-
imental studies in the low-temperature regime Theo.ret-
ical interest has been correspondingly intense.

Our present interest is focused on the quasi-two-
dimensional electron systems which exist at a GaAs-
Al Gai As heterojunction or the interface regions in
a Si metal-oxide-semiconductor field-efFect transistor. i 2

We are specifically concerned with the ground-state en-
ergy at very low density and in zero applied magnetic
field. Strictly two-dimensional electron systems have
been studied previously within the context of the usual
electron gas model. s~ At sufficiently low density, the
electrons condense and the ground state is a crystalline
Wigner solid. In terms of the parameter r, given by the
area per particle A/N = vr(r, ass) = 1/n, where aB is
the efFective Bohr radius, the energy per particle in the
Wigner solid is

C3/2 C2
s = E/N = —+

p 3/2 ~2S TS 8

The first term is the static Coulomb energy of the Wigner
solid and the leading correction term is due to the zero-
point energy of the phonons. At sufficiently low den-
sity (large r, ), the ground-state energy is dominated by
the static Coulomb energy. The numerical values of the
Madelung constant, cq, and the other coeKcients depend
on the precise crystal lattice structure of the Wigner
solid. It has not been found possible to predict the cor-
rect lattice structure of the Wigner solid by general ar-
guments. This is a common situation and not restricted
to purely electronic systems. Instead, specific structures

are assumed and the energy is calculated for each of these
structures. Of the various crystal structures studied for
the two-dimensional Wigner solid, the hexagonal lattice
has the lowest Coulomb energy and is also stable with re-
spect to lattice vibrations. s It is believed that the ground
state of a strictly two-dimensional electron system is a
Wigner solid with hexagonal lattice structure in the low

density limit.
Of course, the electron systems which exist at inter-

faces in systems of present interest are not strictly two
dimensional (planar) but have a finite extent in the z di-
rection perpendicular to the plane of the interface. The
precise electron density distribution n(x, y, z) may still
be taken, ideally, to be uniform in the x, y plane but the
extension of the electron distribution in the z direction is
determined by details of the confinement mechanism. In
principle, the resulting electron density distribution can
be obtained by an appropriate self-consistent procedure.
The effective Schrodinger equations for the z dependence
of the electron wave functions are

Bs

2m' Bzs + V.tr(z) & (z) = & & (z)

where V,tr(z) is the total potential energy (including
any fixed, induced, image charge, and other contribu-
tions) which is to be determined in the course of self-

consistently solving Eq. (2) for the density distribution
and m' is an efFective mass for motion in the z direc-
tion. In practice, a much simpler approximate procedure
is invoked in cases where only the lowest surface subband
energy state is occupied. An approximate n = 0 subband
wave function is taken to be of the form

(o(z) = (2b ) ~ ze '

and the parameter b, which gives the length scale of the
electron distribution, is determined variationally by min-

imizing the total energy.
After some simplification, the minimizing value of 6 is
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found to be

( 2aB ) / (2r&)
33«) (5)

where r, was given above by the total number of electrons
per unit area of the interface. s In the present application,
the most relevant parameter is the ratio of the width of
the envelope function to the average spacing of electrons
in the plane

) 1/s

/3 = b/(r. aB) =
Iq33r. ) (6)

which is largely independent of material properties such
as the effective mass and dielectric constant.

Equation (6) is a convenient universal form describing
the influence of finite width of the envelope function in
the very-low-density regime of the Wigner solid. Note
that the effect of multiple valleys or isospin degeneracys
can become significant whenever details of the kinetic
energy need to be taken into account. One such case
is Si(100) at electron densities near the critical den-
sity for Wigner crystallization. i0 Using standard data
for Al Gai As and Si(100), reasonable values of P are
found to be in the range 0.1+P+0.5.

The presence of an additional length scale b in addi-
tion to r,ag has significant efFect on the energetics of
the quasi-two-dimensional system. Denoting coordinates
in the plane by r = (z, y), we can consider the effective
interparticle interaction to be

veff (r —r') = dz dz'(0 (z)(0 (z')
0 0

x[(r —r') + (z —z') ]

(7)

Clearly, v,ff(r —r') is substantially reduced in strength,
particularly at small separations, relative to the strictly

/ ar'
(33vrrn'e2n)

where e is the background dielectric constant. In terms of
the effective Bohr radius ag = 5 /[rn'(e2/c)], the width
1s

two-dimensional e2/]r —r'~. In addition, for two fixed
lattice points in the plane, the mean square interparticle
separation is increased from r2 to

f z dz'&0 (z)(0 (z') [r; + (z —z') l
= r; + 6b .

0 0

Now the ground-state crystal structure of a given system
is known to be very sensitive to details of the interpar-
ticle interaction. In the strictly two-dimensional case,
the ground state of the Wigner solid has a close-packed-
hexagonal (also often referred to as triangular) crystal
structure, as discussed above. As a result of the soften-
ing of the efFective interactions and the increase in the
mean square interparticle separations described above, it
is not clear, a priori, whether the ground-state crystal
structure of the quasi-two-dimensional Wigner solid is
also hexagonal when the envelope function is taken into
account. A definitive answer requires an explicit calcula
tion. In addition, irrespective of the crystal structure, it
is of interest to determine how sensitive the ground-state
energy is to the width of the envelope function. ii This
information will be useful in subsequent applications.

The objective of this work has been to provide answers
to these two questions. In Sec. II, the Coulomb energies
are determined numerically for a variety of simple crys-
tal structures of the quasi-two-dimensional Wigner solid.
The sensitivity of these energies to the width of the en-
velope function is shown. The final section contains a
discussion of the results.

II. LATTICE SUMS FOR GROUND-STATE
ENERGY'

To be specific, our calculation will be phrased in terms
of a simple picture of a heterojunction. The electron
layer is confined near the plane z = 0 and extends into
the region of z ) 0 due to the finite width of the envelope
function. Overall charge neutrality is provided by the
donor ions which are modeled by a homogeneous layer of
positive charge of area density pg, situated at z = bg-
In order to isolate the long-range contributions (which
will all ultimately cancel for the neutral interface system
in the q ~ 0 limit), we write the total Coulomb energy

E, = lim [Eqq(q) + E„(q)+ 2E,g(q)],

where

()=- r —r'I q q(r, a&)'

OO OO 2

E„(q) = — d d 'p, ( )p, ( ') ' '~' 'l d d '( ( )go( ')

and
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E,„(q) = —— d r d r'p p, (r')e'

aug 6
%8 Pd

2 0 0

~e2p2A b, 2!

2q (qb+ l)s
le2N (1

, ~

——3b —4+O(q) I(r.a~)' &q

e2
dz'(s (z'

[(r —")'+ (b. + ")']'~'

iq2( i) y—(z'+bq)

Eqg(q) is the energy of the donor ions, E„(q) is the energy of the electron layer, and E,g(q) is the energy due to
coupling of the ions and electrons. Although the charge distribution of the donor ions is uniform, the electrons are
in a crystalline state. Integrating over the z degree of freedom is elementary but the integration over the electron
distribution in the plane requires summation over the lattice points of the Wigner solid.

The lattice sum technique based on the Jacobi 8 functions and their imaginary transforms is ideal to calculate
ground-state energies of different lattice structures of heterojunctions or electron inversion layers. ~2 s As in Eq. (11),
we first write the Coulomb potential energy via an integral transform

V„(r —r') = [[r —r'( + (z —z'[ ]
d'H —&/2g —y)~ —~

[
—y]~—~

I

I 2 2

I'(1/2) (13)

By decomposing the lattice into rectangular sublattices indicated with sublattice vectors p;, position vectors of
electrons are given as

r = ma~z+ na2y, r' = (m'aq + p*, )i+ (n'a2+ p,")y,

where m, m', n and n' are integers, and aq and a2 are lattice constants of sublattices.
OO

g&z jg2&y )z z)z'ql — ') -&/& -w)l*-*l'

xN ) ) exp[—y(p,*+laq) + iq (p,*+lay)]
L=m —m'Jc=n —A'

The Jacobi 8 function is defined as

x exp[ —y(p,". + ka2) +iqq(p", +ka2)]. . (14)

8( X) ) e2mlze 7)l X-
l=—oo

Advantages of introducing 8(z; X) functions are that the 8 function converges well for large X, and we are also able
to obtain convenient well-convergent formulas for the small-X region by applying the Jacobi imaginary transformation
from which the Coulomb singular part at q -+ 0 can be rigorously extracted. ~2 ~s Thus, the Coulomb energy of electrons
obtained using Eq. (14) in Eq. (11) can be separated into a large y part and a small y part given by

E„(q) = E~(q)+E~(q),

where

OO

N 'E.'.(q) =-).
Q 7l yo

dyy "'f(y b) e ""+"" ( (2p, y —iq~)a a yl,
~

—~~,02t )cl=x~y

and

N E~(q) = —)2 -
g aqa2

WO

0
(18)

with
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OO OO

f(y, b) = dz dz'(o(z)(o(z')e "i' ' i

0 0

b' 3b4 i b' b 3bs i d/4»'
+ + ——+ +

4bs 8y 4y ( 2y 8y 2 ) 2~y (2'4ybz)
I

At the limit q ~ 0, E((q) becomes

~2 Qo

2~m.
dy y "'f-(y, b)+ ~ 'E.".--(q),

f ~vs "'f(ub),

(19)

(20)

where E,"~m(q) is the Coulomb energy corresponding to a homogeneous electron distribution,

j—Q OO

~-iEhom( )
& "'

d -s/zf( b)e e'/4-s

2agag +,+
ez /' 3/2 3/2 1

4(r,ag)zq (qb+ 1 (qb+ 1)z (qb+ 1)s)
ez (1 15b

(r,a@) (q 8 )
(21)

Here, a&az/n& = x(r,ap) and n& is the number «sub-
lattices. Note that the Coulomb singularity (1/q) in &q.

(2].) cancels exactly with the corresponding 1/q terms of

E~~(q) and E~g(q) [Eqs. (10) and (12), respectivelyj.

The results of our numerical calculations of the
structure-dependent contributions to E„(q -+ 0) for
particular two-dimensional lattice structures are summa-
rized in Table l(a). The tota/interface energy per electron

TABLE l. (a) The results of numerical calculations of the lattice-structure-dependent contri-
butions to N E«(q = 0) are given for different values of parameter P = b/r, ae for hexagonal
(hex), square (sq), centered rectangular (CR) with the various ratios of lattice constants (a2/a&),
rectangular (rec) with different lattice constant ratios, and honeycomb (HC) lattice structures. The
energies are measured in effective Hartree units, e /r, as. (b) The total interface energies per elec-
tron for hexagonal (hex), square (sq), centered rectangular (CR) with the various ratios of lattice
constants (az/az), rectangular (rec) with different lattice constant ratios, and honeycomb (HC)
lattice structures are given for the various values of parameter P. The energies are measured in
efFective Hartree units, e /r, any

10 10

hex
sq

CR(v 2)
CR(0.95)

rec(v 3)
rec(~2)

rec(0.95)
HC

hex
sq

CR(~2)
CR(0.95)

rec(v 3)
rec(~2)

rec(0.95)
HC

—1.106103
—1.100244
—1.104080
—1.100352
—1.042844
—1.078201
—1.099774
—1.068417

—1.106103
—1.100244
—1.104080
—1.100352
—1.042844
—1.078201
—1.099774
—1.068417

-1.1Q4230
—1.098372
—1.102208
-1.098480
—1.040971
—1.076329
—1.097901
-1.066541

—1.100105
—1.094247
—1.098083
-1.094355
-1.036846
—1.072204
—1.093776
—1.062416

(b)

—1.Q87592
—1.081738
—1.085571
—1.081846
—1.024376
—1.059709
—1.081267
—1.049925

—1.046432
—1.040488
—1.044321
—1.040596
—0.983126
—1.018459
—1.040017
—1.008675

-0.941894
-0.936369
-0.939987
-0.936471
—0.882335
—0.915604
—0.935925
—0.906213

—0.529394
—0.523869
—0.527487
—0.523971
—0.469835
—0.503104
—0.523425
—0.493713

-0.416275
-0.414441
—0.415642
—Q.414475
—0.396359
—0.407513
—0.414294
—0.403941

3.708725
3.710559
3.709358
3.710525
3.728641
3.717487
3.710706
3.721059
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FIG. 1. The total interface energy per electron in a hexag-
onal lattice structure is shown as a function of the parameter
P = b/r, as, in logarithmic scale.

is obtained according to Eqs. (12) and (21), by adding

(2bg + 33b/8)e /(r, a~) (22)

to the entries of Table I(a). The contribution
2bge /(r, a&) is strictly constant and will be ignored
in the following. The contribution (33b/8)e /(r, a~)2 =
(33/8) Pe2/r, a~ is added to the structure-dependent con-
tributions of Table I(a) to yield the total interface energy
per electron listed in Table I(b). It is seen that the total
energy increases as P increases for all cases studied but
that the hexagonal lattice structure continues to exhibit
the lowest energy. In fact, there is no crossing of any of
the total energy curves for any of the lattice structures
(in the physical range of P values) although the total
energies of different lattice structures become closer to
each other as P increases. In Fig. 1, we plot the total en-

ergy per electron for the hexagonal lattice structure as a
function of the envelope-function width parameter. The
dependence of the total energy of the centered rectangu-
lar lattice on the ratio of lattice constants a2/aq is shown

FIG. 2. Lattice structure dependence of the total interface
energy per electron at P = 0.1 is shown. The solid curve is the
energy of the centered rectangular lattice as a function of the
ratio (ag/aq) of lattice constants, and the dashed curve is the
energy of the rectangular lattice as a function of the lattice
constant ratio. Two minima of the solid curve correspond
to the hexagonal lattice structure at the ratio ~3 or 1/v 3.
The minimun in the dashed curve corresponds to the square
lattice structure.

in Fig. 2. The two equivalent minima at a2/aq = ~3 and

1/v3 correspond to the hexagonal structure while the
local maximum at as/a& = 1 corresponds to the square
lattice structure. The corresponding total energy curve
for the rectangular lattice is also shown.

To test the sensitivity of these results to the precise
form of (c(z), we replaced the standard Fang-Howard
envelope function by a Gaussian

(23)

and repeated all of the numerical calculations. Then Eq.
(12) becomes

e2A ~

(q) = — /" dyy slse e /4w

2

d 2—(z/b&) —y iz+bd I

b~
2

c i' —bgO
i

—
~ O(q))(r.~a)' q v ~ '

&ba)
(24)

f(y, bG) = (2bhy+ 1)-"'
and Eq. (21) is then replaced by

(25)

where 4 is the probability function. Equation (19) be-
comes

-~~e' ~- ~4y

2aza2 o /2b~&y + 1

e' /1 2—b
(r, any)2 (q
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TABLE II. (a) The results of numerical calculations of the lattice-structure-dependent contri-
butions to N E„(q = 0) are given for difFerent values of Gaussian parameter Po = ba/r, az for
hexagonal (hex), square (sq), centered rectangular (CR) with the various ratios of lattice constants

(a2/a&), rectangular (rec) with difFerent lattice constant ratios, and honeycomb (HC) lattice struc-
tures. The energies are measured in efFective Hartree units, e /r, any . (b) The total interface energies
per electron for hexagonal (hex), square (sq), centered rectangular (CR) with the various ratios of
lattice constants (a2/ai), rectangular (rec) with difFerent lattice constant ratios, and honeycomb

(HC) lattice structures are given for the various values of Gaussian parameter P~. The energies are
measured in efFective Hartree units, e /r, a~

hex
sq

CR(v 2)
CR(0.95)

rec(~3)
rec(~2)

rec(0.95)
HC

hex
sq

CR(v 2)
CR(0.95)

rec(~3)
rec(~2)

rec(0.95)
HC

—1.1'06103
—1.100244
—1.104080
—1.100352
—1.042844
—1.078201
—1.099774
—1.068417

—1.106103
—1.100244
-1.104080
—1.100352
—1.042844
—1.078201
—1.099774
—1.068417

10

-1.105305
-1.099447
-1.103283
-1.099555
—1.042046
—1.077404
-1.098976
—1.067616

-1.104975
—1.099116
—1.102953
—1.099225
—1.041716
—1.077073
-1.098646
—1.067286

(a)

(b)

10

—1.098164
-1.092306
—1.096142
—1.092414
—1.034912
—1.070266
—1.091836
—1.060478

-1.094859
—1.089001
—1.092837
—1.089109
—1.031607
-1.066961
—1.088531
—1.057173

10-'

-1.030292
—1.024496
—1.028291
—1.024603
—0.967731
—1.002693
—1.024030
—0.992976

-0.997242
—0.991446
—0.995242
—0.991553
-0.934681
-0.969643
—0.990981
—0.959927

—0.623733
-0.620352
-0.622566
—0.620414
-0.587219
-0.607627
-0.620080
-0.601314

-0.293239
-0.289857
—0.292071
-0.289919
—0.256724
—0.277133
-0.289585
—0.270819

Numerical results for the electron energy and the total
interface energy (with bd, set equal to zero) for this Gaus-
sian "envelope function" are given in Table II. The effect
of the parameter bG is somewhat weaker than the ef-
fect of b in the envelope function, but it is obvious that
the hexagonal structure is again most stable. Our previ-
ous conclusions regarding the stability of the hexagonal
structure are thus not overly sensitive to details of the
envelope function.

III. CONCLUSION

The width of the envelope function has a very sig-
nificant effect on the ground-state energy of the quasi-
two-dimensional Wigner solid in the very-low-density
regime. We have evaluated the total Coulomb energy
using numerically efficient Jacobi 8-function methods for
a variety of assumed crystal structures. Numerical re-
sults are given for a range of values of the ratio of the
envelope-function width to the planar interparticle spac-
ing P = b/r, a~. We find that the total energy curves
for difFerent crystal structures never cross as a func-
tion of P. Thus, so long as the electron density is low
enough that the Coulomb energy is dominant, and the
structure is also stable with respect to lattice vibra-

tions, the ground-state crystal structure of the quasi-
two-dimensional Wigner solid is hexagonal just as it is
for the strictl two-dimensional Wigner solid. We find
the same conclusions when the standard Fang-Howard
envelope function is replaced by a Gaussian. We expect
these results to be general, for physical values of P, so
long as the planar and perpendicular degrees of freedom
are not coupled. On the other hand, although the crys-
tal structure itself is not modified, the numerical value of
the ground-state energy is very sensitive to the envelope-
function width. Typically, the Coulomb energies increase
sharply and even change sign as P increases from P = 0
(strictly two dimensional) to P = 0.5. This sensitivity
indicates that it will be essential to take the width of the
envelope function into account when considering details
of the phase diagram of the low-density electron system.
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