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Motion of a point dipole in an infinite hole through a superconductor
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We consider the system of a magnetic point dipole placed in an infinite square hole through a
superconductor. Using the method of images we obtain the potential and the field distribution in the
hollow. Using Lagrangian mechanics, we study the motion of the point dipole in the nonrelativistic
regime. Relevant applications of this problem are discussed.

The so-called Meissner effect was discovered by Meiss-
ner and Ochsenfeld ' in 1933 and describes the diamag-
netic behavior of a material in the superconducting state.
When a superconductor is placed in a magnetic field. the
magnetic flux in any holes in the superconductor will be
confined. If a magnetic field source (say a point dipole) is
placed inside a superconducting "void, " the confinement
will cause the source (dipole) to move to an equilibrium
position which corresponds to the minimum value of the
free energy of the system. In this paper, we report on our
investigations of a system consisting of a magnetic point
dipole placed in an infinite square hole through a super-
conductor. Potential applications of this system will also
be discussed.

Consider a magnetic point dipole with moment m lo-
cated inside an infinite square hole through a super-
conductor at the coordinates (xo, y0, 0) as illustrated in
Fig. 1(a). For convenience, in the present work we con-
sider the case of a dipole with its moment parallel to the
z axis. The inclusion of the angular orientation of the
dipole moment yields results which are fundamentally
similar to those presented here and will be discussed in
detail elsewhere. In order to facilitate explicit calcula-
tions, the cross section of the hole was chosen to be a

square with edge 2 (units) and we consider the ideal case
with A = 0 (A is the penetration depth), i.e. , the perfect
diamagnetic model (or complete Meissner efFect).

The magnetic induction, B(x,y, z), will be given in
terms of a scalar potential by the relation B(x,y, z) =
—V'V(x, y, z). This total scalar potential, V(x, y, z), in-
side the hole satisfies

V' V(x, y, z) = yomb(x —xo)b(y —yo)b'(z),

where m = ~xn~. The appropriate boundary conditions
for the normal component of the magnetic induction on
the surface of the hole, B'"' "= 0, can be written as

B (+1,y, z) = 0 and B„(x,+1,z) = 0 .

The scalar potential of a point dipole can be expressed
as

pp m' R
Vg;p i, (x, y, z) =-

B3

where B = ~R~, and R is the spatial vector from the
dipole to the point of interest. Using the image method,
we obtain the induced scalar potential of the system in
the hole as

V;„g(x, y, z) = )4'
I* —2~ —(—')"*Dl + Iv

—2~ —
(
—~) vDI +~')n 2 2

n= —oo

(4)

where the distribution of image dipoles is described in Fig. 1(b). The prime on the sum indicates that the n = l = 0
term is excluded in the induced potential (and in the magnetic induction and interaction energy given subsequently).
We have assumed that all the image dipoles are located in the same plane as the source dipole and choose z = 0. This
is also appropriate for a dipole in motion subject to neglect of relativistic effects.

The total scalar potential is the sum of Eqs. (3) and (4). It is then easy to see that the normal components of the
derivative of the total scalar potential vanish at the surface of the hole, so that the boundary conditions, Eq. (2), are
satisfied.

The z component of the induced magnetic induction is given by

vinaB;„g,(x, y, z) =-
Oz

I

porn 2z —[x —2n —(—1) xo] —[y —2l —(—1)'yo]): 5/2
[x —2n —(—1) xo] + [y —2l —(—1)'yo] + z

The interaction energy, U, is expressed as
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1
U(xp, go, 0) = ——IIl ' B g(z = zp, g = 'JJp, z = 0)

oo
porn 1

3/2
xo —2n — —1 xo + yo —2l — —1 yo

(6)

The interaction energy plays the role of a potential well
which confines the motions of the dipole in the x and y
directions.

It can be seen that Eq. (6) has four singularity con-
ditions of order 3 which correspond to the four walls of
the square hole and occur for the values xo ——+1+ and
go = +1+. This means that the interaction energy goes
to inanity at these surfaces. In order to visualize the be-
havior of the interaction energy over the entire extent of
the hole, we plot Eq. (6) over the interval xp 6 [0, 1)
for yo ——0 in Fig. 2(a) (i.e., along the x axis). Due to
the symmetry of the problem (i.e. , xo -+ —xo), we have
plotted only the xo ) 0 portion of the curve. This curve
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The equilibrium position for the dipole (xp = 0, yp = 0)
follows directly from Eqs. (6) and (7). The interaction
energy can be expanded in terms of xo and yo under the

I

shows a minimum at the center of the square hole and
diverges at the walls of the hole. The mathematical de-
tails of this function will be described below. The general
shape of the interaction energy as illustrated in Fig. 2(a)
illustrates that the equilibrium pos&tion for the dipole will
be at the center of the hole.

Physically, the confined motion of the point dipole in
the hole can be characterized as one of two types: (i)
harmonic oscillation when the amplitude of the displace-
ment from the equilibrium position is small and (ii) an-
harmonic when the amplitude of the displacement from
the equilibrium position is large. These two situations
will be discussed in the next two sections, respectively.

(i) Horizontal oscillations. Horizontal oscillations, that
is, oscillations in the x-y plane, can be considered by
minimizing the interaction energy as given in Eq. (6),
i.e. , setting
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FIG. 1. (a) Diagram of a magnetic point dipole (xn)
placed in an infinite square hole through a superconductor.
(b) The point dipole at (xo, y0, 0) and some of the infinite
number of image dipoles in the z = 0 plane.

FIG. 2. The interaction energy [Eq. (6)] as a function of
distance along the x axis; (a) semilog plot for xo C [0, 1) and
(b) linear plot for xo C [0, 0.1] (dots). The solid line is a
least-squares fit with the function u = 0.5611+0.8752xp.
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1 m2((3)+), „„,=2.244 '

E=l
n=l

second-order (harmonic) approximation to obtain U =
Up+ U,g, where

convenience of calculation, we only need to consider the
region of xp E [0, 1) since the potential is symmetric in
xp ~ For a conservative system, we can use energy con-
servation to obtain the equation of motion of the dipole
as

1 2=—Mxp = U(xpp) —U(xp) .
2

where the constant C is given by

C = 31((5) + 4 ) 2 i
—36.314.- (4"' —t') l1 —(—1)"j'

n2+ t2 7/2

(io)

As shown in Fig. 2(b), the data obtained directly from
Eq. (7) confirm the validity of the harmonic approx-
imation for small amplitude displacements. If it as-
sumed that the point dipole has a mass M, the efFec-
tive Lagrangian in the harmonic approximation can be
expressed as L ~ ——T —U,g, i.e.,

2

(*o+yo) — ~(xo+ yo) .
1 . 2 .2 3@pm

2 512vr

The Euler-Lagrange equations can easily be derived to
be

xp+ QJ xp = 0&

y'p+ w yp
——0,

(12)
(13)

where the degenerate oscillation frequency, u, is

3ppm2C
2567rM

0.851™2' M
(i4)

For a hole with a rectangular cross section it can read-
ily be shown that there are two distinct oscillation
frequencies.

It is straightforward to obtain solutions to Eqs. (12)
and (13) of the form

xp = xpp sin(ldt+ by),

gp = gpp sin(~t+ b2),

(i5)
(i6)

where xpp and ypp are the initial disPlacements, and bl
and b2 are the initial phases of the oscillation.

In a real system, the motion may be dissipative for
various reasons. In such cases a more detailed analysis of
the physical properties of the system with the inclusion
of appropriate damping terms in the equations will be
necessary.

(ii) Focusing a neutron beam: a possible application.
Let us now consider the focusing function of the hole.
Assume a point dipole at rest and located very close to
the wall at time t = 0, i.e. , xpp 1 and xpp = 0. For

((n) is the Riemann g function and the effective potential
is given by

3 cpm
2

U.e(xo, Vo) = ~(xo+ Vo),512vr

Due to the singularity at xp ——1, the right-hand side
of Eq. (17) (i.e. , the change in the potential) will be de-
termined by the singularity term. Some straightforward
algebra yields

@pm —Lx
32~M (1 —xop)s(1 —xp)

'

where Lx = xp —xpp the displacement of the dipole from
its initial position near the wall. When the dipole is ini-
tially close to the wall, there wiH be an extremely strong
repelling force pushing the dipole towards the equilib-
rium position at the center of the hole. This results in a
focusing of the dipole inside the hole.

These results may be applied to the study of the mo-
tion of electrically neutral particles which have magnetic
moments inside a hole through a superconductor. When
the size of the particle is much smaller than the spa-
tial dimension of the hole, the chargeless particle may be
modeled as a point dipole. The above results could be
directly used to describe the horizonta/ motion of such
particles in the hole.

The application of the above results may be extended
by considering the horizontal motion of an electrically
neutral particle with a magnetic dipole moment which is
moving in the z direction inside the hole. Under nonrela-
tivistic conditions, we may assume that the point dipole
and all its images are in the same plane at any time.
As the dipole moves along the z direction, the hole will
act as a converging lens, focusing the dipole towards the
symmetry axis (0, 0, z).

This model has a possible practical application to the
focusing of a neutron beam. To our knowledge, due to
the chargeless nature of neutrons, there is no known suit-
able method of focusing the neutron beam from a reactor.
Without such efFective focusing, the usual procedures for
the preparation of a neutron beam from a reactor re-
sult in the loss of a large fraction of its intensity before
its utilization for experiments. Generally speaking, the
thermal neutrons from a reactor have a typical speed of
10 —10 m/sec. Thus, relativistic effects would not be a
consideration and the calculations of the above model are
applicable to the motion of neutrons. If a superconduct-
ing tube were constructed between the exit window of a
neutron reactor and the experimental chamber, the in-
tensity of the neutron beam could be largely maintained.

From Fig. 2, it is easy to see that the harmonic ap-
proximation for the interaction energy is suitable only
for small displacements. In order to understand the fo-
cusing action of the hole in the superconductor on the
neutron beam we have to consider the anharmonic mo-
tion which occurs for large displacements of the dipole
from the equilibrium position. A detailed solution of the
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nonlinear system of equations necessary to describe the
anharmonic behavior for large displacements is beyond
the scope of the present paper. However, on the basis
of the calculated interaction energy, a phenomenological
description of the focusing of a neutron beam in a hole
through a superconductor is possible. Prom Fig. 2 we see
that the neutron will experience a large repulsive force
as it approaches the singularity in the potential at the
wall of the hole. In this respect it should be pointed out
that the details of the microscale processes (i.e. , quan-
tum efFects), which may be of relevance when the neu-
tron is very close to the wall (i.e. , on the length scale of
the lattice parameters), are not being considered in the
present work. The force which the neutron will experi-
ence will tend to con6ne the neutron to the interior of
the hole through the superconductor and thus prevent it
from penetrating the superconductor. This will allow the
neutron beam to be focused in the sense that neutrons,
which have a small horizontal velocity component but
are generally moving in the z direction, will be guided
along the interior of the hole. The general features of
the present treatment may be extended to geometries
which may be more suitable for guiding neutrons from a
practical standpoint; i.e., a conical or tapered geometry
to reduce the spatial extent of the neutron beam or a
curved hole to redirect the beam. As well, the general
features presented here also apply to holes with circular
or elliptical cross sections. The square geometry has been
presented here as it greatly simplifies the mathematical
treatment.

The angular orientation of the neutron magnetic mo-

ment relative to its direction of propagation defines its
polarization state. In the present work we have consid-
ered only the case where the polarization axis of the neu-
trons is along the z axis. A more general consideration of
the interactions between the neutron magnetic moment
and the superconductor as a function of the polarization
direction does not alter the focusing characteristics de-
scribed here. This more general treatment of the problem
will be reported in detail elsewhere.

The present results indicate the possible potential for
a superconducting tube to be used as a means of guiding
a beam of neutrons on the basis of the interaction energy
for a magnetic dipole moment inside a hole in a per-
fect diamagnet. An analogous phenomenon has been ob-
served for a beam of charged particles (electrons) inside
a superconducting tube. Matsuzawa and co-workers '

have reported experimental results which have been in-
terpreted in terms of the diamagnetic properties of a su-
perconductor as an efFective means of guiding the motion
of electrons. The present work gives the theoretical basis
by which this property of the interaction between moving
electric charges and a superconductor may be extended
to include the properties of the interaction between a
magnetic dipole and a superconductor.
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