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Plasmons in disordered, two-component, quasi-two-dimensional electron systems
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We investigate the e8'ect of elastic scattering of electrons on properties of plasmons in a disor-
dered, two-component, quasi-two-dimensional electron gas. Numerical results are given for disper-
sion relations and lifetimes of optical and acoustical plasmons, and for the dynamical structure fac-
tor. Acoustical plasmons are destroyed at long wavelength and exist only above a critical wave
number q„which depends strongly on electron-impurity scattering rates.

I. INTRODUCTION

There has been a recent increase in interest in
plasmons in quasi-two-dimensional electron systems.
This is partly due to the discovery of high-temperature
superconductivity, ' and the associated search for new,
nonphonon mechanisms of superconductivity. The in-
creased interest is also related to the experimental search
for acoustical plasmons in materials exhibiting quasi-
two-dimensional electron dynamics. ' There have been
several investigations, within mean-field models, into the
possibility that plasmons mediate the attractive electron-
electron interaction in high-temperature superconduc-
tors. ' Ruvalds has studied the effect of acoustical
plasmons within the random-phase approximation (RPA}
in quasi-two-dimensional systems and suggested that they
may lead to room-temperature superconductivity in La-
Ba-Cu-0 compounds. Vignale has examined the effect
of short-range exchange correlation (beyond RPA) on
plasmon dispersion relations and lifetimes, and has con-
cluded that Landau damping allows the existence of
acoustical plasmons only below a maximum wave number
q „, which can be significantly reduced by strong,
short-range correlations. " One may also expect elastic
electron scattering to be an important source of plasmon
damping in view of the nonstoichiometric structure and
associated disorder of these materials.

The primary purpose of this paper is to determine how
the elastic scattering of electrons from static defects (re-
ferred to as impurities) afFects the existence, dispersion,
and lifetime of acoustical plasmons in a simple, two-
component, quasi-two-dimensional electron gas. We find
that scattering induces overdamping of plasmons at long
wavelength, or q ~ q„where q, is a critical wave number
that increases with the scattering strength (for example,
in one of the cases considered below, acoustical plasmons
are overdamped for q ~0.02k&, where k& is the Fermi
wave number of the heavy component). Although the
dispersion of the surviving plasmons is only slightly
affected by scattering, the plasmon lifetimes can be
significantly reduced. We also report the effect of impuri-
ty scattering on the properties of optical plasmons.

II. MODEL AND METHODS

We consider a quasi-two-dimensional, two-component,
degenerate electron gas subject to elastic scattering from

static impurities. We model the dispersions of the light
and heavy electrons, with effective masses mI and m&, re-
spectively, as Ei =R k /2m, and eh =Pi k /2mh, respec-
tively. The Fermi energies are c, =(A'k ) /2m, where

j=(l,h) and the kz are the Fermi wave numbers. We in-
troduce the parameters

PlyI=, K=
Pl I

(2.2)

In our investigation of the plasmon dispersion and life-
time, we employ three different methods that are com-
monly used. Comparison of the results of the three
methods is particularly instructive in cases where the life-
time is short.

A. Peaks in the loss function

Well-defined plasmon modes are associated with reso-
nances in the loss function,

1
S(q, to}=—Im

E( q, co )
(2.3)

We determine the plasmon dispersion co and lifetime pq
directly from the loss function by calculating, for a given
value of q, the peak position m and half-width y at half
maximum.

where ~ is the mean free collision time for component j.
The dispersion relations for plasmons in our model are

readily seen to be given in the random-phase approxima-
tion by

e(q, to)=1+ V (Ilt (q, co)+IIh (q, co))=0, (2.1)

where e(q, co) is the dielectric function, Ve =2rre /eoq, eo
is the static background dielectric constant, and
IIi u(q, co) is the irreducible polarization function of com-
ponent j in the presence of impurities. We employ the
asymptotic form' of II' "(q,co) corresponding to q ((k,
%co +(F~ '.

Vlj COII™(q,co) = 1—
nfi

[(to+iles

) —(qu ) ]' —i/r

3647 1989 The American Physical Society



3648 MARK R. A. SHEGELSKI AND D. J. W, QELDART

8. %'eak-damping approximation

The dispersion is approximated by the solution co to

Re@(q, co) =0, (2.4)

y =ImE(q, co )/([8[Rem(q, co)]/Bco]„— ) .
q

(2.5)

The solutions corresponding to plasmons require y )0.

and the lifetime is approximated by its weak-damping
form

C. Analytic continuation

The dispersion and lifetime are given by the zeros of
the analytic continuation of the (retarded) dielectric func-
tion into the lower half of the complex ~ plane; that is, by
the solutions to the equations

Re@'(q, co i—y ~ )=0, (2.6)

Ime(q, coq i—y~)=0 . (2.7)

These methods will give very similar results and
plasmons will be well defined only if y~ /co~ && 1.

We specify the strength of the scattering by a parame-
ter 1,, where fi/r =sj /.1, for both j =I and j =h, and we
rewrite Eq. (2.1) in terms of M, K, A, , and t:

1+M+ =Sk Mt, +1 1

q, [(roAt+i) (2qk—t/MK) ]'~ i [(co—A, +i) (2qA, —) ]'~ —i
(2.8)

where a=@'co/E&, q =q/k&, q &
"=q& "/k&, and

q~
"=2e m~/ A' eo is the Thomas-Fermi wave number for

component j.
For each of the three methods described above, we

have obtained results by using Eq. (2.8) to solve numeri-
cally, via computer, for the dispersion and lifetime. Note
that co is purely real in each of the first two methods,
while 6 is complex in the third method.

We follow Ruvalds and Vignale" in choosing M =3
and K=i 10/3 (corresponding to E&/sf, =10), which al-
lows for easy comparison between our work and theirs.
We consider three different cases for the scattering
strength: X= 10, 100, and 1000. In all three cases,
r =rz/~&=10. The one parameter left to choose is q&~"

(TF denotes Thomas-Fermi). One can readily show that
q J"=i/2r', where r'. is the usual average electron spac-
ing for component j. We follow Vignale in taking r& =1.
Since qz /q& "=M, this choice fixes q&

".
Finally, we choose the range of q we wish to examine.

Since Eq. (2.8) involves the asymptotic forms for the
II~ ~(q, co) when q &&k. , we choose q so that q &k& /3
and q ~k&/3. The latter condition is more restricting
and is equivalent to q & MK/3t = I/i/30.

for the light component (steeper line) and the heavy com-
ponent.

The most striking curve in Fig. 1 is branch A1. As we
move down this curve (q and co~ decreasing), we en-
counter a point, designated by a +, where y~/co&= —,'.
This point occurs at (q, co )=(q„cot) (0. 14, 0.07). Fur-
ther down the curve, at (q, co ) =(qz, co&)=(0.11, 0.055),
is a second point, designated by a 0, where y /co~ =

—,'. In
this paper, we use the term "overdamped" to indicate
that y /co ~

—,'. Curve Al terminates at (q, co )=(q„B,)

=(0.053, 0.034).

O. IO

3
0.05

III. RESULTS AND DISCUSSION

In Fig. 1 we show the plasmon dispersion as deter-
mined by the loss-function method. We show the optical
and acoustical branches for the cases X=10 and 100, re-
ferred to henceforth as 01,02 and A1, 32, respectively
(see Fig. 1). The optical and acoustical branches for
A, =1000, 03 and A3, respectively, are practically indis-
tinguishable from their A, =100 counterparts, 02 and A2,
and are not shown, the only noteworthy exception is that
branch A3 extends almost to the origin, whereas branch
A2 does not (see Fig. 1). Curves 03 and A3 are essential-
ly those corresponding to 1/rq =1/r&=0. The dashed
curves show the electron-hole —pair excitation boundaries

0
0 O.IO

q/kg

0.20

FIG. 1. Plasmon dispersions obtained from peaks in the loss
function. The dispersions are labeled 01, 02, A1, and A2 for
the optical branches in the cases A.=10 and k= 100 and for the
acoustical branches for =10 and A, =100, respectively. Points
marked + and ~ indicate yq/coq =—' and —,', respectively. The
dashed curves are the electron-hole —regime boundaries for the
light component (steep line) and heavy component.
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TABLE I. Points on various optical {Oi) or acoustical {Ai) branches where y~/co~= —„[point
(q„ro, )] or y~/co =—[point (q2, F02)]; i =1, 2, or 3 signifies A, =10, 100, or 1000. The branches were

determined using the loss-function method, except for Al(WD), where the weak-damping approxima-
tion was used, and Al(AC), where the analytic continuation method was used. Branches 01, 02, Al,
and A2 are shown in Fig. 1; branches Al(WD) and Al(AC) appear in Fig. 3.

Branch

01
02
03
Al
A2
A3

A 1{WD)
A 1(AC)

60X10 '
6.ox 10-4
6.0X 10
1.4X 10
2.3 X 10
2.5 X 10
1.3X 10
8.2 x 10-'

2.0X 10
1.8 X 10
1.8x 10-'
7.0x 10-'
1.2x 10-'
1.4x 10-'
6.1 X 10
4.0X 10

1.8 X 10
1.5 X 10
1.5X 10-'
1.1X10 '

1.5 x 10
1.6x10-'
8.3 x 10-'
4.3 x10-'

8.9x10-'
7.7x10-'
7.7x 10-4
5.5X 10
8.4X 10
9.1 X 10
4.0x10-'
2.0x10-'

imation and via the analytic continuation method. The
resulting dispersions are indicated in Fig. 3 by the three
solid curves situated near the diagonal. ' The fourth
(higher-frequency) solid curve corresponds to the optical
branch obtained in the weak-damping approximation,
while the two dashed curves indicate other solutions of
Eq. (2.4) that are not associated with sharp peaks in the
loss function. ' ' The symbols + and ~ have the same
meaning as in Fig. 1; the associated values of q and S are
given in Table I.

As expected on general grounds, the three methods
yield similar dispersions and lifetimes only when y /coq

is small. We emphasize that, when employing any of
these three methods, meaningful information is obtained
only if both the dispersion and lifetime are calculated. '

It is not surprising that the values q &, co&, q2, and Q2 difFer

considerably for the different methods (Table I).
In the case of strongest scattering considered here

(A, =10), acoustical plasmons are overdamped for
q «0. 10. Vignale has shown that, for the same values of
M, K, and r& used here, short-range exchange-correlation
efFects limit the existence of acoustical plasmons to
q ~q,„=0.33, and that the value of q,„can decrease
considerably as rI', increases. " The combination of both
disorder-induced electron scattering and exchange-
correlation efFects may be such as to severely limit, or

even destroy, the regime of existence of well-defined
acoustical plasmons.

Our results have an important bearing on the question
of whether or not acoustical plasmons could mediate the
attractive electron-electron interaction in high-T, super-
conductors. Mahan and Wu, for example, have conclud-
ed that long-wavelength acoustical plasmons are not re-
sponsible for the attractive interaction, but have left open
the question of the role played by larger-q modes. ' Our
work indicates that, if the scattering is strong enough,
then not only very-small-q modes are destroyed, but so
are acoustical plasmons of intermediate q. Consequently,
a quantitative treatment of such scattering is needed in
order to establish the possible role of acoustical plasrnons
in high- T, superconductivity.

IV. CONCLUSIONS

Electron-impurity scattering destroys long-wavelength
optical and acoustical plasmons in a two-component,
quasi-two-dimensional electron gas. The scattering rate
strongly afFects the critical wave number q, above which
plasmons exist, adjusts the dispersion of surviving
plasmons only slightly, and can significantly reduce the
plasmon lifetime. Theoretical studies designed to deter-

TABLE II. Comparison of coq and the ratio yq/coq as a function of q for the acoustical plasmon
dispersion curves Al and A2 shown in Fig. 1. The lines designated by superscripts s and t denote the
smallest values of q for which the peaks associated with A 1 and A2, respectively, have a half maximum
on both sides [see Figs. 2(a) and 2(b)]. The lines designated by superscripts s + and f denote the values
of q at which the branches A 1 and A2 terminate (see Fig. 1).

0.2000
0.1500
0.1050*
0.0525**
0.0250
0.0200
0.0150
0.0075~

0.0947
0.0736
0.0540
0.0339

Pq /COq

0.146
0.222
0.518

0.0939
0.0725
0.0524
0.0275
0.0136
0.0110
0.008 36
0.004 53

Xq i~q

0.0474
0.0612
0.0812
0.132
0.238
0.306
0.530
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mine the role played by acoustical plasmons in high-
temperature superconductivity must include electron
scattering. Finally, experimental detection of acoustical
plasmons in quasi-two-dimensional electron systems can
be successful only in a range of wave numbers exceeding
q„but also below the threshold of Landau damping.
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