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Critical behavior of two-dimensional magnetic systems with dipo&e-dipole interactions
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The critical exponents of two-dimensional dipolar magnetic systems with isotropic in-plane or-
dering may be obtained from the z expansion which determines the exponents of isotropic three-
dimensional dipolar systems. However, a two-dimensional dipolar system with uniaxial in-plane
ordering requires a new e expansion with upper critical dimension d, =3 —, . The possible
relevance to experimental studies of monolayers of gadolinium is briefly discussed.

Recent advances in techniques for the preparation of
thin films and layered systems has led to renewed interest
in the critical phenomena of two-dimensional systems.
In particular, studies of monolayer films of gadolinium on
tungsten (110) surfaces have recently been reported and
interpreted in terms of an Ising system with short-range
(exchange) interactions. However, it has recently been
suggested that dipolar interactions may be relevant to the
asymptotic critical behavior of bulk Gd. We wish to
point out that a similar situation exists in the case of films
and monolayers.

We shall consider two-dimensional dipolar systems in
which the order parameter lies in the two-dimensional
plane. Generalizing the Hamiltonian for a two-dimen-
sional dipolar system given by Maleev to d dimensions
gives
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where a and P denote components parallel to the d
dimensional "plane" and the usual integration over the
momentum arguments and conservation of momentum
are implied in the final quartic term. The problem of a
two-dimensional system with dipolar interactions in which
the order parameter is perpendicular to the plane has pre-
viously been described both in the context of magnetic sys-
tems and in the context of Langmuir-Blodgett films.

For isotropic ordering in the plane, the derivation of the
appropriate propagator is similar to that for three-
dimensional dipolar systems. The coefficient of p'pp in
& may be decomposed into transverse and longitudinal
parts
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of the nonanalytic term in & and that under a change of
scale
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This is of precisely the same form as the Gaussian prop-
agator previously used to obtain the usual e expansion for
the critical exponents of bulk dipolar systems. The criti-
cal exponents of this two-dimensional system's phase tran-
sition (as described by Maleev ) will therefore be deter-
mined by the same forms as the usual e expansion, howev-

er, with e 2.
Turning to the case of uniaxial ordering in the plane, it

is sufficient to consider a one-component field p and Ham-
iltonian
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in a convenient generalization of the physical d =2, m =1
Hamiltonian. We will express our results in terms of the
minimal subtraction method, though to the order we shall
work, equivalent results may be obtained by the Wilson
recursion relation method.

Dimensional arguments then determine that each loop
integral in the bare vertex functions is accompanied by a
factor ug with dimensions

[
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with

q pq, g pg.
The only fixed points for this system occur at g =0, corre-
sponding to a system with short-ranged interactions only,
and g =~. In the limit g ~, the propagator becomes

and, therefore, the Gaussian propagator is t. =4 —d —-- — .I P1
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The renormalized dimensionless coupling constant is
then
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Note that the q =0 point is excluded in the integration with p and the renormalization constants Z, Z„,and Z2
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chosen so that the renormalization-group condition
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Evaluating the integral
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Having confirmed that I ~ has a simple pole at e' =0, we

may use the standard arguments of the minimal subtrac-
tion to obtain the correlation length exponent v to leading
order in t.
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Thus, although v is independent of the coefficient of e'

in I ~ to this order, the value of v will depend on the value
of the m through the critical dimension

m
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The subscript b denotes the bare function, the ellipses rep-
resent nonsingular terms, and SP denotes the symmetry
point such that

2
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To order one loop
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where M& and M2 are determined by the multiplicity of
the appropriate graph but are independent of the form of
the propagator. I ~ is the one-loop integral

The fact that the coefficient of e' in Eq. (17) is indepen-
dent of m is a general feature of the one-loop calculation.
The corresponding coefficients in higher-order calcula-
tions are expected to have explicit m dependence. The
calculation of these higher-order coefficients (even to or-
der two loops) presents substantial additional difficulty
and has not been undertaken as yet. It is already clear,
however, from this one-loop calculation that dipolar in-
teractions may be of importance and that the usual two-
dimensional Ising or Heisenberg models (with short-range
interactions) may not be sufficient to account for experi-
mentally determined critical exponents. In summary, for
two-dimensional dipolar systems with isotropic ordering in
the plane, the appropriate Gaussian propagator is one that
has previously been used in the context of three-
dimensional dipolar models. Therefore, a single e expan-
sion about d, =4 will give exponents for both d=2 and
d=3 systems (with an appropriate resummation tech-
nique and a=2 or e=l, respectively). However, in the
case of a two-dimensional system with uniaxial ordering
in the plane, we must perform a new t..' expansion about
the upper critical dimension d, =3 2 . This may be con-
trasted with the case of three-dimensional uniaxial dipolar
systems, in which the appropriate critical dimension is 3
and, therefore, the critical behavior of the physical system
may be described in terms of power laws with mean-field
theory exponents and logarithmic corrections.

Finally, we turn to possible experimental realizations of
two-dimensional dipolar systems. As noted in the intro-
duction, in the case of Langmuir-Blodgett films, the com-
ponent of the order parameter perpendicular to the plane
plays a significant role in determining the phase diagram
and this has been described, within mean-field theory, in

Refs. 5 and 6. In thin magnetic films, such as in Ref. 2,
there may be a large number of basic interactions which
influence the magnetic phase diagram. For example,
spin-orbit coupling may play a significant role in deter-
mining the anisotropy of the order parameter. In addi-
tion, for thin films grown on metallic substrates, the in-
teraction with the substrate may be of importance. Al-
though a more complete theoretical study is called for in

the case of Gd on W, in view of the possible importance of
dipolar interactions in bulk Gd, such interactions should
not be neglected in studies of thin films of this material.
In particular, a change in the behavior of the susceptibili-
ty is observed at a reduced temperature t = 10 in Ref.
2, and this is reminiscent of the behavior in bulk Gd at
t = 10,which has been ascribed to dipolar eA'ects.
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