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Solving the line-shape problem with speed-dependent broadening and shifting
and with Dicke narrowing. II. Application
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We apply the formalism presented in a previous paper to calculate spectra of an isolated line with speed-
dependent broadening. The translational motion is modeled on a rigid-sphere interaction and includes the effect
of the mass of the perturber on the profile. We show that the density, the mass of the perturber, and the ratio
of the optical to kinetic cross section all play a role in revealing or concealing~in the profile! the effects of
broadening, which depend upon the speed of the active molecule.
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I. INTRODUCTION

There is a growing body of experimental evidence~cf.
@1,2#! showing that speed-dependent broadening and shif
@3,4# plays a measurable role in determining the profile of
isolated line. There is also evidence that the models use
describe the translational motion, including Dicke narrowi
@5#, are inadequate. Up to now, the shapes of Dicke-narro
isolated lines were mostly analyzed using profiles in wh
the treatment of velocity-changing collisions is based on
soft collision model@6–9#, or the hard collision model@10–
13#, or a combination of the two@14–19#. However, it was
recently shown@19# that any combination of the soft and th
hard-collision model~Rautian-Sobelman@14# or Keilson-
Storer@20#! is insufficient since it does not properly take in
consideration the role played by the mass of the perturb

While the basic transport/relaxation equation that gove
the line shape is known, there are no analytical solutions
this equation for physically realistic conditions. Based
experience with the Boltzmann equation~a similar but sim-
pler equation!, it is reasonable to claim that it will never b
possible to find analytical solutions for the line shape of
isolated line under physically realistic conditions. Most
the well-known analytical expressions for the line sha
~Doppler, Voigt, Lorentzian, etc.! result from making overly
simplifying approximations to the master-transpo
relaxation equation. On the other hand, exact numerical
lutions of the equation are relatively easy to generate. In R
@21# ~hereafter referred as part I! we presented a forma
method for solving the equation numerically. This reduc
the line-shape problem to the art of choosing a complete
infinite set of basis functions and determining how many
these were to be used. Here we implement the formalism
selecting a set and, by testing for convergence, determi
practical number of functions to be included. At this sta
the problem is reduced to solving a finite set of coup
linear equations. Being numerical in nature, we must, if
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are to examine solutions, pick specific input parameters.
the speed-dependent broadening and shifting we assume
the form established for CO-N2 @22# is also appropriate for
CO-Ar. We describe the translational motion using t
velocity-changing collision operator for billiard balls~rigid
or hard spheres! @23,24#. A billiard-ball model is often used
in statistical mechanics to treat the translational mot
@25,26#. For us the advantage of using a rigid-sphere int
action lies in the fact that the matrix elements of th
velocity-changing collision operator are known for any ra
of the mass of the perturber to the mass of the active m
ecule @23,24#. Many parameters contribute to the final pr
file. In this paper we take ‘‘slices’’ in parameter space
order to determine what are the important parameters
reveal or conceal spectral evidence of speed-depen
broadening.

II. LINE SHAPE

As was shown in part I, the shape of an isolated line
given by

I ~v!5
1

p
Rec0~v!, ~1!

wherec0(v) can be evaluated by solving the set of compl
linear equations

bO5L ~v!cO~v! ~2!

for the coefficientcs(v). The subscripts is explained below.
Here the columnbO contains one in the position 0 and zeros
other positions, i.e.@bO #s5ds,0 , and the columnc(v) consists
of the coefficientscs(v), i.e. @cO(v)#s5cs(v). The matrix
L (v) depends on the frequencyv and has the following
form:

L ~v!52 i ~v2v0!11 iK2SD
f 2SVC

f , ~3!

where 1 is the unit matrix,@1#s,s85ds,s8 , K is the matrix
that represents the Doppler shift,@K #s,s85^sukW•vW us8&, SD

f is
the matrix that represents the dephasing collision operca
©2001 The American Physical Society02-1
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ŜD
f , i.e. @SD

f #s,s85^suŜD
f us8&, andSVC

f is the matrix that rep-

resents the velocity-changing collision operatorŜVC
f , i.e.

@SVC
f #s,s85^suŜVC

f us8&. In our ‘‘matrix element’’ notation the

matrix element @A#s,s8 of an operatorÂ are given by

^suÂus8&5(ws ,Âws8), where the scalar product of function
a(vW ) andb(vW ), is defined as (a,b)5*d3vW f m(vW )a* (vW )b(vW ).
Here the Maxwellian velocity distributionf m(vW ) equals
(pvm

2 )23/2exp(2v2/vm
2 ), wherevm5A2kBT/mA is the most

probable speed of the absorber,mA is the mass of absorbe
kB is Boltzmann’s constant and,T is the temperature of the
gas. The chosen basis functionsws(vW ) are orthonormal

@(ws ,ws8)5ds,s8# with w0(vW )51.

III. CHOICE OF ORTHONORMAL BASIS FUNCTIONS

For linear absorption by systems in thermal equilibriu
the transport/relaxation equation has axial symmetry ab
the wave vectorkW . A convenient complete set of basis fun
tions with this symmetry can be constructed from the Burn
functionscnlm(vW ) by settingm50 ~cf. Lindenfeld and Shiz-
gal @23#!. We write these as@24#

wnl~vW !5Nnl~v/vm! lLn
l 11/2~v2/vm

2 !Pl~eW k•eW v!, ~4!

where

Nnl5A p1/2n! ~2l 11!

2 G~n1 l 13/2!
~5!

is a normalization factor andG( . . . ) is thegamma-Euler
function. The functions

Ln
l 11/2~x2!5 (

m50

n
~21!mG~n1 l 13/2!

m! ~n2m!!G~m1 l 13/2!
x2m ~6!

are the associated Laguerre polynomials~sometimes these
are called Sonine polynomials@27#! and x is the reduced
speed of the active molecule, wherex5v/vm . The functions

Pl~y!5
1

2l (
k50

[ l /2]
~21!k~2l 22k!!

k! ~ l 2k!! ~ l 22k!!
yl 22k ~7!

are Legendre polynomials andy(y5eW k•eW v) is the cosine of
the angle between the velocity vectorvW 5veW v and the wave
vector kW5keW k (eW v and eW k are unit vectors!. The functions
wnl(vW ) are also eigenfunctions of the collision operator
Maxwell molecules@23#, i.e., for molecules with a repulsiv
potential that varies as 1/r 4.

The basis functions given by Eq.~4! were used by Lin-
denfeld@24# to calculate the self-structure factor for a gas
hard spheres. In optical spectroscopy this is the shape
line undergoing Dicke narrowing but no collisional broade
ing or shifting. Robert and Bonamy@28# used thel 50 subset
of these basis functions to calculate the shape of a line in
high-density (kW50) limit with speed-dependent broadenin
01250
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and shifting and with a velocity-changing collision operat
described by the Keilson-Storer model@20#. A general and
more realistic treatment requires the inclusion ofkW•vW in the
master equation, the use of a potential to determine a c
sion operator that reflects the role of the mass of the p
turber in the kinematics of collisions and, of course, the u
of a broader set of basis functions.

In numerical calculations one needs to limit the compl
infinite set of basis function to a finite set. Our choice o
finite set consists of using a function withn50, . . . ,nmax
and l 50, . . . ,l max. The indexs, introduced above, repre
sents the pairn and l and enumerates our basis functio

@ws(vW )5wnl(vW )#. For programing it is convenient to defines
by s5n1(nmax11)l . In this cases ranges from zero to
smax, wheresmax5nmax1(nmax11)l max. There aresmax11
basis functions.

IV. MATRIX ELEMENTS

To carry out the line-shape calculations, it is necess
first to specify the operatorsŜD

f and ŜVC
f , and second to

evaluate all of the elements of all of the matrices whi
occur in Eq.~3!. In order to compare our new results wit
previous calculations we do this for the case in which
collisional broadening and shifting varies quadratically w
the speed of the active molecule. Dicke narrowing, caused
velocity-changing collisions, is modeled by colliding billiar
balls with a specified mass ratio. Since the matrix eleme
of i (v2v0)1 are trivial, we move on to consider the oth
terms in Eq.~3!.

If the Doppler shiftkW•vW is written asvDeW k•vW /vm , where
vD5kvm , then the matrix elements ofK can be written as

@K #nl,n8 l 85vD^nlueW k•vW /vmun8l 8&. ~8!

Using our basis functions wnl(vW ), the elements

^nlueW k•vW /vmun8l 8& can be calculated analytically and a
given by

^nlueW k•vW /vmun8l 8&5@An1 l 13/2dn,n82Andn,n811#

3A ~ l 11!2

4~ l 11!221
d l ,l 821

1@An1 l 11/2dn,n82An11dn,n821#

3A l 2

4l 221
d l ,l 811 . ~9!

Next consider the matrix elements of the broadening a
shifting operatorŜD

f . We recall from part I~in the case when
velocity-changing and dephasing collisions are uncorrela!
that it is conventional to write the dephasing collision ope
tor ŜD as

ŜD52G~v !2 iD~v !, ~10!
2-2



e

le

g

h

e

-

y-

our

.
eld
e

lli-
Fol-

s.
he
-

r.

SOLVING THE LINE-SHAPE . . . . II . . . PHYSICAL REVIEW A65 012502
where v is the speed of the active molecule. In part I w
showed that the two operatorsŜD and ŜD

f are identical. The
calculations are simplified if we note that the matrix e
ments of the speed-dependent collisional widthG(v) and
shift D(v) can be calculated numerically using the followin
relationship:

^nluG~v !1 iD~v !un8l 8&5
4

Ap~2l 11!
NnlNn8 ld l ,l 8

3E
0

`

dx e2x2
x2l 12

3Ln
l 11/2~x2!Ln8

l 11/2
~x2!@G~xvm!

1 iD~xvm!#. ~11!

As in Refs. @9,19# we assume that the collisional widt
and shift vary as the square of the absorber speed@22# and
are written in the form

G~v !1 iD~v !5G0F11aWS v2

vm
2

2
3

2D G
1 iD0F11aSS v2

vm
2

2
3

2D G , ~12!

where the parametersaW andaS control the magnitude of the
speed dependence of the collisional width and shift, resp
tively. In this case we find

@SD
f #nl,n8 l 852@G0~12aW3/2!1 iD0~12aW3/2!#dn,n8d l ,l 8

2@G0aW1 iD0aW#^nluv2/vm
2 un8l 8&, ~13!
01250
-

c-

where the elementŝnluv2/vm
2 un8l 8& can be calculated ana

lytically. They are given by

^nluv2/vm
2 un8l 8&5@~2n1 l 13/2!dn,n8

2A~n1 l 11/2!ndn,n811

2A~n1 l 13/2!~n11!dn,n821#d l ,l 8 .

~14!

Finally we consider the matrix elements of the velocit
changing collision operatorŜVC

f . The choice of rigid spheres
as a model for the interaction permits us to compare
results with the recent treatment of Dicke narrowing@37# and
earlier statistical calculations@24# using the same interaction
Perhaps, what is more important is the fact that Lindenf
and Shizgal@23# have given analytical expressions for th
matrix elements of the rigid-sphere velocity-changing co
sion operator for the same basis functions as used here.
lowing Lindenfeld@24# we can write

@SVC
f #nl,n8 l 85n (0)Mnl,n8 l 8

E* , ~15!

wheren (0)5vm
2 /(2D (0)) and

D (0)5
3

8 S kBT

2pm D 1/2 1

Ns2
~16!

is the first-order self-diffusion coefficient for rigid sphere
Here s is the average of the rigid-sphere diameter of t
absorber and perturber,N is the number density of perturb
ers, m5mAmP /(mA1mP) is the reduced mass,mA is the
mass of the absorber, andmP is the mass of the perturbe
The coefficientsMnl,n8 l 8

E* are given by the following equation
@23,24#:
Mnl,n8 l 8
E* 52d l ,l 8

3 l !

8M2
A n!n8!

G~n1 l 13/2!G~n81 l 13/2!
H (

p50

ñ

(
s50

ñ2p

(
m50

ñ2p2s

(
q50

l

(
r 50

l 2q F4p~r 1s1p1q11!!

~p1q11!! r !s! G
3FG~n1n822s22p2m1 l 2r 2q21/2!Bp,q

(1)~`!

~n2m2s2p!! ~n82m2s2p!! ~ l 2r 2q!!m!
G @M1

l 1p2r 2qM2
n1n81q22m22s2p~M12M2!m1r 12s#J ,

~17!
whereM15mA /(mA1mP)512M2 , ñ5min(n,n8) and

Bp,q
(1)~`!5

~2p1q11!!

2q! ~2p11!!
2

2q21~p1q11!!

p!q!
. ~18!

For the M1 or M2 equal to zero, and for M1
5M2 the coefficients occurring in Eq. ~15! are
defined as limM1→0 Mnl,n8 l 8

E* , limM2→0 Mnl,n8 l 8
E* , and

limM1→M2
Mnl,n8 l 8

E* , respectively.
As discussed by Lindenfeld@24#, the exact diffusion co-
efficient D differs from D (0). The ratio f D5D/D (0) can be
found by solving the following set of linear equations:

2 (
n850

`

Mn1,n81
E* an85dn,0 ~19!

for an . The ratiof D is equal toa0. By introducingf D we can
rewrite Eq.~15! in the form
2-3
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CIURYŁO, SHAPIRO, DRUMMOND, AND MAY PHYSICAL REVIEW A65 012502
@SVC
f #nl,n8 l 85ndiff f DMnl,n8 l 8

E* , ~20!

where the effective frequency of velocity-changing collisio
ndiff is defined by

ndiff5
vm

2

2D
. ~21!

The parameterndiff is commonly used in the investigation o
Dicke narrowed lines to characterize velocity-changing c
lisions.

This completes our discussion of evaluating the ma
elements for the set of coupled equations represented by
~2!. In the present case all matrix elements are analytica
form. Nevertheless, we solve the set of equations num
cally, using standard software. We refer to the resulting l
shape as a speed-dependent billiard-ball~SDBB! line shape.

V. CALCULATIONS AND RESULTS

The parameters that control the calculated line shape
the temperatureT, the mass of the active moleculemA , the
mass of the perturbermP , the wave vectorkW , the kinetic
cross section~hidden inndiff), the optical cross section~hid-
den inG0 andD0), and the amplitudes of the speed depe
dence of the collisional broadening and shifting,aW andaS .
The parametersndiff , G0, andD0 are all proportional to the
density, which is the last control parameter. It would be
formidable task to examine the anatomy of an isolated
over such an enormous parameter space. We, therefore,
our examination primarily to the influence of the spee
dependent broadening on the line shape~a subject of current
interest! and through the translational motion, the influen
of the perturber to absorber mass ratio,a5mP /mA , on the
profile.

In the calculations we use the dimensionless variab
u5(v2v0)/vD, g5G0 /vD, d5D0 /vD, andz5ndiff /vD ,
wherevD is related to the Doppler width. As in Ref.@19# we
consider conditions appropriate for infrared absorption
light molecules where the kinetic and optical cross secti
are comparable. These are proportional tondiff and G0, re-
spectively. Here we copy@9# and takendiff /G0 equal to 1.14
and we ignore the shift by settingD0 equal to zero. For the
speed-dependent broadening, once again we copy@9# taking
aW50.1. These are values appropriate for CO perturbed b
range of molecules and atoms@2,7,11,22# for which the col-
lisional shift of the lines is very small. The remaining para
eters are fixed at values appropriate to the fundamental b
of CO at room temperature.

One aspect of the problem that we shall explore num
cally is the influence ofa on the line shape. It is known, a
a goes to zero, thatD reduces toD0 and the SDBB profile
reduces to the soft collision or speed-dependent Galatry
shape~SDG! @9#. The only aspect of the problem that reflec
the choice of the interaction being for billiard balls is thatD0
is given by Eq.~16!. Analytical expressions for the SDG
profile @9# exist for the case whereG(v) is given by Eq.~12!.
We have used the comparison of spectra calculated for
SDG profile with our SDBB line shape witha50 to check
01250
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for convergence of our calculations. We have shown t
setting nmax510 and l max510 gives a highly accurate line
shape~convergence to within 1026 of the peak value! and in
a time much shorter than the iterative method used in R
@19#.

While the influence of the speed-dependent broaden
(aWÞ0) and of the finite mass of the perturber (aÞ0) on
the spectral profile of an isolated line are readily detec
experimentally~cf. @29–31#!, they are nevertheless small i
most cases. In order to show the presence of such an effe
our calculated profiles, we will display the lines as the d
ference between the calculated profile and some base or
erence profile.

We first perform calculations at a density such thatz
50.8 and takeg50.7. Wheng and z are near unity the
influence of speed-dependent effects and of Dicke narrow
on the shape of spectral lines is significant. In this region
parameter space, Dicke narrowing is sensitive to the m
ratioa. On the scale of Fig. 1~a! all of the curves obtained by
reducingaW to zero or by varyinga would be close together
Therefore, in Fig. 1~a! only the base curveB(u), taken here
as the speed-independent soft-collision or Galatry line sh
G @6#, is shown. In Fig. 1~b! we illustrate the sensitivity of
the curves to the choice of mass ratioa and to the presence
or absence of the speed-dependent broadening, by plo
I (u)2B(u). The solid line at zero is for rigid spheres wit
aW50 anda50. That the speed-independent BB profile r
duces to the soft-collision model fora50 is not surprising
as any interaction potential leads to this result as the mas
the perturbers approaches zero. ForaÞ0 but still for speed-
independent broadening (aW50) we find, in order of in-
creasing amplitude at zero frequency, the speed-indepen
BB profiles with a51, 2, and 20. For the speed-depende
profiles (aW50.1) we find, at the same density, that the ze

FIG. 1. Comparison of line shapes obtained forndiff /G0

51.14, g50.7, d50.0, z50.8, andaW50.1. ~a! The base curve:
Galatry profileG. ~b! Differences between the calculated profil
and the base curve: BB-G and SDBB-G for a50, 1, 2, and 20.
2-4
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SOLVING THE LINE-SHAPE . . . . II . . . PHYSICAL REVIEW A65 012502
frequency amplitudes lie higher than the results for
speed-independent profiles and in the same order with v
ing a. As mentioned earlier, the SDBB line shape witha
50 is identical to the SDG line shape@9#. We have verified
this numerically.

It is clear from Fig. 1~b! that departures from the sof
collision model arising~at low densities! from the nonzero
mass of the perturber can be very similar to departures a
ing from speed-dependent broadening. However, the re
should keep in mind that we reach this conclusion by vary
these two parameters while holding other parameters or
ditions fixed at specified values. In another region of para
eter space, varying the same two parameters could~and does!
lead to different conclusions. Two important fixe
parameters/conditions for Fig. 1 were density (z50.8) and
ndiff /G05z/g51.14.

Keepingndiff /G0 equal to 1.14, we now examine the hig
density or hydrodynamic regime. For large values ofz, ndiff

is much larger thanvD5kvm and the Doppler termkW•vW may
be simply dropped from the transport/relaxation equation
this collision-dominated regime we anticipate a dens
independent line shape if the detuning is scaled with
density. As in Ref.@19# we define a reduced detuningw by
w5(v2v0)/G0 and we setD050. In the high-density re-
gime, the soft-collision base profile used for Fig. 1~b! re-
duces to a simple Lorentzian of widthG0. This base profile
B(w) is shown in Fig. 2~a!. Departures from the base profil
I (w)2B(w) asa andaW are varied, are shown in Fig. 2~b!.
In contrast to Fig. 1~b!, the departures foraW50 are zero for
all values of the mass ratio and not just for thea50 case.
With the speed-dependent broadening (aW50.1) the depar-
tures at zero detuning are ordered in the same way as in

FIG. 2. Comparison of line shapes obtained in the hydro
namic limit (vD50.0) for ndiff /G051.14, D050.0, andaW50.1.
~a! The base curve: Lorentz profileL. ~b! Differences between the
calculated profiles and the base curve: SDBB-L for a50, 1, 2, and
20. The upper curve is a plot of WSL-L.
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1~b! for low densities. If the mass of the perturber was in
nite ~the so-called Lorentz gas!, the active molecules would
move with constant speed and each speed class would m
a contribution to the spectrum that was a Lorentzian with
width G(v). Consequently the profile should approach
weighted sum of Lorentzian~WSL! profiles @32# as a is
increased. Departures of the WSL profile from the ba
Lorentzian are also shown in Fig. 2~b!. As expected the
rigid-sphere calculations appear to approach this limit as
mass ratio is increased. Below we will explore whether t
is true in other regions of parameter space. Nevertheless,
clear from Figs. 1~b! and 2~b! that departures from simple
line shapes due to the speed-dependent broadening dep
upon both the density and the mass ratio. We emphasize
the departures plotted in Figs. 1~b! and 2~b! are departures
from a prescribedbase profile and not~as is common in
experimental papers! departures from afitted ~base! profile.
Thus, for example, they are not to be compared with
residuals shown in@29#.

We now explore a different section of parameter space
in Fig. 2 we considerz to be large. We fix the speed
dependent broadening (aW50.1) and we calculate profile
with different mass ratios and different ratios of the kinetic
optical cross section~represented byndiff /G0). In Fig. 3~a!
we take, as a base profile, the same simple Lorentzian pr
with width G0 as shown in Fig. 2~a!. The results forndiff
@G0 , ndiff!G0 , ndiff510G0, anda equal to 0, 1, 2, and 20
are shown in Fig. 3~b!. In the case ofndiff@G0 and for all
values ofa considered, the departures from a simple Lore
zian are zero. For the case ofndiff!G0 the departures are
again independent of the mass ratio and are not distingu
able from those for the WSL, shown in Fig. 3~b!. For ndiff

- FIG. 3. Comparison of line shapes obtained in hydrodynam
limit ( vD50.0) for ndiff /G0510.0, D050.0, andaW50.1. ~a! The
base curve: Lorentz profileL. ~b! Differences between the calcu
lated profiles and the base curve: SDBB-L for a50, 1, 2, and 20.
The upper curve is a plot of WSL-L.
2-5
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CIURYŁO, SHAPIRO, DRUMMOND, AND MAY PHYSICAL REVIEW A65 012502
510G0, the results fall between the first two cases, a
proaching a WSL’s asa is increased. Note, at saya520,
that the departures from the base spectrum shown in
2~b! for ndiff /G051.14 are almost a factor of 2 larger tha
those shown in Fig. 3~b! for ndiff /G0510. Clearly, we must
add the ratio of the kinetic to the optical cross section to
list of parameters that influence the degree to which
speed-dependent broadening will impact on the line sha
The same conclusion was reached earlier but was base
calculations with model collision kernels@19# as opposed to
a model~BB! interaction potential.

It is easy to give a physical interpretation of the resu
shown in Fig. 3~b!. In the case ofndiff@G0 the exchange
between velocity classes is rapid. If the mass of the pertu
is not large~compared to the mass of active molecule!, this
implies that the exchange between speed classes is also
with respect to the decay of the optical coherence~broaden-
ing!. Thus it is appropriate to replace the latter term in t
relaxation/transport equation by the average value of
width, *d3vW f m(vW )G(vW ), i.e., by a value that is independe
of the speed and, here, equal toG0. Consequently the result
ing profile is a simple Lorentzian~see Ref.@19#! and the
departures vanish. The mass ratio~at least if it is finite! plays
no role in this argument. However, beware. Ifa is very large
~infinite!, even if ndiff is large, velocity-changing collision
do not change the speed of the active molecule and in
case the resulting profile is a WSL. The range ofa very large
is not explored in Fig. 3~b!.

In the reverse situation (ndiff!G0) the velocity and thus
also the speed, relaxes slowly with respect to the opt
coherence that therefore, decays at a constant speed. C
quently, in the hydrodynamic region, the profile will becom
a weighted sum of Lorentzians. Here, the mass ratio is ir
evant to the argument.

In the intermediate case (ndiff510G0) the mass ratio plays
a crucial role as it varies~for a given intermolecular interac
tion! the relative importance of speed changing versus di
tion changing collisions. Thus in Figs. 2~b! and 3~b!, as the
mass of the perturber increases, the velocity-changing c
sions become more-speed-conserving collisions and thus
profile must approach closer to a WSL, the same limit tha
reached forndiff!G0. None of these general arguments a
connected to the specific use of billiard balls as a mo
interaction potential but rather they are connected to b
kinematics and the general consequence of having a dyn
system in which there are both fast changing and slo
changing variables.

From Figs. 1–3 and their interpretation we reach the m
conclusion of this paper. This conclusion states that the
gree to which the speed-dependent broadening become
parent in the shape of an isolated line depends upon
density, the ratio of the kinetic to optical cross section a
the ratio of the mass of the perturber to the mass of the ac
molecule. Any analysis of experimental profiles that does
include all of these factors will be flawed. For example, n
that the observation that a line is a simple Lorentzian d
not establish, on its own, that the broadening is speed in
pendent. In this paper while our discussion is based on
lisionally unshifted lines, the SDBB model can also be a
01250
-

ig.

e
e
e.
on

s

er

pid

e
e

is

al
se-

l-

c-

li-
he
is

l
ic
ic

y

in
e-
ap-
he
d
ve
t

e
s
e-
l-
-

plied to strongly shifted lines, including the case where
perturber mass is greater than the mass of the active m
ecule@1,33,34#.

Having reached our main conclusion, we move on to d
cuss the relation of the present paper to earlier work. H
we have considered the speed-dependent broadening
treated the translational motion by modeling the molecu
interaction as for billiard balls~rigid or hard spheres!. In the
literature, different models for the velocity-changing col
sion operators have been used@6,10,14,20#. In general, none
of these model-collision operators depends upon the rati
the mass of the perturber to the mass of the active molec
Of course, it is well known that any physically realistic in
teraction potential will lead to the soft-collision model@6# as
the mass ratio goes to zero. The hard-collision model of N
kin and Ghatak@10# is often presumed to be appropriate f
treating the translational motion in the limit ofa going to
infinity. This is false. We have shown by direct comparis
that in the hydrodynamic limit the speed-dependent Nelk
Ghatak profile~SDNG line shape! @12,14# is close to the
SDBB profile fora51. Under the same conditions, but wit
the speed-independent collisional broadening and shif
the BB line shape, for any value ofa, is essentially the same
as the corresponding speed-independent Nelkin-Ghatak
file. For the same conditions as in Fig. 1~b! we find that the
SDBB profile witha54 agrees with the SDNG profile an
in the speed-independent case that the BB profile witha
59 closely mimics the NG profile. Clearly the hard-collisio
model for the collision operator does not mimic the collisi
operator for very heavy perturbers. The Keilson-Storer@20#
and the Rautian-Sobelman@14# model for the velocity-
changing collision operator also suffer from their inability
reflect the role of the mass of the perturber on the spe
dependent profile of an isolated line. On the other hand
we have shown, even a simple model for the interaction
tential does capture the essential dependence of the profi
the mass ratio. Furthermore, since the numerical steps
quired to go from a potential to a collision kernel to a col
sion operator are well understood, it is possible to carry o
full ab initio calculation of the translational motion and, o
course, of the speed-dependent collisional broadening
shifting. Thus it is possible to carry out a semiclassical,ab
initio calculation of the speed-dependent profile of an i
lated line. This is our ultimate objective.

The self-structure factor for hard sphere gas was ca
lated much earlier by Lindenfeld@24# and after normaliza-
tion is identical to our billiard-ball profile if the collisiona
broadening and shifting is neglected. We also note it is p
sible to solve analytically the billiard-ball transport equati
for the Lorentz gas, i.e., for massive perturbers@35,36#. In-
directly, Lindenfeld@24# has raised the question, of how or
the BB line shape for a finite mass ratio approaches the L
entz gas profile asa5mP /mA is increased towards infinity
The crux of the question deals only with the translation
motion. We can examine the same question by perform
calculations withG05D050. In fact we have checked ou
software by comparing our calculations with those presen
in Lindefeld’s paper@24# for small values ofa. However, we
can carry out numerical calculations~using nmax530 and
2-6
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l max510) for large values ofa, even fora equal to infinity.
@This corresponding toM150 andM251 in Eq.~17!.# Thus
we can more thoroughly examine the question of as to h
the finite mass calculations approach the Lorentz gas res
As a basis of the comparison we use

R5
I 0

J0
, ~22!

a normalized peak amplitude. HereI 0 is the BB profile with
G5D50 andv5v0. The normalization factorJ0 is defined
as the peak amplitude of a Lorentzian profile given by

J~v!5
1

p
Re

1

vD
2 /~2ndiff !2 i ~v2v0!

. ~23!

This has a Dicke width~half width at half maximum! @5#
given byk2D5vD

2 /(2ndiff)5vD /(2z) @5#. We know thatR
will approach a value of 1 for any finite value ofa, as z
approaches infinity since this is the translational hydro
namic limit for any gas with the zero broadening and sh
ing. Using our numerical procedure it is a simple matter
calculate approximate but reasonable values of the peak
plitude of I 0 over a range of values ofa andz. We can also
calculateJ0 sinceD is also calculable@see Eq.~19!#. Thus
we calculateR numerically for anya andz. Since analytical
expressions ofI (v) exist for the Lorentz gas profile
@24,35,36#, it is also an easy matter to calculateRanal for this
case. The only difficulty here is that each speed class ha
own diffusion constantD(v) and we cannot automaticall
assign a value ofndiff in Eq. ~23!. In a manner similar to tha
of Lindenfeld we use the quantityD5*d3vW f m(vW )D(v) de-
fined as the Maxwellian weighted average ofD(v) and
through this we define a value ofndiff andz. With this defi-
nition, Lindenfeld showed thatRanal for the Lorentz gas ap
proaches a value of 4/p asz approaches infinity. As a chec
on our numerical procedure we calculated the Lorentz
profile numerically and compare our limz→` R(z) with the
analytical value of 4/p. As can be seen in Fig. 4 the agre
ment is sufficient to justify drawing qualitative conclusio

FIG. 4. Dependence of the normalized peak amplitudesR cal-
culated numerically fora50, 20, 103, 106, 109, and ` ~Lorentz
gas! are plotted. The exact asymptotic value of limz→` Ranal(z)
54/p for Lorentz gas is also marked on the plot.
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from the figure. For large values ofa (103, 106, 109, and`)
the numerical errors are about 1%.

Figure 4 shows plots ofR as a function ofz for a range of
values of the mass ratioa. We see thatR calculated from the
BB profile is close to the value ofR calculated fora5`
~Lorentz gas! only for large values ofa and only over a
limited range ofz. The dependence ofR on a is easily inter-
preted in the same manner as above. Asa is increased,
velocity-changing collisions become more and more sol
direction-changing collisions, and at a givenz, the curves
must approach the Lorentz gas value with increasing m
ratio, i.e., must approach a weighted sum of Lorentzian p
files in which each Lorentzian component has a Dicke wi
given byk2D(v). However, for a fixed and finite value ofa,
the curves must eventually approach the full mathemat
hydrodynamic value determined by a diffusion constant t
includes the thermalization of the speed of a tagged parti
We have confirmed this interpretation by showing, in t
plateau region of Fig. 4, that the calculated spectrum is
distinguishable from the weighted sum of Lorentzian profi
calculated for pure, but inhomogeneous Dicke narrowi
Thus, over a limited range ofz, the BB and the Lorentz ga
profile are nearly identical. However, the values ofa and the
range ofz are such that it will be very difficult, if not impos
sible, to realize these conditions experimentally.

Finally, Shapiro and May@37# have also considered th
case of the translational motion of rigid spheres. Since t
discretized the velocity distribution function, in effect the
basis functions were a series ofd-Dirac functions spread
over the velocity. With this set of basis functions, they we
able to carry out practical calculations only by reducing t
collision kernel to one dimension. With the basis functio
used here, full three-dimensional calculations can be p
formed on available PC’s in a few seconds for the spec
shown in Figs. 1–3~which contain 241 points evenly space
for reduced detuning (u or w) from 23 to 13) with nmax
5 l max510. At lower densities,nmax and l max must be in-
creased to obtain convergence with a consequent increa
computation time by roughly the cube of (smax11). In this
region, many terms are required to capture the Dopp
~Gaussian! aspects of a line.

VI. SUMMARY AND CONCLUSION

In this paper, we have implemented the formalism p
sented in part I for the calculation of the spectral profile of
isolated line undergoing speed-dependent broadening
shifting with Dicke narrowing. Not only did the specifi
choice of basis functions, Eq.~4!, permit us to calculate
rapidly, a line shape for a given speed dependence, but it
permitted us to borrow from and compare with earlier calc
lations carried out in statistical mechanics. By calculati
spectra in various regions of parameter space we were ab
reveal the important, but not independent, roles played by
density, relative size of the optical to kinetic cross sect
and the mass ratio in revealing or concealing the signatu
of speed-dependent broadening. We have used physical a
ments to support our hypothesis that the conclusions reac
are generic and not the result of the specific form chosen
2-7
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the speed dependence of the broadening or for the choic
billiard balls ~rigid or hard spheres! as a model for the treat
ment of the translational motion. Being numerical in natu
the work may easily be extended to treat the case where
broadening or shifting is given in numerical form, as will b
the case for semiclassical calculations ofG(v)1 iD(v).
Similarly it will be possible to utilize values of the velocity
changing collision operator generated numerically from
given interaction potential. Consequently we have sho
that it is now possible to carry outab initio calculations of
the shape of isolated spectral lines starting only from
ys
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Ra
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interaction potential, provided the microscopic scattering c
culations are available.
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