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Solving the line-shape problem with speed-dependent broadening and shifting
and with Dicke narrowing. Il. Application
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We apply the formalism presented in a previous paper to calculate spectra of an isolated line with speed-
dependent broadening. The translational motion is modeled on a rigid-sphere interaction and includes the effect
of the mass of the perturber on the profile. We show that the density, the mass of the perturber, and the ratio
of the optical to kinetic cross section all play a role in revealing or concediimthe profile the effects of
broadening, which depend upon the speed of the active molecule.
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[. INTRODUCTION are to examine solutions, pick specific input parameters. For
the speed-dependent broadening and shifting we assume that

There is a growing body of experimental evidencé  the form established for CON22] is also appropriate for
[1,2]) showing that speed-dependent broadening and shiftingO-Ar. We describe the translational motion using the
[3,4] plays a measurable role in determining the profile of arvelocity-changing collision operator for billiard ballsigid
isolated line. There is also evidence that the models used @ hard sphergg23,24. A billiard-ball model is often used
describe the translational motion, including Dicke narrowingin Statistical mechanics to treat the translational motion
[5], are inadequate. Up to now, the shapes of Dicke-narrowet?2,26l. For us the advantage of using a rigid-sphere inter-
isolated lines were mostly analyzed using profiles in which2ction lies in the fact that the matrix elements of this
the treatment of velocity-changing collisions is based on the/€l0City-changing collision operator are known for any ratio
soft collision mode[6-9], or the hard collision modgil0— of the mass of the perturber to the mass of the active mol-
13], or a combination of the tw14—19. However, it was ecule[23,24]. Many parameters contribute to the final pro-

recently showrj19] that any combination of the soft and the f||(3 In th(|js paper Wehtake sllrc]:es. In parameter space 'E

hard-collision model(Rautian-Sobelmani14] or Keilson- order to determine what are t © Important parameters that
- L X . . reveal or conceal spectral evidence of speed-dependent

Storer[20]) is insufficient since it does not properly take into broadening.

consideration the role played by the mass of the perturber.

While the basic transport/relaxation equation that governs

the line shape is known, there are no analytical solutions of

this equation for physically realistic conditions. Based on As was shown in part |, the shape of an isolated line is

experience with the Boltzmann equatita similar but sim-  given by

pler equatiol, it is reasonable to claim that it will never be

possible to find analytical solutions for the line shape of an

isolated line under physically realistic conditions. Most of

the well-known analytical expressions for the line shape

(Doppler, Voigt, Lorentzian, etgresult from making overly wherecy(w) can be evaluated by solving the set of complex

simplifying approximations to the master-transport/linear equations

relaxation equation. On the other hand, exact numerical so-

lutions of the equation are relatively easy to generate. In Ref. b=L(w)(w) v

[21] (hereafter referred as parj e presented a formal - o _

method for solving the equation numerically. This reduced©r the coefficientts(w). The subscrips is explained below.

the line-shape problem to the art of choosing a complete antiere the columi contains one in the position 0 and zeros in

infinite set of basis functions and determining how many ofother positions, i.€.b]s= 650, and the columm(w) consists

these were to be used. Here we implement the formalism b@f the coefficientscy(w), i.e. [¢(w)]s=Cs(w). The matrix

selecting a set and, by testing for convergence, determine la(w) depends on the frequenay and has the following

practical number of functions to be included. At this stageform:

the problem is reduced to solving a finite set of coupled ) ) ¢

linear equations. Being numerical in nature, we must, if we L(w)=—i(0—wo)l+iK-5~Sc, (€©)

II. LINE SHAPE

1
l(w)= p Recy(w), 1)

where 1 is the unit matrix,[ 1] s = ds s, K is the matrix

*Email address: jim@atmosp.physics.utoronto.ca that represents the Doppler shff s ¢ =(s|k-v|s'), S§is
fCorresponding author. Email address: dmay@physics.utoronto.dfie matrix that represents the dephasing collision operator
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af f _/olaf o f oo i and shifting and with a velocity-changing collision operator
,i.e. =(s|SL|s"), and S, is the matrix that rep- g ging p

S0 [Splssr=(sISpls) Sve P" described by the Keilson-Storer mod&0]. A general and

p o . i N : more realistic treatment requires the inclusiorkef in the

[Suclss =(s[Sucls’). In our “matrix element” notation the  master equation, the use of a potential to determine a colli-

matrix element[A]ss of an operatorA are given by sion operator that reflects the role of the mass of the per-

<S|A|S'>=(¢S,A<Psf), where the scalar product of functions, turber in the kinematic; of collisions and, of course, the use

a(v) andb(v), is defined asd,b) = [d%f,(0)a* ()b(s). ~ Of & Proader set of basis functions. -

H the M I locity _distributiorf (o | In numerical calculations one needs to limit the complete
ere the Maxwellian velocity distributionfy(v) equals jngnjte set of basis function to a finite set. Our choice of a

(mom)”“Texp(—voy,), wherev = y2kgT/my is the most  gnite set consists of using a function With=0, . . . N

probable speed of the absorbem, is the mass of absorber, 5.4 =0, I The indexs, introduced above, repre-

kg is Boltzmann’s constant and_', is the temperature of the gents the pain and| and enumerates our basis functions
gas. The chosen basis functiorg(v) are orthonormal [¢s(5)=¢n|(5)]- For programing it is convenient to defise

resents the velocity-changing collision operaﬂyc, i.e.

[(@s,0s) =851 With @o(v)=1. by s=n+(nnat1)l. In this cases ranges from zero to
Smax» Wheresa= Nmaxt (Nmaxt Ll max- There areSpat1
I1l. CHOICE OF ORTHONORMAL BASIS FUNCTIONS basis functions.

For linear absorption by systems in thermal equilibrium,
the transport/relaxation equation has axial symmetry about
t_he wave veptok. A convenient complete set of basis func-  To carry out the line-shape calculations, it is necessary
tlonslwnh this sﬁymmetrypan be constr.ucted from the Bl.Jrnethrst to specify the operator§!, and &, and second to
functions¢m(v) by settingm=0 (cf. Lindenfeld and Shiz-  evaluate all of the elements of all of the matrices which

IV. MATRIX ELEMENTS

gal[23]). We write these af24] occur in Eq.(3). In order to compare our new results with
R .. previous calculations we do this for the case in which the

@ni(0) =Ny (v/v) 'L Y% v2)P(ec€,), (4  collisional broadening and shifting varies quadratically with
the speed of the active molecule. Dicke narrowing, caused by

where velocity-changing collisions, is modeled by colliding billiard
T balls with a specified mass ratio. Since the matrix elements

N = [T n!(2l+1) (5) of i(w—wg)1 are trivial, we move on to consider the other

nl 2T(n+1+3/2) terms in Eq.(3).

If the Doppler shiftk- v is written aswpey-v/v,,, where

is a normalization factor anfi( ...) is thegamma-Euler wp=kuv,, then the matrix elements &f can be written as

function. The functions

n Cm lntlr= l|eg-vlvmn’l"). (8)
e (—)"C(n+1+32) [Kninri = wo(nfe
L 0= 2 T ©

Using our basis functions gpn|(5), the elements

are the associated Laguerre polynomitdsmetimes these (f_]||ék'5/vm|”'|'> can be calculated analytically and are
are called Sonine polynomial®7]) and x is the reduced given by

speed of the active molecule, whexe v/v,,. The functions
1 (nlleg-vlvmn'1"y=[n+1+3/26, 1, — JN&n 1 1 1]
1 (—1)k21—2k)!

PV Zaaoizir? @ S R (E
al+1)2-1"""1

are Legendre polynomials anydy=e,-e,) is the cosine of

) - U +[Vn+1+1/26, =N+ 168, v -
the angle between the velocity vecto=ve, and the wave [ . -1l
vector k=ke, (e, and e, are unit vectors The functions |2
en(v) are also eigenfunctions of the collision operator for X 4|2_15|,|’+1' ©

Maxwell moleculeq§23], i.e., for molecules with a repulsive
potential that varies as rt.

The basis functions given by E¢) were used by Lin- o ~f i
denfeld[24] to calculate the self-structure factor for a gas of Shifting operatoiSy, . We recall from part (in the case when
hard spheres. In optical spectroscopy this is the shape ofvaeloqty-changmg and dephasmg COII|S|0r]s are u.n.corre)ated
line undergoing Dicke narrowing but no collisional broaden-thatA't is conventional to write the dephasing collision opera-
ing or shifting. Robert and Bonam 28] used thd =0 subset tor Sp as
of these basis functions to calculate the shape of a line in the

high-density (2: 0) limit with speed-dependent broadening Sp=—T(v)—iA(v), (20

Next consider the matrix elements of the broadening and

012502-2



SOLVING THE LINE-SHAPE ... .1l ... PHYSICAL REVIEW A65 012502

wherev is the speed of the active molecule. In part | wewhere the elementénl|v?/v2|n’l’) can be calculated ana-
showed that the two operatof, and S, are identical. The lytically. They are given by

calculations are simplified if we note that the matrix ele- 2 201

ments of the speed-dependent collisional widittv) and (nlo*fomln1")=[(2n+1+3/2) 3y o

fehliafttigr(\g%i;?n be calculated numerically using the following _ \/mgm,ﬂ
—V(N+143/2)(n+1)8, 118, -
(nI|F(u)+iA(v)|n’I’)=ﬁNmNn,,5w (14
Finally we consider the matrix elements of the velocity-
. fwdx e Xx21+2 changing collision op.erat(ﬁf,(;. The chpice of rigid spheres
0 as a model for the interaction permits us to compare our

L+ 12 onr 14112, 2 resqlts With the recent treatment o_f Dicke narrov_vﬁ@] an_d
XLy X)L (X[ (Xvm) earlier statistical calculatiorj€4] using the same interaction.
iAGw)] (11) Perhaps, what is more important is the fact that Lindenfeld

m/ and Shizgal 23] have given analytical expressions for the

As in Refs.[9,19] we assume that the collisional width matrix elements of the rigid-sphere vglocity-changing colli-

and shift vary as the square of the absorber spagfiand ~ SION operator for the same basis functions as used here. Fol-

are written in the form lowing Lindenfeld[24] we can write
U2 3 [S{/CJHLH/VZV(O)MEEI-]/V: (15)
FW)+ia(w)=To 1+aw w2 2 wherer(©=42/(2D©®) and

(16)

3[ kgT\¥? 1
+iAg (0):_( )

rrad 3
a —_—— —
S 02 2

m

is the first-order self-diffusion coefficient for rigid spheres.
d—_|ere o is the average of the rigid-sphere diameter of the
absorber and perturbéeX is the number density of perturb-
ers, u=mymp/(Ma+mp) is the reduced massn, is the

where the parameteegy andag control the magnitude of the
speed dependence of the collisional width and shift, respe
tively. In this case we find

[ShTninr=—[To(1—aw3/2) +iAg(1—aw3/2)]8y w1/ mass of the absoErber, amds is the mass of the perturber.
_ 2 The coefficientS\/Im’fn,l, are given by the following equation
_[Foaw+|Aoaw]<n||U /Umln I >, (13) [23,24]

3 n'n’! nonphpes 1oiog AP(r+s+p+qg+1)!
Mﬁfnm:—éw \/ > 2> > 2 2{ el
8M, VT (nt1+32T(n' +1+3/2)| 50 &6 o Eoi=0| (pa+D)irts!

| Dt n'—2s—2p—m+l—r—q-1/2)B{(=)

(n—=m—-s—p)!(n"=m—-s—p)!(l-r—q)!'m!

[MIl+p—rqu2+n’+q72m72sfp(Ml_ Mz)m+r+25]] 7

(17)

whereM;=m,/(My+mp)=1—M,, n=min(n,n’) and As discussed by Lindenfel?4], the exact diffusion co-
efficient D differs from D(®). The ratiof,=D/D® can be

. found by solving the following set of linear equations:
(2p+g+1)! 29 (p+qg+1)!

(1) - _
B.a(*)= 2q1zpT 1)1 pig! - (19 )
-2 Msf,n'lan’:‘sn,o (19
For the M; or M, equal to zero, and forM; n'=0
=M, the coefficients occurring in Eq.(15 are
. . Ex . Ex

defined as limy oM\, My, oM iy @nd for g The ratiof, is equal toa,. By introducingf, we can
Iim,\,,l_,,\,.2 MEl’fn,l, , respectively. rewrite Eq.(15) in the form
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f E 0.4
[SVclninrr = vair oMy s (20) £ G @)
por .
where the effective frequency of velocity-changing collisions 02
Vit is defined by '
1)2 |
m 0.0 T T T T T T
Vi == - (21) | | T | |
2D . 0.015
E) SDBB (0:=20)
| R 3 )
The parametepyy; is commonly used in the investigation of s
. . ) . . = | SDBB (0=2)
Dicke narrowed lines to characterize velocity-changing col- 0.010 SDBB {0=1)
lisions. SDBB (0=0)
This completes our discussion of evaluating the matrix BB (0:=20)
. 0.005 —
elements for the set of coupled equations represented by Eq. BB (a=2)
(2). In the present case all matrix elements are analytical in BB (0=1)
form. Nevertheless, we solve the set of equations numeri- 0.000 BB (o=0)
cally, using standard software. We refer to the resulting line
shape as a speed-dependent billiard-BIDBB) line shape.
'0005 T I T I T I T I T I T
V. CALCULATIONS AND RESULTS s 2 0 1 T

The parameters that control the calculated line shape are FIG. 1. Comparison of line shapes obtained fogg /T
the temperaturd, the mass of the active molecute,, the  =1.14, g=0.7, d=0.0, z=0.8, anday,=0.1.(a) The base curve:

mass of the perturbemp, the wave vectoﬂz, the kinetic  Galatry profileG. (b) Differences between the calculated profiles
cross sectiorthidden invgi), the optical cross sectiofid- ~ and the base curve: BB-and SDBBG for a=0, 1, 2, and 20.

den inT'y andAgp), and the amplitudes of the speed depen-

dence of the collisional broadening and shiftiag, andas. for convergence of our calculations. We have shown that
The parametersy, I'g, andA, are all proportional to the setting ny,,,=10 andl o= 10 gives a highly accurate line
density, which is the last control parameter. It would be ashape(convergence to within 1C° of the peak valugand in
formidable task to examine the anatomy of an isolated linea time much shorter than the iterative method used in Ref.
over such an enormous parameter space. We, therefore, linjit9].

our examination primarily to the influence of the speed- While the influence of the speed-dependent broadening
dependent broadening on the line shépsubject of current (ay#0) and of the finite mass of the perturber£0) on
interes} and through the translational motion, the influencethe spectral profile of an isolated line are readily detected
of the perturber to absorber mass ratic; mp/m,, on the  experimentally(cf. [29-31)), they are nevertheless small in

profile. most cases. In order to show the presence of such an effect in
In the calculations we use the dimensionless variablesyur calculated profiles, we will display the lines as the dif-
Uu=(w—wp)! wp, g=I'g/wp, d=Ay/wp, andz=vy/wp, ference between the calculated profile and some base or ref-

wherewp, is related to the Doppler width. As in Réfl9] we  erence profile.
consider conditions appropriate for infrared absorption by We first perform calculations at a density such thzat
light molecules where the kinetic and optical cross sections=0.8 and takeg=0.7. Wheng and z are near unity the
are comparable. These are proportionaltg andT', re- influence of speed-dependent effects and of Dicke narrowing
spectively. Here we cop}f] and takevy; /T’y equal to 1.14  on the shape of spectral lines is significant. In this region of
and we ignore the shift by settinl, equal to zero. For the parameter space, Dicke narrowing is sensitive to the mass
speed-dependent broadening, once again we [@jtaking  ratio «. On the scale of Fig.(&) all of the curves obtained by
ay=0.1. These are values appropriate for CO perturbed by geducingay, to zero or by varyingr would be close together.
range of molecules and atorf,7,11,22 for which the col-  Therefore, in Fig. (&) only the base curv8(u), taken here
lisional shift of the lines is very small. The remaining param-as the speed-independent soft-collision or Galatry line shape
eters are fixed at values appropriate to the fundamental barfd [6], is shown. In Fig. {b) we illustrate the sensitivity of
of CO at room temperature. the curves to the choice of mass raticand to the presence
One aspect of the problem that we shall explore numerior absence of the speed-dependent broadening, by plotting
cally is the influence ofr on the line shape. It is known, as [(u)—B(u). The solid line at zero is for rigid spheres with
a goes to zero, tha reduces td, and the SDBB profile ay=0 anda=0. That the speed-independent BB profile re-
reduces to the soft collision or speed-dependent Galatry linduces to the soft-collision model far=0 is not surprising
shape(SDG) [9]. The only aspect of the problem that reflects as any interaction potential leads to this result as the mass of
the choice of the interaction being for billiard balls is thaf  the perturbers approaches zero. ket 0 but still for speed-
is given by Eq.(16). Analytical expressions for the SDG independent broadeningag=0) we find, in order of in-
profile[9] exist for the case whefg(v) is given by Eq(12). creasing amplitude at zero frequency, the speed-independent
We have used the comparison of spectra calculated for thiBB profiles witha=1, 2, and 20. For the speed-dependent
SDG profile with our SDBB line shape with=0 to check profiles (@,=0.1) we find, at the same density, that the zero-
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0.4 0.4
z |t (@) z L €y
m m ]
0.2 0.2
O~0 T I T I T I T I T I T 0~0 T I T I T I T I T I T
— 0.015 =~ 0.015
2 2
& (b) o (b)
z z
= 0.010 - = 0.010 —
0.005 WeL
: 0.005 = SDBB (0:=20)
SDBB (0=2)
SDBB (=1)
SDBB (0=0)
0.000 — 0.000
'0.005 T I T I T I T I T I T '0.005 T I T | T I T I T I T
3 2 4 0 1 2 3 3 2 4 0 1 2 3

FIG. 2. Comparison of line shapes obtained in the hydrody- FIG. 3. Comparison of line shapes obtained in hydrodynamic
namic limit (wp=0.0) for v /I'o=1.14, A;=0.0, andaw=0.1.  |imit (wp=0.0) for vy /T',=10.0, A;=0.0, anda,,=0.1.(a) The
(@) The base curve: Lorentz profile (b) Differences between the pase curve: Lorentz profile. (b) Differences between the calcu-
calculated profiles and the base curve: SDBBr =0, 1, 2, and  |ated profiles and the base curve: SDBHer a=0, 1, 2, and 20.
20. The upper curve is a plot of WSL- The upper curve is a plot of WSL-

frequency amplitudes lie higher than the results for thej(p) for low densities. If the mass of the perturber was infi-
speed-independent profiles and in the same order with vanyite (the so-called Lorentz gsthe active molecules would
ing a. As mentioned earlier, the SDBB line shape with  move with constant speed and each speed class would make
=0 is identical to the SDG line shapp@]. We have verified 4 contribution to the spectrum that was a Lorentzian with a
this numerically. width T'(v). Consequently the profile should approach a
It is clear from Fig. 1b) that departures from the soft- weighted sum of LorentziaWSL) profiles [32] as « is
collision model arisingat low densities from the nonzero jncreased. Departures of the WSL profile from the base
mass of the perturber can be very similar to departures ari§-orentzian are also shown in Fig(8. As expected the
ing from speed-dependent broadening. However, the readeigid-sphere calculations appear to approach this limit as the
should keep in mind that we reach this conclusion by varyingnass ratio is increased. Below we will explore whether this
these two parameters while holding other parameters or Cofis trye in other regions of parameter space. Nevertheless, it is
ditions fixed at specified values. In another region of paramglear from Figs. (b) and 2b) that departures from simple
eter space, varying the same two parameters d@mid does  |ine shapes due to the speed-dependent broadening depends
lead to different conclusions. Two important fixed ypon both the density and the mass ratio. We emphasize that
parameters/conditions for Fig. 1 were density=0.8) and  the departures plotted in Figs(hl and 2b) are departures
vt /T'o=2/g=1.14. from a prescribedbase profile and notas is common in
Keepingrgis /T'o equal to 1.14, we now examine the high- experimental papersiepartures from éitted (base profile.
density or hydrodynamic regime. For large valuezofvgs  Thus, for example, they are not to be compared with the
is much larger thamp = kv, and the Doppler terrk-v may  residuals shown ifi29].
be simply dropped from the transport/relaxation equation. In  We now explore a different section of parameter space. As
this collision-dominated regime we anticipate a density-in Fig. 2 we considerz to be large. We fix the speed-
independent line shape if the detuning is scaled with thelependent broadeningg=0.1) and we calculate profiles
density. As in Ref[19] we define a reduced detuningby  with different mass ratios and different ratios of the kinetic to
w=(w—wy)/Ty and we setA,=0. In the high-density re- optical cross sectiofrepresented by /1"p). In Fig. 3a)
gime, the soft-collision base profile used for Figb)lre- we take, as a base profile, the same simple Lorentzian profile
duces to a simple Lorentzian of widify. This base profile with width I’y as shown in Fig. @). The results forvg
B(w) is shown in Fig. 2a). Departures from the base profile, =T, vgs<<I'g, vq=10"g, and« equal to O, 1, 2, and 20
I(w)—B(w) asa andayy, are varied, are shown in Fig(l§.  are shown in Fig. @). In the case ofvyz>I"y and for all
In contrast to Fig. (b), the departures fam,,=0 are zero for values ofa considered, the departures from a simple Lorent-
all values of the mass ratio and not just for the=0 case. zian are zero. For the case of<I"y the departures are
With the speed-dependent broadenirg,&0.1) the depar- again independent of the mass ratio and are not distinguish-
tures at zero detuning are ordered in the same way as in Figble from those for the WSL, shown in Fig(b3. For vy
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=10y, the results fall between the first two cases, ap-plied to strongly shifted lines, including the case where the
proaching a WSL's ag is increased. Note, at say=20, perturber mass is greater than the mass of the active mol-
that the departures from the base spectrum shown in Figcule[1,33,34.
2(b) for vy /T'o=1.14 are almost a factor of 2 larger than  Having reached our main conclusion, we move on to dis-
those shown in Fig. ®) for v /I'o=10. Clearly, we must cuss the relation of the present paper to earlier work. Here
add the ratio of the kinetic to the optical cross section to thave have considered the speed-dependent broadening and
list of parameters that influence the degree to which thereated the translational motion by modeling the molecular
speed-dependent broadening will impact on the line shapénteraction as for billiard ballgrigid or hard sphergsin the
The same conclusion was reached earlier but was based @iterature, different models for the velocity-changing colli-
calculations with model collision kerne[49] as opposed to  sjon operators have been ugécl0,14,20. In general, none
a model(BB) interaction potential. of these model-collision operators depends upon the ratio of
It is easy to give a physical interpretation of the resultsthe mass of the perturber to the mass of the active molecule.
shown in Fig. 8b). In the case ofvg>1I"y the exchange Of course, it is well known that any physically realistic in-
between velocity classes is rapid. If the mass of the perturbeeraction potential will lead to the soft-collision modél as
is not large(compared to the mass of active molegulitis  the mass ratio goes to zero. The hard-collision model of Nel-
implies that the exchange between speed classes is also ragith and GhataK10] is often presumed to be appropriate for
with respect to the decay of the optical cohereftm@aden-  treating the translational motion in the limit @f going to
ing). Thus it is appropriate to replace the latter term in theinfinity. This is false. We have shown by direct comparison
relaxation/transport equation by the average value of theéhat in the hydrodynamic limit the speed-dependent Nelkin-
width, [d3 f(v)T'(0), i.e., by a value that is independent Ghatak profile(SDNG line shape[12,14 is close to the
of the speed and, here, equalltg. Consequently the result- SDBB profile fora=1. Under the same conditions, but with
ing profile is a simple Lorentziatsee Ref.[19]) and the the speed-independent collisional broadening and shifting
departures vanish. The mass rgtleast if it is finitg plays ~ the BB line shape, for any value of, is essentially the same
no role in this argument. However, bewarealfs very large  as the corresponding speed-independent Nelkin-Ghatak pro-
(infinite), even if vy is large, velocity-changing collisions file. For the same conditions as in Figbl we find that the
do not change the speed of the active molecule and in thiSDBB profile witha=4 agrees with the SDNG profile and
case the resulting profile is a WSL. The rangerofery large  in the speed-independent case that the BB profile with
is not explored in Fig. @). =9 closely mimics the NG profile. Clearly the hard-collision
In the reverse situationv(x<<I"y) the velocity and thus model for the collision operator does not mimic the collision
also the speed, relaxes slowly with respect to the opticabperator for very heavy perturbers. The Keilson-St¢aeq
coherence that therefore, decays at a constant speed. Conged the Rautian-Sobelmafi4] model for the velocity-
quently, in the hydrodynamic region, the profile will become changing collision operator also suffer from their inability to
a weighted sum of Lorentzians. Here, the mass ratio is irrelreflect the role of the mass of the perturber on the speed-
evant to the argument. dependent profile of an isolated line. On the other hand, as
In the intermediate case (= 10I"y) the mass ratio plays we have shown, even a simple model for the interaction po-
a crucial role as it variefor a given intermolecular interac- tential does capture the essential dependence of the profile on
tion) the relative importance of speed changing versus directhe mass ratio. Furthermore, since the numerical steps re-
tion changing collisions. Thus in Figs(® and 3b), as the quired to go from a potential to a collision kernel to a colli-
mass of the perturber increases, the velocity-changing collision operator are well understood, it is possible to carry out a
sions become more-speed-conserving collisions and thus tigll ab initio calculation of the translational motion and, of
profile must approach closer to a WSL, the same limit that igourse, of the speed-dependent collisional broadening and
reached forvg<I'y. None of these general arguments areshifting. Thus it is possible to carry out a semiclassied,
connected to the specific use of billiard balls as a modeinitio calculation of the speed-dependent profile of an iso-
interaction potential but rather they are connected to basitated line. This is our ultimate objective.
kinematics and the general consequence of having a dynamic The self-structure factor for hard sphere gas was calcu-
system in which there are both fast changing and slowlyated much earlier by Lindenfelf24] and after normaliza-
changing variables. tion is identical to our billiard-ball profile if the collisional
From Figs. 1-3 and their interpretation we reach the mairbroadening and shifting is neglected. We also note it is pos-
conclusion of this paper. This conclusion states that the desible to solve analytically the billiard-ball transport equation
gree to which the speed-dependent broadening becomes dp¥ the Lorentz gas, i.e., for massive perturbf3s,36. In-
parent in the shape of an isolated line depends upon th@irectly, Lindenfeld 24] has raised the question, of how or if
density, the ratio of the kinetic to optical cross section andhe BB line shape for a finite mass ratio approaches the Lor-
the ratio of the mass of the perturber to the mass of the activentz gas profile a&=mp/m, is increased towards infinity.
molecule. Any analysis of experimental profiles that does nofrhe crux of the question deals only with the translational
include all of these factors will be flawed. For example, notemotion. We can examine the same question by performing
that the observation that a line is a simple Lorentzian doesalculations withl'o=A,=0. In fact we have checked our
not establish, on its own, that the broadening is speed indesoftware by comparing our calculations with those presented
pendent. In this paper while our discussion is based on coin Lindefeld’s papef24] for small values ofx. However, we
lisionally unshifted lines, the SDBB model can also be ap-can carry out numerical calculatio{sising np,,,=30 and
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175 from the figure. For large values af (10°, 10°, 10°, and«)
the numerical errors are about 1%.

Figure 4 shows plots dR as a function ok for a range of
values of the mass rati®@. We see thaR calculated from the
BB profile is close to the value dR calculated fora=o
(Lorentz gas only for large values ofe and only over a
limited range ofz. The dependence & on « is easily inter-
preted in the same manner as above. Ass increased,
T velocity-changing collisions become more and more solely
1 10 100 1000 10000 100000 direction-changing collisions, and at a giventhe curves

z must approach the Lorentz gas value with increasing mass
ratio, i.e., must approach a weighted sum of Lorentzian pro-
files in which each Lorentzian component has a Dicke width
given byk?D(v). However, for a fixed and finite value of,
the curves must eventually approach the full mathematical
hydrodynamic value determined by a diffusion constant that
includes the thermalization of the speed of a tagged patrticle.
I —10 L We have confirmed this interpretation by showing, in the
max= 10) for large values ok, even fora equal to infinity. lat ) f Fia. 4. that the calculated spectrum is in-
[This corresponding tM ;=0 andM,=1 in Eqg.(17).] Thus piaeau region ot Fig. %, Pec .

v 2 distinguishable from the weighted sum of Lorentzian profiles

we can more thoroughly examine the question of as to hOv%alculated for pure, but inhomogeneous Dicke narrowing.

the finite mass calculations approach the Lorentz gas result%nusy over a limited range of the BB and the Lorentz gas
As a basis of the comparison we use : . .
profile are nearly identical. However, the valuesxoénd the
| range ofz are such that it will be very difficult, if not impos-
R= _07 (22)  sible, to realize these conditions experimentally.
Jo Finally, Shapiro and May37] have also considered the
case of the translational motion of rigid spheres. Since they
a normalized peak amplitude. Helrgis the BB profile with  discretized the velocity distribution function, in effect their
I'=A=0 andw= w,. The normalization factod, is defined  basis functions were a series étDirac functions spread
as the peak amplitude of a Lorentzian profile given by over the velocity. With this set of basis functions, they were
able to carry out practical calculations only by reducing the
1 collision kernel to one dimension. With the basis functions
(23 used here, full three-dimensional calculations can be per-
formed on available PC’s in a few seconds for the spectra

) ] ] ) ) shown in Figs. 1-3which contain 241 points evenly spaced
This has a Dicke width(half width at half maximum[5] o reduced detuningu or w) from —3 to +3) with N

given byk’D = wp/(2vgir) = wp/(22) [5] We know thatR  —| __10. At lower densitiesnyg, and | e, Must be in-
will approach a value of 1 for any finite value @f, asz  creased to obtain convergence with a consequent increase of
approaches infinity since this is the translational hydrodytomputation time by roughly the cube o {,+1). In this

namic limit for any gas with the zero broadening and shift-region, many terms are required to capture the Doppler
ing. Using our numerical procedure it is a simple matter toGaussiapaspects of a line.

calculate approximate but reasonable values of the peak am-
plitude of I, over a range of values af andz. We can also
calculateJ, sinceD is also calculablg¢see Eq.(19)]. Thus VI. SUMMARY AND CONCLUSION

we calculateR numerically for anya andz. Since analytical In this paper, we have implemented the formalism pre-

expressions ofl («) exist for the Lorentz gas profile genteq in part | for the calculation of the spectral profile of an

[24,35,3§, it is also an easy matter to calculd®gq for this  jsojated line undergoing speed-dependent broadening and
case. The only difficulty here is that each speed class has '§1ifting with Dicke narrowing. Not only did the specific

own diffusion constanD(v) and we cannot automatically cnoice of basis functions, Ed4d), permit us to calculate,
assign a value ofq; in Eq. (23). In a manner similar to that  rapidly, a line shape for a given speed dependence, but it also
of Lindenfeld we use the quantip = fd3f.(v)D(v) de-  permitted us to borrow from and compare with earlier calcu-
fined as the Maxwellian weighted average Bf{v) and lations carried out in statistical mechanics. By calculating
through this we define a value of; andz With this defi-  spectra in various regions of parameter space we were able to
nition, Lindenfeld showed thel,,, for the Lorentz gas ap- reveal the important, but not independent, roles played by the
proaches a value of #/asz approaches infinity. As a check density, relative size of the optical to kinetic cross section
on our numerical procedure we calculated the Lorentz gaand the mass ratio in revealing or concealing the signatures
profile numerically and compare our ljm.. R(z) with the  of speed-dependent broadening. We have used physical argu-
analytical value of 4#. As can be seen in Fig. 4 the agree- ments to support our hypothesis that the conclusions reached
ment is sufficient to justify drawing qualitative conclusions are generic and not the result of the specific form chosen for

o= (Lorentz gas)
4/n

a=10°

FIG. 4. Dependence of the normalized peak amplitugesl-
culated numerically fora=0, 20, 16, 1, 10°, and» (Lorentz
ga9 are plotted. The exact asymptotic value of Jim Ra,a(2)
=4/ for Lorentz gas is also marked on the plot.

1
J(w)=—Re—; - .
T wpl(2vgig) —i(0—wg)
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the speed dependence of the broadening or for the choice ofteraction potential, provided the microscopic scattering cal-
billiard balls (rigid or hard sphergsas a model for the treat- culations are available.

ment of the translational motion. Being numerical in nature,
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