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sections with their Szegő curve. . . . . . . . . . . . . . . . . . 7

1.6 Zeros of sn(exp; z) (n = 1, 2, . . . , 100) and the parabola (1.5)

associated with the zero of smallest modulus of erfc
(
w/

√
2
)
in

the upper half-plane. . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 LEFT: Zeros of sn(E1/λ; z) (n = 1, 2, . . . , 70) for E10/9 (top)

and E1/2 (bottom). RIGHT: Zeros of the normalized sections

sn(E1/λ;Rnz) (n = 1, 2, . . . , 70) with their Szegő curve for E10/9
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plotted with their Szegő curve, the unit circle. . . . . . . . . . 18

1.10 LEFT: Zeros of the sections sn(1F1, 3; z) (n = 1, 2, . . . , 70).

RIGHT: Zeros of the normalized sections sn(1F1, 3;nz) (n =
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Abstract

For a power series which converges in some neighborhood of the origin in the complex

plane, it turns out that the zeros of its partial sums—its sections—often behave in a

controlled manner, producing intricate patterns as they converge and disperse. We

open this thesis with an overview of some of the major results in the study of this

phenomenon in the past century, focusing on recent developments which build on the

theme of asymptotic analysis. Inspired by this work, we derive results concerning the

asymptotic behavior of the zeros of partial sums of power series for entire functions

defined by exponential integrals of a certain type. Most of the zeros of the nth partial

sum travel outwards from the origin at a rate comparable to n, so we rescale the

variable by n and explicitly calculate the limit curves of these normalized zeros. We

discover that the zeros’ asymptotic behavior depends on the order of the critical points

of the integrand in the aforementioned exponential integral.

Special cases of the exponential integral functions we study include classes of

confluent hypergeometric functions and Bessel functions. Prior to this thesis, the

latter have not been specifically studied in this context.

viii
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Chapter 1

Introduction

The story begins with Gábor Szegő, a leading figure in the field of analysis of polyno-

mials. In 1924 he published a paper [39] in which he examined the radial and angular

distribution of the zeros of the partial sums—the sections—of the power series for the

exponential function exp(z). Let

sn(exp; z) =

n∑
k=0

zk

k!

be the nth such section. The polynomial sn(exp; z) has exactly n complex zeros while

the exponential function has none, so Hurwitz’s theorem (see, e.g., [23, p. 4]) tells

us that the zeros of sn(exp; z) must move farther and farther away from the origin

as n goes to infinity. However, they move in a controlled manner: according to the

Eneström-Kakeya Theorem (see Theorem 2.2 in Section 2.1), the zeros of sn(exp; z)

all lie in the region |z| ≤ n . Seeing this, Szegő studied the behavior of the zeros

of the polynomials sn(exp;nz). The zeros of these normalized sections all lie in the

closed unit disk.

The primary result of Szegő’s work was that the zeros of the normalized sections

sn(exp;nz) have as their limit points the simple closed loop

D =
{
z ∈ C : |z| ≤ 1 and

∣∣ze1−z∣∣ = 1
}
. (1.1)

This curve, and its analogues for other power series, is usually referred to as the Szegő

curve.

Szegő also studied the angular distribution of the zeros. Szegő first showed that

the mapping w = ze1−z takes the curve D to the unit circle in the w-plane in a regular

manner: argw increases monotonically from 0 to 2π as z traverses D from z = 1 in

the counterclockwise direction. So, if �∠n(θ1, θ2) is the number of zeros of sn(exp; z) in

the sector θ1 ≤ arg z ≤ θ2 and if z1 and z2 are the points of D with arguments θ1 and

1
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Figure 1.1: Zeros of the sections sn(exp; z) (n = 1, 2, . . . , 70). Lines have been added
to indicate the zeros corresponding to n = 20, n = 45, and n = 70.

θ2, respectively, then

lim
n→∞

�∠n(θ1, θ2)

n
=

w(z2)− w(z1)

2π
.

Essentially this says that, modulo the weight function w, the zeros of the sections are

uniformly radially distributed.

Though in this work we are only concerned with the zeros of sections of power

series, Szegő studied the more general question of the roots of the equation

sn(exp;nz) = λenz, (1.2)

where 0 ≤ λ ≤ 1. For λ �= 0, 1 the roots are no longer restricted to |z| ≤ 1 and may

accumulate on any part of the curve |ze1−z| = 1. For λ = 1 the roots accumulate on
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Figure 1.2: Zeros of the normalized sections sn(exp;nz) (n = 1, 2, . . . , 70) with the
Szegő curve D in equation (1.1).

the “arms” of this curve, i.e. the points on |ze1−z| = 1 with |z| ≥ 1. See Figure 1.3

for a view of the unrestricted curve |ze1−z| = 1.

Szegő also studied the behavior of the analogous question for the power series for

sine and cosine. Essentially by writing

2i sin z = eiz − e−iz, 2 cos z = eiz + e−iz

and

2isn(sin; z) = sn(exp; iz)− sn(exp;−iz), 2sn(cos; z) = sn(exp; iz) + sn(exp;−iz)

he was able to apply to these series what he had discovered about the exponential

series. He deduced that the set of limit points of the zeros of the sections sn(sin;nz)
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�1

0

1

2

Figure 1.3: Part of the curve |ze1−z| = 1.

and sn(cos;nz) consists of two rotated copies of the part of the limit curve D in the

right half-plane. Indeed, if D+ = D ∩ {z ∈ C : �(z) ≥ 0} then the limit curve

associated with the sine and cosine series is the set

iD+ ∪ −iD+ ∪ {x ∈ R : − 1/e ≤ x ≤ 1/e}.

Figure 1.4 illustrates the convergence of the zeros of the normalized sections of the

cosine function to this curve.

Most of the results in Szegő’s paper were rediscovered by Dieudonné [12] in 1935.

In 1944, Paul C. Rosenbloom showed in his doctoral thesis [31] (and summarized

in a separate paper [32]) that the behavior described by Szegő is in fact a generic

property of entire functions of positive finite order (see Section 1.3) with a certain

asymptotic character. To state this result we will require a small amount of notation.

Let f be an entire function of order 0 < ρ < ∞ with

f(z) =
∞∑
k=0

akz
k
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Figure 1.4: LEFT: Zeros of the sections sn(cos; z) (n = 2, 4, . . . , 90). Lines have been
added to indicate the zeros corresponding to n = 30, n = 60, and n = 90. RIGHT:
Zeros of the normalized sections sn(cos;nz) (n = 2, 4, . . . , 90) with their Szegő curve.

and let

sn(f ; z) =

n∑
k=0

akz
k

be its nth section. The basic conclusion Rosenbloom came to is that most of the zeros

of the sections grow on the order of

ρn = |an|−1/n.

As such, he considers the zeros of the scaled sections sn(f ; ρnz) (another approach

for determining the appropriate scale factor is outlined in Section 1.3.1).

Let {N} be a subsequence of the indices {n} such that the sequence of sections

{sN(f ; z)} has a positive fraction of zeros in any sector with vertex at the origin.

That is, if �∠N (θ1, θ2) denotes the number of zeros of the section sN(f ; z) in the sector

θ1 ≤ arg z ≤ θ2, then

lim inf
N→∞

�∠N(θ1, θ2)

N
> 0
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for any fixed θ1 and θ2. Such a subsequence {N} is guaranteed to exist by Theorem

2.1. Rosenbloom’s main result is as follows.

Theorem 1.1 (Rosenbloom). Suppose that the following conditions hold:

(1) For some sequence of determinations, f(ρNz)
1/N converges uniformly to a single-

valued analytic function g in some subdomain X of the disk |z| ≤ e1/ρ;

(2) w = g(z)/z maps X univalently onto a domain X1;

(3) No limit function of the sequence

TN (z) =
f(ρNz)− sN(f ; ρNz)

zN

is identically zero in X;

(4) TN(z) �= 0 in X for N large enough.

Then the only limit points of the zeros of sN(f ; ρNz) in X are the points on the

curve |g(z)/z| = 1, and their images in X1 under the mapping w = g(z)/z are

equidistributed about the unit circle |w| = 1; that is, the number which accumulate

about any arc of length α contained in X is asymptotically Nα/2π.

One interesting aspect of Rosenbloom’s result is that it allows for the sequence

f(ρNz)
1/N to converge to different limit functions g in different subregions of the disk

|z| ≤ e1/ρ. One striking example of this is the behavior of the zeros of sections of

power series for exponential sums of the form

p∑
k=1

cje
λjz,

where cj , λj ∈ C, as studied by Pavel Bleher and Robert Mallison, Jr. [2]. The

zeros behave differently in different sectors which are determined by the geometric

properties of the parameters λj , as can be seen in Figure 1.5 for the function

f(z) = 3e(8+2i)z + (−9 + 12i)e(4+7i)z + (2 + i)e(−7+4i)z − 5e(−6−6i)z . (1.3)

We discuss how the results of Rosenbloom, Bleher, and Mallison relate to the ones

obtained in this thesis in Chapter 4.
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Figure 1.5: LEFT: Zeros of the first 100 sections of the exponential sum in equation
(1.3). RIGHT: Zeros of the first 100 normalized sections with their Szegő curve.

1.1 A Nudge Toward Asymptotic Analysis

James D. Buckholtz was the first to talk about the radial position of the zeros of

sn(exp; z) in relation to the Szegő curve D in equation (1.1). He published a short

paper [8] on the subject in 1966. His first observation was that all of the zeros of the

sections lie outside the Szegő curve. The proof is so short and elegant that we will

include it here.

Theorem 1.2 (Buckholtz). For every positive integer n, neither the curve D nor the

region it encloses contains a zero of sn(exp;nz).

Proof. Let z ∈ C with |z| ≤ 1 and |ze1−z| ≤ 1. Then

∣∣1− e−nzsn(exp;nz)
∣∣ =

∣∣∣∣∣e−nz
∞∑

k=n+1

nkzk

k!

∣∣∣∣∣
=

∣∣∣∣∣(ze1−z)n e−n
∞∑

k=n+1

nkzk−n

k!

∣∣∣∣∣
≤ e−n

∞∑
k=n+1

nk

k!

= 1− e−nsn(exp;n)

< 1.
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Having sn(exp;nz) = 0 here would contradict this inequality.

Buckholtz’s result is readily seen in Figure 1.2.

The proof of this theorem can give a slightly more general result. For n a positive

integer, if f is analytic in |z| ≤ n with

f(z) =
∞∑
k=0

akz
k,

let

sn(f ; z) =
n∑

k=0

akz
k

be its nth section. The method of Buckholtz shows that, if sn(f ;n)/f(n) > 0, then

sn(f ;nz) has no zeros in the region

Sn =

{
z ∈ C : |z| ≤ 1, f(nz) �= 0, and

∣∣∣∣zn f(n)

f(nz)

∣∣∣∣ ≤ 1

}
.

Note that when f(z) = ez we have Sn = {z ∈ C : |z| ≤ 1 and |ze1−z| ≤ 1} for all

positive integers n.

In addition to describing the direction from which the zeros approach the limit

curve, Buckholtz used a result from a previous paper of his [7] to examine the rate at

which they do so. Refining this result would become the central focus of later work

on the topic.

Theorem 1.3 (Buckholtz). For every positive integer n, all zeros of sn(exp;nz) lie

within a distance of 2e/
√
n of D.

1.2 The Contribution of Newman and Rivlin

In 1972, Donald J. Newman and Theodore J. Rivlin published a paper [27] in which

they aimed to establish a zero-free parabolic region for the sections sn(exp; z) de-

scribed above. However, there was an error in their proof, and so they did not

actually achieve this goal until their correction [28] was published in 1976. They

showed that if c is any positive number satisfying cec < π/2, then there is no zero

in the region {z = x+ iy : y2 ≤ cx} (for related results see, e.g., [33], [35], [34], and

[36]).
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Though the first paper may not have served its original purpose, the following

theorem has become important to the theory we’re concerned with.

For this result we will require the complementary error function erfc, defined by

erfc(z) =
2√
π

∫ ∞

z

e−t
2

dt,

where the path of integration begins at z and travels to the right to ∞.

Theorem 1.4 (Newman and Rivlin). For n > 0, define the functions

hn(w) =

∫ ∞

w

(
1 +

ζ√
n

)n

e−
√
nζ dζ,

where the path of integration begins at w and travels to the right to ∞. Then the

sequence (hn) converges uniformly to the function

H(w) =

∫ ∞

w

e−ζ
2/2 dζ =

√
π/2 erfc

(
w/

√
2
)

on any compact subset of �(w) ≥ 0, where erfc is the complementary error function.

The motivation for this result comes from rewriting sn(exp; z) in a form which

reveals the nature of the “parabolic” arcs of zeros seen in Figure 1.1. First, repeated

integration by parts will verify that

sn(exp; z) =

∫ ∞

0

(z + t)n

n!
e−t dt.

Putting z = n+ w
√
n and using the substitution ζ = w + t/

√
n we have

sn(exp;n+ w
√
n)

en+w
√
n

=

√
2πn(n/e)n

n!
· 1√

2π

∫ ∞

w

(
1 +

ζ√
n

)n

e−
√
nζ dζ,

where the path of integration is the horizontal line from w to the right to ∞. Note

that the integral on the right is the function hn(w) defined above. The conclusion of

Theorem 1.4 can thus be stated as

sn(exp;n+ w
√
n)

en+w
√
n

−→ 1

2
erfc

(
w/

√
2
)

(1.4)

as n → ∞ when w is restricted to a compact subset of �(w) ≥ 0. Now if hn has a

zero w = u+ iv with v �= 0, then z = x+ iy = n+ (u+ iv)
√
n is a zero of sn(exp; z)

which lies on the parabola

x = (y/v)2 + u(y/v). (1.5)
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But if w = u+ iv is any zero of the limit function erfc
(
w/

√
2
)
in the upper half-plane,

Hurwitz’s theorem tells us that hn will have a zero near w when n is large enough,

so that sn(exp; z) will have a zero arbitrarily close to the parabola (1.5). In other

words, the arcs of zeros seen in Figure 1.1 will tend toward parabolas of the form

x = (y/v)2 + u(y/v), where w = u+ iv is a zero of erfc
(
w/

√
2
)
.

This behavior can be seen in Figure 1.6. There, w = u + iv is chosen to be the

smallest zero of erfc
(
w/

√
2
)
in the upper half-plane. The parabola associated with

this zero approximates the upper half of the innermost arc of zeros of sn(exp; z).
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Figure 1.6: Zeros of sn(exp; z) (n = 1, 2, . . . , 100) and the parabola (1.5) associated
with the zero of smallest modulus of erfc

(
w/

√
2
)
in the upper half-plane.

The result in equation (1.4) has inspired some similar results for other functions.

In [18] it is shown that

sn

(
E1/λ;Rn

(
1 + w

√
2
λn

))
(
1 + w

√
2
λn

)n

E1/λ(Rn)
−→ ew

2

2
erfc(w)

as n → ∞ uniformly when w is restricted to a compact subset of C, where E1/λ is

the Mittag-Leffler function of order λ and Rn is its associated scale factor, both of

which are described in Section 1.3. A similar result is proved for the L-functions of
order 0 < λ < 1, which are described in Section 1.3.3. In [29] it is proved that

sn(1F1, b;n+ w
√
n)

ew
√
n
1F1(1; b;n)

−→ 1

2
erfc

(
w/

√
2
)

as n → ∞ uniformly when w is restricted to a compact subset of C, where 1F1(1; b; z)

is a confluent hypergeometric function and sn(1F1, b; z) is its nth section—both of
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which are described in Section 1.6. Lastly in [20] we are given that

(
1− r

n

)n

Br,n

(
rew/

√
r−r2/n

n− r

)
e−rw/

√
r−r2/n−w2/2 ≈ 1

2
erfc

(
w/

√
2
)

when r and n are large with δ < r/n < 1− δ for some δ > 0, where

Br,n(z) =

r∑
k=0

(
n

k

)
zk

for 1 ≤ r < n.

These results are used to determine the widths of the zero-free regions—the

“openings”—exemplified in Figures 1.1, 1.7, and 1.10.

1.3 The Influence of the Order of the Limit Function

Albert Edrei, Edward B. Saff, and Richard S. Varga studied the effect of the order of

the limit function on the zeros of the sections. In 1983 they published a monograph

[18] in which they examined the asymptotic character of the zeros of the sections of

the Mittag-Leffler functions E1/λ defined by

E1/λ(z) =

∞∑
k=0

zk

Γ
(
k
λ
+ 1

) ,
where 0 < λ < ∞.

Recall that the order of an entire function f—that is, a function which is analytic

on the entire complex plane C—is defined to be the infimum of all real numbers 
 for

which

|f(z)| ≤ exp(|z|�)
holds for |z| large enough. Writing

f(z) =

∞∑
k=0

akz
k,

we can calculate the order of f directly with the formula


 = lim sup
k→∞

k log k

log(1/|ak|)
(see e.g. [3, p. 9] or [37, p. 326]).

The order of the function E1/λ is seen to be λ. As such, E1/λ is called the Mittag-

Leffler function of order λ.
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1.3.1 Outline of the Method

We will outline here the approach used in the monograph.

The first step is to determine an appropriate scale factor for the sections. Here let

ak =
1

Γ
(
k
λ
+ 1

)
be the coefficient of zk in the power series, and thus let

sn(E1/λ; z) =

n∑
k=0

akz
k =

n∑
k=0

zk

Γ
(
k
λ
+ 1

) .
be the nth section of the series. We wish to choose the scale factor Rn so that the

inequality

anR
n
n ≥ akR

k
n (1.6)

holds for all nonnegative integers k. For the function E1/λ, the sequence

{ak−1/ak}∞j=1 is strictly increasing, so we just need to choose Rn to satisfy the in-

equality
an−1
an

≤ Rn <
an
an+1

. (1.7)

Once we do this, inequality (1.6) will in turn be satisfied. By using Stirling’s formula

for the gamma function, we deduce the approximations

log

(
an−1
an

)
=

1

λ
log

(n
λ

)
+

1

2n

(
1− 1

λ

)
+O

(
1/n2

)
,

log

(
an
an+1

)
=

1

λ
log

(n
λ

)
+

1

2n

(
1 +

1

λ

)
+O

(
1/n2

)
,

as n → ∞. Seeing this, if we choose Rn such that

logRn =
1

λ
log

(n
λ

)
+

1

2n
,

we will indeed satisfy (1.7) for n large enough.

Define the functions

Un(z) =
E1/λ(Rnz)

an (Rnz)n
,

Qn(z) =
sn(E1/λ;Rnz)

an (Rnz)n
=

n∑
k=1

b−k(n) z
−k,

Gn(z) =

∞∑
k=1

an+k

an
(Rnz)

k =

∞∑
k=1

bk(n) z
k,
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where

bk(n) =
an+k

an
Rk

n

for k ≥ −n. By our choice for Rn and properties of the gamma function we see that

bk(n) → 1 as n → ∞ for any fixed k. It follows that

Gn(z) −→ z

1− z

as n → ∞ uniformly on compact subsets of the open unit disk.

By our definitions we have

Qn(z) = Un(z)−Gn(z).

As a consequence of the Eneström-Kakeya Theorem (see Theorem 2.2 in Section 2.1),

the function Qn has no zeros outside of the open unit disk. If n is large then Gn(z)

is approximately equal to z/(1 − z) for |z| < 1, so if we can find an asymptotic

representation of the limit function in question, E1/λ, we can describe the asymp-

totic character of the zeros of Qn. These zeros are exactly the zeros of the sections

sn(E1/λ;Rnz).

1.3.2 Szegő Curves for the Mittag-Leffler Functions

The definition of the Szegő curve for E1/λ is not as easy to state as the one for the

exponential function; we will need to define it differently in different sectors. The

curve is defined as the set of all points z = r(θ) eiθ satisfying

(i) − π
2λ

≤ θ ≤ π
2λ

: r(θ) is the unique solution of the equation

r(θ)λ cos(λθ)− 1− λ log r(θ) = 0

in the interval e−1/λ ≤ r(θ) ≤ 1,

(ii) π
2λ

< θ < 2π − π
2λ

: r(θ) = e−1/λ.

Thus the Szegő curve for E1/λ consists of a circular part and another part whose

radial component is defined implicitly in terms of its argument. Note that the order

of the function, λ, plays a major role in the definition of the curve.
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Figure 1.7: LEFT: Zeros of sn(E1/λ; z) (n = 1, 2, . . . , 70) for E10/9 (top) and E1/2

(bottom). RIGHT: Zeros of the normalized sections sn(E1/λ;Rnz) (n = 1, 2, . . . , 70)
with their Szegő curve for E10/9 (top) and E1/2 (bottom).

1.3.3 Related Results

In the same monograph, Edrei, Saff, and Varga also derived results similar to those

above for L-functions of order 0 < λ < 1. Here a function f is said to be an L-function
if f is entire, f(0) > 0, and

f(z) = f(0)

∞∏
k=1

(
1 +

z

xk

)
,

where xk > 0 for all k with
∞∑
k=1

1/xk < ∞.

Following Szegő’s approach in equation (1.2), Natalya Zheltukhina [45] extended

the work of Edrei, Saff, and Varga on the Mittag-Leffler functions by studying the
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asymptotic behavior of the roots of the equation

sn(E1/λ;Rnz) = μE1/λ(Rnz)

for μ ∈ C. Later, Zheltukhina and Iossif Ostrovskii [30] performed a similar analysis

for the classical Lindelöf functions, a subclass of the L-functions studied by Edrei,

Saff, and Varga.

1.4 A Careful Study of the Asymptotics

Five years after the publication of the monograph Varga returned to the problem for

the exponential function [11], this time with one of his previous PhD students, Amos

J. Carpenter, and a collaborator, Jörg Waldvogel.

Their analysis began with the observation that the zeros away from the point z = 1

approach the limit curve much more quickly than the others. Recall Buckholtz’s result

in Theorem 1.3, that the zeros approach the limit curve D at a rate of O(1/
√
n). The

first step in the analysis here is to show that this estimate is the best possible one

when the whole curve is taken into account. Taking full advantage of Theorem 1.4, the

authors prove the following result by tracing the behavior of a zero which approaches

the point z = 1.

Theorem 1.5 (CVW). If {zk,n}nk=1 are the zeros of sn(exp;nz) and if t1 is the zero

of the complementary error function erfc closest to the origin in the upper half-plane,

then

lim inf
n→∞

√
n ·max

k
{dist(zk,n, D)} ≥ �(t1) + �(t1) ≈ 0.636657.

By throwing out the zeros of sn(exp;nz) near z = 1 we should get a different

estimate for the rate of approach. Indeed, by defining Cδ to be the collection of all

points within a distance δ of z = 1, the authors show that the zeros outside of this

set approach D much more quickly.

For Ω ⊆ C, define maxdist(Ω, C) = supz∈Ω {dist(z, C)}.
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Theorem 1.6 (CVW). If {zk,n}nk=1 are the zeros of sn(exp;nz) and if δ is any fixed

number with 0 < δ ≤ 1, then

maxdist({zk,n}nk=1 \ Cδ, D) = O

(
logn

n

)
as n → ∞.

But the authors noticed something more. As they approach D, the zeros seem to

lie on regular curves which themselves shrink down to D. Taking inspiration from

Szegő’s original analysis, the authors define the intermediate curves

Dn =

{
z ∈ C :

∣∣ze1−z∣∣n = τn
√
2πn

∣∣∣∣1− z

z

∣∣∣∣ , |z| ≤ 1, and | arg z| ≥ cos−1
(
n− 2

n

)}
,

where

τn =
n!

(n/e)n
√
2πn

≈ 1 +
1

12n
+

1

288n2
− 139

51840n3
+ · · ·

as n → ∞. Indeed, the curve Dn gives a much closer approximation of the zeros of

sn(exp;nz) than does the Szegő curve D, as can be seen in Figure 1.8.

Theorem 1.7 (CVW). If {zk,n}nk=1 are the zeros of sn(exp;nz) and if δ is any fixed

number with 0 < δ ≤ 1, then

maxdist({zk,n}nk=1 \ Cδ, Dn) = O
(
1/n2

)
as n → ∞.

Varga and Carpenter continued their investigation of the asymptotics for the zeros

of the sections of the exponential series in a second paper [40].

Ten years later, Varga and Carpenter published the first of three papers ([41], [42],

and [43]) in which they carried out a similar analysis of the asymptotics for the zeros

of the sections of sine and cosine. Following the work of Szegő [39], their approach

essentially began with writing

2i sin z = eiz − e−iz, 2 cos z = eiz + e−iz

and

2isn(sin; z) = sn(exp; iz)− sn(exp;−iz), 2sn(cos; z) = sn(exp; iz) + sn(exp;−iz)

then applying methods similar to those they used in their analysis of the exponential

series, though in considerably more detail.
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Figure 1.8: Zeros of s17(exp; 17z) with the intermediate curve D17 and the Szegő
curve D (dotted).

1.5 A Divergent Power Series

We shift our focus now to an example of an entirely different sort. In 1996, Karl

Dilcher and Lee A. Rubel [14] studied the power series

∞∑
k=0

k! zk. (1.8)

Up to this point the series we have covered have converged on the entire complex

plane. At the opposite end of the spectrum is this series, which converges nowhere

but at the origin. It is then incredibly surprising that the zeros of the sections of this

series can be wrangled with using essentially the same ideas. Here, the zeros of the

partial sums

pn(z) =
n∑

k=0

k! zk

move not out to infinity but in toward the origin. So, instead of choosing a scale

factor which increases with n, one is chosen which decreases with n.

Theorem 1.8 (Dilcher and Rubel). If a �= 1 is a complex number, then for all positive

integers n satisfying

n ≥ max

{
16

9
e4|1− a|4,

(
3

|1− a|
)2

}
,
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the roots of the equation pn(ez/n) = a lie in the annulus

1− 3

|1− a| ·
1√
n
< |z| < 1 + (1 + |a|)

√
2

πn
.

As a special case of this result, we may use the sharpened form of the Eneström-

Kakeya theorem in [1] to see that the zeros of the normalized nth section pn(ez/n) all

lie in the annulus

1− 3√
n
< |z| < 1.

for n > 97.
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Figure 1.9: LEFT: Zeros of pn(z) =
∑n

k=0 k!z
k (n = 1, 2, . . . , 70). RIGHT: Zeros of

the normalized sections pn(ez/n) (n = 1, 2, . . . , 70) plotted with their Szegő curve,
the unit circle.
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1.6 Inspiration for the Study of Exponential Integrals

The primary inspiration for this current work is a paper by Timothy S. Norfolk [29]

published in 1998. Studying the confluent hypergeometric functions

1F1(1; b; z) = Γ(b)

∞∑
k=0

zk

Γ(k + b)
,

where b �= 1, 0,−1,−2, . . ., Norfolk derived results analogous to those of Carpenter,

Varga, and Waldvogel outlined in Section 1.4. His primary tool was the integral

representation

1F1(1; b; z) = (b− 1)

∫ 1

0

(1− t)b−2ezt dt, (1.9)

valid for b > 1.

If

sn(1F1, b; z) = Γ(b)

n∑
k=0

zk

Γ(k + b)

is the nth section of 1F1(1; b; z), we have

sn(1F1, b; z) = (b− 1)

∫ 1

0

(1− t)b−2sn(exp; zt) dt,

where sn(exp; z) is the nth section of the exponential function. Replacing z with nz

and subtracting this from equation (1.9) we get the expression

1F1(1; b;nz)− sn(1F1, b;nz) = (b− 1)

∫ 1

0

(1− t)b−2
(
enzt − sn(exp;nzt)

)
dt

= (b− 1)

∫ 1

0

(1− t)b−2enztgn(zt) dt, (1.10)

where

gn(z) = 1− e−nzsn(exp;nz).

This quantity gn(z) was studied by Szegő [39], who derived asymptotic approxima-

tions as n → ∞ for z in different regions of the complex plane (see also [11] and [5]).

In particular he showed that

gn(z) =
(ze1−z)n√

2πn
· z

1− z

(
1− εn(z)

)
,
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where εn(z) = O(1/n) as n → ∞ uniformly when z is restricted to a compact subset

of �(z) < 1. Norfolk applies this approximation of Szegő’s to obtain an asymptotic

estimate for the tail (1.10) in the region |z| ≤ R < 1.

Norfolk’s main result is that the zeros of the normalized sections sn(1F1, b;nz)

have as their limit points the set

{
z ∈ C : �(z) ≥ 0, |z| ≤ 1, and

∣∣ze1−z∣∣ = 1
}

∪ {z ∈ C : �(z) = 0 and |z| ≤ 1/e}
∪ {z ∈ C : �(z) ≤ 0 and |z| = 1/e}.

This curve and some of the zeros can be seen in Figure 1.10.
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Figure 1.10: LEFT: Zeros of the sections sn(1F1, 3; z) (n = 1, 2, . . . , 70). RIGHT:
Zeros of the normalized sections sn(1F1, 3;nz) (n = 1, 2, . . . , 70) with their Szegő
curve.

We follow essentially the same process in Chapter 3, generalizing Norfolk’s result

to a much larger class of functions. These functions are defined in Chapter 2 and a

few special cases are listed in Section 4.1.

1.7 Other Families of Polynomials

Given a power series with finite radius of convergence, Jentzsch’s Theorem states

that every point on the circle of convergence will be a limit point of the zeros of the

sections of the series. In this sense, the result of Jentzsch is a bridge between the
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results of Dilcher and Rubel in section 1.5 and the results described earlier in the

capter for entire functions. We consider a couple simple examples of power series

with finite radius of convergence in Sections 2.1.1 and 4.2.

The problem of asymptotic zero distribution has also been treated for a number

of families of polynomials which are not sections of some power series. We reference

a few of them here.

The Daubechies polynomials

Bp(z) =

p−1∑
k=0

(
k + p− 1

k

)
zk

were studied by Djalil Kateb and Pierre Gilles Lemarie-Rieusset [21] and indepen-

dently by Jianhong Shen and Gilbert Strang [38]. Later, Norfolk and Svante Janson

[20] studied the related polynomials

Br,n(z) =

r∑
k=0

(
n

k

)
zk,

where 1 ≤ r < n. The partition polynomials, defined by

Hn(z) =
n∑

k=1

pk(n)z
k,

where pk(n) is the number of partitions of n with exactly k parts, were studied by

Robert P. Boyer and William M. Y. Goh [6].

If, in the hypergeometric functions

2F1(a1, a2; b1; z) = 1 +
∞∑
k=1

(a1)k(a2)k
k!(b1)k

zk

and

3F2(a1, a2, a3; b1, b2; z) = 1 +
∞∑
k=1

(a1)k(a2)k(a3)k
k!(b1)k(b2)k

zk,

where

(α)k =
Γ(α + k)

Γ(α)
,

we let a1 = −n be a negative integer, the series in question are finite and we obtain

sequences of polynomials. Hypergeometric polynomials of this type been studied by
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various authors (see, e.g., [4], [17], [16], [15], and [46]). Some of these results have been

used to obtain similar results for the zeros of classical Jacobi orthogonal polynomials.

The problem has also been studied directly for a number of other families of

orthogonal polynomials (see, e.g., [13], [10], [24], [25], and [5]). Of note are the

papers of Arno B. J. Kuijlaars, Kenneth D. T.-R. McLaughlin, and Peter D. Miller,

who apply the methods of Riemann-Hilbert analysis to achieve their results. In 2008,

Kuijlaars, McLaughlin, Miller, and Thomas Kriecherbauer turned these tools back

on the original problem of studying the zeros of sections of the exponential series

[22]. The authors derive full asymptotic series for the zeros in terms of roots of

appropriately chosen auxiliary equations.

Though it is only tangentially related to the current theory, we also refer the reader

to a paper of Christopher P. Hughes and Ashkan Nickeghbali [19] for an interesting

result about the clustering behavior of zeros of random polynomials.



Chapter 2

Preliminaries

In this chapter we will discuss the terms and ideas which are relevant to the work.

Some of these have already been introduced in Chapter 1 and are collected here for

convenience.

Our focus will be on the sequence of polynomials given by the partial sums—the

sections—of a convergent power series. In particular, if Ω is some open subset of the

complex plane C which contains the origin and f : Ω → C is a function which is

analytic at the origin, then f can be represented by a power series,

f(z) =

∞∑
k=0

akz
k, (2.1)

in some neighborhood of the origin. We define the nth section of this power series for

f to be the polynomial

sn(f ; z) =

n∑
k=0

akz
k. (2.2)

In later sections we will rely heavily on properties of the exponential function

exp(z) =
∞∑
k=0

zk

k!

and its sections

sn(exp; z) =

n∑
k=0

zk

k!
.

2.1 Strategy and General Tools

Here we will give a brief description of the method we will use in Chapter 3 to obtain

our results. We will also collect a few tools for later use.

Let f and sn(f ; z) be as in equations (2.1) and (2.2). For z in the radius of

convergence of the power series for f , we have

f(z)− sn(f ; z) = tn(f ; z), (2.3)

23
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where

tn(f ; z) =
∞∑

k=n+1

akz
k

is the tail of the power series. Suppose we can find a real, positive sequence {Rn}
such that some subset of the zeros of sn(f ; z) grow on the order of Rn and let {Rnzn}
be such a sequence of zeros which eventually lies within the radius of convergence of

the power series. By equation (2.3) this gives us

f(Rnzn) = tn(f ;Rnzn)

for n large enough. Theoretically, analytic relations for the scaled zeros zn can

be derived by determining the asymptotic character of the sequences f(Rnzn) and

tn(f ;Rnzn) as n → ∞.

An example of this method is given in Section 2.1.1.

We will need to bound the modulus of the zeros of the sections to simplify the

estimation of the tails of the power series in Chapter 3. To do this we will invoke a

particular result of Rosenbloom ([31] and [32]) which will give us precisely the bound

we need.

Recall from Chapter 1 that a sequence of sections {sN(f ; z)} is said to have a

positive fraction of zeros in any sector with vertex at the origin if

lim inf
N→∞

�∠N(θ1, θ2)

N
> 0

for any fixed θ1 and θ2, where �
∠

N(θ1, θ2) is the number of zeros of the section sN(f ; z)

in the sector θ1 ≤ arg z ≤ θ2. Rosenbloom’s result is as follows.

Theorem 2.1 (Rosenbloom). Let

f(z) =
∞∑
k=0

akz
k

be an entire function of finite positive order ρ and let sn(f ; z) be as in equation (2.2).

Define �◦n(R) to be the number of zeros of sn(f ; z) in the disk |z| ≤ R and define

ρn = |an|−1/n. For any increasing sequence of indices {N} such that the sequence of
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sections {sN(f ; z)} have a positive fraction of zeros in any sector with vertex at the

origin, the existence of which is guaranteed, and for 0 ≤ r < 1 and ε > 0 we have

lim inf
N→∞

�◦N
(
(e1/ρ + ε)ρN

)
− �◦N(ρNr)

N
≥ 1− rρ > 0.

Further, the number of zeros of sN(f ; z) satisfying

|ρNz| > e1/ρ + ε

is bounded.

Part of this result was inspired by the work of Carlson [9] on the angular distri-

bution of the zeros.

Many of the recent approaches to the problem (e.g. [29]) have made use of the

Eneström-Kakeya Theorem to find this bound. Marden’s book [23, ch. 7] is a good

resource for more information on this theorem as well as for more general results in

in the same vein.

Theorem 2.2 (Eneström-Kakeya). All zeros of the polynomial

p(z) = a0 + a1z + · · ·+ anz
n

having real, positive coefficients aj lie in the ring α ≤ |z| ≤ β, where

α = min{ak/ak+1} and β = max{ak/ak+1}

for k = 0, 1, . . . , n− 1.

In [1], Anderson, Saff, and Varga give necessary and sufficient conditions for when

zeros of p lie on the circles |z| = α or |z| = β. Of particular interest is the maximum

modulus of the zeros, and as a corollary to their main theorems the authors formulate

a helpful sufficient condition that the polynomial have no roots on the outer circle

|z| = β.

Theorem 2.3 (Anderson, Saff, Varga). For p(z) and β as defined in Theorem 2.2,

if βa1 − a0 > 0, then all zeros of p satisfy |z| < β.
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The requirement in the above two theorems that all coefficients be positive is fairly

restrictive. As we mentioned, there are more flexible versions of the Eneström-Kakeya

theorem that do not assume this, but they are often not powerful enough or simply too

difficult to apply to this problem in full generality. For example, the best bound these

more general theorems can give for the zeros of sections of the exponential integrals

we will study is precisely twice the bound we need. For this reason we instead rely

on Rosenbloom’s Theorem 2.1.

2.1.1 A Class of Linear Fractional Transformations

To illustrate the general strategy described above let us pause to treat a toy example.

Let a0, A, and B all be positive and real. Define a1 = Aa0 +B and an = An−1a1

for n ≥ 2. Then the series
∑

akz
k converges to the linear fractional transformation

f(z) =
a0 +Bz

1− Az
(2.4)

for all z ∈ C satisfying |z| < 1/A. The sections of this series can be explicitly

expressed as

sn(f ; z) = a0 + a1z
1−Anzn

1−Az
.

By Theorem 2.3, all zeros of sn(f ; z) satisfy |z| < 1/A. We thus consider the normal-

ized sections sn(f ; z/A), all of whose zeros lie strictly inside the unit circle.

Given a power series with finite radius of convergence, Jentzsch’s Theorem states

that every point on the circle of convergence will be a limit point of the zeros of the

sections of the series. Thus every point on the unit circle is a limit point of the zeros

of the sections sn(f ; z/A). If f(z/A) has a zero satisfying |z| < 1 (which would occur

at z = −Aa0/B), Hurwitz’s Theorem (see, e.g., [23, p. 4]) tells us that z = −Aa0/B

will also be a limit point of the zeros of the sections. However, we are only concerned

with the sections’ spurious zeros—that is, sequences of zeros which do not converge to

zeros of the limit function—so we will exclude these limit points in our calculations.

We prove the following result.

Theorem 2.4. Let C be the unit circle, Rδ the open region which consists of all points

within a distance δ > 0 of the negative real axis, and {zk,n}nk=1 the zeros of the section
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sn(f ; z/A). For Ω ⊆ C, define maxdist(Ω, C) = supz∈Ω {dist(z, C)}. Then

maxdist({zk,n}nk=1\Rδ ; C) = O(1/n).

Proof. Because f(z/A) has no zeros in the set Δ = {z ∈ C : |z| < 1} \ Rδ, we may

conclude that the points {z ∈ C : |z| = 1}\Rδ are the only limit points in the closure

of Δ.

For z ∈ Δ we calculate

sn(f ; z/A)

f(z/A)
= 1− zn+1 a1

Aa0 +Bz
.

So, if z is a zero of sn(f ; z/A), it must satisfy the relationship

zn+1 = (Aa0 +Bz)/a1. (2.5)

For z ∈ Δ it is clear that there exist positive constants C1 and C2 such that

C1 < |(Aa0 +Bz)/a1| < C2, so that on taking absolute values and (n+ 1)th roots in

(2.5) we find that the spurious zeros of sn(f ; z/A) satisfy

|z| = 1 +O(1/n),

as desired.

This result is illustrated in Figures 2.1 and 2.2.

2.2 The Exponential Integral Functions

The functions we will study will be defined by integrals of the form
∫ b

−a ϕ(t)e
zt dt.

The restrictions we will place on the function ϕ are determined essentially by the

abilities of Watson’s Lemma, which are discussed in the next section.

Suppose 0 ≤ a, b < ∞ and let ϕ : [−a, b] → C ∪ {∞} be a function satisfying

∫ b

−a
|ϕ(t)| dt < ∞

and ϕ(t) = (t+ a)μf1(t + a) = (b− t)νf2(b− t), where

(1) μ, ν ∈ C with �(μ) > −1 and �(ν) > −1,
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Figure 2.1: Zeros of sn(f ; z) (n = 1, 2, . . . , 60), where f is the linear fractional trans-
formation in (2.4) with a0 = A = B = 1, and their Szegő curve, the unit circle.

(2) f1, f2 : [0, a+ b] → C ∪ {∞} with f1(0) and f2(0) both finite and nonzero,

(3) in a neighborhood of t = 0, both f ′1(t) and f ′2(t) exist and are bounded.

Define

F (z) =

∫ b

−a
ϕ(t)ezt dt.

The function F is entire, and its sections are given by the formula

sn(F ; z) =
n∑

k=0

zk

k!

∫ b

−a
ϕ(t)tk dt.

Properties (1) and (2) above essentially serve to ensure that the integral F (z)

converges. Property (3) allows us to determine a simple error term in the asymptotic

expansion of F in Watson’s Lemma.

An important example of functions of this type are the Bessel functions of the

first kind Jα with �(α) > −1/2. Indeed, in this case we have

Γ

(
α +

1

2

)
Γ

(
1

2

)(
2i

z

)α

Jα(−iz) =

∫ 1

−1

(
1− t2

)α− 1

2 ezt dt.
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Figure 2.2: Zeros of s11(f ; z), where f is as in (2.4) with a0 = A = B = 1, with the
intermediate curve (the modulus of equation (2.5)) and the unit circle.

We discuss in detail how the main result of Chapter 3 applies to these Bessel functions

in Section 4.1.

2.3 Watson’s Lemma

The primary tool in this work is Watson’s Lemma. For a thorough discussion of this

result in a general setting see [26].

In the following, λ is a complex parameter.

Theorem 2.5 (Watson’s Lemma). Suppose 0 < T ≤ ∞ and ϕ : [0, T ] → C∪ {∞} is

a function satisfying ∫ T

0

|ϕ(t)| dt < ∞

and ϕ(t) = tσh(t), where �(σ) > −1, h(0) �= 0, and h′(t) exists and is bounded in a

neighborhood of t = 0. Then the exponential integral

Φ(λ) =

∫ T

0

ϕ(t)e−λt dt
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is finite for all �(λ) > 0, and

Φ(λ) =
h(0)Γ(σ + 1)

λσ+1
+O

(
λ−σ−2

)
as λ → ∞ with | argλ| ≤ θ for any fixed 0 ≤ θ < π/2.

Though this form of Watson’s Lemma only gives an asymptotic for Φ(λ) as λ → ∞
to the right, it can easily be extended to address the case when λ → ∞ to the left.

However, to do so we must assume that T is finite.

Corollary 2.6. Supppose 0 < T < ∞ and ϕ : [0, T ] → C ∪ {∞} is a function

satisfying ∫ T

0

|ϕ(t)| dt < ∞
and ϕ(t) = (T − t)σh(T − t), where �(σ) > −1, h(0) �= 0, and h′(t) exists and is

bounded in a neighborhood of t = 0. Then the exponential integral

Φ(λ) =

∫ T

0

ϕ(t)eλt dt

is finite for all �(λ) > 0, and

Φ(λ) =
h(0)Γ(σ + 1)

λσ+1
eTλ +O

(
λ−σ−2eTλ

)
as λ → ∞ with | argλ| ≤ θ for any fixed 0 ≤ θ < π/2.

Proof. We have

e−TλΦ(λ) =

∫ T

0

ϕ(t)e−λ(T−t) dt

=

∫ T

0

ϕ(T − u)e−λu du

=

∫ T

0

uσh(u)e−λu du

=
h(0)Γ(σ + 1)

λσ+1
+O

(
λ−σ−2

)
as λ → ∞ with | arg λ| ≤ θ for any fixed 0 ≤ θ < π/2, by Watson’s Lemma.

Watson’s Lemma and its corollary will be used in Chapter 3 to determine the

asymptotic character of the exponential integrals described in Section 2.2 as well as

the coefficients of their power series.



Chapter 3

Main results

Recall from Section 2.2 that we are concerned with functions of the form

F (z) =

∫ b

−a
ϕ(t)ezt dt

with ϕ satisfying some light requirements. The nth section of F is the polynomial

sn(F ; z) =

n∑
k=0

zk

k!

∫ b

−a
ϕ(t)tk dt.

The statement and proof of the main result depends on the relative sizes of a and

b and of �(μ) and �(ν). To this end, define c = max{a, b} and

ξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
�(μ) if a > b,

�(ν) if a < b,

min{�(μ),�(ν)} if a = b.

Lastly, let {N} be an increasing subsequence of the indices {n} for which the

sequence of sections {sN(F ; z)} has a positive fraction of zeros in any sector with

vertex at the origin. If a = b and �(μ) = �(ν), we also impose the condition that

the indices {N} are chosen so that quantity

(−1)Nf1(0)Γ(μ+ 1) + f2(0)Γ(ν + 1)aν−μNμ−ν (3.1)

is bounded away from 0. Such a subsequence is guaranteed to exist by Theorem 2.1.

The condition in (3.1) ensures that we can use the asymptotic representations derived

in Lemmas 3.4 and 3.7 without incident.

The main theorem is as follows.

Theorem 3.1. It is true that

31
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(i) Every point on the curve

Da,b =
{
z ∈ C : �(z) ≤ 0, |z| ≤ 1/c, and

∣∣cze1+az
∣∣ = 1

}
∪ {

z ∈ C : �(z) ≥ 0, |z| ≤ 1/c, and
∣∣cze1−bz∣∣ = 1

}

is a limit point of the zeros of the sections sN(F ;Nz).

(ii) The only limit points of the zeros of the sections sN(F ;Nz) on the imaginary

axis are those on the line segment

Dimag = {z ∈ C : �(z) = 0 and |z| ≤ 1/(ec)} .

The limit points of the zeros of F (Nz), if there are any, are a subset of the

imaginary axis. If every point on the imaginary axis is a limit point of these

zeros, then every point on Dimag is a limit point of the zeros of the sections

sN(F ;Nz).

(iii) Let {zN} be a sequence of complex numbers such that sN(F ;NzN ) = 0 for all

N and such that the sequence has a limit point in the region

{z ∈ C : �(z) < 0 and z �= −1/a}.

Then the elements of the sequence satisfy

∣∣czNe1+azN
∣∣ = 1 +

(
ξ −�(μ) + 1

2

)
logN

N
+O(1/N)

as N → ∞.

(iv) Let {zN} be a sequence of complex numbers such that sN(F ;NzN ) = 0 for all

N and such that the sequence has a limit point in the region

{z ∈ C : �(z) > 0 and z �= 1/b}.

Then the elements of the sequence satisfy

∣∣czNe1−bzN ∣∣ = 1 +

(
ξ − �(ν) + 1

2

)
logN

N
+O(1/N)

as N → ∞.
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It is interesting to note that the zeros will eventually approach the limit curve

Da,b from the inside or from the outside depending on the signs of the quantities

ξ−�(μ)+ 1/2 and ξ−�(ν)+ 1/2. For example, if ξ−�(μ)+ 1/2 > 0 then the zeros

will eventually approach the part of Da,b in the left half-plane from outside the curve.

If either of these quantities is zero then this theorem does not give any information

about the direction from which the zeros approach the relevant part of the curve.

Figures 3.1 through 3.6 showcase the limit curve Da,b ∪Dimag and the zeros of the

sections for a few exponential integrals.

The remainder of this chapter is dedicated to the proof of this theorem. We begin

by finding two asymptotic estimates we will require in our calculations.

Lemma 3.2. As n → ∞,

F (nz) = f1(0)Γ(μ+ 1)(−nz)−μ−1e−anz
(
1 +O(1/n)

)

when z is restricted to a compact subset of �(z) < 0, and

F (nz) = f2(0)Γ(ν + 1)(nz)−ν−1ebnz
(
1 +O(1/n)

)

when z is restricted to a compact subset of �(z) > 0.

Proof. This follows from a direct application of Corollary 2.6. To see this, suppose

first that z is restricted to a compact subset of �(z) < 0, and make the substitution

t = b− s in the integral for F (nz) to get

F (nz) =

∫ b

−a
ϕ(t)enzt dt = ebnz

∫ a+b

0

ϕ(b− s)e−nzs ds,

which, after replacing z with −z, is of the form required by the corollary. Next, sup-

pose that z is restricted to a compact subset of �(z) > 0, and make the substitution

t = s− a in the definition of F (nz) to get

F (nz) =

∫ b

−a
ϕ(t)enzt dt = e−anz

∫ a+b

0

ϕ(s− a)enzs ds,

which is also of the required form.
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Lemma 3.3. We have∫ b

−a
ϕ(t)tn dt = (−1)nf1(0)Γ(μ+ 1)n−μ−1an+μ+1 +O

(
n−μ−2an

)
+ f2(0)Γ(ν + 1)n−ν−1bn+ν+1 +O

(
n−ν−2bn

)
.

as n → ∞.

Proof. If a �= 0 we calculate∫ 0

−a
ϕ(t)tn dt = (−a)n

∫ 0

−a
ϕ(t)en log(−t/a) dt

= (−a)n
∫ a

0

ϕ(s− a)en log(1−s/a) ds

= (−a)n
∫ a

0

sμf1(s)e
n log(1−s/a) ds.

Letting s = a(1− e−r) gives∫ 0

−a
ϕ(t)tn dt = (−1)nan+μ+1

∫ ∞

0

(1− e−r)μf1(a− ae−r)e−re−nr dr

= (−1)nan+μ+1

∫ ∞

0

rμψa(r)e
−nr dr,

where

ψa(r) =

(
1− e−r

r

)μ

f1(a− ae−r)e−r

has a bounded derivative in a neighborhood of r = 0. We may now apply Watson’s

Lemma to conclude that∫ 0

−a
ϕ(t)tn dt = (−1)nψa(0)Γ(μ+ 1)n−μ−1an+μ+1 +O

(
n−μ−2an

)
= (−1)nf1(0)Γ(μ+ 1)n−μ−1an+μ+1 +O

(
n−μ−2an

)
.

Using an identical argument we find that∫ b

0

ϕ(t)tn dt = f2(0)Γ(ν + 1)n−ν−1bn+ν+1 +O
(
n−ν−2bn

)
,

which completes the proof.

The actual asymptotic character of the integral in the above lemma depends on

the relative sizes of a and b and of �(μ) and �(ν), so for convenience we’ll organize

the possible outcomes in a separate lemma.
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Lemma 3.4. If a > b then∫ b

−a
ϕ(t)tn dt = (−1)nf1(0)Γ(μ+ 1)n−μ−1an+μ+1

(
1 +O(1/n)

)
,

if a < b then ∫ b

−a
ϕ(t)tn dt = f2(0)Γ(ν + 1)n−ν−1bn+ν+1

(
1 +O(1/n)

)
,

and if a = b we have three cases:

(i) if �(μ) > �(ν) then∫ b

−a
ϕ(t)tn dt = f2(0)Γ(ν + 1)n−ν−1an+ν+1

(
1 +O

(
n�(ν)−�(μ)

)
+O(1/n)

)
,

(ii) if �(μ) < �(ν) then∫ b

−a
ϕ(t)tn dt

= (−1)n+1f1(0)Γ(μ+ 1)n−μ−1an+μ+1
(
1 +O

(
n�(μ)−�(ν)

)
+O(1/n)

)
,

(iii) and if �(μ) = �(ν) then∫ b

−a
ϕ(t)tn dt = G1(a, μ, ν, n, z)n

−μ−1an+μ+1
(
1 +O(1/n)

)
,

where

G1(a, μ, ν, n) = (−1)n+1f1(0)Γ(μ+ 1) + f2(0)Γ(ν + 1)aν−μnμ−ν ,

if G1(a, μ, ν, n) �= 0,

as n → ∞.

3.1 Restricting the Zeros

In this section we will prove the following lemma.

Lemma 3.5. The limit points of the zeros of the sections sN(F ;Nz) lie in the disk

|z| ≤ 1/c, where c = max{a, b}.
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From Stirling’s formula

n! ∼
(n
e

)n √
2πn

we have

(n!)1/n ∼ n

e

as n → ∞, and with the aid of Lemma 3.4 we calculate

∣∣∣∣
∫ b

−a
ϕ(t)tN dt

∣∣∣∣
−1/N

−→ 1/c

as N → ∞, where the subsequence of indices {N} is as defined above Theorem 3.1.

Combining these we see that the power series coefficients of F (z), which are given by

an =
1

n!

∫ b

−a
ϕ(t)tn dt,

satisfy

ρN = |aN |−1/N ∼ N

ec
,

where ρN is as defined in Theorem 2.1. Thus the order ρ of F is calculated to be

ρ = lim sup
n→∞

logn

log ρn
= 1,

where all indices n are taken into account (see, e.g., [3, p. 9] or [37, p. 326]).

By Theorem 2.1 we have, for any ε > 0,

lim inf
N→∞

�◦N
(
(1 + ε)N/c

)
N

= 1,

where �◦N
(
(1+ ε)N/c

)
is the number of zeros of sN(F ; z) in the disk |z| ≤ (1+ ε)N/c.

From this we conclude that the limit points of the zeros of the sections sN(F ;Nz) lie

in the disk |z| ≤ 1/c, as desired.

3.2 Gathering the Formulas

By definition we have

F (nz) =

∫ b

−a
ϕ(t)enzt dt,



37

and

sn(F ;nz) =

∫ b

−a
ϕ(t)sn(exp;nzt) dt.

Subtracting these we get

F (nz)− sn(F ;nz) =

∫ b

−a
ϕ(t)

(
enzt − sn(exp;nzt)

)
dt

=

∫ b

−a
ϕ(t)enztgn(zt) dt, (3.2)

where

gn(z) = 1− e−nzsn(exp;nz).

It was shown by Szegő in [39] (see also [11], [5], and [29]) that

gn(z) =
(ze1−z)n√

2πn
· z

1− z

(
1− εn(z)

)
,

where εn(z) = O(1/n) as n → ∞ uniformly when z is restricted to a compact subset

of �(z) < 1. Upon substituting this into equation (3.2) we get

F (nz)− sn(F ;nz) =
enzn+1

√
2πn

∫ b

−a

ϕ(t)

1− zt
tn+1

(
1− εn(zt)

)
dt. (3.3)

Our next step is to estimate this integral. The following lemma is proved by an

argument similar to the one used to prove Lemma 3.3.

Lemma 3.6.∫ b

−a

ϕ(t)

1− zt
tn+1 dt = (−1)n+1f1(0)Γ(μ+ 1)

1 + az
n−μ−1an+μ+2 +O

(
n−μ−2an

)
+

f2(0)Γ(ν + 1)

1− bz
n−ν−1bn+ν+2 +O

(
n−ν−2bn

)
as n → ∞ uniformly when z is restricted to a compact subset of the doubly-punctured

plane {z ∈ C : z �= −1/a and z �= 1/b}.

As in Lemma 3.3, the actual asymptotic character of the integral in the above

lemma depends on the relative sizes of a and b and of �(μ) and �(ν), so we will again

organize the possible outcomes in a separate lemma.
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Lemma 3.7. If a > b then∫ b

−a

ϕ(t)

1− zt
tn+1 dt = (−1)n+1 f1(0)Γ(μ+ 1)

1 + az
n−μ−1an+μ+2

(
1 +O(1/n)

)
,

if a < b then∫ b

−a

ϕ(t)

1− zt
tn+1 dt =

f2(0)Γ(ν + 1)

1− bz
n−ν−1bn+ν+2

(
1 +O(1/n)

)
,

and if a = b we have three cases:

(i) if �(μ) > �(ν) then∫ b

−a

ϕ(t)

1− zt
tn+1 dt =

f2(0)Γ(ν + 1)

1− az
n−ν−1an+ν+2

(
1 +O

(
n�(ν)−�(μ)

)
+O(1/n)

)
,

(ii) if �(μ) < �(ν) then∫ b

−a

ϕ(t)

1− zt
tn+1 dt

= (−1)n+1f1(0)Γ(μ+ 1)

1 + az
n−μ−1an+μ+2

(
1 +O

(
n�(μ)−�(ν)

)
+O(1/n)

)
,

(iii) and if �(μ) = �(ν) then∫ b

−a

ϕ(t)

1− zt
tn+1 dt =

G2(a, μ, ν, n, z)

1− a2z2
n−μ−1an+μ+2

(
1 +O(1/n)

)
,

where

G2(a, μ, ν, n, z)

= (−1)n+1f1(0)Γ(μ+ 1)(1− az) + f2(0)Γ(ν + 1)(1 + az)aν−μnμ−ν ,

if G2(a, μ, ν, n, z) �= 0,

as n → ∞ uniformly when z is restricted to a compact subset of the doubly-punctured

plane {z ∈ C : z �= −1/a and z �= 1/b}.

Proof. This follows directly from the statement of Lemma 3.6.

As a consequence of these two lemmas, equation (3.3) becomes

F (nz) =
enzn+1

√
2πn

∫ b

−a

ϕ(t)

1− zt
tn+1 dt

(
1− O(1/n)

)
(3.4)

when z is a zero of the scaled section sn(F ;nz) in the region |�(z)| < 1/c, where

c = max{a, b}.
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3.3 Concluding the Argument

Let {N} be a sequence of indices as defined above Theorem 3.1. We showed in Section

3.1 that the limit points of the zeros of the sections sN(F ;Nz) lie in the disk |z| ≤ 1/c,

where c = max{a, b}. Define

Δ = {z ∈ C : |z| ≤ 1/c, z �= −1/a, and z �= 1/b}.

Suppose first that {zN} is a sequence in C such that sN(F ;NzN) = 0 for all N

and such that the sequence has a limit point in Δ ∩ {z ∈ C : �(z) < 0}. Note that

this implies there is a δ > 0 such that |zN + 1/a| > δ for N large enough.

It follows from Lemma 3.2 that

|F (NzN)|1/N = |e−azN |
(
1− (�(μ) + 1)

logN

N
+O(1/N)

)
(3.5)

as N → ∞, and if

ξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
�(μ) if a > b,

�(ν) if a < b,

min{�(μ),�(ν)} if a = b,

then we have from Lemma 3.7 that∣∣∣∣eNzN+1

√
2πN

∫ b

−a

ϕ(t)

1− zt
tN+1 dt

∣∣∣∣
1/N

= |eczN |
(
1−

(
ξ +

3

2

)
logN

N
+O(1/N)

)
(3.6)

as N → ∞. Upon substituting equations (3.5) and (3.6) into equation (3.4) we see

that these zeros zN satisfy

∣∣czNe1+azN
∣∣ = 1 +

(
ξ −�(μ) + 1

2

)
logN

N
+O(1/N)

as N → ∞, which proves part (iii) of Theorem 3.1.

Suppose now that {zN} is a sequence such that sN(F ;NzN ) = 0 for all N and

such that the sequence has a limit point in Δ ∩ {z ∈ C : �(z) > 0}. Note that this

implies there is a δ > 0 such that |zN − 1/b| > δ for N large enough.

Here it follows from Lemma 3.2 that

|F (NzN)|1/N = |ebzN |
(
1− (�(ν) + 1)

logN

N
+O(1/N)

)
(3.7)
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as N → ∞. Subtituting this and equation (3.6) into equation (3.4) we see that these

zeros zN satisfy

∣∣czNe1−bzN ∣∣ = 1 +

(
ξ − �(ν) + 1

2

)
logN

N
+O(1/N)

as N → ∞, which proves part (iv) of Theorem 3.1.

We have so far shown that the limit points of the zeros of the sections sN(F ;Nz)

with �(z) �= 0 must lie on the curve Da,b as defined in part (i) of Theorem 3.1. That

every point on Da,b is such a limit point follows from the choice of the subsequence

{N} which ensures that the sequence of sections {sN(F ; z)} has a positive fraction

of zeros in any sector with vertex at the origin. It is straightforward to show that for

any 0 ≤ θ < 2π there is a unique r > 0 such that reiθ ∈ Da,b. This proves part (i) of

Theorem 3.1.

Finally we will prove part (ii). From the asymptotic expansion for F (nz) in Lemma

3.2 we see that the limit points of the zeros of F (nz) must lie on the imaginary axis.

If {zN} is a sequence of complex numbers such that sN(F ;NzN ) = 0 for all N and

such that the sequence has a limit point in {z ∈ C : �(z) = 0 and �(z) > 1/(ec)}
then by equation (3.4) and Lemma 3.7 we must have F (NzN ) → ∞. However, if

y ∈ R then

|F (iny)| =
∣∣∣∣
∫ b

−a
ϕ(t)einyt dt

∣∣∣∣ ≤
∫ b

−a
|ϕ(t)| dt,

so that such a sequence of zeros cannot exist. Hence any limit points on the imaginary

axis must satisfy �(z) ≤ 1/(ec).

Further, if {zN} is a sequence of zeros which has a limit point in |z| ≤ 1/(ec), then

by equation (3.4) and Lemma 3.7 we must have F (NzN ) → 0. In other words, the

zeros {zN}must approximate the zeros of F (Nz). Thus part (ii) is proved, completing

the proof of Theorem 3.1.

3.4 A Few Examples

In this section we’ll look at what Theorem 3.1 says about a few example exponential

integrals.
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In Figures 3.1 and 3.2 we plot the zeros of the sections and of the normalized

sections of the function

F1(z) =

∫ 3/2

−2
(3/2− t)1/2+iezt dt.

In the notation of Theorem 3.1 we have a = 2, b = 3/2, μ = 0, and ν = −1/2 + i.

The Szegő curve associated with the normalized zeros is the set

D2,3/2 ∪Dimag =

{
z ∈ C : �(z) ≤ 0, |z| ≤ 1

2
, and

∣∣2ze1+2z
∣∣ = 1

}

∪
{
z ∈ C : �(z) ≥ 0, |z| ≤ 1

2
, and

∣∣∣2ze1− 3

2
z
∣∣∣ = 1

}

∪
{
z ∈ C : �(z) = 0 and |z| ≤ 1

2e

}
.

Zeros of sN(F1;Nz) which converge in �(z) < 0 to a point different from z = −1/2

satisfy ∣∣2ze1+2z
∣∣ = 1 +

logN

2N
+O(1/N)

and thus eventually approach the curve D2,3/2 from the outside. Zeros which converge

in �(z) > 0 satisfy ∣∣∣2ze1− 3

2
z
∣∣∣ = 1 +O(1/N).

In Figures 3.3 and 3.4 we plot the zeros of the sections and of the normalized

sections of the function

F2(z) =

∫ 1

−1
(1− t)4(t + 1)−1/2−2iezt dt.

In the notation of Theorem 3.1 we have a = b = 1, μ = −1/2 − 2i, and ν = 4. The

Szegő curve associated with the normalized zeros is the set

D1,1 ∪Dimag =
{
z ∈ C : �(z) ≤ 0, |z| ≤ 1, and

∣∣ze1+z
∣∣ = 1

}
∪ {

z ∈ C : �(z) ≥ 0, |z| ≤ 1, and
∣∣ze1−z∣∣ = 1

}
∪ {z ∈ C : �(z) = 0 and |z| ≤ 1/e} .

Zeros of sN(F2;Nz) which converge in �(z) < 0 to a point different from z = −1

satisfy ∣∣ze1+z
∣∣ = 1 +

logN

2N
+O(1/N)
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and thus eventually approach the curve D1,1 from the outside. Zeros which converge

in �(z) > 0 to a point different from z = 1 satisfy

∣∣ze1−z∣∣ = 1− 4 logN

N
+O(1/N)

and thus eventually approach D1,1 from the inside.

In Figures 3.5 and 3.6 we plot the zeros of the sections and of the normalized

sections of the function

F3(z) =

∫ 19/36

−17/36
(t− 1/2)2ezt dt.

In the notation of Theorem 3.1 we have a = 17/36, b = 19/36, and μ = ν = 0. The

Szegő curve associated with the normalized zeros is the set

D17/36,19/36 ∪Dimag =

{
z ∈ C : �(z) ≤ 0, |z| ≤ 36

19
, and

∣∣∣∣1936ze1+ 17

36
z

∣∣∣∣ = 1

}

∪
{
z ∈ C : �(z) ≥ 0, |z| ≤ 36

19
, and

∣∣∣∣1936ze1− 19

36
z

∣∣∣∣ = 1

}

∪
{
z ∈ C : �(z) = 0 and |z| ≤ 36

19e

}
.

Zeros of sN(F3;Nz) which converge in �(z) < 0 satisfy∣∣∣∣1936ze1+ 17

36
z

∣∣∣∣ = 1 +
logN

2N
+O(1/N)

and thus approach the curve D17/36,19/36 from the outside. Zeros which converge in

�(z) > 0 to a point different from z = 36/19 satisfy∣∣∣∣1936ze1− 19

36
z

∣∣∣∣ = 1 +
logN

2N
+O(1/N)

and also approach D17/36,19/36 from the outside.
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Figure 3.1: Zeros of the sections sn(F1; z) (n = 1, 2, . . . , 70) for F1(z) =
∫ 3/2

−2 (3/2− t)1/2+iezt dt.
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Figure 3.2: Zeros of the normalized sections sn(F1;nz) (n = 1, 2, . . . , 70) for F1(z) =
∫ 3/2

−2 (3/2− t)1/2+iezt dt.
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Figure 3.3: Zeros of the sections sn(F2; z) (n = 1, 2, . . . , 70) for F2(z) =
∫ 1

−1(1− t)4(t + 1)−1/2−2iezt dt.
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Figure 3.4: Zeros of the normalized sections sn(F2;nz) (n = 1, 2, . . . , 70) for F2(z) =
∫ 1

−1(1− t)4(t+ 1)−1/2−2iezt dt.
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Figure 3.5: Zeros of the sections sn(F3; z) (n = 1, 2, . . . , 70) for F3(z) =
∫ 19/36

−17/36(t− 1/2)2ezt dt.
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Figure 3.6: Zeros of the normalized sections sn(F3;nz) (n = 1, 2, . . . , 70) for F3(z) =
∫ 19/36

−17/36(t− 1/2)2ezt dt.



Chapter 4

Discussion

Rosenbloom’s main theorem, Theorem 1.1, is quite general. For instance, it can be

used in conjunction with Theorem 2.1 to determine the limit curve described in part

(i) of our Theorem 3.1. The new result in this current thesis is the derivation of the

asymptotic order at which the zeros approach this limit curve as well as information

about the direction at which they do so in most cases. This information is given in

parts (iii) and (iv) of Theorem 3.1.

In light of Theorem 1.1, one consequence of Lemma 3.2 is that the zeros of the

sections of the exponential integrals we have studied have the same limit curves as

the zeros of particular exponential sums. Indeed, if a, b > 0 and

F (z) =

∫ b

−a
ϕ(t)ezt dt,

where ϕ is an appropriate complex-valued function as described in Chapter 2, the

zeros of the sections sn(F ;nz) have the same limit curve as the zeros of the sections

of the sum

e−az + ebz. (4.1)

Zeros of sections of exponential sums such as these were previously studied by Bleher

and Mallison [2] (see Figure 1.5 and the paragraph immediately following Theorem

1.1).

One interesting aspect of the current work is that the asymptotic rate of approach

of the zeros of the sections sn(F ;nz) depends on the order of the critical points of

ϕ(t) at t = −a and t = b (see parts (iii) and (iv) of Theorem 3.1). In most cases

the zeros approach the limit curve at a rate of c logn/n for some nonzero constant c

(either positive or negative), and in other cases at a rate of O(1/n). This stands in

contrast with the work of Bleher and Mallison, who showed that the zeros of sections

of exponential sums, such as the one in equation (4.1), always approach the arcs of

49
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the limit curve at a rate of c log n/n for some positive constant c.

4.1 Special Cases of the Exponential Integrals

As discussed in Section 1.6, the confluent hypergeometric functions

1F1(1; b; z) = (b− 1)

∫ 1

0

(1− t)b−2ezt dt

with b > 1 studied by Norfolk [29] are a special case of the exponential integrals

studied in this thesis. Our result extends some of Norfolk’s results to the case of

complex b with �(b) > 1. A few of his results, notably the asymptotic rate of

approach of the zeros to the “corners” of the Szegő curve, were not replicated and

will be treated in future work.

Another important special case of the exponential integrals is the class of Bessel

functions of the first kind

Jα(z) =
(z
2

)α
∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + α + 1)

(z
2

)2k

.

For �(α) > −1/2 we have Poisson’s integral representation (see, e.g., [44])

Jα(z) =

(
z
2

)α
Γ
(
α + 1

2

)
Γ
(
1
2

) ∫ 1

−1

(
1− t2

)α− 1

2 eizt dt,

which is of the required form once z is replaced with −iz. As far as we can tell,

asymptotics for the zeros of sections of the Bessel functions have not been previously

studied. We state the result formally as a corollary to Theorem 3.1. This corollary

is illustrated in Figure 4.1.

Corollary 4.1. Let Jα be the Bessel function of order α with �(α) > −1/2, and for

n even let

sn(Jα; z) =
(z
2

)α
n/2∑
k=0

(−1)k

Γ(k + 1)Γ(k + α + 1)

(z
2

)2k

be its nth section. Then, for a subsequence {N} of the indices {n} as defined in

Theorem 2.1, the zeros of the normalized sections sN(Jα;Nz) have as their limit
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points the set

D(Jα) =
{
z ∈ C : �(z) ≥ 0, |z| ≤ 1, and

∣∣ze1+iz
∣∣ = 1

}
∪ {

z ∈ C : �(z) ≤ 0, |z| ≤ 1, and
∣∣ze1−iz∣∣ = 1

}
∪ {x ∈ R : − 1/e ≤ x ≤ 1/e} .

Conversely, every point of D(Jα) is a limit point of zeros. Zeros of sN(Jα;Nz) in

�(z) > 0 which do not converge to the point z = i satisfy

∣∣ze1+iz
∣∣ = 1 +

logN

2N
+O(1/N)

as N → ∞, and zeros in �(z) < 0 which do not converge to z = −i satisfy

∣∣ze1−iz∣∣ = 1 +
logN

2N
+O(1/N)

as N → ∞. Furthermore, if α is real, the modified indices {N} in this result may be

replaced everywhere by the original even indices {n}.

Proof. The only parts of Corollary 4.1 which do not follow immediately from Theorem

3.1 are the claims

(i) Every point of the line segment {x ∈ R : − 1/e ≤ x ≤ 1/e} is a limit point of

zeros, and

(ii) If α is real, the modified indices {N} may be replaced by the original indices

{n}.

To prove claim (i) we cite the known result [44] that the large zeros of the Bessel

function Jα are given by the asymptotic expansion(
k +

α

2
− 1

4

)
π − 4α2 − 1

8
(
k + α

2
− 1

4

)
π
− (4α2 − 1)(28α2 − 31)

384
[(
k + α

2
− 1

4

)
π
]2 − · · · .

Every point of the imaginary axis is thus a limit point of the zeros of Jα(Nz), so that

every point of the segment {x ∈ R : − 1/e ≤ x ≤ 1/e} is a limit point of the zeros of

the normalized sections sN(Jα;Nz). Thus claim (i) is proved.

To prove claim (ii) we write

sn(Jα;−inz) =

(
−inz

2

)α

Pn

(
z2
)
,
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where

Pn(z) =

n/2∑
k=0

n2k

4kΓ(k + 1)Γ(k + α + 1)
zk.

By the Eneström-Kakeya theorem (Theorem 2.2), all zeros of Pn(z) satisfy

|z| ≤ 2n+ 4

n2
· Γ

(
n
2
+ α + 2

)
Γ
(
n
2
+ α + 1

) .
We apply Stirling’s formula for the Gamma function to see that

Γ
(
n
2
+ α + 2

)
Γ
(
n
2
+ α + 1

) ∼ n

2
,

whence
2n+ 4

n2
· Γ

(
n
2
+ α + 2

)
Γ
(
n
2
+ α + 1

) −→ 1

as n → ∞. This tells us that the limit points of the zeros of the polynomials Pn, and

hence of the sections sn(Jα;nz), lie in the closed unit disk. This replaces the use of

Theorem 2.1 in the proof of Theorem 3.1, which is the origin of the restriction of the

indices to the subsequences {N}. This proves claim (ii), completing the proof of the

corollary.

4.2 Generalizing the Method

Though most of this thesis has dealt with sections of entire functions, we showed

in Section 2.1.1 that it is sometimes possible to perform this analysis on sections of

series with positive finite radius of convergence. As another example, if

f(z) =
1

(1− z)2
=

∞∑
k=0

(k + 1)zk, (4.2)

we can use a similar approach to show that the zeros of the sections sn(f ; z) which

do not converge to the point z = 1 satisfy

|z| = 1− log n

n
+O(1/n)

as n → ∞ (see Figure 4.2). Usually this analysis will require the use of the Eneström-

Kakeya theorem or one of its variants to ensure that the zeros eventually lie within
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Figure 4.1: LEFT: Zeros of the sections sn(J0; z) (n = 2, 4, . . . , 90). RIGHT: Zeros
of the normalized sections sn(J0;nz) (n = 2, 4, . . . , 90) with their Szegő curve.

the radius of convergence, but somtimes tricks can be employed if this is not actually

the case. If, say, the relevant zeros all lie outside the radius of convergence, we could

try studying the zeros of the polynomials znsn(f ; 1/z) instead.

In the future we would like to investigate the possibility of studying exponential

integrals of integer order greater than one. For example, it would be interesting to

see if we could simply replace z with zm for some integer m and derive analogous

results for the new function

Fm(z) = F (zm) =

∫ b

−a
ϕ(t)ez

mt dt,

which would have exponential order m.

Lastly we speculate that it may be possible to iterate the process described in

this work. If f is an entire function amenable to the current method—that is, if

reasonably-detailed asymptotics for f(z) and its tail tn(f ; z) = f(z) − sn(f ; z) are

known—then it may be possible to determine useful asymptotics for a new function
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Figure 4.2: Zeros of sn(f ; z) (n = 1, 2, . . . , 75), where f is the rational function in
(4.2), and their Szegő curve, the unit circle.

f̂(z), defined by

f̂(z) =

∫ b

a

ϕ(t)f(zt) dt,

as well as for its tail tn(f̂ ; z). The zeros of the sections of the new function f̂ could

then be studied. It would be interesting to see what, if any, characteristics of the zero

distribution associated with f carry over to the one associated with f̂ .
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Appendix A

Mathematica Code for the Plots

Here we give examples of the code used to create the various plots in this thesis. All

plots were created in Mathematica 7.

The zeros of the sections of any function f(z) which is analytic at z = 0 can be

plotted using code like the following.

f[x_]:=Eˆx;

s[n_,x_]:=Normal[Series[f[z],{z,0,n}]]/.z->x;

numpolys=20;

start=1;

allzeros={};

For[k=start,k<numpolys+start,k++,

newzeros=x/.NSolve[s[k,x]==0,x,70];

For[j=1,j<=Length[newzeros],j++,

AppendTo[allzeros,

{Re[newzeros[[j]]],Im[newzeros[[j]]]}

];

];

];

Show[Graphics[{Point[allzeros]}]]

Code Snippet 1.

Here, the function in question is f(z) = ez, and the zeros of the first 20 (from start

to numpolys+start-1) sections are plotted, producing an image like Figure A.1.
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Figure A.1: Output of Code Snippet 1.

To plot the zeros of the normalized sections, simply replace x with k x in the

NSolve function. The modified block from Code Snippet 1 follows.

numpolys=20;

start=1;

allzeros={};

For[k=start,k<numpolys+start,k++,

newzeros=x/.NSolve[s[k,k x]==0,x,70];

For[j=1,j<=Length[newzeros],j++,

AppendTo[allzeros,

{Re[newzeros[[j]]],Im[newzeros[[j]]]}

];

];

];

Code Snippet 2.

The Szegő curves can be drawn with the ContourPlot function. The code to draw

the Szegő curve for the exponential function is given below.
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Figure A.2: Output of Code Snippet 2.

Show[

Graphics[{Point[allzeros]}],

ContourPlot[

Abs[(x+I y) Eˆ(1-(x+I y))]==1,

{x,-1/E,1},{y,-1,1},

ContourStyle->{Black},

PlotPoints->40

]

]

Code Snippet 3.
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Figure A.3: Output after running Code Snippet 2 then Code Snippet 3.


