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ABSTRACT 
 
 Due to world-wide escalating fuel costs, increasing demand for electricity, and 
growing concern for the environment, power utilities strive for optimal economic 
operation of their electric networks. Striking a balance between profitable energy choices 
and environmentally-friendly practices is the main goal of this thesis. The dynamic 
economic dispatch (DED) occupies a prominent place in power system operation and 
control. However, there is a paucity of studies of the DED problem, as it has not been as 
thoroughly investigated as other electric power system optimization areas. The nonlinear 
and non-convex characteristics are more prevalent in the DED problem. Therefore, it is 
possible that computational methods may not yield a global extrema as many local 
extrema may be encountered, and, in this case, obtaining a truly optimal solution 
presents a challenge. 
 Two modern meta-heuristic optimization algorithms are utilized to solve the 
DED problem. The artificial bee colony (ABC) algorithm is a recently introduced 
population-based algorithm motivated by the intelligent foraging behaviour of the 
honeybee swarm. This thesis proposes a novel meta-heuristic optimization algorithm 
inspired by the intelligent behaviour or survival instincts of a sensory-deprived human 
being. The sensory-deprived optimization algorithm (SDOA) uses the exploration and 
exploitation processes simultaneously and distinctly from other algorithms. After solving 
different benchmark optimization functions, the SDOA efficiency is evident with results 
that outperform or match those attained by other well-known methods. 
 To enhance the utilized algorithms’ performances in solving the dynamic 
economic and emission dispatch problems, a new constrained search-tactic is offered. 
Two groups of test cases are used to validate the effectiveness of the proposed 
algorithms. The first one is designated to solve the single objective function scenario and 
to verify the presented constrained search-tactic. The second group focuses on the 
multiple objective functions’ scenario as well as an attempt to integrate a renewable 
source and analyze its impact. The outcomes of ABC and SDOA algorithms are 
compared with those of other older and known methods. The promising results in both 
utilized algorithms show great potential that can be employed in several electric power 
system optimization areas.  
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CHAPTER 1: INTRODUCTION 
 

1.1 MOTIVATION 

Power utilities strive for optimal economic operation of their electric networks while 

considering the challenges of escalating fuel costs and increasing demand for electricity. 

Their economic objectives suffer, however, when environmental constraints are 

considered. Striking a balance between profitable energy choices and environmentally-

friendly practices is the main goal of current research in this field. The ultimate goal of 

power plants is to meet the required load demand with the lowest operating costs 

possible while taking into consideration practical equality and inequality constraints. At 

the same time, environmental concerns, such as gas emissions caused by fossil fuels, 

considerably affect this goal. Power utilities endeavor to minimize both fuel costs and 

emissions simultaneously.  

 Optimal operation of electric power system networks is a challenging real-world 

engineering problem. Indeed, the optimal operation of these networks is the result of 

multiple optimization problems that interact with each other sufficiently and efficiently. 

Those – linked – optimization problems are the unit commitment (UC), optimal power 

flow (OPF), static economic dispatch (SED), hydro-thermal scheduling (HTS), dynamic 

economic dispatch (DED). However, there is not as many studies of the DED problem – 

based on a review of the IEL and Science Direct databases – and it has not been as 

thoroughly investigated as other electric power system optimization areas, as is evident 

in Figure 1.1. The DED occupies a prominent place in a power system’s operation and 

control. It aims to determine the optimal power outputs of on-line generating units in 

order to meet the load demand subject to satisfying various operational constraints over 

finite dispatch periods. Similar to most real-world complex engineering optimization 

problems, the nonlinear and non-convex characteristics are more prevalent in the DED 

problem. Therefore, it is possible that computational methods may not yield a global 

extremum as many local extrema may be encountered, and, in this case, obtaining a truly 

optimal solution presents a challenge. 
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Figure 1. 1: Division of published papers (~1700) for different electric power system 
optimization areas: operating perspective.   

 

 Optimization algorithms based on swarm intelligence, known as meta-heuristic 

algorithms, gained popularity in solving complex and high dimensional optimization 

problems years ago. Because the performance of most of the meta-heuristic methods are 

independent of the initial solutions and are derivative-free, they overcome the main 

limitations of deterministic optimization methods, e.g., getting trapped in local extrema 

and divergence situations. In addition, the characteristics of the objective function and/or 

constraints are inconsequential for the success of those algorithms. Meta-heuristic 

algorithms are easy to implement and can be combined with others. Therefore, most 

researchers have been inspired to combine two or more methods to offer an efficient 

hybrid optimization method. The core reason behind hybridization is to enhance the 

solution quality by overcoming the limitations of each technique. Although initiation of 

meta-heuristic algorithms uses random values, they follow a logical pattern. Deep inside 

most meta-heuristic algorithms, two procedures (exploration and exploitation) interact 

with each other. Attaining a global solution is not guaranteed by these methods; hence 

they simulate independent runs to support their achievements. The efficiency of these 

algorithms is confirmed by statistical measurements. One drawback of meta-heuristic 
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algorithms is the adjustment of their parameters which follows a trial-and-error process 

and varies from one application to another. An algorithm with few parameters to be 

tuned is always favored, as long as it is efficient. 

 Optimization problems can be classified into constrained and unconstrained 

types. The former includes most of the practical and real-world applications that are 

commonly solved via independent constraint-handling techniques. The effectiveness 

varies from one technique to another and with different algorithms. New meta-heuristic 

optimization algorithms provide another direction for future research, but outperforming 

the previously introduced methods is not an easy task. Solving several benchmark 

optimization functions and real-world optimization problems are commonly the practices 

to emphasize the potential and efficacy of any new algorithm. 

1.2 THESIS OBJECTIVES 

The main objective of this thesis is to attain practical algorithms for optimal economic 

and environmental operation of electric power systems. Because this objective can be 

interpreted in a mathematical optimization problem, it is formulated as a multi-objective 

optimization problem – one in which nonlinear and non-convex characteristics are more 

prevalent. As conventional optimization methods are experiencing local solutions’ 

attainments or divergent, meta-heuristic optimization methods increase in popularity 

because they outperform conventional ones in such complicated problems. A state-of-

the-art review of the DED problem is also considered. 

 One goal of this thesis is to study, understand, and implement the artificial bee 

colony (ABC) algorithm to solve one of the complex real-world engineering problems. 

The ABC algorithm is a recently-introduced (November 2005) unconventional 

optimization method. It is a population-based technique inspired by the intelligent 

foraging behaviour of the honeybee swarm. A comprehensive survey of the literature that 

utilizes the ABC algorithm is also offered in this thesis. 

 Inspired by the intelligent behaviour or survival tactics of a sensory-deprived 

human being, a new meta-heuristic optimization algorithm is proposed. The sensory-

deprived optimization algorithm (SDOA) is based on a solid concept utilizing the 
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exploration and exploitation processes simultaneously and distinctly from other meta-

heuristic algorithms. Its distinct and main advantage is in the semi-exploitation and semi-

exploration processes, covering a wide range of the solution search-space, and avoiding 

premature convergence. A temporary parallel semi-exploration routine enhances the 

solution of the main algorithm. Its efficiency is accentuated after solving several 

benchmark optimization functions as well as the DED problem. The results are compared 

with those attained utilizing other well-known optimization methods. 

 The ABC and SDOA are utilized in this thesis to solve the optimal economic and 

emission dispatch problems. An attempt to integrate a renewable source and analyze its 

impact is conducted here as well. A new constrained search-tactic that enhances both 

algorithms’ performance is proposed. Various test systems are adopted to verify the 

effectiveness of these suggested methods. The promising outcomes from both algorithms 

accentuate their potential to be applied in other electric power system optimization areas. 

1.3 THESIS CONTRIBUTIONS 

The following list highlights the contributions of this thesis:  

1. Offering a state-of-the-art overview of the DED problem. Various techniques are 

used to classify the reviewed literature into three categories. Advantages, 

disadvantages, and considered constraints of each paper are highlighted. 

2. Studying, analyzing, and implementing the ABC algorithm in solving complex 

mixed integer nonlinear optimization problems such as the optimal allocation of a 

distributed generation (DG) application.  

3. Presenting a comprehensive survey of the literature that employed the ABC 

algorithm and categorizing these areas of application. 

4. Proposing a novel meta-heuristic optimization algorithm. The SDOA is inspired 

by the intelligent behaviour or survival of a sensory-deprived human being. A set 

of benchmark optimization functions is examined to confirm the enhancement of 

the performance of the suggested algorithm. In addition, the results obtained are 

compared with those from other well-known meta-heuristic optimization 

algorithms.  



 

5 
 

5. Applying the SDOA in solving a mixed integer nonlinear optimization problem, 

i.e., the optimal allocation of DG application in distribution systems.  

6. Utilizing the ABC algorithm in solving the DED and the dynamic economic 

emission dispatch (DEED) problems, i.e., the single and multi-objective 

functions respectively, using different test systems. 

7. Implementing the proposed SDOA in solving the dynamic economic dispatch 

problem. In addition, analyzing the potential of the SDOA algorithm in complex, 

highly nonlinear, and non-convex optimization applications. 

8. Integrating a renewable source in solving the DED and DEED problems, and 

emphasizing the impact of such integration.  

9. Proposing a new constraint-handling strategy in solving the DED and DEED 

problems. The effectiveness of this strategy is measured using different meta-

heuristic algorithms and test systems.  

1.4 THESIS OUTLINE 

This thesis is organized and divided in six chapters as follows. The motivation, 

objectives, and contributions are highlighted in this first chapter. The second chapter 

provides an overview of the dynamic economic and emission dispatch problems 

considered. It also emphasizes and categorizes the optimization tools used in the 

literature. The third chapter introduces one of the modern meta-heuristic optimization 

algorithms utilized in this thesis – the ABC algorithm. A summarized survey of the 

literature employing the ABC algorithm as well as categorization of these application 

areas are presented in chapter three. The novel meta-heuristic algorithm (SDOA) is 

described in the fourth chapter and a set of benchmark optimization functions is 

examined to confirm its efficiency. The fifth chapter demonstrates the mathematical 

formulations and computational results of the problems considered. In addition, it 

highlights the impact of integrating a renewable source in both objective functions, and 

verifies the effectiveness of the new constrained search-tactic. The final chapter states 

the conclusions and recommendations for future research. List references and an 

appendix end this thesis.  
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CHAPTER 2: OPTIMAL OPERATION OF ELECTRIC POWER 
GENERATION 

 

2.1 INTRODUCTION 

The dynamic economic dispatch (DED) occupies a prominent place in a power system’s 

operation and control. The goal of DED is to determine the optimal power outputs of on-

line generating units in order to meet the load demand subject to satisfying various 

operational constraints over finite dispatch periods. In practice, there are static economic 

dispatch (SED) and DED problems. The latter considers additional practical constraints 

such as upper and lower bounds on the units’ ramping-rates. In reality, units will not 

respond to steep or instantaneous load variations. Early research works responding to 

this aspect were published in the 1970s [1, 2].  

 Optimal operation of electric power system networks is a challenging real-world 

engineering problem. As shown in Figure 2.1, many optimization problems interact in 

such a way that the solution obtained from one problem (block) depends on the outcome 

of an adjacent block’s solution. In general, iterative procedures are used to integrate 

those problems. Survey papers dealing with these optimization problems include [3] 

which summarizes various problem-solving techniques utilized for the UC problem. 

Furthermore, the OPF problem has been reviewed in [4-6]. The SED – known 

alternatively as an economic dispatch (ED) – has been addressed in [7, 8].  

 The DED problem has not been addressed as thoroughly as other optimization 

problems. In Feb. 2010, [9] offered a review of optimal dynamic power dispatch 

highlighting the mathematical formulations and some available solution techniques. The 

present work is different in that it categorizes earlier work based on the optimization 

algorithms. Figure 2.2 illustrates annual published research on “Dynamic Economic 

Dispatch” according to a review of the IEL and Science Direct databases. The hydro-

thermal scheduling problem is not considered in this work because [10] offers a 

comprehensive survey of that topic. This chapter is organized as follows: Section 2.2 
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summarizes the reviewed literature and offers a categorization of problem-solving 

techniques into three groups. Section 2.3 is the conclusion. 

 

 

Figure 2. 1: Interactions between operational power system optimization problems. 

 

 

Figure 2. 2: Distribution of publications considering the dynamic economic dispatch 
problem per year. 
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2.2 A LITERATURE REVIEW 

The DED formulation is considered to be an accurate and practical model for dispatching 

on-line units economically. However, obtaining a truly optimal solution presented a 

challenge as some computational methods do not yield a global minimum as many local 

extrema may exist. 

 Since the DED problem was first recognized, deterministic algorithms such as 

variational solutions using Lagrange multipliers, dynamic programming (DP), nonlinear 

programming (NLP), linear programming (LP), quadratic programming (QP), and 

sequential quadratic programming (SQP) have been among the proposed techniques. 

However, heuristic algorithms such as genetic algorithm (GA), particle swarm 

optimization (PSO), evolutionary programming (EP), differential evolution (DE), Tabu 

search (TS), and simulated annealing (SA) seem to have shared the same dominance as 

deterministic algorithms. This is because heuristic algorithms, unlike deterministic ones, 

are derivative-free, and capable of solving optimization problems without requiring 

convexity. They are also independent of the initial solution, and have the ability to avoid 

being trapped in local optima. On the other hand, heuristic algorithms have drawbacks 

such as being problem dependent, requiring parameter tuning, and unable to guarantee 

global solution attainment. Therefore, a variety of research efforts were directed at 

combining more than one technique into a single (hybrid) algorithm such as LP-QP, EP-

SQP, GA-SA, and PSO-SQP. The idea behind the hybridization is to enhance the 

solution quality by overcoming the limitations of each individual technique. 

 The techniques in this chapter are divided into three categories as deterministic, 

heuristic, and hybrid methods. Figure 2.3 and Figure 2.4 demonstrate the trend of 

published research based on different techniques based on a review of the IEL and 

Science Direct databases. Clearly, hybrid methods account for the majority of currently 

published algorithms.   
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Figure 2. 3: Division of methods of published papers used in solving the dynamic 
economic dispatch problem. 

 

 

Figure 2. 4: Trends of published papers considering the dynamic economic dispatch 
problem per year. 
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2.2.1 DETERMINISTIC METHODS 

Most of the early methods proposed to solve the DED problem used deterministic 

techniques such as NLP [11], DP [12], and variational techniques based on Lagrange 

multipliers [13]. The DED problem was generally solved by discretizing the entire 

dispatch period into short time intervals, over which the load demand was assumed to be 

constant. Each time interval was then solved as a SED problem [14].  

 Bechert and Kwatny [1] were first to include ramp-rate limits of on-line units in 

optimal dynamic dispatch of thermal generation. They proposed an analytical approach 

and combined the economic load allocation and supplementary control action into a 

single dynamic optimal control problem. An optimal feedback controller was computed 

using Pontryagin’s maximum principle. 

 A multi-pass DP technique was offered in [2] while considering the valve-point 

loading effects for up to five generators. The system was modeled using state equations 

where the units’ output and rate of change of the generator power output were the state 

and control variables, respectively. Both generators outputs and time-stages were 

normalized to 32 points. The proposed technique started with a coarse-grid and then 

switched to a finer-grid to reduce the problem’s dimensionality. 

 The NLP algorithm was utilized in [11] to solve the DED problem taking into 

account the system’s spinning reserve constraints. The author suggested that penalty 

factors derived from generator ramp-rate constraints be included in the objective 

function. However, the formulation neglected the transmission losses and valve-point 

effects, which in turn degraded the practicality of the method. 

 Ref. [12] developed a procedure based on successive approximation DP to solve 

the problem by dividing it into stages. Each stage was solved using forward DP 

considering two units at a time. Three pairing schemes were suggested but no particular 

scheme was recommended as offering the best convergence results. First, a circular-

pairing scheme was offered, where units were indexed based on their incremental cost 

curve ranked from the “least expensive” to “most expensive”. The following sequence 

describes the second scheme referred to as the spiral-pairing scheme. The “least 
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expensive” unit is paired with the “most expensive” one; then, the “most expensive” unit 

is paired with the second “least expensive” one; after that, the second “least expensive” 

unit paired with the second “most expensive” unit; and so forth. A combination of the 

two earlier schemes represents the third pairing scheme. 

 The proposed methods in [1, 2, 12] neglected the transmission losses and 

spinning reserve constraints. On the other hand, Wood in [13] considered these 

constraints in solving the reserve constrained DED problem while neglecting the units’ 

valve-point effects. The proposed technique divided the DED problem into SED sub-

problems, which were then solved in a backward sequence employing the Lagrange 

multiplier technique. Quasi-optimal solution was the main drawback of the suggested 

algorithm. 

 The LP technique was employed in [15] to solve the DED problem with security 

and emission inequality constraints included via the penalty function method. Five test 

cases were examined to demonstrate the effect of the considered constraints with a 

dispatch period of 12 intervals. A quadratic fuel cost function was used while neglecting 

valve-point effects and spinning reserve requirements.  

 Based on DP, a quasi-static economic dispatch method was presented in [16]. In 

addition to solving the SED problem, the proposed method provided quasi-optimal initial 

starting points for the DED problem. The adopted fuel cost function (objective function) 

was not typical. Furthermore, the objective function was subject to the unit’s ramp-rate 

and output power limits only. The authors claimed additional constraints could be added 

to the objective function by means of penalty factors. 

 The authors of [17] proposed an algorithm for solving the multi-stage DED 

problem. The algorithm was an extended version of their previous work of [18]. The 

suggested algorithm included ramp-rate constraints and multi-stage periods, i.e., two-

stages. The adjacent (multiple) stages were included in the objective function via 

Lagrange multipliers. The system’s security constraints were considered in the 

formulation, but the generator units’ valve-point effects were neglected. 
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 The authors of [19] analyzed the effect of dynamic constraints on optimal short-

term transactions in a deregulated environment utilizing successive DP methods. The 

security of the system was considered through a DC power flow model, but the effect of 

the transmission losses was neglected. The time of exporting and/or importing power 

was included as inequality constraints. The dynamic constraints have a significant impact 

on the scheduled transaction and operational cost. In other words, considering such 

short-term transactions constraints may change the amount and reverse the direction of 

the transactions for optimality.  

 Chandram et al. [20] utilized the Muller algorithm in order to solve the DED 

problem. The proposed algorithm involved the selection of lambda values. Then, the 

generators output powers were expressed in terms of the lambda by interpolation, and the 

actual value of lambda calculated from the power balance constraints using Muller’s 

method. Two test systems were examined, and the results of the proposed method were 

reported to outperform those obtained using competing methods with respect to the 

central processing unit (CPU) time requirements. The inequality constraints contained 

the unit’s ramp-rate and output power limits only. The transmission losses of the system 

were neglected, and the fuel cost function was convex. 

 The Brent method – a root finding method [21] which involves root bracketing, 

inverse quadratic interpolation, and bisection techniques – was used in [22] to solve the 

DED problem to determine the incremental fuel costs for all units committed without 

taking into account valve-point effects. In other words, the minimum and maximum 

lambda values were calculated based on the unit’s minimum and maximum power 

output. The optimal lambda at a predetermined load value was obtained using the Brent 

method. Although the transmission losses of the system were considered in the solution 

algorithm, the spinning reserve requirements were neglected. Two systems were adopted 

to evaluate the proposed method’s efficiency, and the results were compared with the 

lambda iterations technique. Although the suggested method required less CPU time, the 

operational costs obtained were only slightly less than those obtained using the lambda 

iteration technique. 
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 The authors in [23, 24] suggested that the differences between the DED and 

optimal control dynamic dispatch (OCDD) models were that the optimal solution of the 

former was based on optimization theory, independent of the value of the initial solution. 

On the other hand, the optimal solution of the latter depended on the initial solution 

value, and was based on control theory. The authors extended the DED formulation by 

introducing additional constraints so the anticipated repeated implementation did not 

violate the units’ ramp-rate constraints. Accordingly, a model predictive control (MPC) 

based on OCDD was offered. As additional constraints were added, the operating cost of 

the proposed algorithm was higher than that obtained using the DED formulation. The 

transmission losses of the system and spinning reserve were neglected. In addition, the 

quadratic fuel cost function was used without considering the units’ valve-point effects. 

 Hemamalini et al. [25] applied the Maclaurin series-based Lagrangian method to 

solve the DED problem. The proposed method utilized the representation of a valve-

point effect, i.e., the rectify sinusoid term in the fuel cost function, for an approximated 

Maclaurin series expansion. An additional factor term (tuned via trial-and-error process) 

has been embedded to overcome the approximation error. Three test systems with valve-

point effect, spinning reserve, and transmission losses were used to evaluate the 

proposed method. Significant reduction in the required CPU time was the main 

advantage of this method, although some of the results using other methods achieved 

lower minimum fuel costs. 

2.2.2 HEURISTIC METHODS 

The DED problem was one of the real-world optimization problems that has benefited 

from the development of the heuristic algorithms. Most of these algorithms were 

population-based, relying on initial randomization associated with logical patterns. 

Different constraint handling methods were suggested for heuristic algorithms [26]. As 

an alternative to the well-known penalty function constraint handling method, the author 

of [27] suggested a feasibility-based selection comparison technique to handle the 

problem’s constraints. It employs a tournament selection operator, where two solutions 

are compared at a time when the following conditions are imposed: 1) any feasible 

solution is preferred over an infeasible one, 2) among two feasible solutions, the one 
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with better objective function value is preferred, and 3) among two infeasible solutions, 

the one having the smaller constraint violation is preferred. This technique, reported in 

[28] and [29], offered promising results. 

 Ongsakul and Tippayachai [28] suggested a parallel micro GA based on merit 

order loading solutions to solve the DED problem. The proposed algorithm was 

implemented on an eight-processor scalable multicomputer. The initial population was 

divided into eight species performing in parallel. Species numbers two to seven were 

slaves, and species number one was set to be the host, i.e., used for sending and 

receiving data from slave processors. The transmission losses were considered in the 

power balance equation, but the units’ valve-point effects and system’s spinning reserves 

were neglected. 

 The PSO algorithm was utilized to solve the DED problem in [30]. The units’ 

valve-point effects were represented by prohibited operating zones. The system spinning 

reserves, transmission losses, and security constraints were included in this work as well. 

The proposed algorithm examined two test systems over a 24-hour dispatch period. 

However, the dispatch period was divided into intervals of one hour each which were 

solved sequentially. The results outperformed those obtained using other methods 

(namely fast and improved fast EP techniques) with respect to required CPU time and 

solution quality. 

 In [31], a multi-objective optimization problem was formulated. The two 

competing functions were the fuel costs and emissions, known as the dynamic economic 

emission dispatch (DEED) problem. In addition, the units’ valve-point effects and 

transmission losses were considered in the proposed approach. Moreover, the author 

assumed that the decision-maker has a goal (target) for each objective function. These 

two functions were transferred to a single objective function using a goal-attainment 

method [32]. Finally, the PSO algorithm was implemented to solve the combined 

objective function. 

 Basu implemented the non-dominated sorting genetic algorithm-II (NSGA-II) in 

[33] to minimize the total operating fuel costs and emissions simultaneously. In addition, 
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the units’ valve-point effects and transmission losses were considered in the DEED 

problem. The author offered a set of Pareto-optimal solutions to the decision-maker in a 

single run, as a substitute to retaining one optimal solution using the linear combination 

method. Therefore, an advantage was attained as the proposed method required less CPU 

time with respect to the compared one.  

 A bid-based DED utilizing a PSO algorithm to maximize the social benefit in a 

competitive electricity market was proposed in [34]. The authors considered bids from 

both supply and demand sides. In addition, fuel emissions, security, and transmission 

losses were included in the problem’s constraints. Two bid-based trading periods were 

considered and the objective function solved, initially unconstrained. Then, constraints 

were added one at a time to observe the effect of each. Clearly, as many constraints were 

included in the optimization problem, the social benefit was decreased. 

 An elitist GA approach was proposed to solve the DED problem [35]. The best 

solution in each generation was retained to pass the benefits to subsequent generations. 

The cost function of each unit – based on the adopted system – was represented by a 

linear function, and the transmission losses were included in the equality constraints. 

Moreover, the dispatch time period was discretized into 48 intervals, each of which was 

solved successively. The authors analyzed the ramp-rate effect on the operating economy 

based on the assumption that the ramp rates were taken as percentages (from 10% to 

50%) of the previous power output. The authors stated that the stricter the ramp-rates, the 

higher the operating cost. 

 A constrained EP technique was utilized to solve the DED problem in [36]. 

Valve-point effects were included in the generators’ fuel cost functions, but the 

transmission losses were neglected. The proposed technique forced the initial population 

to be feasible. In other words, the constraint’s violations were corrected using an iterative 

process. In order to generate a new population, the following procedure was suggested. 

At a randomly selected time, two generators were chosen arbitrarily, and then a fraction 

of the output power from one to the other was transferred while the constraints were not 

violated. Such an approach would require large CPU time, especially for large systems. 
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 The DED problem has been solved in [37] utilizing the EP technique. A 

designated system has been tested for static and DED problems. In both tested problems, 

variations of two loads buses were solved separately. Although the authors recorded the 

transmission losses, they did not include it in the equality constraints, i.e., power balance 

equation. Thus, constraints were handled, seemingly via repeated power flow 

calculations. Implementation of the DED resulted in higher operating fuel costs 

compared to SED. 

 The authors in [38] solved the DED problem using the SA technique. The units’ 

valve-point effects and transmission losses were taken into account in the solution. The 

proposed method was examined on one test system, and required approximately six 

minutes to attain a solution. The authors suggested that using such an algorithm on 

parallel processing platforms would reduce the required CPU time. 

 The enhanced real-parameter quantum evolutionary algorithm (QEA) was 

proposed to solve the DED problem accounting for valve-point effects in [39]. 

Moreover, two heuristic techniques have been suggested in this paper to restore a 

feasible region and to improve the solution quality. In other words, the feasibility 

restoration attempt heuristic (FRAH) and the incremental cost-based optimization 

heuristic (ICH) techniques were invoked in the solution process. The first technique 

constrained the population to start at the interval with the largest demand and moved to 

the next extreme ones taking into account the problem’s constraints. Once the feasible 

region (solution) was restored, the second process was initiated in order to attain an 

enhanced solution by local search. Two test systems were considered, with and without 

the units’ valve-point effects. However, the transmission losses were neglected in both 

systems. In particular, the results of the proposed method when units’ valve-point effects 

were considered outperformed those obtained using alternative methods. 

 A multiple Tabu search (MTS) algorithm was employed to solve the DED 

problem in [40]. The optimization problem included the transmission losses of the 

systems, and the units’ valve-point effects were represented as prohibited operating 

zones. To improve the solution of the standard TS algorithm, the authors suggested 

additional procedural mechanisms, i.e., initialization (to ensure population satisfied the 
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problem’s constraints); adaptive search (step size adaptively modified to generating 

neighbour solutions); multiple searches (via parallel processors); crossover (to enhance 

the parallel solutions using GA’s routine); and re-initialization process (to avoid 

premature convergence when the search stalled at a local solution). The effectiveness of 

the proposed algorithm was demonstrated based on statistical measures. The standard 

deviation and the required CPU time of the proposed algorithm were significantly 

smaller than those obtained using other methods. 

 Shang and Sun in [41] proposed a preference-based non-dominated sorting 

genetic algorithm (PNSGA) to solve the DEED problem. A sample system with 

simplified assumptions was adopted to exemplify the efficiency of the proposed 

algorithm. In other words, only one unit was restricted to ramp-rate constraints and the 

units’ valve-point effects were not addressed. Furthermore, the transmission losses of the 

system were neglected. 

 A modified version of the DE technique (MDE) aiming to solve the DED 

problem was proposed in [42]. The authors adopted a feasibility-based selection 

comparison technique to handle the problem’s constraints which were derived from three 

selection criteria and inspired by [27]. The units’ valve-point effects were considered in 

the fuel cost function. However, the transmission losses of the system were neglected. 

The proposed MDE method obtained additional cost savings as compared to other 

methods. The required CPU time to attain a solution was relatively shorter than those 

methods. 

 A variable scaling hybrid differential evolution (VSHDE) algorithm was 

proposed in [43] to solve the DED problem. This method considered the units’ valve-

point effects, the transmission losses of the system, and spinning reserves. In addition, a 

prohibited operating zone was included in the problem constraints. The penalty function 

method was used to convert the constrained DED problem to an unconstrained one. 

However, the prohibited operating zone was handled using a delimitation point that 

divided the zone into two sub-zones. Consequently, the unit was forced to adjust its 

output to the rated limit once it operated in a prohibited sub-zone. This was done based 

on a comparison between a uniformly distributed number [0,1] and the value of the 
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delimitation point. To overcome the limitation of the hybrid DE (HDE) algorithm, the 

author integrated two operators (migrating and accelerating) in the solution procedure. 

The migrating operator maintained the diversity of the individuals, and the accelerating 

operator was embedded to accelerate the algorithm performance. In addition, the scaling 

factor was updated in each cycle, based on the probability of the population, using a one-

fifth success rule. Two test systems were considered for a one-day dispatch period, and 

the required spinning reserves were set larger than 5% of the load demand at every 

dispatch hour. The results were compared with those obtained using the HDE algorithm 

and a significant reduction in operating costs was illustrated. Although the VSHDE 

reduced (relatively) the required CPU time to approximately 50%, it consumed 7 and 23 

hours for 10 and 20 unit systems respectively. 

 The pattern search (PS) algorithm was used in [44] to solve the DEED problem. 

The fuel cost function included a rectified sinusoid term that represented the units’ valve-

point effects. The units’ ramp-rate limits as well as the transmission losses were included 

in the inequality and equality constraints respectively. However, the paper neglected the 

spinning reserves constraints. The main goal was to solve the DEED problem for a 

multiple dispatch periods, i.e., two days scheduling without violating the ramp-rate 

constraints in transition between the days periods. The adopted system was used for both 

single and multi-objectives optimization problems. The two conflicting objective 

functions were combined as a single one with equal weights. In addition, the results of 

the proposed method were compared with those obtained using the SA and EP 

techniques. 

 The artificial immune system (AIS) was adopted in [45] and [46] to solve the 

DED problem. The AIS algorithm uses four iterative strategies, i.e., generating (random) 

population known as the immune cells or antibodies; cloning each member of population 

based on the affinity rate identified as the proliferation; mutating mechanism recognized 

as the maturation process; and eliminating antibodies showing no improvement or are 

trapped in local solutions called the aging operator. The performance of the proposed 

method in [45] was evaluated by solving a single test system, taking into account the 

units’ valve-point effects and neglecting the transmission losses of the system. On the 
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other hand, the authors of [46] tested two systems considering the units’ valve-point 

effects. One of the two systems was solved by neglecting the transmission losses. The 

outcomes from the AIS method in both references were better than those attained using 

other algorithms in terms of solution quality and computation time. 

2.2.3 HYBRID METHODS 

Although most of the heuristic and deterministic algorithms successfully obtained some 

solutions to the DED problem, they have drawbacks – as stated earlier in this section. 

Therefore, a combination of more than one technique has been proposed in the literature 

to solve this. Hybridization commonly divided the process (optimization) into two 

phases. The first phase, designated for the heuristic algorithm, aimed to explore the 

search-space without restrictions. In the second phase with a potential region discovered 

in the primary phase, a deterministic algorithm took over seeking to enhance the results. 

This routine is repeated until a termination criterion was met. 

 A combination of GA and a gradient search method was proposed in [14]. The 

GA was assigned the initial direction of the search towards the optimal region. 

Subsequently, the gradient method was applied for local search in that region. The 

authors utilized a smooth quadratic fuel cost function. The transmission losses of the 

system were considered, however the units’ valve-point effects were neglected. 

Additional constraints were added in the local search cycle. In other words, the amount 

of perturbation for any randomly selected unit was identically applied to the remaining 

units – but, in the opposite direction (negative sign). The authors divided the dispatch 

time period (one day) into 48 intervals, and in each interval the DED problem was solved 

as a SED problem. In addition, two hybrid GAs were suggested, i.e., with predetermined 

and flexible local search time, respectively. Although the solution quality of the second 

hybrid algorithm outperformed the first one, the execution time was relatively long and 

the results obtained by both approaches outperformed those obtained via the 

conventional GA technique. 

 An improved differential evolutionary (IDE) combined with the Shor’s r-

algorithm was proposed to solve the DED problem in [29]. Once more, the optimization 

process was divided into two parts. The first part or base part was assigned to the IDE, 
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and the fine tuning of the retained solution from the IDE was the task of the second part. 

The idea of Shor’s r-algorithm is to make steps in the direction opposite to a sub-gradient 

at the current point, i.e., by calculating the difference between the current and previous 

sub-gradient points per iteration [47]. Although the objective function included the units’ 

valve-point effects, the transmission losses of the system and spinning reserves were 

neglected. As an alternative to the classical constraints handling method (penalty 

function), the authors adopted the feasibility-based selection comparison method. The 

single test system was examined, and the results of the proposed algorithm outperformed 

those attained using competing methods. Despite that, unit-2 output power at the 20th 

dispatch hour violated the unit’s bounded constraints. 

 The authors of [48], [49], and [50] proposed a solution algorithm for solving the 

DED problem considering valve-point effects as a rectified sinusoid component 

integrated into the cost function. In all suggested hybrid algorithms, the authors divided 

the solution process into two parts. The first part applied a heuristic algorithm (PSO, EP, 

and deterministically guided PSO respectively) where constraints were relaxed. The 

second part exploited a deterministic technique (SQP) to enhance the solution obtained 

by the heuristic methods taking into account the problem’s constraints. In other words, 

the heuristic algorithm explored the search space with relaxed constraints and once the 

cost function of the current iteration was better than that of the previous one, the SQP 

routine started. The improved results of SQP was then retained as a new starting point 

for the next heuristic(s) search. This sequence was repeated for a predetermined number 

of iterations. In addition, the authors examined three test cases with different load curve 

patterns. In modified hybrid EP-SQP [49] and deterministically guided PSO [50] the 

transmission losses have been evaluated using the B-coefficients loss matrix, while in 

PSO-SQP [48] the power flow calculation has been utilized to calculate the transmission 

losses of the system, spinning reserves, and security constraints. 

 The author of [51] proposed a hybrid EP and fuzzy satisfying approach to solve 

the DEED problem. Its mathematical formulation was identical to the one in [31]. 

However, in [51] the two competing objective functions were modeled applying fuzzy 

sets, with the assumption that the decision-maker has a fuzzy-goal per objectives. The 
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decision-maker defined the reference membership values and the problem was solved 

using an EP method. Moreover, the results of the proposed method were compared with 

those obtained using a fuzzy satisfying method based on the SA technique. 

 An extended version of the interior point quadratic programming (IP-QP) 

technique was proposed in [52] to solve the bid-based DED problem. The solution was 

obtained assuming that the bid price curves for generators and consumers were 

quadratic-convex and quadratic-concave functions, respectively. Moreover, the emission 

effect was considered in this reference as an inequality constraint. The transmission 

losses of the system were included in the equality constraints; however the issue of 

spinning reserves was not addressed. The objective function dealt with a competitive 

electricity market to achieve maximum profits. 

 A hybrid QP-LP process was suggested in [53] to solve the DED problem. Three 

problems were defined, and the constraints for each coupled through the units’ ramp-rate 

limits. The proposed method initially solved the base case SED by relaxing the ramp-rate 

constraints using a QP algorithm. Then, the LP technique was utilized to solve the 

dispatch problem considering the ramp-rate constraints. The latter technique linearized 

the optimization problem about the former base case results. In other words, the 

objective function and constraints were linearized. The transmission losses of the system, 

security, and spinning reserve were included in the problem constraints. However, the 

units’ valve-point effects were not addressed. 

 Based on artificial neural networks (ANN), the author of [54] proposed an 

algorithm with two stages to solve the DED problem. First, the lambda-iteration 

technique employed to yield the SED (base case) result by relaxing the ramp-rate 

constraints. Second, the Hopfield neural networks (HNN) employed to solve the DED 

problem. The neural networks (NN) included in a closed-loop structure so that, when a 

constraint violation occurred, the magnitude and direction of the violation were fed back 

to adjust the neurons’ states. The optimization methodology was adapted from [53], but 

the security and transmission losses constraints were neglected in this paper. 
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 Li and Aggarwal in [55] combined a relaxed GA and gradient technique in order 

to solve the static and dynamic ED problems. The proposed method modified the hybrid 

GA, which was offered by one of the authors in [14] to enhance the solution quality and 

accelerate the algorithm performance. In other words, the power balance constraint was 

relaxed in the base search, and adjusted at the beginning of the gradient technique (local 

search). The authors reported that the wider feasible region offered by the relaxed 

approach obtained a potential solution with a likelihood of shorter time than a stricter 

approach. Although the transmission losses of the system were considered, the units’ 

valve-point effects were not measured. 

 Two solution methods for the DED problem were proposed in [56]. In both 

methods, the operating cost of each interval was optimized separately. To anticipate the 

difficulties arising from such separation, the authors considered intervals ahead of the 

current interval by defining a set of unit parameters and system variables. The aim of the 

first method was to find a feasible (quasi-optimal) solution suitable for different load 

profiles via an adaptive look-ahead technique. The second method, using deterministic 

(QP or LP) algorithms, attempted to find the optimal solution. In addition, the QP and LP 

methods were suggested to solve the optimization problem for quadratic and linear cost 

functions respectively. For simplicity, the authors neglected the transmission losses of 

the system and spinning reserves. The units’ valve-point effects were omitted. 

 In Ref. [57] a combination of the SA technique and GA to solve the DED 

problem considering the transmission losses and different types of units’ cost functions 

was suggested. However, the units’ valve-point effects and system’s spinning reserves 

were neglected. Each dispatch period was optimized individually via SED. Utilizing the 

SA provided a sufficient initial solution for the GA cycle. Increasing and daily load 

demands were considered. However, the average CPU time (per time period) of the 

proposed method was relatively high by comparison. 

 The authors of [58] proposed a hybrid method divided into two parts to solve the 

DED problem. The first part utilized the EP technique to obtain a quasi-optimal region. 

Subsequently, the second part was developed for local search to determine the optimal 

solution by applying the SQP technique. Two case studies were considered. The first one 
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was to observe the impact of population size on the solution quality using EP technique 

only. The second employed the proposed hybrid EP-SQP method and the results were 

compared using EP and SQP individually. In both cases, the units’ valve-point effects 

were integrated with the fuel cost function. However, the transmission losses of the 

system and spinning reserve requirements were neglected. 

 The authors of [59] proposed a fuzzy optimization technique to solve the DED 

problem under the conditions of an uncertain deregulated power environment for a 10-

minute reserve market. Moreover, a goal satisfaction concept based on a decision-

maker’s option was used in the optimization process. The uncertain parameters were 

represented by fuzzy numbers, and comprised of reserve required, prices cleared, and the 

probability that reserves were called in actual operation. The objective function was to 

maximize the generation company (GENCO) profit. However, the units’ valve-point 

effects and transmission losses were neglected.  

 A real coded GA combined with the quasi-simplex algorithm has been proposed 

in [60]. The genes of the proposed method were represented using decimal digits. In 

addition, three different rules (proportion, minimum cost, and LP) have been offered in 

order to provide a sufficient initial population. One test system has been considered and 

the units’ valve-point effects were absorbed in the cost function. However, the 

transmission losses of the system and spinning reserves were neglected. Moreover, the 

authors did not consider solutions obtained from other methods, and the efficiency of 

their method relied on the fact that the standard deviation of the proposed method (after 

conducting 10 independent runs) was relatively small. 

 Ref. [61] proposed a solution to the thermal-wind coordination scheduling 

problem. The procedure was divided into stages, but the transmission losses of the 

system and units’ valve-point effects were neglected. The first one utilized the SA 

technique to schedule the generating units, but when considering the wind units the 

constrained DED was solved by the second stage, i.e., using the direct search method. 

The author divided the dispatch period into intervals, each of which was solved 

successively. The operating costs considered in this reference included two terms: 1) the 

second-order polynomial function representing the fuel cost and, 2) the start-up cost of a 
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unit. Due to the intermittency of wind power generation, the system’s spinning reserve 

was calculated as a simple fraction of the predicted wind power generation. The load 

supplied by the thermal units was the net-load, which was solved by the direct search 

method. In other words, the load supplied by the thermal units at a specified time was 

reduced by the amount of wind power generation at that time. There was significant 

reduction in the operating costs when optimal wind power generation was integrated in 

the system. Although wind power generation has no cost that varies with the power 

output, it would require an additional system spinning reserve (due to the intermittency 

of the wind resource) which would increase the operational cost. The trade-off of 

emissions’ constraints may guide the decision-maker in such a situation. 

 A combination of HNN and QP was proposed to solve the DED problem in [62] 

and [63]. The problem was divided into two phases; the first phase was assigned to the 

HNN to solve the SED part, and the second phase used the QP method to solve the DED 

part. Furthermore, a set of procedures (backward/forward) was suggested and then 

applied to consider the ramp-rate constraints. A correction factor – based on the power 

balance mismatch – has been offered to accelerate the algorithm in each time interval. 

Although the authors included the transmission losses in the power balance equality 

constraints, it was neglected in the tested system as was the system’s spinning reserve 

requirements. The results of the suggested method for a half-day interval were compared 

with those obtained using other methods. The proposed method attained additional cost 

saving, and the required CPU time was relatively reduced. 

 Integrating the swarm direction technique with the fast evolutionary 

programming (FEP) method was proposed in [64] to solve the DED problem. In 

addition, the prohibited operating zones, spinning reserves, transmission losses, and line 

flow limits were considered. The swarm direction technique was applied while creating 

an offspring, particularly at the mutation stage. A sample system was solved using the 

proposed algorithm with one-hour and one-day dispatch periods. The results of the 

algorithm were reported to outperform other FEB-based methods. However, the 

algorithm required further parameters to be fine-tuned, which in turn added an additional 

burden to the process. 
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 The method proposed in [65] combined the DE and local random search (LRS) 

method to solve the DED problem while considering the units’ valve-point effects and 

the transmission losses of the system. However, the system’s spinning reserves were not 

addressed. As a substitute to a constant (user-defined) crossover value, the authors 

suggested an iteration-variant (adaptive) crossover value. This strategy enabled the 

algorithm to cover a wide range of the search-space initially, and then narrowed to local 

search-space to increase the possibility of arriving at an optimal region. Once the 

adaptive DE reached that region, the LRS process started to fine-tune the solution 

obtained earlier. The authors adopted the LRS method presented in [66]. It was described 

as iterative procedures attempting to enhance the retained solution using multiple 

(neighbours) solutions inside the corresponding search region. Then, a greedy selection 

mechanism was used to evaluate the new candidate solutions. Additional neighbours 

(new candidate solutions) were then generated within a narrower space of the 

corresponding (new) search region. These steps were repeated until reaching the 

maximum number of iteration. The power balance and units ramp-rate constraints were 

handled by iterative heuristic procedures. Despite that, the authors adopted the “Death-

Penalty concept,” introduced in [67], by assigning a large (penalty) multiplier to reject 

the infeasible solution with respect to the power balance constraints. A sample system 

was adopted to assess the efficiency of the offered method, and the results were 

compared with those obtained via various methods. The proposed method achieved 

enhanced results in terms of total operating costs and less CPU time needed. 

 A combination of EP, PSO, and SQP was presented in [68] to solve the DED 

problem. Initially, both EP and PSO methods were utilized to explore the search-space 

freely. Then after, the SQP was assigned to fine tune the retained solution. Although the 

units’ valve-point effects and prohibited operating zones were considered, the 

transmission losses of the system were neglected. The results outperformed others such 

as EP-SQP and PSO-SQP. The authors reported that the additional heuristic algorithm 

will enhance the solution, but it will add more computational time due to the increase in 

the number of parameters to be tuned. 
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 The seeker optimization algorithm (SOA) and SQP were hybrid (SOA-SQP) to 

solve the DED problem in [69]. The result obtained by the SOA was used as an input for 

the SQP technique. The authors utilized the SOA introduced in [70] as a global search 

mechanism with the utilization of fuzzy reasoning in determining the length step of the 

search-space. The SOA names the randomly generated population as the swarm and 

recognizes their members as seekers. The main strategy of the SOA is to modify the 

entire population into multiple (three) subpopulations with equal sizes, and seekers share 

neighbourhoods’ information. The designated length step and search directions were 

utilized to modify the (solutions) seekers. The authors examined the performance of the 

proposed hybrid method with two test systems taking into account the units’ valve-point 

effects. The transmission losses were considered in one of these systems. However, the 

required CPU time was not reported in this paper. In addition, the results obtained by the 

proposed method violated various units’ ramp-rate constraints in both systems. 

 The authors of [71] proposed a hybrid technique to solve the DED problem by 

combining the bacterial foraging method (BF) as a local search and PSO-DE algorithm 

as the main (global) optimizing mechanism. The BF algorithm introduced in [72] mimics 

the survival of bacteria in a changing environment. The BF employs iterative steps of 

fitness evaluation based on food searching and motile behaviour. A sample system, 

considering the units’ valve-point effects and neglecting the transmission losses of the 

system, was adopted to evaluate the performance. The BF-PSO-DE method 

outperformed those attained using various methods. The proposed method has been 

adopted by the same authors in [73] to solve the DED problem considering the 

transmission losses, security, and spinning reserve constraints. The power flow 

calculation was used to maintain the equality constraints. One designated system was 

used to evaluate the performance of the suggested hybrid method, and a comparison with 

results obtained using different methods was conducted. 

 A combination of the PSO and harmony search (HS) algorithms was used in [74] 

to solve the DED problem. The HS method introduced in [75] imitates the musicians’ 

improvisation process via an iterative routine. These procedures can be summarized as: 

generating the initial harmony memory (population); improvising, i.e., modifying the 
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harmony memory using a set of rules; evaluating the harmony memory based on fitness 

value; terminating the process if the maximum number of iteration is reached. As an 

alternative to the classical HS algorithm, the concept of an improved HS (IHS) version 

suggested in [76] was adopted. The HIS, in this paper, used an adaptive pitch adjustment 

rate (PAR) to modify the harmony memory based on a PSO mechanism. The authors in 

[74] examined the proposed method with three test systems considering the units’ valve-

point effects. However, the transmission losses were only taken into account in the first 

test case. The average CPU time required to solve those systems were 2.800, 12.233, and 

27.650 minutes respectively. In addition, the results of the PSO-HS outperformed those 

attained using other methods. 

 The authors of [77] proposed three versions of hybrid chaotic differential 

evolution (CDE) methods to solve the DED problem. The Chaos sequence exists in 

nonlinear and dynamic systems, and was defined as a semi-random process created by a 

deterministic operation via functions known as chaotic maps [78]. In this paper, the 

Tent’s function (chaotic map) [78] was utilized in the three hybrid methods to avoid the 

parameters’ setting and premature convergence of the DE algorithm. The first (CDE1) 

version utilized chaotic sequences of the Tent’s equation to update (adaptively) the 

mutation and crossover parameters of the DE method. The second (CDE2) version 

combined the DE, as a main optimizing tool, and a chaotic local search based on Tent’s 

function to avoid premature convergence. In other words, the chaotic local search was 

initiated prior to the next iteration of the DE method. Therefore, the retained best 

solution was modified using the designated chaotic map to seek an enhanced outcome. A 

hybrid of CDE1 and CDE2 represented the third (CDE3) version. The constraints were 

handled by a set of heuristic rules and procedures. First, the equality (power balance) 

constraints were adjusted by adding the average mismatch power to all committed units. 

Then, the units’ output power and ramp-rate constraints were tuned at each time interval. 

The feasibility-based selection mechanism was adopted in all CDE’s versions. The 

performance of the proposed algorithms was illustrated by solving two test cases with 

both considering the units’ valve-point effects but not the transmission losses of the 

system. Although the results from all three versions were outperforming those obtained 

using other methods, the CDE3 presented the minimum operating cost among them. The 



 

28 
 

required CPU time of the CDE3 method was slightly higher than those of CDE1 and 

CDE2 methods. 

2.3 SUMMARY 

The DED problem illustrated the practical meaning of optimal operation and control of 

committed generation units to meet the demand of power system networks. However, it 

considered a complex, non-convex, and nonlinear optimization problem. Some 

applications raised the complexity of the DED problem by integrating additional 

(competing) objective functions and/or constraints.  

 This chapter presented state-of-the-art research of the dynamic economic and 

emission dispatch problems. Various techniques were used and the reviewed papers were 

classified into three categories: deterministic, heuristic, and hybrid methods. Advantages, 

disadvantages, and constraints considered by each paper were also highlighted. Among 

the techniques, hybrid methods were the most popular due to the significant ease of 

implementation in solving real-world engineering problems. In addition, combined 

algorithms boosted the strength and diminished or bypassed the limitation of individual 

algorithms. 
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CHAPTER 3: ARTIFICIAL BEE COLONY ALGORITHM 
 

3.1 INTRODUCTION 

Optimization algorithms based on swarm intelligence gained popularity in solving 

complex and high dimensional problems years ago. Because most of the meta-heuristic 

methods are independent of the initial solutions and derivative-free, they overcome the 

main limitations of deterministic or conventional optimization methods, i.e., getting 

trapped in local extrema and divergence situations. The inspiration of most meta-

heuristic techniques is natural phenomena, e.g., GA [79], ant colony optimization (ACO) 

[80], PSO [81], ABC [82], and firefly algorithm (FA) [83]. 

 In addition, meta-heuristic methods are easy to implement and can be combined 

with other algorithms. The characteristics of the objective function and/or constraints are 

inconsequential to the success of those methods. However, meta-heuristic algorithms 

have parameters to be tuned, an adjustment that is commonly accomplished by trial-and-

error experiments as well as the skill of the user. Consequently, an efficient algorithm 

with fewer parameters to be adjusted is always more favorable. 

 Enhancing performance by accelerating and/or improving the solution quality is 

an ongoing task for most meta-heuristic algorithms. Various modified versions seeking 

enhanced results have been suggested in the literature. However, many of those adaptive 

methods may not succeed depending upon the particular problems and/or additional 

parameters needing to be tuned. 

 Optimization problems can be classified into constrained and unconstrained 

types. The former includes most of the practical and real-world applications; accordingly 

the constraints of an optimization problem are commonly solved via independent 

(constraint-handling) techniques [26, 27]. The effectiveness varies from one technique to 

another and, also, with different meta-heuristic algorithms. Moreover, the superiority of 

current and future meta-heuristic algorithms can be determined through solving 
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benchmark optimization functions where statistical records emphasize their 

effectiveness. 

 The aim of this chapter is to provide a concise survey of one of the newest meta-

heuristic methods. The ABC algorithm is a population-based technique introduced late in 

2005 [82]. It is inspired by the intelligent foraging behaviour of the honeybees swarm. 

Vital features and the literature utilizing the ABC algorithm are highlighted. The chapter 

is organized as follows: Section 3.2 introduces the ABC algorithm and highlights the 

algorithm’s features; Section 3.3 summarizes the literature that employed the ABC 

algorithm; Section 3.4 outlines the conclusions. 

3.2 THE ARTIFICIAL BEE COLONY ALGORITHM  

Inspired by the intelligent foraging behaviour of honeybee swarms, the ABC algorithm 

was introduced to handle unconstrained benchmark optimization functions [82, 84], 

similar to other well-known meta-heuristic algorithms. An extended version of the ABC 

algorithm was then offered to handle constrained optimization problems [85].  

 The colony of artificial bees consists of three groups: employed, onlookers, and 

scout bees. The employed bees (Eb) randomly search for food-source positions 

(solutions). By dancing they share information (communicate) about that food source, 

such as nectar amounts (solutions qualities), with the onlooker bees (Ob) waiting in the 

dance area at the hive. The duration of a dance is proportional to the nectar’s content 

(fitness value) of the food source being exploited by the employed bee. Onlooker bees 

watch various dances before choosing a food-source position, according to the 

probability proportional to the quality of that food source. Consequently, a good food-

source position attracts more bees than a bad one. Onlookers and scout bees, once they 

discover a new food-source position, may change their status to become employed bees. 

When the food-source position has been visited (tested) fully, the employed bee 

associated with it abandons it and may once more become a scout or onlooker bee. In a 

robust search process, exploration and exploitation processes must be carried out 

simultaneously [82, 86]. In the ABC algorithm, onlookers and employed bees perform 

the exploitation process in the search-space, while scouts control the exploration process.  
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 One half of the colony size (CS) of the ABC algorithm represents the number of 

employed bees, and the second half is the number of onlooker bees. For every food-

source position, only one employed bee is assigned. In other words, the number of food-

source positions surrounding the hive is equal to the number of employed bees. The 

scout initiates its search cycle once the employed bee has exhausted its food-source 

position. The number of trials for the food source to be called “exhausted” is controlled 

by the limit value. Each cycle of the ABC algorithm comprises three steps: first, sending 

the employed bee to the possible food-source positions and measuring their foods’ nectar 

amounts; second, onlookers selecting a food source after sharing the information from 

the employed bees in the previous step; third, determining the scout bees and then 

sending them into entirely new food-source positions. 

 The ABC algorithm creates a randomly distributed initial population of i 

solutions (i = 1, 2, …, Eb), where i signifies the size of population and Eb is the number 

of employed bees. Each solution xi is a D-dimensional vector, where D is the number of 

parameters to be optimized. The position of a food source, in the ABC algorithm, 

represents a possible solution to the optimization problem. The nectar amount of a food 

source corresponds to the quality of the associated solution. After initialization, the 

population of the positions is subjected to repeated cycles of the search processes for the 

employed, onlooker, and scout bees (cycle = 1, 2, …, MCN), where MCN is the 

maximum cycle number of the search process. Then, an employed bee modifies the 

position in her memory depending on the local information (visual information) and tests 

the nectar amount of the new position (modified solution). If the nectar amount is higher 

than that of the previous one, the bee memorizes the new position and forgets the old 

one. Otherwise, she keeps the position of the previous one in her memory. After all 

employed bees have completed the search process; they share the nectar information and 

their position with the onlooker bees waiting in the dance area. An onlooker bee 

evaluates the nectar information taken from all employed bees and chooses a food source 

with a probability related to its nectar amount. The same procedure of position 

modification and selection criterion used by the employed bees is applied to onlooker 

bees. The greedy-selection process is suitable for unconstrained optimization problems. 

However, to overcome the greedy-selection limitations, specifically in a constrained 
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optimization problem [82], the Deb’s constraint-handling (feasibility-based) method [27] 

is adopted. The probability pi of selecting a food source by onlooker bees is calculated as 

follows: 

௜݌ = ∑௜ݏݏ݁݊ݐ݂݅ ௜ா್௜ୀଵݏݏ݁݊ݐ݂݅  (3.1) 

where, fitnessi is the fitness value of a solution i, and Eb is the total number of food-

source positions or, in other words, half of the CS. Clearly, resulting from using (3.1), a 

good food source will attract more onlooker bees than a bad one. Subsequent to 

onlookers selecting their preferred food source, they produce a neighbour food-source 

position i + 1 to the selected one i, and compare the nectar amount of that neighbour i + 1 

position with the old i position. The same selection criterion used by the employed bees 

is applied to onlooker bees. This sequence is repeated until all onlookers are distributed. 

Furthermore, if the ith solution does not improve for a specified number of times (limit), 

the employed bee associated with this solution abandons it, and she becomes a scout and 

searches for a new random food source. Once the new position is determined, another 

ABC algorithm cycle (MCN) starts. The same procedures are repeated until the stopping 

criteria are met. 

 In order to determine a neighbouring food-source position, the ABC algorithm 

alters one randomly chosen parameter and keeps the remaining parameters unchanged. In 

other words, by adding to the current chosen parameter value the product of the uniform 

variant [-1,1] and the difference between the chosen parameter value and other “random” 

solution parameter values, the neighbour food-source position is created. The following 

expression verifies that: ݔ௜௝௡௘௪ = ௜௝௢௟ௗݔ + ௜௝௢௟ௗݔ൫ ݑ −  ௞௝൯ (3.2)ݔ

where, k ≠ i and both are ∈ {1, 2, …, Eb}. The multiplier u is a random number between 

[-1,1] and j ∈ {1, 2, …, D}. In other words, xij is the jth parameter of a solution xi that was 

selected to be modified. When the food-source position has been abandoned, the 

employed bee associated with it becomes a scout. The scout produces a completely new 

food-source position as follows: 
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௜௝ (௡௘௪)ݔ = ݉݅݊ ௜௝ݔ + ݔ൫݉ܽ ݑ ௜௝ݔ − ݉݅݊  ௜௝൯ (3.3)ݔ

where, (3.3) applies to all j parameters, and u is a random number between [-1,1]. If a 

parameter value produced using (3.2) and/or (3.3) exceeds its predetermined limit, the 

parameter can be set to an acceptable value [82].  

 Clearly, employed and onlooker bees select new food sources in the 

neighbourhood of the previous one depending on visual information based on the 

comparison of food-source positions [84]. On the other hand, scout bees, without any 

guidance looking for a food-source position, explore a completely new one. Scouts are 

characterized, based on their behaviour, by low search costs and a low average food-

source quality. Occasionally, the scouts can fortunately discover rich, entirely unknown 

food sources. In the case of artificial bees, the artificial scouts could have the fast 

discovery of feasible solutions as a task [87]. The flowchart of the ABC algorithm is 

exemplified in Figure 3.1. 

 Parameter-tuning, in meta-heuristic optimization algorithms, influences the 

performance of the algorithm significantly. Divergence, becoming trapped in local 

extrema, and time-consumption are consequences of improper parameters setting. An 

advantage of the ABC algorithm is having few controlled parameters. The ABC 

algorithm does not depend on the initial population because initializing it “randomly” 

with a feasible region is sometimes cumbersome. Instead, its performance sufficiently 

directs the population to the feasible region [85].  

 The controlled parameter (limit) is important because it prevents the algorithm 

from getting trapped in a local extrema. Therefore, it was suggested in [82, 88, 89] and 

also proven throughout this survey, that the optimal adjustment of the limit parameter is 

50% of the product of CS and D.  
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Ob’s cycle completed

Calculate the pi values of xi positions

Modify the determined position xi, and count Ob

limit value reached

Memorize best position “solution” xi

cycle = MCN

Initiate “food-sources positions” xi

Calculate the fitness values of xi

Determine xi position responses for high pi value

End, print xi “optimal solution”

Yes

No

Produce new food position(s) using (3.3)

Calculate the fitness value(s) of new
position(s) and evaluate them

Yes

 

Figure 3. 1: Flowchart of the ABC algorithm. 

 

 It is clear that the ABC algorithm has the following control parameters: 1) the CS 

that consists of employed bees (Eb) plus onlooker bees (Ob), 2) the limit value, which is 

the number of trials for a food-source position to be abandoned, and 3) the maximum 

cycle number (MCN). Although the ABC algorithm has three parameters to be tuned, 
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once the CS parameter has been determined by the practitioner, the limit value can be 

calculated easily. Therefore, technically speaking, the ABC algorithm has only two 

parameters to be adjusted: CS and the MCN values. Updating these two parameters 

towards the most effective values has a higher likelihood of success than in other 

competing meta-heuristic methods. The pseudo-code of the ABC algorithm is as follows: 

1. Initialize the population. 

2. Modify positions. 

3. Apply selection criterion. 

4. Repeat (cycle). 

5. Allow the employed bees to share the food information with onlooker bees. 

6. Allow the onlooker bees to choose the best food source based on the probability 

calculation. 

7. Apply selection criterion. 

8. Check for an abundant solution, and (if exists) initiate a new food-source 

position. Otherwise, follow the next step. 

9. Retain best solution so far. 

10. Until stopping rule. 

3.3 A LITERATURE REVIEW 

Decades ago, researchers [90-94] were motivated by the intelligent behaviour of honey 

bees. Bee swarming was adopted [95-98] to solve optimization problems and showed 

promising results. In addition, the bee swarm tactic has been employed since the early 

1990s in a wide range of areas and applications as presented in [99].   

 Although the ABC algorithm was only recently introduced, the trend of published 

papers utilizing this algorithm, as illustrated in Figure 3.2, is growing rapidly. 

Furthermore, the performance of the ABC algorithm, and the results and quality of the 

solutions, outperformed or matched those obtained using other well-known optimization 

algorithms. The following sub-sections categorize the areas utilizing the ABC algorithm. 

The distribution of ABC’s literature among a wide area is demonstrated in Figure 3.3. 

Table 3.1 (in pages 51-53) provides a summary of each paper utilizing the ABC 

algorithm in terms of the number of tested problems and the competing algorithms. 
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Figure 3. 2: Number of ABC related publications per year. 

 

 

Figure 3. 3: Division of published ABC’s papers due to different applications. 
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3.3.1 COMPARATIVE ANALYSES 

Karaboga et al. in [85] and [100] extended the ABC algorithm to handle constrained 

optimization problems. A set of 13 benchmark optimization problems was examined, 

and the results were compared with state-of-the-art unconventional optimization 

algorithms in both references. However, the performance of most meta-heuristic 

optimization algorithms is independent of constraints handling methods. In other words, 

a superior optimization algorithm would diverge or be trapped in local extrema if the 

constraints were handled inefficiently. The same authors of [85] in [84] examined the 

performance of the ABC algorithm in five benchmark optimization functions, with the 

dimension of each function varying from 10 to 30. The results outperformed other meta-

heuristic and hybrid algorithms such as PSO, GA, and hybrid evolution algorithm (EA) 

and PSO (EA-PSO). 

 The authors of [88] performed an analysis of the control parameters of ABC 

algorithm with a set of five benchmark optimization functions and compared the results 

with those of PSO, EA, and DE algorithms. Furthermore, three of the functions 

examined have 50 parameters to be optimized. Tuning the limit parameter (scout bee 

cycle) to be half the colony size multiplied by the problem’s dimension resulted in best 

ABC performance – especially in highly nonlinear and non-convex optimization 

functions. 

 A large set of fifty benchmark optimization functions was solved by the ABC 

algorithm in [89]. The results were compared with those obtained using other competing 

methods in three experiments. The first one included GA, PSO, and DE algorithms, and 

the second contained various types of evolution strategy (ES) algorithms. Additional ES 

algorithms have been considered in the third experiment, as well. Throughout this large 

comparative analysis, statistical measurements proved the superiority of the ABC 

algorithm compared to most other well-known meta-heuristic optimization algorithms. 

 The authors of [101] utilized the ABC algorithm in solving large-scale 

optimization problems. Two tests, i.e., nine benchmark, unconstrained, optimization 

functions and five engineering, constrained, optimization problems were adopted to 

illustrate the performance of the ABC method. In addition, the results of the proposed 
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algorithm were compared with those attained using various meta-heuristic techniques. 

The superiority of the ABC algorithm in handling both constrained and unconstrained 

optimization problems was demonstrated. Furthermore, the constraints-handling method 

utilized in their paper was based on the feasibility of a solution. 

 The Sudoku puzzle was solved in [102] via the ABC algorithm. The puzzle is 

considered a logic-based problem with three constraints. The first and second conditions 

are that each row and column must have 1-9 digits with no repetition. In addition, the 

third and dominant constraint indicates that every three-by-three block consists of non-

repeated 1-9 digits. The authors considered three types (easy, medium, and hard) of 

Sudoku puzzles to demonstrate the efficiency of their proposed method. The offered 

method outperformed other GA-based Sudoku solutions. Slight modifications were 

applied to the ABC algorithm to suit the problem considered, e.g., onlooker bees were 

tuned to be larger than the employed bees and scout bees were adjusted to 10% of 

employed bees. 

 Prediction of the protein structure represents a challenging biochemistry energy 

minimization task which can be solved experimentally or computationally [103]. 

Experimental results are accurate but are expensive and time consuming, i.e., it takes 

months to verify the protein structure [104]. Due to these limitations, scientists solved 

this problem as an optimization problem aiming to find the lowest energy confirmation. 

Solving the protein confirmation problem led to several advantages, e.g., creating new 

medicine and analyzing genetic diseases [105]. The authors of [103] and [104] utilized 

the ABC algorithm to identify the protein structure, and compared the results to other 

techniques. The outcomes of ABC algorithm outperformed those attained by the parallel 

SA-GA methods. 

 In [106] the ABC algorithm was applied to solve integer programming problems, 

where all optimized parameters have to be integers. The integer characteristics of the 

problems were basically handled by rounding off the calculated solutions to the closest 

feasible values. Several test problems considered, and the results compared with those 

obtained utilizing a variety of PSO techniques. 
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 Akay and Karaboga, in [107] analyzed the effect of parameters-tuning on the 

performance of the ABC algorithms. A set of nine benchmark optimization functions 

were adopted and the results were compared with those of PSO and DE techniques. The 

dimensions of the tested functions were 10, 100, and 103 parameters. As well as the 

effect of the colony size, feasible region scale, and limit value were investigated. The 

control parameter (limit) played a key role in the ABC performance. In other words, 

adjusting the limit parameter to a small value in a relatively small population led to an 

exploration process that overrode the exploitation routine. 

 The authors of [108] utilized the ABC algorithm to train feed-forward neural 

networks. The objective was to minimize the network error via varying weights. Three 

tests were considered: Exclusive-OR, 3-Bit Parity, and 4-Bit Encoder-Decoder problems. 

The solutions obtained by the proposed algorithm were compared and outperformed 

those found using the GA and back propagation (BP) techniques. 

3.3.2 MODIFIED VERSIONS 

A modification to the basic ABC algorithm, claimed in [109], occurred during the 

production of a neighbouring solution by introducing additional parameters to the 

original algorithm. Instead of changing one parameter in a solution vector, the 

modification rate (MR) was suggested to control the number of altered parameters in a 

solution vector. In addition, a scaling factor (SF) was proposed to replace the uniformly 

distribution multiplier (u). The SF (step size) could be utilized (adaptively) dynamically 

to enhance the algorithm’s performance contrary to a fixed random number between      

[-1,1] used in the basic version. Two sets of benchmark optimization functions were 

designated to confirm the effectiveness of the modified version. The outcomes of these 

experiments compared with those of other (competent) well-known optimization 

methods. The authors demonstrated the superiority of both the basic and modified ABC 

algorithms in solving various types of optimization applications. However, adding more 

parameters to be tuned decreased the likelihood of success in updating these parameters 

to the optimal adjustment. 

 A modified version of the ABC algorithm was proposed in [110]. The main 

difference in this paper was that once a solution i did not improve for a specified number 
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of trials, the whole algorithm was terminated. Subsequently, the employed bees became 

scouts and explored new solutions randomly. Despite that, such termination of an 

algorithm increased the diversity of an exploration process over the exploitation process. 

The authors considered a set of 10 benchmark optimization functions, with few 

optimized parameters. The results were not compared with any algorithm.  

 Instead of the initial random solutions used in the original ABC algorithm, the 

author of [111] proposed three versions based on chaotic mapping sequences. The author 

stated that “a chaotic map is a discrete-time dynamical system running in chaotic state.” 

Therefore, the chaotic sequence can be recognized as a random [0,1] number sequence. 

The adopted chaotic functions were Logistic, Circle, Gauss, Henon, Sinusoidal, Sinus, 

and Tent maps. The first (C1-ABC) and second (C2-ABC) modified versions were 

concerned with changing the calculations of initial-phase and scout-phase utilizing the 

selected chaotic maps. A combination of those two versions represented the third offered 

type (C3-ABC). The performance was assessed via three benchmark optimization 

functions, and was compared with the original ABC method. The results obtained by the 

proposed versions outperformed the original ABC algorithms. However, C2-ABC and 

C3-ABC attained better outcomes than the C1-ABC technique. 

 In order to improve the exploitation strategy of the ABC algorithm, the authors of 

[112] integrated the global population’s best value in the solution procedures. In other 

words, they adopted the G-best term used in PSO algorithm to modify (update) the 

solutions in the ABC method. Six experimental tests were utilized to reveal the 

efficiency of the proposed modified version. Slight enhancements were obtained in some 

of the designated functions due to this modification. However, an additional parameter to 

be tuned, i.e., a C multiplier, was a drawback of such an adjustment. 

 Cooperative strategies to the ABC algorithm were proposed in [113] and [114], 

inspired by the idea of retaining the global best solution and utilizing its components. 

This routine has been used extensively in the PSO and its derivatives’ algorithms. 

However, such a modification will alter the balanced mechanism of the original ABC 

algorithm, affecting its performance in some problems. In addition, retaining the best 

solution’s vector at every population per cycle would lead to a significant requirement of 
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the CPU time. As reported in [113], the results of the original ABC method 

outperformed other competing (cooperative) approaches at two of the six designated 

benchmark functions. A hybrid technique was also presented in [114] using the original 

ABC algorithm in sequence with the suggested cooperative method. In other words, the 

offered cooperative practice (initially) optimized each parameter of a solution vector 

independently. Subsequently, this information exchanged with the original ABC 

algorithm in the next iteration, and so forth. The author of [114] analyzed the 

performance of the suggested approach via seven frequently tested optimization 

functions. Once more, slight improvements were obtained by the proposed approach in 

only two of the seven selected functions.  

 The authors of [115] integrated an exponential adaptive scaling factor with the 

original ABC algorithm that was activated during the exploitation practice. The 

motivation was to cover a wide range of the search-space and to avoid being trapped in a 

local solution. However, additional parameters to be tuned were included. Two sets of 

optimization functions were adopted to prove the efficiency of the offered adaptation. 

However, the performance of the adaptive ABC algorithm deteriorated when the 

problem’s dimensions increased. 

 An elitist ABC algorithm was proposed in [116]. The authors suggested five 

modification or enhancement steps to the original ABC method. First, the step size of 

modifying a solution was doubled to expand the search-space covered. Second, each 

onlooker (per iteration) searched nearby the best found solution so far, and the step size 

of the onlooker cycle was doubled. Third, the scout bee was generated in the same 

fashion of solution’s modification used in PSO algorithm. Fourth, a dynamic tolerance 

factor was superimposed to fulfill the equality constraints of a problem. Fifth, two local 

search mechanisms were activated at specific times to enhance the exploration of the 

retained solution. Clearly, several additional parameters were considered in this 

approached requiring considerable time in the trial-and-error experiments. A set of 18 

optimization problems was selected to exemplify the competence of this approach. 

Negative impact on the solution quality, however, was reported when the problem’s 
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dimensions were larger than 30. In addition, the results were not compared with any 

algorithm. 

 Arguing that the original ABC algorithm has a slow convergence speed, the 

authors in [117] offered a modified ABC version. First, the entire population shared the 

best “so-far” position assuming that the global solution closed to that position. This 

assumption might be invalid, specifically at a non-convex search-space. Second, they 

altered the step size (multiplier used to generate a new solution) from the static to a 

dynamic mechanism, i.e., indirect relation to the number of iterations. Third, the greedy 

selection of the best solution was changed to be only in favor of objective function 

instead of fitness value. A set of benchmark optimization functions and image 

registration applications was utilized to evaluate the effectiveness of the suggested 

version. The results of the modified ABC approach outperformed those of the original 

algorithm at fixed initial positions and desired mean values. However, when these 

restrictions were relaxed (particularly) at the image experiments, the enhancements of 

the proposed version were insignificant. 

 Replacing the scout behaviour by a greedy-selection practice with a mutation 

process was the modification imposed on the original ABC algorithm in [118]. These 

two modifications shared the information of the entire population to search for the 

potential region. The authors used a set of six benchmark optimization functions with a 

global solution at the origin to validate the suggested method’s performance, where most 

existing optimization techniques performed extremely well for such functions. Practical 

optimization problems rarely have a global solution at the origin of the search space. In 

comparing with the original ABC version, slight improvements in the obtained results 

were due to the implementation of the proposed method. 

3.3.3 ELECTRIC POWER SYSTEMS APPLICATIONS 

The economic dispatch problem was solved in [119] using the ABC algorithm. The 

objective was to minimize the total system fuel cost subject to operational equality and 

inequality constraints. Three test systems were used to evaluate the performance of the 

algorithm. In addition, the results of the ABC algorithm were compared with 
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deterministic (lambda) technique and various types of PSO and GA algorithms. The 

results obtained using the ABC algorithm outperformed those competing methods. 

 The authors of [120] and [121] used the ABC algorithm to obtain the optimal DG 

size, location, and power factor in distribution feeder systems. The objective was to 

minimize the total system power losses subject to equality and inequality constraints. 

Furthermore, the performance of the ABC algorithm with discretized parameters was 

highlighted. The authors of [120] proposed a modified version enhanced the solution 

quality and accelerated the algorithm performance. This modification occurred during 

the neighbouring search process specifically in the onlooker routine. The IEEE 33-bus 

and 69-bus radial distribution feeder systems were considered, and the results of the 

offered method compared with the original ABC method and the exhaustive (grid-

search) approach. Moreover, the same authors employed the ABC algorithm to assess the 

priority-ordered constrained search technique for distributed generation application 

problems offered in [122]. 

 The authors of [123] and [124] utilized the ABC algorithm for distribution 

networks reconfiguration applications. The objective was to minimize the total system 

power losses subject to equality constraints, i.e., voltages and thermal capacity limits. 

The desired solutions were attained based on reconfiguring the switches on the feeder 

systems. The 14-bus, 33-bus, and 118-bus radial distribution feeder systems were 

designated for testing the algorithm performance. In addition, the results compared with 

SA, TS, DE, and GA methods. The outcomes attained by the ABC method were virtually 

identical to those compared algorithms. However, significant reductions in the required 

CPU time were due to the utilization of the ABC method. 

 In [125] the OPF problem was solved using the ABC algorithm. The objective 

was to minimize the system’s total operating fuel costs adopting the quadratic fuel 

formula. The equality constraints were the real and reactive power balance equations. 

Security inequality constraints were considered in this problem. The authors adopted the 

IEEE 14-bus and IEEE 30-bus systems, and the results compared with those obtained 

using the GA and PSO methods. In both cases, the solutions of ABC algorithm 
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outperformed those of the compared methods in terms of solution quality and 

algorithm’s performance. 

3.3.4 PARALLEL AND GRID COMPUTING APPLICATIONS 

Narasimhan in [126] proposed a parallel ABC algorithm to solve numerical optimization 

functions. First, the colony of bees was distributed equally at each designated processor. 

Then, solutions obtained from each processor were recorded in a local memory. After 

that, a global-shared memory retained the improved solutions that were attained from 

each processor, and utilized them to generate the neighbouring solutions per colony set. 

Eventually, the last updated solution recorded in the shared memory contained the 

optimal result. The author used six benchmark optimization functions to assess the 

performance of the proposed parallel ABC algorithm with respect to the original 

algorithm. 

 The authors of [127] used the ABC algorithm in a parallel computing 

environment, i.e., via four machines distributed as a manager processor and three 

subsequent ones. Although each processor performed the ABC algorithm routine, an 

exchange of two randomly selected solutions occurred before the next iteration. The 

exchange controlled by the manager processor by offsetting the worst performing 

population of the subsequent processors. A set of six benchmark optimization functions 

was designated to demonstrate the efficiency of the suggested method. The results of the 

approach showed an improvement in solution quality. Furthermore, a dramatic reduction 

in the required CPU time was illustrated when the number of processors increased. 

 Three benchmark functions were utilized to show the efficiency of the proposed 

parallel ABC algorithm in [128]. Basically, the authors divided the ABC strategy into 

several groups (subpopulations) that performed independently. After a predetermined 

number of iterations, those groups exchanged the obtained information. In other words, 

the population with better fitness values will take over those with worse fitness values. A 

set of three benchmark functions was adopted to verify the efficiency of the proposed 

method. The outcomes outperformed or matched those obtained using other algorithms. 

Such a strategy led to insignificant enhancements with respect to solution quality and 
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required CPU time. However, the additional parameter to initiate the exchange task 

decreased the likelihood of success in updating the overall algorithm’s parameters. 

3.3.5 DATA CLUSTERING AND IMAGE ANALYSES 

The ABC algorithm was utilized in [129] to detect the image of an aircraft at low 

altitude. In addition, an attractive pattern scheme was utilized in the optimization process 

by maximizing the similarities between the target and actual images. The performance of 

the ABC algorithm outperformed the GA method in all the considered test cases. The 

authors highlighted additional insights of the convergence and complexity of the ABC 

algorithm through statistical records. 

 Ref. [130] used the ABC algorithm for image detection problems. Four 

experiments were conducted to find the pattern of an object with grey and coloured 

images. In addition, the results of the offered method outperformed those of GA and 

PSO techniques. The Euclidean distance formula was used in [131] to solve the 

clustering problem via the ABC algorithm, adopting the feasibility selection criterion 

instead of the frequently used greedy-selection mechanism. The performance of the 

proposed algorithm was assessed after carrying out a set of three benchmark clustering 

problems. A variety of commonly used statistical methods was adopted for comparison. 

 The ABC algorithm in [132] was used for clustering analysis, i.e., to cluster (x) 

objects into (y) clusters. Basically, the objective was to minimize the Euclidean distance 

between an object and its associated cluster centre. A set of 13 benchmark clustering 

problems was tested, and the PSO with nine other classical techniques adopted for 

comparison purposes. Simulation results showed that the performance of the ABC 

algorithm outperformed those competent techniques. 

 The authors of [133] utilized the ABC algorithm in solving the data clustering 

problem. In addition, they modified the original ABC method to enhance the ABC’s 

performance, specifically during the position update routine. However, these 

modifications were adopted from the PSO technique resulting in additional parameters to 

be adjusted. The authors initially evaluated the modified version by solving different 

benchmark optimization functions. Then, they used the proposed algorithm to solve two 
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data clustering problems. Based on the comparison analysis, the results of the suggested 

version outperformed those attained by other approaches.  

3.3.6 COMPUTER SCIENCE APPLICATIONS 

The leaf-constrained minimum spanning tree (LCMST) problem has been solved in 

[134] through the ABC algorithm. The objective was to find a spanning tree contained 

specific number of levels with a minimum total weight. The LCMST utilized in practical 

applications such as facilities location and network designs [135]. In addition, the results 

of the algorithm via large-set problems outperformed those obtained using other 

commonly used methods such as GA, TS, and ACO techniques. 

 To maximize financial profit, a hybrid wavelet transform (WT), recurrent neural 

networks (RNN), and ABC algorithms were utilized in [136] for the stock market’s price 

forecasting. The choice of RNN scheme was due to its merits in solving complex time 

series’ applications in comparison with feed-forward networks. The neurons within the 

multiple hidden layers of RNN were connected to themselves and to the adjacent ones as 

well. Each algorithm has a dedicated assignment. In other words, the WT used to 

eliminate the noise of the data sample; adjusting the inputs’ values to match the desired 

outputs was assigned for RNN method; optimal tuning of the RNN’s weights was 

designated for the ABC algorithm. Various international stock markets’ indices were 

adopted to evaluate the performance of the suggested price forecasting tool. The 

outcomes of the proposed tool during the selected six-year periods outperformed those 

attained based on fuzzy and NN approaches. However, the fuzzy based approach did 

better than the offered tool in 2002 and 2003.  

3.3.7 SIGNAL PROCESSING AND COMMUNICATION SYSTEMS APPLICATIONS 

The author of [87] used the ABC algorithm in designing the digital infinite impulse 

response (IIR) filters to minimize the error between the desired and unknown output 

signals of the system. The order of the considered filters’ transfer functions was 1st, 2nd, 

4th, and 20th via four experiments. Moreover, the results of the ABC algorithm were 

compared with those of the least square error (LSQ) and PSO methods and the impact of 

the ABC parameters on the algorithm’s performance was investigated. The author also 
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evaluated the performance of the ABC algorithm over four benchmark optimization 

functions. Increasing the filter’s order (up to 34th) was presented in [137] and solved by 

the ABC algorithm. The outcomes of the ABC algorithm, in [87] and [137], 

outperformed those attained using competing techniques.  

 Ref. [138] used an ABC algorithm in solving applications of the wireless sensory 

network (WSN) problems. The objective was to maximize the coverage area and 

minimize the number of sensor nodes. The optimization problem was constructed in a 

clustering problem fashion, i.e., for a set of locations and a specific number of sensors, 

the optimal location to utilize all sensors was obtained so that every location was covered 

with minimum sensors. Three experiments with a variable number of sensors were 

conducted, and the results were identical to those attained using an analytical approach.  

 Sabat et al. [139] used the ABC algorithm for the metal extended semiconductor 

field effect transistor (MESFET) applications. The objective was to design a MESFET 

device to minimize the error (difference) between the desired and calculated parameters. 

In addition, the design problem was solved by the proposed ABC algorithm and the PSO 

technique. The results of the proposed algorithm outperformed those obtained using the 

competing method by means of solution quality and less computing time. 

 Bernardino et al. [140] solved the non-split weighted ring loading problem (non-

split WRLP) using the ABC algorithm. The aim of a non-split WRLP problem was to 

minimize the weights (demands) of a transmission routing (path) in a network for a 

predetermined set of communication orders. The authors modified some of the ABC 

algorithm features by using deterministic methods to determine the initial (discrete) 

population, rather than the random, solutions. Moreover, they analyzed the effect of 

varying the ABC’s parameters on the algorithm performance and considered a set of test 

examples with different ring sizes and demand values. The results of the proposed ABC 

algorithm outperformed those obtained using other well-known methods – in particular, 

when the dimension of the problem was increased. 

 The authors of [141] utilized the ABC algorithm to minimize the transient 

performance, i.e., propagation delay time, of a complementary metal oxide 
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semiconductor (CMOS) inverter. Three inverter-designed cases were used to examine 

the ABC method. The outcomes showed that the ABC algorithm was significantly faster 

than the compared SPICE (tool) simulation. Due to the positive merits of ABC algorithm 

with respect to traditional design tools, further investigation of designing digital 

microelectronic circuits by the ABC algorithm was suggested in [141]. 

 The gains of a proportional integral derivative (PID) controller were optimized 

using the ABC algorithm in [142]. The objective was to minimize the design error, 

overshoot time, and settling time. Three test controllers with high orders were utilized to 

show the effectiveness of the algorithm. The outcomes of the ABC method outperformed 

those found by other well-known techniques. The dynamic response of a proportional 

integral (PI) controller was optimized by a combination of GA and ABC algorithms in 

[143]. The hybrid method utilized the GA initially and then the ABC routines. This 

sequence repeated upon meeting the stopping criteria, i.e., maximum iteration reached or 

design specifications met. The gains’ values were optimized due to the specified design 

objectives, i.e., minimum overshoot time, rising time, settling time, and steady state 

error. The experimental results proved that the hybrid GA-ABC algorithm scored the 

best gains with respect to the compared methods. 

 The authors of [144] used the ABC algorithm to solve the WSN problem in a 

clustering mode. The objective was to minimize the energy consumed by each sensor 

and maximize the network’s lifetime. In this paper, the network was consisted of a 

cluster-head and its (clusters) members during predetermined periods. The main goal of 

the cluster-head was to collect the information from its members and send it to the base. 

Therefore, the cluster-head consumed greater energy than its members. Accordingly, 

minimizing the energy dissipation was the aim of the cluster style considered. Two well-

known techniques used to solve the WSN problems were implemented for comparison 

purposes. The results of using the ABC algorithm outperformed those techniques, hence 

increasing the network’s lifetime. 

 A comparison between the GA and ABC algorithms’ performances was 

conducted in [145] to solve the localization problem of WSN. The aim was to minimize 

the distance between the measured and reference points within the designated 
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environment. Several obstacles were embedded in that environment (search-space) for 

additional challenges to assess the performance of the considered algorithms. The 

outcomes of ABC algorithm outperformed those obtained by the GA method 

significantly by fewer location errors and shorter consumption time. 

3.3.8 VARIOUS ENGINEERING APPLICATIONS 

The authors of [146] proposed a discrete version of the ABC algorithm (DABC) to solve 

the lot-streaming flow shop scheduling problem. The main idea (objective) was to 

minimize the job’s completion time by allowing overlaps between successive machines 

and their operation tasks. To evaluate the proposed algorithm outcomes, two types of the 

flow shop scheduling problems under a set of 20 problems have been examined. 

Statistical measurements were employed to show that the DABC algorithm produced 

improved results in contrast with those attained using other hybrid meta-heuristic (PSO-

based and GA-based) algorithms. Another version of the flow shop scheduling problem 

solved by the same authors in [147, 148] using their DABC algorithm introduced in 

[146]. The permutation flow shop scheduling problem (PFSP) can be interpreted as 

allocating each task (job and corresponding operations) associated with every machine. 

However, each machine restricted to perform a single operation only without interruption 

or time-delay in the production line. In other words, the objective, in [147] and [148], 

was to minimize the total flow time citation. A set of 90 benchmark scheduling problems 

was considered for comparison reasons. The suggested algorithm outperformed 71% and 

49% of the considered problems reported in [147] and [148] respectively. Moreover, 

minimizing the production time subjected to different inequality constraints was the aim 

in [149]. The authors used the ABC algorithm to solve the multi-pass milling operation 

problem. A range of cutting strategies, e.g., speed and depth of the cut, was adopted 

towards the most optimal solution and a detailed comparison of the results was 

presented.  

 From a supply chain management perspective, the authors of [150] adopted the 

ABC algorithm in the problem considered. The objective was to minimize the 

remanufacturing costs subject to various equality and inequality constraints representing 
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the behaviours of facilities and end users. The results of ABC algorithm outperformed 

those of the PSO method by a significant reduction in the desired function.  

 An optimal structure design problem, specifically minimizing the weight of the 

structural design, was solved using the ABC algorithm in [151]. Various inequality 

constraints based on the loading conditions were taken into account in the optimization 

process. The author converted this constrained problem to an unconstrained one by a 

dynamic penalty formula. A set of five frequently tested design problems was utilized to 

evaluate the effectiveness of the proposed technique. From the comparison analysis, the 

ABC’s outcomes substantially outperformed those attained by other well-known 

methods. In addition to minimizing the structural’s weight, the authors of [152] 

employed the ABC algorithm to solve a multi-objective optimization problem. The bi-

objectives were minimizing the weight and cost of the composite structure, subject to 

strength constraints. Three design problems were conducted, and the results of the 

proposed ABC method outperformed those competing algorithms. 

 The authors of [153] used the ABC algorithm to solve the mechanical draft 

cooling tower problem. Most large thermal industries (systems) use these cooling towers 

to dissipate the process heat. The objective was to minimize the total (operational and 

capital) costs subject to satisfying various design’s inequality constraints. Frequently 

used examples were adopted to show the efficiency of the proposed algorithm. A high-

level mathematical tool [154], general algebraic modeling system (GAMS), was 

designated for comparison. In all the tested cases, the outcomes of ABC algorithm 

significantly outperformed those of GAMS, saving thousands of dollars.  

 The ABC algorithm utilized to solve mixed integer nonlinear optimization 

problems in [155]. The objective was to maximize the system’s reliability subject to 

complex design’s constraints. Different types of design systems (series, parallel, and 

combination of series and parallel) were adopted to reveal the performance of the ABC 

algorithm. The outcomes of the ABC method, in all test systems, showed the highest 

reliable results. 
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Table 3. 1: Summary of published papers utilizing the ABC algorithm w.r.t. 
experimental tests and compared algorithm; --: no comparisons were carried out. 

Ref. Tests Compared Algorithms 

[82] 3 --     

[84] 5 PSO GA EA-PSO   

[85] 13 PSO DE    

[87] 8 PSO LSQ    

[88] 5 PSO DE EA   

[89] 50 GA PSO DE ES  

[99] Survey --     

[100] 13 Various Stochastic-based Algorithms PSO DE GA  

[101] 14 Various Heuristic Techniques     

[102] 3 GA     

[103] 4 Different Heuristic Algorithms     

[104] 1 Parallel SA-GA Methods     

[106] 9 Different PSO Techniques     

[107] 9 PSO DE    

[108] 3 Back Propagation GA    

[109] 33 Different PSO Methods ES GA DE  

[110] 10 --     

[111] 3 ABC C1-ABC C2-ABC C3-ABC  

[112] 6 ABC     

[113] 6 ABC PSO    

[114] 7 ABC     

[115] 11 ABC GA Various PSO Methods 

[116] 18 --     

[117] 10 ABC     

[118] 6 ABC     
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Ref. Tests Compared Algorithms 

[119] 3 Different PSO Methods Lambda GA   

[120] 12 ABC Grid-Search Analytical   

[121] 9 Grid-Search Analytical GA   

[122] 4 Nonlinear Optimization Grid-Search Analytical ABC GA 

[123] 3 SA TS DE GA  

[124] 2 SA DE    

[125] 2 GA PSO    

[126] 6 ABC     

[127] 6 ABC     

[128] 3 ABC PSO    

[129] 4 GA     

[130] 4 PSO GA    

[131] 3 Hybrid PSO-based Methods TS SA ACO GA 

[132] 13 9-Classical Clustering Methods PSO    

[133] 7 ABC Various PSO Algorithms  

[134] 65 GA TS ACO   

[136] 8 ANN and Fuzzy based Methods     

[137] 4 PSO GA    

[138] 3 Analytical     

[139] 1 PSO     

[140] 19 GA TS PSO   

[141] 3 SPICE Simulation     

[142] 3 Various Deterministic Methods Fuzzy-based GA EP  

[143] 1 ABC GA Gradient   

[144] 1 Different Methods used for WNS Applications     

[145] 6 GA     
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Ref. Tests Compared Algorithms 

[146] 40 Hybrid GA and PSO based Algorithms     

[147][148] 90 Hybrid Heuristic-based Algorithms     

[149] 1 PSO SA    

[150] 1 PSO     

[151] 5 Different Heuristic Algorithms     

[152] 3 GA PSO AIS   

[153] 7 GAMS Tool      

[155] 4 Fuzzy-based DP GA AIS  

 

3.4 SUMMARY 

The aim of this chapter was to address state-of-the-art research on the ABC algorithm. 

The algorithm was discussed, and the key features highlighted. Throughout the literature 

review, it outperformed or matched other well-known meta-heuristic algorithms.  

 Furthermore, parameter-tuning in meta-heuristic optimization algorithms 

significantly influenced the algorithm’s performance. Unlike the ABC algorithm, with 

only two parameters (CS and MCN) to adjust, other well-known meta-heuristic 

algorithms have many parameters to tune. Updating the two parameters towards the most 

effective values has a higher likelihood of success than other competing meta-heuristic 

algorithms. The performance of the ABC algorithm demonstrated its superiority and 

potential for solving complex real-world problems in future research. 
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CHAPTER 4: NOVEL META-HEURISTIC TECHNIQUE: SENSORY- 
DEPRIVED OPTIMIZATION ALGORITHM 

 

4.1 INTRODUCTION 

Most efficient meta-heuristic algorithms are inspired by natural phenomena [79-83]; 

therefore other superior algorithms can also be derived from nature. The terms heuristic 

and meta-heuristic are typically used in the literature interchangeably, but the main 

difference between these two terms is as follows. A heuristic algorithm is set rules of 

thumb that lead to an optimal or quasi-optimal result. It does not require ideal data to 

achieve the desired solution; common sense approximations or assumptions drive the 

problem solution to attain superior results with varying degrees of certainties [156]. 

Therefore, heuristic algorithms are mostly designed for specific problems. On the other 

hand, a meta-heuristic algorithm is an advanced heuristic algorithm [83]. Meta-heuristic 

algorithms are generally not problem dependent, yet they follow the trial-and-error 

process and could combine more than one heuristic tactic to solve a problem [43, 62, 63]. 

 Although meta-heuristic algorithms are random, they follow a logical pattern. 

Within most meta-heuristic algorithms, two procedures interact with each other. The first 

procedure explores the search space to arrive at the optimal region. Exploiting that 

region to determine an optimal solution is the goal of the second procedure. A good 

balance between these two procedures leads to a superior algorithm [86]. However, 

meta-heuristic algorithms have parameters to be adjusted, which vary from one 

application to another. An algorithm with few parameters to tune is always desired, as 

long as it is efficient. 

 Typically, the efficiency of meta-heuristic algorithms is confirmed by statistical 

measurements. Because obtaining the global solution is not guaranteed by meta-heuristic 

algorithms, they simulate independent runs to support their achievements. In addition, 

the required CPU time for an algorithm shares that evaluation, even though it mainly 

relies on the PC’s features, e.g., processor speed, random access memory (RAM) size, 

rather than the algorithm itself. Furthermore, the CPU time issue could be insignificant 



 

55 
 

for off-line applications or planning-stage optimization problems. Optimization problems 

with large dimensions can be expected to consume additional time to avoid premature 

convergence.  

 In this chapter, a new sensory-deprived optimization algorithm (SDOA) is 

proposed. Similar to other meta-heuristic algorithms, the SDOA is a population-based 

and derivative-free. A set of benchmark optimization functions are examined to confirm 

the performance efficiency of the suggested algorithm. The results are compared with 

those found using other well-known meta-heuristic optimization algorithms. 

4.2 THE SENSORY-DEPRIVED OPTIMIZATION ALGORITHM 

Inspired by the intelligent behaviour or survival instincts of a sensory-deprived human 

being, this new meta-heuristic optimization algorithm is based on a solid concept and 

utilizes the exploration and exploitation processes simultaneously and distinctly from 

other meta-heuristic algorithms. 

 A sensory-deprived person (SDP) will use his/her functioning senses to help 

reach his/her goal. If a blind person wants to reach an object or to walk in a certain path, 

with neither guidance nor specific experience, he/she will rely intuitively on his/her 

remaining senses: tasting, touching, smelling, and hearing with various degrees of 

dependency. Only three of them – taste, touch, and smell – will provide him/her with 

feedback from nearby obstacles. The feedback from the remaining sense – hearing – 

could symbolize the slightly-distant obstacles. Utilizing these feedbacks will assist the 

blind person towards his/her goal. 

 It is clear that the exploitation and exploration processes are present in the above 

assumption. In other words, feedback from the taste, touch, and smell senses stand for 

the exploitation process of a region in the search space. However, for the exploration 

process, the routine is divided into two strategies. The first one employs hearing to 

receive feedback from an adjacent region of the search space of the remaining senses. 

The second (temporary) strategy terminates the worst-performing sensory-deprived 

persons (population) and replaces them by those who perform better in a parallel search 
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process. This parallel search dynamically diminishes when the number of iterations 

increases. These procedures are repeated until the stopping criterion is met. 

  Initially, the populations adaptively update their standing positions using their 

available senses. Then, after a certain number of moving steps (R), individuals interact or 

communicate with each other to determine a leader. The leader is the one who has the 

highest probability of achieving the objective. Once the leader is determined, the 

remaining population follows him/her by searching nearby positions. After that, the 

leader and followers will be ranked based on their fitness functions’ values. At the same 

time of selecting a leader, new rank positions are assigned, and evaluated. The number of 

those positions is defined by the user. This parallel process represents further 

exploitation action and dynamically decreases when the number of iterations increases. 

Afterward, the ranked solutions of both (main and parallel processes) are updated (swap 

or merge) if applicable, the best solution retained, and another iteration starts. These 

procedures are repeated a predetermined number of times.  

 The distinct and main advantage of the proposed algorithm is as follows. The 

feedback from the “hear” sense will be somewhere between the exploration and 

exploitation search, leading to covering a wide range of the solution search-space, and 

avoiding premature convergence. Furthermore, the solution vectors from the parallel 

semi-exploration routine enhance the solution vectors of the main algorithm. The 

flowchart in Figure 4.1 illustrates the solution procedures of the SDOA.  

 The initial solution (xi) or standing position of a sensory-deprived person (SDP) 

is a D-dimensional vector with D parameters to be optimized and as follows:  ݔ௜ = ௝ݔ] ௝ାଵݔ …  ஽]௜ (4.1)ݔ

where, i ∈ {1, 2, …, SDP} and j ∈ {1, 2, …, D}.  

 The procedures to modify the standing position of a SDP into four senses for the 

main search are as follows: 
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a) Randomly select the jth parameter of an xi solution to be modified. 

b) Randomly retain the jth parameter of an xk solution, taking into account that i ≠ k 

and both i and k ∈ {1, 2, …, SDP}.  

c) Apply the following formulas:  ݔ௜௝௡௘௪ = ௜௝௢௟ௗݔ + ௜௝௢௟ௗݔ൫ ݑ − ௜௝௡௘௪ݔ  ௞௝൯ (4.2)ݔ = ௜௝௢௟ௗݔ + ܷ ൫ݔ௜௝௢௟ௗ −  ௞௝൯ (4.3)ݔ

d) Select the best standing position by means of fitness value. 

Equation (4.2) adopted from [82] and utilized for the three senses searching nearby 

positions, and (4.3) used for the remaining (hearing) sense.  The multipliers u and U are 

uniformly normally distributed random numbers, and their ranges have been chosen after 

conducting several experimental tests to various benchmark optimization functions. The 

multiplier in (4.2) is in the range [-1,1]. However, the U multiplier is in the range [-5,5] 

and excluding the interval of the u multiplier. Moreover, if the new parameter gets 

beyond the specified values it is adjusted to the nearest limit. 

 In the temporary search, steps a, b, and c are used but instead of selecting and 

retaining a single parameter, half of the D-parameters are selected and retained to be 

modified by this parallel search. Furthermore, the number of SDPparallel in this search is 

suggested to be ≤ 10% of the main population number. The parallel search starts with the 

main search and it gradually decreases when the number of iterations increases. In other 

words, assume that the main population is 100; therefore the parallel search population 

will be 10. Then, the population number of the parallel search becomes 9 in the second 

iteration, and so forth. The parallel search, in this example, will be terminated when the 

main search reaches the 11th iteration. Clearly, this procedure will enhance the premature 

solutions obtained by the SDOA. The probability of a solution i (pi) is calculated based 

on the fitness values (fiti), as follows: 

௜݌ = ∑௜ݐ݂݅ ௜ௌ஽௉௜ୀଵݐ݂݅  (4.4) 
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 The solution procedures of the proposed SDOA including the temporary parallel 

search are as follows: 

1. Initiate (randomly) standing positions (solutions) for the sensory-deprived 

individuals and evaluate the fitness values of those positions. 

2. Modify the standing positions into 4 (senses) and evaluate them. 

3. Compare modified positions with their standing positions and select the best 

new standing points. 

4. If the populations update their standing positions R times, go to next step. 

Otherwise, repeat steps 2 and 3 R times (one time), where R is suggested as 

follows: ܴ ≥  ଶ (4.5)ܦ

5. A sensory-deprived individual associated with a standing position that 

represents the highest probability value will be selected as a leader. 

5.1 If the main iteration number is larger than the population number of SDPparallel, 

go to step 6. Otherwise, go to the next step. 

5.2 Generate ≤ 10% of the main population, i.e., select random standing positions 

and evaluate them. 

5.3 Modify the standing positions into 4 (senses) and evaluate them. 

5.4 Update the SDPparallel using (4.6): ܵܦ ௣ܲ௔௥௔௟௟௘௟௡௘௪ = ܦܵ ௣ܲ௔௥௔௟௟௘௟௢௟ௗ − 1 (4.6) 

5.5 Rank the solutions in order. 

5.6 Follow step 8. 

6. Recruit the remaining population to search near the selected leader. 

7. Evaluate the fitness values, and rank the solutions in order. 

8. Swap or merge if possible. 

9. Retain the best solution. 

10. If stopping criterion reached, go to next step. Otherwise, follow step 2. 

11. End, print solutions. 

 



 

59 
 

Initiate standing-positions
xi, and evaluate them

Modify positions into 4 (senses) and evaluate them

Compare solutions and select best (standing-positions)

R ≥ D2

Based on probability, select best position as a leader
position

Yes

Recruit remaining population to search nearby the selected
leader

Evaluate fitness & rank the solutions in order

Swap/merge if possible

Memorize best solution

Iter. ≥ Max no.

End, print result

Yes

No

No

Modify standing-positions into 4
(senses) and evaluate them

Compare the solutions and rank
them in order

Update the parallel search
population using (4.6)

Iter. > SDPparallel

Generate SDPparallel standing-
positions and evaluate them

Parallel search starts with random
population, SDPparallel

No

Terminate this search

Yes

 
 

Figure 4. 1: Flowchart of the proposed SDOA. 
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4.3 EXPERIMENTAL RESULTS AND DISCUSSION 

The absence of a mathematical framework of most meta-heuristic optimization 

algorithms makes it cumbersome to indicate which algorithm is better. Researchers 

attempt to verify the robustness of these algorithms using statistical measurements. In 

other words, benchmark optimization functions are typically utilized to show the 

efficiency of meta-heuristic algorithms. A set of benchmark functions used frequently in 

the literature is adopted in this chapter, as recorded in Table 4.1.  

 The results of the proposed algorithm after carrying out 30 independent runs were 

compared with those obtained using other well-known meta-heuristic algorithms, i.e., 

GA, PSO, ABC, and DE algorithms reported in [89]. In order to make the comparison 

realistic, the SDP number was tuned to 50, the maximum evaluation number was 

constrained to 5×105 and the values ≤ 10-12 were converted to zero as suggested in [89]. 

The results in terms of the mean and standard deviation (Std.Dev.) values are in Table 

4.2. Although the authors in [89] neglected the required CPU time, it was calculated for 

the proposed SDOA as shown in Table 4.2 and Table 4.3.  

 
Table 4. 1: Selected benchmark optimization functions; D: Dimension. 

Function x-Range D Formulation 

f1 [-100, 100] 30 ଵ݂(ݔ) = ෍ ௜ଶ஽ݔ
௜ୀଵ  

f2 [-30, 30] 30 ଶ݂(ݔ) = ෍ ቂ100൫ݔ௜ାଵ − ௜ଶ൯ଶݔ + ௜ݔ) − 1)ଶቃ஽ିଵ
௜ୀଵ  

f3 [-100, 100] 2 ଷ݂(ݔ) = 0.5 + ଶ݊݅ݏ ቀඥݔଵଶ + ଶଶቁݔ − 0.5൫1 + ଵଶݔ)0.001 +  ଶଶ)൯ଶݔ

f4 [-600, 600] 30 ସ݂(ݔ) = 14000 ෍ ௜ଶݔ − ෑ cos ൬ݔ௜√݅൰ + 1஽
௜ୀଵ

஽
௜ୀଵ  

f5 [-5.12, 5.12] 30 ହ݂(ݔ) = ෍ൣݔ௜ଶ − (௜ݔߨ2)ݏ݋ܿ 10 + 10൧஽
௜ୀଵ  

  



 

61 
 

 The Sphere function (f1), as Figure 4.2 shows, is a smooth problem with convex 

characteristics. It has no local minima except the global one at f1
* = 0. However, the 

Rosenbrock function (f2), known as the banana function, is a standard test function 

employed repeatedly. The global solution is inside a narrow and parabolic shape valley, 

as Figure 4.3 illustrates. This problem examines the algorithm’s performance in avoiding 

being trapped in local minima. Although the Schaffer function (f3) is a two-dimensional 

problem, the global solution for this function, as Figure 4.4 demonstrates, is very close to 

the local ones. Therefore, exploring the search space properly is vital in such a problem. 

Other classic test problems are the Griewank (f4) and Rastrigin (f5) functions. Both, as 

Figure 4.5 and Figure 4.6 exemplify, have various local minima and only one global 

solution. Unlike the Schaffer function, the dimensions of the remaining test functions are 

relatively high, which in turn result in further complexity. 

 

 
Figure 4. 2: 3D plot of the Sphere (f1) function. 
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Figure 4. 3: 3D plot of the Rosenbrock (f2) function. 

 

 
Figure 4. 4: 3D plot of the Schaffer (f3) function. 
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Figure 4. 5: 3D plot of the Griewank (f4) function. 

 

 
Figure 4. 6: 3D plot of the Rastrigin (f5) function. 
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SDOA outperformed those obtained using other algorithms [89]. In addition, the 

required CPU time of the proposed algorithm to obtain a solution is considered fast. 

  

Table 4. 2: Statistical measurements of the selected benchmark functions; Results of the 
proposed algorithm are emphasized in boldface; Std.Dev.: Standard Deviation 

fi Statistic GA PSO DE ABC SDOA CPU (s) 

f1 
Mean 1.11×103 0.0000 0.0000 0.0000 0.0000 

0.4 
Std.Dev. 74.2145 0.0000 0.0000 0.0000 0.0000 

f2 
Mean 1.96×105 15.0886 18.204 0.0888 0.0170 

0.4 
Std.Dev. 3.85×104 24.1702 5.0362 0.0774 0.0167 

f3 
Mean 0.00424 0.0000 0.0000 0.0000 0.0000 

0.2 
Std.Dev. 0.00476 0.0000 0.0000 0.0000 0.0000 

f4 
Mean 10.6335 0.01739 0.0015 0.0000 0.0000 

1.1 
Std.Dev. 1.16146 0.02081 0.003 0.0000 0.0000 

f5 
Mean 52.9226 43.9771 11.7167 0.0000 0.0000 

0.9 
Std.Dev. 4.56486 11.7287 2.5382 0.0000 0.0000 

 

 The classical Rosenbrock (f2) function, among those selected test functions, is 

considered a challenge. Indeed, this function has a flat parabolic valley with non-convex 

characteristics. Although finding the valley is trivial, approaching the global solution 

inside this narrow surface is known to be difficult [87]. Accordingly, and in order to 

confirm the efficiency of the proposed algorithm performance, the Rosenbrock (f2) 

function was designated for further simulation by increasing the dimension to 100. The 

population size remained unchanged but the maximum number of evaluations was 

constrained at 1×106.  
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 The statistical measurements, as seen in Table 4.3 and Figure 4.7, proved that the 

solution’s quality of the SDOA outperformed those of ABC method. However, the 

required CPU times of the SDOA were slightly higher than the ABC algorithm. 

 

Table 4. 3: Statistical measurements of the proposed SDOA applied to the Rosenbrock 
function (f2) with 100 dimensions; Min: Minimum; Max: Maximum; Std.Dev.: Standard 
Deviation. 

x-Range Method Min. Max. Mean Std.Dev. CPU (s) 

[-30,30] 
ABC 0.01022 0.28637 0.14830 0.13807 1.1 

SDOA 0.01210 0.16596 0.07956 0.06423 1.3 

[-100,100] 
ABC 0.47869 0.97742 0.72805 0.24936 1.7 

SDOA 0.02190 0.36390 0.16801 0.14398 2.1 
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Figure 4. 7: The 95% confidence intervals of ABC and SDOA methods with respect to 
different search-space ranges. 
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4.4 SUMMARY 

In this chapter, a new population-based sensory-deprived optimization algorithm 

(SDOA) was proposed to solve numerical optimization problems. Its distinct and main 

advantage occurred in the semi-exploitation and semi-exploration processes. Thus, the 

SDOA covered a wide range of the solution search-space, and evaded premature 

convergence. The solution vector from the temporary semi-exploration routine enhanced 

the solution vector of the main algorithm.  

 A set of benchmark optimization functions was used to evaluate the performance 

of the proposed SDOA technique and compare its results with those attained using other 

well-known algorithms. In addition, the SDOA was utilized in a mixed integer nonlinear 

optimization applications in [157]. The efficiency of the SDOA method was confirmed 

by the fact that the standard deviation of the results attained for 30 independent runs was 

virtually zero. The performance of the presented SDOA algorithm addressed its 

superiority and the potential for solving complex and larger dimensional problems in 

future research. 
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CHAPTER 5: COMPUTATIONAL RESULTS 
 

5.1 INTRODUCTION 

The majority of existing prime movers in electrical power systems are fossil fuel based. 

The ultimate goal is to meet the required load demand at the lowest operating costs 

subject to satisfying various practical equality and inequality constraints. Environmental 

concerns, due to Green House Gas (GHG) emissions caused by fossil fuels, affect the 

achievement of this goal and power utilities strive to minimize costs and emissions 

simultaneously.  

 Power utilities control or dispatch centres prepare (solve) the next-day dispatch 

schedule for the predetermined-committed units, after utilizing the day-ahead forecasted 

load demand. The solution of the DED is based on the assumption that the load demand 

is a constant between sampling points, but it is not. Therefore, utilities overcome this 

drawback by performing (updating) the DED solution from every few minutes to one 

hour. Although available spinning reserve plays a major role in utilities’ operation in 

terms of stability and reliability, it will increase operational costs. Most utilities bypass 

or “limit” this additional operating cost by contracting one or more consumers (usually 

large ones) to be off the utility’s generation supply. This approach has more customer 

satisfaction than the identical load shedding; nevertheless, load shedding practices exist 

as a last resort. 

 In this chapter, the ABC algorithm is utilized to solve the DED and DEED 

problems. In addition, a new constrained search-tactic is offered to enhance the 

algorithm’s performance. The SDOA, in this chapter, is adopted to solve two test 

systems for two reasons: 1) to validate the efficacy of the proposed constrained search-

tactic with another algorithm, and 2) to show the potential of the SDOA in solving such a 

complex, non-convex, and nonlinear optimization problem. Therefore, the performance 

of the SDOA and ABC algorithms with and without the integration of the constrained 

search-tactic are evaluated by solving different test cases. The test systems are 

categorized into two groups according to the objective functions considered. The first 

one is used to solve single objective function problems as well as to confirm the 
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proposed constrained search-tactic, while the second group represents the multiple 

objective functions problems. Analyzing the effect of integrating renewable energy 

sources in the multiple objective functions problem is also considered in the second 

group. This chapter is organized as follows: Section 5.2 explains the mathematical 

formulation of the optimization problems considered; Section 5.3 clarifies the proposed 

constrained search-tactic; Section 5.4 demonstrates the computational results and 

discussion of the test systems; Section 5.5 highlights the conclusions. 

5.2 MATHEMATICAL FORMULATION 

Since the objective function of the DED problem is to minimize the operating fuel’s 

costs of committed generating units to meet the load demand, subject to equality and 

inequality constraints over a predetermined dispatch period, the result’s practical 

usefulness will be degraded if the units’ valve-point effects are neglected. Consequently, 

there are two models to represent the units’ valve-point effects in the literature [48]. The 

first represents the units’ valve-point effects in terms of prohibited operating zones 

which are included as inequality constraints. The second form represents the units’ 

valve-point effects as a rectified sinusoid term which is superimposed on the 

approximate quadratic fuel cost function. Figure 5.1 demonstrates the cost function of 

the generator unit based on different forms as well as the classical quadratic form. The 

general mathematical form of the DED problem is as follows: 

ࡲ = ݉݅݊ ෍ ෍ ௜݂ே
௜ୀଵ ( ௜ܲ௧)்

௧ୀଵ   (5.1) 

where, fi (Pi) is the fuel cost function of ith generator and Pi
t is the output power of ith 

generator at a time t, ∀ i ∈ {1, 2, …, N} and ∀ t ∈ {1, 2, …, T}. Equations (5.1.1) and 

(5.1.2) [158] express the fuel cost function neglecting and considering the units’ valve-

point effects, respectively. 
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Figure 5. 1: Output power response of generator unit due to different fuel cost functions; 
dashed and solid curves represent non-smooth and smooth fuel cost functions, 
respectively. 

 

௜݂( ௜ܲ) = ܽ௜ + ܾ௜ ௜ܲ + ܿ௜ ௜ܲଶ (5.1.1) 

௜݂( ௜ܲ) = ܽ௜ + ܾ௜ ௜ܲ + ܿ௜ ௜ܲଶ + ቚ݀௜ × ݊݅ݏ ቀ݃௜ × ൫ ௜ܲ,௠௜௡ − ௜ܲ൯ቁቚ (5.1.2) 

where, ai, bi, ci, di, and gi are the ith generator’s coefficients, and Pi min is the minimum 

limit of ith generator.  

 Due to environmental consciousness, the classical goal of power utility, i.e., 

dispatching with the least fuel costs, is hampered. Power plants using fossil fuels have to 

manage the gases’ emissions, e.g., carbon dioxide (CO2), nitrogen oxides (NOx), and 

sulfur dioxide (SO2). Different solutions have been proposed in [159] to deal with the 

emissions of power plants:  

1. Integrate filters to clean harmful gases attributable to the combustion process. 

2. Operate with (cleaner) fuels that contain lower emissions. 

3. Superimpose the emissions’ impact at the optimal dispatch process. 
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 Considering the third option from a cost-effective standpoint, emissions 

pollutants have been incorporated in the optimization problem either as competing with 

the objective function [31, 33, 51], or as an inequality constraint [15, 34, 52]. In this 

thesis, the former approach is adopted to represent the DEED problem. Therefore, the 

quantity of emissions pollutants per generation units can be expressed as follows [9]:  

ࡱ = ݉݅݊ ෍ ෍ ௜ேܧ
௜ୀଵ ( ௜ܲ௧) ்

௧ୀଵ  (5.2) 

)௜ܧ ௜ܲ) = ௜ߙ + ௜ߚ ௜ܲ + ௜ߛ ௜ܲଶ +  ௜ ݁ఋ೔௉೔ (5.2.1)ߟ

where, Ei (Pi) is the emissions function of ith generator, αi, βi, γi, ηi, and δi are the ith 

generator’s coefficients, e is an exponential term, and Pi is the output real power of ith 

generator.  

 Moreover, it is impractical to neglect the transmission losses of the system, so the 

B-coefficient formula is commonly used to express it. Thus, the real power balance 

equation representing equality constraints of the problem considered is as follows: 

෍ ෍ ௜ܲ௧ = ෍ ஽ܲ௧ + ௅ܲ௧்
௧ୀଵ

ே
௜ୀଵ

்
௧ୀଵ  (5.3) 

where, PD
t and PL

t are the load demand and system’s loss at a time t respectively. 

Integration of a renewable source (RS) modifies the equality constraints function [160] to 

be as follows: 

෍ ෍ ௜ܲ௧ = ෍ ൭ ஽ܲ௧ + ௅ܲ௧ − ෍ ோௌ௧ெߤ
ோௌୀଵ ோܲௌ௧ ൱்

௧ୀଵ
ே

௜ୀଵ
்

௧ୀଵ  (5.3.1) 

෍ ෍| ௜ܲ௧ − ஽ܲ௧ − ௅ܲ௧|ே
௜ୀଵ ≤ ෍ ෍ ோௌ௧ߤ|  ோܲௌ௧ |ெ

ோௌୀଵ
்

௧ୀଵ
்

௧ୀଵ  (5.3.2) 

where, μRS
t is a multiplier set to a permissible amount of active power injected by RS at 

time t, PRS
t is the forecasted real power from RS at time t ∀ RS ∈ {1, 2, …, M}. In this 

thesis, μRS is set to one, and t ∈ {1, 2, …, T}. 
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 The system’s active power loss can be calculated using Kron’s loss formula [161] 

as follows: 

෍ ௅ܲ௧்
௧ୀଵ = ଴଴ܤ + ෍ ෍ ௜଴ܤ ௜ܲ௧ே

௜ୀଵ
்

௧ୀଵ + ෍ ෍ ෍ ௜ܲ௧ܤ௜௝ ௝ܲ௧ே
௝ୀଵ

ே
௜ୀଵ

்
௧ୀଵ  (5.4) 

 Alternatively, by omitting the first two terms of (5.4), the system’s active power 

loss can be calculated using George’s loss expression [161] as follows: 

෍ ௅ܲ௧்
௧ୀଵ = ෍ ෍ ෍ ௜ܲ௧ܤ௜௝ ௝ܲ௧ே

௝ୀଵ
ே

௜ୀଵ
்

௧ୀଵ  (5.5) 

where, B00 is the loss coefficient constant; Bi0 is the ith element of the loss coefficient 

vector; Bij is the ijth element of the loss coefficient square matrix. It is important to 

mention that (5.4) and (5.5) are approximate formulas representing the system’s active 

power loss. In addition, these two equations are utilized under the assumption that 

intense changes to the system’s status have not occurred [162, 163]. Although power 

flow calculation offers system’s power loss in a more detailed model, it creates an extra 

burdensome to the considered problem. Therefore, Kron’s and George’s loss’s 

expressions are favoured [161]. 

 The inequality constraints of the DED and DEED problems are the units’ ramp-

rate limits, i.e., upper rate (URi) and down rate (DRi), are considered as follows: 

௜ܲ௧ − ௜ܲ௧ିଵ ≤ ܷܴ௜ 
௜ܲ௧ିଵ − ௜ܲ௧ ≤  ௜ (5.6)ܴܦ

 Additional inequality constraints are the minimum and maximum power output 

of each unit: 

௜ܲ,௠௜௡ ≤ ௜ܲ ≤ ௜ܲ,௠௔௫ (5.7) 

 Therefore, to incorporate the constraints of units’ ramp-rate limits (5.6) in the real 

power output limit constraints (5.7), the modified units’ real power outputs are evaluated 

[49] as follows: 
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௜ܲ,௠௜௡ ௧ = ൫ݔܽ݉ ௜ܲ,௠௜௡, ௜ܲ௧ିଵ −  ௜൯ܴܦ

௜ܲ,௠௔௫௧ = ݉݅݊൫ ௜ܲ,௠௔௫, ௜ܲ௧ିଵ + ܷܴ௜൯ 
(5.8) 

 The following inequality constraints describe the case when units have prohibited 

operating zones [30] defined by: 

൞ ௜ܲ,௠௜௡ ≤ ௜ܲ௧ ≤ ௜ܲ,ଵ௟
௜ܲ,௝ିଵ௨ ≤ ௜ܲ௧ ≤ ௜ܲ,௝௟       ௜ܲ,௡೔  ௨ ≤ ௜ܲ௧ ≤ ௜ܲ,௠௔௫ 

, j ∈ {2, 3, …, ni} (5.9) 

where, P l
i,1 is the lower limit of the first prohibited zone of the ith generator; P u

i,j-1 is the 

upper limit of the (j-1)th prohibited zone of the ith generator; P u
i,ni is the upper limit of the 

nth prohibited zone of the ith generator; ni is the number of prohibited zones in the ith 

generator.   

5.3 NEW CONSTRAINED SEARCH-TACTIC 

The challenging level of optimization problems increases when a large number of 

equality and inequality constraints must be satisfied. One way to handle such a problem 

is by transferring it from a constrained formed to an unconstrained one. The penalty 

factor is a frequently used method to include those constraints into the objective 

function. However, each constraint has a characteristic degree of dominance affecting the 

algorithm performance, and – somehow – directs the algorithm towards the optimal or 

quasi-optimal region. The proposed search-tactic utilizes those constraints to accelerate 

the algorithm performance towards the optimal feasible region. 

 The following procedures describe the proposed constrained search-tactic for the 

scenario of a one-hour dispatch period. Only steps 2 and 3 are utilized in the one-day-

ahead dispatch period scenario, i.e., when multiple time intervals are considered. 

1. The maximum and minimum output powers of each unit are modified to 

incorporate the constraints of the units’ ramp-rate limits [49], and updated in 

every dispatch (t) hour using (5.8).  

2. The objective function is altered “temporarily” from minimizing the operating 

fuel costs and/or emissions to minimizing the violation of the real power 
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balance equation. This substitution of objective function is applied at the initial 

population calculations. Once the (φ + 1) loop (cycle) starts, the main objective 

function is retained until the stopping role is met. The idea behind this 

substitution is to avoid exposing too many infeasible solutions. The value of (φ) 

is chosen to be 10% of the maximum iteration number of an algorithm.  

3. The handling mechanism for the units’ prohibited operating zones is as follows. 

Consider a unit (i) in a solution vector (xi) operates at a time (t) within a 

prohibited operating zone (j); the following procedures describe the handling 

method for the units’ prohibited operating zones: 

3.1 Divide the solution (xi) into two sub-solutions by only modifying the unit (i) 

output according to its violated prohibited operating zone (j). 

3.2 Force each one of the two sub-solutions to adjust unit (i) output to operate in 

its permissible upper and lower limits of the associated prohibited operating 

zone (j), while taking into account the unit’s ramp-rate constraints. 

3.3 Evaluate both sub-solutions, and select the best based on a greedy-selection 

method. 

 For the case when multiple units (y) violate their prohibited operating zones’ 

constraints, the number of sub-solutions equals 2y. The main advantage of the proposed 

search-tactic is reducing (significantly) the degree of randomness in the initial population 

– consequently, accelerating the algorithm’s performance towards the optimum feasible 

region. 

5.4 SIMULATIONS AND RESULTS 

Various test systems are examined to verify the validity of the algorithms offered. The 

acceptable violation of equality constraints (power balance equation) is adjusted to be 

less than or equal 10-4. The control parameters of selected algorithms are tuned after 

trial-and-error experiments. The proposed methods are implemented in C language, and 

executed on an Intel® core™ 2 duo PC with 2.66-GHz speed and 4GB RAM. The 

results obtained after carrying out 30 independent runs are compared with those attained 

using other well-known techniques. The solutions’ quality and required CPU time 

demonstrated the efficiency of the offered methods. 
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5.4.1 SINGLE OBJECTIVE FUNCTION PROBLEM 

In this set of test systems, the objective function is to minimize the operating fuel costs 

(or emissions) of committed generation units to meet the load demand, subject to various 

equality and inequality constraints. Three systems frequently used in the literature are 

adopted to evaluate the performance of the proposed ABC algorithm. In addition, the 

effectiveness of the offered constrained search-tactic is validated in this set of test 

systems as well as via utilizing the SDOA algorithm by solving two of those systems. A 

comparison between the results attained by the suggested methods, and those obtained 

using different techniques is conducted. The first two cases involve the scenario where 

the DED problem is designated for a one hour dispatch schedule. A one-day dispatch 

schedule is represented in the remaining cases where the ABC algorithm is utilized.  

5.4.1.1 CASE 1-A 
Table A.1 lists the system’s six generating units’ characteristics and coefficients. The 

objective function was to operate these units economically to meet the 1.263 GW load 

demand. The considered constraints in this system were the transmission losses, units’ 

ramp-rate limits, units’ bounded limits, as well as double prohibited operating zones in 

each unit. The B-loss coefficient matrices reported in [40] and listed in Table A.2. The 

ABC and SDOA algorithms were adopted to solve this system. 

 The ABC parameters for this system: CS, limit, and MCN were tuned as 100, 300, 

and 300 respectively. The SDOA parameters for this system: SDP, SDPparallel, iteration 

number, and R were adjusted as 30, 3, 300, and 36 correspondingly. Due to integrating 

the proposed constrained search-tactic, the objective function has been altered for the 

first 10% iteration for both algorithms, i.e., the φ parameter adjusted as 30 per algorithm. 

 As shown in Table 5.1, the attained results of ABC and SDOA algorithms (with 

and without the integration of the proposed search-tactic) presented no violations to the 

problem’s constraints while meeting the load demand sufficiently. The proposed search-

tactic enhanced the performances of both algorithms. In other words, the integration of 

the presented search-tactic obtained an average 43% reduction in the required CPU time. 

Although the total fuel costs listed in Table 5.1 were virtually identical, the integration of 

the suggested tactic in both algorithms successfully attained lower operating costs. The 
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SDOA* (with the integration of the offered search-tactic) represented the lowest 

operating cost for this system. On the other hand, the ABC* (with the integration of the 

offered search-tactic) resulted in outperforming the SDOA* method in terms of less CPU 

time. The constrained search-tactic, as shown in Figure 5.2 and Figure 5.3, prevented 

both algorithms from exposing infeasible solutions at initial iterations. It, consequently, 

accelerated both algorithms’ performances toward the optimal region. 

 
Table 5. 1: Optimal dispatch power for case 1-A; Sys.Viol.: System’s Power Balance 
Constraints’ Violation. 

Unit 
Techniques 
ABC ABC* SDOA SDOA* 

P1 (MW) 448.12800 448.12600 447.37700 447.96000 
P2 (MW) 172.60900 173.49900 172.78900 173.67200 
P3 (MW) 262.58600 262.60000 262.65500 263.55900 
P4 (MW) 137.45900 136.96900 138.25000 139.46200 
P5 (MW) 168.19700 167.54900 167.59700 164.73500 
P6 (MW) 87.03400 87.270000 87.32400 86.55800 

Total output power (MW) 1,276.01300 1,276.01300 1,275.99200 1,275.94600 
Total PL (MW) 13.01300 13.01300 12.99200 12.94600 
Total system’s power loss (%) 1.020 1.020 1.018 1.015 
|Sys.Viol.| (MW) 0.00000 0.00000 0.00000 0.00000 
Total operating costs ($/h) 15,450.01 15,449.99 15,449.96 15,449.91 
Average CPU time (s) 0.552 0.319 0.843 0.478 
* With the integration of the proposed constrained search-tactic. 

  
 For comparison purposes, the results of the proposed search-tactic via ABC and 

SDOA algorithms were compared with those obtained using other well-known 

algorithms, such as SA, GA, TS, PSO, MTS, DE, HS, hybrid harmony search (HHS), 

and evolution strategy optimization (ESO) reported in [40] and [164]. The statistical 

measurements, as shown in Table 5.2, were attained after conducting 30 independent 

runs with different initials for the six-unit system. It is important to reveal that the 

system’s power balance constraints’ violations reported in [40] and [164] is considered 

large except for the solutions obtained by the GA and PSO algorithms. On the other 

hand, the results obtained via utilizing the proposed search-tactic in ABC and SDOA 
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algorithms avoided such local and infeasible solutions. The large power mismatch of 

equality constraints reported in Table 5.2 degraded the least cost solution attained by the 

ESO method. Although the solutions obtained using DE and HS methods presented more 

robustness in the convergence characteristics, they in addition to HHS method suffered 

from the infeasibility of the outcomes obtained. In contrast, the ABC* and SDOA* 

algorithms successfully obtained the economic operating output power dispatch for this 

system without violating the system’s equality and inequality constraints. The proposed 

algorithms outperformed all the solutions reported in [40] in terms of minimum fuel cost, 

solution quality, and required CPU time. An average 0.10% reduction in the operating 

fuel’s cost was obtained by the ABC* and SDOA*, and significant reductions in the 

required CPU time were attained by the ABC* (95%) and SDOA* (93%) tactics with 

respect to the PSO method. Although the reduction in operating fuel’s cost was small, its 

significance would lead to considerable annual cost saving. 

 
Table 5. 2: Comparison of results of the proposed tactic for case 1-A; Max: Maximum; 
Avg.: Average; Min: Minimum; Sys.Viol.: System’s Power Balance Constraints’ 
Violation; Std.Dev.: Standard Deviation; --: Not Available. 

Method Max. ($/h) Avg. ($/h) Min. ($/h) |Sys.Viol.| (MW) Std.Dev. CPU (s) 

SAa 15,545.50 15,488.98 15,461.10 0.00190a 28.3678 50.360a 
GAa 15,524.69 15,477.71 15,457.96 0.00010a 17.4072 46.600a 
TSa 15,498.05 15,472.56 15,454.89 0.00620a 13.7195 20.550a 
PSOa 15,491.71 15,465.83 15,450.14 0.00000a 10.1502 6.820a 
MTSa 15,453.64 15,451.17 15,450.06 0.00260a 0.92870 1.290a 
DEb 15,450.00 15,450.00 15,450.00 0.02000b 0.00000 0.033b 
HSb 15,449.00 14,449.00 15,449.00 0.07200b 0.00000 6.830b 
HHSb 15,453.00 15,450.00 15,449.00 0.04000b -- 0.140b 
ESOb 15,470.00 15,430.00 15,408.00 3.37000b -- 0.360b 
ABC* 15,451.80 15,451.19 15,449.99 0.00000 0.66110 0.319 
SDOA* 15,452.64 15,451.30 15,449.91 0.00000 0.88880 0.478 

* With the integration of the proposed constrained search-tactic; a As reported in [40]; b As reported in [164]. 
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Figure 5. 2: The ABC algorithm’s performance for case 1-A. 

 

 

Figure 5. 3: The SDOA algorithm’s performance for case 1-A. 
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5.4.1.2 CASE 2-A 
This system includes 15 generating units with the data being recorded in Table A.3. The 

constraints considered were the units’ prohibited operating zones, units’ ram-rate limits, 

transmission losses, and units’ output power limits. Data of the B-loss coefficient 

matrices reported in [40] as well as in Table A.4. The load demand for this system was a 

2.630 GW. Once more, the ABC and SDOA algorithms were designated to solve this 

system. 

 The ABC parameters for this system: CS, limit, and MCN were tuned as 200, 

15×102, and 500 respectively. The SDOA parameters for this system: SDP, SDPparallel, 

iteration no., and R were adjusted as 50, 5, 500, and 225 respectively. The φ parameter 

was tuned as 50 in both algorithms. 

 As recorded in Table 5.3, utilizing the proposed search-tactic improved both 

algorithms’ performances. An average of 31% reduction in the CPU required time was 

due to the integration of the offered tactic. The constrained search-tactic accelerated both 

algorithms’ performances as in Figure 5.4 and Figure 5.5. Among all the results in Table 

5.3, the SDOA* attained the most economic output power dispatch for the 15-unit 

system. In addition, the SDOA* outperformed the ABC* method with respect to the 

required CPU time. 

 The results obtained using the proposed algorithms were compared with those of 

other algorithms reported in [40]. Statistical measurements obtained after carrying out 30 

independent runs with different seeds, shown in Table 5.4, clarified that the results 

attained using the search-tactic offered, outperformed those of other well-known 

algorithms. Even though the GA method did not demonstrate a violation to the system 

equality constraints, it is trapped in a local minimum solution. The outcomes of the 

ABC* and SDOA* algorithms attained better results with regard to fuel’s cost, solution 

quality, and required CPU time. An approximately 98% reduction in the required CPU 

time was achieved by the ABC* and SDOA* algorithms compared to the GA method. In 

addition, an average 0.40% reduction in the operating fuel’s cost obtained by the ABC* 

and SDOA* algorithms with respect to the GA method. Although the reduction in 

operating fuel’s cost was smaller than that of CPU time, its significance would lead to 
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considerable annual cost saving. It is important to highlight that the obtained results of 

both proposed algorithms successfully satisfied the problem’s equality and inequality 

constraints. 

  
Table 5. 3: Optimal dispatch power for case 2-A; Sys.Viol.: System’s Power Balance 
Constraints’ Violation. 

Unit 
Techniques 
ABC ABC* SDOA SDOA* 

P1 (MW) 454.99500 455.00000 455.00000 455.00000 
P2 (MW) 380.00000 380.00000 380.00000 380.00000 
P3 (MW) 130.00000 130.00000 130.00000 130.00000 
P4 (MW) 130.00000 130.00000 130.00000 130.00000 
P5 (MW) 169.97300 170.00000 170.00000 170.00000 
P6 (MW) 460.00000 460.00000 460.00000 460.00000 
P7 (MW) 430.00000 430.00000 430.00000 430.00000 
P8 (MW) 71.97000 71.97000 71.97000 71.66300 
P9 (MW) 59.18000 59.18000 59.18000 59.18000 
P10 (MW) 159.53000 159.49600 159.80000 159.80000 
P11 (MW) 80.00000 80.00000 79.71900 80.00000 
P12 (MW) 80.00000 80.00000 79.99800 80.00000 
P13 (MW) 25.00200 25.00200 25.00200 25.00200 
P14 (MW) 15.00600 15.00600 15.00600 15.01200 
P15 (MW) 15.00100 15.00100 15.00100 15.00100 

Total output power (MW) 2,660.65700 2,660.65500 2,660.67600 2,660.65800 
Total PL (MW) 30.65700 30.65500 30.67600 30.65800 
Total system’s power loss (%) 1.152 1.152 1.153 1.152 
|Sys.Viol.| (MW) 0.00000 0.00000 0.00000 0.00000 
Total operating costs ($/h) 32,704.52 32,704.48 32,704.81 32,704.47 
Average CPU time (s) 1.121 0.788 1.057 0.709 
* With the integration of the proposed constrained search-tactic. 
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Table 5. 4: Comparison of results of the proposed tactic for case 2-A; Max: Maximum; 
Avg.: Average; Min: Minimum; Sys.Viol.: System’s Power Balance Constraints’ 
Violation; Std.Dev.: Standard Deviation. 

Method Max. ($/h) Avg. ($/h) Min. ($/h) |Sys.Viol.| (MW) Std.Dev. CPU (s) 

SAa 33,028.95 32,869.51 32,786.40 0.01170a 112.32 71.250a 
GAa 33,041.64 32,841.21 32,779.81 0.00000a 81.220 48.170a 
TSa 32,942.71 32,822.84 32,762.12 0.12800a 60.590 26.410a 
PSOa 32,841.38 32,807.45 32,724.17 0.02990a 21.240 13.250a 
MTSa 32,796.15 32,767.21 32,716.87 0.01120a 17.510 3.650a 
ABC* 32,995.87 32,723.78 32,704.48 0.00000 51.382 0.788 
SDOA* 32,959.27 32,723.47 32,704.47 0.00000 45.771 0.709 

* With the integration of the proposed constrained search-tactic; a As reported in [40]. 

 

 

Figure 5. 4: The ABC algorithm’s performance for case 2-A. 
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Figure 5. 5: The SDOA algorithm’s performance for case 2-A. 
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 As presented in Table 5.5, the integration of the proposed constrained search-

tactic enhanced the ABC algorithm’s performance resulting in a significant reduction 

(4.41%) in the operating fuel’s cost. The cost saving ($2,254.60 daily) is shown in Figure 

5.6. An average 21% reduction in the required CPU time was obtained as well. The load 

demand curve, each committed unit’s output power, and the total system’s input power 

are exemplified in Figure 5.7. The optimal dispatched power for this system guaranteed 

that the system’s constraints were satisfied during the 24-hour dispatch period, as shown 

in Table 5.6 and Figure 5.7. In other words, the output power of each unit in every time 

interval was consistent with the output power of adjacent units. The ABC algorithm’s 

performance for this system is in Figure 5.8. 

 
Table 5. 5: Comparison of results of the proposed ABC algorithm for case 3-A; Max: 
Maximum; Avg.: Average; Min: Minimum; Corresp.: Corresponding emission to the 
min ($); Std.Dev.: Standard Deviation. 

Method Max. ($) Avg. ($) Min. ($) Corresp. (lb)  Std.Dev. CPU (s) 

ABC 51,868.90 51,462.82 51,102.80 20,407.8 229.191 280.440 
ABC* 50,195.90 49,814.28 48,848.20 23,413.9 288.168 221.520 

* With the integration of the proposed constrained search-tactic. 
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Figure 5. 6: Operating fuel costs for case 3-A due to ABC algorithm with and without 
the integration of the proposed constrained search-tactic. 

 

 

Figure 5. 7: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 3-A. 
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Table 5. 6: Optimal dispatch power for case 3-A using ABC algorithm with the 
integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power Balance 
Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 24.90640 20.44230 89.00000 69.00000 210.33820 413.68690 3.68681 0.00009 

2 10.12730 36.44830 90.92960 80.64500 221.00020 439.15040 4.15043 0.00003 

3 37.63000 22.00010 101.70000 94.48800 224.03600 479.85410 4.85418 0.00008 

4 31.17770 28.85390 112.65200 133.75600 229.52000 535.95960 5.95962 0.00002 

5 53.67679 40.35030 111.01879 130.01300 229.52000 564.57888 6.57897 0.00009 

6 59.46100 70.00000 120.16420 128.20410 237.96910 615.79840 7.79841 0.00001 

7 68.10929 90.79000 117.64000 128.21195 229.52000 634.27124 8.27126 0.00002 

8 62.99900 95.05200 115.43330 160.03000 229.52000 663.03430 9.03425 0.00005 

9 68.00000 89.09100 106.90000 210.00000 226.16150 700.15250 10.15240 0.00010 

10 62.15450 98.54000 123.00350 198.01000 232.78100 714.48900 10.48900 0.00000 

11 61.80400 99.54000 140.59600 195.87000 233.08070 730.89070 10.89080 0.00010 

12 68.58800 103.76350 135.92940 206.97000 236.30170 751.55260 11.55260 0.00000 

13 72.12000 98.00810 141.00000 168.87110 234.38000 714.37920 10.37920 0.00000 

14 73.03300 114.53950 120.01190 168.60430 223.87860 700.06730 10.06730 0.00000 

15 68.43499 114.54150 82.20120 176.48584 221.58730 663.25083 9.25088 0.00005 

16 53.50430 96.40200 96.12900 131.11160 210.00000 587.14690 7.14700 0.00010 

17 47.31110 96.45100 100.02000 102.10090 218.77329 564.65629 6.65635 0.00006 

18 43.57430 98.89896 112.67330 124.91000 235.81870 615.87526 7.87530 0.00004 

19 62.43000 91.54000 112.66000 147.31700 249.14970 663.09670 9.09669 0.00001 

20 68.80430 100.02940 112.67330 187.32000 245.72590 714.55290 10.55290 0.00000 

21 64.42430 104.60303 112.67310 174.06160 234.05680 689.81883 9.81892 0.00009 

22 60.60000 80.30000 145.66000 126.01700 200.00000 612.57700 7.57693 0.00007 

23 49.38430 65.02312 107.03100 142.02000 169.30200 532.76042 5.76039 0.00003 

24 69.36430 64.35970 81.67300 131.06820 121.00143 467.46663 4.46665 0.00002 

 Corresponding total operating fuel’s emission (lb) 23,413.90 

 Total operating fuel’s cost ($) 48,848.20 

 Total system’s power loss (%) 1.300 
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Figure 5. 8: The ABC algorithm’s performance for case 3-A. 
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power, and the units’ dispatch schedules are illustrated in Figure 5.10. The ABC 

algorithm’s performance for this case is demonstrated in Figure 5.11.  

  
Table 5. 7: Comparison of results of the proposed ABC algorithm for case 4-A; Max: 
Maximum; Avg.: Average; Min: Minimum; Corresp.: Corresponding cost to the min 
(lb); Std.Dev.: Standard Deviation. 

Method Max. (lb) Avg. (lb) Min. (lb) Corresp. ($)  Std.Dev. CPU (s) 

ABC 19,396.80 19,179.56 18,933.40 52,911.00 134.118 254.220 
ABC* 19,716.00 19,179.95 18,820.40 53,166.50 170.375 203.220 

* With the integration of the proposed constrained search-tactic. 

 

 

Figure 5. 9: Operating fuel emissions for case 4-A due to ABC algorithm with and 
without the integration of the proposed constrained search-tactic. 
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Table 5. 8: Optimal dispatch power for case 4-A using ABC algorithm with the 
integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power Balance 
Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 74.88750 48.47150 99.90000 71.13560 119.08200 413.47660 3.47657 0.00003 

2 56.65000 53.63000 132.16900 80.73800 115.68450 438.87150 3.87142 0.00008 

3 73.22300 67.74000 131.88000 129.00000 77.81470 479.65770 4.65773 0.00003 

4 68.79510 90.00793 167.97681 103.96685 105.07000 535.81669 5.81674 0.00005 

5 70.19149 75.11510 144.32602 121.11001 153.64510 564.38772 6.38767 0.00005 

6 74.98991 88.60300 163.88894 128.42810 159.69400 615.60395 7.60392 0.00003 

7 74.97850 115.41180 162.31620 143.05100 138.37010 634.12760 8.12762 0.00002 

8 73.93760 92.03980 158.89720 161.35150 176.59500 662.82110 8.82103 0.00007 

9 74.97171 120.79920 152.92030 175.62292 175.61080 699.92493 9.92495 0.00002 

10 74.48694 121.85290 173.14902 197.04215 147.81380 714.34481 10.34490 0.00009 

11 74.99012 97.01496 159.36030 213.22661 186.20610 730.79809 10.79810 0.00001 

12 74.99533 124.66444 166.62258 163.85165 221.30210 751.43610 11.43610 0.00000 

13 74.99686 124.08470 165.14000 177.96497 172.13400 714.32053 10.32060 0.00007 

14 74.70000 116.09710 125.60000 210.43000 173.24270 700.06980 10.06990 0.00010 

15 68.96000 86.32230 151.87234 160.63261 195.05198 662.83923 8.83926 0.00003 

16 72.23230 57.30000 169.00000 137.00730 151.34000 586.87960 6.87960 0.00000 

17 74.97350 75.56091 145.81569 135.36755 132.66633 564.38398 6.38398 0.00000 

18 74.93450 64.50000 161.91290 169.44215 144.79760 615.58715 7.58717 0.00002 

19 74.31327 93.43000 141.69900 158.89430 194.53634 662.87291 8.87290 0.00001 

20 74.95600 95.80000 174.99534 164.29654 204.19220 714.24008 10.24010 0.00002 

21 74.48384 122.73000 174.95392 159.89240 157.54250 689.60266 9.60269 0.00003 

22 73.57050 97.49195 153.11980 178.89460 109.54550 612.62235 7.62238 0.00003 

23 57.55440 70.16000 119.60000 131.00000 154.39830 532.71270 5.71269 0.00001 

24 62.60000 50.30000 130.32000 105.24960 118.89824 467.36784 4.36781 0.00003 

 Total operating fuel’s emission (lb) 18,820.40 

 Corresponding total operating fuel’s cost ($) 53,166.50 

 Total system’s power loss (%) 1.272 
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Figure 5. 10: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 4-A. 

 

 

Figure 5. 11: The ABC algorithm’s performance for case 4-A. 
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5.4.2 MULTIPLE OBJECTIVE FUNCTIONS PROBLEM 

The DEED problem aims to minimize the operating fuel’s cost and emission 

simultaneously, and to satisfy various practical constraints to meet the 24-hour load 

demand. In addition, the impact of integrating renewable sources (RS) on both fuel costs 

and emissions is examined in this set of tests. Because the effectiveness of the proposed 

constrained search-tactic has been proven previously, the ABC algorithm with the 

utilization of that designated tactic is employed in this set of test cases. The first test case 

solves the DEED problem without any contribution from an RS application. The 

subsequent cases are used to analyze the impact of an RS application on both objective 

functions. The contribution of the RS application will be based on percentages of the 

load demand, as reported in Table A.8, Table A.9, and Table A.10. 

 Although RSs, e.g., wind, tidal, and photovoltaic (PV), are environmentally-

friendly practices, the intermittent nature of RS choices degrades their applicability as 

dispatchable options [160]. Despite that, the installation of wind power farms, for 

instance, is anticipated to supply 20% of the US demand by 2030 [165]. According to the 

Global Wind Energy Council (GWEC) [166], the installed capacity of wind power farms 

is increasing exponentially, as Figure 5.12 indicates. 

 The combined objective functions can be represented as a single objective 

function by linear scalar interpretation [159]. Hence, the mathematical objective function 

of the DEED problem becomes as follows: ࢔࢏࢓ શ = )௜݂ ݓ ௜ܲ) + ௜(1ߞ − )௜ܧ (ݓ ௜ܲ) (5.10) 

where, Ψ is a combination of fuel costs and emissions objective functions, w is a varying 

weighting value, and ζi is the price associated with the emissions, where in this thesis ζi 

is set to one [167].  

 Competing functions have more than one optimal solution; thus, the Pareto-

optimal solutions are attained by varying the w-value allowing the decision-maker to 

select the desired solution. The multiple objective functions (5.10) are in favor of only 

the cost minimization when the w-value equals one. In contrast, disregarding the 
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influence of the cost and considering the emission minimization happens when the w-

value sets to zero. 

  

 

Figure 5. 12: Total installed capacity of wind power in North America. 
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5.4.2.1 CASE 1-B 
The considered system, as shown in Table A.5, consists of five units. This system is 

identical to those in case 3-A and case 4-A. However, the objective function at this point, 

and hereafter, was to minimize simultaneously both the operating fuel’s cost and 

emission of committed generating units. Therefore, the trade-off curve between costs and 

emissions will be demonstrated based on varying the w factor used in the linear scalar 

expression (5.10). The w-values in this thesis are selected as: 0.00, 0.20, 0.50, 0.80, and 

1.00. The ABC* parameters for this system were adjusted as: 300, 18×103, and 30×103 

for CS, limit, and MCN, respectively. Minimizing the system’s power balance mismatch 

will be (temporarily) the target until the 3,001 (φ+1) cycle starts. Afterward, the 

problem’s main objective function will be considered. 

 The summarized results of the proposed ABC* algorithm successfully captured 

the Pareto-optimal shape as presented in Table 5.9. The trade-off curve between the cost 

and emission for this system is exemplified in Figure 5.13. As recorded in Table 5.9, the 

corresponding results at w-values’ one and zero were identical to those attained in case 

3-A and case 4-A, respectively. Accordingly, further confirmation of the efficiency of 

the proposed ABC algorithm and the constrained search-tactic was shown. It is important 

to mention that there is no single optimal solution in such a scenario where multiple 

objective functions are considered. Therefore, the decision-maker must select the desired 

solution based on his/her preference. These preferences vary from one utility to another 

and from one country to another. Political, social, and economical factors play key roles 

in shifting those preferences. 

 The result of the proposed ABC* algorithm at a 0.50 w-value was compared with 

those obtained by PSO [31] and PS [44]. The summarized results are reported in Table 

5.10. Although both PSO and PS methods attained “less” operating fuel costs than that of 

the ABC* algorithm, they disregarded the P0 scheduling values, and relaxed the accepted 

value for violating the equality constraints. The dispatch schedule with a high power 

output mismatch degraded the practicality of the attainable solutions by these methods. 

Clearly, as shown in Figure 5.14, the dispatch schedule of on-line units in every time 

interval was more consistent using the ABC* algorithm than the compared methods. The 
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proposed ABC* algorithm provided the least absolute value of violating the system’s 

equality constraints and, therefore, represented the minimum total system’s power loss. 

As indicated in Table 5.11, this added practical value to the presented result. 

Furthermore, the results of the ABC* method outperformed those found by the PSO 

method in terms of operating fuel’s emission. The optimal dispatch schedule for this 

system by the proposed ABC* algorithm is recorded in Table 5.11 with a 50% weight for 

each objective function. In addition, the optimal units’ scheduling by the ABC* 

algorithm in a two-dimension format is exemplified in Figure 5.15. 

 Although relaxing the equality constraints’ violation plays a significant role (in 

addition to other factors such as the utilized algorithm and PC’s features) in achieving a 

faster solution, the offered ABC* algorithm outperformed that of PS method with respect 

to the CPU time requirement (~60%) as seen in Table 5.10. On the other hand, only 

7.71% reduction in the CPU time was due to PSO. 

 
Table 5. 9: Summarized results of the proposed ABC* algorithm for case 1-B. 

w-value Emission (lb) Cost ($) Total output power (MW) Total system’s power loss (%) 

1.00 23,413.90 48,848.20 14,769.06688 1.300 

0.80 20,229.40 51,169.40 14,765.45212 1.276 

0.50 19,661.40 51,403.90 14,765.01644 1.273 

0.20 19,205.80 52,580.90 14,764.80358 1.272 

0.00 18,820.40 53,166.50 14,764.76562 1.272 

* With the integration of the proposed constrained search-tactic. 

 

Table 5. 10: Comparison of results of the proposed ABC algorithm at 0.50 w-value for 
case 1-B. 

Method Emission (lb) Cost ($) Total system’s power loss (%) Average CPU time (s) 

ABC* 19,661.40 51,403.90 1.273 206.10 

PSO [31] 20,163.00 50,893.00 1.303 190.20 

PS [44] 18,927.00 47,911.00 1.320 514.25 

* With the integration of the proposed constrained search-tactic. 
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Figure 5. 13: Trade-off curve between the two objective functions of case 1-B. 

 

 

Figure 5. 14: Comparison of the system’s equality constraints’ violations at every 
dispatched period due to different methods for case 1-B. 
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Table 5. 11: Optimal dispatch power for case 1-B at 0.50 w-value using ABC algorithm 
with the integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power 
Balance Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 74.99990 48.47890 100.00040 70.00000 120.00000 413.47920 3.47920 0.00000 

2 62.62190 52.80150 74.80550 92.49451 156.24971 438.97312 3.97314 0.00002 

3 52.78129 69.65155 106.24417 124.08349 126.87801 479.63851 4.63851 0.00000 

4 74.56080 83.37560 102.97240 125.86510 149.06150 535.83540 5.83544 0.00004 

5 72.72465 89.08120 137.88230 155.38635 109.37079 564.44529 6.44531 0.00002 

6 74.99626 106.87343 173.12195 125.00948 135.64819 615.64931 7.64931 0.00000 

7 69.63258 100.52984 167.84744 135.88547 160.18611 634.08144 8.08147 0.00003 

8 74.93228 97.74046 174.99965 134.97654 180.17650 662.82543 8.82543 0.00000 

9 74.89880 105.28200 174.99000 132.46900 212.24840 699.88820 9.88822 0.00002 

10 74.55611 96.70946 174.33870 159.52942 209.11567 714.24936 10.24940 0.00004 

11 74.99690 103.33726 174.99480 139.31058 238.16853 730.80807 10.80810 0.00003 

12 73.96900 94.08280 160.67510 188.71050 233.97000 751.40740 11.40740 0.00000 

13 74.95150 123.58509 141.69911 164.13981 210.01907 714.39458 10.39460 0.00002 

14 74.53264 103.09389 161.58785 146.87578 213.79895 699.88911 9.88911 0.00000 

15 74.43417 114.40548 150.25680 117.54962 206.30187 662.94794 8.94793 0.00001 

16 69.38033 89.03049 113.25510 154.16410 161.17065 587.00067 7.00070 0.00003 

17 70.84158 87.54273 133.28219 106.19473 166.58076 564.44199 6.44199 0.00000 

18 70.01122 98.29720 137.17190 134.36076 175.81794 615.65902 7.65902 0.00000 

19 74.99588 92.79690 147.68767 151.74886 195.62864 662.85795 8.85797 0.00002 

20 74.82567 118.07610 170.91482 153.84448 196.63250 714.29357 10.29360 0.00003 

21 73.99180 120.20180 174.99820 166.64818 153.75987 689.59985 9.59987 0.00002 

22 74.99570 90.74260 174.51890 126.65483 145.62133 612.53336 7.53340 0.00004 

23 74.54800 64.29660 140.74650 128.99550 124.09549 532.68209 5.68211 0.00002 

24 54.46970 75.12080 111.75558 80.75600 145.33350 467.43558 4.43559 0.00001 

 Total operating fuel’s emission (lb) 19,661.40 

 Total operating fuel’s cost ($) 51,403.90 

 Total system’s power loss (%) 1.273 
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Figure 5. 15: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 1-B at 0.50 w-value; with non-RS contribution. 
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contribution to meet the load demand curve are illustrated in Figure 5.17. The gap 

between the demand and units’ total power input curves is covered by the RS share as in 

Figure 5.17. 

 
Table 5. 12: Summarized results of the proposed ABC* algorithm for case 2-B. 

w-value Emission (lb) Cost ($) Total output power (MW) Total system’s power loss (%) 

1.00 17,449.80 47,522.60 13,272.66390 1.155 

0.80 17,141.60 47,812.50 13,272.32621 1.153 

0.50 16,390.90 48,031.90 13,271.67395 1.148 

0.20 16,065.20 48,616.90 13,271.43784 1.146 

0.00 15,848.60 48,736.20 13,270.96116 1.143 

* With the integration of the proposed constrained search-tactic. 

 

 

Figure 5. 16: Trade-off curve between the two objective functions of case 2-B. 
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Table 5. 13: Optimal dispatch power for case 2-B at 0.50 w-value using ABC algorithm 
with the integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power 
Balance Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 53.00000 35.00000 80.00000 78.00000 125.80800 371.80800 2.80800 0.00000 

2 41.52671 22.72072 59.04247 112.17445 159.30904 394.77339 3.27339 0.00000 

3 54.04531 32.82272 72.89724 125.78457 145.77844 431.32828 3.82829 0.00001 

4 55.30327 61.28090 111.90429 140.43840 112.75023 481.67709 4.67699 0.00010 

5 73.75176 71.01385 146.82394 104.63467 111.15078 507.37500 5.17505 0.00005 

6 74.83398 61.32709 149.57931 118.62269 148.96714 553.33021 6.13017 0.00004 

7 74.54523 86.20447 121.66814 120.95956 166.59733 569.97473 6.57476 0.00003 

8 73.45460 80.06769 117.26042 136.72939 188.29591 595.80801 7.20803 0.00002 

9 73.75545 52.59164 137.28443 149.71515 215.66379 629.01046 8.01044 0.00002 

10 74.03425 82.54305 174.47615 134.30462 176.49595 641.85402 8.25399 0.00003 

11 74.79112 86.32927 166.35420 135.10758 194.08073 656.66290 8.66294 0.00004 

12 74.68600 101.73674 174.89310 177.26842 146.58707 675.17133 9.17134 0.00001 

13 74.50062 98.54222 155.82075 130.30378 182.73537 641.90274 8.30277 0.00003 

14 74.77300 90.29784 123.51991 128.10537 212.38163 629.07775 8.07765 0.00010 

15 73.30716 90.57579 86.07161 152.46431 193.54286 595.96173 7.36177 0.00004 

16 74.78575 63.93380 111.02042 127.30997 150.56934 527.61928 5.61936 0.00008 

17 72.61711 57.71420 113.02619 100.59487 163.46343 507.41580 5.21586 0.00006 

18 74.82271 85.50012 98.65364 132.50042 161.97683 553.45372 6.25367 0.00005 

19 74.42990 75.30056 124.66038 146.01526 175.36020 595.76630 7.16639 0.00009 

20 74.84783 84.86916 164.46330 151.11586 166.55457 641.85072 8.25072 0.00000 

21 74.86557 101.33777 139.56298 131.41717 172.57875 619.76224 7.76226 0.00002 

22 74.99402 88.09683 119.92637 127.99268 139.61607 550.62597 6.12595 0.00002 

23 50.91754 66.73125 80.67614 111.22569 169.47588 479.02650 4.72654 0.00004 

24 51.46155 44.12023 48.01298 127.56253 149.28049 420.43778 3.73776 0.00002 

 Total operating fuel’s emission (lb) 16,390.90 

 Total operating fuel’s cost ($) 48,031.90 

 Total system’s power loss (%) 1.148 
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Figure 5. 17: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 2-B at 0.50 w-value; with a 10% RS contribution. 
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range, at every time period. To meet the load demand at every hour, Figure 5.19 

demonstrates the output power of each unit as well as the RS contribution per time 

interval. The increase in the gap between the curves of the load demand and units’ total 

input power was due to the 5% increase of the RS’s share with respect to the previous 

case. 

 
Table 5. 14: Summarized results of the proposed ABC* algorithm for case 3-B. 

w-value Emission (lb) Cost ($) Total output power (MW) Total system’s power loss (%) 

1.00 15,039.70 45,773.40 12,527.04666 1.090 

0.80 14,737.50 45,795.60 12,526.35244 1.085 

0.50 14,353.10 45,843.80 12,526.65636 1.087 

0.20 14,237.90 46,032.40 12,525.98158 1.082 

0.00 14,138.70 47,191.80 12,525.95154 1.082 

* With the integration of the proposed constrained search-tactic. 

 

 

Figure 5. 18: Trade-off curve between the two objective functions of case 3-B. 
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Table 5. 15: Optimal dispatch power for case 3-B at 0.50 w-value using ABC algorithm 
with the integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power 
Balance Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 58.50000 36.04000 80.01030 59.90020 116.56680 351.01730 2.51730 0.00000 

2 49.17548 40.43493 97.64108 87.67862 97.59536 372.52547 2.77554 0.00007 

3 49.05515 48.90092 108.63515 61.15520 139.37933 407.12575 3.37576 0.00001 

4 73.39811 76.66488 82.80997 106.60703 115.24619 454.72618 4.22613 0.00005 

5 74.77022 87.10783 97.23428 119.36858 100.50010 478.98101 4.68106 0.00005 

6 74.73358 84.46878 108.40610 128.69511 126.02507 522.32864 5.52863 0.00001 

7 74.58555 114.15753 130.79596 88.42772 130.05892 538.02568 5.92569 0.00001 

8 73.69007 88.80206 129.01259 112.40389 158.37956 562.28817 6.38825 0.00008 

9 74.86566 89.89091 114.40777 145.67283 168.82067 593.65784 7.15785 0.00001 

10 71.83120 103.38105 125.12021 153.01141 152.50495 605.84882 7.44878 0.00004 

11 70.75540 104.10951 119.79159 124.12058 201.08414 619.86122 7.86123 0.00001 

12 71.80324 124.08285 133.32519 119.24951 188.84867 637.30946 8.30938 0.00008 

13 73.08023 124.56459 128.56698 130.81257 148.87207 605.89644 7.49636 0.00008 

14 74.99325 112.30418 152.30883 120.43861 133.59225 593.63712 7.13711 0.00001 

15 74.99598 86.01356 114.51512 155.33623 131.45669 562.31758 6.41757 0.00001 

16 60.72062 107.38082 105.84459 138.36594 85.81696 498.12893 5.12902 0.00009 

17 74.53812 83.11926 85.80413 99.84836 135.69311 479.00298 4.70307 0.00009 

18 67.09932 61.34563 91.60594 116.87887 185.47577 522.40553 5.60559 0.00006 

19 74.17772 86.63257 130.20693 131.87000 139.37982 562.26704 6.36700 0.00004 

20 64.77167 88.84877 153.35669 130.88337 167.91115 605.77165 7.37157 0.00008 

21 74.57650 80.89549 125.05388 135.61963 168.76003 584.90553 6.90552 0.00001 

22 68.47252 70.62993 111.76509 117.37083 151.46370 519.70207 5.45205 0.00002 

23 74.57514 59.93987 102.36644 72.75499 142.48830 452.12474 4.17473 0.00001 

24 70.65905 68.30037 81.89761 57.00616 118.93804 396.80123 3.25117 0.00006 

 Total operating fuel’s emission (lb) 14,353.10 

 Total operating fuel’s cost ($) 45,843.80 

 Total system’s power loss (%) 1.087 
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Figure 5. 19: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 3-B at 0.50 w-value; with a 15% RS contribution. 
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in Table 5.17. Clearly, the attained results were satisfying the DEED problem’s equality 

and inequality constraints. Furthermore, the small (less than 10-4) power mismatch per 

time interval added further value to the reported solution. Obviously, as shown in Figure 

5.21, the RS’s supply curve was slightly higher than that of the case 3-B in Figure 5.19. 

This explained the larger gap between the total supplied power curve from the on-line 

units and demand curve in Figure 5.21 in contrast with Figure 5.19. 

 
Table 5. 16: Summarized results of the proposed ABC* algorithm for case 4-B. 

w-value Emission (lb) Cost ($) Total output power (MW) Total system’s power loss (%) 

1.00 13,662.90 44,387.10 11,782.38211 1.025 

0.80 13,178.10 44,512.80 11,782.37390 1.025 

0.50 12,986.90 44,593.60 11,782.39779 1.025 

0.20 12,975.90 44,798.60 11,781.98556 1.022 

0.00 12,936.70 45,260.50 11,781.99104 1.022 

* With the integration of the proposed constrained search-tactic. 

 

 

Figure 5. 20: Trade-off curve between the two objective functions of case 4-B. 

 

 

44,450.00 

44,500.00 

44,550.00 

44,600.00 

44,650.00 

44,700.00 

44,750.00 

44,800.00 

44,850.00 

12,950.00 13,000.00 13,050.00 13,100.00 13,150.00 13,200.00 

C
os

t (
$)

 

Emission (lb) 

20% RS contribution 



 

104 
 

Table 5. 17: Optimal dispatch power for case 4-B at 0.50 w-value using ABC algorithm 
with the integration of the proposed constrained search-tactic; Sys.Viol.: System’s Power 
Balance Constraints’ Violation. 

Dispatch Units’ optimal output power  

time (h) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) ∑P (MW) PL (MW) 
|Sys.Viol.| 

(MW) 

1 48.24190 40.07970 70.00390 59.90000 112.00000 330.22550 2.22557 0.00007 

2 67.03691 39.43458 93.57669 56.28241 94.17190 350.50249 2.50250 0.00001 

3 38.02966 44.62586 94.13695 65.40121 140.79755 382.99123 2.99117 0.00006 

4 52.20106 50.58517 111.61401 63.88970 149.44275 427.73269 3.73265 0.00004 

5 53.72440 67.09989 140.41224 83.08241 106.17312 450.49206 4.09197 0.00009 

6 72.19318 92.05107 132.27422 80.45414 114.33798 491.31059 4.91065 0.00006 

7 74.99728 88.21582 107.28445 121.42398 114.07615 505.99768 5.19764 0.00004 

8 74.47910 60.31100 119.62067 125.60410 148.80979 528.82466 5.62472 0.00006 

9 73.26435 78.57084 131.15139 128.31565 146.96190 558.26413 6.26420 0.00007 

10 74.98506 104.07879 123.27460 127.14993 140.29929 569.78767 6.58760 0.00007 

11 68.90699 97.34105 139.88427 167.09027 109.68163 582.90421 6.90422 0.00001 

12 74.16591 108.99040 111.56726 166.85371 137.78714 599.36442 7.36433 0.00009 

13 65.34142 100.81883 116.46371 119.27922 167.90777 569.81095 6.61099 0.00004 

14 59.29433 89.03314 121.97249 94.28200 193.80300 558.38496 6.38490 0.00006 

15 73.38526 92.93562 110.78345 107.62488 144.15556 528.88477 5.68481 0.00004 

16 68.67473 91.95737 72.21200 141.58800 94.15700 468.58910 4.58907 0.00003 

17 68.46918 84.33368 60.41172 125.03205 112.39703 450.64366 4.24357 0.00009 

18 56.35633 65.44752 81.50096 143.03957 145.01164 491.35602 4.95604 0.00002 

19 46.26593 90.98770 119.36274 113.52709 158.73283 528.87629 5.67633 0.00004 

20 71.12098 82.88318 106.92039 134.66419 174.21967 569.80841 6.60849 0.00008 

21 74.98291 74.22404 85.24859 129.04818 186.74942 550.25314 6.25315 0.00001 

22 72.24775 80.34933 91.10999 107.46050 137.70832 488.87589 4.87581 0.00008 

23 50.00059 69.71443 90.21536 103.13704 112.19274 425.26016 3.66012 0.00004 

24 35.54416 61.41116 73.74491 115.91891 86.63797 373.25711 2.85717 0.00006 

 Total operating fuel’s emission (lb) 12,986.90 

 Total operating fuel’s cost ($) 44,593.60 

 Total system’s power loss (%) 1.025 
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Figure 5. 21: Optimal units’ dispatch schedule, load demand curve, and total power 
supply for case 4-B at 0.50 w-value; with a 20% RS contribution. 
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reserve, but this would increase the operating cost in favor of the system’s reliability. 

Units’ coefficients and characteristics and load demand significantly influence the 

results, as they may vary from one system to another. Therefore, the conclusions are not 

necessarily applicable in other electric power systems. The decision-maker, undoubtedly, 

plays a key role in selecting which practice meets the desired aims. 

 From a single objective function perspective, the reductions of both competing 

functions increased as the contributions of the RS increased, as concluded in Table 5.18. 

The improvements in the operating fuel’s cost and emission (individually) are 

demonstrated in Figure 5.22. Clearly, significant daily cost savings of $1,325.60, 

$3,074.80, and $4,461.10 are the results of 10%, 15%, and 20% of the RS’s sharing, 
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due to these same contributions. The system’s real power loss – for both functions – is 

also decreased by an average of 19.69%, 28.36%, and 36.50% because of the chosen RS 

practices. 

 While assigning equal weights to the competing objective functions, both gain 

positively from the selected RS applications, as exemplified in Figure 5.23. Considerable 

24-hour cost savings of $3,372.00, $5,560.10, and $6,810.30 are the results of the RS 

supplying 10%, 15%, and 20% of the load’s demand. In addition, the NOx emission – 

due to the same percentages of RS’s integrations – is decreasing daily (in lb) by 

3,270.50, 5,308.30, and 6,674.50. The system’s real power loss is also reduced by 

18.96%, 27.56%, and 35.75%. 

 
Table 5. 18: Summarized (row by column) reductions in operating fuel’s cost and 
emission attained by the proposed ABC* algorithm with different integration levels of 
the RS cases at one and zero w-values. 

RS’s 
C

ontribution 

 RS’s Contribution 

Objective Function 0% RS 10% RS 15% RS 20% RS 

0%
 RS 

Emission (lb) 0.000% 15.790% 24.876% 31.262% 

Cost ($) 0.000% 2.714% 6.295% 9.133% 

10%
 RS 

Emission (lb) -15.790% 0.000% 10.789% 18.373% 

Cost ($) -2.714% 0.000% 3.681% 3.681% 

15%
 RS 

Emission (lb) -24.876% -10.789% 0.000% 8.501% 

Cost ($) -6.295% -3.681% 0.000% 3.029% 

20%
 RS 

Emission (lb) -31.262% -18.373% -8.501% 0.000% 

Cost ($) -9.133% -6.598% -3.029% 0.000% 

 



 

107 
 

 

Figure 5. 22: Operating fuel’s cost and emission reductions due to different RS 
contribution’s levels obtained by the ABC* algorithm when the w-value equals one and 
zero, respectively.  
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Figure 5. 23: Operating fuel’s cost and emission reductions due to different RS 
contribution’s levels obtained by the ABC* algorithm when the w-value equals 0.50.  

 

5.5 SUMMARY 

In this chapter, a novel constrained search-tactic was proposed to solve the DED and 
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respect to those attained using other well-known techniques. From the promising results 

in this chapter as well as those of chapter four, the SDOA algorithm has a potential to be 

applied to complex and high dimensional optimization problems in future research. 

 The DEED problem has been solved by the ABC algorithm with the assistance of 

the offered constrained search-tactic. In this thesis, the considered emission was based on 

NOx effect. However, fossil fueled plants have been held accountable for discharging 

other harmful gases, e.g., CO2 and SOx. These pollutant gases’ emissions will be used in 

future research, as elucidated in the next chapter. The results obtained by the proposed 

algorithm showed a practical meaning of achieving the desired objective function with 

least power mismatch values. Comparative analyses confirmed that the results obtained 

by the suggested techniques outperformed those of other well-known methods. Several 

test cases were used to observe the impact of integrating different RS (wind power 

farms) applications. In all cases tested, significant reductions in the operating fuel’s cost 

and emission as well as total system’s losses were achieved once the contribution of the 

RS practices was taken into account. As mentioned earlier, the competing objective 

functions have more than one solution. The “exact” optimal solution is highly depended 

on the decision-makers’ preferences. These preferences, however, are significantly 

influenced by political, social, and economic factors. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 CONCLUSIONS AND CONTRIBUTIONS 

Initially, the operation of electric power industries faced new and challenging policies. 

Environmental awareness, for example, dramatically altered these industries’ ultimate 

objective. Obtaining a break-even point between economic goals and emission control 

has been an ongoing concern. However, the optimal strategy followed by one system 

may not be applicable or sufficient in others because of political, social, and economic 

factors. A precise model that accounts for practical constraints and avoids oversimplified 

assumptions has always been essential. The dynamic economic and emission dispatch 

problems represented the practical meaning of optimal operation and control of on-line 

generation units to meet the demand of power system networks. The prevalence of 

nonlinear and non-convex characteristics that drove the DED problem’s search-space 

encountered many local extrema solutions resulted in a challenging task to determine a 

global solution. 

 Deterministic optimization algorithms have been utilized in solving the dynamic 

economic and emission dispatch problems at early stages. Then, unconventional 

(heuristic and/or meta-heuristic) optimization techniques shared that utilization. That 

utilization shift was due to the merits of unconventional methods such as independent of 

initial solutions, derivative-free, and easy to implement. After that, a combination of two 

or more optimization tools dominated the trend in solving the problem. The complexity 

of the DED problem was one reason of such hybrid methods’ dominance. Another cause 

was to enhance the solution quality by overcoming the limitations of each of the 

individual techniques.  

 Natural phenomena have been the main inspiration of most sufficient meta-

heuristic optimization techniques. The ABC algorithm was inspired by the intelligent 

foraging honeybee swarms. Although the ABC algorithm is considered a recently 

introduced meta-heuristic optimization tool, it has been adopted in a variety of real-world 

optimization applications, and is growing rapidly as evident in the literature. However, 



 

111 
 

the ABC method has not been addressed well in electric power system optimization 

areas. This thesis attempted to fill this gap. The ABC algorithm has only two parameters 

to be adjusted. Therefore, updating them towards the most effective values has a higher 

likelihood of success than other competing meta-heuristic algorithms. 

 A new naturally inspired meta-heuristic algorithm has been proposed in this 

thesis. The SDOA method is motivated by the intelligent behaviour or survival of 

sensory-deprived human beings. A set of benchmark optimization functions was 

examined to confirm the efficiency of the suggested algorithm. In addition, the results 

obtained by the SDOA algorithm outperformed or matched those attained using other 

well-known meta-heuristic optimization methods. 

 This thesis started by offering the state-of-the-art survey of both the dynamic 

economic and emission dispatch problems and the ABC algorithm applications. Then, a 

novel meta-heuristic (SDOA) optimization algorithm was proposed. A new constrained 

search-tactic was also presented to enhance the utilized algorithms’ performances. 

Various experimental tests and comparisons with other well-known tools validated the 

efficiency of the proposed methods in solving complex, nonlinear, and non-convex 

optimization problems. This thesis has resulted in several contributions such as: 

 Offered an overview of the state-of-the-art overview of the DED problem. 

Various techniques were used, and the reviewed literature was classified into 

three categories: deterministic, heuristic, and hybrid methods. Advantages, 

disadvantages, and considered constraints of each were also highlighted. 

 Studied, analyzed, and implemented the ABC algorithm in solving different types 

of electric power system optimization problems. It was used to solve a mixed 

integer nonlinear optimization problem such as the optimal allocation of DG 

application. In addition, it utilized the ABC algorithm in solving the DED and 

DEED problems, by considering the single and multi-objective functions 

respectively. A comprehensive survey of the literature that employed the ABC 

algorithm and categorization of these areas of application was another significant 

contribution of this thesis. 
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 Proposed a novel (SDOA) meta-heuristic optimization algorithm. A set of 

benchmark optimization functions was examined to confirm the efficacy of the 

suggested algorithm. In addition, the results obtained by the proposed algorithm 

were compared with those obtained using other well-known meta-heuristic 

optimization algorithms. It implemented the proposed SDOA in solving both the 

mixed integer nonlinear optimization problem (i.e., DG allocation) and the DED 

problem, and analyzed the potential of the SDOA algorithm in high dimensional 

applications.  

 Integrated a renewable source in solving the DED and DEED problems while 

emphasizing the impact of such integration on both objectives. Moreover, a new 

constraint-handling strategy in solving the DED and DEED problems was 

proposed. Evaluation of the effectiveness of this strategy, via two different meta-

heuristic optimization algorithms, was also conducted. 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The contributions of this thesis may be extended for future research in the following 

areas: 

 The ABC and SDOA algorithm can be utilized to solve other electric power 

system optimization areas such as UC and OPF. Therefore, the SDOA, 

specifically, can be further analyzed and its potential highlighted. Integrating 

these algorithms in ANN and fuzzy-based applications would be another 

direction for future research. 

 The DED problem can be subjected to additional constraints or objective 

functions. In other words, investigating the effect and cost of integrating 

renewable sources as a system’s spinning reserve would be an intriguing research 

subject. The integration of renewable sources can be based on a probability-based 

technique, such as a chance-constrained method. 

 The DEED can be solved as a single objective function, with the emission’s 

amount treated as inequality constraints. By including various gas emissions, e.g., 

CO2 and SOx in the considered problem, it can be formulated as multiple 

objective functions or inequality constraints. 
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 The dynamic economic and emission problem can be extended to consider the 

load demand forecast, UC, electricity market, and automatic generation control 

(AGC) applications. Furthermore, the transmission losses of the system can be 

expressed using the OPF formulation. 

 The constraints of the DED problem can be handled adaptively, i.e., dynamically. 

In addition, including the feasibility-based criteria would be interesting in such a 

complex, nonlinear, and non-convex optimization problem. 

 The combination of the ABC or SDOA algorithms with another deterministic 

tool can be done in the following assumptions. First, either ABC or SDOA would 

be used as the main search mechanism, and the deterministic method would 

handle the local search task. Second, the ABC and SDOA can be hybridized to 

improve each algorithm’s performance. Third, the ABC and/or SDOA methods 

can be divided into parallel search engines using multiple processors. 

 The contributions of renewable sources can be based on a designated time 

interval(s) with a high likelihood of certainty. In addition, another dimension of 

future research is to consider different types of renewable sources’ applications.  
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APPENDIX 
 

Table A. 1: Generating units’ coefficients and characteristics for the 6-unit system. 

Units 1 2 3 4 5 6 

P0 (MW) 440.00000 170.00000 200.00000 150.00000 190.00000 110.00000 
Pmin (MW) 100.00000 50.00000 80.00000 50.00000 50.00000 50.00000 
Pmax (MW) 500.00000 200.00000 300.00000 150.00000 200.00000 120.00000 
a ($) 240.0000 200.0000 220.0000 200.0000 220.000 190.0000 
b ($/MW) 7.00000 10.00000 8.50000 11.00000 10.5000 12.0000 
c ($/MW2) 0.00700 0.00950 0.00900 0.00900 0.00800 0.0075 
UR (MW/h) 80.00000 50.00000 65.00000 50.00000 50.00000 50.00000 
DR (MW/h) 120.00000 90.00000 100.00000 90.00000 90.00000 90.00000 
Prohibited 

operating 

zones 

[210,240] 
[350,380] 

[90,110] 
[140,160] 

[150,170] 
[221,240] 

[80,90] 
[110,120] 

[90,110] 
[140,150] 

[75,85] 
[100,105] 
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Table A. 2: B-loss coefficients’ matrix, element, and constant for the 6-unit system. 

Bij       

             j       

    i 
1 2 3 4 5 6 

1 0.0017000 0.0012000 0.0007000 -0.0001000 -0.0005000 -0.0002000 

2 0.0012000 0.0014000 0.0009000 0.0001000 -0.0006000 -0.0001000 

3 0.0007000 0.0009000 0.0031000 0.0000000 -0.0010000 -0.0006000 

4 -0.0001000 0.0001000 0.0000000 0.0024000 -0.0006000 -0.0008000 

5 -0.0005000 -0.0006000 -0.0010000 -0.0006000 0.0129000 -0.0002000 

6 -0.0002000 -0.0001000 -0.0006000 -0.0008000 -0.0002000 0.0150000 

B0i -0.0003908 -0.0001297 0.0007047 0.0000591 0.0002161 -0.0006635 

B00 0.0056000 -- -- -- -- -- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

136 
 

Table A. 3: Generating units’ coefficients and characteristics for the 15-unit system. 

Units 1 2 3 4 5 6 7 8 

P0 (MW) 400.0000 300.0000 105.0000 100.0000 90.0000 400.0000 350.0000 95.0000 

Pmin (MW) 150.0000 150.0000 20.0000 20.0000 150.0000 135.0000 135.0000 60.0000 

Pmax (MW) 455.000 455.0000 130.0000 130.0000 470.0000 460.0000 465.0000 300.0000 

a ($) 671.000 574.000 374.000 374.000 461.000 630.000 548.000 227.000 

b ($/MW) 10.100 10.200 8.800 8.800 10.400 10.100 9.800 11.200 

c ($/MW2) 0.000299 0.000183 0.001126 0.001126 0.000205 0.000301 0.000364 0.000338 

UR (MW/h) 80.000 80.0000 130.0000 130.0000 80.0000 80.0000 80.0000 65.0000 

DR (MW/h) 120.000 120.0000 130.0000 130.0000 120.0000 120.0000 120.0000 100.0000 

Prohibited  

operating  

zones 

-- 

-- 

-- 

[180,225] 

[305,335] 

[420,450] 

-- 

-- 

-- 

-- 

-- 

-- 

[180,200] 

[305,335] 

[390,420] 

[230,255] 

[365,395] 

[430,455] 

-- 

-- 

-- 

-- 

-- 

-- 

Units 9 10 11 12 13 14 15 -- 

P0 (MW) 105.0000 110.0000 60.0000 40.0000 30.0000 20.0000 20.0000 -- 

Pmin (MW) 25.0000 25.0000 20.0000 20.0000 25.0000 15.0000 15.0000 -- 

Pmax (MW) 162.0000 160.0000 80.0000 80.0000 85.0000 55.0000 55.0000 -- 

a ($) 173.000 175.000 186.000 230.000 225.000 309.000 323.000 -- 

b ($/MW) 11.200 10.700 10.200 9.900 13.100 12.100 12.400 -- 

c ($/MW2) 0.000807 0.001203 0.003586 0.005513 0.000371 0.001929 0.004447 -- 

UR (MW/h) 60.0000 60.0000 80.0000 80.0000 80.0000 55.0000 55.0000 -- 

DR (MW/h) 100.0000 100.0000 80.0000 80.0000 80.0000 55.0000 55.0000 -- 

Prohibited  

operating  

zones 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

[30,40] 

[55,65] 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 
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Table A. 4: B-loss coefficients’ matrix, element, and constant for the 15-unit system. 

Bij                

      j    

  i 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001 

2 0.0012 0.0015 0.0013 0.0000 -0.0005 -0.0002 0.0000 0.0001 -0.0002 -0.0004 -0.0004 0.0000 0.0004 0.0010 -0.0002 

3 0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0.0000 -0.0008 -0.0012 -0.0017 0.0000 -0.0026 0.0111 -0.0028 

4 -0.0001 0.0000 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.0050 0.0029 0.0032 -0.0011 0.0000 0.0001 0.0001 -0.0026 

5 -0.0003 -0.0005 -0.0013 -0.0007 0.0090 0.0014 -0.0003 -0.0012 -0.0010 -0.0013 0.0007 -0.0002 -0.0002 -0.0024 -0.0003 

6 -0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0.0000 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002 -0.0017 0.0003 

7 -0.0001 0.0000 -0.0001 0.0011 -0.0003 0.0000 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0.0000 -0.0002 -0.0008 

8 -0.0001 0.0001 0.0000 0.0050 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001 0.0005 -0.0078 

9 -0.0001 -0.0002 -0.0008 0.0029 -0.0010 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007 -0.0012 -0.0072 

10 -0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.0200 -0.0027 -0.0034 0.0009 -0.0011 -0.0088 

11 -0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.0140 0.0001 0.0004 -0.0038 0.0168 

12 -0.0002 0.0000 0.0000 0.0000 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001 -0.0004 0.0028 

13 0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0.0000 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103 -0.0101 0.0028 

14 0.0003 0.0010 0.0111 0.0001 -0.0024 -0.0017 -0.0002 0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101 0.0578 -0.0094 

15 -0.0001 -0.0002 -0.0028 -0.0026 -0.0003 0.0003 -0.0008 -0.0078 -0.0072 -0.0088 0.0168 0.0028 0.0028 -0.0094 0.1283 

B0i -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0.0000 -0.0032 0.0067 -0.0064 

B00 0.0055 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
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Table A. 5: Generating units’ coefficients and characteristics for the 5-unit system 
including the emission’s coefficients. 

Units 1 2 3 4 5 

P0 (MW) 50.71180 40.90040 100.09300 116.89430 161.04310 
Pmin (MW) 10.00000 20.00000 30.00000 40.00000 50.00000 
Pmax (MW) 75.00000 125.00000 175.00000 250.00000 300.00000 
a ($) 25.0000 60.0000 100.0000 120.0000 40.0000 
b ($/MW) 2.0000 1.8000 2.1000 2.0000 1.8000 
c ($/MW2) 0.0080 0.0030 0.00120 0.0010 0.00150 
d ($) 100.0000 140.0000 160.0000 180.0000 200.0000 
g (rad) 0.0420 0.0400 0.0380 0.0370 0.0350 

α (lb/h) 80.0000 50.0000 60.0000 45.0000 30.0000 
β (lb/MW) −0.805 −0.555 −1.355 −0.600 −0.555 
γ (lb/MW2) 0.0180 0.0150 0.01050 0.00800 0.01200 
η (lb) 0.6550 0.57730 0.49680 0.48600 0.50350 
δ (lb/MW) 0.02846 0.02446 0.02270 0.01948 0.02075 

UR (MW/h) 30.00000 30.00000 40.00000 50.00000 50.00000 
DR (MW/h) 30.00000 30.00000 40.00000 50.00000 50.00000 

 

 

 

 

 

 

 

 

 

 



 

139 
 

Table A. 6: Load’s demand per hour for the 5-unit system. 

Hour (h) PD (MW) Hour (h) PD (MW) 

1 410.00 13 704.00 

2 435.00 14 690.00 

3 475.00 15 654.00 

4 530.00 16 580.00 

5 558.00 17 558.00 

6 608.00 18 608.00 

7 626.00 19 654.00 

8 654.00 20 704.00 

9 690.00 21 680.00 

10 704.00 22 605.00 

11 720.00 23 527.00 

12 740.00 24 463.00 
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Table A. 7: B-loss coefficients’ matrix for the 5-unit system. 

Bij      

                          j     

     i 
1 2 3 4 5 

1 0.000049 0.000014 0.000015 0.000015 0.000020 

2 0.000014 0.000045 0.000016 0.000020 0.000018 

3 0.000015 0.000016 0.000039 0.000010 0.000012 

4 0.000015 0.000020 0.000010 0.000040 0.000014 

5 0.000020 0.000018 0.000012 0.000014 0.000035 
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Table A. 8: Value of 10% renewable source power available for case 2-B. 

Hour (h) RS (MW) Hour (h) RS (MW) 

1 41.00 13 70.40 

2 43.50 14 69.00 

3 47.50 15 65.40 

4 53.00 16 58.00 

5 55.80 17 55.80 

6 60.80 18 60.80 

7 62.60 19 65.40 

8 65.40 20 70.40 

9 69.00 21 68.00 

10 70.40 22 60.50 

11 72.00 23 52.70 

12 74.00 24 46.30 
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Table A. 9: Value of 15% renewable source power available for case 3-B. 

Hour (h) RS (MW) Hour (h) RS (MW) 

1 61.50 13 105.60 

2 65.25 14 103.50 

3 71.25 15 98.10 

4 79.50 16 87.00 

5 83.70 17 83.70 

6 91.20 18 91.20 

7 93.90 19 98.10 

8 98.10 20 105.60 

9 103.50 21 102.00 

10 105.60 22 90.75 

11 108.00 23 79.05 

12 111.00 24 69.45 
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Table A. 10: Value of 20% renewable source power available for case 4-B. 

Hour (h) RS (MW) Hour (h) RS (MW) 

1 82.00 13 140.80 

2 87.00 14 138.00 

3 95.00 15 130.80 

4 106.00 16 116.00 

5 111.60 17 111.60 

6 121.60 18 121.60 

7 125.20 19 130.80 

8 130.80 20 140.80 

9 138.00 21 136.00 

10 140.80 22 121.00 

11 144.00 23 105.40 

12 148.00 24 92.60 

 

 

 

 

 


