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Abstract

Steel pipelines are widely used in offshore oil/gas facilities. To achieve economically

feasible designs, regulatory codes permit utilization of the pipelines well past their

elastic response limit. This requires thorough integrity check of the pipeline subject

to large scale yielding (LSY). Engineering criticality assessments (ECA) are used

to justify the integrity of a cracked pipeline against fracture failure. The currently

used ECA crack driving force equation was developed for load-controlled components

subject to very limited crack-tip plasticity. Moreover, fracture toughness data are

extracted from deeply-cracked laboratory specimens that produce the lowest margin

of toughness values. Therefore, the current framework can be overly conservative (or

include non-uniform inaccuracies) for ECA of modern pipelines that undergo LSY

and ductile crack growth prior to failure. The two main goals of this thesis are: (i)

Development of an alternative crack driving force estimation scheme, (ii) Justification

of the use of use of shallow-cracked single edge notch tensile (SENT) specimens for the

ECA. Strain concentration in concrete coated pipelines, and effect of Lüders plateau

on the fracture response are also investigated.

A new reference strain J-estimation scheme is proposed and calibrated to 300

nonlinear parametric FE models, which takes advantage of the linear evolution of the

J with LSY bending strains. The scheme is hence strain-based and needless of limit

load solutions, providing additional accuracy and robustness.

The near-tip stress and strain fields of cracked pipelines were also investigated

and compared to those obtained from a K-T type formulation. It is shown that the

J-Q constraint theory can satisfactorily characterize these fields up to extreme plastic

bending levels. Similar J-Q trajectories were also observed in the SENT and pipeline

models. Subsequently, FE models utilizing a voided plasticity material were used

to parametrically investigate ductile crack growth and subsequent failure of pipelines

subject to a biaxial stress state. Plastic strain and stress triaxiality fields ahead of the

propagating crack, along with R-curves, were compared among SENT and pipeline

models. It is concluded that the SENT specimen could be a viable option for ECA of

such pipes based on the observed crack tip constraint similarity.
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Chapter 1

Introduction

1.1 Offshore Oil and Gas Production & Pipelines

Oil and natural gas have long been sources of energy for the continuous and ever-

increasing demand of humans for energy. While the adverse effect of burning fossil

fuels and its effect on global climate is causing increased concern, still, oil and natural

gas are and will be the main sources of energy in the foreseeable future of the energy

market.

Onwards from the 1980’s, the share of offshore oil and gas production is steadily

increasing. Moreover, in recent years, hydrocarbon resources in shallower waters

and reasonably benign environments have been mostly exploited. Thus the oil and

gas industry has been compelled to move into harsher environments in recent years,

and will continue its explorations and productions into deeper waters and hostile

environments.

Pipelines are a key element in offshore oil and gas production. Two main types

of pipelines function in an offshore oil/gas field. The intrafield pipelines transfer the

crude product from wellheads and manifolds to platforms, while export pipelines carry

the product to facilities located on the shore. A typical offshore hydrocarbon field with

pipelines serving different functions is shown in Figure 1.1 (taken from [1]). The large

capital cost of offshore pipelines is an always present issue in offshore hydrocarbon

projects, and thus, their expenditure should not become the weak link that prohibits

the project developments.

Virtually all offshore pipelines are made of steel alloys with considerable ductility.

In order to achieve an economically competent pipeline design, the plastic deforma-

tion capacity of the material has to be utilized. As such, it has to be shown that the

inelasticaly deformed pipeline can safely sustain relevant loadings. Such design strate-

gies has been foreseen in most of the major pipeline design codes, such as DNV [2]

1
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Figure 1.1. A typical offshore hydrocarbon facility showing pipelines serving different
functions, taken from [1].

and API [3].

A typical offshore pipeline is subject to bending during many relevant loading

scenarios. These scenarios occur both during installation and operation of pipelines.

Some of the loading scenarios in which the pipeline undergoes bending are shown

in Figure 1.2 (taken from Refs. [4–7]). The prominent failure mode on the tensile

side of a bended pipeline is due to potential fracture of the pipe wall, which, upon

occurrence would render the structure out of service with substantial economic and

environmental impacts. A welding defect generally termed crack, could trigger such a

failure mode. Traditionally, an empirical workmanship criteria on the critical size of

such defects were common in the offshore industry. However, nowadays the application

of fracture mechanics principles to assess the integrity of the flawed pipeline is more

common. Throughout this thesis, where the behavior of a cracked pipeline is under

investigation, an external semi-circumferential part through crack centered at the 12

o’ clock position of the pipe section (i.e. undergoing the maximum bending stress and

strain) is considered. This is believed to be representative of real-life weld defects
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observed in offshore pipelines.

1.2 Thesis Objectives

The theoretical and experimental background to application of fracture mechanics for

assessment of components undergoing very limited plastic deformation is well under-

stood and documented. The current codes, such as BS7910 [8], are generally tailored

for such applications (i.e. for linear elastic fracture mechanics (LEFM)). However, the

same does not hold true for components undergoing large scale yielding (LSY), such

as the case of interest in this thesis, namely pipelines subject to large plastic strains.

The issue of applying fracture mechanics principles to components undergoing LSY

is still a young and evolving one, with several unanswered questions and debates.

Indeed, in the context of offshore pipelines, it was only in 2006 that the first guideline

targeting their fracture assessment appeared, which is DNV-RP-F108 [9]. Still, the

DNV guideline [9] basically recommends the usage of BS7910 [8] with some modifica-

tions for pipelines subject to large plastic strains. Some of the major issues which are

not reflected in the current codes of practice, and/or require more research for their

justification, our outlined below:

(i) The crack driving force (in BS7910 [8] and DNV [9]) is a load-based equation

tailored for LEFM. Furthermore, its use requires limit-load definitions, which

in turn introduces non-uniform and unquantified approximations to the crack

driving force calculations. More suitable formulations can be developed by ac-

counting for the displacement-based loadings occurring in such pipelines.

(ii) The applicability of a fracture parameter (such as the J-integral) or even incor-

poration of an additional constraint parameter (such as the J-Q fracture theory)

to characterize the fracture response up to extreme plastic deformation levels is

not generally justified.

(iii) In order to use constraint-matched laboratory specimens for fracture assessment

of cracked pipeline subject to extreme plastic strains, the state of crack-tip con-

straint for such pipelines should be accurately evaluated. Of special importance
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is the crack-tip constraint under LSY and biaxial stress states (i.e. which is

relevant to a combined loading condition).

(iv) Treatment of an important material feature, namely, the Lüders plateau which

is present in the stress–strain curve of many pipeline steels, is only foreseen in

an approximate manner.

(v) A peripheral issue is that of strain concentration factors. These factors are

required for the accurate prediction of strains. Comprehensive collections of

concentration factors for a variety of situations are available, which are mostly

based on a linear elastic solution. However very few general formulations are

available for problems in which nonlinearities play a major role on the physical

response. An important and practical example is the strain concentration in the

field joint of a concrete coated offshore pipeline.

The work presented in this thesis mainly addresses these issues, by using advanced

nonlinear 3D finite element (FE) analysis as the primary tool. All FE analysis are

performed using the ABAQUS [10] software package. The general aim was to develop

new methodologies and/or to gain a better understanding of application of fracture

mechanics principles and justification of their use for assessment of offshore pipelines

subject to large plastic strains. Specifically, new methodologies are proposed in re-

lation to items (i) and (v) above, while extensive investigations are undertaken in

consideration of issues noted in (ii), (iii) and (iv) above.

1.3 Layout of Thesis

This thesis is in the paper based format, and is structured in nine chapters including

the present one, along with two appendices. Six of the chapters, namely Chapters

3 to 8, are original research articles, either accepted for publication or published in

peer-reviewed journals. The copyright agreement forms with the respective publishers

can be found in Appendix B.

The second chapter of the thesis presents a thorough literature review on both the

principles of fracture mechanics, and also their application to assessment of pipelines

undergoing large plastic strains.
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(a)

(b) (c)

(d) (e)

Figure 1.2. Some loading scenarios in which the pipeline undergoes bending, (a) The
reeling installation method, the pipe undergoes severe plastic bending when bent over the
reel drum (taken from Ref. [4]), (b) The S-lay installation method (taken from Ref. [5]),
(c) Lateral buckling (snaking) of the pipeline due to thermal stresses (taken from Ref. [6]),
(d) Free-spanning of the pipeline (taken from Ref. [7]), (e) The pipeline bent to cross a

seabed obstruction (taken from Ref. [7]).
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Chapters 3 and 4 investigate the peripheral issue of strain concentration in concrete

coated pipelines. Chapter 3 provides the details of a FE modeling framework capable

of capturing the strain concentration phenomena, and its comparison to benchmark

test data (those available in the literature). It also presents a comprehensive paramet-

ric study on various pipeline features affecting strain concentration in such pipelines.

Chapter 4 builds on the FE framework of the previous chapter and discusses the de-

velopment of a design equation for prediction of the strain concentration factor in X65

pipelines.

In Chapter 5 of this thesis, a new crack driving force estimation scheme is proposed

and calibrated to the results of 300 nonlinear FE models. The developed reference

strain equation predicts the J-integral of cracked pipelines as a linear function the

uncracked bending strain. A wide and practical range of geometric, material and

loading parameters are considered in the derivation of the equation. Comparisons

with other available estimation schemes are also presented in the chapter.

The effect of the Lüders plateau of the material stress–strain curve, on the fracture

response of cracked pipelines is discussed in Chapter 6 of this thesis. The developed

models are also used to investigate the near-tip stress fields and crack-tip constraint

levels in the presence of the Lüders plateau. Finally, a micro-mechanical damage inte-

gral approach is used to quantify the effect of Lüders plateau on material’s toughness.

Based on these, an equation is proposed that can satisfactorily predict the effect of

the Lüders plateau on material toughness, as a function of strain hardening capacity

and Lüders termination strain values.

In Chapter 7, the J-Q fracture theory is incorporated to investigate the near

tip stress and strain fields of cracked pipelines subject to extreme plastic bending.

These fields are further compared with those obtained from a standard K-T modified

boundary layer (MBL) model. In case of favourable similarity, the comparison could

justify the admissibility of the J-Q framework for characterizing the near-tip stress and

strain fields in cracked pipelines up to LSY levels. Furthermore, a formula is presented

for prediction of the crack-tip constraint (characterized by Q) in such pipelines, which

approximates Q as a linear function of the global bending strain. Finally, constraint
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matching studies are performed for justification of the use of SENT1 specimens for

fracture assessment of cracked pipelines.

Crack-tip constraint under biaxial stress states in pipelines subject to LSY is in-

vestigated in Chapter 8 of this thesis. 3D FE models of pipelines were developed

utilizing a voided plasticity material defining the zone ahead of their crack front,

thus enabling ductile crack growth simulation. The constraint-matched SENT and

deeply-cracked SENB2 specimens are also considered. Comprehensive comparison of

the R-curves and also plastic strain and stress triaxiality fields ahead of the propa-

gating crack among these three systems further aided understanding of the crack-tip

constraint levels in cracked pipelines.

The main conclusions drawn from the present research are summarized and out-

lined in Chapter 9 of this thesis, along with some recommendations for future research

in this field.

In order to efficiently and automatically perform the numerous and rather compli-

cated FE preprocessing tasks required throughout this thesis, various Python scripts

have been developed for the ABAQUS/CAE [10] environment. As a typical sample

of these, a detailed explanation of the scripts utilized for the FE modeling tasks of

Chapter 8 are presented in Appendix A. Free copies of all these in-house developed

scripts can be obtained from the author3.

1single edge notch tensile
2single edge notch bend
3n.nourpanah@dal.ca



Chapter 2

Literature Review & Background to the State of the Art in

Fracture Assessment

In this chapter fundamentals of fracture mechanics, as relevant to the study of integrity

and fracture response of offshore pipelines are discussed. Also, the available literatures

on applying these principles to the specific case of offshore pipelines subject to large

plastic strains are reviewed. Also, a brief literature review on the peripheral issue of

strain concentration in concrete coated pipelines (dealt with in chapters 3 and 4 of

this thesis) is presented.

2.1 Strain Based Design & the Necessity of Fracture Assessment

To address the ever more stringent cost constraints of offshore pipeline designs, there

has been a growing interest in utilizing the structures’ and their material to their

fullest capacity. Thus, the Strain Based Design (SBD) approach was developed for

pipeline design during the nineties, by which the cost and conservatism of the more

traditional stress-based approaches could be reduced. SBD takes advantage of the

well-known ductility property of steel, that is to safely undergo large plastic defor-

mations. The SBD framework imposes limiting strain values, rather than limiting

stresses, for justification of pipeline integrity [11–13].

SBD would only be advantageous and applicable for structures that are subject

to displacement-controlled loadings (at least partially). This can be understood by

envision of a typical force-displacement equilibrium path of a ductile structure loaded

up to the nonlinear response region as shown in Figure 2.1 (a moment-curvature curve

for example). If the loading is displacement controlled, noting the ductile regime, a

perturbation from the target design displacement could still be safely accommodated

by the structure. On the other hand, if the structure is load-controlled, even a very

small perturbation of load around the limit load could cause failure. Thus, for SBD

8
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to be beneficial, the structure should be utilized in the plastic deformation region, in

addition to the (at least partially) displacement-controlled loading [11–13].

Fortunately, a number of the most critical loading conditions imposed on a pipeline,

both during their installation and operation, have a displacement-based nature and

thus, justifying the applicability of SBD. These include, and are not limited to:

pipelines conforming to the curvature of a stinger, reel drum and/or bathymetry of a

rough seabed, and also buried pipelines subject to seabed motion such as subsidence

due to freeze-thaw cycles, mudslides and seismic activity [1, 4, 5, 14, 15]. All these

loading scenarios subject the pipeline to bending. Additionally, the pipeline under-

goes internal pressure under operational conditions. The combined action of bending

and internal pressure on the pipeline can be regarded as a partially displacement

controlled condition, for which the SBD framework is still applicable [11]. Based on

these, a number of the leading pipeline design codes such as DNV [2] and API [3]

have endorsed SBD and provide relevant guidelines. Based on their importance, the

pure bending, and also the combined bending plus internal pressure loading scenarios

have been considered in this thesis.

Two of the most prominent failure modes of offshore pipelines under bending are

local buckling of the pipe wall on the compression side, and fracture on the tensile

side. Research on the local buckling subject have satisfactorily pushed the allowable

compressive strain limits to quite large values1, as manifested in DNV [2] and API [3]

guidelines for example. Such large values can adequately accommodate even the most

severe loading conditions, such as those occurred during reeling. On the other hand,

the tensile limit strain is restricted because of the potential fracture of the pipeline

girth welds containing a hypothetical welding defect. Integrity assessment for this

case includes a fracture mechanics analysis of the component, which is termed as the

Engineering Criticality Assessment (ECA) in the relevant literature. The basic philos-

ophy of ECA is based on the relationship among defect size, mechanical properties,

material toughness, and applied loading [16, 17]. Principles of fracture mechanics

are incorporated to establish the relationship, and the final outcome of the ECA is

to establish tolerable defect sizes for given material properties and loading, or vice

1For example, the crtical local buckling equation of API [3] reads εcrit = t/(2D). For a pipe with
D/t = 15 under pure bending, this equation predicts a critical bending strain of εcrit = 3.33%.
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Figure 2.1. A schematic force-displacement equilibrium path of a ductile structure
showing the SBD framework

versa. According to DNV [2], ECA is mandatory for pipelines subject to accumulated

plastic strains greater than 0.3%. All reeled pipes fall into this category (nominal

strain levels in the range of 1∼4% occur during reeling). Moreover, pipelines during

installation (accounting for the strain concentration causes), free spanning pipelines,

and pipelines subject to seabed motion might undergo strain levels which require an

ECA for their integrity justification. The accumulated plastic strain is defined as:

εp =

√
2

3

(
ε2pL + ε2pH + ε2pR

)
(2.1)

Fracture mechanics assessment of flawed components has been widely applied

in practice and documented in design codes (e.g. BS7910 [8]). However the cur-

rent ECA approaches are based on criteria developed in the Eighties, mainly under

stress/load based design assumptions with very limited allowable plastic deformation,

which would lead to excessive conservatism for strain-based conditions. DNV-RP-

F108 [9] was the first code specifically tailored for ECA of offshore pipelines subject to

large plastic strains. However, still many aspects of ECA applied to offshore pipelines

subject to large plastic strains require more research and development. Some of these
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aspects are further outlined, followed by a review of the available technical literature

on the associated issues.

Common to all aspects of SBD, is the accurate prediction of strain. The nominal

strain is readily calculable from the displacement-based loading configuration. How-

ever, several local effects would cause strain concentrations, which also have to be

taken into account [2]. The most prominent of these causes are:

• Variations and imperfections in cross sectional area between adjacent pipe joints2.

• Stiffening effects of concrete coating.

• Yield stress mismatch between weld metal and pipe material, or material varia-

tions (yield stress and strain hardening capacity) between adjacent pipe joints.

The overture of the present thesis consists of Chapters 3 and 4 which thoroughly

investigate the second item above, that is strain concentration in field joint of concrete

coated offshore pipelines. The rest of the material in this thesis investigates various

aspects of the fracture mechanics assessment of offshore pipelines subject to large

plastic strains. A comprehensive literature review on fundamental aspects of fracture

mechanics and its application to offshore pipelines subject to large plastic strains is

presented in section 2.2 onwards.

2.1.1 Strain Concentration in Concrete Coated Pipelines

The on-bottom stability requirement of high diameter offshore pipelines laid on the

seabed usually requires the addition of a concrete weight coating over the steel pipe.

A thin anti-corrosion layer (ACL) is situated between the steel pipe and the concrete

coating. The concrete coating has discontinuities at locations of the field joints3 (FJ)

to facilitate girth welding of 12 m long pipe joints. Upon application of bending, the

bare steel pipe in the FJ undergoes strain concentration, which can be described by

a strain concentration factor, SCF:

SCF =
εFJ

εg
(2.2)

2pipe joint: 12 m long line pipe.
3A field joint refers to the joint established by girth welding of two adjacent pipe joints in the

field.
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This type of strain concentration phenomenon has been investigated via full-scale

test setups by Archer and Adams [18], Akten et al. [19], Verley and Ness [20] and

Ness et al. [21]. Archer and Adams [18] investigated epoxy ACL’s, and found out

that the shear transfer capacity is strongly affected by the type and method of coating

application, load conditions and load sequence. Akten et al. [19] performed full scale

one-end lift bend test on 28, 30 and 36 inch diameter pipes with coating thickness of

62, 90 and 120 mm. They concluded that continuous steel cages should be used in the

concrete coating to minimize the extent and width of concrete cracks. Also slotting

of the concrete would only be beneficial for the thickest of the coatings. Furthermore,

the applied curvature during laying was justified as safe. Verley and Ness [20] reported

the results of full scale bending tests on 16 and 20 inch diameter coated pipes with

polyethylene and asphalt ACLs. Constant moment, four point bending was applied

to a pipe string consisting of one pipe joint welded between two half-length joints.

They concluded that SCF is closely related to the shear transfer from the concrete to

the steel through the ACL. Also cyclic tests did not cause higher SCF than that in

the static tests. Ness et al. [21] monitored the laying of a 40 inch pipe with 70 mm

coating thickness over a stinger with a radius of 283 m in a water depth of 197 m with

44 strain gauges. Their results showed very little strain concentration (SCF � 1.15).

Lund et al. [22] presented a semi-analytical approach for SCF estimation, which

considered arbitrary material behavior for steel and concrete while neglecting concrete

sliding in the formulation. The equilibrium of forces between pipe and coating was

used to determine the moment-curvature of the coated and uncoated segments, used

to establish the SCF. Their results showed good agreement in comparison with test

results of Akten et al. [19]. Ness and Verley [23] included the effect of possible sliding

of coating in the semi-analytical model of Lund et al. [22] via an iterating method,

which resulted in SCF predictions in agreement with tests of Verley and Ness [20].

Endal [24] performed shell FE analysis of an X65 pipe with 20 inch diameter,

17.9 mm wall thickness, 0.3 MPa ACL shear strength and 80 mm coating thickness.

Realistic response results were obtained, however, up to the concrete crushing point.

The sliding of coating towards the FJ and also the realistic shear stress distribution

in ACL were captured. Sævik et al. [25] used the theory of sandwich structures and
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formulated a concrete coated pipe finite element, which showed a good agreement

with more complicated 3D FE models.

Currently, the state of the art in investigating the strain concentration of coated

pipelines is either experimental investigation or semi-analytical formulations, quan-

tifying the phenomenon with the SCF. As an alternative to the costly and time-

consuming test setups and experiments, or the semi-analytical formulations which

introduce a certain level of simplification, a 3D FE simulation of the problem includ-

ing nearly all the sources of complexity and nonlinearity can be undertaken. The

initial goal of the current study is to prepare a FE model which would include the

most important sources of nonlinearity, and to verify the predicted response against

available test results. This robust FE modeling framework would be subsequently

used to investigate the effect of variation of each parameter on the SCF. These as-

pects are targeted in Chapter 3 of this thesis. Furthermore, based on the trends

observed in the initial parametric study, an extensive parametric study encompassing

most of the practical design situations would be performed. The ultimate goal would

be establishing empirical design equations for predicting the SCF. It is believed that

such a tool would improve the practical design of offshore pipelines, as it provides

the accuracy enjoyed by sophisticated nonlinear FE simulations via a set of simplistic

design equations. Such an analysis is described in Chapter 4 of the present thesis.

2.2 Single Parameter Fracture Mechanics (SPFM)

In consideration of the very complex (and still under debate) micro-mechanisms of

material fracture, the fundamental task in engineering fracture mechanics is to provide

semi-empirical or phenomenological parameters which can satisfactorily correlate the

initiation and growth of cracks in two different bodies. The two different bodies would

be the full-sized structure of interest, and (preferably) a laboratory-scale specimen. In

other words, the fracture toughness of the material could be approximated (in terms

of the respective semi-empirical parameter) by loading a laboratory test specimen to

fracture, and in turn comparing it to the crack driving force in the actual structure

(again, in terms of the respective semi-empirical parameter). Most of the common

fracture specimens along with their abbreviations are shown in Figure 2.2.
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Figure 2.2. Some common fracture specimens and their abbreviations.

The actual fracture micro-process is active over very small length scales. For this

order of length scales, the continuum idealization and thus the concepts of stress and

strain break down. Still, it can be assumed that this process is controlled and driven

by the near crack-tip stress and strain fields. Therefore, a suitable candidate for the

phenomenological parameter(s) used in characterizing fracture of materials would be

a parameter (or a set of parameters) that can accurately describe the state of stresses

and strains in the vicinity of the crack tip (which presumably engulfs the fracture

process zone.) Historically, there was an interest to use a single phenomenological

parameter. The linear elasticity analysis of Williams [26] provided such a parameter,

namely the stress intensity factor, K. Williams [26] showed that for a crack4 in an

elastic media loaded in Mode-I (crack opening mode), the stress field ahead of the

crack tip would follow Equation (2.3). The conventions of a cracked body in mode I

loading is shown in Figure 2.3 (after Hutchinson [27]).

σij = Aij(θ)r
− 1/2 + Bij(θ) + Cij(θ)r

1/2 + . . . (2.3)

4The original analysis was for an infinite wedge with an arbitrary interior angle, and the crack is
a special case of the wedge with an interior angle equal to π.
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Figure 2.3. The conventions of a cracked body loaded in mode I; after Hutchinson. [27].

The first term in Equation (2.3) has a square root singularity with respect to r.

That is, as r → 0, the first term would dominate the solution. Hence, in the vicinity

of the crack tip, K would single-handedly characterize the stress (and strain) fields,

such that:

σij =
K√
2πr

fij(θ) (2.4)

Thus, K can be used as a semi-empirical fracture parameter, able to transfer the

information on severity of crack tip stress and strain fields. Regarding the elasticity

solution that K is derived from, use of K is limited to situations with limited inelastic

deformation response, hence the term linear elastic fracture mechanics (LEFM). While

some amount of inelasticity is always present in the vicinity of a stressed crack tip,

still, LEFM can be used for many problems in which the size of the inelastic region

is small compared to the relevant dimensions of the body (e.g. the crack length, a,

or the uncracked ligament length, W − a). This situation is generally termed small

scale yielding (SSY). The main applications of LEFM are brittle fracture (in which

fracture of the material precludes large scale yielding, LSY, of the structure), and also

high-cycle fatigue crack growth (in which the low loading levels cause relatively small

crack tip plastic zones).

The currently used steel grades for offshore pipelines have substantial ductility



16

and (can) undergo significant amounts of plastic deformation prior to fracture. Thus,

application of LEFM and K would not be admissible if the assessment of the structure

loaded up to LSY is required. The J-integral, originally proposed by Rice [28], has

been shown to be a suitable parameter for situations were elastic-plastic fracture

mechanics (EPFM) is required. J is defined as (see Figure 2.3 for illustration of the

contour path Γ and its unit outward normal n):

J =

∫
Γ

(Wsn1 − σijnjui,1) ds (2.5)

where Ws is the strain energy density of the material (Ws =
∫ ε

0
σ dε), and ui are the

displacement components. Simply put, J plays the same role for EPFM as K does

for LEFM. Hutchinson [29] and Rice and Rosengren [30] both showed the near-tip

stress and strain fields of an elastoplastic material can be characterized solely with J

(hence the term HRR singularity). The HRR singularity assumes a Ramberg-Osgood

uniaxial stress–strain relationship, represented by:

ε

εy
=

σ

σy

+ α

(
σ

σy

)n

(2.6)

Approaching the crack tip, r → 0, the elastic strains can be assumed negligible with

respect to the plastic strains, thus:

ε

εy
= α

(
σ

σy

)n

(2.7)

By using the J2 deformation plasticity theory, the uniaxial stress–strain relation

of Equation 2.7 can be generalized to multiaxial stress states [27]:

εij
εy

=
3

2
α

(
σe

σy

)n−1
Sij

σy

, σe =

(
3

2
SijSij

)1/2

(2.8)

For such a material, the HRR singularity stress and strain fields are defined by Equa-

tion (2.9) [29, 30], which shows that for EPFM, the stress field is only a function of

J . As long as the HRR singularity continues to characterize the near-tip fields, J can

be deemed as a suitable phenomenological parameter for EPFM.

(σij)HRR = σy

(
J

ασyεyInr

) 1
n+1

σ̂ij(θ, n)
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Figure 2.4. Definition of CTOD as the crack opening at intersection of rays with the
blunted crack flanks.

(εij)HRR = αεy

(
J

ασyεyInr

) n
n+1

ε̂ij(θ, n) (2.9)

Tabulations of the dimensionless θ-variation functions σ̂ij and ε̂ij and also the

normalizing constant In can be found in Ref. [31]. Under SSY conditions, J and K

would have a unique relationship:

J =
K2

E ′ (2.10)

Based on experimental observations, Wells [32] suggested the use of the crack tip

opening displacement (CTOD or δt) as a fracture mechanics parameter. Later on,

Shih [33] showed that J and CTOD do indeed have a general relationship as shown

in Equation (2.11). The CTOD definition of Shih [33] is shown in Figure 2.4. Thus,

CTOD forms an acceptable fracture parameter for application in both EPFM and

LEFM.

CTOD = d(αεy, n)
J

σy

(2.11)

Regardless of the choice of fracture mechanics parameter, the assessment of a

cracked structure is performed by comparison of crack driving force in the structure

to the critical fracture toughness of the material obtained from laboratory specimens.

In terms of J for example, the condition J < Jc would assure that the crack would not

grow under the considered loading. A more descriptive picture of fracture toughness of

a material can be grasped by the resistance or R-curve, which basically describes the

fracture toughness of the material as a function of crack growth (e.g. JR as a function of

Δa). Figure 2.5 shows a schematic R-curve for a typical ductile intermediate-strength

steel (such as a grade X60 pipeline steel, in terminology of API-5L [34]). For a typical

steel discussed, the fracture toughness JR(Δa) may increase to twice the value of Jc

with a crack advance of as little as Δa � 1 ∼ 2 mm [27]. Thus, provided that ductile
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Figure 2.5. Schematic of a J-R-curve for a ductile steel

crack growth proceeds in a stable manner, this increase in fracture toughness of the

material can be safely utilized (as the option has been foreseen in modern design

guidelines [8, 9]). The conditions of stable crack advance can be formulated as [27]:

dJ

da
<

dJR
dΔa

(2.12)

2.3 Crack Driving Force Estimation Schemes

For LEFM applications, linear elasticity can elegantly provide the crack driving force

(in terms of K) of a wide variety of practical cracked body configurations [16]. On the

contrary, for EPFM applications, the solution of crack driving force (in terms of J) for

only a few idealized geometries are available [27]. Such analytical solutions are based

on boundary value problems with a nonlinear material response (such as Equation

(2.7)) and therefore are remarkably complex or even impossible to achieve. Thus, the

applicability of EPFM relies heavily on developing estimation schemes for J in various

cracked body configurations. The prominent developments in this field, including the

Electric Power Research Institute (EPRI) scheme of Kumar et al. [35], the reference

stress method of Ainsworth [36] and the reference strain method of Linkens et al. [37]

are reviewed in the following sections.
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2.3.1 The Electric Power Research Institute (EPRI) Scheme

The EPRI scheme developed by Kumar et al. [35] is based on the idea of splitting J

into an elastic Je and plastic part Jp. While Je could be basically related to K via

Equation (2.10), the HRR singularity solution is used to define Jp. In other words,

Je represents the contribution of a material following the first term on the RHS5 of

Equation (2.6), while Jp corresponds to a material following the second term on the

RHS of Equation (2.6). The total J-integral is approximated as:

J = Je(ae) + Jp(a)

=
K2(ae)

E ′ + ασyεyl1h1

(
P

Py

)n+1

(2.13)

where ae in Equation (2.13) is the modified crack length. The modification is based

on Irwin’s idea (i.e. adding the size of the plastic zone to the actual crack depth to

account for plasticity in SSY, see Anderson [16]). However, also the effect of strain

hardening is included in formulation of ae, as discussed by Kumar and Shih [38].

Furthermore, P is the applied load while Py is a limit load of the cracked body (i.e.

the load at which the net cross section yields [16]). h1 in Equation (2.13) is a plasticity

function which is generally dependant on the geometry of the cracked body and also

post-yield properties of the material (n). h1 has to be calculated using FE analysis

for the desired cracked body. Some practical configurations have been analyzed and

their h1 functions have been tabulated in the EPRI technical report [35].

2.3.2 The Reference Stress Scheme and Guideline Recommendations

The EPRI scheme [35] has two drawbacks. First, it is only suitable for idealized ma-

terial response such as a Ramberg-Osgood (RO) stress–strain curve given in Equation

(2.6). This is actually a minor drawback as RO-type curves can actually approximate

a variety of elastoplastic uniaxial responses with a very good accuracy. Second and

most importantly, the EPRI scheme requires extensive tabulation of the h1 function

which requires nonlinear FE analysis and might not be readily available for a config-

uration of interest. Moreover, Miller and Ainsworth [39] have shown that some of the

5right hand side.
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FE analysis preformed for establishing the h1 functions do not meet self-consistency

requirements (especially SENT configurations with shallow cracks). The reference

stress method of Ainsworth [36] overcomes these drawbacks by introducing σref which

is defined as:
σref

σy

=
P

Py

(2.14)

Substituting Equation (2.14) into Equation (2.13), while making simplifying as-

sumptions and approximations, and also incorporating minor modifications as ex-

plained in Milne et al. [40], the final form of the reference stress method J estimation

scheme as implemented in BS7910 [8] and also DNV [9] is achieved:

J(a) = Je(a)

(
Eεref
σref

+
σ3
ref

2σ2
yEεref

)
(2.15)

where Je(a) is calculated from Equation (2.10).

Miller and Ainsworth [39] have verified the reference stress scheme against the

EPRI method and showed that the reference stress method produces an average over-

prediction of 5%. However, on a case by case basis, over-predictions as much as 20%

and under-predictions as large as 40% have also been observed [39].

In order to utilize Equation (2.15) for fracture assessment of cracked pipelines

subject to bending, the procedures outlined in BS7910 [8] and DNV [9] could be

followed. The reference stress σref for a pipeline with a semi-circumferential part-

through external6 crack7 subject to bending can be calculated using Kastner’s limit

load solution [41] as recommended in BS7910 [8] and DNV [9]:

σref =

σunc

[
π
(
1− a

t

)
+ 2

(a
t

)
sin

(
c

rm

)]
(
1− a

t

)[
π −

(
c

rm

)(a
t

)] (2.16)

Equation (2.16) is actually derived from Kastner’s plastic limit load solution [41]

of a cracked pipeline subject to tension (rather than bending). Nonetheless, codes

recommend its use for bending loads too [8, 9]. The reference strain (εref ) used in

Equation (2.15) is the corresponding strain to σref determined from the material’s true

6BS7910 recommends the same σref for internal and external semi-circumferential part-through
cracks.

7See Figure 5.4 for a schematic of this type of crack.
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uniaxial stress–strain curve. Furthermore, σunc and its corresponding strain (εunc) are

the applied bending stress and strain. However, the effect of all other stress/strain

concentrators (other than the crack itself) should be included in σunc and εunc. As

briefly noted in Section 2.1, these include effects of misalignments or wall thickness

differences between adjacent pipe joints, or the stiffening effect due to a concrete

coating (as noted in Section 2.1.1 and fully investigated in Chapters 3 and 4, in which

strain concentration factors based on elastoplastic FE analysis will be derived), etc.

Considering the fact that for the majority of these cases, elastoplastic concentration

factors are not readily available, DNV [9] recommends usage of Neuber’s method [42],

which is expressed as:

σunc × εunc = σnom × εnom × k2
t (2.17)

The elastic stress concentration factor (kt) is much more available than elastoplastic

stress and strain concentration factors (such as the kt formulas provided in DNV [9]).

Equation (2.17) represents a hyperbola in the σunc-εunc space, and its intersection

with the materials true stress–strain curve yields the value of σunc and εunc for use in

Equation (2.16).

2.3.3 The Reference Strain Scheme

The reference stress method discussed in Section 2.3.2 was developed in the 1980’s for

(mainly) the power generation industry applications. On these grounds, the reference

stress method was tailored for load-controlled situations in which LSY of the com-

ponent was not generally permitted. Furthermore, application of the reference stress

method requires the use of plastic limit load solutions (such as Kastner’s [41] solution

used in Equation (2.16)). Miller [43] notes that a realistic plastic limit load solution

should account for material’s strain hardening, and also finite strain and finite defor-

mation effects. These effects have been commonly neglected and instead, a simple

limit analysis (such as the lower-bound plasticity theorem, or the strength of material

approaches with very significant simplifying assumptions) has been performed [43].

Furthermore, a very wide variety of limit load solutions are usually available for a

specific cracked configuration and a clear-cut consensus might not be obvious (e.g.

see Miller’s review [43]). Thus, the mere dependency of the reference stress method
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on limit load definitions includes additional and unquantified approximation in esti-

mation of the crack driving force.

Milne et al. [40], Ainsworth [44] and Zerbst et al. [45] provide useful insight on var-

ious terms in Equation (2.15). The first term (Eεref/σref ) describes both the limiting

elastic and fully plastic behaviors. The second term, σ3
ref/(2σ

2
yEεref ), describes the

response in between these two limits, namely, the small scale yielding regime, where

the general behavior is elastic, but J exceeds its elastic value, and a minor plasticity

correction is provided by the second term. The second term is designed such that

it has a negligible effect in the elastic domain (σref/σy � 1) and in the fully plastic

domain in which Eεref/σref � 1. Based on these, the second term could be safely

neglected for LSY conditions. In addition to this simplification, Linkens et al. [37] also

used the uncracked stress and strain (σunc, εunc) instead of the reference stress and

strain (σref , εref )
8. The final outcome is the reference strain formulation. The refer-

ence strain formulation is extremely suitable for displacement controlled situations in

which the cracked body also undergoes LSY. By incorporating these simplifications,

including a safety factor of 2, and also substituting the general form of the LEFM

stress intensity factor (K = Fσ
√
πa) in Equation (2.15), the final form of the reference

strain J-estimation scheme reads [37]:

J = 2F 2πσuncεunc (2.18)

Regarding the underlying simplifying assumptions of the reference strain scheme,

Equation (2.18) is particularly attractive for fracture assessment of pipelines subject

to large plastic strains. It has a strain-based format and does not require a limit

load definition. The nominal strain in a displacement-controlled situation is readily

obtained from consideration of the geometric conformity of the pipeline (e.g. during

reeling εnom = D/(2Rhub) [9]). Furthermore, Equation (2.18) is in accord with results

of tests performed on reeled pipelines by Pisarski et al. [46], and also detailed FE

results of Østby et al. [47] and Pisarski et al. [48]. All of these revealed a similar

linear evolution of fracture response parameter J with total uncracked strain εunc.

8Basically, the uncracked stress value is magnified using a limit load solution (such as Equation
(2.16)) to establish the reference stress. Thus, σref accounts for the effect of the crack on increasing
the stress levels.
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However, Tkaczyk et al. [49] showed that although Equation (2.18) can qualitatively

capture the fracture response of reeled pipelines, the quantitative accuracy is not

sufficient.

Several attempts have been made to improve the accuracy of fracture response

estimation schemes of pipelines subject to plastic bending (such as reeled pipelines)

and/or simplifying them. Taking advantage of the (nearly) linear evolution of fracture

response with the applied nominal strain, Østby [50] proposed a set of strain based

equation by fitting them to the results of a series of line-spring shell FE model simula-

tions. However, the limitations of the considered defect geometries and the considered

strain levels did not render the approach attractive for application to common reeled

pipelines. Tkaczyk et al. [51] applied the modified reference stress approach of Kim

and Budden [52] to the limit load solution of Kastner et al. [41]. Although the ap-

proach resulted in improved accuracy, it still did not take advantage of a strain-based

formulation.

In Chapter 5 of this thesis, the basis of the reference strain method is utilized to

develop an accurate and practical reference strain J-estimation scheme suitable for

SBD of pipelines subject to extreme plastic bending (the prominent application being

reeled pipelines). Detailed 3D FE models will be used to calibrate the developed

equation.

An issue relevant to thick-wall pipelines (low D/t) is the so-called Lüders plateau.

For such pipelines, usually seamless manufacturing is favored. In seamless pipelines,

the elastic part of the material’s stress–strain curve is followed by a perfectly plastic

response (i.e. the Lüders plateau), and strain hardening begins only after the termina-

tion of this plateau. The discussed J-estimation schemes cannot be used to explicitly

show the effect of the Lüders plateau on the fracture response (at best, only the ap-

proximate effect of the Lüders plateau could be reflected with these schemes). As

such, in Chapter 6 of this thesis, fully nonlinear 3D FE models are developed and the

effect of a Lüders plateau with various values of termination strain is discussed on

the fracture response of such pipelines. Furthermore, the effect of Lüders plateau on

fracture toughness of such pipelines is also investigated in Chapter 6 using a ductile

damage integral as reviewed in section 2.6.1.
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2.4 Two Parameter Fracture Mechanics (2PFM) and Constraint Effects

As discussed, the SPFM framework is based on the idea of the similarity of the

crack-tip fields in different cracked bodies, with the information on these fields being

conveyed through a single parameter. While this approach is sound for SSY situa-

tions, crack tip fields under LSY conditions cannot generally be described by a single

parameter. McClintock [53] was the first to demonstrate this fact through slip-line

analysis (assuming a rigid-perfectly plastic material) of several plane strain specimens.

His analysis revealed that the near tip stress and deformation fields under LSY are

a strong function of geometry and loading mode. Some of the common laboratory

specimens and their abbreviations are shown in Figure 2.2. For example, McClin-

tock showed that under fully plastic conditions, the DENT and CCP specimens have

maximum crack opening stress values of � 3σy and � 1.15σy respectively [53].

Another implicit assumption in the SPFM framework is that the critical fracture

toughness and the R-curve are only material properties. In other words, fracture tests

on test specimens with different geometric shapes and different loading modes should

ideally yield in the same fracture toughness data. Similar to the case on near crack tip

fields, the fracture toughness obtained from tests undergoing LSY is strongly depen-

dent on geometry and loading mode. Begley and Landes [54] investigated J vs. Δa

R-curves of CCP and CT specimens, and showed that the R-curve of the CCP speci-

men (under tension) has a substantially higher slope than that obtained from the CT

specimen (loaded predominantly in bending). Also, Hancock and Cowling [55] investi-

gated the crack tip opening displacement at the initiation of ductile tearing (CTODc)

and observed the CTODc of a SENT specimen to be approximately ten times that

obtained from a DENT specimen of the same material. Parks [56] summarizes that

in both sets of experiments, the specimens having a higher fracture toughness (both

in terms of initiation toughness and R-curve slope) are the ones that have lower crack

tip stress triaxiality obtained from the slip-line analysis of McClintock’s [53]. The

stress triaxiality is defined as:

Stress Triaxiality =
σm

σe

(2.19)

The dependency of fracture toughness on geometry and loading mode is generally
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and loosely termed constraint. Literally, crack tip constraint can be understood as a

structural obstacle against plastic deformation that is induced mainly by the geometric

and physical boundary conditions but can also arise due to material mismatch or

residual stresses [57]. Constraint is closely related to stress triaxiality near the crack-

tip. Higher triaxiality/constraint promotes fracture, because the input of external

work (e.g. measured by J), would, to a lesser extent, be dissipated by the global

plastic deformation, but rather be available to enhance local material degradation

and damage [57, 58].

A high constraint/triaxiality cracked body will generally lead to lower toughness

value with a brittle type fracture, while low constraint/triaxiality cracked bodies of the

same material will have a higher toughness and a ductile type fracture [56]. Parks [56]

associates high constraint/triaxiality with:

(i) all states of SSY; and

(ii) virtually all load levels (SSY and LSY) of deeply-cracked bodies in which the

uncracked ligament is predominantly subjected to bending.

On the contrary, shallow-cracked bodies in which the uncracked ligament is mostly

under tension have a low crack-tip stress triaxiality and low constraint. McMeeking

and Parks [59] and Shih and German [60] used detailed plane strain finite element

analysis on various specimen geometries to investigate their near tip stress and strain

fields and compared them to the standard HRR fields. They identified limits of loading

in these geometries for J-dominance9. In high constraint/triaxiality configurations,

the HRR solution continued to describe the crack tip stress and strain fields up to

LSY, and thus the SPFM framework was deemed to be applicable to them by utilizing

either J or CTOD.

Later on, fracture mechanics research was aimed at developing constraint theories

such that the near-tip stress and strain fields of various cracked bodies with different

levels of constraint could be satisfactorily described. In this regards, two parameter

9J-dominance refers to a situation in which the HRR solution (which describes the intensity of
the near-tip fields as a function of J) satisfactorily characterizes the near tip stress and strain fields.
This provides the grounds for applicability of SPFM with J as the crack driving force and fracture
toughness parameter.
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Figure 2.6. A schematic of the MBL model and its conventions

fracture mechanics (2PFM) theories have been proposed, which utilize an additional

constraint parameter. The primary parameter, J or CTOD, characterizes the scale of

crack tip deformation, while the additional constraint parameter reflects the varying

levels of crack tip stress triaxiality in different bodies. The most prominent 2PFM

theories, are the J-T formulation of Betegon and Hancock [61] (further developed,

explained and advocated by Al-Ani and Hancock [62] and Hancock et al. [63]), the

J-A2 formulation [64–66], and finally the J-Q theory of O’Dowd and Shih [67, 68]

(further developed, explained and advocated in Refs. [69–72]). These three theories

will be briefly explained below.

2.4.1 The J-T Formulation

The modified boundary layer (MBL) model is used for derivation of both the J-T

and the J-Q formulations. The MBL is a plane strain circular disk which represents

a hypothetical crack tip, and is loaded at its circular boundary with tractions (or dis-

placements) of the Williams asymptotic solution (such as Equations (2.3) and (2.4)).

If the size of the crack tip plastic zone is small with respect to the radius of the MBL,

application of the Williams linear elastic solution as boundary conditions is justified.

Figure 2.6 shows a schematic of an MBL model and its conventions.
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Betegon and Hancock [61] used the MBL model and included the first (singular)

and also the second term (non-singular) of the Williams asymptotic solution (Equation

(2.3)) in their analysis. Thus the tractions at the boundary of the MBL would read:

σij =
K√
2πr

fij(θ) + Tδ1iδ1j (2.20)

in which the T -stress acts parallel to the crack flanks, and has thus been neglected in

the traditional SPFM approach. The MBL model was loaded at its boundary with

displacements corresponding to the tractions given in Equation (2.20), represented

by:

ux =
KI

E
(1 + ν)

√
r

2π
cos (θ/2)[χ− cos θ] + (1− ν2)

T

E
x

uy =
KI

E
(1 + ν)

√
r

2π
sin (θ/2)[χ− cos θ]− ν(1 + ν)

T

E
y (2.21)

where χ = 3− 4ν under plane strain conditions.

Betegon and Hancock [61] showed that the resulting near tip stress fields of such

an analysis forms a family of stress profiles which are all approximately parallel to

the HRR distribution, and the particular member of the family is determined by

the T -stress. Positive values of T -stress resulted in stress distributions converging to

the high triaxiality HRR distribution, while negative values of the T -stress result in

the profiles falling markedly below the HRR distribution (i.e. low stress triaxiality).

Thus, they argued that the level of crack-tip constraint/triaxiality is correlated to

the elastic T -stress. In other words, different geometries could be ranked by their

constraint based on their respective T -stress. The following general formula for the

near-tip crack opening stress was proposed:(
σθθ

σy

)
T

=

(
σθθ

σy

)
T=0

+ α1

(
T

σy

)
+ α2

(
T

σy

)2

(2.22)

in which αi are generally functions of the strain hardening index, n.

While the T -stress is defined only for elastic materials, it has been shown that the

elastic T -stress can correlate constraint/triaxiality up to LSY levels [61–63]. Further-

more, Hancock et al. [63] successfully used the J-T formulation to rank fracture test

data (both initiation toughness and R-curve slope) among specimens with various

levels of constraint.



28

2.4.2 The J-A2 Formulation

The HRR solution is basically the first term in an asymptotic solution of the crack-tip

stress and strain fields. Later on, the J-A2 three-term solution was proposed [64–66],

in which the near tip stress field of a power-law material is represented by10:

σij

σy

= A1

[(
r

L1

)s1

σ̂
(1)
ij (θ) + A2

(
r

L1

)s2

σ̂
(2)
ij (θ) + A2

2

(
r

L1

)s3

σ̂
(3)
ij (θ)

]
(2.23)

where the stress angular functions σ̂k
ij(θ) (k = 1, 2, 3) and the stress power exponents

sk depend on n. Moreover, A1 and s1 are related to the HRR singularity field and J :

A1 =

(
J

αεyσyInl1

)−s1

, s1 = − 1

n+ 1
(2.24)

Thus, Equation (2.23) establishes a description of the near-tip fields as a function

of two parameters, namely J and A2 (the constraint/triaxiality parameter). Zhu and

Leis [73] have successfully utilized the J-A2 formulation to correct the J-R-curves

of high constraint specimens for application to fracture assessment of low constraint

pipes.

2.4.3 The J-Q Formulation

Using an MBL model loaded with the first two terms of the Williams solution [26]

(i.e. Equation (2.20)) in which the FE model included large geometry change (LGC)

effects, O’Dowd and Shih [67, 68] used dimensional similarity arguments and showed

that the near-tip fields up to LSY conditions could be satisfactorily described by two

terms. These are: (i) J , which sets the size scale over which large stresses and strains

develop (the fracture process zone), and (ii) Q, which controls the stress triaxility

levels in this zone [67, 68]. They showed that in an annular region ahead of the crack

tip, the stress field is defined by:

σij = (σij)Ref +Qσyδij for r > J/σy & |θ| < π/2 (2.25)

The reference field (i.e. (σij)Ref in Equation (2.25)) could be considered as the HRR

field [29, 30] or the SSY distribution obtained fromMBLmodel with T = Q = 0, which

10The same assumptions as the HRR derivations have been used, that is, a power-law uniaxial
relationship (Equation (2.7)) which is extended to multiaxial stress states using the J2 deformation
plasticity theory (Equation (2.8)).
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yields more consistent results [67, 68]. O’Dowd and Shih [68] recommend extracting Q

from the crack opening stress distribution at a distance of r = 2× J/σy, in which the

LGC effects are minimized11. The ability of the J-Q approach to rank the fracture

toughness data (both the initiation toughness and the slope of the R-curve) from

specimens with different levels of constraint has been showcased in Refs. [69–72].

While the original J-Q formulation was developed based on 2D plane strain MBL

analysis, several researchers have argued validation of the approach to 3D cracks [69,

71]. These heuristic arguments pointed out that at sufficiently remote locations from

the intersection of the crack front and external body surface (s/c < 1)12, and in

the neighborhood of the crack tip (r → 0), plane strain conditions would indeed

prevail (i.e. the out of plane strains become negligible with respect to the singular in-

plane strains). As such, the J-Q description of Equation (2.25) would hold true, and

accordingly, the pair of J(s) and Q(s) could completely characterize the 3D near tip

fields [69, 71]. Furthermore, an operational average definition of constraint, Qave, was

proposed [69]. This quantity has been observed to satisfactorily rank the toughness

and R-curve slopes in 3D geometries with different levels of crack tip constraint [74].

Mathematically, Qave is represented by:

Qave =
1

sb − sa

∫ sb

sa

Q(s) ds at θ = 0, r = 2× Jave/σy (2.26)

where the upper and lower integration limits (sa and sb, respectively) correspond to

that length of the crack in which the fracture process is active. Faleskog [74] carried

the integration over the crack front length in which Q(s) was approximately constant.

Also, Jave is calculated the same way as Qave, that is by integrating it along the crack

front.

In all the reviewed 2PFM constraint theories, a description of the near tip stress

and strain fields (which presumably drive the fracture process) is sought in terms

of two parameters. Based on the specifics of each formulation, the near tip fields

are extracted from FE analysis of the required cracked body, and the constraint

parameter is calculated accordingly. Parks [56] provides a comprehensive review of

11A complete illustration of the J-Q near tip stress and strain fields can be found in Chapter 7 of
this thesis.

12See for example Figure 7.8 in Chapter 7 for r, θ, s coordinates as relevant to a 3D crack.
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2PFM constraint theories.

The 2PFM constraint theories expand the applicability limits of the more re-

strictive SPFM (which is basically applicable to LEFM, and EPFM situations with

J-dominance). However, a 2PFM approach would be valid as long as these theories

are capable of describing the near tip stress and strain fields. While detailed studies

have shown that for example, the J-Q approach can satisfactorily describe the near

tip fields of most 2D specimens up to substantial levels of LSY [69–71], the existence

of an identifiable 2PFM near tip field is not necessarily guaranteed for any arbitrary

cracked body up to LSY. Even for some 2D specimens (such as the deeply cracked

SENB with a/W = 0.5 in Ref. [68]), the near-tip fields cease to resemble identifiable

2PFM fields at very high levels of LSY (which is caused by the global bending stresses

interfering with near tip stress fields). In other words, while an operational defini-

tion of a constraint parameter is readily available at any load level (such as by using

Equation (2.25) for Q), there is a risk that the actual near-tip field will not resemble

a 2PFM field. Based on these, Parks [56] cautions that any constraint study should

involve detailed and careful studies of the respective near-tip stress and strain fields.

In this thesis, the J-Q approach has been selected for studying on pipeline crack-

tip constraint.

2.5 Crack Tip Constraint in Pipelines

The crack-like defects of interest for fracture assessment of offshore pipelines are gen-

erally caused by welding flaws. The height of these flaws are governed by the weld

pass height, resulting in crack-like defects with a height of 2 ∼ 6 mm [9]. Furthermore,

the primary bending load considered in this thesis causes the uncracked ligament in

the pipe wall to be subjected mostly to tension. These situations cause such cracked

pipelines to have a low crack tip constraint.

Based on a 2PFM philosophy, the laboratory specimen used for fracture tough-

ness data should have similar crack-tip constraint to the structure of interest, in this

case being cracked pipelines under LSY conditions. However, traditionally and in the

interest of conservatism, deeply cracked high-constraint specimens have been recom-

mended by codes (such as the CT and SENB with a/W � 0.5 [75]) which provide
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Figure 2.7. Schematic of ranking different cracked configurations based on their
respective crack-tip constraint; after Chiesa et al. [76].

the lowest fracture toughness of the material. 2PFM formulations and the insight

they have provided on crack-tip constraint, render the traditional approach of using

high constraint fracture specimens as overly conservative. In the context of 2PFM

and based on a detailed constraint match study, a more suitable (and probably more

economical) specimen can be selected to determine the fracture toughness data of a

material for assessment of a cracked structure of interest. The concept of constraint

matching is schematically shown in Figure 2.7 (after Chiesa et al. [76]).

Pisarski and Wignal [77] and also Nyhus et al. [78] both investigated and compared

the J-Q trajectories of three systems, namely (i) a typical cracked pipeline subject

to plastic bending, (ii) SENT specimens with crack depth same as the pipes (e.g.

constraint matched SENT) and (iii) traditional deeply cracked SENB specimens. Both

of these studies showed similarity of the J-Q trajectory between the pipe and the

constraint matched SENT. Based on these, DNV [9] recommends the use of constraint

matched SENT specimens for fracture assessment of reeled pipelines. It is noted

that both mentioned studies do not include detailed near-tip field matching, which is

mandatory for the applicability of a 2PFM approach [56]. Based on close examination
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of J-Q trajectories, Cravero and Ruggieri [79] and Silva et al. [80] demonstrated the

suitability of constraint-matched SENT specimens for fracture assessment of high

pressure pipelines with axial flaws. In the spirit of these works and also by including

detailed field matching studies, the crack-tip constraint in cracked pipelines subject

to extreme plastic bending will be investigated in Chapter 7 of this thesis.

2.6 Numerical Simulation of Ductile Crack Growth

The phenomenological approach to fracture (such as the J-integral approach in EPFM)

which has been discussed thus far, forms the backbone of the current fracture assess-

ment procedures such as BS7910 [8] and DNV [9]. However, it would be highly

desirable to directly model the process of ductile crack growth in the cracked con-

figuration of interest. Such an explicit analysis can, for example, directly provide

information on the fracture failure mode of a structure (rather than using Equation

(2.12) to assess the stability of crack growth). As another example, R-curves could

be simulated in lieu of experimental setups (which might be increasingly costly or

even impossible for full-scale structures). The backgrounds of numerical techniques

of crack growth simulations in a FE framework would be reviewed, and its relevance

to the present thesis will be discussed in what follows.

2.6.1 Mechanism of Ductile Fracture in Metals

It is commonly agreed that the mechanism of ductile fracture in metals is described

by the sequence of void nucleation, growth and finally coalescence [16]. The small

impurity particles which are virtually always present in a metallic material serve as

nucleation sites for micro-voids. The nucleation of a micro-void occurs when the

stress applied is sufficient to break the particle to matrix interface bond, or break the

particle itself [16].

The plastic strain and mean stress (hydrostatic stress) cause enlargement of the

microvoids. Further growth would lead to coalescence of neighboring voids, which

is caused by a necking or slipping mechanism in the ligament between two enlarged

neighboring voids, and is mainly controlled by plastic strain. Successive coalescence
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of neighboring voids leads to crack growth and finally, rupture of the uncracked liga-

ment [16]. The sequential steps leading to ductile fracture in a material are shown in

Figure 2.8 (from Ref. [16]).

McClintock [81], and Rice and Tracey [82] studied the growth of a single void in a

rigid-plastic infinite continuum subject to a triaxial stress field. Both studies showed

that the growth rate of the void follows an exponential function of stress triaxiality

(σm/σe). Rice and Tracey [82] developed the following semi-empirical equation for

the growth of an initially spherical void:

ln

(
R̄

R0

)
= 0.283

∫ εp

0

exp

(
1.5σm

σy

)
dεp (2.27)

In Equation (2.27), R̄ is the mean radius of the void, since the initially spherical

void can deform to an ellipsoid. Moreover, for strain hardening materials, σy in

Equation (2.27) should be replaced by σe [16]. Anderson et al. [83] used Equation

(2.27) to formulate a local damage integral (ΦD), hypothesizing that ductile failure

occurs upon the void radius reaching a critical value:

ΦD =

∫ εp

0

exp

(
1.5σm

σe

)
dεp (2.28)

Building upon the approach of Anderson et al. [83], the damage integral is incor-

porated in Chapter 6 of this study to investigate the effect of the materials Lüders

plateau on their fracture toughness, as mentioned in Section 2.3.

2.6.2 The Voided Plasticity Material Model

The key ingredient in developing a FE model capable of direct simulation of ductile

crack growth is a constitutive material model that can incorporate the effect of ductile

damage (i.e. void nucleation, growth and coalescence as discussed) on the response of

the material. Commonly, the Mises yield potential (J2 plasticity
13) is used to describe

the plastic flow of metals, while an associated flow rule describes the relationship

between the increments of stress and plastic strain. The J2 incremental plasticity

theory only considers the Mises stress (the second invariant of the stress tensor, J2) in

13The equivalent Mises stress is directly proportional to the second invariant of the stress tensor,
J2, hence the name J2 plasticity.
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Figure 2.8. Schematic of the ductile fracture sequence: (a) inclusions in the material (b)
void nucleation (c) void growth (d) strain localization between voids, (e) necking between

voids, and (f) void coalescence and fracture. Taken from Ref. [16].
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Figure 2.9. Schematic comparison of void-free and voided materials, (a) yield surfaces in
the σm-σe space, and (b) uniaxial stress strain curves in tension and compression. Both

figures from Ref. [10].

yielding and plastic flow of the material. However, void growth which is the prominent

factor in ductile damage and fracture, is mostly governed by the mean stress (the first

invariant of the stress tensor), σm, or, more generally, stress triaxiality (σm/σe).

Gurson [84] considered a continuum (matrix) which contained an initial void.

Using the upper-bound plasticity theorem, he showed that the yield potential of such

a material could be approximated by the following function:

Φ(σe, σm, σf , f) =

(
σe

σf

)2

+ 2q1f cosh

(
3q2σm

2σf

)
− (

1 + q3f
2
)
= 0 (2.29)

The first term on the RHS of Equation (2.29) is the usual J2-plasticity yield loci,

while the second and third terms introduce the effect of voids and their growth due

to the mean stress σm. For a non-porous material (i.e. f = 0), the function returns

back to the J2-plasticity yield potential. Figure 2.9a (after Ref. [10]) schematically

compares the yield surfaces of a void-free material (Mises or J2 plasticity) with voided

materials having various levels of void volume fraction f , in the σm-σe space. Figure

2.9b (after Ref. [10]) schematically shows the effect of void growth (larger values of f)

on softening the tensile uniaxial stress–strain curve with respect to a perfectly plastic

void-free material.

Gurson [84] assumed that q1 = q2 = q3 = 1 in Equation (2.29). Tvergaard [85]

showed that by setting q1 = 1.5, q2 = 1.0 and q3 = q21 , a better fit to the experimental
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load-displacement curves could be achieved. These values have been widely used in

the literature when using the voided plasticity yield potential of Equation (2.29).

However, more recently, Faleskog et al. [86] showed that the values of q1 and q2 would

depend on both strain hardening (n) and the elastic strain limit (εy = σy/E).

Upon the application of load, the void volume fraction, f , would increase, both

due to enlargement of the existing voids, and also, to a lesser extent, due to nucleation

of new voids. Thus the rate of void volume fraction increasing would be:

df = dfgr + dfnucl (2.30)

The matrix material surrounding the void undergoes an incompressible plastic

flow (due to the incompressibility of plastic deformation). Thus, based on the law of

conservation of mass, the growth rate of the existing voids would be related to the

incremental volumetric plastic strain components:

dfgr = (1− f) dεpii (2.31)

Needleman and Rice [87] proposed an empirical equation to approximate the void

growth rate caused by nucleation of new voids as a function of mean and flow stress

rates and equivalent plastic strain rate:

dfnucl = A1 dεp + A2( dσf + dσm) (2.32)

Chu and Needleman [88] assumed a normal distribution for the rate of void nucle-

ation intensity. Based on this, for strain controlled nucleation (in which A2 = 0), the

coefficient A1 reads [88]:

A1 =
fn

sn
√
2π

exp

[
−1

2

(
εp − εn

sn

)2
]

(2.33)

while for stress controlled nucleation (in which A1 = 0), A2 would read:

A2 =
fn

sn
√
2π

exp

[
−1

2

(
σf + σm − σn

sn

)2
]

(2.34)

where εn and σn are the mean nucleation strain and stress, respectively, and sn is the

standard deviation.



37

The voided plasticity material model along with the void growth rate rules as de-

fined above can be used to model ductile crack growth. The assumption that neigh-

boring voids do not interact is implicit in such an approach. On the contrary, the final

phase of an increment of ductile crack growth includes necking of the matrix between

two neighboring voids, leading to the final coalescence. This last phase is marked

by a rapid loss of stress carrying capacity of the element. As per Equation (2.29),

the voided material loses its stress bearing capacity upon the void volume fraction f

reaching 1/q1. Even assuming Tvergaard’s [85] suggestion of q1 = 1.5 (rather than

Gurson’s original q1 = 1), means that the void volume fraction at failure is 66.7%

(fF = 1/1.5 = 0.667). This value by far exceeds the realistic values of fF observed

in tests; in fact, once the void volume fraction reaches 10 to 20%, only a minimal

increase in the nominal strain could cause fracture [16]. To account for these effects,

Tvergaard and Needleman [89] introduced a modification to the original Gurson yield

potential, which introduces a rapid loss in stress carrying capacity of the material

for f > fc (hence, the model is commonly referred to as the Gurson-Tvergaard-

Needleman (GTN) model). They suggested using f ∗ instead of f in Equation (2.29),

defined as:

f ∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f for f � fc,

fc +
f ∗
F − fc
fF − fc

(f − fc) for fc < f < fF ,

f ∗
F for f � fF .

(2.35)

where f ∗
F = (q1 +

√
q21 − q3)/q3. Considering that it is common to take q3 = q21, it

is seen that f ∗
F = 1/q1). The void volume fraction at initiation of void coalescence

is denoted by fc, while fF represents the void volume fraction at final fracture where

the stress carrying capacity of the element vanishes.

Zhang et al. [90] performed plane strain FE analysis of a unit cell containing an

initial hole (representing a hypothetical void) which was subject to a biaxial stress

state (with σx = 0.3σy). Upon growth of the hole, a neck forms. Final fracture

of the unit cell was defined as the load level in which the dimension of the neck

approaches zero. Based on this analysis they provided the following empirical formula

for evaluation of fF :

fF = 0.15 + 2f0 (2.36)



38

The parameters required for calibration of the GTN model for a specific material

are usually determined by fitting load-displacement curves of tests with FE model

predictions [91].

Zhang et al. [90] incorporated the limit load of Thomason [92] to predict the

coalescence of neighboring voids, and termed the approach as the Complete Gurson

Model (CGM). Thomason’s criterion is based on the limit load of a necking mechanism

between neighboring voids. For a 3D state, the criterion predicts coalescence when [90,

92]:

σ1

σf

=

[
ϕ1

(
1

rv
− 1

)2

+
ϕ2√
rv

]
(1− πr2v) (2.37)

where σ1 is the current maximum principal stress at the material point, rv is the void

space ratio, rv =
3
√

(3f/4π)e(ε1+ε2+ε3)/(
√
e(ε2+ε3)/2) and ε1, ε2 and ε3 are the principal

strains (ε1 > ε2, ε3), ϕ1 = 0.1 and ϕ2 = 1.2 are constants fitted by Thomason [92]. In

the CGM approach, direct definition or calibration of fc is not required, regarding that

Equation (2.37) predicts coalescence and fc is an outcome of the model. However, the

simple area reduction model (necking mechanism) inherent in Equation (2.37) and the

CGM approach is far too simplistic to capture the complex void interactions leading

to coalescence [16]. Hence, use of the CGM approach does not necessarily enhance

the accuracy of the solution (as opposed to using the GTN model without the CGM

extension).

2.6.3 Further Simplification: The Cell Model Approach

In a series of papers, Xia and Shih [93–95] stated that a more feasible modeling

approach could be achieved by using the GTN material definition to describe only the

region corresponding the initial crack plane, ahead of the crack tip (the so-called row of

voided cells), while using a conventional elastoplastic material definition to model the

remainder of the body. This approach was supported by experimental data of ductile

crack growth in most metals that exhibit a planar propagation path (see Figure 2.10a

for a schematic of planar ductile crack growth. Figure 2.10 is taken from Ruggieri et

al. [96]). They further stated that the size of the GTN elements (D0) used to model the

crack front should be in the micro-level order, thus, roughly representing the average
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Figure 2.10. Schematic of the cell model approach to ductile crack growth, (a) void
growth and coalescence ahead of the crack tip, (b) arrangement of the void cells ahead of
the initial crack tip and (c) arrangement of the crack tip in a FE mesh. From Ruggieri et

al. [96].

spacing between large inclusions (voids) in the material, ahead of a crack. In other

words, each element ahead of the crack is assumed to contain a single void. With

this modeling approach, the crack tip element would go extinct once its void volume

fraction reaches fF , thus the crack would grow an increment equal to D0. This process

would continue till the final failure stage. Figure 2.10b shows a typical arrangement

of the voided cells ahead of the initial crack tip, each assumed to contain a single

void with an initial void volume fraction of f0. Figure 2.10c shows the arrangement

elements in an FE mesh (the size of void cell elements are D0/2 regarding symmetry).

Xia and Shih [94] also showed that the contribution of void nucleation (due to the

second phase particles) to the void volume fraction increase could be neglected, and

df could be assumed to be driven by the growth of the existing voids (i.e. df = dfgr

and dfnucl = 0, see Equation (2.30)). This simplification is extremely convenient, as

the void growth rate due to nucleation (Equations (2.32), (2.33) and (2.34)) are still

under debate. Xia et al. [97] used the cell model approach to establish the R-curves
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of several commonly used fracture specimens, and obtained a very good agreement

with experimentally determined R-curves. Ruggieri et al. [96] extended the approach

to model 3D cracks in different specimens. Their results also showed good agreement

with their experimental data.

Brocks et al. [91] used the GTN material model in FE simulations of static fracture

tests and also dynamic Charpy tests, and observed a good agreement between their

numerical and experimental results on R-curves and load-displacement curves. Chen

and Lampert [98, 99] incorporated the CGM extension (to the GTN material model

framework), and studied ductile tearing of SENT specimens [98] and also 3D elliptical

cracks in plates [99], and obtained satisfactory agreement between their numerical and

experimental results.

FE codes with an explicit solution algorithm (such as ABAQUS/Explicit [10])

could have an element removal capability, which can eliminate the damaged element

from the FE mesh when f = fF and thus simulating crack growth. In the context of

pipelines subject to large plastic deformations, recent research by Sandvik et al. [100]

and Dybwad et al. [101] both presented comparison of full scale test results on pipelines

to predictions of nonlinear FE models (utilizing the cell model approach coupled

with the element removal technique to accommodate ductile crack growth), showing

satisfactory agreement.

2.6.4 Fracture Failure Mode & Constraint in Pipelines Undergoing Duc-

tile Crack Growth

Strictly speaking, the various 2PFM constraint theories as reviewed in Section 2.4

are based on the analysis of a stationary crack. O’Dowd et al. [102] analyzed stress

fields ahead of a growing crack, and observed that in configurations which have a

low constraint/triaxiality before initiation of crack growth, the constraint/triaxiality

would increase upon crack growth. Thus, the 2PFM theories cannot continue to

characterize the near-tip fields after initiation of crack growth14. Moreover, to the best

of the author’s knowledge, up to now, no generally accepted constraint theory exists

14Interestingly, as noted in Section 2.4, constraint parameters have been shown to satisfactorily
rank the R-curve slope of different specimens, in addition to their initiation fracture toughness values.
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for characterizing the near tip stress and deformation fields ahead of a propagating

crack.

A more direct approach to constraint similarity studies (to determine the suitable

fracture test specimen for assessment of the engineering structure of interest) is to

directly compare the R-curves of different configurations. The discussed FE methods

for simulation of ductile crack growth could conveniently yield such information. A

comparison on the near-tip fields ahead of a growing crack (among different config-

urations) would also provide additional justification for the selection of a particular

test specimen for assessment of a the structure of interest.

A less attended, yet equally important issue (from practical point of view) is

investigation of the crack-tip constraint under bi-axial stress fields (i.e. the pipeline

subject to internal pressure and bending would have such a stress state in the pipe

wall). Indeed, the question of constraint-match for such situations is an open one.

Quoting DNV [9]:

“Operation normally involves internal pressure plus axial strain i.e. a

bi-axial stress state. If SENT specimens are employed for assessing the

operation phase it must be substantiated, by analysis or experience, that

the constraint in the pipe, under operational conditions, is not higher than

in the specimen.”

In consideration of crack-tip constraint as discussed above, both Cravero et al. [103]

and Xu et al. [104] investigated R-curves under combined loading situations (using

FE simulations of ductile crack growth). Cravero et al. [103] compared R-curves

of constraint matched SENT specimens with plates subject to biaxial loading (as a

simplification of a pipe subject to combined loading). Xu et al. [104] considered 2D

SENT specimens and pipelines with a full circumferential crack subject to tension and

internal pressure (thus enabling the use of 2D axisymmetric FE models), and again

demonstrated the suitability of the constraint matched SENT specimen. With respect

to a realistic cracked pipeline, both analyses are based on major simplifications in the

cracked configuration geometry.

Chapter 8 of the present thesis builds up on these ideas and presents a thorough

investigation on the crack-tip constraint of pipelines subject to combined bending
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and internal pressure. Furthermore, the fracture failure mode of such pipes is also

parametrically investigated using the same 3D FE models of pipeline which include

ductile crack growth.

Some of the analyses performed in this thesis, in part target the investigation of

pipelines that undergo a few load cycles of plastic straining. This is especially true for

the case of reeled pipelines in which the pipeline is subjected to at least two symmet-

rical plastic strain cycles. DNV [9] suggests that these few pre-strain cycles do not

significantly affect the fracture toughness of the steel material, and monotonic tests on

specimens suffice for establishing the fracture toughness of the material. In line with

the DNV recommendations, recently Tkaczyk et al. [105] experimentally investigated

SENT specimens from X70 pipeline steels subject to a tension–compression–tension

load cycle, and concluded that the plastic pre-strain cycle neither increases the void

volume fraction ahead of the current crack tip, nor does it affect the fracture resis-

tance curves (R-curves). Based on these, in chapters dealing with fracture response

characteristics (such as Chapters 6, 7 and 8), a monotonic loading is considered.

Nonetheless, it is believed that the issue of the effect of pre-strain on the fracture

response is still under debate, with the possibility of new conclusions to be drwan in

the future.
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3.1 Abstract

The strain concentration at the field joint (FJ) of the commonly-used concrete coated

offshore pipelines is considered and discussed in this paper. The details of a 3D

finite element (FE) modeling framework, developed using the commercial software

ABAQUS, are presented. The numerical results are verified against the experimental

results available in the literature. The FE model considered in this study captures

several nonlinear phenomena associated with the problem, including the plastic defor-

mation of the steel and anti-corrosion layer (ACL) material, the cracking and crushing

of the concrete and also the large deformation effects. The developed FE framework

is subsequently used to perform a parametric study to assess the effect of each influ-

encing parameter on the strain concentration factor (SCF) developed within the FJ

region. The influence of the geometric features of the coated pipe and the relevant

mechanical properties of the materials, as well as various combined loading scenarios

are investigated. As well, the influence of the post-yield properties of steel (especially,

steel’s strain hardening capacity) is also considered. Results indicate that pipeline

diameter, thickness and coating thickness affect the SCF more than the strength of

either concrete coating or ACL. The combination of the internal pressure loading or

43
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tensile loading with the primary bending load (causing a biaxial stress state), is found

to also increase the SCF significantly after steel yielding is initiated. Moreover, these

combined loading scenarios cause different and more severe plastic deformation pat-

terns in the FJ.

Keywords: Concrete Coated Pipelines, Strain Concentration, Combined Loading, Inelastic Bending

3.2 Introduction

Strain Based Design (SBD) is an established and accepted approach for design of

pipelines [12], and is also well documented in several of the leading pipeline design

codes (e.g. DNV [2] and API [3]). SBD can be used whenever the loading on the

structure is of a displacement nature, which holds true for offshore pipelines, for

which the most critical loading conditions are displacement controlled (e.g. pipelines

deformed to conform to curvature of a stinger or reel drum, or conformation to the

bathymetry of a rough seabed, and/or those due to seismic events). Under such

conditions, the plastic capacity of steel can be safely utilized, resulting in major

cost savings in comparison to the traditional stress-based design methods. However,

utmost care should be exercised in calculating the strains. This is due to the fact

that at high levels of strain, there is a risk for fracture of the material, initiated -

for example- by defects in the girth welds. In this regards, all pipeline design codes

require more stringent criteria for material selection and testing/quality assurance

procedures for pipelines that undergo large strains. For example, DNV [2] requires

the so-called Engineering Criticality Assessment for establishing defect and tolerance

criteria for pipelines undergoing plastic strain exceeding 0.3% (common for pipelines

installed with stinger in deep waters); it also requires additional material specifications

when the accumulated plastic strain exceeds 2% (common to pipelines installed by

the reeling method).

In the context of SBD, all causes of strain concentration should be considered dur-

ing a design. Within this category, the strain concentration at field joints of concrete

coated pipelines subject to bending is a well-known phenomenon. Upon a survey of the

literature, the research on this topic conducted thus-far, can be classified as: (i) exper-

imental investigations [18–21, 106], (ii) semi-analytical formulations [22, 23, 106, 107],
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(iii) finite element (FE) simulationsc̃itependal94 (iv) FE formulations [25], and finally

(v) design equation development based on FE analysis results [108]. One of the no-

table works is the iterative semi-analytical model of Ness and Verley [23, 106], which

was validated against experimental results and FE simulations of Endal [24]. The

semi-analytical model of Ness and Verley [23, 106] is an extension of Lund et al.’s

model [22]. The difference in the two models is only the inclusion of the slippage of

coating on the steel pipe in the former model. The aforementioned model includes

the most major nonlinearities of the problem, except the post-crushing behavior of

the concrete coating.

In this paper, the FE simulation of the problem is considered as an alternative to

the experimental and semi-analytical approaches. Using the developed FE modeling

framework, a benchmark FE model is constructed based on the experimental data

of Ness and Verley [106], and the response characteristics are compared to establish

the robustness of the FE framework. Furthermore, this FE modeling framework

would be utilized to conduct a parametric study with the aim of investigating the

effect of different geometric, material and loading parameters on the resulting strain

concentration and its variation as a function of the applied bending load.

3.3 Mechanics of Strain Concentration

Offshore pipelines normally consist of a series of 12-m long linepipes, girth welded

together either onshore or offshore on an installation vessel. The resulting pipe string

is lowered on the seabed over a stinger. The pipe string can be considered as an in-

finitely long beam subject to (mainly) bending load. Each pipe joint is covered with

an anticorrosion layer (ACL). Hot asphalt was widely used as ACL in the past; while

currently, fusion bonded epoxy is preferred due to environmental restrictions [109].

Except for the pipelines with very low diameters, most pipelines are required to have

a concrete coating. The primary objective of this coating is to provide negative buoy-

ancy to the pipeline and enhance its stability when laid on the seabed. A subsidiary

function of the concrete coating is to cover the ACL and provide a mechanical pro-

tection for it [2, 15]. As seen in Figure 3.1a (adopted from Ref. [110]), approximately

a 350 mm long portion (at each end of a 12-m linepipe), is left uncoated for welding
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Figure 3.1. (a) Typical concrete coated pipes with their field joint (FJ) regions (from
Ref. [110]) and (b) Schematic of a coated linepipe with the relevant dimensions and

identifiers.

purposes at the so-called Field Joints (FJ). The concrete coating stiffens the pipe

section, except at the FJ region. A schematic of the described pipe is also shown in

Figure 3.1b.

Upon the application of bending, the regions away from the FJ react as a composite

section (i.e. the concrete coating stiffens the pipe section). However, as the FJ is

approached, the compressive force developed in the concrete coating is transferred to

the steel pipe through the shear stress developed within the ACL. The limited shear

capacity of the ACL (generally τy = 0.1 ∼ 0.5 MPa [22]) can only accommodate a

limited magnitude of the compressive force developed within the coating. Thus, upon

increase of bending, the ACL’s shear capacity would become exhausted, allowing the

concrete coating to slide over the steel pipe in a small region near the FJ. The length

of this slide region (Lslide) is such to provide the shear resistance in the ACL (VACL)

required to transfer the axial compressive force developed in the concrete (Nc) to

the steel pipe. It is outside this transfer length region where the classical bending

assumption of plane sections remaining plane would hold valid.

There are essentially three distinct zones in the system, namely: (i) the FJ, where

only the bare steel pipe bears the applied bending moment, (ii) a region sufficiently

far from the FJ, where the stiffness of the concrete coating is fully utilized (also where

the plane section assumption would hold), and (iii) the transfer zone in between
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these two regions, whose bending stiffness varies between the two mentioned limits.

Being subject to a (nearly) constant moment along the pipeline length, the steel

material in zone (i) would be subjected to a larger magnitude of strain in comparison

to the stiffer zones (ii) and (iii), thus giving rise to a strain concentration in the

FJ and the nearby region where sliding occurs. This concept is illustrated via the

schematic moment-strain curves of the FJ and coated pipe as depicted in Figure 3.2.

For practical purposes, the provision of the Strain Concentration Factor (SCF) would

be beneficial. The SCF would indicate the severity of the strain concentration in the

FJ. In this paper, SCF’s definition suggested by Igland and Moan [111], as presented

by the following equation, is adopted:

SCF =
εFJ

εg
(3.1)

In equation (3.1), εFJ is the tensile bending strain in the FJ. An average definition

of the bending strain along the tensile chord in the FJ zone is used in order to achieve

a more robust definition of the SCF. Thus, εFJ is calculated by integrating the tensile

bending strain along LFJ:

εFJ =
1

LF

∫ LF

0

ε11 dx (3.2)

Furthermore, the global bending strain, εg, in Equation (3.1) could be calculated

by the Euler beam theory. For a pipe under pure bending the strain can be calculated

by:

εg =
κD

2
=

RzD

2Lt

(3.3)

It is acknowledged that Equation (3.3) and its underlying assumptions are not

strictly correct, since materials undergo plasticity. In addition, in the vicinity of

the FJ, where the cross section of the pipe rapidly changes, again the underlying

assumption of Equation (3.3) would not be strictly correct. However, for the relatively

small levels of inelastic bending that will be considered in this study (εg � 0.3%), and

also in view of the small length of the FJ as compared to linepipe’s length, the errors

associated with the use of Equation (3.3) would be negligible. For a more robust
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Figure 3.2. Schematic illustration of the moment-strain variation within a typical coated
pipe and its FJ region, resulting into strain concentration.

definition of SCF, one can use the average value of the tensile bending strain, εave,

instead of εg in Equation (3.1). εave, along the linepipe length, is defined as:

εave =
1

Lt

∫ Lt

0

ε11 dx (3.4)

Under the application of pure bending, the value of εave (extracted from FE results)

and εg would be very similar (e.g. εave/εg < 1.03 for all cases considered in the

parametric study in which pure bending was considered). Thus, for the pure bending

case-studies, the magnitude of εg that was used to establish the SCF (i.e. Equation

(3.1)), was calculated per Equation (3.3). On the other hand, in the case-studies that

considered the combined loading states (i.e. a bending load combined with an internal

pressure or a tensile load), the εg calculated per Equation (3.3) would not correctly

represent the resulting axial strain; in those situations the use of εave as per Equation

(3.4) would better represent the resulting bending strain. Therefore, for those loading

cases, the relationship presented by Equation (3.4) was used to establish the value of

the resulting strain.

As for the recommended target value SCF, Bai [1] recommends a SCF of 1.2

in the absence of more detailed analysis. However, Nourpanah and Taheri [108] have
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however shown that for coated pipelines with grade X65 steel, this value would only be

accurate for pipes that are not heavily coated, or when the bending strain is relatively

low. More specifically, a SCF of 1.2 occurs only for configurations in which the

dimensionless coating parameter, λ, is greater than 30, where the coating parameter1

was defined as [108]:

λ =
Dt

εgt2c
(3.5)

where εg should be in percentage for use in Equation (3.5).

From a practical point of view, the strain concentration phenomena would be of

concern under two different scenarios with differing load levels. First and foremost,

strain concentration would be of concern during pipe-laying, while the pipe string is

bent over the stinger as being laid on the seabed. In the context of SBD and the

displacement controlled nature of the loading, in such a case, the plastic bending

capacity of the pipe section can be utilized. Thus, the relevant governing failure

mode during a conventional pipe-lay would be in the form of crushing of the concrete

coating [2]. In other words, bending strains should be such to avoid crushing of the

concrete, which has been observed to occur at a strain of 0.2 ∼ 0.3% [20, 22, 107]. Such

a bending strain would also induce slight inelastic bending of the steel pipe, in addition

to more significant localized plasticity in the FJ due to the strain concentration effect.

The second scenario of interest would be the resulting strain concentration while

the pipeline is in-service (i.e. pipeline laid on the seabed). Within this scenario, the

pipeline would undergo bending due to a variety of reasons, such as: pipelines snaking

(due to thermal expansions), trawl loads, and free spanning of the pipelines. For this

second category, inelastic bending of the steel pipeline is usually not permitted, and

thus lower bending strains, εg < 0.2% would be of interest.

The mentioned two loading scenarios would also develop different strain concen-

tration responses. Upon the initiation of loading, the SCF would attain a high value,

but decreasing steadily and nearly linearly as a function of the increasing global bend-

ing strains (εg). This decreasing trend would be due to the fact that as bending of

the linepipe proceeds, the coating would start slipping over the steel pipe, and thus

1A complete discussion on the coating parameter can be found in Chapter 4 of this thesis
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Figure 3.3. Schematic illustration of the variation of SCF as a function of the global
bending strain εg.

reducing the SCF. This would hold true until the yielding of the steel pipe initiates.

At this stage, localized plasticity in the FJ would cause the SCF to increase rapidly.

Upon further increase in bending, the concrete would start crushing and its stiffness

would deteriorate, thus, tending to decrease the SCF. In other words, after the con-

crete crushing has been initiated, two opposing factors would drive the SCF; these are

the localized plasticity of the FJ, which would elevates the SCF, and the deterioration

of the coating, which would relieve the SCF.

In summary, the variation of the SCF as a function of the global bending strain

would go through three different regimes, as schematically depicted in Figure 3.3.

Within Regime I the steel pipe would remain elastic and the strain in the coating would

be less than that causing crushing. Initiation of inelastic bending in the pipe marks

the beginning of Regime II, while the coating remains intact. During Regime III the

coating is deteriorating, and the inelastic bending of the pipeline would be progressing.

The SCF response during pipe-laying is therefore characterized by Regime II, while

that within Regime I corresponds to the in-service loading conditions. Moreover, the

SCF can be described rather accurately as a linear function of εg within both of these

behavioral regimes.
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There would also be several highly nonlinear phenomena associated with the bend-

ing of a concrete coated pipeline, depending on the level of loading. Two of these

nonlinear aspects which would significantly influence the SCF from the early steps

of loading are: (i) the inability of concrete to bear tension (concrete-cracking), and

(ii) the low shear capacity of the ACL material (which results in premature yielding

of the ACL within Regime I). Furthermore, the ACL behaves as a nearly perfectly

plastic material after the initial leading. Upon progression of the bending strains into

Regimes II and III, the elastic limit of the steel material would be surpassed, subse-

quently followed by the initiation of crushing of the concrete coating. In addition, the

large geometry change (LGC) effect would prevail throughout the loading history.

It should be noted that the tests of Ness and Verley [106] included cyclic loading

representing different stages of a pipe lay scenario (i.e. over-bend, pipeline passing

over rollers, sagbend and unloading). Their results showed that the SCF attains its

maximum value during the first loading peak and successive loading cycles do not

result in higher levels of SCF. Based on this, in the current study montonic static

loads on the pipeline are investigated†.

3.4 Finite Element Modeling Framework

The general purpose commercial FE software, ABAQUS 6.8 [10] was used to effectively

model the behavior of the system, accounting for all the mentioned nonlinearities. The

constitutive relations for the ACL and steel materials could be incorporated in the 3D

FE analysis based on the rate-independent associated J2 incremental plasticity the-

ory, in conjunction with the Mises plastic potential and isotropic strain hardening as

implemented in ABAQUS [10]. Note that in general, the ACL has a visco-plastic be-

havior; however, this time-dependant response could be neglected during the relevant

pipeline loading scenarios (short period loading).

The concrete coating is modeled with a damaged plasticity model of the ABAQUS.

This model uses a modified Drucker-Prager yield surface, and can be categorized

as a non-associated incremental plasticity model. It has the capability to model

†This paragraph does not appear in the published paper, and is added here to the manuscript of
the thesis based on the suggestion of the examining committee.
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post-cracking and post-crushing behavior of concrete in tension and compression,

respectively [10], which is of interest in the present study. LGC effects were also

accounted for in all the analyses. For that, ABAQUS sets up the incremental equations

of equilibrium in an updated Lagrangian framework. For treatment of elasto-plasticity

with consideration of LGC effects, the deformation rate is used by ABAQUS as a

suitable strain measure, while its work conjugate, the Jaumann rate of the Kirchoff

stress, is deployed as an appropriate stress measure [10]. However, the Cauchy (true)

stress and logarithmic strains are reported as output for the sake of convenience.

As stated earlier, the noted long pipe strings are formed by a series of 12 m long

pipes connected with FJs.

Therefore, it would only be necessary to model a 12 m long section in order to in-

vestigate the strain concentration variation. Furthermore, the symmetry in geometry

and boundary conditions permits quarter symmetric modeling (see Figure 3.4a). The

mid-pipe cross section follows the rotation of a master node, while it is constrained to

remain plane but free to ovalize. The following Multi-Point Constraint formulation

was used to model the conditions:

tanRz =
xj − xmn

yj − ymn

(3.6)

where xj and yj are the coordinates of the jth node located on the mid-pipe cross

section and xmn and ymn are the coordinates of the master node, all corresponding

to the deformed pipe. The appropriate rotation, Rz, is then imposed on the master

node, causing the pipe to bend up to a level that induces the required global bending

strain, εg, as calculated by Equation (3.3). In the cases where an axial tensile load

is also considered, the load is applied on the same master node; in such a loading

scenario, both the bending and tensile load would be applied simultaneously. In

other cases where the internal pressure is also considered in addition to bending, a

distributed pressure is defined on the inner pipe surface, while the bending load is

applied only after the pipe has been pressurized. These loading scenarios are believed

to be representative of most practical loading scenarios.

A total of 12,160 isoparametric, eight-node continuum elements with reduced in-

tegration and hour-glass control (C3D8R) of ABAQUS [10] were used in each pipeline

model. The choice of the reduced integration technique is mandatory in this case in
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Figure 3.4. (a) A typical FE mesh along with the BCs (Lt = 6000 mm and
Lf = 350 mm) and (b) Schematic of the four-point bending test setup of Ness and Verley

(taken from Ref. [106]).

order to avoid the shear locking often associated with the fully integrated elements,

when they are subject to bending. In order to achieve a finer mesh near the FJ

where coating slippage occurs, the mesh is exponentially biased in the longitudinal

direction with a ratio of 5. The concrete coating and steel pipe are each modeled

with 4 elements through the thickness, while the ACL is modeled with a single layer

of elements. The half-circumference was discretized by 16 rows of elements. Careful

mesh convergence studies showcased the robustness of the described mesh. Figure

3.4a illustrates a general pipeline model showing the mesh characteristics and the

applied loads and boundary conditions (BC).

The maximum global bending strains, εg, considered in this study is approximately

0.3% (covering the practical global bending strain values as depicted in Regimes I and

II, shown in Figure 3.3). This level of bending would not normally cause any local

buckling of the pipe wall on the compression side. This fact could be verified by

comparison of εg with the critical buckling strain, εcrit, which for example could be
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roughly estimated by the following empirical formula [3, 112]:

εcrit =
t

2D
(3.7)

For the parametric study, it has been assumed that the uniaxial stress–strain

response of the steel material could be described by an elastic response followed by a

power law plasticity response, which is represented by:

ε =

⎧⎨
⎩σ/E for σ � σy,

εy (σ/σy)
n for σ > σy.

(3.8)

The concrete behavior is assumed to be linear elastic up to a stress of 0.45f
′
c, with

its modulus of elasticity calculated by [113]:

Ec = 4750
√
f ′
c (3.9)

Subsequent to the linear elastic part, a parabolic stress–strain relationship is

adapted for establishing the compressive stress of the concrete, according to [114]:

fcon =
2f

′
c(ε/ε0)

1 + (ε/ε0)2
(3.10)

where ε0 is the strain corresponding to the max stress (� 0.2% [106]). The parabolic

relationship is assumed to be valid up to the ultimate strain, which is taken as

0.3% [113]. A linear descending relationship has been assumed to control the soften-

ing behavior after the ultimate strain. The complete schematic curve is presented in

Figure 3.5. The tensile strength of concrete is neglected.

Usually, push-off tests are performed on a 1.5∼2 m portion of a coated pipeline,

which consists of pushing off the concrete coating over the steel pipe. This is to ensure

that the coating-ACL bond is stronger than the ACL material itself (i.e. ensuring shear

failure would occur in the ACL) [15], in addition to documenting the shear strength

of the ACL material, τy. Noting that such a test resembles an axisymetric stress

state and by assuming a Mises failure criterion, the yield stress of the ACL material

can be evaluated to be equal to
√
3τy, which is used hereby to establish the uniaxial

stress–strain response of the ACL material. To overcome FE convergence issues, a

very low strain hardening capacity is assumed for the post-yield response. The elastic

modulus of ACL is assumed to be 1/100 of steel.



55

Figure 3.5. Schematic uniaxial stress–strain response of concrete.

Table 3.1. Specifics of the concrete coated pipeline benchmark model.

D (mm) t (mm) tc (mm) tACL (mm) f
′
c (MPa) τy (MPa)

517 18.5 80 6 36.4 0.5

3.5 Benchmark Model and Verification

Ness and Verley [106] conducted a series of 4-point bending tests on concrete coated

pipelines. In order to verify the above described FE modeling framework, a FE model

of Test #3 of Ness and Verley [106] is developed here, and the representative response

characteristics are compared. The coated pipeline features are presented in Table 3.1.

A schematic diagram of Ness and Verley’s [106] test setup is shown in Figure 3.4b

as a means for comparison to the FE model shown in Figure 3.4a. The pipeline was

loaded up to a global bending strain of εg = 0.33%, as per the benchmark test.

Uniaxial stress–strain curve of the steel material was back-calculated from the

global moment-strain response found in Ref. [106]. Comparison of the bending moment-

strain response is presented in Figure 3.6, with the moment being normalized with

respect to the fully plastic moment of the pipe, Mp = σyD
2t, with σy = 450MPa. The

equivalent curve in the figure is obtained by averaging the Moment-strain response
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Figure 3.6. Moment-strain response of the benchmark pipeline model. *Symbols
represent the experimental data of Ness and Verley [106].

at several sections along the pipeline. As seen, a very good agreement between the

FE results and the test data is observed within the field joint region, while the agree-

ment is slightly less favorable for the mid-pipe region, especially at the higher bending

strains (as identified by the mid-pipe curve). This could be due to the fact that at

this stage in the experiment, the concrete coating had started crushing [106]. More-

over, the maximum moment evaluated by the FE model is in the same order of that

observed experimentally (i.e. � 1800 kN-m). Based on these observations, the FE

model is deemed capable of capturing the global bending response with acceptable

accuracy.

As a local response characteristic, the distribution of the average bending strain

along the pipe length, starting from pipe’s mid-span (x/Lt = 0, see the schematic

in Figure 3.7) up to the FJ (x/Lt = 1) is illustrated in Figure 3.7 for six successive

values of εg, ranging from 0.05% to 0.33%. At regions near the mid-span of the pipe

(x/Lt < 0.5), the average bending strain is nearly constant and is very near the value

of εg. At approximately x/Lt � 0.5, the average bending strain starts increasing,

reaching a maximum as the FJ is approached (i.e. as x/Lt → 1), indicating the

development of strain concentration at the FJ. The length corresponding to the region
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where transition from the constant strain to the FJ strain occurs can be considered as

the length in which the coating is slipping on the steel pipe (i.e. the shear capacity of

the ACL is insufficient to utilize the complete bending stiffness of the coating). Thus,

based on Figure 3.7, sliding occurs from x/Lt < 0.5 up to the FJ; so Lslide � 0.5Lt−Lf

(this results is approximately valid for all cases considered in this study). As seen,

the FE results are in good general agreement with the test results, both in trend and

magnitude. The test data show larger strain values than those produced by the FE

model in the FJ region. Two reasons are postulated for this behavior:

1. The very high strain values observed in the test data were caused by the local

plastification of steel due to the local variations in mechanical properties of steel,

as explained by Ness and Verley [106]. This is supported by the fact that other

local high strain regions were also observed in the experiments [106].

2. The presence of the girth weld in the FJ would also cause additional strain

concentration, for example due to the Heat Affected Zone (HAZ) of the weld.

In any case, the inclusion of such effects in the numerical model was not in the scope

of the present work, and therefore, the FE model cannot predict this type of large

highly localized strains. The largest discrepancies in Figure 3.7 are seen in the curves

corresponding to εg = 0.25% and 0.33%. Again, this difference is most probably due

to the concrete coating crushing, which is believed to initiate at εg � 0.25%. Also,

it should be noted that the fluctuations seen in the axial strain distribution near the

mid-span of pipe (x/Lt � 0) in Figure 3.7 are believed to be as a result of the imposed

boundary condition and are not of practical importance. The fluctuations fade away

after x/Lt > 0.1.

Based on the observed satisfactory agreement between the experimental and bench-

mark model results, the FE modeling framework is deemed accurate and suitable for

further use in the subsequent parametric FE study.

3.6 Parametric FE Study on Strain Concentration

The parameters affecting the variation of strain concentration can be grouped into

three categories. The most important of these are the geometric features of the coated
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Figure 3.7. Distribution of the average bending strains along the length of pipeline.
*Circles represent the experimental data of Ness and Verley [106].

Table 3.2. Specifics of the master case coated pipeline (t = 20 mm)

D/t tc (mm) f
′
c (MPa) τy (MPa) σy (MPa) n Lf (mm) σh/σy N/Ny

40 80 40 0.3 400 10 350 0 0

pipeline, which include: geometry of the steel pipeline described via D/t ratio, the

thickness of the concrete coating (tc), and the FJ length (Lf ). The second category

of the investigated parameters consists of the mechanical properties of the materials.

These include the compressive strength of the concrete coating (f
′
c), the shear strength

of the ACL (τy), the yield stress (σy) and the strain hardening index (n) of the steel

material. Finally, the third category investigates the influence of the applied loading

state; the effect of different levels of internal pressure and tensile load combined with

the applied bending will also be considered. To initiate the parametric study, a master

case is considered first, and the effect of each parameter for this case is investigated by

varying that specific parameter while keeping the other parameters stationary. The

characteristics of the master case coated pipeline are presented in Table 3.2.
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The elastic modulus of steel is taken as E = 200 GPa and ν = 0.3 for all models.

All pipeline models are loaded up to a global bending strain of εg = 0.3%. A brief

description of the parameters considered in the parametric study is given below, with

the summary of the specific values reported in Table 3.3:

• Coated pipelines with a D/t ranging from 20 to 60, in increments of 10, were

considered in the parametric study.

• The investigated range for tc was from 40 mm to 150 mm in increments of 20

mm. It should be noted that DNV [2] suggests a minimum of 40 mm coating

thickness, while 150 mm is usually the maximum practical coating thickness [15].

• The range of 20 MPa to 60 MPa in increments of 10 MPa was considered for

f
′
c. Note that the minimum value of f

′
c permitted by DNV is 40 MPa [2].

• The range considered for shear capacity of the ACL was 0.1 ∼ 0.7 MPa range

in increments of 0.1 MPa. This range covers the practical values in coated

pipelines [22].

• The investigated pipe’s yield strengths (σy)were from 350 MPa to 550 MPa in

increments of 50 MPa. This range covers the steel grades commonly used in

offshore pipelines (i.e. X52 to X80 in API-5L [34] terminology).

• To investigate the influence of the post yield response of steel, five strain hard-

ening indices of n = 5 ∼ 25 in increments of 5 were considered. Additionally,

a perfectly plastic material was also considered (i.e. n → ∞). This last mate-

rial model can be regarded as a representation of the steel exhibiting a Lüders

plateau, which is a feature observed in some seamless low D/t linepipes [4].

The uniaxial true stress–strain curves corresponding to this range of hardening

indices is shown in Figure 3.8.

• To study the influence of FJ length, Lf was varied from 200 mm to 500 mm.

However, this parameter has been seen to have negligible effect on the SCF.

• The influence of the applied loading was considered in twofold:
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Table 3.3. Summary of the parameters and their variation range considered in the study
(t = 20 mm).

Parameter Range Increment

D/t 20 ∼ 60 10

tc (mm) 40 ∼ 150 20

f
′
c (MPa) 20 ∼ 60 10

τy (MPa) 0.1 ∼ 0.7 0.1

σy (MPa) 350 ∼ 550 50

n 5 ∼ 25, ∞ 5

σh/σy 0 ∼ 0.8 0.1

N/Ny 0 ∼ 0.9 0.1

(i) The effect of internal pressure combined with the applied bending was

investigated by varying the pressure ratio σh/σy from 0 to 0.8 in increments

of 0.1 (identified as B+P load case). It was assumed that the internal

pressure is related to the hoop stress (σh) via the thin-wall formula (i.e.

p(D/t− 1) = 2σh).

(ii) The effect of axial tensile load combined with the applied external bending

was investigated through varying the magnitude of the applied load ratio

N/Ny from 0 to 0.9 in increments of 0.1 (identified as B+T load case).

The mentioned parameters are believed to be the most significant ones, while other

parameters such as the rebar or steel cage in the concrete coating (with the usual cross

section area amounting to 1 ∼ 3% of concrete’s cross-section area) are known to have

marginal effect on SCF [15, 22].

In order to increase the efficiency of the analyses, in-house Python scripts were

developed in the ABAQUS environment to automate and expedite the large amount

of pre and post-processing efforts involved with such parametric FE studies.

3.7 Parametric FE Study Results and Discussion

The influence of D/t is illustrated in Figure 3.9. Coated pipes with lower D/t exhibit

larger SCF in both Regimes I and II. This is due to the fact that since the coating
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Figure 3.8. Uniaxial true stress–strain response of the steel for the considered range of
strain hardening indices.

thickness is fixed at the master case value (tc = 80 mm), a reduction in D/t results in

a lower bending stiffness of the steel pipe compared to the coating. The increase of

SCF with decreasing values of D/t becomes more pronounced for higher values of εg.

Figure 3.10 shows the effect of coating thickness, tc (normalized by the minimum

allowable thickness, tc, min = 40 mm) on the variation of SCF. For tc/tc, min > 1.5, the

coating thickness affects the SCF in a rather linear manner for all the values of εg

considered. The slope of the family of curves presented depends on the magnitude of

the applied global bending strain. Interestingly, the lowest slopes occur for values of

εg = 0.15% and 0.2%, which approximately corresponds to the global strain at the

transition point of Regime I to II. The effect is most severe for the lowest and also

highest values of εg in the two loading regimes considered, respectively.

The effect of concrete coating’s compressive strength, f
′
c, on SCF is illustrated in

Figure 3.11. It is evident that concrete coatings with a relatively higher compressive

strength tend to increase SCF; this effect is however modest for values of f
′
c grater

than 40 MPa. The effect of f
′
c on SCF is twofold. Firstly, f

′
c increases concrete’s

elastic modulus, Ec, and hence the coating’s bending stiffness and the SCF. This

effect is more pronounced at the beginning of Regime I loading in which the elastic
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Figure 3.9. Effect of D/t on SCF for (a) Regime I loading and (b) Regime II loading.

bending stiffnesses govern the strain concentration behavior. Secondly, f
′
c increases

the maximum axial compressive capacity of the coating (Nc) which in turn increases

the SCF at the end of Regime II loading. In accord with this explanation, it is

observed that the curves corresponding to the beginning of Regime I (εg = 0.05%

curve) and the end of Regime II (εg = 0.3% curve) in Figure 3.11 are most affected

by changes in f
′
c.

Figure 3.12 illustrates how the increasing values of ACL’s shear strength, τy, cause

the SCF to increase within all loading regimes. This effect, however, is very minor for
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Figure 3.10. Effect of the coating thickness on SCF in (a) Regime I loading and (b)
Regime II loading.

τy > 0.5 MPa, for which the curves show an asymptotic behavior. This suggests that

for τy � 0.5 MPa, the shear force developed in the ACL can fully accommodate the

maximum axial compression developed in the concrete coating and further increase

in τy does not affect the SCF. Indeed, if the maximum shear force developed in the

ACL (VACL) is equated to the axial concrete coating capacity (Nc), the threshold

for τy would be calculated as approximately 0.5 MPa. Note that VACL = τyπDLslide

(the shear strength of the ACL is developed along the whole circumference [22, 106],

and also Lslide � 0.5Lt − Lf as explained for Figure 3.7). Also, Nc is calculated by
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Figure 3.11. Effect of concrete coatings compressive strength (f
′
c) on SCF for (a)

Regime I loading and (b) Regime II loading.

integrating the concrete stress (which follows the curve in Figure 3.5) over the cross

section area being under compression.

Since the mechanical response of steel remains linearly elastic within Regime I,

the effect of steel’s yield strength, σy, would only be of concern only within Regime

II loading history, as illustrated in Figure 3.13. The trend shows that the increase

in steel’s yield stress would cause a reduction in SCF. This is due to the fact that

higher values of σy would delay the yielding of steel which in turn reduces the localized
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Figure 3.12. Variation of SCF as a function ACLs shear strength (τy) for (a) Regime I
loading, and (b) Regime II loading.

plastic deformation of the FJ, thus resulting in lower values of SCF.

Similar to the effect of steel’s yield strength, variation of the strain hardening

index, n, only affects the SCF at higher values of εg (Regime II loading). This effect

is illustrated in Figure 3.14, and it is observed that an increase in the values of n

(i.e. lowering the strain hardening capacity) could significantly increase the SCF. The

perfectly plastic limiting case (n → ∞) also shown, causes the most severe increase

in SCF.

The evolution of SCF as a function of the average axial strain εave, for varying
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Figure 3.13. Effect of steels yield strength, σy, on the SCF.

Figure 3.14. Effect of the strain hardening index, n, on SCF, along with the
perfectly-plastic case n→∞.

levels of hoop stress (σh/σy) is shown in Figure 3.15. It is observed that higher values

of hoop stress would significantly elevate the SCF curves. Moreover, higher values of

the hoop stress would raise the rate of increase of SCF as a function of εave within

Regime II loading. For the highest value considered (i.e. σh/σy = 0.8) in Regime II,

the SCF increases very quickly for small increments of εave.

A sharp transition exists between Regime I and II for the case of pure bending

loading as observed in Figure 3.3, identified by the intersecting lines. In the presence
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Figure 3.15. Evolution of SCF versus εave for the family of combined hoop and bending
loads (B+P).

of internal pressure, the transition would become more gradual. This effect is more

pronounced for higher values of σh/σy as can be observed in the family of curves

illustrated in Figure 3.15. It should also be noted that while all the pipes presented

in Figure 3.15 were subjected to bending strain of εg = 0.3%, it is observed that εave

would not reach the same value of � 0.3%. This is probably due to the biaxial stress

state effect. It is postulated that the effect of hoop stress on SCF is very significant

within Regime II, while its effect on SCF in Regime I is quite marginal.

Figure 3.16 shows the influence of the applied tensile load (N/Ny ) on the SCF.

It can be seen that the tensile load can significantly increase the SCF after the steel

undergoes the initial yielding. However, before that stage, the effect of N/Ny is

less pronounced. As can be seen, even for the lowest magnitude of the tensile load

considered (i.e. N/Ny = 0.1), the increase of SCF compared to the master case pipe

(in which N/Ny = 0) is evident.

At this juncture, it should be noted that the strain concentration behavior of com-

bined loading cases is fundamentally different from that observed for pipes undergoing

pure bending. Under pure bending, the neutral axis is shifted toward the compressive

chord by a small amount due to the added stiffness of the concrete coating on the

compression chord. Nevertheless, the localized regions in the tensile and compressive
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Figure 3.16. Effect of tensile load (N/Ny) combined with bending load (B+T) on SCF.

chords within the FJ that undergo plasticity are still comparable. For the combined

B+P loading case, the hoop stress causes the compressive chord to yield earlier and

thus undergo more severe plastic deformation than the tensile chord. This behavior

can be visualized by considering the Mises yield surface and the different loading paths

corresponding to the tensile and compressive chords, as shown in Figure 3.17 (see also

explanations of Bruschi et al. [107] for treatment of the hoop stress effects). On the

other hand, under the B+T loading case, the compressive chord might not even yield,

and thus the localized plasticity of the FJ is confined mainly on the tensile chord.

Moreover, the plastic deformations under the combined loading cases would be much

more severe than that under the pure bending case. These described differences can

be further visualized via Figure 3.18, which illustrates the equivalent plastic strain

(εp) contours for the three loading cases.

3.8 Concluding Remarks

Strain concentration at the Field Joint (FJ) of concrete coated pipelines subject to

pure bending and also combined loading states were investigated in this study. Firstly,

a finite element (FE) modeling framework was presented for consideration of the most

prominent sources of nonlinearity in such coated pipes. The integrity of the FE results
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Figure 3.17. Schematic illustrating the Mises yield surface and the different load paths:
(1) initial pressurization, (2) bending of the tensile chord, and (3) bending of the

compressive chord.

was verified by comparing them with the experimental results of Ness and Verley [106].

The FE model was further utilized to perform a parametric FE study, investigating

the influence of various parameters on the strain concentration factor (SCF) in coated

pipelines. It was observed that the concrete compressive strength, f
′
c, and also shear

strength of ACL material had a marginal influence on the SCF. On the other hand, the

geometric characteristics of the coated pipeline (specifically, D/t and coating thickness

tc) were observed to affect the SCF throughout the loading history. Pipes with lower

(D/t) and also higher coating thickness (tc) experienced larger SCF. The post-yield

characteristics of steel, including its yield strength (σy), and strain hardening index

(n) also generated a significant influence on SCF at higher bending loads, within which

the localized FJ plasticity governs the strain concentration behavior. As a finale, the

effect of two combined loading scenarios, namely (i) bending plus internal pressure and

(ii) bending plus axial tension, on the SCF was also considered. The results indicated

that during the application of low to moderate bending loads, in which the response

of the steel pipe remained elastic, the addition of either an internal pressure or tensile

load did not seriously alter the SCF. Nevertheless, at higher bending loads, under

which yielding of the steel pipe became eminent, the addition of both the internal
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Figure 3.18. Contours of the equivalent plastic strain in the steel pipe subject to: (Top)
pure Bending; (Middle) Bending + Pressure (σh/σy = 0.5) and (Bottom) Bending +

Tension (N/Ny = 0.5). Concrete coating and ACL are hidden for clarity.

pressure and tensile load increased the value of SCF by a significant margin.

It is believed that the results presented here could be of practical interest to

offshore pipeline design engineers, especially under the framework of strain based

design (SBD) philosophy.
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4.1 Abstract

An extensive parametric study using detailed nonlinear finite element (FE) models,

was conducted in order to develop a design equation for predicting Strain Concen-

tration Factor (SCF) in field joints of X65 concrete coated pipelines under bend-

ing. Dimensions of the pipeline and coating, material properties of the coating and

anti corrosion layer, as well as the loading level, were included in the design equa-

tion. Buckingham’s theorem was incorporated to simplify the equation by introducing

non-dimensionalized parameters. The design equation was fitted to FE data using the

nonlinear least square regression, resulting in, margin of safety definitions using the

confidence interval concept for practical applications. The interactive effect of pa-

rameters on SCF was studied, leading to the introduction of a single non-dimensional

coating parameter that can accurately describe the upper limit of the SCF. This study

concluded with a definition of a critical coating parameter which can be used to assess

safe combinations of coating thickness and installation loads, thus preventing exces-

sive strain concentration.

Keywords: strain concentration factor, concrete coated offshore pipes, strain-based design, finite

element analysis, parametric study, design equation, X65 steel
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4.2 Introduction

Strain Based Design (SBD) is a modern design philosophy tailored for offshore pipelines [11],

also implemented in major pipeline design codes (e.g. DNV [2] and API [3]. The goal

is to safely utilize the plastic capacity of steel and thus reduce the overall costs. The

method is applicable to pipelines subject to displacement-controlled loading condi-

tions. Noting that most critical loadings on an offshore pipeline are displacement-

controlled (e.g. as a result of bending over stinger, uneven seabeds, reeling, etc. ),

SBD can be used to define alternative safe limits for the structure, rather than the

more conservative traditional stress-based design methods. However, it should be kept

in mind that higher plastic strains require more stringent criteria for material selection

and testing/quality assurance procedures. For example, DNV [2] requires the utiliza-

tion of the so-called Engineering Criticality Assessment (ECA), for establishing defect

and tolerance criteria for pipelines undergoing plastic strain exceeding 0.3% (common

in pipelines installed with stingers in deep waters). It also requires additional material

specifications when the accumulated plastic strain exceeds 2% (common to pipelines

installed using reeling). The accumulated plastic strain is defined as:

εp =

√
2

3

(
ε2pL + ε2pH + ε2pR

)
(4.1)

where εp is the accumulated plastic strain, εpL is the plastic portion of the principal

longitudinal strain, εpH is the plastic portion of the principal hoop strain and εpR is

the plastic portion of the principal radial strain.

All the mentioned codes emphasize the importance of accurate prediction of strain,

including all the associated strain concentration effects. A primary cause of strain

concentration in Field Joint (FJ) of an offshore pipeline is due to the discontinuity of

concrete coating, which, according to DNV [2], must be accounted for. The mechanics

of this seemingly simple phenomenon are rather complicated, especially for modern

designs in which the materials undergo plastic deformations. The problem is further

complicated by the coating slippage over the pipeline prompted by the limited shear

strength of the anti corrosion layer (ACL). For a complete discussion on the mechanics

of this problem, reference can be made to [22, 23, 106, 115]. Previous research on this

problem include tests and measurements during installations [18–21, 106], simplified
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semi-analytical formulations [22, 23, 106], finite element (FE) modeling [24, 25, 115]

and parametric studies [22, 23, 106, 116]. It can be stated that the experimental,

theoretical and FE simulations of the problem up to now provide sufficient insight to

the problem, which was used here to derive a design equation for practical use. Based

on the FE modeling procedure described and validated by the authors elsewhere [115],

and by extending the parametric study given in [116], a large number of FE analysis

were performed in order to formulate a simple design equation for predicting the

Strain Concentration Factor (SCF) for API-5L [34] grade X65 steel, which seems to

be the most commonly used steel grade for deepwater pipelines [5]. To the best of

the author’s knowledge, no similar design equation exists in the literature, with the

exception of that in ref. [111], which is based on a simplified FE model, and does

not include the post-crushing behavior of concrete that makes it unsuitable for high

strain levels. The motivation for proposing the new design equation is to provide the

practicing engineer with a preliminary tool, when tests or detailed FE simulations are

not feasible. In this paper, a quick review of the FE modeling framework which was

outlined in detail in [115] is presented. Subsequently, the details of the parametric

study, derivation of the design equation and finally a simplification of the design

equation for prediction of upper bounds of SCF are presented.

4.3 Main Features of Finite Element Modeling

An anticorrosion layer (ACL), which is usually made of a polymeric or bituminous

material, is commonly used to cover each pipe joint. Subsequently, the pipe joint

is covered with a concrete coating, which provides the sufficient weight required for

stability of the pipe on seabed. In order to facilitate welding of pipe joints, approxi-

mately 35 cm at each end of the pipe is left uncoated. This uncoated region is referred

to as the field joint (FJ). Figure refms01 shows a typical uncoated segment of such

pipes.

All three parts, namely (i) the steel pipe, (ii) the ACL and (iii) the concrete coat-

ing are included in the FE model. In this study a typical 12 m long pipe joint was

considered. Due to symmetry in geometry and boundary conditions (BC’s), only one
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Figure 4.1. Concrete coated pipes, and the uncoated portion. From Ref. [110].

quarter of the system was modeled, as shown in Figure 4.21. The general purpose FE

package, ABAQUS 6.8 [10], was used. All the mentioned parts were modeled using

the 8-node isoparametric reduced integration continuum (brick) elements (C3D8R).

The behavior of the constituent steel and ACL were modeled using the plasticity

model, whereas the damaged plasticity model was used for the concrete coating. The

plasticity model incorporated an associated J2-flow theory plasticity, using the Mises

yield surface and the isotropic hardening option. The damaged plasticity model used

a modified Drucker-Prager yield surface, and can be categorized as a non-associated

flow-theory plasticity model. This framework also has the capability to model soften-

ing behavior of concrete caused by cracking and crushing of concrete in tension and

compression respectively [10], which was of interest in this study. Based on Equation

(4.3) (see section 4.4), rotations required to cause global strain levels of 0.15, 0.20,

0.25 and 0.33% were calculated and imposed on one end of the pipeline, as shown in

Figure 4.2.

The stress–strain curve used for X65 steel is shown in Figure 4.3a, with yield stress,

defined as stress corresponding to 0.5% total strain [34], and ultimate strengths of 448

MPa and 600 MPa, respectively. Based on a survey of literature, the proportional

stress (defining the elastic limit) and the elastic modulus are assumed as 350 MPa and

1The presented Figure 4.2 is slightly more detailed than that in the published article.
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Figure 4.2. A quarter symmetric FE model (6 m long) showing the boundary conditions
and longitudinal mesh characteristics (also, 16 elements in half circumference and 4

elements through thickness of steel and concrete each, and 1 element through thickness of
ACL).

210 GPa, respectively. Furthermore, a continuous post-yielding curve was assumed

rather than having a flat plateue (Lüder’s effect). Although the curve was not con-

structed from actual tensile tests, it can be deemed as a representative stress–strain

curve for large diameter seam-welded X65 pipelines [117].

The stress–strain curve used for concrete is shown in Figure 4.3b. The curve covers

the full range of concrete behavior including the post crushing softening behavior. The

curve has a parabolic form, defined by [114]:

fcon =
2f

′
c(ε/ε0)

1 + (ε/ε0)2
(4.2)

where f
′
c is the compressive strength of concrete and the rest of the parameters are

defined in Figure 4.3b. The particular value of equal to 0.2% is the concrete crushing

strain observed during offshore pipeline installations [106]. The tensile strength of

concrete was neglected (i.e. 1 MPa).
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Figure 4.3. (a) Assumed stress–strain curve of X65 steel and (b) typical parabolic curve
for concrete.

4.4 Parameters Affecting the SCF

Generally speaking, the SCF of offshore pipelines at FJ is a function of dimensions

of the structure, material properties of steel, concrete and ACL, and also the strain

level (or alternatively, the curvature of the pipeline). However it was not practical

to examine all these parameters together and investigate their combined effect on

SCF. Therefore, the most important ones were included in the parametric study. The

selected parameters are the outside diameter D, wall thickness t, coating thickness tc,

compressive strength of concrete f
′
c , shear strength of the ACL τy and global bending

strain εg (which is a measure of loading level). These parameters are believed to be

the most important ones, while the other parameters such as the axial force and the

rebars in the concrete coating (whose cross-section area in such systems amounts to

1 ∼ 3% of concrete’s cross-section area) would have a less significant influence on

SCF [22].

As can be seen in Table 4.1, to achieve all possible combinations of D, t, tc, f
′
c and

τy, a total number of 2×2×3×3×3 = 108 FE analyses were required with results of

each analysis considered at four strain levels (εg). The results of all analysis were post

processed, and the maximum value of SCF, as defined by the following equation [111],
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Table 4.1. Variation of parameters included in the FE parametric study

Parameter Range (# of samples)

D (mm) 457–813 (2)

t (mm) 17.5–25.4 (2)

tc (mm) 40–80–120 (3)

f
′
c (MPa) 30–40–50 (3)

τy (MPa) 0.1–0.3–0.5 (3)

εg (%) 0.15–0.20–0.25–0.33 (4)

was recorded:

SCF =
εFJ

εg
(4.3)

where εFJ is the maximum bending tensile strain in the FJ region obtained from the

FE analysis results and εg is the maximum global longitudinal strain as predicted

by the Euler beam theory. For a pipe under pure bending, the global strain can be

calculated by:

εg =
κD

2
=

RxD

l
(4.4)

whereκ is the curvature of pipeline, Rx is the rotation angle at pipeline ends (in

Radians), and l is the length of pipeline.

Equation (4.4) was based on the classical beam theory assumption that plane sec-

tions remain plane, which does not hold true as plasticity develops. However, for the

global levels of strain limited to 0.33% the above equation provides acceptable results.

It should be noted that although tensile strain was used for calculation of SCF (be-

cause it is the critical parameter for promoting crack growth and potential fracture

in girth welds), the compressive strain might attain a slightly larger magnitude. This

phenomenon was observed in tests conducted by Ness et al. [106] and numerical sim-

ulations [115], and can be due to the fact that the plane section assumption is less

admissible in the vicinity of discontinuity (at FJ), and the rather large amount of

plasticity developed in that region.

In addition to the data from the 108 FE models, data from the previous parametric

study conducted by the authors [116], which included 23 FE models, were also included

for the derivation of the proposed design equation. Our earlier study (the 23 FE
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models), also considered pipelines with the dimensions in between the ranges given

in Table 4.1 (e.g. 711 mm outside diameter). Thus, in total, the results of 131 FE

models were used for derivation of the design equation.

4.5 Derivation of the SCF Design Equation

A functional relationship can be written to relate to the other parameters:

εmax,FJ = F (D, t, tc, fc
′, τy, εg) (4.5)

It should be noted that Equation (4.5) is not fully encompassing, in the sense that

only the effect of parameters outlined in Table 4.1 have been considered in its devel-

opment. In other words, the steel’s materials properties (i.e. the yield strength and

hardening) have not been included in the parameterization, mainly due to the fact

that only one grade of steel (X65) has been considered in this investigation. In order

to simplify defining the functional relationship , the Buckingham dimensional anal-

ysis theorem was used. The theorem states that a given functional relationship can

be expressed with a fewer number of dimensionless parameters, with the reduction

being always equal or less than the number of fundamental dimensional units of the

problem, which in the present case equals two (force [F] and length [L]). However, the

only dimensionless parameter for fc
′ and τy can be their ratio. That ratio would not

represent any trend in variation of SCF. On the other hand, if a range of steel prop-

erties had been included in the study, then the ratios of fc
′ and τy, over the strength

properties of steel, would have made useful dimensionless parameters. Therefore, only

the geometric parameters are non-dimensionalized, resulting in:

SCF =
εFJ

εg
= F

(
tc
t
,
tc
D
, f

′
c, τy, εg

)
(4.6)

In order to interpret the physical meaning of the ratios tc/t and tc/D introduced

in Equation (4.6), the following expression can be used:

Ic
Is
∝ (D + 2tc)

4 −D4

D4 − (D − 2t)4
=

tc
D

+ 1.5

(
tc
D

)2

+

(
tc
D

)3

+ 2

(
tc
D

)4

t

D
− 1.5

(
t

D

)2

+

(
t

D

)3

− 2

(
t

D

)4 (4.7)
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where Ic and Is are the second moment of area of coating and steel pipe, respectively2.

If t/D and tc/D are sufficiently small, then their higher power terms can be neglected

(i.e. the thin ring assumption. Therefore the expression in Equation (4.7) will only

be a function of tc/t . Thus, tc/t would also represent Ic/Is (which obviously affects

the SCF), if both cross sections can be assumed as thin. While this assumption is

indeed valid for the steel pipe, it may not be valid for the coating. In other words

tc/D would be a measure of divergence from the so-called thin assumption discussed

above. Generally speaking, Equation (4.7) is equivalent to tc/t, with inclusion of a

correction factor as a function of tc/D. After a series of trial and errors, and also

observation of the general trend of SCF variation as a function of each parameter, as

observed in [116], the following design equation is proposed:

ˆSCF = β1 + β2

(
tc
t

)C

(4.8)

where

C = β3 + β4
tc
D

+ β5f
′
c +

β6

τy
+ β7

εg
0.0015

in which f
′
c and τy are in MPa and εg is dimensionless (e.g. mm/mm). The βi coef-

ficients in Equation (4.8) would be determined from regression of the FE data (Note

that β5 and β6 have units of MPa−1 and MPa respectively, while the rest of the βs are

unitless). It should be noted that various combinations of parameters were considered

prior to finalizing the form shown in Equation (4.8). In spite of Equation (4.8) having

a rather simple form, it best describes the trend of the massive number of results

obtained through the large number of FE analyses. Equation (4.8) predicts the SCF

mainly as a function of tc/t and allowing modification of other parameters. More-

over, the slipping length of the concrete coating over the steel pipe is a function of

β6/τy [22]; and the slipping length itself affects the SCF by smoothing the longitudi-

nal strain distribution [116]. Equation (4.8) is nonlinear in terms of βi, thus iterative

nonlinear regression techniques are required for establishing the coefficients [118]. The

procedure is initiated by defining the mean square error, E:

E =
1

n

n∑
i=1

(
SCFFE − ˆSCF

)2

(4.9)

2As a first approximation, the cracking of concrete coating is negelected in establishing Ic/Is in
Equation (4.7)
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Table 4.2. Coefficients of the proposed SCF design equation.

β1 β2 β3 β4 β5 (MPa−1) β6 (MPa) β7

1.0 0.15 −1.0 4.05 0.0087 −0.0515 0.5135

where n is the total number of the series of data obtained through FE analyses, which

in this case would be (e.g. 131 × 4 FE models with SCF values extracted at four

levels of εg). Incorporating the least square concept, the coefficients βi were found by

minimizing the error, that is:

∂

∂βi

E = 0 for i = 1 to 7 (4.10)

Equation (4.10) leads to seven nonlinear algebraic equations in terms of βi which

had to be solved iteratively. The partial derivatives in Equation (4.10) can be evalu-

ated analytically; however, it is more efficient to use the forward difference numerical

scheme for their evaluation. The above mentioned procedure is available in the Sta-

tistical Toolbox of the MATLAB (7.1) program (MathWorks, Boston, MA). The final

results for the coefficients of Equation (4.8) obtained through MATLAB are presented

in Table 4.2.

Figure 4.4 shows the ratio of the proposed SCF design equation, Equation 4.8, to

SCF from the FE data. For the majority of cases, the ratio was bounded between 0.9

and 1.1 (or error of ±10%). Even for the few cases where the errors fell out of these

bounds, the ratio was still limited to 0.85 and 1.2 (or error of ±20%). Thus, it can

be stated that Equation (4.8) can satisfactorily and practically predict the SCF with

reasonable accuracy for grade X65 steel.

In order to make Equation 4.8 more robust for practical use, a margin for conser-

vatism needs to be defined. This can be best done by using the concept of confidence

interval. This concept prescribes the probability range that would include the pre-

dicted statistical results. This concept can be represented mathematically by:

P ( ˆSCF−Δ < SCFFE < ˆSCF +Δ) = (1− ξ)× 100% (4.11)

where (1− ξ)× 100% is the desired confidence level, Δ is half-width of the confidence

interval and P is the probability. The half-width of confidence interval, Δ, was calcu-

lated using the Matlab Statistical Toolbox for four confidence levels. The maximum



81

Figure 4.4. Ratio of the SCF predicted by Equation (4.8) to SCF from FE data.

Table 4.3. Design confidence factors applicable to Equation (4.8) as a function of
confidence level.

Confidence level (%) ξ (Δ/ ˆSCF)max Design confidence factor

99.9999 1× 10−6 0.0737 1.0737

99.99 1× 10−4 0.0583 1.0583

99 1× 10−2 0.0385 1.0385

95 1× 5−2 0.0292 1.0292

ratio of Δ over the predicted SCF obtained using Equation (4.8) can be interpreted

as a design confidence factor for design purposes. The results are presented in Table

4.3.

As an example, applying a safety factor of 1.0583 from Table 4.3 to predictions of

Equation (4.8), one would have a 99.99% probability that the predicted SCF is equal

or greater than the exact SCF calculated by FE. Thus, the final format of the design

equation is as follows:

SCFdes = η × ˆSCF (4.12)

where SCFdes is the recommended value for design, ˆSCF is the prediction of Equation

(4.8) and η is the safety factor corresponding to the desired confidence level from

Table 4.3.
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The influence of different parameters on the SCF predicted using Equation (4.8)

was also investigated. Variations of SCF as a function of tc/t (the primary parameter)

and tc/D, f
′
c, τy, εg (the secondary parameters) are shown in Figures 4.5a to 4.5d,

respectively. It should be noted that the high values of SCF in the upper left corner

of Figure 4.5a correspond to the geometric combinations that are impractical and

rarely used in practice (for example the extreme point of Figure 4.5a can correspond

to a pipeline with D = 457 mm, t = 20 mm and tc = 137 mm, which is indeed a

disproportionate configuration3. The influence of the secondary parameters became

more pronounced at larger values of the tc/t ratio. In all cases, an interaction effect

of the parameters was observed on the SCF, however their degrees of influence are

somewhat different. For instance, the gradient of the SCF surface increases sharply as

tc/D increases, while it increases nearly linearly as a function of f
′
c. The trend takes

an asymptotic behavior as a function of τy , and finally increased strongly with respect

to variation in εg. Thus, among the secondary parameters, tc/D affected SCF most

severely, followed by εg having a rather modest effect on SCF. In contrast, increasing

τy had an insignificant influence on the SCF after a certain limit, while f
′
c affected

the SCF nearly linearly.

The above mentioned influences and trends of each parameter on the SCF, prompted

the formulation of a new non-dimensional parameter which accounts for only the more

influencing parameters, that is tc/t, tc/D and εg. Indeed, by upgrading the geome-

try parameter developed in our earlier study [116], and including εg, a new coating

parameter can be introduced, which predicts the SCF trend quite satisfactorily. The

coating parameter, λ, is defined as:

λ =
Dt

εgt2c
(4.13)

where εg is the global strain (in percent).

The values of SCF obtained from FE analyses are plotted in Figure 4.6 as a

function of λ; an identifiable trend is visible in the diagram. Furthermore, a curve

was fitted to the upper limit of the data, which yields the following relationship:

SCFUL = 1.35 +
7

λ1.7
(4.14)

3Such a thick-walled pipeline (D/t � 23) would usually not require such a heavy coating with
tc = 137 mm.
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Figure 4.5. SCF as a function of (a) tc/t and tc/D, (b) tc/t and f
′
c, (c) tc/t and τy and

(d) tc/t and εg.

Equation (4.14) predicts an asymptotic SCF value of 1.35 for large values of λ.

The rule of thumb value for SCF has been suggested as 1.2 [1]. Interestingly, the data

for λ � 30 fits this value; however a single regression curve cannot capture this trend.

Moreover, Equation (4.14) and Figure 4.6 provide one valuable piece of information:

if the value of λ is less than a critical value, the SCF would sharply increase and

become very sensitive to small variations in geometric and material properties and

the global strain level. From a general perspective, the critical value of λ would be

approximately 8 (see Figure 4.6). In addition to the critical value of λ, Equation
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Figure 4.6. SCF from FE results versus the coating parameter (λ), and the upper limit
of Equation (4.14).

(4.14) and Figure 4.6 can be readily used in the preliminary design stage in order to

grasp appropriate combinations of dimensions and loading. For example, in order to

install a pipeline with D = 711 mm, t = 19.1 mm and tc = 80 mm, εg should be

limited to 0.265%, or conversely, the curvature curvature radius of the stinger should

be limited to Rs = D/(2εg) = 134 m (assuming λcrit = 8) in order to avoid excessive

strain concentration. Alternatively, one would need to conduct a detailed FE analysis.

It is worth noting that if the values of the relative errors shown in Figure 4.4

are plotted against λ, it would be seen that larger errors are associated with smaller

values of λ. This indicates that Equation (4.8) would be more reliable for practical

values of λ (i.e. λ > 8.)

Finally the case study considered by other investigators (see Refs. [106, 115]),

were used here to assess our predictions. The pipeline used in the case study had the

following data: D = 517 mm, t = 18.5 mm, tc = 80 mm, f
′
c = 36.4 MPa and τy = 0.5

MPa. The results are compared in Table 4.4. For all values of εg, Equation (4.14)

satisfactorily predicts an upper margin. The general agreement between predictions of

Equation (4.8) and the test and numerical data is also generally good, especially for the
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Table 4.4. Comparison of SCF predicted by Equations (4.8) and (4.14), tests [106] and
FE analysis [115].

Source
SCF

εg = 0.15% εg = 0.20% εg = 0.25% εg = 0.33%

Test [106] 1.4 1.4 1.4 1.4

FE [115] 1.34 1.33 1.35 1.37

Equation (4.8) 1.25 1.32 1.42 1.62

Equation (4.14) 1.49 1.57 1.68 1.88

εg = 0.2 and 0.25% cases. The observed minor discrepancy at other values of εg (0.15

and 0.33%) might be due to the fact that the stress–strain curve of the tests conducted

in Ref. [106]4 and those incorporated in our earlier numerical investigation [115] (which

was a special case) was a lot weaker than the general curve (Figure 4.3a) that was

used to conduct our study. It is therefore suggested that Equations (4.8) and (4.14)

should be used with caution if the steel grades response differs significantly from that

shown in Figure 4.3a.

4.6 Concluding Remarks

An extensive FE parametric study was conducted in order to derive a design equa-

tion for evaluation of SCF in field joints of concrete coated pipelines. This study

was based on evaluating the strain concentration factor (SCF) via 108 FE models,

representing different geometric (D, t, tc) and material (f
′
c, τy) properties. The SCF

values were extracted at four different stages of loading or global bending strain (εg).

The investigation also included 23 other FE models from the previous work of the

authors [116]. The Buckingham dimensional analysis theorem was incorporated to

introduce dimensionless parameters and simplify the regression procedure. Nonlinear

regression techniques were used to establish the proposed design equation. The varia-

tions in margin of error associated with the proposed equation were also investigated

4Ness and Verley [106] have reported a lot of scatter in the stress–strain curves obtained from
different coupons. Thus, they used the moment-curvature of the pipe to back-calculate the uniaxial
stress–strain curve.
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and were observed to be within acceptable limits. Furthermore, the confidence inter-

val concept was used to define a design confidence factor in order to further propose

a means for establishing the safety margin for practical applications. The effect of

each parameter and their interaction on the SCF was shown using 3D plots, and the

most influential parameters were identified. It was seen that all parameters affect

the SCF only for higher values of D/tc. It was also observed that the SCF is more

sensitive to D, t, tc and εg rather than material properties (f
′
c, τy). Based on this, a

non-dimensional coating parameter, λ, was introduced which could describe the vari-

ation of SCF reasonably well. A simplified equation based on λ was also proposed. A

critical value of λcrit � 8 was observed to exist, below which the SCF would increase

very rapidly, being sensitive to the variation in geometric and material properties.

Conversely, the SCF would attain an asymptotic behavior above λcrit. The proposed

simplified design equation can be used to estimate SCF (or limiting values of coating

thickness and loading level) in the preliminary design phases. It should be noted that

the proposed design equations were established based on detailed computational mod-

els that include most of the nonlinear geometric and material related phenomena. It

is believed that the presented work would be of interest in practical design of offshore

pipelines.
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5.1 Abstract

As a result of recent increase in exploitation of hydrocarbon resources in harsher

environments and also installation techniques which utilize the materials plastic de-

formation capacity, accurate assessment of fracture response of pipelines subject to

large plastic strains (e.g. typical of reeled pipes) has attracted particular interest

nowadays. In this paper, an approach, based on the evaluation of the J-integral, is

developed for assessing the integrity of such pipelines, manifested in a model of a

pipeline with a circumferential part-through crack subjected to plastic bending. The

proposed approach is an extension of the reference strain method developed earlier by

other researchers, and takes advantage of the displacement controlled loading nature

in such pipes (thus being suitable for Strain Based Design methodologies), and the

resulting high strain levels, which often cause fracture response of the material in the

plastic regime. The developed formulation relates the fracture response of the pipe

(in terms of the non-dimensionalized J-integral) as a linear function of the bending

strain in the pipe at its uncracked state. A series of 300 3D nonlinear finite element

models using the ABAQUS software were analyzed in preparation of the equation that

could assess the fracture response of such pipes with great accuracy. The resulting

equation, calibrated by the finite element results, can predict the fracture response of

pipes with a maximum error of 2% for a practical uncracked material strain range of

87
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1.5% � εunc � 4%.

Keywords: Fracture, Reeled pipes, J-integral, Plasticity, Strain based design

5.2 Introduction

Reeling is one of the most efficient installation/construction methods for offshore

pipelines, with its first application dating back to 1944, during World War II. The

technique has advanced and improved and today a fleet of reel vessels is available

worldwide. A brief description of a typical pipeline reeling system is as follows: 12 m

long line-pipes are girth welded into 1 km stalks in an onshore spool base facility (con-

trary to traditional S-lay and J-lay, for which offshore welding is required), enjoying

the privileges of onshore welding operations and avoiding the tight time constraints

and large cost of offshore welding. The stalks are then welded together forming a

several kilometer long pipe string, which is subsequently bent over a hub and loaded

on a reel vessel which travels to the installation site. The pipeline is installed by

gradually unreeling it from the hub [4, 14]. Figure 5.1 shows a schematic of a typical

reel vessel and hub (taken from Ref. [4]). The main structural feature of this method

is that the pipeline material undergoes significant plastic strains. During reeling on,

the nominal uncracked strain in the pipeline can be calculated by [9]:

εunc =
D/2

Rhub +D/2
�

D

2Rhub

(5.1)

Noting that reelable pipes generally have a diameter of 4 to 18 inches and hubs of

today’s active fleets have a radius of 6.1 m to 9 m [4], the nominal strain is normally

in the 1 ∼ 4% range, thus significantly exceeding the elastic limit of the material.

Limit states relevant to reeled pipes are concerned with the local buckling of the

compression side and fracture on the tensile side in such pipes. Considering the dis-

placement controlled nature of the reeling operation and its equivalent counterpart in

pipeline design, the Strain Based Design (SBD), that is, the notion of consideration

of the allowable strains would be a justified approach for assessing the integrity of

the pipeline, rather than use of the traditional stress-based approaches. It has been

noted that the selection of a suitable wall thickness and an appropriate tension dur-

ing installation could safely accommodate the mentioned strain levels on the pipe’s
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Figure 5.1. Schematic of the reeling installation method. From Ref. [4].

compression side [4, 47], thus harnessing the strain to an allowable strain limits as

per code requirements [2]. However, a fracture mechanics analysis, referred to as

the Engineering Criticality Assessment (ECA), ought to be performed to justify the

integrity of the pipeline, its girth welds and the status of a hypothetical defect un-

dergoing such levels of strain. For instance, DNV-OS-F101 [2] requires an ECA in

situations involving accumulated plastic strains greater than 0.3%, which includes all

reeled pipelines. Additionally, it requires more stringent material specification where

the accumulated plastic strain would be greater than 2%. The accumulated plastic

strain is defined as:

εp =

√
2

3

(
ε2pL + ε2pH + ε2pR

)
(5.2)

The first design code completely devoted to ECA of reeled pipelines is DNV-

RP-F108 [9]. The flaw assessment procedure of the document is based on that of

BS7910 [8], with adjustments to make it suitable for pipelines experiencing large plas-

tic strains. However, the guidelines of BS7910 [8] are developed for load controlled sit-

uations, where development of large plastic strains are normally not justified. Tkaczyk

et al. [49] reviewed the fracture response of reeled pipelines based on most of the avail-

able assessment schemes relevant to offshore reeled pipelines, and concluded that the

available assessment approaches do not provide an accurate prediction of the fracture

response of a reeled pipeline. Furthermore, Pisarski and Cheaitani [119] investigated
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the fracture response of reeled pipelines by comparing FE results to predictions of

BS7910 [8]. The predictions were noticeably lower than the FE results. They noted

that this shortcoming could be overcome by the necessity to incorporating the effects

of welding residual stresses and weld overmatch, thereby yielding in conservative esti-

mates. Several attempts have been made to improve the accuracy of fracture response

estimation schemes and/or simplifying them. In the context of reeled pipelines, these

include the strain-based equations of tsby (2005b) and the modified reference stress

solution of Tkaczyk et al. (2009). Taking advantage of the (nearly) linear evolution of

fracture response with the applied nominal strain, Østby [50] proposed a set of strain

based equation by fitting them to the results of a series of line-spring shell FE models.

However, the limitations of the considered defect geometries and strain levels did not

render the approach attractive for application to common reeled pipelines. Tkaczyk et

al. [51] applied the modified reference stress approach of Kim and Budden [52] to the

limit load solution of Kastner et al. [41], which is more commonly used in the offshore

industry; they also considered more relevant defect geometries that usually occurrs

in offshore reeled pipelines. Although the approach resulted in improved accuracy, it

still does not take advantage of a strain-based formulation.

Jayadevan et al. [120] (2004) and Østby et al.[47] investigated the fracture re-

sponse of pipelines subject to large plastic deformations under tension and bending,

respectively. Their results clearly indicated the superiority of using the total strain

in formulating the fracture response under large plastic strains over the traditional

load-based approaches. The simplicity of a strain-based formulation is manifested in

Figure 5.2, which shows the fracture response of a typical circumferentially cracked

pipeline, quantified as J/(σyt), under bending, both as a function of load (dashed

line) and as a function of strain (solid line). Region 1 indicates that the bulk behavior

is elastic with confined plasticity at the crack tip (small scale yielding); Region 2

indicates that plasticity develops in the whole pipe thickness (noting that the strain

levels relevant to reeling fall in this region), while Region 3 is due to instability and

collapse of the uncracked ligament.

In the work presented in this paper, a strain-based formulation is developed for

assessing the fracture response of reeled pipelines, which upgrades the reference strain
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Figure 5.2. Fracture response of a typical circumferentially cracked pipeline as a function
of the global strain (solid line) and load (dashed line), D/t = 15, a/t = 0.5, 2c/(πD) = 0.1,

σy/σu = 0.659.

approach of Linkens et al. [37]. The developed formulation takes advantage of the

mentioned features relevant to reeled pipelines, namely the displacement controlled

loading, high plastic strains, incorporation of SBD in pipeline design codes, and also

the simplistic strain-based fracture formulation, which can additionally be made, need-

less of the limit loads definitions.

5.3 The Reference Strain Method

The path independent J-integral of Rice [28] and the crack tip opening displacement

(CTOD) of Wells [32] are the two most prominent parameters that can satisfactorily

characterize initiation and/or growth of a crack/flaw in ductile materials, where the

limits of small scale yielding and the linear elastic fracture mechanics (LEFM) are

surpassed [16, 27]. While the J-integral has a theoretical background in characteriz-

ing the near-tip stress fields with the so-called HRR singularity (after Hutchinson [29]

and Rice and Rosengren [30]), and the concept of CTOD, as a fracture parameter was
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initially based on experimental observations. Nevertheless, in general, the two param-

eters can be corelated [33]. Furthermore, in consideration of the issue of J-dominance

situation and the necessity of using a two parameter fracture characterization [67],

it was shown by Pisarski and Wignal [77] that the constraint of a circumferentially

cracked pipe geometry (under loading levels relevant to reeled pipelines), is similar to

that of the SENT (Single Edge Notch Tensile) specimen1. Based on this observation,

DNV-RP-F108 [9] suggests using SENT to evaluate fracture toughness rather than the

traditional SENB (Single Edge Notch Bend) specimen, as suggested by BS7910 [8],

and thus justifies the single parameter fracture mechanics approach.

A brief background on the current J-estimation schemes, as suggested by DNV-

RP-F108 [2] follows. For a material having a uniaxial stress–strain curve of the

Ramberg-Osgood form, represented by Equation (5.3), the J integral can be approx-

imated by the EPRI (Electric Power Research Institute) scheme of Kumar et al. [35]

via Equation (5.4).
ε

εy
=

σ

σy

+ α

(
σ

σy

)n

(5.3)

J = Je(ae) + Jp(a) =
K2(ae)

E ′ + ασyεyl1h1

(
P

Py

)n+1

(5.4)

where εy = σy/E and Je(ae) is the elastic contribution to J , with ae being the modified

crack length. This modification (ae) essentially accounts for the plastic zone correction

in small scale yielding, whose effect would be reduced at higher loads, where plasticity

effects are manifested in the fully plastic Jp term. The fully plastic term, Jp, represents

a situation in which elastic strains are negligible, i.e. Equation (5.3) is modified as:

ε

εy
= α

(
σ

σy

)n

(5.5)

Kumar et al. [35] tabulated values of the h1 function appearing in Equation (5.4)

for some test specimen configurations and some simple cracked bodies. In his pioneer-

ing work, Ainsworth [36] developed the reference stress J estimation scheme, which

is not limited to materials following a Ramberg-Osgood curve, and does not require

tabulations of FE results (e.g. the h1 functions in Equation (5.4)). This approach was

1Chapters 7 and 8 of the present thesis investigate this issue in much more detail and indeed
confirm the crack tip constraint similarity of pipelines and SENT specimens.
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further verified against the EPRI method by Miller and Ainsworth [39] and was ob-

served to have an average over-prediction of 5%. The reference stress in their method

is defined as:
σref

σy

=
P

Py

(5.6)

Substituting Equation (5.6) into Equation (5.4), while making simplifying assump-

tions and approximations, and also incorporating minor modifications as explained

in Milne et al. [40], the final form of the J estimation scheme of BS7910 (and also

DNV-RP-F108) is achieved:

J(a) = Je(a)

(
Eεref
σref

+
σ3
ref

2σ2
yEεref

)
(5.7)

Je(a) =
K2(a)

E ′

Miller and Ainsworth [39] have verified the reference stress scheme against the

EPRI method and showed that the reference stress method has an average over-

prediction of 5%. However, on a case by case base, over-predictions as much as 20%

and underpredictions as large as 40% were also observed [39].

DNV-RP-F108 [9] recommends using the limit load solution of Kastner et al. [41]

to calculate the reference stress (Equation (5.6)). Introduction of the reference stress

and strain in Equation (5.7) includes the effect of material’s strain hardening capacity

in determination of J . Furthermore, the geometric features of the cracked body

are also included implicitly via the LEFM stress intensity factor (K) term. The

first term (Eεref/σref) in Equation (5.7) describes both the limiting elastic and

fully plastic behaviors. The second term (σ3
ref/(2σ

2
yEεref )) describes the behavior in

between these two limits, namely the small scale yielding regime, where the general

behavior is elastic but J exceeds its elastic value, and a minor plasticity correction is

provided by the second term. The second term is designed such that it has a negligible

effect in the elastic domain (σref/σy � 1) and in the fully plastic domain in which

Eεref/σref � 1 [40, 44, 45]. Figure 5.3 shows the contribution of each term to J/Je

(by assuming equality of reference strain and applied strain), and it is observed that

the minor plasticity correction term has insignificant effect for strains larger than 1%.

By neglecting the second term in (5.7), replacing reference stress and strain with

their uncracked body values, some simplifying assumptions and introducing a safety
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Figure 5.3. Influence of the minor plasticity correction term on the J-integral in the
reference stress method.

factor of 2, Linkens et al. [37] proposed a reference strain formulation which is very

straightforward for displacement controlled situations (note the general form of the

LEFM stress intensity factor K = Fσ
√
πa), embedded in the equation:

J = 2F 2πaσuncεunc (5.8)

Equation (5.8) is in accord with test results on reeled pipelines of Pisarski et

al. [46], detailed FE results of Refs. [47, 48, 50] which showed a similar evolution of

fracture response parameter with total uncracked strain. However results of Tkaczyk

et al. [49] indicate that although Equation (5.8) can qualitatively capture the frac-

ture response of reeled pipelines, the quantitative accuracy is not sufficient. This is

probably because for severe cracks, the difference between the reference strain and

the uncracked strain becomes large and thus the underlying assumption of Equation

(5.8) would be violated. Nevertheless, the reference strain approach is a very attrac-

tive alternative to the present load-based estimation schemes for application to reeled

pipelines. Indeed the displacement controlled loading and the strain level pertinent

to reeled pipelines justify the simplifying assumptions of the reference strain method.

Based on these facts, the reference strain approach is selected as a basis for develop-

ment a more accurate J assessment approach for reeled pipelines. The general form
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of the proposed equation would be:

J

σyt
= f1εunc + f2 (5.9)

where εunc is in %.

Generally, f1 and f2 are functions related to pipe and crack geometries and me-

chanical properties of the material. Equation (5.9) is developed based on Equation

(5.8), where σunc is replaced by σy, and the LEFM geometric magnification factor

F is omitted (since as will be seen, all the pertinent geometric effects are included

in f1 and f2). Moreover t is used instead of a as a characteristic dimension of the

pipe (a parameter analogous to l1 as used in Equation (5.4)). Incorporation of f2 (the

intercept) was necessary to ensure accurate results. Furthermore, Equation (5.9) does

not require a limit load definition (i.e. Py in Equation (5.6)), in order to evaluate the

fracture response. The values of f1 and f2 were established by conducting a series of

parametric FE analyses, by which the response of a whole range of pipe geometries,

crack geometries, and material properties relevant to offshore reeled pipelines were

examined.

5.4 Parametric Finite Element Modeling

As stated, in order to establish an accurate reference strain J approximation approach,

results from a series of FE models were analyzed using the ABAQUS software, version

6.8 [10]. A pipe with an external, part-through circumferential, surface breaking

crack/flaw, subject to bending was investigated. The geometric features of the cracked

cross section are shown in Figure 5.4. The crack has a canoe shape with its fillet radius

equal to the crack depth (r1 = a), which is believed to be representative of real weld

defects observed in offshore pipelines. It should be noted, however, that the crack

shape does not influence the fracture behavior at the crack center, where the maximum

J occurs [121]. Only a segment of the pipe with the length of L = 2D was modeled.

Results produced by Jayadevan et al. [120] and Østby et al. [47] indicated that this

length would be sufficiently long to capture the strain and stress discontinuity caused

by the crack. Moreover, due to symmetry in geometry and boundary conditions,

only a quarter of the pipe geometry was modeled (see Figure 5.5). Eight-node fully
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Figure 5.4. Geometric features of the pipeline cross section and the part-through
external circumferential crack.

integrated continuum elements (C3D8) were used. The C3D8 elements are susceptible

to shear locking in bending, however the longitudinal density of the mesh was carefully

investigated and seen to be sufficient to avoid locking (note that use of the reduced

integration version of this element resulted in rather mesh dependent values of J-

integral). Bending was applied to the pipe by applying rotation to a master node

connected to the pipe end via a set of multi-point-constrains (MPCs). The applied

rotation was such that it would cause a longitudinal (uncracked) strain of 4% in the

outermost fiber. This rotation was calculated as per the Euler beam theory, assuming

that a plane section would remain plane after deformation. It is acknowledged that as

plasticity develops, the actual behavior deviates from this assumption; however, the

errors would be insignificant [119]. The rotation-strain relationship is governed by:

Rx =
2εuncL

D
(5.10)

The J2 deformation plasticity and Small Geometry Change, SGC, (small strain)

assumptions were incorporated (see discussion below for justification). An initially

sharp crack front was modeled with a so-called focused spider web mesh. Figure 5.5

shows a sample FE model and close-ups of the near-tip spider web mesh, along with
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the applied boundary conditions2. Within the spider web mesh, the crack tip region (a

half-tube with a radius of 1 mm surrounding the crack tip) was modeled with 10 rows

of elements covering the circumference of the lower π/2 sector, and 6 rows of elements

for the upper π/2 sector, and 10 rows of elements in the radial direction), leading

to singular elements at the crack tip (the radial dimension of crack tip singularity

elements was set at 50 μm), with the 8 node solid elements degenerated to 6 node

wedge elements. In these elements, the overlapping nodes were not merged together,

thereby allowing the initially sharp crack tip to blunt as load was increased, providing

enhanced accuracy [16]. Mesh convergence studies were performed, investigating both

the global behavior and the J-integral values, providing confidence in the established

mesh. Each FE model consists of 12000∼15000 solid elements, depending on the

specific cracked pipe geometry. J-integrals were extracted for 10 consecutive rings of

elements around the crack tip (excluding the first ring corresponding to the singular

elements) using the contour integral feature of the ABAQUS, which utilizes the Vir-

tual Crack Extension (VCE) technique of Parks [122]. The extracted 10 J-integral

values were practically path-independent (with a maximum difference less than 5%),

providing additional confidence in the results. However, an average of these 10 values

was used.

In reference to extracting the J-integral values, two approaches can be incorpo-

rated: (i) the incorporation of the J2-deformation theory of plasticity alongside SGC

(small strain) assumption, as incorporated, for example by Pisarski and Cheitani [119]

and Tkaczyk et al. [51]; or, (ii) the more elaborate, but much more computationally

expensive approach, which is the combined use of the J2 incremental plasticity the-

ory alongside LGC (finite strain) assumption, as used for example, by Jayadevan et

al. [120] and Østby et al. [47]. Noting the importance of computation effort in any

large-scale parametric study, it is highly desirable to use the first approach, so long as

it could be justified. The monotonic bending of the pipe suffices the proportionality

requirement (i.e. principal components of stress increasing in proportion) to justify the

use of the deformation plasticity theory [27]. To confirm the assumption, however,

three models (with crack geometry of a/t = 0.1, 0.3 and 0.5) were analyzed using

2The presented Figure 5.5 is slightly more detailed than that in the published article.
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Figure 5.5. FE model of the typical configuration, showing boundary conditions
close-ups of the focused spider web mesh of the crack tip.
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Figure 5.6. The moment versus uncracked strain curves based on two different FE
modeling assumptions.

both the approaches to further establish the suitability of the modeling assumptions

incorporated in the parametric study. It should be noted that the three FE models for

the second assumption set had minor differences in their mesh in comparison to that

shown in Figure 5.5; including an initially blunt crack tip with 25 μm radius, and also

use of 20-node fully integrated hybrid continuum elements, C3D20H (note that use of

hybrid elements, or alternatively reduced integration elements, is necessary in LGC

analysis in order to avoid volumetric locking encountered at the near crack-tip ele-

ments which undergo very severe plastic straining), and also use of adaptive meshing

feature of ABAQUS for the near-tip elements in order to smooth the highly distorted

element shapes near the blunting crack tip.

Figure 5.6 shows the moment-strain curve based on the two sets of assumptions

discussed above. As can be seen a very good agreement is observed, indicating that

both assumption sets could capture the same global behavior (note that the results

for a/t = 0.1 and 0.3 were indistinguishable and are not presented in the figure).

Moreover, Figure 5.6 indicates that the SGC mesh using C3D8 elements is sufficiently

refined such that over-stiffness from shear locking is avoided.

Figures 5.7a-c show the normalized crack opening stress along the uncracked lig-

ament at the crack center for the three cases. As expected, the stresses from the two

approaches converge together after a distance of rσy/J > 1 ∼ 2 ahead of the crack
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Figure 5.7. Distribution of the crack opening stress along the uncracked ligament based
on two modeling approaches for three models (a) a/t = 0.1, (b) a/t = 0.3, and (c)

a/t = 0.5. Solid line indicates deformation plasticity and SGC while open circles indicate
incremental plasticity and LGC formulation.

tip, which is in concert with the results found in a significant number of available

literature on the 2D crack tip fields (e.g. O’Dowd and Shih [67]). In other words,

results of the LGC-based and SGC-based formulations would only differ in the near

vicinity of the crack tip, which is affected by crack tip blunting, presumably the frac-

ture process zone, in which the finite strain effects become important (rσy/J > 1 ∼ 2).

Such an agreement in the results, as observed in Figure 7, was also present between

other stress and strain components. Moreover, the J-integral values obtained from

the SGC analysis were slightly higher than the corresponding LGC solution, which

is reasonable, having in mind the equivalency of J-integral and energy release rate,

since including LGC effects generally increases the stiffness. Based on these observa-

tions, the use of J2-deformation plasticity alongside SGC (small strain) assumption is

deemed suitable for the purpose of evaluating the J-integral, with the overprediction

regarded as an implicit safety margin.

The pipe and crack geometry can be described by non-dimensional parameters

D/t, a/t and 2c/(πD), while the material’s mechanical properties considered here are

the yield strength σy and the strain hardening coefficient n(see Equation (5.3)), which

can be converted to the more practical parameter σy/σu. However, FE simulations

have shown that in the global plastic behavior regime (as relevant to strains occurred

during reeling), the fracture response parameter would not be affected by the yield
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Figure 5.8. Effect of variation of yield strength on the fracture response.

strength value [50]. Furthermore, a model was analyzed for a range of yield strengths

(400, 450, 500, 550 MPa), a range covering most of the commonly used grades of steel

(i.e. X60 to X80; see API-5L [34]). Figure 5.8 shows the fracture response for the

noted range, and the independence of the fracture response from the yield strength is

observed.

Following the above discussion, f1 and f2 in Equation (5.9) are therefore functions

of four parameters, namely: D/t, a/t, 2c/(πD) and σy/σu. Based on different per-

mutations of these parameters as per Table 5.1, 300 FE models (5 × 5× 4× 3) were

constructed (100 different geometries for each of the three strain hardening levels),

which are believed to cover all the practical situations relevant to reeled pipelines.

The material stress–strain curve was assumed to follow the Ramberg-Osgood model,

as per Equation (5.3). The following material properties were consistent in all models:

E = 200 GPa, σy = 450 MPa, α = 1 and ν = 0.3. In order to convert the hardening

index, n, to the more useful σy/σu ratio, the ultimate strength, σu, was defined as the

stress corresponding to 15% uniaxial strain (note: this value has been quoted to be

the lower limit of ultimate strain for offshore pipeline steels [4]). The corresponding

stress–strain curves are shown in Figure 5.9.

It is worth noting that pre-processing, processing and post-processing of these 300

FE models were automatically performed using an in-house developed Python-based
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Table 5.1. Range and sampling values of different geometric and material parameters.

Parameter Value

D/t 10, 15, 20, 25, 30

a/t 0.1, 0.2, 0.3, 0.4, 0.5

2c/(πD) 0.05, 0.1, 0.15, 0.2

σy/σu (n) 0.659 (10), 0.757 (15), 0.846 (25)

script developed for ABAQUS, which significantly expedited the study (noting the

complexity of the FE mesh, as shown in Figure 5.5).

At his juncture, it should be noted that most of the pipelines with relatively low

D/t used for reeling are seamless; as a result, their materials’ stress–strain curve may

exhibit a Lüders plateau. Intuitively one may conclude that the Ramberg-Osgood

model represented by Equation 5.3 cannot capture response of the material at high

strain ranges. However, our experience indicates that a Ramberg-Osgood fit of the

actual material stress–strain curve could still produce satisfactory predictions of the

fracture response (see also O’Dowd [71] for some results on 2D test specimens). A case

study was considered in ordere to establish the admissibility of the aforementioned

statement. In the case study, we considered a realistic stress–strain curve exhibiting

the Lüders plateau, which was approximated by three Ramberg-Osgood fits (see Fig-

ure 5.10a). In this case, the Lüders plateau was assumed to follow the elastic portion

of the curve and extends up to a strain of 1.5% (Kyriakides et al. [123] noted that the

termination of Lüders plateau usually occurs in the 1∼3% strain range). The strain

hardening portion of the curve (after the Lüders plateau) was assumed to follow a

power-law model, as per Equation 5.5. The three Ramberg-Osgood fits considered

here, as seen in Figure 5.10a, corresponded to: (i) the best fit to the post-yield strain

hardening portion of the stress–strain curve, (ii) a best fit, mainly conforming to the

elastic portion of the curve, and (iii) an average (median) fit.

The fracture response obtained from the FE analyses using the above mentioned

material modeling schemes are shown in Figure 5.10b for a typical case. As expected,

the post-yield fit agrees very well with the realistic curve at higher strain levels, while

the best fit to the elastic region shows a better agreement for lower strain levels.
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Figure 5.9. Uniaxial stress-strain curves for the material with three different strain
hardening capacities considered in the parametric FE study.

Also, the average fit predicts an intermediate response throughout the whole strain

range. In summary, although all the Ramberg-Osgood-based fits could more or less

reasonably capture the fracture response, the use of the elastic fit is recommended

here, since it results in a conservative estimation throughout the entire strain range.

Therefore, the use of Ramberg-Osgood material model (Equation (5.3)) for describing

the material response for the subsequent FE parametric study was deemed suitable.

5.5 Results and Discussion

The values of functions f1 and f2 were established based on the results of 300 FE

models analyzed in this study. The values are presented in Tables 5.2 and 5.3. For

each FE model, the value of the normalized fracture response (J/(σyt)) was extracted

at five strain levels (i.e. εunc = 1.5, 2, 2.5, 3 and 4%, respectively). The variation

of the J along the crack front was observed to be generally a function of geometric

configuration and material properties; however, the maximum value of the J always

occurred in the crack center, as depicted in Figure 5.11a and b. Figure 5.11a depicts

the distribution for four different crack geometries and it is seen that increase of crack
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Figure 5.10. (a) A realistic stress-strain curve exhibiting the Lüders plateau alongside
three Ramberg-Osgood fits and (b) Fracture response of a pipeline based on the four

different stress–strain curves.
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depth and crack length both result in steeper curves, i.e. the J integral decreases more

rapidly along the crack length. Figure 5.11b shows the distribution for four different

pipe geometries and material properties. Furthermore, the distribution shape did not

change as a function of uncracked strain. As observed, common to all the distributions

is the fact that the J is maximum at the crack center, which is in agreement results of

Parks andWang [124] for a cracked plate under bending, and thus justifying extracting

J at the crack center location.

A linear regression through these values provides the values of f1 and f2 coefficients

for each case. In conclusion, with the use of Equation (5.9), and the established values

of f1 and f2, listed in Tables 5.2 and 5.3, one could predict the fracture response, in

the practical strain range of 1.5% � εunc � 4%, with an accuracy of ±2% (error

is defined as |Jeq.9 − JFE| /JFE). The proposed method’s accuracy is therefore more

than the other currently available schemes thus rendering the methodology suitable

and effective for fracture analysis (ECA) of reeled pipelines.

Although the effect of each of the considered parameters, and also their interac-

tive effect on fracture response, J̄ = J/(σyt), can be assessed with Equation (5.9),

a series of representative plots from the FE results are presented next. The evolu-

tion of fracture response versus εunc is shown in Figure 5.12a-d, for a family of a/t,

D/t, 2c/(πD) and σy/σu values respectively. A linear trend is observed in all the

figures. The slope of the (J̄-εunc) line (i.e. the f1 function) is dependent on the spe-

cific parameter considered. Increasing any of the four parameters would increase the

fracture response; however, each parameter affects the slope in a different manner.

Figure 5.12a indicates that the rate of change of the J is strongly dependent on a/t.

Also, moving from shallow cracks (a/t of 0.1 and 0.2) to deep cracks (a/t of 0.3, 0.4

and 0.5), would significantly increase the rate of change of the J. However, unlike the

effect of a/t, the influence of D/t on the rate of change of the J is rather uniform (see

Figure 5.12b). Moreover, Figure 5.12c reveals that increasing 2c/(πD) from 0.05 to

0.1 would strongly affect the fracture response slope, while an increase from 0.15 to

0.2 would increase the slope in a more modest manner. Finally, Figure 5.12d exhibits

the pronounced influence of strain hardening, σy/σu, on the rate of change of the J ;

while increase of σy/σu from 0.659 to 0.757 does not seriously alter the slope of the
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Table 5.2. Variation of Arctan(f1) in degrees as a function of a/t, 2c/(πD), D/t and
σy/σu for use in Equation (5.9); linear interpolation permitted.

2c/(πD) = 0.05 2c/(πD) = 0.10 2c/(πD) = 0.15 2c/(πD) = 0.20

σy/σu: σy/σu: σy/σu: σy/σu:

0.659 0.757 0.846 0.659 0.757 0.846 0.659 0.757 0.846 0.659 0.757 0.846

a/t = 0.1

D/t:

10 0.418 0.390 0.375 0.450 0.424 0.411 0.460 0.435 0.423 0.461 0.436 0.425

15 0.435 0.407 0.389 0.463 0.436 0.421 0.468 0.441 0.426 0.467 0.440 0.425

20 0.445 0.415 0.397 0.468 0.439 0.422 0.470 0.441 0.424 0.469 0.439 0.422

25 0.450 0.420 0.401 0.470 0.440 0.422 0.472 0.441 0.422 0.470 0.439 0.420

30 0.454 0.422 0.402 0.472 0.441 0.422 0.473 0.441 0.421 0.472 0.440 0.419

a/t = 0.2

D/t:

10 0.998 0.962 0.958 1.284 1.283 1.339 1.431 1.467 1.590 1.487 1.553 1.735

15 1.152 1.123 1.131 1.463 1.496 1.606 1.573 1.656 1.864 1.591 1.701 1.977

20 1.249 1.230 1.253 1.539 1.600 1.760 1.611 1.721 1.994 1.605 1.735 2.072

25 1.306 1.296 1.333 1.566 1.648 1.851 1.610 1.738 2.057 1.592 1.732 2.106

30 1.340 1.340 1.390 1.573 1.670 1.907 1.598 1.734 2.086 1.574 1.717 2.113

a/t = 0.3

D/t:

10 1.647 1.641 1.708 2.681 2.845 3.229 3.420 3.836 4.704 3.902 4.602 6.066

15 2.200 2.241 2.384 3.545 3.920 4.634 4.410 5.214 6.743 4.936 6.214 8.801

20 2.605 2.696 2.915 4.109 4.681 5.701 5.020 6.195 8.397 5.519 7.307 10.985

25 2.906 3.049 3.340 4.490 5.245 6.566 5.400 6.906 9.768 5.848 8.071 12.801

30 3.127 3.318 3.676 4.760 5.690 7.314 5.643 7.447 10.955 6.034 8.628 14.374

a/t = 0.4

D/t:

10 2.130 2.181 2.357 4.286 4.599 5.367 6.168 7.002 8.885 7.813 9.473 12.917

15 3.233 3.335 3.627 6.172 6.790 8.214 8.687 10.350 13.834 10.774 13.892 20.047

20 4.107 4.259 4.657 7.608 8.640 10.832 10.549 13.151 18.340 12.888 17.528 26.251

25 4.783 4.994 5.514 8.709 10.195 13.197 11.960 15.498 22.337 14.438 20.550 31.544

30 5.311 5.604 6.265 9.596 11.536 15.335 13.072 17.524 25.905 15.629 23.121 36.060

a/t = 0.5

D/t:

10 2.422 2.539 2.832 5.477 6.037 7.422 8.673 10.177 13.430 12.059 14.917 19.992

15 3.927 4.124 4.640 8.464 9.638 12.308 13.332 16.278 21.981 18.188 23.322 31.051

20 5.193 5.483 6.242 11.126 13.055 17.123 17.351 21.877 29.814 23.240 30.545 40.085

25 6.262 6.682 7.717 13.456 16.189 21.624 20.742 26.791 36.498 27.346 36.505 47.136

30 7.195 7.772 9.101 15.490 19.031 25.733 23.626 31.046 42.060 30.743 41.403 52.620
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Table 5.3. Variation of f2 as a function of a/t, 2c/(πD), D/t and σy/σu for use in
Equation (5.9); linear interpolation permitted.

2c/(πD) = 0.05 2c/(πD) = 0.10 2c/(πD) = 0.15 2c/(πD) = 0.20

σy/σu: σy/σu: σy/σu: σy/σu:

0.659 0.757 0.846 0.659 0.757 0.846 0.659 0.757 0.846 0.659 0.757 0.846

a/t = 0.1

D/t:

10 -0.002 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001

15 -0.002 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001

20 -0.002 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001

25 -0.002 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001

30 -0.002 -0.001 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 -0.002 -0.001 -0.001

a/t = 0.2

D/t:

10 -0.005 -0.003 -0.002 -0.006 -0.004 -0.003 -0.007 -0.005 -0.004 -0.007 -0.006 -0.005

15 -0.005 -0.004 -0.002 -0.007 -0.005 -0.004 -0.008 -0.006 -0.005 -0.008 -0.006 -0.006

20 -0.006 -0.004 -0.003 -0.007 -0.006 -0.005 -0.008 -0.006 -0.006 -0.008 -0.006 -0.006

25 -0.006 -0.004 -0.003 -0.008 -0.006 -0.005 -0.008 -0.006 -0.006 -0.008 -0.006 -0.006

30 -0.006 -0.004 -0.003 -0.008 -0.006 -0.005 -0.008 -0.006 -0.006 -0.008 -0.006 -0.006

a/t = 0.3

D/t:

10 -0.009 -0.007 -0.006 -0.015 -0.012 -0.013 -0.020 -0.018 -0.022 -0.023 -0.024 -0.032

15 -0.012 -0.009 -0.007 -0.020 -0.018 -0.018 -0.026 -0.025 -0.030 -0.030 -0.032 -0.045

20 -0.014 -0.011 -0.009 -0.023 -0.021 -0.022 -0.030 -0.030 -0.036 -0.034 -0.038 -0.055

25 -0.015 -0.012 -0.010 -0.026 -0.024 -0.025 -0.032 -0.033 -0.042 -0.036 -0.042 -0.063

30 -0.016 -0.013 -0.011 -0.028 -0.026 -0.028 -0.034 -0.036 -0.046 -0.038 -0.045 -0.071

a/t = 0.4

D/t:

10 -0.012 -0.010 -0.009 -0.026 -0.024 -0.027 -0.040 -0.040 -0.052 -0.053 -0.058 -0.085

15 -0.019 -0.015 -0.014 -0.038 -0.034 -0.040 -0.055 -0.057 -0.078 -0.072 -0.085 -0.131

20 -0.023 -0.019 -0.017 -0.046 -0.043 -0.052 -0.066 -0.072 -0.102 -0.086 -0.107 -0.173

25 -0.027 -0.022 -0.019 -0.052 -0.051 -0.063 -0.075 -0.084 -0.124 -0.097 -0.126 -0.211

30 -0.030 -0.024 -0.021 -0.057 -0.057 -0.073 -0.083 -0.096 -0.144 -0.105 -0.144 -0.247

a/t = 0.5

D/t:

10 -0.014 -0.012 -0.012 -0.035 -0.034 -0.043 -0.058 -0.063 -0.088 -0.086 -0.102 -0.145

15 -0.023 -0.019 -0.019 -0.053 -0.053 -0.071 -0.089 -0.100 -0.143 -0.132 -0.161 -0.228

20 -0.030 -0.025 -0.024 -0.070 -0.073 -0.098 -0.117 -0.136 -0.197 -0.173 -0.218 -0.309

25 -0.036 -0.030 -0.030 -0.085 -0.090 -0.124 -0.142 -0.169 -0.249 -0.208 -0.271 -0.387

30 -0.041 -0.035 -0.035 -0.099 -0.107 -0.149 -0.165 -0.200 -0.299 -0.239 -0.320 -0.463
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Figure 5.11. Distribution of J along the crack length: (a) for various crack geometries
and (b) for various pipe geometries and material properties.
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Figure 5.12. Evolution of the fracture response versus uncracked strain for (a) various
a/t values, (b) various D/t values, (c) various 2c/(πD) values, and (d) various σyσu

values.

line, the increase from 0.757 to 0.846 would seriously affect the slope. This is justified

considering the fact that σy/σu of 1 (n → ∞ ) signifies a perfectly plastic material

in which the fracture response would be theoretically unbounded (upon reaching the

limit moment). This negative effect of the decreased strain hardening capacity (which

is a drawback of high grade steels (e.g. X80, X100, X120) on fracture response is man-

ifested in design codes (see for example DNV-OS-F101 [2], which limits σy/σu to 0.85

for reeled pipelines.)

The interactive effect of the parameters considered earlier on the fracture response

were investigated and the results are presented in Figure 5.13. Figure 5.13a shows

the interaction of a/t and D/t on fracture response at εunc, while keeping the other
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parameters at a specified value. The same data is presented twice, once as a function

of a/t for a family of D/t values (the solid line), and vice versa (see the dotted

symbolized line). Considering the solid lines, again, shallow cracks with a/t of 0.1

and 0.2 produce nearly the same fracture response values, while for deep cracks with

a/t of 0.3, 0.4 and 0.5, the fracture response strongly depends on a/t. As seen, the J̄

versus a/t curve is strongly nonlinear, with D/t influencing its variation. It is evident

that interaction of a/t and D/t strongly influences the fracture response, with their

combinations at large values of a/t > 0.3 and D/t > 20, leading to very high levels

of fracture response. Moving to the dotted lines, the J̄ versus D/t curve is more or

less linear for all values of a/t. Furthermore, the effect of D/t on fracture response

is most significant only for a/t of 0.4 and 0.5, and for shallow cracks with a/t of 0.1

and 0.2, J̄ is nearly constant for all values of D/t. This indicates that reeling of pipes

with relatively larger D/t would only be safely achievable so long as deep cracks are

detected and prevented.

Figure 5.13b shows the interaction of a/t and σy/σu on the fracture response.

The solid line exhibits the nonlinear shape of the J̄ versus a/t curve, with 2c/(πD)

significantly altering the variation of the curve for deeper cracks with a/t of 0.3, 0.4

and 0.5. The dotted line illustrates that crack length parameter, 2c/(πD), does not

drastically affect the shallow cracks with a/t of 0.1 and 0.2. Furthermore, a kink is

observed in the curve at 2c/(πD) of 0.1 for deep cracks with a/t of 0.4 and 0.5, which

showcases the strong interaction of deep and long cracks on magnifying J̄ .

The interaction of a/t and σy/σu is presented in Figure 5.13c, which is observed to

have less influence on the fracture response, in comparison to the interactions shown

in Figures 5.13a and b. It can be seen that the variation of σy/σu does not affect

the fracture response of shallow cracks with a/t of 0.1 and 0.2, and only affects the

deeper cracks. For the deeper cracks (i.e. with a/t of 0.4 and 0.5), a kink is observed

in the dotted lines at a σy/σu of 0.757, again demonstrating the detrimental influence

of a steel with low strain hardening, as a perfect plasticity limit of σy/σu = 1 is

approached.

The interactive effect of D/t and 2c/(πD) is shown in Figure 5.13d. The dotted

lines show a nearly linear variation of J̄ with respect to 2c/(πD) for the case of
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Figure 5.13. The interactive effect of pairs of parameters on the fracture response, while
keeping the other parameters constant: (a) fracture response as a function of a/t and D/t,
(b) fracture response as a function of a/t and 2c/(πD), (c) fracture response as a function

of a/t and σy/σu, and (d) fracture response as a function of D/t and 2c/(πD).
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a/t = 0.4 . On the contrary, the variation of J̄ as a function of D/t follows an

asymptotic trend. Furthermore, even for the lowest crack length with 2c/(πD) of

0.05, increasing the D/t will lead to higher values of fracture response.

It should be noted that visualization of the complete interaction of all the pa-

rameters is not possible, as it requires a 5-dimensional space; thus Figure 5.13 can

only give a sense of the general trends and interaction patterns. However, the use of

Equation (5.9) along with the values of the f1 and f2 functions presented in Tables 5.2

and 5.3, provide a quantitative means for assessing the influence of all the parameters

combined.

The presence of a crack affects the strain and stress in a region around it. A poten-

tial means of assessing the impact of a crack is through investigating the longitudinal

strain (ε11) distribution along the length of the pipe, which would have a constant

value for an ideally defect-free case subject to bending, as per Equations (5.1) and

(5.10). Figure 5.14a-d show this strain distribution along the pipe length as a func-

tion of each of the four investigated parameters, respectively, while keeping the other

parameters at a specified value. Inspection of the results presented in the four fig-

ures reveals that a/t has the most pronounced effect on the strain distribution (Figure

5.14a), followed by 2c/(πD) (Figure 5.14b), while the variation of D/t and σy/σu does

not seriously alter the strain distribution (see Figures 5.14c and d respectively). Fig-

ure 5.14a shows that for shallow cracks with a/t of 0.1 and 0.2, the longitudinal strain

reaches 80% of the uncracked strain value (εunc) at a very short distance (x/D � 0.05,

see schematic in Figure 5.14), while for deeper cracks (i.e. a/t of 0.3, 0.4 and 0.5),

the same percentile of strain occurs at approximately x/D � 0.5. Additionally, the

distribution trend for these deep cracks is somewhat different than that for shallow

cracks. Furthermore, the results also justify the validity of the assumption that one

could perform adequate and somewhat accurate finite element modeling of the system

by considering a half-length of pipe equal to twice its diameter (L = 2D).

In all the four Figures (i.e. Figures 5.14a-d), negative values of the strain are

observed in the vicinity of the crack location, as most evident in Figure 5.14a (i.e.

for a/t of 0.3, 0.4 and 0.5). This phenomenon can be explained by noting that the

crack causes a discontinuity in the stress flow through the pipe wall, which results



113

Figure 5.14. Distribution of the axial strain along the pipeline length ahead of the crack:
(a) for a family of a/t values, (b) for a family of 2c/(πD) values, (c) for a family of D/t

values, and (d) for a family of σy/σu values.

in unbalanced stresses at the vicinity of the crack, which in turn causes a secondary

bending of the pipe wall. Figure 5.15 shows the deformed shape of the pipe wall in the

vicinity of a fully displaced (opened) crack, in which the deformations and negative

strain caused by the secondary moment are illustrated. A free body diagram of the

pipe wall in the vicinity of a crack would show that the secondary moment would be

a linear function of crack depth, a. This is in accord with Figure 5.14a-d; as noted,

specifically, the negative strains in Figure 5.14a increase with increasing a/t, while in

Figure 5.14b-d which correspond to a constant value of a/t = 0.3, the negative strain

remains constant within each family of curves.

Tkaczyk et al. [51] compared their developed modified reference stress solution

(i.e. that based on the DNV approach with a modification function applied to Kast-

ner’s [41] limit load solution) to a number of other J-estimation approaches (namely



114

a

mirrored
image

Negative E11 strains due to sec
of the pipe wal

t

condary bending
l

Figure 5.15. Deformation of the pipe wall in vicinity of the crack showing the secondary
bending and resultant negative strains.

the DNV-RP-F108 [9] procedure (with Kastner’s limit load), and the strain-based

equations of Østby [50]). The comparison of their results, along with the results of

the proposed reference strain formulation (i.e. Equation (5.9), which also correspond

to 3D FE results with a maximum of 2% error), are presented in Figures 5.16a-b. The

results in Figure 5.16a correspond to a X65 grade steel idealized with a Ramberg-

Osgood fit (Equation (5.3)), while Figure 5.16b is for a X70 steel, whose stress–strain

curve includes a Lüders plateau, but its material response was only approximated with

a Ramberg-Osgood fit. As noted by Tkaczyk et al. [51], the DNV-RP-F108 [9] over-

predicts the J for some cracked geometries (see Figure 5.16a), and under-predicts the

J in some other cases (see Figure 5.16b). Noting that the midrange fracture toughness

for both steel grades is Jc = 400 N/mm [51] it is evident that the final outcome of

the ECA is highly sensitive to the value of J , rendering an accurate prediction of the

J as highly crucial, hence, desirable. The agreement between the proposed reference

strain formulation (Equation (5.9)), which also correspond to 3D FE results with a

maximum of 2% error) and results of Tkaczyk et al. [51] is reasonably good for the
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Figure 5.16. Comparison of various J-estimation schemes (from Tkaczyk et al. [51]) with
the results obtained from Equation (5.9) for (a) X65 steel idealized with Ramberg-Osgoods
model and (b) X70 steel with a Lüders plateau, approximated with a Ramberg-Osgood fit.

depicted strain range; however, larger discrepancies could be anticipated as higher val-

ues of strain are approached. The formulation of Tkaczyk et al. [51] are based on FE

models in which the pipes are subjected to tensile loading, based on the postulation

that the fracture response of a pipe under tension would be similar, or slightly higher

than that of a pipe under bending, following the findings of Østby et al. [47]. This

assumption might be the source of the mentioned accumulated discrepancy between

the two approaches at higher strain values.

5.6 Summary and Conclusions

In the current study, a J-estimation scheme was developed for assessing the integrity

of reeled pipelines. The proposed approach is an extension and modification of the

reference strain method proposed by Linkens et al. [37], which itself was based on the

earlier reference stress method of Ainsworth [36] and the EPRI scheme of Kumar et

al. [35]. The developed reference strain formulation (Equation (5.9) in this paper)

takes advantage of the displacement controlled loading nature which occurs during

reeling, and also the resulting high strain levels, often leading to a fracture response
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of the pipe in the plastic regime of its material. The developed formulation predicts

the fracture response of the pipe (per non-dimensionalization of the J-integral) as a

linear function of the axial strain in the pipe at its uncracked state (εunc). The slope

and intercept of the linear function relate to the geometry and material properties of

the pipe. A series of 300 3D-FE models were used to calibrate the equation for range

of pipelines, crack geometries and also material properties, which are believed to cover

most of the practical combinations relevant to reeled pipelines. The assumptions of

small geometry changes, SGC, and deformation plasticity were adopted in developing

the proposed equation in favor of attaining lower computational costs. The admis-

sibility of these assumptions was validated by the use of more complex FE models.

The developed formulation predicts the fracture response with a maximum error of

2% for a strain range of 1.5% � εunc � 4% with respect to the FE results, which is

believed to be more accurate than the currently used assessment approaches. The

most important summary and conclusions of this study are as follows:

• The underlying assumptions of the reference strain method of Linkens et al. [37]

were reviewed and proved to be justified for strain levels relevant to reeled

pipelines.

• In order to justify the use of deformation plasticity alongside the Small Geome-

try Change (SGC) assumption for the parametric FE models, three typical cases

were also modeled using the incremental plasticity theory and Large Geometry

Change (LGC) formulations. Comparison of the moment-strain results revealed

that the analysis based on the former set of assumptions could accurately cap-

ture the global behavior of cracked reeled pipelines. As for the local behavior,

the crack tip stress and strain fields obtained based on the two approaches were

in agreement with each other, except for the very near vicinity of the crack

tip influenced by crack tip blunting. Moreover, the former approach resulted

in slightly higher J values. Based on the observed consistency, use of the de-

formation plasticity with SGC assumption was justified for further use in the

parametric study.

• In concert with the observations of Østby [50], it was observed that the variations



117

in the yield strength would only marginally affect the fracture response in the

plastic regime, thus justifying the representation of the material behaviour with

a single parameter, namely the strain hardening capacity.

• Although the pipe and crack geometries and also material properties do influence

the distribution shape of the J integral along the crack length, it was observed

that the maxima would always occur at the crack center. Based on this, J

values extracted from this location were used to calibrate the reference strain

formulation of Equation (5.9).

• The maximum error of less than 2% obtained through the use of the proposed

relation (i.e. Equation (5.9)), clearly indicates that indeed the fracture response

of reeled pipelines in the plastic regime is a linear function of uncracked strain

for the practical wide range of pipe/crack geometry and the material properties

considered herein. This also justifies the use of the total uncracked strain as the

most suitable parameter for describing fracture response of reeled pipelines.

• The parametric studies presented here (Figures 5.12 and 5.13) illustrated the

influence of variation of various parameters on the fracture response. It was

shown, however that the crack depth affected the fracture response most notably.

In addition, the behavior of shallow cracks with a/t of 0.1 and 0.2 was markedly

different than that of deeper cracks with a/t of 0.3, 0.4 and 0.5. Also variations of

D/t, crack length (2c/(πD)) and strain hardening (σy/σu) did not significantly

affect the fracture response of shallow cracks. On the other hand, they did

strongly interact with a/t in deeply cracked pipes. Furthermore, it was also

observed that when the martial’s response approached perfect plasticity (i.e. a

marked reduction in the strain hardening capacity), it significantly influenced

the fracture response.

• It was observed that crack depth (a/t), strongly influenced the uniform distri-

bution of the longitudinal strain along the pipe. For the cases considered, the

uniform strain distribution could be observed at a short distance away from

shallow cracks (� 0.05D for a typical case), while for the case of deeper cracks,

this distance was observed to be significantly longer (� 0.5D). Moreover, the
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finite element results illustrated that the pipe wall in the vicinity of the crack

would undergo a secondary bending, in proportion to the crack depth.

• A note on the practical limitations of the developed reference strain J-estimation

equation is in order. At the heart of the reference strain method is the as-

sumption of negigibility of the second term of the RHS of Equation (5.7). For

loading ranges before general yielding of the pipe, this assumption would be

erroneous, and thus, Equation (5.9) would not be applicable. For robust use of

the developed Equation (5.7), its validity range should be strictly kept in mind

(1.5% � εunc � 4%). For other situations, use of the reference stress approach

(such as that of the BS7910 [8]) is recommended†.

• Finally, it is noted that welding residual stresses/strains were not explicitly

included in the derivation and calibration of Equation (5.9). Still it is believed

that these effects could be foreseen in the predicted J-integral value by adding

known empirical values of welding residual strains (such as those recommended

by BS7910 [8]) to the value of uncracked bending strain (εunc) for use in Equation

(5.9)‡.
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6.1 Abstract

The reeling technique presents an economical pipeline installation method for offshore

oil and gas applications, especially for thick-wall (low D/t) pipelines. During reeling,

the pipe is subjected to large plastic bending strains, up to 3%. In thick-wall pipes, the

tensile fracture response of the pipeline/girth weld would normally be the governing

limit state. Seamless linepipes are preferred for the reeling applications, in which the

Lüders plateau is often exhibited in materials stress–strain response.

In this paper, the fracture response of such pipelines is investigated from a con-

tinuum perspective, using a nonlinear 3D Finite Element analysis. A typical pipeline

with a hypothetical defect is considered, with the material having a range of Lüders

strains and strain hardening indices. Results show that the Lüders plateau modifies

the shape of the Moment-Strain response curves of the pipe, as well as the J-integral

fracture response. It is observed that the response is always bounded between two

limiting material models which are: (i) the elastic-perfectly plastic stress–strain re-

sponse, and (ii) the conventional elastic-“strain hardening” plasticity response, with-

out a Lüders plateau. Also, the Lüders plateau was observed to decrease the crack

opening stress ahead of the crack tip, and thus, the crack tip constraint. On the other

hand, presence of a Lüders plateau elevates the near-tip plastic strain and stress tri-

axiality fields, thus promoting ductile fracture. A micro mechanical damage integral

119
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model coupled with a Modified Boundary Layer analysis was incorporated to study

this aspect. Based on the findings of this study, it is believed that the presence of

Lüders plateau could significantly alter the fracture response and toughness of pipes

subject to relatively high strains.

Keywords: Lüders plateau, Fracture, Pipelines, Plastic Bending, Reeling

6.2 Introduction

The reeling installation method for offshore pipelines consists of girth welding of 12

m long line pipes to form a several kilometer long pipe string in an onshore facility

and thus significantly lowering the offshore construction costs. These pipe strings

are reeled over drums and loaded onto a sea going vessel, which lays the pipe on the

sea bed by gradually unreeling it from the drum. The process involves severe plastic

straining of the material, up to 3%; thus, only thick wall pipelines are regarded as

reelable. Seamless line pipe are favored for reeling, however, in these steel grades

the elastic part of the stress–strain curve is followed by a perfectly plastic response,

dubbed as the Lüders plateau, and only upon the termination of this plateau does the

strain hardening portion begin (see Figure 6.1 as a sample). Moreover, the governing

failure mode in reeled pipelines would be mainly due to fracture of the girth weld,

which needs to be assessed to ensure their integrity.

A fracture mechanics assessment of pipelines utilized for offshore oil and gas appli-

cations is a common approach nowadays. Such an assessment bypasses the traditional

workmanship approach in which an empirical size criterion is used to assess the severity

of defects and flaws caused by weld imperfections. Guidelines for fracture mechanics

assessment of pipelines are well documented in several design codes, e.g. [2, 9]. Such

assessments are based on comparing the crack driving force in the structure with the

fracture toughness of the material obtained from standard laboratory tests. In the

elastic-plastic domain which is of interest in this study, the appropriate measure for

the crack driving force and toughness are either of the J-integral (J) or the Crack Tip

Opening Displacement (δt) [27]. A noteworthy approach to estimate the crack driv-

ing force is that of the Electric Power Research Institute (EPRI) method [35], which

is suitable for idealized stress–strain responses, but does not consider the Lüders
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plateau. Based on some simplifying assumptions, the Reference Stress Method was

also developed that could accommodate arbitrary material responses [36], which forms

the backbone of current code assessment schemes such as that of Det Norske Veri-

tas (DNV) [9]. However a detailed investigation, accounting explicitly for the effects

of Lüders plateau could not be achieved by the two mentioned estimation schemes.

Based on this fact, nonlinear 3D FE models are used in this study to investigate the

fracture response and toughness of reeled pipelines in which the material exhibits

a Lüders plateau. In this regard, moment-strain curves and evolution paths of the

J-integral, the crack tip constraint levels, along with the J-δt relationship are dis-

cussed. Additionally, a two-parameter (plastic strain - stress triaxiality) description

of the ductile damage phenomena is incorporated to illustrate the effect of the Lüders

plateau on fracture toughness. The ABAQUS 6.8 software [10], equipped with Python

scripts (developed in-house) to alleviate the pre and post processing stages, were used

throughout this study.

6.3 Material Model

In order to investigate the effect of Lüders plateau, the following uniaxial true stress-

strain response is considered:

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
σ/E for ε � εy,

σy for εy < ε � εL,

σy [(ε−ΔεL)/εy]
1/n for εL < ε.

(6.1)

The Lüders termination strain, εL and the strain hardening index, n, govern the

post-yield shape of the stress-strain curve. E and σy are selected as 200 GPa and

400 MPa respectively. Moreover, variations in σy affect the fracture response at high

plastic strains only slightly as shown in Ref. [125], and thus a single E/σy = 500

is used throughout this study. εL is between 1% and 3% for usual offshore pipeline

steel grades [123]. Three values of εL = 1, 1.75 and 2.5% have been considered. Two

strain-hardening indices of n = 10 and 25 have been considered, which are roughly

equivalent to yield ratios of σy/σu = 0.65 and 0.85 (assuming an ultimate strain of

15%, which is the quoted minimum [4]). It is believed that the assumed material
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Figure 6.1. The family of uniaxial true stress-strain curves considered for the high strain
hardening (n = 10) case.

model and parameters are representative of realistic pipeline steels. Furthermore, two

limiting situations are considered: (i) the elastic- strain hardening plasticity material

(ΔεL = 0) and (ii) the perfectly plastic material (n → ∞). Figure 6.1 shows the

family of stress-strain curves for the high hardening material with n = 10. The 3D

constitutive equation for FE analysis are based on the rate-independent associated

J2 incremental plasticity theory with the Mises plastic potential and isotropic strain

hardening as implemented in ABAQUS [10]. Large Geometry Change (LGC) effects

were accounted for in all analyses, such that a close investigation of the crack tip

blunting zone is possible. ABAQUS utilizes an updated Lagrangian framework in

order to formulate the incremental equations of equilibrium. For treatment of elasto-

plasticity with consideration of LGC effects, ABAQUS uses the rate of deformation

as the strain measure, alongside with its work conjugate, the Jaumann rate of the

Kirchoff stress as the appropriate stress measure [10]. However, the stress and strains

presented here are the Cauchy (true) stress and logarithmic strains.
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Figure 6.2. Schematic of the cracked pipeline cross section.

6.4 Finite Element Modeling

A typical thick-wall pipeline is considered with an external surface breaking part-

through circumferential crack at the 12 O’clock position, which represents a hypo-

thetical defect or flaw present in the girth weld. The crack is in the shape of a canoe,

with its fillet radius equal to the crack depth. A schematic of the cracked cross section

is shown in Figure 6.2. Geometric characteristics are as follows:

D = 323.9 mm

t = 23.8 mm (D/t = 13.6)

a = 3.57 mm (a/t = 0.15)

2c = 50 mm (2c/(πD) = 0.05)

It should be noted that the flaw sizes of interest in girth welded pipelines are

typically 2 ∼ 6 mm in height, as they are governed by the weld pass height [9].

Due to symmetry, a quarter FE model is considered with a length of L = 2D,

which is known to be sufficiently long to capture the discontinuity effects caused by the

crack [47, 125]. The pipeline end is constrained to a master node through a set of Multi

Point Constraints. Appropriate rotation is imposed on the master node, causing the

pipe to bend up to a level inducing a bending strain of εg = 3% on the outermost pipe

fiber. This loading level covers even the extreme plastic bending that occurs during
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reeling. Based on Euler’s bending theory, the rotation-strain relationship reads:

Rx =
2εgL

D
(6.2)

The underlying assumption of Equation (6.2) is that plane sections remain plane

after deformation, which would not be precisely correct as the plastic deformation

increases. However, in accord with the literature [119], it has been also observed here

that an average of the tensile and compressive bending strains along the pipe length

is in agreement with εg calculated from Equation (6.2), even up to extreme plastic

bending.

ABAQUS’s C3D8R [10], an isoparametric 8-node continuum element with reduced

integration and hour-glass control is used to model the pipe. Choice of the reduced

integration technique would be mandatory to avoid the volumetric locking associated

with the incompressible plastic flow, especially near the blunting crack tip which

undergo severe plastic deformations. The mesh density becomes finer toward the

crack, forming a focused spider web mesh surrounding the crack tip. The FE mesh

along with boundary conditions and a close-up of the focused mesh of the crack tip

is shown in Figure 6.31. A total of 31’000 elements were used to construct each FE

model. Moreover, the LGC effects were accounted for, so that minute details of the

near-tip fields could be captured. An initial notch radius of 0.01×a was assigned to the

crack tip, in order to overcome the convergence difficulties due to finite strains of the

blunting near-tip region. The domain integral method as implemented in ABAQUS

was used to extract the values of J-integral [10].

6.5 Results and Discussion

A practical means for characterizing the response of pipes subject to large plastic

deformations is the investigation of their moment-strain curves, as depicted in Fig-

ure 6.4. ABAQUS reports the moment by summing up the nodal contributions on

the pipeline end plane (i.e. in reference to coordinates system shown in Figure 6.3,

M = 2
∑

i Fiyi, where Fi is the axial force of the ith node on the plane, and yi is its

1The presented Figure 6.3 is slightly more detailed than that in the published article.
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Figure 6.3. The pipeline FE mesh with the applied boundary conditions, along with
close-ups of the focused mesh. The initial blunt crack tip and the local r-θ-s coordinates

are shown.
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y-coordinate). The figure is constructed for the family of εL along with the two lim-

iting case material models. As can be seen, in all cases, the ΔεL = 0 and the n→∞
material models, bound the response of the Lüders family. Moreover, for the family

of εL, each curve follows the path of the perfectly-plastic material initially; however,

it deviates from this path at higher strains. This deviation indicates the termination

of the Lüders plateau and initiation of the strain hardening regime. Even though the

axial strain in each fiber is a function of the distance measured from the neutral axis,

it is worth noting that the branching takes place when εg becomes approximately

equal to εL. Figure 6.4 shows that even for the smallest εL of 1%, the response is

completely different from the ΔL = 0 limit case. Moreover, the path for the εL = 2.5%

curve is pretty much coincident with that of the perfectly plastic material. The effect

of Lüders plateau is less pronounced for the low hardening case of n = 25 material

(Figure 6.4b).

Keeping in mind that J can conveniently characterize the fracture response in

the elastic-plastic regime, the evolution of J is illustrated in Figure 6.5. Looking at

the moment-based representation in Figure 6.5a, it is seen that the Lüders family are

bounded between the curves corresponding to the ΔεL = 0 and the n→∞ limits. The

similarity in the trends observed in Figure 6.5a with 6.4a can be described by noting

that the plastic part of J is a function of M (n+1), which is based on a deformation

plasticity theory approximation [35]. The fracture response for the perfectly plastic

material rises swiftly after the limit moment is reached at M/Mp � 0.8. Indeed this

sudden increase should be avoided and thus design codes have placed a limit on the

yield ratio; DNV [2] limits σy/σu to 0.85 for reeling applications. However, Figure

6.5a shows that for materials with a Lüders plateau, the fracture response follows

that of the perfectly plastic material up to a certain limit and then branches off.

This is certainly a disadvantage and should be carefully considered in Load Controlled

situations. Figure 6.5b shows the strain-based evolution of J . While a linear evolution

of J is observed for the ΔεL = 0 case, this is not the case for the curves corresponding

to the family of εL. However, for strain-based situations, a sudden rise of J is not

evident. Although not shown, the low hardening material with n = 25 shows the

same behavioral pattern.
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Figure 6.4. Moment-strain curves for the family of Lüders termination strains along with
the two limiting cases; (a) for a material with n = 10 and (b) for n = 25.

It is well known that an additional constraint parameter, such as Q, is required

to characterize the crack tip stress and strain fields, and subsequently, the fracture

behavior [56, 68]. Thus, the crack driving force (J or δt) along with a constraint

parameter (Q), are utilized for a two parameter fracture assessment. This would in-

dicate that the laboratory specimen used for fracture toughness testing should have a

similar crack tip constraint in comparison with the structure which is being assessed.

In general, geometries with a low constraint have higher toughness and their frac-

ture mode is usually ductile tearing, while the high constraint geometries have lower
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Figure 6.5. Evolution of the normalized J-integral extracted at crack center (s/c = 0),
for the material with n = 10 and the family of εL; (a) as a function of applied moment

and (b) as a function of applied global strain εg.

toughness and undergo brittle cleavage fracture [56, 68]. The Q parameter is defined

as the normalized difference between the near tip stress field with that of a reference

distribution corresponding to a high constraint situation such as the plane strain HRR

field (due to Hutchinson [29], Rice and Rosengren [30]). An operational definition of

Q reads [68]:

Q =
σ11 − (σ11)HRR

σy

(6.3)
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where σ11 is the crack opening stress component extracted at r = 2.0× J/σy from

the crack tip. The HRR stress field, which assumes a power law uniaxial stress-strain

response and negligible elastic strains (i.e. ε/εy = α(σ/σy)
n) is represented by [27, 29]:

(σij)HRR = σy

(
J

ασyεyInr

) 1
n+1

σ̂ij(θ, n) (6.4)

where the dimensionless constant In and σ̂ij(θ-variation functions ) are tabulated in

Ref. [31]. While the J-Q approach was originally for 2D geometries, heuristic argu-

ments of O’Dowd [71] and experimental evidence of Faleskog [74] justify its application

to 3D cracks. For such applications, an average definition of Q integrated along the

crack length (s-coordinate in Figure 6.2 and 6.3) is convenient:

Qave =
1

sb − sa

∫ sb

sa

Q(s) ds at θ = 0, r = 2× Jave/σy (6.5)

where Jave is an average of J evaluated along the crack length (defined similar to

Qave), and the integration is carried over the full crack length minus the fillet region

(sa = 0 and sb = c − a). Moreover, Q(s) is extracted from the near tip stress field

using Equation (6.3) along the crack length.

Figure 6.6 shows the evolution of an average crack tip constraint, Qave, as a func-

tion of the applied global strain for the pipe with the family of εL and for the material

with n = 10. The general trend shows that Qave attains a maxima, and it decreases

steadily after the initial elastic regime is bypassed. Furthermore, a linear correlation

is observed between Qave and εg in the plastic regime, which holds true for all values

of the Lüders strains. The Qave-εg trajectories for higher values of εL fall successively

below the ΔεL = 0 case. The case with the lowest Lüders strain, εL = 1%, has very

close average constraint compared to the material with no-Lüders plateau. However,

the trajectories for larger values of Lüders strain, εL = 1.75% and 2.5%, fall markedly

below the ΔεL = 0 case. The drop in Qave is more pronounced at lower loadings (at

εg � 0.01), and upon further deformation (at εg � 0.03) the trajectories congregate.

Figure 6.7 shows the distribution of the normalized crack opening stress along the

uncracked ligament at the crack center (s/c = 0). The distances are normalized by

the appropriate length scale of J/σy, such that the admissible comparison is made

possible. The maximum stress levels are capped due to finite strains in the blunting
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Figure 6.6. Variation of Qave as a function of εg for the family of εL (material with
n = 10).

zone, that is, the stresses do not increase to infinity at the crack tip. This blunting

zone is approximately bounded by r/(J/σy) = 1, which is presumably the fracture

process zone. In this zone, the stress distribution for all values of εL closely coincide

with that of ΔεL = 0 case. This can be explained by noting that this region undergoes

very high plastic strains due to the blunting deformations (e.g. εp > 0.1 ), and for such

high strain values, the εL family of stress-strain curves converge to the ΔεL = 0 case,

as observed in Figure 6.1. Further beyond this finite strain zone, the stress profiles for

the εL family uniformly decrease with respect to the ΔεL = 0 case. For the material

with the largest Lüders plateau of εL = 2.5%, the stress profile approaches midway

between the perfectly plastic and no-Lüders case. As manifested in Figure 6.7b, for

the material with lower strain hardening, n = 25, the divergence from the ΔεL = 0

profile becomes less noticeable.

The distribution of the crack opening stress along the crack front is depicted in

Figure 6.8 (the s-coordinate is defined in Figure 6.2 and 6.3), which indicates that the

drop in the stress profiles caused by the Lüders plateau continues along nearly the

whole crack length, and the minor shape changes at s/c � 0.8 are due to the crack

profile reaching the exterior pipe surface. The results illustrated in Figure 6.7a and
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Figure 6.7. Distribution of the crack opening stress along the uncracked ligament
extracted at the crack center, s/c = 0, for (a) materials with n = 10 and (b) n = 25.

6.8, provides the 3D distribution of the crack opening stress for the n = 10 case.

In the absence of a Lüders plateau, the crack tip opening displacement, δt, would

have a unique relationship with J , represented by δt = d × J/σy, thus facilitating

another equally applicable fracture response parameter. In the elastic-plastic regime,

d is independent of the applied load and depends weakly on the material properties

and rather strongly on the near tip stress triaxiality, generally referred to as the

constraint [56, 68]. Figure 6.9 shows a plot of the crack opening parameter, d, versus

εg for the n = 10 material. As seen, d increases steadily as a function of εL; that is, at
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Figure 6.8. Distribution of the crack opening stress along the crack front extracted at
r/(J/σy) = 5 for the family of εL and material with n = 10.

a specific value of loading (in terms of εg or J), the Lüders plateau would cause larger

values of δt. Furthermore, considering the ΔεL = 0 curve, it is seen that d reaches a

constant value after the initial elastic response is exceeded and becomes independent

of the load. However, for the family of εL, a slight load dependence is observed. The

trends are the same for the material with n = 25; however the effect of Lüders plateau

for the low hardening material is less pronounced.

The large plastic deformations due to blunting of the crack tip cause the appear-

ance of the so-called Stretch Zone, with its size on the order of CTOD. Thus, the

stretch zone width (SZW ) could be approximated by [74]:

SZW ∝ δt = d
J

σy

(6.6)

Regarding the crack tip deformation characteristics, it is interesting to assess the

effect of Lüders strain on the Stretch Zone. It has been seen that for sufficiently high

load levels, an increase in εL results in a decrease in J (see Figure 6.5), and this would

consequently lead to a decrease in SZW as per Equation (6.6). On the contrary, as

illustrated in Figure 6.9, an increase in εL raises the opening coefficient d. Thus,

the Lüders strain affects the SZW in two opposing manners. The equivalent plastic
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Figure 6.9. Effect of the Luders plateau on the crack opening parameter, d = δt/(J/σy),
for the n = 10 material.

strain εp extracted along the deformed crack surface path (see schematic in Figure

6.10) would be indicative of the stretch zone characteristics [74]. Figure 6.10 shows

such a plot for the material with n = 10 and the family of εL. The effect of εL on

SZW is not straight forward (as supported by the above discussion). At increasing

values of Lüders strain, εp is lower than the ΔεL = 0 case up to y∗ � 0.25 × δt,

however, after this point and moving away from the crack tip, εp is greater than the

ΔεL = 0 case. For the material with n = 25, the same trends are observed, however,

the distributions for the family of εL are more closely packed. Based on these, it is

expected that the Lüders plateau would not significantly alter the appearance of the

stretched zone.

As noted previously, the defects caused by welding imperfections have a rather

small height. As a result, even while the pipe string is under global bending, the

uncracked ligament is mainly under tension, thus providing low crack tip constraint

(as manifested by the negative values of Qave in Figure 6.6) thereby causing ductile

fracture to become the prone failure mode. Moreover, code restrictions [2] imposed on

specifying sufficient ductility and strain hardening capacity of both the line pipe steel

and weld consumables further ensures a ductile fracture mode, as has been verified
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Figure 6.10. Distribution of εp along the crack surface path for the n = 10 material and
the family of εL, extracted at the crack center (s/c = 0) at εg = 3%.

in several full scale tests [46]. It is well known that the ductile damage phenomena

is initiated by void nucleation, void growth, strain localization between the voids,

thereby leading to necking, and finally void coalescence, which causes the final ductile

fracture. The two main parameters controlling the described phenomena are the stress

triaxiality and equivalent plastic strain in the near crack tip region [16]. In order to

assess the effect of εL on ductile damage, the triaxility versus εp diagram for the

n = 10 material is shown in Figure 6.11. The ratio of the mean stress, σm = 1/3σkk, to

the equivalent Mises stress, σe = (1.5×S : S)0.5, is incorporated in the figure, which is

a representative measure of stress triaxiality [58]. The general trend is that triaxiality

would be high at the beginning of loading; however, with the increase of loading it

decreases, while εp increases steadily. It is evident that the presence of the Lüders

plateau and the increase of εL substantially elevate and amplify the plastic strain-

triaxiality curve. Though not presented, the same effect, but only less pronounced,

occurs for the material with n = 25. As a result, it is believed that the presence of a

Lüders plateau will promote ductile damage. Figure 6.12 shows the distribution of εp

in the deformed near tip region at the crack center for two cases, namely, the ΔεL = 0
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Figure 6.11. Two parameter diagram of εp versus σm/σe for the family of εL and for the
material with n = 10. Results extracted at crack center s/c = 0 and from the uncracked

ligament at r = 2.5× J/σy.

case and the εL = 2.5% cases. The plastic strains in the latter case are noticeably

higher, which support the observations made in the previous statement.

The effect of the Lüders plateau on promoting ductile damage, which was explained

qualitatively via Figures 6.11 and 6.12, can be further quantified by incorporating a

simplistic micro mechanical damage model developed by Anderson et al. [83]. The

growth rate of a single spherical void in an infinite continuum with rigid-perfectly

plastic material was shown by Rice and Tracey [82] to obey a semi-empirical equation,

which is represented by:

ln

(
R̄

R0

)
= 0.283

∫ εp

0

exp

(
1.5σm

σy

)
dεp (6.7)

where R̄ is the average radius of the void (since the spherical void deforms to an

ellipsoid shape, hence the average radius) and R0 is the initial void radius. Anderson

et al. [83] hypothesized that ductile failure occurs upon the void radius reaching a

critical value, and subsequently used Equation (6.7) to form a local damage integral

(noting that for strain hardening material, the equivalent Mises stress σe should be
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Figure 6.12. Deformed near tip region at the crack center, s/c = 0, for two cases
(ΔεL = 0 and εL = 2.5%, material with n = 10), showing contours of εp.

used in Equation (6.7) instead of σy):

ΦD =

∫ εp

0

exp

(
1.5σm

σe

)
dεp (6.8)

Following the work of Anderson et al. [83], and assuming that ductile crack growth

is initiated when ΦD = ΦD,c, one can consider the distribution of ΦD ahead of the crack

tip for two different cases at the same load level, namely, one with ΔεL = 0 and one

with a Lüders plateau. The quotient of the damage integral, ΦD, for these two cases

would represent the ductile initiation toughness ratio. The concept is schematically

illustrated in Figure 6.13: if one denotes the toughness of the no-Lüders material with

J0, and that of a material with a Lüders plateau by Jcrit, referring to Figure 6.13, the

respective toughness ratio could be quantified by Jcrit/J0 = x1/x2.

The 3D FE pipe models discussed earlier covered strain hardening indices of n = 10

and 25, and three Lüders strains (εL = 1, 1.75 and 2.5%). Noting that the above men-

tioned micro mechanical approach is based on the near tip stress and strain fields, in

lieu of the computationally expensive 3D pipe models, plane strain Modified Bound-

ary Layer (MBL) analysis could be considered as a more viable and cost-effective
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Figure 6.13. Schematic illustration of the damage integral approach (after Anderson et
al. [83]), utilized to assess the Lüders plateau effect on material toughness.

alternative. The MBL analysis produces very similar near-tip information, and could

be conveniently carried out for a wide range of hardening indices and Lüders strains.

In this case, the MBL model would consist of a circular disk with a radius of R, loaded

at its boundary with the first two terms of the Williams linear elastic singularity so-

lution [26]. The displacements corresponding to these tractions are applied at the

boundary of the MBL model, which read:

ux =
KI

E
(1 + ν)

√
r

2π
cos (θ/2)[χ− cos θ] + (1− ν2)

T

E
x

uy =
KI

E
(1 + ν)

√
r

2π
sin (θ/2)[χ− cos θ]− ν(1 + ν)

T

E
y (6.9)

where χ = 3− 4ν under plain strain conditions.

The so-called T -stress in Equation (6.9) corresponds to the near tip constraint,

and controls the size and orientation of the plastic zone in addition to the near tip

triaxiality levels. Here, a value of T/σy = −1.0 is selected, which results in similar

constraint levels to that of the considered pipelines [126]. Small Scale Yielding (SSY)

conditions are enforced by limiting the plastic zone size (defined as the zone engulfed

by the contour corresponding to σe/σy = 1) to 0.15 × R. As a result, application of

Equation (6.9) would be justified.
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Figure 6.14. FE mesh of the MBL model along with the relevant coordinate systems and
BCs (Left); Crack tip mesh details showing the initial notch radius (Right).

The CPE4H element of ABAQUS [10], a plane strain 4-node fully integrated hy-

brid element, was used for the model. A total of 1200 elements were used, forming

an exponentially biased mesh towards the crack tip, with an initial notch radius of

0.02 × JBC/σy, thus enabling the finite straining of the near tip due to blunting de-

formations. The radial bias ratio was approximately 5 × 105. A schematic of the

symmetric MBL model is shown in Figure 6.14. Noting that SSY conditions prevail,

J is uniquely related to KI , (i.e. JBC = (1− ν2)×K2
I /E). Although the numerically

calculated values of J do converge to the theoretical JBC , the theoretical value was

utilized in the analysis for the sake of consistency.

The MBL analysis was carried out for a wide range of hardening indices: n = 10 ∼ 25,

in increments of 5. For each hardening index, the no-Lüders case, ΔεL = 0, along

with 9 different Lüders strain values (εL = 1% ∼ 3%, in increments of 0.25%) were

considered. The local damage integral, ΦD, was evaluated as per equation (6.8), along

the θ = π/6 ray. However, the lower integration limit was considered as when the

crack tip had blunted about 3 times its initial notch radius (i.e. ΦD is evaluated after

δt > 3× 0.02× J/σy). This ensured that the near tip fields would be independent of

the initial notch radius [67]. The value of x1 (with reference to Figure 6.13) was se-

lected as 1.0×J/σy and x2 for each case was extracted to establish the corresponding

toughness ratio. Extraction of the results at such close vicinity of crack tip is justified

by noting that LGC effects were accounted for in the MBL analysis and thus, minute
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details of the finite strain blunting zone were available. More details on the MBL

modeling technique can be found elsewhere [56, 67, 126].

Figure 6.15 shows the variation in the toughness ratio, Jcrit/J0, as a function of

εL for different strain hardening indices. For all values of n, the toughness ratio

decreases steadily as a function of Lüders strain. The effect of the Lüders plateau

gets more pronounced for lower values of n (higher strain hardening capacity), while

on the other hand, the toughness ratio vs εL profiles converge together for increasing

values of n. Indeed, the scattered data points for the three low hardening materials

(i.e. n = 15, 20 and 25) were very close together; and therefore, only the results for

the n = 15 case is shown in the figure. This effect could be described by noting that

the stress-strain curves for n = 15, 20 and 25 are actually quite similar, which could

be understood by considering their very close σy/σu ratios, which are 0.76, 0.80 and

0.83 respectively for the εL = 2.5% case, while for example the n = 5 material has

σy/σu = 0.44. The initiation toughness ratio (with respect to the no-Lüders case of

ΔεL = 0), is approximately 80% for the lowest Lüders strain of εL = 1%, for all

strain hardening indices. For the largest Lüders strain of εL = 3%, the toughness

ratio is nearly 60% for the lowest n, while the reduction ratio saturates to a value of

approximately 70% for the low hardening material (i.e. with high n). Thus, the results

of the micro mechanical damage approach are in accord with the results illustrated

in Figures 6.11 and 6.12, confirming that the presence of a Lüders plateau would

deteriorate the ductile initiation toughness with respect to the no-Lüders material.

Furthermore, this effect would be more marked in high hardening material with a low

n. As observed in Figure 6.15, power-law trend-lines could successfully approximate

the data. Consequently, the toughness ratio could be written as:

Jcrit
J0

= β (εL)
γ (6.10)

where εL is dimensionless (mm/mm), and β and γ are fitting coefficients, which

are calculated for all strain hardening indices using a least square approach (with

R2 > 0.98 for all fits), as presented in Table 6.1. Furthermore, second order poly-

nomial fits could be used to interpolate β and γ values for strain hardening indices

other than those enlisted in Table 6.1. The equations are:

β = −0.0017n2 + 0.0517n− 0.016
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Figure 6.15. Variation of ductile initiation toughness ratio as a function of εL for various
values of n. The symbols represent the results obtained by the MBL models and solid lines

represent the power-law fits of Equation (6.10).

Table 6.1. Fit coefficients for the toughness ratio formula of Equation (6.10).

n = 5 n = 10 n = 15, 20 , 25

β 0.2000 0.3310 0.3776

γ −0.3000 −0.190 −0.168

γ = −0.0016n2 + 0.046n− 0.49 (6.11)

In light of the above discussion, a value of n = 15 should be used in Equations

(6.11) for materials with n > 15.

Finally, a note on the presented results is in order. The family of stress–strain

curves shown in Figure 6.1 represent idealizations of the real material behavior. In

some steel materials, a sudden drop is observed in the peak yield stress followed by

the Lüders plateau (i.e. the elastic to Lüders transition is marked by a sharp peak).

It is believed that this phenomenon might actually result in somewhat weakening the

effect of the Lüders plateau on the charcteristic response features discussed earlier.

However, accurate quantification of this effect will require additional analysis.†.

†This paragraph does not appear in the published paper, and is added here to the manuscript of
the thesis based on the suggestion of the examining committee.
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6.6 Conclusions

Effect of the Lüders plateau on the fracture response and toughness of pipelines sub-

ject to extreme plastic bending has been investigated using a comprehensive 3D non-

linear FE and MBL analysis. The salient conclusions drawn are summarized below:

• The mere presence of a Lüders plateau would significantly alter the global re-

sponse of the pipeline, as exemplified by the moment-strain curves, as well as

the crack driving force curves.

• The moment based representation of the J-integral revealed that the fracture

response for a material with a Lüders plateau would be very similar to that of

a perfectly plastic material; nevertheless, the response branches off at the final

stages of loading, raising concern for the use of such materials in load controlled

applications.

• The spatial-average near tip constraint parameter, Qave, was observed to de-

crease as a linear function of the applied global strain εg, while higher values of

the Lüders strain, εL, resulted in lower constraint.

• In the finite strain near crack tip zone, Lüders plateau would not have a signif-

icant influence on the crack opening stress profiles. Nevertheless, in the micro

structurally significant zone of J/σy < r < 5 × J/σy, increasing the values of

Lüders strain, εL, would cause the stress profiles to sequentially shift down uni-

formly from the no Lüders reference profile. This drop was also observed along

the whole crack length.

• The Lüders strain increased the crack opening parameter, d, in addition to the

fact that d became slightly load dependant for the materials with a Lüders

plateau. It was also shown that the Lüders plateau would not significantly alter

the stretch zone’s appearance.

• It was observed that εL had a profound effect on amplifying both near tip

equivalent plastic strain and stress triaxiality, thus promoting ductile damage.
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• Via incorporation of a micro mechanic damage integral and based on the near tip

fields extracted from MBL models (with similar constraint as pipelines), it was

shown that the ductile initiation toughness decreased steadily as a function of

Lüders termination strain, with a more notable effect for high strain hardening

materials (low n).

The results presented here lead to the conclusion that material exhibiting a Lüders

plateau could have detrimental effects both on the fracture response and toughness

of pipelines subject to large plastic bending strains.
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7.1 Abstract

This study investigates the fracture response and crack tip constraint of thick wall

pipelines subject to large plastic bending. Such a circumstance frequently occurs dur-

ing the installation of offshore pipelines (such as the reeling method), and accidental

overloading, both inducing inelastic bending. The near tip stress and strain fields are

obtained through the fully nonlinear 3D finite element models constructed to examine

the response of a practical range of cracked pipeline geometries and material proper-

ties. It is observed that throughout the loading history (up to the large scale yielding

of the pipeline), by incorporation of the J-Q two parameter fracture theory, the near

crack tip fields do indeed resemble those obtained from a K-T modified boundary

layer formulation. This analogy provides sufficient proof for the applicability of the

similitude concept inherent and fundamental to any fracture assessment procedure.

All the pipelines considered in this study, which had realistic crack sizes, exhibited

low constraint behavior (i.e. −1.4 < Q < −0.4). Additionally, Q was observed to

decrease as a linear function of the global bending strain. Based on this correlation,

simplified design equations are presented by which the constraint of such pipelines

could be effectively estimated. The equations would be suitable for incorporation in

the constraint-matched integrity assessment procedures that would in turn overcome

the overt conservatism produced by the use of single parameter fracture mechanics

143
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approaches. Suitability of the low constraint laboratory specimens for fracture tough-

ness measurements is also confirmed.

Keywords: Pipelines, Plastic Bending, Fracture, Constraint, Integrity Assessment

7.2 Introduction

With the ever-rising cost of energy and also depletion of most resources in reason-

ably benign environments, the oil and gas industry is compelled to move into more

demanding environments (i.e. into deeper waters and into more hostile environments

such as the Arctic). Reliable pipelines capable of operating in these environments

and withstanding the associated extreme loadings are a key factor in such develop-

ments. The Limit State Design (LSD), together with the Strain Based Design (SBD),

provides cost-effective pipeline design strategies, as manifested in most major design

codes (e.g. API [3] and DNV [2]).

Pipelines, either onshore or offshore, are subjected to bending due to a variety

sources, including pipelines conforming to the curvature of a stinger, reel drums

and/or bathymetry of a rough seabed. Buried pipelines can also be subjected to

seabed/ground motion caused by subsidence, mudslides, seismic activity and uneven

settlements. Among these, reeled pipelines are subjected to the most severe inelastic

bending, which induces strains up to 3%, well into the materials plastic range. For

such pipelines, the potential for fracture of the girth weld on the tensile side is one

of the governing limit states. Assessment of this limit state consists of conducting a

fracture mechanics analysis of a hypothetical defect, which is assumed to have been

caused due to welding imperfections, and is termed Engineering Criticality Assessment

(ECA) in the literature. An ECA proceeds by comparing the crack-driving force of a

flawed pipeline to that of a suitable test specimen. The concept of similitude in frac-

ture mechanics is implicit in such an approach; that is, it is assumed that the near-tip

stress and strain fields that govern the micro-structural fracture processes, are similar

in any two cracked bodies (e.g. in this case, the flawed pipeline and the respective

test specimen). Traditionally, these fields were assumed to be uniquely described by

a single parameter (i.e. the crack driving force), which, depending on the level of

loading, could be either of K, J or CTOD. Later on, it was shown that such a single
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parameter description is only valid for certain configurations that exhibit high levels

of crack-tip stress triaxiality [27, 56].

Two-parameter formulations have been therefore developed, which utilize an ad-

ditional constraint parameter, in addition to the crack-driving force, to describe the

near-tip fields. Most notable of such formulations are the J-T [61, 63], J-A2 [66]

and J-Q [67, 68] formulations. The additional constraint term is closely related to

the stress triaxiality, and can satisfactorily describe the scatter in the toughness data

obtained from different test configurations. In general, higher constraint/triaxiality

configurations exhibit lower fracture toughness and vice versa. Moreover, high con-

straint configurations usually undergo brittle cleavage fracture, while ductile tearing

fracture is observed in low constraint configurations. Despite the constraint depen-

dency of the toughness data, historically, guidelines have recommended the use of

high constraint test specimens, such as the deeply cracked Single Edge Notch Bend

(SENB) specimen, which produces the lowest toughness data, thus adding to the con-

servatism of the ECA. However, recently, the provision to utilize constraint-matched

test specimen is recommended by some codes. For instance, DNV [9] accepts the use

of low-constraint Single Edge Notch Tensile (SENT) specimen for the assessment of

reeled pipelines, based on its constraint similarity to that of circumferentially flawed

reeled pipes [77, 78]. Similar studies [79, 80], have shown the suitability of SENT spec-

imens for ECA of high pressure pipelines with axial flaws based on close examination

of J-Q trajectories in the two bodies.

Generally, the near-tip fields and the constraint evolve with the increase of loading

and the extent of plasticity in the structure. The existence of identifiable stress and

strain fields up to fully yielded conditions is not necessarily guaranteed (examples of

such situations can be found in Refs. [56, 68]), in which case, the application of ECA

itself is questionable due to the similitude concept being annulled. This aspect of

ECA should be carefully considered, as the core of the ECA methods date back to

the Eighties. It should be noted that the ECA approach was originally developed for

power industry applications in which Large Scale Yielding (LSY) was generally not

permitted, and the bulk behavior of the structures of interest would remain elastic.

Based on the above, and in the spirit of the work by O’Dowd and Shih [68], in
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the present work, a typical pipeline with a range of relevant crack sizes and material

properties are considered and loaded to extreme plastic bending (up to 3% global

strain, as occurs during reeling). Fully nonlinear 3D FE models are constructed in

order to extract the near-tip stress and strain fields and are further compared to the

standard fields generated based on the Modified Boundary Layer (MBL) models. The

similarity of these two fields, up to LSY, provides sufficient proof for the similitude

concept and the ECA itself (since identifiable stress fields in nearly all test specimen

geometries can be found in the literature, such as Refs. [68, 70, 71]). This comparison

would also yield the constraint of such pipelines, which would be further compared to

those of SENT specimens in order confirm the safe utilization of such specimens for

ECA purposes.

The ABAQUS version 6.8 software [10] is used for all FE analysis. Nonlinear Ge-

ometry (NLG) effect (including both finite strains and large rotations/displacements)

is considered in all models in order to extract accurate information on the blunting

of the crack-tip and CTOD. Elastic-plastic material response is considered in all

FE models; the plasticity constitutive model used is based on a rate-independent as-

sociated J2 incremental theory with the Mises plastic potential and isotropic strain

hardening. ABAQUS adopts an updated Lagrangian-type framework to formulate the

incremental equilibrium equations. For elastoplasticity along with NLG, ABAQUS

employs the rate of deformation as the strain measure, along with its work conjugate,

the Jaumann rate of the Kirchoff stress, as the suitable stress measure [10]. However,

all stress and strain output reported are in the format of Cauchy (true) stress and

Logarithmic strains. A piece-wise power-law hardening material with the following

uniaxial stress–strain response was considered:

ε =

⎧⎨
⎩σ/E for σ � σy,

εy (σ/σy)
n for σ > σy.

(7.1)

where σy/E was selected as 0.002 and σy = 400 MPa. Two values of the hardening

exponent (i.e. n = 10 and 25) were considered for all FE models. These hard-

ening indices were considered to account for the influence of materials having high

and low strain hardening capacities, respectively, which bound the commonly used

offshore pipeline steel grades. These two values of strain hardening index correspond
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Figure 7.1. Uniaxial true stress–strain curves with the two hardening indices considered
in all FE models.

to σy/σu = 0.65 and 0.84, respectively, by defining σu as the stress corresponding to

15% uniaxial strain, which is considered as the lower limit of the ultimate strain for

offshore pipeline steels [4]. The two uniaxial stress–strain curves are shown in Figure

7.1. Finally, due to the large plastic deformation at the crack-tip, reduced integration

or, alternatively, elements with a hybrid formulation were used to avoid the poten-

tial volumetric locking associated with the incompressible plastic flow, in all the FE

models.

7.3 Review of the J-Q Near Tip Fields and the MBL model

The MBL model considers a hypothetical crack tip loaded at its circular boundary

with tractions given by the first two terms of the small-displacement linear elas-

tic asymptotic solution of an arbitrary crack-tip loaded in Mode-I, as suggested by

Williams [26]. In the polar coordinates, the tractions are represented mathematically

by:

σij =
KI√
2πr

fij(θ) + Tδ1iδ1j (7.2)

Due to loading and geometric symmetry, a half disk plane strain FE model with

an outer radius of R was constructed, with the displacements corresponding to the
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tractions of Equation (7.2), applied at the outer boundary as follows:

ux =
KI

E
(1 + ν)

√
r

2π
cos (θ/2)[χ− cos θ] + (1− ν2)

T

E
x

uy =
KI

E
(1 + ν)

√
r

2π
sin (θ/2)[χ− cos θ]− ν(1 + ν)

T

E
y (7.3)

where χ = 3− 4ν under plain strain conditions.

The loading (in terms ofKI and T ) was selected such that the characteristic plastic

zone size (boundary of plastic zone defined as σe/σy = 1) was less than 0.15×R, thus

ensuring well-contained plasticity condition, such that Equations (7.2) and (7.3) would

hold true. Moreover, the far-field J-Integral (termed JBC , in order to distinguish it

from the numerically calculated J) and KI are related through:

JBC =
1− ν2

E
K2

I (7.4)

Nine values of the T -stress (T/σy = 0.0, ±0.25, ±0.5, ±0.75, ±1.00) were consid-

ered, and the results pertaining to different levels of constraint were generated. The

J-Q approach of O’Dowd and Shih [67, 68] was used to quantify the constraint. The

approach is based on dimensional similarity; it is argued that the near-tip fields up

to LSY conditions could be satisfactorily described by the Q constraint parameter,

if the distances are scaled with correct length scales (i.e. J/σy in this case). They

showed that in the forward sector of a crack tip, within the distances of interest (i.e.

r < 5 × J/σy), Q would be a hydrostatic stress parameter, which would also corre-

late very well with the stress triaxiality (σm/σe), uniformly shifting the stress/strain

profiles from a reference field:

σij = (σij)Ref +Qσyδij for r > J/σy & |θ| < π/2 (7.5)

The reference field ((σij)Ref in Equation (7.5)) could be considered as the HRR

field [29, 30] or the Small Scale Yielding (SSY) distribution obtained from MBL model

with T = Q = 0, which leads to more consistent results, and is therefore used here.

Ideally, Q could be extracted from FE results at any location and from any component

of the stress tensor based on Equation (7.5); nevertheless, the literature recommends

the use of the crack opening stress at r = 2×J/σy, where the finite strain effects have

diminished [68, 70, 71].
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Figure 7.2. (Left) FE mesh of the MBL model along with the relevant coordinate
systems and BCs. (Right) Crack tip details showing the initial notch radius.

ABAQUS’s 4-noded plane strain continuum elements with hybrid formulation

(CPE4H) were used [10]. The mesh consists of 1500 elements and was exponen-

tially biased in the radial direction with 50 rows of elements. 30 elements were used

in each row, circumferentially; 12 for the finer mesh of the first π/4 sector (required

to capture the severe blunting deformations) and 18 for the rest of the 3π/4 sector.

An initially blunted crack tip was modeled with a radius of 0.02×JBC/σy. Figure 7.2

shows a typical MBL model and the initial blunted crack tip. The J-Integral values

were extracted from several contours surrounding the crack-tip (each ring of element

around the crack tip in Figure 7.2 is regarded as a contour) using the Domain Integral

method implemented in the ABAQUS [10].

Figure 7.3 shows J/JBC extracted from several consecutive contours surrounding

the crack tip (r/(JBC/σy) is the radius of a contour). As seen, a slight path dependence

is observed, which is known to be due to both the incremental plasticity and NLG

effects. However, the J-Integrals which were extracted from the contours farther away

from the crack-tip gradually converged to the exact analytical value of JBC obtained

by Equation (7.4). For example, in the T/σy = 0 and n = 10 case (Figure 7.3a),

J extracted from a near-tip contour (r × σy/JBC = 0.2, contour #16) is only 50%

of its analytical value (JBC), while for a farther away contour (r × σy/JBC = 7.45,

contour#30), the calculated J is more than 90% of JBC . The convergence was slower

for the negative values of T/σy and also for the lower strain hardening capacities
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Figure 7.3. Convergence of J values as a function of radius of contour for (a) n = 10 and
(b) n = 25.

(higher n), as observed in Figure 7.3.

The Q-T relationship is shown in Figure 7.4a, indicating that negative T -stress

values result in very low Q values (low constraint), hence, also indicating low values

of hydrostatic stress around in the near-tip region. On the other hand, Q reaches

a constant value for positive values of the T -stress, resulting in near-tip stress fields

being similar to the T = Q = 0 case. It is also noted that the strain hardening affects

the relationship minimally, only showing its influence for larger absolute values of

T/σy. Figure 7.4b shows the effect of the constraint parameter Q on the normalized

CTOD parameter through:

CTOD = d(σy/E, n;Q)
J

σy

(7.6)

Figure 7.4b shows that at the same J , the low-constraint configurations with

Q < 0 have considerably larger CTOD than those with high constraint configurations

(Q > 0). Moreover, the material with n = 25 undergoes larger crack tip deformations.

These facts are also revealed by examination of the near tip deformed FE mesh for

the two limiting cases of T/σy = ±1.0, as shown in Figure 7.5.

Representative components of the family of J-Q near-tip fields generated with

the MBL model are shown in Figure 7.6. These include: (i) Figures 7.6a and 7.6d,

showing the normalized crack opening stress (σθθ/σy along the θ = 0 ray) over a
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Figure 7.4. (a) the T -Q relationship and (b) the Q-d relationship.

Figure 7.5. Deformed crack tip region in the MBL model with n = 25 material for
(Left) low and (Right) high constraint (radius of the shown annular zone is 1× J/σy in

the undeformed configuration).
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Figure 7.6. The J-Q near tip fields generated with the MBL model; radial distribution of
crack opening stress for (a) n = 10 and (d) n = 25; angular distribution of hydrostatic

stress for (b) n = 10 and (e) n = 25; and angular distribution of equivalent plastic strain
for (c) n = 10 and (f) n = 25.

micro-structurally significant distance of 0 < r < 5 × J/σy, (ii) Figures 7.66b and

6e, illustrating the normalized hydrostatic stress (σh/σy) and (iii) Figures 7.6c and

7.6f, showing the equivalent plastic strain (εp); both of these latter two quantities

are extracted along a circular path with radii of 2 × J/σy. The crack opening stress

profiles of Figure 7.6a and 7.6d show that negative Qs decrease the stress distribution

strongly and uniformly, while the positive values raise the distributions minimally.

The finite strain effects (captured due to the consideration of NLG effects) caps the

stress distributions, preventing them from becoming unbounded near the crack-tip at

r < 2× J/σy. Moreover, high strain hardening capacities (n = 10) permits the devel-

opment of higher stress values near the crack tip, as can be seen through comparison

of the stress peaks in Figure 7.6a and 7.6d.

Further inspection reveals the uniform shift of stress distributions caused by the
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negative Qs as seen in Figure 7.6b and 7.6e, especially in the first π/2 sector to

which the J-Q theory is applicable. The equivalent plastic strain distributions of

Figure 7.6c and 7.6f shows how the absolute value of T/σy increases the near-tip

plastic deformations, which are more severe for negative T -stresses and also low strain

hardening capacities (high n). The maxima of εp occurs at π/2 for the reference case

of T = Q = 0. Shifting of the εp profiles observed in Figure 7.6c and 7.6f indicates

that negative T -stresses (Q) cause the plastic zone to rotate towards the uncracked

ligament, while positive T -stresses (Q) cause the plastic zone to rotate backwards

towards the crack flanks. Unlike the case for the stress distributions, a positive T -

stress (Q) significantly increases εp in the π/2 ∼ π sector. The distributions of Figure

7.6 and the discussed trends are in agreement with the similar published MBL studies;

see e.g. [56, 57, 61, 63, 67, 68].

Strictly speaking, the J-Q approach is based on the 2D plane strain assumption.

However, several researchers have argued validation of the approach to 3D cracks [69,

71]. These heuristic arguments pointed out that at sufficiently remote locations from

the intersection of the crack front and external body surface (s/c < 1), and in the

neighborhood of the crack tip (r → 0), plane strain conditions would indeed prevail

(i.e. the out of plane strains become negligible with respect to the singular in plane

strains). As such, the J-Q description of Equation (7.5) would hold true (see Figure

7.8 for r, θ, s coordinates), and accordingly, the pair of J(s) and Q(s) completely

characterizes the 3D near tip fields [69, 71]. Furthermore, an operational average

definition of constraint, Qave, has been proposed [69]. This quantity has been observed

to correlate the toughness and crack growth curves in 3D geometries with geometric

specimen configuration reasonably well [74]. Mathematically, Qave is represented by:

Qave =
1

sb − sa

∫ sb

sa

Q(s) ds at θ = 0, r = 2× Jave/σy (7.7)

However, our findings (see Figure 7.14 and 7.15 and their explanations) show that

Jave-Qave trajectories are very similar to the J-Q trajectory when extracted at the

crack center (s/c = 0.0), thus justifying extraction of the results at this location.
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Figure 7.7. Schematic of the pipeline cross section and the canoe shaped crack.

7.4 The Cracked Pipeline Model

A pipeline with D/t = 13.61 (D = 323.9 mm and t = 23.8 mm), which typifies a

reeled pipeline, with an external part-through surface breaking circumferential crack

(representing a hypothetical defect or flaw due to welding imperfections) at its 12

o’clock position, subjected to bending is investigated. A schematic of the cracked

pipeline cross section is shown in Figure 7.7, which shows the canoe shape of the

crack, with its fillet radius equal to the crack depth. This considered crack shape is

representative of real weld defects observed in offshore pipelines [47]. Due to symme-

try, a quarter FE model is constructed, with a length of L = 2D, which is sufficiently

long to capture the strain and stress discontinuity caused by the crack [47, 125] .

Rotation was imposed on a reference point tied to the pipe end via a set of multi-

point constraints (MPC’s). The rotation was such that the outermost fiber would

experience an axial (uncracked) strain of 3%, which encompasses even the extreme

plastic bending that occurs during reeling. According to the Euler beam assumption

(i.e. plane sections remaining plane after application of bending), pipe’s end rotation

can be calculated by:

Rx =
2εgL

D
(7.8)

It is understood that as plastic deformation increases, the Euler assumption would
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Table 7.1. Summary of the 12 different FE models considered (all pipelines have a
D/t = 13.61, D = 323.9 mm and t = 23.8 mm).

Model# a (mm) a/t 2c (mm) 2c/πD n

1, 2 2 0.084 50 0.05 10, 25

3, 4 2 0.084 200 0.2 10, 25

5, 6 4 0.168 50 0.05 10, 25

7, 8 4 0.168 200 0.2 10, 25

9, 10 6 0.252 50 0.05 10, 25

11, 12 6 0.252 200 0.2 10, 25

not be strictly correct; however, the resulting error would be insignificant [119]. This

has also been verified in this study; the average values of the compressive and tensile

strains along the pipeline length obtained by the finite element analysis are indeed

very close to the value of εg evaluated by Equation (7.8).

The flaw sizes of interest in girth welded pipelines is usually governed by the weld

pass height and is typically 2 ∼ 6 mm in height [9]. Based on this, three crack

depths of a = 2, 4 and 6 mm were considered in the FE models. Furthermore, the

crack lengths considered were 2c = 50 and 200 mm. Noting the two strain hardening

indices of n = 10 and 25 considered for the material, the different combinations of the

parameters leads to 12 FE models, which are summarized in Table 7.1. These models

correspond to realistic situations and cover most of the typical flaw size and material

properties relevant to pipeline practice.

The C3D8R element of ABAQUS [10] (an 8 node 3D continuum element with

reduced integration and hour-glass control) was used for the FE models. A focused

spider web mesh was used for the crack front. Within this focused mesh zone, the

element sizes decrease exponentially nearing the crack tip, with the corresponding

bias ratios between 50 to 100, depending on the crack depth. An initial notch radius

equal to 0.01× a was assigned to the crack tip in order to overcome the convergence

problems due to NLG effects in this zone. A total of 13 rows of elements were used

in the radial direction at this zone. The size of the smallest element was on the order

of 0.001× a. Furthermore, 20 rows of elements were used for the circumference of the

π/2 sector corresponding to the uncracked ligament, while 8 rows of elements were
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used for the π/2 sector ahead of the crack flanks. A typical mesh with a close-up view

of the crack tip zone is shown in Figure 7.81. All models consisted of 60∼70 thousand

elements, depending on the crack size.

Careful mesh convergence studies were performed in consideration of all behav-

ioral aspects of the model, including the global (moment-curvature) and local response

behavior, in terms of both variations in the J and the near-tip fields, and also in con-

sideration of uncontrolled hour-glass mesh distortions. Accordingly, the quality and

density of the incorporated meshes were deemed satisfactory. The in-house developed

Python scripts developed in our previous work [125] were efficiently utilized to con-

struct the complicated FE mesh and also the trial and errors involved in establishing

the mesh characteristics. Results are systematically extracted from the near-tip re-

gion at deformation levels corresponding to εg = 1%, 2% and 3%. The constraint

parameter, Q, is calculated from the crack opening stress component with the MBL

distributions of Q = T = 0, serving as the reference distribution for use in Equation

(7.5).

7.4.1 Near Tip Fields in Cracked Pipelines and MBL Similitude

The near tip fields of the cracked pipeline model, including the crack opening stress dis-

tribution along the uncracked ligament, and angular distributions of hydrostatic stress

and plastic strain are presented for Model#1 (Figures 7.9a to 7.9c) and Model#10

(Figures 7.9d to 7.9f). Strictly speaking, the fields shown in Figure 7.9 should be

identical to those in Figure 7.6 at the same magnitude of Q. Although the exact same

Q values might not be available for the presented MBL and cracked pipeline model

(Figures 7.6 and 7.9, respectively), the similarity in the near tip fields in the two

models is evident and obvious. For example, the three crack opening stress profiles

in Figure 7.9a, corresponding to the successive values of Q = −1.15, −0.93, −0.63
(extracted at εg = 3, 2, 1%, respectively), are bounded by the three lower profiles seen

in Figure 7.6a, corresponding to the MBL model with successive values of Q = −1.25,
−0.91, −0.5. In all cases, the crack opening stress and hydrostatic stress decrease

1The presented Figure 7.8 is slightly more detailed than that in the published article.
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Figure 7.8. Typical cracked pipeline FE mesh including the boundary conditions and
close-ups of the focused mesh in the crack tip zone. The crack tip mesh arrangement with

initial notch and also the r-θ-s coordinates are shown.
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with increased loading, with the effect being more prominent for high hardening ma-

terial with n = 10. The angular distributions of the hydrostatic stress, seen in Figures

7.9b and 7.9e, are not completely identical to those of the MBL (Figures 7.6b and

7.6e) in the π/2 ∼ π sector in front of the crack flanks; however, this zone is outside

the admissibility limit of the J-Q approach (see Equation (7.5)). Nonetheless, fair

agreement is observed in the 0 ∼ π/2 sector, between the pipeline and MBL hydro-

static stresses. As seen, the plastic strain increases as a function of Q and εg, in the

0 ∼ π/2 sector, similar to that in the MBL model. These consistencies are not solely

qualitative. For example, the maximum plastic strain for the material with n = 10

is εp = 0.092 at Q = −0.91 in the MBL model (Figure 7.6c), while Figure 7.9c (for

the cracked pipeline) shows a maximum of εp = 0.09 at Q = −0.93 (εg = 2%). In

addition, the maxima in both models occur at θ � 70◦. The agreement in the near

tip behavioral patterns with the MBL model and all the 12 cracked pipeline FE mod-

els listed in Table 7.1 is seen in the results obtained for all the applied global strain

values, even when strain is as high as (εg = 3%, in which LSY conditions prevail.

However, in favor of brevity, detailed exemplification is limited to Figure 7.9 only.

Figure 7.10 shows the crack opening stress in the near tip zone as a function of Q

for all 12 FE models. Presenting the data in this manner allows a direct comparison

with MBL results, which are also shown in Figure 7.10. It is emphasized that while

Q is operationally defined at r = 2×J/σy , the data of Figure 7.10 are extracted at a

farther distance of r = 4× J/σy. Still, reasonable agreement is observed between the

near tip fields of the MBL and the cracked pipeline, up to the highest plastic bending

levels causing εg = 3%. Strictly speaking, the crack opening stress of the pipeline

is within 10% of the values predicted by the MBL model for the n = 10 material,

as seen in Figure 7.10a, while the agreement is within 15% of the MBL results for

the n = 25 material (Figure 7.10b). As seen, the MBL distribution is cut off at

Q � −1.2 in Figure 7.10a. This is due to the fact that generation of lower Qs would

have required T/σy < −1.0 (see Equation (7.3)). However, for such loadings, SSY

requirements would be nullified due to the development of excessively large plastic

zone in the MBL model. As a result, Equations (7.2) and (7.3) would be rescinded.

In any case, it is understandable from the trend seen in Figure 7.10a that agreement
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Figure 7.9. The J-Q near tip fields of cracked pipelines; radial distribution of crack
opening stress for (a) Model#1 and (d) Model#10; angular distribution of hydrostatic
stress for (b) Model#1 and (e) Model#10; and angular distribution of equivalent plastic

strain for (c) Model#1 and (d) Model#10.

would be expected to continue to exist.

Figure 7.11 shows the near tip plastic strain contours for the MBL model and

cracked pipeline Model#1, again demonstrating the identical response patterns. In

regards to the foregoing discussion and the comparison of MBL and cracked pipeline

near tip stress and strain fields, the following three points are noted:

1. The FE results are strictly correct at element integration locations, thus, results

extraction at any other required specific location, such as at r = 4 × J/σy, as

reported in Figure 7.10 would be an approximation and in a sense, an average

result, thus bearing some discrepancies.

2. Although both FE meshes for the MBL and pipeline models passed mesh con-

vergence requirements, the MBL model has a much finer mesh.
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Figure 7.10. Crack opening stress as a function of Q for the cracked pipeline models and
the MBL model for (a) n = 10 material and (b) n = 25 material.

3. The agreement exhibited in Figures 7.9, 7.10 and 7.11 continues to exist for all

the cracked pipeline models considered and also amongst all other components

of the stress and strain tensors.

Based on these and the observed similarity of the stress and strain fields, it is

believed that the J-Q approach could effectively characterize the near tip stress and

strain fields of flawed pipelines, up to extreme plastic bending levels, with sufficient

accuracy. This in turn provides sufficient proof for the similitude concept explicit in

all ECA approaches.

7.4.2 Evolution of the Constraint, Q, in Flawed Pipelines

Equation (7.5) indicates that Q is defined at a specific location near the crack tip.

Nevertheless, it has been shown that the two parameter J-Q approach describes the

stress and strain fields within an annular region ahead of the crack tip, described by

r < 5 × J/σy and θ < π/2, in flawed pipelines up to extreme plastic bending load

levels. This region, in turn, supposedly engulfs the fracture process zone; thus, the

two parameters, namely J and Q, could effectively describe the fracture initiation and

crack growth.

The evolution of J as a function of εg is presented in Figure 7.12 for the cracked
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Figure 7.11. Comparison of the equivalent plastic strain at the near tip region of the
MBL model and cracked pipeline Model#1 at crack center s/c = 0.0 at approximately
equal values of Q and comparable length scales. Contour plots for successive values of

εp = 0.05, 0.1, 0.2.

pipeline models with n = 10. For the cracks of practical interest with a maximum

depth of 6 mm (a/t < 0.252), the strain hardening index has been observed to have

minimal effect on the J-εg paths [125], and thus only the results for n = 10 are illus-

trated in Figure 7.12, since they closely resemble the results for n = 25. Common in all

the sub-figures, the J-εg paths have an initial nonlinear shape corresponding to SSY

behavior, which terminates at early loading stages (approximately at εg � εy = 0.002)

when plasticity starts to spread throughout the pipe wall thickness. Consequently, the

J-εg path follows a linear trend as pointed out by other researchers as well [47, 125].

However, this linear evolutionary trend becomes less accurate for the long cracks with

2c = 200 mm (Figure 7.12b), and also especially for deeper cracks. As seen from the

results, both crack depth, a, and crack length, 2c, have a profound effect on amplifying

the J .
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Figure 7.12. Evolution of J in the cracked the pipeline at crack center, s/c = 0.0, as a
function of εg, for a family of crack depths a = 2, 4, 6 mm, and material hardening of

n = 10; (a) 2c = 50 mm, (b) 2c = 200 mm.

Figure 7.13 shows the progression of Q as a function of εg for the cracked pipeline

models outlined in Table 7.1. The striking feature common to all cases is that Q de-

creases steadily with increasing global strains in a more or less linear fashion, without

a steady state portion as observed for some deeply cracked laboratory specimens [71].

Actually, this behavior is a feature of shallow cracks [71], which, generally speaking,

pertains to all the cracks of interest in this study (a/t < 0.252). The practical strain

range of εg = 1 ∼ 3%, results in values of Q ranging from -0.4 to -1.4. In all cases,

the Q-εg paths for the family of crack depths, a, are more or less parallel, with the

intercept decreasing steadily as a function of a. This decreasing intercept effect is

more pronounced for longer cracks with 2c = 200 mm (Figure 7.13b and 7.13d) as

opposed to shorter cracks with 2c = 50 mm (Figures 7.13a and 7.13c).

While Figure 7.13 gives a complete picture of the constraint levels in cracked

pipelines, the distribution of Q along the crack length, s, should also be considered.

It has been observed that Q maintains a rather constant value, nearly along the entire

crack length, and only starts to change at the fillet location of the canoe shaped

crack (see Figure 7.7), where the crack starts reaching the outer pipe surface. This

behavior is common to all cases considered, and, as an example, the distribution of Q

and J along the crack length are presented in Figures 7.14a and 7.14b, respectively,
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Figure 7.13. Evolution of Q in the cracked pipeline at crack center, s/c = 0.0, as a
function of εg for a family of crack depths a = 2, 4, 6 mm; (a) n = 10, 2c = 50 mm, (b)

n = 10, 2c = 200 mm, (c) n = 25, 2c = 50 mm, (d) n = 25, 2c = 200 mm.

for pipeline Model#7. Figure 7.14a shows that Q could be considered constant up

to s/c � 0.5; however, a swift increase occurs near the fillet location of the canoe

crack. This increase can be described by noting that the local loading in terms of

J(s), decreases as one approaches the crack end as illustrated in Figure 7.14b. In

this figure, the value of J as s/c → 1 is approximately half that at the crack center,

s/c = 0, which in turn causes higher values of Q with respect to the crack center.

However, a competing factor is that as the crack end is neared (i.e. as s/c → 1),

the constraint conditions tend to become similar to that observed in the plane stress

situation (i.e. a low constraint situation). On the other hand, the crack center is more

similar to the high constraint plane strain situation. Consequently, a rapid decline in
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Figure 7.14. Distribution of (a) Q and (b) J , along the crack length, for pipeline
Model#7 (a = 4 mm, 2c = 200 mm, n = 10).

Q is observed very near the crack end.

The correct values of integration limits for use in Equation (7.7) are still under de-

bate. Ideally, these limits describe a portion of the crack front length, which is deemed

micro structurally significant, and encloses the fracture process zone. Faleskog [74]

evaluated the integral over the portion where Q(s) is essentially constant, while Silva

et al. [80] used the whole crack front length as the integration domain. Here, a defi-

nition similar to that used by Faleskog [74] is incorporated; that is, Qave is evaluated

along the crack length up to where the canoe fillet starts (i.e. at sa = 0 and sb = c−a).

In order to justify the use of the Q (and J) evaluated at the crack center (s/c = 0),

the Jave-Q(s) trajectories along the crack length, for a typical pipeline (Model#9),

is presented in Figure 7.15a (Jave is defined similar to Qave, see Equation (7.7)). In

concert to the trend observed in Figure 7.14a, the family of Jave-Q(s) trajectories for

small values of s/c are closely packed in Figure 7.15a. The local Q(s) decreases nearly

linearly for increasing values of Jave (in the LSY regime). The intercept of these lines

decreases steadily as a function of s/c. Moreover, the Jave-Qave (dash-dot line) and

J-Q at s/c = 0 (solid line) trajectories are also shown. Both these trajectories provide

an upper envelope to the family of lines, and are quite similar. Although not shown,
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Figure 7.15. (a) Jave-Q(s) trajectories along the crack front for Model#9 (a = 6 mm,
2c = 50 mm, n = 10) along with Jave-Qave and J-Q(s/c = 0) trajectories (b) Ratio of
Q(s/c = 0)/Qave as a function of global strain for all six models with 2c = 50 mm.

these trends were observed in all other pipeline models as well. Indeed, Figure 7.15b

shows the Q(s = 0)/Qave ratio as a function of εg for all six models with 2c = 50 mm,

and the close scatter around unity (i.e. 0.98 < Q(s = 0)/Qave < 1.05) demonstrates

that both constraint definitions are more or less equivalent. Based on the above dis-

cussion and also considering the subjective definition of Qave as discussed, the more

simple and straight forward measure of constraint, Q(s/c = 0), has been adopted

throughout this study.

In order to gain a better understanding on the effect of each parameter on Q, a

consistent loading measure, namely J/(σy × a), has been incorporated. It is believed

that the comparison of the Q parameter extracted at specific values of J/(σy × a)

in different models (not necessarily at the corresponding equal values of εg), would

effectively reveal the influence of each parameter on Q. Such results are presented in

Figures 7.16a and 7.16b for the materials with n = 10 and n = 25, respectively. The

trend common to all crack sizes and strain hardening indices is that Q increases as

the cracks get deeper (increasing a) and longer (increasing 2c). However, the effect of

crack depth is more pronounced than crack length. Moreover, as seen, these trends
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Figure 7.16. Parametric study on the effect of crack size on Q for materials with (a)
n = 10 and (b) n = 25.

are true for both load levels of J/(σy × a) = 0.12, 0.15. For the shallowest crack with

a/t = 0.084, Q experiences a large decrease. Furthermore, the value of n does not

seem to alter the general trend. The trend is in agreement with the previous results

observed for the 2D test specimens; that is, constraint loss is severest in the shallow

crack geometries, while the deeply cracked geometries are generally high constraint,

in which the near crack tip fields converge to the HRR solution [59, 60, 62].

A variety of J-approximation schemes are available that can provide prediction of

J , needless of a detailed FE analysis (see for example [35, 36, 51, 125]). Unfortunately,

the same does not hold true forQ, for which, onlyQ-estimations for test specimens [68,

71], and for structures under SSY conditions are available [127]. Based on the observed

nearly linear dependence of Q on εg in cracked pipelines (as manifested in Figure 7.13),

a simple and practical equation is proposed by which the upper-bound values of Q,

as a function of εg and a, can be readily established:

Q = −0.25εg − b1 εg is in (%) (7.9)
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where

b1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−0.3 for a/t = 0.084,

−0.4 for a/t = 0.168,

−0.45 for a/t = 0.252.

Furthermore, the intercept, b1, in Equation (7.9) could be described more generally

as a function of crack depth, by the following relation:

b1 = β1

(a
t

)2

+ β2

(a
t

)
+ β3 (7.10)

where β1 = 3.543, β2 = −2.0833, β3 = −0.15. Figure 7.17a (for a = 2 mm) and

7.17b (for a = 4 mm) show the comparison of the predicted upper bound Q by

Equation (7.9), and Q evaluated by FE for the cracked pipelines. As seen, the data

are relatively more scattered for deeper cracks; however, in all cases, Equation (7.9)

can accurately capture the general trend. Generally speaking, it is believed that

the linear Q-εg relation holds true for moderately shallow cracks (the deepest crack

considered here that the relationship applies to is a/t = 0.252), and for deeper cracks

the linear relationship would not necessarily hold true†. It should also be noted that

incorporation of the upper limit of Q provides a margin of conservatism. It is worth

noting that as per Equation (7.9), the slope of the Q-εg path assumes a constant

value (-0.25) for all cases, while the value of the intercept, b1, is governed mainly by

the crack depth (manifested in Equation (7.10)), and is also slightly dependant on

crack length (2c) and material hardening index (n), which have been eluded from the

equation for the sake of simplicity.

7.4.3 Constraint Similarity in Cracked Pipeline and SENT Specimens

When utilizing the J-Q two parameter fracture approach, the fracture toughness

data required for the ECA integrity assessment procedure should be extracted from

laboratory specimens exhibiting matching constraints with that from the cracked

pipeline. DNV [9] recognizes the fact that the constraint level in cracked pipelines is

similar to the low constraint SENT specimen, rather than the traditionally used deeply

†This sentence does not appear in the published paper, and is added here to the manuscript of
the thesis based on the suggestion of the examining committee.
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Figure 7.17. Scatter of the Q values for cracked pipelines compared to the Q values
estimated by Equation (7.9) for (a) a = 2 mm (Model#1∼4) and (b) a = 4 mm

(Model#5∼8).

cracked, high constraint SENB specimen. The backbone of this recommendation is

based on the case studies of Refs. [77, 78], which compared the Q parameter in pipeline

and SENT specimens. Parks [56] cautioned on how such mere point matching Q-

extraction approaches might be inadequate; that is, although two geometries may

have the same Q value, their near crack tip fields might actually be quite different,

probably due to the interference of the global stresses with the singular fields. Thus,

any constraint study should be based on a detailed field-matching procedure, as has

been carried out in the present study.

For the sake of completeness, the generated constraint values for the cracked

pipelines are compared here to those of SENT specimens2. The SENT specimen ge-

ometry considered here conforms to DNV recommendations [9]. Specimen’s thickness

is W = 22 mm, which represents the pipe thickness (t), less the minimum machining

necessary to achieve a rectangular specimen. Specimen width is taken as 2B = 2W ,

and the specimen length is 10W . Figure 7.18 shows a schematic of the SENT specimen

in relation to the actual flawed pipe section. The quarter symmetric FE model of the

SENT specimen with the relevant boundary conditions is also shown. The crack tip

2SENT specimens loaded in fixed grip displacement control.
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mesh characteristics are similar to those of the cracked pipeline model. Six models,

corresponding to different combinations of a = 2, 4, 6 mm and n = 10, 25, were ana-

lyzed. The axial displacement applied at the end of the specimen was taken such to

create an approximately equal value of J/(σy×a) to that of the corresponding cracked

pipeline models. Comparison of the Q parameter between SENT and pipeline models

are presented in Figure 7.18 for the material with n = 10. Indeed, the J-Q trajectories

from both the SENT specimens and the pipelines share the same trends. Also, the

values of Q in the SENT specimen are slightly higher than those of the corresponding

pipeline models throughout the loading history (except at very low load levels as seen

in Figure 7.18c, which would not have any practical applications). This is indeed in

favor of conservatism, as higher constraint geometries would present lower toughness.

Based on the constraint similarity between the SENT specimen and pipeline models,

and also in consideration of the fact that the J-Q approach can effectively characterize

the near tip fields in both SENT specimens and the cracked pipeline, the suitability

of SENT specimens for integrity assessment of pipelines subject to extreme plastic

bending is justified.

7.4.4 The J-CTOD Relationship in Cracked Pipelines

As a finale to this study, the J-CTOD relationship under extreme plastic bending

is discussed. Here, we incorporate the usual definition of CTOD [33]; that is, the

opening of the crack flanks with intersection of 45◦ rays emanating from the crack

tip in the deformed configuration. An example of the deformed crack tip and the

CTOD’s schematics are shown in Figure 7.20 for Model#6, along with the contours

of normalized Mises stress (σe/σy), which showcase the very high stress gradients in

near the crack tip region.

While d in Equation (7.6) showed strong dependence on negative values of Q, as

evident in Figure 7.4b, the same does not hold true for the case of cracked pipelines.

A plot of d as a function of εg is presented in Figure 7.21 for all the 12 cases outlined

in Table 7.1. The main factor controlling d is the strain hardening index, n, while

the variations in d caused by the crack geometric factors a and 2c are only minimal

and with no clear trend, as manifested by the close scatter of data for a specific n.
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Figure 7.18. Schematic representation of the SENT specimen in relation to the cracked
pipeline as per DNV guidelines [9] (Top) and quarter symmetric FE model of the SENT

specimen (Bottom).
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Figure 7.19. Comparison of the Q in the SENT specimen and cracked pipeline models
for material with n = 10; (a) a = 2 mm, (b) a = 4 mm and (c) a = 6 mm.

Figure 7.20. Plot of the near crack tip deformation and contours of the normalized Mises
stress (σe/σy) for pipeline Model#6 at a global strain of εg = 2% (crack center, s/c = 0).
CTOD = 0.327 mm, J/σy = 0.482 mm, d = 0.67 (the undeformed radius of annular zone

is 3.24× J/σy).
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Figure 7.21. Crack tip coefficient, d, as a function of εg for all cracked pipeline models.

furthermore, after the initial elastic loading is surpassed, d becomes rather constant

and independent of εg. It should be noted that a very slight increase of d with εg,

more evident for n = 25 data is observed. However, the variation is much milder to

be associated with the loss of constraint due to loading increase.

It is recommended that for practical applications and in the strain range of interest

(i.e. 1% < εg < 3%), an average value, independent of loading and crack size, could

be considered, namely, d = 0.54 and 0.68 for the material with n = 10 and 25,

respectively (theoretically, d = 0.50 for the idealized HRR plane strain case [33]).

Moreover, representation of d as a function of Q enables a consistent comparison of the

results with those of the MBL, as presented in Figure 7.22. In both the MBL models

with n = 10 and 25, d increases very rapidly as Q decreases (and load increases), while

the same does not hold true for actual pipelines. Actually, this is not an unexpected

outcome; it should be noted that the J-Q theory characterizes an annular near tip

zone bounded by |θ| < π/2, while, CTOD and thus d, are related to the crack flank

deformations (i.e. at θ = ±π), which are not described by the J-Q formulation. In

summary, while Q decreases rapidly with increased loading in cracked pipelines, this

constraint loss does not significantly amplify d.
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Figure 7.22. Comparison of crack tip coefficient, d, as a function of Q for cracked
pipelines and MBL models.

7.5 Concluding Remarks

Using a series of fully nonlinear 3D Finite Element models, the fracture mechanics

characteristics of a range of cracked pipelines with different geometric features and

material properties relevant to oil and gas pipeline practice were investigated. Uti-

lizing the framework of the two parameter J-Q fracture theory, it was revealed that

the near tip stress and strain fields in such pipelines are analogous to those generated

with the MBL model, up to severe bending moments causing a global strain as high as

3%, which is usually experienced by pipeline during reeling operations. This analogy

was seen to exist between various stress and strain tensor components, both qualita-

tively and quantitatively. Based on the observed near tip field-matching between the

cracked pipeline and the MBL model, it is concluded that the J-Q theory could be

effectively and confidently incorporated for integrity assessment of such pipelines.

The near tip constraint of cracked pipelines, in terms of Q, was generated based on

the computational results. Moreover, a simplified equation, representing the parame-

ter Q as a linear function of the global bending strain, was developed and proposed.
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Our observations indicated that Q in such pipelines could vary between −0.4 to−1.4.
Thus flawed pipelined under extreme inelastic bending could be categorized amongst

low constraint geometries. Furthermore, similarity of the crack tip constraint between

cracked pipelines under bending and that of SENT specimen was demonstrated. Fi-

nally, the J-CTOD relationship for cracked pipelines was examined. The dependence

of the opening coefficient, d, to constraint was observed to be marginal, thus verifying

that a constant value of d could be used in such pipelines during the plastic bend-

ing regime. It is believed that the presented research results provide confidence and

justification for the application of constraint corrected ECA procedures for pipelines

subject to extreme plastic bending in which LSY conditions prevail throughout the

pipeline.
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8.1 Abstract

An important failure mode of offshore pipelines is ductile fracture of the pipe wall

triggered by a hypothetical welding defect. In this study, pipelines having various

sizes of external part-through semi-circumferential cracks, subject to combined inter-

nal pressure and inelastic bending are considered. This is done to assess the response

of pipelines during both their installation and operational conditions. Detailed 3D

nonlinear finite element (FE) models of pipelines are developed. A row of elements

ahead of the initial crack front are modeled using a voided plasticity material model,

which enables simulation of crack growth and the subsequent fracture failure mode

(denoted by the critical curvature, κcrit). After discussing the typical response char-

acteristics of such pipelines, the FE model is used to parametrically investigate the

effect of varying pipe and crack dimensions and also the internal pressure levels on

κcrit. In the second part of this paper, the crack tip constraint ahead of a growing

crack in such pipes is evaluated and systematically compared to the crack tip con-

straint of both the traditionally used deeply cracked Single Edge Notch Bend (SENB)

specimens and the constraint-matched Single Edge Notch Tensile (SENT) specimens.

This is achieved by comparing the crack resistance curves (R-curves) along with stress

triaxiality and equivalent plastic strain fields evaluated ahead of a growing crack of

the three systems. The results present grounds for justification of usage of SENT

175
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specimens in fracture assessment of such pipes as an alternative to the traditional

overly conservative SENB specimens.

Keywords: Pipelines, Fracture failure mode, Combined Loading, Ductile Crack Growth, Crack Tip

Constraint

8.2 Introduction

Currently, the design philosophy of offshore oil and gas pipelines as manifested in

major design codes is based on the limit state approach [2, 3]. In this approach,

each potential failure mode of the pipeline (such as bursting, local and global buck-

ling, ovalization, fracture and etc.) are investigated separately. A pipeline could be

frequently subjected to bending (both during the installation and operation), often

combined with internal pressure, in turn causing a biaxial stress state in pipe’s wall. A

great number of these loading conditions are categorized as displacement controlled,

thus providing the grounds for safely utilizing the plastic deformation capacity of

the pipeline, as has been foreseen within the so-called Strain Based Design (SBD)

approach [13].

The classical approach to assess a pipeline against the fracture failure mode (trig-

gered by a welding flaw, and generally termed a crack), consists of two stages. First,

the crack driving force in the structure (in terms of J or CTOD for elastic-plastic

regime relevant to SBD) is estimated. Subsequently, this value is compared with the

materials fracture toughness (Jc or CTODc). A more detailed approach would involve

a ductile tearing analysis in which the R-curve (describing the variation in fracture

toughness of the material as a function of crack growth) is utilized to demonstrate

the amount of stable crack growth.

The DNV offshore standard [2], and also the DNV guidelines on fracture assess-

ment of reeled pipelines [9], both refer mainly to BS 7910 [8] for assessment of the

fracture failure mode. The main crack driving force equation of BS 7910 [8] is based

on the reference stress approach of Ainsworth [36] and the further improvements

proposed by Milne et al. [40]. Note that the reference stress approach itself is an

extension and simplification of the Electric Power Research Institute method [35].
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Recent advancement of the topic includes the alternative assessment schemes devel-

oped by Østby [50], Tkaczyk et al. [51] and Nourpanah and Taheri [125] among the

others. For combined loading scenarios, Jayadevan et al. [120], Østby et al. [47] and

Gordon et al. [128] have shown that the addition of internal pressure to the primary

tensile or bending load could substantially increases the crack driving force.

As an alternative to the above mentioned crack driving force estimation schemes,

which mostly consider a stationary crack, it is possible to explicitly model the crack

growth using detailed FE models. In such an approach, the critical or failure state

of the pipeline would be manifested as a rapid loss of load bearing capacity of the

structure. A well established numerical methodology to model the ductile crack prop-

agation phenomena in a structure is to incorporate the voided plasticity material

model often referred to as the Gurson-Tvergaard-Needleman (GTN) material model,

due to Gurson [84], who originally developed the model, and also Tvergaard and

Needleman [89], who later modified it. Several researchers [91, 96–99] have demon-

strated the applicability and robustness of such a computational model for predicting

the response of laboratory-size specimens undergoing ductile crack growth. In the

context of pipelines subject to large plastic deformations, recent research by Sandvik

et al. [100] and Dybwad et al. [101] both presented comparison of full scale test re-

sults on pipelines to predictions of nonlinear FE models (utilizing the GTN material

model to accommodate ductile crack growth), showing satisfactory agreement. In the

first part of the present paper, such a FE model is incorporated to systematically

investigate the effect of a variety of different parameters, including the crack size and

pipeline geometrics along with biaxial loading effects on the critical curvature of the

pipeline.

The fracture assessment route also involves determination of material’s fracture

toughness and/or R-curve from laboratory-size specimens. Traditionally, high con-

straint laboratory specimens such as the Compact Tension (CT) or Single Edge Notch

Bend (SENB) with deep cracks (a/W ≤ 0.5) were recommended [75]. These configura-

tions result in the lower bound fracture toughness of the material, with the uncracked

ligament undergoing brittle fracture. The choice of high constraint laboratory speci-

mens is irrespective of the actual constraint of the flawed structure under assessment.
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Recently there has been an increased interest to provide the grounds for use of the

so-called constraint matched specimens (i.e. a specimen with the same crack depth

as in the actual structure) for the assessment and thus minimizing the excessive con-

servatism, as recommended in ref. [9]. For instance, the two-parameter J-Q fracture

theory of O’Dowd and Shih [67, 68] has been incorporated in a number of studies

on stationary cracks, and it has been successfully demonstrated that the constraint-

matched Single Edge Notch Tensile (SENT) specimen can provide similar constraint

to pipelines having a circumferential crack subject to bending (and internal pressure)

up to extreme plastic deformation levels [78, 103, 126].

However, to the best of our knowledge, no generally accepted constraint theory

exists for characterizing the near tip stress and deformation fields ahead of a prop-

agating crack. Thus, the constraint match proved for stationary cracks can only be

heuristically argued to hold for growing cracks. In contrast, a more direct approach

can be incorporated as an alternative. The above mentioned FE model, which could

effectively capture ductile crack growth by utilizing the GTN material model, could be

used to determine the R-curves of the cracked pipeline and that of the corresponding

constraint-matched SENT specimen along with the traditionally used deeply cracked

SENB specimen. A comparison of the respective R-curves of these geometries would

demonstrate the constraint similarity/match, and the suitable laboratory specimen

for fracture toughness testing could be determined. Such an approach has been un-

dertaken by Cravero et al. [103], who compared the R-curves of constraint matched

SENT specimens with plates subject to biaxial loading (as a simplification of a pipe

subject to combined loading). Xu et al. [104] also considered 2D SENT specimens

and pipelines subject to tension and internal pressure with a full circumferential crack

(thus enabling the use of 2D axisymmetric FE models), and again demonstrated the

suitability of the constraint matched SENT specimen.

In the second part of this paper, 3D FE models of pipelines with realistic crack

shapes and dimensions, subject to relevant loading scenarios are analyzed, and the

suitability of the constraint matched SENT specimens are discussed via the R-curve

approach.
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8.3 Background and Numerical Procedures

8.3.1 The GTN Voided Plasticity Material Model

The ductile crack growth phenomenon is a result of void nucleation, growth and

coalescence. McClintock [81], and Rice and Tracey [82] showed that the growth rate

of a single void in an infinite continuum is an exponential function of the stress

triaxiality, σm/σe. Gurson [84] considered a continuum (matrix) which contained an

initial void. Using an upper bound approach, he showed that the yield potential of

such a material could be approximated by the following function:

Φ(σe, σm, σf , f) =

(
σe

σf

)2

+ 2q1f cosh

(
3q2σm

2σf

)
− (

1 + q3f
2
)
= 0 (8.1)

The first term on the RHS of Equation (8.1) is the usual J2-plasticity yield loci,

while the second and third terms introduce the effect of voids and their growth due to

the mean stress σm. For a non-porous material (i.e. f = 0), the function capitulates

to the J2-plasticity yield potential. In this study, the uniaxial stress–strain curve

of the matrix material has been assumed to follow a piecewise power-law, described

mathematically by:

ε =

⎧⎨
⎩σ/E for σ � σy,

εy (σ/σy)
n for σ > σy.

(8.2)

In Gurson’s original analysis [84], it was assumed that q1 = q2 = q3 = 1, while

Tvergaard [85] showed that by setting q1 = 1.5, q2 = 1.0 and q3 = q21 , a better fit to

the experimental data could be achieved. These values have been widely used in the

literature when using the GTN model. However, more recently, Faleskog et al. [86]

showed that the value of q1 and q2 would depend on both n and σy/E and presented

tabulated values of the q1 and q2 coefficients accordingly.

Upon the application of load, the void volume fraction, f , would increase, both

due to enlargement of the existing voids, and also, to a lesser extent, due to nucleation

of new voids. Thus the rate of void volume fraction increasing would be:

df = dfgr + dfnucl (8.3)
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In reference to the incompressible plastic flow of the matrix material in the GTN

model, the growth rate of the existing voids would read:

dfgr = (1− f) dεpii (8.4)

Needleman and Rice [87] have proposed an empirical equation to approximate the

void growth rate caused by nucleation of new voids as a function of mean and flow

stress rates and equivalent plastic strain rate1:

dfnucl = A1 dεp + A2( dσf + dσm) (8.5)

Assuming a normal distribution for the rate of void nucleation intensity, Chu and

Needleman [88] expressed A1, for strain controlled nucleation (i.e. when A2 = 0), as:

A1 =
fn

sn
√
2π

exp

[
−1

2

(
εp − εn

sn

)2
]

(8.6)

while for stress controlled nucleation (where A1 = 0), A2 would read:

A2 =
fn

sn
√
2π

exp

[
−1

2

(
σf + σm − σn

sn

)2
]

(8.7)

where εn and σn are the mean nucleation strain and stress, respectively, and sn is the

standard deviation.

A material whose plastic flow could be described by Equation (8.1), can be used

to model ductile crack growth. However, the assumption that neighboring voids do

not interact is implicit in such an approach. On the contrary, the final phase of

an increment of ductile crack growth includes necking of the matrix between two

neighboring voids, leading to the final coalescence. This last phase is marked by a

rapid loss of stress carrying capacity of the element. To account for these effects,

Tvergaard and Needleman [89] introduced a modification to the original Gurson yield

potential. They suggested using f ∗ instead of f in Equation (8.1), defined as:

f ∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f for f � fc,

fc +
f ∗
F − fc
fF − fc

(f − fc) for fc < f < fF ,

f ∗
F for f � fF .

(8.8)

1Needleman and Rice [87] proposed Equation (8.5) for stress controlled situations, thus without
the A1 dεp term. The presented form of Equation (8.5) can be found in Ref. [94]
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where f ∗
F = (q1 +

√
q21 − q3)/q3 (keeping in mind that when q3 = q21, it is seen that

f ∗
F = 1/q1). The void volume fraction at initiation of void coalescence is denoted

by fc, while fF represents the void volume fraction at final fracture where the stress

carrying capacity of the element vanishes.

8.3.2 The Cell Model Approach

One approach to simulate ductile crack using the GTN material model is to model

the whole structure with such a material; as such, the crack propagation direction will

also be governed by the model. However, in a series of papers, Xia and Shih [93–95]

stated that a more feasible modeling approach could be achieved by using the GTN

material definition to describe only the region corresponding the initial crack plane,

ahead of the crack tip (the so-called row of voided cells), while using a conventional

elasto-plastic material model to model the remainder of the body. This approach was

supported by experimental data of ductile crack growth in most metals that exhibit

a planar propagation path. They further stated that the size of the GTN elements

(D0) used to model the crack front should be in the micro-level order, thus roughly

representing the average spacing between large inclusions (voids) in the material,

ahead of a crack. In other words, each element ahead of the crack is assumed to

contain a single void. With this modeling approach, the crack tip element would

go extinct once its void volume fraction reaches fF , thus the crack would grow an

increment equal to D0. This process would continue till the final failure stage.

Moreover, it was shown [94] that the contribution of void nucleation (due to the

second phase particles) to the void volume fraction increase could be neglected, and

df could be assumed to be driven by the growth of the existing voids (i.e. df = dfgr

and dfnucl = 0, see Equation (8.3)). This simplification is extremely convenient,

as the void growth rate due to nucleation (Equations (8.5), (8.6) and (8.7)) are still

under debate. The cell model approach has been experimentally verified [97], and also

Ruggieri et al. [96] extended the approach to model 3D cracks in different specimens.

Their results showed good agreement with their experimental data. The cell model

approach is therefore incorporated in the 3D FE analysis in the present study.



182

X

Y

2c

D 

t

a
r1=a 

s 

Figure 8.1. Schematic of the cracked pipeline cross section.

8.3.3 FE Modeling

The ABAQUS general FE software [10] was used in this study. 3D models of pipelines

were constructed, having a semi-circumferential external part-through canoe shaped

crack at their 12 O’clock position. Figure 8.1 shows the cross section of the pipe

at the crack location and the canoe shape of the crack front, with its fillet radius

equal to the crack depth. The considered crack shape is representative of real weld

flaws observed in offshore pipelines [47, 120]. The pipeline is subjected to combined

bending and internal pressure. The loading sequence consists of two steps, with the

pipe undergoing internal pressure first, and bending in the second step, thus following

a realistic loading scenario [47, 120].

In all models, the pipeline has a wall thickness of t = 20 mm. Pipelines with a

D/t ratio of 10 to 60, a crack depth of a = 2 ∼ 6 mm (a/t = 0.1 ∼ 0.3) and crack

length of 2c = 50 ∼ 250 mm have been considered. The considered crack depths

cover the range of practical interest, as the weld pass height governs the flaw sizes

in girth welded pipelines, which is typically 2 ∼ 6 mm in height [9]. Following the

internal pressure-hoop stress relationship of p(D/t− 1) = 2σh, various magnitudes of

internal pressure causing hoop stress of up to 75% of the yield stress (σh/σy = 0.75)

were considered. Moreover a tensile force corresponding to the so-called end-cap effect
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was applied to pipe’s ends. The force was calculated by 2: TEndCap = 1/4πp(D − t)2.

Application of the end-cap tension is necessary in a bending analysis involving large

rotations; otherwise the extracted moment would be different at each location along

the pipeline length [47].

A double symmetric FE model of the pipeline with a length of L = 2D has

been considered (see Figure 8.23), which has been shown to be of sufficient length

to capture the response discontinuity caused by the crack [125]. A single layer of

elements containing the initial crack front profile have the GTN material definition

with element size of 1/2D0 (due to symmetry). D0 was selected as 200μm, as has

been incorporated in similar studies by other researchers [97, 100, 101]. The rest

of the model has the conventional elasto-plastic (i.e. no-damage) material definition.

A mesh transition region shown in Figure 8.2 (Right) was included in the mesh to

achieve the fine 1/2D0 × 1/2D0 element mesh (in the Y-Z plane) of the voided (GTN)

cells. A more descriptive view of the initially sharp crack tip and the arrangement of

the GTN elements is illustrated in Figure 8.5a. Xia et al. [97] showed that both the

initially sharp and blunt crack tips produce very similar R-curves after the first few

increments of crack growth has taken place. Depending on the specific crack and pipe

geometrics, the FE mesh consisted of 43,000-55,000 C3D8R elements (a 3D continuum

element with 8 nodes, reduced integration and hour-glass control features [10]).

The pipe-end cross-section rotation was controlled by a master node, such that

the cross section was constrained to remain plane (Euler bending), but free to ovalize.

A Multi-Point Constraint was used to enforce such conditions, with the following

relationship:

tanRx =
zj − zmn

yj − ymn

(8.9)

where yj and zj are the coordinates of the jth node located on the pipe-end cross-

section and ymn and zmn are the coordinates of the master node (see Figure 8.2),

following the deformed pipe configuration. It is understood that as the plastic defor-

mation increases, the Euler assumption would not strictly hold; however, the result-

ing error has known to be insignificant [119]. The application of bending was done

2Regarding the doubly-symmetric pipeline FE model as will be discussed later, half of this value
of TEndCap is applied to the model.

3The presented Figure 8.2 is slightly more detailed than that submitted to the journal.
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Figure 8.2. FE mesh of the pipeline and close-ups of the cracked region and the mesh
transition arrangement.



185

by increasing the rotation of the master node in each model until a decline in the

moment-curvature (M -κ) curve was observed, indicating the fracture failure. All the

pre-processing tasks, including generation of the complicated mesh were performed

with in-house developed Python scripts, which significantly expedited the parametric

study4.

The nonlinear geometric effect (NLG) was accounted for in all models in order to

accurately model the blunting of the crack tip, the severe plastic deformation of the

voided GTN elements ahead of the crack tip, and also the large rotation imposed on

the pipeline through the master node. For modeling the response of the background

material (the undamaged elasto-plastic media) and also the matrix of the GTN ma-

terial, the rate-independent associated J2 incremental plasticity theory with a Mises

plastic potential and isotropic strain hardening features was considered. The mate-

rial model followed the uniaxial true stress–strain relationship described by Equation

(8.2). The ABAQUS formulates the equilibrium equations in an incremental form

based on an updated Lagrangian framework. For treatment of elasto-plastic continua

undergoing NLG, the rate of deformation is selected by ABAQUS as the strain mea-

sure, while the Jaumann rate of the Kirchhoff stress is employed as the suitable stress

measure [10]. However, the Cauchy (true) stress and Logarithmic strains are reported

as the output for convenience.

8.3.4 The Explicit Solution Procedure

The ABAQUS/Explicit [10] solver was used in this study. While the explicit solvers

were initially developed for dynamic and impact problems, they can also be utilized to

efficiently simulate quasi-static response. The ABAQUS/Explicit solver uses a central

difference time integration scheme with 2nd order accuracy, which is only condition-

ally stable. Therefore, very small time increments are required to satisfy the stability

condition. Nonetheless, the explicit solution technique becomes advantageous by not-

ing that each increment is computationally relatively cheap, as it does not require

solution to a set of simultaneous equations and iterations (unlike the implicit solvers

4Detailed presentation and explanation of the Python scripts used in this chapter can be found
in Appendix A.
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such as the ABAQUS/Standard [10]). Furthermore, only the ABAQUS/Explicit has

the capability to incorporate the failure criteria used in conjunction with the GTN

material model. That is, the code considers the conditions set by Equation (8.8) and

removes the voided element form the mesh when f = fF at the integration point of

the element. Therefore, the incremental element removal explicitly models ductile

crack growth.

The critical time increment (Δtc) satisfying the central difference stability criterion

is related to the maximum eigenfrequency of the system (ωmax), which by neglecting

damping follows [129]:

Δtc = 2/ωmax (8.10)

Furthermore, it can be shown that ωmax � ωe
max [129], where ωe

max is the maximum

eigenfreguency of an element in the system, thus

Δtc � Lmin/cd (8.11)

in which Lmin is the smallest element dimension in the mesh and cd is the dilatational

wave speed across that length. The ABAQUS/Explicit assumes a hypoelastic material

response and calculates cd based on the effective Lamé constants [10]:

cd =

√
λ̂+ 2μ̂

ρ
(8.12)

where λ̂ and μ̂ are the first and second effective Lamé constants and ρ is material’s

density.

Considering Equation (8.11), it can be seen that for meshes involving very small

element sizes (such as those customarily used for fracture mechanics modeling), Δtc

becomes very small and hence the computational cost might become prohibitive. To

overcome this, one can artificially decrease the loading event time to achieve a shorter

overall simulation period; however, the inertia effects have to be monitored to be

minimal. The ABAQUS/Explicit offers a more robust and effective approach entitled

mass scaling, which increases the material density ρ to achieve a larger Δtc (see

Equations (8.11) and (8.12)). Variable levels of mass scaling can be carried out for

each element in the mesh (depending on their size) to achieve a uniform Δtc (thus
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the smallest elements would have the largest increase in their ρ and vice versa). In

the present study, the variable mass scaling technique has been incorporated such

that each loading step is solved with 200,000 increments (each step being 1 sec long),

which resulted in a quasi-static response and lowered overall runtimes. Furthermore,

the smooth amplitude function of the ABAQUS was used in each step to impose

the loading (displacement) onto the structure. The amplitude function is represented

by [10]:

amp = ξ3(10− 15ξ + 6ξ2) (8.13)

where ξ is the normalized step time (i.e. ξ = 0 at the beginning of each step and ξ = 1

at the end of the step). That is, at each instant in time (ξi) a fraction of amp(ξi) of

the load (i.e., Rx) is applied onto the pipe’s end.

To verify the explicit scheme and assess its computational efficiency, a typical

pipeline model was solved with both the ABAQUS/Explicit and ABAQUS/Standard

solvers. The ABAQUS/Standard solver uses an implicit solution algorithm which is

common for static simulations. The implicit model did not have the element removal

feature and the rapid deterioration modification of Equation (8.8). The resulting M -κ

curves are shown in Figure 8.3. The close agreement of the two solutions up to the

critical point showcases that the dynamic effects in the explicit solution are minimal

and the captured response can be deemed as quasi-static, thus justifying it for further

use. The explicit solution runtime was approximately three times faster than the

implicit one.

8.3.5 Material Properties

The background elasto-plastic (i.e. no damage) material model is defined by four

parameters, namely E, ν, σy and n. On the other hand, the voided plasticity GTN

material within the cell model (i.e., the damaged material) requires seven more pa-

rameters, which are: f0, fc, fF , q1, q2, q3, D0 (these are in addition to the former

four parameters, which describe the response of the matrix of the GTN material).

Generally, the first three parameters of the GTN model are determined by fitting

the characteristic load-displacement curve of a laboratory specimen to those obtained

from FE simulations by a trial error approach (essentially, selecting various values
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Figure 8.3. Comparison of the ABAQUS/Explicit and ABAQUS/Standard solutions
(σh/σy = 0).

Table 8.1. Parameters describing the elasto-plastic and GTN material models.

E (GPa) ν σy (MPa) n f0 fc fF q1 q2 q3 D0(μm)

200 0.3 400 25 0.0002 0.013 0.1504 1.678 0.975 q21 200

of f0, fc and fF , until the best match between the computational and experimental

results is obtained [91]). In this research, the quantities obtained for the pipeline

steels as reported in the literature are used [100, 101, 130]. Note that the assumption

of fF = 0.15 + 2f0 used by Sandvik et al. [130] is in accord with the experimental

observations of fF as cited by Tvergaard and Needleman [89]. Furthermore, the data

of Faleskog et al. [86] is used for determination of q1 and q2 (using σy/E = 0.002 and

n = 25). All the material properties used in our study are reported in Table 8.1,

which are believed to be descriptive of the response of a typical high strength offshore

pipeline steel.
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Figure 8.4. Typical M -κ and Δa-κ response of a cracked pipeline (σh/σy = 0).

8.4 Critical Curvature (κcrit) of a Cracked Pipeline

8.4.1 Typical Response Characteristics

Figure 8.4 shows the typical M -κ response of a flawed pipe (solid line). Upon appli-

cation of bending, the initially sharp crack tip starts to blunt, and at κi � 180× 10−6

(1/mm), the first voided element at the crack tip reaches a void volume fraction of

fF = 0.1504 and is removed from the mesh, thus simulating the initiation of crack

growth. At κcrit � 360 × 10−6 (1/mm) a sudden drop in M is observed, which is

due to the crack growing to an extent that the cross section loses its moment bearing

capacity. Indeed, the dashed lines in Figure 8.4 (showing Δa as a function of κ on the

right vertical axis), confirms the above mentioned postulation. As shown in the fig-

ure, Δa = 0 at κi and increases linearly as a function of κ and reaches approximately

2.5 mm at κcrit, and subsequently a very rapid increase in Δa occurs, indicating the

occurence of fracture failure. Furthermore, it is observed that κcrit/κi � 2, indicating

that crack growth influences the response through nearly half of the loading history.
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Figure 8.5a shows the crack plane at the crack center (s/c = 0), at the unloaded

situation, followed by extreme blunting prior to crack growth (Figure 8.5b), the initial

ductile tearing (Figure 8.5c) and finally, accommodating a large amount of crack

growth leading to failure of the pipe (Figure 8.5d). Figure 8.5e illustrates a 3D view

of Figure 8.5d. It is observed from the figure that Δa is approximately constant along

the crack front (s-coordinate). This feature is observed in other pipeline models too,

and thus, the values of Δa at s/c = 0 is extracted and discussed hereafter.

Common FE meshes used to study stationary cracks would usually have a focused

spider web pattern around the crack tip, which also facilitates the J-integral extrac-

tion. However, the FE meshes often used in modeling crack growth (e.g. Figure 8.2b

and 8.5a), do not follow the mentioned meshing approach, and thus the extraction of

the J-integral would lead to erroneous quantities. Therefore, in this study, the equally

applicable CTOD has been selected as the crack-tip characterization parameter (note

that the CTOD values are extracted from the node at a distance of D0 from the initial

crack tip node, as illustrated in Figure 8.5d). All the R-curves presented in the study

thus describe the variation of CTOD as a function of Δa. Figure 8.6 shows a typical

R-curve, in which the raw FE data (dashed line) increases in a stepwise manner due

to the fact that the smallest increment of crack advance is 1/2D0. However, once the

raw data is smoothed, it follows a linear trend. This smoothened R-curve is further

examined and discussed hereafter.

The void volume fraction ahead of the (current) crack tip for three values of Δa is

shown in Figure 8.7 (the r-coordinate is shown in Figure 8.5e). At the current crack

tip, f/fF = 1 for all the three profiles and then it decreases very rapidly to f0 over a

few multiples of D0. Thus, it can be argued that the fracture process zone in which

the void growth mechanism is active spans only over a distance of (2 ∼ 3) × D0, in

accord with the observations made by other researchers [93]. Furthermore, the f/fF

profiles at all three levels of crack growth (Δa = 0.2, 1, 2 mm) are very similar, thus

indicating the attainment of a steady state situation.
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Figure 8.5. The crack plane (s/c = 0) at various levels of loading and crack growth
(a-d), and the 3D view of the cracked region (e).
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Figure 8.6. Typical R-curve of a cracked pipeline (σh/σy = 0).

Figure 8.7. Typical distributions of f ahead of the growing crack at s/c = 0 in pipe
(σh/σy = 0).
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8.4.2 Parametric Study on the Critical Curvature (κcrit)

It is commonly agreed that for an unflawed pipeline subject to bending and internal

pressure, the increase in σh/σy would decrease the moment capacity of the pipe, while

the pipe could undergo larger curvatures prior to its local buckling failure [2, 3].

For a cracked pipeline, the larger values of σh/σy would increase the crack driving

force [47, 128], thus it can be inferred that the fracture failure mode would also be

promoted.

The M -κ curves for various values of σh/σy of a typical pipeline, are shown in Fig-

ure 8.8. The four solid curves for σh/σy � 0.25 correspond to the typical failure charac-

teristics due to ductile crack growth and the subsequent fracture (e.g. sudden decrease

in the moment capacity at the critical stage). For these four curves, increasing σh/σy

would indeed reduce the maximum elastic attainable moment capacity, and more im-

portantly, drastically reduce the value of κcrit. For instance, for the σh/σy = 0.25 case,

κcrit is nearly three times larger than that for the σh/σy = 0.75 case. The same figure,

illustrates that the two M -κ curves (dashed) corresponding to σh/σy = 0 and 0.125

do not exhibit the typical fracture failure characteristics. In those cases, the moment

capacity decreases very gradually and the definition of a critical curvature becomes

even rather ambiguous. It is believed that these two curves represent failure due to

local buckling (i.e. excessive ovalization at the cracked cross section). A closer look

at these two classes of responses, reveals that at their critical point, the pipes subject

to σh/σy � 0.25 would have undergone large amounts of crack growth (Δa � 4 mm),

while their ovalization would be relatively small (ΔD/D < 0.04). On the other hand,

the cases suspect to local buckling (which are subject to σh/σy < 0.25) undergo rel-

atively small amounts of crack growth (Δa � 0.4 mm), while their ovalization is

relatively more severe (ΔD/D > 0.07). Furthermore, the local buckling failure cases

manifest the expected effect of internal pressure. For example, the σh/σy = 0.125

case exhibits a larger κcrit than the pipe undergoing pure bending (σh/σy = 0). The

discussed transitional effect of the internal pressure on the failure mode is in agree-

ment with the observed response of full scale experiments [131]. It should however

be noted that no imperfection was introduced in the FE models, and the crack itself

served as an imperfection to trigger the ovalization of the pipe at that location.
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Figure 8.8. M -κ curves of pipelines subject to combined loading with various values of
internal pressure (σh/σy).

While Figure 8.8 presented the response of pipes with D/t = 20, the same analysis

was carried out to investigate the response of pipes with various D/t values, ranging

from 10 to 60 (i.e. covering thick-wall pipelines usual for reeling applications as well

as large diameter ones used as trunk lines). The results are presented in Figure 8.9,

showing the variation of κcrit as a function of σh/σy for a family of D/t values. The

open symbols indicate that the failure mode was due to ductile fracture, while the

solid symbols indicate a local buckling/ovalization failure mode. As for the fracture

failure mode, it can be observed that κcrit decreases steadily as σh/σy increases, how-

ever an asymptotic behavior is observed for σh/σy > 0.375. As observed in Figure 8.8,

for lower values of σh/σy (< 0.25), ovalization governs the failure mode. A maxima is

observable in each curve, which indicates the threshold value of σh/σy, which distin-

guishes the fracture and ovalization behavioral regimes. The threshold value seems to

be a weak function of D/t. For the considered crack size (a = 3 mm, 2c = 100 mm)

the threshold value is determined to be at approximately σh/σy � 0.125. Further-

more, the effect of σh/σy on κcrit is seen to be more pronounced for thick-wall pipelines

(D/t = 10, 15, 20).

TheM -κ curves for a family of crack depths are presented for two different values of
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Figure 8.9. The effect of σh/σy on κcrit for a family of D/t values (open symbols indicate
a fracture failure mode and solid symbols indicate a local buckling failure mode).

internal pressure in Figure 8.10. For the σh/σy = 0.25 family of curves, the shallowest

crack considered (a/t = 0.1) does not trigger the fracture failure mode, and the

ovalization of the cross section governs the response. However, for larger crack depths

(a/t � 0.15) the characteristic sudden drop in moment capacity due to excessive crack

growth is observed. For both levels of σh/σy shown, the pipes with the largest crack

(a/t = 0.3) exhibit very limited plastic deformation capacity and the fracture failure

occurs very soon after the elastic regime is finished. The effect of σh/σy is also evident

on decreasing both the proportional limit moment and also κcrit (note that the critical

curvature of the pipe with a/t = 0.15 decreases by 50% when σh/σy increases from

0.25 to 0.75).

The same parametric study was carried out for a wider range of σh/σy and the

resulting κcrit values as a function of a/t are summarized in Figure 8.11. As seen,

κcrit decreases very rapidly as a function of a/t. However, the curves start converging

to an asymptote for a/t � 0.2. Furthermore, the variation in κcrit seem to become

independent of the internal pressure level for σh/σy � 0.5 and a/t � 0.2. The critical

curvature for all levels of internal pressure is nearly identical for the pipelines with
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Figure 8.10. M -κ curves for a family of a/t values and at two levels of σh/σy.

the deepest crack (a/t = 0.3).

Figure 8.12a shows M -κ curves corresponding to different (initial) crack lengths,

ranging from 2c = 50 mm to 250 mm for an internal pressure level of σh/σy = 0.25,

while Figure 8.12b is for σh/σy = 0.75. For both cases, the negative effect of longer

cracks on decreasing the critical curvature is observed. Figure 8.12c shows κcrit as

a function of 2c. While increasing the crack length from 2c = 50 mm to 100 mm

decreases κcrit by a third, the effect is less pronounced for larger values of 2c. That

is, κcrit changes very mildly for 2c � 150 mm.

8.5 Constraint Match in Ductile Crack Growth

In this section, the similarity in crack tip constraint of the three systems is investi-

gated, which are:

(i) Pipelines subject to a combined internal pressure and bending,

(ii) SENT specimens5 with the same crack depth as the pipeline (i.e. constraint

5SENT specimens loaded in fixed grip displacement control.
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Figure 8.11. κcrit as a function of a/t for different values of σh/σy.

matched); and

(iii) Traditionally used deeply cracked SENB specimen with a/W = 0.5.

Due to the lack of a generally accepted constraint theory for growing cracks, con-

straint similarity is studied via comparison of the R-curves and also comparison of the

near-tip equivalent plastic strain (εp) and stress triaxiality fields (σm/σe) at various

levels of crack growth.

The FE model for the SENT and SENB specimens consisted of ∼30,000 and

∼35,000 C3D8R elements respectively, while the rest of the modeling and solution

details are very similar to those of the pipeline discussed earlier in Section 8.3.3 (with

the arrangement of the GTN voided elements ahead of the crack tip also shown in Fig-

ure 8.5a). Figure 8.13a shows a double-symmetric model of the SENT specimen with

relevant dimensions (in accordance with DNV’s recommendations [9]) and boundary

conditions (BC). The deformed crack region undergoing ductile crack growth is shown

on Figure 8.13b.

The deeply cracked SENB model (a/W = 0.5) with dimensions as per ASTM-

E1820 standard [75] is presented in Figure 8.14a. The two rollers, one for the support
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Figure 8.12. M -κ curves for a family of 2c values for (a) σh/σy = 0.25 and (b)
σh/σy = 0.75. (c) κcrit as a function of 2c.
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Figure 8.13. (a) a typical FE model of the SENT specimen (a/W = 0.1) and (b) the
deformed crack region showing crack growth and contours of εp.

with radius of 1/4W and one for loading application with radius of 1/8W [75] are also

shown. These rollers are modeled as analytical rigid surfaces, interacting with the

specimen through a frictionless contact definition. The X and Z-plane symmetry

BC’s of the SENB specimen are similar to those of the SENT. Figure 8.14b shows

the cracked region after some amount of crack growth. Both Figure 8.13b and 8.14b

demonstrate that the initially horizontal crack front grows to a curvilinear shape (i.e.

Δa at the free end is smaller than Δa at the symmetry plane), hence explaining the

necessity of a biased mesh towards the free end (as seen in Figures 8.13a and 8.14a).

The same steel material as used for modeling the pipeline (see Table 8.1 for material

parameters) was used for the SENT and SENB as well.

8.5.1 R-curve Comparisons

In the subsequent discussion, the R-curves (representing the variation of CTOD as

a function of crack growth, Δa) are presented for the first 2 mm of crack growth (up

to Δa = 10 ×D0). Also, the R-curves of the specimens are highlighted with a solid

line, while those of the pipeline are represented by the scattered data symbols. Figure

8.15a–c shows the R-curves for three crack depths, a/t = 0.1, 0.2, 0.3, compared to

both the SENT and SENB specimens. In all cases, the SENT specimen results (with
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Figure 8.14. (a) The deeply cracked SENB specimen model (a/W = 0.5) and (b) the
deformed crack region showing crack growth and contours of equivalent plastic strain, εp.

Figure 8.15. R-curves of pipes (D/t = 30, 2c = 100 mm, σh/σy = 0.25) with crack
depths of (a) a/t = 0.1, (b) a/t = 0.2, (c) a/t = 0.3 compared to those of SENT and

SENB specimens.

same crack depth as the pipe) correlate much better to those of the pipe. The SENT

specimen results provide an upper envelope to the CTOD of the pipe, while the R-

curve of the deeply cracked SENB predicts substantially lower values in comparison

to the pipe.

In Figure 8.16, the R-curves of pipes with different crack lengths from 2c = 50 mm
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Figure 8.16. R-curves of pipes with various crack lengths compared to those of SENT
and SENB specimens.

to 250 mm are shown in conjunction with those obtained from the SENT and SENB

specimens (both deeply cracked, a/W = 0.5, and same crack size SENB, a/W = 0.15,

specimens). All pipes tend to exhibit R-curves similar to the SENT specimen, with the

R-curve of the SENT, again providing an upper envelope to the pipe. Interestingly,

even the SENB specimen with a/W = 0.15 cannot provide an accurate estimation

of the pipe’s R-curve when Δa > 1 mm, while on the other hand, good agreement

between the pipe and SENT R-curves holds, even as the crack grows. Although a

clear-cut trend for the influence of 2c on the R-curve of pipes cannot be established,

however, the pipe with the longest crack (2c = 250 mm) shows the best agreement

with the SENT specimen.

The R-curves of the two pipes with D/t = 10 and 40 are shown in Figure refdcg17

along with those of the SENT and SENB specimens. The R-curve of the pipe with

D/t = 10 perfectly matches to that of the SENT specimen up to Δa = 1.2 mm, while

the R-curve of the D/t = 40 pipeline has less conformity with that of the SENT

throughout the crack growth range. Still, it is clearly evident that the deeply cracked
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Figure 8.17. R-curves of the two pipes with D/t = 10 and 40 compared to those of the
SENT and SENB specimens.

SENB specimen cannot provide a R-curve similar to that of the pipeline6.

The effect of the internal pressure on the R-curve is illustrated in Figure 8.18 ,

which shows pipes’ response subject to σh/σy = 0.25, 0.375 and 0.75. It is observed

that as the internal pressure level is increased, the R-curves fall a little below the

R-curve of the SENT specimen. However, no agreement is evident between the pipe

and that of the deeply cracked SENB specimen. It should be noted that the increasing

values of σh/σy would promote ductile fracture failure and hence, the global plastic

deformation at failure in the pipe with σh/σy = 0.75 would be much lower than the

pipe with σh/σy = 0.25. This explains the sequential drop of pipe R-curves as a

function of increasing σh/σy.

Based on the detailed R-curve parametric comparison given above, it is believed

that the SENT specimen with the same crack size as in the pipeline could provide very

similar R-curves as that of cracked pipelines with a variety of geometric features and

loading conditions. The traditional deeply cracked SENB specimen with a/W = 0.5

is found to be too conservative for characterizing the R-curve of a cracked pipe.

6Pipes with other values of D/t were also investegated but the results are not shown in Figure
8.17 for clarity. The drawn conclusions does hold true for them too.
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Figure 8.18. R-curves of pipes subjected to various levels internal pressure compared to
those of SENT and SENB specimens.

8.5.2 Comparisons of the Stress Triaxiality and Equivalent Plastic Strain

Ahead of the Growing Crack

To further investigate the constraint similarity of the SENT specimens with cracked

pipelines, a detailed comparison on the equivalent plastic strain (εp) and stress triax-

iality (σm/σe) fields are presented here. Both these quantities are prominent factors

affecting the ductile crack growth process. The stress triaxiality, σm/σe, governs the

void growth process (see Equation (8.1)), while the final failure of the matrix mate-

rial between two enlarged voids (causing coalescence) occurs due to the necking or

slipping mechanism, both controlled by the equivalent plastic strain (εp).

For comparison, σm/σe and εp fields are extracted at three successive values of

crack growth: Δa/D0 = 1, 5 and 10 (corresponding to Δa = 0.2, 1 and 2 mm) from

the pipe, SENT and the deeply cracked SENB models. The r-s coordinate system for

the pipe is shown in Figures 8.1 and 8.5e. For the SENT and SENB specimens the

s-coordinate runs along the initial straight crack front (i.e., s/B = 0 at specimen’s

center and s/B = 1 at specimen’s free end; see Figure 8.13 and refdcg14), while the

r-coordinate emanates at the initial crack tip toward the uncracked ligament, similar

to that in the pipeline.
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Figure 8.19. Distribution of εp ahead of the initial crack tip at the crack center
(s/c = s/B = 0), for the pipe, the SENT and deeply crack SENB specimens (pipe specs:

D/t = 30, 2c = 100 mm and σh/σy = 0.25).

Figure 8.19 shows εp profiles ahead of the growing crack at the crack center

(s/c = s/B = 0). In all the three sub-figures, εp attains maximum at the current

crack tip and decreases precipitously to a very lower level over a distance 2 ∼ 3×D0,

and remaining constant thereafter. The size of these singular zones is comparable to

the active void growth zone (refer to Figure 8.7 and its explanations). For all values

of Δa it is observed that the εp distribution in the pipe tends to be more similar to

the SENT specimen. The agreement is especially best in the singular zone, where the

εp profiles of the pipe and the SENT specimen are almost identical. Further away

from the current crack tip, the two profiles diverge slightly, with the SENT providing

an upper envelope to the pipe. However, the εp profile of the deeply cracked SENB

is considerably lower than both the pipe and also the SENT specimen in both the

singular zone and the non-singular zone (which is governed by the global response.)

The εp distribution along the s-coordinate extracted at a distance of 5×D0 (1 mm)

ahead of the current crack tip is shown in Figure 8.20 (for three values of crack

growth). A relatively good agreement between the pipe and SENT specimen along

the whole length of the crack front is evident. For all levels of crack growth, εp

is approximately 2∼3% along the whole crack front for the deeply cracked SENB

specimen. This strain level is much smaller than those observed for both the pipe and

SENT (i.e. εp � 10% along the crack front for all three levels of Δa considered.)

The distribution of σm/σe along the uncracked ligament is shown in Figure 8.21 for
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Figure 8.20. Distribution of εp along the s-coordinate in the pipe, SENT and SENB
specimens, extracted at 5×D0 (1 mm) ahead of the current crack tip (pipe specs:

D/t = 30, 2c = 100 mm and σh/σy = 0.25).

the pipe, SENT and SENB specimens, extracted at the crack center (s/c = s/B = 0)

at three levels of Δa. For the the pipe and SENT specimen, (σm/σe)max � 1.5 at all

three levels of Δa, while the SENB specimen exhibits a substantially higher peak of

(σm/σe)max � 2.5. Furthermore, the σm/σe profile for the SENB specimen reduces to

negative values at some distance ahead of the initial crack tip. The σm/σe distribution

of the pipe follows that of the SENT specimen very closely, while that of the SENB

specimen is over-predictive at the near vicinity of the current crack tip, and then it

is under-predictive at farther distances. The sign-change of the σm/σe profile in the

SENB specimen is actually caused by a fundamental difference in comparison with the

SENT specimen and also the pipe: the uncracked ligament in the SENB undergoes a

compressive stress state at some distance ahead of the crack tip to accommodate the

global bending moment, while the uncracked ligament in both the SENT specimen

and pipeline is only subject to a tensile stress state.

The stress triaxiality (σm/σe) distribution along the s-coordinate, extracted at a

distance of 5×D0 (1 mm) ahead of the current crack tip center, is shown in Figure 8.22.

For the initial crack growth increment (i.e. Δa = 0.2 mm, Figure 8.22a), the σm/σe

values of the pipe and SENT are in perfect agreement up to s/c = s/B � 0.4. For the

larger values of Δa (Figure 8.22b and c), the agreement is slightly less. Nonetheless,

the general trends are very similar between the pipe and the SENT specimen, while
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Figure 8.21. Distribution of σm/σe ahead of the initial crack tip for the pipe along with
SENT and deeply crack SENB specimens at the crack center (s/c = s/B = 0). Typical

pipe with D/t = 30, 2c = 100 mm and σh/σy = 0.25

.

the SENB specimen results show a distinctly different distribution, across the entire

crack front. For the SENB specimen, (σm/σe)max � 2.15, and also a very strong

gradient is observed across the crack front (i.e. σm/σe > 2 at the mid-plane (at

s/B = 0), and it decreases to approximately 0.5 at the free end (i.e. at s/B = 1). On

the other hand, both the pipe and SENT specimens exhibit a more constant level of

σm/σe along more than half the crack front length, and the decline in the distribution

starts near the free end.

The presented σm/σe and εp fields ahead of the growing cracks in the three systems

clearly indicate the similarity of these fields in the SENT and pipe models, both in

quantity and general characteristics of the fields. Furthermore, the general trends

observed (such as the high values of εp and low levels of σm/σe in the pipe and SENT

models, versus the low εp and high σm/σe for the SENB model) are indicative of a

brittle-type failure in the SENB and ductile fracture in the latter two models, both

responses having been well documented elsewhere [78].

Based on the detailed comparisons of the R-curves, the near-tip triaxiality and

equivalent plastic strain fields presented above, it is believed that a SENT specimen

with the same crack depth as that in a pipeline of interest could provide fracture

toughness data similar to that of the pipeline, regardless of pipe’s geometric features

and its loading condition. Thus, the excessive conservatism of the traditional deeply
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Figure 8.22. Distribution of σm/σe along the s-coordinate in the pipe, SENT and SENB
specimens, extracted at 5×D0 (1mm) ahead of the current crack tip. Typical pipe with

D/t = 30, 2c = 100 mm and σh/σy = 0.25.

crack SENB specimen (a/W = 0.5) can be avoided with confidence, thereby generat-

ing more economic pipeline designs.

8.6 Concluding Remarks

A 3D detailed FE model of a cracked pipeline subject to internal pressure and bending

was constructed to model ductile crack growth by utilizing the GTN voided plasticity

material model. In the first part of the paper, the model was employed to study the

critical curvature (κcrit) of the pipe and the influence of various important parameters

on κcrit. The internal pressure (expressed through σh/σy) was found to significantly

promote the ductile fracture failure mode, to the extent that some models reached

their failure state shortly after the elastic regime was bypassed. Thick-wall pipelines

with low D/t were able to sustain higher curvatures; in some cases, the local buck-

ling/ovalization response dominated and caused their failure, rather than failure due

to ductile crack growth. However, at higher values of σh/σy, the fracture failure mode

would govern the pipes’ response. Increase in both crack depth (a/t) and crack length

(2c) decreased κcrit significantly; however, an asymptotic response was observed (i.e.

only minor changes in κcrit were observed for a/t � 0.2 and 2c � 150 mm.)

In consideration of the dependency of fracture toughness on crack-tip constraint
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(from the perspectives of both the critical value and also the R-curve), the above dis-

cussed pipe models were used to generate the so-called R-curves (CTOD as a function

of crack growth, Δa). Also, the stress triaxiality and equivalent plastic strain fields

ahead of the growing cracks were extracted. The same procedure was carried out for

SENT specimens having the same crack depth as in the pipeline (constraint matched),

as well as for the traditionally used deeply cracked SENB specimens (a/W = 0.5) rec-

ommended by the codes of practice [75]. Detailed comparisons revealed that the

SENT specimen could exhibit very similar fracture characteristics to the pipe. The

agreement was seen to exist for cracked pipes with various dimensions and internal

pressure levels. Therefore, it is believed that the usage of SENT specimens, instead

of the overly conservative deeply cracked SENB specimen is completely justified.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, the integrity and fracture response of offshore pipelines undergoing

large plastic strains was investigated using detailed nonlinear FE analysis. The in-

vestigation addressed the response, and potential fracture on the tensile side of a

pipeline undergoing (predominantly) inelastic bending. The research was carried out

in three main parts. While these parts may be precieved as distinct at first sight,

they do form a complimentary body of work, providing better understanding of the

fracture response and integrity of such pipes. The background and review presented in

Chapter 2 clearly established the connection of these parts and their relevance to the

issue of fracture and integrity assessment. This three-part investigation considered

the following:

(i) Investigation of strain concentration in concrete coated pipelines, including para-

metric FE studies and design equation development (Chapters 3 and 4).

(ii) Development and calibration of a new crack driving force estimation scheme

based on the reference strain method for pipelines subject to extreme plastic

bending (Chapter 5).

(iii) Study of crack-tip constraint in pipelines undergoing large plastic strains, both

under pure bending and also combined bending and internal pressure (Chapters

7 and 8).

Noting the general fracture integrity criterion (crack driving force < fracture

toughness), parts (ii) and (iii) compliment each other in the sense that part (ii) pro-

vides a new alternative formulation for crack driving force estimation, while part (iii)

provides extensive justifications in support of the use of low-constraint (high tough-

ness) specimens for establishing the fracture toughness data. Part (i) also provides

209
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Figure 9.1. Hierarchy of the different parts and chapters of the thesis.

formulations for the accurate prediction of bending strain in a class of widely used off-

shore pipelines (concrete coated pipelines). This would itself be useful in crack driving

force prediction for such pipelines. The general hierarchy of the thesis including the

three constitutive parts are summarized and presented in Figure 9.1. With reference

to Figure 9.1, Chapter 6 compliments both parts (ii) and (iii) by investigating the

effect of Lüders plateau on the themes considered in those parts. It is believed that

the methodologies and justifications presented in this thesis would help to diminish

some of the excessive and unnecessary conservatism currently included in ECA pro-

cedures of pipelines. Contributions of the research noteworthy to mention are the

proposed J-estimation scheme, and also the comprehensive justification provided to

use low-constraint SENT specimens for ECA of such pipelines.

9.2 Conclusions

While the conclusions of each chapter are given at the end of the respective chapter

separatley, only the most salient conclusions reached during the course of this research

are outlined below:

(i) Based on a series of parametric FE analysis, a design equation for prediction of
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SCF in the widely used X65 pipeline steel grade was developed. This equation

can satisfactorily predict the SCF with an accuracy of ±20%. Additionally,

it was observed that a coating parameter, λ = Dt/(εgt
2
c), could be used to

characterize the severity of strain concentration in the field joint. A critical

value of this parameter could be established (λcrit), for which the SCF shows

an asymptotic behavior when λ > λcrit, while configurations with λ < λcrit

would undergo severe strain concentration in their FJ, and should be avoided

in practice. For the specific steel grade λcrit � 8.

(ii) A J-estimation scheme was proposed by upgrading the reference strain method

with the addition of two plasticity functions (f1 and f2). A series of 300 FE

analysis were used to calibrate f1 and f2 for a wide variety of pipe and crack

dimensions and material properties. The equation took advantage of simplifying

assumptions inherent to the problem, namely, displacement-controlled loading

and LSY of the pipeline. The J-integral is predicted as a linear function of un-

cracked bending strain, J/(σyt) = f1εunc+f2, with a ±2% accuracy with respect

to FE results. The proposed equation does not require limit load definitions,

thus providing extra convenience in its use.

(iii) The mere presence of a Lüders plateau was observed to significantly alter both

the moment-strain curve, as well as the J-integral crack driving force curve.

Higher values of the Lüders strain decrease the spatially-averaged constraint

parameter Qave. Furthermore, the crack-opening stress profiles after the blunt-

ing zone (J/σy < r < 5 × J/σy) decrease sequentially for increasing values of

the Lüders strain. A micro-mechanic damage integral analysis also revealed that

the Lüders plateau would adversely affect the fracture toughness of the material,

especially for high hardening materials.

(iv) By incorporation of the J-Q fracture theory, the near-tip stress and strain fields

of cracked pipeline bended up to LSY (εg up to 3%) were investigated. A com-

prehensive field-matching study with respect to the near-tip fields extracted from

a standard MBL two term K-T model was performed. The observed similarity

provided sufficient proof that the phenomenological fracture parameter J along
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with the Q constraint parameter could successfully continue to characterize the

near-tip stress and strain fields of cracked pipelines bended up to LSY levels.

Additionally, the evolution of crack-tip constraint in the pipelines were observed

to be a linear function of bending strain, which provided grounds for proposing

the equation Q = −0.25εg − b1. Furthermore, a close investigation of the J-Q

trajectories among cracked pipelines and SENT specimens (with the same crack

size) revealed the crack-tip similarity of these two systems. The various crack

dimensions and material properties considered, provide confidence in using the

SENT specimens for fracture assessment of such pipelines.

(v) Constraint studies on pipelines under combined loadings (biaxial stress state),

constraint-matched SENT specimens, and also deeply cracked SENB specimens

were performed. 3D FE models with the GTN voided plasticity material model,

able to explicitly simulate ductile crack growth were utilized for this study. A

comprehensive comparison on R-curves showed that for a cracked pipeline with a

variety of geometries and internal pressure levels, the SENT specimen provides a

very similar fracture resistance curve. Moreover, detailed comparisons on plastic

strain and stress triaxiality fields ahead of the propagating crack among the three

systems, again verified the similarity of fracture response of SENT specimens

and pipelines. The fracture resistance of deeply-cracked SENB specimens is

therefore deemed as too conservative with respect to the cracked pipeline. Based

on the observed results, usage of SENT specimens for ECA of cracked pipelines

subject to combined loadings and undergoing LSY, can be recommended with

confidence.

9.3 Recommendations for Future Work

A comprehensive body of work, including new methodologies, justifications and also

enhancements on application of fracture mechanics principles for assessment of off-

shore pipelines subject to large plastic strains was presented herein. However, the

following complimentary research issues would be a suitable follow up to this work:

(i) Strain concentration design equations based on elastic-plastic FE analysis (such
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as that presented in Chapter 4 for concrete coated pipelines) are very rare in the

literature. Development of such equations for other important causes of strain

concentration, such as misalignment in adjoining pipes, weld mismatch, pipe

wall thickness mismatch, to mention a few, would surely be useful in integrity

assessment of offshore pipelines. Currently, the codes of practice mostly recom-

mend approximate methods for determination of these concentration factors.

(ii) A general simplification incorporated in all parts of the investigation carried

out in this thesis was neglecting the girth weld. This was based on the fact

the codes require the girth weld to be always over-matched1 with respect to

the parent steel material. Hence, ignoring its presence would be in favor of

conservatism. Furthermore, semi-empirical approaches used for accounting for

the weld residual stress and strains are well established (see e.g. BS7910 [8]).

However, it would be interesting to explicitly investigate the effect of the girth

weld on the fracture response. Of particular interest would be the investigation

of its effect on crack tip constraint in pipelines.

(iii) The proposed reference strain J-estimation scheme in Chapter 5 is only for pure

bending loads. The next practical step would be its enhancement to account for

combined loading conditions (such as inclusion of the internal pressure and axial

load effects). The results of such an investigation would be extremely useful,

as the current code recommendations do not present a clear-cut approach for

treatment of bending (or tension) combined with internal pressure which causes

a biaxial stress state in the pipe wall.

(iv) Validity of some of the drawn conclusions can be significantly increased if ac-

companied by relevant experimental data. An experimental investigation on

the effect of Lüders plateau on fracture toughness, and its comparison with the

results of the micro-mechanic damage integral approach of Chapter 6 would

greatly help the validity of the approach.

(v) The FE models of Chapter 8 satisfactorily predicted the fracture failure mode of

1A welded joint is dubbed as over-matched when the weld consumables have a higher strength
than the joined components.
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pipelines based on the explicit simulation of crack growth. The extension of such

a methodology to account for low-cycle fatigue damage (such as that resulting

from pipeline reeling) would provide a very sophisticated and informative tool

for accurate analysis of such structures.

(vi) In lieu and as an alternative to the current ECA procedure which is based on

a phenomenological fracture parameter (such as J or CTOD), it would be very

useful to justify the use of local damage approaches (such as the FE models

used in Chapter 8) for fracture integrity assessment of offshore pipelines. This

justification would certainly require a vast body of experimental work (in addi-

tion to the ones presently available), showing that the pipeline FE models with

material definition incorporating damage (such as the GTN material model) can

satisfactorily predict the fracture failure mode and critical load/displacement.



Bibliography

[1] Bai, Y., 2001. Pipelines and risers. Elsevier Ltd.

[2] DNV-OS-F101, 2000. Offshore standard – Submarine pipeline systems. Det Norske
Veritas, Høvik, Norway.

[3] API-RP-1111, 1999. Design, construction, operation, and maintenance of offshore
hydrocarbon pipelines (limit state design), third ed. American Petroleum Institute,
Washington DC, USA.

[4] Kyriakides, S., and Corona, E., 2007. Mechanics of Offshore Pipelines: Buckling and
Collapse, first ed. Elsevier Ltd.

[5] Nogueira, A. C., and Mckeehan, D. S., 2005. “Design and construction of offshore
pipelines (chapter 11)”. In Handbook of Offshore Engineering, S. Chakrabarti, ed.
Elsevier Ltd.

[6] URL. http://www.epmag.com/resources/images/archives/hpht-deepsea1.jpg.
Retrieved at 15th March 2011.

[7] Mousselli, A., 1981. Offshore pipeline design, analysis, and methods. Penn Well Books,
Tulsa, OK, USA.

[8] BS7910, 2005. Guide to methods for assessing the acceptability of flaws in metallic
structures. British Standards Institution, London.

[9] DNV-RP-F108, 2006. Recommended Practice - Fracture control for pipeline installa-
tion methods introducing cyclic plastic strain. Det Norske Veritas, Høvik, Norway.

[10] ABAQUS, 2008. Abaqus ver. 6.8 users and theory manual. Dassault Systèmes Simulia
Corp., Providence, RI, USA.

[11] Mohr, W., 2003. Strain-Based Design of Pipelines, Report Project No. 45892GTH.
U.S. Department of Interior, Minerals Management Service, Herndon (VA, USA).

[12] Mohr, W., Gordon, R., and Smith, R., 2004. “Strain-based design guidelines for
pipeline girth welds”. In International Offshore and Polar Engineering Conference
(ISOPE), Vol. 1, Toulon, France, pp. 10–17.

[13] Vitali, L., Torselletti, E., Marchesani, F., and Bruschi, R., 1996. “Use (and abuse)
of strain based criteria in offshore pipeline technology”. In Aspect’96: Advances in
Subsea Pipeline Engineering and Technology, Aberdeen, UK.

[14] Palmer, A. C., and King, R. A., 2008. Subsea pipeline engineering, second ed. Pen-
nWell Books.

215



216

[15] Bræstrup, M. W., and Andersen, J. B., 2005. Design and installation of marine
pipelines. Wiley-Blackwell, Oxford, United Kingdom.

[16] Anderson, T. L., 2005. Fracture mechanics: fundamentals and applications, third ed.
CRC.

[17] Bruschi, R., Torselletti, E., Vitali, L., Hauge, M., and Levold, E., 2005. “Fracture
control–offshore pipelines: Current status of fracture assessment for pipelines, lim-
itations and the need for development”. In International Conference on Offshore
Mechanics and Arctic Engineering (OMAE), Halkidiki, Greece, pp. 659–668.

[18] Archer, G., and Adams, A., 1983. “The behavior of concrete over thin film epoxy
coatings on offshore pipelines”. In Proceedings of the Offshore Technology Conference
(OTC), Vol. 1, OTC paper no. 4453, Houston, TX, USA, pp. 85–94.

[19] Akten, H., Lund, S., and Miller, D., 1985. “On the design and construction of statpipe
pipeline system”. In Proceedings of the Offshore Technology Conference (OTC), OTC
paper no. 4922, Houston, TX, USA.

[20] Verley, R., and Ness, O. B., 1995. “Strain concentrations in pipelines with concrete
coating: Full scale bending tests and analytical calculations”. In International Con-
ference on Offshore Mechanics and Arctic Engineering (OMAE), Vol. 5, Copenhagen,
Denmark, pp. 499–506.

[21] Ness, O. B., Hjartholm, G., Verley, R. L. P., and Thorsen, O. G., 1996. “Zeepipe IIA
pipeline: Strains measured during laying and predictions”. In International Offshore
and Polar Engineering Conference (ISOPE), Vol. 2, Los Angeles, CA, USA, pp. 35–40.

[22] Lund, S., Bruschi, R., Montesi, M., and Sintini, L., 1993. “Laying criteria versus
strain concentrations at field joints for heavily coated pipelines”. In International
Conference on Offshore Mechanics and Arctic Engineering (OMAE), Vol. 5, Glasgow,
UK, pp. 41–56.

[23] Ness, O. B., and Verley, R., 1995. “Strain concentrations in pipelines with concrete
coating an analytical model”. In International Conference on Offshore Mechanics and
Arctic Engineering (OMAE), Vol. 5, pp. 507–512.

[24] Endal, G., 1994. “Extreme bending of concrete coated offshore pipelines: A numerical
study”. In International DIANA Conference on Computational Mechanics, Delft,
Netherlands.

[25] Sævik, S., Storheim, M., and Levold, E., 2008. “Efficient finite element for evaluation
of strain concentrations in concrete coated pipelines”. In International Conference on
Offshore Mechanics and Arctic Engineering (OMAE), Estoril, Portugal.

[26] Williams, M. L., 1997. “On the stress distribution at the base of a stationary crack”.
ASME J. Appl. Mech., 24, pp. 111–114.

[27] Hutchinson, J. W., 1983. “Fundamentals of the phenomenological theory of nonlinear
fracture mechanics”. ASME J. Appl. Mech., 50, pp. 1042–1051.



217

[28] Rice, J. R., 1968. “A path independent integral and the approximate analysis of strain
concentration by notches and cracks”. ASME J. Appl. Mech., 35(2), pp. 379–386.

[29] Hutchinson, J. W., 1968. “Singular behaviour at the end of a tensile crack in a
hardening material”. J. Mech. Phys. Solids, 16(1), pp. 13–31.

[30] Rice, J. R., and Rosengren, G. F., 1968. “Plane strain deformation near a crack tip
in a power-law hardening material”. J. Mech. Phys. Solids, 16(1), pp. 1–12.

[31] Shih, C. F., 1983. Tables of Hutchinson–Rice–Rosengren singular field quantities.
MRL E-147. Materials Research Laboratory, Brown University.

[32] Wells, A. A., 1961. “Unstable crack propagation in metals: Cleavage and fast frac-
ture”. In Proceedings of the Crack Propagation Symposium, Paper 84, Cranfield,
UK.

[33] Shih, C. F., 1981. “Relationships between the J-integral and the crack opening dis-
placement for stationary and extending cracks”. J. Mech. Phys. Solids, 29(4), pp. 305–
326.

[34] API-5L, 2000. Specification for Line Pipe, 42nd ed. American Petroleum Institute,
Washington DC, USA.

[35] Kumar, V., German, M. D., and Shih, C. F., 1981. Engineering approach for elastic-
plastic fracture analysis, EPRI Report NP-1931. Electric Power Research Institute,
Palo Alto (CA, USA).

[36] Ainsworth, R. A., 1984. “The assessment of defects in structures of strain hardening
material”. Engng. Fract. Mech., 19(4), pp. 633–642.

[37] Linkens, D., Formby, C. L., and Ainsworth, R. A., 2000. “A strain-based approach to
fracture assessment – example applications”. In Proceedings of the Fifth International
Conference on Engineering Structural Integrity Management EMAS, pp. 45–52.

[38] Kumar, V., and Shih, C. F., 1980. “Fully plastic crack solutions, estimation scheme,
and stability analyses for the compact specimen”. In ASTM STP 700: Fracture
mechanics. American Society for Testing Materials, Philadelphia, pp. 406–438.

[39] Miller, A. G., and Ainsworth, R. A., 1989. “Consistency of numerical results for
power-law hardening materials and the accuracy of the reference stress approximation
for J”. Engng. Fract. Mech., 32(2), pp. 233–247.

[40] Milne, I., Ainsworth, R. A., Dowling, A. R., and Stewart, A. T., 1988. “Background
to, and validation of, CEGB report R/H/R6 revision 3”. Int. J. Press. Ves. Pip., 32,
pp. 105–196.
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Appendix A

Python Scripts Developed for Parametric FE Studies

As noted in Chapters 3 to 8, all the complicated pre-processing tasks of the FE

simulations were automatically performed using in-house developed Python scripts

for the ABAQUS/CAE environment. Regarding the large volume of FE simulations

reported in this work, and also the general complexity of the FE meshes required for

3D cracks, the presented research in this thesis would have been rendered impossible

without the use of the developed Python scripts. In this appendix, the Python scripts

developed specifically for the pipeline models in Chapter 8 are presented and discussed.

Copies of these developed Python scripts can be freely obtained from the author

(n.nourpanah@dal.ca).

A.1 General Hierarchy of the Scripts

In order to generate FE models required for a parametric study, a main script is

used to describe the variation of the parameters of interest (such as D, t, a, c, etc.).

The file main.py performs this task. For each specific combination of parameters,

the main script calls and executes a master script (pipeDCG.py) which produces an

ABAQUS input file. The ABAQUS input file contains the FE model definition of a

pipeline with a set of specific parameters. For example, if one wants to investigate

pipes with D = 200, 300, 400 mm and a = 2, 4, 6 mm, this would lead to 9 different

combinations, and thus, execution of main.py would call and execute pipeDCG.py

nine times, resulting in nine ABAQUS input files (e.g. DCG_1.inp to DCG_9.inp).

After this, the run script, RunAll.py, should be executed, which sequentially passes

these input files to the ABAQUS/EXPLICIT solver for their solution. As described,

in the process of a FE parametric study, the user only executes two scripts, namely

main.py and RunAll.py, and the script pipeDCG.py is called by main.py during its

execution.
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Within the ABAQUS environment, the Python scripts can be conveniently exe-

cuted by two methods. First is within the ABAQUS/CAE graphical user interface

(GUI). This can be done by going to the File menu and selecting Run Script, which

opens a window that the required script can be selected from. Alternatively, the script

can be run from the Command Line Interface (CLI) of the GUI of ABAQUS/CAE.

This is done by the following command (which executes the main.py script):

execfile(’C://FileDirectory//main.py’)

In the second method, the script is executed from a terminal window and the GUI

of ABAQUS/CAE is

abaqus cae noGUI="c:\FileDirectory\main.py"

A.2 The Main Script

The (typical) main.py Python script presented below constructs four FE models based

on various combinations of D/t = 10.0, 15.0 and a/t = 0.2, 0.3. All four models have

2c = 100 mm and n = 25.0. The four models are subject to a bending strain of

εg = 0.05, 0.04, 0.045, 0.035 respectively. After execution, the four ABAQUS input

files, namely DCG_1.inp to DCG_4.inp would be made.

import os

os.chdir(r’g://Nikzad//PipeDCG’)

DirPath = ’g://Nikzad//PipeDCG//’

from abaqus import *

import testUtils

import cmath

testUtils.setBackwardCompatibility()

from abaqusConstants import *

import sketch

import part

import mesh

import material

import assembly

import regionToolset

import interaction

import job
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myFile = open(’summaryOfCasesFS.txt’, ’w’)

t = 20.0

E=200.0e3

sy=400.0

el=sy/E

egAll=(0.05, 0.04, 0.045, 0.035)

p1Range=(10.0, 15.0)

p2Range = (0.2, 0.3)

p3Range = (100.0, )

p4Range = (25.0, )

p5Range = (0.0,)

cnt1 = 0

cnt2 = 1

p1loop = 1

for p1 in p1Range:

D = t * p1

R = D / 2.0

cnt1 = cnt1 + 1

p2loop = 1

for p2 in p2Range:

a0 = p2 * t

p3loop = 1

for p3 in p3Range:

c=p3/2.0

p4loop = 1

for p4 in p4Range:

ndp = p4

p5loop = 1

for p5 in p5Range:

epsilonGlobal=egAll[p5loop-1]

#el = p5

pFactor=p5

codeName = str(p1loop) + str(p2loop) +

str(p3loop) + str(p4loop)

fileName = str(cnt2) + ’_’ + codeName

myFile.write(’Case#’ + str(cnt2).rjust(3) + ’ Code#’

+ str(codeName).ljust(4) + ’ D= ’ + str(D).ljust(6) +

’ t= ’ + str(t).ljust(6) + ’ D/t= ’ + str(D/t).ljust(6)
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+ ’ a/t= ’ + str(a0/t).ljust(6) + ’ beta/pi= ’ +

str(p3).ljust(6) + ’ n= ’ + str(p4).ljust(6) +

’ sy/su= ’ + str(p4RangeR[p4loop-1]).ljust(6) + ’\n’)

tempFile = open(’infoTemp.txt’, ’w’)

tempFile.write(str(cnt2)+’\n’)

tempFile.write(str(D)+’\n’)

tempFile.write(str(t)+’\n’)

tempFile.write(str(a0)+’\n’)

tempFile.write(str(c)+’\n’)

tempFile.write(str(ndp)+’\n’)

tempFile.write(str(el)+’\n’)

tempFile.write(str(pFactor)+’\n’)

tempFile.write(str(E)+’\n’)

tempFile.write(str(sy)+’\n’)

tempFile.write(str(epsilonGlobal)+’\n’)

tempFile.close()

execfile(DirPath + ’PipeDCG.py’)

cnt2 = cnt2 + 1

p5loop = p5loop + 1

p4loop = p4loop + 1

p3loop = p3loop + 1

p2loop = p2loop + 1

p1loop = p1loop + 1

myFile.close()

A.3 The Run Script

The (typical) RunAll.py Python script presented sequentially passes the files DCG_1.inp

to DCG_20.inp to the ABAQUS/EXPLICIT solver for solution. 16 cpus and 90% of

the physical memory are used for each analysis.

import os

os.chdir(r’g:\\Nikzad\\PipeDCG’)

DirPath = "g:\\Nikzad\\PipeDCG\\"

from abaqus import *

import time

Output = DirPath + ’RunTimes.txt’

File = open(Output, ’a’)



230

File.write(’-----------------------------------------\n’)

imin = 1

imax = 20

for i in range(imin, imax+1, 1):

fileName = ’DCG_’ + str(i) + ’.inp’

jobName = ’DCG_’ + str(i)

myJob = mdb.JobFromInputFile(name=jobName, inputFileName=fileName, type=ANALYSIS,

explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE,

parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,

numDomains=16, userSubroutine=’’, numCpus=16, memory=90,

memoryUnits=PERCENTAGE, scratch=’’)

startTime=time.clock()

myJob.submit()

myJob.waitForCompletion()

finishTime=time.clock()

File.write(str(i).ljust(6)+str((finishTime-startTime)/60.0).ljust(20)+’min\n’)

File.close()

A.4 The Master Script

The pipeDCG.py Python script constructs an FE model with a specific combination

of parameters (as passed to it from the main.py script) and writes the corresponding

ABAQUS input file. Various variables are used which define the geometric features

of the pipeline, crack, and most importantly, the characteristics of the FE mesh.

The most important of these variables are schematically illustrated in Figure A.1

and Figure A.2 (The coarse mesh depicted in these figures are used for clarity of the

illustration). The pipeDCG.py script is as follows1:

1Python regards lines starting with # as a comment.
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Figure A.1. Schematic of the pipeline dimensions and mesh characteristics as used in the
master script.
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and mesh characteristics as used in the master script.
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"""

this script constructs a quarter symmetric model of a pipe

containing a part-through circumferential crack

Mesh for study of Ductile Crack Growth (DCG)

Nikzad Nourpanah, July 2010

"""

from abaqus import *

import testUtils

import cmath

testUtils.setBackwardCompatibility()

from abaqusConstants import *

import sketch

import part

import mesh

import material

import assembly

import regionToolset

import interaction

import job

import step

session.journalOptions.setValues(replayGeometry = COORDINATE)

tolr = 1e-4

tempFile = open(’infoTemp.txt’, ’r’)

allLines = tempFile.readlines()

cnt2 = float(allLines[0][0:10])

cnt2 = int(cnt2)

D = float(allLines[1][0:10])

t = float(allLines[2][0:10])

a0 = float(allLines[3][0:10])

c = float(allLines[4][0:10])

ndp = float(allLines[5][0:10])

el = float(allLines[6][0:10])

pFactor = float(allLines[7][0:10])

E = float(allLines[8][0:10])

sy = float(allLines[9][0:10])

epsilonGlobal = float(allLines[10][0:10])

tempFile.close()

nu = 0.3
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infoFileName = ’DCG_info_’ + str(cnt2) + ’.txt’

myFile6 = open(infoFileName, ’w’)

##################################################################################

################################### GENERAL SOLUTION #############################

##################################################################################

timePerBend=timePerPressure=1.0

numInt1=400

numInt2=4

numCpus1 = 16

numDomains1 = numCpus1

NumIncBend=2*100000

TimeIncBend=float(timePerBend/NumIncBend)

NumIncPressure=2*100000

TimeIncPressure=float(timePerPressure/NumIncPressure)

dens1=7850.0e-12

##################################################################################

######################################## ELEMENT #################################

##################################################################################

elem1 = C3D8R

elem2 = C3D6

elem3 = C3D4

##################################################################################

######################################## GEOMETRY ################################

##################################################################################

a=a0

dim3=3.0*R

beta = c/R

beta1 = (c-a)/R

ff = 1.0

alpha0=epsilonGlobal*dim3/R

##################################################################################

###################################### GTN MATERIAL ##############################

##################################################################################

D0 = 1.1

f0GTN = 0.0002

fr = 4.0

fcritical = 0.013
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fextinct = 0.1504

if ndp==10.0:

q1GTN = 1.46

q2GTN = 0.931

if ndp==25.0:

q1GTN = 1.678

q2GTN = 0.975

##################################################################################

##################################### SEEDING ####################################

##################################################################################

nel4=6

nel5=6

nel7=10

nel8=10

nel11=6

nel12=2

n1 = 19

n2 = 5

n3 = 5

n4 = 5

n5 = 10

nel6 = 8

L1 = float(n1)*D0/2.0

L2 = float(n2)*D0/2.0

L3 = float(n3)*D0/2.0

L4 = 0.5*D0+L2+L1

L5 = a-L3

beta3 = (c-L5)/R

dim2 = 2.0*(L1-L3)

if R-a-dim2>R-t:

beta2=(c+dim2)/R

else:

beta2=(c+t-a)/R

dim1 = 3.0*L4
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dim5 = 1.0*t

dim6 = 2.0*t

br2=5.0

globalSeedSize = 4.0

##################################################################################

############################## WRITING TEXT FILE #################################

##################################################################################

myFile6.write(’timePer1’.ljust(25) + ’|’ + str(timePerBend).ljust(25) + ’\n’)

myFile6.write(’numInt1’.ljust(25) + ’|’ +str(numInt1).ljust(25) + ’\n’)

myFile6.write(’numCpus1’.ljust(25) + ’|’ +str(numCpus1).ljust(25) + ’\n’)

myFile6.write(’NumIncBend’.ljust(25) + ’|’ +str(NumIncBend).ljust(25) + ’\n’)

myFile6.write(’elem1’.ljust(25) + ’|’ +str(elem1).ljust(25) + ’\n’)

myFile6.write(’elem2’.ljust(25) + ’|’ +str(elem2).ljust(25) + ’\n’)

myFile6.write(’elem3’.ljust(25) + ’|’ +str(elem3).ljust(25) + ’\n’)

myFile6.write(’Density’.ljust(25) + ’|’ + str(dens1).ljust(25) + ’\n’)

myFile6.write(’E’.ljust(25) + ’|’ + str(E).ljust(25) + ’\n’)

myFile6.write(’nu’.ljust(25) + ’|’ + str(nu).ljust(25) + ’\n’)

myFile6.write(’sy’.ljust(25) + ’|’ + str(sy).ljust(25) + ’\n’)

myFile6.write(’n’.ljust(25) + ’|’ + str(ndp).ljust(25) + ’\n’)

myFile6.write(’D0’.ljust(25) + ’|’ + str(D0).ljust(25) + ’\n’)

myFile6.write(’f0’.ljust(25) + ’|’ + str(f0GTN).ljust(25) + ’\n’)

myFile6.write(’fc’.ljust(25) + ’|’ + str(fcritical).ljust(25) + ’\n’)

myFile6.write(’fe’.ljust(25) + ’|’ + str(fextinct).ljust(25) + ’\n’)

myFile6.write(’q1’.ljust(25) + ’|’ + str(q1GTN).ljust(25) + ’\n’)

myFile6.write(’q2’.ljust(25) + ’|’ + str(q2GTN).ljust(25) + ’\n’)

myFile6.write(’D’.ljust(25) + ’|’ + str(D).ljust(25) + ’\n’)

myFile6.write(’t’.ljust(25) + ’|’ + str(t).ljust(25) + ’\n’)

myFile6.write(’a0’.ljust(25) + ’|’ + str(a0).ljust(25) + ’\n’)

myFile6.write(’c’.ljust(25) + ’|’ + str(c).ljust(25) + ’\n’)

myFile6.write(’epsilonGlobal’.ljust(25) + ’|’ +

str(epsilonGlobal).ljust(25) + ’\n’)

myFile6.write(’dim1’.ljust(25) + ’|’ + str(dim1).ljust(25) + ’\n’)

myFile6.write(’dim2’.ljust(25) + ’|’ + str(dim2).ljust(25) + ’\n’)

myFile6.write(’dim3’.ljust(25) + ’|’ + str(dim3).ljust(25) + ’\n’)

myFile6.write(’dim5’.ljust(25) + ’|’ + str(dim5).ljust(25) + ’\n’)

myFile6.write(’dim6’.ljust(25) + ’|’ + str(dim6).ljust(25) + ’\n’)

myFile6.write(’n1’.ljust(25) + ’|’ + str(n1).ljust(25) + ’\n’)

myFile6.write(’n2’.ljust(25) + ’|’ + str(n2).ljust(25) + ’\n’)
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myFile6.write(’n3’.ljust(25) + ’|’ + str(n3).ljust(25) + ’\n’)

myFile6.write(’n4’.ljust(25) + ’|’ + str(n4).ljust(25) + ’\n’)

myFile6.write(’n5’.ljust(25) + ’|’ + str(n5).ljust(25) + ’\n’)

myFile6.write(’nel6’.ljust(25) + ’|’ + str(nel6).ljust(25) + ’\n’)

myFile6.write(’nel4’.ljust(25) + ’|’ + str(nel4).ljust(25) + ’\n’)

myFile6.write(’nel5’.ljust(25) + ’|’ + str(nel5).ljust(25) + ’\n’)

myFile6.write(’nel7’.ljust(25) + ’|’ + str(nel7).ljust(25) + ’\n’)

myFile6.write(’nel8’.ljust(25) + ’|’ + str(nel8).ljust(25) + ’\n’)

myFile6.write(’nel10’.ljust(25) + ’|’ + str(nel10).ljust(25) + ’\n’)

myFile6.write(’nel11’.ljust(25) + ’|’ + str(nel11).ljust(25) + ’\n’)

myFile6.write(’nel12’.ljust(25) + ’|’ + str(nel12).ljust(25) + ’\n’)

myFile6.write(’CircumBiasRatio’.ljust(25) + ’|’ + str(br2).ljust(25) + ’\n’)

myFile6.write(’globalSeedSize’.ljust(25) + ’|’

+ str(globalSeedSize).ljust(25) + ’\n’)

myFile6.write(’LudersTerminationStrain’.ljust(25) + ’|’

+ str(el).ljust(25) + ’\n’)

myFile6.write(’InternalPressureFactor’.ljust(25) + ’|’

+ str(pFactor).ljust(25) + ’\n’)

##################################################################################

############################### MODEL CONSTRUCTION ###############################

##################################################################################

ModelName = ’DCG_’ + str(cnt2)

myModel = mdb.Model(name=ModelName)

mySketch = myModel.ConstrainedSketch(name=’Sketch pipe’, sheetSize=2*R)

xyCoords = ((0.0, 0.0),

(0.0, R-t), (0.0, R),

(-R*sin(pi/ff), R*cos(pi/ff)),

(-(R-t)*sin(pi/ff), (R-t)*cos(pi/ff)))

mySketch.ArcByCenterEnds(center=xyCoords[0],

point1=xyCoords[1],

point2=xyCoords[3])

mySketch.ArcByCenterEnds(center=xyCoords[0],

point1=xyCoords[2],

point2=xyCoords[4])
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mySketch.Line(point1=xyCoords[1],

point2=xyCoords[2])

mySketch.Line(point1=xyCoords[3],

point2=xyCoords[4])

solidPart = myModel.Part(name=’CrackPiece’,

dimensionality=THREE_D,

type=DEFORMABLE_BODY)

solidPart.BaseSolidExtrude(sketch=mySketch, depth=dim3)

##################################################################################

sketch0 = myModel.ConstrainedSketch(name=’canoe crack sketch - centerline’,

sheetSize=3*R,

transform = (1,0,0,0,1,0,0,0,1,0,0,dim3))

crackTipSketch2 = myModel.ConstrainedSketch(

name=’canoe crack sketch - second offset’,

sheetSize=3*R,

transform = (1,0,0,0,1,0,0,0,1,0,0,dim3))

crackTipSketch3 = myModel.ConstrainedSketch(

name=’canoe crack sketch - first offset’,

sheetSize=3*R,

transform = (1,0,0,0,1,0,0,0,1,0,0,dim3))

##################################################################################

sketch0.ArcByCenterEnds(center=(0.0, 0.0),

point1=(0.0, R-a+L3),

point2=(-(R-L5)*sin(beta1), (R-L5)*cos(beta1)))

sketch0.ArcByCenterEnds(center=(-R*sin(beta1), R*cos(beta1)),

point1=(-(R+L5)*sin(beta1), (R+L5)*cos(beta1)),

point2=(-(R-L5)*sin(beta1), (R-L5)*cos(beta1)))

faceTemp = solidPart.faces.findAt((-(R-t/2)*sin(0.5*pi/ff),

(R-t/2)*cos(0.5*pi/ff), dim3))

solidPart.PartitionFaceBySketch(faces = faceTemp, sketch = sketch0)

##################################################################################

transformProfile=(0.0, 0.0, -1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, dim3)

sketch8 = myModel.ConstrainedSketch(name=’sketch8’,

sheetSize=R, transform=transformProfile)

sketch8.Line(point1=(0.0, R-a+L3-L1), point2=(L4, R-a+L3-L1))
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sketch8.Line(point1=(L4, R-a+L3-L1), point2=(L4, R-a+L3))

sketch8.Line(point1=(L4, R-a+L3), point2=(0.0, R-a+L3))

face1=solidPart.faces.findAt((0.0, R-t/2.0, dim3/2.0))

solidPart.PartitionFaceBySketch(faces=face1, sketch=sketch8)

##################################################################################

ed1=solidPart.edges.findAt((0.0, R-a+0.5*L3, dim3))

ed2=solidPart.edges.findAt((0.0, R-L5-L1, dim3-0.5*L4))

ed3=solidPart.edges.findAt((0.0, R-L5-0.5*L1, dim3-L4))

ed4=solidPart.edges.findAt((0.0, R-L5, dim3-0.5*L4))

ed5=[ed1, ed2, ed3, ed4]

ed6=solidPart.edges.findAt((-(R-L5)*sin(0.5*beta1), (R-L5)*cos(0.5*beta1), dim3))

solidPart.PartitionCellBySweepEdge(cells=solidPart.cells,

edges=ed5, sweepPath=ed6)

##################################################################################

ed7=[]

for ed in solidPart.edges:

x=ed.pointOn[0][0]

if x==0.0: x=0.0001

y=ed.pointOn[0][1]

z=ed.pointOn[0][2]

t1=abs(x)/y

if abs(t1-tan(beta1))<tolr:

ed7 += [ed]

x1=-R*sin(beta1)-L5*sin(pi/3.0-beta1)

y1=R*cos(beta1)-L5*cos(pi/3.0-beta1)

z1=dim3

ed8=solidPart.edges.findAt((x1,y1,z1))

solidPart.PartitionCellBySweepEdge(cells=solidPart.cells,

edges=ed7, sweepPath=ed8)

##################################################################################

sketch7 = myModel.ConstrainedSketch(name=’canoe crack sketch - crack front’,

sheetSize=3*R,

transform = (1,0,0,0,1,0,0,0,1,0,0,dim3))

sketch7.ArcByCenterEnds(center=(0.0, 0.0),

point1=(0.0, R-a),

point2=(-(R-a)*sin(beta1), (R-a)*cos(beta1)))

sketch7.ArcByCenterEnds(center=(-R*sin(beta1), R*cos(beta1)),
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point1=(-(R+a)*sin(beta1), (R+a)*cos(beta1)),

point2=(-(R-a)*sin(beta1), (R-a)*cos(beta1)))

face1 = solidPart.faces.findAt((-(R-a)*sin(0.5*beta1),

(R-a)*cos(0.5*beta1), dim3))

solidPart.PartitionFaceBySketch(faces=face1, sketch=sketch7)

xt1 = -R*sin(beta1)-a*sin(pi/3.0-beta1)

yt1 = R*cos(beta1)-a*cos(pi/3.0-beta1)

face2 = solidPart.faces.findAt((xt1, yt1, dim3))

solidPart.PartitionFaceBySketch(faces=face2, sketch=sketch7)

##################################################################################

sketch9 = myModel.ConstrainedSketch(name=’sketch9’,

sheetSize=3*R,

transform = (1,0,0,0,1,0,0,0,1,0,0,dim3))

sketch9.ArcByCenterEnds(center=(0.0, 0.0),

point1=(0.0, R-a-dim2),

point2=(0.0, -(R-a-dim2)) )

face1 = solidPart.faces.findAt((-0.99*R, 0.0, dim3))

if(R-a-dim2>R-t):

solidPart.PartitionFaceBySketch(faces=face1, sketch=sketch9)

##################################################################################

#DATUM OBJECT NUMBER 0 (for solidPart)

solidPart.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=0)

##################################################################################

#DATUM OBJECT NUMBER 1 (for solidPart)

solidPart.DatumAxisByPrincipalAxis(principalAxis=ZAXIS)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

##################################################################################

#DATUM OBJECT NUMBER 2 (for solidPart)

solidPart.DatumPlaneByRotation(plane=allDatums[datumIDs[0]],

axis=allDatums[datumIDs[1]], angle=beta1*180.0/pi)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[2]])

##################################################################################
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#DATUM OBJECT NUMBER 3 (for solidPart)

solidPart.DatumPlaneByRotation(plane=allDatums[datumIDs[0]],

axis=allDatums[datumIDs[1]], angle=beta2*180/pi)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[3]])

##################################################################################

#DATUM OBJECT NUMBER 4

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=dim3-dim1)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[4]])

##################################################################################

#DATUM OBJECT NUMBER 5

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE,

offset=dim3-dim1-dim5)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[5]])

##################################################################################

#DATUM OBJECT NUMBER 6

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE,

offset=dim3-dim1-dim5-dim6)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[6]])

##################################################################################

#DATUM OBJECT NUMBER 7

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=dim3-0.5*D0)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[7]])

##################################################################################
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#DATUM OBJECT NUMBER 8

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE,

offset=dim3-0.5*D0-L2)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[8]])

##################################################################################

#DATUM OBJECT NUMBER 9

solidPart.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=dim3-L4)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.PartitionCellByDatumPlane(cells = solidPart.cells,

datumPlane = allDatums[datumIDs[9]])

##################################################################################

##################################################################################

cl1=[]

for cl in solidPart.cells:

z=cl.pointOn[0][2]

if (z>=dim3-L4):

cl1 += [cl]

if(R-a-dim2>R-t):

ed9=solidPart.edges.findAt((-(R-a-dim2), 0.0, dim3))

ed91=solidPart.edges.findAt((-(R-a-dim2)*sin(0.5*beta1),

(R-a-dim2)*cos(0.5*beta1), dim3))

ed92=solidPart.edges.findAt((-(R-a-dim2)*sin(0.5*(beta1+beta2)),

(R-a-dim2)*cos(0.5*(beta1+beta2)), dim3))

ed99=solidPart.edges.findAt((0.0, R-t, dim3-0.25*D0))

solidPart.PartitionCellByExtrudeEdge(line=ed99, cells=cl1,

edges=[ed9,ed91,ed92], sense=REVERSE)

##################################################################################

##################################################################################

ey = sy/E

delE = el-ey

if abs(el-ey)<1.0e-5:

PowerLawPlasticityTable = ((sy, 0.0), )

else:
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PowerLawPlasticityTable = ((sy, 0.0), (sy, el-ey), )

for i in range(1, 4000, 1):

e = el + float(i)*0.001

sigma = sy*( pow((e-delE)/ey, 1.0/ndp) )

ep = e - sigma/E

PowerLawPlasticityTable = PowerLawPlasticityTable + ((sigma, ep), )

##################################################################################

############################### FOR PERFECT PLASTICITY ###########################

#PowerLawPlasticityTable = ((sy, 0.0), (sy, 0.7), )

##################################################################################

steelMat=myModel.Material(name = ’steel’)

steelMat.Density(table=((dens1,), ))

steelMat.Elastic(table=((E, nu), ))

steelMat.Plastic(table=PowerLawPlasticityTable)

solidSection = myModel.HomogeneousSolidSection(name=’Solid Section’,

material=’steel’)

##################################################################################

pSteelMat=myModel.Material(name =’porous steel’)

pSteelMat.Density(table=((dens1,), ))

pSteelMat.Elastic(table=((E, nu), ))

pSteelMat.Plastic(table=PowerLawPlasticityTable)

pSteelMat.PorousMetalPlasticity(table=((q1GTN, q2GTN, q1GTN*q1GTN), ),

relativeDensity=1.0-f0GTN)

pSteelMat.porousMetalPlasticity.PorousFailureCriteria(fraction=fextinct,

criticalFraction=fcritical)

PorousSection = myModel.HomogeneousSolidSection(name=’Porous Section’,

material=’porous steel’)

##################################################################################

solidSet = solidPart.Set(name = ’Solid Set’, cells = solidPart.cells)

solidPart.SectionAssignment(region = solidSet, sectionName=’Solid Section’)

##################################################################################

x1=-(R-L5-0.9*L1)*sin(0.5*beta1)

y1=(R-L5-0.9*L1)*cos(0.5*beta1)

x2=-(R-L5-0.9*L1)*sin(1.01*beta1)

y2=(R-L5-0.9*L1)*cos(1.01*beta1)
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cl1=solidPart.cells.findAt(

[(x1, y1, dim3-0.25*D0), ],

[(x2, y2, dim3-0.25*D0), ] )

porousSet = solidPart.Set(name=’Porous Set’, cells=cl1)

solidPart.SectionAssignment(region=porousSet, sectionName=’Porous Section’)

##################################################################################

edgeTemp1 = solidPart.edges.findAt((-R*sin(0.95*pi/ff), R*cos(0.95*pi/ff), 0))

center = solidPart.InterestingPoint(edge = edgeTemp1, rule = CENTER)

pnt1 = solidPart.vertices.findAt((0, R, 0))

pnt2 = solidPart.InterestingPoint(edge = edgeTemp1, rule = MIDDLE)

#DATUM OBJECT NUMBER 10 (for solidPart)

solidPart.DatumCsysByThreePoints(coordSysType = CYLINDRICAL,

origin = center, point1 = pnt1, point2 = pnt2)

allDatums = solidPart.datums

datumIDs = allDatums.keys()

solidPart.MaterialOrientation(region = solidSet,

localCsys = allDatums[datumIDs[10]], axis = AXIS_2, angle = 90.0)

##################################################################################

##################################################################################

myAssembly = myModel.rootAssembly

solidInstance = myAssembly.Instance(name = ’Solid Instance’,

part = solidPart, autoOffset = OFF, dependent = OFF)

myAssembly.translate(instanceList = (’Solid Instance’, ), vector = (0, 0, -dim3))

##################################################################################

##################################################################################

elemType1 = mesh.ElemType(elemCode=elem1,

elemLibrary=EXPLICIT, hourglassControl=ENHANCED)

elemType2 = mesh.ElemType(elemCode=elem2,

elemLibrary=EXPLICIT, hourglassControl=ENHANCED)

elemType3 = mesh.ElemType(elemCode=elem3,

elemLibrary=EXPLICIT, hourglassControl=ENHANCED)

myAssembly.setElementType(regions=(solidInstance.cells, ),

elemTypes=(elemType1, elemType2, elemType3))

##################################################################################

##################################### SWEEP ######################################

##################################################################################
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xt1 = -(R-a)*sin(0.5*beta1)

yt1 = (R-a)*cos(0.5*beta1)

xt2 = -R*sin(beta1)-a*sin(pi/3.0-beta1)

yt2 = R*cos(beta1)-a*cos(pi/3.0-beta1)

cl1 = solidInstance.cells.findAt((xt1, yt1, -0.5*0.5*D0))

cl2 = solidInstance.cells.findAt((xt1, yt1, -0.5*D0-0.5*L2))

cl3 = solidInstance.cells.findAt((xt1, yt1, -0.5*D0-L2-0.5*L1))

cl4 = solidInstance.cells.findAt((xt2, yt2, -0.5*0.5*D0))

cl5 = solidInstance.cells.findAt((xt2, yt2, -0.5*D0-0.5*L2))

cl6 = solidInstance.cells.findAt((xt2, yt2, -0.5*D0-L2-0.5*L1))

cl7 = [cl1, cl2, cl3, cl4, cl5, cl6]

myAssembly.setMeshControls(regions=cl7, elemShape=HEX,

technique=SWEEP, algorithm=MEDIAL_AXIS, minTransition=OFF)

xt5 = -(R-L5)*sin(0.1*beta1)

yt5 = (R-L5)*cos(0.1*beta1)

edgeTemp1 = solidInstance.edges.findAt((xt5, yt5, -0.5*D0))

myAssembly.setSweepPath(region=(cl7[0]) , edge=edgeTemp1 , sense=REVERSE)

myAssembly.setSweepPath(region=(cl7[1]) , edge=edgeTemp1 , sense=REVERSE)

edgeTemp2 = solidInstance.edges.findAt((xt5, yt5, -L4))

myAssembly.setSweepPath(region=(cl7[2]) , edge=edgeTemp2 , sense=FORWARD)

xt6 = -R*sin(beta1)-L5*sin(pi/3.0-beta1)

yt6 = R*cos(beta1)-L5*cos(pi/3.0-beta1)

edgeTemp3 = solidInstance.edges.findAt((xt6, yt6, -0.5*D0))

myAssembly.setSweepPath(region=(cl7[3]) , edge=edgeTemp3 , sense=FORWARD)

myAssembly.setSweepPath(region=(cl7[4]) , edge=edgeTemp3 , sense=FORWARD)

edgeTemp4 = solidInstance.edges.findAt((xt6, yt6, -L4))

myAssembly.setSweepPath(region=(cl7[5]) , edge=edgeTemp4 , sense=FORWARD)

##################################################################################

##################################### SEED #######################################

##################################################################################

e1=solidInstance.edges.findAt((0.0, R-L5-0.5*L3, 0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n3, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-0.5*(L3+L1), 0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n1-n3, constraint = FIXED)
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e1=solidInstance.edges.findAt((0.0, R-L5-0.5*L1, -0.5*D0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n1, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-0.5*L1, -0.5*D0-L2))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n1, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-0.5*L1, -L4))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n4, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5, -0.5*0.5*D0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=1, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-L1, -0.5*0.5*D0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=1, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5, -0.5*D0-0.5*L2))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n2, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-L1, -0.5*D0-0.5*L2))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n2, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5, -0.5*D0-L2-0.5*L1))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n5, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-L1, -0.5*D0-L2-0.5*L1))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=n5, constraint = FIXED)

##################################################################################

##################################### SEED NEL8 ##################################

##################################################################################

ed1=[]

for ed in solidInstance.edges:

x=ed.pointOn[0][0]

z=ed.pointOn[0][2]

if ((abs(x)<tolr) & (z<-dim1-dim5-dim6) & (z>-dim3)):

ed1 += [ed]

myAssembly.seedEdgeByNumber(edges=ed1, number=nel8, constraint = FIXED)

##################################################################################

##################################### SEED NEL11 #################################

##################################################################################
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ed1=[]

for ed in solidInstance.edges:

x=ed.pointOn[0][0]

z=ed.pointOn[0][2]

if ((abs(x)<tolr) & (z<-dim1-dim5) & (z>-dim1-dim5-dim6)):

ed1 += [ed]

myAssembly.seedEdgeByNumber(edges=ed1, number=nel11, constraint = FIXED)

##################################################################################

ed1=[]

for ed in solidInstance.edges:

x=ed.pointOn[0][0]

z=ed.pointOn[0][2]

if ((abs(x)<tolr) & (z<-dim1) & (z>-dim1-dim5)):

ed1 += [ed]

myAssembly.seedEdgeByNumber(edges=ed1, number=nel11, constraint = FIXED)

##################################################################################

##################################### SEED NEL6 ##################################

##################################################################################

ed1=[]

for ed in solidInstance.edges:

x=ed.pointOn[0][0]

z=ed.pointOn[0][2]

if ((abs(x)<tolr) & (z<-L4) & (z>-0.99*dim1)):

ed1 += [ed]

myAssembly.seedEdgeByNumber(edges=ed1, number=nel6, constraint = FIXED)

##################################################################################

##################################### SEED NEL7 ##################################

##################################################################################

e1=solidInstance.edges.findAt((-R,0.0,0.0))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-0.5*D0))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)
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e1=solidInstance.edges.findAt((-R,0.0,-0.5*D0-L2))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-L4))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-dim1))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-dim1-dim5))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-dim1-dim5-dim6))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R,0.0,-dim3))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

##################################################################################

e1=solidInstance.edges.findAt((-R+t,0.0,0.0))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-0.5*D0))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-0.5*D0-L2))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-L4))
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myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-dim1))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-dim1-dim5))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-dim1-dim5-dim6))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+t,0.0,-dim3))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

##################################################################################

if(R-a-dim2>R-t):

e1=solidInstance.edges.findAt((-R+a+dim2,0.0,0.0))

myAssembly.seedEdgeByBias(end1Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+a+dim2,0.0,-0.5*D0))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+a+dim2,0.0,-0.5*D0-L2))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

e1=solidInstance.edges.findAt((-R+a+dim2,0.0,-L4))

myAssembly.seedEdgeByBias(end2Edges = (e1,), ratio = br2,

number = nel7, constraint = FIXED)

##################################################################################

##################################### SEED NEL12 #################################

##################################################################################
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e1=solidInstance.edges.findAt((0.0, R-L5-1.01*L1, 0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel12, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-1.01*L1, -0.5*D0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel12, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-1.01*L1, -0.5*D0-L2))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel12, constraint = FIXED)

e1=solidInstance.edges.findAt((0.0, R-L5-1.01*L1, -L4))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel12, constraint = FIXED)

e1=solidInstance.edges.findAt((-R*sin(0.99*beta2),R*cos(0.99*beta2),0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel12, constraint = FIXED)

##################################################################################

##################################### SEED NEL5 ##################################

##################################################################################

e1=solidInstance.edges.findAt((-(R-L5-L1)*sin(0.5*beta1),

(R-L5-L1)*cos(0.5*beta1), 0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel5, constraint = FIXED)

##################################################################################

##################################### SEED NEL4 ##################################

##################################################################################

x6 = -R*sin(beta1)-(L5+L1)*sin(pi/3.0-beta1)

y6 = R*cos(beta1)-(L5+L1)*cos(pi/3.0-beta1)

e1=solidInstance.edges.findAt((x6, y6, 0.0))

myAssembly.seedEdgeByNumber(edges=(e1, ), number=nel4, constraint = FIXED)

##################################################################################

myAssembly.seedPartInstance(regions=(solidInstance, ), size=globalSeedSize)

##################################################################################

#DATUM OBJECT NUMBER 0 (for myAssembly)

myAssembly.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=-dim3+0.2*t)

allDatums = myAssembly.datums

datumIDs = allDatums.keys()

myAssembly.PartitionCellByDatumPlane(cells=solidInstance.cells,

datumPlane=allDatums[datumIDs[0]])

##################################################################################

rin = 0.5*D-t
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sf=solidInstance.faces

i=0

for fc in sf:

x=fc.pointOn[0][0]

y=fc.pointOn[0][1]

rrin = sqrt(x*x+y*y)

if (abs(rrin-rin)<tolr):

if i==0:

fc100 = sf[fc.index:fc.index+1]

i+=1

else:

fc100 += sf[fc.index:fc.index+1]

myAssembly.Surface(side1Faces=fc100, name=’PipeInnerSurface’)

##################################################################################

prevStep = ’Initial’

if pFactor!=0.0:

pressureStep = myModel.ExplicitDynamicsStep(name=’Pressure’,

previous=prevStep, timePeriod=timePerPressure, nlgeom=ON,

maxIncrement=0.1, )

prevStep = ’Pressure’

pressureStep.setValues(massScaling=((SEMI_AUTOMATIC,

MODEL, THROUGHOUT_STEP, 0.0, TimeIncPressure,

BELOW_MIN, 0, 100, 0.0, 0.0, 0, None),) )

##################################################################################

bendingStep = myModel.ExplicitDynamicsStep(name=’Bending’, previous=prevStep,

timePeriod=timePerBend, nlgeom=ON,

maxIncrement=0.1, )

bendingStep.setValues(massScaling=((SEMI_AUTOMATIC,

MODEL, THROUGHOUT_STEP, 0.0, TimeIncBend,

BELOW_MIN, 0, 100, 0.0, 0.0, 0, None),) )

##################################################################################

#################################### XSYMM BC ####################################

##################################################################################

sf=solidInstance.faces
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i=0

for fc in sf:

x=fc.pointOn[0][0]

z=fc.pointOn[0][2]

if ((abs(x)<tolr) & (z>-dim3+0.2*t)):

if i==0:

fc99 = sf[fc.index:fc.index+1]

i+=1

else:

fc99 += sf[fc.index:fc.index+1]

region3 = regionToolset.Region(faces = fc99)

myModel.XsymmBC(name=’solid Xsymm BC’, createStepName=’Initial’, region=region3)

##################################################################################

#################################### ZSYMM BC ####################################

##################################################################################

x1=-(R-0.99*t)*sin(0.5*beta1)

y1=(R-0.99*t)*cos(0.5*beta1)

x2=-(R-0.99*t)*sin(0.5*(beta1+beta2))

y2=(R-0.99*t)*cos(0.5*(beta1+beta2))

x3=-(R-0.99*t)*sin(1.1*beta2)

y3=(R-0.99*t)*cos(1.1*beta2)

x4=-(R-L5-0.99*L1)*sin(0.5*beta1)

y4=(R-L5-0.99*L1)*cos(0.5*beta1)

x5=-(R-L5-0.9*L1)*sin(1.01*beta1)

y5=(R-L5-0.9*L1)*cos(1.01*beta1)

x11=-(R-a-0.99*dim2)*sin(0.5*beta1)

y11=(R-a-0.99*dim2)*cos(0.5*beta1)

x21=-(R-a-0.99*dim2)*sin(0.5*(beta1+beta2))

y21=(R-a-0.99*dim2)*cos(0.5*(beta1+beta2))

x31=-(R-a-0.99*dim2)*sin(1.1*beta2)

y31=(R-a-0.99*dim2)*cos(1.1*beta2)

if(R-a-dim2>R-t):

faceTemp1 = solidInstance.faces.findAt(

[(x1, y1, 0.0), ],

[(x2, y2, 0.0), ],
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[(x3, y3, 0.0), ],

[(x4, y4, 0.0), ],

[(x5, y5, 0.0), ],

[(x11, y11, 0.0), ],

[(x21, y21, 0.0), ],

[(x31, y31, 0.0), ] )

if(R-a-dim2<=R-t):

faceTemp1 = solidInstance.faces.findAt(

[(x1, y1, 0.0), ],

[(x2, y2, 0.0), ],

[(x3, y3, 0.0), ],

[(x4, y4, 0.0), ],

[(x5, y5, 0.0), ] )

region5 = regionToolset.Region(faces = faceTemp1)

myModel.ZsymmBC(name=’solid Zsymm BC’, createStepName=’Initial’, region=region5)

##################################################################################

################################ COUPLING MASTER POINT ###########################

##################################################################################

edgeTemp1 = solidInstance.edges.findAt((-(R-t), 0.0, -dim3))

#REFERENCE POINT NUMBER 0 (for myAssembly)

pointTemp1 = solidInstance.InterestingPoint(edge = edgeTemp1, rule = CENTER)

myAssembly.ReferencePoint(point = pointTemp1)

allRefPoints = myAssembly.referencePoints

refPointIDs = allRefPoints.keys()

refPoint1 = (allRefPoints[refPointIDs[0]], )

region1 = regionToolset.Region(referencePoints = refPoint1)

faceTemp1 = solidInstance.faces.findAt(

[(x1, y1, -dim3), ],

[(x2, y2, -dim3), ],

[(x3, y3, -dim3), ] )

region2 = regionToolset.Region(side1Faces=faceTemp1)

myModel.Coupling(name=’Bending Constraint’, controlPoint=region1, surface=region2,

influenceRadius=WHOLE_SURFACE, couplingType=KINEMATIC,
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u1=OFF, u2=OFF, u3=ON, ur1=OFF, ur2=OFF, ur3=OFF)

##################################################################################

################################## OVALIZING BC ##################################

##################################################################################

region2 = regionToolset.Region(faces=faceTemp1)

myModel.DisplacementBC(name=’Ovalizing BC’, createStepName=’Initial’,

region=region2,

u1=UNSET, u2=UNSET, u3=UNSET,

ur1=UNSET, ur2=0.0, ur3=0.0)

##################################################################################

##################################################################################

myModel.SmoothStepAmplitude(name=’AmpPressure’, data=((0.0,0.0),

(timePerPressure, 1.0)), timeSpan=STEP)

myModel.SmoothStepAmplitude(name=’AmpBend’, data=((0.0,0.0),

(timePerBend, 1.0)), timeSpan=STEP)

##################################################################################

################################# PRESSURE LOADING ###############################

##################################################################################

if pFactor!=0.0:

presTemp = 2.0*t*pFactor*sy/(D-1.0*t)

region3 = myAssembly.surfaces[’PipeInnerSurface’]

myModel.Pressure(name=’Pressurize’, createStepName=’Pressure’,

region=region3, distributionType=UNIFORM, field=’’, magnitude=presTemp,

amplitude=’AmpPressure’)

AxialForce = -pi*(D-t)*(D-t)*presTemp/4.0

Asteel=(pi/4.0)*(D*D-(D-2.0*t)*(D-2.0*t))

SigmaEndCap=AxialForce/Asteel

myAssembly.Surface(side1Faces=faceTemp1, name=’PipeEndSurface’)

region4 = myAssembly.surfaces[’PipeEndSurface’]

myModel.Pressure(name=’EndCapTension’, createStepName=’Pressure’,

region=region4, distributionType=UNIFORM, field=’’, magnitude=SigmaEndCap,

amplitude=’AmpPressure’)

##################################################################################

################################### MASTER NODE BC ###############################

##################################################################################
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pointTemp3=solidInstance.vertices.findAt([(0.0, -R, -dim3),] )

region3=regionToolset.Region(vertices=pointTemp3)

myModel.DisplacementBC(name=’Master Node BC’, createStepName=’Initial’,

region=region1,

amplitude=’AmpBend’,

u1=0.0, u2=UNSET, u3=UNSET,

ur1=0.0, ur2=0.0, ur3=0.0)

myModel.boundaryConditions[’Master Node BC’].setValuesInStep(stepName=’Bending’,

u3=FREED, ur1=-alpha0)

##################################################################################

############################## RigidBodyMotionPreventionBC #######################

##################################################################################

pointTemp3=solidInstance.vertices.findAt([(0.0, -R, 0.0),] )

region3=regionToolset.Region(vertices=pointTemp3)

myModel.DisplacementBC(name=’RigidBodyMotionPreventionBC’,

createStepName=’Initial’,

region=region3,

amplitude=’AmpBend’,

u2=0.0)

##################################################################################

##################################################################################

if(R-a-dim2>R-t):

v11=solidInstance.vertices.findAt(coordinates=(-R*sin(beta1),

R*cos(beta1), 0.0))

v12=solidInstance.vertices.findAt(coordinates=(-R*sin(beta1),

R*cos(beta1), -dim3))

v13=solidInstance.vertices.findAt(coordinates=(-(R-a-dim2)*sin(beta2),

(R-a-dim2)*cos(beta2), 0.0))

sf=solidInstance.faces

i=0

for fc in sf:

x=fc.pointOn[0][0]

y=fc.pointOn[0][1]

z=fc.pointOn[0][2]

rr=sqrt(x*x+y*y)

tet=abs(x)/y
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cn1=tet>tan(beta1)

cn2=tet<tan(beta2)

cn3=abs(z)<tolr

cn4=rr>R-a-dim2

if (cn1==True & cn2==True & cn3==True & cn4==True):

if i==0:

fc99 = sf[fc.index:fc.index+1]

i+=1

else:

fc99 += sf[fc.index:fc.index+1]

myAssembly.PartitionFaceByShortestPath(point1=v11, point2=v13, faces=fc99)

if(R-a-dim2<=R-t):

v11=solidInstance.vertices.findAt(coordinates=(-R*sin(beta1),

R*cos(beta1), 0.0))

v12=solidInstance.vertices.findAt(coordinates=(-R*sin(beta1),

R*cos(beta1), -dim3))

v13=solidInstance.vertices.findAt(coordinates=(-(R-t)*sin(beta2),

(R-t)*cos(beta2), 0.0))

sf=solidInstance.faces

i=0

for fc in sf:

x=fc.pointOn[0][0]

y=fc.pointOn[0][1]

z=fc.pointOn[0][2]

rr=sqrt(x*x+y*y)

tet=abs(x)/y

cn1=tet>tan(beta1)

cn2=tet<tan(beta2)

cn3=abs(z)<tolr

if (cn1==True & cn2==True & cn3==True):

if i==0:

fc99 = sf[fc.index:fc.index+1]

i+=1

else:

fc99 += sf[fc.index:fc.index+1]
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myAssembly.PartitionFaceByShortestPath(point1=v11, point2=v13, faces=fc99)

##################################################################################

##################################### SWEEP ######################################

##################################################################################

myAssembly.setMeshControls(regions=solidInstance.cells,

elemShape=HEX, technique=SWEEP, algorithm=MEDIAL_AXIS, minTransition=OFF)

##################################################################################

##################################### MESH ######################################

##################################################################################

myAssembly.generateMesh(regions=(solidInstance,), seedConstraintOverride=ON)

e1=solidInstance.edges.findAt([(-0.5*D, 0.0, -dim3), ])

dumSet=myAssembly.Set(name=’dumSet’,edges=e1)

for node in dumSet.nodes:

x=node.coordinates[0]

y=node.coordinates[1]

cn1=abs(x)<tolr

cn2=abs(y+0.5*D)<tolr

if (cn1==True & cn2==True):

label1=node.label

e2=solidInstance.edges.findAt(

[(0.0, R-L5-0.5*L3, 0.0), ],

[(0.0, R-0.5*L5, 0.0), ])

dumSet2=myAssembly.Set(name=’dumSet2’,edges=e2)

for node in dumSet2.nodes:

y=node.coordinates[1]

cn1=abs(y-(R-a+2*0.5*D0))<tolr

cn2=abs(y-R)<tolr

if (cn1==True):

label2=node.label

if (cn2==True):

label3=node.label

##################################################################################

myFile6.write(’ReferencePointNodeLabel’.ljust(25) + ’|’
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+ str(label1).ljust(25) + ’\n’)

myFile6.write(’CTODNodeLabel’.ljust(25) + ’|’ + str(label2).ljust(25) + ’\n’)

myFile6.write(’CMODNodeLabel’.ljust(25) + ’|’ + str(label3).ljust(25) + ’\n’)

e3=solidInstance.edges.findAt(

[(-R*sin(0.5*beta1), R*cos(0.5*beta1), 0.0), ],

[(-R*sin(0.5*beta1), -R*cos(0.5*beta1), 0.0), ])

dumSet3=myAssembly.Set(name=’dumSet3’,edges=e3)

xprev=0.0

for node in dumSet3.nodes:

x=node.coordinates[0]

y=node.coordinates[1]

cn1=abs(x)<tolr

cn3=abs(y+R)<tolr

if (cn1==True & cn3==True):

label5=node.label

if x<xprev:

xprev=x

label6=node.label

myFile6.write(’OvalityNodeBot’.ljust(25) + ’|’ + str(label5).ljust(25) + ’\n’)

myFile6.write(’OvalityNodeLeft’.ljust(25) + ’|’ + str(label6).ljust(25) + ’\n’)

e4=solidInstance.edges.findAt(

[(0.0, R-0.99*t, 0.0), ] )

dumSet4=myAssembly.Set(name=’dumSet4’,edges=e4)

for node in dumSet4.nodes:

y=node.coordinates[1]

cn1=abs(y-R+t)<tolr

if cn1==True:

label7=node.label

myFile6.write(’OvalityNodeTopIn’.ljust(25) + ’|’ + str(label7).ljust(25) + ’\n’)

myFile6.write(’#OutputIntervals’.ljust(25) + ’|’ + str(numInt1).ljust(25) + ’\n’)

numNodes=len(solidInstance.nodes)
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numElements=len(solidInstance.elements)

myFile6.write(’NumberOfNodes’.ljust(25) + ’|’ + str(numNodes).ljust(25) + ’\n’)

myFile6.write(’NumberOfElements’.ljust(25) + ’|’

+ str(numElements).ljust(25) + ’\n’)

myFile6.close()

##################################################################################

################################ HISTORY REQUEST #################################

##################################################################################

if pFactor!=0.0:

myModel.HistoryOutputRequest(name = ’Hist Out Req02’,

createStepName = ’Pressure’, numIntervals=numInt2)

myModel.HistoryOutputRequest(name = ’Hist Out Req01’,

createStepName = ’Bending’, numIntervals=numInt1)

##################################################################################

################################# FIELD REQUEST ##################################

##################################################################################

if pFactor!=0.0:

myModel.FieldOutputRequest(name=’Field Out Req02’, createStepName=’Pressure’,

variables=(’S’, ’MISES’, ’LE’, ’PE’, ’PEEQ’,

’U’, ’RF’, ’VVF’, ’STATUS’), numIntervals=numInt2)

##################################################################################

myModel.FieldOutputRequest(name=’Field Out Req01’, createStepName=’Bending’,

variables=(’S’, ’MISES’, ’LE’, ’PE’, ’PEEQ’,

’U’, ’RF’, ’VVF’, ’STATUS’, ’EMSF’), numIntervals=numInt1)

del myModel.fieldOutputRequests[’F-Output-1’]

del myModel.historyOutputRequests[’H-Output-1’]

##################################################################################

################################# JOB DEFINITION #################################

##################################################################################

myJob = mdb.Job(name=ModelName, model=myModel, type=ANALYSIS,

explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description=’’,

parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,

numDomains=numDomains1, userSubroutine=’’, numCpus=numCpus1, memory=90,

memoryUnits=PERCENTAGE, scratch=’’, echoPrint=OFF, modelPrint=OFF,

contactPrint=OFF, historyPrint=OFF)

myJob.writeInput()
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receive your signed Copyright Agreement Form. For conference papers, this form should be 
received by the deadline indicated by the Conference. Other forms may NOT be substituted 
for this form, nor may any wording on the form be changed. HANDWRITTEN SIGNATURES 
ONLY are acceptable. 

PAPER NUMBER (for conference/journal papers): PVT-10-1142 

TITLE: A Comprehensive Parametric Finite Element Study on the Development

AUTHOR(s): Nikzad Nourpanah, Farid Taheri

JOURNAL NAME: Journal of Pressure Vessel Technology

COPYRIGHT ASSIGNMENT
The following terms of copyright assignment refer to Sections 1, 2, and 3. Sections 4 and 5 may not 
be subject to copyright. 

The undersigned hereby assigns irrevocably to ASME all worldwide rights under copyright in the 
Paper. 

Authors retain all proprietary rights in any idea, process, procedure, or articles of manufacture 
described in the Paper, including the right to seek patent protection for them. Authors may perform, 
lecture, teach, conduct related research and display all or part of the Paper, in print or electronic 
format. Authors may reproduce and distribute the Paper for non-commercial purposes only. Non-
commercial applies only to the sale of the paper per se. For all copies of the Paper made by Authors, 
Authors must acknowledge ASME as original publisher and include the names of all author(s), the 
publication title, and an appropriate copyright notice that identifies ASME as the copyright holder.  

PLEASE READ THE TERMS AND CONDITIONS WHICH ARE FULLY INCORPORATED IN THIS 
AGREEMENT.  

ASME requests that authors/copyright owners assign copyright to ASME in order for a 
conference or journal paper to be published by ASME. Authors exempt from this request are 
direct employees of the U.S. Government, whereby papers are not subject to copyright 
protection in the U.S., or non-U.S. government employees, whose governments hold the 
copyright to the paper. Otherwise, the author/ copyright owner(s) of the Paper should sign 
this form as instructed below. Please refer to the section below "Who Should Sign" and also 
to ASME's FAQs page for more information regarding copyright ownership and the copyright 
process. 

WHO SHOULD SIGN 

Only the copyright owner(s) of the Paper, or an authorized representative, can sign this form. If one 
of the following applies you may not own the copyright of the paper, or you may not be authorized to 
sign this agreement, and may need to have the appropriate copyright owner(s) or organization 
representative sign this Agreement: 
(1) you created the Paper within the scope of your employment, and your employer is the copyright 
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Address : 1360 Barrington Street  City : Halifax
State : NS Zip Code : B3J 1Z1 Country : Canada

Phone : 1-902-494-3935 Fax : 1-902-484-6635 Email : farid.taheri@dal.ca 

Co-Author

Name : Nikzad
Nourpanah Signature : Date :

Affiliation: Job Title :
(Company or 
Institution)

Address : City :
State : Zip Code : Country :

Phone : Fax : Email : n.nourpanah@dal.ca

Co-Author
Name : Signature : Date :

Affiliation: Job Title :
(Company or 
Institution)

Address : City :
State : Zip Code : Country :

Phone : Fax : Email :

Name : Signature : Date :
Affiliation: Title :

(Company or 
Institution)

Address : City :
State : Zip Code : Country :

Phone : Fax : Email :

Name : Signature : Date :
Affiliation: Title :

(Company or 
Institution)

Address : City :
State : Zip Code : Country :

Phone : Fax : Email :

2. PAPERS OWNED BY EMPLOYER OF AUTHOR(s) (Author may sign if so authorized; otherwise, 
an officer or other authorized agent of the employer should sign below.)  

Name : Signature : Date :
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Affiliation: Job Title:
(Company or 
Institution)

Address : City :
State : Zip Code : Country :

Phone: Fax: Email:

PAPERS NOT SUBJECT TO COPYRIGHT ASSIGNMENT 
3. PAPERS CREATED BY U.S. FEDERAL GOVERNMENT EMPLOYEES (Please sign below if you 
created the Paper within your scope of your employment by the U.S. Federal Government, and you 
are authorized to sign on behalf of your agency or department; otherwise, an officer or authorized 
agent should sign. Please include the following footer on the final PDF version of the Paper you 
submit: "This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States. Approved for public release; distribution is unlimited.")  

Name: Signature: Date:

Affiliation: Title:
(Company or Institution)

Address: City :

State: Zip Code : Country :

Phone: Fax: Email:
Name(s) and affiliations of Author(s) (attach  
additional sheets if necessary):  

4. PAPERS CREATED BY U.S. FEDERAL OR STATE GOVERNMENT CONTRACTORS (Please fill in 
and sign below if you created the Paper under contract with the U.S. Federal or State government 
(e.g., U.S. government labs) , and you are authorized to sign on behalf of your organization; 
otherwise, an officer or other authorized agent should sign. Please include any required footers on the 
final PDF version of your Paper.  

Name: Signature: Date:

Affiliation: Title:
(Company or Institution)

Address: City :

State: Zip Code : Country :

Phone: Fax: Email:
Name(s) and affiliations of Author(s) (attach  
additional sheets if necessary):  

5. PAPERS CREATED BY NON-U.S. GOVERNMENT EMPLOYEES
Please fill in and sign below if you created the Paper within the scope of your duties as an 
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officer or employee of a non-U.S. government, and you are authorized to sign on behalf of 
your government; otherwise, an officer or authorized agent should sign.  
This work was prepared while under employment by the Government of 
__________________________________ as part of the official duties of the author 
indicated below, and as such copyright is owned by that Government, which reserves its 
own copyright under national law. The copyright notice on the paper should read: 
__________________________________________ 

Name: Signature: Date:

Affiliation: Job Title:
(Company or 
Institution)

Address: City :

State: Zip Code : Country :

Phone: Fax: Email:

ASME COPYRIGHT FORM TERMS AND CONDITIONS

The following terms and conditions are fully incorporated into the Copyright Form. Please read 
them carefully.  

REPRESENTATIONS, OBLIGATIONS, ACKNOWLEDGEMENTS, AND INDEMNIFICATION  

You represent and acknowledge that:  

1. This Paper represents: either the first publication of material or the first publication of an 
original compilation of information from a number of sources as specifically noted by 
footnotes and/or bibliography.  

2. You have the right to enter into this Copyright Form and to make the assignment of rights 
to ASME. If the Paper contains excerpts from other copyrighted material (including without 
limitation any diagrams, photographs, figures or text), you have acquired in writing all 
necessary rights from third parties to include those materials in the Paper, and have 
provided appropriate credit for that third-party material in footnotes or in a bibliography.  

3. If you are signing this Form on behalf of any co-authors or other copyright holders, you 
have obtained express authorizations from all those authors and/or copyright holders to 
make this assignment of rights to ASME.  

4. To the best of the author's knowledge, all statements contained in the Paper purporting to 
be facts are true or supported by reasonable scientific research, the Paper does not contain
any defamatory or libelous material and does not infringe any third party's copyright, 
patent, trade secret, or other proprietary rights and does not violate the right of privacy or 
publicity of any third party or otherwise violate any other applicable law; furthermore that 
to the best of your ability, you are responsible for ensuring the accuracy of your research 
and the Paper's content.  

5. If the Paper was produced in the course of an author's employment by, or contractual 
relationship with, the U.S. Federal or State Government and/or contains classified 
material, it has been appropriately cleared for public release and such is indicated in the 
paper.

6. The Paper is not subject to any prior claim, encumbrance or form and is not under 
consideration for publication elsewhere.  

7. You have appropriately cited and acknowledged all third parties who have contributed 
significantly in the Paper's technical aspects.  

8. ASME is not responsible for any misrepresentation, errors or omissions by those signing 
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this copyright form.  
9. (I) All print and electronic copies of the Paper submitted to ASME become ASME's physical 

property regardless of whether or not ASME publishes the Paper, and that ASME is not 
obligated to publish your paper (see the Termination Section below if your paper is not 
published).  

10. ASME is not responsible for any of your expenses incurred in connection with preparing the
Paper or attending meetings to present it, nor will ASME pay you any financial 
compensation if it publishes your Paper.  

11. Subject to and to the maximum extent permitted by law, you agree to indemnify and hold 
harmless ASME from any damage or expense related to a breach of any of the 
representations and warranties above.  

TERMINATION

If ASME decides not to publish your Paper, this Form, including all of ASME's rights in your 
Paper, terminates and you are thereafter free to offer the Paper for publication elsewhere.  

GENERAL PROVISIONS

This Copyright Form, the Terms & Conditions, and ASME Copyright Guidelines, constitutes the 
entire agreement between you and ASME, and supersedes all prior or current negotiations, 
understandings and representations, whether oral or written, between you and ASME concerning 
the Paper.

This Agreement is governed by, and should be construed in accordance with, the laws of the 
State of New York, United States of America, applicable to agreements made and performed 
there, except to the extent that your institution is prohibited by law from entering contracts 
governed by New York law, in which limited case this Agreement is governed by, and should be 
construed in accordance with, the laws of the jurisdiction in which your institution is located. Any 
claim, dispute, action or proceeding relating to this Agreement may be brought only in the 
applicable state and federal courts in the State and County of New York, and you expressly 
consent to personal jurisdiction and venue in any of those courts.  

Page 6 of 6PVT1142

09/03/2011http://journaltool.asme.org/templates/Form1903.cfm?notoolbar=yes&paperid=38047



267

B.2 Copyright Agreement Form for Chapter 4



268

ELSEVIER LICENSE
TERMS AND CONDITIONS

Jan 04, 2011

This is a License Agreement between Nikzad Nourpanah ("You") and Elsevier ("Elsevier")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the
terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

Supplier Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

Registered Company
Number

1982084

Customer name Nikzad Nourpanah

Customer address 5231 Kent Street, Apt# 56

Halifax, NS B3H 1P7

License number 2582041209308

License date Jan 04, 2011

Licensed content publisher Elsevier

Licensed content
publication

Marine Structures

Licensed content title A design equation for evaluation of strain concentration factor in
concrete coated X65 pipelines

Licensed content author Nikzad Nourpanah, Farid Taheri

Licensed content date October 2009

Licensed content volume
number

22

Licensed content issue
number

4

Number of pages 12

Start Page 758

End Page 769

Type of Use reuse in a thesis/dissertation

Intended publisher of new
work

other

Portion full article

Format both print and electronic

Are you the author of this
Elsevier article?

Yes

Will you be translating? No

Order reference number

1/4/2011 Rightslink Printable License

s100.copyright.com/AppDispatchServlet 1/5
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Title of your
thesis/dissertation

INTEGRITY AND FRACTURE RESPONSE OF OFFSHORE PIPELINES
SUBJECT TO LARGE PLASTIC STRAINS

Expected completion date Apr 2011

Estimated size (number of
pages)

200

Elsevier VAT number GB 494 6272 12

Permissions price 0.00 USD

Value added tax 0.0% 0.0 USD / 0.0 GBP

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection with
completing this licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the Billing and Payment terms and conditions established by Copyright
Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are
available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the
terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in
our publication with credit or acknowledgement to another source, permission must also be sought
from that source.  If such permission is not obtained then that material may not be included in your
publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or
in a reference list at the end of your publication, as follows:

“Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter,
Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER].” Also Lancet special credit - “Reprinted from The Lancet, Vol. number,
Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier.”

4. Reproduction of this material is confined to the purpose and/or media for which permission is
hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or
any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please
contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be
advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of
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(i) the license details provided by you and accepted in the course of this licensing transaction, (ii)
these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon
issuance of the license at the end of the licensing process for the transaction, provided that you have
disclosed complete and accurate details of your proposed use, no license is finally effective unless
and until full payment is received from you (either by publisher or by CCC) as provided in CCC's
Billing and Payment terms and conditions.  If full payment is not received on a timely basis, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted.  Further, in the event that you breach any of these terms and conditions or any of CCC's
Billing and Payment terms and conditions, the license is automatically revoked and shall be void as
if never granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their
respective officers, directors, employees and agents, from and against any and all claims arising out
of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned,
or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed
by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase
order, acknowledgment, check endorsement or other writing prepared by you, which terms are
inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. 
These terms and conditions, together with CCC's Billing and Payment terms and conditions (which
are incorporated herein), comprise the entire agreement between you and publisher (and CCC)
concerning this licensing transaction.  In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and Payment
terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this
License at their sole discretion, for any reason or no reason, with a full refund payable to you. 
Notice of such denial will be made using the contact information provided by you.  Failure to
receive such notice will not alter or invalidate the denial.  In no event will Elsevier or Copyright
Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a
result of a denial of your permission request, other than a refund of the amount(s) paid by you to
Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE
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The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless
your license was granted for translation rights. If you licensed translation rights you may only
translate this content into the languages you requested. A professional translator must perform all
translations and reproduce the content word for word preserving the integrity of the article. If this
license is to re-use 1 or 2 figures then permission is granted for non-exclusive world rights in all
languages.

16. Website: The following terms and conditions apply to electronic reserve and author websites:
Electronic reserve: If licensed material is to be posted to website, the web site is to be
password-protected and made available only to bona fide students registered on a relevant course
if:
This license was made in connection with a course,
This permission is granted for 1 year only. You may obtain a license for future website posting, 
All content posted to the web site must maintain the copyright information line on the bottom of
each image, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com , and
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website  for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of
each image, and
he permission granted is limited to the personal version of your paper.  You are not allowed to
download and post the published electronic version of your article (whether PDF or HTML, proof
or final version), nor may you scan the printed edition to create an electronic version, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx , As part of our normal production process,
you will receive an e-mail notice when your article appears on Elsevier’s online service
ScienceDirect (www.sciencedirect.com).   That e-mail will include the article’s Digital Object
Identifier (DOI).  This number provides the electronic link to the published article and should be
included in the posting of your personal version.  We ask that you wait until you receive this e-mail
and have the DOI to do any posting. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: 
Authors are permitted to place a brief summary of their work online only.
A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com 

All content posted to the web site must maintain the copyright information line on the bottom of
each image
  You are not allowed to download and post the published electronic version of your chapter, nor
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may you scan the printed edition to create an electronic version. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the
journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx.  or for
books to the Elsevier homepage at http://www.elsevier.com

20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be published
commercially, please reapply for permission. These requirements include permission for the Library
and Archives of Canada to supply single copies, on demand, of the complete thesis and include
permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis
be published commercially, please reapply for permission.

21. Other Conditions:

v1.6
Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check or
money order referencing your account number and this invoice number RLNK10907947.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

If you find copyrighted material related to this license will not be used and wish to cancel,
please contact us referencing this license number 2582041209308 and noting the reason
for cancellation.

Questions? customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.
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ELSEVIER LICENSE
TERMS AND CONDITIONS

Jan 04, 2011

This is a License Agreement between Nikzad Nourpanah ("You") and Elsevier ("Elsevier")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the
terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

Supplier Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

Registered Company
Number

1982084

Customer name Nikzad Nourpanah

Customer address 5231 Kent Street, Apt# 56

Halifax, NS B3H 1P7

License number 2582040821342

License date Jan 04, 2011

Licensed content publisher Elsevier

Licensed content
publication

Engineering Fracture Mechanics

Licensed content title Development of a reference strain approach for assessment of
fracture response of reeled pipelines

Licensed content author Nikzad Nourpanah, Farid Taheri

Licensed content date August 2010

Licensed content volume
number

77

Licensed content issue
number

12

Number of pages 17

Start Page 2337

End Page 2353

Type of Use reuse in a thesis/dissertation

Portion full article

Format both print and electronic

Are you the author of this
Elsevier article?

Yes

Will you be translating? No

Order reference number

Title of your
thesis/dissertation

INTEGRITY AND FRACTURE RESPONSE OF OFFSHORE PIPELINES
SUBJECT TO LARGE PLASTIC STRAINS
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Expected completion date Apr 2011

Estimated size (number of
pages)

200

Elsevier VAT number GB 494 6272 12

Permissions price 0.00 USD

Value added tax 0.0% 0.0 USD / 0.0 GBP

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection with
completing this licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the Billing and Payment terms and conditions established by Copyright
Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are
available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the
terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in
our publication with credit or acknowledgement to another source, permission must also be sought
from that source.  If such permission is not obtained then that material may not be included in your
publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or
in a reference list at the end of your publication, as follows:

“Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter,
Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER].” Also Lancet special credit - “Reprinted from The Lancet, Vol. number,
Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier.”

4. Reproduction of this material is confined to the purpose and/or media for which permission is
hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or
any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please
contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be
advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of
(i) the license details provided by you and accepted in the course of this licensing transaction, (ii)
these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
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8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon
issuance of the license at the end of the licensing process for the transaction, provided that you have
disclosed complete and accurate details of your proposed use, no license is finally effective unless
and until full payment is received from you (either by publisher or by CCC) as provided in CCC's
Billing and Payment terms and conditions.  If full payment is not received on a timely basis, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted.  Further, in the event that you breach any of these terms and conditions or any of CCC's
Billing and Payment terms and conditions, the license is automatically revoked and shall be void as
if never granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their
respective officers, directors, employees and agents, from and against any and all claims arising out
of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned,
or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed
by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase
order, acknowledgment, check endorsement or other writing prepared by you, which terms are
inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. 
These terms and conditions, together with CCC's Billing and Payment terms and conditions (which
are incorporated herein), comprise the entire agreement between you and publisher (and CCC)
concerning this licensing transaction.  In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and Payment
terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this
License at their sole discretion, for any reason or no reason, with a full refund payable to you. 
Notice of such denial will be made using the contact information provided by you.  Failure to
receive such notice will not alter or invalidate the denial.  In no event will Elsevier or Copyright
Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a
result of a denial of your permission request, other than a refund of the amount(s) paid by you to
Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless
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your license was granted for translation rights. If you licensed translation rights you may only
translate this content into the languages you requested. A professional translator must perform all
translations and reproduce the content word for word preserving the integrity of the article. If this
license is to re-use 1 or 2 figures then permission is granted for non-exclusive world rights in all
languages.

16. Website: The following terms and conditions apply to electronic reserve and author websites:
Electronic reserve: If licensed material is to be posted to website, the web site is to be
password-protected and made available only to bona fide students registered on a relevant course
if:
This license was made in connection with a course,
This permission is granted for 1 year only. You may obtain a license for future website posting, 
All content posted to the web site must maintain the copyright information line on the bottom of
each image, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com , and
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website  for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of
each image, and
he permission granted is limited to the personal version of your paper.  You are not allowed to
download and post the published electronic version of your article (whether PDF or HTML, proof
or final version), nor may you scan the printed edition to create an electronic version, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx , As part of our normal production process,
you will receive an e-mail notice when your article appears on Elsevier’s online service
ScienceDirect (www.sciencedirect.com).   That e-mail will include the article’s Digital Object
Identifier (DOI).  This number provides the electronic link to the published article and should be
included in the posting of your personal version.  We ask that you wait until you receive this e-mail
and have the DOI to do any posting. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: 
Authors are permitted to place a brief summary of their work online only.
A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com 

All content posted to the web site must maintain the copyright information line on the bottom of
each image
  You are not allowed to download and post the published electronic version of your chapter, nor
may you scan the printed edition to create an electronic version. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

1/4/2011 Rightslink Printable License

s100.copyright.com/AppDispatchServlet 4/5



278

19. Website (regular and for author): A hyper-text must be included to the Homepage of the
journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx.  or for
books to the Elsevier homepage at http://www.elsevier.com

20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be published
commercially, please reapply for permission. These requirements include permission for the Library
and Archives of Canada to supply single copies, on demand, of the complete thesis and include
permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis
be published commercially, please reapply for permission.

21. Other Conditions:

v1.6

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check or
money order referencing your account number and this invoice number RLNK10907943.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

If you find copyrighted material related to this license will not be used and wish to cancel,
please contact us referencing this license number 2582040821342 and noting the reason
for cancellation.

Questions? customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.

1/4/2011 Rightslink Printable License

s100.copyright.com/AppDispatchServlet 5/5



279

B.4 Copyright Agreement Form for Chapter 6



280



281



282

B.5 Copyright Agreement Form for Chapter 7



283

ELSEVIER LICENSE
TERMS AND CONDITIONS

Feb 01, 2011

This is a License Agreement between Nikzad Nourpanah ("You") and Elsevier ("Elsevier")
provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the
terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

Supplier Elsevier Limited
The Boulevard,Langford Lane
Kidlington,Oxford,OX5 1GB,UK

Registered Company
Number

1982084

Customer name Nikzad Nourpanah

Customer address 5231 Kent Street, Apt# 56

Halifax, NS B3H 1P7

License number 2600231162907

License date Feb 01, 2011

Licensed content publisher Elsevier

Licensed content
publication

Engineering Fracture Mechanics

Licensed content title A numerical study on the crack tip constraint of pipelines subject
to extreme plastic bending

Licensed content author N. Nourpanah, F. Taheri

Licensed content date 11 December 2010

Licensed content volume
number

n/a

Licensed content issue
number

n/a

Number of pages 1

Start Page

End Page

Type of Use reuse in a thesis/dissertation

Intended publisher of new
work

other

Portion full article

Format both print and electronic

Are you the author of this
Elsevier article?

Yes

Will you be translating? No

Order reference number

2/1/2011 Rightslink Printable License

…copyright.com/…/PrintableLicense.js… 1/5



284

Title of your
thesis/dissertation

INTEGRITY AND FRACTURE RESPONSE OF OFFSHORE PIPELINES
SUBJECT TO LARGE PLASTIC STRAINS

Expected completion date Apr 2011

Estimated size (number of
pages)

200

Elsevier VAT number GB 494 6272 12

Permissions price 0.00 USD

Value added tax 0.0% 0.00 USD / GBP

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection with
completing this licensing transaction, you agree that the following terms and conditions apply to this
transaction (along with the Billing and Payment terms and conditions established by Copyright
Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are
available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the
terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in
our publication with credit or acknowledgement to another source, permission must also be sought
from that source.  If such permission is not obtained then that material may not be included in your
publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or
in a reference list at the end of your publication, as follows:

“Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter,
Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY
COPYRIGHT OWNER].” Also Lancet special credit - “Reprinted from The Lancet, Vol. number,
Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier.”

4. Reproduction of this material is confined to the purpose and/or media for which permission is
hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or
any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please
contact Elsevier at permissions@elsevier.com)

6. If the permission fee for the requested use of our material is waived in this instance, please be
advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of

2/1/2011 Rightslink Printable License

…copyright.com/…/PrintableLicense.js… 2/5



285

(i) the license details provided by you and accepted in the course of this licensing transaction, (ii)
these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon
issuance of the license at the end of the licensing process for the transaction, provided that you have
disclosed complete and accurate details of your proposed use, no license is finally effective unless
and until full payment is received from you (either by publisher or by CCC) as provided in CCC's
Billing and Payment terms and conditions.  If full payment is not received on a timely basis, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted.  Further, in the event that you breach any of these terms and conditions or any of CCC's
Billing and Payment terms and conditions, the license is automatically revoked and shall be void as
if never granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their
respective officers, directors, employees and agents, from and against any and all claims arising out
of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned,
or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed
by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase
order, acknowledgment, check endorsement or other writing prepared by you, which terms are
inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. 
These terms and conditions, together with CCC's Billing and Payment terms and conditions (which
are incorporated herein), comprise the entire agreement between you and publisher (and CCC)
concerning this licensing transaction.  In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and Payment
terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this
License at their sole discretion, for any reason or no reason, with a full refund payable to you. 
Notice of such denial will be made using the contact information provided by you.  Failure to
receive such notice will not alter or invalidate the denial.  In no event will Elsevier or Copyright
Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a
result of a denial of your permission request, other than a refund of the amount(s) paid by you to
Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

2/1/2011 Rightslink Printable License

…copyright.com/…/PrintableLicense.js… 3/5



286

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world English rights only unless
your license was granted for translation rights. If you licensed translation rights you may only
translate this content into the languages you requested. A professional translator must perform all
translations and reproduce the content word for word preserving the integrity of the article. If this
license is to re-use 1 or 2 figures then permission is granted for non-exclusive world rights in all
languages.

16. Website: The following terms and conditions apply to electronic reserve and author websites:
Electronic reserve: If licensed material is to be posted to website, the web site is to be
password-protected and made available only to bona fide students registered on a relevant course
if:
This license was made in connection with a course,
This permission is granted for 1 year only. You may obtain a license for future website posting, 
All content posted to the web site must maintain the copyright information line on the bottom of
each image, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com , and
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

17. Author website  for journals with the following additional clauses:

All content posted to the web site must maintain the copyright information line on the bottom of
each image, and
he permission granted is limited to the personal version of your paper.  You are not allowed to
download and post the published electronic version of your article (whether PDF or HTML, proof
or final version), nor may you scan the printed edition to create an electronic version, 
A hyper-text must be included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx , As part of our normal production process,
you will receive an e-mail notice when your article appears on Elsevier’s online service
ScienceDirect (www.sciencedirect.com).   That e-mail will include the article’s Digital Object
Identifier (DOI).  This number provides the electronic link to the published article and should be
included in the posting of your personal version.  We ask that you wait until you receive this e-mail
and have the DOI to do any posting. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

18. Author website for books with the following additional clauses: 
Authors are permitted to place a brief summary of their work online only.
A hyper-text must be included to the Elsevier homepage at http://www.elsevier.com 

All content posted to the web site must maintain the copyright information line on the bottom of
each image
  You are not allowed to download and post the published electronic version of your chapter, nor

2/1/2011 Rightslink Printable License

…copyright.com/…/PrintableLicense.js… 4/5



287

may you scan the printed edition to create an electronic version. 
Central Storage: This license does not include permission for a scanned version of the material to
be stored in a central repository such as that provided by Heron/XanEdu.

19. Website (regular and for author): A hyper-text must be included to the Homepage of the
journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx.  or for
books to the Elsevier homepage at http://www.elsevier.com

20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be published
commercially, please reapply for permission. These requirements include permission for the Library
and Archives of Canada to supply single copies, on demand, of the complete thesis and include
permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis
be published commercially, please reapply for permission.

21. Other Conditions:

v1.6
Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check or
money order referencing your account number and this invoice number RLNK10923621.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

If you find copyrighted material related to this license will not be used and wish to cancel,
please contact us referencing this license number 2600231162907 and noting the reason
for cancellation.

Questions? customercare@copyright.com or +1-877-622-5543 (toll free in the US) or
+1-978-646-2777.

2/1/2011 Rightslink Printable License

…copyright.com/…/PrintableLicense.js… 5/5


