
CRAFT-DFL: NAVIGATING THE PERFORMANCE OF
DECENTRALIZED FEDERATED LEARNING DEPLOYMENTS

by

Chengyan Jiang

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Chengyan Jiang, 2024

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Contribution . 3
1.2 Thesis Outline . 5

Chapter 2 Background and Related Work 6

2.1 Background . 6
2.1.1 Centralized Federated Learning 6
2.1.2 Decentralized federated learning 7
2.1.3 Non-IID Data . 8
2.1.4 Network Topology . 9
2.1.5 Training Strategy . 10
2.1.6 Strongly Convex and L-smooth 11

2.2 Related Works . 13
2.2.1 Centralized Federated Learning 13
2.2.2 Decentralized Federated Learning 13

Chapter 3 Performance Analysis of DFL Deployments 15

3.1 Convergence Rate Analysis . 15
3.1.1 Network Environment . 15
3.1.2 Problem Formulation . 16
3.1.3 Assumptions . 16
3.1.4 Converge Analysis . 17

3.1.4.1 Continuous Linear 18
3.1.4.2 Continuous Ring . 21
3.1.4.3 Aggregate Linear . 22
3.1.4.4 Aggregate Ring . 24
3.1.4.5 Aggregate Star . 25
3.1.4.6 Aggregate Mesh . 26

3.2 Summary and Take Away Message 27

ii

Chapter 4 Performance Evaluation 29

4.1 Model and Data Selection . 29
4.2 Non-IID Data Distribution . 32
4.3 Experimental Setup and Implementation 34

4.3.1 Setup . 34
4.3.2 Implementation . 34

4.3.2.1 Model Implementation and Training 34
4.4 Evaluation metrics and comparison 37
4.5 Baseline results . 39

4.5.1 SVM . 39
4.5.2 Logical Regression . 40
4.5.3 ResNet . 40
4.5.4 DistilBERT . 41
4.5.5 Mini-GPT . 42

4.6 Impact of Topologies on the Convergence Rate 43
4.6.1 Continues Linear . 44
4.6.2 Continues Ring . 45
4.6.3 Aggregate Linear . 45
4.6.4 Aggregate Ring . 46
4.6.5 Star and Mesh . 47
4.6.6 Summary and Takeaway . 48

4.7 Impact of Non-IID data Distribution 49
4.7.1 Continues Linear and Aggregate Linear 49
4.7.2 Continues Ring and Aggregate Ring 52
4.7.3 Star and Mesh . 54
4.7.4 Summary and Takeaway . 56

Chapter 5 Future Work and Conclusion 58

5.1 Future Work . 58
5.2 Conclusion . 59

Bibliography . 61

iii

List of Tables

2.1 The six combinations of DFL topologies and training stratey
used in this study. 11

3.1 Notation Table . 15

4.1 Model Dataset Table . 31

4.2 Convergence rate of continuous linear topology. 44

4.3 F1 score of continuous linear. 44

4.4 Convergence rate of continuous ring topology. 45

4.5 F1 score of continuous ring. 45

4.6 Convergence rate of aggregate linear topology. 46

4.7 F1 score of aggregate linear . 46

4.8 Convergence rate of aggregate ring topology. 47

4.9 F1 score of aggregate ring . 47

4.10 Convergence rate of star topology. 47

4.11 Convergence rate of mesh topology. 48

4.12 F1 score of star . 48

4.13 F1 score of mesh . 48

4.14 Coverage rate with Level 1 non-IID data distribution for contin-
ues linear. 50

4.15 Coverage rate with Level 2 non-IID data distribution for contin-
ues linear. 50

4.16 Coverage rate with Level 3 non-IID data distribution for contin-
ues linear. 50

4.17 F1 score of continuous linear. 50

4.18 Coverage rate with Level 1 non-IID data distribution for aggre-
gate linear. 51

iv

4.19 Coverage rate with Level 2 non-IID data distribution for aggre-
gate linear. 51

4.20 Coverage rate with Level 3 non-IID data distribution for aggre-
gate linear. 51

4.21 F1 score of aggregate linear. 51

4.22 Coverage rate with Level 1 non-IID data distribution for contin-
ues ring. 52

4.23 Coverage rate with Level 2 non-IID data distribution for contin-
ues ring. 52

4.24 Coverage rate with Level 3 non-IID data distribution for contin-
ues ring. 52

4.25 Coverage rate with Level 1 non-IID data distribution for aggre-
gate ring. 53

4.26 Coverage rate with Level 2 non-IID data distribution for aggre-
gate ring. 53

4.27 Coverage rate with Level 3 non-IID data distribution for aggre-
gate ring. 53

4.28 F1 score of continuous ring. 53

4.29 F1 score of aggregate ring. 54

4.30 Coverage rate with Level 1 non-IID data distribution for star. . 54

4.31 Coverage rate with Level 2 non-IID data distribution for star. . 54

4.32 Coverage rate with Level 3 non-IID data distribution for star. . 55

4.33 Coverage rate with Level 1 non-IID data distribution for mesh. 55

4.34 Coverage rate with Level 2 non-IID data distribution for mesh. 55

4.35 Coverage rate with Level 3 non-IID data distribution for mesh. 55

4.36 F1 score of star. 55

4.37 F1 score of mesh. 56

v

List of Figures

2.1 Centralized federated learning architecture. 7

3.1 Continuous linear. 18

3.2 Continuous ring. 21

3.3 Aggregate Linear. 22

3.4 Aggregate Linear . 25

3.5 Star . 26

3.6 Mesh topology. 27

4.1 Evaluation workflow. 30

4.2 SVM baseline. 40

4.3 Logical regression baseline. 41

4.4 Resnet baseline. 41

4.5 DistilBERT baseline. 42

4.6 Mini-GPT baseline. 42

vi

Abstract

The widespread adoption of smartphones and smart wearable devices has led to the

widespread use of Centralized Federated Learning (CFL) for training powerful ma-

chine learning models while preserving data privacy. However, CFL faces limitations

due to overreliance on a central server, which impacts latency and system robustness.

Decentralized Federated Learning (DFL) is introduced to address these challenges.

DFL facilitates direct collaboration among participating devices without relying on a

central server. Each device can independently connect with other devices and share

model parameters.

This work explores crucial factors influencing the convergence and generalization

capacity of DFL models, emphasizing network topologies, non-IID data distribution,

and training strategies. We first derive the convergence rate of different DFL model

deployment strategies. Then, we comprehensively analyze various network topologies

(e.g., linear, ring, star, and mesh) with different degrees of non-IID data and eval-

uate them over widely adopted machine-learning models (e.g., classical, deep neural

networks, and Large Language Models) and real-world datasets. The results reveal

that models converge to the optimal one for IID data. However, the convergence rate

is inversely proportional to the degree of non-IID data distribution. Our findings

will serve as valuable guidelines for designing effective DFL model deployments in

practical applications.

vii

List of Abbreviations Used

FL Federated Learning

CFL Centralized Federated Learning

DFL Decentralized Federated Learning

AR Augmented reality

CAVs Connected autonomous vehicle

Resnet Residual Network

LLM Large Language Model

NLP Natural Language Processing

SGD Stochastic Gradient Descent

NON-IID Non-independent and identically distributed

NC Non-converge

C linear Continues linear

C ring Continues ring

A linear Aggregate linear

A ring Aggregate ring

viii

Acknowledgements

I received a lot of support and help from many people in completing this thesis, and

I sincerely thank them for their assistance.

I would like to thank my professor, Dr. Israat Haque. Throughout my academic

journey, she has provided careful and nurturing guidance, helping me grow and be-

come a better researcher. Over the course of two years of research and study, I learned

how to conduct research and completed this thesis. When I first joined the lab, I had

no idea what research was. With her meticulous help, I successfully completed my

thesis. I owe this to her patient and careful guidance. She is an excellent teacher,

and like a gardener nurturing young saplings, she helps her students grow.

Also, I want to thank my partner, Jiamingfan. With her help, I found my research

direction and completed this paper. She extended a helping hand when I needed it

most, even assisting me in revising my thesis late at night. Her companionship enabled

me to graduate quickly, and for that, I am very grateful.

ix

Chapter 1

Introduction

Modern applications generate vast amounts of data, e.g., from connected autonomous

vehicles (CAVs) [24], augmented reality (AR) [1], Internet of things(IoT) [30, 37],

and other network elements. These data form the backbone of data-driven network

functions and services. Consequently, there is an increasing need for effective methods

to harness this information to enhance network functions and services. The ability

to process and analyze such extensive datasets is crucial for improving the efficiency,

reliability, and functionality of modern networks.

Centralized Federated Learning (CFL) [26] is one such promising method designed

to address these challenges. In CFL, a central server aggregates data from numerous

distributed devices to train a global model. Specifically, the server first sends an

initial set of parameters to user devices, which then begin local training based on these

initial parameters. After the training is completed, the devices upload their trained

parameters back to the server. The server then aggregates these parameters. This

approach offers significant advantages, particularly for resource-constrained devices,

by enabling them to benefit from a collectively trained model without the necessity

of directly sharing their data. This model training process ensures data privacy

and security, as the individual data remains localized on the devices, mitigating the

risks associated with data breaches and unauthorized access. The global model, once

trained, can be distributed back to the devices, providing them with the enhanced

capabilities derived from the aggregated data insights. This methodology not only

optimizes the use of computational resources but also accelerates the development

and deployment of intelligent network functions and services [30].

However, CFL faces limitations including single points of failure, communication

bottlenecks, and potential privacy breaches. To overcome these issues, Decentralized

Federated Learning (DFL) facilitates direct collaboration among devices, eliminating

the need for a central server and enhancing robustness and privacy [45] [3]. Each

1

2

device has the capability to perform both computation and communication. In DFL,

each device can function as either a server or a client device. This distinction provides

DFL with greater flexibility, making it more advantageous than CFL in more complex

application scenarios.

Specifically, DFL has the following characteristics: each device can function as

either a server or a client, each device possesses both transmission and computational

capabilities, and each device is networked, allowing for the transmission of parameters

over the network. This structure endows DFL with high flexibility and scalability,

enabling each node to participate in data processing and computation, as well as to

share and update model parameters collaboratively. The decentralized approach not

only enhances system fault tolerance and robustness but also better protects data

privacy by avoiding the security risks associated with centralized data storage. The

effectiveness and reliability of Decentralized Federated Learning (DFL) systems hinge

upon several critical factors such as network topology, non-IID data distributions, and

training strategies [3] [45].

Network topology, which refers to the arrangement of nodes within a network,

plays a crucial role in DFL. Common topologies include ring, linear, star, and mesh

structures. The star topology is often used in FL due to its server-client architec-

ture [27] [23]. In DFL, the central client can be seen as either a client or a server [3].

The central node coordinates communication, making it suitable for scenarios requir-

ing centralized control. Ring and linear topologies are popular for their bandwidth

and latency advantages in high-performance computing and data centers [34] [42] [44].

These topologies distribute the communication load more evenly across nodes, re-

ducing bottlenecks and potentially increasing fault tolerance and scalability. Mesh

topology, with its many interconnected nodes, offers high redundancy and robust-

ness, though it comes at the cost of increased complexity in communication manage-

ment [5] [29].

Non-IID (non-Independent and Identically Distributed) data distributions occur

when data across different nodes is not uniform or identically distributed. This means

that each node’s data can have different distributions, characteristics, and statistical

properties. Unlike IID data, where each node’s data is drawn from the same distri-

bution, non-IID data presents significant challenges for DFL by complicating model

3

generalization, training consistency, and overall system performance [49] [47] [23].

Training strategies, which involve methods and protocols for local model updates

and global aggregation, also significantly impact the convergence speed and robust-

ness of DFL systems. There are two main training strategies [45]: continuous and

aggregation. The continuous approach involves a device continuing training based on

the parameters from the previous device [34] [42] [44], while the aggregation approach

entails devices receiving and aggregating model parameters from other devices, then

using the aggregated parameters for subsequent training [27] [31] [22]. In the con-

tinuous approach, the model parameters are passed sequentially from one device to

another, allowing each device to refine the model further. This method can enhance

the model’s performance by leveraging the sequential nature of updates. In contrast,

the aggregation approach involves periodic aggregation of model parameters from

multiple devices, which can improve the model’s robustness by integrating diverse

updates but may require more sophisticated synchronization mechanisms.

1.1 Contribution

The above factors collectively dictate the effectiveness and reliability of DFL systems.

Therefore, a thorough analysis is essential to understand how variations in network

topology, non-IID data presence, and different training strategies impact DFL per-

formance. While existing studies have addressed aspects of these challenges, notable

gaps persist. Sheller et al. [34] compared convergence performance and accuracy

across devices using continual training strategies with linear and ring topologies in

DFL. Similarly, Chen et al. [5] introduced a novel DFL solution utilizing a mesh

topology and aggregate training strategy. However, neither study investigated the

impact of non-IID data, a crucial consideration in real-world applications. Further-

more, in [23], the authors focused on CFL’s convergence under varying non-IID data

conditions using convex local models, leaving unexplored the efficacy for non-convex

models. These gaps highlight the need for comprehensive research to bridge the un-

derstanding of how DFL systems perform under diverse conditions, including both

convex and non-convex model scenarios.

To address this gap, this thesis thoroughly analyzes these factors and provides

insights for designing more efficient and reliable Decentralized Federated Learning

4

(DFL) frameworks, ensuring they can manage complexities in practical deployments.

We evaluate various combinations of network topologies and training strategies. To

assess the impact of non-IID data distribution on model performance, we preprocess

the dataset using a label imbalance method and quantify non-IID using statistical

measures of data dissimilarity or divergence for measurements.

For convex models, we rigorously analyze their convergence and generalization ca-

pabilities using mathematical proofs and experiments. In contrast, non-convex models

present challenges for analytical proofs. Therefore, we conduct extensive experiments

to comprehensively assess their performance under varying degrees of non-IID data.

These experiments aim to provide a thorough understanding of how non-convex mod-

els perform in real-world applications of decentralized federated learning.

Our main contribution involves:

• This work provides a comprehensive analysis of the factors influencing the con-

vergence efficiency and generalization capacity of Distributed Federated Learn-

ing (DFL) models, covering both theoretical foundations and practical consid-

erations.

• We rigorously establish the convergence of different network structures in DFL

through convex optimization. This theoretical insight provides valuable guid-

ance for researchers aiming to effectively structure their DFL models.

• To analyse the convergence performance of different model configurations in

DFL under non-IID data, we employ various setups, including Continuous Lin-

ear, Continuous Ring, Aggregate Ring, Aggregate Linear, Aggregate Mesh, and

Aggregate Star. The degree of non-IID data is quantified using a label imbal-

ance method.

• To evaluate the impact of different factors (topologies, training strategies, and

data distributions) on convergence, we utilize five widely used machine learning

models as local models. Specifically, we select two convex models (SVM and

Logistic Regression) and three non-convex models (ResNet, DistilBERT, and

MiniGPT-4). Our experimental results demonstrated that all models, across

different topologies and training strategies, achieved convergence under IID

5

data. Additionally, we investigated the effect of varying non-IID levels on model

convergence.

1.2 Thesis Outline

This thesis is divided into five parts. Besides the first part, which is the introduc-

tion 1, the second part presents the background 2 knowledge relevant to this work

and important research related to our study. In the third part, we perform a detailed

mathematical analysis 3 of the convergence of each DFL model. The fourth part pro-

vides a detailed analysis of the convergence of different DFL models under Non-IID

data through two sets of experiments 4. In the final part, we discuss future research

directions and conclude the thesis 5.

Chapter 2

Background and Related Work

In this chapter, we begin by providing the essential context needed to understand the

content presented in this thesis. Subsequently, we conduct a thorough examination

of existing literature relevant to our research.

2.1 Background

2.1.1 Centralized Federated Learning

Centralized Federated Learning (CFL) is a machine learning paradigm first proposed

in 2016 [27]. As shown in Figure 2.1, there is a central server and multiple user

clients. The first step in the training process is for the server to send the initial model

parameters to each client. Subsequently, each client conducts independent training on

local data based on these initial parameters. After the training is completed, clients

upload the updated model parameters to the central server, which is responsible for

aggregating these parameters, generating the global model and distributing it back

to the client.

Advantage of centralized federal learning is that it can effectively protect user

privacy, because during the whole process, data from clients is always stored locally

and does not need to be shared with the server. This makes CFL highly practical in

privacy-sensitive applications. However, with the increase in the number of clients,

the communication cost increases accordingly, which may affect the overall efficiency

of the system. In addition, the architecture of CFL relies on the normal operation

of the central server. If the central server fails, the whole training process will not

continue. The single-point failure risk of this centralized architecture is an important

defect of CFL, so in practical applications, additional fault tolerance mechanisms are

often needed to ensure the reliability of the system [46].

6

7

Figure 2.1: Centralized federated learning architecture.

2.1.2 Decentralized federated learning

Decentralized Federated Learning (DFL) is a distributed machine learning paradigm

in which there is no single central server. Instead, model updates and parameter

aggregation are carried out through direct communication between multiple devices.

Each device independently trains a model on its local data and exchanges model

updates with other devices through a specific network topology [45].

DFL can be applied across a broad spectrum of pertinent scenarios, including

emerging fields such as healthcare, smart cities, Industry 4.0, and mobile services.

It proves beneficial in addressing challenges like meta-verse, enhancing urban plan-

ning, and optimizing service provision [3]. DFL excels in enabling the secure sharing

of privacy-preserving data between real and virtual entities. This capability proves

particularly advantageous in fostering task coordination and asynchronous knowl-

edge exchange within domains such as robotics, energy, and utilities sectors, with

significant applications in Industry 4.0 and mobile services.

In the real world, two primary types of DFL exist: cross-silo DFL and cross-

device DFL [45] [3]. Cross-silo DFLs are established by organizations or data centers,

typically featuring a relatively small number of nodes. On the other hand, cross-

device DFLs involve a larger number of nodes, each with a modest amount of data

and limited computational power. Within each set of nodes, specific roles are assigned,

8

including trainer, aggregator, proxy, and idle [3]. The trainer is the node used for

training.

The aggregator is the node used for aggregating parameters sent from different de-

vices. Proxy nodes act as intermediaries in DFL, typically responsible for forwarding

or aggregating data between different devices. Idle nodes are those that temporarily

do not participate in the current training task. These nodes may refrain from execut-

ing training or aggregation tasks during a certain period due to resource limitations,

task scheduling, or other reasons.

In our study, we explored various network topologies and aggregation methods,

such as ring topology, linear topology, full mesh topology, and star topology. In the

continuous ring and linear topologies, each node acts as a trainer. In the aggregate

ring, aggregate linear, and mesh topologies, each node serves as both a trainer and

an aggregator. In the star topology, the central node functions as both the trainer

and aggregator, while the other nodes only serve as trainers.

It is noteworthy that we did not designate proxy or idle nodes in our study because

we aimed to investigate the impact of different topologies and training strategies on

the performance of DFL.

In section 3.1, we show our mathematical analysis is applicable to both cross-silo

and cross-device DFL because we define N as the total number of clients, and N

can be any number. This implies that our analysis can be applied to scenarios with

varying numbers of devices. In the section 4, we show our experiments also apply

to both scenarios because we employed various local models, simulating the needs of

different situations in real life.

2.1.3 Non-IID Data

A significant challenge in DFL lies in the Non-IID data distribution, a factor widely

recognized by various researchers. Non-IID data refers to the uneven or random

distribution of data on different clients in statistical nature. In federal learning, this

means that the data on each device may vary significantly in statistical attributes

[47] [49]. The training data on each client in DFL is heavily influenced by the specific

local devices they use [45] [3]. As a result, the data distribution among connected

clients can vary significantly. Zhao et al. [47] have demonstrated that the accuracy of

9

FedAvg [27], a fundamental algorithm in federated learning that averages the model

parameters from each client weighted by the number of samples on the device to form

a global model, diminishes notably with increasing data heterogeneity.

Hangyu et al. [49] have showcased various types of non-IID data in real-life sce-

narios, categorized into “attribute skew” and “label skew.” “Attribute skew,” often

associated with Horizontal Federated Learning, involves variations in the number of

attributes on different devices. Notably, our study predominantly explores “label

skew” due to its prevalence in vertical federated learning, which is more relevant to

our study on DFL. “Label skew” refers to differences in the number of labels for

each device. In our investigation, we quantify the degree of non-Independent and

Identically Distributed (NON-IID) Data in Section 4.

2.1.4 Network Topology

Since DFL uses P2P transmission, common network topologies in real-life scenarios

can be applied to DFL [5]. The works [45] [3] [9] show that network topology can affect

the efficiency of DFL. In detail, ring and linear structures are similar [34] [42] [44].

Specifically, when one device finishes its operation, it passes the parameters to the

next device. This structure allows for sequential parameter transmission, enabling

each device to update the model in turn, resulting in low communication overhead

and high computational efficiency, making it suitable for environments with limited

bandwidth.

In the case of the star model, the central node is responsible for parameter trans-

mission and aggregation among all devices. We first select one device as the central

node, and then all other devices send their parameters to the central node. The

central node aggregates these parameters and sends the updated parameters back to

each device [45], [9].

We want to point out that in CFL, the central is a server, while in the star

topology of DFL, the central node can function as both a server and a client. Users

can perform both training and aggregation operations on the central node, meaning

that the central node can handle data as well as perform computations. This flexibility

allows users to choose the most suitable device as the central node, such as the one

with the strongest communication capabilities and the highest computational power.

10

For the mesh model, all devices are interconnected, allowing for direct parameter

transmission and aggregation [25], [33], [5]. This structure offers high redundancy and

robustness, as it can tolerate failures of some devices without affecting the entire sys-

tem’s operation. However, the communication complexity is high, and management

becomes more complicated.

In summary, different network topologies can be applied to DFL based on actual

needs and resource conditions to optimize system performance and efficiency. In our

study, we analyze four types of network topologies: linear, ring, star, and mesh,

under NON-IID data conditions. This is because we believe that since DFL relies on

network transmission, traditional network structures should be applicable to various

types of DFL.

2.1.5 Training Strategy

There are two main Training strategy for DFLs: aggregation and continuous.

Aggregation for DFL is proposed by Yuan et al. [45]. They assume that there

is a method similar to FedAvg [27] that can aggregate the parameters of different

devices. The device does not rely on a single parameter but aggregates multiple

parameters according to a certain weight to obtain new parameters, and trains based

on these new parameters. We use a method similar to FedAvg for aggregation, where

the proportion of the number of samples in the total number of samples in a device

data set is used as the aggregation parameter. For example, suppose there are two

devices participating in the training process. Device A has 200 samples, Device B has

700 samples. The total number of samples is 1000. The aggregation weights for the

parameters from these devices would be 0.2 for Device A, 0.7 for Device B. Again,

suppose Device A has 300 samples, Device B has 700 samples, and the total number of

samples is 1000. The aggregation weights for the parameters from these devices would

be 0.3 for Device A, 0.7 for Device B. Therefore, Device B’s parameters will have a

greater influence on the final aggregated parameters due to its larger proportion of

the total data.

Continuous training, in this mode, devices sequentially receive and update model

parameters. Each device trains using its local data and then passes the updated

parameters to the next device. The advantage of this mode is its simplicity and

11

directness. For example, like the figure 3.1, client1 sends its parameters to client2.

Client2 then uses these parameters as the initial parameters for its own training.

After training, client2 sends its updated parameters to client3, and so on.

It focuses on the ability of a model to continuously learn and adapt to new data

without forgetting previously learned information [45] [2]. This is particularly impor-

tant in DFL scenarios where data distribution can change over time or where models

need to be frequently updated with new data from network nodes.

Both aggregation and continual learning are critical for the effective implemen-

tation and optimization of DFL systems, ensuring they remain robust and efficient

across varying network topologies and evolving data distributions. We combine the

network topology 2.1.4 and training strategy, we get the 6 DFL topology. We show

the six combinations used in this study on table 2.1. It is important to note that

continuous star and continuous mesh structures are impractical in real-life scenarios.

If we use the continuous approach in the star topology, the central client receives

multiple parameters from different devices and does not know which parameter to

use as the initial parameter for training. Similarly, in the mesh structure, each device

receives parameters from all other devices and faces the same issue of not knowing

which parameter to base its training on,in the other word,it does know which pa-

rameter to use as the initial parameter for training. We will show the formulation of

different types of aggregation methods in Section 3.1.

DFL Training Mode
Continuous Ring Continuous
Continuous Linear Continuous

Full Mesh Aggregate
Star Aggregate

Aggregate Ring Aggregate
Aggregate Linear Aggregate

Table 2.1: The six combinations of DFL topologies and training stratey used in this
study.

2.1.6 Strongly Convex and L-smooth

Several papers have utilized theoretical analysis in Federated Learning (FL) by as-

suming that the local Machine Learning (ML) models on devices are strongly convex

12

and L-smooth [23] [22] [29]. This assumption facilitates the derivation of conver-

gence rates for FL algorithms. Strong convexity and L-smoothness are mathematical

conditions that describe the curvature of the functions being optimized:

Strongly Convex: A function is strongly convex if there is a constant µ > 0 such

that for all points x and y in its domain, the function lies above a quadratic curve with

curvature µ. This property ensures that the function has a unique global minimum

and that it behaves well for optimization algorithms, leading to faster convergence

rates [41].

L-smooth: A function is called L-smooth if its gradient is L-Lipschitz contin-

uous. This means that the rate of change of the function is constrained by L; in

other words, the change in the gradient is bounded by L times the distance between

x and y. The benefit of this is that it ensures that optimization algorithms do not

overshoot the minimum during their steps. This is a common assumption in optimiza-

tion. These assumptions are crucial in the analysis of federated learning algorithms

because they allow researchers to apply optimization theory to analyze the behavior

of federated learning algorithms and to predict the speed and reliability with which

these algorithms converge to a good solution. [4]

13

2.2 Related Works

2.2.1 Centralized Federated Learning

Hangyu et al. [49] demonstrated various types of non-IID data in real-world scenarios

and proved through experiments that such data significantly reduces the prediction

accuracy of the global model. Their research emphasized that non-IID data in cen-

tralized federated learning leads to a substantial decline in model performance. Zhao

et al. [47] further proved that as data heterogeneity increases, the accuracy of the

FedAvg algorithm decreases significantly. Their findings show that when data distri-

bution differs greatly among different clients, the effectiveness of centralized federated

learning is greatly compromised.

Li et al. [23] mathematically proved that the higher the degree of non-IID, the

worse the convergence of centralized federated learning. Their theoretical analysis

provides a solid foundation for understanding the impact of non-IID data on the

convergence of federated learning. However, their work lacks analysis of different net-

work topologies and only focuses on the FedAvg training strategy, without exploring

various other training strategies.

While these studies reveal the significant impact of non-IID data on centralized

federated learning, most existing research primarily focuses on CFL and seldom dis-

cusses the performance of DFL under non-IID data, different training strategies, and

various network topologies. Our research aims to fill these gaps by experimentally

and mathematically analyzing the performance of DFL composed of different network

structures under varying degrees of non-IID.

2.2.2 Decentralized Federated Learning

In the field of decentralized federated learning (DFL), many studies have explored the

performance of various DFL methods. Sheller et al. [34] were the first to analyze the

performance comparison between continuous linear topology, continuous ring topol-

ogy, and centralized federated learning. They conducted experiments with the same

number of epochs and provided a detailed comparison of these methods. This study

offers valuable insights into the impact of different topologies on DFL performance.

However, their work lacks analysis of star and mesh models, and they did not explore

14

the performance of DFL under non-IID data, nor did they provide theoretical proofs.

Another study [22] designed a DFL method that combines CFL with continuous

linear topology and found that this new method performs better under non-IID data.

This indicates that combining centralized and decentralized methods can achieve

better performance when handling non-IID data. However, they did not analyze

DFL under different network topologies.

Angelia et al. [29] analyzed the network topologies of DFL using undirected and

directed graphs. They applied the Metropolis algorithm to update directed graphs

and the Push-sum algorithm to update undirected graphs, analyzing the computa-

tional complexity and convergence speed of each method. However, their study did

not consider the impact of non-IID data, nor did they provide detailed analysis of

specific commonly used network topologies. Additionally, their research focused more

on mathematical analysis, lacking experimental validation.

In summary, although existing studies have made some progress in exploring DFL,

there are still many unresolved issues. Particularly in handling non-IID data and

complex network topologies, the performance and convergence of DFL require further

research and optimization. In our work, we explore the performance of DFL through

both theoretical 3.1 and experimental 4 approaches. We first define six different DFL

configurations based on two different training strategies and network topologies and

conduct convergence analysis on them 3.1. Then we define the required non-IID

settings in the experiments 4and measure the performance of the six different DFL

configurations under varying degrees of non-IID.

Chapter 3

Performance Analysis of DFL Deployments

3.1 Convergence Rate Analysis

This section will develop the objective functions for the six different DFL deployments

using the notations presented in Table 3.1.

Table 3.1: Notation Table

Symbol Description
Loss(·; ·) User-specified loss function

pk Weights of the k-th device
N Number of samples

F (w) Function for Decentralized Federated Learning (DFL)
F ∗ The optimal F under ideal conditions
Fk Objective for the k-th device
F ∗
k The optimal Fk under ideal conditions

ξk SGD randomly chosen sample from k-th device
wk Weights for k-th device
nk Number of samples associated with the k-th device
L Parameter for L-smoothness
µ Parameter for µ-strong convexity
Z The level for the NON-IID

3.1.1 Network Environment

To simplify the problem and focus on the impact of network topology on the con-

vergence of decentralized federated learning (DFL), we assumed that each device has

the same communication and computing capabilities. Additionally, we assume a reli-

able communication channel with no packet loss. Furthermore, we do not distinguish

between wired and wireless communication, instead assuming an abstract mode of

communication. This abstraction enables us to concentrate on the core effects of

network topology without being constrained by specific communication technologies.

15

16

3.1.2 Problem Formulation

We formulate the distributed optimization model for Decentralized Federated Learn-

ing (DFL) deployment as in Equation 3.1. For the function 3.1, regardless of the type

of decentralized federated learning (DFL) model, their goal is consistent: to optimize

the global model parameters by minimizing the global loss function F (w). Different

network topologies (such as linear, ring, star, etc.) determine the way information

is transmitted between devices, but all models follow the same core objective. This

objective is to collaboratively compute local loss functions and share information to

jointly optimize the global model.

min
w

{
F (w) =

N∑
k=1

pkFk(w)

}
(3.1)

Where pk denotes the weights of the k-th device (pk ≥ 0,
∑N

k=1 pk = 1), N is the total

number of devices, and w signifies the model parameters.

The objective function for each device k (where 1 ≤ k ≤ N) using the entire

dataset xk = {xk,1, . . . , xk,nk
} is expressed as:

Fk(w) =
1

nk

nk∑
j=1

Loss(w;xk,j) (3.2)

where Loss(·; ·) represents a user-specified loss function and nk represents the number

of samples associated with the k-th device.

If we uniformly select ξk samples from device k’s dataset xk, the objective function

will then be:

Fk(w) =
1

nk

Loss(w; ξk) (3.3)

3.1.3 Assumptions

We use the same assumptions as Li et al. [23]. F1, . . . , FN are all L-smooth and

µ-strongly convex, ensuring that the gradient does not change too rapidly and the

value of the function between any two points is not only above the tangent line but

also above the tangent line plus a positive term proportional to ∥w − w′∥2. For

k = 1, . . . , N , we also assume:

E∥∇Fk(w
k, ξk)−∇Fk(w

k)∥2 ≤ σ2
k

17

and

E∥∇Fk(w
k, ξk)∥2 ≤ G2.

These assumptions indicate that the noise’s impact on gradient estimation is limited.

We consider F ∗
k to be the local optimal solution for the DFL model, in the other

word, it is the minimum values of Fk. We use the term

F ∗ =
1

N

N∑
k=1

F ∗
k

and

Z = F ∗ − F ∗
k

to quantify the degree of non-IID. If the data is IID, in the theoretical context, Z = 0.

3.1.4 Converge Analysis

We show that six different DFL converges to the optimal global solution for strongly

convex functions on Non-IID data. This means we are interested in evaluating

E (F (w̄))−F (w∗). Given that Fk is L-smooth, we can derive the following inequality:

F (w̄) ≤ F (w∗) + ⟨∇F (w∗), w̄ − w∗⟩+ L

2
∥w̄ − w∗∥2 (3.4)

Due to the monotonicity of the expected value, we have:

E(F (w̄)) ≤ E(F (w∗)) + E (⟨∇F (w∗), w̄ − w∗⟩) + L

2
E∥w̄ − w∗∥2

Subtracting F ∗
k from both sides yields:

E(F (w̄))− F ∗ ≤ E(F (w∗))− F ∗+

E (⟨∇F (w∗), w̄ − w∗⟩) + L

2
E∥w̄ − w∗∥2

(3.5)

We have the function: E (F (w∗))− F ∗ = 0.

Because strongly convex functions have the property that their gradient is zero

at the optimal point w∗, when F (w) reaches its optimal solution w∗, the gradient

∇F (w∗) = 0. In detail, this is because the gradient vector points to the direction of

the fastest growth of the function, so at the most advantage (whether local optimal

or global optimal), the growth rate of the function should be zero, which means that

the gradient is also zero.

18

Figure 3.1: Continuous linear.

Thus, the (⟨∇F (w∗), w − w∗⟩) = 0. We get the optimal function for DFL:

E(F (w̄))− F (w∗) ≤ L

2
E||w̄ − w∗||2 (3.6)

This function (3.6) inequality indicates that in DFL, the expected difference

in loss values between the obtained model parameters w̄ and the optimal model

parameters w∗, denoted as E(F (w̄))−F (w∗), can be bounded by the expected squared

distance between them, L
2
E∥w̄ − w∗∥2. In other words, this inequality shows that

the smaller the distance between the average model parameters and the optimal

parameters, the smaller the error in the loss function values.

Our subsequent steps will involve simplifying ∥w̄ − w∗∥2 based on different DFL

structures. By doing so, we will derive different convergence formulas for each DFL

topology.

3.1.4.1 Continuous Linear

Continuous linear refers the network topology 2.1.4 as linear and the training strategy

2.1.5 as continuous.

The Equation(3.7) shows how the continuous linear transfer the parameter. In

detail, the continuous linear DFL [34] is structured as a line, with each client serving

as a node connected to the next. For each device k, it receives the model parameters

from the previous device k − 1 and updates the model using its local dataset ξk.

Subsequently, it forwards the trained parameters along the line to the next client.

This sequential and iterative training continues along the line, fostering collaboration

among the clients to collectively enhance the learning and performance of the entire

system. This process can be formulated as the following equation:

wk = wk−1 − ηk∇Fk

(
wk−1, ξk

)
(1 ≤ k ≤ N) (3.7)

19

where wk denotes the updated parameter for device k, ηk is the learning rate of

device k and ∇Fk

(
wk−1, ξk

)
represents the gradient of the local objective function

Fk

(
wk−1, ξk

)
for device k based on the previous device’s weight wk−1 and its local

data set ξk.

We set the wk as the parameter which trained on k device. Thus, since local

model on each device is totally same, it can be seem as a big model, we suppose the

Ak = ∇Fk

(
wk−1, ξk

)
, Āk = ∇Fk

(
wk−1

)
; therefore, EAk = Āk, w

k = wk−1 − ηkAk.

Thus, the function (3.6) is equal to:

||wk − w∗||2 = ||wk−1 − ηkAk − w∗ − ηkĀk + ηkĀk||2

= ||wk−1 − ηkĀk − w∗||2 + 2ηk < wk−1 − w∗ − ηkĀk,

Āk − Ak > +η2k||Ak − Āk||2
(3.8)

because the EAk = Āk, thus, the expectation of 2ηk < wk−1−w∗−ηkĀk, Āk−Ak >= 0.

So, we will bond for the ||wk−1 − ηkĀk − w∗||2 first.

||wk−1 − ηkĀk − w∗||2 = ||wk−1 − w∗||2

−2ηk < wk−1 − w∗, Āk > +η2k||Āk||2
(3.9)

since η2k||Āk||2 = η2k||∇Fk

(
wk
)
||2, and because the L-smooth,

η2k||∇Fk

(
wk
)
||2 ≤ 2η2L

(
Fk

(
wk
)
− F ∗

k

)
. (3.10)

Then, we bonding at the −2ηk < wk−1−w∗, Āk >, because the local model is strongly

convex, which mean,

−2ηk < wk−1 − w∗,∇Fk

(
wk−1

)
>

≤ −2ηk(Fk

(
wk−1

)
− Fk (w

∗)− µ

2
∥ wk−1 − w∗ ∥22)

(3.11)

Then, we substitute above two equation into Equation 3.9:

||wk−1 − ηkĀk − w∗||2 ≤ ||wk−1 − w∗||2 − 2ηk(Fk

(
wk−1

)
−Fk (w

∗)− µ

2
∥ wk−1 − w∗ ∥22) + 2η2kL

(
Fk

(
wk
)
− F ∗

k

) (3.12)

20

The Equation 3.9 is equal to:

||wk−1 − ηkĀk − w∗||2 ≤ ||wk−1 − w∗||2 − 2ηk[Fk

(
wk−1

)
−Fk (w

∗)− µ

2
∥ wk−1 − w∗ ∥2] + (2ηk)

2L
(
Fk

(
wk
)
− F ∗

k

)
≤ ||wk−1 − w∗||2 − 2ηkFk

(
wk−1

)
+ 2ηkFk (w

∗)

+µηk ∥ wk−1 − w∗ ∥2 +(2ηk)
2L
(
Fk

(
wk
)
− F ∗

k

)
= (1 + µηk) ||wk−1 − w∗||2 − 2ηk

(
Fk

(
wk−1

)
− F ∗

k

)
+(2ηk)

2L
(
Fk

(
wk
)
− F ∗

k

)
(3.13)

Then, we let the J = −2ηk
(
Fk

(
wk−1

)
− F ∗

k

)
+ (2ηk)

2L
(
Fk

(
wk
)
− F ∗

k

)
).

Since F ∗
k − Fk−1 ≤ F ∗ − Fk−1 ≤ F ∗ − F ∗

k ; therefore, J ≤ 2ηt (F
∗ − F ∗

k) +

2η2tL (Fk − F ∗
k). To bond the (Fk − F ∗

k). Because the Fk is L-smooth, we can get

(Fk − F ∗
k) ≤ L

2
∥ W k − W ∗ ∥2 +

(
W k −W ∗)T ∇Fk (W

∗). Since ∇Fk (W
∗) = 0,

J ≤ 2ηkZ + η2kL
2 ∥ wk −w∗ ∥2, equation 3.13 is become to (1 + µηk) ||wk−1 −w∗||2 +

2ηkZ + η2kL
2 ∥ wk − w∗ ∥2. Therefore, the equation 3.8 becomes:

∥ wk − w∗ ∥2≤ (1 + µηk) ||wk−1 − w∗||2

+2ηkZ + η2kL
2 ∥ wk − w∗ ∥2 +η2t ∥ At − Āt ∥2

(3.14)

And taking expectation on both sides of Equation 3.14

E ∥ wk − w∗ ∥2≤ (1 + µηk)E||wk−1 − w∗||2

+2ηkZ + η2kL
2E ∥ wk − w∗ ∥2 +η2kE ∥ Ak − Āk ∥2

(3.15)

We next step is bond the η2tE ∥ At− Āt ∥2, by the assumption, η2tE ∥ At− Āt ∥2≤
η2t σ

2
k.

Therefore, we can see that in the final Function 3.16, if the Z (degree of non-

IID) approaches zero, the left part will be bounded by a constant. This means that

when the data distribution on each client is the same, the DFL model will converge.

However, as the level of non-IID increases, the value on the right side of the equation

increases, causing the gap between the actual loss and the ideal loss to increase. This

leads to the model becoming more divergent.

E
[
F
(
wk
)
− F ∗] ≤ L

2

[(
1 + µηk + η2kL

2
)
E||w0 − w∗||2 + 2ηkZ + η2kσ

2
k]
]

(3.16)

21

Figure 3.2: Continuous ring.

3.1.4.2 Continuous Ring

The continuous ring DFL [34] comprises a network of devices interconnected in the

form of a ring. We want to mention that the continuous ring is very similar with

continuous linear because there have the same training strategy 2.1.5.

Defined d as the cumulative number of times the model parameters are passed in

all devices, which is an indicator of the flow of the model throughout the network,

where d ∈ 1, ..., N ∗ t. Assuming that device1 received initial parameters w0, in each

training round t (t > 0), the k-th (k = d − (t− 1)N) device updates the initial

model parameters using its data and then transmits the updated parameters to the

(k + 1)-th device.

The subsequent device considers the received model parameters from the previ-

ous device as the initial model and uses its data to update it. When the model is

transmitted to the last device, that device sends the trained parameters back to the

first device. Subsequently, the first device sets these parameters as the initial values

and initiates training again. This cyclic process is mathematically represented by the

following equation:

wd = wd−1 − ηd∇Fd

(
wd−1, ξd

)
k = d− (t− 1)N

(3.17)

Here, t represents the number of complete cycles from the first client to the last

client and then back to the first client, constituting one full training cycle. Each

complete cycle allows every device an opportunity to update and pass along the

22

Figure 3.3: Aggregate Linear.

model parameters, considered as one complete training round. Therefore, the coverage

analysis of ring continuous is similar with the linear continuous.

E
[
F
(
wd
)
− F ∗] ≤ L

2

[(
1 + µηd + η2dL

2
)
E||w0 − w∗||2 + 2ηdZ + η2dσ

2
d]
]

(3.18)

Since C ring and C linear use the same aggregation strategy, their mathematical

convergence analysis formulas are similar. Therefore, the derivation process is omit-

ted. By observing the formula, we can see that as Z (the degree of non-IID) increases,

the value on the left side becomes larger, and the gap between the optimal solution

and the actual value on the right side also increases, causing the model to become

more divergent.

3.1.4.3 Aggregate Linear

Aggregate linear DFL refers to the use of a linear network topology 2.1.4 combined

with an aggregation training strategy 2.1.5. Similar to the continuous linear, this

deployment comprises a series of interconnected devices aligned linearly. As the Fig-

ure 3.3, each device within this network possesses a unique dataset. After training

on Device 1, it transmits its parameters to Device 2.

Following the same procedure as the continuous linear approach, Device 2 trains

based on the parameters from Device 1. Device 2 then transmits both its own param-

eters and those from Device 1 to Device 3. Device 3 aggregates the parameters from

both Device 1 and Device 2, and then trains based on the aggregated parameters. As

previously mentioned in Section 2.1.5, the aggregation follows a method similar to

FedAvg.

Specifically, we calculate the cumulative sample count of Devices 1 and 2, termed

23

as ssum. Additionally, we denote the individual sample counts for Device1 and Device2

as s1 and s2, respectively. The final parameter set transmitted from Device2 to

Device3 is a weighted combination (w1 is the weight from client1 to client2, w2 is the

weight after client2 trained its own dataset): s1
ssum

×W1 +
s2

ssum
×W2.

This process is mathematically represented by the following equation; when k is

at most 2:

wk = wk−1 − ηk∇Fk

(
wk−1, ξk

)
(3.19)

When k is larger than 2:

wk =

(
(sk−1)w

k−1 + (sk−2)w
k−2∑k−1

i=1 si

)
− ηk∇Fk((

(sk−1)w
k−1 + (sk−2)w

k−2∑k−1
i=1 si

)
, ξk

) (3.20)

Next, we will analyze its convergence: For the wk = Mk − ηk∇Fk

(
Mk, ξk

)
and

Mk =
(

sk−1w
k−1+sk−2w

k−2∑k−1
i=k si

)
we let H = ∇Fk

(
Mk, ξk

)
and H̄ = ∇Fk

(
Mk
)
Thus,

EH = H̄ and wk = M − ηkH.

∥ wk − w∗ ∥2=∥ M − ηkH − w∗ − ηkH̄ + ηkH̄ ∥2

=∥ M − ηkH̄ − w∗ + ηkH̄ − ηkH ∥2
(3.21)

The same with the continuous linear, Equation 3.6 is equal to |M − ηkH̄−w∗∥2−
2 < M − ηkH̄ −w∗, ηkH̄ − ηkH > +η2k ∥ H̄ ∥2 and we will bond the |M − ηkH̄ −w∗∥2

first. ∥M − ηkH̄ − w∗∥2 = ∥M − w∗∥2 − 2ηk < M − w∗, H̄ > +η2t ∥H̄∥2

and we will bond the 2η2k < M − w∗, H̄ > and η2k∥H̄∥2

2η2k < M − w∗, H̄ >≤ −2ηk (Fk (M)

−F (w∗) +
µ

2
∥M − w∗∥22

(3.22)

η2k∥∇Fk (M) ∥2 ≤ 2η2kL (Fk (M)− F ∗
k) (3.23)

Then, we get

∥M − ηkH̄ − w∗∥2 ≤ (1 + µηk) ∥M − w∗∥2 + 2ηk (Fk (w
∗)

−Fk (M) + 2η2kL (Fk (M)− F ∗
k)

(3.24)

24

The same way as the continue linear, we can got the equation:

A ≤ (1 + µηk) ∥M − w∗∥2 + 2ηkZ + η2kL
2∥M − w∗∥2

∥wk − w∗∥2 ≤ (1 + µηk) ∥M − w∗∥2

+2ηkZ + η2kL
2∥M − w∗∥2 + η2kσ

2
k

(3.25)

By the strong convex, we can instead theMk =
(

sk−1w
k−1+sk−2w

k−2∑k−1
i=k si

)
to V k =

(
sk−1w

0+sk−2w
0∑k−1

i=k si

)
Thus, we get the function for aggregate linear:

E(F (w̄))− F (w∗)) ≤ L

2
[(1 + µηk) ∥V k − w∗∥2

+2ηkZ + η2kL
2∥V k − w∗∥2 + η2kσ

2
k]

(3.26)

We see that all parameters except Z are constants, which means that the right

side of the formula is only affected by Z. However, an increase in Z will cause the

right side to increase as a whole. This simultaneously affects the value of the left side

of the formula, leading to poorer overall convergence of the model.

3.1.4.4 Aggregate Ring

The aggregate ring is similar to the aggregate linear because their have same training

strategy. A series of interconnected devices is comprised of a ring. Each device

possesses a unique dataset. There is only one difference. As the Figure 3.4, when

running to the last device, the last aggregated parameters will be sent back to the

first device.

This process is mathematically represented by the following equation; when k is

at most 2.

wd = wd−1 − ηd∇Fd

(
wd−1, ξd

)
(3.27)

when k is larger than 2

wd =

(
(sd−1)w

d−1 + (sd−2)w
d−2∑d−1

i=1 si

)
− ηd

∇Fd

((
(sd−1)w

d−1 + (sd−2)w
d−2∑d−1

i=1 si

)
, ξd

)
k = d− (t− 1)N

(3.28)

25

Figure 3.4: Aggregate Linear

Because the aggregate ring have same training strategy:

E(F (w̄))−F (w∗)) ≤ L

2
[(1 + µηd) ∥V d−w∗∥2+2ηdZ+η2dL

2∥V d−w∗∥2+η2dσ
2
d] (3.29)

Since A ring and A linear use the same aggregation strategy, their mathematical

convergence analysis formulas are similar. Therefore, the derivation process is omit-

ted. By observing the formula, we can see that as Z (the degree of non-IID) increases,

the value on the left side becomes larger, and the gap between the optimal solution

and the actual value on the right side also increases, causing the model to become

more divergent.

3.1.4.5 Aggregate Star

The aggregate star is similar to CFL [23,27], however, like the Figure 3.5, the center

device no longer only plays the role of a server, instead, it can participate in the

training of local models. First, select a central device as the center of the whole

deployment. After that, the initial parameters are issued by the central device to

each device, and then each device (including the central device) is trained based on

the initial parameters. After that, the central receives the parameters of all devices

for aggregation. This process is then iteratively repeated.

This process is mathematically represented by the following equation:

wk =
n∑

i=1

(
siwi∑n
j=1 sj

)
− ηk∆Fk

(
n∑

i=1

(
siwi∑n
j=1 sj

)
, ξk

)
(3.30)

26

Figure 3.5: Star

To analyze the coverage, the aggregate star and mesh DFL is similar with CFL,

Li et al. [23] have proved it as: E[F (wT)] − F ∗ ≤ 2κ
γ+T

(
B
µ
+ 2L∥w0 − w∗∥2

)
, B =∑N

k=1 p
2
kσ

2
k + 6LZ + 8(E − 1)2G2, where T is the number of iterations.

We see that all parameters except Z are constants, which means that the right

side of the formula is only affected by Z. However, an increase in Z will cause the

right side to increase as a whole. This simultaneously affects the value of the left side

of the formula, leading to poorer overall convergence of the model.

3.1.4.6 Aggregate Mesh

The aggregation mesh is the most common in DFL [3,35,45]. Unlike the aggregation

star, each device can play the role of the central device and can be trained for local

models. Like the Figure 3.6, first of all, each device has preset parameters. Each

device is trained locally according to the parameters and then sent to other devices.

Each device aggregates parameters separately, and the aggregated parameters are

recorded as the initial parameters of the next round. The next round of training is

carried out based on the initial parameters. The training process is the same as the

aggregate star.

27

Figure 3.6: Mesh topology.

3.2 Summary and Take Away Message

In this chapter, we first define the network environment and the distributed opti-

mization model for Decentralized Federated Learning (DFL). Since our experiments

primarily focus on the impact of topology and aggregation methods on DFL under

Non-IID data conditions, we assume that each DFL model operates in the same net-

work environment. Then, we mathematically describe the transmission formulas for

six different DFL models, which reflect the specific mechanisms of data transmission

and parameter updates for each model.

Next, we conduct an in-depth analysis of the convergence performance of these

six DFL models under Non-IID data conditions. We found that as the degree of

Non-IID increases, the actual loss values obtained by the six different DFL models

diverge more from the ideal loss values. This indicates that Non-IID data distribution

significantly affects the convergence of DFL models. Our findings clearly show that

the heterogeneity of data distribution is a critical factor influencing the performance

of DFL models, which needs to be considered in practical applications.

Our mathematical proof cannot compare the advantages and disadvantages of

different DFLs because, in the mathematical proof, metrics such as T (number of

rounds) are present in the star topology but not in the linear and ring topologies.

Therefore, we cannot directly compare the differences between each DFL (topology,

training strategy) using mathematical formulas. Instead, we compared these metrics

28

through experiments 4.

Chapter 4

Performance Evaluation

This chapter presents the experimental evaluations of the chosen six DFL deploy-

ments for traditional, deep neural networks, and Large Language Models (LLMs)

with a various degree of non-IID data distribution to illustrate their convergence

rates. Thus, users can select appropriate deployment criteria for their targeted appli-

cations. We first present the evaluation workflow, setup, implementation, model and

data selections. Then, the chapter presents the evaluation results with discussions.

Evaluation Workflow: This section presents the evaluation workflow (see Fig-

ure 4.1). First, we select the DFL deployment topology and the aggregation approach,

which is six in our case. Next, we select the learning models we will evaluate along

with the corresponding datasets. After that, we must define the non-IID data distri-

bution for the chosen model and data. Finally, we perform the distributed training

and test the model performance. In the following, we present details of the workflow.

Note that we do not present the topology and training schemes in the following, which

is introduced in Section 2.1.4 and Section 2.1.5.

4.1 Model and Data Selection

To ensure that our research adapts to multiple fields, we have chosen three different

types of learning models: traditional, deep learning, and large language models. The

loss functions of traditional models are often convex, while those for deep learning

and large language models are nearly convex. The models and their datsets are listed

in Table 4.1.

Traditional models: We selected Support Vector Machines [17] (SVM) and

Logistic Regression [20] to be tested over the Breast Cancer Dataset [38]. First,

both models are suitable for various data types and tasks, including classification and

regression problems, making them highly applicable and flexible. Second, SVM and

regression models have a solid theoretical foundation and extensive research literature

29

30

Figure 4.1: Evaluation workflow.

support. Their algorithmic complexity and performance have been thoroughly studied

and validated. Additionally, logistic regression is chosen because it is frequently used

in other federated learning (FL) papers [18, 23], demonstrating its effectiveness and

reliability in distributed environments.

We used Stochastic Gradient Descent (SGD) [6] as the optimizer for these tra-

ditional models and conducted incremental training while recording the loss values

at each epoch. This method not only improves the model’s performance on non-

independent and identically distributed data but also enhances its adaptability in a

distributed learning environment.

Deep learning: For deep learning, we selected ResNet [15] for vision and Dis-

tilBERT [7] for NLP tasks. ResNet [15], short for Residual Network, is a type of

convolutional neural network that uses on computer version. DistilBERT (Bidirec-

tional Encoder Representations from Transformers) is profoundly effective for natural

language processing tasks. Similarly, we employed SGD as the optimizer for deep

learning models and conducted distributed training. The benefits of this approach

include better control over the convergence and final outcomes of deep learning mod-

els, enhanced generalization capabilities, increased training efficiency, reduced risk of

overfitting, improved model stability and robustness, and flexible handling of large-

scale datasets.

We chose ResNet because of its outstanding performance in image recognition

31

tasks, its strong theoretical foundation, and its widespread application support. ResNet

effectively addresses the vanishing gradient problem in deep neural networks through

the introduction of residual connections, enabling the training of deeper networks.

Specifically, we used the ResNet-18 version. This choice was made because ResNet-

18 has a relatively shallow structure, low computational cost, and is suitable for ex-

periments in resource-constrained environments, while still providing strong image

feature extraction capabilities.

We used MNIST dataset [43] for ResNet model. The dataset consists of a large

collections of handwritten digits, is commonly used in the field of image processing

to train models to recognize numbers effectively, making it ideal for demonstrating

ResNet’s capabilities in image classification.

Large Language Models (LLM): For LLMs, we chose MiniGPT-4 [48] as our

model. MiniGPT is based on the GPT (Generative Pre-trained Transformer) ar-

chitecture, a vision-language model that can take an image from a client and then

answer questions about it. Similarly, we used SGD as the optimizer and conducted

distributed training. However, unlike traditional and deep learning models, due to

the enormous size of MiniGPT-4, its training is divided into two parts: the first part

trains the connections between the vision and language models, and the second part

involves fine-tuning the model. In this experiment, we only trained the fine-tuning

part.

We used cc sub dataset [48], a text-image dataset designed to enhance language

model training with multi modal inputs. The TREC 6 dataset [8], known for its use

in evaluating text classification and information retrieval systems, has been selected

for training the BERT model. This dataset comprises a set of questions categorized

into six different types, challenging the model to understand and process natural

language queries accurately.

Table 4.1: Model Dataset Table

Model Dataset
SVM Breast Cancer Dataset

Logistic Regression Breast Cancer Dataset
ResNet-18 MNIST dataset
DistilBERT TREC 6 dataset
MiniGPT-4 cc sub dataset

32

4.2 Non-IID Data Distribution

In our experiment, we chose to focus on the most prevalent form of NON-IID data—

label size imbalance—as this is commonly observed in vertical Federated Learning

models [49]. Label imbalance is defined as the variation in the distribution of dataset

labels across different clients. In the following, we present the process of generating

multiple levels using two approaches presented in [16].

Non-IID Data Levels for Traditional Models: Given that SVM and logistic

regression are binary classifiers and use the Breast Cancer Dataset, which contains

only two labels, we employed three different levels of non-IID data. To determine

these levels, we used KL divergence as the metric [16].

First, let us explain what KL divergence is. The Kullback-Leibler (KL) divergence

between two probability distributions P and Q is defined as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(4.1)

where P (i) is the probability of event i in distribution P , and Q(i) is the probability

of the same event in distribution Q. KL divergence measures the difference between

the distributions of two datasets. The greater the difference in the distributions, the

higher the KL divergence value. For example, if the first dataset is [1, 1, 1, 1, 1] and

the second dataset is also [1, 1, 1, 1, 1], then the distributions are identical, and the

KL divergence value is 0.

We represent the distribution of positive labels on five devices as an array, while

the distribution of negative labels is represented as “1 - positive label values.” For

instance, if the distribution of positive labels on the five devices is [1, 1, 1, 1, 1],

the distribution of negative labels would be [0, 0, 0, 0, 0]; if the distribution of pos-

itive labels is [0.1, 0.3, 0.5, 0.7, 0.9], then the distribution of negative labels would be

[0.9, 0.7, 0.5, 0.3, 0.1]. We then filtered the dataset on each device, using 10% of the

positive labels and 90% of the negative labels from the complete dataset on the first

device, and 30% of the positive labels and 70% of the negative labels on the second

device.

Finally, we divided the non-IID distribution of the data into three groups using KL

divergence. Specifically, we established three different distributions on five devices:

[1, 0, 0.7, 1, 0], [0.5, 0.6, 0.7, 0.8, 0.9], and [0.1, 0.3, 0.5, 0.7, 0.9]. These values represent

33

the proportion of positive labels in each device’s database. We compared these dis-

tributions with the complete database’s distribution (all [1, 1, 1, 1, 1]) and calculated

the KL divergence, obtaining values of 0.52371, 0.0206, and 0.18013, which represent

three different levels. This method ensures that each device has all labels, but the

label distribution varies between devices.

Non-IID Data Levels for Deep Learning Models: We follow the leveling

approach presented in [16] for multi-label data used in deep learning, i.e., consider

two scenarios: 1) each device has all labels but the label distribution differs between

devices and 2) each device does not have all labels and the label distribution differs

between devices as well. In total, we have five different levels of Non-IID settings

in our experiment. Levels 1 and 2 are consistent with previous methods, where we

use KL divergence as a reference to verify the performance of DFL (Decentralized

Federated Learning) when each device has access to all labels. From Level 3 to Level

5, these settings were designed to assess the performance when each device does not

have access to all labels. Specifically, devices in Level 3 have 90% of the labels from

the complete dataset, Level 4 has 70% of the labels, and Level 5 has 50% of the labels.

Specifically, in the first scenario, we also used KL divergence. For example, sup-

pose [0.1, 0.3, 0.5, 0.7, 0.9] represents the distribution of odd-numbered labels on five

devices, while the distribution of even-numbered labels is [0.9, 0.7, 0.5, 0.3, 0.1]. We

compared the distribution of odd-numbered labels with the complete dataset distri-

bution [1, 1, 1, 1, 1] and calculated the KL divergence. For this scenario, we selected

two levels, [0.5, 0.6, 0.7, 0.8, 0.9] and [0.1, 0.3, 0.5, 0.7, 0.9]. Odd-numbered labels use

the original distribution, while even-numbered labels use the values obtained by sub-

tracting from 1. Their KL divergence values are 0.0206 and 0.18013, respectively.

In the second configuration, we randomly selected 90%, 70%, and 50% of the labels

from the complete dataset to form the dataset for each local model. For example, the

MNIST dataset contains ten different labels; for each device, we randomly selected 9,

7, and 5 labels, corresponding to three different levels. Each selection was performed

randomly to ensure the uniqueness of the data distribution on each device.

Non-IID Data Levels for Large Language Models: Regarding large lan-

guage models, considering that the cc sub dataset is inherently a non-IID dataset

composed of images and text, we decided not to further stratify it. In this dataset,

34

each image and its associated text differ from others, naturally exhibiting non-IID

characteristics [48].

4.3 Experimental Setup and Implementation

4.3.1 Setup

In our experiments, we used the NVIDIA Quadro RTX 8000 GPU. This device is

equipped with 48GB of memory, driver version 535.86.05, and CUDA version 12.2.

We simulated five different devices on this equipment, each capable of training models

and sending parameters to each other.

4.3.2 Implementation

We implemented the DFL framework using Python 3.12.1, with NumPy version 1.26.4

and scikit-learn version 1.5.0. The local model was programmed using PyTorch ver-

sion 2.3.0+cu121. Additionally, we set up MiniGPT-4 following the guidelines pro-

vided in [48].

4.3.2.1 Model Implementation and Training

In order to control variables and accurately study the impact of different topologies,

data distributions, and convergence methods on Decentralized Federated Learning

(DFL), we ensured that each local model used the same hyper-parameter settings as

the baseline model. This consistency in hyper-parameters was maintained regardless

of whether the local model was a traditional model, a deep learning model, or a

large language model. By keeping the hyper-parameter settings uniform, we aimed

to isolate the effects of the topologies, data distributions, and convergence methods

on the performance of DFL.

This approach ensures that in different DFL configurations, each model not only

has the same architecture but also uses the same gradient descent strategy for train-

ing. By unifying the hyperparameters, we can more accurately evaluate the impact of

different topologies on model performance, rather than performance variations caused

by differences in hyperparameters. This method allows us to effectively isolate and

analyze how different network structures and data strategies affect model learning

35

efficiency and convergence speed, thereby providing valuable insights for model opti-

mization in decentralized learning environments.

SVM: Specifically, for the SVM model, we selected 1000 as the L2 regularization

strength, which helps our loss function be strongly convex. During feature selection,

we used a correlation threshold (corr threshold) of 0.9 to remove highly correlated

features, while setting the significance level (sl) to 0.05 to remove features with a

significance lower than this threshold. In terms of model training, we set the learning

rate (learning rate) to 0.00001, the maximum epochs (max epochs) to 500, and the

batch size to 1.

To evaluate model performance, we used 80% of the data for training and 20%

for testing. Additionally, during data preprocessing, we used different percentages to

create imbalanced datasets to test the model’s performance on imbalanced datasets.

For the baseline, at 500 epochs, we found that the loss no longer changes and sta-

bilizes around 595.7978 (using 10000 as the regularization strength). Without L2

regularization, the original loss value is 0.102, and the F1 score is 0.9545.

Logistic Regression: In the provided code, several hyper-parameters are set to

control the training process of the machine learning models. The regularization

strength is set to 10000, which helps in preventing over-fitting by penalizing large

weights in the model. The learning rate is set to 0.00001, which determines the

step size at each iteration while moving towards a minimum of the loss function.

During feature selection, a correlation threshold (corr threshold) of 0.9 is used to

remove highly correlated features, and a significance level (sl) of 0.05 is employed to

discard less significant features during the training process.

For training the models, the number of epochs (max epochs) is set to 500, indi-

cating the total number of times the learning algorithm will work through the entire

training dataset. Additionally, the batch size is set to 1, meaning the model will

update its parameters after every single training example. The dataset is split into

training and testing sets, with 80% of the data used for training and 20% for test-

ing. During data preprocessing, the data is normalized using the MinMaxScaler, and

different percentages of the data are used to create imbalanced datasets to test the

model’s performance under varying conditions.

ResNet18: For image classification tasks, we implemented the ResNet18 model.

36

The learning rate (learning rate) was set to 0.01 to manage the gradient descent

step size, the batch size (batch size) was established at 64 to control the data volume

processed per iteration, and the number of epochs (max epochs) was set to 100 to

define the maximum training iterations.

The MNIST dataset was utilized, and label size imbalance was introduced to eval-

uate the model’s performance. Throughout training and evaluation, we applied the

Cross-Entropy Loss function to compute losses and used accuracy, F1 score, and recall

as evaluation metrics for a comprehensive assessment of the model’s performance. As

the epoch count neared 100, the loss parameter stabilized, reaching approximately

0.0039 on the validation set with an F1 score of 0.9893 by the hundredth epoch.

The MNIST dataset was utilized, and label size imbalance was introduced to

evaluate the model’s performance. We split the dataset into 80% for training, 10% for

validation, and 10% for testing. Throughout training and evaluation, we applied the

Cross-Entropy Loss function to compute losses and used accuracy, F1 score, and recall

as evaluation metrics for a comprehensive assessment of the model’s performance. As

the epoch count neared 100, the loss parameter stabilized, reaching approximately

0.0039 on the validation set with an F1 score of 0.9893 by the hundredth epoch.

DistilBERT: We utilized DistilBERT as the base model. The hyperparameters

were set as follows: the learning rate (learning rate) was fixed at 1e-5 to control

the step size of gradient descent, the batch size (batch size) was set to 16 to de-

termine the amount of data processed in each iteration, and the number of epochs

(max epochs) was set to 20 to limit the maximum iterations for training the model.

We partitioned the TREC-6 dataset into training and testing sets, with a test

size of 20%. During the model training and evaluation phases, we employed the

SGD optimizer to update model parameters and used accuracy, F1 score, and recall

as evaluation metrics to comprehensively assess the model’s performance. As the

number of epochs approached 20, we observed that the loss parameter ceased to

change, stabilizing at approximately 0.1961 on the validation set with an F1 score of

0.9733 by the twentieth epoch.

MiniGPT-4: In the case of MiniGPT-4, we performed image-text pre-training

based on the pre-trained LLaMA2. The model’s maximum text length was set to 160,

with "</s>" as the end-of-sequence token, and the prompt template was "[INST]

37

[/INST]". The cc sbu align dataset was employed, with a batch size (batch size)

of 12 and an image size (image size) of 224.

Training utilized a linear warmup cosine learning rate schedule, with an initial

learning rate (initial learning rate) of 3e-5, a minimum learning rate (min learning rate)

of 1e-5, a warmup learning rate (warmup learning rate) of 1e-6, and a weight decay

(weight decay) of 0.05. The maximum number of training epochs (max epochs) was

set to 5, with each epoch iterating 200 times and a warmup step count (warmup steps)

of 200. We enabled automatic mixed precision (AMP) and distributed training using

CUDA devices, with a random seed (random seed) set to 42 and logging enabled

via Weights and Biases. These parameters were chosen to align with MiniGPT-4’s

default settings, ensuring consistency with the original implementation.

4.4 Evaluation metrics and comparison

We have defined a baseline model, referred to as F ∗, which represents the state with

the minimum loss value across the entire model. Mathematical proofs have confirmed

that F ∗ constitutes the optimal solution under ideal conditions. Such ideal conditions

presume the existence of a machine with unlimited computational power and memory,

capable of processing the entire dataset. In essence, the baseline can be regarded as

the optimal model outcome obtained under ideal circumstances.

However, in the practical application of Decentralized Federated Learning (DFL),

to protect user privacy, each participating device can only access its own subset

of data, and the computational capacity of each device is limited. Therefore, by

comparing different DFL models with this ideal baseline, we can measure the gap

between each model and the ideal optimal solution, thus evaluating their effectiveness

and efficiency in practical applications.

The first experiment aimed to verify whether six different Decentralized Federated

Learning (DFL) models could all achieve convergence. To ensure the accuracy of the

experiment, we took the following measures: each device had a complete 100% dataset

and used the same hyperparameter configuration as the baseline model. This setup

ensured that each participating device started the experiment from the same point,

eliminating any variance factors that could arise from uneven data distribution or

hyperparameter differences. By this method, we could directly observe and evaluate

38

the convergence performance of each DFL model in a completely homogeneous data

environment.

The second experiment aimed to verify whether different Decentralized Federated

Learning (DFL) models would be affected by varying degrees of non-IID data. To

ensure the accuracy of the experiment, we took the following measures: as described

above, we selected different degrees of non-IID datasets and used the same hyper-

parameter configuration as the baseline model. This method allowed us to directly

observe and evaluate the convergence performance of each DFL model in a non-IID

data environment.

We evaluated the convergence of different DFL models by examining the loss

curves. Specifically, when the loss curve becomes gradually flatter or when the train-

ing loss and validation loss curves intersect, we consider the model converged.

Loss: The loss function used was Cross-Entropy Loss, optimized using Stochastic

Gradient Descent (SGD) - as defined below. The Cross-Entropy Loss is given by

Loss = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] .

SGD was used for optimization due to its simplicity, ease of implementation,

and suitability for large-scale datasets. It updates the parameters in each iteration,

speeding up the model training process.

F1 Score: We used binary classification for traditional machine learning datasets

and multi-class classification for deep learning datasets. Thus, we calculated both the

binary classification F1 score and the multi-class classification F1 score. The binary

classification F1 score is given by

F1 =
2 · Precision · Recall
Precision + Recall

,

while the multi-class F1 score is calculated using macro-averaging as

F1macro =
1

N

N∑
i=1

F1i.

This approach comprehensively measures the model’s performance across different

classes. For multi-class tasks, the macro-averaged F1 score reflects the balanced

performance of each class, avoiding bias towards classes with larger data volumes.

39

LLM Accuracy Testing: To test the LLM accuracy as described in [48], we will

ask the model four different questions in the form of multiple-choice questions:

• Help me draft a professional advertisement for this.

• Can you craft a beautiful poem about this image?

• Explain why this meme is funny.

• How should I make something like this?

We will provide the model with an image and then ask these questions to see if

there are any obvious errors in the responses, such as mentioning objects that are not

present in the image. If there are obvious errors, we will give this task a score of 0.

If there are no obvious errors, we will give this task a score of 1.

4.5 Baseline results

This section presents the performance of all five models with the baseline setup. We

defined the baseline model, F ∗, as the state with the minimum loss value in the

overall model. Through mathematical proof, we have determined that F ∗ represents

the optimal solution under ideal conditions. Such an ideal condition assumes the

existence of a machine with unlimited computational power and memory, capable of

handling the entire dataset. In short, the baseline can be seen as the optimal model

outcome under ideal circumstances.

However, in practical applications of Decentralized Federated Learning (DFL),

to protect user privacy, each participating device can only access its own data, and

each device has limited computational capabilities. Therefore, by comparing differ-

ent DFL models with this ideal baseline, we measure the gap between actual and

the ideal solution, thereby evaluating their effectiveness and efficiency in real-world

applications.

4.5.1 SVM

The Figure 4.2 shows the convergence graph of our SVM. We can observe that the

curves for training loss and validation loss are very smooth and continuously decreas-

ing. When the epoch approaches 400 to 500, the loss stabilizes and remains almost

40

Figure 4.2: SVM baseline.

unchanged. If, during training, the training loss continues to decrease while the val-

idation loss starts to increase after reaching a certain point, this is usually a sign of

over-fitting. However, this phenomenon does not appear in our graph. Although the

training set and the validation set do not overlap, the gap between them is reason-

able, only 0.04. The accuracy and F1 score on the test dataset are 0.9737 and 0.9663,

respectively.

4.5.2 Logical Regression

The Figure 4.3 shows the convergence graph of our logical regression model. We

can see that the curves for training loss and validation loss are very smooth and

continuously decreasing. When the epoch approaches 800 to 1000, the loss stabilizes

and remains almost unchanged. We observe that the training loss and validation loss

curves are very close to each other and follow the same trend, indicating that the

model does not exhibit over-fitting. Although the training loss and evaluation loss

do not completely overlap, the gap between them is small and acceptable, only 0.03.

The accuracy and F1 score on the test dataset are 0.9561 and 0.9438(It is very great

phenomenon), respectively.

4.5.3 ResNet

The Figure 4.4 show the convergence for our resnet model. As we know, resnet model

is not convex model. Thus, by adjusting the hyper-parameters, we trained the MNIST

dataset using ResNet-18 and recorded the training loss and evaluation loss for each

training epoch. We observed that after a sufficient number of training epochs (100

41

Figure 4.3: Logical regression baseline.

Figure 4.4: Resnet baseline.

epochs), both the training loss and evaluation loss approached zero (training: 0.01,

evaluation: 0.03). The F1 score and accuracy on the test dataset were both close to

1 (0.9895 and 0.9893, respectively). There was no sign of over-fitting, although the

evaluation loss showed some fluctuations, but they were not significant. Furthermore,

there were substantial periods where the two losses overlapped, indicating that the

model has similar performance on both the training set and the evaluation set.

4.5.4 DistilBERT

Figure 4.5 shows the convergence for our DistilBERT model. Same with Resnet

model, the DistilBERT model is also not convex model. Thus, by adjusting the hyper-

parameters, we trained TREC 6 dataset using the DistilBERT model and recorded

the training loss and evaluation loss for each training epoch. We observed that after

a sufficient number of training epochs (17 epochs), the training loss approached zero,

the evaluation loss approached to 0.1, and they both remain almost unchanged. There

was no sign of over-fitting, although the evaluation loss showed some fluctuations, but

42

Figure 4.5: DistilBERT baseline.

Figure 4.6: Mini-GPT baseline.

they were not significant. The accuracy and F1 score on the test dataset are 0.9680

and 0.9733, respectively.

4.5.5 Mini-GPT

Figure 4.6 shows the convergence graph of our Mini-GPT’s baseline model. We can see

that the curves for training loss and validation loss are continuously decreasing. When

the epoch approaches 100 to 120, the loss stabilizes and remains almost unchanged.

We observe that the training loss and validation loss curves are very close to each

other and follow the same trend, indicating that the model does not exhibit over-

fitting. Although the training loss and evaluation loss do not completely overlap, the

gap between them is small and acceptable. Since Mini-GPT needs to be measured

manually, we do not provide accuracy and F1 values here. We asked five groups of

questions for each device, four questions for each group, and then observed whether

there were any questions that would go wrong. We found that 18 of the 20 questions

were correct and 2 were wrong. So, the accuracy of the baseline is 0.9.

43

4.6 Impact of Topologies on the Convergence Rate

In this section, we will use two different types of results (F1 score and convergence

rate) to demonstrate the performance of different DFL models. For linear and ring

topologies, the F1 score is the average of the five devices. For star and mesh topologies,

it is the average of multiple rounds. The coverage rate shows the epoch at which each

client converges, providing a more comprehensive analysis of the DFL convergence

performance. This not only allows us to verify whether all six DFL models converge

under IID data conditions, consistent with our mathematical analysis, but also to

investigate how the six DFL models are affected by Non-IID data.

First, it is essential to ensure that the total number of epochs used in all DFL con-

figurations is consistent with the baseline. For example, if the baseline SVM model

is trained for a total of 500 epochs, then all six DFL configurations using SVM as

the local model should also be trained for a total of 500 epochs. Secondly, we aim to

ensure that each device operates with the same number of epochs. Continuing with

the SVM example, if there are five devices, each device would run for 100 epochs.

This fixed-epoch strategy helps maintain consistency and fairness across different ex-

periments. By standardizing the number of epochs, we can more accurately compare

the performance of different DFL structures under the same conditions.

Before presenting the results, we need to emphasize several points. First, all hy-

perparameters are kept consistent with the baseline. Second, to ensure the fairness

of the experiments, we used the same number of rounds and epochs per client in all

evaluations. This setup aims to ensure that our experimental results are reliable and

can effectively compare the performance of different topologies and model configu-

rations. We then list the details according to different DFL topologies, which helps

us better compare the impact of different topologies. Finally, we will introduce the

number of rounds and epochs each client needs to run for each DFL topology.

For the linear topology, since each client only trains once, the number of epochs

on each client is equal to the total number of epochs divided by the number of clients.

Specifically, according to the baseline, we found that SVM needs to run a total of

500 epochs. With 5 devices, each device runs 100 epochs. Compared to the linear

topology, the ring topology has one more training round than the linear topology.

Therefore, its number of epochs is halved. In this case, the formula for epochs is:

44

epoch = total epoch / (Num client * num Round). Specifically, according to the

baseline, we found that SVM needs to run a total of 500 epochs. With 5 devices, each

device runs 50 epochs and trains for two rounds.

For the star and mesh topologies, since they are similar to concurrent training,

the number of epochs on each client for each round is equal to the total number of

epochs divided by the number of rounds. For example, according to the baseline, we

found that SVM needs to run a total of 500 epochs. We run a total of 5 rounds, so

each device runs 100 epochs. The specific details are listed below.

4.6.1 Continues Linear

Table 4.2 shows the convergence results of C linear across five different local models

and the number of epochs run on each device. We found that for logistic regression,

the first device did not converge because the model could not converge within 200

epochs, which is consistent with the baseline. For the other local models, each device

was able to converge, also inline with the baseline.

Table 4.2: Convergence rate of continuous linear topology.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 83 100 200 300 400 100

Regression NC 230 400 600 800 200
ResNet 18 27 57 75 87 20

DistilBERT 4 8 11 15 19 4
MiniGPT 22 31 61 91 121 30

We found that the F1 scores in Table 4.3 for all devices are very similar, with no

significant differences, and they are close to the baseline. These results underscore

the effectiveness of continues linear in maintaining model stability and accuracy.

Table 4.3: F1 score of continuous linear.

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9545 0.9663 0.9663 0.9663 0.9663 0.9639
Logic 0.9176 0.9302 0.9425 0.9425 0.9545 0.9375
ResNet 0.9896 0.9885 0.9857 0.9869 0.9838 0.9869

DistilBERT 0.9176 0.9302 0.9425 0.9425 0.9545 0.9375
MiniGPT 0.8000 0.9000 0.9000 0.9000 0.9000 0.8800

45

4.6.2 Continues Ring

Table 4.4 above shows the convergence results of C ring across five different local

models and the number of epochs run on each device. Each device was able to

converge, which is consistent with the baseline. Additionally, we found that for logistic

regression, the first device could converge because, although the model could not

converge within 200 epochs, the ring topology allows for multiple rounds of training.

Thus, Device 1 was able to converge by the 500th epoch, demonstrating the superiority

of the ring topology over the linear topology.

Table 4.4: Convergence rate of continuous ring topology.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 250 80 100 150 200 50
Logic 500 233 300 400 500 100
ResNet 10 19 25 88 99 10

DistilBERT 12 4 16 18 20 2
MiniGPT 76 26 30 45 60 1

Same with continues linear, we found that the F1 scores in Table 4.4 for all

devices are very similar, with no significant differences, and they are close to the

baseline.These results underscore the effectiveness of continues ring in maintaining

model stability and accuracy. We found the f1 on client is greater than continuous

linear topology, this highlights the advantages of the ring topology.

Table 4.5: F1 score of continuous ring.

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9645 0.9663 0.9545 0.9545 0.9663 0.9604
Logic 0.9425 0.9545 0.9438 0.9438 0.9438 0.9457
ResNet 0.9817 0.9798 0.9791 0.9831 0.9823 0.9789

DistilBERT 0.9425 0.9545 0.9438 0.9438 0.9438 0.9457
MiniGPT 0.7000 0.8000 0.8000 1.0000 0.9000 0.8400

4.6.3 Aggregate Linear

Table 4.6 shows the convergence results of A linear across five different local models

and the number of epochs run on each device. We found that for logistic regression,

46

the first device did not converge because the model could not converge within 200

epochs. Observing the baseline curve, we found that this is consistent with the

baseline. For the other local models, each device was able to converge. Observing the

baseline curve, we found that this is also consistent with the baseline.

Table 4.6: Convergence rate of aggregate linear topology.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 92 100 200 300 400 100
Logic NA 250 400 600 800 200
ResNet 19 25 55 78 90 20

DistilBERT 3 7 12 15 20 4
MiniGPT 23 31 61 91 121 30

We found that the F1 scores in Table 4.7 for all devices are very similar, with no

significant differences, and they are close to the baseline. These results underscore

the effectiveness of aggregate linear in maintaining model stability and accuracy.

Table 4.7: F1 score of aggregate linear

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9425 0.9663 0.9545 0.9663 0.9545 0.9568
Logic 0.9176 0.9302 0.9425 0.9425 0.9545 0.9375
ResNet 0.9851 0.9824 0.9837 0.9854 0.9875 0.9848

DistilBERT 0.9176 0.9302 0.9425 0.9425 0.9545 0.9375
MiniGPT 0.8000 0.8000 0.9000 0.8000 0.9000 0.8400

4.6.4 Aggregate Ring

Table 4.8 above shows the convergence results of A ring across five different local

models and the number of epochs run on each device. Each device was able to

converge, which is consistent with the baseline. Additionally, we found that for logistic

regression, the first device could converge because, although the model could not

converge within 200 epochs, the ring topology allows for multiple rounds of training.

Thus, Device 1 was able to converge by the 500th epoch, demonstrating the superiority

of the ring topology over the linear topology.

We found that the F1 scores in Table 4.9 for all devices are very similar, with no

significant differences, and they are close to the baseline. These results underscore the

47

Table 4.8: Convergence rate of aggregate ring topology.

MODEL Client1 Client2 Client3 Client4 Client5
SVM 250 95 100 150 200
Logic 500 250 300 400 500
ResNet 10 18 25 89 98

DistilBERT 11 4 15 18 20
MiniGPT 76 24 30 45 60

effectiveness of aggregate linear in maintaining model stability and accuracy across

different conditions. We found the f1 on client is greater than continuous linear

topology,this highlights the advantages of the ring topology.

Table 4.9: F1 score of aggregate ring

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9545 0.9563 0.9545 0.9545 0.9545 0.9569
Logic 0.9302 0.9425 0.9425 0.9425 0.9425 0.9400
ResNet 0.9806 0.9761 0.9798 0.9827 0.9804 0.9805

DistilBERT 0.9302 0.9425 0.9425 0.9425 0.9425 0.9400
MiniGPT 0.7000 0.8000 0.9000 0.9000 0.9000 0.8400

4.6.5 Star and Mesh

Table 4.10 4.11 above shows the convergence results of Star and Mesh topologies

across five different local models and the number of epochs run on each device. Each

device was able to converge, which is consistent with the baseline. Additionally, we

found that the convergence of Star and Mesh topologies is essentially the same, which

also aligns with our baseline.

Table 4.10: Convergence rate of star topology.

MODEL Client1 Client2 Client3 Client4 Client5
SVM 97 99 93 94 95
Logic 400 401 403 400 402
ResNet 16 25 53 77 92

DistilBERT 4 8 11 15 19
MiniGPT 40 41 40 42 41

We found that the F1 scores in Tables 4.13 and 4.12, all devices are very similar,

with no significant differences, and they are close to the baseline. These results

48

Table 4.11: Convergence rate of mesh topology.

MODEL Client1 Client2 Client3 Client4 Client5
SVM 96 91 92 98 99
Logic 400 401 402 400 402
ResNet 16 25 53 77 92

DistilBERT 4 8 11 15 19
MiniGPT 40 41 42 40 41

underscore the effectiveness of aggregate linear in maintaining model stability and

accuracy. We found the Mesh and star have similar F1 score, this is consistent with

their convergence.

Table 4.12: F1 score of star

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9545 0.9663 0.9645 0.9645 0.9663 0.9588
Logic 0.9438 0.9438 0.9438 0.9438 0.9438 0.9438
ResNet 0.9820 0.9835 0.9863 0.9871 0.9879 0.9851

DistilBERT 0.9463 0.9291 0.9383 0.9388 0.9352 0.9375
MiniGPT 0.8000 0.9000 0.9000 0.9000 0.9000 0.8800

Table 4.13: F1 score of mesh

MODEL Client1 Client2 Client3 Client4 Client5 Average F1
SVM 0.9645 0.9663 0.9663 0.9645 0.9663 0.9597
Logic 0.9438 0.9438 0.9438 0.9438 0.9438 0.9438
ResNet 0.9781 0.9881 0.9871 0.9846 0.9843 0.9688

DistilBERT 0.9328 0.9406 0.9222 0.9337 0.9374 0.9333
MiniGPT 0.8000 0.9000 0.9000 0.9000 0.9000 0.8800

4.6.6 Summary and Takeaway

We studied the performance of six DFL models with IID data. We found that whether

the local model was a traditional model, a deep learning model, or an LLM, the

models were able to achieve convergence. These observations not only validate the

effectiveness of our DFL models across different clients but also demonstrate that

the models can achieve consistent convergence. This is crucial for designing practical

decentralized federated learning systems. Specifically, for traditional models, when

49

each client has the entire dataset, or in other words, when the data distribution

across each device is identical, the DFL model’s convergence matches the baseline.

This confirms our mathematical derivation that when the Non-IID degree is zero, all

models can fully converge, allowing users to achieve the optimal solution.

Notably, for the linear model, we found that device 1 often performed poorly

because it did not achieve good convergence when passing parameters to device 2.

However, the ring model mitigated this drawback. Additionally, the star and mesh

models performed consistently, which aligns with our expectations.

4.7 Impact of Non-IID data Distribution

As in the previous evaluation, we used the same hyper-parameters as the baseline

model. It is particularly important to emphasize that, to ensure the fairness of the

experiments, we used the same number of rounds and epochs per client in both the

previous and this evaluations.

The goal of this evaluation is to investigate the effect of different degrees of Non-

IID data on DFL performance. According to our previous definitions, we divided

the Non-IID data into different levels. In this section, we will present four different

results. The first three shows the convergence results under three different degrees

of Non-IID data, detailing the epoch at which each device converges. The last table

shows the average F1 scores for different data distributions.

It is important to note that since the LLM dataset is already Non-IID, in this

section we only present the performance of DFL using traditional models and deep

learning models as local models.

4.7.1 Continues Linear and Aggregate Linear

It is important to note that since SVM and logistic regression use binary classification

datasets, they only have three levels of non-IID data. In contrast, for deep learning

models, we defined five levels of non-IID data. The first two levels ensure that each

device has all labels but with different distributions, whereas the last three levels lack

some labels entirely.

Tables 4.14, 4.15, 4.16, 4.18, 4.19, 4.20 show the convergence results for A linear

across five different local models and the number of epochs each device runs. We

50

Table 4.14: Coverage rate with Level 1 non-IID data distribution for continues linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 90 101 NC NC NC 100
Logic NC 399 499 NC NC 200
ResNet 19 39 59 79 99 20

DistilBERT 4 8 12 16 NC 4

Table 4.15: Coverage rate with Level 2 non-IID data distribution for continues linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC 260 301 NC 100
Logic NC NC 599 799 NC 200
ResNet 19 39 59 79 NC 20

DistilBERT NC 8 12 16 20 4

Table 4.16: Coverage rate with Level 3 non-IID data distribution for continues linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC 198 298 NC NC 100
Logic NC NC 599 799 NC 200
ResNet NC NC NC NC NC 20

DistilBERT NC NC NC NC NC 4

observe that as the level of non-IID data increases, the number of devices that can

achieve convergence decreases. However, since SVM and logistic regression do not

have data for levels 4 and 5, and because no devices in the continuous linear DFL can

converge at levels 3 to 5 when using deep learning models as local models, we only

included three tables.

Table 4.17: F1 score of continuous linear.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
2 SVM 0.88484 0.81312 0.65296 NA NA
Logic 0.88484 0.74172 0.40426 NA NA
ResNet 0.97508 0.96920 0.86436 0.58086 0.35598

DistilBERT 0.89014 0.81768 0.95128 0.94374 0.92458

Regarding the F1 score, Tables4.214.3, we notice that except for the DistilBERT

model, other models achieve lower F1 scores at higher levels of non-IID data. For the

51

Table 4.18: Coverage rate with Level 1 non-IID data distribution for aggregate linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 89 100 NC NC NC 100
Logic NC 399 499 NC NC 200
ResNet 19 39 59 79 99 20

DistilBERT 4 8 12 16 NC 4

Table 4.19: Coverage rate with Level 2 non-IID data distribution for aggregate linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC 197 299 NC NC 100
Logic NC NC 599 799 NC 200
ResNet 19 39 59 79 99 20

DistilBERT NC NC 12 16 20 4

Table 4.20: Coverage rate with Level 3 non-IID data distribution for aggregate linear.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC 197 299 NC NC 100
Logic NC NC 599 NC NC 200
ResNet NC NC NC NC NC 20

DistilBERT NC NC NC NC NC 4

DistilBERT model, there is a noticeable decrease in performance at levels 1 and 2,

but surprisingly, level 3 shows higher F1 scores than level 1. This suggests that the

DistilBERT model performs better when local devices have incomplete label sets but

an equal number of samples for each available label.

Table 4.21: F1 score of aggregate linear.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
SVM 0.89186 0.79618 0.63902 NA NA
Logic 0.84936 0.73544 0.52824 NA NA
ResNet 0.96332 0.97520 0.85048 0.58434 0.34776

DistilBERT 0.86618 0.83402 0.95546 0.94430 0.93760

52

4.7.2 Continues Ring and Aggregate Ring

As noted earlier, since SVM and logistic regression are based on binary classification

datasets, they are only evaluated with three levels of non-IID data. In contrast, deep

learning models are assessed with five levels of non-IID data.

Table 4.22: Coverage rate with Level 1 non-IID data distribution for continues ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 298 301 350 NC NC 50
Logic NC 599 649 NC NC 100
ResNet 10 20 30 40 50 10

DistilBERT 11 12 14 18 NC 2

Table 4.23: Coverage rate with Level 2 non-IID data distribution for continues ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC 400 450 NC 50
Logic NC NC 799 845 NC 100
ResNet 10 20 30 40 NC 10

DistilBERT NC 12 14 18 NC 2

Table 4.24: Coverage rate with Level 3 non-IID data distribution for continues ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC 398 NC NC 50
Logic NC NC 799 NC NC 100
ResNet NC NC NC NC NC 10

DistilBERT NC NC NC NC NC 2

Tables 4.22, 4.23, 4.24, 4.25, 4.26, 4.27 show the convergence results for A linear

across five different local models and the number of epochs each device runs. We

observe that as the non-IID level increases, fewer devices are able to achieve conver-

gence. However, since there is no data for SVM and logistic regression at levels 4

and 5, and because none of the devices in the continuous linear DFL can converge at

levels 3 to 5 when using deep learning models as local models, we have only provided

three tables.

53

Table 4.25: Coverage rate with Level 1 non-IID data distribution for aggregate ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 294 298 351 NC NC 50
Logic NC 399 499 NC NC 100
ResNet 10 20 30 40 50 10

DistilBERT 11 12 14 18 NC 2

Table 4.26: Coverage rate with Level 2 non-IID data distribution for aggregate ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC 400 452 NC 50
Logic NC NC 799 845 NC 100
ResNet 10 20 30 40 NC 10

DistilBERT NC 12 14 18 NC 2

Table 4.27: Coverage rate with Level 3 non-IID data distribution for aggregate ring.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC 399 NC NC 50
Logic NC NC 799 NC NC 100
ResNet NC NC NC NC NC 10

DistilBERT NC NC NC NC NC 2

Regarding the F1 scores, we observe the same phenomenon as before: all models,

except for DistilBERT, achieved lower F1 scores at higher levels of non-IID data.

This indicates that the DistilBERT model performs better in situations where local

devices do not have all the labels but each label has the same number of samples.

Table 4.28: F1 score of continuous ring.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
SVM 0.88484 0.81312 0.65296 NA NA
Logic 0.88484 0.74172 0.40426 NA NA
ResNet 0.97508 0.96920 0.86436 0.58086 0.35598

DistilBERT 0.74829 0.74444 0.93759 0.86645 0.79190

54

Table 4.29: F1 score of aggregate ring.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
SVM 0.88614 0.80938 0.64056 NA NA
Logic 0.85508 0.78278 0.40476 NA NA
ResNet 0.96342 0.96678 0.84348 0.59818 0.34876

DistilBERT 0.76319 0.74309 0.92209 0.88445 0.78743

4.7.3 Star and Mesh

As with the previous analysis, since SVM and logistic regression are based on binary

classification datasets, they are only evaluated with three levels of non-IID data. In

contrast, deep learning models are assessed with five levels of non-IID data. Due

to the lack of data for levels 4 and 5 for SVM and logistic regression, and because

none of the devices in the continuous linear DFL can converge at levels 3 to 5 when

using deep learning models as local models, we have only provided three level Tables

4.30, 4.31, 4.32, 4.33, 4.34, 4.35.

Table 4.30: Coverage rate with Level 1 non-IID data distribution for star.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 400 402 401 402 401 100
Logic 880 877 878 878 878 200
ResNet 24 24 24 24 24 20

DistilBERT 19 19 19 19 19 4

Table 4.31: Coverage rate with Level 2 non-IID data distribution for star.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 400 402 401 402 401 100
Logic 851 852 850 851 852 200
ResNet 24 24 24 24 24 20

DistilBERT 20 20 20 20 20 4

For the F1 scores, the observe phenomena are consistent with earlier findings.

This indicates that the DistilBERT model performs better when local devices do not

have all the labels but each label contains the same number of samples, a trend that

appears across all six DFLs.

55

Table 4.32: Coverage rate with Level 3 non-IID data distribution for star.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC NC NC NC 100
Logic NC NC NC NC NC 200
ResNet NC NC NC NC NC 20

DistilBERT NC NC NC NC NC 4

Table 4.33: Coverage rate with Level 1 non-IID data distribution for mesh.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 401 402 401 402 401 100
Logic 803 802 803 802 804 200
ResNet 24 24 24 24 24 20

DistilBERT 19 19 19 19 19 4

Table 4.34: Coverage rate with Level 2 non-IID data distribution for mesh.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM 403 400 401 402 401 100
Logic 830 831 832 831 831 200
ResNet 24 24 24 24 24 20

DistilBERT 20 20 20 20 20 4

Table 4.35: Coverage rate with Level 3 non-IID data distribution for mesh.

MODEL Client1 Client2 Client3 Client4 Client5
num epoch

device
SVM NC NC NC NC NC 100
Logic NC NC NC NC NC 200
ResNet NC NC NC NC NC 20

DistilBERT NC NC NC NC NC 4

Table 4.36: F1 score of star.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
SVM 0.89398 0.80642 0.65004 NA NA
Logic 0.85630 0.78278 0.40600 NA NA
ResNet 0.96658 0.97358 0.84758 0.58502 0.34520

DistilBERT 0.730224 0.72986 0.924468 0.825416 0.785068

56

Table 4.37: F1 score of mesh.

MODEL LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5
SVM 0.88628 0.79840 0.64638 NA NA
Logic 0.85614 0.78342 0.39276 NA NA
ResNet 0.97810 0.96286 0.83404 0.58500 0.35000

DistilBERT 0.726764 0.725044 0.913688 0.823308 0.787292

4.7.4 Summary and Takeaway

Classical Models: At level 1 and level 2, star and mesh perform the best. This

indicates that star and mesh are more suitable than other topologies for use when the

Non-IID level is low. However, at level 3, ring and linear perform significantly better

than star and mesh. This suggests that star and mesh do not perform well when the

Non-IID level is too high.

The convergence performance of star and mesh is identical, which is consistent

with our mathematical analysis. As the Non-IID level increases, convergence perfor-

mance deteriorates, and the F1 score gradually decreases.

Network topology has a greater impact on device convergence than aggregation

strategy. We found that the convergence performance is roughly the same for the

same network topology, which is also consistent with our mathematical analysis. The

linear topology usually performs poorly on the first device, while the ring topology

can compensate for this shortcoming.

Deep Learning Models: Models cannot converge at level 3 or higher Non-

IID levels, indicating that no network topology can adapt to the scenario where

devices lack full label sets. This suggests that in real-world applications, devices with

incomplete label sets should be filtered out, as they would affect the convergence of

the global model. When devices have complete label sets, star and mesh perform

better under uneven label distributions. Users should prefer star or mesh topologies.

Additionally, for both deep learning and traditional models, we observe that the

more evenly distributed the data on each device, the better the convergence and the

higher the F1 score. For individual devices, if the distribution of labels within the

device is more balanced (e.g., equal distribution of odd and even labels with the same

number of samples), the device’s performance will be better.

In summary, our conclusions are extendable, particularly when future users wish

57

to combine different topologies, such as integrating linear and mesh structures. They

can leverage our experimental results to select the topology and aggregation method

that offer better convergence under various data distributions. For instance, we found

that star and mesh topologies perform best when the degree of non-IID is relatively

low. Therefore, users might consider using star or mesh as the selected topology in

certain scenarios.

The experimental results demonstrate that star and mesh topologies exhibit the

best performance under low non-IID conditions. We believe this is because, in a star

topology, each device communicates directly with a central device, allowing the cen-

tral device to more effectively average the parameters from different devices, thereby

enhancing convergence. Similarly, in a mesh topology, where each device is intercon-

nected with others, each device can obtain parameters from various devices, resulting

in better overall performance.

Chapter 5

Future Work and Conclusion

5.1 Future Work

Although our project has made some progress in analyzing the the convergence of

decentralized federated learning (DFL), there are still many directions worth further

investigation. Here are some suggestions for future work.

Impact of Heterogeneous Devices: The current research assumes that all

devices have the same communication and computing capabilities. However, in prac-

tical applications, different devices may have different capabilities. For example, some

devices may have extremely high computing power, high memory, and good communi-

cation capabilities. Future research could consider the impact of device heterogeneity

and analyze how different device capabilities affect the performance and convergence

of DFL.

Asynchronous/Synchronous Training: In addition to the three influencing

factors, we believe that training synchronously or asynchronously can also impact

the convergence of DFL. Compared to CFL, DFL offers more flexibility in training

options, allowing users to decide whether to use synchronous or asynchronous training

modes based on their specific needs or the computational and transmission capabilities

of different devices. This can help reduce the overall time required for the model. We

plan to explore this point in future work.

Real System Deployment: We evaluated the performance in a simulation en-

vironment to measure the correctness of our analysis. But in order to measure real

performance of these DFL deployments, we need to consider real system deployment.

For instance, we can deploy the chosen models over five clients machines forming six

different topologies. The can be further be extended to the software-defined network-

ing (SDN) paradigm [10] to have agility and scale in meeting dynamically changing

demands from applications.

Additionally, our study assumes reliable and lossless communication channels, but

58

59

in real-world applications, communication channels may be subject to interference

and packet loss. Also, clients can fail or be idle. Future research could introduce

models of unreliable communication channels and analyze the impact of packet loss

rates and communication delays on DFL performance. This would provide a better

investigation into the energy consumption, computing power, and operational speed

of DFL. SDN can also be leveraged in designing reliable solutions as pointed in [11–

14, 19, 21, 28, 32, 36, 39, 40]. Also, we plan to investigate the impact of failed or idles

nodes on the convergence rate. For example, we found that devices with a higher

degree of non-IID data tend to degrade overall convergence performance, while devices

with more balanced data generally perform better. Based on this observation, one

could decide whether to discard or wait for a device to be repaired, balancing overall

efficiency with total training time. Similarly, future research could also consider idle

devices.

Scalability: We demonstrated the performance of the chosen DFL deployments

over five clients. The results confirmed the correctness of the mathematical analysis.

We expect that the performance trend will be similar with an increasing number of

clients following the same analysis. However, we need extensive performance eval-

uation with a large number of clients to check how various DFL deployment can

scale.

5.2 Conclusion

The aim of this thesis is to investigate the impact of network topology, Non-IID

data, and training strategies on the convergence of Decentralized Federated Learning

(DFL). We also examined the performance of different DFL deployments on test

datasets under varying degrees of Non-IID data. Specifically, we conducted both

mathematical and experimental analyses to comprehensively study these factors.

Firstly, we derived mathematical expressions for six practical DFL deployments

and defined the optimization objective functions for DFL. Using convex optimization,

we analyzed the convergence of each DFL model and found that when data distribu-

tion across devices is IID, the difference between the ideal and actual solutions is a

constant. As the degree of Non-IID data increases, this difference becomes larger. We

also discovered that the convergence analysis for star and mesh topologies is identical.

60

Next, we conducted two sets of experiments to analyze the convergence of DFL

models. We used three different local models: traditional machine learning models,

deep learning models, and large language models, and established their baselines.

First, we considered IID data on each device and measured the convergence of six

deployments. We found that every DFL model could converge regardless of the local

model used, consistent with our mathematical analysis. In the second experiments,

we used data with varying degrees of Non-IID, we observed that as the Non-IID

level increased the convergence performance deteriorated, which also aligned with

our mathematical analysis.

Both traditional and deep learning models showed that star and mesh topologies

consistently performed well. However, as the Non-IID level increased, convergence

performance worsened and F1 scores decreased. For traditional models, star and

mesh topologies performed the best under low Non-IID conditions but failed to con-

verge under high Non-IID conditions, performing worse than other topologies. Linear

topology generally performed poorly on the first device, while the ring topology com-

pensated for this shortcoming.

For deep learning models, no network topology could support convergence to sce-

narios where devices had incomplete labels. This implies that in practical applica-

tions, devices with incomplete labels should be filtered out as they would affect the

global model’s convergence. When devices had complete labels, star and mesh topolo-

gies performed better under uneven label distributions. Users should prefer star or

mesh topologies. Moreover, we found that the more evenly distributed the data on

each device, the better the convergence and higher the F1 scores. For individual

devices, if the label distribution is more balanced (e.g., equal distribution of odd and

even labels with the same number of samples), the device’s performance improves.

Bibliography

[1] Ali Al-Shuwaili and Osvaldo Simeone. Energy-efficient resource allocation for
mobile edge computing-based augmented reality applications. IEEE Wireless
Communications Letters, 6(3):398–401, 2017.

[2] Vaishak Belle and Ioannis Papantonis. Principles and practice of explainable
machine learning. Frontiers in big Data, page 39, 2021.

[3] Enrique Tomás Mart́ınez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez
Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Mart́ınez Pérez, and Alberto Huertas Celdrán. Decentralized federated learn-
ing: Fundamentals, state of the art, frameworks, trends, and challenges. IEEE
Communications Surveys & Tutorials, 2023.

[4] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[5] Shuzhen Chen, Dongxiao Yu, Yifei Zou, Jiguo Yu, and Xiuzhen Cheng. Decen-
tralized wireless federated learning with differential privacy. IEEE Transactions
on Industrial Informatics, 18(9):6273–6282, 2022.

[6] J Michael Cherry, Caroline Adler, Catherine Ball, Stephen A Chervitz, Selina S
Dwight, Erich T Hester, Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder,
et al. Sgd: Saccharomyces genome database. Nucleic acids research, 26(1):73–79,
1998.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[8] Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. Trec complex
answer retrieval overview. In TREC, 2017.

[9] Hongchang Gao, My T Thai, and Jie Wu. When decentralized optimization
meets federated learning. IEEE Network, 2023.

[10] I. Haque and N. Abu-Ghazaleh. Wireless software defined networking: a survey
and taxonomy. IEEE Communications Surveys and Tutorials, 18(4):2713–2737,
May 2016.

[11] Israat Haque, Saiful Islam, and Janelle Harms. On selecting a reliable topol-
ogy in wireless sensor networks. In Proceedings of the 2015 IEEE International
Conference on Communications, ICC ’15, 2015.

61

62

[12] Israat Haque and M. A. Moyeen. Revive: A reliable software defined data plane
failure recovery scheme. In 14th International Conference on Network and Service
Management, CNSM 2018, Rome, Italy, November 5-9, 2018, pages 268–274.
IEEE Computer Society, 2018.

[13] Israat Haque, Mohammed Nurujjaman, Janelle Harms, and Nael Abu-ghazaleh.
SDSense: An agile and flexible SDN-based framework for wireless sensor net-
works. The IEEE Transactions on Vehicular Technology, 68(2):1866 – 1876,
February 2019.

[14] Israat Haque and Dipon Saha. SoftIoT: A resource-aware sdn/nfv-based iot
network. The Elsevier Journal of Network and Computer Applications, 193, Nov
2021.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[16] Zaobo He, Yusen Li, Daehee Seo, and Zhipeng Cai. Fedcpd: Addressing label
distribution skew in federated learning with class proxy decoupling and proxy
regularization. Information Fusion, 110:102481, 2024.

[17] Vikramaditya Jakkula. Tutorial on support vector machine (svm). School of
EECS, Washington State University, 37(2.5):3, 2006.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[19] M. Kulkarni, M. Baddeley, and I. Haque. Embedded vs. external controllers in
software-defined iot networks. In 2021 IEEE 7th International Conference on
Network Softwarization (NetSoft), 2021.

[20] Michael P LaValley. Logistic regression. Circulation, 117(18):2395–2399, 2008.

[21] Udaya Lekhala and Israat Haque. Piqos: A programmable and intelligent qos
framework. In IEEE INFOCOM 2019 - IEEE Conference on Computer Com-
munications Workshops, INFOCOM Workshops 2019, Paris, France, April 29 -
May 2, 2019, pages 234–239. IEEE, 2019.

[22] Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and De-
jing Dou. Fedhisyn: A hierarchical synchronous federated learning framework
for resource and data heterogeneity. In Proceedings of the 51st International
Conference on Parallel Processing, pages 1–11, 2022.

[23] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On
the convergence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189,
2019.

63

[24] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi.
Edge computing for autonomous driving: Opportunities and challenges. Pro-
ceedings of the IEEE, 107(8):1697–1716, 2019.

[25] Songtao Lu, Yawen Zhang, and Yunlong Wang. Decentralized federated learning
for electronic health records. In 2020 54th Annual Conference on Information
Sciences and Systems (CISS), pages 1–5. IEEE, 2020.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017.

[28] M. A. Moyeen, Fangye Tang, Dipon Saha, and Israat Haque. SD-FAST: A packet
rerouting architecture in SDN. In 15th International Conference on Network and
Service Management, CNSM 2019, Halifax, NS, Canada, October 21-25, 2019,
pages 1–7. IEEE, 2019.

[29] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization. Proceedings
of the IEEE, 106(5):953–976, 2018.

[30] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li,
and H Vincent Poor. Federated learning for internet of things: A comprehensive
survey. IEEE Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[31] Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Gradual federated
learning with simulated annealing. IEEE Transactions on Signal Processing,
69:6299–6313, 2021.

[32] Dipon Saha, Meysam Shojaee, Michael Baddeley, and Israat Haque. An Energy-
Aware SDN/NFV architecture for the internet of things. In IFIP Networking
2020 Conference (IFIP Networking 2020), Paris, France, June 2020.

[33] Osama Shahid, Seyedamin Pouriyeh, Reza M Parizi, Quan Z Sheng, Gautam
Srivastava, and Liang Zhao. Communication efficiency in federated learning:
Achievements and challenges. arXiv preprint arXiv:2107.10996, 2021.

[34] Micah J Sheller, Brandon Edwards, G Anthony Reina, Jason Martin, Sarthak
Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus,
Rivka R Colen, et al. Federated learning in medicine: facilitating multi-
institutional collaborations without sharing patient data. Scientific reports,
10(1):12598, 2020.

64

[35] Yandong Shi, Yong Zhou, and Yuanming Shi. Over-the-air decentralized feder-
ated learning. In 2021 IEEE International Symposium on Information Theory
(ISIT), pages 455–460. IEEE, 2021.

[36] Meysam Shojaee, Miguel C. Neves, and Israat Haque. Safeguard: Congestion and
memory-aware failure recovery in SD-WAN. In 16th International Conference on
Network and Service Management, CNSM 2020, Izmir, Turkey, November 2-6,
2020, pages 1–7. IEEE, 2020.

[37] CC Sobin. A survey on architecture, protocols and challenges in iot. Wireless
Personal Communications, 112(3):1383–1429, 2020.

[38] Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. A
dataset for breast cancer histopathological image classification. Ieee transactions
on biomedical engineering, 63(7):1455–1462, 2015.

[39] Fangye Tang and Israat Haque. Remon: A resilient flow monitoring framework.
In Network Traffic Measurement and Analysis Conference, TMA 2019, Paris,
France, June 19-21, 2019, pages 137–144. IEEE, 2019.

[40] Fangye Tang, Meysam Shojaee, and Israat Haque. ACE: an accurate and cost-
effective measurement system in SDN, 2022.

[41] Vasilĭı Borisovich Uvarov. Mathematical Analysis. Mir Publishers, 1988.

[42] Zhao Wang, Yifan Hu, Jun Xiao, and Chao Wu. Efficient ring-topology decen-
tralized federated learning with deep generative models for industrial artificial
intelligent. arXiv preprint arXiv:2104.08100, 2021.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[44] Guang Yang, Ke Mu, Chunhe Song, Zhijia Yang, and Tierui Gong. Ringfed:
Reducing communication costs in federated learning on non-iid data. arXiv
preprint arXiv:2107.08873, 2021.

[45] Liangqi Yuan, Lichao Sun, Philip S Yu, and Ziran Wang. Decentralized federated
learning: A survey and perspective. arXiv preprint arXiv:2306.01603, 2023.

[46] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey
on federated learning, 2021.

[47] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. Federated learning with non-iid data. arXiv preprint arXiv:1806.00582,
2018.

65

[48] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny.
Minigpt-4: Enhancing vision-language understanding with advanced large lan-
guage models. arXiv preprint arXiv:2304.10592, 2023.

[49] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on
non-iid data: A survey. Neurocomputing, 465:371–390, 2021.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Contribution
	Thesis Outline

	Background and Related Work
	Background
	Centralized Federated Learning
	Decentralized federated learning
	 Non-IID Data
	 Network Topology
	Training Strategy
	Strongly Convex and L-smooth

	Related Works
	Centralized Federated Learning
	Decentralized Federated Learning

	Performance Analysis of DFL Deployments
	Convergence Rate Analysis
	Network Environment
	Problem Formulation
	Assumptions
	Converge Analysis
	Continuous Linear
	Continuous Ring
	Aggregate Linear
	Aggregate Ring
	Aggregate Star
	Aggregate Mesh

	Summary and Take Away Message

	Performance Evaluation
	Model and Data Selection
	Non-IID Data Distribution
	Experimental Setup and Implementation
	Setup
	Implementation
	Model Implementation and Training

	Evaluation metrics and comparison
	Baseline results
	SVM
	Logical Regression
	ResNet
	DistilBERT
	Mini-GPT

	Impact of Topologies on the Convergence Rate
	Continues Linear
	Continues Ring
	Aggregate Linear
	Aggregate Ring
	Star and Mesh
	Summary and Takeaway

	Impact of Non-IID data Distribution
	Continues Linear and Aggregate Linear
	Continues Ring and Aggregate Ring
	Star and Mesh
	Summary and Takeaway

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography

