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ABSTRACT 

Utilizing remote sensing for research and development is essential in enhancing site-specific 

management practices and estimations of wild blueberry field characteristics. This research aimed 

to address challenges with site-specific management practices by enhancing productivity, 

promoting sustainability, reducing production costs, and minimizing environmental impact 

through decreased agrochemical use. This was achieved partly by identifying plant phenotypes, 

phenology, and early detection of Monilinia and Botrytis floral diseases, and nitrogen use. An 

increase in N significantly improved plant growth due to the perennial nature and potential nutrient 

carryover in wild blueberries. Effective estimations of LNC and LAI were achieved using VIs. 

Further monitoring and estimation of the growth and development parameters of the plant revealed 

that LAI, floral, and vegetative bud stages can be estimated at the tight cluster (F4/F5) and bloom 

(F6/F7) stages with R2/Lin’s CCC values of 0.90/0.84, respectively, although there were challenges 

in estimating floral and vegetative bud numbers. Additionally, NDVI, ENDVI, GLI, VARI, and 

GRVI significantly contributed to achieving the predicted values, while NDRE had minimal 

effects. A pixel classification method successfully identified Vaccinium angustifolium f. nigrum, a 

disease-susceptible phenotype, with an overall accuracy (OA) of 80%. Estimating the incidence 

and severity of Monilinia and Botrytis blight on the field posed a challenge, although, the VIS-VIs 

performed better compared to the NIR-VIs. Classification assessment using hyperspectral data 

showed that discrimination of MB and BB disease from healthy plants was achieved with an OA 

of about 96.6% using an SVM or RF classifier. This influences production costs by adopting a spot 

application of fungicides rather than a blanket application. These findings underscore the utility of 

remote sensing in discerning floral diseases, assessing phenology, identifying phenotypes, and 

monitoring nitrogen utilization in wild blueberries.
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CHAPTER 1: INTRODUCTION 

The wild blueberry plant is native to the northeastern North of America with large hectares of land 

for production (Drummond, 2019; Drummond & Rowland, 2020). Cultivation of blueberries is 

generally divided into two forms (i) lowbush blueberry and (ii) highbush blueberry production 

with the industry focusing predominantly on processing and production of individual quick freeze 

(IQF) berries (Drummond, 2019). Canada remains one of the largest producers of blueberries, 

second to the United States (US) with about 80, 657 ha of land, producing 195,892 tons of berries 

valued at about $363.948 million in 2022 (Eaton & Nams, 2012a; Statistics Canada, 2023). 

The wild blueberry plant which is also referred to as “lowbush” blueberry comprises 

several species, but the two commonly known species are Vaccinium angustifolium (Aiton) and 

Vaccinium myrtilloides (Michx.) (Abbey et al., 2018; Kinsman, 1993). The production system is 

unique, as it is not planted, no tillage practices are used and there’s a dependency on using pre-

existing population. The plant is managed by the removal of competing vegetation, stumps, and 

rocks (McIsaac, 1997; Zhang et al., 2010). The wild blueberry plant is well adapted as a stress-

tolerating shrub that thrives in naturally acidic soils that are low in nutrients with high proportions 

of bare spots and weed patches with different topographic elevations (Eaton & Nams, 2012a; 

Zaman et al., 2008). The regular management practice of pruning forces the plant into a 2-year 

production cycle. Thus, vegetative, and floral bud development occurs in the first year after 

pruning has taken place. This is followed by a year of bloom, pollination, fruit set, and berry 

harvesting (Eaton & Nams, 2012a; Fournier et al., 2020; Zhang et al., 2010). Despite these 

practices, the development of the plant is met with diseases and stress-limiting challenges. 

Several diseases affect the wild blueberry plant, prevalent among them are Monilinia blight 

(MB) and Botrytis blight (BB) disease. MB is capable of affecting all susceptible tissue shortly 



2 
 

after bud break with BB affecting mainly flowers (Hildebrand & Braun, 1991; Penman & Annis, 

2005). Monilinia blight disease is a yield-limiting fungal disease caused by Monilinia vaccinii-

corymbosi (Reade) Honey (M.vc). The two phases of infection of the fungal organism result in a 

loss of foliage, floral tissue, yield, and berry quality (Percival et al., 2018). As an economically 

important disease, the first disease infection takes place in spring at bud break (F2 and V2 stage), 

while the second infection results from berries that overwinter on the field serving as primary 

spores for infection (Delbridge & Hildebrand, 1997a; Percival & Beaton, 2012).  The fungus 

colonizes the developing leaves and fruits of the berry plants. Several weeks after infection, 

symptoms appear as dark brown areas along the veins and midrib of leaves (Delbridge & 

Hildebrand, 1997a; Hildebrand & Braun, 1991). The disease is not only important to wild 

blueberries but also to highbush and rabbiteye blueberries (Delbridge & Hildebrand, 1997a; 

Thompson & Annis, 2014). Each year blueberry loss because of Monilinia blight may vary in their 

severity depending on the levels of condition present on the field (Thompson & Annis, 2014).    

Botrytis cinerea Pers.: Fr, the causative organism of the grey mold and blossom blight, is 

another commonly encountered pathogen in wild blueberries affecting mainly flowers (Delbridge 

& Hildebrand, 1997a; Reeh & Cutler, 2013). The organism infects flowers beginning at the F5 

stage (tight but expanded corollas) with the F6 and F7 stage being the most susceptible to the 

organism (Abbey et al., 2018). Generally, the organism infects the expanded corolla until flowers 

drop and become attached to other plant parts, thus establishing new infection sites (Abbey et al., 

2018). The length of time for disease infection is largely dependent on long periods of wet weather 

conditions, inoculum levels, and temperature during bloom (Delbridge & Hildebrand, 1997a; 

Oudemans et al., 2018; Reeh & Cutler, 2013). The organism causes high yield losses of about 30 

– 35% through infected flowers turning brown and shriveling up with premature abscission of 
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fruits (Delbridge & Hildebrand, 1997a; Reeh, 2012). Thus, an entire year’s crop of blueberries can 

be lost to Monilinia and Botrytis infection of leaves and flowers in a lowbush field. Because of the 

devastation caused by diseases, measures are adopted to mitigate these challenges. 

The varying pattern of disease damage observed throughout commercial wild blueberry 

fields points to the potential to reduce fungicide application on tolerant and resisting phenotypes. 

Wild blueberry fields are naturally heterogeneous with distinctly different phenotypes (Abbey et 

al., 2018). The different phenotypes of Vaccinium angustifolium and Vaccinium myrtilloides vary 

in their physiological and morphological traits, which include stem length, leaves, flowers, and 

fruit colour (Abbey et al., 2018; Penman & Annis, 2005). Distinctively, these recognizable traits 

help with identifying the major three, Vaccinium angustifolium, Vaccinium angustifolium f. 

nigrum, and Vaccinium myrtilloides, and by extension all six phenotypes in commercial fields. 

Abbey et al., (2018) established that the nature of growth and development observed in the 

different phenotypes of Vaccinium myrtilloides makes them tolerant to Botrytis blossom blight 

with the prevalent Vaccinium angustifolium species being more susceptible to the disease. It is 

observed that the early stages of growth of Vaccinium angustifolium compared to Vaccinium 

myrtilloides differ, thus, the growth and development characteristics observed in Vaccinium 

myrtilloides may account for their tolerance or resistance to diseases on the field (Abbey et al., 

2018; Fournier et al., 2020; Kinsman, 1993). It is therefore, significant that the different 

phenotypes and their phenology be given more consideration. As plant traits and growth stages 

contribute to the resistant or susceptible nature of the different phenotypes (Abbey et al., 2018; 

Fournier et al., 2020), there is a need to identify or differentiate between phenotypes and their 

phenological stages. Knowledge from this can be incorporated into the development of spot 

application of agrochemicals rather than the traditional method of a blanket application of these 
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products. Therefore, considering the progress made concerning diseases, phenology, and 

phenotypic differentiation in wild blueberry fields, there is a need to focus attention on exploring 

new methods to improve site-specific management practices to maximize production.  

Increasing the quantity of blueberries to meet the increasing demands of the global market, 

while decreasing the carbon footprint on the environment needs the adoption of a more effective 

approach in assessing, monitoring, and tackling disease problems on the field. Remote sensing and 

near-range methods such as multi- and hyperspectral sensors provide multiple opportunities where 

agricultural productivity can be increased (Mahlein et al., 2013). Remote sensing technologies 

have rapidly developed becoming one of the most important directions in the development of 

Precision Agricultural Aviation Technology (PAAT), providing imagery data for crops, insects, 

pests, and diseases using different spatial, spectral, and temporal resolutions to guide decision 

making (Lan et al., 2017; Pajares, 2015). Unmanned Aerial Vehicles (UAVs) have shown their 

effectiveness in the field of precision agriculture by being used as one of the technologies for 

remote sensing of vegetation (Matese et al., 2015). The efficient use of spectral reflectance 

measurements on plants depends on identifying significant wavelengths of interest. Therefore, 

depending on the purpose and areas of application, short portions of the wavelength spectrum are 

considered. The visible region (400 nm – 700 nm) and the near-infrared regions (700 nm – 2500 

nm) of the wavelength spectrum are mostly utilized in agricultural determinations. Structural leaf 

traits, water content, and composition of pigments have a significant impact on spectral signatures, 

thus, using sensors to concentrate on the visible light and near-infrared regions for agricultural use 

(Mahlein et al., 2013). These techniques have been demonstrated in fields and are currently being 

utilized in pathogen detection, phenotype classification, monitoring physiological traits such as 

biomass and nitrogen levels, plant phenology, and flower detection among other applications 
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(Maes & Steppe, 2019). This system allows for the collection of visual, multispectral, 

hyperspectral, and thermal imagery that cannot be obtained readily by ground methods (de Castro 

et al., 2018). Spectral vegetation indices or indicators used for the detection of plant phenotype 

and morphological traits range from several simple ratios obtained from wavelength responses 

through normalized indices to complex equations and algorithms (Walter et al., 2015).  The most 

frequently used index on leaf vegetation in remote sensing is the normalized difference vegetation 

index (NDVI). The development of NDVI has been correlated with crop properties such as 

nitrogen status, biomass, chlorophyll content (Eitel et al., 2009; Erdle et al., 2011), and biotic and 

abiotic stress assessments (Lopes & Reynolds, 2012) in the field. The development of combining 

NDVI with some indices such as the Green/Red index has resulted in the use of spectral and UAV 

technologies to monitor disease pressures and phenological changes in the field (Walter et al., 

2015).  

Research and development activities using remote sensing are critical in improving the 

site-specific management practices and estimations on wild blueberry fields. Despite the successes 

achieved with other crops (Hassan et al., 2019; Liu et al., 2018; Penglei et al., 2020), very few 

studies have been conducted in wild blueberries using UAV and other remote sensing techniques 

(Barai et al., 2021; Marty et al., 2022). With no reported study on phenotype classification and 

disease assessment on wild blueberry fields, this study seeks to examine the potential of using 

remote sensing techniques to identify disease and Vaccinium species on the field, especially the 

disease-susceptible species.   

1.1 Research goals, objectives, and hypotheses 

This research aimed to address challenges with site-specific management practices by improving 

yield, sustaining production, and environmental protection by reducing the amount of 
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agrochemicals used, which reduces the overall cost of production. It is expected that this research 

develops and establishes a mapped population structure of the wild blueberry fields, identify 

phenotypes, monitor, and estimate growth and development parameters, and assess Monilinia and 

Botrytis blight disease pressures observed using remote sensing techniques. With the limited 

knowledge in these aspects of aerial determination of diseases and phenotypes, estimation of 

nitrogen using VIs, and phenology monitoring on wild blueberry fields, it was anticipated that 

findings from this research will culminate into improved predictive disease forecasting models, 

diagnostic and disease control technologies, and production systems sustainability using 

prescription maps for spot application rather than the blanket application of agrochemicals on the 

field. Stemming from the fact that UAVs present a platform for collecting detailed information, 

this research explored its limited use on commercial wild blueberry fields. It is estimated that 

developments from the study will improve management practices by reducing agrochemical usage 

and the overall cost of production by at least 20%. 

The objectives of this research were:  

1. To examine the potential impact of nitrogen on vegetative indices and plant growth 

parameters in wild blueberries. 

2. To examine the ability to remotely monitor plant growth and the developmental stages in 

wild blueberries.  

3. To remotely identify phenotypes (i.e., clones) and determine variability in wild blueberry 

fields.  

4. To investigate the ability to remotely detect and assess the incidence and severity of 

Monilinia and Botrytis blossom blight disease in wild blueberries. 
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In achieving these objectives, we hypothesized that:  

1. Nitrogen will have a significant impact on vegetative indices and measurable growth 

parameters can be estimated using VIs (Objective 1) 

2. High predictability of growth parameters can be achieved at all phenological stages using 

remote sensing techniques (Objective 2). 

3. Pubescence and leaf colour of V. myrtilloides and V. angustifolium are more likely to 

enable their remote identification and differentiation in the field (Objective 3).  

4. Monilinia and Botrytis blight-infected plants will have a different but overlapping response 

pattern in disease infection and severity in the visible (400 nm – 700 nm) and near infra-

red (700nm – 1200 nm) regions of light (Objective 4). 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview of the wild blueberry plant 

Blueberries are important plants that belong to the family, Ericaceae, and genus, Vaccinium, with 

about 740 species (Kron et al., 2002; Luby et al., 1991; Stephens et al., 2012). Vaccinium is the 

third largest genus in the Ericaceae family aside from Erica and Rhododendron (Stephens et al., 

2012). The genus, Vaccinium, consists of several sections which include Cyanococcus, Oxycoccus, 

Myrtillus, Vitis idaea, Hemi-myrtillus, Pyxothamnus, and Oreades, among many others (Vander 

Kloet & Avery, 2010; Yarborough, 2012). Among the sections of Vaccinium, (Stephens et al., 2012; 

Vander Kloet, 1988), 17 were identified of which Cyanococcus constitutes a majority of the 

species. There are several species of Vaccinium among which include, V. corymbosum, V. 

oxycoccos, V. myrtillus, V. angustifolium Aiton, V. myrtilloides Michx., V. boreale among other 

species (Griffin & Blazich, 2008; Luby et al., 1991; USGS, 2013). However, this review is centered 

on the tetraploid species Vaccinium angustifolium Aiton, and the diploid species Vaccinium 

myrtilloides Michx given their prevalence in wild blueberry fields. 

Vaccinium angustifolium Aiton and Vaccinium myrtilloides Michx, capable of surviving the 

onslaught of flames (forest fires/burning), salts, cold, water-logged soils, and other harsh 

environmental conditions make the plant an excellent example of a stress resistant shrub (Vander 

Kloet & Avery, 2010). Notwithstanding its extreme multiple stress and tolerant nature, the plant is 

constantly faced with challenges, such as weeds, disease, and pest control problems in nature 

(Yarborough et al., 1986). Several diseases are associated with the plant, and these include 

Monilinia blight (Monilinia vaccinii-corymbosi), Botrytis blossom blight (Botrytis cinerea Pers.), 

blueberry rust (Thekopsora vaccinii) and Septoria leaf spot among other diseases (Abbey et al., 

2020; Penman & Annis, 2005). Common to each disease is the fact that they cause severe yield 
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losses depending on the wet conditions of the location, the inoculum levels, and temperatures 

during bloom (Delbridge & Hildebrand, 1997a; Oudemans et al., 2018). However, the 

heterogeneous nature of the field affects the patterns of disease spread, leading to the blanket 

application of fungicides (Abbey et al., 2018). In addition, the growth and development timing of 

the two commercially dominant species, Vaccinium angustifolium, and Vaccinium myrtilloides 

influences their susceptibility or tolerance to these diseases (Fournier et al., 2020). Therefore, to 

increase production, several management practices like pruning, fertilization, fungicide 

application, and pollination have been adopted.  

 

2.2 Production of Vaccinium spp. 

Blueberry species are native to Northeastern North America (Maine), but the crop naturally grows 

in all provinces in Canada. Canada's main wild blueberry production centers are Nova Scotia, 

Quebec, New Brunswick, and Prince Edward Island, with over 69,016 hectares of land for 

production and 12,367 hectares for the cultivation of highbush blueberry (Agriculture and Agri-

Food Canada, 2022; Drummond, 2019). The plant is regarded as the most important crop in value 

terms and it is valued at about $312 million in 2021 and $363.948 million in 2022, which are above 

the value of apples and cranberries (Agriculture and Agri-Food Canada, 2022; Statistics Canada, 

2023). 

Vaccinium. angustifolium (sweet lowbush blueberry) and Vaccinium myrtilloides (velvet-

leaf blueberry) are the commonly known species on commercial fields (Abbey et al., 2018; 

Debnath, 2007; Kinsman, 1993). The term “lowbush” as it is popularly called, describes the short 

or low-growing deciduous and the rhizomatous nature of the shrub compared to a highbush plant 

that grows to heights typically greater than 1 m. The plant is unique, as it is not planted, no tillage 
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practices are used and there is a dependency on using pre-existing population of Vaccinium 

angustifolium and Vaccinium myrtilloides phenotypes and the removal of competing vegetation, 

stumps, and rocks (Aalders et al., 1972; McIsaac, 1997; Zaman et al., 2008; Zhang et al., 2010). 

The wild blueberry plant is well adapted as a stress-resistant perennial shrub that thrives in 

naturally acidic soils that are low in nutrients with high proportions of bare spots and weed patches 

with different topographic elevations (Eaton & Nams, 2012a; Zaman et al., 2008). The regular 

management practice of pruning forces the plant into a 2-year production cycle (Penman & Annis, 

2005). Thus, vegetative, and floral bud development occurs in the first year after pruning has taken 

place. This is followed by a year of bloom, pollination, fruit set, and berry harvesting (Eaton & 

Nams, 2012; Zaman et al., 2008; Zhang et al., 2010). The presence of bare spots, weed patches, 

biotic and abiotic stress factors, fruit yield variability, and disease damage within the wild 

blueberry fields focuses attention on the importance of precision agriculture and site-specific 

management to maximize production. 

 

2.3 History and background of Vaccinium spp. 

Historically, wild blueberry species are believed to be the first blueberries to be “cultivated” after 

indigenous people of North America burned the plants to enhance the production of the plant 

(Moore, 1993). It is said that the First Nations people originally harvested berries from forested 

areas that suffered burns from lightning strikes. This activity was later encouraged by indigenous 

people as they deliberately set fire to picking areas, and this method of pruning led to improved 

growth and increased yield of the fruits (Wood, 2004). At this point, European settlers began 

tending stands of the wild plant in the 18th century (Moore, 1993), with large-scale production 

commencing in the late 1840s and early 1850s (McIsaac, 1997; Wood, 2004). It was around the 
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era of the 1900s to 1950s that the taxonomic scrabble/treatment of the lowbush blueberries became 

controversial (Vander Kloet, 1978; Vander Kloet & Dickinson, 2009). Despite the obvious 

limitations in resolving the phylogenetic tassel of species at the time, Vander Kloet & Dickinson, 

(2009) suggested that these species could be of hybrid origin. Stephens et al., (2012) stated that 

the only distinguishing characteristic of Vaccinium from the other 30 – 35 genera is their floral 

morphology. Since that time, several studies on the molecular and morphology of the plant have 

been conducted and resolved (Duy, 1999; Griffiths et al., 1971).  

Early records of harvesting by handpicking and sale of blueberries date back to the 1800s. 

Around the 1866’s, in Milbridge, Maine, a cannery was set up marking the beginning of blueberry 

processing and movements into the wider markets (Wood, 2004). This method was improved upon, 

and since the 1930s into recent times, blueberries have been frozen, and this has become a preferred 

method for shipping. Commercially, lowbush blueberries (Vaccinium angustifolium, and 

Vaccinium myrtilloides) are cultivated in northern New Hampshire and Maine in the United States, 

and the Maritime provinces, Quebec, and northern Ontario (Wood, 2004; Yarborough, 2012; 

Yarborough et al., 1986). 

 

2.4 Clonal, physiological, and morphological variations on the wild blueberry field 

2.4.1 Vaccinium angustifolium and Vaccinium myrtilloides 

Vaccinium consists of several species, and these species are present mainly in North America, 

Europe, and Asia. The broad types of Vaccinium mainly harvested in Canada are the high-bush 

(Vaccinium corymbosum L.) and “wild” or lowbush blueberry (Vaccinium angustifolium Aiton. 

(Stephens et al., 2012; Yarborough et al., 1986). Among some of the species of Vaccinium 

cultivated in Canada are Vaccinium angustifolium Aiton, V. myrtilloides Michx., Vaccinium 
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corymbosum L., V. angustifolium x V. corymbosum hybrids, V. boreale, and V. pallidum Aiton, 

(Drummond, 2019; Tirmenstein, 1991). Vaccinium angustifolium and Vaccinium myrtilloides have 

colonized most areas of commercial fields. The wild blueberry industry is, therefore, based on a 

mixed field of these two species. Although V. myrtilloides is not the most abundant species 

(Drummond, 2019), they have shown levels of tolerance to diseases and also typically have poor 

berry yields, thus, a need to identify their population for management purposes.  

A wild blueberry field is a composite of many phenotypically diverse clones (Duy, 1999) 

thus, the two most common wild species exhibit observational differences. The clones vary in their 

leaf and fruit colour, height, berry size, and leaf density (Ashley, 2020; Jamieson, 2008). These 

characteristics make it easy to identify clones; yet, this process can be challenging due to the level 

of variability in the field. It is interesting to note that adjacent clones on the field can have 

completely different morphological traits (Penman & Annis, 2005).  

   

Figure 2.1. Well-developed stems and wild blueberry leaves. (A) Different stem colouration of V. 

angustifolium, (B) Leaves of V. angustifolium, and (C) Leave of V. myrtilloides with an arrow 

pointing to pubescence on stems and leaves 

B A C 
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2.4.2 Vaccinium angustifolium  

Vaccinium angustifolium Ait., popularly known as sweet lowbush blueberry, is the most abundant 

lowbush blueberry cultivated in the eastern North American regions (Drummond, 2019; Noormets 

& Olson, 2006). The stems are glabrous (without hairs) with fruits covered with powdery pellicules 

of epicutular wax called bloom. Within V. angustifolium f. nigrum, a sub-specie of V. angustifolium 

shows a black shiny fruit colour with V. angustifolium showing a blue fruit colour (Agriculture, 

Aquaculture, and Fisheries, 2010; Chiasson & Morin, 2011). The plant is a tetraploid (2n = 4x = 

48) but may hybridize with some species including Vaccinium myrtilloides (Vander Kloet, 1978). 

Studies by Griffiths et al., (1971) showed that crosses between V. angustifolium and V. myrtilloides 

did germinate, however, the germination percentages were low. This may account for some level 

of clonal variability observed on the field. 

   

Figure 2.2. Leaf types of the 3 species on the wild blueberry field; (A) V. myrtilloides, (B) V. 

angustifolium and (C) V. angustifolium f. nigrum 

 

A B C 



14 
 

Three morphological V. angustifolium phenotypes can be readily identified and present in 

fields that are distinguished by their leaves, berry, and stem colour characteristics (Duy, 1999; 

Penman & Annis, 2005). These types consist of (i) blue morphs with black fruits; (ii) green leaves 

with medium blue colour; and (iii) the hairy morphs that are shown on the underside of leaves 

(Duy, 1999). A more recent study by Abbey et al., (2023), clearly identified 6 phenotypes as being 

present on the wild blueberry field and these consisted of Vaccinium angustifolium (Va) green stem, 

Va brown stem, Va f. nigrum, Vaccinium myrtilloides (Vm) short, Vm medium, and Vm tall stems 

(Table 1).  

Table 2.1. Classification of wild blueberry phenotypes on the field 

Phenotypes Description 

V. angustifolium brown Brown stem/white flower 

V. angustifolium f. nigrum Red/Brown stem/pink flower 

V. angustifolium green Green stem/white flower 

V. myrtilloides (tall, medium & short) Pubescence stems and leaves with white 

flowers 

                                                Vm Short <15 cm plant height 

                                        Vm Medium 15 - 25 cm plant height 

                                             Vm Tall >25 cm plant height 

Vm - Vaccinium myrtilloides  

Therefore, the stem colour variation of tan, green, and brown can be associated with V. 

angustifolium (Wood & Barker, 1963). However, studies have shown that these clones are not 

distinct biological entities, but only an inconsistent variation of a single polymorphic species, V. 

angustifolium (Duy, 1999; Wood & Barker, 1963). Hall et al., (1972) further state that, despite the 
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varying stem colours, there is no reported relationship established except for the varying 

concentrations of chemicals within the stems. The root system is a significant aspect of the plant 

which enhances increase by the expansion of rhizomes. The roots and rhizomes constitute about 

75 – 85% dry weight of the plant (Kaur et al., 2012). These massive underground rhizomes serve 

as a stem base for the sprouting new shoots; and the greater their depth, the greater their lateral 

expansion (Hall, Aalders, et al., 1972; Jamieson, 2008). Rhizomes subjected to fire, or any other 

disturbance, develop a significantly greater number of shoots than untreated rhizomes (Jamieson, 

2008; Tirmenstein, 1990). 

 

2.4.3 Vaccinium myrtilloides 

Vaccinium myrtilloides Michx., commonly known as velvetleaf blueberry is a wild shrub 

commonly found growing in the boreal forest, headlands, barrens, and meadows. V. myrtilloides is 

a diploid, which spreads vegetatively by forming ramets and can reproduce sexually by forming 

racemose inflorescences along with erect aerial shoots. Though the plants are predominantly 

outcrossing, self-pollination is also an option (Noormets & Olson, 2006). The plant is a low, green 

shrub with a perennial growth cycle. The plant can grow to a height between 10 to 50 cm. The 

leaves of the plant are entire alternate thin velvet elliptic which is 1 to 4 cm long. Flowers are 

pendulous and pentacyclic, and it is characterized by an urceolate corolla, clustered at the tip of 

the branch (Noormets & Olson, 2006; Tirmenstein, 1990). The flowers are about 5 mm long and 

are inverted with the opening of the corolla at the bottom with curled back edges (Wood et al., 

2013). Flower coloration varies from greenish white to pink flowers (Duy, 1999). The plant has a 

complex root structure, consisting of a taproot and rhizomes with branch-like structures (Wood et 

al., 2013). The plant is more erect (“stool like”) than V. angustifolium and its leaves and stems are 
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covered with pubescence (hairs; Figure 1C) from which it obtained its name ‘velvet-leaf blueberry’ 

(Agriculture, Aquaculture, and Fisheries, 2010; Chiasson & Morin, 2011). The pubescence or 

trichomes may function as water repellants, deterrents to herbivores, and reducing agents of 

inoculum loads on plant surfaces (Brewer et al., 1991; Mmbaga et al., 1994; Riddick & Simmons, 

2014). This feature of the plant may contribute to the disease variation observed on the field 

(Figure 1C & 2B).  

Phenotypic differences in V. myrtilloides have been known, but limited documentation was 

present until the recent study conducted by Abbey et al., (2023). However, the population structure 

of these plants on the field indicates notable height variations (Table 1). The observational 

differences in the field may suggest possible clonal differences and a future categorization of the 

plant. There is limited study in this aspect, however, field observations suggest a possible 

categorization based on the height difference that characterizes the clone, V. myrtilloides. However, 

these differences in height may be associated with their genetic or environmental variations. There 

has been no recent study examining the intra-variations within the V. myrtilloides species apart 

from the work conducted by Abbey et al., (2023), which primarily focused on height differences. 

Despite these facts, the difference between the “short” V. myrtilloides and the “tall” V. myrtilloides 

is striking with V. myrtilloides “medium” assuming some similarity with the tall V. myrtilloides. 

 

2.5 Phenology of the wild blueberry plant 

2.5.1 Growth dynamics of the plant 

Genetic characteristics and the local climate are key components regulating the timing of 

phenological events in Vaccinium species. This phenomenon may lead to early or late phenological 

events in leaves and flowers, which ultimately influences the susceptibility of the plant to 
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pathogens and weather conditions (Fournier et al., 2020). Phenology is an important aspect of plant 

growth and abundance, with temperature, light (hours of sunshine), and rainfall (moisture) being 

integral aspects, that account for the development processes of the plant (Anadon-Rosell et al., 

2014; Hall et al., 1982). Development stages of the plant are common to both V. angustifolium and 

V. myrtilloides, and the introduction of pruning into the commercial management system restricts 

the plant to a two-year growth cycle. The two-year developmental cycle consists of 

pruning/mowing, plant emergence/sprouting, floral and vegetative bud initiation, tip dieback, and 

senescence, all occurring within the first-year cycle. The second-year cycle of the plant is 

characterized by floral and vegetative bud breaking, flower and leaf development, pollination, fruit 

set, fruit development, and harvest (Fournier et al., 2020; White et al., 2012). 

After pruning, plants redevelop naturally from rhizomes which serve as a start for the 

plant’s vegetative growth phase. Most stems develop from auxiliary buds on shoots when burning 

is not used, however, when burning is used, more shoots tend to develop from the rhizomes 

(Gibson, 2011; Lambert, 1990; White et al., 2012). As rhizomes expand, new roots are formed, 

and aerial shoots emerge (Fournier et al., 2020; Gibson, 2011; White et al., 2012). With a base 

temperature of 0°C, these new shoots emerge rapidly between 222 and 265 growing degree-days 

(GDD) (White et al., 2012). Up to 90% of the shoots emerge rapidly and this is followed by a 

period of growth from 2132 to 2768 GDD (13 September to 20 October) (White et al., 2012). After 

shoots emerge, the plant continues to grow until mid-June. The plant grows in a wide variety of 

habitats and is tolerant to a wide range of temperatures between 0 °C to 15 °C (Tirmenstein, 1991; 

White et al., 2012). Sunlight, like other factors, plays an important role in the growth and 

development of the plant (Tirmenstein, 1991). With temperature contributing to the development 

process, longer days of warm temperatures enhance the rapid growth of shoots (Tirmenstein, 1991; 
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White et al., 2012). Apical shoot abortion also referred to as tip dieback, is a prerequisite to the 

initiation of flower buds on the blueberry plants. Tip dieback is an important process prominent 

not only in blueberry plants but also in many other species. These developmental processes hinge 

on several factors, which are necessary and crucial in the establishment of plant density and 

biomass to support floral bud development (Hall et al., 1970; White et al., 2012). Therefore, 

vegetative shoot ceases to expand during mid-summer, following the death of the apical meristem. 

Flower bud initiation starts between June and July of the first year, primordia development (7 – 10 

flower primordia per inflorescence), overwinters and resumes growth after dormancy and opens 

in spring of the second year (Bell, 1950; Gibson, 2011). Therefore, as buds located around the 

upper part of the stem gradually differentiate into floral parts, the lower buds remain vegetative 

(Barker & Collins, 1963; Chiasson & Morin, 2011). The process of floral and vegetative bud 

development and differentiation begins and carries through into the crop year. The plants and their 

developed buds go into a state of dormancy, where buds develop hardiness to survive winter 

conditions.  

The forms of dormancy can be categorized based on the factors of initiation, which include, 

endodormancy (self-imposed), paradormancy (factors outside of bud), and ecodormancy 

(environmental factors) (Faust et al., 1997; Lang et al., 1987). With the resumption of growth, 

several metabolic processes, like the hydrolysis of stored starch may account for breaking 

dormancy. The breaking of endodormancy has been attributed to exposure to low temperatures, 

however, this can be genotype dependent. This requirement is referred to as the chilling 

requirement (CR) (Parmentier et al., 1998). Afterward, the plants undergo leaf senescence during 

the fall season, and this constitutes the first-year cycle or the “vegetative growth phase” (Chiasson 

& Morin, 2011; Fournier et al., 2020; Kaur et al., 2012). Usually, the stem assumes an unequal 
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proportion of floral and vegetative bud numbers, with considerable variation in the number of 

floral buds. The stem length significantly affects the number of floral buds and vegetative buds on 

the plant (Chiasson & Morin, 2011; Fournier et al., 2020). It is observed that V. angustifolium has 

a higher floral bud number than V. myrtilloides, with V. myrtilloides having more vegetative buds 

(leaves) than V. angustifolium (Fournier et al., 2020). By mid-May the following year, the formed 

floral buds assume a swollen state, and buds resume growth, producing flowers (fruits) and leaves 

(Moola & Mallik, 1998). In the shoot development stage, translocation of root carbohydrates is 

carried out to supply carbon and nutrients to the vegetative buds (Fournier et al., 2020; Kaur et al., 

2012). Furthermore, the growth stages of the Vaccinium plant have been determined using 

developmental guides as described by Hildebrand & Braun, (1991). Therefore, the development 

process spans from floral bud stage 1 to 12 (F1 to F12) and from vegetative bud stage 1 to 6 (V1 

to V6) (Fournier et al., 2020; Jensen & Specht, 2002), thus floral buds undergo several 

developmental stages compared to the vegetative buds (Fournier et al., 2020). This developmental 

scale for assessing floral and vegetative budbreak is similar to that of the highbush blueberry plant. 

 In several studies conducted, results have shown that vegetative bud development spanned 

stages 1 to 6, with floral bud development measured from stages 1 to 7 (fruiting) (Kovaleski et al., 

2015; Williamson et al., 2001). This implies that from the fruiting stage till harvest, there are other 

developmental stages involved. After the dormancy stage, bud breaking (F1) commences the 

second cycle of growth leading to the harvest of blueberries later in that season. Studies have 

shown that flowering in the fruit-bearing year begins between 376 and 406 growing degree-days 

(GDD), which is estimated to be between 19 May to 30 May (White et al., 2012). However, this 

can vary depending on the location and climatic conditions prevailing (Tirmenstein, 1991; White 

et al., 2012). From the F1 stage, the flowering process of the plant continues for an average of 3 – 
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4 weeks until full bloom (Bell, 1950). Before the fruit set stage (F8), the pistil remains open and 

receptive for about a week; with a reduction in fertility observed as flowers get old (Gibson, 2011).  

However, this may vary depending on phenotype (Fournier et al., 2020). The percentage of 

flowering plants peaks between 692 and 748 GDD (16 June to 17 June) however, the maximum 

percentage of open flowering plants (F4 to F6) is achieved between 538 and 564 GDD (7 June) 

(White et al., 2012). According to Chiasson & Argall, (1996 as cited by White et al., 2012) they 

stated that the full bloom period is believed to last for about 1 to 3 weeks during which the activities 

of bees help in pollinating the plant (Wood, 1961). However, from the field perspective, studies 

have shown that there is a clonal difference in phenology with respect to bud break and anthesis 

between V. angustifolium and V. myrtilloides. Therefore, the delayed phenology (1 week – 7 days) 

observed in V. myrtilloides affects the phenological calendar when the whole field is considered 

(Fournier et al., 2020; Moola & Mallik, 1998). 

 

2.5.2 Impact of complex environmental interactions on growth and development 

It is evident that developments from the shoot stage until harvest are affected by field conditions 

which contribute significantly to the phenological dynamics of the plant (Hall et al., 1970). Though 

both V. angustifolium and V. myrtilloides demonstrate cold resilience and adaptation, low or 

freezing temperatures or frost cause damage during flower bloom, and this affects the reproductive 

structures of the plant by reducing fruit development and yield (Fournier et al., 2020). Hicklenton 

et al., (2002) in their studies, showed that exposure to 4 hours of -3.5°C resulted in 80% and 60% 

damage to open and closed flowers, respectively. Research has shown that the abysmally low fruit 

yield of lowbush blueberries from Nova Scotia is primarily due to the low temperatures within 

both growing seasons (Hall et al., 1970). In addition, light is a fundamental requirement for growth 
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and development, therefore a limited supply of light to the plant affects fruit yield. With rhizomes 

acting as a carbohydrate source, the developing berry crop appears as a strong sink for 

photoassimilates thus, sucrose is imported from leaf and stem tissues and converted into fructose 

and glucose during maturation (Kaur et al., 2012). Therefore, without this effective light-dependent 

process, the assimilation of carbon compounds for yield is affected. Higher temperatures (optimum 

temperature is around 23°C) create favourable conditions for yield growth, however, higher 

temperatures when combined with prolonged wetness increase the risk of disease infection 

(Delbridge & Hildebrand, 1995). Aside from the effect of temperature is the effect of light and 

how it affects blueberry development. The effects of photoperiod on the growth and development 

of blueberry have been well documented (Darnell, 1991; Hall & Ludwig, 1961; Spann et al., 2004).  

The wild blueberry plant is reported to induce higher flower bud initiation at photoperiods 

<12 h, however, higher photoperiods between 14 and 16 h can produce limited amounts to no 

flower buds, with this occurrence being clonal specific (Hall & Ludwig, 1961). Conversely, plants 

kept under 14 to 16 h photoperiod observes high vegetative bud numbers, (Darnell, 1991; Hall & 

Ludwig, 1961). Despite some findings, there are difficulties or complexities in the interaction of 

temperature and photoperiod on blueberries. This was demonstrated when Hall & Ludwig, (1961), 

applied several photoperiods and temperatures to plants and their response was measured. It was 

observed that regardless of temperature flower bud initiation occurred between 11 and 13 h 

however, vegetative bud growth was significant at higher temperatures (21°C). Therefore, at 21°C 

and 15 h photoperiod, no flower buds were formed, at 10°C and 15 h photoperiod some clones 

produced flower buds with other clones producing abnormal inflorescence (Hall & Ludwig, 1961). 

This phenomenon was also reported when Spann et al., (2004) established similar limitations and 

complexity in the interaction between temperature and photoperiods. However, it was established 
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that plants grown under short days (SD), 8 h photoperiod with 21°C induced flower buds, 

compared to a higher temperature (28°C). In that study, the high photoperiod (8 h) led to a complete 

floral differentiation with an increased and enhanced bloom compared to a 4 h photoperiod (Spann 

et al., 2004).  

Despite the phenotypic and phenological challenges associated with the plant; high 

variability, different growth habits, and about 80% of the plant being below ground, the growth 

dynamics of the plant have significantly been explored (Kaur et al., 2012; Penman & Annis, 2005), 

however, these challenges can affect the successional plant growth dynamics in the field. 

Irrespective of these facts, it can be stated that the success in growth and the developmental 

dynamics of the plant are largely dependent on the temperature within a given season. 

 

2.6 Management practices 

Field management practices are important aspects of the production process however, while some 

practices have evolved over the period other new practices have also been introduced. Over the 

past three decades, more than a four-fold increase in wild blueberry yield can be attributed to the 

improvements adopted in wild blueberry production (Yarborough, 2004, 2012). Thus, the 

relevance of these management practices cannot be underestimated. Several management practices 

have been adopted on the wild blueberry field, and these include, pruning, irrigation, pest and 

disease management, pollination, nutrient management, and harvesting (Drummond, 2019; 

Kinsman, 1993; Yarborough, 2012). In this document, some of these practices will be discussed. 
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2.6.1 Pruning 

Pruning wild blueberries is the practice of cutting plant stems or removing the vegetative cover to 

allow for new growth. Pruning as a method has been adopted in management practices for several 

reasons: (i) to enhance vigorous and upright growth from underground stems (Kinsman, 1993), (ii) 

to control pests and diseases on the field (Drummond & Yarborough, 2014), and (iii) to increase 

production (Eaton et al., 2004) and harvest efficiency. Methods such as flail mowing, burning, 

chemical spray, and electrical pruning have been used over the years, but there is a heavy 

dependence on the use of mowing in several commercial fields because of its cost benefits. Chen 

et al. (2017) found a significant 20% difference in costs between flail mowing and oil-fired 

burning. Furthermore, a study conducted by Yarborough et al., (2017) established that burning as 

a method for pruning was associated with reduced plant stand. Therefore, despite the commercial 

success of using some of these methods, the beneficial effects of using flail mowing outweigh that 

of burning thus, its adoption in the production practice (Eaton et al., 2004).  

2.6.2 Irrigation 

Irrigation is a popular practice in many crops including wild blueberries, but it is mostly practiced 

in Maine. Although the crop has been described as a drought-tolerant plant, several studies and 

reports have shown that supplementary irrigation enhances berry quality and yield (Hunt et al., 

2009). Barai et al., (2021) in a recent study established that irrigation improves plant vigor with a 

short- and long-term impact on the production system. However, the adoption of this method on 

these large blueberry fields will increase the cost of production. Despite the research trials 

conducted using approaches like drip and overhead irrigation, this set-up adds a layer of problem 

when it comes to pruning because the whole set will have to be removed and reinstalled (Hunt et 

al., 2009; Yarborough, 2012). There are consequences for excessive watering and underwatering 
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of the plant, however, efficient water management systems should be adopted.  Wild blueberry 

fields are therefore deemed to require about 2.5 cm of water every week (Yarborough, 2012). In 

Nova Scotia, irrigation studies conducted have shown poor correlations, however, Maine remains 

the only wild blueberry area to have invested in irrigation on wild blueberry fields due to the 

presence of aquifers and sandy soils (Yarborough, 2004). 

2.6.3 Nutrient management 

Nutrient management in crops is vital for the growth and development of those plants. Thus, aside 

from the other factors (floral bud number, pollination, etc.) affecting blueberry yield, an 

improvement in yield depends on the nutrients available to the plant. Low pH soils by nature are 

low in nutrients, and because the plant thrives in low nutrient acidic soils, there is often less 

emphasis on fertilization (Agriculture, Aquaculture, and Fisheries, 2013). Despite the low nutrient 

requirements of the plant, the plant is highly sensitive to excess nutrient levels (Hanson & Lansing, 

n.d.). Studies have shown that the addition of organic or inorganic fertilizers increases yield 

(Agriculture, Aquaculture, and Fisheries, 2010; Yarborough, 2004). Over the years, studies have 

recommended different fertilizer types, diammonium sulfate/ urea, diammonium phosphate 

(DAP), and monoammonium phosphate (MAP) fertilizers, among others (Santiago, 2011; 

Santiago & Smagula, 2013; Yarborough, 2004) to be used on blueberry fields. This is because a 

constituent like urea helps maintain soil pH within the recommended range (Starast et al., 2007). 

It was established that optimal nitrogen for highbush blueberry is between 50 – 100 kg N/ha 

however, the acidity of the field must complement its fertility (Starast et al., 2007). Therefore, with 

acidity playing a significant role in soil fertility, it was recommended that a pH between 4.2 and 

5.2 is acceptable for wild blueberry production (Agriculture, Aquaculture, and Fisheries, 2013; 

Yarborough, 2004).  
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Specific nutrient requirements of a field may vary; thus, an assessment of leaf nitrogen is 

carried out to determine the need for fertilization. However, according to Yarborough, (2004, 2012) 

there was no successful correlation between soil nutrients and productivity, thus testing of soils for 

nutrient constituents may yield no value. It was stated that highbush stands absorb about 32% of 

applied N, whereas lowbush absorbed between 45 to 67% of labeled N fertilizer; thus between 33 

to 55% of N remains in the soil (Hanson, 2006). Fertilization of fields has focused mainly on 

macronutrients (nitrogen, phosphorus, and potassium) with some emphasis on the micronutrients.   

Table 2.2. Standard reference values for leaf Nutrient levels in wild blueberry plants 

 

Element 

Trevett (1972) Santiago (2011) 

Min. Max Min. Max Optimum 

Nitrogen (N) 1.7% 2.2% 1.55% 1.85% 1.76% 

Phosphorous (P) 0.12% 0.18% 0.111% 0.143% 0.136% 

Potassium (K) 0.40% 0.60% 0.31% 0.56% 0.44% 

Calcium (Ca) 0.37% 0.65% 0.31% 0.40% 0.38% 

Magnesium (Mg) 0.13% 0.25% 0.16% 0.18% 0.17% 

Boron (B) 21ppm 40 ppm 2 ppm 44 ppm 23 ppm 

Iron (Fe) 19 ppm 70 ppm 34 ppm 37 ppm 35 ppm 

Manganese (Mn) 750 ppm 1490 ppm 710 ppm 2637 ppm 963 ppm 

Zinc (Zn) 15 ppm 20 ppm 10 ppm 15 ppm 13 ppm 

Copper (Cu) 3 ppm 6 ppm 3 ppm 6 ppm 4 ppm 

Molybdenum (Mo)* na na 1.20 ppm 3.30 ppm 0.33 ppm 

Aluminum (Al) na na 98 ppm 289 ppm 179 ppm 

Sources: (Agriculture, Aquaculture, and Fisheries, 2013; Calderwood et al., 2020) 
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From the standard leaf nitrogen contents of lowbush blueberries established by Trevett, 

(1972), new standards (Table 2) have been determined by Santiago, (2011). Therefore, it was 

recommended that leaf testing should be conducted within the year of application to determine the 

leaf nitrogen level of the plant (Calderwood et al., 2020). However, in addressing the plant’s 

specific needs, specific formulations are also required, thus, a focus on the macronutrient 

requirements of the wild blueberry plant specifically nitrogen. 

 

2.6.3.1 Macronutrients 

2.6.3.1.1 Nitrogen 

Of the three major nutrients (N, P, K), nitrogen remains one of the largest nutrients needed for 

growth and development (Kumar et al., 2021). N is an important plant requirement utilized in the 

formation of compounds such as chlorophyll, enzymes, and amino acids/proteins (Calderwood et 

al., 2020; Santiago & Smagula, 2013). In addition, nitrogen enhances yield and vegetative growth 

(Kumar et al., 2021), but it’s also seen to regulate other soil nutrients. Therefore, high amounts of 

nitrogen can lead to a loss of potassium and calcium (Calderwood et al., 2020). Application of 

nitrogen to the wild blueberry field has taken different forms with several studies comparing nitrate 

(NO3
−) and ammonium (NH4

+) ions. Despite the success of using NO3
−, plants grew poorly under 

NO3
− but showed a higher affinity for NH4

+ types (Hanson, 2006; Santiago & Smagula, 2013) thus, 

the use of the ammonium product types in fertilization on the field (Percival & Privé, 2002). 

However, the combination of NH4
+ and NO3

− can be beneficial to plants (Hanson, 2006; Santiago, 

2011). Despite the successes of using N forms, there are several challenges ranging from toxicity, 

sensitivity (Hanson, 2006), leaching, and volatilization of ammonia (Thyssen et al., 2006) faced 

on the field.  
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2.6.3.1.2 Phosphorus 

P plays significant roles in plants including storage and the transfer of energy in plants. They 

enhance early growth, flowering, fruiting, seed production, root development, and the balancing 

of N effects (Agriculture, Aquaculture, and Fisheries, 2013; Calderwood et al., 2020). In addition, 

P is mostly used in the formation of nucleic acids (DNA, RNA) (Calderwood et al., 2020) and 

several cellular processes like signaling, photosynthesis, and energy production (Kumar et al., 

2021), however, low pH can limit its availability to the plant by bonding with Fe and aluminum 

oxides in the soils (Agriculture, Aquaculture, and Fisheries, 2013). The association of ericoid 

mycorrhiza on the roots (69% to 72%) of Vaccinium species, enables the uptake of P and other 

organic nutrients (Percival & Sanderson, 2004).  Though the deficiency of this nutrient is not very 

obvious, dark green with abnormally small leaves can be associated with this nutrient (Calderwood 

et al., 2020).  

2.6.3.1.3 Potassium 

K, like the two dominant nutrients, is also used in the synthesis of new compounds. The mobile 

nature of this nutrient causes it to move from older tissues to actively growing areas of the plant 

(Calderwood et al., 2020). A study conducted by Percival & Sanderson, (2004) showed that the 

levels of P increased by about 23% under high N concentrations but observed that about 13% 

increased under high P conditions. The study established that there is a complex interaction 

between P and K causing an increase in P to about 81% under K and P applications (Percival & 

Sanderson, 2004). Though limited studies have been conducted in wild blueberries, it is inferred 

that K contributes to winter hardiness and storage organs like rhizomes (Agriculture, Aquaculture, 

and Fisheries, 2013), protein, and chlorophyll formation (Calderwood et al., 2020). However, the 
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effects of K deficiency are diverse ranging from chlorosis, stunted growth, weak and lodging 

stems, reduced quality and production of seeds to several other effects (Uchida, 2000).  

2.6.3.2 Micronutrients 

Generally, these are nutrients that are needed in trace amounts for the growth and development of 

wild blueberry plants (Agriculture, Aquaculture, and Fisheries, 2013). These include boron (B), 

manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and molybdenum (Mo) (Santiago, 2011; 

Trevett, 1972). Despite the importance of these nutrients, there are rare occurrences of their 

deficiency on the field, however, other factors like high acidity, low soil temperature, and high soil 

Ca can trigger Fe and Mn deficiency. Furthermore, excessive application of B and Cu can also 

cause plant damage (Calderwood et al., 2020). However, a blend of boron and zinc is introduced 

in fertilizer applications to curb boron deficiency in leaves and enhance its concentration in acidic 

soils (Smagula & Litten, 2002).    

 

2.6.4 Pollination 

Pollination is the most expensive management practice adopted in wild blueberry production (5 

hives/acre amounts to more than $150/acre) because it plays a key role in the phenological 

processes, leading to the yield determination of the plant. Generally, the wild blueberry is an 

entomophilic, obligate outcrossing plant, whose outcrossing compatibility appears to be non-

reciprocal (Drummond, 2019; Drummond & Rowland, 2020; Javorek et al., 2002). This implies 

that the movement of pollen from clones may achieve fruit set in one direction, but low fruit set in 

the other direction (Drummond, 2019). This phenomenon is significant because pollen dilution 

results in ovules being aborted, and this prevents any further chance of the ovules being effectively 
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pollinated with compatible pollen (Aalders & Hall, 1961). Therefore, the process of pollination in 

wild blueberry production depends heavily on the use of supplementary and introduced bees (Apis 

mellifera) aside from the wild bee population (Drummond, 2019; Javorek et al., 2002). Though 

some insects and birds like beetles among other insects and the hummingbird contribute to this 

process, bees have been used commercially as the main actors in pollination (Drummond, 2019; 

Manning & Cutler, 2018). Vander Kloet, (1988, as cited in Noormets & Olson, 2006), also states 

that though V. myrtilloides falls into this category, self-pollination should not be excluded from the 

possibilities. The study established that all three scenarios, autogamy (pollen transfer among the 

same clone), geitonogamy (pollen transfer among flowers in the same inflorescence), and 

xenogamy (pollen transfer within a single flower) are genetically equivalent and may occur in the 

plant (Noormets & Olson, 2006). Studies have shown that high levels of fruit yield have been tied 

to bee pollination (Drummond, 2019). Given that most phenotypes have self-incompatibility 

mechanisms and pollen is present as large and sticky tetrads, there is a reliance on the presence of 

pollinators. This phase leads to fruit set, then ripening of berries begins and continues until harvest. 

The fruit size of the lowbush blueberry is an intermediate between high bush (V. corymbosum) or 

rabbiteye (V. uliginosum) and European bilberry (V. myrtillus) or bog blueberry (V. virgatum) 

(Yarborough, 2012). Studies have shown a correlation between seed number and fruit size, thus 

from the perspectives of pollination, good pollination leads to high seed numbers translating to an 

increase in fruit size (Isaacs & Kirk, 2010; Percival, personal communication, 2023). The fruit 

varies in size with a size ranging between 5 to 15 mm in diameter with an average weight of 0.5 

grams (Agriculture, Aquaculture, and Fisheries, 2010). The fruit contains between 30 to 70 seeds, 

with an average of about 64 seeds of which about 50 of these seeds (78%) are considered imperfect 
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(Bell, 1957). A study by Drummond, (2019) establishes that berry size, fruit weight, and fruit set 

are factors that are dependent on pollination and fertilization events of the plant.  

 

2.6.5 Weeds, pest and disease management: disease development and plant susceptibility 

2.6.5.1 Weeds and insect pest management 

Weed control is a major problem in lowbush production. In a study conducted between 2017 to 

2019, it was discovered that the lowbush blueberry field in Nova Scotia is naturally home to around 

211 weed species. These species include 89 herbaceous perennial forbs, 50 woody perennials, 24 

annual broadleaf plants, and 20 perennial grassweeds (Lyu et al., 2021). Additionally, there are 

other weed flora species such as ferns, biennials, sedges, rushes, and orchids. Some of the most 

significant weeds in this field are hair fescue (Festuca filiformis Pourr.), red or sheep sorrel (Rumex 

acetosella L.), goldenrod (Euthamia graminifolia), poverty oat grass (Danthonia spicata L. 

Beauv.), and yellow hawkweed (Hieracium caespitosum Dumort), among others (Boyd & White, 

2010; Farooq, 2018; Lyu et al., 2021). These plants compete with lowbush stands for nutrient 

resources, which can affect yields. However, management and control of these weeds have been 

carried out using several herbicides. 

Similarly, the wild blueberry field also serves as grounds for many insects. Research 

conducted over six years indicates 3 insect pests as being consistent on the wild blueberry field. 

These insect pests include blueberry maggot fly (Rhagoletes mendax), blueberry thrips 

(Frankliniella vaccinii and Catinathrips kainos), and blueberry tips midge (Dasineura 

oxycoccana) (Yarborough et al., 2017). According to Drummond et al., (2009), blueberry 

spanworm, blueberry flea beetle, strawberry rootworm, and blueberry thrips are the most important 

insect pest that affects the leaves of wild blueberry plants. Therefore, this presents a scenario that 
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indicates that the presence of some insect pests may be dependent on location. However, other 

insect pests have been spotted, namely, spotted wing drosophila, grasshopper, strawberry 

rootworm, red-striped fireworm, blueberry sawfly, tarnished plant bug, and spiders (Drummond et 

al., 2009; Yarborough et al., 2017). Despite their presence, spiders have been shown to reduce the 

prevalence of blueberry thrips. Other insect pests like damsel bugs and lady beetles also contribute 

to lowering blueberry thrip populations. Spiders are also significant predators of different pests 

like grasshoppers and strawberry rootworms (Yarborough et al., 2017). However, the continuous 

use of inputs over the years affects the population density of beneficial insects like bees (Apis 

mellifera) (bumble bees, and honeybees). 

2.6.5.2 Disease development and plant susceptibility 

Several groups of diseases affect wild blueberries, and this consists of those that affect the flowers 

(floral blights), leaves (leaf spot diseases), and stems (e.g., stem blights including phomopsis). 

Among the most prevalent diseases affecting wild blueberry production are Monilinia blight 

disease (MB) and Botrytis blossom blight disease (BB), which affect mainly foliage and flowers, 

respectively (Jose et al., 2021; Penman & Annis, 2005; Percival et al., 2018). Monilinia blight 

disease is a yield-limiting fungal disease caused by Monilinia vaccinii-corymbosi (Reade) Honey 

(M.vc). The two phases of infection of the fungal organism result in a loss in foliage, floral tissue, 

yield, and berry quality (Abbey et al., 2018). The first disease infection starts in spring at bud break 

when the plants are at the F2 and V2 developmental stages. These stages are characterized by 

scales separating flower buds (F2) and vegetative buds showing 2 - 5 mm of green tissues. The 

second infection stage results from berries that overwinter on the field serving as primary spores 

for infection (Delbridge & Hildebrand, 1997; Percival & Beaton, 2012).  The fungus colonizes the 

floral and vegetative nodes and fruits of the berry plants. Several weeks after infection, symptoms 
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appear as dark brown patches along the veins and midrib of leaves (Delbridge & Hildebrand, 

1997a; Hildebrand & Braun, 1991). The disease is not only important to wild blueberries, but also 

to highbush blueberries (Delbridge & Hildebrand, 1997a; Thompson & Annis, 2014). Each year 

blueberry production records losses because the disease is endemic in most fields (Lambert, 1990) 

and thus, Monilinia blight may vary in its severity depending on the levels of condition present on 

the field (Thompson & Annis, 2014). Furthermore, the history of a field is considered necessary 

for disease management, thus, Delbridge & Hildebrand, (1997) states that “the decision to spray 

depends almost entirely on the past history of blight on that field”. Despite this, the decision to 

spray also depends on other factors such as plant stage, environmental condition, and the status of 

the fungal organism (i.e., sporulation) (Abbey et al., 2018; Percival & Beaton, 2012). 

The stages of growth of the blueberry plant are considered critical as the production system 

employs the use of predictive models and growth guides in the management practices on the field. 

There are several reasons for this development, and these include preventing or controlling disease, 

and the timely harvest of fruits on the field (Aalders et al., 1972). As part of control measures 

adopted, predictive models of both Monilinia and Botrytis blight diseases have been developed as 

alternative measures by monitoring temperature and leaf wetness duration (Delbridge & 

Hildebrand, 1997a). The susceptibility of the blueberry plant to diseases is a function of climate 

(temperature and prolonged wet conditions), the plant’s developmental stage, and the history of 

the field with disease occurrence (Delbridge & Hildebrand, 1997a). Therefore, following bud 

break the plant becomes susceptible to Monilinia blight infection when vegetative buds and floral 

buds are at the V2 and F2 stage, respectively. Plant susceptibility becomes even more profound 

when wetness duration and high temperatures last for longer periods (Delbridge & Hildebrand, 

1997a; McArt et al., 2016).  
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After Monilinia blight infection, Botrytis blight infects flowers starting from the corolla 

(bloom) and spreads to the peduncle of the flower clusters. The disease starts at the white petal 

stage (F5) and becomes worse at anthesis (F7) to fruit set (Hildebrand et al., 2001). Despite these 

disease challenges, it is noted that though both V. angustifolium and V. myrtilloides show similar 

growth patterns, reproductive budburst, and flowering are delayed by a week (7 days) in V. 

myrtilloides compared to V. angustifolium (Fournier et al., 2020; Moola & Mallik, 1998). This 

delayed process in V. myrtilloides may suggest that tolerance or resistance to blight diseases can 

be attributed to disease avoidance by the plant (Penman & Annis, 2005). This explains the 

observation made by Lambert, (1990) when he describes some clones in the field as not being 

affected by some diseases. However, some clones with early shoot also show resistance to some 

blight diseases (Penman & Annis, 2005). Studies have shown that V. angustifolium f. nigrum is the 

most susceptible phenotype to Monilinia and Botrytis blight disease (Abbey et al., 2018; Jose et 

al., 2021).  

Considering the dependence of these management practices on heavy machinery, these 

activities involve the burning of fuels which leads to greenhouse gas emissions, soil compaction, 

time wastage, and the overall increase in production cost. Therefore, to enhance rapid monitoring 

and determination on the wild blueberry field, it is possible to employ remote sensing techniques 

to monitor phenology and geospatial identification of phenotypes and diseases in the field.  

 

2.7 Precision agriculture: the potential of utilizing remote sensing in plants 

2.7.1 General concept of remote sensing 

Vegetation plays an important role in developing and sustaining humans, and its significance 

affects the global carbon cycle. However, many activities such as climate change, erosion, and 
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deforestation among others result in serious but continuous damage to vegetation, water, and land 

resources leading to a loss in biodiversity (Zhang et al., 2019). However, to monitor spatio-

temporal phenomena, remote sensing has been adopted into many circles. The traditional methods 

of monitoring vegetation parameters and measurements, adopt a destructive sampling approach, 

which requires; longer time, intensive energy, material resources, and cannot be applied in large 

areas (Jones et al., 2007; Khaled et al., 2018; Tao et al., 2020). Therefore, remote sensing has been 

adopted to maintain accurate, rapid extraction of cover information and timely monitoring of 

changes in vegetation (Deng et al., 2018; Lee & Lee, 2018). All objects differentially absorb and 

reflect electromagnetic waves of different wavelengths. Therefore, since objects exhibit unique 

spectral characteristics different from other objects, it makes it possible to identify an object based 

on its reflectance spectra, leading to the concept of remote sensing (Tao et al., 2020). 

Over the years, with the rapid development of remote sensing technologies, high-resolution 

remote sensing images have been widely adopted in the monitoring of vegetation (Zhang et al., 

2019). Remote sensing has been adopted to monitor the growth and development of crops using 

various spatial, temporal, and spectral resolutions acquired through different platforms (Kokhan 

& Vostokov, 2020) such as ground platforms, unmanned aerial vehicles (UAVs) platforms, and 

satellite platforms (Tao et al., 2020).  

Numerous studies devoted to crop growth and development have utilized crop growth 

indicators such as leaf area index and nitrogen status, and their relationship with the crop spectral 

properties to monitor vegetation (Kokhan & Vostokov, 2020). Findings from such studies have 

projected the use of vegetation indices especially, the normalized difference vegetation index 

(NDVI) as an important spectral index to monitor the physiological dynamics of key traits such as 

plant disease, leaf area index (Myneni et al., 2008), nitrogen, and biomass (Hassan et al., 2019). 
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The potential use of UAVs and other tools in remote sensing has been researched in several studies 

with high-performing results (Pajares, 2015). The range of their application and possibilities makes 

them suitable for use on the wild blueberry fields.  

2.7.2 Different sensors in remote sensing  

The commercial remote sensing industry is comprised of several platforms including satellites, 

UAVs, aerial, and terrestrial sensors. These platforms are broadly grouped into two major forms: 

active and passive sensor instruments (Lee & Lee, 2018; Maes & Steppe, 2019). Active sensors 

use their own energy like RADAR (radio detection and ranging) and LiDAR (light detection and 

ranging), and passive sensors like UAVs, satellites, and aerial, rely on reflected energy from the 

sun (Digital Globe, 2014; Weiss et al., 2020). Four kinds of sensors cover almost all applications 

of UAVs in remote sensing under precision agricultural research, red-green-blue (RGB), multi- 

and hyperspectral, and thermal sensors (Maes & Steppe, 2019; Nebiker et al., 2016). Each sensor 

type has a specific wavelength range, which determines the depth of data to be obtained. The RGB 

camera is a low-cost solution that can be used to generate vegetative indices (VI’s), high-resolution 

digital elevation models (DEMs), and height maps (Maes & Steppe, 2019; Xue & Su, 2017a). 

Hyperspectral sensors can obtain more waveband information and better reflect biophysical and 

biochemical parameters and environmental stress, or plant diseases compared to the RGB and 

multispectral sensors (Aasen et al., 2015; Maes & Steppe, 2019; Tao et al., 2020). However, the 

applications from a multispectral sensor have extra bands which makes it more rewarding 

compared to an RGB sensor (Table 1). The multispectral sensor comes with additional wavelength 

bands, the red edge, and near-infrared wavebands, allowing for enhanced applications than an RGB 

sensor (Zhang et al., 2020). LIDAR is another powerful sensor that is used to measure spatial 

variations in canopy heights and other aspects of canopy vertical structure. The system estimates 
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the distance between the sensor and object by measuring the distance, time, and ranges of light 

that bounce back (Jones et al., 2007).  

Table 2.3. Applications suitable for the different types of cameras/sensors 

Application Type of Camera/sensora 

  RGB Multispectral 

(broadband) 

Hyperspectral 

(narrow band) 

Thermal 

 

Drought stress 

Detection in early stages - - S HS 

Long-term consequences - HS HS S 

Pathogen 

detection 

Detection in early stages - - HS HS 

Severity of infection HS HS HS S 

 

Weed detection 

Spectral discrimination - S HS - 

Object-based HS HS - - 

Nutrient status  S HS HS S 

 

 

Growth vigor 

Growth stage HS - S - 

Canopy height and biomass HS HS - - 

Lodging HS - - S 

Yield 

prediction 

 S HS - - 

aAbbreviations: HS, highly suited; S, suited. (Adapted from Maes, & Steppe, 2019) 

 

 

2.7.3 The mechanics of light classification 

Plants are phototrophs thus, light is an important survival component for every plant as it regulates 

their growth and development within a changing light environment (Huché-Thélier et al., 2016; 

Kami et al., 2010). Across the electromagnetic spectrum, the light sensitivity of a plant varies from 

the ultraviolet (UV) through the visible spectrum (VS) to the infrared (IR) spectrums (Huché-

Thélier et al., 2016; Hunt et al., 2013; Figure 2.3 & 2.4). Although the specific limits of the various 

regions vary, there is a widely acceptable range for these light regions.  However, this broad 

electromagnetic spectrum (Figure 4.4) can be classified into smaller groups, thus, UV light can be 

classified into UV-C (100-280 nm), UV-B (280-315 nm), and UV-A (315-400 nm) lights. Whereas 

UV-A and UV-B get to plants, UV-C light is absorbed within the ozone layer of the atmospheric 
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stratosphere (Huché-Thélier et al., 2016). Furthermore, the wavelength applications on vegetation 

at the visible regions are based on the following spectra regions: (i) blue light (450 to 495 nm); (ii) 

green light (495 to 570 nm); (iii) red light (620 to 750 nm); (iv) red-edge light (760 to 840 nm); 

and (v) the near and mid-infrared bands (850 to 1700 nm) (Hunt et al., 2013; Xue & Su, 2017a); 

Figure 2.3). However, significant light regions for plants lies within the VS and IR regions 

(Carvalho et al., 2011). Based on these wavelength regions, several vegetation indices are 

computed in the determination of different types of applications such as monitoring crop 

phenology and phenotype on the field (Table 2.3 and 2.4). 

 

Figure 2.3. Significant wavelength regions in plant monitoring (Cárdenas et al., 2015). 
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Figure 2.4. Broad electromagnetic spectrum showing the relevant light regions for plant growth 

and development (Gordon, 2017). 

  Light signature under a plant canopy differs in its absorption and reflectance, thus blue and 

red light are strongly reduced through absorption by photosynthetic pigments with high levels of 

green and near-infrared lights (Kami et al., 2010). Therefore, low reflectance is observed at the VS 

due to pigment absorption properties with high reflectance at the near-infrared (NIR) region due 

to the scattering effects of canopy traits (Ollinger, 2011; Woolley, 1971). 

 

2.7.4 Pigmentation in plants 

Plants contain several pigments ranging from chlorophyll (e.g. chlorophyll a and b), carotenoids, 

anthocyanins, flavonoids, and other auxiliary pigments significant in the light-harvesting processes 

for photosynthesis (Alkema & Seager, 1982; Carvalho et al., 2011; Ollinger, 2011). Therefore, the 

observance of strong absorption at the visible region indicates the abundance of pigments in 

healthy vegetation thus, chlorophyll, which is the major light-harvesting compound in plants 

strongly absorbs at the red (600-700 nm) and blue (400-500 nm) regions. Carotenoids, which 
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consist of carotenes and xanthophylls absorb at the blue region, with anthocyanins absorbing at 

the UV range and similar regions of chlorophyll. However, this absorption is rather slow with weak 

features of the red and yellow colours of autumn leaves. Anthocyanin is seen to protect the plant 

from stress factors like temperature, excess sunlight, and UV radiation, thus, it is often referred to 

as the stress pigment. Other pigments command specific colouration in plants, and these range 

from green to yellow and magenta (Ollinger, 2011; Table 2.4). 

Table 2.4. Classification of pigments and their colours in plant leaves 

Pigment Class Compound Type Colours Reflected 

Porphyrin Chlorophyll Green 

Carotenoid Carotene (α, β, γ, and lycopene) Yellow, orange, red 

 Xanthophyll yellow 

Flavonoid Flavone Yellow 

 Flavonol Yellow 

 Anthocyanin Red, blue, purple, magenta 

Adapted from: Alkema & Seager, (1982)  

Therefore, colouration of plant leaves occurs through a complex combination of the 

different pigments (Table 2.4). Most plants produce green pigments called chlorophyll. This 

pigment reflects incoming light at the green region making most plants appear green during the 

sun-filled growing season, and this masks the other pigments (Alkema & Seager, 1982). However, 

growth and environmental conditions like autumn season and senescence unmask some of these 

pigments. Therefore, a complex interplay of endo- and exogenous conditions during the growing 

season results in the saturation or reduction of a pigment, and this affects the mechanics of light in 

leaves.   



40 
 

2.7.5 Reflectance and transmittance of light by leaves 

Light that hits the surface of any object is either reflected, transmitted, or absorbed (Woolley, 

1971). Reflectance is defined as the portion of light that is reflected from a diffused object/surface, 

while transmittance is the portion of light that goes through an object/surface (Woolley, 1971). 

Absorption is defined as when light is retained at a specific wavelength (Ritchie & Runcie, 2014) 

and transferred to the surface materials thus, it is established that the biochemical properties of 

plants regulate their absorption and otherwise their reflectance (Ollinger, 2011; Vilfan et al., 2016; 

Woolley, 1971). Absorption in plant leaves causes molecules to change from an excited state to a 

non-excited state, leading to the re-emission of light known as fluorescence. 

Therefore, the absorption (fluorescence) and reflection of light from plants may vary 

depending on several factors. The structural properties of the plant, water absorption properties, 

and plant pigments can alter the absorption or reflectance of light (Ollinger, 2011). The 

characteristics of leaves and their impact on light have been greatly studied thus, the reflectance 

of light is primarily attributed to the arrangement of cells in the mesophyll tissues. Strehler & 

Arnold, (1951) indicated that the delayed reflectance of light was a result of early photosynthetic 

activity. Therefore, directing light onto the spongy mesophyll cells is the function of the palisade 

cells, which implies that more scattering/reflectance will occur when a higher proportion of cells 

in the spongy mesophyll is present compared to the palisade mesophyll cells (Ollinger, 2011).  

 

2.7.6 Spectral vegetative indices 

Spectral vegetation indices (SVIs) are important methods used to extract information from 

remotely sensed data (Hunt et al., 2013; Tilly et al., 2015). Rather than a wider section of the 

electromagnetic wavelength, only a section of the spectrum is considered relevant for agricultural 
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purposes (Mahlein et al., 2013). These SVIs are derived using ratios or normalized differences of 

two or three bands, usually compressed into a vegetation index (Hunt et al., 2013; Jones et al., 

2007; Xue & Su, 2017a). The simple ratio index (SRI) is one of the widely used ratio combinations 

of near-infrared (NIR) and red (R) wavelength reflectance from vegetation (Myneni et al., 1995).  

Of all vegetative indexes, normalized difference vegetation index (NDVI) is the most 

consistently used vegetation index (VI), based on the different ratios of light reflected at the near 

infra-red (NIR) region and the red (r) light region of the electromagnetic spectrum (Hassan et al., 

2019; Jones et al., 2007). Several indices have been computed from different sensors and these 

may range into 100’s of vegetative indices (Tilly et al., 2015; Xue & Su, 2017a) (Table 2.5). 

However, depending on the type of application a specific sensor can be considered suitable or 

otherwise (Table 2.3). The reflectance of light spectra changes with the type of plant, water content 

within the plant tissues, and other intrinsic factors of the plant. Therefore, reflectance from 

vegetation is generally determined by the chemical and morphological characteristics of the 

surface of organs or leaves (Xue & Su, 2017a). 

Table 2.5. Some vegetative indices used in agriculture  

Vegetative Index  Equation Reference 

Ratio analysis of reflectance 

spectral chlorophyll-a (RARSa) 

Chlorophyll a RARSa = 
𝑅675

𝑅700
 (Chappelle et al., 1992)   

Ratio Analysis of reflectance 

Spectral Chlorophyll-b (RARSb) 

Chlorophyll b RARSb = 
𝑅675

(𝑅700𝑥 𝑅650)
 (Chappelle et al., 1992) 

Pigment specific simple ratio 

(PSSRa) 

Pigment, chlorophyll RARSa = 
𝑅800

𝑅680
 (Blackburn, 1998)  

Green NDVI (GNDVI) Chla GNDVI = 
(𝑅850 − 𝑅580)

(𝑅850 + 𝑅580)
 (A. A. Gitelson & Merzlyak, 

1996)  

Photochemical Reflectance 

Index (PRI) 

Isoprenoid emission, PS I 

and II 
PRI = 

(𝑅532 − 𝑅570)

(𝑅532 + 𝑅570)
 (Penuelas, Llusia, et al., 1997) 

Simple Ratio Index (SR900) Chlorophyll activity SRI = 
𝑅900

𝑅680
 (Jordan, 1969)  
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Water Index (WI) Plant water concentration WI = 
𝑅900

𝑅970
 (Penuelas, Pinol, et al., 1997) 

Soil atmospheric vegetation index 

(SAVI) 

Correctional index  SAVI = 
(1+0.5)(𝑅𝑛−𝑅𝑟)

(𝑅𝑛+𝑅𝑟+0.5)
 (Huete, 1988) 

Structure Insensitive Pigment 

Index (SIPI) 

Chlorophyll, Carotenoid SIPI = 
(𝑅840 − 𝑅450)

(𝑅840 + 𝑅670)
 (Penuelas et al., 1995) 

Simple Ratio Index (SR 760) Chlorophyll activity SRI = 
𝑅761

𝑅650
 (Jordan, 1969)  

Simple Ratio Index (SR 850) Chlorophyll activity SRI = 
𝑅850

𝑅650
 (Jordan, 1969) 

Triangle Vegetation Index (TVI)  TVI = 0.5[120(R750-R550)-
200(R670-R550)] 

(Broge & Leblanc, 2001) 

Transform chlorophyll absorption 

in reflectance index (TCARI) 

Chlorophyll pigments TCARI = 3[(R740-R651) - 

0.2(R740-R581) (
𝑅740

651
)] 

(Haboudane et al., 2002) 

Modified chlorophyll 

absorption in reflectance index 

(MCARI) 

Green leaf area index MCARI = [(R700 - R670) - 0.2 * 
(R700 - R550)] *(R700/R670) 

(Daughtry, 2000) 

Modified Chlorophyll Absorption 

in Reflectance Index (MCARI 1) 

Leaf area index MCARI 1 =  
1.2[2.5(𝑅761𝑅651)
− 1.3(𝑅761581)] 

(Haboudane, 2004)  

Anthocyanin Reflectance Index 

(ARI) 

Anthocyanin ARI = (
1

𝑅550
) – (

1

𝑅700
) (A. A. Gitelson et al., 2001) 

Chlorophyll Index (CI green) Chlorophyll activity CI green = (
𝑅840

𝑅570
) – 1 (A. A. Gitelson, Gritz †, et al., 

2003)  

Chlorophyll-Index Red edge (CI 

rededge) 

Chlorophyll estimation CI rededge = (
𝑅780

𝑅705
) – 1 (A. A. Gitelson, Gritz †, et al., 

2003) 

Chlorophyll vegetation index 

(CVI) 

Chlorophyll estimation CVI = R840(
𝑅760

𝑅5502
) (Vincini et al., 2007) 

Green Leaf Index (GLI) Leaf chlorophyll GLI = 
(2.𝑅𝑔−𝑅𝑟−𝑅𝑏)

(2.𝑅𝑔+𝑅𝑟+𝑅𝑏)
 (Louhaichi et al., 2001)  

Green, Red Vegetation Index 

(GRVI) 

Chlorophyll content GRVI = 
(𝑅𝑔−𝑅𝑟)

(𝑅𝑔+𝑅𝑟)
 (Sripada et al., 2006) 

Normalized Difference Vegetation 

Index (NDVI) 

Plant Health, biomass NDVI = 
(𝑅𝑛−𝑅𝑟)

(𝑅𝑛+𝑅𝑟)
 (Rouse et al., 1974) 

Enhanced Normalized Difference 

Vegetation Index (ENDVI) 

Leaf chlorophyll ENDVI = 
(𝑅𝑛+𝑅𝑟)−(2.𝑅𝑏)

(𝑅𝑛+𝑅𝑟)+(2.𝑅𝑏)
 (Strong et al., 2017) 

Normalized Difference Red Edge 

(NDRE) 

Plant health NDRE = 
(𝑅𝑛−𝑅𝑟𝑒)

(𝑅𝑛+𝑅𝑟𝑒)
 (A. Gitelson & Merzlyak, 1994)  

Modified Simple Ratio (MSR) Biophysical parameters MSR =  
(𝑅𝑛 − 𝑅𝑟 − 1)

[(𝑅𝑛 + 𝑅𝑟)0.5 + 1]
 

(Chen, 1996) 

Visible atmospheric red index 

(VARI) 

Vegetation estimation VARI = 
(𝑅𝑔−𝑅𝑟)

(𝑅𝑔+𝑅𝑟)
 (A. A. Gitelson, Viña, et al., 

2003) 
a Indices are grouped based on the major wavelengths (R): NIR (n), red edge (re), red (r), green (g), and blue (b).  

2.8. Phenology, phenotype, and disease estimations and assessments 

2.8.1 Phenology monitoring and phenotype identification 

The term ‘phenology’ refers to the timing of recurring biological events in the life of an organism 

(Vilhar et al., 2013) while phenotype reflects the main and interactive effects of a genotype with 
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the environment, producing characteristics perceived with a cultivar (Deng et al., 2018). Currently, 

there are two main methods for extracting data from the field: the destructive (manual approach) 

and the non-destructive method (remotely sensed approach) (Deng et al., 2018). The remotely 

sensed method having been adopted has aided in the rapid and accurate determination of field data; 

leaf area, soil moisture content, leaf area index, plant nutrient stress status, stress, yield, disease, 

and growth stage index among others, and these have been demonstrated through several studies 

using the non-destructive method (Vicente et al., 2019). The approach has been made possible 

using vegetative indices (VI’s) and these have been generally used to monitor crop changes and 

other phenotypic traits like yield, biophysical characteristics, and other growth parameters in the 

field (Table 2.3). 

Table 2.6. Some descriptions of phenological monitoring on the field using remote sensing  

Type/Crop Description Reference  

Maize (Zea maize L.) Remote evaluation on phenological development of 

maize in biomass accumulation and reproductive 

organ appearance. 

(Viña et al., 2004) 

Vegetation Tracking vegetation responses to climate variability 

in specific species and locations 

(M. A. White et al., 

2009) 

Vegetation Region to global monitoring of vegetation 

(phenology) to improve and understand variation in 

plant dynamics 

(X. Zhang et al., 2003) 

 

Several studies have demonstrated the use of remote sensing to assess the phenology and 

phenotypes of plants (Souza et al., 2017). Recent studies include, Wang et al., (2014), used NDVI 

to establish relationships and predict crop yield; Bush et al., (2020), monitored crown leaf turnover 
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using satellite data; Vicente et al., (2019), identified traits associated with barley yield 

determination of crop height, canopy cover and NDVI, and Hussain et al., (2020) adopted the use 

of a multispectral sensor to determine the biophysical parameters of the rapeseed crop. 

These recent developments in research in contrast to some approaches (Table 2.6), shift 

focus from the broad scope of seasonal monitoring to crop monitoring at their specific growth 

stages. Therefore, several growth parameters have been predicted using VIs. The establishment of 

results from these studies is dependent on the relationship between specific vegetative indices (VI) 

and the field-measured data (growth parameter). Thus, it evaluates the strength of the relationship 

between two quantitative variables (Ranganathan et al., 2019). Therefore, data obtained using 

remotely sensed approaches are always compared with ground truth data. Though this may be a 

robust approach, there may often be drawbacks to this method. Largely, correlation and regression 

analysis are usually adopted in establishing these relationships. Therefore, higher correlation (r) 

and coefficient of determination (R2) values establish a good relationship between variables. In 

this way, higher correlation (r) values in the range of 0.70 to 1.00 are considered the strongest 

relationship with ground data, and correlation values in the range of 0.10 to 0.39 and 0.40 to 0.69 

are considered to have a low and medium correlation with ground data, respectively (Ranganathan 

et al., 2019). With these considerations, it becomes possible to assess growth parameters in the 

wild blueberry field. 

Phenotype determination is another important aspect that considers the identification of 

species or clones based on their genetic makeup or the physical characteristics of the plant. In the 

past, the nature of this process focused attention on the laboratory determination of these clones. 

Over the years, the expansion in the use of remote sensing approaches focused attention on the 

combination of laboratory processes and remote sensing techniques (Vicente et al., 2019). 
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Currently, development in the use of remote sensing applications has led to a potential in the 

identification of phenotypes using UAV high throughput phenotyping platforms (UAV-HTTPs) 

(Han et al., 2018). These platforms use sensors like the RGB, multispectral, hyperspectral, and 

thermal cameras (Han et al., 2018; Nebiker et al., 2016). This approach has been used widely in 

wheat, sorghum, and maize, among other crops. Therefore, several studies have adopted different 

approaches including the use of UAV-HTTP, spectral radiometric approaches, hyperspectral 

imagery analysis, and some machine learning approaches like classification in phenotype 

determinations on the field (Bendig et al., 2015; Han et al., 2018; Panda et al., 2009; Peña et al., 

2017; Vicente et al., 2019). 

2.8.2 Disease determination 

The effect of diseases on plants varies from one plant to another. These different responses 

emphasize pathogen-host interaction (Al-Saddik et al., 2017; Velásquez et al., 2018). However, the 

effects of these diseases are usually visible only after deterioration, which poses a challenge to 

plants, affecting food security. Early detection has been a challenge, and the detection process of 

these diseases is a function of when early discrimination could be achieved. As a result, it poses 

challenges to early detection until spectral differences can be achieved (Franke et al., 2005).  

Drawing steps closer to disease detection, remote sensing techniques provide a means of 

visually assessing and identifying plant disease after deterioration had reached an advanced stage 

(Liu et al., 2018; Mahlein et al., 2013; Oerke, 2020; Vega et al., 2015). Information gathered from 

visible and near-infrared regions of the spectrum has been consistent in simulating biochemical 

and biophysical processes in plants (Bush et al., 2020; Hunt et al., 2013; Mahlein et al., 2013; 

Oerke, 2020; Yue et al., 2019). Narrowing it down, significant steps were taken to assign regions 

on the electromagnetic wavelength that control some of the plants’ processes (Zhang et al., 2020). 
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It was revealed that the visible region (400 nm to 690 nm) has a dominant impact on pigmentation 

whereas infrared regions (700 nm to 1200 nm) have an impact on structural leaf traits and water 

content (Mahlein et al., 2013; Weingarten et al., 2022; Zhang et al., 2019). Though disease 

detection may be challenging, a recent study on the early detection of tree diseases and pathogens 

reveals some insight into the potential of using imaging spectroscopy in this identification process 

(Weingarten et al., 2022).  

Several studies have also shown the possibility of using other approaches like thermal and 

hyperspectral techniques to detect an early start of diseases in crops (Calderón et al., 2015; Yang, 

2020). Developments using spectral vegetative indices (SVIs) have been utilized to detect several 

physiological changes in plants. These indices combine ratios or normalized differences of two 

wavebands to specify different plant parameters (Bush et al., 2020; Hunt et al., 2013; Mahlein et 

al., 2013). This technique has been used to observe changes and detect pests and diseases in several 

crops; Cnaphalocrocis medinalis in rice (Huang et al., 2012), Schizaphis graminum in wheat (Yang 

et al., 2005), Verticillium wilt of Olive trees (Calderón et al., 2013, 2015), lodging in rice (Liu et 

al., 2018), Cercospora leaf spot in sugar beet plant (Mahlein et al., 2013) among other detections.  

Remote determination of diseases depends on vegetative indices. Though these indices 

combine a few spectral bands, blue, green, red, and near-infrared bands in their computation, these 

are indirect measurements, and therefore, statistical methods are again adopted to establish 

findings. Several statistical approaches including, classification approaches like Support Vector 

Machine (SVM) and Maximum Likelihood Classification (MLC), stepwise discriminant methods 

like Fisher Linear Discriminant Analysis (FLDA) and Quadratic Discriminant Analysis (QDA), 

machine learning,  correlation, and several regression methods such as Partial Least Squares 

Regression (PLSR), an Artificial Neural Network (ANN), Random Forest (RF), Multilinear 
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Regression (MLR) among other approaches have all been used to establish relationships in their 

determination (Maes & Steppe, 2019; Mahlein et al., 2013; Oerke, 2020; Su et al., 2018; Tao et 

al., 2020; Zhang et al., 2019). Regression techniques have greatly been explored and have achieved 

good results in the prediction of growth parameters (Tao et al., 2020).   

 

2.9 Advancements and challenges of the technology in wild blueberries 

2.9.1 Remote sensing in wild blueberry production 

Despite challenges posed on the field, many gains have been made using remote sensing 

techniques. Having set the pace for other remote sensing approaches to be adopted on wild 

blueberry fields, a study by Michaud et al., (2006), employed aerial scans as a guide to optimize 

the delivery of pesticides to blueberry plants. Furthermore, Maqbool et al., (2010), employed 

reflectance measurements to estimate different yield components in the wild blueberry field. 

Subsequent advancements in the wild blueberry fields have adopted the use of remote sensing 

techniques, especially unmanned aerial vehicles (UAVs) for different applications. Currently, field 

mapping (Panda et al., 2016; Peltoniemi et al., 2005), identification of phenotype and bare areas 

(Percival et al., 2023), phenology monitoring (Anku et al., 2023), weed detection (Hennessy et al., 

2022), geospatial difference in phenology (Sharpe, 2008), and yield estimates (Barai et al., 2021) 

among others are currently underway, with these technological applications at different levels of 

development. Current advancements point to the classification of orthomosaic maps, which are 

developed into prescription maps to be used by tractors (Advancements on the Wild Blueberry 

Fields, personal communication, 2021). These maps will help minimize the use of resources 

through the adoption of spot application rather than a blanket application of biofungicides and 
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other agrochemicals. This phase of development in the application of UAVs and remote sensing 

puts wild blueberry production on a path to great technological advancements. 

2.9.2 Challenges with the plant and the remote sensing technique 

Challenges associated with the blueberry plant are numerous, and this emanates from the different 

perspectives of field management and mechanization. Despite the challenges faced by the plant, 

some gains can be achieved. The nature of the plant being “short or small” introduces some 

challenges to flights conducted at high altitudes, except for sensors of high resolution. Despite 

these challenges, there are software packages that help in the determination of an appropriate 

altitude for flights. However, the plant structure and the type of application inform flight altitude, 

and this has an impact on flight coverage in the field. This is because flight altitude and type of 

application have a direct relationship. This implies that short plants will have a relatively low flight 

altitude, which would have a negative bearing on the UAV. However, this phenomenon varies from 

one application to another. 

Berries are distributed along the stem of the plant, and this makes harvesting easy, however, 

aerial view and coverage using the UAV face difficulties in identifying these berries. This is 

because, though berries are usually clustered at the proximal region of the stem, an aerial view 

limits their detection or identification. However, this phenomenon may vary from field to field. In 

fruit distribution on the stem, some plants may observe about 60% clustering at the apical region, 

and the remaining 40% distributed along the plant stem. Just like any other plant the nadir angle 

of view makes it impossible to identify and account for all berries on the plant and on the field at 

large. Furthermore, the difficulty in identifying neighbouring plant stands and berries within a 

patch is another challenge posed in the detection process. This situation makes it difficult to detect 

berries hidden within the plant canopy. 
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The heterogeneous nature of plants in terms of height, fruit colour, leaf colour (Jamieson, 

2008), and plant density raises some challenges with UAV data generated through remote sensing. 

Uniformly, an average height can be estimated for plants. However, this average would vary 

considerably across the field. Colour is an important aspect of remote sensing, and this is because 

the colour displayed depends on which wavelength is being reflected (Ashley, 2020; Duy, 1999). 

Therefore, considering the leaf colour variations displayed on the field, inferences made on such 

information may be misleading. These variations though can be managed, may pose serious 

challenges on some intended applications of the data.  

Another heavy challenge of the blueberry field is bare areas and weed patches on the field. 

Research has it that young fields contain lots of bare areas (less than 50% cover) and weedy 

patches, but relatively old fields of about 50 years or more have less of such problems with nearly, 

100% crop cover (Jamieson, 2008). Therefore, aerial estimations on such fields may lump both 

weeds and crops as one, and averages are calculated for those fields. Thus, the imbalanced density 

of plants on a plot somewhat puts some estimated higher-valued plots ahead of others containing 

bare areas. However, there are methods to control or manage such challenges, but these processes 

can be difficult and cumbersome. 

One other challenge of wild blueberry studies as explained by Drummond, (2019) is that, 

because plants are not sown from seeds the spatial patterns of genotypes on the field cannot be 

defined or predetermined like in other experiments like maize, wheat, and apples among others 

(Drummond, 2019). Therefore, the unique situation that needs to be solved arises from combining 

the challenges of using remote sensing methods with the challenges presented by the plant. 
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CHAPTER 3: CANOPY NITROGEN AND GROWTH ESTIMATION USING REMOTE 

SENSING AND ITS IMPACT ON GROWTH PARAMETERS 

 

Aspects of this section have been submitted as abstracts and full text for publication in the XIII 

Vaccinium conference proceedings. 

Anku, K. E., Percival, D. C., Rajasekaran, L. R., Heung, B., & Vankoughnett, M. (2024). Remote 

estimation of leaf nitrogen content, leaf area, and berry yield in wild blueberries. Frontiers in 

Remote Sensing. (Submitted) 

3.1 ABSTRACT 

Nitrogen (N) fertilization is a major management requirement for wild blueberry fields. While low 

and high N are obvious in plants, its estimation can be difficult given the perennial heterogeneous 

nature of the plant with residual N effects, leading to the over-application of the agrochemical. 

Despite this, efforts to substantially reduce N use in commercial fields to lower greenhouse gas 

emissions have been a major concern, coupled with the spatial variability of plant coverage. 

Therefore, the objective of this study was to assess the impact of N on VIs and estimate its content 

in wild blueberry leaves using remote sensing approaches. The study was also conducted to assess 

the impact of nitrogen on different growth parameters. Four trials over two years were set up in 

three commercial fields with nitrogen application rates of 0, 20, 40, 60, and 100 kg N ha-1 of soil-

applied granular fertilizer treatments being used. Aerial measurements were done using a 

multispectral and a Zenmuse X5 camera, mounted on a DJI Matrice Pro 300 UAV and flown at 30 

m to collect aerial images. Several field measurements including leaf nitrogen content (LNC), leaf 

area, floral and vegetative numbers, and stage, stem height, and yield were conducted. Several 

vegetative indices were computed for each plot, and correlation and regression analyses were 

conducted. Results indicated that despite the wild blueberry plant being a perennial plant with 

considerable residual nutrient reserves, treatments with high nitrogen application rates resulted in 

canopies with high field LAI values. Furthermore, using visible light VIs [green leaf index (GLI), 

green red vegetative index (GRVI), and visible atmospheric red index (VARI)], LNC, LAI, and 



51 
 

berry yield had significant R2 estimations of 0.43, 0.48, and 0.30 respectively. It was found that 

using near-infrared VIs was the most effective method for estimating differences in nitrogen rates. 

Therefore, the use of VIs in creating prescription maps for N fertilization application is justified. 

Furthermore, results from this study have illustrated the potential of the multispectral sensor to 

estimate LNC, LAI, and berry yield parameters. 

Keywords: Wild blueberry, nitrogen fertilizers, remote sensing, leaf nitrogen content, vegetative 

indices  

 

3.2 INTRODUCTION 

The wild blueberry plant, also called lowbush blueberry, is an economically important shrub that 

thrives in major areas of the world, particularly in North America (Drummond, 2019; Farooque et 

al., 2012; Zaman et al., 2008). Including the species Vaccinium angustifolium (the predominate 

species found in the fields) and Vaccinium myrtilloides, the plant grows naturally as it is managed 

through regular management practices (Agriculture, Aquaculture, and Fisheries, 2013). The plant 

has a unique structure, growth, and development, and can thrive in harsh conditions (Abbey et al., 

2018; Thyssen et al., 2006). The lowbush plant is stress-tolerating and resilient, lending itself to 

periodic pruning, and can thrive in a range of soil types, particularly acidic soils (Glass et al., 2005; 

Percival & Sanderson, 2004; Thyssen et al., 2006).  

Several management practices including pruning, fertilizer application, disease control, 

weed control, and pollination and others are used (Kinsman, 1993). Upright plant shoots are 

periodically pruned in alternate years; thus, fields are managed on a two-year system with a 

biennial production cycle of a sprout and a cropping year (Eaton & Nams, 2012a; Penman & Annis, 
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2005; Percival & Sanderson, 2004; Zhang et al., 2010). Thriving in low-nutrient and varied soil 

types, this phenomenon leads to the use of fertilizers to boost nutrient levels for plant growth and 

development. Although wild blueberries have low N requirements compared to other fruit crops 

like strawberries, concerns about their carbon footprint and resulting greenhouse gas emissions 

persist.  

Fertilizer application is a regular practice adopted in the management and production of 

wild blueberries, thus, diammonium phosphates (DAP; 18-46-0) or ammonium sulfate combined 

with P and K are standard fertilizers used on commercial wild blueberry fields with emphasis on 

nitrogen utilization (Farooque et al., 2012; Gumbrewicz & Calderwood, 2022). Wild blueberry 

fields are low in soil nutrients (Farooque et al., 2012; Thyssen et al., 2006), and correspondingly, 

the plant has a generally low nutritional requirement (Saleem et al., 2013). The low nutrient status 

of various soil types has always demonstrated a positive plant response upon fertilizer application 

(Agriculture, Aquaculture, and Fisheries, 2013; Farooque et al., 2012; Maqbool et al., 2016; 

Percival & Sanderson, 2004; Saleem et al., 2013). Smagula & Hepler, (1978) established that the 

application of N (43 kg ha-1) in the form of urea increased flower buds and berry yield by 22% and 

25% respectively, over the unfertilized plots. Furthermore, an increase in stem length, flower buds, 

number of berries, and yield were observed in Maine upon application of N (20-98 kg ha-1) rates 

(Smagula & Hepler, 1978). However, excess application of N has negative effects on yield by 

stimulating vegetative growth, increasing weed pressures, and causing micronutrient imbalance 

(Maqbool et al., 2016). Therefore, Percival & Privé (2002), proposed constant checks on lead 

tissue N, P, and K status as their levels are altered along the production cycle. 

Several studies on the wild blueberry fields have demonstrated many effects of fertilization. 

Marty et al., (2019) demonstrated that inorganic fertilization increased yield by 70%, with 
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significant effects on weeds (Ghosh et al., 2022). Percival et al., (2003) established that multiple 

fertilizer applications increased stem density, leaf nitrogen content, dry weight, and harvestable 

yield. Eaton et al., (2009) established that N, P, and K leaf content, stem length, stem buds, 

blossoms per stem, and yield were higher under consecutive fertilization as compared to alternate 

fertilization. Conversely, a study by Saleem et al., (2013) also established that plant density, 

number of buds, and number of branches were non-significantly affected by fertilizer treatments 

and that fruit yield increased under both uniform and variable fertilizer rate applications. Despite 

the use of traditional approaches, producers are now moving away from the blanket application to 

spot application of N given the spatial variability of plant coverage and the determination of N 

levels using remote sensing techniques. 

Research and development activities in agriculture have led to the proliferation of remote 

sensing techniques in plant growth monitoring and prediction (Hussain et al., 2020; Zhang et al., 

2020). With the adoption of a non-destructive approach, sensors such as the red-green-blue (RGB), 

multispectral, hyperspectral, and thermal sensors have been utilized through the use of vegetative 

indices (VIs) (Maes & Steppe, 2019; Nebiker et al., 2016). Vegetative indices are important ways 

by which information is sourced from remote sensing data through mathematical computation 

using wavebands. Several studies have demonstrated the use of remote sensing techniques in 

estimating plant growth and development in the fields. Näsi et al., (2018) estimated biomass and 

nitrogen (N) content of barley and grass using an unmanned aerial vehicle (UAV). The study 

confirmed a high regression value of 0.89 as a good relationship between these parameters (Näsi 

et al., 2018). Bendig et al., (2014) also estimated the biomass of barley using crop surface models 

(CSMs) from a UAV-Based RGB imaging with high regression values of fresh and dry biomass 

being 0.81 and 0.82 respectively. This approach and technique have also been used in several crops 
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including wheat, rice, and soybean (Hassan et al., 2019; Souza et al., 2017; Zhou et al., 2017), 

however, little has been done to utilize the multispectral sensors in estimating N content and 

determining canopy characteristics in wild blueberry fields.  

The use of multispectral sensors with VIs has been employed to monitor plant canopies. 

This is particularly important as most of the plant's nitrogen (N) is found in the leaves. Recent 

studies have demonstrated the effects of nitrogen on plant canopy in several crops using VIs. Marty 

et al., (2022) in a recent study on the blueberry field, investigated the sensitivity and impact of 

management practices on two vegetative indices, normalized difference vegetation index (NDVI) 

and normalized difference red edge (NDRE). The study established significant differences between 

VIs from different fertilizer treatments as against different management practices. However, the 

study did not consider the estimation of growth parameters, rather it focused on the sensitivity of 

NDVI and NDRE to management practices. Furthermore, the impact of N-fertilization on wild 

blueberry yield has been inconsistent, with some implying good outcomes (Eaton et al., 2009; 

Ghosh et al., 2022; Marty et al., 2019; Percival et al., 2003), with others showing either bad or no 

effects (Maqbool et al., 2016; Saleem et al., 2013). This is significant because the crop is a 

perennial plant and will have a significant pool of nutrients it will be drawing from along the 

production cycle. This may affect yield potential as the plant may invest either in growing tall or 

producing floral buds. Several limiting factors may account for some of these negative effects, 

which include biotic stresses (diseases and weeds), and pollination, however, considering the 

varying results obtained, there is a need for work to be done to confirm some major findings and 

estimate plant growth parameters. Therefore, from an assessment perspective, given the 

introduction of the non-destructive approach, there is a need to utilize remote sensing techniques 

to estimate the effects and impact of fertilizer application on plant growth parameters in wild 
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blueberry fields.  

Given that the potential and application of remote sensing techniques have been 

demonstrated in different crops, this study was conducted using an RGB and a multispectral sensor 

to monitor growth parameters in wild blueberry fields. Therefore, the objective of this study was 

to (i) determine the effects of soil-applied N-fertilizer rates on the growth and development of wild 

blueberry plants; (ii) determine the N-fertilizer rate in achieving an optimum harvestable yield; 

(iii) determine the effect of fertilization on vegetative indices; and (iv) estimate berry yield, LAI, 

and LNC using predictive models. 

 

3.3 MATERIALS AND METHODS 

3.3.1 Study area 

A total of four (4) experimental trials were set up in the 2020 and 2021 growing seasons. These 

trials were located at three geographical locations, with the first trial set up at Lemmon Hill in the 

2020 growing season. In the 2021 growing season, an additional three (3) experimental trials 

located in Debert (DB), Lemmon Hill (LH), and Wentworth (WW), all within Nova Scotia, 

Canada, with their geographic coordinates (45.444445°N, -63.450472°W), (45.190360°N, -

62.872721°W), and (45.642327°N, -63.611735°W) respectively, were set-up for this study (Figure 

3.1.). Despite Nova Scotia being noted for Queens soil type, these three sites, DB, LH, and WW 

are specifically classified as orthic humo-ferric podzol, thus all three locations shared the same 

soil type (Nowland & MacDougalI, 2013). These trials started during the vegetative growth phase 

of the plant and carried through the crop phase until harvest. 
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The locations for these trials were wide apart, thus, the distance between DB and LH was 

84 km, DB to WW location was 43.5 km, and WW to LH was 111 km. These fields varied in plant 

density, topography, and weather conditions which introduced some uniqueness to this study. 

Unlike the DB and LH locations, the trial set up at the WW location was on a low-lying field with 

high moisture content.  Generally, the trial set up at the WW location had a low plant density as 

compared to the trials set up in the DB and LH locations. Weeds and patches on the field varied 

across these three locations, with WW having the patchiest field with weeds. Disease management 

practices to mitigate leaf spot and floral blight diseases were used. 

 

Figure 3.1. Trial sites, field plots, and the different treatment applications. R - replication 
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3.3.2 Experimental set-up and treatment applications 

In the 2020 field season, the experimental design adopted was a randomized complete block design 

(RCBD) with 6 replications, 4 treatments, and a plot size of 4 × 10 m with 2 m buffers between 

plots. Treatments consisted of (i) untreated control (0 kg N ha-1), (ii) 15 kg N ha-1, (iii) 30 kg N ha-

1, and (iv) 60 kg N ha-1 using ammonium sulfate (AS) as an N source. The treatment applications 

were carried out using a granular fertilizer spreader (Lesco High Wheel Fertilizer Spreader), with 

two passes along the 4 m stretch of each plot with the deflector guard lowered to minimize 

application to areas outside of the plots. Across the different seasons, the application of the AS 

fertilizer was carried out in the vegetative (i.e., sprout phase) stage of the production. 

The experimental design for the 2021 field season was a randomized complete block design 

(RCBD) with 5 replications, 5 treatments, and a plot size of 6 × 8 m with 2-m buffers between 

plots. Treatments consisted of (i) untreated control (0 kg N ha-1), (ii) 20 kg N ha-1, (iii) 40 kg N ha-

1, (iv) 60 kg N ha-1, and (v) 100 kg N ha-1. Treatment applications consisted of two mixed 

compound fertilizers; the 16-21-8 (partially wet) fertilizer was used to provide a base and then 21-

0-0 (dry) fertilizer was applied to each field in spring during the sprouting phase of the plants at a 

rate of 10 kg of N per hectare. These granular fertilizers were applied two weeks apart (12th and 

26th of June 2021) using a fertilizer spreader (Lesco high wheel fertilizer spreader). Three passes 

along the 6 m stretches were made on each treatment plot. 

 

3.3.3 Field data collection 

Field assessment of stem density was conducted on 5th August 2021 by collecting 4 quadrants of 

blueberry stems per plot using a 30 x 30 cm quadrant. Leaf area index (LAI) was determined for 

each plot using the LiCor 3100C leaf area meter. An SS1 Sunscan canopy analysis system (Delta 
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T Devices) was also used to collect LAI measurements from each plot. This was done by 

measuring light interception within the plant canopy using the probe. This was conducted in early 

October following the quadrant measurements. Physical plant characteristics such as stem length, 

vegetative buds, and floral bud numbers were collected. Leaf tissue N content from each plot was 

determined using the protocol of Maqbool et al., (2012). However, due to insufficient differences 

observed between treatments of the 2020 trial (Table 3.2; Appendix 2-Table A1 & A2), the trial 

was discontinued with several parameters not collected. 

3.3.4 Plant sampling and nitrogen content analysis 

Fresh leaf samples were collected from each treatment plot on 5th August 2021. The leaf tissue 

samples were oven-dried for 36 h at 60°C. The dry leaf tissues were ground into a fine powdery 

sample using the mortar and pestle. The ground leaf samples were stored in dry labeled falcon 

tubes and analyzed for N content using the LECO CNS-1000 elemental auto-analyzer (LECO 

Corp., St. Joseph, MI). Analysis of the LNC followed the procedure of Rutherford et al., (2007). 

3.3.5 Aerial image acquisition and sensory platform  

Across the 2 growing seasons, the DJI Matrice Pro 600 UAV and the UAV Matrice 300 were 

equipped with a 3-band Zenmuse X5, a 16-Mega-Pixel (MP) digital camera, and a 5-band 

Micasense RedEdge™ 3 multispectral camera to collect the reflected portions of light. Reflected 

lights from the RGB camera were collected at blue (448nm), green (548 nm), and red (650 nm) 

wavelengths while that of the Micasense was collected at blue (475 nm), green (560 nm), red (668 

nm), red edge (717 nm), and near-infrared (840 nm) wavelength (Figure 3.2.). The Matrice Pro 

300 was flown at 30 m height with a frontal image overlap of 75% and a side image overlap of 

70%.  
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Flights on all 3 sites on the 2021 trial were conducted on 29th July 2021 and 4th August 

2021, about two months after treatments were applied to plots. Images were acquired between 10 

am – 2 pm under clear conditions to minimize the effects of clouds, wind, and rain. Calibration, 

corrections, and adjustments were carried out to minimize the effects of distortion on the quality 

of the imagery obtained. Depending on whether the camera is an RGB, or multispectral, aerial 

images were acquired at approximately 0.7 or 2.2 cm/px spatial resolution, respectively. 

Figure 3.2. UAV remote sensing tools. (A) Calibration panel, (B) DJI Matrice 300 UAV fitted with 

a camera, and (C) A Real-time kinematic receiver.  

 

3.3.5.1 Image processing 

The raw images were processed using the Solvi platform (https://solvi.ag/features) and this 

consisted of (i) upload of raw images and ground control points (GCPs); (ii) stitching images into 

a composite orthomosaic images; (iii) digitizing individual plots; (iv) computation and extraction 

of vegetation indices; and (v) export of data file for analysis. Using the zonal and custom function 

A 

C B 

https://solvi.ag/features
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on Solvi, the individual plots were digitized. From the zonal function, all vegetative indices (VIs) 

were computed for all plots. Several VIs were determined for each plot and the values were 

exported for analysis. The extracted file was exported as a comma-separated-value (CSV) file into 

SAS software for statistical analysis. ArcGIS (version 10.5) was further used to process and 

digitize the images. 

 

3.3.6 Vegetative indices 

In this study, several VIs were considered (Table 3.1.), however, depending on the camera type, 

some vegetative indices can be computed while others cannot. This was because the computation 

of VI was performed based on light bands available from those cameras.  

Table 3.1. Vegetative indices used in this study 

Vegetation indices Bandsa Equationb Reference 

Green Leaf Index (GLI) R, G, B (2·Rg − Rr − Rb)/ (2·Rg 

+ Rr + Rb) 

Louhaichi et al., 

(2001) 

Green, Red Vegetation Index 

(GRVI) 

R, G (Rg − Rr)/ (Rg + Rr) Sripada et al., 

(2006) 

Normalized Difference 

Vegetation Index (NDVI) 

R, NIR (Rn − Rr)/ (Rn + Rr) Rouse et al., (1974) 

Enhanced Normalized 

Difference Vegetation index 

(ENDVI) 

B, G, NIR (Rn + Rg) - (2*Rb)/ (Rn 

+ Rg) + (2*Rb) 

Strong et al., (2017) 

Normalized Difference Red 

Edge (NDRE) 

NIR RE (Rn − Rre)/ (Rn + Rre)  Gitelson & 

Merzlyak, (1994) 

Visible atmospheric red index 

(VARI) 

G, R (1 + 0.5) (Rn − Rr)/ (Rn 

+ Rr + 0.5) 

Huete, (1988) 
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a Indices are grouped based on the major wavelengths of the multispectral sensor: NIR (n, 840 

nm), red edge of chlorophyll absorption (RE, 717 nm), red (R, 668 nm), green (G, 560 nm), blue 

(B, 475 nm),  

b R is the reflectance at wavelength; Rn, Rre, Rr, Rg, and Rb are the reflectance for NIR, RE, red, 

green, and blue bands, respectively. 

3.3.7 Statistical analysis 

To determine which of the treatment applications had the highest concentration of N content in 

leaves, yield, vegetative buds, and plant density, analysis of variance (ANOVA) was used, and a 

multiple means comparison conducted to differentiate between treatments for significant effects. 

All conditions for statistical testing were performed, thus normality test, constant variance and 

independence of the error terms were conducted. Furthermore, to establish significant 

relationships, correlation, and regression analysis on aerial data, LAI, LNC, vegetative and 

productive yield components, and harvestable berry yield were conducted. A correlation analysis 

was carried out using all parameters, VIs, LAI, LNC, floral buds, vegetative buds, productive yield 

component, and the harvestable berry yield followed by a regression analysis. Linear regression is 

a model that describes the relationship between one dependent (Y) variable and one independent 

(X) variable using a straight line (Bangdiwala, et al., 2018). The model is represented by this 

simple equation (Eqn. 1), 

Y = β0 + β1X… (Eqn. 1) 

where β0 is called the intercept, which defines the point on the y-axis that is intercepted by the 

straight line. The β1 is called the slope which determines the change in the y-axis when a 1-unit 

change is observed on the x-axis (Bangdiwala, et al., 2018). 

Therefore, a simple linear regression (SLR) analysis was conducted, where VIs were used 

as dependent variables with the other parameters set as independent variables. Where nonlinear 

relationships are established, other regression methods were adopted. SAS (version 9.4), Minitab 
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(version 19, Minitab Inc.), R-Studio (version 4.2.3), and Excel software were used to perform all 

statistical analyses and graphical designs. For statistical testing, Minitab was used to test all 

assumptions. Thus, residuals fulfilled the assumptions of normality, constant variance, and 

independence of error terms.  SAS was used mainly for ANOVA analysis using the PROC 

GLIMMIX procedure. R-Studio was used for correlation and regression analysis, with Excel used 

for graph designs. 

 

3.4 RESULTS 

3.4.1 Effects of different nitrogen rates on vegetative indices 

The initial assessment performed on the 2020 data among VIs revealed no significant difference 

between treatments (Table 3.2; Appendix A1 & A2), thus, nitrogen did not have an impact on 

vegetative indices.  

 Table 3.2. Analysis of variance on the impact of nitrogen rates on aerial vegetative indices 

observed from Lemmon Hill on 7th August 2020 during the vegetative growth phase. 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha 0.473 0.422 0.530 0.891 0.490 0.864 0.668 

15 kg N/ha 0.421 0.363 0.460 0.854 0.472 0.829 0.633 

30 kg N/ha 0.476 0.428 0.540 0.893 0.498 0.865 0.672 

60 kg N/ha 0.459 0.410 0.519 0.884 0.499 0.856 0.669 

ANOVA 

Results1 

NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). Standard Error (S.E) = between 0.003 to 0.009 
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Coupled with other compounding effects, assessment on this trial was discontinued. 

However, data on harvestable yield were collected during harvest in 2021 (Table 3.6.) in addition 

to some physiological data. Conversely, the 2021 trial showed some significant differences 

between the various vegetative indices, thus the different nitrogen rates influenced vegetative 

indices (Table 3.3; Appendix A3 & A4).  

 

Table 3.3. Analysis of variance on the effects of nitrogen rates on vegetative indices from the 

Wentworth location [7th October 2021] 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha 0.049b 0.017b 0.021b 0.229c 0.097 0.207c 0.344c 

20 kg N/ha 0.058b 0.023b 0.033b 0.244c 0.089 0.224c 0.365c 

40 kg N/ha 0.074b 0.038b 0.060b 0.278bc 0.103 0.252bc 0.417bc 

60 kg N/ha 0.087b 0.049b 0.075b 0.317ab 0.117 0.285ab 0.474ab 

100 kg N/ha 0.144a 0.115a 0.179a 0.372a 0.120 0.331a 0.549a 

ANOVA 

Results1 

p<0.007 p<0.010 p<0.018 p<0.002 NS p<0.001 p<0.002 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). Standard Error (S.E) = between 0.007 to 0.015  

 

It was observed that the highest nitrogen rate, 100 kg N/ha, was significantly different from 

the other treatment rates across all seven VIs. It was observed that there was significant variation 

between the different rates of the near-infrared (NIR) VIs as compared to the visible (VIS) light 
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VIs. Therefore, 100 and 60 kg N/ha were significantly different from the other treatments, unlike 

the VIS-VIs where treatments 1 to 4 were not significantly different (Table 3.3.). 

 

3.4.2 Leaf nitrogen content 

Results on the 2021 data have shown that there was no significant difference between treatment 

trials from two locations, Debert and Wentworth, whereas a significant effect (p<0.05) was 

observed between treatments at the Lemmon Hill location (Table 3.4.).  

Table 3.4. Analysis of variance (ANOVA) on LNC in blueberry leaf tissues treated with 5 rates of 

mixed compound fertilizers at three (3) experimental sites.  

Treatment Debert 

(DB) 

Wentworth 

(WW) 

Lemmon 

Hill (LH) 

1 (0 kg N/ha) 1.461 1.204 2.108 c 

2 (20 kg N/ha) 1.478 1.194 2.445 b 

3 (40 kg N/ha) 1.452 1.287 2.305 bc 

4 (60 kg N/ha) 1.512 1.242 2.350 b 

5 (100 kg N/ha) 1.618 1.367 2.729 a 

ANOVA 

Results1 

NS NS  p<0.0001 

1Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). Standard error (SE) = DB (0.04), WW (0.05), and LH (0.25) 

 

Treatment effects in both DB and WW locations showed no significant difference. Treatment 5 

(100 kg N/ha) showed the highest mean LNC value compared to all the other treatments in all 
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three locations (Table 3.4.). At the LH location, it was observed that treatment 5 (100 kg N/ha) was 

significantly different from all the other treatments. Despite no significance from some locations, 

there were mean differences in the LNC values. It was observed that LNC values from the LH 

location were almost twice what was contained in the leaf tissues of plants from both DB and WW. 

The mean LNC values between WW and DB were similar. 

 

3.4.3 Canopy and physiological characteristics 

3.4.3.1 Plant density (PD) and leaf area index (LAI) using the quadrant method 

Results on plant density and LAI have given some indications of happenings in the field (Table 

3.5.). There was a significant difference between treatments at the DB location, with partial 

significance at the LH location, and no significance was observed at the WW location for the two 

measured parameters (Table 3.5.). 

PD results at the DB location indicate that there were significant differences between 

treatments (Table 3.5.). Under stem length, treatments 2 and 3, were significantly different from 

the other treatments, with a 33.06% difference compared to the control treatment. Similar results 

and trends from PD were reflected in the LAI results (Table 3.5.). 

At the LH location, there was no significant difference between treatments on PD with a 

marginally significant difference between LAI treatments (Table 3.5.). The mean difference 

between treatments 3 and 1 gave a 31.32% difference in stem numbers. Though marginally 

significant, treatments 2 to 5 observed high LAI compared to treatment 1. Compared to the control, 

treatments 2 to 5 were higher with about 41.19% difference. LAI results reflect a similar 

observation as that of PD.   
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Table 3.5. Analysis of variance (ANOVA) on LAI and plant density using the quadrant method at 

the three commercial wild blueberry fields [Collected: 5th August 2021].  

 

Treatment 

Debert Lemmon Hill Wentworth 

PD 

(stems/m2) 

LAI PD 

(stems/m2) 

LAI PD 

(stems/m2) 

LAI 

1 (0 kg N/ha) 1361.67bc 2.48b   844.44 3.52c 795.56 2.31 

2 (20 kg N/ha) 1563.33ab 3.25a 1062.22 4.97a 906.67 2.51 

3 (40 kg N/ha) 1592.78a 3.30a 1108.89  4.28abc 975.55 3.15 

4 (60 kg N/ha) 1189.45c 2.68b   966.66 3.89bc 1171.11 4.19 

5 (100 kg N/ha) 1314.44c  2.82ab 1051.11 4.75ab 1035.55 4.08 

ANOVA 

Results1 

p<0.016 p<0.042 NS  p=0.059 NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). SE (PD/LAI) = DB (42.7/0.10), LH (31.2/0.16), and WW 

(52.4/0.30) 

 

At location WW, no significant difference was observed between treatments of the two 

parameters (Table 3.5.). Despite the no significant difference, similar variations were observed 

between the mean values of both parameters.  Compared to the control treatment, treatment 4 had 

more stem numbers of about 38.19% (Table 3.5.). Therefore, the response parameters showed a 

direct relationship between stem density and leaf area index (LAI) (Table 3.5.). Therefore, 

treatments with high stem densities across the three locations observed high LAI values.  

Results have shown significant effects between stem length and vegetative bud numbers, 

with no significant effects observed between treatments under floral buds (Table 3.6.). It was 
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obvious that the highest treatment rate (60 kg N/ha) resulted in the tallest stem length and 

vegetative bud numbers. Although the other parameters were not consistent, the control (0 kg N/ha) 

treatment observed a high stem length and vegetative bud numbers. 

 

Table 3.6. Analysis of variance (ANOVA) on stem length, floral and vegetative bud numbers from 

treatment plots at the Lemmon Hill trial site [Collected: 16th September 2020].  

 

Treatment 

Lemmon Hill 

Stem 

length (cm) 

Floral bud numbers Vegetative bud 

numbers 

1 (0 kg N/ha) 21.35 b 5.87 18.67 b 

2 (15 kg N/ha) 19.36 c 6.06 13.40 c 

3 (30 kg N/ha) 22.14 ab 6.78 12.63 c 

4 (60 kg N/ha) 22.57 a 6.78 21.39 a 

ANOVA Results1 p<0.0001 NS p<0.0001 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). SE = SL (0.30), FBN (0.39), and VBN (0.90) 

 

In assessing stem length at the DB location, it was observed that treatment 4 was 

significantly different from the other treatments. There were similar observations under both stem 

length and vegetative buds. The lowest performing treatments in both parameters observed about 

40.95% difference compared to treatment 4 (Table 3.7.).  
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Table 3.7. Analysis of variance (ANOVA) on stem length and vegetative buds from treatment plots 

using the quadrant method at the three (3) commercial wild blueberry fields [Collected: 5th August 

2021].  

 

Treatment 

Debert Lemmon Hill Wentworth 

Stem  

length 

(cm) 

Vegetative 

bud num. 

Stem 

length 

(cm) 

Vegetative 

bud num. 

Stem 

length 

(cm) 

Vegetative 

bud num. 

1 (0 kg N/ha) 13.15c 18.67b 19.31a 21.04 14.45b 18.04 

2 (20 kg N/ha) 10.22d 13.40c 18.49ab 19.80 16.04ab 18.16 

3 (40 kg N/ha) 9.21d 12.63c 17.75ab 19.08 15.45ab 18.32 

4 (60 kg N/ha) 17.21a 21.39a 15.58c 18.08 16.89a 19.40 

5 (100 kg N/ha) 14.83b 18.76b 17.29b 19.16 15.90ab 18.76 

ANOVA 

Results1 

p<0.0001 p<0.0001 p<0.0001 NS p<0.026 NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). SE = DB (0.21/0.30), WW (0.26/0.30), and LH (0.27/0.35) 

 

Significant differences (p<0.05) in treatments were observed under stem length but not 

vegetative buds at the LH location. The control treatment was significantly different from the other 

treatments. Treatment 4 was significantly different from all the other treatments with a reduced 

stem length of about 23.94% compared to the control treatment. Similar outcomes in stem length 

were observed under vegetative buds (Table 3.7.). 

At the WW location (Table 3.7.), a significant difference was observed under stem length 

with no significance observed under vegetative buds. Treatment 4 was significantly different from 
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all other treatments with about a 16.89% difference compared to the control treatment. Similar 

trends in stem length were observed under vegetative buds (Table 3.7.).  

Treatments from all locations indicated that there was a relationship between stem length 

and vegetative bud numbers. It was observed that treatments with higher stem lengths observed 

high vegetative bud numbers (Table 3.7.). This implied that the longer the stem, the higher the 

number of vegetative buds.  

 

3.4.3.2 Leaf area index (LAI) using an aerial device 

Results on LAI using the Sunscan canopy analysis system (LAIS) showed differences between 

some treatments (Figure 3.3.). Results from the Debert (DB) location showed that treatments 2, 3, 

4, and 5 were significantly different from the control. However, treatments 4 and 5 were 

significantly different from treatments 2, and 3. Compared to the highest treatment, the control 

treatment observed a difference of about 25.21% (Figure 3.3.).  

At the LH location, results indicated significant differences between treatments (Figure 

3.3.). Treatments 2, 3, 4, and 5 were significantly different from the control (treatment 1). However, 

treatments 4 and 5 were significantly different from treatments 1, 2, and 3. Compared to treatment 

4, the control treatment observed a difference of about 27.92% (Figure 3.3.).  

Results from the Wentworth location (WW) showed that treatment 5 was significantly 

different from the other treatments (Figure 3.3.). The control treatment showed a LAI difference 

of 38.29% compared to treatment 5. Treatment 3 had a difference of 41.06% compared to treatment 

5.  
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Across the three sites, a general trend was observed. The two highest treatments, 60 and 

100 kg N/ha, observed the highest leaf coverage. However, comparing all three locations it was 

observed that the LAI values for the LH location were about 4 times the values obtained from both 

DB and WW locations. Though the control treatment was the least across all three locations, the 

WW location showed a slightly different outcome (Figure 3.3.). 

 

Figure 3.3. The effect of different rates of nitrogen on the leaf area index (LAIs) of wild blueberry 

plants at three sites using the Sunscan canopy analysis system taken in October 2021. 

 

3.4.4 Harvestable berry yield assessment 

There were no significant effects between treatments from the 2020 trial on harvestable yield, 

however, mean values showed treatment differences (Table 3.8.). Compared to the highest nitrogen 

rate, the control treatment had the highest yield. Comparing the 2020 trial and the 2021 trials, it 

was observed that the 2020 trial observed over 85% increase in yields, except for the LH location 

which had similar yield values (Table 3.8. and 3.9.). Identifying an optimum rate of nitrogen 

application to a wild blueberry field is relevant to achieving higher yield. Therefore, assessing the 
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impact of five nitrogen treatments (0, 20, 40, 60, and 100 kg N/ha) on harvestable berry yield in 

the 2021 trial revealed some interesting findings. Results indicated that there were significant 

differences between treatments at different locations. Across the three locations, LH observed the 

highest harvestable berry yield compared to both DB and WW locations. Although there was no 

significant difference between treatments at LH, the control treatment had the least harvestable 

yield with a 13.4% decrease compared to treatment 3 (Table 3.9.).   

 

Table 3.8. Analysis of variance (ANOVA) on harvestable berry yield (n = 120) treated with 4 rates 

of ammonium sulphate fertilizer at the Lemmon Hill site for the 2020 trial.  

Treatment Lemmon Hill 

(g/m2) 

1 (0 kg N/ha) 1211.73  

2 (15 kg N/ha) 1151.67 

3 (30 kg N/ha) 1121.87 

4 (60 kg N/ha) 1034.83 

ANOVA Results NS 

Analysis of variance (ANOVA) results refer to treatment effects that were not significant at p<0.05. 

Mean separation was completed using Fisher’s multiple means comparison test procedure. The 

standard error (SE) = 74.53. 

Significant effects were observed between treatments at WW location. Treatments 4 and 5 

were significantly different from treatments 1, 2, and 3, with about a 37.9% difference in yield 

between treatment 4 and the control treatment. Similar yield differences of 28.1% and 43.5% were 

observed between treatment 4 compared to treatments 2 and 3 respectively (Table 3.9.). 
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Table 3.9. Analysis of variance (ANOVA) on harvestable berry yield (n = 150/location) treated 

with 5 rates of mixed compound fertilizers at three (3) experimental sites for the 2021 trial.  

Treatment Debert (DB) 

(g/m2) 

Wentworth (WW) 

(g/m2) 

Lemmon Hill (LH) 

(g/m2) 

1 (0 kg N/ha) 513.5 b 460.7 b 1043.3 

2 (20 kg N/ha) 534.7 b  533.2 b 1148.0 

3 (40 kg N/ha)  611.5 ab 419.2 b 1204.3 

4 (60 kg N/ha) 738.1 a 741.7 a 1098.2 

5 (100 kg N/ha) 546.1 b 726.7 a 1078.9 

ANOVA Results1 p<0.0006 p<0.0001 NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). SE = DB (39.7), WW (47.3), and LH (59.3) 

 

A similar phenomenon was observed at DB, where treatment 4 was significantly different 

from all the treatments. Comparing treatment 4 to the control, it was observed that a 30.4% 

difference in yield was observed. Similar yield differences of 27.6%, 17.1%, and 25.6% were 

observed between treatment 4 as against treatments 2, 3, and 5 respectively (Table 3.9). 
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3.4.5 Relationship between aerial and field data (Growth parameters) 

3.4.5.1 Correlation analysis  

Pearson’s correlation between the various parameters of the 2021 data showed levels of 

significance between specific parameters which were consistent for all three locations (Table 

3.10.). Across all the 3 locations, significant correlations were established between PD and LAI, 

and LNC and GLI. In DB and WW locations, a significant correlation was observed between LAI 

and GLI. At the WW location, yield showed a significant correlation with LNC and GLI, while 

PD showed a significant correlation with GLI. Therefore, a positive relationship was established 

between PD and LAI, and this translates to an increase in GLI. These results showed that there is 

the possibility for some predictions to be achieved; thus, PD can be used in predicting LAI, GLI 

can be used in predicting LNC and finally GLI can be used in predicting LAI (Table 3.10.). At the 

WW location, yield showed a significant correlation with all the three VIs. 

In the 2020 analysis, significantly high correlation values were observed between the 

various VIs and two growth parameters [Stem length (SL), floral bud numbers (FBN), and 

vegetative bud numbers (VBN)] (Table 3.11.). However, VBN as against the various VIs were low 

with no significant correlations. Aside from the other VIs, NDRE observed a low correlation effect 

with floral bud number and stem length. 

A second assessment conducted later within the year on all 3 trials (Table 3.12.) showed 

that stem length had positively strong correlations with various VIs, with floral bud number 

showing significantly low correlation values. Despite the relatively low correlation values, floral 

bud number had good correlations with stem length (Table 3.12.). It was observed that high stem 

length correlations were observed at the WW and DB locations with almost no significant stem 

length correlation occurring at the LH location. 
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3.4.5.2 Relationship between yield, LNC, PD, and LAI 

The impact of plant density, leaf area index (LAI), and LNC among other parameters can 

contribute to a potential prediction of yield. LH and DB locations showed weak but positive and 

negative relationships between LAI and yield respectively. Yield against LNC at the WW location 

showed a moderately strong positive relationship (Figure 3.4., b). The relationship between yield 

and LAI across all three locations showed no significant relationships (Figure 3.4., d-f). A poor 

relationship between the two parameters was observed at the three locations. Plant density and 

yield showed a positive but weak relationship between the two parameters (Figure 3.4., g-i). All 

three locations showed no significant (p > 0.05) relationship between those parameters. 

 3.4.5.3 Relationship between vegetative indices and growth parameters 

Assessing the relationship between these three parameters provides some good findings. Results 

showed that plant density and LAI had a positively strong relationship across the three locations. 

All three relationships across the various locations were significant (Figure 3.5., a-c). Therefore, 

it implied that as plant population increases, plant leaf area also increases. The relationship 

between plant density and GLI showed positive relationships at both WW and DB locations with 

a negative relationship at LH (Figure 3.5., d-f). Among the three locations, only WW showed a 

significant relationship between the two parameters. Therefore, as the number of stems increases, 

the green leaf index value also increases. The relationship between PD and GRVI was a non-

significantly weak relationship, which was across all three locations (Figure 3.5., g-i). Similar to 

PD and GRVI are PD and VARI, which also showed similar observations (Figure 3.5., j-l). 

LNC and GLI showed a moderately strong relationship (Figure 3.6., a-b). Across all three 

locations, the relationships observed were significant. Both LH and DB showed a negative 

relationship with WW showing a positive relationship. Conforming to a negative relationship 
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implied that the other parameter decreases as one parameter increases (Figure 3.6., a, b). The 

relationship between LNC and GRVI showed a moderately strong and positive relationship at WW 

(R2 = 0.43), with the other two locations observing low and weak relationships (Figure 3.6., d-f). 

The same or similar relationship to GRVI was observed between VARI and LNC (Figure 3.6., g-

i).  

A moderately low but positive relationship was observed between LAI and GLI at both 

WW and DB locations, with LH showing a negative relationship (Figure 3.7., a-c). The 

relationships observed were significant (p < 0.05) at both WW and DB locations, with LH not 

showing any significant difference. This implied that an increase in plant leaf area increases the 

green leaf index value. The relationship between GRVI and LAI was significant (p < 0.017) and 

showed a moderately strong and positive relationship at the WW location, with DB and LH 

locations showing very weak relationships (Figure 3.7., d-f). The relationship between VARI and 

LAI was similar to the relationship between GRVI and LAI (Figure 3.7., g-i). 

Again, significantly (p < 0.05) strong relationships were established between yield and the 

three VIs (GLI, GRVI, and VARI) (Figure 3.8., b, e, h) at the WW location whereas DB and LH 

locations observed a very low outcome. Except for slight changes in the R2 values and their 

probability values, the relationship dynamics between GRVI, VARI, and yield have all been the 

same across the 3 locations.  
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Table 3.10. Pearson’s correlation between yield, plant density (PD), leaf area index (LAI), leaf nitrogen content (LNC), and vegetative 

indices (GLI, GRVI, and VARI) 

2021 LEMMON HILL  WENTWORTH  DEBERT 

 Yield PD LAI LNC  Yield PD LAI LNC  Yield PD LAI LNC 

PD 0.186     0.039     0.321    

LAI -0.160 0.589*    0.109 0.829*    0.276 0.695*   

LNC 0.138 0.280 0.246   0.510* -0.017 0.158   -0.077 -0.028 0.113  

GLI 0.048 -0.216 -0.150 -0.593*  0.694* 0.405* 0.552* 0.606*  0.131 0.228 0.407* -0.501* 

GRVI 0.047 -0.116 -0.051 -0.307  0.548* 0.282 0.471* 0.653*  -0.355 -0.037 0.275 -0.089 

VARI 0.043 -0.115 -0.050 -0.305  0.577* 0.312 0.502* 0.641*  -0.364 -0.051 0.272 -0.055 

*Significant at p < 0.05 

Table 3.11. Correlation analysis on stem length and floral bud numbers at Lemmon Hill [Data collected: 16th September 2020]. 

 Lemmon Hill 

 NDVI ENDVI NDRE SAVI GLI GRVI VARI 

SL 0.562* 0.509* 0.472* 0.567* 0.591* 0.593* 0.502* 

FBN -0.566* -0.528* -0.183 -0.566* -0.582* -0.551* -0.430* 

VBN 0.039 0.077 0.165 0.047 0.124 0.108 0.067 

*Significant at p < 0.05 

 

7
6
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Table 3.12. Correlation analysis on stem length and floral bud numbers from all three (3) locations of the wild blueberry fields [Data 

collected on December 21, 2021].  

 Lemmon Hill  Wentworth  Debert 

 Floral bud 

No. 

Stem length  Floral bud No. Stem length  Floral bud No. Stem length 

NDVI -0.179 -0.016  0.239 0.659*  -0.185 0.556* 

ENDVI -0.212 -0.101  0.197 0.601*  0.064 0.642* 

NDRE 0.334 0.429*  -0.014 0.346  -0.171 0.411* 

SAVI -0.200 0.003  0.241 0.670*  -0.184 0.556* 

GLI -0.358 -0.288  0.182 0.484*  0.114 -0.294 

GRVI -0.347 -0.254  0.203 0.503*  0.044 -0.425* 

VARI -0.325 -0.220  0.185 0.493*  0.064 -0.359 

Stem length 0.453*   0.722*   0.314  

* Significant at p>0.05 

 

7
7 
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                            Lemmon Hill                                                       Wentworth                                                              Debert 

     

      

      

Figure 3.4. Linear regression analysis on yield using Nitrogen content, leaf area index (LAI), and plant density from the three trial sites 

Lemmon Hill, Wentworth, and Debert.  
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Figure 3.5. Relationship between wild blueberry growth parameters and GLI using the coefficient of determination values at three trial 

sites Lemmon Hill, Wentworth, and Debert. Plant density (PD) and leaf area index (LAI) (a-c), PD and GLI (d-f), PD and GRVI (g-i), 

and PD and VARI (j-l) define the different graphs. The relevance of a relationship was assessed using a 5% or p < 0.05 significance 

level.  
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Figure 3.6. Relationship between Leaf Nitrogen Content (LNC) and vegetative indices using the coefficient of determination values at 

three trial sites Lemmon Hill, Wentworth, and Debert. LNC and GLI (a-c), LNC and GRVI (d-f), and LNC and VARI (g-i) define the 

different graphs. The relevance of a relationship was assessed using a 5% or p < 0.05 significance level.  
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Figure 3.7. Relationship between Leaf area index (LAI) and vegetative indices using the coefficient of determination values at three 

trial sites Lemmon Hill, Wentworth, and Debert. LAI and GLI (a-c), LAI and GRVI (d-f), and LAI and VARI (g-i) define the different 

graphs. The relevance of a relationship was assessed using a 5% or p < 0.05 significance level.  
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Figure 3.8. Relationship between wild blueberry yield and 3 vegetative indices GLI, GRVI, and VARI using the coefficient of 

determination values at three trial sites Lemmon Hill, Wentworth, and Debert. Yield and GLI (a-c), yield and GRVI (d-f), and yield and 

VARI (g-i), define the different graphs. The relevance of a relationship was assessed using a 5% or p < 0.05 significance level. 
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3.5 DISCUSSION 

The results of this study have provided significant insights into the effect of nitrogen on vegetative 

indices and canopy characteristics in the wild blueberry field. Indications from these results 

suggest that consistent treatment effects were achieved across all three locations with few 

variations. Despite these findings, it was determined that variation existed between the different 

locations, which Marty et al., (2019) terms as the “population effect”, and this would include, 

differences in soil and weather conditions. Since the focus of the study was targeted at 

understanding the direct effect of N on VIs, a preliminary assessment of the soil was not conducted, 

thus, there was no need to use the soil as a benchmark or standard for comparison. 

3.5.1 Impact of nitrogen fertilization on growth parameters 

The wild blueberry plant naturally grows in soils with low organic matter, therefore, the fields by 

nature are low in nitrogen (Agriculture, Aquaculture, and Fisheries, 2013; Thyssen et al., 2006). 

Therefore, an application of fertilizers should keep these nutrient elements at optimum levels for 

plant utilization. The study revealed that, despite the non-significance among the various 

treatments of LNC in two locations, these values fall within the accepted levels and their mean 

values depict some differences that were consistent for these locations (Eaton et al., 2009; Trevett, 

1972). Mean differences between treatments were consistent for almost all locations with the 

higher treatment rates observing high levels of LNC. These results were similar in magnitude to 

the findings of Percival & Privé, (2002) who established treatment differences between LNC in 

wild lowbush blueberry plants, despite the slight difference in the number of times and levels of 

fertilizers applied in that study. Interestingly, the LNC obtained at the LH location was almost 

twice observed at the DB and WW locations. Although these values were higher than the other 

locations, they were slightly above the acceptable nitrogen concentration levels according to 
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Trevett, (1972), Eaton et al., (2009), and Agriculture, Aquaculture, and Fisheries, (2013). It can be 

suggested that the leaves contained very high N levels, and thus, the assimilated compounds had 

not yet been sequestered or utilized, however, because a prior soil analysis was not conducted, 

little can be provided on the soil nitrogen content and its impact on the LNC. Instead, a prior image 

assessment of the canopy provided a baseline to assess the independent effect of the added N, 

giving the soil assessment an alternative. Other reports suggest that the bulk of the blueberry plant 

(about 75%) lies with the rhizomes and these store mineral nutrients for growth and development. 

Nevertheless, because the plant is perennial, there is a possible carry-over of nutrients at varying 

levels which may affect nutrient determination. Therefore, this may have posed a difficulty in 

assessing the true nitrogen levels of plants (Percival & Privé, 2002), however, assessing issues of 

crop removal and competitive pressures like weeds can have a serious impact on N. This study 

further agrees with the work of Eaton et al., (2009) that LNC increases with nitrogen addition.  

The impact of the various treatments on growth and development was consistent for both 

DB and WW locations. The early application of N – fertilizer enhanced stem length and vegetative 

buds in plants, across DB and WW locations; however, this phenomenon varied at LH. This result 

agrees with the findings of Eaton et al., (2009) whose work compared consecutive and alternate 

fertilizer applications in wild blueberry fields. The study indicated that stem height and floral bud 

numbers were generally high for fertilizer treatments, thus, the plant utilizes nitrogen as structural 

building blocks in the early developmental phase (Eaton et al., 2009). This way the plant forms its 

canopy within the shortest possible time and diverts resources into the following year's crop 

development. Stem length and vegetative buds move hand in hand; thus, they have a strong 

relationship (Fournier et al., 2020). Therefore, a tall plant will have several vegetative buds, and 
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vice versa. Converse to the findings of Percival & Privé, (2002), our results were inconsistent on 

vegetative bud numbers but showed significant differences in stem height (Table 3.6.). 

3.5.2 Determination of an optimum nitrogen rate 

Yield is a significant aspect when it comes to the wild blueberry industry, thus cost-effective 

practices and measures aimed at increasing berry yield are considered. The N-fertilization 

treatment effects on yield were obvious, thus it points to specific treatment rates being considered 

as better choices for high yields. Compared to the control, all other treatments led to an increase 

in yield. This study agreed with the findings of Percival & Privé, (2002) who examined multiple 

nitrogen applications over a two-year production cycle. Given that the perennial nature of the plant 

allows for nutrient carry-over potential, therefore an increase in N as demonstrated in the different 

treatments caused significant growth improvements. Harvestable yield from 60 kg N/ha was 

consistent in two trial locations, while it showed as the second highest in the third location. The 

inconsistency in treatment 4 (60 kg N/ha) at the LH location can be explained based on the plant 

density within those fields. The plant density in treatment 4 was low, and this probably affected 

the amount of yield from that treatment (Table 3.4.). Therefore, population effect and field-level 

variability at the different locations contributed to the differences observed, similar to the findings 

of Marty et al., (2019). In a similar study that compared different nitrogen fertilizer rates, no 

significant differences in yield, however, treated plots observed about 36% more in yield than the 

control treatments (Percival & Sanderson, 2004). From this study, yields from 40 kg N/ha1 and 

100 kg N/ha1 also showed possibilities of selection as optimum nitrogen fertilization rates, 

however, the inconsistencies observed do not support their selection in this study. 

Generally, an excess application of nitrogen has deleterious effects on the growth and 

development of wild blueberry plants (Agriculture, Aquaculture, and Fisheries, 2013). Though 
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toxicity was not observed, plants from treatment 5 (100 kg N/ha) may have had excess nitrogen 

which accounts for the relatively low growth parameters. Significantly high volatilization of 

ammonia, weed pressures, lack of pollination, and other winter injuries potentially reduced the 

amount of N and other elements like K and P available to the plant; thus, this phenomenon may be 

responsible for the low impact of some nitrogen treatments at some locations (Coleto et al., 2023; 

Thyssen et al., 2006). This concept of volatilization, however, has a low rate on the N applied in 

wild blueberry fields is location-specific, and can be influenced by several factors, including 

rainfall, temperature, and organic matter among other factors (Thyssen et al., 2006). Furthermore, 

results from a similar study suggest that the long-term fertilizer effect application in the first year 

of production has residual effects on harvestable berry yield (Eaton et al., 2009). This implied that 

a single, but optimum application of fertilizers greatly improves yield. This finding agreed with 

Percival & Privé, (2002), whose work on multiple fertilizer applications on lowbush blueberry 

provides a basis for this claim. Their study highlights the point that no significant difference was 

observed between multiple-treatment plots and single-treated plots (Percival & Privé, 2002). 

Furthermore, Marty et al., (2022) state that mineral fertilization has about 2 years of effect on the 

wild blueberry plants which also affects VIs, thus implying that a single application of fertilization 

may be effective in improving yield. However, after 12 days of application, Thyssen et al., (2006) 

also state that the greatest loss of soil-applied N was less than 4.2% indicating that the majority of 

fertilizers applied were still contained in the soil. Therefore, rather than applying multiple 

fertilizers at different stages of the growth cycle, a single fertilizer application can be done to 

achieve similar results. This is significant to the producer, as it serves as an economic benefit to 

farmers as they spend less on fertilizers. 
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3.5.3 Effects of nitrogen fertilization on vegetation indices 

The effect of nitrogen fertilization on vegetative indices seemed inconsistent in the 2020 trial, 

however, significant differences established at the WW location and the other two locations 

(Appendix A3 & A4) showed that there was a considerable effect of nitrogen fertilization on VIs 

in the 2021 trial. This result agreed with the findings of Caturegli et al., (2016) who stated that 

colour intensity has a significant correlation with nitrogen fertilization which further correlates 

with vegetative indices, specifically NDVI. Nitrogen contributes significantly to plant growth as 

it constitutes the chlorophyll molecule content reflecting the green pigments of the plant (do 

Amaral et al., 2019). It is therefore expected that the higher the nitrogen content contained in a 

plant the greener the plant, and this should translate to a high VI value. Furthermore, this result 

agreed with Caturegli et al. (2016) that good correlations between LNC and VIs can be established. 

However, some inconsistencies observed at the two other locations are attributed to locational 

differences like the wetness conditions of those areas. Granular fertilizers achieve maximum 

effects when granules are dissolved in moisture to maximize their absorption and effects on the 

plant. Therefore, considering the 3 locations WW location was a low-lying field with a relatively 

high moisture content, allowing an easy breakdown of the granular fertilizers compared to both 

DB and LH locations which experienced drier conditions on an uphill field. Furthermore, the 

sensitivity of the red, blue, and green (RGB) reflectance values may have contributed to the 

indifference between treatments, thus the NIR-VIs reflected the difference in nitrogen rates (Table 

3.3). The relative difference between an RGB light camera as compared to a multispectral camera 

may influence the data collected (Kokhan & Vostokov, 2020; Lu et al., 2021). From previous works 

with both data sets, it was evident that VIs computed using multispectral images are usually 

sensitive and have higher index values compared to an RGB image. Therefore, their ability to 
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determine areas of a field with high nitrogen levels can be utilized in the development of 

prescription maps for nitrogen application.   

3.5.4 Remote estimations of plant growth parameters and yield 

UAVs have been used for different purposes and have contributed immensely to the estimation of 

growth parameters in several crops, including wild blueberry, rice, barley, cotton, soybeans, 

sunflower, and grass among others (Kaivosoja et al., 2021; Kokhan & Vostokov, 2020; Li et al., 

2020; Marty et al., 2019). Therefore, research advancements in remote sensing can introduce some 

interesting perspectives into wild blueberry management and production, through its non-

destructive approach. In this study, several field parameters were estimated using VIs. This study 

focused on the green leaf index (GLI), Green red vegetative index (GRVI), and Visible atmospheric 

red index (VARI), nevertheless, conclusions were drawn regarding NDVI as well. According to 

Yamamoto et al., (2005), visible light VIs are strongly correlated with NDVI, therefore conclusions 

were drawn based on this information. UAV’s predictability of yield using LNC seemed variable 

and inconsistent as negative correlations were observed in two locations with the other showing a 

positive correlation. The estimation of LNC using VIs seemed positive, however, according to the 

work of Bourguignon, (2007), NDVI performed poorly in quantifying N levels. This may be 

possible due to the environmental condition and the colouration of leaf tissues may have 

contributed to this challenge. Invariably, it may suggest a difficulty in using VIs in nutrient level 

estimations in wild blueberry tissues. Conversely, a study by Maqbool et al., (2012), established 

relationships using spectral reflectance bands whose approach differs from this study.  

Though VIs consist of spectral data (wavelength regions), there are limitations as to the 

visible light bands included in the computational process. Using spectral data, Maqbool et al., 

(2012) established the green peak region as the best for estimating foliar N. Therefore, this suggests 
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the ability of these VIs (GLI, GRVI, and VARI) from the visible light regions to estimate LNC. 

The moderately high coefficient of determination (R2) values observed at the WW location 

explains about 36.71%, 42.66%, and 41.12% variability of the data. Though better estimations can 

be achieved, this difficulty can be attributed to several reasons including the level of variability of 

the field, image resolution, and the non-homogenous nature of the canopy (Daughtry, 2000). This 

finding also agreed with the work of Lu et al., (2021), who showed that LNC was accurately 

estimated in maize (R2 = 0.76) using VIs. Whereas good correlations have been found between 

VIs and LNC in other crops (Caturegli et al., 2016; Lu et al., 2021), variability in the plant canopy, 

crop features and developmental stage, background noise, topographic effects, vegetation density, 

and other intrinsic factors account for the difficulty to estimate nitrogen levels (Daughtry, 2000; 

Kokhan & Vostokov, 2020). This study further agreed with Bourguignon, (2007), whose work 

focused on the ability to estimate N, P, and K levels in wild blueberry leaf tissues using specific 

hyperspectral technologies. It was observed that the possibility of estimating N and P levels using 

hyperspectral technology was high yet varied for some instruments (Bourguignon, 2007). 

It could be determined that as the stem number increases, plant leaf area increases, and this 

should directly impact the vegetative index values. Therefore, the relationship established between 

LAI and GLI may suggest this claim (Figure 3.7., b). Variability in leaf pigment and colour 

intensity becomes a significant contributor to this phenomenal difference. This is because the 

absorption and reflectance peak for the different pigments vary, thus making it difficult for 

estimated values to be determined (Sims & Gamon, 2002). The wild blueberry field is not an ever-

green shrub but has a mosaic of colours that impacts the vegetative index values. Leaf colour 

variation affects the portion of light by either being highly absorbed or highly reflected, and this 

affects the vegetative indices (Marty et al., 2022). However, there is great potential for the 
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predictability of LAI using GLI or a near-infrared vegetative index, as these indices are not directly 

affected by changes in leaf colour. Percival & Beaton, (2012) established that LAI had a strong 

correlation with NIR bands, thus NIR vegetative indices may generate better relationships 

compared to VIS vegetative indices. Furthermore, Breda (2003) explains that, whereas LAI can be 

complex and difficult to determine, spatial and temporal variability in the field may account for 

these differences.  

As the number of stems increases, GLI was expected to increase, giving a strong positive 

relationship. However, the highest R2 value of the three locations explains only about 16.42% of 

the data, which was relatively low compared to other studies (Lu et al., 2021). However, PD 

showed a good correlation (R = 0.83) and regression (R2 = 0.69) with LAI. Unlike row crops, plant 

density is highly variable across the wild blueberry field, and this impacts LAI and possibly 

vegetative index values. This confirms the variability levels observed in the wild blueberry fields 

in terms of population and clonal differences which affect leaf area (Kinsman, 1993). The findings 

from this study agreed with Lu et al., (2021) that LAI can be estimated by VIs, despite their 

description of LAI as canopy cover. 

Yield estimations using vegetative indices have proved challenging on the wild blueberry 

field, despite the successes reported in other crops (Hussain et al., 2020; Li et al., 2020; Zhang et 

al., 2020). This finding agreed with the study of Barai et al., (2021) who assessed the effects of 

drought on wild blueberry production. The study reports that it is difficult and variable to predict 

harvestable yield in a wild blueberry field using VIs. This was because several variables constantly 

change along the production cycle making it difficult to use VIs in determining harvestable berry 

yield.  For example, some factors such as pollination, pathogens, weeds, and insect pests contribute 

significantly to yield, and these vary across the field and season. However, Maqbool et al., (2010) 



92 
 

used optimum multiple narrow reflectance data in the prediction of harvestable yield, with very 

high regression values (R2 = 0.79). Considering the slight difference in the approaches used, 

consideration should be given to the specific bands used and sensor resolution which affects the 

levels of detail to be gotten from the field. Despite the inconsistency in yield prediction, correlation 

values from this study (Table 3.9) have proven positive and have shown potential in yield 

predictions.    

3.6 CONCLUSION 

This study was conducted to examine the effect of different nitrogen rates on different growth 

parameters (LNC, yield, plant density, and LAI) and vegetative indices. Furthermore, the study 

examined the potential to estimate growth parameters using vegetative indices. We have 

demonstrated that vegetative indices computed from an RGB sensor can estimate several growth 

parameters on the wild blueberry fields specifically, LNC, and LAI. Whereas the estimation of PD 

and yield looks variable, there is a need for further studies into this aspect. Furthermore, the 

perennial nature of the plant introduces complexities in determining and measuring N effects, 

however, this study generally showed that the application of fertilizers enhanced berry yield. 

Interestingly, findings from the WW location in this study strongly point to a future application 

and adoption of liquid fertilizers on wild blueberry fields. The vegetation indices, GLI, GRVI, and 

VARI, obtained from an RGB sensor showed good potential in estimating growth parameters, 

however, it is estimated that NIR-VIs should outperform visible light VIs. This allowed the NIR-

VIs to establish differences between the different nitrogen rates, unlike the VIS-VIs. Thus, further 

work can be conducted to consider predictions and estimations using a multispectral sensor. 
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 CHAPTER 4: REMOTE ASSESSMENT OF WILD BLUEBERRY PHENOLOGY 

 

Anku, K.E., Percival, D.C., Rajasekaran, L.R., Heung, B. and Vankoughnett, M. (2023). 

Phenological assessment of the wild blueberry field using an unmanned aerial vehicle. Acta 

Hortic. 1357, 35-42. DOI: 10.17660/ActaHortic.2023.1357.6 
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Phenological assessment of the wild blueberry field using an unmanned aerial vehicle. MDPI 

Remote Sensing (In prep) 

 

4.1 ABSTRACT 

The objective of this study was to determine the potential for using multi- and hyperspectral 

sensors to monitor and predict growth and development in the wild blueberry field. The study used 

a hand-held FieldSpec®3 hyperspectral sensor and a DJI Matrice 600 Pro unmanned aerial vehicle, 

which was equipped with a 5-band multispectral micasense camera. These trials were conducted 

in several commercial fields from 2019 to 2022. Data were sampled over the four seasons, and 

orthomosaic maps were generated using the Solvi platform. Plant growth and development were 

assessed using vegetative indices; NDVI, ENDVI, NDRE GLI, GRVI, and VARI. Correlation 

results for all VIs computed indicate that similar trends were observed in all sensors at the different 

phenological stages. The early/late bud stage (F4/F5) and bloom stage (F6/F7) showed 

significantly high correlation values among all growth stages. LAI, floral, and vegetative bud 

stages can be estimated at the tight cluster (F4/F5) and bloom (F6/F7) stages with R2/CCC values 

of 0.90 / 0.84. The variable importance showed that NDVI, ENDVI, GLI, VARI, and GRVI 

contributed significantly to achieving these predicted values, with NDRE showing low effects. 

This implies that F4/F5 and F6/F7 stages are good phenological stages for making phenological 

predictions and estimations about plants in the wild blueberry field. 

https://doi.org/10.17660/ActaHortic.2023.1357.63.1
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4.2 INTRODUCTION 

Wild blueberries are important plants that are native to northern America and occupy large 

numbers of hectares for production. Recent reports from the International Blueberry Organization, 

(2023) and Beijing, (2023) USDA indicates that China is the largest producer and importer of 

blueberry followed by the United States (U.S.), Peru, Chile, and Canada. Blueberries in Canada 

are cultivated with over 80,657 ha of land, generating 195,892 tons of berries, valued at about 

$363.948 million in 2022 (Eaton & Nams, 2012b; Statistics Canada, 2023). 

The phenology of the plant is critical in the management and production practices in the 

wild blueberry field. Thus, the plant’s phenological stage commands internal and external changes. 

For instance, the risk for Monilinia blight infection increases once the floral and vegetative buds 

on the stem reach the F2 and V2 (vegetative stage 2) stages where buds expose about 2 – 5 mm of 

green tissue (Delbridge & Hildebrand, 1997a). Conversely, the risk of Botrytis blight infection 

occurs later when the floral buds are at the F6 – F7 stage when corollas are fully opened (Langdon, 

2008; Percival & Beaton, 2012). Despite this phenomenon, there are variations in floral and 

vegetative bud growth leading to a varying pattern of disease damage, resulting from phenotypes' 

phenological differences. Therefore, V. myrtilloides phenotypes observe a delayed growth pattern, 

reproductive budburst, and flowering by a week as compared to V. angustifolium (Fournier et al., 

2020).  The methods for carrying out field assessments have always depended on physical 

monitoring which adopts a destructive approach. Therefore, to determine plant density among 

other growth parameters, the plants will have to be harvested and this affects the plant population. 

Different methods and approaches have been adopted in monitoring the phenology of wild 

blueberries using weather data and monitoring the biophysical traits of the plant (Krebs et al., 

2009). However, this approach still poses challenges, as they leave out factors such as slope and 
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the variability of the field. These factors coupled with the cost of requesting the services of 

experienced personnel in these large commercial fields make the process difficult. Therefore, 

alternative approaches to monitoring growth and development in the field are required. The 

advancement in the use of remote sensing in agriculture has allowed for predictions and 

determinations to be made using VIs. These VIs are mathematical computations or ratios of the 

different light wavelengths reflected from vegetation (Hassan et al., 2019; Jones et al., 2007). 

Several studies adopting VIs have been utilized to make phenology determinations and predictions 

on crops including cotton, rice, and wheat (Hassan et al., 2019; Souza et al., 2017).  Therefore, the 

physiological changes being observed in the wild blueberry field as a result of growth and 

development can be monitored aerially using remote sensing approaches. This allows for early 

field evaluation and possible predictions or estimations of growth parameters. 

The use of remote sensing technologies and machine learning (ML) approaches is now 

becoming a routine activity for early field-scale evaluations to support management and 

production practices. The use of ML is tied to the application of computational algorithms designed 

to mimic human intelligence through learning from its surroundings (El Naqa et al., 2015; Susmita, 

2019). Therefore, in understanding remote sensing data, several applications of ML have been 

adapted, including support vector machine (SVM), random forest (RF), K-means, and principal 

component analysis (Mahesh, 2020) among other hosts of algorithms to perform functions such as 

pattern recognition and classification (El Naqa et al., 2015). Unmanned aerial vehicles (UAVs) and 

hyperspectral platforms are used to acquire imagery and spectral readings (Stagakis et al., 2012), 

which leads to several outcomes including the computation of VIs. Vegetative indices (VIs) are 

important methods used to extract information from remotely sensed data. These are derived from 

ratios or normalized differences between two or three wavebands (Hunt et al., 2013; Tilly et al., 
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2015).  Thus, VIs have been adapted to monitor phenology and determine other growth parameters 

such as leaf area, stem branches, nitrogen content, and plant height among other parameters of the 

plant (Forsström et al., 2019). Recent developments in the monitoring of phenology using remote 

sensing have employed the use of vegetative indices (VIs) to determine, monitor, and estimate 

growth parameters (Hussain et al., 2020; Zhang et al., 2020). VIs, most commonly, the normalized 

difference vegetative index (NDVI), have been used in several studies to monitor plant growth and 

development in several crops with significant outcomes. A study conducted by Li et al., (2020), 

indicated a high correlation (R) between several VIs and above-ground biomass and yield in potato 

crops. Several studies have also demonstrated the possibility of using VIs to monitor plant growth 

and development in many crops including sunflower (Vega et al., 2015), rice (Liu et al., 2018; 

Zhou et al., 2017), rapeseed (Hussain et al., 2020; Zhang et al., 2020), wheat (Hassan et al., 2019), 

and cotton (Souza et al., 2017). Other studies on blueberries have adopted the use of the 

spectroradiometer, where either individual wavelength regions (Maqbool et al., 2010) or computed 

VIs (Forsström et al., 2019) were used to monitor or estimate growth parameters in the field. In 

addition, other VIs including, maximum chlorophyll index (MCI), green index (GI), green leaf 

index (GLI), visible atmospheric red index (VARI), and normalized difference red edge index 

(NDRE), have all been used to monitor growth and development in some crops (Anku et al., 2023). 

Outcomes from these studies, using their correlation and coefficient of determination values have 

demonstrated accuracy in monitoring and estimating growth and development parameters in the 

field.  Furthermore, since the significance of the plants is derived from their yield, efforts are 

channeled into increasing their production. However, the phenological stages of the plant 

contribute significantly to processes increasing yield. Over the past 6 years, remote sensing 

activities on wild blueberry fields have received attention for management and production 
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practices in increasing plant yield. However, remote sensing technology in phenology monitoring 

is yet to be adopted in the wild blueberry fields.  

Considering the relevance and utilization of these precision agricultural techniques as 

described in literature on crop production, there could be the potential of applying these remote 

sensing approaches in monitoring plant growth and development in wild blueberry fields. Given 

this, the study was conducted using the multispectral sensor and the hand-held hyperspectral 

radiometer to (i) determine the potential of using machine learning approaches to predict plant 

height, floral and vegetative buds, LAI, and harvestable yield, and (ii) to determine the best 

phenological stage where predictions can be made. 

 

4.3 MATERIALS AND METHODS 

4.3.1. Study area 

Five trials were set up for this experiment across four growing seasons (2019, 2020, 2021, and 

2022) in four commercial fields located at Farmington, Lemmon Hill, Kemptown, and Benvie Hill, 

NS. These trials were all conducted during the production cropping phase with substantial 

variability among vegetation. 

The two study areas, Lemmon Hill, and Kemptown were adopted as trial sites in the 2020 

growing season. These sites are among the main blueberry production sites located in Colchester 

County, Canada, with the geographic coordinates: 45.188587°N, 62.874343°W for Lemmon Hill, 

and 45.498936°N, 63.100716°W for Kemptown. These areas can be prone to wet conditions that 

can be encountered for an extended period. This condition increases the devasting effects of 

Monilinia and Botrytis blight disease on the field which affects yield (Percival & Beaton, 2012).  
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In the 2021 and 2022 growing season, these trials were set up in Benvie Hill and Kemptown 

with the geographic coordinates, 45.156832°N, 63.013834°W and 45.500938°N, 63.107150°W 

respectively. These trials were conducted following the same experimental treatments and designs 

as the 2020 trials. 

4.3.2 Experimental design 

The experimental design for these trials was a randomized complete block design (RCBD) with 

six replications, four treatments, and a plot size of 6 × 8 m with 2-m buffers between plots. At each 

corner, a 0.5 x 0.5 m white marker card was placed outside the stake and georeferenced with an 

SX Blue Platinum GPS device. Treatments consisted of 1) MB control and BB control 2) MB but 

no BB control, 3) no MB control but BB control, and 4) untreated control (i.e., no Monilinia or 

Botrytis blight prevention treatments). In addition, clusters of phenotypes were also identified and 

their phenological growth and development stages were carefully monitored.  

 

    

Figure 4.1. (A) Kemptown Trial Site showing individual plots at the study area, and (B) The DJI 

Matrice Pro 600 UAV equipped with a 5-banded mica sense camera. 

 

B 
A 
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4.3.3 Fungicide application 

The first fungicide application of Proline® against Monilinia was done at the F2 – F3 stage while 

Lunar tranquility (Botrytis control) was applied at the F5 – F6 stage (10% bloom) before visual 

symptoms of the two diseases. The second fungicide application was between 7 to 10 days after 

the first application. Fungicides were applied using a Bell spray Inc. hand-held carbon dioxide 

propelled research sprayer equipped with a 2 m boom with 4 Tee Jet Visiflow 8002VS nozzles at 

32 PSI (220 kPa) (Percival & Beaton, 2012). Treatment applications were carried out following 

label directions. These consist of Proline® [prothioconazole – 315 ml/ha (0.15 kg a.i./ha)] for MB 

and Luna Tranquility® (fluopyram and pyrimethanil – 600 g/ha at 1.2 L/ha) for BB control. 

Disease management is a constant practice in the field, therefore the experimental design was not 

intended to study the effects of fungal control products on MB and BB, but rather to stimulate 

variation for analysis. 

 

4.3.4 Data acquisition 

4.3.4.1 Field data collection on growth parameters 

Fifteen (15) stems per plot were randomly collected using a line transect at the same time aerial 

imagery was acquired. These collections were conducted from the F0/F1 stage until the F8 stage 

(fruit set; Table 4.1). The stems were cut diagonally at 20 cm intervals along a 4 m line transect, 

cutting the stem as close to the base as possible (Percival & Beaton, 2012). Growth parameters 

taken from each plot included stem length, vegetative node, floral node, leaf area index (LAI; 

measured with an SS1 Sunscan Canopy Analysis System, Delta T Devices), and harvestable yield. 

Harvestable yield was collected with a forty-tine commercial wild blueberry hand rake from six 

randomly selected 1 m2 quadrats in each plot (Percival & Beaton, 2012). 
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4.3.4.2 Multispectral platform and aerial image acquisition  

Over the 4 years, the same UAV systems along with the same sensors, Zenmuse X5 and Micasense 

MX, were used as described in Section 3.3.5 of Chapter 3.  

At a 30 m altitude, imagery was acquired within an interval of 12 to 16 days, depending on 

weather conditions for a total of 5 flights (Table 4.1). Image collection was conducted between 10 

am to 2 pm under clear conditions to minimize the effects of clouds, wind, and rain. Calibration 

and adjustments were carried out to minimize the effects of distortion on the quality of imagery 

obtained. 

 

Table 4.1. Flight details conducted in 2020, 2021, and 2022 at Lemmon Hill and Kemptown, 

Benvie Hill, and Kemptown, respectively, at the different Phenological stages.  

Flight date Plant stage Sensor type Flight height 

(m) 

Spatial 

Resolution 

(px/cm) 

Year 2020     

20th May 2020 F1 (Bud break) Multispectral 30 2.2 

2nd June 2020 F2/F3 (Tight cluster) Multispectral 30 2.2 

10th June 2020 F4/F5 (Early/late bud) Multispectral 30 2.2 

18th June 2020 F6/F7 (Bloom) Multispectral 30 2.2 

26th June 2020 F8 (Fruit set) Multispectral 30 2.2 

     

Year 2021     

21st May 2021 F1 (Bud break) RGB 30 0.7 

7th June 2021 F2/F3 (Tight cluster) Multispectral 30 2.2 

21st June 2021 F4/F5 (Early/late bud) RGB 30 0.7 

7th July 2021 F6/F7 (Bloom) RGB 30 0.7 
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Year 2022     

5th May 2022 F1 (Bud break) Multispectral 30 2.3 

19th May 2022 F2/F3 (Tight cluster) Multispectral 30 2.5 

26th May 2022 F4/F5 (Early/late bud) Multispectral 30 2.6 

2nd June 2022 F6/F7 (Bloom) Multispectral 30 2.3 

22nd June 

2022 

F8 (Fruit set) Multispectral 30 2.5 

 

4.3.4.3 Post-processing and extraction of vegetation indices 

Imagery acquired from the multispectral camera was carried through different processing stages 

(Figure 4.2) but followed the same description under Section 3.3.5.1 of Chapter 3.  

  

4.3.5 Data acquisition from hyperspectral platform  

A FieldSpec®3 hand-held hyperspectral radiometer (Analytical Spectral Devices, ASD, Inc. 

Boulder CO) was used to complement and verify data obtained from the UAV system, by collecting 

accurate and high-resolution spectral signatures of blueberry tissue. The device measures between 

350 to 2500 nm in a 1 nm interval, producing 2,151 individual wavebands. The instrument was 

calibrated by taking both dark and white measurements from the spectralon (BaSO4). The final 

reflectance obtained was determined by a ratio of the data sample compared to the standard data 

from the white measurements. Therefore, the data represents an average of 50 reflectance spectra. 

The 10° field-of-view optical lens was held at nadir, at a height of 65 cm above the plant canopy. 

This reflectance measurement produced a diameter of 11.4 cm circular field of view, large enough 
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to cover a cluster of plants and reduce the effect of background (soil). All measurements were 

conducted at the same time when aerial imagery was collected.  

 

 

Figure 4.2. General overview of the workflow for the postprocessing of aerial images 

 

4.3.5.1 Spectral reflectance measurement 

Accurate and high-resolution spectral signatures of blueberry tissues were taken at different 

phenological stages using the ASD spectroradiometer. Ten spectral readings were randomly taken 

and averaged into a single spectrum for each plot. Therefore, to reduce bias, random sampling 

points were generated across each plot, where spectral readings were sampled. In total, 360 spectral 

readings were taken and averaged into 24 single spectrums. VIs were computed from every 

spectrum for analysis. The focus was given to differences observed in the visible light (400 – 690 

nm) and near-infrared (700 – 1050 nm) regions as these regions are focused points for agricultural 

applications.  
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4.3.6 Vegetative indices 

The computation of vegetative indices uses wavebands from the electromagnetic spectrum, thus 

instead of using the whole wavelength region, sections of the spectrum are considered relevant for 

agricultural purposes (Mahlein et al., 2013). Whereas several VIs can be obtained from the 

hyperspectral sensor, the multispectral sensor is limited to VIs which fall within the blue, green, 

red, red-edge, and near-infrared bands. Several indices have been computed from different sensors 

and these may range into 100’s of vegetative indices (Tilly et al., 2015; Xue & Su, 2017b). 

VIs used in this study were: the normalized difference vegetative index (NDVI), enhanced 

normalized difference vegetative index (ENDVI), normalized difference red edge (NDRE), green 

leaf index (GLI), green, red vegetative index (GRVI), and visible atmospheric reflectance index 

(VARI) (Table 3.1, chapter 3). All these can be used to monitor vegetation, and their effects play 

specific roles in enhancing the biophysical, biochemical, and environmental traits in its 

computation. Three of these VIs, NDVI, ENDVI, and NDRE, use the near-infrared (NIR) band 

with the other three restricted to the visible light region (VIS). Vegetative indices used in this study 

are the same as those represented in Chapter 3, Table 3.1. 

 

4.3.7 Statistical analysis 

Correlation and regression analysis were used to establish the relationship between VIs and the 

different growth parameters. The correlation method focused on establishing the strength of the 

relationship between the two quantitative (dependent and independent) variables. The regression 

method then described the relationship between the variables (Liang & Zeger, 1993; Ranganathan 

et al., 2019). Therefore, machine learning, using a supervised regression approach was utilized. 

The supervised machine learning regression method allowed the system to model the relationship 
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between the response and dependent variables after the machine had been trained. This gave the 

machine learning method a predictive ability. Despite the use of the coefficient of determination 

value (R2), recent studies have also adopted Lin’s concordance correlation coefficient (CCC) as a 

higher measure of accuracy and precision. CCC measures how far the linear relationship of the 

two variables deviates from the concordance line (Akoglu, 2018; Crawford et al., 2007; Kwiecien 

et al., 2011; Neuendorf, 2022). The correlation, regression analysis, and Lin’s concordance 

correlation coefficient (CCC) analysis were performed using R software version 4.2.0. 

In addition, this study modified Yu et al., (2022) approach by conducting these analyses 

using five (5) machine learning classifiers; stepwise multilinear regression (SMLR), K-Nearest 

Neighbour (KNN), random forest (RF), support vector machine (SVM), and the Cubist method 

(CB) to identify which method constructs the best regression relationship. These classifiers were 

set up using a 10-fold cross-validation approach and were repeated five times. Furthermore, a 

variable importance chart was produced, and this determined the overall impact of each VI, thus 

the most significant VI would have the most predictive power. A distinction between which VI 

group (VIS and NIR vegetation indices) had the most predictive power was determined by 

sampling the first 3 highest VIs of all regression analyses performed. 

 

4.4 RESULTS 

4.4.1 Assessment of UAV platform for data accuracy 

Correlation coefficients (R), and coefficient of determination (R2) values were used to evaluate the 

data accuracy from the UAV multispectral platform as assessed using the ground truthing data 

(Hassan et al., 2019). Significantly high R and R2 values were observed between VIs from both 

the UAV and the ground truth data, with NDVI (Tight cluster) giving the highest correlation. From 
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the two measuring platforms, all VIs correlated positively with a range from 0.447 to 0.830.  R2 

values ranged from 0.20 to 0.69 (Table 4.2). Therefore, the UAV platform was scrutinized as a 

high-accuracy platform for collecting data on vegetative indices. The NIR vegetative indices gave 

higher values compared to the VIS vegetative indices. Whereas there were some inconsistencies 

between the phenological stages, data measurement between the two instruments was consistent 

at the different phenological stages. 

Table 4.2. Four selected correlative analyses between the ground and multispectral sensor 

VIs Bud break 

R/R2 

Tight cluster 

R/R2 

Bloom 

R/R2 

Fruit set 

R/R2 

NDVI 0.781/0.61 0.906/0.82 0.735/0.54 0.790/0.62 

NDRE 0.830/0.69 0.826/0.68 0.716/0.51 0.783/0.61 

GLI 0.447/0.20 0.576/0.33 0.595/0.35 0.634/0.40 

GRVI 0.560/0.31 0.784/0.62 0.603/0.36 0.650/0.42 

 

Some indices showed stronger correlation values when compared to others in all 

phenological stages. Comparative analysis showed that the NDVI vegetative index gave the 

strongest correlation index between the spectroradiometer and Multispectral sensor. The NIR-VIs 

showed stronger relationships between the two sensors as compared to VIS vegetative indices. 

Though the other two vegetative indices were significantly different (p < 0.05), they varied in their 

correlation strength at all phenological stages. These results have shown that though these VIs can 
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be used to establish relationships, VI information from either of the two sensors can be used in 

predictions. 

 

4.4.2 Correlations between VIs and growth parameters 

Correlation analysis between VIs and growth parameters for the 2020 field season showed 

moderately high significant values (Figure 4.3). However, these values were inconsistent among 

the different parameters and phenological stages using the two instruments. Generally, results from 

the 3 seasons have indicated that VIs can be used to determine and potentially make predictions 

on different plant growth parameters in the wild blueberry fields. 

Among the different phenological stages, correlation values were generally low at the bud 

break (F1) and the fruit set stages (F8) (Figure 4.3, A and E). However, LAI and vegetative bud 

numbers (VN) gave high correlation values using the NIR indices. At the tight cluster stage, high 

correlations were observed between VIs, plant height (PH), and LAI (Figure 4.3B). Whereas the 

NIR-VIs showed a high correlation with yield, VIS indices showed a good correlation with VS 

(Figure 4.3B). The tight cluster stage showed high correlation values between PH, floral bud stage 

(FS), vegetative bud stage (VS), yield and VIs (Figure 4.3C). Among these values, ENDVI was 

inconsistent with FS, VS, and yield. The bloom stage was characterized with high correlation 

values occurring at PH, FS, VN, and LAI (Figure 3C). LAI observed very high values across the 

different index types, with PH and VN correlating with VIS indices while FS correlated with the 

NIR indices. NDVI showed a high correlation with yield and VN (Figure 4.3D). The fruit set stage 

was characterized with the lowest correlation among the different phenological stages. Only 

ENDVI showed a high correlation with yield (Figure 4.3E).  Generally, the tight cluster, early/late 

bud, and fruit set stages observed significant correlation values (r > 0.40) between growth 
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parameters and VIs. GLI, GRVI, and VARI were consistent in generating moderately high r values 

for the tight cluster, early/late bud, and flowering stages, whereas NDVI, ENDVI, and NDRE were 

consistent among some parameters at the tight cluster, and early/late bud stages. This trend points 

to the relevance of some visible light generated VIs which performed slightly better in some 

parameters as compared to the near-infrared VIs. 

Similar results were observed using the hyperspectral device (Figure 4.4). At the bud break 

stage, r values were low (< 0.20) among several combinations (Figure 4.4A). The highest 

magnitude r value was a negative correlation between yield and GLI (-0.31). VIs combined with 

growth parameters generated a range of r values (-0.09 to 0.47) which were moderate, with PH 

and yield observing the highest values. At the tight cluster stage, the performance of the three VIS 

vegetative indices were significant; moderately high r values were observed between VIs, PH, FS, 

VS, and yield (Figure 4.4C). The bloom stage was characterized by high r values across several 

combinations. LAI gave very high r values (0.52 – 0.72), but particularly in combination with 

NDVI. PH and yield performed better across all VIs showing similar values which ranged from 

0.11 to 0.44. VIs at this stage correlated 
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Figure 4.3. Correlation coefficients between growth parameters and VIs from Lemmon Hill and 

Kemptown in the 2020 growing season using the multispectral sensor at the different phenological 

stages. A. F1 stage (Bud break), B. F2/F3 stage (Tight cluster), C. F4/F5 stage (Early/late bud), D. 

F6/F7 stage (Bloom), and E. F8 stage (Fruit set). Colour intensities indicate the degree of positive 

(blue) and negative (red) correlation values. 
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Figure 4.4. Correlation coefficients between growth parameters and VIs from Lemmon Hill and 

Kemptown in the 2020 growing season using the hyperspectral sensor at the different phenological 

stages. A. F1 stage (Bud break), B. F2/F3 stage (Tight cluster), C. F4/F5 stage (Early/late bud), D. 

F6/F7 stage (Bloom), and E. F8 stage (Fruit set). Colour intensities indicate the degree of positive 

(blue) and negative (red) correlation values. 
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better with growth parameters except for FN and FS (Figure 4.4D). PH also gave high r values 

(0.21 – 0.42) among the several VI combinations. The fruit set stage was characterized by values 

that were slightly above the F1 stage (Figure 4.4E). 

 

 

 

 

Figure 4.5. Correlation coefficients between growth parameters and VIs from Benvie Hill in the 

2021 growing season using an RGB sensor at the different phenological stages. A. F1 stage (Bud 

break), B. F4/F5 stage (Early/late bud), C. F6/F7 stage (Bloom), and D. F8 stage (Fruit set). Colour 

intensities indicate the degree of positive (blue) and negative (red) correlation values. 

A 

D 
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Figure 4.6. Correlation coefficients between growth parameters and VIs from Kemptown in the 

2022 growing season using the multispectral sensor at the different phenological stages. A. F1 

stage (Bud break), B. F2/F3 stage (Tight cluster), C. F4/F5 stage (Early/late bud), D. F6/F7 stage 

(Bloom), and E. F8 stage (Fruit set). Colour intensities indicate the degree of positive (blue) and 

negative (red) correlation values. 
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Correlations in the 2021 growing season between VIs and growth parameters were 

relatively low (Figure 4.5). The highest correlation values were observed at the tight cluster 

(F2/F3) and bloom (F6/F7) stages (Figure 4.5, A and C) with the other stages observing very low 

correlations. Generally, PH, and VN had high correlations with the various VIs at the tight cluster 

(F2/F3) stage with PH, VN, and VS also showing high correlations at the bloom (F6/F7) stage. 

Yield also had a good correlation with GLI, GRVI, and VARI at bloom (F6/F7) and fruit set (F8) 

stages (Figure 4.6). 

Correlation analysis between VIs and growth parameters in the 2022 growing season were 

relatively high with some low correlations observed at some stages (Figure 4.6). Generally, LAI, 

and VS observed the highest correlation values at the early/late bud (F4/F5) and bloom (F6/F7) 

stages (Figure 4.6, C & D). The LAI and VS observed high correlation values of about 0.72 and 

0.70 respectively. Despite PH showing moderately high correlation, these observations were 

limited to the bud break (F1) and fruit set (F8) stage, with FN being limited to the bloom (F6/F7) 

and fruit set (F8) stages. VIs and yield observed moderately high correlations at the bloom and 

fruit set stage. 

 

4.4.3 Predicting growth parameters using the UAV platform  

Variable importance enabled the determination of VIs that had the most predictive power. 

Therefore, variables with high importance value are drivers of the outcome, thus their value 

significantly affects the overall outcome (Figure 4.7).  Therefore, Figure 4.7 indicates that NDVI 

was the dominant predictor driving the observed prediction. The 2020 data analysis revealed that 

the NIR -VIs contributed significantly to the outcome observed at the early/late bud and bloom 

stages with some predictions from the visible light vegetative indices. This observation was 
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consistent for all classifiers. For LAI under all phenological stages, predictions were made by 

NDVI, NDRE, and ENDVI. Predictions of FN and FS were made by GRVI, VARI, ENDVI, and 

NDRE. PH, VS, and VN were significantly predicted by VIs such as NDRE, NDVI, ENDVI, and 

GRVI under all phenological stages. Contributions from the individual VIs accounting for the 

outcomes were represented in detail (Table 4.3 - 4.6).  Despite the contributions from the NIR-VIs, 

the VIS vegetative indices cannot be underestimated as they contributed significantly to major 

outcomes observed (Table 4.4 – 4.6; Appendix A5 – A7).  In this document, the presentation for 

the different variable importance plots was considered for only four classifiers of the micasense 

2020 and 2022 trials, with the best predictors selected (a minimum of 1 and a maximum of 3).  

 

Figure 4.7. An example of a variable importance plot representing VI contributions 

 

Among some parameters at the different phenological stages, significantly high R2 and low 

RMSE values were observed (Tables 4.3, 4.7, 4.8, & 4.9). However, this observation was 

consistent only for LAI at all phenological stages, but FS and VS observed significantly high R2 



114 
 

values only at the F4/F5 stage. Despite the relatively low values observed by LAI at the bud break, 

tight cluster, and early/late bud stages, LAI recorded the highest R2 values at the bloom stage with 

an average of about 45 - 50% of RMSE (Table 4.3d). With the R2, CCC, and RMSE as selective 

criteria, it was observed that LAI, FS, and VS stood with high chances for their estimation and 

prediction (Table 4.3a-e).  

Compared with the multispectral sensor estimates (Table 4.3, a-e), the hand-held 

hyperspectral sensor (Table 4.7, a-e) produced similar outcomes. A range of R2 values were 

observed between growth parameters and VIs. The LAI recorded the highest R2 and CCC values 

of 0.72 and 0.70 respectively (Table 4.7d). While FS showed high estimation values at the tight 

cluster stage (F2/F3), VS also showed high values at both tight cluster and early/late bud stages 

across the different classifiers (Table 4.7, a-e). 

Generally, the 2021 analyzed values obtained were low on both R2 and CCC values, 

however, R2 values were higher compared to CCC values. R2 values ranged from below 0 to 0.60 

while CCC values ranged from below 0 to 0.48 across the different parameters (Table 4.8, a - d). 

The prediction of VS can best be achieved at the F2/F3 stage. Yield had very high R2 and CCC 

values, however, the RMSE values were significantly high. However, it was difficult to establish 

the prediction stage for yield. Considering some potential in predicting the other growth 

parameters, it was observed that those values were relatively low. Despite the success of using the 

random forest (RF) classifier, it was observed that the SVM classifier was the best in achieving all 

the highest regression values obtained across the different parameters. 

Generally, the results of the 2022 trial observed high R2 values compared to the CCC 

values, which occurred across the different growth parameters and growth stages (Table 4.9, a - e). 
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Despite the complexities, the selection of classifiers and parameters were based on R2, CCC, and 

RMSE values. There were low estimation values at the F1 stage across the different classifiers, 

however, some of these values increased along the growth phase of the plant.  

The predictability of a parameter was dependent on the plant stage and the classifier used 

in the regression analysis. Therefore, among the several classifiers adopted, SVM and RF were 

considered best in the estimation of relationships and predictability of parameters. It was observed 

that SMLR, SVM, KNN, and sometimes RF generated the same variable importance plot, but 

consistently SVM and SMLR generated the same variable plot. Despite the several stages 

considered, the bloom stage (F6/F7) was best in the estimation of several parameters including 

LAI, floral bud stage, vegetative bud stage, and yield. Aside from the bloom stage, the early/late 

bud stages (F4/F5) can also be used in the estimation or prediction of these same parameters. 

Converse to the stated parameters, floral and vegetative bud numbers can be estimated at the bud 

break (F1) stage whereas plant height can be estimated at the fruit set (F8) stage.  

The significant dependent variables upon which these growth parameters were selected 

were highlighted using the variable importance plot. Furthermore, the significance of a specific 

dependent variable varied from one plant stage to another, however, some VIs were consistent 

among the different stages. It was clear that NDVI contributes significantly to yield prediction, 

while NDVI, GRVI, and VARI contribute to LAI prediction. Aside from LAI and yield, the other 

dependent variables were not consistent in their estimation of the other parameters. The NIR 

indices contributed to the determination or prediction of PH, with GLI, ENDVI, and VARI 

contributing to the estimation of FN. 
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4.4.4 Assessment of phenological growth in wild blueberry plants  

4.4.4.1 Assessment of phenological growth using vegetative indices (VIs) 

The trend of VI measurements using the multispectral sensor as observed between the two 

locations and sensors looked similar but slightly different for the 2020 data. The multispectral 

measurements from the two locations showed that the NIR-VIs were separated from the VIS 

vegetative indices, except for NDRE (Figure 4.8). In both locations, NDVI and ENDVI obtained 

the highest VI values of a >100% and a 60.6% increase at harvest, respectively, when compared 

to the other indices across the different phenological stages. NDRE at Kemptown and Lemmon 

Hill observed a 67.9% and 51.7% increase in VI value at harvest, respectively. The VIS vegetative 

index from both locations progressed with an increase of over 100% in VI values for all three 

indices (GLI, GRVI, and VARI), with VARI being the highest. From both fields, VARI performed 

best among the three (3) VIS vegetative indices, followed by GLI and then GRVI at all 

phenological stages (Figure 4.8). Interestingly, VARI observed a continuous increase until an 

almost equal value with NDVI and ENDVI at the Kemptown field site. Though a similar effect of 

VARI was not seen at Lemmon Hill, it observed the highest increase compared to the other VIS 

indices. Generally, all VIs observed a varied level of decline in value at the bloom stage. 

The trend of VIs using the FieldSpec® 3 radiometer in the 2020 trail was similar not only 

to the locations but also to the Micasense (Figure 4.9). Again, the NIR-VIs were seen above all the 

other VIs with NDVI (at the Kemptown location) maintaining the highest VI across all the 

phenological stages with an increased VI value of 83.7%. ENDVI and NDRE obtained an increase 

of >100% and 68.2% in VI value at the Kemptown location. The VIS vegetative index from both 

locations progressed with an increase of over 100% in VI values for all three indices (GLI, GRVI, 

and VARI). VARI obtained the highest VI value compared to the two VIS indices (Figure 4.9). The 
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observation at the Kemptown site was almost the same as that observed at the Lemmon Hill site 

(Figure 4.9). At the bloom stage for both fields, it can be observed that there were levels of 

inconsistencies as some VIs observed marginal decreases with others observing slight increases. 

In both fields, VARI, GLI, and GRVI observed an upward continuous growth throughout the 

different phenological stages (Figure 4.9). It can therefore be observed that NDVI and ENDVI 

were similar under UAV-VIs in both locations, but these two indices were greatly separated under 

the radiometric VIs. However, the progression of VIs across locations and sensors have been 

similar. 

There was a great similarity between the VI trends observed between the 2020 and 2022 

trials (Figures 4.9 & 4.10). However, to reduce the extent of complexity only Micasense vegetative 

indices were represented in these trends, thus only trends for the 2022 growing season were 

considered. The two apparent aspects consisted of the NIR-VIs (NDVI and ENDVI) were 

separated from the VIS-VIs (GLI, VARI, GRVI) while NDRE showed the same or similar trends 

in both years as it lurked between the two VI trends (NIR and VIS). Consistency in these trends 

from the different sites and years confirms the normal trend and characteristics of VIs across the 

growing season. 
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Table 4.3. Coefficient of determination (R2) values, Lin’s concordance value (CCC), and root mean square error (RMSE) values from 

5 regression methods on growth parameters against VIs at the different phenological stages (a, b, c, d, & e) using the multispectral sensor 

for the 2020 trial. SMLR – Stepwise multilinear regression, KNN – K- nearest neighbour, RF – Random Forest, SVM – Support vector 

machine, and CB – Cubist. F – Floral stage 

a. 

 Break bud (F1) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.35 0.40 225.85 0.36 0.38 223.83 0.21 0.31 249.73 0.31 0.39 240.11 0.39 0.43 223.86 

LAI 0.42 0.41 0.11 0.33 0.32 0.12 0.27 0.32 0.12 0.31 0.41 0.11 0.35 0.41 0.11 

Plant height 

(cm) 

0.13 0.11 1.59 0.15 0.11 2.13 0.11 0.08 1.71 - - - 0.11 0.13 1.79 

Floral bud no. 0.09 0.003 1.61 0.18 0.22 1.72 0.09 0.11 1.46 0.17 0.14 1.64 0.12 0.11 1.58 

Floral bud stage 0.15 0.20 0.26 0.24 0.27 0.25 0.27 0.29 0.24 0.27 0.30 0.25 0.19 0.31 0.26 

Veg. bud no. 0.48 0.56 3.17 0.48 0.51 3.32 0.51 0.53 3.14 0.57 0.62 2.77 0.63 0.66 2.75 

Veg. bud stage 0.20 0.23 0.25 0.21 0.29 0.23 0.25 0.33 0.24 0.27 0.30 0.24 0.16 0.19 0.25 

 

 

 

 

 

1
1
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b. 

 Tight cluster (F2/F3) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.40 0.27 340.10 0.42 0.34 273.35 0.55 0.44 266.10 0.53 0.37 333.75 0.40 0.31 372.77 

LAI 0.49 0.28 0.11 0.31 0.21 0.13 0.35 0.18 0.13 0.48 0.38 0.11 0.43 0.33 0.12 

Plant height (cm) 0.33 0.18 2.12 0.37 0.31 1.94 0.28 0.24 1.90 0.45 0.19 1.85 0.36 0.19 1.86 

Floral bud no. - -0.011 1.45 0.20 0.12 1.98 0.47 0.27 1.34 0.21 0.21 1.63 0.19 0.08 1.36 

Floral bud stage 0.25 -0.03 0.69 - 0 0.53 0.19 -0.17 0.67 0.16 0.08 0.91 - -0.06 0.56 

Veg. bud no. - -0.18 3.08 0.38 0.23 2.59 0.34 0.06 2.64 0.40 0.32 2.37 0.38 0.29 2.23 

Veg. bud stage 0.58 0.28 0.81 0.39 0.08 0.89 0.35 0.26 0.86 0.52 0.23 0.80 0.40 0.13 0.91 

 

c. 

 Early/late (F4/F5) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.26 0.38 230.12 0.39 0.39 224.70 0.28 0.37 240.80 0.35 0.41 224.27 0.38 0.42 221.05 

LAI 0.49 0.28 0.11 0.31 0.21 0.14 0.35 0.18 0.13 0.48 0.38 0.11 0.43 0.33 0.12 

Plant height (cm) 0.38 0.44 1.88 0.25 0.31 1.99 0.31 0.40 1.94 0.46 0.52 1.76 0.34 0.41 1.99 

Floral bud no. 0.12 0.21 1.50 0.11 0.11 1.59 0.19 0.13 1.55 0.16 0.22 1.48 0.15 0.16 1.57 

Floral bud stage 0.57 0.61 0.52 0.66 0.68 0.47 0.66 0.67 0.46 0.67 0.67 0.47 0.59 0.63 0.49 

Veg. bud no. - -0.18 3.08 0.38 0.23 2.59 0.34 0.06 2.64 0.40 0.32 2.37 0.38 0.29 2.23 

Veg. bud stage 0.62 0.64 0.32 0.66 0.61 0.32 0.56 0.61 0.33 0.68 0.66 0.29 0.58 0.62 0.31 

 

1
1
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d. 

 Bloom (F6/F7) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.33 0.39 232.24 0.28 0.30 254.21 0.33 0.38 232.13 0.34 0.45 224.38 0.15 0.22 264.94 

LAI 0.83 0.80 0.56 0.86 0.81 0.56 0.84 0.81 0.54 0.90 0.84 0.46 0.85 0.81 0.55 

Plant height (cm) 0.41 0.48 1.45 0.52 0.58 1.41 0.50 0.54 1.37 0.51 0.55 1.32 0.47 0.54 1.38 

Floral bud no. 0.10 0.08 1.08 0.11 0.07 1.03 0.07 -0.01 1.17 0.12 0.05 1.08 0.06 0.03 1.13 

Floral bud stage 0.24 0.34 0.14 0.35 0.41 0.12 0.37 0.37 0.13 0.34 0.39 0.12 0.26 0.38 0.13 

Veg. bud no. 0.33 0.32 1.54 0.32 0.36 1.43 0.23 0.27 1.53 0.22 0.28 1.66 0.26 0.30 1.56 

Veg. bud stage 0.22 0.30 0.21 0.17 0.26 0.28 0.27 0.30 0.22 0.19 0.32 0.33 0.20 0.25 0.25 

e. 

 Fruit set (F8) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.15 0.21 265.70 0.17 0.29 304.26 0.17 0.23 249.36 0.26 0.35 235.18 0.20 0.23 265.63 

LAI 0.34 0.43 0.90 0.38 0.47 0.83 0.43 0.46 0.87 0.43 0.44 0.87 0.41 0.47 0.89 

Plant height (cm) 0.19 0.24 2.05 0.14 0.16 2.00 0.14 0.15 2.14 0.15 0.23 2.88 0.18 0.16 2.19 

Floral bud no. 0.16 0.06 1.05 0.09 0.11 1.00 0.13 0.00 1.08 0.11 0.19 1.11 0.17 0.19 1.05 

Floral bud stage 0.16 0.24 - 0.19 0.23 - 0.26 0.34 - 0.30 0.28 - 0.29 0.28 - 

Veg. bud no. 0.12 0.17 2.07 0.16 0.21 2.05 0.11 0.14 2.15 0.17 0.25 1.97 0.20 0.26 2.02 

Veg. bud stage 0.15 0.21 0.17 0.17 0.29 0.20 0.17 0.23 0.17 0.26 0.35 0.17 0.20 0.23 0.18 
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Figure 4.8. Growth progression of VIs observed in both fields at the different phenological stages using the multispectral sensor. (A) 

Kemptown and (B) Lemmon Hill. 

A B 
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Table 4.4. Rankings on an SVM classifier for the 2020 multispectral trial of best-performing 

indices for each phenological stage and parameter. Performance was evaluated using outputs from 

the variable importance chart. Percentages represent the performance of the individual vegetative 

indices in achieving that outcome. Indices have been arranged in order of the best index to the least 

performing index along with its corresponding percentage.  

 Bud break stage (F1)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, VARI, GRVI, NDRE, NDVI, ENDVI 100, 75,60, 25, 10, 0 

Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 90, 80, 10, 5, 0 

Plant height (cm) NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 95, 75, 68, 28, 0 

Floral bud number NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 75, 70, 45, 15, 0 

Floral bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 90, 88, 82, 30, 0 

Vegetative bud number ENDVI, NDVI, NDRE, VARI, GRVI, GLI 100, 70, 18, 3, 2, 0 

Vegetative bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 88, 82, 30, 5, 0 

 Tight cluster stage (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GRVI, NDRE, NDVI, VARI, ENDVI, GLI 100, 80,75, 70, 45, 0 

Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 70, 45, 20, 14, 0 

Plant height (cm) NDRE, NDVI, ENDVI, VARI, GLI, GRVI 100, 95, 80, 5, 5, 0 

Floral bud number GRVI, VARI, NDRE, GLI, NDVI, ENDVI 100, 85, 30, 15, 10, 0 

Floral bud stage GLI, GRVI, VARI, ENDVI, NDRE, NDVI 100, 90, 78, 45, 23, 0 

Vegetative bud number ENDVI, NDRE, NDVI, GLI, VARI, GRVI 100, 68, 50, 48, 12, 0 

Vegetative bud stage GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 92, 83, 24, 18, 0 

 Early/late bud stage (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 100,100, 90, 70, 0 

Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 70, 45, 20, 15, 0 

Plant height (cm) ENDVI, NDVI, NDRE, GLI, GRVI, VARI 100, 78, 50, 40, 30, 0 

Floral bud number GLI, GRVI, ENDVI, NDVI, NDRE, VARI 100, 65, 55, 45, 18, 0 

Floral bud stage GRVI, VARI, GLI, NDVI, NDRE, ENDVI 100, 95, 93, 65, 45, 0 

Vegetative bud number ENDVI, NDRE, GRVI, DNVI, GLI, VARI 100, 63, 23, 22, 12, 0 

Vegetative bud stage VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 100, 98, 80, 72, 0 

 Bloom stage (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, ENDVI, NDVI, GRVI, NDRE, VARI 100, 95,80, 80, 50, 0 

Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 100, 90, 80, 25, 0 

Plant height (cm) GRVI, NDRE, NDVI, VARI, GLI, ENDVI 100, 85, 30, 25, 12, 0 

Floral bud number NDRE, GRVI, NDVI, GLI, VARI, ENDVI 100, 98, 82, 70, 50, 0 

Floral bud stage ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 95, 82, 58, 25, 0 

Vegetative bud number GLI, GRVI, NDRE, NDVI, ENDVI, VARI 100, 82, 68, 50, 32, 0 
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Vegetative bud stage ENDVI, GLI, GRVI, VARI, NDRE, NDVI 100, 78, 55, 38, 15, 0 

 Fruit set stage (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) ENDVI, NDRE, NDVI, GRVI, GLI, VARI 100, 90,80, 75, 50, 0 

Leaf area index GRVI, VARI, GLI, NDVI, ENDVI, NDRE 100, 95, 92, 35, 23, 0 

Plant height (cm) GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 85, 80, 8, 4, 0 

Floral bud number NDVI, GLI, NDRE, VARI, GRVI, ENDVI 100, 75, 70, 50, 15, 0 

Floral bud stage NDRE, GRVI, VARI, NDVI, ENDVI, GLI 100, 58, 50, 40, 7, 0 

Vegetative bud number GRVI, VARI, GLI, ENDVI, NDVI, NDRE 100, 90, 88, 70, 25, 0 

Vegetative bud stage GLI, ENDVI, GRVI, NDVI, VARI, NDRE 100, 95, 45, 35, 11, 0 

 

Table 4.5. Rankings of an RF classifier on the 2020 multispectral trial of best-performing indices 

for each phenological stage and parameter. Performance was evaluated using outputs from the 

variable importance chart. Percentages represent the performance of the individual vegetative 

indices in achieving that outcome. Indices have been arranged in order of the best index to the least 

performing index along with its corresponding percentage. 

 Bud break stage (F1)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, VARI, ENDVI, NDVI, NDRE, GRVI 100, 55, 18, 12, 5, 0 

Leaf area index NDVI, NDRE, ENDVI, VARI, GLI, GRVI 100, 82, 50, 10, 8, 0 

Plant height (cm) NDVI, ENDVI, VARI, NDRE, GRVI, GLI 100, 88, 58, 42, 35, 0 

Floral bud number NDRE, ENDVI, NDVI, GRVI, VARI, GLI 100, 92, 80, 45, 18, 0 

Floral bud stage GLI, ENDVI, VARI, GRVI, NDRE, NDVI 100, 40, 28, 18, 13, 0 

Vegetative bud number ENDVI, GLI, NDVI, NDRE, GRVI, VARI 100, 35, 28, 10, 1, 0 

Vegetative bud stage GLI, ENDVI, VARI, GRVI, NDRE, NDVI 100, 45, 35, 28, 12, 0 

 Tight cluster stage (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) ENDVI, NDRE, NDVI, VARI, GRVI, GLI 100, 72, 65, 58, 20, 0 

Leaf area index NDRE, NDVI, GRVI, GLI, ENDVI, VARI 100, 35, 25, 20, 12, 0 

Plant height (cm) NDVI, NDRE, ENDVI, VARI, GRVI, GLI 100, 75, 62, 39, 38, 0 

Floral bud number VARI, GRVI, NDRE, ENDVI, GLI, NDVI 100, 90, 15, 10, 5, 0 

Floral bud stage NDRE, GLI, VARI, NDVI, GRVI, ENDVI 100, 39, 38, 29, 8, 0 

Vegetative bud number VARI, ENDVI, NDRE, NDVI, GLI, GRVI 100, 95, 60, 52, 28, 0 

Vegetative bud stage VARI, GLI, GRVI, NDRE, NDVI, ENDVI 100, 92, 85, 30, 8, 0 

 Early/late bud stage (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 90, 78, 65, 40, 0 

Leaf area index NDRE, NDVI, GRVI, GLI, ENDVI, VARI 100, 35, 25, 20, 15, 0 

Plant height (cm) ENDVI, NDVI, NDRE, GLI, VARI, GRVI 100, 75, 27, 15, 13, 0 

Floral bud number GLI, ENDVI, VARI, GRVI, NDRE, NDVI 100, 78, 50, 48, 18, 0 
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Floral bud stage GRVI, VARI, GLI, ENDVI, NDVI, NDRE 100, 78, 38, 15, 12, 0 

Vegetative bud number ENDVI, NDRE, VARI, NDVI, GLI, GRVI 100, 65, 20, 19, 18, 0 

Vegetative bud stage VARI, GRVI, GLI, NDRE, ENDVI, NDVI 100, 90, 38, 23, 5, 0 

 Bloom stage (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) ENDVI, NDVI, NDRE, VARI, GLI, GRVI 100, 45, 23, 10, 3, 0 

Leaf area index NDVI, NDRE, ENDVI, GLI, GRVI, VARI 100, 95, 63, 60, 10, 0 

Plant height (cm) VARI, GRVI, NDRE, NDVI, ENDVI, GLI 100, 60, 35, 22, 15, 0 

Floral bud number VARI, GRVI, GLI, ENDVI, NDVI, NDRE 100, 70, 67, 50, 25, 0 

Floral bud stage NDVI, NDRE, GRVI, ENDVI, VARI, GLI 100, 48, 38, 25, 20, 0 

Vegetative bud number NDRE, GLI, NDVI, GRVI, VARI, ENDVI 100, 72, 60, 50, 43, 0 

Vegetative bud stage ENDVI, GLI, VARI, GRVI, NDRE, NDVI 100, 74, 18, 15, 8, 0 

 Fruit set stage (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) ENDVI, GRVI, GLI, NDRE, VARI, NDVI 100, 85, 30, 28, 25, 0 

Leaf area index VARI, GLI, GRVI, NDVI, NDRE, ENDVI 100, 95,80, 18, 10, 0 

Plant height (cm) GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 48, 48, 22, 3, 0 

Floral bud number GLI, GRVI, VARI, ENDVI, NDVI, NDRE 100, 58, 45, 23, 22, 0 

Floral bud stage VARI, GLI, GRVI, ENDVI, NDRE, NDVI 100, 78, 65, 60, 40, 0 

Vegetative bud number GRVI, VARI, ENDVI, GLI, NDVI, NDRE 100, 95, 93, 83, 20, 0 

Vegetative bud stage GLI, ENDVI, VARI, NDRE, GRVI, NDVI 100, 75, 40, 27, 27, 0 

 

Table 4.6. Rankings of an SMLR and KNN classifier on the 2020 multispectral trial of best-

performing indices for each phenological stage and parameter. Performance was evaluated using 

outputs from the variable importance chart. Percentages represent the performance of the 

individual vegetative indices in achieving that outcome. Indices have been arranged in order of the 

best index to the least performing index along with its corresponding percentage. 

 Bud break stage (F1)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, VARI, GRVI, NDRE, NDVI, ENDVI 100, 72, 60, 22, 8, 0 

Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 90, 82, 10, 4, 0 

Plant height (cm) NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 95, 75, 68, 27, 0 

Floral bud number NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100,75, 72, 48, 15, 0 

Floral bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 87, 82, 30, 5, 0 

Vegetative bud number ENDVI, NDVI, NDRE, VARI, GRVI, GLI 100, 70, 15, 3, 2, 0 

Vegetative bud stage GLI, VARI, GRVI, NDRE, ENDVI, NDVI 100, 87, 82, 30, 5, 0 

 Tight cluster stage (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GRVI, NDRE, NDVI, VARI, ENDVI, GLI 100, 82, 78, 72, 45, 0 

Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 68, 44, 20, 15, 0 
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Plant height (cm) NDRE, NDVI, ENDVI, VARI, GLI, GRVI 100, 95, 80, 5, 5, 0 

Floral bud number GRVI, VARI, NDRE, GLI, NDVI, ENDVI 100, 85, 30, 15, 10, 0 

Floral bud stage GLI, GRVI, VARI, ENDVI, NDRE, NDVI 100, 90, 78, 42, 22, 0 

Vegetative bud number ENDVI, NDRE, NDVI, GLI, VARI, GRVI 100, 68, 50, 48, 15, 0 

Vegetative bud stage GLI, GRVI, VARI, ENDVI, NDRE, NDVI 100, 90, 78, 45, 23, 0 

 Early/late bud stage (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 100, 100, 90, 70, 0 

Leaf area index GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 70, 44, 20, 15, 0 

Plant height (cm) ENDVI, NDVI, NDRE, GLI, GRVI, VARI 100, 75, 50, 38, 28, 0 

Floral bud number GLI, GRVI, ENDVI, NDVI, NDRE, VARI 100, 65, 55, 45, 18, 0 

Floral bud stage GRVI, VARI, GLI, NDVI, NDRE, ENDVI 100, 95, 92, 65, 45, 0 

Vegetative bud number ENDVI, NDRE, NDVI, GLI, VARI, GRVI 100, 67, 50, 48, 15, 0 

Vegetative bud stage GRVI, VARI, GLI, NDVI, NDRE, ENDVI 100, 95, 92, 65, 45, 0 

 Bloom stage (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, ENDVI, NDVI, GRVI, NDRE, VARI 100, 95, 80, 79, 50, 0 

Leaf area index NDRE, NDVI, ENDVI, GLI, GRVI, VARI 100, 100, 90, 78, 28, 0 

Plant height (cm) GRVI, NDRE, NDVI, VARI, GLI, ENDVI 100, 85, 30, 27, 13, 0 

Floral bud number NDRE, GRVI, NDVI, GLI, VARI, ENDVI 100, 98, 82, 70, 50, 0 

Floral bud stage ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 95, 82, 58, 25, 0 

Vegetative bud number GLI, GRVI, NDRE, NDVI, ENDVI, VARI 100, 82, 67, 50, 32, 0 

Vegetative bud stage ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 95, 82, 58, 25, 0 

 Fruit set stage (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) ENDVI, NDRE, NDVI, GRVI, GLI, VARI 100, 90, 78, 75, 50, 0 

Leaf area index GRVI, VARI, GLI, NDVI, ENDVI, NDRE 100, 95, 92, 35, 22, 0 

Plant height (cm) GRVI, VARI, GLI, ENDVI, NDRE, NDVI 100, 85, 79, 8, 4, 0 

Floral bud number NDVI, GLI, NDRE, VARI, GRVI, ENDVI 100, 68, 50, 45, 35, 0 

Floral bud stage NDRE, GRVI, VARI, NDVI, ENDVI, GLI 100, 58, 50, 40, 10, 0 

Vegetative bud number GRVI, VARI, GLI, ENDVI, NDVI, NDRE 100, 90, 85, 75, 25, 0 

Vegetative bud stage NDRE, GRVI, VARI, NDVI, ENDVI, GLI 100, 58, 50, 40, 10, 0 
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Table 4.7. Coefficient of determination (R2) values, concordance values (CCC), and root mean square error (RMSE) values from 5 

regression methods on several growth parameters against VIs at the different phenological stages (a, b, c, d, & e) using the hand-held 

FieldSpec® 3 radiometer for the 2020 trial. SMLR – Stepwise multilinear regression, KNN – K- nearest neighbour, RF – Random 

Forest, SVM – Support vector machine, and CB – Cubist. F – Floral stage 

a. 

 Bud break (F1) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.14 0.04 285.11 0.11 0.09 264.26 0.11 0.009 285.62 0.13 0.16 261.86 - 0.03 271.27 

LAI 0.09 0.09 0.14 0.19 0.20 0.12 0.11 0.16 0.13 0.06 0.08 0.12 0.18 0.19 0.13 

Plant height 

(cm) 

- -0.06 1.80 0.06 -0.02 1.69 0.15 -0.12 1.94 0.12 0.11 2.71 - 0 1.64 

Floral bud no. 0.07 0.07 1.42 0.16 0.15 1.40 0.10 0.10 1.43 0.13 0.13 1.35 0.09 0.13 1.4 

Floral bud stage - -0.15 0.40 0.07 -0.01 0.35 0.17 -0.17 0.39 0.15 -0.00 0.35 - 0 0.34 

Veg. bud no. - -0.06 4.45 0.15 0.01 4.20 0.09 0.01 4.57 0.07 -0.00 4.45 - -0.03 4.56 

Veg. bud stage 0.12 0.03 0.28 0.16 0.10 0.25 0.07 -0.013 0.29 0.11 -0.00 0.26 0.11 0.04 0.27 
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b. 

 Tight cluster (F2/F3) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.21 0.24 252.14 0.23 0.29 256.35 0.23 0.28 247.53 0.39 0.42 215.65 0.22 0.36 247.02 

LAI 0.12 0.04 0.35 0.15 0.03 0.15 0.21 0.01 0.17 0.20 0.26 0.15 0.26 0.08 0.16 

Plant height 

(cm) 

0.24 0.28 1.76 0.27 0.35 1.47 0.31 0.38 1.41 0.27 0.30 1.77 0.33 0.40 1.44 

Floral bud no. 0.17 0.04 2.29 0.08 0.06 1.58 0.11 0.06 1.58 0.15 0.10 1.67 - - 1.59 

Floral bud stage 0.42 0.52 0.65 0.61 0.65 0.51 0.59 0.61 0.54 0.58 0.62 0.52 0.40 0.52 0.63 

Veg. bud no. 0.09 -0.03 2.32 0.07 0.07 1.55 0.09 0.07 1.62 0.10 -0.00 1.5 0.09 0.03 1.64 

Veg. bud stage 0.45 0.49 1.43 0.67 0.67 0.71 0.66 0.67 0.70 0.63 0.69 0.69 0.56 0.62 0.81 

 

 

c. 

 Early/late bud (F4/F5) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) - 0.06 162.28 0.30 0.08 148.90 0.40 -0.002 153.07 0.52 0.34 133.81 0.42 -0.01 173.37 

LAI 0.45 0.41 0.30 0.43 0.40 0.32 0.39 0.33 0.30 0.29 0.24 0.36 0.50 0.35 0.32 

Plant height (cm) 0.19 0.17 1.78 0.28 0.24 1.56 0.30 0.20 1.70 0.31 0.20 1.60 0.43 0.30 1.64 

Floral bud no. - -0.07 1.42 0.17 0.20 1.46 0.34 0.11 1.22 0.35 0.29 1.10 0.24 0.08 1.24 

Floral bud stage - -0.12 0.27 0.40 0.07 0.26 0.27 0.13 0.22 0.25 0.19 0.30 0.31 0.03 0.23 

Veg. bud no. 0.37 0.17 2.44 0.17 0.19 2.61 0.30 0.20 2.20 0.22 0.19 2.47 0.27 0.21 2.51 

Veg. bud stage 0.45 0.35 0.22 0.36 0.29 0.23 0.36 0.12 0.23 0.49 0.30 0.23 0.42 0.26 0.23 
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d. 

 Bloom (F6/F7) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.30 0.25 268.46 0.19 0.21 255.44 0.17 0.16 261.82 0.26 0.23 328.98 0.31 0.29 238.67 

LAI 0.59 0.57 1.28 0.75 0.74 0.73 0.74 0.74 0.71 0.71 0.71 0.78 0.72 0.72 0.77 

Plant height (cm) 0.21 0.24 1.91 0.32 0.35 1.63 0.43 0.45 1.42 0.38 0.43 1.56 0.38 0.43 1.55 

Floral bud no. 0.21 -0.004 1.10 0.24 0.16 1.27 0.10 0.11      1.09 0.27 0.34 1.05 0.09 0.10 1.19 

Floral bud stage 0.27 -0.11 1.18 0.24 0.17 1.21 0.15 0.09 1.07 0.18 0.16 1.91 0.11 0.12 1.17 

Veg. bud no. 0.34 0.26 1.74 0.24 0.28 1.63 0.28 0.37 1.47 0.24 0.34 1.60 0.20 0.28 1.60 

Veg. bud stage 0.18 0.23 0.23 0.19 0.17 0.22 0.05 0.06 0.25 0.17 0.17 0.23 0.14 0.16 0.23 

 

e. 

 Fruit set (F8) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.10 0.03 274.59 0.18 0.07 289.59 0.10 0.11 260.29 0.12 0.10 298.23 0.12 0.11 262.12 

LAI 0.42 0.47 0.85 0.34 0.32 0.92 0.33 0.36 0.90 0.41 0.35 0.86 0.34 0.44 0.93 

Plant height (cm) 0.19 0.28 2.0 0.15 0.13 2.10 0.28 0.22 2.01 0.25 0.31 2.02 0.14 0.21 2.25 

Floral bud no. - -0.08 1.01 0.12 0.06 1.35 0.12 0.06 0.99 0.12 0.06 0.99 0.07 0.08 1.01 

Floral bud stage 0.23 0.14 0.23 0.19 0.15 0.22 0.09 0.13 0.23 0.17 0.15 0.22 0.11 0.14 0.23 

Veg. bud No. 0.19 -0.002 2.23 0.11 0.02 2.15 0.09 0.02 2.23 0.14 0.10 2.39 - 0.001 2.18 

Veg. bud stage 0.11 0.13 0.20 0.20 0.28 0.19 0.12 0.15 0.21 0.16 0.20 0.20 0.16 0.18 0.24 
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Figure 4.9. Growth progression of VIs observed on both fields at the different phenological stages using the FieldSpec® 3 hand-held 

radiometer. (A) Kemptown and (B) Lemmon Hill.  
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Table 4. 8. Coefficient of determination (R2), Lin’s concordance (CCC) values and root mean square error (RMSE) of growth parameters 

against several VI’s (Benvie Hill, NS) using an RGB camera during the 2021 growing season. SMLR – Stepwise multilinear regression, 

KNN – K- nearest neighbour, RF – Random Forest, SVM – Support vector machine, and CB – Cubist. F – Floral stage 

a. Tight cluster (F2/F3) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.42 0.38 151.45 0.59 0.44 134.4 0.54 0.47 128.96 0.56 0.48 164.7 0.60 0.48 138.8 

Plant height (cm) - -0.02 1.78 0.17 0.13 1.63 0.36 0.07 1.65 0.52 0.25 1.52 0.22 0.19 1.63 

Floral bud no. 0.29 -0.02 1.09 - 0.01 0.94 0.20 -0.01 0.99 0.37 0.28 0.95 0.26 0.07 1.02 

Floral bud stage - -0.03 0.48 0.31 0.08 0.58 0.21 0.04 0.48 0.40 0.09 0.76 0.24 0.02 0.55 

Veg. bud no. 0.22 -0.06 4.20 0.13 0.11 3.84 0.39 0.02 4.22 0.32 0.04 8.07 0.15 0.01 3.98 

Veg. bud stage 0.47 0.25 0.44 0.37 0.37 0.44 0.23 0.14 0.44 0.54 0.38 0.41 0.51 0.36 0.40 

 

 

b. 

 Early/late bud (F4/F5) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) - 0.13 178.27 0.46 0.29 158.85 0.34 0.20 180.68 0.30 0.23 171.82 0.31 0.22 177.37 

Plant height (cm) - 0.04 3.1 0.20 0.10 3.52 0.16 -0.11 3.51 0.40 0.23 3.43 0.23 0.04 3.39 

Floral bud no. - -0.03 1.10 0.23 0.01 1.04 0.18 -0.08 1.17 0.18 0.04 1.09 - 0.0 1.07 

Floral bud stage - -0.05 0.42 0.20 0.13 0.43 0.19 0.02 0.45 0.41 0.27 0.47 0.34 0.06 0.38 

Veg. bud no. - -0.02 1.71 0.24 0.11 2.07 0.19 0.01 1.85 0.27 0.08 1.70 0.25 0.15 1.66 

Veg. bud stage 0.25 0.17 0.28 0.26 0.05 0.37 0.30 -0.07 0.30 0.52 0.26 0.24 0.28 0.02 0.32 
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c. 

 Bloom (F6/F7) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) - -0.04 211.98 0.50 0.29 165.91 0.20 0.13 202.01 0.43 0.20 172.17 0.33 0.24 177.07 

Plant height (cm) - 0.04 3.13 0.20 0.10 3.52 0.16 -0.11 3.51 0.40 0.23 3.43 0.23 0.04 3.39 

Floral bud no. - -0.03 1.10 - 0.01 1.02 0.18 -0.06 1.17 0.18 0.04 1.09 - 0.0 1.07 

Floral bud stage - -0.05 0.42 0.20 0.13 0.43 0.19 0.02 0.45 0.41 0.27 0.47 0.34 0.06 0.38 

Veg. bud no. - -0.02 1.71 0.24 0.11 2.07 0.19 0.01 1.85 0.27 0.08 1.70 0.25 0.15 1.66 

Veg. bud stage 0.25 0.17 0.28 0.26 0.05 0.37 0.30 -0.07 0.30 0.52 0.26 0.24 0.28 0.03 0.32 

 

 

d. 

 Fruit set (F8) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.48 0.40 143.42 0.53 0.44 149.26 0.61 0.46 132.91 0.56 0.42 180.36 0.50 0.38 153.57 

Plant height (cm) - -0.10 2.54 0.15 0.01 2.29 0.34 0.02 2.48 0.30 0.09 2.84 0.26 0.02 2.47 

Floral bud no. - 0.02 1.65 0.36 0.09 1.36 0.30 0.06 1.47 0.37 0.13 1.40 0.56 0.10 1.43 

Floral bud stage 0.11 -0.01 0.03 - - - 0.11 0.0 0.03 0.11 0.0 0.03 - - - 

Veg. bud no. 0.30 -0.07 2.49 0.39 0.24 2.10 0.22 0.04 2.38 0.54 0.17 2.48 0.21 0.20 2.14 

Veg. bud stage 0 0 -0.08 - - - - - - 0.52 0.26 0.24 - - - 
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Table 4.9. Coefficient of determination (R2) value, Lin’s concordance (CCC) values and root mean square errors (RMSE) of growth 

parameters against several VI’s (Kemptown) using a multispectral sensor during the 2022 growing season. SMLR – Stepwise multilinear 

regression, KNN – K- nearest neighbour, RF – Random Forest, SVM – Support vector machine, and CB – Cubist. F – Floral stage 

 Bud break (F1) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.53 0.38 293.38 0.26 0.22 351.23 0.31 0.11 294.35 0.28 0.22 299.21 0.27 0.16 324.24 

LAI - 0.0 0.07 0.29 0.03 0.07 0.12 -0.09 0.08 0.27 -0.00 0.07 - - - 

Plant height 

(cm) 

- -0.02 2.64 0.35 0.16 2.65 0.25 0.02 2.43 0.22 0.00 3.24 0.30 0.12 2.55 

Floral bud no. - -0.03 1.48 0.30 0.24 1.34 0.38 0.16 1.31 0.38 0.16 1.31 0.41 0.03 1.59 

Floral bud stage - -0.04 0.46 0.31 0.14 0.51 0.22 -0.05 0.46 0.22 -0.05 0.46 - -0.04 0.42 

Veg. bud no. - -0.11 4.01 0.58 0.39 2.46 0.37 0.17 2.89 0.37 0.17 2.89 0.35 0.27 2.74 

Veg. bud stage - -0.08 0.31 0.17 0.19 0.33 0.25 -0.02 0.28 0.19 0.11 0.28 0.35 -0.01 0.28 

 

b. 

 Tight cluster (F2/F3) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.52 0.43 266.85 0.23 0.17 288.71 0.34 0.22 278.38 0.52 0.37 317.73 0.30 0.27 288.78 

LAI - 0 0.07 0.29 0.03 0.07 0.12 -0.09 0.08 0.27 -0.00 0.07 - - - 

Plant height 

(cm) 

- -0.13 2.70 0.36 0.14 2.31 0.16 0.03 2.30 0.23 0.10 5.88 0.13 0.02 2.55 

Floral bud no.  -0.09 1.66 0.28 0.10 1.44 0.19 0.00 1.41 0.27 0.14 2.59 0.16 0.14 1.53 

Floral bud stage 0.29 0.20 0.60 0.19 0.12 0.58 0.22 -0.00 0.62 0.24 0.08 0.60 0.37 0.07 0.59 

Veg. bud no. - -0.12 3.48 0.19 0.19 3.15 0.27 0.05 2.98 0.25 0.24 3.76 0.17 0.08 3.17 

Veg. bud stage 0.39 0.13 0.78 0.29 0.08 0.77 0.19 -0.01 0.84 0.42 0.34 0.90 0.20 -0.02 0.83 
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c. 

 Early/late bud (F4/F5) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.49 0.44 250.52 - 0.01 310.10 0.13 0.16 309.93 0.46 0.32 252.34 0.47 0.29 279.79 

LAI 0.47 0.28 0.17 0.44 0.30 0.17 0.34 0.21 0.17 0.55 0.46 0.14 - 0.31 0.14 

Plant height 

(cm) 

0.21 0.23 2.47 0.32 0.00 2.53 0.49 -0.19 2.99 0.26 0.02 2.73 0.31 -0.00 2.87 

Floral bud no. - 0.00 1.62 0.23 0.09 1.73 0.27 0.02 1.58 0.25 0.16 1.48 0.17 0.05 1.46 

Floral bud stage 0.36 -0.23 0.54 0.37 0.10 0.47 0.42 0.16 0.42 0.38 0.15 0.50 0.28 0.12 0.40 

Veg. bud no. 0.45 0.19 2.61 0.19 0.20 2.61 0.13 0.12 2.43 0.30 0.12 3.00 0.15 0.10 2.32 

Veg. bud stage 0.60 0.40 0.30 0.56 0.44 0.32 0.55 0.43 0.29 0.40 0.24 0.34 0.55 0.39 0.30 

 

 

d. 

 Bloom (F6/F7) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.44 0.30 323.36 0.47 0.34 280.23 0.42 0.27 295.83 0.49 0.36 258.37 0.35 0.30 251.81 

LAI 0.48 0.20 0.46 0.57 0.31 0.40 0.51 0.30 0.37 0.57 0.40 0.38 0.49 0.34 0.39 

Plant height 

(cm) 

0.50 0.06 2.75 0.36 0.13 2.39 0.40 0.01 2.33 0.40 0.06 2.33 0.47 0.03 2.41 

Floral bud no. 0.18 0.10 2.29 0.27 0.08 1.98 0.11 -0.04 2.13 0.27 0.22 3.29 0.19 0.06 2.06 

Floral bud stage 0.38 0.22 0.51 0.47 0.39 0.47 0.26 0.22 0.45 0.32 0.28 0.45 0.37 0.18 0.48 

Veg. bud no. 0.23 -0.10 2.76 - 0.01 2.08 0.21 0.04 2.36 0.30 0.05 2.34 - -0.04 2.27 

Veg. bud stage 0.43 0.38 0.31 0.51 0.47 0.27 0.42 0.32 0.34 0.61 0.52 0.26 0.64 0.48 0.30 
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e. 

 Fruit set (F8) 

SMLR KNN RF SVM CB 

Parameters R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE R2 CCC RMSE 

Yield (g.m-2) 0.25 0.24 324.89 0.39 0.33 284.59 0.38 0.28 292.40 0.39 0.26 258.70 0.35 0.26 291.06 

LAI 0.43 0.36 0.92 0.39 0.35 1.00 0.45 0.39 0.81 0.55 0.38 0.85 0.52 0.37 0.95 

Plant height 

(cm) 

0.22 0.19 2.11 0.44 0.33 1.60 0.32 0.24 1.79 0.46 0.31 1.60 0.32 0.30 1.96 

Floral bud no. 0.33 -0.13 1.69 - 0.00 1.12 0.23 -0.08 1.25 0.41 -0.00 1.13 - 0.00 1.16 

Floral bud stage 0.44 0.27 0.22 0.36 0.30 0.22 0.37 0.07 0.24 0.48 0.35 0.23 0.34 0.18 0.25 

Veg. bud no. 0.28 0.06 3.38 0.37 0.24 2.49 0.15 0.01 2.77 0.22 0.00 3.23 0.19 0.09 2.60 

Veg. bud stage - -0.05 0.13 0.16 0.13 0.14 0.32 0.05 0.14 0.32 0.05 0.14 - -0.00 0.13 

 

  

Figure 4.10. Growth progression of VIs at the different phenological stages observed at the Kemptown site in the 2022 growing season 

using the multispectral sensor. 
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4.4.4.2 Phenological growth progression of the different wild blueberry phenotypes  

The general observation of the floral buds 2019, 2020, and 2022 progression of growth in the two 

major genotypes Vaccinium angustifolium and Vaccinium myrtilloides indicates that V. myrtilloides 

lags in floral growth. It was observed that it took between 9 to 12 days for V. myrtilloides to get to 

the stage of V. angustifolium (Figure 4.11, 4.12, and Appendix 3 – Figure A1), though this 

phenomenon varied across the development phase and the phenotypes examined. After bud break, 

it was observed that it took between 5 to 8 DOY for phenotypes to move from one floral stage to 

another, and about 38 to 45 DOY to reach full bloom. While this principle was consistent in both 

V. angustifolium and V. myrtilloides, V. myrtilloides still observed some lag in days until the F7 

stage. It was observed that, after the F7 stage it took several days with an average of 13 to 17 days 

for phenotypes to reach the F8 stage. V. angustifolium showed a strong floral growth progression 

compared to Vaccinium myrtilloides phenotypes. V. myrtilloides tall and medium showed similar 

growth progressions.  

Comparison between the 2022 observation and the others, revealed that, whereas there was 

an obvious delay in the start and growth progression of the V. myrtilloides phenotypes, the lagging 

period observed in 2022 result was mild. Despite this phenomenon, the different figures showed 

that, phenotypes behaved similar in the different locations (Figure 4.11 and Figure 4.12). However, 

it was observed that V. myrtilloides (small), showed a higher floral bud progression compared to 

the other phenotypes of V. myrtilloides (medium and tall). Generally, all the variations observed in 

Farmington agreed with several observations at the Lemmon Hill and Kemptown locations 

(Appendix 3 – Figure A1). V. angustifolium nigrum showed the highest growth in floral bud 

development with V. myrtilloides medium and small observing the lowest. 
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Figure 4.11. Growth progression of the different blueberry phenotypes at Farmington as monitored 

from May to June 2019. The different colours represent the six phenotypes. 

 

 

Figure 4.12. Growth progression of the different blueberry phenotypes at Kemptown as monitored 

from May to June 2022. The different colours represent the six phenotypes. 
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4.4.5 Assessment of statistical methods 

Validity and precision between results necessitated a comparison between the R2 and Lin’s 

concordance correlation coefficient (CCC) values among several statistical classifiers. The five 

adopted statistical classifiers of the different parameters proved similar as the values observed 

were consistent among the different methods applied. Despite the slight differences in the 

statistical approaches of these classifiers, they were consistent in their R2 values. The SVM 

generally had high R2 values across all phenological stages, which were often consistent with the 

RF classifier. The SMLR classifier was also consistent with the KNN classifier, but the Cubist 

classifier (CB) was considered slightly different.  

Comparison between R2 and CCC values (Table 4.3a-e) showed validation and precision 

in CCC values as compared to R2 values (Kwiecien et al., 2011; Neuendorf, 2022). Apart from the 

tight cluster stage (Table 4.3b), when R2 values were higher than the CCC values, the remaining 

phenological stages observed consistently higher CCC values compared to the R2 values (Table 

4.3 a, c-e). Therefore, there is generally a good indication of high CCC values across all the 

phenological stages (Table 4.3, a-e). 

 

4.5 DISCUSSION 

The primary research on the wild blueberry field validates multiple discoveries concerning UAV 

and remote sensing techniques and presents numerous opportunities to focus on particular VIs and 

their application for monitoring vegetation and predicting various parameters in the wild blueberry 

field. From a management and operational perspective, results using both sensors indicate that a 

Zenmuse X5- RGB camera would achieve similar results as the Micasense, thus, the two sensors 

can be used to establish relationships, and make predictions.  
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The trends of VIs in the phenological development stages observed on the field over the 

period were instructive as it confirmed several other studies that show VIs can be utilized in 

monitoring phenology (Vega, et al., 2015; Forsström et al., 2019; Hussain et al., 2020; Tao et al., 

2020). Findings from this study, confirm a major phenomenon, that, VIs have a bell-shaped (an 

open parabolic) representation over the field season (Forsström et al., 2019). This explains that 

VIs were low at the start of the crop season, but increased mid-way, and diminished at the end of 

the season. This phenomenon was observed due to the development of leaves over the period till 

the autumn-fall season when chlorophyll and other pigment degradation occurred and leaves 

abscised from the stem. The late summer period also corresponds to the fruit set development 

period which occurs in the plant. Therefore, plant leaves are major determinants of VIs and 

regulators of light with pigments contributing to this process (Section 2.7.3). Additionally, this 

observation gives insight into the phenological cycle of the wild blueberry plant, highlighting 

specific phenological stages for management practices. Furthermore, from the bud break stage, the 

increasing trend of VIs were affected at the flowering stage, where a moderate to severe decline 

was observed among several VIs. This observation was confirmed by the work of Hassan et al., 

(2019) who observed a 10% decline at the flowering stage as this was reflective in the Lemmon 

Hill trial, but a greater decline was observed in the Kemptown trial using the micasense. Whereas 

this decline was not present in the other trials and sensors, it stands to reason that this may not 

have been a common phenomenon. Reasons accounting for this phenomenon varied, however, 

variations in VIs on wild blueberry plants are notably connected to the transition between 

phenological stages. At the shoot area of a wild blueberry plant, there are typically more than 100 

million flowers per acre, resulting in noticeable reflectance effects (Personal communication: 

David Percival, 2023). Leaf structure and angle impact the amount of light reflected, which affects 
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VI computations. Furthermore, since blueberry plants are not evergreen, the leaves at some specific 

phenological stages might have been affected by colouration. Thus, pink, and white flowers among 

other colouration of leaves create a mosaic of colours on the field (Abbey et al., 2023).  

Furthermore, new vegetative growth flushes after fruit set with auxiliary buds breaking and 

the emergence of new flushes of leaves also contributes to this effect (Personal communication: 

David Percival, 2023). This occurrence was attributed to the chemical composition of leaves, 

weather conditions, and the varied flower petals along the different stages of development, which 

affects reflectance (Duy, 1999; Hall, Forsyth, et al., 1972; Wood & Barker, 1963). Other factors 

may include, the direction of incidence radiation, and canopy architecture, among other 

characteristics of the plants (Hussain et al., 2020). The variability effect is even echoed among 

fields, where some differences seem to be observed at the bloom stage of both Kemptown and 

Lemmon Hill. At the bloom stage, the trials in Kemptown observed a general decline in VIs, but 

the same effect was not substantially visible in the Lemmon Hill trial and the other trials in the 

other years. However, the major trends in VI progression remained constant for all the trials (Figure 

4.8, 4.9, and 4.10). In a study by Forsström et al., (2019), spectral analysis between lingonberry 

and blueberry was compared. This study largely confirmed some of those findings of Forsström et 

al., (2019) which state that variations in the red and blue wavelength regions are responsible for 

the observations at the bloom and the berrying stage of the plant’s development process. Therefore, 

since these indices are a mathematical computation of VIS and NIR light bands, this claim 

potentially accounts for the variations observed in our study. However, the seeming difference 

observed between the different trials can be accounted for by the nature and quantity of leaves, 

flowers, and berries developed in those fields. The number of plants and field variation at the 

transitioning phase affects VIs at the different phenological stages (Forsström et al., 2019). 
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Furthermore, in agreement with these findings, Forsström et al., (2019) showed that VIs were 

sensitive to blueberry shrubs observed across the field season. This indicates potential in using VIs 

to monitor phenology.  

Predictability of growth parameters using RS techniques hinges on obtaining high R2 or 

CCC and correlative values with minimal RMSE as reported in several studies (Hassan et al., 2019; 

Liu et al., 2018; Souza et al., 2017; Zhou et al., 2017). This study records a range of moderately 

high R2 and CCC values which agrees with the findings from other crops such as wheat (Hassan 

et al., 2019), rapeseed (Hussain et al., 2020) and wild blueberries (Barai et al., 2021). LAI showed 

high predictability across the phenological stages, except for the F8 stage, whiles FS and VS were 

largely limited to the F4/F5 stage. This study suggests that LAI, VS, and FS are growth parameters 

that can be estimated at different phenological stages across the field season particularly the 

early/late bud and bloom stages. These findings agree with the work of Maqbool et al., (2010) who 

used optimum multiple narrow-band reflectance (OMNBR) indices to estimate growth parameters 

in the wild blueberry fields. Their study observed that across 3 phenological stages, LAI was 

accurately estimated at the bloom stage. This accurately confirms our result of the bloom stage 

(F6/F7) being the best phenological stage to estimate LAI.  Even though the other parameters had 

relatively good R2 values, the high RMSE values obtained posed reliability questions on the 

predictability of those parameters. Converse to the assertion on yield, the findings of Maqbool et 

al., (2010) supports the claim of some parameters like yield to be predicted using reflectance data. 

Despite the seemingly different approach adopted by Maqbool et al., (2010), the use of VIs may 

support yield predictability if measures are taken to rectify some issues on resolution, in addition 

to a specific harvest time. Maqbool et al., (2010) argued that the polyphenolic compounds 

contained in flowers and berries affected spectral resolution and accurate estimations. According 
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to Kinsman, (1993), the level of variability on the wild blueberry field can be very high. Therefore, 

the inconsistencies observed with some of the results may directly point to field variability which 

includes plant density across the field, different phenotypes, and the chemical composition of 

plants, which affects VIs. Though the wild blueberry plant is different from other crops like the 

rapeseed and rice plant, the results from those studies were similar. Findings from those studies 

point to the elongation and flowering stages serving as good estimation points for plant canopy 

and other biophysical characteristics of the field. Like this work, the best estimation stage for LAI 

is the bloom stage (white tip) (F6/F7), whereas tight cluster and early/late bud stages seem to be 

the best estimation stages for VS, with tight cluster (F2/F3) as the best in estimating floral bud 

stage (FS). In the conclusion of these studies (Liu et al., 2018; Zhou et al., 2017), it was stated that 

VIs that showed high correlation and prediction of LAI will equally correlate and predict yield. 

The earlier claim stands true as good correlation values are observed on yield with VIs but not its 

predictability according to this study. In a more recent study, Barai et al., (2021) confirms our 

position on the difficulty in predicting wild blueberry yield, however, with the adoption and 

correction of some methods the prediction of yield should be possible. 

The phenological progression of VIs gave an indication of leaf development across the 

growth season. It can therefore be observed that at the bud break stage, where the presence of 

leaves cannot be detected, VI values were substantially low. This result was consistent with several 

studies that generally observed low VI values at the initial crop stage, but VI values increased as 

plant canopy developed (Hussain et al., 2020; Tao et al., 2020; Vega et al., 2015). This was because 

leaf area was progressively increasing over the growing season and their development was 

significant to the computation of VIs, as determined from reflectance values (Breda, 2003). The 

development of leaves progressed or remained constant over some phenological stages until 
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harvest and then later declined because of leaf abscission during the fall season (Breda, 2003: as 

cited in Myneni et al., 2008). This was evident as the leaf area index values depicted similar trends 

over the season (Figure 4.8 and Figure 4.9).  

In the selection of important VIs (variable importance), several vegetative indices (VIs) 

contributed to the varied outcomes observed (Table 4.4 – 4.6 and A5 – A7). Rather than the single 

linear regression method which focused on specific indices, the adopted multiple linear regression 

generated several VI rankings. This agreed with the work of Yue et al., (2018) who found superior 

the use of multiple indices rather than a single index to estimate crop parameters. Significantly, the 

NIR indices such as NDVI, ENDVI, and NDRE contributed across several parameters and growth 

stages. However, the contribution of some VIS vegetative indices cannot be underestimated, and 

as such this study makes a strong case for the VIS-VIs. Studies by Liu et al., (2018) and Zhou et 

al., (2017) have established that VARI among other visible light VIs estimates several growth 

parameters. It can, therefore, be explained that though plants depend on different ratios of light, 

the significance of NIR wavelength to provide unique estimations on plant health, in addition to 

external and internal characteristics of the plant cannot be underestimated.  

The use of the different statistical classifiers was necessary to verify the results and 

determine a suitable method. The classification methods applied proved robust, however, results 

obtained varied slightly under the R2 and CCC outputs. Despite the uniqueness of these classifiers, 

values obtained using CB and SMLR were moderately low across all parameters at the different 

phenological stages. This was confirmed by Penglei et al., (2020) whose findings suggest that, 

though the regression methods estimate similar accuracies, some are limited in performance to 

specific growth stages or across the different phenological stages. Therefore, RF, SVM, and KNN 

classifiers performed better compared to SMLR classifier. However, in most situations, SMLR and 



143 
 

KNN classifies generated the same outcomes. In this study, the results obtained indicate that the 

SVM and RF classifiers generated high but similar values with minimal deviations. Therefore, 

narrowing down on the two best classifiers, SVM and RF were deemed the best classifiers in this 

study.  

Floral bud phenological growth and development for the different phenotypes signified an 

obvious phenomenon. V. myrtilloides showed a lag in their growth development processes as 

compared to V. angustifolium. This result agreed with the work of Fournier et al., (2020) whose 

study on the allometry of V. angustifolium and V. myrtilloides revealed a phenological difference 

between the two species. Their study confirmed a delay of about 8-10 DOY in the phenological 

development of leaves and flowers of the V. myrtilloides species as compared to V. angustifolium. 

Whereas there as slight differences in the DOY, our study projects a delay of between 9 – 12 DOY 

for V. myrtilloides to catch up with V. angustifolium. It can be explained that this delay occurred 

due to genetic differences and the partitioning and mobilization of stored carbohydrates through 

plant allometry (Fournier et al., 2020). Sugar allocation plays a significant role in bud phenology, 

thus, after decapitation (tip dieback) the sink strength between the apex and the lower levels 

reduces. This allows for lower levels of sucrose which results in a lagging phase of those buds 

(Fournier et al., 2020; Janes, 2005). Thus, V. myrtilloides, which uses these compounds produces 

more leaves leading to delays in their floral bud formation. Despite the success of the study, this 

study considered the differences between the different phenotypes of the two broad species, V. 

angustifolium and V. myrtilloides. Generally, it was shown that phenotypes of V. myrtilloides 

observed a lag across the different years. 
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4.6 CONCLUSION 

In this study, the potential of using the multispectral sensor through the computation of VIs to 

monitor and estimate growth and development parameters in the wild blueberry field was assessed. 

Results have indicated that there is potential to adopt remote sensing as a major technological tool 

for use in wild blueberry production. Correlative assessment of VIs against all parameters showed 

good indication across all phenological stages. The correlative coefficients fitted more in some VIs 

compared to other parameters. The coefficient of determination values varied among all VIs, but 

the level of variable importance differed across the growth parameters and the different 

phenological stages. Whereas it was difficult for yield prediction to be made, it was possible to 

make determinations at the F4/F5 and F6/F7 stage for LAI, FS, and VS. Though values obtained 

were moderately low, those represented for LAI, FS, and VS are relatively high compared to the 

other parameters. Therefore, with the introduction of the T40 UAV system, the application of 

disease control products can be conducted at specific stages of the plant. 

Phenological growth over the season followed similar trends with NDVI and ENDVI 

assuming the highest VI values with NDRE, GLI, VARI, and GRVI observing low values in across 

fields. The overall results from this study have indicated the potential to use vegetative indices to 

monitor plant growth and make predictions. Despite the challenges observed in the other 

parameters, further work must be done to confirm findings on harvestable yield, among other 

parameters. 
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CHAPTER 5: DETERMINATION OF WILD BLUEBERRY PHENOTYPES USING 

HIGH-RESOLUTION IMAGERY FROM AN UNMANNED AERIAL VEHICLE 

SYSTEM 

 

5.1 ABSTRACT 

Wild blueberry fields are naturally heterogeneous with distinctly different phenotypes, which 

causes variation in the pattern of plant growth and development, disease damage, and berry yield. 

To improve management techniques, this study was conducted using remote sensing approaches 

to identify and map the different Vaccinium species. A hand-held hyperspectral sensor and an 

unmanned aerial vehicle (UAV) equipped with a 5-banded multispectral camera were used. Trials 

were set up in two commercial fields; with a plot size of 150 x 100 m. Identified phenotypes were 

tagged and georeferenced using an SX Blue Platinum GPS device. A pixel-supervised 

classification using an SVM classifier was conducted to identify the different phenotypes and other 

field classes. The assessment results were validated, giving an overall accuracy (OA) of 85% and 

a kappa value of 80. The spectroradiometer also confirmed that V. angustifolium f. nigrum can be 

identified. In conclusion, leaf colour was significant in pixel phenotype identification but was not 

consistent between the different years. V. angustifolium nigrum can be identified but there is 

potential to also identify V. myrtilloides. 

 

Keywords: Phenotype, wild blueberry, UAV, support vector machine, classification, hyperspectral 

5.2 INTRODUCTION 

The wild blueberry plant popularly referred to as the lowbush blueberry, is an economically 

important crop in the United States (US) and Canada (Drummond, 2019; Statistics Canada, 2020). 

The predominant species occurring in commercial fields are Vaccinium angustifolium and 
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Vaccinium myrtilloides (Abbey et al., 2018; Drummond, 2019; Kinsman, 1993). The calcifuge 

plant is unique in its structure and development, with the ability to thrive under harsh conditions 

(Zhang et al. 2010; Abbey et al. 2018). The wild blueberry field, which is naturally heterogeneous 

with distinctly different species and phenotypes, is characterized by a mosaic of colours, but this 

colouration is dominant during the crop phase (Penman and Annis 2005; Abbey et al. 2020) of the 

plant. In the vegetative phase, colour variation is evident, but more prominent during the autumn 

season after the chlorophyll pigments dissipate (Duy, 1999). This phenomenon is also evident in 

the varying pattern of disease damage observed throughout commercial wild blueberry fields; 

pointing to the potential to identify specific clones, thus reducing fungicide application on disease 

tolerant phenotypes with a focus on increasing yield (Abbey et al. 2018). The plants are growing 

naturally but are managed using several management practices (Eaton & Nams, 2012a), therefore, 

site-specific management practices have become an important aspect of the production of wild 

blueberries.  

Wild blueberry management practices such as pruning, spraying, fertilizer application, 

pollination, and phenology monitoring, among others, are major production practices (Kinsman, 

1993). Over the years, the practice of a blanket application of fungicides on commercial wild 

blueberry fields has existed, and this has increased the overall production cost. A recent study by 

Abbey et al. (2018), showed that susceptibility or tolerance to disease varies between lowbush 

phenotypes, thus a varying pattern of disease spread is observed. This development in the wild 

blueberry industry has focused attention on the need to adopt spot application rather than a blanket 

application of fungicides, thus, focusing attention on the susceptible phenotype like V. 

angustifolium f. nigrum, and excluding the more tolerant species, V. myrtilloides (Abbey et al., 

2018). This way fungicide application is reduced, leading to a significant reduction in the overall 
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production cost. Efforts are also being made to monitor the vegetative and floral tissue growth and 

development, the status of the fungal pathogens (i.e. is sporulation occurring), and environmental 

conditions conducive for an infection to occur. Therefore, from a pest management perspective, 

the advancement of remote sensing techniques integrated into the management practices of a 

variety of fruit crops like strawberries, grapes, mango, and banana, among others (Peña et al., 

2017; Usha & Singh, 2013) directs attention to possible and improved developments in disease 

management practices in lowbush fruits.  

Digital transformation in field management practices using artificial intelligence networks 

has gradually revolutionized agriculture by making use of the increasing data generated from 

several remote sensing sources (Benos et al., 2021). Machine learning (ML) as a significant aspect 

in the modernization of farming uses computational algorithms to analyze and interpret large data 

(Benos et al., 2021; Liakos et al., 2018). Remote sensing in precision agriculture leads to the 

generation of large and complex data. However, data from these sources are processed using 

specific algorithms and software to recognize patterns, classify, predict, cluster, and make known 

the unseen information in data (Carleo et al., 2019; Liakos et al., 2018). In utilizing these methods, 

few studies on remote sensing in fruits have mainly focused attention on the use of spectral indices 

to improve tree crop classification (Panda et al., 2009; Peña et al., 2017; Usha & Singh, 2013), 

yield improvement (Rouse et al., 1974; Zhang et al., 2020), water-stress determination in oranges 

(Stagakis et al., 2012), and phenotype determination using high-throughput approaches (Han et al., 

2018). Some major classification works conducted on blueberry have adopted the use of 

hyperspectral imagery that enables differentiation, thus, separating field classes using colour 

patterns (Panda et al., 2009, 2016; Peltoniemi et al., 2005). Panda, et al., (2009) successfully 

performed classification accuracies on two images from the wild blueberry field. While the earlier 
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classification was low with an overall accuracy (OA) of 57.9% and a kappa of 0.24, the second 

image had a high OA of 94.7% with a kappa value of 0.65, where Kappa defines the degree of 

agreement between the observed and measured data. This study identified only field classes such 

as vegetation, forest, and roads among other classes without consideration for clonal differences. 

The clonal differences observed in wild blueberries are significant as they affect yield potential, 

and disease spread (Abbey et al., 2018; Kinsman, 1993). Thus, a varying pattern of disease damage 

can be observed with varying levels of yield. In a similar study on a blueberry orchard, Panda, et 

al., (2016) classified three fields with OA’s of 84%, 88%, and 95%. It can be observed that colours 

and features form an important aspect of field sensor identification; thus, vegetation colour can be 

used in phenotype classification (Bruzzone & Demir, 2014; Lehmann et al., 2018). 

Over the past few years, remote sensing activities on site-specific management and 

production practices in the wild blueberry field have received some attention. Several remote 

sensing works focused on management practices have been conducted in wild blueberries; 

pesticide delivery using aerial scans (Marc-André Michaud et al., 2006), bare spot detection and 

estimations using digital photography (Zhang et al., 2010), yield estimation using reflectance 

measurements (Maqbool et al., 2010), weed detection and management (Hennessy et al., 2022), 

detection of management practices using a multispectral sensors (Marty et al., 2022), drought 

assessment (Chan et al., 2021) and phenology assessment using remote sensing (Barai et al., 2021). 

Despite the gains made, remote sensing techniques on phenotype differentiation or identification 

of disease susceptible phenotypes remain a major concern in wild blueberry production as this 

impacts yield and disease spread. Therefore, there is a need to improve the sustainability of the 

production system by focusing on susceptible and tolerant phenotypes in the field. 
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Given the significance and application of these precision agricultural techniques as 

described in several classification studies, there is potential in applying these remote sensing 

approaches in site-specific management in the wild blueberry field. Considering that several 

machine learning techniques including support vector machine (SVM), random forest (RF), and 

decision tree (DTs) when applied to images have performed well in classifying crop types (Peña 

et al., 2017), these approaches can be adopted. Therefore, the objective of this study was to 

determine if it is possible to examine the population structure and distinguish between, and 

possibly within the two predominate wild blueberry species using an SVM classification 

technique. 

 

5.3 MATERIALS AND METHODS 

5.3.1 Study area 

Lowbush plants from two commercial fields located at Meadowvale (MV) and East Village (EV) 

were used for this study conducted in the 2019/2020 and 2020/2021 growing seasons, respectively. 

Meadowvale is one of the prime locations for wild blueberry cultivation, and this location 

comprises both new and old fields located within Nova Scotia, Canada, with the geographic 

coordinate (45.164799°N, 63.012645°W). The second trial located at East Village was conducted 

on a relatively small commercial wild blueberry field located within Colchester County in Nova 

Scotia, Canada, with the geographic coordinate (45.440486°N, 63.542147°W). These fields were 

sparsely dense with wild blueberry plant stands and were subject to all the management practices 

on a blueberry field. For this experiment, new fields are usually preferred because these fields 

mostly contain all the different wild blueberry phenotypes specifically V. myrtilloides (Kinsman 

1993; personal communication, 2019). 
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These areas are prone to wet conditions that can be encountered for an extended period. 

This condition increases the devasting effects of diseases on the field which affects plant yield (D. 

Percival & Beaton, 2012). Therefore, fungicide treatments are applied to control Monilinia and 

Botrytis blight in the field. 

 

5.3.2 Experimental setup and determination of phenotypes 

Wild blueberries are not planted or cultivated like other row crops, like, maize, and tomato, 

therefore, twelve patches of each clone were identified across a plot size of 150 m x 100 m. Each 

identified patch of phenotype (Table 2.1) was tagged, and their geographic locations were acquired 

using an SX Blue Platinum GPS device. The identified phenotypes are listed in Table 2.1 of 

Chapter two. 

 

Figure 5.1. Changes in leaf colour observed on the wild blueberry field (East Village) 
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5.3.3 Multispectral platform and aerial image acquisition 

The DJI Matrice Pro 600 along with the same camera sensors were used as described in Section 

3.3.5 of Chapter three.  

Table 5.1. Flight conducted during the 2019/2020 and 2020/2021 growing seasons using the RGB 

and multispectral cameras. 

2019/2020  2020/2021 

Date Height Resolution 

(cm/px)* 

 Date Height Resolution 

(cm/px)* 

10th Aug. 2019 60 m 4.0  2nd Sept. 2020 30 m 2.1 

20th Sept. 2019 60 m 3.9  15th Sept. 2020 30 m 2.2 

3rd Oct. 2019 60 m 3.8  28th Sept. 2020 30 m 2.2 

16th Oct. 2019 60 m 3.9  15th Oct. 2020 30 m 2.2 

22nd Oct. 2019 60 m 3.9  26th Oct. 2020 30 m 1.9 

4th June 2020 30 m 0.7  10th Nov. 2020 30 m 2.2 

17th June 2020 60 m 3.8  20th May 2021 30 m 2.1 

7th July 2020 30 m 2.0  3rd June 2021 30 m 2.3 

30th July 2020 30 m 2.0  17th June 2021 30 m 2.1 

    8th July 2021 30 m 0.7 

    8th Aug. 2021 30 m 0.7 

* Multispectral image - Resolution above 1.8 cm/px 

Flights were conducted at different time points (Table 5.1) along with the growing phase 

of the plant, particularly towards the end of its vegetative phase (June to November), to identify 

the different phenotypes through changes in leaf pigments. Flights were conducted under an open 
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sky condition (near noon) and in minimal winds to reduce the effects of distortions and shadows. 

Calibration and adjustments were carried out to minimize the effects of distortion on the quality 

of the imagery obtained. 

5.3.4 Post-processing of aerial imagery 

The development of an orthomosaics image followed the same approach as described in Section 

3.3.5.1 in Chapter three. Subsequent processes were carried out in ArcGIS, and this was the 

classification aspect of the image processing. Therefore, the composite image was exported into 

ArcGIS Pro for the classification and identification of phenotypes. ArcGIS Pro version 10.5 was 

used for digitizing and further processing of images as shown (Figure 5.3). 

   

Figure 5.2. Images of some tools used in conducting a UAV flight. (A) DJI Matrice Pro 600 

equipped with a Zenmuse X5 camera, (B) Calibration reflectance panel, and (C) Ground control 

mat. 

 

Orthomosaic images from the different dates were analyzed to identify images that had 

pronounced differences in phenotypes. After image sampling, it was observed that images taken 

after early October had challenges (no colour pattern) (Figure 1) with phenotype identification, 
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with similar challenges to imagery taken from early season to July. Therefore, images taken 

between August and early October were settled upon for classification with their vegetative stage 

mainly at the V6 stage. Furthermore, despite using the two cameras, the multispectral images were 

considered for classification while the RGB orthomosaic imagery served as complementary data. 

 

5.3.5 Image classification of phenotypes 

A supervised pixel classification was conducted on the multispectral image by digitization using 

polygons to develop classes for the training samples. In this classification process, random 

accuracy points were generated by the create assessment points tool and this was updated by the 

updated accuracy assessment points tool. The combination of these tools ensured that points had 

valid class values for the classified and ground truth fields. This process generated the user 

accuracy and producer accuracy for each class as well as the overall accuracy and the kappa index. 

The user’s accuracy indicates a false positive classification, where pixels are incorrectly classified 

when they should have been classified as something else. Conversely, the producer’s accuracy 

indicates false negatively classified pixels, where some pixels are misclassified (ArcGIS Pro 2.8, 

ESRI Resources 2020).  

Accuracy assessment is significant in classification studies; thus, the workflow provided 

the needed steps and processes to generate a confusion matrix table for the various classifications 

conducted. In the study, ArcGIS Pro software was the main platform used in this process. Accuracy 

evaluation in ArcGIS Pro worked well and is similar to “extract points” as adopted in other 

procedures like ArcMap. In this study, a workflow (Figure 3) was adopted for the accuracy 

evaluation in our classifications conducted using ground truth points. All major steps and processes 

have been highlighted (Figure 5.3). ArcGIS was utilized to establish training classes for the pixel 
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classification method through a Support Vector Machine (SVM) tool (Lewis & Brown, 2001). An 

accuracy assessment was conducted using the training samples manager and classification tools. 

A confusion matrix was later generated for the classification (Deindorfer, 2016; ESRI Resource, 

2023; ESRI Resources, 2020). 

  

Figure 5.3. General workflow adopted in the phenotype classification process. 

 

5.3.6 Support vector machine (SVM), training samples, and validation 

The SVM is a supervised classification method that was adopted in this study. It is one of the most 

widely used classifiers because it provides some advantages compared to examples like the 

maximum likelihood classification method. Unlike other classifiers, SVM needs only a few 

samples that are not required to be normally distributed. Additionally, it handles noise, correlated 

bands, and uneven numbers or sizes of training samples within each class (ESRI Resources 2020). 

In this study, about 40 training sample pixels were selected per class. Of this number, about 75% 

of the samples were used as training sets with the remaining 25% used as validation sets during 

the cross-validation process. Validation of the results was conducted using GPS points of identified 

phenotype locations on the field.  
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5.3.7 Hyperspectral platform 

The hyperspectral platform adopted was the same as described in Section 4.3.5 in Chapter four. In 

this study, both ground and aerial measurements were simultaneously conducted.  

The twelve patches of each phenotype were identified and tagged. Ten spectral readings 

were collected from each patch, amounting to 720 spectral readings. For analysis, spectral readings 

were averaged into a single spectrum for each patch. Since there was complexity and the constraint 

of time in analyzing high dimensional data, the high dimensional data was reduced by the selection 

of optimal bands. Therefore, the reduction process was done using factor 5 due to the high 

correlation between adjacent wavelengths (Figure 4). In consequence, only 300 wavelengths were 

considered for analysis (AL-Saddik et al., 2017; Heim et al., 2019). These wavelength bands fell 

between 349 nm to 1601 nm, with the other section of the wavelength spectrum (1601nm to 

2500nm) characterized with noise and was thus excluded in the analysis. However, for analysis 

only wavebands from 350 nm to 1000 nm were considered. 

 

Figure 5.4. Process for wavelength data reduction of a hyperspectral radiometer 

 

 5.3.8 Accuracy for image classification 

Analysis of the classification was done based on the ground-truthing from the site. All the 

randomly selected pixels from the classified images were compared with corresponding land use 
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classes on the ground to verify and determine the classification accuracy of the supervised pixel 

classification technique of the identified phenotypes. Accuracy assessment forms the last step of 

every classification process as this quantitatively assesses the correct selection of pixels to their 

land cover classes (Rwanga & Ndambuki, 2017). Using ArcGIS Pro (software version 2.8, ESRI 

Resources 2020), an accuracy assessment was developed for the classification conducted. 

Evaluation on the identification of phenotypes was done based on four criteria for the 

performance of the classification process. These included the producer’s accuracy (Eqn. 1), user’s 

accuracy (Eqn. 2), overall accuracy (Eqn. 3), and the kappa index (Eqn. 4). Higher accuracies 

imply better performance of the image classification process (Abd-Elrahman et al., 2021; Panda 

et al., 2009). The equations for the following accuracy parameters are as follows: 

Producer accuracy 

= 
Number of correctly classified point in a class

Total number of points within a class
 x 100                                                                          (1) 

 

User accuracy 

= 
Number of correctly classified point in a class

Total number of classified points in a group out of the entire points selected
 x 100                                  (2) 

 

Overall accuracy  

= 
Total number of correctly classified points

Total numner of reference samples chosen
 x 100                                                                               (3) 
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Kappa index 

= 
𝑁 ∑ 𝑥𝑖𝑗− ∑ (𝑥𝑖+ 𝑥𝑗+)r

i,j=1  r
i,j=1

𝑁2− ∑ (𝑥𝑖+
𝑟
𝑖,𝑗=1  𝑥𝑗+)

                                                                                                              (4) 

 

Aside from the three accuracy methods, Kappa analysis, which is a discrete multivariate analysis 

that measures the levels of agreement or accuracy, was used in this study. It measures the level of 

agreement between two raters with an independent criterion of assessing a condition (Abd-

Elrahman et al., 2021; Panda et al., 2009). 

Where;  

r = the number of rows in error matrix, N = total number of observations (pixels), Xn = total 

observations in row i and column j, Xi+ and Xj+ are the totals of row I and column j, 

respectively.  

 

5.3.9 Spectral analysis  

Linear Discriminant Analysis (LDA) is popularly known as a discrimination or classification 

method and is used based on the theory of separation or characterization of samples into groups. 

Therefore, outputs from the cross-validation discriminant analysis were used to compute an 

accurate assessment result on spectral data taken from the respective imagery dates. Minitab 

software (version 19, Minitab Inc.) was used to perform the discriminant analysis on spectral 

readings between the different phenotypes of the wild blueberry field as adopted by (Peña et al., 

2017) and (Zheng et al., 2018). This approach also led to the generation of the user, producer, and 

overall accuracies, which enabled verification of the performance of the classification process. 
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5.4 RESULTS 

Classification analysis on multispectral images and spectral data was conducted to determine the 

potential for identifying phenotypes in wild blueberry fields. Despite the challenges encountered 

in the field, results from these two methods suggest a potential to identify specific phenotypes in 

the field.  

Spectral reflectance measurement on all six phenotypes proved similar, however, some 

slight differences were observed (Figure 5.5). Across both the visible light region (VIS) and the 

near-infrared region (NIR), similar reflectance was observed. However, it was observed that V. 

angustifolium species generally observed a higher reflectance at the NIR (700nm to 1400nm) 

compared to the V. myrtilloides species. 

Figure 5.5. Spectral reflectance from all 6 phenotypes 

 

Furthermore, in the visible light region, no clear patterns were observed. Other water-

absorbing regions caused noisy portions, thus the exclusion of those sections (1601nm to 2500nm).  

However, it was observed that between the 999 nm and 1003 nm range, some spectral variations 
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were determined. All three V. myrtilloides (short, medium, and tall) species observed similar 

progressions whereas V. angustifolium nigrum observed a sharp but upward progression from 998 

nm to 1002 nm (Figure 5.5). V. angustifolium green observed no changes in that region. However, 

upon sampling 720 spectral readings, it turns out that these variations were not consistent among 

the various phenotypes, but they only signified water-absorbing regions. 

Table 5.2. Accuracy assessment on spectral readings for detecting species of Vaccinium 

angustifolium (VA) and Vaccinium myrtilloides (VM) at East Village (2020/2021 field season).  

Phenotypes VA 

green 

VA 

brown 

VA 

nigrum 

VM 

short 

VM 

medium 

VM 

tall 

Total U. 

Accuracy 

(%) 

VA green 2 2 2 1 2 1 10 1.18 

VA brown 15 6 8 9 7 4 49 5.79 

VA nigrum 57 69 77 63 63 44 373 44.09 

VM short 2 1 4 1 2 2 12 1.42 

VM 

medium 

7 9 12 7 6 5 46 5.44 

VM tall 58 54 38 60 61 85 356 42.08 

Total 141 141 141 141 141 141 846  

P. 

Accuracy 

(%) 

1.42 4.26 54.61 0.71 4.26 60.28   

20.92% 

VA – Vaccinium angustifolium and VM – Vaccinium myrtilloides 

Discriminant analysis of the spectral data points to a potential in the identification of some 

clones. V. myrtilloides (VM tall) and V. angustifolium f. nigrum were the two outstanding clones 

among the others, that showed high user and producer values (Table 5.2). Though a slightly lower 

value is observed under nigrum it confirms the outcome from the orthomosaic imageries (Table 

5.3); that nigrum can be picked out on the field. 
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Accuracy and precision are important aspects of aerial data analysis; thus, the computation 

of accurate assessment results became relevant for its reliability. The high kappa value observed 

indicated the reliability of the results obtained (Table 5.3). The initial classifications of the 

2020/2021 imagery (Figure 5.6A) were aimed at identifying all six phenotypes, which led to the 

generation of an output (mixels), making it difficult to differentiate between all six phenotypes. 

However, V. a. f, nigrum stood out among all the other phenotypes (Figure 5.6B and 5.7[A&B]) 

indicating that phenotype separation can be achieved between August and September of each 

growing season. Based on that finding, identification was narrowed down to nigrum since it was 

easier to differentiate nigrum compared to the other phenotypes (Figures 5.6A & B).  

Table 5.3. Confusion matrix and accuracy assessment on image classification for the identification 

of Vaccinium angustifolium nigrum at East Village in the 2020/2021 field season (Image taken on 

15th September 2020) 

Classification V. 

nigrum 

Vegetation Red 

leaves 

Bare 

area 

Total U. 

Accuracy 

(%) 

Kappa 

(%) 

V. nigrum 15 11 3 0 29 52  

Vegetation 1 33 0 0 34 97  

Red leaves 0 0 10 0 10 100  

Bare ground 0 0 0 30 30 100  

Total 16 44 13 30 103 0  

P. Accuracy 

(%) 

94 75 77 100 0 85  

Kappa (%)       80 

Similar classifications were conducted on the 2019 image data from Meadowvale; however, the 

classification output was moderately low with similar mixels and misclassifications encountered 

(Figure 5.8). 



161 
 

Classification results on East Village (Figure 5.7 and Table 5.3) have shown that bare area 

and nigrum had high producer’s accuracy of 100% and 94% respectively, with vegetation and red 

leaves obtaining 75% and 77% respectively. At the user accuracy level, bare ground and red leaves 

had the highest percentage, with nigrum being the least. An overall accuracy value of 85% 

indicated high chances of identifying the phenotype, nigrum, and other field classes.  

    

Figure 5.6. Classified images of wild blueberry phenotypes and other classes on the East Village. 

(A) Identification of all phenotypes and (B) Identification of VA nigrum and other field classes. 

A 
B 
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Figure 5.7. Identified V. angustifolium nigrum on the wild blueberry field. (A) Raw orthomosaics 

image and (B) Classified image identifying nigrum locations on the field (arrows indicating nigrum 

location).  

 

 

Figure 5.8. Classified images of wild blueberry plants and other field classes from Meadowvale 

in the 2019/2020 field season (Image taken on 3rd October 2019).  

A B 
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Figure 5.9. Identified field classes from the 2019/2020 field season at the Meadowvale location. 

 

 

Table 5.4. Confusion matrix and accuracy assessment on image classification for the identification 

of Vaccinium angustifolium nigrum at Meadowvale in the 2019/2020 field season. 

Class Nigrum Vegetation Bare 

earth 

Red 

leaves 

Weeds Total U. 

Accuracy 

(%) 

Kappa 

(%) 

Nigrum 7 0 0 0 0 7 100  

Vegetation 24 12 2 22 19 79 15  

Bare earth 2 0 7 0 0 9 78  

Red leaves 0 0 0 0 0 0 0  

Weeds 8 2 1 6 38 55 69  

Total 41 14 10 28 57 150 0  

P. Accuracy 

(%) 

17 86 70 0 67 0 43  

Kappa 
       

28 

 

Though phenotype identification was low (Figures 5.8 and 5.9), the classification process 

identified major field classes. The same plant variation observed at the East Village trial was not 
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observed in the Meadowvale trial, thus phenotype classification from the Meadowvale location 

did not yield the same outcome as that of East Village. Furthermore, output values from the 

confusion matrix showed that it was difficult to achieve a good classification from the imagery 

taken at the Meadowvale location (Table 5.4). 

It can be observed that the overall classification (43%) conducted on the Meadowvale 

imagery was moderately low (Table 5.4). Though misclassifications were observed, it was more 

under the vegetation class. This assessment provides a low kappa value of 28% which implies a 

poor classification model.  

 

 

 

5.5 DISCUSSION 

Having achieved relevant outcomes from the preliminary assessment of wild blueberry coverage 

and disease assessments between phenotypes on the field, this study was aimed at determining the 

possibility of examining the population structure and distinguishing between, and possibly within 

the two predominate wild blueberry species. The remote sensing equipment, UAV, and the Field 

Spectroradiometer have shown potential and capability in identifying mixed vegetation, forest, 

woodland, and grassland, as have been demonstrated in several studies using advanced processing 

techniques (Peltoniemi et al. 2005; Panda, et al., 2009; Usha and Singh 2013; Panda, Hoogenboom, 

and Paz 2016; Peña, et al., 2017). Despite challenges faced in the wild blueberry field, this study 

went a step further by showing the possibility of differentiating between phenotypes on the field 
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using these remote techniques coupled with an advanced machine learning technique like the 

support vector machine (SVM).  

A supervised pixel classification method was performed on the orthomosaic images with a 

discriminate method applied to the spectral data. Though both methods target phenotypes, the 

supervised pixel classification method distinguished other classes on the field while the 

discriminate method focused only on phenotypes. Classification outputs have shown that the 

blueberry plant can be delineated and distinguished on the field (Table 5.2 and 5.3). Thus, the 

accuracy assessment (Table 5.2 and 5.3) using the user accuracy, producer accuracy, overall 

accuracy, and kappa value proved that point. These findings agree with that of Panda, et al., (2009) 

who used satellite imagery to distinguish blueberry vegetation from mixed vegetation, with overall 

accuracy and kappa statistics of 94.7% and 65% respectively. In that study two classifications from 

two images were conducted, however, the authors settled on the better classification. Despite this 

similarity, our classification work proved superior based on overall accuracy. It was obvious that 

variability on the blueberry field was a major challenge, but this is the first time a study like this 

has been conducted in wild blueberry plants. In this study, the initial classification which was 

aimed at identifying all six phenotypes among other field classes like weeds and bare earth proved 

challenging, coupled with the elevated level of variability observed on the field. The output 

(mixels) made it challenging to clearly identify some phenotypes while other phenotype 

populations were either under or overestimated in the identification process. This level of 

variability in the field (Drummond, 2019) made it necessary for the study to focus on an 

outstanding phenotype i.e., V. angustifolium f. nigrum. Compared with the 2019 classification 

work, it can be observed that nigrum was not as outstanding as the classification performed on the 

image obtained from the trial at the East Village location, thus, that classification work did not 
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meet the target. This is largely explained by the prevailing conditions of a field and the time a 

flight is taken. Time is key in visibly identifying the differences between phenotypes as this 

impacts the leaf pigment (Duy, 1999). 

The wild blueberry field is heterogeneous and thus consists of different phenotypes (Duy, 

1999). However, the natural form of the field introduces levels of complexity in the identification 

process as phenotypes are scattered on the field (Penman & Annis, 2005). Though the classification 

method identified nigrum, with a 52% user’s accuracy, this implies that the identified phenotype 

had a 48% misclassification. Rwanga and Ndambuki (2017) states that the user’s accuracy gives 

reliability to the user, thus, this classification accuracy is more relevant to its utilization on the 

field. Therefore, a 52% user’s accuracy for nigrum is moderately high, but can be improved upon. 

However, this observation can be attributed to a few factors including variability (crosses among 

plants) and the reflectance and scattering properties of the other vegetation classes. This agrees 

with Panda, et al., (2016), whose work on blueberry orchards was similar to a previous study they 

conducted in 2009 (Panda et al., 2009). The high variability observed on the field can arise from 

possible crosses that exist between the different phenotypes. Despite the non-compatibility 

between diploids (V. myrtilloides) and tetraploids (V. angustifolium), studies by Griffiths, Pegler, 

and Tonguthaisri (1971) and Vander Kloet (1978) established that, V. angustifolium and V. 

myrtilloides can hybridize but with low percentages of success. Therefore, the possibility of 

germinated phenotypes adding up to the levels of variation observed on the field is high. Since 

identification was done based on specific leaf colour types using pixels, then the possibility of 

identifying similar leaf colour types that do not reflect a specific phenotype class may be high. 

This point is well explained by Kinsman (1993) who expounds that there is so much variability in 

the field. This situation may give rise to a spectrum of colours displayed on the field. It is possible 
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some species over time can fade out on the field leaving specifically the dominant ones. Therefore, 

though the V. angustifolium f nigrum value observed under the user’s accuracy was relatively low, 

it buttresses the point that variability may account for these situations. Despite the use of the 

support vector machine (SVM) in the identification process, the leaf colour range posed a major 

challenge, but findings from both the UAV and Field Spectroradiometer points that V. 

angustifolium f. nigrum can potentially be identified.  

The field spectroradiometer which focused solely on phenotypes complemented the UAV 

in its identification and classification. With a moderately low overall accuracy level of 20.92% 

(Table 5.2), it explains that V. angustifolium f. nigrum and V. myrtilloides (tall) can potentially be 

identified in the field. Considering the user accuracies for VA f. nigrum (44.09%) and VM tall 

(42.08%), which is relevant for their utilization on the field, this poses a significant challenge. 

Despite this clarity, it focuses attention on the fact that there were lots of misclassification of 

phenotypes, and this can best be explained as phenotype variability, as already highlighted by 

Kinsman (1993). This may further shift focus to the similarities between these phenotypes rather 

than focusing attention on their spatial differences, because these phenotypes keep changing all 

the time. Therefore, though there are striking differences in stem colour, flower colour, pubescence 

on some stems and leaves, and fruit colour (Ashley, 2020; Jamieson, 2008), these 

phytomorphological differences may command little to no spectral differences in the plant. 

Time is of the essence in the identification of these phenotypes, thus, leaf colour 

differentiation (Duy, 1999) between August and September of every growing season is ideal in 

picking out VA f. nigrum. Whereas it is easy to pick out V. angustifolium f. nigrum and V. 

myrtilloides on the field by eye, it is very difficult to pick them out at the early stages of the season 

using the UAV. This is because the pubescence on the stems of V. myrtilloides plant (Wood et al., 
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2013) gives it a greyish-white colour which is similar to plant debris on the field, making the 

classification of images taken during the early growing phase very difficult if not impossible. It 

becomes more challenging when plant leaves assume an all-green leaf colour around June – July 

of both the vegetative and cropping phases, though some mixed colouration (tinges of red) can still 

be observed. After this phase, leaf colour differentiation begins to set in with a more normal form 

taking place at the vegetative phase. Berry yield harvest as a significant aspect of the production 

process inflicts levels of stress on the plant at the cropping phase, which leads to changes in leaf 

colour. Though in some cases differentiation can be observed before harvest, fruit colour and the 

harvesting process interfere with this phenomenon. Colouration from this point becomes more 

prominent in all phenotypes with no exception and pattern. Over time, plant leaves assume 

different shades of red through to blue colour and fall off the plant (Duy, 1999; Raven et al., 1992).    

Though the identification of phenotypes in the wild blueberry field is faced with 

challenges, developments from this study have identified V. angustifolium f. nigrum. This study 

impacts disease management through the development of prescription maps for the spot 

application of fungicides on susceptible phenotypes rather than a blanket application in the field. 

This implies better returns and cost savings on the overall production with a reduction in the 

amount of chemicals applied to the environment. Additionally, variable rate application of 

agrochemical products such as fertilizers, can be adopted and applied to plants on the field. Further 

investigations can be considered on phenotypic variability in yield. This is necessary because 

differences in phenotypes (Agriculture, Aquaculture, and Fisheries, 2014) contribute largely to the 

overall yield variation observed on the field, even more as commercial fields are dominated by 

these two species. 
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5.6 CONCLUSION 

This study aimed to potentially identify phenotypes on the wild blueberry fields using remote 

sensing techniques, and our outcome was affirmative. There was potential in identifying V. 

angustifolium f. nigrum and the differentiation of other classes on the wild blueberry field. Though 

there were significant challenges in identifying V. myrtilloides, the time of the season and the 

plant's developmental stage were key in their determination. Identification of phenotypes at the 

early stages of growth using the UAV was challenging. However, there was potential in phenotype 

identification between August and October when autumn begins to set in, and colour 

differentiation becomes prominent in the matured leaves (at vegetative stage 6) of the plant. 

Therefore, phenotypes as important as they are, over an extensive acreage of land, yield phenotypic 

differences may have a direct and significant bearing on the quantities of berries harvested from a 

field. Therefore, identifying disease-susceptible and tolerant phenotypes, and high-yielding 

phenotypes coupled with centered and good management practices can lead to potentially high-

yield generation from the field. 

The image classification method proved highly effective with high accuracy values as 

compared to the field spectroradiometer which targeted only phenotypes. Considering some slight 

differences observed, the spectroradiometer confirms the identification of nigrum and a 

determination of V. myrtilloides tall. However, the process is marred with challenges that are 

common to wild blueberry fields. Despite these challenges, further studies that explore other 

techniques can be undertaken in the identification of Vaccinium myrtilloides. 
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CHAPTER 6: REMOTE ASSESSMENT OF MONILINIA AND BOTRYTIS FLORAL 

DISEASES IN WILD BLUEBERRY FIELDS 

 

6.1 ABSTRACT 

Monilinia blight and Botrytis blossom blight diseases are endemic to most wild blueberry fields, 

affecting foliage and flowers respectively. Destructive techniques have long been used for disease 

assessment; however, this can be improved by using remote sensing techniques. Therefore, this 

study aimed to assess the potential of using multi- and hyperspectral sensors to detect and evaluate 

the impact of Monilinia and Botrytis blight disease on the wild blueberry field. Two approaches 

were used, (i) plot, and (ii) patch assessment using a 5-band Micasense camera and a hyperspectral 

radiometer respectively. Two commercial fields located at Lemmon Hill and Farmington were 

used, and at each site a randomized complete block experimental design with six replications, four 

treatments, and a plot size of 6 x 8 m, with a 2 m buffer between plots. Treatments consisted of (i) 

untreated control, (ii) Monilinia control, (iii) Botrytis control, and (iv) Monilinia and Botrytis 

control. Furthermore, 3 patches each of Monilinia blight, Botrytis blight, and healthy plant were 

also identified, and spectral readings were taken. Plant health assessments were conducted using 

vegetative indices (VIs) and field methods. Classification and correlation analyses were conducted 

on disease parameters. Results showed that there were no significant treatment differences in high 

values of VIs compared with non-treated plots. Correlation analysis showed that the light 

vegetative indices especially VARI, had good correlations (-0.41 – 0.58) with MB leave disease 

and BB floral disease. Results using the patch assessment have shown that there are significant 

differences in the spectral response of healthy and diseased tissues, especially in the near-infrared 

regions (715 nm – 1050 nm). This difference had a direct correlation with disease severity and 

identified specific wavebands of interest. The three classifiers behaved similarly, but SVM and RF 
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performed better than KNN with an overall classification of 96.6%. Aside from BB, the 

classification of the levels of disease severity was successful under all three classifiers. Overall, 

results have illustrated the potential of using visible light vegetative indices to differentiate and 

assess MB and BB disease pressures. 

Keywords: Remote sensing, multispectral, Monilinia blight, Botrytis blight, wild blueberry, 

classification 

 

6.2 INTRODUCTION 

Wild blueberry plants are challenged with several diseases, but prominent among them are the 

floral diseases consisting of Monilinia blight and Botrytis blossom blight disease (Hildebrand & 

Braun, 1991; Lambert, 1990; Penman & Annis, 2005). Monilinia blight disease caused by Monilini 

vaccinii-corymbosi (Reade) Honey (M.vc) and Botrytis blossom blight disease caused by Botrytis 

cinerea Pers.:Fr are yield-limiting diseases that affect both foliage and flowers of the plant 

(Hildebrand & Braun, 1991; McArt et al., 2016). In Nova Scotia, Botrytis blight disease has led to 

about 30 – 35% loss of wild blueberries (Delbridge & Hildebrand, 1995). The loss of blueberries 

because of Monilinia and Botrytis blight may vary in severity depending on the prevailing 

conditions on the field (Thompson & Annis, 2014). Disease severity varies on the field; thus, it 

depends on the temperature and wetness of the field, the inoculum levels, and the history of the 

field (Delbridge & Hildebrand, 1997b; Oudemans et al., 2018). However, assessment of disease 

pressures on the field has been done through a traditional intensive sampling using line transects, 

and visual scouting of diseases which can be laborious, time-consuming, expensive, and requires 

a high level of expertise (Abdulridha et al., 2020). Therefore, shifting from this traditional 

approach will require some advanced techniques. 
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Advancements in the use of remote sensing techniques have allowed for a shift from the 

destructive approach to a non-destructive assessment of diseases in the field (Jones et al., 2007; 

Khaled et al., 2018; Tao et al., 2020). Developments in research have shown the capability of 

remote techniques in detecting disease and their development in several crops (Khaled et al., 2018). 

A study conducted by Mahlein et al., (2013) developed a spectral disease index (SDI) to 

differentiate between three diseases (Cercospora leaf spot, sugar beet rust, and powdery mildew). 

With several other techniques, diseases have been determined in crops (Calderón et al., 2013; Heim 

et al., 2019; Huang et al., 2012; Mirandilla et al., 2023; Zheng et al., 2018). Abdulridha et al., 

(2019) used a multispectral sensor to detect laurel wilt disease in avocados. These techniques have 

been used to observe changes and detect pests and diseases in several crops; Cnaphalocrocis 

medinalis in rice (Huang et al., 2012), Schizaphis graminum in wheat (Yang et al., 2005), and 

yellow rust disease in wheat (Zheng et al., 2018) among others. With an added potential in 

detecting or discriminating diseases, VIs such as the normalized difference vegetative index 

(NDVI), green leaf index (GLI), green, red vegetative index (GRVI), enhanced NDVI (ENDVI), 

and chlorophyll index (Cl) among several indices have been used in the detection process (Mahlein 

et al., 2013; Tilly et al., 2015; Xue & Su, 2017a). Therefore, depending on the disease severity, 

VIs can discriminate between healthy and diseased plants on the field. This process is influenced 

by the pigment composition of the plant leading to some unique spectral signatures. Despite the 

success of these techniques, these methods have not been explored in the wild blueberry fields for 

disease assessment. Remote detection of Botrytis blight has been conducted in strawberries 

(Siedliska et al., 2018), and eggplant leaves (Wu, Feng, & He, 2008), and recently in cavities using 

ultrasonic imager (Liu et al., 2021). However, little is known about both Monilinia blight and 

Botrytis blossom blight using remote detection in wild blueberries. Since major studies conducted 
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on wild blueberry fields focus on other assessments, much consideration is needed in disease 

assessment. 

The significance of disease and its management is paramount in every agricultural 

enterprise including wild blueberries. Though major investments in research and development 

point to the destructive approach (Percival & Beaton, 2012), there is a need to potentially explore 

the non-destructive approaches. Rather than laboratory assessments which is the popular method, 

field assessment can be explored using rapid automated remote sensing techniques. Therefore, the 

ability to detect or identify diseases can be realized using sensors such as multispectral and 

hyperspectral sensors. This study was aimed at exploring the use of both multispectral and 

hyperspectral sensors in disease detection. Therefore, the objective of this study was to assess the 

potential of using vegetative indices to differentiate and determine between healthy and diseased 

plants in wild blueberry fields. 

 

6.3 MATERIALS AND METHODS 

6.3.1 Disease assessment by plots 

6.3.1.1 Study area 

Across five growing seasons (2019, 2020, 2021, 2022), seven trials were set up in different 

commercial fields for this study. These sites consist of Farmington (FT), Lemmon Hill (LH), 

Kemptown (KT), Mount Thom (MT), Web Mountain (WM) and Fox Point (FP). These sites are 

considered among some of the main blueberry production sites located in Nova Scotia, with 

geographic coordinates (45.573652°N, 63.894130°W - FT), (45.188587°N, 62.874343°W - LH), 

(45.498936°N, 63.100716°W - KT), (45.492214°N, 62.992821°W - MT), (45.567471°N, 
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63.693730°W - WM) and (45.395997°N, 64.505709°W - FP) respectively. These areas are prone 

to wet conditions that can be encountered for an extended period. This condition increases the 

devasting effect of diseases on the field which affects plant yield (Percival & Beaton, 2012). 

 

6.3.1.2 Experimental design and fungicide application 

The same experimental design and fungicide application as discussed in Sections 4.3.2 and 4.3.3 

of Chapter four was adopted. 

    

Figure 6.1. Disease spread on the wild blueberry field. (A) A healthy blueberry patch, (B) 

Monilinia blight disease-infested patch, and (C) a Botrytis blight disease-infested field  

 

6.3.1.3 Disease assessment, yield component, and berry yield 

This study adopted the methods of Percival & Beaton, (2012) as described in Section 4.3.4.1 of 

Chapter four. Stem collection was done seven to ten days after the initial fungicide application and 

at weekly intervals until fruit set. The stem samples were kept in plastic bags, placed on ice, and 

then taken back to the laboratory for further examination of Monilinia and Botrytis blight disease 

developments (incidence and severity). Disease incidence was determined as the proportion of 

A 

C B 
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floral buds or leaf buds with visual symptoms of disease within a stem (A). Severity was estimated 

by proportion tissue area of each flower with visual symptoms of Monilinia and Botrytis blight on 

a stem. Disease severity was assessed as the percentage of floral tissue area or leaf tissue area 

infected with visual symptoms of the disease on the stem (B). Other parameters to be recorded 

include stem length, number of vegetative nodes, number of floral nodes per stem, and number of 

flowers per stem of buds and bud stages.  

A. Disease incidence% (E.g., Floral/Leaf basis): 

= 
Number of floral nodes/tissue or vegetative nodes/tissue affect with at least a lesion

Total number of floral or vegetative nodes
 x 100    

 

B. Disease Severity (E.g., Surface Area Basis) 0 to 100% rating scale where 0 = no disease and 

100% = entire surface of each blossom/ leaf tissue area affected (average of the overall percentage 

of blossom/ leaf surface area affected) 

Berries were harvested in August with a forty-tine commercial wild blueberry hand rake 

from six randomly selected 1 m2 quadrat in each plot. Harvested berries from each plot were 

weighed with an Avery Mettler PE 6000 digital balance, and data was recorded.  

 

6.3.2 Data collection 

6.3.2.1 Remote assessment by plot using the micasense camera 

The process described and used in Sections 3.3.5 and 3.3.5.1 of Chapter three was adopted. 

However, imagery was acquired within an interval of seven to twelve days. 
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6.3.2.2 Disease assessment by patch using the hyperspectral sensor 

Three patches of each treatment, MB, BB, and healthy (control), were identified separately and 

tagged. Field assessments of the diseased patch were calculated as a percentage area of plant tissue 

infected with the disease (Percival & Beaton, 2012). Therefore, spectral readings were taken at the 

3 disease severities: low (1 – 30%), moderate (30 – 70%), and high (70 – 100%) disease damage. 

 

   

Figure 6.2. Treatment layout for data collection using the handheld hyperspectral radiometer. H – 

Healthy patch, MB – Monilinia blight patch, and BB – Botrytis blight patch. Initial, moderate, and 

high represent disease severity levels. 

 

6.3.2.3 Data acquisition from hyperspectral platform 

The same hyperspectral platform used in Section 4.3.5 of chapter four was utilized. Similarly, the 

same vegetative indices listed in Table 3.1 of Chapter three were also used, but with an addition of 

SAVI, which is described under Table 2.5 of Chapter two. 

 

H 

MB 

BB 

H 

MB 

BB 

H 

MB 

BB 

Initial Moderate High 
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6.3.2.4 Statistical analysis (parameter and aerial analysis) 

As adopted by Devadas et al., (2015), an analysis of variance (ANOVA) was performed to 

determine which treatments; healthy, MB, and BB disease were significantly different at the 

different severity levels. Healthy, MB, and BB treatments were compared at three severity levels 

(low, moderate, and severe) for all vegetative indices as adopted by Zheng et al., (2018) and 

Calderón et al., (2013).   Therefore, where differences are observed, the least significant difference 

(LSD) was used for multiple means comparison at α = 0.05. For statistical testing, the error terms 

fulfill all model assumptions, thus the assumptions of normality (Anderson-Darling test at α = 0.1), 

constant variance, and independence of the error terms were fulfilled. The ANOVA was conducted 

using the Statistical Analysis System (SAS) (version 9.4, SAS Institute, Inc., Cary, NC). 

Spectral data were explored to distinguish between diseased and healthy plant treatments 

at the different stages using three parameters (i) spectral difference value, (ii) sensitivity values, 

and (iii) correlation values which established the strength of the relationship between spectral 

bands. 

Spectral difference value = (Mean reflectance value of healthy plants - mean reflectance of 

diseased plants) 

Sensitivity Value = 
(Mean reflectanc of diseased plant [MB or BB])

(Mean reflectance of healthy plants)
  of each wavelength 

Classification analysis was further performed on the hyperspectral data using 3 classifiers 

namely, the K - nearest neighbour (KNN), random forest (RF), and support vector machine (SVM) 

as have been conducted in other studies (Huang et al., 2012; Mirandilla et al., 2023). A dataset of 

270 spectral readings was computed into 90 VIs which were subjected to classification with 0.75 

and 0.25 of the data set used as test and training samples respectively. This approach was subjected 
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to a 10-fold cross-validation and the process repeated 20 times. In addition, the variable inflation 

factor (VIF) (Figure) analysis was conducted, as this measured the degree of multicollinearity of 

the independent variables. Therefore, the number of independent variables in this multiple 

regression model was reduced because there was high correlation between some variables. These 

methods were used in this supervised classification to ultimately generate a variable importance 

chart and the accumulated local effect (ALE) plots. Therefore, predictors were represented as 

vegetative indices which allowed a VI value to determine which treatment group they belonged to. 

In addition, the probability histogram function which defines the likelihood of a series of random 

variable outcomes predicting a discrete variable or a continuous variable was assessed. Thus, this 

function is a statistical measure used to determine the ability of a VI to discriminate between 

diseases (Su et al., 2018). These statistical analyses were all conducted in R software version 4.2.3 

(R Core Team, 2023).   

 

 

6.4 RESULTS 

6.4.1 Patch assessment 

For each treatment class shown (Figure 6.3a), spectral signatures were averaged into a single class. 

It was obvious that disease treatments as compared to healthy plants have a significant spectral 

difference as severity increases. These spectral differences are seen both in the visible and near-

infrared light regions. The disease spectrum observes a low absorption of light in the blue and red 

regions coupled with a low level of reflectance in the green and near-infrared regions. The healthy 

vegetation observed a strong absorption of blue and red light with a strong reflectance of green 
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and near-infrared light. These differences can be associated with pigment changes in leaves which 

are mostly seen in the visible light region (455 – 770 nm) (Figure 2.3).  

Progression in disease severity had significant impact on the different treatment signatures. 

Therefore, it was observed (Figure 6.3) that low severity stage showed almost the same spectral 

curve for all treatments except for MB. A clear difference is realized as severity progresses, 

therefore, dissociation becomes prominent between the different severity levels.  

The spectral signature of the healthy plant was consistent with high photosynthetic activity 

around the visible (VIS) region, thus a high reflectance peak of the photosynthetic pigments around 

the green regions were observed, coupled with a high reflectance at the near infrared (NIR) regions 

(Figure 6.3a). This observation was consistent with the spectral signatures of the healthy plant; 

thus, the healthy signatures were used as standards for comparison with the spectral signatures of 

diseased tissues. The reflectance graph indicates an average of spectral signatures of healthy, MB 

and BB diseases at their different severity levels.  Some differences were observed between the 

healthy and diseased signatures both at the visible (350 – 700 nm) and the near-infrared (701-1050 

nm) regions. According to the degree of Monilinia blight disease severity, the reflectance was 

either high or low, thus, high severity observed low reflectance while healthy showed a high 

reflectance both at the VIS and NIR regions. 
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Figure 6.3. Reflectance data on Monilinia blight (MB) disease:(a) Mean reflectance values, (b) 

Spectral difference and (c) Sensitivity values. 

 

Spectral differences between the healthy and the various MB severities revealed specific points of 

interest. All three severities (high, moderate, and low) showed similar patterns, thus 555, 681, and 

761 nm are considered the highest points of interest (Figure 6.3b). Whereas low severity observed 

the lowest spectral difference, high and moderate severities observed a high spectral difference. 

Sensitivity values slightly differed but were largely similar across the three severities. In all three 

severities, these wavelengths 745, 680, 554, 484, and 415 nm were the highest sensitivity points 

and were consistent for all three conditions (Figure 6.3c).   
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Figure 6.4. Reflectance data on Botrytis blight (BB) disease:(a) Mean reflectance values, (b) 

Spectral difference and (c) Sensitivity values. 

 

Spectral reflectance for the healthy and diseased signatures was consistent with established 

principles, thus, high absorbance was observed at the blue and red regions with high reflectance at 

the green and near-infrared regions of the healthy tissues. This occurrence is consistent with the 

healthiness and photosynthetic activity of the plant, thus, a deviation from the norm may reflect 

either biotic or abiotic interference. The graph indicates an average of spectral signatures of healthy 

and diseased tissues at different severity levels (Figure 6.4a). Spectral differences between the 

different treatments were observed at the visible (350-700 nm) and near-infrared (701-1050 nm) 

portions of the light spectrum. Unlike the healthy treatment, the spectral signature of the diseased 

tissues observed a low reflectance at the spectrum’s VIS and NIR regions. However, similar 
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spectral patterns were observed for the diseased signatures except for the high severity that 

observed a low reflectance in the VIS regions. 

The difference in reflectance values varied depending on the disease severity level, thus, 

high severity observed a significant change in value compared to moderate and low Botrytis blight 

disease (Figure 6.4b). Between 500 to 680 nm wavelength, differences were established between 

the high, moderate, and low severity, however, there was no difference between the low and the 

moderate severity at the VIS region (Figure 6.4b). From 710 nm to 1000 nm wavelength, 

significant variations were observed between the different severities.  

Botrytis blight sensitivity differences occurred at the VIS and NIR regions, thus, the three 

severities can be differentiated between 350-680 nm and 700-900 nm (Figure 6.4c). The high 

severity observed a clear difference in both the visible and the near-infrared regions as compared 

to the low and moderate severities. Across the spectrum length, low and moderate severity 

performed similarly while high severity maintained a similar pattern but with a significant 

difference in sensitivity value. 

6.4.1.1 Analysis of variance on spectral signatures using vegetative indices 

Furthermore, an analysis of variance using vegetative indices showed that there was significant 

differences between treatments (Table 6.1). At the 3 severity levels, significant differences were 

established across all treatments. Consistently, MB was significantly different from the healthy 

treatment with some significant differences from BB treatment. The BB treatment was not 

consistent under both moderate and severe disease levels; however, low BB showed some 

consistency across all 6 VIs. Therefore, it indicates that there is possibility in identifying or 

classifying these broad treatment groups. 
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Table 6.1. Analysis of disease assessment on healthy patch, Monilinia diseased patch, and Botrytis 

disease patch at the different severities using vegetative indices (VIs). 

Treatments NDVIL NDVIM NDVIS ENDVIL ENDVIM ENDVIS 

Healthy 0.879 a 0.903 a 0.903 a 0.548 a 0.610 a 0.610 a 

MB 0.771 b 0.571 c 0.621 b 0.412 b 0.170 c 0.019 c 

BB 0.830 ab 0.652 b 0.652 b 0.590 ab 0.219 b 0.219 b 

ANOVA p < 0.004 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

 GLIL GLIM GLIS GRVIL GRVIM GRVIS 

Healthy 0.565 a 0.590 a 0.590 a 0.501 a 0.538 a 0.538 a 

MB 0.345 b 0.056 c 0.105 c 0.229 b -0.08 c -0.004 b 

BB 0.428 b 0.199 b 0.194 b 0.327 b 0.028 b 0.028 b 

ANOVA p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

 NDREL NDREM NDRES SAVIL SAVIM SAVIS 

Healthy 0.288 a 0.299 b 0.299 a 0.670 a 0.720 a 0.720 a 

MB 0.269 c 0.245 c 0.241 b 0.545 b 0.345 b 0.281 c 

BB 0.302 b 0.315 a 0.315 a 0.621 a 0.377 b 0.377 b 

ANOVA p < 0.001 p < 0.008 p < 0.001 p < 0.007 p < 0.001 p < 0.001 

 VARIL VARIM VARIS    

Healthy 0.600a 0.645 a 0.645 a    
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MB 0.292b -0.112 b -0.007 b    

BB 0.404b 0.035 b 0.035 b    

ANOVA p < 0.001 p < 0.001 p < 0.001    

1 Analysis of variance (ANOVA) with significance at p<0.05. Mean separation was completed 

using Fisher’s multiple means comparison test procedure (ά=0.05). L, M, and S represent low, 

moderate, and severe disease damage. 

 

6.4.1.2 Classification of diseases using KNN, RF, and SVM classifiers 

Classification using vegetative indices under the different classifiers revealed similarities and 

differences between some of these classifiers. Results have shown that discrimination or 

classification into the three broad groups achieved very good results with the highest overall 

accuracy (OA) value of 96.6% (Table 6.2). Across the entire table, between the producer and user 

accuracy, the highest accuracy achieved was 100%, and this occurred under Botrytis blight disease 

using the RF classifier. Classification of Botrytis blight received high percentages under both 

user’s and producer’s accuracy of RF and SVM classifiers. However, comparing the 3 classifiers 

and their disease treatments, results have shown that the SVM classifier generated the best outcome 

among the three classifiers. In addition, some relatively low accuracy values obtained for 

Monilinia indicate some levels of misclassification (Table 6.2). The classification of Monilinia 

blight under both RF and SVM classifiers of the user’s and producer’s accuracy received the lowest 

values under both SVM and RF classifiers. Generally, these results have shown that broadly 

identifying these major classes is possible using VIs, with the highest possibility of identifying 

Botrytis blight conditions (Table 6.2). 
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Table 6.2. Confusion matrix on disease conditions using KNN, RF, and SVM classifiers. 

Classifier 
 

Botrytis Healthy Monilinia U. accuracy 

(%) 

 

 

 

  K – Nearest 

Neighbour 

Botrytis 31.8 1.2 1.9 91.1  

Healthy 1.1 32.2 0.9 94.2  

Monilinia 0.4 0.0 30.5 98.7  

 P. accuracy (%) 95.5 96.5 91.5 94.7 

 

 

 

Random 

Forest 

Botrytis 33.3 0.0 0.1 99.8 

Healthy 0.0 31.1 1.3 96.1 

Monilinia 0.0 2.2 32.0 93.5 

 P. accuracy (%) 100 93.3 96.0 96.5 

 

 

 

Support 

Vector 

Machine 

(SVM) 

Botrytis 32.2 0.0 0.1 99.8 

Healthy 0.0 32.2 1.2 96.5 

Monilinia 1.1 1.1 32.1 93.5 

 P. accuracy (%) 96.7 96.7 96.3 96.6 

  

Conversely, the classification of the three disease severity levels highlights different levels 

of misclassification both under the user’s and producer’s accuracy (Table 6.3). However, results 

using the OA, showed that the SVM classifier among the three classifiers was the best, with a 

value of 76.83%, followed by KNN (70.8%) and then RF (70.67%) classifier. Furthermore, results 

from all three classifiers have shown that determination of BB at low severity was consistently 

high under both user’s and producer’s accuracy with the highest value of 95.27%. Determination 

of both moderate and severe BB condition was very poor under all 3 classifiers. Conversely, MB 

low, moderate, and severe conditions were highly classified under all 3 classifiers. 
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Table 6.3. Confusion matrix of the different disease severities using KNN, RF, and SVM 

classifiers. 

Classifier 
 

Low - 

BB 

Mod. - 

BB 

Sev. - 

BB 

Healthy Low -

MB 

Mod. -

MB 

Sev. - 

MB 

U.  

accuracy 

(%) 

 

 

 

K – Nearest 

Neighbour 

(KNN) 

Low – BB 7.89 1.00 1.00 1.11 0 0.50 0 68.6 

Mod – BB 1.06 0.44 9.67 0 0 0.33 0 3.9 

Sev – BB 1.17 9.50 0.28 0 0 0.28 0 2.5 

Healthy 1.00 0 0 32.11 1.11 0 0 93.8 

Low – MB 0 0.17 0.17 0.11 10.00 0 0 95.8 

Mod – MB 0 0 0 0 0 10.00 1.00 90.9 

Sev - MB 0 0 0 0 0 0 10.11 100 

P. accuracy 

(%) 

71 4 2.5 96.3 90 90 91 70.8 

 

 

 

Random 

Forest (RF) 

Low – BB 8.72 1.56 1.83 0 0 0 0 72.02 

Mod – BB 1.94 0.78 9.22 0 0 0 0 6.51 

Sev – BB 0.28 8.78 0.06 0 0 0 0 0.61 

Healthy 0.17 0 0 31.11 1.11 0 0 96.05 

Low – MB 0 0 0 2.22 10 0 0 81.82 

Mod – MB 0 0 0 0 0 10 1.11 90 

Sev - MB 0 0 0 0 0 1.11 10 90 

P. accuracy 

(%) 

78.5 7 0.5 93.33 90 90 90 70.67 

 

 

 

Support 

Vector 

Machine 

(SVM) 

Low – BB 7.83 0.17 0.22 0 0 0 0 95.27 

Mod – BB 1.11 2.28 8.56 0 0 0 0 19.07 

Sev – BB 1.11 8.67 2.33 0 0 0.06 0 19.18 

Healthy 0.00 0 0 32.22 1.11 0 0 96.67 

Low – MB 1.06 0 0 1.11 10.00 0 0 82.19 

Mod – MB 0.00 0 0 0 0 11.06 0 100 

Sev - MB 0.00 0 0 0 0 0 11.11 100 

P. accuracy 

(%) 

70.5 20.5 21 96.6 90 99.5 100 76.83 
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The healthy treatments were highly classified under all 3 classifiers with SVM and RF 

generating the two highest classification values of 96.67% and 96.05% respectively (Table 6.3). 

Generally, SVM performed best compared to KNN and RF classifiers, with a consistent outcome 

across the three disease levels of both MB and BB. Therefore, it can be stated that all three severity 

levels of MB disease can be determined, however, only the low severity of Botrytis blight disease 

can be determined. Moderate and low severity conditions of BB have shown difficulty in their 

classification thus, alternative approaches can be utilized.  

 

6.4.1.3 Variable importance chart 

The effect of multicollinearity was resolved using the variable inflation factor (VIF) analysis. 

Therefore, out of the 7 independent variables, only three (ENDVI, NDRE, and VARI) were used 

in the classification process, thus, their individual contributions can be observed in their variable 

importance chart and accumulated local effect (ALE) plots under the different classifiers. 

Therefore, the classifications conducted identified predictors (VIs) that contributed significantly 

to the results observed.  

Comparing all 3 classifiers, the contribution of VARI in classifying BB, Healthy, and MB 

was significant under KNN and RF (Figures 6.5 and A2) but was second under the SVM classifier. 

NDRE was significant under only SVM, but second under RF in classifying BB, Healthy, and MB 

treatments. The contribution of ENDVI was low as it was represented second under only KNN, 

but last in both SVM and RF classifiers which is further explained by the ALE plot (Figure 6.6). 

The same output was observed under the disease severity levels, except that VARI was 

significantly high in all 3 classifiers. 



188 
 

The broad classification under disease severity also followed similar patterns of 

contribution from VARI, NDRE, and ENDVI, thus, the ALE plot highlights in detail the individual 

contributions in achieving the established classifications from the different classifiers (Figure 6.7). 

Conversely, the Probability density function (PDF) establishes the likelihood of these variables predicting 

or classifying any of these treatments. Results have shown that the visible light vegetative indices (VIS) 

contributed significantly (Figures 6.8 and A5).  

 

Figure 6.5. A variable importance chart on the three selected VIs (VARI, NDRE, and ENDVI) 

using an RF classifier to determine the 3 conditions, BB, Healthy, and MB treatments. 
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Figure 6.6. ALE plots on the broad treatment classifications of contributions from the three 

selected variables (ENDVI, NDRE, and VARI) under the RF classifier. 

 

 

 

Figure 6.7. ALE plots on the different disease severity classifications of ENDVI, NDRE, and 

VARI using the RF classifier. 



190 
 

 

Figure 6.8. The probability density function of VARI measured on the three treatment conditions. 

 

6.4.2 Plot assessments 

 

On the plot assessment aspects, the general comparison between aerial and ground data revealed 

that there was a moderately low correlation, thus, VIs did not perform as expected in determining 

disease from an aerial perspective. Though there were relatively no significant differences between 

the field treatments (Tables 6.6 and 6.8), analysis using VIs (Tables 6.7 and 6.9) also revealed 

similar results. Since VIs reflected what was obtained from the various plots, it stands to explain 

the nonsignificant differences observed in the disease trials (Tables 6.6 and 6.8). Furthermore, the 

difficulty in establishing differences between field treatments were confirmed by their reflectance 

values (Figure 6.9). Therefore, at the blue, green, and red bands of the light regions, no significant 

differences were established. 
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 Figure 6.9. Mean reflectance data from 2 flights showing 3 specific light bands under the four 

disease treatments from the Farmington trial; (A) 19th June 2019 and (B) 10th June 2019. 

 

Despite the non-significance observed between treatments, it was observed that mean 

values from the control treatments (Tables 6.5 and 6.7) were consistently low for all sampled dates 

for the light VIs, except for the NIR indices. For the NIR indices, the Botrytis control treatment 

obtained the lowest mean values with the combined treatments showing generally high mean 

values for some indices across the two tables (Tables 6.5 and 6.7). Notwithstanding, the non-

significance of VIs between the different treatments, differences in mean values reflecting 

treatment differences can be inferred. Therefore, the combined treatments across the different VIs 

observed the highest values, indicating some marginal differences between treatments (Tables 6.5 

and 6.7;). Differences using reflectance values confirm the outcome of the treatment differences 

Appendix Table 1A – 19A between VIs. Results have shown little to no differences between the 

light bands of the various treatments (Figure 6.9). Since VIs are computed using reflectance values 

from these light regions, thus the non-significance observed between these reflectance values 

translates into a nonsignificant difference between VIs. 
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Table 6.4. Incidence and severity of Monilinia and Botrytis blight disease observed from Kemptown after the 2nd fungicide application. 

Plant samples for this observation were collected on [4th June 2020, 3rd collection]. 

Treatment Monilinia 

incidence of 

floral nodes 

(%)1 

Monilinia 

incidence of 

vegetative 

nodes (%)2 

Monilinia 

severity of 

floral node3 

Monilinia 

severity of 

Vegetative 

node4 

Botrytis 

incidence of 

floral nodes 

(%)5 

Botrytis 

incidence of 

vegetative 

nodes (%)6 

Botrytis 

severity of 

floral node7 

Botrytis 

severity of 

vegetative 

node8 

Untreated Control 0 0.01 0 0.06 0 0 0 0 

Monilinia Control 0 0 0 0 0 0 0 0 

Botrytis Control 0 0 0 0 0 0 0 0 

Monilinia & 

Botrytis Control 

0 0 0 0 0 0 0 0 

ANOVA Results9 NS NS NS NS NS NS NS NS 

1,2,5,6 % Incidence = 0 to 100% where 0 = no blossoms/leaves affected and 100 = all blooms/leaves are affected with at least one lesion. 
3,4,7,8 Severity = 0 to 9 rating scale where 0 = no disease and 9 >= 90% of each blossom/leaf tissue is affected. 9 Analysis of variance 

(ANOVA) represented treatments that were significant or otherwise. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (ά=0.05). 

 

Table 6.5. Aerial vegetative indices (VIs) were observed from Kemptown after the 2nd fungicide application.  

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated Control 0.044 -0.109 -0.147 0.559 0.281 0.645 0.810 

Monilinia Control 0.070 -0.084 -0.113 0.601 0.291 0.678 0.844 

Botrytis Control 0.080 -0.067 -0.093 0.556 0.275 0.640 0.768 

Monilinia & 

Botrytis Control 

0.082 -0.070 -0.095 0.605 0.289 0.680 0.847 

ANOVA Results1 NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05). 

 

 

1
9

2
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Table 6.6. Incidence and severity of Monilinia and Botrytis blight disease observed from Kemptown after the 3rd fungicide application. 

Plant samples for this observation were collected on [17th June 2020, 4th collection]. 

Treatment Monilinia 

incidence of 

floral nodes 

(%)1 

Monilinia 

incidence of 

vegetative 

nodes (%)2 

Monilinia 

severity of 

floral node3 

Monilinia 

severity of 

Vegetative 

node4 

Botrytis 

incidence of 

floral nodes 

(%)5 

Botrytis 

incidence of 

vegetative 

nodes (%)6 

Botrytis 

severity of 

floral node7 

Botrytis 

severity of 

vegetative 

node8 

Untreated 

Control 

0.01 0.19 0.11 0.76 0.17a 0 1.33a 0 

Monilinia Control 0 0.21 0 0.53 0.02b 0 0.11b 0 

Botrytis Control 0.01 0.01 0.09 0.11 0b 0 0b 0 

Monilinia & 

Botrytis Control 

0.02 0.03 0.33 0.11 0b 0 0b 0 

ANOVA Results9 NS NS NS NS Sig. 

(p<0.0016) 

NS Sig.  

(p<0.0080) 

NS 

1,2,5,6 % Incidence = 0 to 100% where 0 = no blossoms/leaves affected and 100 = all blooms/leaves are affected with at least one lesion. 

3,4,7,8 Severity = 0 to 9 rating scale where 0 = no disease and 9 >= 90% of each blossom/leaf tissue is affected. 

9 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean separation was completed 

using Fisher’s multiple means comparison test procedure (ά=0.05). 

 

Table 6.7. Aerial vegetative indices (VIs) observed from Kemptown after the 3rd fungicide application. 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated Control 0.195 0.196 0.318 0.426 0.056 0.334 0.634 

Monilinia Control 0.241 0.254 0.408 0.501 0.078 0.385 0.734 

Botrytis Control 0.222 0.229 0.362 0.434 0.056 0.345 0.592 

Monilinia & 

Botrytis Control 

0.261 0.278 0.436 0.510 0.084 0.396 0.727 

ANOVA Results1 NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean separation was completed 

using Fisher’s multiple means comparison test procedure (ά=0.05).

 

1
9
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6.4.2.1 Correlation and regression analysis 

 

The overall strength and direction of correlation between MB and BB incidence and severity varied 

across the different years (Tables 6.10.1 to 6.10.7). Correlation values were generally low with a 

blend of both positive and negative correlation strengths across the different years. A significantly 

high correlation strength occurred between VIs (GLI, VARI, GRVI, NDVI, SAVI) and BB 

incidence and severity components, with values ranging between 0.41 to 0.58. Observation shows 

that both the near-infrared VIs and the light VIs had a good correlation with MB leave incidence 

and severity and both MB and BB floral incidence and severity. However, these observations were 

not consistent across the different years.  

 

Table 6.8. Relationship between ground observations and VIs. A correlation between Monilinia 

blight (MB) and Botrytis blight (BB) severity on floral buds (Fb) and leaves (L) compared to 

vegetative indices obtained on the 10th and 19th of June 2019 at Farmington.  

 

 

Vegetative 

indices 

 

10th June 2019 

  

19th June 2019 

MB/Fb 

severity 

MB/L 

severity 

 MB/Fb 

severity 

MB/L 

severity 

BB/Fb 

severity 

GLI 0.17 0.06  0.11 0.38* -0.08 

GRVI 0.07 0.19  0.13 0.34 -0.07 

VARI 0.09 0.09  0.14 0.33 -0.06 

*Significant at p < 0.05.  
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Table 6.9. Correlation of different VIs with Monilinia blight (MB) and Botrytis blight (BB) 

incidence and severity on floral buds (Fb) and leaves (L) obtained from trial plots at Kemptown 

on the 28th of May and 17th of June 2020.  

 

 

Vegetative 

indices 

 

28th May 2020 

  

17th June 2020 

MB/L 

Incidence 

MB/L 

severity 

 MB/Fb 

Incidence 

MB/Fb 

Severity 

MB/L 

Incidence 

MB/L 

severity 

BB/Fb 

Incidence 

BB/Fb 

Severity 

GLI -0.06 0.02  0.26 0.31 0.37 0.31 -0.24 -0.26 

GRVI -0.03 0.04  0.27 0.32 0.38 0.31 -0.24 -0.26 

VARI -0.04 0.04  0.27 0.31 0.39* 0.32 -0.25 -0.27 

NDVI -0.17 -0.06  0.21 0.29 0.32 0.25 -0.25 -0.23 

ENDVI -0.19 -0.08  0.21 0.29 0.29 0.23 -0.24 -0.24 

NDRE -0.18 -0.09  0.08 0.15 0.04 0.02 -0.19 -0.14 

SAVI -0.26 -0.14  0.20 0.28 0.40* 0.33 -0.25 -0.24 

*Significant at p<0.05 

Table 6.10. Correlation of different VIs with Monilinia blight (MB) and Botrytis blight (BB) 

incidence and severity on floral buds (Fb) and leaves (L) obtained from trial plots at Lemmon Hill 

on the 28th of May and 4th of June 2020.  

 

 

Vegetative 

indices 

 

28th May 2020 

  

4th June 2020 

MB/Fb 

Incidence 

MB/Fb 

severity 

MB/L 

Incidence 

MB/L 

severity 

 MB/Fb 

Incidence 

MB/Fb 

Severity 

MB/L 

Incidence 

MB/L 

severity 

GLI 0.37 0.37 0.36 0.30  -0.33 -0.33 -0.11 -0.12 

GRVI 0.33 0.33 0.36 0.29  -0.34 -0.34 -0.078 -0.12 

VARI -0.02 -0.02 0.48* 0.41*  -0.31 -0.31 -0.01 -0.05 

NDVI 0.20 0.20 0.33 0.29  -0.10 -0.10 -0.41* -0.34 
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ENDVI 0.18 0.18 0.25 0.23  -0.04 -0.04 -0.39* -0.30 

NDRE -0.04 -0.04 0.25 0.23  -0.01 -0.01 -0.35 -0.29 

SAVI -0.55* -0.55* 0.19 0.22  0.12 0.12 0.09 0.11 

*Significant at p<0.05 

Table 6.11. Correlation of different VIs with Monilinia blight (MB) and Botrytis blight (BB) 

incidence and severity on floral buds (Fb) obtained from trial plots at Mount Thom on the 12th of 

June 2021.  

Vegetative indices MB/Fb 

Incidence 

MB/Fb 

severity 

BB/Fb 

Incidence 

BB/Fb 

severity 

GLI 0.080 0.080 -0.375 -0.375 

GRVI 0.022 0.022 -0.067 -0.067 

VARI 0.031 0.031 -0.105 -0.105 

*Significant at p<0.05 

Table 6.12. Correlation of different VIs with Monilinia blight (MB) and Botrytis blight (BB) 

incidence and severity on floral buds (Fb) and leaves (L) obtained from trial plots at Farmington 

on 26th May 2022.  

Vegetative 

indices 

MB/Fb 

Incidence 

MB/Fb 

severity 

MB/L 

Incidence 

MB/L 

severity 

 BB/Fb 

Incidence 

BB/Fb 

Severity 

BB/L 

Incidence 

BB/L 

severity 

GLI 0.02 0.02 -0.18 -0.18  0.39 0.39 -0.13 -0.16 

GRVI 0.04 0.04 -0.16 -0.16  0.37 0.37 -0.16 -0.19 

VARI 0.04 0.04 -0.16 -0.16  0.37 0.37 -0.15 -0.18 

NDVI 0.09 0.09 -0.13 -0.22  0.35 0.35 -0.05 -0.06 

ENDVI 0.07 0.07 -0.15 -0.25  0.37 0.37 -0.01 -0.02 

NDRE 0.10 0.10 -0.06 -0.22  0.25 0.25 -0.33 0.32 

SAVI 0.10 0.10 -0.13 -0.15  0.35 0.35 -0.16 -0.19 
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*Significant at p<0.05 

Table 6.13. Correlation of different VIs with Monilinia blight (MB) and Botrytis blight (BB) 

incidence and severity on floral buds (Fb) and leaves (L) obtained from trial plots at Farmington 

on 2nd June 2022.  

Vegetative 

indices 

MB/Fb 

Incidence 

MB/Fb 

severity 

MB/L 

Incidence 

MB/L 

severity 

 BB/Fb 

Incidence 

BB/Fb 

Severity 

BB/L 

Incidence 

BB/L 

severity 

GLI 0.22 0.07 -0.23 -0.27  0.54* 0.43* -0.04 -0.04 

GRVI 0.20 0.04 -0.24 -0.28  0.57* 0.47* -0.06 -0.06 

VARI 0.18 0.02 -0.25 -0.28  0.58* 0.47* -0.07 -0.07 

NDVI 0.16 0.11 -0.26 -0.24  0.41* 0.29 -0.08 -0.08 

ENDVI 0.21 0.17 -0.23 -0.20  0.33 0.22 -0.06 -0.06 

NDRE 0.14 0.12 -0.01 -0.02  0.22 0.20 0.22 0.22 

SAVI 0.13 0.03 -0.23 -0.26  0.48* 0.36 -0.14 -0.14 

*Significant at p<0.05 

Though the harvestable yield results do not have a direct bearing on the focus of this study, 

it does illustrate the need and implication of disease management in the production system. 

Therefore, across the various years, the effect of the combined treatment (MB + BB) caused a 

significant increase in yield except in 2019 and 2023 at LH and FP respectively. Yields from LH 

and FP observed a reduction of about 7.5% and 21% when compared to the control treatment. In 

both locations, this situation occurred because the treatment plots had lots of bare or weedy areas 

which affected the plant population, thus leading to low yields from those plots. Across the 

different years, the combined treatment was different from the control by a yield difference of 

between 14.6% to 95.1%. This implies that in almost all situations, the MB + BB control treatment 

performed better than the control, thus, the control treatments observed significantly low yields 

across the different years. However, results under Monilinia control also showed consistently high 
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yield values across several fields. This may reflect the significance of leaves in the photosynthetic 

mechanism of the plant as MB affects plant foliage.  

Despite the generally low disease severity from the year 2020 to 2023, treatment effects 

were reflected in the yield results (Table 6.11). The 2019 results observed the highest disease 

severity which reflected the yield differences between the control and the combined treatments. 

From 2019 at LH, MB control treatments have had the highest yield. These results may explain 

why plant foliage is significant to yield or fruit production. However, other factors like the number 

of flowers and pollination also contribute significantly to harvestable yield. 
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Table 6.14. Analysis of variance (ANOVA) on the harvestable berry yield of Monilinia and Botrytis blight disease trials from 2019 to 

2023   

Treatment FT (2019) 

(g.m2) 

LH (2019) 

(g.m2) 

LH (2020) 

(g.m2) 

KT (2020) 

(g.m2) 

MT (2021) 

(g.m2) 

FT (2022) 

(g.m2) 

FP (2023) 

(g.m2) 

WM (2023) 

(g.m2) 

Untreated 

control 

660.71d 635.65b 926.72 552.61c 699.28b 575.19b 375.50 bc 418.20 b 

MB control 990.61b 833.69a 921.58 1101.86a 863.39a 862.81a 430.47 b 460.47 b 

BB control 792.14c 691.28b 907.75 654.84c 688.31b 700.36ab 568.87 a 416.90 b 

MB + BB 

control 

1288.89a 588.19b 1025.83 798.36b 836.17a 833.50a 310.33 c 578.80 a 

ANOVA 

Results1 

p<0.0001 p<0.0028 NS p<0.0001 p<0.0040 p<0.0022 p<0.0001 p<0.0001 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (α=0.05). 
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6.5 DISCUSSION 

This study was conducted using two approaches, (i) plot assessment (UAV: Micasense) and (ii) 

patch assessment (hand-held hyperspectral radiometer), to ascertain whether vegetative indices 

can be used to determine disease severity and incidence on the wild blueberry field. Results from 

this study have given a good indication of utilizing both sensors. The study established that disease 

determination in the wild blueberry field is possible using the hyperspectral radiometer. However, 

determination of disease severity levels using VIs was possible but challenging at the plot level. 

The study has shown great potential of the light VIs to determine or identify diseases in fields. 

This study agrees with several studies on disease determination using VIs (Abdulridha et al., 2019; 

Pourazar et al., 2019; Siedliska et al., 2018; Wu, et al., 2008). 

 

6.5.1 Plot assessments of Monilinia and Botrytis blight diseases using the micasense 

Field conditions are major determinants of the degree of disease incidence and severity (Jose et 

al., 2021). The disease incidence and severity of MB and BB diseases were not observed and, in 

some situations, occurred sparsely (Table 6.4 and 6.6). Despite the pockets of infections on the 

field, disease spread and severity were substantially low, and this can be attributed to the 

unfavourable weather conditions, and the differences in phenotypic resistance (Abbey et al., 2023; 

Jose et al., 2021). Thus, until conditions are fulfilled, and large patches of plants show symptoms 

of disease damage, aerial identification, and determination of disease on the wild blueberry field 

can be difficult to assess. Monilinia and Botrytis blight disease symptoms affect the plant’s 

physiology causing leaves to appear dark brown or dense grey (Abbey et al., 2023; Jose et al., 

2021). As indicated (Figures 6.3 and 6.4), this disease phenomenon caused an increase in 

reflectance at the VIS region but a decrease in both red-edge and the NIR regions of the 
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electromagnetic spectrum when compared to the healthy plants. This principle is significant in 

most situations and agrees with the findings of Mahlein et al., (2013) and Zheng et al., (2018). In 

addition, Yue et al., (2019) suggest that the visible and near-infrared regions of the spectrum are 

the most important in stimulating biochemical and biophysical processes in plants explaining why 

differences in reflectance were observed around these regions (Figures 6.3 and 6.4). Therefore, the 

changes observed in the VIS and NIR regions can be associated with a decrease in pigmentation 

(chloroplast) and changes associated with leaf structure and water content (Mahlein et al., 2013; 

Zheng et al., 2018). Furthermore, the changes in the spectral reflectance at the shortwave infrared 

(SWIR) regions can be associated with lignin and protein content in the leaves (Zheng et al., 2018). 

Generally, a significant difference in VIs was not established, however, mean differences 

between treatments were established using VIs. Conversely, the destructive assessment method 

(line transect method) established some significant differences between treatments (Table 6.4). 

These findings agree with the work of Devadas et al., (2015) who established that canopy analysis 

using VIs on a large scale have proven ineffective in quantifying or identifying disease. Their 

initial work which focused on identifying stripe rust disease on individual leaves in the laboratory 

using VIs (Devadas et al., 2009) proved successful with significant differences between VIs, but 

translating that onto the field showed a sharp contrast between the two findings. Thus, there is a 

challenge that makes it difficult to obtain similar lab results when translated to the field. However, 

the nature of some plants can make these transitions difficult if not impossible. The wild blueberry 

plant is characteristically a low-growing shrub, with non-evergreen leaves, and high canopy 

density, with small visible structures. This presents a challenge as diseases growing within the 

plant canopy cannot easily be detected aerially. Due to the effects of diseases, the plant's leaf area 

and other developing structures shrink, and this reduces the area affected by the disease as 



202 
 

compared to the total leaf area of the plot. Coupled with this, the collective assessment of the entire 

plot reduces the significance of disease effect because of the confounding effect of the healthy 

plant population within the plot. At the individual plant or patch level, significant differences can 

be achieved (Table 6.1), but at the canopy or plot level, several factors may come into play making 

it difficult to achieve the needed results (Table 6.4 and 6.7). This result further agrees with the 

work of Di Gennaro et al., (2016) who monitored leaf strip disease in grapevines affected by the 

esca disease complex. Their findings made positive strides in treatment differentiation but also 

unlocked challenges with VIs assessments at the plot level. Results from this study agreed with 

the work of Huang et al., (2012), who monitored rice at the canopy level using hyperspectral 

imaging. Conversely, the work of Vélez et al., (2023) partially disagreed with this study as they 

established differences between BB and healthy grape vines using a Wilcoxon test. At the plot 

level, their variable importance plot supported our result as NDVI was the least important variable 

in that determination. 

Correlation (r) analysis of VIs with the incidences and severities of MB and BB showed a 

few significantly good results, however, these results were not consistent across the different years. 

GLI, VARI, GRVI, NDVI, and SAVI produced some moderately high r values. Despite not being 

specific to MB and BB diseases, these results were similar to the works of Devadas et al., (2009, 

2015) and Di Gennaro et al., (2016) who correlated results between aerial measurements using the 

multispectral sensor as against ground disease measurements. Results varied, however, r values 

across the different growth seasons showed moderately high significant results between aerial and 

ground measurements which were similar to those studies. Several factors in effect may account 

for these observations, including leaf colouration, stress tolerance of the plant, the influence of 

weeds and other growing plants (Pinto et al., 2020). At the field level, disease determination is 
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possible but the challenge of differentiating between severities can be difficult. It is often expected 

that diseases will be detected at an early stage before destroying plants, however, most of these 

detections or determinations happen after disease destruction has occurred. Disease infections 

progress until the development of necrotic leaves which makes them easy to identify and 

discriminate, but the challenge occurs when diseased tissues are buried within the canopy. 

Therefore, considering the high plant density rate of the field, this creates a minimal or negligible 

effect in spectral reflectance leading to a statistically non-significant effect. Therefore, until the 

disease effect is substantial, or its occurrence is on the canopy surface, significant differences 

between VIs may not be established. However, some of these challenges can be attributed to flush 

growth (Fang et al., 2017) that also occur around these regions, serving as a compensatory 

mechanism, aiding the plants recovery from diseased situations. 

 

6.5.2 Patch assessment of Monilinia and Botrytis blight diseases using the hyperspectral 

radiometer 

This study revealed that there was a significant treatment difference between healthy, MB and BB 

patches of wild blueberry plants at different severity levels (Figure 6.1). This result was similar 

and agrees with the findings of Vaštakaitė-Kairienė et al., (2021) who established significant 

differences between Botrytis cinerea, and healthy plant tissues collected at different time points. 

Though the majority of the regressions established were moderately low, they proved the potential 

of VIs in achieving some of these results. This study also agrees to the work of Devadas et al., 

(2015) and Di Gennaro et al., (2016) as discussed previously. Furthermore, the findings from this 

study also agree with the work of Abdulridha et al., (2020) who discriminated between disease 

severities using VIs and identified target spots in tomatoes using the hyperspectral technique. 
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Focusing on the spectral reflectance diagrams (Figures 6.3 and 6.4), indication shows that similar 

trends or patterns were observed between healthy and BB infested plants with slight differences at 

the NIR regions (Vaštakaitė-Kairienė et al., 2021). BB disease affects mainly flowers (Abbey et 

al., 2023) which are a fraction compared to the total biomass of the plant. However, the other 

consideration was to focus on the related biochemicals and biophysical portions of the spectrum.  

Despite these developments, the reflectance from these plants compared to a healthy plant 

looked similar with very slight differences. This is because the gross effect of the affected floral 

tissue compared to foliage may be insignificant, thus accounting for the similarity between spectral 

readings from the healthy and BB patches. Unlike MB which affects the plant foliage, thus should 

command a significant spectral difference when compared to the healthy treatment. These results 

have indicated that the VIS and NIR regions contribute significantly to the identification of disease 

severity. In this study, 8 wavelength bands, 415, 484, 554, 555, 680, 681, 745, and 761 nm have 

shown to be sensitive in the determination of MB disease, whereas 3 bands, 457, 665, and 694 nm 

were sensitive to BB disease. Identification and detection of Botrytis cinerea disease in this study 

have shown great similarity to several studies despite the differences in the crop types (Chaerle et 

al., 2007; Vaštakaitė-Kairienė et al., 2021; Vélez et al., 2023a; Wu, Feng, Zhang, et al., 2008). 

Findings from this study strongly agree with the work of Polder et al., (2013) and Wu, et al., (2008) 

who identified selected bands of interest in the identification of BB disease. The 3 sensitive bands 

identified in this study closely relate to the work of Polder et al., (2013), despite some slight 

variations. Apart from pathological determinations of the MB disease, there is little to no study on 

specific remote sensing work conducted in other crops or in wild blueberries. Therefore, this study 

provides a basis and grounds for further research in remote sensing in MB disease.  
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Despite the success in using other VIs, results highlighted the ability of VARI, GLI, and 

GRVI to discriminate healthy plants from diseased plants with minimal overlap. Therefore, the 

probability graph has shown the discriminating abilities of the different VIs (Figure 6.8 and 6.5A) 

with VARI performing best among all VIs. This result partially agrees with the work of Su et al., 

(2018) who identified the abilities of NDVI, SAVI, GLI, and NDRE, in their order of importance 

as being able to discriminate between diseases. Although both studies highlight some of these VIs, 

the order of importance was different. Thus, this study suggests the light vegetative indices (VARI, 

GLI) ahead of the other near-infrared VIs (ENDVI, NDVI). Further confirmation is derived from 

the variable importance plots which also puts VARI ahead of the near-infrared VIs. Since a high 

correlation exists between VARI, GLI, and GRVI, it can therefore be assumed that these VIs have 

a great impact in discriminating diseases.  

Clearly, results have shown that healthy tissues can be discriminated from diseased tissues 

but with significant challenges in discriminating between BB severity levels. This result agrees 

with the findings of Mirandilla et al., (2023) who detected three major diseases in rice using 

spectral reflectance. Aside from establishing good classification at a more progressed diseased 

severity level, their work highlighted the significance of RF and SVM classifier. In another related 

study, Abdulridha et al., (2019) detected the laurel wilt disease and discriminated between healthy 

and non-healthy plants in avocado using KNN and the neural network multiplayer perceptron 

(MLP). Despite some challenges with KNN classifying BB, this study has shown levels of 

accuracy of the KNN classifier that is promising to use in estimating diseases. Estimations of the 

low, moderate, and severe BB disease were consistent between the different classifiers. 

Consistently, all the 3 classifiers generated very good accuracies on disease severities. Generally, 

moderate, and severe BB were poorly determined across the 3 classifiers. This may imply a 
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systemic difficulty in identifying BB at the moderate and severe levels.  Again, it can be observed 

that SVM performed better than RF and KNN classifiers with an overall accuracy of 76.83% as 

against 70.8% and 70.67% for KNN and RF respectively. The machine learning (ML) classifiers 

adopted in this study proved robust as the overall accuracy of the 3 classifiers were 94.7%, 96.5%, 

and 96.6% for KNN, RF, and SVM respectively.  

The significance of the two techniques cannot be underplayed but results point to the use 

of the hyperspectral as a superior sensor over the Micasense multispectral sensor. Therefore, 

whereas a spectrum list of VIs can be generated using the hyperspectral device, the multispectral 

sensor limits the number of VIs (Zahiri et al., 2022). Therefore, in agreement with Huang et al., 

(2012), we conclude that the hyperspectral reflectance device can achieve great results over the 

multispectral sensor, however, both devices could not perform early or prior detection to the onset 

of visible and economically damaging effects of diseases in wild blueberries. Despite this, both 

tools have demonstrated strong potential in estimating post disease effects on the field.   

 

6.6 CONCLUSION 

Vegetative indices have played a significant role in disease determination, and this study has 

established that potential. However, determining Monilinia and Botrytis blight incidence and 

severity was achieved using the hyperspectral approach. Results narrowed down by identifying 

415, 484, 554, 555, 680, 681, 745, 761 nm and 457, 665, 694 nm as significant wavelength bands 

for the determination of MB and BB diseases. Interestingly, direction points to the use of the visible 

light vegetation (VIS) indices (VARI) as they have proven capable in the disease determination 

process. Despite the success achieved using the hyperspectral sensor, VIs at the plot level could 

not establish treatment differences. However, it can be said that the confounding effect from the 
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healthy plants within the plots affects the overall disease effect and reduces the significance of the 

disease, thus the inability of VIs at the plot level to differentiate diseases. Furthermore, it was 

difficult to determine a single VI that dominantly correlated with disease incidence and severity. 

However, results point to the use of the light vegetative indices (VARI, GLI, and GRVI) which 

showed a correlation of BB incidence and severity on floral buds with these indices. MB incidence 

and severity also correlated with the visible light vegetation indices, specifically VARI.  

The general assessment between the two techniques showed that the classifications using 

the hyperspectral sensor generated results when compared to those from the Micasense, however, 

VIs have the potential to determine diseases. Despite the similarities observed in using different 

classifiers, RF and SVM proved superior in their classification process with an overall accuracy 

of 96.6%.  

 

 

 

 

 

 

 

 

 



208 
 

CHAPTER 7: GENERAL DISCUSSION 

7.1 DISCUSSION 

The wild blueberry plant (woody calcifuge plant) is unique with a massive root/rhizome system. 

Most fields rely on pre-existing stands of 2 species with slightly different genetics and 

morphological characteristics. The plant is unique as it is not planted, no tillage practices adopted 

and has the resilience to withstand harsh conditions. Therefore, the cultivation of the plant focuses 

on management practices that control issues of diseases and nutrient management of the field. 

Embedded in these broad challenges lies the issue of phenological growth and phenotypic 

variations which causes a heterogenous pattern of disease spread on the field. Monilinia blight and 

Botrytis blight disease are two yield-limiting diseases of the crop that affect the plant at different 

stages of its growth and development. However, the plant population in the field consists of both 

tolerant and susceptible disease phenotypes, which vary the spread and pattern of disease damage. 

Therefore, a key component of the study was to see if the variability in these two key areas 

(phenology and phenotype) could be defined/characterized with remote sensing technologies and 

integrated into better management practices. The major techniques in assessing these components 

and other nutrient estimations have always depended on traditional destructive approaches, which 

come with their limitations. Given the interconnectedness of these components (fertilization, 

phenology, and phenotype) and the associated challenges, there is a need for an introduction of 

other methods for assessment in the wild blueberry field. 

This research aimed to address challenges with site-specific management practices by 

improving yield, sustaining production, and environmental protection by reducing the amount of 

agrochemicals used, which reduces the overall cost of production, through partly understanding 

the potential and effectiveness of using vegetative indices for assessments on the field. Therefore, 
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the objectives of this thesis were to (i) assess and understand the use of remote sensing techniques 

to monitor growth and development, (ii) identify the disease-tolerant phenotypes, (iii) assess the 

floral blight diseases in the field, and (iv) examine the impact of nitrogen on canopy characteristics 

and estimations, vegetative indices, and on growth parameters. 

The production system of wild blueberries requires fertilization as a necessary management 

practice to enhance the growth and development of plants. Therefore, forming the basis to start 

this discussion, Chapter 3 of this study focused on the remote estimation of canopy LNC and the 

impact of N on VIs and growth parameters. This chapter provides new knowledge and significant 

insight and understanding into the use of vegetation indices (VIs) to make predictions and 

estimations in the field. Impacts and estimations of this nature have been established in several 

crops including the wild blueberry plant, but with varying outcomes. Ultimately, this study 

established significant performance from the N treatments, indicating that an increase in N causes 

significant growth and development effects. Of all measured parameters, yield, leaf area index 

(LAI), leaf nitrogen content (LNC), plant density (PD), floral, and vegetative buds were important 

considerations in this determination. In most cases, the N rate (60 kg ha-1) achieved significantly 

high values across all measured parameters. These findings were similar in magnitude to the 

findings of Percival & Sanderson, (2004). Furthermore, a study conducted by Percival & Privé, 

(2002) showed no significant differences between multiple treatments and single treatments of 

nitrogen. It, therefore, stands to agree with this study that, a single application of nitrogen can be 

adopted because of the residual N effects (Marty et al., 2022). However, adopting that approach 

hinges on factors like the nature of soil which may contribute to that effect and help in cost savings 

to the farmer. Most importantly, their study highlighted some challenges that were encountered 

with granular fertilization on the wild blueberry plant which have previously been discussed in 
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Chapter 3 (Percival & Privé, 2002). In addition, it was established that an increase in soil nitrogen 

affects positively LNC and vegetative index values. This is because nitrogen forms the building 

blocks of the chlorophyll pigment in plant cells, thus, an increase in N has a resultant effect on VIs 

which measures the reflectance effects from plant leaves. Therefore, colour intensity and increase 

in VIs have a direct bearing on nitrogen content (Caturegli et al., 2016). This allows for easy 

assessment of the yield potential of the field by monitoring the canopy characteristics and floral 

bud developments allowing sufficient growing time of buds for next year's crop.   

The estimation of parameters such as LNC, PD, yield, and LAI generated some interesting 

results with varying outcomes. Significant, but moderate regression values were achieved for these 

parameters at the Wentworth location using the 3 visible light vegetative indices (GLI, VARI, and 

GRVI). Similar results have been achieved in several crops including rice, blueberries, cotton, and 

sunflower, among others (Kaivosoja et al., 2021; Kokhan & Vostokov, 2020; Li et al., 2020; Marty 

et al., 2019). Aside from highlighting the relevance of VIs, this study also indicates the potential 

for other variables to be used as predictors in the estimation of other growth parameters. Generally, 

stem length and floral buds, and PD and LAI all demonstrated positively strong linear relationships 

between those variables. This may partly be explained by focusing on the relationships between 

these variables. The number of plant stands and their leaf spread directly relates to leaf area. Also, 

since the growth and development of floral buds and vegetative buds occur on the same stem, it 

therefore does not come as a surprise the relationship between the two parameters. Despite our 

inability to use the near-infrared VIs in all estimations, results using the visible light vegetative 

indices have demonstrated potential in estimating growth parameters.   

Furthermore, based on trial assessments, it is worth noting that the granular fertilizer used 

may not have been adequately available to the plant since the pellets may not have been dissolved, 
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thus making nutrients unavailable to the plant. Out of the 3 sites, the Wentworth site was 

characterized by moist soils which possibly enabled nutrients to be readily available to the plants. 

There is, therefore, a gradual shift from the use of granular fertilizers to an adoption of liquid 

fertilizers which makes nutrients readily available to the plants. However, both granular and liquid 

fertilizers may have their advantages and disadvantages. 

The resultant effect of applying nitrogen to the field is to enhance growth and development, 

thus, focusing on this aspect becomes the next important step in the management practice of the 

wild blueberry production system. Therefore, monitoring plant phenology is a significant 

consideration as it influences majorly disease control, pollination, and harvestable yield. 

Therefore, serving as basis, this introduces the discussion into Chapter 4 of the study.  

Chapter 4 of this study provided new knowledge and understanding of the use of 

vegetative indices to make predictions or estimations of the wild blueberry field. This work 

presents both new and confirmatory information on estimating the growth and development of the 

plant for advocating timely agricultural management practices. This study serves as a starting point 

in understanding field estimations of the growth and development of the plant using vegetative 

indices. Vegetative indices have been used in several studies in the estimation of growth parameters 

(Hussain et al., 2020; Maqbool et al., 2010; Stagakis et al., 2012; Vega et al., 2015). Several 

outcomes have been determined in most crops: some VIs observed either a high or low correlation 

and regression estimates with growth parameters (Hussain et al., 2020; Maqbool et al., 2010). The 

study of the wild blueberry plant showed similar outcomes with low to high regression values (r2). 

Overall, leaf area index (LAI) was the constant estimated growth parameter across the different 

phenological stages with high regression values. The highest estimation of this parameter occurred 

at the bloom stage (F6/F7) (Maqbool et al., 2010) with NDVI among other VIs contributing to that 
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effect. Aside from the LAI, the other parameters with good estimations on the field were the floral 

bud stage (FS) and vegetative bud stage (VS), which observed medium to high correlation and 

regression values. It was obvious and not surprising that plant leaves contributed to the index 

values obtained. The bulk of what was observed from an aerial perspective is plant canopy, of 

which plant leaves are the significant majority. Therefore, the bulk of the reflectance activity from 

an aerial perspective depicts the characteristics of plant leaves (Forsström et al., 2019). Despite the 

importance of estimating LAI, the growth stage where this significant determination can be 

achieved matters. The highest estimations occurred at the bloom (F6/F7) stage. However, good 

regression models were also established at the early/late bud stage (F4/F5) for some other 

parameters, like floral bud stage (FS) and vegetative bud stage (VS). Generally, the estimation of 

other parameters was constantly varying. Harvestable yield was a typical example of a varying 

parameter that was difficult to estimate using VIs. This study also confirms the challenge of not 

being able to successfully estimate harvestable yield from the blueberry field, because the 

variability in yield is also associated with how deep the crop is in the canopy. This observation led 

to high RSME values, which was not peculiar to only this study but also to MacEachern et al., 

(2023), who achieved yield estimations using deep learning approaches. A study by Barai et al., 

(2021) stated the difficulty of using VIs to make predictions on harvestable yield in the wild 

blueberry field, and this supports the position of this study. It is important to highlight that several 

factors contribute to yield, and these factors vary across the production system. Worthy of mention 

is pollination and the number of flower buds. However, the colour mosaic observed on the wild 

blueberry field may directly influence the computation of vegetative indices (Forsström et al., 

2019). Therefore, though VIs can be used in some of these estimations, significant limitations may 

require alternative approaches. In the assessment of the different classifiers, it became apparent 
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that the SVM and RF classifiers were the best regression methods to be adopted in these 

estimations. The basis for adopting these practical measures like field estimations was to enhance 

production. Successful adoption and implementation of routine activities are tied to monitoring the 

growth and development of the plant, thus, significant activities like fungicide application and 

pollination using bees can be carried out effectively. Therefore, the study has established that LAI 

can be estimated at the F6/F7 stage with floral and vegetative buds being estimated at the F4/F5 

stage. 

Identifying the different species that make up the wild blueberry population structure is 

important as monitoring the growth and development of the plant on wild blueberry fields. 

Vaccinium angustifolium, Vaccinium myrtilloides, and some hybrids are generally the main plant 

species constituting the population structure of most commercial fields (Table 5.1) (Abbey et al., 

2023). The variation observed at the phenotypic level contributes to the phenological variation 

observed on the field. Therefore, understanding the growth and development of these phenotypes 

along with their characteristics would enhance better management practices and decisions.  

Based on this background, Chapter 5 of this study provided new knowledge by way of 

identifying the different phenotypes in the wild blueberry field using remote sensing. Considering 

the physical characteristics of these phenotypes, it was assumed that identifying them on the field 

would be easier using these techniques. In this study, it was clear that only Vaccinium angustifolium 

f. nigrum was successfully identified using pixel analysis. A unique bluish leaf colour characterized 

Vaccinium angustifolium f. nigrum, which made it easy to identify field patches of this phenotype. 

Generally, there was great difficulty identifying all 6 phenotypes (Table 5.1). Panda et al., (2009) 

conducted a similar study in differentiating blueberry shrubs from mixed vegetation; that is forest, 

tall trees, wild blueberry shrubs, and other field classes. However, the present study went a step 



214 
 

further in trying to differentiate between blueberry species in the field to identify the disease 

tolerant species. The challenges encountered were not anticipated. The initial thoughts were that 

brick-red leaf colour only occurs in V. angustifolium species, as a means for discrimination. 

However, that assumption was not accurate, as the brick-red colour occurs in both V. angustifolium 

and V. myrtilloides species. The initial trial did not yield the needed outcome but provided the basis 

for the subsequent trial conducted. The effects of mixed pixels go a long way to indicate the 

similarities that exist between the different phenotypes. Among these mixed pixels, V. 

angustifolium f. nigrum stood out among the rest and, therefore, directed our focus in this 

classification work. 

Aside from the major findings, it also established possibilities and difficulties in this 

campaign. Identifying V. myrtilloides species by the eye in early spring was a very easy task but 

practically impossible from an aerial perspective. Orthomosaics around this period had a whitish 

or pale background which assumed the nature of the pubescent structures on the stems and leaves.  

Another difficulty had to do with the differentiation between V. angustifolium green and brown. At 

the flower and stem level, the differing levels of anthocyanin in these species cause their stems 

and fruits to differ in colour (Hall, Aalders, et al., 1972; Wood & Barker, 1963). Therefore, 

differentiation using plant leaves can be challenging. It is often important to note that this level of 

classification cannot be conducted at any time of the year but should be limited to late September 

or early October. Furthermore, differentiation between the three V. myrtilloides phenotypes also 

holds a similar effect to that of V. angustifolium brown and green, except that stem height was the 

only distinguishing factor. The final classification analysis identified nigrum with about 80% 

overall accuracy. This implied that the possibility of identifying nigrum on the field was very high. 

The original aim was to identify V. myrtilloides but identifying nigrum was a fortunate stroke of 
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serendipity as V. angustifolium f. nigrum phenotypes are very susceptible to Monilinia blight and 

Botrytis blight diseases. This development fits into the broader aim of utilizing the target or spot 

application method which would identify and focus attention on just the V. angustifolium f. nigrum 

phenotypes. Therefore, this objective has identified V. angustifolium f. nigrum phenotypes on the 

wild blueberry field. 

The sensors have been excellent at defining where wild blueberries are geospatially located 

in fields and also their phenological growth and development stages. Despite the challenge of the 

phenotypic aspects, the study identified V. angustifolium f. nigrum phenotypes within the field. A 

significant characteristic of V. myrtilloides is their tolerance or avoidance mechanism to both 

Monilinia and Botrytis blight disease (Abbey et al., 2018; Lambert, 1990; Penman & Annis, 2005). 

Therefore, identifying V. myrtilloides allows the use of a spot method for applying disease control 

products instead of a uniform broadcast application. Furthermore, identifying Vaccinium 

angustifolium f. nigrum also allows for spot application of disease control products. Therefore, the 

implications of diseases on the field can be diverse and vary among the population structure with 

the phenological stage of the plant determining their susceptibility to diseases or otherwise. This 

reinforces the connectedness between phenology and phenotype being crucial to the spread and 

pattern of disease development in the production system. As important as disease management is 

to the production system, its determination, monitoring, and measurement have employed 

traditional destructive approaches using the line and transect method. Therefore, implementing 

modern techniques in these aspects was adopted, serving as the basis for Chapter 6 of this thesis. 

Chapter 6 provided new knowledge and understanding of the remote sensing assessment 

of Monilinia and Botrytis blight disease in wild blueberry fields. This study provided knowledge 

on Monilinia and Botrytis blight incidence and severity assessment using vegetative indices (VIs) 
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on the field. Six and three wavelength bands that have shown sensitivity in the identification of 

MB and BB diseases have been identified in wild blueberries. The system adopted for this study 

was intended for early disease detection of MB and BB diseases, but that was not successful. What 

the present system could do was to provide a reasonably active estimate of growth and 

development stages on a geospatial basis that may be used in integrated disease management 

predictive models and geospatially applying disease control products when the critical value (e.g. 

F2 for MB) has been attained. Therefore, the use of VIs is a common part of field assessment in 

the determination of different parameters including diseases (Franke et al., 2005; Mahlein et al., 

2013; Zhang et al., 2019). Generally, diseases may behave similarly or differently, depending on 

the pathogen-host interactions (AL-Saddik et al., 2017). It was observed that Monilinia blight 

(MB) and Botrytis blight (BB) disease effects followed the generally known spectral pattern of 

disease deterioration in plants (Figures 6.3 and 6.4).  

Little is known about remote determinations in MB; however, studies point to some 

determinations of BB disease (Polder et al., 2013; Vaštakaitė-Kairienė et al., 2021; Wu, Feng, 

Zhang, et al., 2008). The gray mold disease caused by the fungus, Botrytis cinerea, has been 

researched using remote sensing and detected in several crops including Phaseolus vulgaris 

(Chaerle et al., 2007), egg plant (Wu, et al., 2008), lettuce (Vaštakaitė-Kairienė et al., 2021) and 

grapevines (Vélez et al., 2023b). These works have focused on different aspects of Botrytis 

detection with significant results, thus findings from this work agree with these studies. In addition, 

this study has provided great insight and background into the determination of Monilinia blight 

disease. The estimation of MB and BB incidence and severity using correlation analysis was 

moderately successful across the four years with a non-significant VI effect. On different fronts, 

this study partially agreed with other field studies as have been indicated in chapter 6. However, it 
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must be pointed out that the majority of field studies emphasized the difficulty in establishing 

significant differences between VIs (Devadas et al., 2009; Di Gennaro et al., 2016). 

Classification assessments at the patch level showed that healthy tissues can be 

differentiated from MB and BB tissues with high accuracy. Therefore, this can be used to assess 

disease damage after infection has occurred. This is useful in predicting yield and also if 

estimations of damage for crop insurance purposes are required. However, under all 3 classifiers, 

there were challenges with disease determination at specifically 2 levels of severity of BB disease. 

It is important to note that the cumulative effect of a disease may be non-significant compared to 

the leaf surface area of healthy tissues on the field. This situation nullifies the disease effects and 

renders it as negligible which possibly accounts for the non-significance observed at the field level.  

Highlighting the significance of VIs, the variable importance plot (VIP) singles out VARI as the 

most important VI in the regression analysis under all 3 classifiers. Therefore, a significant 

statement from this study, emphasizes the need to utilize the visible light vegetation indices (VARI, 

GLI, and GRVI) in disease-related studies on the wild blueberry field. Several studies suggest that 

the near-infrared vegetation indices (NDVI, NDRE, ENDVI) are considered better than the visible 

light VIs in most of these determinations, but these VIS-VIs performed slightly better than the NIR 

indices in this classification work.  

In hindsight, it was observed that the wild blueberry plant exhibited “a recovery ability” 

and flushes of growth after MB infected the plants. This implies that diseased plants that abscise 

their leaves have the potential to develop new leaves. Over a considerable length of time, this 

phenomenon sometimes masks the disease effects introducing some challenges in VI 

computations. The high correlative VIs can further be explored using regression models to make 

some predictions on either the incidence or severity of a disease. Therefore, several possibilities 
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can be explored in the future, and further work on disease determination of MB and BB diseases. 

In summary, this objective has identified 8 and 3 wavelength bands of MB and BB diseases 

respectively using remote sensing.  

 

7.2 CHALLENGES AND LIMITATIONS 

Notwithstanding the progress made in this study, several challenges were encountered, but the 

major ones include, (i) low disease pressures as a result of weather conditions, (ii) equipment 

breakdown, and (iii) Covid-19 lab access and field access restrictions. As observed from the tables, 

disease pressures were generally low across the different years, except in 2019 where high disease 

pressures were observed. This can be attributed to the changes observed in climatic conditions 

over the past years. The effect of these weather conditions caused low disease pressures that did 

not reflect treatment effects. Furthermore, a breakdown of our DJI M600 drone, malfunctioning of 

the Micasense camera, non-available drone pilot, and issues with the Sunscan cables among other 

tools and processes hampered the progress of this work, and for this reason, work could not proceed 

or alterations to the methods occurred in some situations. Alternative approaches like renting a 

drone and flying them were adopted but that could not salvage the situation. The last point Covid-

19 was a global crisis that came with different strings of restrictions depending on your location. 

There were times when I could not access my leaf samples to measure in time and that led to me 

losing some samples. Travel restrictions and access to facilities were the main challenges as 

federal, provincial, university, and departmental regulations were all set in force.  

7.3 CONCLUSION 

This study assessed the potential of an unmanned aerial vehicle (UAV) equipped with different 

sensors and the hyperspectral radiometer to make field determinations of diseases, phenology 
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monitoring, phenotype identification and nitrogen estimations. Several outcomes were reflective 

with respect to each of these components, thus demonstrating the potential in using these remote 

techniques. This study provides evidence in nitrogen estimation and the determination of other 

growth parameters. Despite the challenge in estimating yield, considerable success was achieved 

in the estimation of leaf area index and plant density using VIs. The significance of VIs in these 

estimations were important but limited to the light vegetative indices, however, evidence from this 

study points to a consideration in the use of the near-infrared VI for estimations.   

Monitoring plant growth and development was equally achieved through the estimation of 

growth parameters including floral and vegetative bud numbers and their stages, LAI, and yield. 

However, LAI was the best estimated parameter occurring at the bloom stage (F6/F7) with floral 

and vegetative bud stages occurring at the early/late anthesis stage (F4/F5). Considerably, the 

estimation of yield was a major challenge in this study, however, alternative approaches should be 

considered.  

Identifying V. angustifolium f. nigrum as a susceptible phenotype to Monilinia and Botrytis 

bight disease became the major focus and outcome from this study. There were significant 

challenges (mixed pixels) in the determination of the other phenotypes which can be attributed to 

the phenotype variation on the field. Success was achieved using the pixel level classification 

between late-September and early-October of which leaf colour differentiation was prominent 

allowing the determination of nigrum.      

This study provided evidence that Monilinia and Botrytis blight disease can be identified 

by focusing on specific wavelength bands and vegetative indices using the hyperspectral 

radiometer. However, there were significant challenges with field disease determination using VIs. 

Therefore, the estimation of MB and BB disease incidence and severity using VIs was moderately 
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successful with the visible light vegetation indices playing a pivotal role. Therefore, a significant 

statement from this study emphasized the need for some consideration in the utilization of visible 

light vegetation indices (VARI, GLI, and GRVI) in these analyses. Therefore, the broad 

classifications conducted indicate the ability to differentiate Monilinia severities from healthy 

plants, but not moderate and severe Botrytis blight disease.  

In summary, it is significant to state that many studies have focused on and generalized the 

effects of specific VIs, but this does not nullify their potential effects. In most situations where 

those VIs were not impactful; it implied that other VIs may play those significant roles. The use 

of VIs holds true in the determination of major parameters in wild blueberry fields. Therefore, this 

study which focused on wild blueberries has; (i) discovered the ability to detect V. angustifolium 

f. nigrum using an SVM classification technique; (ii) identified selected wavebands significant in 

the identification of MB and BB diseases; (iii) differentiated healthy tissues from Monilinia and 

Botrytis blight diseased tissues; (iv) identified F6/F7 as the best phenological stage for field 

estimation of LAI; (v) established that nitrogen has a significant effect on VIs, and (vi) established 

that LNC can be estimated using VIs. 

 

7.3.1 Recommendations and future research 

This work has been successful in generating new and complementary knowledge on the wild 

blueberry field, however, there are still some unearthed aspects that can potentially be conducted 

in future research.  

There were some challenges with the study, and this related to the uncertain nature of 

disease presence in the field. The low presence of disease observed from 2020 to 2023 could have 
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been complimented with alternative approaches like inoculation. Therefore, for future 

considerations and advancements in this study, some changes can be adopted. Two significant 

introductions that could enhance future research in this study are: (i) implementing controlled 

research as an initial stage connected to field research, and (ii) utilizing a hyperspectral imaging 

system for disease assessment and analysis. Exploring laboratory work provides significant control 

of variables and provides a step-by-step monitoring of disease development, unlike uncertain field 

situations. Furthermore, despite the success of using the RGB, multispectral sensors, and the 

handheld Spectroradiometer, future field research can adopt the hyperspectral imaging system in 

its disease assessments. This system provides a larger field-of-view (fov) and easy data form as 

compared to the spectroradiometer with a small fov and a complex data form. This approach should 

help create a faster, easier, and step-by-step process to analyze disease development and work with 

data which has become paramount in many circles. These two changes when adopted would serve 

as an initial basis for determining and transitioning into the field assessments. 

Furthermore, it is recommended that a future study should investigate or explore the 

development of unique vegetative indices (VIs) and approaches for the prediction of yield and 

disease determination of MB and BB diseases.  The unique nature of the wild blueberry field 

requires unique VIs in some of its determinations. Also, regression models can be developed to 

help predict MB and BB diseases in the field. Other recommendations include (i) significant 

adjustments to flight height, and (ii) the use of liquid fertilizers rather than granular fertilizers. 

Despite the inability to implement some of these recommendations, ongoing studies in the Wild 

Blueberry Research Program are utilizing some of these measures. Therefore, these 

recommendations when adopted will greatly improve future research of this study.  
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APPENDIX 2: Impact of nitrogen on vegetative indices 

Table A 1. Analysis of Variance on the effects of nitrogen rates on vegetative indices observed 

from Lemmon Hill on [26th June 2020]. 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha 0.293 0.218 0.291 0.787 0.383 0.760 0.593 

15 kg N/ha 0.244 0.161 0.217 0.738 0.371 0.718 0.553 

30 kg N/ha 0.286 0.210 0.281 0.780 0.382 0.753 0.590 

60 kg N/ha 0.279 0.202 0.271 0.772 0.381 0.746 0.584 

ANOVA 

Results1 

NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). 

 

Table A 2. Analysis of Variance on the effects of nitrogen rates on vegetative indices observed 

from Lemmon Hill on [16th September 2020]. 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha 0.278 0.261 0.392 0.512 0.131 0.452 0.586 

15 kg N/ha 0.251 0.219 0.320 0.438 0.122 0.418 0.500 

30 kg N/ha 0.276 0.252 0.372 0.498 0.129 0.452 0.569 

60 kg N/ha 0.277 0.260 0.389 0.488 0.150 0.436 0.558 

ANOVA 

Results1 

NS NS NS NS NS NS NS 

1Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). 
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Table A 3. Analysis of variance on the effects of nitrogen rates on vegetative indices (n = 25) from 

Lemmon Hill [6th October 2021] 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha 0.240a 0.305a 0.553a 0.535 0.139 0.339 0.773a 

20 kg N/ha 0.246a 0.309a 0.549a 0.512 0.152 0.351 0.759a 

40 kg N/ha 0.210ab 0.263ab 0.480ab 0.495 0.151 0.318 0.711ab 

60 kg N/ha 0.219a 0.272ab 0.485ab 0.505 0.154 0.331 0.704ab 

100 kg N/ha 0.159b 0.206b 0.395b 0.447 0.150 0.276 0.650b 

ANOVA 

Results1 

p<0.038 p<0.031 p<0.048 NS NS NS p<0.037 

1Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). 

 

Table A 4. Analysis of variance on the effects of nitrogen rates on vegetative indices (n = 25) from 

the Debert location [22nd October 2021]. 

Treatment GLI GRVI VARI NDVI NDRE ENDVI SAVI 

0 kg N/ha -0.100 -0.155 -0.296 -0.046 0.020 0.030c -0.069 

20 kg N/ha -0.077 -0.142 -0.259 -0.026 0.035 0.070bc -0.039 

40 kg N/ha -0.076 -0.148 -0.261 -0.033 0.036 0.078ab -0.050 

60 kg N/ha -0.062 -0.137 -0.239 0.008 0.026 0.112ab 0.011 

100 kg N/ha -0.059 -0.138 -0.233 0.014 0.051 0.125a 0.021 

ANOVA 

Results1 

NS NS NS NS NS p<0.004 NS 

1Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (α=0.05). 
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APPENDIX 3: Growth progression of the different wild blueberry species and variable 

importance table 

 

Figure A 1. Growth progression of the different blueberry phenotypes at Lemmon Hill as 

monitored from May to June 2020. The different colours represent the six phenotypes.   

 

Table A 5. Rankings of an SVM classifier on the 2022 multispectral trial of best-performing 

indices for each phenological stage and parameter. Performance was evaluated using outputs from 

the variable importance chart. Percentages represent the performance of the individual vegetative 

indices in achieving that outcome. Indices have been arranged in order of the best index to the least 

performing index along with its corresponding percentage. 

 Bud break (F1)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, GLI, VARI, ENDVI, GRVI, NDRE 100, 70, 35, 25, 20, 0 

Leaf area index NDRE, ENDVI, GLI, GRVI, NDVI, VARI 100, 58, 10, 5, 4, 0 

Plant height (cm) GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 90, 82, 30, 12, 0 

Floral bud number NDRE, GLI, VARI, ENDVI, GRVI, NDVI 100, 90, 35, 25, 25, 0 

Floral bud stage NDVI, NDRE, GRVI, ENDVI, VARI, GLI 100, 52, 10, 8, 5, 0 

Vegetative bud number GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 78, 70, 42, 40, 0 

Vegetative bud stage NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 55, 40, 12, 13, 0 

 Tight cluster (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, ENDVI, NDRE, GRVI, GLI, VARI 100, 55, 10, 5, 3, 0 

Leaf area index NDRE, ENDVI, GLI, GRVI, NDVI, VARI 100, 58, 10, 5, 4, 0 

Plant height (cm) NDVI, ENDVI, NDRE, VARI, GLI, GRVI 100, 93, 38, 5, 4, 0 

Floral bud number NDVI, ENDVI, GLI, VARI, GRVI, NDRE 100, 55, 47, 30, 20, 0 
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Floral bud stage NDRE, ENDVI, GLI, NDVI, GRVI, VARI 100, 38, 20, 10, 5, 0 

Vegetative bud number GLI, NDVI, NDRE, ENDVI, VARI, GRVI 100, 68, 50, 40, 18, 0 

Vegetative bud stage NDRE, NDVI, GLI, ENDVI, VARI, GRVI 100, 78, 42, 22, 1, 0 

 Bud break (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDRE, ENDVI, GRVI, GLI, VARI, NDVI 100, 65, 10, 10, 8, 0 

Leaf area index VARI, GRVI, GLI, NDVI, ENDVI, NDRE 100, 98, 95, 80, 58, 0  

Plant height (cm) NDRE, ENDVI, GLI, GRVI, VARI, NDVI 100, 58, 18, 10, 10, 0 

Floral bud number ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 90, 63, 30, 5 0 

Floral bud stage ENDVI, NDVI, VARI, GRVI, GLI, NDRE 100, 98, 35, 30, 30, 0 

Vegetative bud number NDVI, ENDVI, NDRE, GLI, GRVI, VARI 100, 48, 30, 10, 5, 0 

Vegetative bud stage NDVI, ENDVI, GRVI, VARI, GLI, NDRE 100, 82, 80, 80, 70, 0 

 Bud break (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, ENDVI, VARI, GRVI, NDRE, GLI 100, 90, 85, 35, 27, 0 

Leaf area index NDVI, ENDVI, GLI, GRVI, VARI, NDRE 100, 90, 88, 85, 75, 0 

Plant height (cm) ENDVI, NDRE, NDVI, GRVI, VARI, GLI 100, 93, 93, 5, 2, 0 

Floral bud number GLI, GRVI, VARI, ENDVI, NDVI, NDRE 100, 85, 65, 45, 25, 0 

Floral bud stage NDRE, VARI, GRVI, ENDVI, GLI, NDVI 100, 78, 55, 53, 50, 0 

Vegetative bud number ENDVI, NDVI, NDRE, GLI, GRVI, VARI 100, 60, 55, 13, 10, 0 

Vegetative bud stage GLI, GRVI, VARI, NDVI, NDRE, ENDVI 100, 98, 90, 58, 55, 0 

 Fruit set (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, VARI, GRVI, GLI, ENDVI, NDRE 100, 85, 83, 79, 55, 0 

Leaf area index VARI, GRVI, GLI, NDVI, ENDVI, NDRE 100, 95, 82, 78, 62, 0 

Plant height (cm) GRVI, VARI, NDVI, GLI, ENDVI, NDRE 100, 95, 92, 83, 22, 0 

Floral bud number GLI, VARI, NDRE, GRVI, NDVI, ENDVI 100, 100, 90, 88, 79, 0 

Floral bud stage NDVI, GRVI, GLI, VARI, NDRE, ENDVI 100, 95, 68, 60, 58, 0 

Vegetative bud number VARI, GRVI, NDVI, GLI, NDRE, ENDVI 100, 100, 80, 78, 57, 0 

Vegetative bud stage ENDVI, VARI, GRVI, NDRE, GLI, NDVI 100, 48, 35, 20, 15, 0 

 

Table A 6. Rankings of an RF classifier on the 2022 multispectral trial of best-performing indices 

for each phenological stage and parameter. Performance was evaluated using outputs from the 

variable importance chart. Percentages represent the performance of the individual vegetative 

indices in achieving that outcome. Indices have been arranged in order of the best index to the least 

performing index along with its corresponding percentage. 

 Bud break (F1)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, GLI, GRVI, VARI, ENDVI, NDRE 100, 65, 38, 35, 25, 0 

Leaf area index VARI, GLI, GRVI, NDRE, ENDVI, NDVI 100, 90, 80, 30, 22, 0 

Plant height (cm) GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 90, 83, 42, 23, 0 

Floral bud number VARI, GLI, NDRE, GRVI, NDVI, ENDVI 100, 95, 90, 70, 18, 0 

Floral bud stage NDVI, VARI, GRVI, GLI, ENDVI, NDRE 100,82, 75, 70, 65, 0 

Vegetative bud number GLI, GRVI, VARI, ENDVI, NDVI, NDRE 100, 85, 85, 55, 48, 0 

Vegetative bud stage VARI, GLI, GRVI, NDRE, ENDVI, NDVI 100, 68, 48, 22, 20, 0 
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 Tight cluster (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, ENDVI, GLI, GRVI, NDRE, VARI 100, 15, 5, 2, 1, 0 

Leaf area index VARI, GLI, GRVI, NDRE, ENDVI, NDVI 100, 90, 80, 30, 22, 0 

Plant height (cm) NDVI, ENDVI, NDRE, VARI, GRVI, GLI 100, 61, 15, 9, 4, 0 

Floral bud number ENDVI, NDVI, VARI, GLI, GRVI, NDRE 100, 90, 75, 70, 38, 0 

Floral bud stage NDRE, VARI, ENDVI, GLI, GRVI, NDVI 100, 88, 50, 42, 4, 0 

Vegetative bud number GRVI, ENDVI, GLI, VARI, NDVI, NDRE 100, 75, 70, 35, 20, 0 

Vegetative bud stage GLI, GRVI, NDRE, NDVI, VARI, ENDVI 100, 40, 35, 18, 15, 0 

 Bud break (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDRE, ENDVI, NDVI, GLI, GRVI, VARI 100, 60, 38, 4, 1, 0 

Leaf area index GRVI, GLI, VARI, ENDVI, NDVI, NDRE 100, 98, 98, 58, 58, 0 

Plant height (cm) ENDVI, NDRE, GRVI, NDVI, VARI, GLI 100, 80, 62, 40, 35, 0 

Floral bud number GLI, ENDVI, GRVI, NDRE, VARI, NDVI 100, 95, 42, 40, 25, 0 

Floral bud stage ENDVI, NDVI, GRVI, VARI, GLI, NDRE 100, 80, 58, 58, 58, 0 

Vegetative bud number NDRE, ENDVI, NDVI, VARI, GRVI, GLI 100, 90, 70, 25, 20, 0 

Vegetative bud stage GLI, GRVI, VARI, NDVI, ENDVI, NDRE 100, 90, 75, 47, 42, 0 

 Bud break (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GRVI, NDVI, VARI, ENDVI, NDRE, GLI 100, 98, 55, 40, 8, 0 

Leaf area index NDVI, GLI, GRVI, ENDVI, VARI, NDRE 100, 82, 50, 35, 12, 0 

Plant height (cm) NDVI, ENDVI, GLI, NDRE, VARI, GRVI 100, 75, 35, 30, 10, 0 

Floral bud number GLI, NDVI, GRVI, NDRE, ENDVI, VARI 100, 65, 35, 32, 28, 0 

Floral bud stage NDRE, ENDVI, GLI, VARI, GRVI, NDVI 100, 45, 18, 8, 8, 0 

Vegetative bud number NDRE, VARI, GRVI, NDVI, ENDVI, GLI 100, 60, 50, 38, 28, 0 

Vegetative bud stage VARI, GRVI, GLI, NDVI, NDRE, ENDVI 100, 78, 68, 58, 35, 0 

 Fruit set (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) GLI, VARI, NDVI, ENDVI, GRVI, NDRE 100, 90, 85, 82, 55, 0 

Leaf area index VARI, GRVI, ENDVI, GLI, NDVI, NDRE 100, 98, 68, 68, 38, 0 

Plant height (cm) NDVI, VARI, GLI, GRVI, NDRE, ENDVI 100, 88, 78, 75, 10, 0 

Floral bud number GRVI, NDRE, GLI, NDVI, VARI, ENDVI 100, 95, 85, 30, 4, 0 

Floral bud stage NDRE, NDVI, VARI, ENDVI, GLI, GRVI 100, 45, 30, 10, 5, 0 

Vegetative bud number VARI, GRVI, NDRE, GLI, ENDVI, NDVI 100, 80, 50, 40, 17, 0 

Vegetative bud stage ENDVI, GRVI, VARI, NDVI, NDRE, GLI 100, 90, 72. 40, 30, 0 

 

Table A 7. Rankings of a KNN and SMLR classifier on the 2022 multispectral trial of best-

performing indices for each phenological stage and parameter. Performance was evaluated using 

outputs from the variable importance chart. Percentages represent the performance of the 

individual vegetative indices in achieving that outcome. Indices have been arranged in order of the 

best index to the least performing index along with its corresponding percentage. 

 Bud break (F1)  

Parameter Rank Percentage (%) 
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Yield (g.m-2) NDVI, GLI, VARI, ENDVI, GRVI, NDRE 100, 70, 35, 28, 20, 0 

Leaf area index NDRE, ENDVI, GLI, GRVI, NDVI, VARI 100, 58, 10, 4, 3, 0 

Plant height (cm) GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 90, 82, 30, 10, 0 

Floral bud number NDRE, GLI, VARI, ENDVI, GRVI, NDVI 100, 88, 38, 28, 28, 0 

Floral bud stage NDVI, NDRE, GRVI, ENDVI, VARI, GLI 100, 53, 10, 5, 4, 0 

Vegetative bud number GLI, VARI, GRVI, ENDVI, NDVI, NDRE 100, 78, 70, 42, 40, 0 

Vegetative bud stage NDRE, NDVI, ENDVI, GRVI, VARI, GLI 100, 55, 40, 10, 12, 0 

 Tight cluster (F2/F3)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, ENDVI, NDRE, GRVI, GLI, VARI 100, 55, 10, 5, 3, 0 

Leaf area index NDRE, ENDVI, GLI, GRVI, NDVI, VARI 100, 58, 10, 5, 4, 0 

Plant height (cm) NDVI, ENDVI, NDRE, VARI, GLI, GRVI 100, 92, 38, 5, 4, 0 

Floral bud number NDVI, ENDVI, GLI, VARI, GRVI, NDRE 100, 55, 48, 35, 20, 0 

Floral bud stage NDRE, ENDVI, GLI, NDVI, GRVI, VARI 100, 38, 20, 10, 5, 0 

Vegetative bud number GLI, NDVI, NDRE, ENDVI, VARI, GRVI 100, 70, 50, 39, 18, 0 

Vegetative bud stage NDRE, NDVI, GLI, ENDVI, VARI, GRVI 100, 78, 42, 20, 1, 0 

 Bud break (F4/F5)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDRE, ENDVI, GRVI, GLI, VARI, NDVI 100, 65, 10, 10, 8,0 

Leaf area index VARI, GRVI, GLI, NDVI, ENDVI, NDRE 100, 98, 95, 80, 55, 0 

Plant height (cm) NDRE, ENDVI, GLI, GRVI, VARI, NDVI 100, 58, 18, 10, 10, 0 

Floral bud number ENDVI, NDRE, NDVI, GLI, GRVI, VARI 100, 90, 65, 35, 3, 0 

Floral bud stage ENDVI, NDVI, VARI, GRVI, GLI, NDRE 100, 100, 35, 30, 30, 0 

Vegetative bud number NDVI, ENDVI, NDRE, GLI, GRVI, VARI 100, 48, 30, 10, 4, 0 

Vegetative bud stage NDVI, ENDVI, GRVI, VARI, GLI, NDRE 100, 85,80, 80, 72, 0 

 Bud break (F6/F7)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, ENDVI, VARI, GRVI, NDRE, GLI 100, 90, 85, 35, 28, 0 

Leaf area index NDVI, ENDVI, GLI, GRVI, VARI, NDRE 100, 90, 88, 85, 75, 0 

Plant height (cm) ENDVI, NDRE, NDVI, GRVI, VARI, GLI 100, 93, 93, 5, 2, 0 

Floral bud number GLI, GRVI, VARI, ENDVI, NDVI, NDRE 100, 85, 65, 45, 25, 0 

Floral bud stage NDRE, VARI, GRVI, ENDVI, GLI, NDVI 100, 78, 55, 53, 50, 0 

Vegetative bud number NDVI, ENDVI, NDRE, GLI, GRVI, VARI 100, 60, 55, 15, 12, 0 

Vegetative bud stage GLI, GRVI, VARI, NDVI, NDRE, ENDVI 100, 95, 90, 35, 32, 0 

 Fruit set (F8)  

Parameter Rank Percentage (%) 

Yield (g.m-2) NDVI, VARI, GRVI, GLI, ENDVI, NDRE 100, 88, 85, 78, 55, 0 

Leaf area index VARI, GRVI, GLI, NDVI, ENDVI, NDRE 100, 95, 82, 78, 64, 0 

Plant height (cm) GRVI, VARI, NDVI, GLI, ENDVI, NDRE 100, 98, 95, 83, 22, 0 

Floral bud number GLI, VARI, NDRE, GRVI, NDVI, ENDVI 100, 100, 92, 88, 78, 0 

Floral bud stage NDVI, GRVI, GLI, VARI, NDRE, ENDVI 100, 95, 70, 60, 58, 0 

Vegetative bud number VARI, GRVI, NDVI, GLI, NDRE, ENDVI 100, 100, 80, 78, 55, 0 

Vegetative bud stage ENDVI, VARI, GRVI, NDRE, GLI, NDVI 100, 48, 37, 20, 12, 0 

 



257 
 

APPENDIX 4: Assessment tables on disease, variable importance chart, and ALE plots 

 

 

 

Figure A 2. Variable importance charts for the selected VIs under the combined condition (BB, 

Healthy, and MB) using (a) KNN, (b) RF, and (c) SVM classifiers. 

a 

b 

c 
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Figure A 3. ALE plot of ENVI, NDRE, and VARI under the different levels of disease severity 

using the KNN classifier. 

 

Figure A 4. ALE plots of ENVI, NDRE, and VARI under the different levels of disease severity 

using the RF classifier. 
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Figure A 5. ALE plot of ENVI, NDRE, and VARI under the different levels of disease severity 

using the SVM classifier 
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Figure A 6. Probability density function (PDF) plot on all six VIs under the three (3) conditions 
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Table A 8. Aerial vegetative indices (VI’s) observed from Farmington after 3rd fungicide 

application. Image samples for this observation were collected on [19th June 2019]. 

Treatment Green Leaf (GL) GRVI VARI 

Untreated Control 0.261 0.109 0.137 

Monilinia Control 0.266 0.113 0.140 

Botrytis Control 0.254 0.101 0.126 

Monilinia & Botrytis 

Control 

0.247 0.092 0.116 

ANOVA Results1 NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (ά=0.05). 

 

 

Table A 9. Aerial vegetative indices (VI’s) observed from Farmington after 4th fungicide 

application. Image samples for this observation were collected on [3rd July 2019]. 

Treatment Green Leaf (GL) GRVI VARI 

Untreated Control 0.308 0.189 0.244 

Monilinia Control 0.340 0.219 0.277 

Botrytis Control 0.311 0.194 0.250 

Monilinia & Botrytis 

Control 

0.320 0.204 0.262 

ANOVA Results1 NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (ά=0.05). 
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Table A 10. Aerial vegetative indices (VI’s) observed from Lemmon Hill after 3rd fungicide 

application. Image samples for this observation were collected on [19th June 2019].  

Treatment Green Leaf (GL) GRVI VARI 

Untreated Control 0.189 0.077 0.103 

Monilinia Control 0.226 0.100 0.129 

Botrytis Control 0.216 0.090 0.118 

Monilinia & Botrytis 

Control 

0.220 0.096 0.124 

ANOVA Results1 NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (ά=0.05). 

 

 

Table A 11. Aerial vegetative indices (VI’s) observed from Lemmon Hill after 4th fungicide 

application. Image samples for this observation were collected on [3rd June 2019]. 

Treatment Green Leaf (GL) GRVI VARI 

Untreated Control 0.389 0.375 0.499 

Monilinia Control 0.458 0.457 0.596 

Botrytis Control 0.440 0.428 0.568 

Monilinia & Botrytis 

Control 

0.435 0.427 0.564 

ANOVA Results1 NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant 

(NS) or significant at p<0.05. Mean separation was completed using Fisher’s multiple means 

comparison test procedure (ά=0.05). 
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Table A 12. Aerial vegetative indices (VI’s) observed from Kemptown after 3rd fungicide application. Image samples for this 

observation were collected on [10th June 2020]. 

Treatment Green Leaf 

(GL) 

GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated 

Control 

0.185 0.077 0.105 0.761 0.357 0.757 0.926 

Monilinia 

Control 

0.238 0.141 0.192 0.803 0.362 0.790 0.934 

Botrytis Control 0.196 0.095 0.129 0.750 0.354 0.746 0.908 

Monilinia & 

Botrytis Control 

0.247 0.158 0.218 0.809 0.368 0.794 0.764 

ANOVA Results1 NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05). 

 

Table A 13. Aerial vegetative indices (VI’s) observed from Kemptown after 4th fungicide application. Image samples for this 

observation were collected on [18th June 2020]. 

Treatment Green Leaf 

(GL) 

GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated 

Control 

0.195 0.196 0.318 0.426 0.056 0.334 0.634 

Monilinia 

Control 

0.241 0.254 0.408 0.501 0.078 0.385 0.734 
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Botrytis Control 0.222 0.229 0.362 0.434 0.056 0.345 0.592 

Monilinia & 

Botrytis Control 

0.261 0.278 0.436 0.510 0.084 0.396 0.727 

ANOVA Results1 NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05) 

 

Table A 14. Aerial vegetative indices (VI’s) observed from Lemmon Hill after 3rd fungicide application. Image samples for this 

observation were collected on [9th June 2020]. 

Treatment Green Leaf 

(GL) 

GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated 

Control 

0.312 0.243 0.318 0.836 0.360 0.801 0.763 

Monilinia 

Control 

0.306 0.236 0.309 0.831 0.355 0.797 0.752 

Botrytis Control 0.310 0.236 0.321 0.839 0.355 0.808 0.918 

Monilinia & 

Botrytis Control 

0.300 0.226 0.293 0.830 0.348 0.799 0.761 

ANOVA 

Results1 

NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05). 
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Table A 15. Aerial vegetative indices (VI’s) observed from Lemmon Hill after 4th fungicide application. Image samples for this 

observation were collected on [17th June 2020]. 

Treatment Green Leaf 

(GL) 

GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated 

Control 

0.337 0.261 0.334 0.846 0.402 0.821 0.702 

Monilinia 

Control 

0.335 0.258 0.330 0.848 0.403 0.824 0.702 

Botrytis Control 0.341 0.264 0.350 0.856 0.398 0.831 0.875 

Monilinia & 

Botrytis Control 

0.338 0.260 0.342 0.852 0.394 0.828 0.867 

ANOVA 

Results1 

NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05) 

 

Table A 16. Aerial vegetative indices (VI’s) observed from Mount Thom after 4th fungicide application. Image samples for this 

observation were collected on [12th June 2021]. 

Treatment Green Leaf (GL) GRVI VARI 

Untreated Control 0.144 -0.073 -0.087 

Monilinia Control 0.160 -0.068 -0.079 
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Botrytis Control 0.156 -0.059 -0.069 

Monilinia & Botrytis 

Control 

0.157 -0.065 -0.076 

ANOVA Results1 NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05). 

 

Table A 17. Aerial vegetative indices (VI’s) observed from Farmington after 3rd fungicide application. Image samples for this 

observation were collected on [3rd June 2022]. 

Treatment Green Leaf 

(GL) 

GRVI VARI NDVI NDRE ENDVI SAVI 

Untreated 

Control 

0.309 0.208 0.271 0.848 0.339 0.840 0.655 

Monilinia 

Control 

0.343 0.248 0.320 0.856 0.335 0.845 0.672 

Botrytis Control 0.304 0.206 0.270 0.842 0.326 0.832 0.652 

Monilinia & 

Botrytis Control 

0.328 0.233 0.303 0.849 0.330 0.837 0.666 

ANOVA Results1 NS NS NS NS NS NS NS 

1 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Fisher’s multiple means comparison test procedure (ά=0.05). 
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Table A 18. Incidence and severity of Monilinia and Botrytis blight disease observed from Webb Mountain before fungicide 

application. Plant samples for this observation were collected on [13th June 2023, 4th Collection]. 

Treatment Monilinia 

incidence 

of floral 

nodes 

(%)1 

Monilinia 

incidence 

of 

vegetative 

nodes 

(%)2 

Monilinia 

severity of 

floral 

node3 

Monilinia 

severity of 

Vegetative 

node4 

Botrytis 

incidence 

of floral 

nodes 

(%)5 

Botrytis 

incidence of 

vegetative 

nodes (%)6 

Botrytis 

severity of 

floral node7 

Botrytis 

severity of 

vegetative 

node8 

Untreated 

Control 

0.429 0.04 0.714 0.944 5.850 0 9.465 a 0 

Monilinia 

Control 

0.571 0 0.952 0 3.754 0 3.262 b 0 

Botrytis Control 0 0 0 0 5.726 0 5.707 ab 0 

Monilinia & 

Botrytis Control 

0 0 0 0 2.241 0 2.389 b 0 

ANOVA Results9 NS NS NS NS NS NS p<0.0020 NS 

1,2,5,6 % Incidence = 0 to 100% where 0 = no blossoms/leaves affected and 100 = all blooms/leaves are affected with at least one 

lesion. 
3,4,7,8 Severity = 0 to 9 rating scale where 0 = no disease and 9 >= 90% of each blossom/leaf tissue is affected. 
9 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Duncan’s multiple means comparison test procedure (ά=0.05). 
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Table A 19. Incidence and severity of Monilinia and Botrytis blight disease observed from Fox Point before fungicide application. 

Plant samples for this observation were collected on [12th June 2023, 5th collection]. 

Treatment Monilinia 

incidence 

of floral 

nodes 

(%)1 

Monilinia 

incidence 

of 

vegetative 

nodes 

(%)2 

Monilinia 

severity of 

floral 

node3 

Monilinia 

severity of 

Vegetative 

node4 

Botrytis 

incidence 

of floral 

nodes 

(%)5 

Botrytis 

incidence of 

vegetative 

nodes (%)6 

Botrytis 

severity of 

floral node7 

Botrytis 

severity of 

vegetative 

node8 

Untreated 

Control 

0 0 0 0 0.922 0 0.500 0 

Monilinia 

Control 

0.080 0 0.940 0 0 0 0 0 

Botrytis Control 0 0 0 0 0 0 0 0 

Monilinia & 

Botrytis Control 

0.040 0 0.180 0 0 0 0 0 

ANOVA 

Results9 

NS NS NS NS NS NS NS NS 

1,2,5,6 % Incidence = 0 to 100% where 0 = no blossoms/leaves affected and 100 = all blooms/leaves are affected with at least one 

lesion. 
3,4,7,8 Severity = 0 to 9 rating scale where 0 = no disease and 9 >= 90% of each blossom/leaf tissue is affected. 
9 Analysis of variance (ANOVA) results refer to treatment effects that were either not significant (NS) or significant at p<0.05. Mean 

separation was completed using Duncan’s multiple means comparison test procedure (ά=0.05). 
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