
A D D R E S S I N G R E P R O D U C I B I L I T Y AND E N E R G Y - E F F I C I E N C Y
IN A I D E P L OY M E N T S

by

Ghazal Sobhani

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Ghazal Sobhani, 2024

Table of Contents

L ist of Tables . v i

L is t of Figures . v i i i

Abstract . i x

L is t of Abbreviations Used . x

Acknowledgements . x i

Chapter 1 Introduction . 1

1.1 Motivation . 1
1.2 Research Objective . 2
1.3 Contribution . 3
1.4 Thesis Outline . 5

Chapter 2 Background . 6

2.1 IaC and reproducibility concepts . 6
2.1.1 IaC Principles . 6
2.1.2 Reproducibility Principles . 7
2.1.3 IaC Platforms . 8
2.1.4 Imperative and Declarative IaC Syntax 9
2.1.5 Advanced Concepts in Ansible IaC and Reproducibility 11

2.1.5.1 Configuration Management 11
2.1.5.2 Infrastructure Testing 11
2.1.5.3 Environment Provisioning 11
2.1.5.4 Continuous Integration and Continuous Deployment

(CI/CD) : . 12
2.2 Sustainable A I inference on Edge . 12

2.2.1 Edge Computing . 12
2.2.2 Edge AI: Machine Learning and Deep Learning at the Edge . 12
2.2.3 Power consumption on Edge 13
2.2.4 Frameworks and Tools for Edge A I 14

2.2.4.1 TensorFlow Lite . 14
2.2.4.2 PyTorch Mobile . 15
2.2.4.3 ONNX Runtime . 15

ii

Chapter 3 Related Works . 17

3.1 IaC Reproducibility . 17
3.1.1 Assuring IaC Script Quality 17

3.1.1.1 Best Practices in IaC 17
3.1.2 Code Smells in IaC Scripts . 18
3.1.3 Security Smells in IaC Scripts 20
3.1.4 Reproducibility Practices in Software Engineering 21
3.1.5 Comparison with Existing Work 22

3.2 Sustainable A I inference on Edge Related Works 22
3.2.1 Performance Analysis and Hardware Platforms 24
3.2.2 Software Frameworks . 24
3.2.3 Energy and Runtime Eficiency 24
3.2.4 Model Compression and Deployment 24
3.2.5 Challenges and Optimization Techniques for Deep Learning on

Edge Devices . 25
3.2.6 Applications of Deep Learning on Edge Devices 26
3.2.7 Comparison with Existing Work 26

Chapter 4 Reproducibility practices in Infrastructure as Code . . 29

4.1 Study Design . 29
4.1.1 Study Overview . 29

4.1.1.1 Multi-Vocal Literature Review 30
4.1.1.2 Tool Development for Detecting Reproducibility Smells 31
4.1.1.3 Empirical Analysis of Open-Source Ansible Repositories 31

4.2 Research Methodology . 31
4.2.1 Catalog Creation . 32

4.2.1.1 Resource gathering and searching 32
4.2.1.2 Inclusion and exclusion criteria 33
4.2.1.3 Snowballing . 34
4.2.1.4 Quality assessment of grey literature 35
4.2.1.5 Data extraction and analysis 36

4.2.2 Results of RQ1—Reproducibility Smells Catalog 37
4.2.2.1 Broken dependency chain 38
4.2.2.2 Outdated dependency 39
4.2.2.3 Incompatible version dependency 40
4.2.2.4 Assumptions about environment 42
4.2.2.5 Hardware specific command 43
4.2.2.6 Unguarded operation 44

4.2.3 Smell reference in gray literature 45
4.2.4 Smell catalog and detection rules validation 45
4.2.5 REDUSE—A Reproducibility Smell Detection tool 46

4.3 Evaluation and Results . 47

iii

4.3.1
4.3.2

Chapter 5

Tool Validation . 48
Empirical study . 50
4.3.2.1 Data collection . 50
4.3.2.2 Results of RQ2 . 51
4.3.2.3 Results of RQ3 . 52
4.3.2.4 Key takeaway from RQ2 and RQ3 56
4.3.2.5 Qualitative Analysis 56
4.3.2.6 Implications . 57

Sustainable A I Inference on Edge Devices 58

5.1 Methodology and Deployment . 58
5.1.1 Model Selection . 59
5.1.2 Device Selection . 60
5.1.3 Framework Selection . 61
5.1.4 Model Training . 62
5.1.5 Evaluation Metrics . 64

5.1.5.1 Memory Utilization 64
5.1.5.2 Accuracy . 65
5.1.5.3 Inference Time . 65
5.1.5.4 Power Consumption 66

5.2 Implementation and Deployment . 67
5.2.1 Device Setup Process . 67

5.2.1.1 System Software Deployment 67
5.2.1.2 Framework Deployment 68
5.2.1.3 Model and Data Deployment 68

5.2.2 Performance Measurement and Report Generation 69
5.3 Evaluation Results . 70

5.3.1 How do learning models perform on selected edge devices? . . 71
5.3.1.1 Traditional ML Models 71
5.3.1.2 Neural Network Models 71
5.3.1.3 Large Language Models 74

5.3.2 How do lite frameworks impact the learning outcome? 76
5.3.3 What are the trade-offs between performance and resource usage? 77

5.4 Key Takeaways . 78

Chapter 6 Conclusions and Future Wo r k 80

6.1 Future Work . 80
6.1.1 Potential Future Extensions on IaC Reproducibility 80
6.1.2 Future Extensions of A I Inference on Edge Study 80

6.2 Limitations . 81
6.2.1 Limitations of IaC Reproducibility Study 81
6.2.2 Limitations of A I inference Study on Edge 81

6.3 Conclusions . 82

iv

Bibliography . 84

v

L i s t of Tables

2.1 Comparison of IaC Tools
Legend: ✗ = Agentless, ✓ = Agent-based, I = Imperative, D
= Declarative . 9

2.2 Comparison of Edge A I frameworks. 16

3.1 Summary of Related Works and Comparison with Current Re-search
. 23

3.2 Summary of Related Works on Sustainable A I Inference on Edge
Devices . 28

4.1 Performance of Reduse against manually annotated ground truth 49

4.2 Contingency matrix for a smell pair. 52

5.1 Models, Training Tools, Target Devices, Datasets, and Training
Information for Edge Devices. Symbols used for target devices:
★ - Raspberry Pi, ✲ - Intel Stick, ✰ - Jetson Nano. 63

5.2 Hyperparameters of KNN, Decision Tree (DT) , SVM, and Linear
Classifier. 63

5.3 Hyperparameters of FFNN, CNN, R-CNN, and ANN. 64

5.4 Hyperparameters of ResNet50 and MobileSSD. 65

5.5 Hyperparameters of T inyB E RT and Phi-2. 66

5.6 Energy consumption measurement tools for Raspberry Pi, Intel
Neural Compute Stick, and Nvidia Jetson Nano. 70

5.7 Performance of traditional ML models. Metrics are reported
along with their confidence interval in square brackets. 72

5.8 Performance of neural network models. Metrics are reported
along with their confidence interval in square brackets. 73

5.9 Performance of Resnet-50 and MobileSSD models. Metrics are
reported along with their confidence interval in square brackets. 74

5.10 Performance of L L M models. Metrics are reported along with
their confidence interval in square brackets. 75

vi

5.11 Performance comparison across edge devices. 77

vii

L i s t of F igures

4.1 Overview of the IaC Reproducibility study. 30

4.2 Overview of the multi-vocal literature review process. 33

4.3 Architecture of the smell detection tool. 46

4.4 Frequency of detected reproducibility smells in Ansible tasks.
B D C refers to broken dependency chain, I V D to incompatible
version dependency, A A E to assumptions about environment,
HSC to hardware specific command, and UGO refers to un-
guarded operation. 51

4.5 Correlation analysis. 53

4.6 Smell co-occurrence at the Ansible task granularity. 54

5.1 The workflow of A I inference assessment in edge devices. . . . 59

5.2 Deployment and measurement setup. 67

viii

Abstract

Deploying A I models on edge devices presents challenges in ensuring reliable and

energy-eficient operations. Edge A I processes data directly on devices like IoT sensors

and industrial machinery, enabling real-time decision-making and reducing latency,

which is crucial for applications such as autonomous driving and robotics. However,

deploying these models often involves custom Infrastructure as Code (IaC) scripts,

and a lack of reproducibility in these scripts can cause inconsistencies and affect

system reliability. Additionally, while advancements in hardware like SoCs, FPGAs,

and A I accelerators have improved Edge A I capabilities, these deployments can lead

to high energy consumption.

Our research addresses these challenges through two main contributions. First, we

identify and categorize reproducibility smells in IaC scripts, particularly focusing on

an automation platform, Ansible, that allows imperative infrastructure configuration.

We developed a tool, Reduse, to detect these reproducibility smells, in the pursuit

to ensure that IaC scripts are reliable and consistent. Our empirical study reveals

the occurrence of these smells in open-source projects, with significant correlations

and co-occurrence patterns among them. For instance, the broken dependency chain

smell was found in approximately 71% of Ansible tasks analyzed, highlighting common

reproducibility issues.

Second, we comprehensively evaluate the selection of A I models on edge devices,

including the Raspberry Pi, NVIDIA Jetson Nano, and Intel Neural Compute Stick.

By measuring inference power consumption, accuracy, inference time, and memory

utilization, we offer insights into the performance and energy eficiency trade-offs of

these models. For instance, Jetson Nano provides the best accuracy at the cost of a

high energy budget. Thus, our work advances the field of edge A I with the best

practices in IaC, contributing to more reliable and effective A I deployments in real-

world scenarios.

ix

L i s t of Abbreviat ions Used

I a C Infrastructure as Code

SoCs System on Chips

F P G A s Field Programmable Gate Arrays

C N N Convolutional Neural Network

M L Machine Learning

D L Deep Learning

A I Artificial Intelligence

C I / C D Continuous Integration and Continuous Deployment

N L P Natural Language Processing

L L M Large Language Models

S V M Support Vector Machine

K N N K-Nearest Neighbors

A N N Artificial Neural Network

R - C N N Region-based Convolutional Neural Network

x

Acknowledgements

I would like to express my deepest gratitude to Dr. Israat Haque and Dr. Tushar

Sharma for their invaluable support throughout my academic journey. Their under-

standing and encouragement have been a tremendous help, not only with academic

matters but also in navigating the various challenges faced by a new international

student. Their support has been a source of great strength and inspiration.

I am also profoundly thankful to my parents, who, despite being far away, have

given me the strength to persevere during dificult times. Their unwavering support

and belief in me have been crucial in helping me through moments when everything

seemed to be falling apart.

Finally, I wish to extend my heartfelt thanks to all the new friends I have made

here. You are the warriors who have shared this battle with me, working towards

creating a better life. Your camaraderie and support have made this journey a mem-

orable and enriching experience.

Thank you all for being part of this significant chapter in my life.

xi

Chapter 1

Intro duct ion

The deployment and management of A I models on edge devices is becoming increas-

ingly common as the demand for real-time decision-making and inference grows. Edge

A I represents a significant shift from the traditional cloud-based A I models, which

rely on centralized data centers for computation through constant data transfers be-

tween the device and the cloud station. Instead, Edge A I processes data on devices

such as Internet of Things (IoT) sensors, edge servers, and industrial machinery, en-

abling immediate and localized decision-making [103,107]. These changes offer several

key advantages, including reduced latency, enhanced privacy and security, improved

bandwidth eficiency, and the decentralization of computational tasks. These benefits

are essential for applications in areas such as autonomous driving, robotics, and in-

dustrial automation, where timely decision-making is needed. Recent advancements

in hardware, including System on Chips (socs), Field Programmable Gate Arrays

(fpgas), and A I accelerators, have dramatically improved the eficiency of Edge AI.

These innovations allow sophisticated machine learning and deep learning models to

operate with high speed on edge devices [23, 84].

The deployment of A I models on edge devices often involves the use of custom

Infrastructure as Code (iac) scripts for provisioning and configuration. IaC automates

the creation, configuration, management, and monitoring of computing infrastructure

through code, typically in the form of declarative configuration specification [68, 89].

IaC offers many advantages over manual deployments, including faster, repeatable,

and consistent deployment, improved scalability, enhanced reliability, and reduced

operational costs [68].

1.1 Motivation

Deploying and managing A I models on edge devices presents unique challenges, of-

ten involving custom IaC scripts for provisioning and configuration. If these scripts

1

2

are not reproducible, inconsistencies and errors during deployment can arise, poten-

tially impacting the reliability of the A I models. Ensuring reproducibility in IaC

scripts is critical for maintaining consistent and reliable deployments across various

environments, such as development, testing, and production.

There has been some attempts to ensure the overall quality of IaC scripts. Gonzalo

et al. [85] provide recommendations for effective coding practices, including maintain-

ing a consistent style, avoiding assumptions, organizing code predictably, document-

ing comprehensively, and implementing error defense measures. Similarly, Kumara et

al. [60, 61] emphasize the significance of reproducibility in IaC, particularly in main-

taining consistent and easily reproducible environments. Despite these discussions,

specific guidelines for addressing reproducibility issues in IaC scripts are still lacking.

While research has explored practices impacting quality attributes such as security

and maintainability [30, 61, 80, 87], reproducibility within IaC scripts remains as an

important research gap.

Sustainability, i.e., optimizing the energy consumption by the deployed (ml) mod-

els, is another challenge in Edge A I deployments. Performing inference of (ml) mod-

els directly on edge devices offers numerous advantages, including minimized latency

and reduced dependence on centralized cloud servers, which are essential for real-

time decision-making and analysis in applications requiring immediate response. Un-

derstanding the energy consumption of m l models is essential for optimizing their

deployment in edge computing environments. Knowledge of energy requirements

helps developers make informed decisions about model selection, optimization tech-

niques, and hardware configurations, paving the way for designing sustainable edge

computing systems. Prioritizing energy eficiency throughout the development and

deployment process enables organizations to contribute to sustainable A I solutions

that align with their sustainability goals and regulatory requirements.

1.2 Research Ob jective

In this thesis, we address the research gap by first exploring existing knowledge about

practices that affect reproducibility in IaC scripts in the existing literature through a

multi-vocal literature review. We focus on Ansible scripts (also known as playbooks)

3

because Ansible is one of the most commonly used IaC frameworks for resource orches-

tration and configuration [61]. The imperative nature of Ansible code offers flexibility

by allowing users to specify tasks using known operating system commands but also

poses a risk of creating dificult-to-reproduce scripts due to potential violations of the

idempotency principle. Therefore, the first objective of the thesis is to identify prac-

tices hindering the reproducibility of Ansible scripts from both academic and gray

literature sources. Additionally, we explored whether these practices are present in

real-world, open-source projects and if they contribute to reproducibility issues.

Building on this foundation, the second objective of our research is to explore

the feasibility of executing A I models on edge devices by identifying and addressing

the challenges associated with such deployments and determining the applications

that can most benefit from these models. Specifically, the study aims to compare

various lightweight machine learning frameworks for deploying models on edge de-

vices, evaluating their performance and resource utilization to find the most eficient

options. Furthermore, it investigates the practical benefits and applications of A I

model deployment on different edge devices, such as the Raspberry Pi, Intel Neural

Stick, and Nvidia Jetson Nano, by examining real-world use cases for each of them.

Additionally, the research seeks to understand how the choice of machine learning

framework, model architecture, hardware platform, and optimization techniques can

impact inference accuracy, computational eficiency, and the trade-offs between model

accuracy and energy consumption.

By applying the insights from our IaC reproducibility research, including the de-

velopment of a tool for detecting reproducibility smells, we ensure that the IaC scripts

used to deploy A I models at the edge are reliable and consistent. This integration of

IaC best practices with Edge A I deployment will lead to more reliable and energy-

eficient deployments of A I models on edge devices.

1.3 Contribution

This thesis makes the following contributions to the field of reliable and energy-

eficient A I model deployments:

• Reproducibility Smell Catalog: We introduce a comprehensive catalog of

reproducibility smells, aggregating knowledge from both academic and gray

4

literature for Ansible scripts. This catalog serves as a valuable resource for

practitioners and researchers seeking to identify and mitigate reproducibility

issues in IaC scripts. By ensuring reproducibility in IaC scripts, we can guaran-

tee consistent and reliable provisioning and configuration of edge devices, thus

supporting stable and dependable A I model deployments [60, 61, 85].

• Reproducibility Smell Detection Tool—Reduse: We developed REpro-

DUcibility SmEll (Reduse) detector to detect reproducibility smells in Ansible

scripts. Practitioners can use this tool to improve the reproducibility aspects

of their IaC scripts, thereby ensuring consistent deployment environments. Re-

searchers can utilize Reduse to explore further ways to ensure reproducibility

and investigate the causes and effects of reproducibility issues. Furthermore,

this tool could help maintaining the reliability of A I models deployed on edge

devices by preventing deployment inconsistencies caused by non-reproducible

IaC scripts.

• Empirical Study on Reproducibility Smells: Our empirical study explores

the properties of reproducibility smells and their relationships with each other.

Observations derived from this study enhance our understanding of Ansible

scripts and reproducibility smells, providing insights into how to improve IaC

practices. Understanding these relationships helps in addressing reproducibility

issues proactively, ensuring reliable and consistent A I model deployments on

edge devices.

• Evaluation of A I Models on Edge Devices: We assemble an extensive

list of A I models and their applications on edge devices, sourced from vari-ous

references. These models are classified into traditional machine learning, neural

network models, deep learning, and large language models. We eval-uated

these models on Raspberry Pi, Nvidia Jetson Nano, and Intel Neural Stick.

By assessing inference power consumption, accuracy, processing time, and

memory usage, we provide a comprehensive analysis of model performance in

edge computing environments. This evaluation helps practitioners choose the

most appropriate models and optimization techniques for their specific needs,

balancing performance and energy eficiency.

5

• Edge A I Design and Deployment Guidelines: Our findings highlight best

practices and potential pitfalls in deploying A I models on edge devices. By

understanding the trade-offs between performance metrics under various con-

straints typical of edge devices, we offer detailed guidance for practitioners. This

holistic approach ensures eficient and effective edge A I solutions, contributing

to sustainable and reliable A I deployments.

• Replication Packages: We make our replication package, including the source

code of the developed tool Reduse, scripts used to generate and analyze data,

and results obtained from analyzing open-source repositories available online [9].

Similarly, for the sustainable edge A I study, we make our code available for all

the model implementations and for the different models and different platforms

[33]. It also includes a detailed process on how to setup and execute models on

the devices.

1.4 Thesis Outline

The thesis is structured as follows. Chapter 2 and Chapter 3 covers background

concepts and related works, providing an overview of existing literature and theories.

Chapter 4 presents the details the research design, methodology, challenges, research

questions, and evaluation of the developed tools and experiment results. Chapter 5

presents the Energy consumption measurement for inference of A I models. Detailing

the research design, methodology, challenges, research questions, and evaluation of

the developed tools and experiment results. Chapter 6 presents future extensions

and conclusions, summarizing key findings and proposing future research directions.

This concise structure ensures a clear progression through the research topic.

Chapter 2

Background

This section provides the necessary context to understand the content presented in

this thesis.

2.1 I a C and reproducibility concepts

We delve into the principles of IaC and the syntax paradigms used in IaC specifica-

tions. Additionally, we discuss relevant literature that underpins this study.

2.1.1 I a C Principles

Infrastructure as Code (IaC) is a transformed paradigm in modern Information Tech-

nology (I T) infrastructure management that enables automated and scalable deploy-

ment of computing resources by treating infrastructure configurations as code [68,

81]. This approach significantly enhances consistency, scalability, and deployment

speed [68,81, 82]. The effectiveness of IaC is grounded in several fundamental princi-

ples, which we outline below:

• Idempotency: This principle ensures that applying the same configuration

multiple times results in the same outcome. Incorporating idempotent prop-

erties into infrastructure code helps organizations avoid inconsistencies and

achieve a predictable and reliable state [49, 60]. It is crucial for maintaining

stable environments and reducing configuration drift.

• Specification is Code: This principle emphasizes that infrastructure code

should be treated with the same manners as production code. Applying soft-

ware engineering discipline and quality practices to infrastructure code mini-

mizes technical debt and enhances manageability and maintainability [69]. This

includes practices such as code reviews, automated testing, and continuous in-

tegration.

6

7

• Version Control: Version control is essential in IaC for tracking changes,

facilitating collaboration, and allowing rollback to previous versions if necessary.

Using version control systems (VCS) ensures accountability, traceability, and

supports effective teamwork [28, 61, 85]. It enables teams to manage changes

systematically and maintain a history of modifications.

• Reproducibility: Reproducibility refers to the ability to recreate a given en-

vironment consistently and rapidly. It is a cornerstone of IaC, motivating or-

ganizations to adopt IaC frameworks to ensure environments can be duplicated

precisely as needed [24,49,61]. This is critical for disaster recovery, scaling, and

testing.

• Repeatability: Repeatability in IaC advocates for automating tasks using

scripts and tools, thereby avoiding manual actions. This principle enhances the

reliability, speed, and consistency of infrastructure management by reducing the

risk of human error [29,60,61,69]. Automated processes ensure that infrastruc-

ture configurations are applied uniformly across different environments.

2.1.2 Reproducibility Principles

Having established the core principles of Infrastructure as Code (IaC), including

the benefits of declarative syntax for ensuring consistent state management, we can

now delve deeper into specific practices that promote reproducibility within Ansible

scripts.

In IaC, achieving consistent and reliable execution is crucial, particularly for Ansi-

ble scripts. This necessitates adherence to several key principles presented below [68]:

• Avoid hard-coding: sensitive information such as credentials and A P I keys

should never be hard-coded within playbooks. Instead, secure management

practices like Ansible Vault or environment variables are recommended [11].

• Modular design: promoting code maintainability and facilitating individual

component testing can be achieved through a modular design approach, where

complex configurations are decomposed into reusable roles [10].

8

• Dependency management: explicit declaration and management of dependen-

cies within playbooks is crucial to guarantee consistent behavior across diverse

environments. Tools like Ansible Galaxy can be employed to effectively manage

these dependencies.

• Idempotency: Ensuring idempotency in the scripts are vital. This ensures that

scripts produce identical outcomes irrespective of whether they are executed on

a pre-existing configuration or not, thereby fostering consistent state manage-

ment and mitigating the risk of unintended modifications [13].

2.1.3 I a C Platforms

Infrastructure as Code (IaC) platforms provide powerful automation solutions for

managing and configuring infrastructure. Among the various options available, tools

like Ansible, Puppet, Chef, and Terraform each offer distinct features and approaches

to IaC. Some platforms, such as Ansible, are known for their agent-less architecture,

which simplifies the setup process and reduces overhead by using protocols like SSH

for communication. This approach can be particularly appealing for teams seek-ing

a straightforward configuration syntax and ease of use, especially in smaller to

medium-sized deployments [68]. On the other hand, tools like Puppet and Chef come

with robust capabilities for managing large-scale configurations and employ their own

declarative languages, offering extensive control and flexibility. The choice between

these platforms often depends on the specific needs of the deployment, including

factors like scale, complexity, and the desired ease of adoption.

9

Table 2.1: Comparison of IaC Tools
Legend: ✗ = Agentless, ✓ = Agent-based, I = Imperative, D = Declarative

Feature
Architecture
Configuration

Syntax

Use Cases

Strengths

Ansible
✗

YA M L
I, D

Config Mgmt
App Deploy

Orchestration
Simple, Flexible

Fast Setup

Puppet
✓

DSL

D

Config Mgmt

Mature Ecosystem
Strong Community

Terraform
✗

H C L

D

Infra Provisioning

Multi-cloud
Immutable Infra

Domain-Specific Language (DSL) is a programming language tailored for spe-

cific tasks within a domain, used in tools like Puppet for defining infrastructure in

a readable, domain-focused way. HashiCorp Configuration Language (HCL) is a

human-readable, machine-friendly configuration language used by Terraform to man-

age infrastructure across multiple cloud providers with a declarative syntax. YA M L

is a human-readable data serialization format commonly used for configuration files. It

emphasizes simplicity and ease of use, making it popular in tools like Ansible for

defining infrastructure as code.

By understanding and implementing these concepts, organizations can leverage

Ansible and IaC to achieve greater reproducibility, reliability, and eficiency in man-

aging their I T infrastructure. These practices not only enhance operational stability

but also support scalable and agile development processes.

2.1.4 Imperative and Declarative I a C Syntax

IaC can be implemented using either imperative or declarative syntax, each with

distinct characteristics and use cases.

Imperative I a C Syntax: This approach involves specifying explicit instructions

and steps to provision and configure infrastructure. Developers define the exact se-

quence of operations needed to achieve the desired state, often using operating system

commands. The focus is on control flow and procedural execution [24,60,80]. Ansible,

for example, supports an imperative style through yaml-based playbooks where each

10

task specifies particular actions to be executed on the target infrastructure [68].

Declarative I a C Syntax: In contrast, declarative IaC languages describe the

target state of the infrastructure without specifying the exact steps to achieve that

state. Developers define the desired configuration, and the IaC framework determines

the necessary operations to align the infrastructure with the desired state [24,60,80].

Puppet is an example of a framework that primarily uses declarative syntax.

Listing 2.1: Ansible code snippet

I m p e r a t iv e A n s i b l e syntax

− name : Check i f Apache i s i n s t a l l e d

s h e l l : dpkg − l apache2

r e g i s t e r : a p a c h e i n s t a l l e d

− name : I n s t a l l Apache

s h e l l : apt−g e t i n s t a l l apache2

when : a p a c h e i n s t a l l e d . r c ! = 0

D e c l a r a t i v e A n s i b l e syntax

− name : I n s t a l l Apache web s e r v e r

h o s t s : w e b s e rve rs

t a s k s :

− name : I n s t a l l Apache package

apt :

name : apache2

s t a t e : p r e s e n t

− name : S t a r t Apache s e r v i c e

s e r v e r :

name : apache2

s t a t e : s t a r t e d

Ansible, while capable of declarative syntax, primarily employs an imperative

approach. The example above illustrates both styles within Ansible: the imperative

code provides step-by-step commands, while the declarative code specifies the desired

state.

11

The choice between imperative and declarative syntax depends on the specific

needs of the project and the preferences of the development team. Imperative syntax

offers more control over the execution process, while declarative syntax provides a

higher level of abstraction and simplicity.

2.1.5 Advanced Concepts in Ansible I a C and Reproducibility

To further enhance our understanding of IaC, particularly with tools like Ansible, it

is important to discuss related concepts such as configuration management, infras-

tructure testing, and environment provisioning. These concepts play a significant role

in achieving reproducibility and reliability in infrastructure deployments.

2.1.5.1 Configuration Management

Configuration management involves maintaining the consistency of infrastructure con-

figurations across different environments and over time. Ansible excels in this domain

by enabling the definition and automation of configuration tasks through playbooks.

This ensures that infrastructure remains consistent and aligned with the desired state,

reducing configuration drift and manual intervention [68].

2.1.5.2 Infrastructure Testing

Just as testing is crucial in software development, it is equally important in IaC to en-

sure that infrastructure configurations work as expected. Tools like Ansible allow for

the creation of automated tests to validate infrastructure setups. Testing frameworks

such as Testinfra or Molecule can be integrated with Ansible to perform unit and

integration tests on infrastructure code, ensuring reliability and functionality [82].

2.1.5.3 Environment Provisioning

Environment provisioning refers to the process of setting up the necessary computing

resources and configurations to support application deployments. Ansible facilitates

automated environment provisioning by defining infrastructure requirements in code.

This allows for rapid and consistent creation of development, testing, and production

environments, ensuring that they are identical and reproducible [60].

12

2.1.5.4 Continuous Integration and Continuous Deployment (C I / C D) :

Integrating IaC with C I / C D pipelines enhances the automation of infrastructure

changes and deployments. Ansible can be used in conjunction with C I / C D tools

such as Jenkins, GitLab CI, or GitHub Actions to automate the testing, provisioning,

and deployment of infrastructure. This ensures that changes are tested and deployed

in a controlled and repeatable manner, minimizing errors and downtime [28].

2.2 Sustainable A I inference on Edge

2.2.1 Edge Computing

Edge computing refers to the processing of data near the data source, at the edge of

the network, rather than relying on a centralized data-processing warehouse. This

approach reduces latency, saves bandwidth, and enables real-time processing, which is

crucial for applications requiring immediate responses. Edge computing supports var-

ious applications, including IoT, autonomous vehicles, and smart cities, by providing

local processing power.

By integrating ML and D L models into edge computing, Edge A I allows for ad-

vanced analytics and decision-making to occur directly at the data source. This not

only enhances performance but also ensures data privacy and security, as sensitive

information does not need to be transmitted to central servers.

2.2.2 Edge A I : Machine Learning and Deep Learning at the Edge

The integration of machine learning (ML) and deep learning (D L) models into edge

computing environments, referred to as Edge AI, has transformed data processing.

Traditionally, ML has enabled systems to learn and adapt from data without ex-

plicit programming. Deploying these models directly on edge devices facilitates real-

time decision-making and analysis at the data source, leading to applications in pre-

dictive maintenance, anomaly detection, personalized healthcare, and smart energy

management. However, deploying ML models on edge devices presents unique chal-

lenges, including limited computational resources, energy constraints, and the need

for lightweight model architectures.

13

Deep learning, which utilizes sophisticated models capable of uncovering intri-

cate patterns from large datasets, also benefits from deployment on edge devices.

This enables real-time data processing and analysis, driving advancements in smart

surveillance, intelligent transportation systems, healthcare monitoring, and industrial

automation [8,103]. Similar to ML, the challenges of limited computational resources

and energy constraints must be addressed to fully leverage the potential of D L on the

edge.

Natural language processing (NLP) is experiencing a shift with the potential de-

ployment of large language models (LLMs) on edge devices. This promises immediate

language comprehension and generation, fostering applications in virtual assistants,

language translation, and sentiment analysis. However, deploying LLMs on edge de-

vices introduces new challenges, including computational resource limitations, model

size constraints, and energy limitations, necessitating the development of streamlined

model architectures and optimization techniques.

Fortunately, the development of lightweight A I models, designed for compact and

eficient performance, addresses some of these challenges. Techniques such as model

pruning, quantization, and knowledge distillation help create compact models that

maintain satisfactory accuracy levels. Frameworks like TensorFlow Lite, PyTorch Mo-

bile, and ONNX Runtime further enable the deployment of these models on edge de-

vices, allowing tasks like image classification, object detection, and speech recognition

to be performed locally, without relying on constant communication with centralized

servers.

2.2.3 Power consumption on Edge

Energy and power measurements play a crucial role in optimizing the performance and

eficiency of edge computing systems. By accurately monitoring energy consumption

and power usage, ineficiencies can be identified, resource allocation can be optimized,

and the battery life of edge devices can be prolonged. Software tools like Perf [6] and

NVIDIA-SMI [5], alongside hardware devices such as USB power meters, provide

valuable insights into the energy and power consumption of edge devices. This data

is instrumental in validating energy-saving techniques and ensuring compliance with

energy eficiency standards.

14

As the demand for AI-driven applications at the edge continues to grow, there is

a parallel focus on sustainability and energy eficiency, encapsulated in the concept

of GreenAI [40]. GreenAI emphasizes the development and deployment of A I models

that are not only powerful but also environmentally sustainable. This is particularly

relevant in the context of Edge IoT deployments, where energy consumption is a

critical concern due to the limited power availability of edge devices.

The principles of GreenAI involve optimizing model architectures to reduce com-

putational overhead, employing energy-eficient hardware, and leveraging advanced

techniques such as federated learning and edge-cloud collaboration. By adopting these

practices, organizations can minimize the carbon footprint of their A I deployments

while maintaining high performance and accuracy.

Federated learning, for example, allows edge devices to collaboratively train

models using local data, reducing the need for extensive data transfer to central

servers. This not only enhances data privacy and security but also significantly cuts

down on energy consumption associated with data movement. Edge-cloud collab-

oration, on the other hand, involves distributing computational tasks between edge

devices and cloud servers, ensuring that energy-intensive operations are ofloaded to

more capable infrastructure while preserving the real-time processing capabilities of

edge devices.

2.2.4 Frameworks and Tools for Edge A I

Various frameworks and tools are used in enabling the eficient deployment and man-

agement of A I models on edge devices. The most common ones are TensorFlow Lite,

PyTorch Mobile, and ONNX Runtime, each offering unique features and capabilities

tailored to the needs of edge A I applications.

2.2.4.1 TensorFlow L i te

TensorFlow Lite is a lightweight version of TensorFlow designed for mobile and em-

bedded devices. It provides tools for optimizing models to run eficiently on edge

hardware, including support for model quantization and hardware acceleration. Ten-

sorFlow Lite’s interpreter is designed to work on devices with limited resources, mak-

ing it ideal for real-time inference tasks on edge devices [44].

15

2.2.4.2 PyTorch Mobile

PyTorch Mobile extends the popular PyTorch framework to mobile and edge environ-

ments. It supports model optimization techniques such as quantization and pruning,

allowing developers to deploy eficient models on edge devices. PyTorch Mobile in-

tegrates seamlessly with the PyTorch ecosystem, enabling a smooth transition from

model development to deployment [77].

2.2.4.3 O N N X Runtime

ONNX Runtime is an open-source project that enables the deployment of models

trained in various frameworks, such as TensorFlow and PyTorch, on edge devices.

It provides high performance and cross-platform compatibility, making it a versatile

choice for edge A I applications. ONNX Runtime supports hardware acceleration and

optimization techniques to ensure eficient model execution on resource-constrained

devices [73].

These frameworks, combined with advancements in A I hardware and software, are

driving the evolution of edge AI, enabling the deployment of sophisticated models that

operate eficiently and sustainably in edge environments. By leveraging these tools,

developers can create AI-driven solutions that are both powerful and energy-eficient,

meeting the demands of modern edge computing applications.

16

Table 2.2: Comparison of Edge A I frameworks.

Feature
Pr imary Use
Case
Mo del Opti-
mization

Supp orted Lan-
guages
Hardware Ac-
celeration

Mo del Format
Compatibi l i ty

Ease of Use

Performance

Community
Supp ort

Deployment
F lex ib i l i ty

TensorFlow L i te
Mobile and Embed-
ded Devices
Quantization,
Pruning

Python, Java,
Swift, C + +
Yes, via delegates
(e.g., NNAPI,
GPU)
TFL i te
TensorFlow Models

High, with exten-
sive documentation

Optimized for mo-
bile and embedded

Large, with many
resources

Primarily for An-
droid and iOS

P y To r c h Mobile
Mobile and Edge
Devices
Quantization,
Pruning

Python

Yes (e.g., NNAPI,
Metal)

TorchScript
PyTorch Models

High, integrates
with PyTorch

Optimized for mo-
bile and edge

Large, integrated
with PyTorch com-
munity
Primarily for An-
droid and iOS

O N N X Runt ime
Cross-Platform
Model Deployment
Quantization,
Hardware Acceler-
ation
Python, C + +

Yes (e.g., Ten-
sorRT, Open-
VINO)
ONNX
Models from var-
ious frameworks
(TensorFlow, Py-
Torch, etc.)
Moderate, requires
conversion to
ONNX format
High performance
with cross-platform
support
Growing, with
broad framework
support
Cross-platform
(Windows, Linux,
macOS, Android,
iOS)

Chapter 3

Related Wor ks

3.1 I a C Reproducibility

This section provides an in-depth overview of various research studies that have in-

vestigated IaC tools, techniques, and practices. It also summarizes existing work on

reproducibility practices in software engineering, positioning our study within the

broader context of the field.

3.1.1 Assuring I a C Script Quality

To ensure the quality of IaC scripts, we categorize the related work into different

subfields that focus on best practices, code smells, and security aspects.

3.1.1.1 Best Practices in I a C

Several studies have explored tools and techniques to ensure various quality aspects

of IaC, including security and maintainability.

Kumara et al . [60] addresses the growing significance of infrastructure-as-code

(IaC) within the DevOps paradigm, highlighting the need for speed in software de-

velopment and deployment. Despite its widespread adoption, the academic literature

on IaC remains limited, particularly concerning its maintenance and evolution. To

bridge this gap, the authors conducted a systematic review of gray literature, ana-

lyzing 67 high-quality sources to uncover best and bad practices in IaC development

across various languages, including Puppet, Chef, and Ansible. They proposed a rig-

orous definition of infrastructure code and established a taxonomy categorizing ten

best practices and four bad practices, emphasizing the importance of implementation,

design, and adherence to core IaC principles. The findings reveal both significant chal-

lenges—such as conflicting best practices and security issues—and valuable insights

into the most commonly used IaC languages and practices. The study concludes

17

18

with a call for further research in the area of IaC maintenance and security, outlining

plans for future work that aims to automate recommendations for best practices and

expand the investigation to encompass a broader range of IaC tools.

Rahman et al . [80] focuses on the significant impact of defects in infrastructure-

as-code (IaC) scripts, which can lead to major system outages. The authors create

a detailed defect taxonomy by analyzing 1, 448 defect-related commits from Open-

Stack’s open-source software repositories. To ensure the taxonomy’s relevance, they

survey 66 practitioners to gauge their agreement with the identified defect categories.

The resulting taxonomy includes eight categories, with a specific emphasis on idem-

potency, which highlights defects that affect system provisioning during multiple exe-

cutions of the same IaC script. The analysis identifies configuration data as the most

frequent defect category, reflecting issues with erroneous configuration inputs. By

quantifying these defects across 80, 425 commits from 291 repositories, the authors

aim to improve the understanding and overall quality of IaC scripts, offering valuable

insights for practitioners in enhancing their infrastructure code practices.

Hummer et al . [49] present a model-based testing approach for Infrastructure

as Code (IaC) aimed at verifying the idempotence of automation scripts, such as

those written in Chef. The authors highlight the critical importance of idempotence

for ensuring that IaC automation can consistently bring systems to a desired state,

regardless of their starting conditions. Through an extensive evaluation of approx-

imately 300 real-world Chef scripts, the proposed framework successfully identified

nearly one-third as non-idempotent, also uncovering a bug in the Chef implementa-

tion. The study emphasizes the need for systematic testing in the context of IaC,

paving the way for future research that could extend the approach to distributed

automation, other IaC frameworks like Puppet, and the identification of implicit

dependencies. This work contributes significantly to the understanding and improve-

ment of IaC script quality, highlighting the ongoing challenges in ensuring robust

automation practices.

3.1.2 Code Smells in I a C Scripts

Research on code smells in IaC scripts has been extensive, focusing on identifying

and mitigating issues that affect script quality.

19

Dallapalma et al . [30] introduces a catalog of 46 software quality metrics specif-

ically designed for Infrastructure as Code (IaC), with a focus on Ansible. As IaC

practices continue to gain traction in the industry, the authors emphasize the need for

measurable approaches to maintain and improve code quality. The proposed metrics

aim to aid DevOps engineers in assessing infrastructure code properties, identifying

potential defects, and facilitating incremental refactoring. By providing a structured

set of metrics tailored to the unique characteristics of IaC scripts, this work lays the

groundwork for future empirical studies on the relationship between these metrics and

code quality. The authors also highlight the importance of generalizing their findings to

other IaC frameworks, paving the way for a comprehensive understanding of IaC

quality across different languages and tools.

Schwarz et al . [87] addresses the challenge of maintaining high quality in In-

frastructure as Code (IaC) by investigating code smells, a concept borrowed from

traditional software engineering. While prior research has applied code smells to

Puppet, this study extends the analysis to Chef, examining both open and closed

source IaC repositories through two case studies. The findings reveal that IaC smells

are prevalent across different technologies and can be defined in a technology-agnostic

manner. Additionally, the authors introduce 17 new code smells that have not been

previously explored in the IaC domain. This work contributes to the ongoing dis-

course on IaC quality by providing a comprehensive catalog of code smells that can

help assess and improve IaC practices.

Sharma et al . [89] presents a quality analysis of Infrastructure as Code (IaC),

specifically focusing on Puppet configuration code. The authors propose a catalog of

24 configuration smells, 13 implementation and 11 design smells, derived from

established best practices. Analyzing 4, 621 Puppet repositories with over 8.9 million

lines of code, the study addresses key research questions regarding the distribution,

co-occurrence, and density of these smells. Findings indicate that design configuration

smells tend to co-occur more frequently and exhibit negative correlation with project

size, highlighting the need for careful design decisions. The study not only contributes

to the understanding of configuration code quality but also provides practical tools

for practitioners to identify and mitigate configuration smells, thereby promoting

maintainability in IaC practices.

20

Rahman et al . [83] investigates the correlation between specific source code

properties and defects in Infrastructure as Code (IaC) scripts, emphasizing the im-

pact of these defects on the reliability of automated deployment pipelines. Through

qualitative analysis of defect-related commits from open-source repositories, the au-

thors identify ten source code properties associated with defective IaC scripts, with

lines of code and hard-coded strings showing the strongest correlations. A survey

of practitioners reveals significant agreement on the relevance of executing external

modules and the use of hard-coded strings. The study further develops defect predic-

tion models based on these properties, achieving precision scores between 0.70 and

0.78, and recall rates of 0.54 to 0.67. The findings suggest that practitioners should

focus their inspection and testing efforts on IaC scripts exhibiting these identified

properties to enhance code quality.

3.1.3 Security Smells in I a C Scripts

Detecting security smells in IaC scripts has been a significant area of research.

Dai et al . [29] presents SecureCode, an analysis framework designed to auto-

matically extract and assess embedded scripts within infrastructure code, specifically

targeting risky patterns that can adversely affect the entire infrastructure. By fo-

cusing on Ansible playbooks, the framework detects these risky patterns along with

their correlated severity levels and potential negative impacts. Integrated into a De-

vOps pipeline on IBM Cloud, SecureCode was tested on 45 IBM Services community

repositories, successfully identifying 3,419 true issues with 116 false positives within

a short time frame. Notably, 1,691 of these identified issues were classified as having

high severity levels, highlighting the tool’s effectiveness in enhancing infrastructure

code security.

Opdebeeck et al . [75] investigates the challenges associated with variable man-

agement in Ansible, a widely used Infrastructure as Code (IaC) language. It identifies

six novel code smells stemming from Ansible’s complex variable precedence rules and

lazy-evaluated template expressions, which can lead to significant infrastructure de-

fects. Utilizing a transposed program dependence graph for accurate control and

data flow representation, the authors detect these smells in 21,931 open-source An-

sible roles, uncovering 31,334 unique instances. The findings reveal an increasing

21

trend in variable smells over time, with changes often introducing new smells rather

than resolving existing ones. This research emphasizes the need for enhanced quality

checkers in IaC and advocates for a deeper understanding of the semantics beyond

mere syntax in IaC practices.

They further extended their work by introducing G A S E L [76], a novel security

smell detector for Ansible, addressing the limitations of previous static analyses that

overlook control and data flow in Infrastructure as Code (IaC) scripts. G A S E L em-

ploys graph queries on program dependence graphs to identify seven security smells,

improving both precision and recall compared to existing detectors. The evaluation

against an oracle of 243 real-world security smells demonstrates the effectiveness of

this approach. Additionally, the study reveals that over 55% of security smells ex-

hibit data-flow indirection, and more than 32% necessitate whole-project analysis for

detection. These insights underscore the need for more sophisticated static analysis

tools to effectively identify security vulnerabilities in IaC.

Bhuiyan et al . [18] addresses the problem of insecure coding patterns (icp) in

Infrastructure as Code (IaC) scripts, which can create vulnerabilities in automated

deployment pipelines. The study focuses on characterizing co-located icp—patterns

that occur together in a script—and aims to help practitioners prioritize their code

review efforts. By analyzing 7,222 Puppet scripts from Mozilla, Openstack, and Wiki-

media, the authors identify frequently co-located icp using association rule mining.

They find that 21.06% of the scripts contain co-located icp, with hard-coded secrets

and suspicious comments being the most common. The study concludes that prior-

itizing code reviews for scripts with co-located icp can improve the detection and

mitigation of security weaknesses in IaC scripts.

3.1.4 Reproducibility Practices in Software Engineering

Reproducibility of scientific experiments and software engineering practices is a crit-

ical concern addressed in various studies.

Gonzalo et al . [85] highlighted the importance of good coding practices, con-

sistent coding styles, documentation, and error handling for reproducibility. They

advocated for the use of version control, comprehensive documentation of code de-

pendencies, simplified execution processes, and containerization technologies such as

22

Docker.

Feitelson et al . [36] suggested that thorough project documentation is essential

for enhancing the reproducibility and comparability of scientific experiments, empha-

sizing the need for clear and detailed records of experimental setups and procedures.

3.1.5 Comparison with Existing Wo r k

Previous research in the IaC domain has predominantly focused on examining se-

curity and maintainability aspects within IaC scripts. However, our work brings

attention to the often-overlooked yet vital concept of reproducibility. While security

and maintainability are crucial quality attributes, ensuring the reproducibility of IaC

deployments is equally important for achieving dependable and consistent infrastruc-

ture management.

Our research makes significant contributions by first creating a comprehensive

catalog of reproducibility smells through an aggregation of relevant information from

diverse sources. We then develop a reproducibility smell detector for Ansible scripts,

named Reduse. Using this tool, we conduct an empirical study to explore the preva-

lence of reproducibility smells in open-source repositories and analyze the relation-

ships among these smells. This investigation provides deeper insights into repro-

ducibility issues in the IaC domain and contributes to the improvement of IaC script

quality and overall system resilience.

3.2 Sustainable A I inference on Edge Related Works

Machine learning (ML) and deep learning (D L) on edge devices have emerged as pow-

erful technologies for enabling real-time A I applications at the network’s periphery.

However, deploying complex A I models on resource-constrained edge devices presents

significant challenges. This section reviews related research on deep learning for edge

computing, focusing on performance analysis, optimization techniques, and potential

applications.

23

Table 3.1: Summary of Related Works and Comparison with Current Research

S t u d y
Kumara et al. [60]

Rahman et al. [80]

Hummer et al. [49]

Dallapalma et al. [30]

Schwarz et al. [87]

Sharma et al. [89]

Rahman et al. [83]

Dai et al. [29]

Opdebeeck et al. [75]

Opdebeek [76]

Bhuiyan et al. [18]

Gonzalo et al. [85]

Feitelson et al. [36]

O u r Wo r k

Fo c u s
Best Practices in I a C

Defect Taxonomy in
I a C

Automated Testing in
I a C

Quality Metrics for I a C

Code Smells in I a C

Configuration Smells
in Puppet
Automated Detection
of Code Smells

Security Smells in I a C

Variable-related Smells
in Ansible

Security Smells in An-
sible

Insecure Coding Pat-
terns

Reproducibility Prac-
tices

Documentation for Re-
producibility
Reproducibility of I a C
Scripts

K e y C o nt r i b u t i o n s
Systematic review of
best and bad practices
in I a C
Defect taxonomy and
analysis of OpenStack
commits
Model-based testing
for idempotence in
Chef scripts
Catalog of 46 quality
metrics for Ansible
Catalog of 17 new code
smells for Chef
Catalog of 24 configu-
ration smells
Development of Ansi-
bleCheck framework

SecureCode framework
for risky patterns
Detection of 6 novel
variable-related code
smells
G A S E L detector for se-
curity smells

Prioritization of co-
located insecure coding
patterns
Importance of coding
practices, documenta-
tion, and containeriza-
tion
Importance of detailed
project documentation
Identification of repro-
ducibility smells and
tool development

M e t r i c s / M e t h o d s
Analysis of 67 sources

Analysis of 1,448
defect-related commits

Evaluation of 300 real-
world scripts

Metric cataloging and
analysis
Analysis of I a C reposi-
tories
Analysis of 4,621 Pup-
pet repositories
Qualitative analysis
and defect prediction
models
Analysis of Ansible
playbooks
Analysis of 21,931 An-
sible roles

Graph-based analysis
of program dependence
graphs
Analysis of 7,222 Pup-
pet scripts

Advocacy for version
control and Docker

Review of project doc-
umentation practices
Detection tool for
reproducibility smells,
analysis of Ansible
playbooks

24

3.2.1 Performance Analysis and Hardware Platforms

Various studies have investigated the performance of different deep learning mod-els

on multiple edge hardware platforms. Rafal et al . [79] benchmarked inference times

for popular convolutional neural network (CNN) architectures like MobileNet,

EficientNet, VGG, ResNet, and InceptionV3 on edge platforms such as NVIDIA Jet-

son Nano, Intel Neural Stick, and Google Coral USB Dongle Their findings indicate

that Google platforms offer the fastest average inference times, particularly for newer

models like MobileNet and EficientNet, while the Intel Neural Stick stands out for

its versatility in running a broader range of architectures.

3.2.2 Software Frameworks

The choice of software framework significantly impacts the eficiency of deep learning

on edge devices. Zhang et al . [107] compared popular frameworks such as Ten-

sorFlow, Caffe2, MXNet, PyTorch, and TensorFlow Lite across metrics like latency,

memory footprint, and energy consumption. Their study reveals that TensorFlow

performs well for large-scale models on CPU-based platforms, Caffe2 excels with

small-scale models, PyTorch demonstrates memory eficiency, and MXNet proves to

be energy-eficient on specific devices.

3.2.3 Energy and Runtime Ef ic iency

Energy consumption and runtime performance are crucial considerations for edge de-

ployments. Georgiou et al . [40] compared TensorFlow and PyTorch for training

and inference of recommender systems, computer vision, and natural language pro-

cessing models. Their findings suggest that TensorFlow is generally more eficient

for recommender systems and ResNet-50 models during training, whereas PyTorch

shows superior energy eficiency and runtime performance across other model types,

particularly for NLP tasks during the inference phase.

3.2.4 Model Compression and Deployment

Deploying large D L models on edge devices often requires model compression tech-

niques to reduce their size and memory footprint.

25

Rahman et al . [84] showcased the effectiveness of quantization techniques in

achieving comparable accuracy to original models while enabling deployment on

resource-constrained devices. Their study focused on fine-tuning MobileBERT, a

compact version of B E RT , for reputation analysis using TensorFlow Lite models

and quantization for optimization. The results demonstrate significant reductions in

model size and faster inference times with minimal accuracy loss.

Frameworks such as TensorFlow Lite and Microsoft’s EdgeML [8] facilitate the

deployment of compressed neural networks on various IoT devices. These advance-

ments enable a wide range of TinyML applications, including environmental monitor-

ing, sign language detection, and medical face mask detection, leveraging real-time

analysis and interpretation of data at the edge.

3.2.5 Challenges and Optimization Techniques for Deep Learning on

Edge Devices

While deep learning offers exciting possibilities for edge computing, resource limita-

tions and the need for eficient model execution pose significant challenges.

Q i et al . [78] explore these challenges and discuss three key optimization tech-

niques: parallel acceleration, quantization, and model pruning. Their study empha-

sizes the importance of a holistic approach that considers both hardware and machine

learning algorithm levels for successful deep learning deployment on edge devices.

They highlight the need for balancing precision reduction during model quantization

with hardware-specific adaptations to achieve optimal performance.

Similarly, Ghosh et al . [41] address the challenges of implementing deep learn-

ing on resource-constrained IoT devices. They propose a hybrid approach that com-

bines edge and cloud computing for IoT data analytics. Their study leverages auto-

encoders, a type of neural network for dimensionality reduction, by deploying the

encoder part on the edge to reduce data size before sending it to the cloud for fur-

ther processing. This approach significantly reduces data transmission without com-

promising the accuracy of ML tasks, as demonstrated in their evaluation of human

activity recognition from smartphone data.

26

3.2.6 Applications of Deep Learning on Edge Devices

The intersection of deep learning and edge computing offers numerous advantages for

real-world applications.

Wang et al . [103] explore this synergy, highlighting the need for powerful deep

learning capabilities to handle complex scenarios like video analytics at the edge of

IoT networks. They discuss how edge computing provides purpose-built hard-ware

platforms, such as the lightweight Nvidia Jetson T X 2 developer kit, to sup-port

deep learning tasks at the network edge. Their study delves into various deep

learning models applicable to edge computing, including restricted Boltzmann ma-

chines (RBMs), auto-encoders (AEs), deep neural networks (DNNs), convolutional

neural networks (CNNs), recurrent neural networks (RNNs), and deep reinforcement

learning (DRL) . They identify key challenges such as model training, inference opti-

mization, application enhancement, and hardware-software co-design. Finally, they

explore real-world applications across various domains, including smart multimedia,

transportation, cities, and industries, emphasizing the benefits of edge computing in

terms of low latency, energy savings, context-aware services, and privacy.

3.2.7 Comparison with Existing Wo r k

While prior research has made significant contributions to deploying machine learning

models on edge devices, our work offers several key advancements that extend the

current state-of-the-art:

• Breadth of Model Selection: Existing studies often focus on a limited set of

models or specific categories, such as CNNs for computer vision tasks [79]. Our

work, in contrast, investigates a broader variety of models across multiple

categories, including large language models (LLMs). This new category opens

doors to novel applications on the edge, such as voice assistants, demonstrating

the applicability of our approach to a diverse range of edge computing tasks.

• Deeper Performance Analysis: Previous comparisons primarily focus on

model accuracy between original and compressed versions [84, 103]. We ex-

tend this analysis by measuring critical performance metrics beyond accuracy,

27

incorporating inference time, memory utilization, and power consumption mea-

surements using hardware devices. This comprehensive evaluation provides a

more holistic understanding of the trade-offs between model complexity and

resource usage on edge devices, offering a more nuanced perspective on model

selection and optimization for edge deployment.

• Power Consumption and Guidelines: While some studies acknowledge en-

ergy eficiency as a concern [40,84], they often lack in-depth analysis or concrete

recommendations. Our work goes beyond simply acknowledging the importance

of power consumption by directly measuring power consumption using hardware

devices. We leverage these insights to develop practical guidelines for optimizing

model selection and deployment strategies for power-constrained edge environ-

ments.

By addressing these limitations, our work offers a more comprehensive and prac-

tical approach to deploying deep learning models on edge devices. We consider a

wider range of models, delve deeper into performance analysis, and provide practical

guidance for power-eficient model selection and deployment on resource-constrained

edge hardware.

28

Table 3.2: Summary of Related Works on Sustainable A I Inference on Edge Devices

S t u d y
Rafal et al. [79]

Zhang et al. [107]

Georgiou et al. [40]

Rahman et al. [84]

mi et al. [8]

Qi et al. [78]

Ghosh et al. [41]

Wang et al. [103]

O u r Wo r k

Fo c u s
Performance Anal-
ysis

Software Frame-
works

Energy and Run-
time Eficiency

Model Compres-
sion

Model Deployment

Optimization
Techniques

Edge and Cloud
Hybrid Approach

Applications of
Deep Learning

Sustainable A I In-
ference

K e y C o nt r i b u t i o n s
Benchmarking of C N N
architectures on edge
platforms

Comparison of frame-
works for deep learning
eficiency

Comparison of Tensor-
Flow and PyTorch for
various tasks

Effectiveness of quan-
tization techniques for
Mobi le BERT
Deployment of com-
pressed neural net-
works using Tensor-
Flow Lite and EdgeML
Optimization tech-
niques for deep learn-
ing on edge devices
Hybrid edge-cloud ap-
proach for I o T data an-
alytics
Exploration of deep
learning models for
edge computing

Advancements in
model selection, per-
formance analysis, and
power consumption

M e t r i c s / M e t h o d s
Inference times for MobileNet, Ef-
ficientNet, V G G , ResNet, and
InceptionV3 on N V I D I A Jetson
Nano, Intel Neural Stick, Google
Coral U S B Dongle and P C I e
Metrics: latency, memory foot-
print, energy consumption for Ten-
sorFlow, Caffe2, MXNet, PyTorch,
TensorFlow Lite
Energy eficiency and runtime per-
formance for recommender sys-
tems, computer vision, and N L P
models
Model size reduction, inference
times, accuracy loss for quantized
Mobi le BERT models
Application in T inyML for envi-
ronmental monitoring, sign lan-
guage detection, medical face mask
detection
Techniques: parallel acceleration,
quantization, model pruning

Use of auto-encoders for dimen-
sionality reduction, data transmis-
sion optimization
Models: RBMs, AEs , DNNs,
CNNs, RNNs, D R L ; Applica-
tions in multimedia, transporta-
tion, smart cities
Evaluation of model complexity,
inference time, memory utilization,
power consumption

Chapter 4

Repro duc ib i l i ty practices in Infrastructure as Co de

4.1 Study Design

This section presents our comprehensive approach to examining the reproducibility

of Infrastructure as Code (IaC) and the sustainability of A I inference on edge devices.

We aim to uncover challenges and propose solutions in both areas, ensuring robust,

reproducible IaC practices and energy-eficient A I deployments on edge devices.

4.1.1 Study Overview

The main objective of this part is to understand the challenges involved in reproducing

computing infrastructure within the context of Infrastructure as Code (IaC). Specif-

ically, we aim to identify and analyze the programming practices that lead to these

reproducibility challenges, which we refer to as reproducibility smells. Furthermore,

we seek to develop automated methods for detecting these reproducibility issues to

investigate their prevalence in open-source Ansible projects. By doing so, we hope to

gain a better understanding of the relationships among these smells and ultimately

guide developers in creating more reproducible IaC scripts. To achieve these goals,

we address the following research questions (RQs):

RQ 1 . What kind of programming practices impact reproducibility in IaC scripts?

Identifying practices that impede reproducibility allows us to provide guidance

to developers for creating scripts that consistently produce the desired infras-

tructure setups across different environments. This research question aims to

consolidate the scattered knowledge about reproducibility in the IaC domain

and create a comprehensive understanding of the factors affecting reproducibil-

ity.

RQ 2 . Which reproducibility smells are more prominent in open-source repositories?

This research question seeks to determine if certain reproducibility smells are

29

30

more common than others in analyzed open-source software repositories. Under-

standing the prominence of specific smells can help developers be more vigilant

about those that are likely to occur frequently, thereby encouraging them to

take appropriate measures to address these issues.

RQ 3 . Do reproducibility smells co-occur?

Exploring the co-occurrence of different types of smells can provide valuable

insights into their occurrence patterns and inter-dependencies. Identifying cor-

relations between smells can reveal hidden complexities in IaC scripts, which can

aid developers in adopting comprehensive approaches to improve script quality

and reproducibility.

Figure 4.1: Overview of the IaC Reproducibility study.

Our study design consists of several interconnected steps aimed at answering the

aforementioned research questions, as illustrated in Figure 4.1. We outline these steps

below:

4.1.1.1 Multi-Vocal Literature Review

To address RQ1, we conduct a multi-vocal literature review. This involves searching,

filtering, and consolidating existing literature to identify programming practices that

impact reproducibility. The outcome of this review is the creation of a comprehensive

31

catalog of reproducibility smells specific to the IaC domain. This catalog serves as

the foundation for our further analyses and tool development.

4.1.1.2 To ol Development for Detecting Reproducibility Smells

Based on the identified reproducibility smells, we develop a tool, Reduse, designed

to detect these smells in Ansible scripts. This tool automates the detection process,

enabling us to eficiently analyze large volumes of IaC code for reproducibility issues.

4.1.1.3 Empirical Analysis of Open-Source Ansible Repositories

To answer R Q 2 and RQ3, we curate a set of top open-source Ansible repositories

from the Ansible Galaxy platform [1]. Using Reduse, we detect reproducibility smells

in these repositories. This empirical analysis allows us to investigate the prevalence

of different reproducibility smells and their co-occurrence patterns.

4.1.1.3.1 Data Collection and Analysis We systematically collect data on the

detected reproducibility smells from the analyzed repositories. This data forms the

basis for our analysis, where we examine the frequency and distribution of different

smells. We also analyze the relationships among smells to understand their inter-

dependencies and potential clustering patterns.

4.1.1.3.2 Observations and Insights Finally, we provide our observations and

insights based on the analysis of the collected data. These findings help us to better

understand the challenges associated with reproducibility in IaC scripts and offer

practical recommendations for developers to mitigate these issues. Our study not

only highlights the importance of reproducibility in IaC but also contributes valuable

tools and knowledge to the field, enhancing the overall quality and reliability of IaC

practices.

4.2 Research Methodology

This section elaborates our approach to create a catalog of reproducibility smells and

describes them using a template.

32

4.2.1 Catalog Creation

Given the practical nature of the problem space, we carry out a Multi-vocal Literature

Review (m l r) [39]. An m l r combines information in academic research papers with

gray literature sources, including blog posts, articles, programming discussion forums,

and oficial documentation provided by framework or library developers. A wide range

of resources helps us gain insights into the diverse range of efforts related to good

and bad IaC practices. With this extensive literature search and catalog creation

effort, we contribute to the state of the art by thoroughly searching the academic

and gray literature for reproducibility issues, systematically prune and group these

issues into distinct, actionable smells, and clearly define and catalog them. Figure 4.2

summarizes our adopted process to conduct the m l r . We elaborate on the adopted

process in the rest of the section.

4.2.1.1 Resource gathering and searching

We follow practices employed in multi-vocal literature review [39,56,94,101] to search,

filter, and identify resources for the review. Specifically, we use the Google search

engine to search the gray literature, focusing on text-based sources such as reports,

blog posts, white-papers, and oficial documentation related to IaC platforms. In

the case of academic literature, we consider Google Scholar as well as ieee and acm

digital libraries for literature search.

We used these resources as our primary sources for literature due to their direct

access to full-text, peer-reviewed content, which is essential for in-depth analysis and

citation accuracy. ACM and I E E E are renowned for their high-quality, rigorously

vetted publications in computer science and engineering, making them industry stan-

dards. Google Scholar, with its broad coverage and citation tools, allowed us to

perform comprehensive searches across a wide range of disciplines. Apart from the

considered digital libraries and search engine, there are a few bibliographic indexing

services such as D B L P. Given that such indexing services do not hold full-text, we

adopted ACM, I E E E , and Google Scholar as our literature search sources.

We formulate the following search queries, inspired by similar studies [24, 61, 86],

considering the scope of our search:

‘Infrastructure as code’ + smells + reproducibility

33

‘Infrastructure as code’ + anti-patterns + reproducibility

‘Infrastructure as code’ + bugs + reproducibility

‘Ansible best practices’ + reproducibility

‘Ansible bad practices’ + reproducibility

‘Ansible anti-patterns’ + reproducibility

We carefully examine the search results corresponding to each search string and

document the relevant resources (by reading the title of the resources) until we do

not find new resources.

Figure 4.2: Overview of the multi-vocal literature review process.

In summery, we got 45, 40, 22, 15, 23, 18 documents for each of the search queries,

respectively. In total we got 163 grey literature documents after applying inclusion

and exclusion criteria. We also did an additional round of quality assessment on the

documents which got us 78 documents.

Our replication package [9] includes the metadata of the resources (such as u r l

and title) along with the number of resources collected from individual search queries.

4.2.1.2 Inclusion and exclusion criteria

We define inclusion and exclusion criteria to filter out irrelevant resources. The in-

clusion criteria are as follows.

34

• The article must be written in English and have accessible full text.

• The article should align with the focus of this study i.e., covering practices to

follow or avoid, discussing bugs, defects, smells, or anti-patterns, or describing

challenges related to reproducibility in IaC, in general, or Ansible as a specific

IaC automation framework.

We exclude resources from our analysis that meet at least one of the following

criteria.

• Duplicate articles found across various sources.

• Short articles such as extended abstracts.

• Articles that do not discuss reproducibility aspects, irrespective of whether IaC

or not.

• Articles that do not provide an adequate scope, rationale, consequences, or

examples of recommended practices or practices to avoid such as bugs, defects,

smells, and anti-patterns.

As Figure 4.2 shows, we obtain a list of six academic and 110 gray literature

resources after applying inclusion and exclusion criteria.

4.2.1.3 Snowballing

We employ both backward and forward recursive snowballing by carefully reviewing

all the references and citations of our primary academic articles to identify relevant

resources. In backward snowballing, we use the references of primary academic arti-

cles, while in forward snowballing, we explore citations for additional materials. Each

potentially relevant article that we find through snowballing also goes through our in-

clusion and exclusion criteria. We apply the snowballing process to all the references

and citations for the identified academic studies. when identified papers no longer

align with our specified research interests such as IaC best practices, maintaining

focus and ensuring that the selected literature makes meaningful contributions to the

exploration of IaC best practices. For each potentially relevant article that we iden-

tify through snowballing, we then apply our inclusion and exclusion criteria. We add

a list of 26 articles from this exercise.

35

4.2.1.4 Quality assessment of grey literature

To ensure a robust literature review, we have established a systematic process for

assessing academic literature. This quality assessment involves evaluating each pa-

per’s alignment with our research focus on IaC principles, using discerning criteria

to assess relevance and significance. Integrating gray literature sources can provide

untapped information in pursuing comprehensive coverage of the knowledge in the

field. However, the nature of gray literature necessitates a careful evaluation to en-

sure the credibility and relevance of these sources. To this end, We follow the quality

assessment best practices suggested in literature [24, 38, 61].

We evaluate each gray resource on a scale of 20 points, covering reputation of the

publishing venue, author’s expertise, clarity of its purpose, and publishing date. Given

that existing literature do not provide a systematic guidelines to evaluate and assign a

score to gray resources beyond the above-mentioned evaluation criteria, we apply the

following mechanism to thoroughly examine each resource.

• To assess venue reputation, a weighted approach considers afiliations (i.e., in-

stitutional ties and collaborations), endorsements (i.e., organizational support),

publication history (including publication frequency and citation impact) of the

venue, and reviews (in the form of user feedback). All of these parameters had

the same weight.

• In evaluating author expertise, we consider academic credentials (i.e., au-

thor’s educational and professional background as well as specialization), pub-

lication track record, research afiliations, and professional experience.

• The evaluation of content clarity includes factors such as relevance, clarity,

thorough analysis, novel insights, and illustrative examples.

• Publication date is used as a metric of recentness. Recently released resource

scores higher than a relatively old resource.

By employing these criteria, reviewers make informed decisions about incorporating

reliable, relevant, and recent scholarly contributions into their assessments.

36

The quality assessment process involves a thorough evaluation conducted by two

reviewers; both are graduate students with four years of experience in software devel-

opment. One of the reviewers possesses expertise in the IaC field, whereas the second

has a general acquaintance. Each reviewer independently examined the resources by

accessing the links and assessed them according to above-mentioned criteria. Each

reviewer assign a score corresponding to each of the criterion mentioned above with 5

being the highest score and 1 is the lowest. All four aspects have the same weight in

calculating the final score. After completing the exercise independently, we consoli-

date the scores. We obtain a high inter-rater agreement (κ = 0.94). If their individual

scores for a specific aspect have a minor disagreement (i.e., ±1), the consolidated score is

calculated by taking an average. However, when their individual scores have a sub-

stantial disparity, both reviewers engage in a discussion to understand the rationale

for the provided scores and reach a consensus on the final score.

After evaluating all the resources, we discard resources with a score of less than

10 in the quality assessment exercise. We also discard resources with a score less than

three (out of five) in the Relevance and clarity of content aspect to keep the selected

resources very relevant to our study, resulting in a total of 78 resources remaining.

The marking guideline, the assessment document of each reviewer, and the detailed

evaluation scores corresponding to each gray resource, including a summary, and the

resource link, can be found in our replication package [9].

4.2.1.5 Data extraction and analysis

We combine resources obtained from both the academic and gray literature selection

and filtering processes. We thoroughly study the combined list of resources and

document their summary, key learning, and relevant metadata (e.g., BibTex entry).

We use the information summarized from the selected studies and resources to create a

catalog of reproducibility smells.

We employed open coding [59], a qualitative method for analyzing and organizing

concepts, to systematically categorize information from summaries of research papers

and code examples. The lead author, with prior experience in qualitative research,

conducted the initial coding phase. This involved thoroughly reviewing the collected

information, breaking it down into smaller segments for detailed examination, and

37

identifying relationships, similarities, and differences. Each segment received a de-

scriptive label reflecting the main ideas or practices related to reproducibility. To

ensure consistency and capture emerging themes, an iterative refinement approach

was adopted.

The lead author revisited segments and codes multiple times, and after each round

of coding, other authors reviewed the codes and participated in further rounds of

coding. This collaborative process continued until a consensus was reached on a

final coding scheme that effectively captured the data. Employing emergent coding

throughout, we ultimately identified and categorized six key concepts, which we then

classified as reproducibility smells. Through this process we were able to categorize

the issues listed in the different documents as a smell catalog.

4.2.2 Results of RQ1—Reproducibil ity Smells Catalog

A reproducibility smell is a practice to specify, configure, or program IaC scripts

that hinder the reproducibility of the script. Each smell captures a concrete practice

violating IaC principles and best practices leading to compromised reproducibility.

These smells often arise from practices that directly embed sensitive information

within the script, rely on external dependencies not managed by the script itself, or

lack proper version control. Such practices can lead to inconsistencies when running

the script in different environments or at different times.

Considering that code smells inherently signal a potential issue rather than an

actual problem [90], reproducibility smells similarly point to a violation of guidelines

and a potential issue necessitating additional validation within the given context.

We describe each smell in our catalog using a name, description, and example

following potential fixes. In addition each smell is followed by the detection rules that is

used to detect the smell. We keep the code snippets for the discussed examples in

our replication package [9]. Similarly, we include the most important references for

each proposed reproducibility smell; an interested reader may find the full list of

references, including pointing to gray literature, in our replication package.

38

4.2.2.1 Broken dependency chain

A broken dependency chain occurs when a dependency or a required component,

such as a package, cannot be installed or configured, which prevents the script from

executing successfully [50, 54, 60, 71]. This disrupt system reproducibility by causing

inconsistent environments across deployments. This inconsistency undermines the

ability to reliably recreate identical system states, crucial for predictable outcomes in

software development and deployment. Effective dependency management is essential

for ensuring reproducible builds and deployments.

Example: In an Ansible playbook belonging to ansible-jupyterhub-hpc repository, a

task ‘ i n s t a l l CHP proxy auth token’, gets tokens from a source file, then uses

these tokens to perform several operations [22]. However, the task does not check the

existence of the source file nor the correctness of the extracted tokens, which can lead to

a broken dependency chain.

Potential fix : In this example, adding Ansible constructs s t a t and when that check

the existence of the file and the correctness of the tokens can mitigate the issue [13].

Detection mechanism: We detect this smell in an Ansible task when the task installs a

package using hard-coded keys, uses fixed authorization tokens, or installs a package or

library directly from a fixed UR L or repository. In addition, missing files in specified

paths can lead to failed installation or a misconfigured library or package. If any of

the following conditions are true, we detect this smell in an Ansible task.

• The task involves installing packages using hard-coded keys or tokens.

• The task installs packages using a hard-coded u r l .

• The task installs packages using an invalid u r l .

• The task uses a set of files but does not check the file’s existence.

We do not detect the smell when the task requires to use of at least one of the checking

constructs to ensure the correct execution of the task: package-facts, debug,when,

set - fact , assert, with-items and s e t - f a c t s [31, 54, 71].

39

4.2.2.2 Outdated dependency

This smell occurs when an Ansible script specifies an outdated version of a software

library or package for installation [31,35,54,63,70,104]. Outdated dependencies in An-

sible scripts can lead to inconsistencies across environments due to version variations,

and expose the infrastructure to hidden bugs, regressions, and security vulnerabilities,

ultimately hindering script reproducibility.

Using an old version of a library can significantly impact the reproducibility of IaC

scripts. Older versions may cause dependency conflicts, contain security vulnerabili-

ties, and rely on deprecated features, all of which can lead to errors and inconsistent

behavior across different environments. Additionally, updates in newer versions often

include bug fixes, performance improvements, and behavioral changes that enhance

compatibility and functionality. Limited support and outdated documentation for

older versions further hinder troubleshooting and understanding. Therefore, to en-

sure reliable and consistent reproduction of results, it is crucial to use up-to-date

library versions, which also benefit from improved security, compatibility, and com-

munity support.

Example: An Ansible playbook [32] in repository ans ib le- ro le-v i r tualenv has

a task named ‘ i n s t a l l virtualenv post packages’. It installs the packages that

are specified in a default list specified within the virtual environment package manager

which could become outdated because no update policy is mentioned in the script

and the version in the package manager is fixed.

Potential fix : It is a common practice to create a requirement file with the compat-

ible versions. Similarly, creating Docker images with all the necessary packages and

libraries is also a typical practice. However, updating the dependencies and their cor-

responding stable versions is strongly recommended to avoid this smell. In the above

example, we add a state Ansible property that only installs the missing packages

with their latest stable and compatible version.

Detection mechanism: We detect this smell in an Ansible task when the package

installation lacks proper update management. If any of the following conditions are

true, we detect this smell in the task [19, 43, 64, 99].

• Missing update strategy: The task uses the package module to install a package,

40

but it doesn’t explicitly specify the update attribute with values such as up-

grade or upgrade-cache. This omission may lead to the installation of outdated

packages.

• No version comparison: The task doesn’t perform any checks to verify if a

newer version of the package is available. missing package fa c t s or check mode

component lead to smell.

4.2.2.3 Incompatible version dependency

This smell occurs when an Ansible playbook or role specifies a package or library

version that is either no longer available in the target system’s repositories, or, in-

compatible with other components in the configuration [31, 34, 54, 70, 98, 99, 104].

Incompatible version dependencies in Ansible scripts can lead to missing packages,

cascading dependency conflicts, and version resolution problems leading to challenges

in reproducible computing environments.

Example: An Ansible playbook in repository ansible-for-devops [58] has a task

namely ‘ I n s t a l l Apache, MySQL, PHP, and other dependencies’. The task in-

stalls a specific version of PHP extensions without verifying the absence of other

versions in the environment. This oversight can lead to conflicts if another PHP

version is already present. Specifying fixed package versions in this task can cause

dependency conflicts, playbook failures due to unavailable versions, and cascading

dependency issues.

Potential fix : Maintaining a compatible dependency matrix and setting the versions

according to it may help avoid the smell. Often developers set l a t e s t to the state

property to ensure the latest version of the package installation. While setting the

state to l a t e s t might seem tempting, it can disrupt compatibility. A better approach

might be to leverage tools such as pipdeptree to analyze existing dependencies and

identify potential conflicts before introducing new versions. In addition, when in-

stalling any new dependencies using package managers, upgrade cache should be

used to ensure any previous version of the dependencies are removed from the envi-

ronment.

Detection mechanism: We identify this code smell in Ansible tasks under the following

41

conditions [98, 99]:

• Fixed version: The package module is used with a specific version number in the

version attribute. Fixing versions can prevent compatibility issues but may

lead to missed security updates.

• Latest Version: The package module uses s t a t e : la test . This ensures up-to-

date packages but may introduce unexpected changes and compatibility issues.

4.2.2.3.1 Other ways of managing dependencies Ansible dependency man-

agement offers two main approaches: pinning dependencies to specific versions and

relying on the latest versions available. Both methods have their advantages and dis-

advantages. Pinning dependencies (specifying version numbers) ensures consistency

and predictability in your Ansible environment. This is crucial for production deploy-

ments where unexpected dependency changes can break functionality. Additionally,

pinning helps mitigate security vulnerabilities by locking in known-safe versions. On

the other hand, using the l a t e s t keyword for dependencies allows developers to ben-

efit from bug fixes and new features as they become available. This approach is

suitable for development or testing environments where staying on the cutting edge

is more important than strict consistency. However, it is essential to carefully mon-

itor dependency updates to avoid introducing regressions. Also using either of these

approaches do not guarantee that the script is free from reproducibility issues; hence,

developers need to ensure the appropriateness of the employed dependency manage-

ment approach considering their dependency review mechanism and other factors.

4.2.2.3.2 Dependency Management and Reproducibility Ansible’s strength

lies in its ability to automate configurations across various systems. However, this

automation hinges on the consistent availability of dependencies – modules, libraries,

and plugins that tasks rely upon for proper execution. Improper dependency manage-

ment is a breeding ground for reproducibility issues. Consider an Ansible script that

uses an external module not explicitly declared. If the target system or development

environment experiences changes to this dependency (version update, removal), the

script’s subsequent runs might exhibit unexpected behavior or outright failures. This

inconsistency undermines the core principle of reliable automation – reproducibility.

42

To ensure consistent and reliable execution, explicitly define dependencies within the

Ansible script.

4.2.2.4 Assumptions about environment

This smell arises when scripts rely on unverified assumptions about the environment,

like the version or the type of the target machine’s operating system or the avail-

ability of certain packages or libraries. General assumptions about the environment

pose significant challenges in reproducing IaC scripts as they may not be accurate or

applicable in all situations and environments [28, 37, 66, 85]. Ansible scripts that

make assumptions about the environment, like expecting a specific OS version or pre-

installed packages, can lead to unforeseen failures when encountering different envi-

ronments, causing script breakage and deployment disruptions. Additionally, hidden

dependencies are formed due to reliance on pre-installed software, making it difi-

cult to understand true script requirements and hindering portability across diverse

setups. This lack of adaptability and susceptibility to version drift (environments nat-

urally update over time) ultimately undermines the core principle of reproducibility

in IaC deployments.

Example: In an Ansible playbook [15] in repository chocolatey-ansible, a task

with the name ‘checking i f the bootstrap f i l e has been created ’ is using

Windows-specific component without verifying this assumption about the environ-

ment.

Potential fix : Refactor scripts with parameters and conditions to adapt to different

operating system versions and distributions using Ansible facts [13]. In the above

example, we may use the when property to specify the required operating system as a

condition to execute this task [13].

Detection mechanism: We detect this smell in the task when any of the following

conditions is true [37, 51, 66].

• Operating system: Tasks using ans ible d i s t r i b u t i o n or ansib le os family

variables might be distro/family specific.

• Services and configuration: Firewall, DNS, network interface, NTP, and SSH

tasks modifying configurations without checking current state assume specific

43

configurations.

• Package management: Tasks using package download modules with URL/repos-

itory keywords without any state checks.

• OS specific modules/commands: Tasks using OS-specific modules/keywords/-

commands might not be portable to other systems.

4.2.2.5 Hardware specific command

This smell occurs when scripts include commands or configurations that are tightly

coupled to specific hardware components, such as particular CPU architectures or

GPU models. Using hardware-specific commands in scripts, tied to particular devices

such as cpu, gpu, complicates environment reproduction [42, 45, 63, 91].

Hardware-specific commands in Ansible scripts limit script portability and intro-

duce hidden assumptions about the target hardware. This creates testing challenges

and potential vendor lock-in, ultimately hindering script reproducibility across dif-

ferent hardware environments. Opting for generic and portable approaches ensures

your scripts adapt and function reliably in diverse deployments.

Example: A task ‘ I n s t a l l AMD GPU d r i v e r s ’ in repository A:Platform64 [46] con-

figures and installs amd gpu drivers without checking the existence of this gpu in

the machine.

Potential fix : An IaC script must ensure the availability of a hardware device before

executing commands specific to that device. Also, checking cross-device configuration

compatibility by substituting hardware-specific commands with general tasks and

using Ansible variables to abstract hardware-dependent values reduce the chances

of failure. For the example presented above, we may add properties such as when,

debug, gather fa c t s to the task to handle the situations when the expected gpu is

not present in the target machine using the information gathered with variables in

the task [13].

Detection mechanism: Ansible tasks should ideally be hardware-agnostic to ensure

broader applicability. This detection mechanism identifies tasks that rely on com-

mands potentially specific to certain hardware, limiting their portability [42, 45, 91].

We detect this smell in a task under the following condition:

44

• Command keywords: Tasks using commands such as l s p c i , lshw, l s b lk ,

fd isk, and parted, that could be hardware-dependent. The detection logic

also looks for these commands within the task definition under keys such as

command, s h e l l , and raw.

4.2.2.6 Unguarded operation

An unguarded operation smell occurs when specific Ansible components that exe-

cute operating system commands are used without considering idempotency. These

non-idempotent imperative commands are not automatically checked for idempo-

tency, and using them without proper validation may result in undesirable envi-

ronmental states. Performing unguarded operation without appropriate checks and

error handling threatens the idempotency property of IaC scripts and leads to this

smell [12, 31, 50, 60, 65, 70, 93]. These commands might cause the infrastructure state

to drift over time, introduce challenges with conditional logic and testing, and break

compatibility with future system versions. This ultimately leads to inconsistent de-

ployments and unexpected behavior, undermining script reliability.

Example: A task ’Apply machine c o n f i g ’ in repository openshi ft -ans ib le [52]

uses a command to perform an unguarded operating system-level operation without

properly checking the status of the system.

Potential fix : Prioritizing idempotency in task design by using error handling con-

structs, such as fai led-when, changed-when, and rigorously validating inputs and

conditions before executing critical operations may avoid this smell. For the task in

the example above, we may add a changed-when statement to ensure appropriate

functionality. Also, we can use an Ansible handler to gracefully handle the error if

the operation does not execute correctly [13].

Detection mechanism: Unguarded operation smell threatens the idempotency prop-

erty of a task. To detect this smell, we identify tasks that execute unguarded operating

system commands through ansible that are not idempotent [12,14,50], which include

using package installers without checking the existence of the package state or ver-

sion, manipulating files without idempotency checks (e.g., the existence of the file or

presence of a specific configuration in a file), and creating/updating users, groups, or

files without idempotency considerations [17, 54, 64, 71, 92, 98].

45

4.2.3 Smell reference in gray literature

In our replication package we have referenced all the documents for each of the smells

but in summery broken dependency chain is referenced in 16, outdated dependency in

22, incompatible version dependencyin 23, assumptions about environment in 17,

hardware specific command in 12 and unguarded operation in 26 documents. In the

replication package, the name, the number and the link to the documents are available.

4.2.4 Smell catalog and detection rules validation

We reached out to eleven active researchers in the field of IaC to review our ini-tial

smell catalog and detection mechanisms. Participants were asked to rate each

detection mechanism on a Likert scale from one to five, where five indicated the

highest appropriateness for detecting the specified smell. The survey was conducted

anonymously and remained open for ten days. The questionnaire can be accessed

online [95].

We received six responses. The average ratings for each smell detection mechanism

were as follows: 3.33 for broken dependency chain, 2.5 for outdated dependency, 3.8 for

incompatible version dependency, 4.0 for assumptions about environment, 4.0 for

hardware specific command, and 3.8 for unguarded operation. These results suggest

that the researchers generally had reasonable confidence in our proposed catalog and

detection methods.

Outdated dependency received the lowest confidence rating, with two participants

indicating that it should not be classified as a reproducibility smell. In addition to the

low ratings and suggestions from the participants, we realized that all dependency-

related issues could be addressed by refining our definition and detection mechanism

for incompatible version dependency. This made it unnecessary to introduce a sep-

arate smell category, as an outdated version of a dependency can be considered an

incompatible version. By detecting a fixed version specification of a dependency as

a smell, we can proactively prevent that version from becoming outdated. Given the

low rating and feedback, we decided to remove the outdated dependency smell from

our catalog and associated tool. Consequently, outdated dependency will not be

discussed further in this paper.

46

Summary: We conduct a comprehensive multi-vocal literature review to identify

programming practices that impact the reproducibility of Ansible scripts. Using

the open coding technique, we aggregate the collected information from the m l r

and identify five reproducibility smells.

4.2.5 R E D U S E — A Reproducibility Smell Detection tool

We developed Reduse (REproDUcibility SmEll detector)—a tool to detect repro-

ducibility smells in Ansible scripts. This section discusses implementation aspects of

the tool. Figure 4.3 shows the architecture of the tool. It consists of four key modules

that we elaborate on below.

Figure 4.3: Architecture of the smell detection tool.

We can provide a path to the individual yaml file or a directory containing these

files while using the tool. Reduse goes over each of the Ansible scripts individually

and parses them using PyYAML 1 library. P y YA M L parses the script and generates

a nested list of key-value pairs. Then, the Task Model Creator module uses the

parsed script and generated key-value pairs and populates our custom source code

model. It is a collection of Task instances; each Task instance represents an Ansible

task and contains various task properties, including task name, target hosts, and

Ansible-specific properties (e.g., remote-user and gather-facts). These properties hold

essential information for the tool to detect reproducibility smells. The Reproducibility

Smell Detector module takes the task model instance for the Ansible script under

analysis and detects reproducibility smells using the rules defined for each smell. The

module also collects the associated metadata with each detected smell, such as task

1 https://pypi.org/project/PyYAML/

https://pypi.org/project/PyYAML/

47

name, file path, smell name, and a brief description. Finally, the Result Exporter

module emits the identified smells in a csv file.

Detection process can be summarized into the following steps:

1. Parsing Playbooks: REDUSE parses Ansible YA M L files using PyYAML to

generate key-value pairs representing the script structure.

2. Task Model Creation: Extracted key-value pairs populate a custom model

with Task instances, each representing an Ansible task with properties like

name, target hosts, and Ansible-specific attributes (e.g., remote user, gather facts).

These properties are crucial for smell detection.

3. Reproducibility Smell Detection: REDUSE employs a combination of tech-

niques:

(a) Rule-based matching: Predefined rules identify patterns in key-value

pairs indicative of potential smells. These rules are derived from:

• Research literature: Established research forms the foundation for

smell detection rules.

• Real-world practices: REDUSE analyzes real-world scenarios en-

countered by developers (good and bad practices) documented on plat-

forms like Stack Overflow. By studying these practices, REDUSE

identifies recurring patterns associated with potential reproducibility

problems in Ansible scripts. This combined approach ensures a com-

prehensive understanding of smell characteristics.

4. Result Export: Identified smells are reported in a user-friendly format (e.g.,

CSV) with details like task name, file path, smell type, and a brief description,

aiding developers in addressing potential issues.

4.3 Evaluation and Results

In this section, we validate our tool through manual evaluation, focusing on its effec-

tiveness in detecting reproducibility smells in Ansible scripts. We detail our methodol-

ogy, present performance metrics, and discuss the implications of our findings. Addi-

tionally, we conduct a qualitative analysis and compare our results to reproducibility

48

challenges in other software domains to highlight the benefits of integrating our tool

into development practices.

4.3.1 To ol Validation

We conduct manual validation to assess the effectiveness of the developed tool. In

this section, we elaborate on the adopted method and obtained results.

Data gathering: We explore the sources of Ansible subject systems in related work

and choose the oci-ansible-collection [2]. This dataset evolves 33 sub-projects re-

sponsible for many jobs such as managing network connections or creating necessary

components for managing environments. In these projects, we have 84 different An-

sible scripts, containing 1309 individual Ansible tasks. This dataset has been used in

testing the g l i t c h tool [86] and creating the Andromeda dataset [74].

We required repositories containing Ansible scripts to validate the tool. Addition-

ally, we used 3 more repositories chosen from the Ansible Galaxy collections, based on

the number of downloads, stars, scripts, and commits. We chose ceph ansible, open-

shift ansible, ansible for devops. All the projects are among the most downloaded

collections on Ansible Galaxy and have more than 10 scripts, 1 K stars, and 300

commits. These repositories have 174 scripts and 6722 Ansible tasks. We manually

checked each repository to ensure they only contained actual Ansible scripts and not

Python scripts. We explore the search options in GitHub to identify Ansible reposito-

ries; however, GitHub does not support searching repositories specific to frameworks.

Moreover, given that yaml files can be used with other frameworks, such as Docker,

a file-extension-based search approach also could not be used.

Methodology: Two non-author evaluators participated in the evaluation process.

Both evaluators possess knowledge of IaC concepts and Ansible; they are gradu-ate

students with approximately four years of software development experience. To

minimize potential bias, we ensured the evaluators were only familiar with the def-

initions of the smells we aimed to detect and possessed a basic understanding of

Ansible scripting concepts. They were not aware of the inner workings of R E D U C E

or the development process. Both evaluators independently assessed Ansible scripts

and identified reproducibility smells. After the individual assessment was over, we

49

matched findings from both evaluators and created a consolidated set of smells. The

inter-rater agreement was high (κ = 0.869). In the case of differing opinions, they

discussed and resolved such differences. We also used our tool Reduse to identify

reproducibility smells in the same dataset. The results from the manual analysis and

Reduse are available in our online replication package.

Table 4.1: Performance of Reduse against manually annotated ground truth

Smel l

Broken dependency chain
Incompatible version dependency
Assumptions about environment
Hardware specific command
Unguarded operation

Total

T P F P T N F N

2,990 320 3,370 42
13 0 6,704 5

2,092 780 3,710 140
10 0 6,712 0

2,780 298 2,340 10

7,885 1,398 9,426 197

Precision Recal l M C C

0.90 0.98 0.87
1.00 0.72 0.77
0.73 0.94 0.65
1.00 1.00 1.00
0.93 0.96 0.89

0.849 0.976 0.837

F1-score

0.94
0.85
0.82
1.00
0.94

0.908

Evaluation: We compared the tool-generated results with manually curated ground

truth. Table 4.1 presents the results of the evaluation using typical metrics: precision,

recall, F1-score, and Matthews Correlation Coeficient (mcc). The tool performs well

with F1-score = 0.908 and mcc = 0.837.

Our tool validation revealed a relatively high rate of false positives for broken

dependency chain and assumptions about environment. We manually checked a sam-

ple of the reported false positive instances and updated the identification rule for

broken dependency chain, reducing these errors. The tool incorrectly identifies bro-

ken dependency chain because it checks whether a task ensures its correct execution

via specific Ansible attributes (e.g., set-facts, package-facts, and assert) within the

task. Updating the corresponding rules reduced the number of false positives. Also,

since the tool currently does not support analysis across tasks, it reports false posi-

tive instances. Additionally, typically static analysis tools, such as Reduse, rely on

detection rules that are generic in nature. Given that there are numerous ways to im-

plement any desired behavior and the unavailability of all the contextual information,

such as business or technical constraints, the rules result in false positives. Similarly,

the tool lacked additional detection rules (e.g., usage of firewall, usage of ssh) for

catching assumptions about environment smells. The tool reports perfect F1-score

and mcc for the rest of the smells. Finally, smells are indicators of deeper issues and

not definitive errors; developers can consider identifying a potential issue to decide

50

whether a reported issue requires further exploration.

4.3.2 Empirical study

This section focuses on deriving results to address our research questions. We will first

delve into data processing techniques before detailing our approach for each research

question, ensuring a data-driven investigation.

4.3.2.1 Data collection

As we discuss in Section 4.3.1, GitHub does not offer a convenient means to select

a subset of Ansible repositories. We rely on Ansible Galaxy [1]—a hub for hosting,

searching, and sharing Ansible projects for identifying our subject systems. Ansible

Galaxy divides the hosted repositories into nine categories (i.e., System, Networking,

Database, Packaging, Security, Development, Cloud, Monitoring, and Web). We

apply selection criteria to identify the repositories for our empirical analysis. First,

we select 100 most downloaded repositories from each category. The Ansible Galaxy

platform does not provide a developer-friendly mechanism (e.g., platform apis similar

to GitHub apis) to extract the required information (in our case, a GitHub repository

link as part of the metadata of the search Galaxy’s result).

To overcome the challenge, we developed a Python script to extract GitHub repos-

itory links from the web search results on Ansible Galaxy. We also use GitHub

repository metadata to filter out low-quality and unmaintained repositories among

the initial 900 repositories. Specifically, we select repositories with a minimum of

50 commits, at least five stars, and the last commit no older than a year. With

these criteria in place, our final dataset comprises 290 repositories; these repositories

contain 4, 100 Ansible scripts and 19, 412 distinct Ansible tasks. After cloning each

repository, we manually checked the files, ensuring that we only have Ansible scripts

in the project, not the files that contain Python scripts. We also discard the testing

Ansible scripts. One important reason is that hard-coded values are commonly used

for testing purposes but can be detected as a smell by our tool.

51

4.3.2.2 Results of R Q 2

RQ2 aims to understand the proliferation of reproducibility smells in open-source

repositories.

4.3.2.2.1 Approach To answer this research question, we use Reduse to identify

the presence of reproducibility smells in all selected repositories for each task of their

playbooks. The tool identifies smells and stores the identified instances with relevant

metadata (i.e., repository name, script path, task name, the identified smells, and a

brief description) for each analyzed Ansible script. We aggregate all the smell

instances across all the analyzed repositories to calculate smell frequency across all

tasks.

Figure 4.4: Frequency of detected reproducibility smells in Ansible tasks. B D C refers
to broken dependency chain, I V D to incompatible version dependency, A A E to as-
sumptions about environment, HSC to hardware specific command, and UGO refers to
unguarded operation.

4.3.2.2.2 Results Figure 4.4 shows the total number of reproducibility smell in-

stances detected in all the analyzed Ansible tasks. broken dependency chain is the

most frequently occurring smell. A high frequency of this smell indicates that soft-

ware developers do not ensure the existence of all the required dependent packages in

their infrastructure specifications. Similarly, assumptions about environment and un-

guarded operation smells show a high frequency, indicating that infrastructure spec-

ifications are written without concern for the portability of the instructions across

various execution environments and without ensuring the idempotency properties of

ϕ = p

52

the specified operations. Onthe other hand, incompatible version dependency, and

hardware specific command smells have the lowest frequency. This suggests that

software developers rarely specify outdated dependencies, or specify operations that

require hardware-specific configurations.

4.3.2.3 Results of R Q 3

This research question investigates the relationships among reproducibility smells,

specifically pair-wise correlation and co-occurrence. Analyzing how reproducibility

smells co-occur in Ansible scripts goes beyond identifying individual issues. It reveals

underlying patterns and root causes that lead to multiple smells. This knowledge

helps developers make targeted improvements. Instead of fixing each smell separately,

they can address the root cause, leading to more eficient remediation.

4.3.2.3.1 Approach The process starts with a list of identified smells using Re-

duse over all Ansible scripts. Then, we consolidate these smell instances at the

repository granularity, i.e., each row represents the total number of smells per smell

type for a repository. We use Spearman correlation analysis on each pair of smells to

find the correlation between all pairs of reproducibility smells. To determine whether

two reproducibility smells occur together in a task, we carry out a fine-grained analysis

at the Ansible task granularity.

We create a contingency matrix [100] for each pair of smells, as shown in Table 4.2,

and compute the ϕ coeficient [105], as specified below. The ϕ coeficient provides a

measure of co-occurrence, sensitive to both the presence and absence of reproducibility

smells within individual tasks.

Smell B
Present Not present

Smell A
Present a b
Not present c d

Table 4.2: Contingency matrix for a smell pair.

a × d − b × c
(a + b) × (c + d) × (a + c) × (b + d)

(4.1)

53

Results : First, we use the Shapiro-Wilk test [88] to check the normality of the data

distribution. We perform the test on each of the detected smells in all of the scripts; we

obtain w in the range of 0.01–0.61 with the p-value < 0.05 for all the observations. The

results of the test inform us that the data is not following a normal distribution.

Therefore, we use Spearman correlation to measure the correlation between two re-

producibility smells.

Figure 4.5a presents the correlation coeficients between pairs of reproducibility

smells; all the observations are statistically significant with p-values < 0.05.

(a) Spearman correlation coeficients
with absolute smell count.

(b) Spearman correlation coeficients
with normalized smell count.

Figure 4.5: Correlation analysis.

We observe a high positive correlation between unguarded operation and assump-

tions about environment smells. The unguarded operation also exhibits moderate to

high correlation with broken dependency chain. and assumptions about environment

has a moderate correlation with outdated dependency and broken dependency chain

smells. These high to moderate correlations among unguarded operation, assumptions

about environment, and broken dependency chain suggest that if a repository has a

large number of one kind of smell, it is likely to find other kinds of smells among the

other smells with a high to moderate correlation.

The number of detected smell instances plays a role in the correlation analysis.

Specifically, smells unguarded operation, assumptions about environment, and broken

dependency chain show a high correlation with other types of smells as they are

frequently detected. On the other hand, hardware specific command and incompatible

54

version dependency smells that are the least frequently detected ones naturally show

a low correlation with other smells. The size of the repository, i.e., the number of

tasks in a repository, may confound the analysis. To remove the factor of size from the

analysis, we compute the normalized number of smells by dividing the total number of

smells by the total number of Ansible tasks in a repository. We obtain a new set

of correlation coeficients for the normalized smell count that we show in Figure 4.5b.

The analysis shows an interesting observation. The erstwhile high correlation

between, for example, unguarded operation and assumptions about environment smells is

no longer visible. It implies that the high correlation was only due to the size of the

repositories. With the normalized smell count, the smell pair unguarded operation and

broken dependency chain shows the highest correlation.

We investigate the co-occurrence relationship between pairs of reproducibility

smells at the fine-grained task granularity. The co-occurrence relationship shows

whether two smells occur together at the task granularity, whereas correlation cap-

tures the tendency and proportion of smells to be detected for all the tasks in a

repository. Figure 4.6 shows the calculated ϕ coeficient for each smell pair. The co-

occurrence relationship is directional, unlike correlation, i.e., co-occurrence between

(a , b) is not equivalent to (b ,a) .

Figure 4.6: Smell co-occurrence at the Ansible task granularity.

We observe that the unguarded operation smell shows a high co-occurrence with

incompatible version dependency. These smells usually occur when using package

55

installers in an inappropriate way of specifying the package’s version. Similarly, as-

sumptions about environment smell exhibits a moderate degree of co-occurrence with

incompatible version dependency. One potential reason for this relationship is that a

script that assumes an execution environment may specify hard-coded versions for the

required packages. The hardware specific command smell does not co-occur with other

smells.

Analyzing how reproducibility smells tend to co-occur within Ansible scripts offers

valuable insights that extend beyond simply identifying individual smells. By exam-

ining co-occurrence, we can uncover underlying patterns and potential root causes

that lead to multiple smells appearing together in a script. This knowledge empowers

developers to make more targeted improvements. Instead of fixing each smell inde-

pendently, they can focus on addressing the root cause that triggers multiple smells

simultaneously, leading to more eficient remediation efforts.

Furthermore, understanding co-occurrence patterns is valuable for vendors cre-

ating improved smell detection tools. By tailoring detection algorithms to identify

frequently co-occurring smells, tools can become more effective in pinpointing poten-

tial problems within Ansible scripts.

Finally, researchers developing frameworks to guide Ansible script development

can leverage co-occurrence knowledge to inform the design process. Frameworks can

be refined to address vulnerabilities that lead to the co-occurrence of specific smells,

promoting more robust script construction from the beginning.

Summary: Our correlation analysis uncovers significant positive correlations be-

tween specific reproducibility smells, implying that repositories with one such smell

tend to exhibit others. The deeper analysis with the normalized smell counts shows

that broken dependency chain and unguarded operation smells are moderately cor-

related. The co-occurrence analysis reveals the high to moderate co-occurrence

tendency between specific smell pairs. Co-occurrence analysis findings offer valu-

able insights for both researchers and tool vendors. Researchers can use this in-

formation to refine framework design, while tool vendors can improve their tools’

ability to detect reproducibility issues more effectively.

56

4.3.2.4 K e y takeaway from R Q 2 and R Q 3

The high frequency of reproducibility smells like broken dependency chain, assump-

tions about environment, and unguarded operation indicates common pitfalls devel-

opers face in ensuring their infrastructure specifications are both portable and de-

pendable across different environments. These findings highlight the need for better

tools and practices to address these reproducibility challenges in Ansible scripts.

4.3.2.5 Qualitative Analysis

In this section, we elaborate on the results obtained, extend our analysis through

qualitative methods, and discuss the implications of our findings. We conducted a

qualitative analysis focusing on the manifestation of reproducibility smells in real-

world Ansible projects. We selected the top 20 most downloaded Ansible repositories

from Ansible Galaxy, filtering for those with at least 100 commits and ten reported

issues on GitHub. Special attention was given to repositories used in production

environments by notable companies like Cisco or RedHat. Each selected project was

manually reviewed to ensure issues were attributable to Ansible scripts rather than

underlying Python code.

We manually reviewed a total of 152 issues across eight selected repositories. From

these, 28 issues were directly linked to reproducibility aspects discussed in this paper.

This significant proportion underscores the critical impact of reproducibility smells on

operational stability and the importance of early detection and remediation. Detailed

findings and mappings of reproducibility smells for these issues are documented in

our replication package [9].

For example, in the c isco.nxos repository [25], used for managing NX-OS net-

work appliances, issues #801 and #803 arose from not using appropriate Ansible

components when making changes in the files and not properly checking the state of

the file after each change that led to idempotency violations which is detected as un-

guarded operation smell. Similarly, issue #542 in the same repository demonstrated

failure due to unguarded use of the command attribute without adequate status change

measures, a classic instance of Idempotency. These examples underscore the practical

application of our tool (Reduse) in identifying and mitigating reproducibility issues

early in the development lifecycle.

57

Cisco asa repository reports an issue [26] where a new version of a module was

not compatible with another dependent module resulting in unexpected output in

execution. It indicates incompatible version dependency smell that is caused by spec-

ifying a fixed version for a module without checking their compatibility. Another issue

from the same repository [27] highlights a problem with an Ansible task that failed to

verify its proper execution using appropriate Ansible components such as assert. This

oversight led to errors in playbook execution, resulting in incorrect configuration of the

environment based on the configuration file. Such issues can be captured using the

broken dependency chain smell.

4.3.2.6 Implications

Our study not only quantifies the prevalence of reproducibility smells in active Ansible

repositories but also emphasizes their implications in terms of operational reliability

and maintenance overhead. By leveraging tools like Reduse, developers can proac-

tively identify and refactor reproducibility smells, thereby enhancing the robustness

and maintainability of Ansible playbooks across diverse deployment environments.

The qualitative analysis reinforces the need for rigorous adherence to best practices

in Ansible playbook development. It advocates for comprehensive dependency man-

agement, thorough validation mechanisms, and continuous refinement of scripting

practices to minimize the occurrence of reproducibility issues. Moreover, it under-

scores the role of automated tools in promoting consistent and reliable infrastructure

management practices.

Reduse offers substantial benefits in improving the quality and reliability of Ansi-

ble playbook development. By integrating Reduse into C I / C D pipelines, developers

can conduct early static code analysis to preemptively detect reproducibility issues.

This integration prevents issues from propagating to production environments and

fosters a culture of continuous improvement in playbook development practices.

Additionally, Reduse serves as an educational tool for new developers, guiding

them towards writing robust and maintainable Ansible playbooks. Its capability to

identify and categorize reproducibility smells provides actionable insights for devel-

opers to enhance their scripting practices and contribute to the overall reliability of

infrastructure deployments.

Chapter 5

Sustainable A I Inference on E d g e Devices

5.1 Methodology and Deployment

EdgeAI is increasingly utilized in applications that demand real-time processing, low

latency, and eficient resource management. Typical applications include smart build-

ings, IoT systems, image and video processing in autonomous vehicles, and natural

language processing in voice assistants. Each of these applications relies on specific

models tailored to their unique needs. However, edge devices have limited resources

(computing, memory, and power) compared to their cloud counterparts. Thus, as-

sessing the deployment feasibility of A I models on resource-constrained edge devices

is essential to shed light on their performance and resource usage while hosting a di-

verse range of models. The primary aim of this research is to evaluate the feasibility

of deploying A I models on edge devices, identify the associated challenges, and to

discover techniques for utilizing A I on resource-constrained devices.

The assessment workflow depicted in Figure 5.1 starts with selecting appropriate

A I models tailored for edge devices, categorized based on their application domains.

In parallel, we choose a set of edge devices (e.g., NVIDIA Jetson Nano) and their

respective A I frameworks (e.g., TensorFlow Lite). The next step is to train the chosen

models in the legacy cloud servers using their optimal hyperparameters for the chosen

platform. The trained models must be converted to their lighter version based on the

chosen device and platform. We deploy the converted models on the chosen devices for

performance evaluation, which includes measuring models’ accuracy, inference time,

power and memory consumption. In the following, we elaborate on each step of the

proposed assessment methodology.

58

59

Figure 5.1: The workflow of A I inference assessment in edge devices.

5.1.1 Model Selection

Given that most common A I applications on edge devices fall under the image pro-

cessing or image classification category, we employ a set of traditional ML and neural

network models. We added large language models as an additional category to cover

possible usage in voice assistants. We present a list of models from each category

below.

• Traditional M L Models: Decision Trees, SVM, and KNN are well-suited

for quick decision-making in edge environments like smart buildings and IoT

systems, where real- time sensor data analysis is crucial [103].

• Neural Network Models: ANN, CNN, R-CNN, ResNet-50, and MobileSSD

are widely used for processing image and video data. These models are com-

monly used in edge applications such as gesture recognition, dynamic environ-

ment adaptation, autonomous driving, and video analytics, where high accuracy

and real-time performance are essential [103].

• Large Language Models: We choose T inyB E RT and Phi-2-orange optimized

for natural language processing on edge devices. These models are widely used

60

in voice assistants, text processing, and other NLP-driven applications, show-

casing the versatility of edge computing [84].

We ensure compatibility with the selected devices and frameworks by aligning each

model category with specific edge computing applications. This approach facilitates a

comprehensive exploration of performance metrics, including accuracy, inference

speed, memory usage, and energy consumption across diverse edge scenarios.

5.1.2 Device Selection

We review existing literature in edge computing for selecting representative hardware

devices and select the following 3 devices with unique characteristics and advantages.

Note that there are other edge devices, e.g., Google Coral USB, that can offer good

performance on the edge; our selection of these devices is based on their widespread

adoption in research and practical applications. The Raspberry Pi’s affordability and

flexibility, coupled with the Jetson Nano’s GPU capabilities and the Neural Compute

Stick’s specialized inference acceleration, offer a diverse set of platforms for our edge

computing experiments.

• Raspberry P i : The Raspberry Pi is widely recognized for its versatility and

cost-effectiveness in edge computing applications [84]. Its compact size, low

power consumption, and General Purpose Input/Output (GPIO) enable seam-

less interfacing with a wide range of sensors and peripherals, making it ideal for

Internet of Things (IoT), robotics, and educational projects [7].

• Intel Neural Compute Stick: The Intel Neural Compute Stick is a compact

USB device designed to accelerate deep neural network inference at the edge.

Equipped with the Intel Movidius Myriad X Vision Processing Unit, it offers

high-performance inference capabilities while consuming minimal power. This

makes it suitable for real-time applications like image recognition and speech

processing in edge environments [3].

• Nvidia Jetson Nano: The Nvidia Jetson Nano Developer Kit features a

CUDA-capable GPU and ARM Cortex-A57 CPU, providing robust computing

power for deploying A I applications at the edge [103]. It supports popular

61

A I frameworks such as TensorFlow and PyTorch, making it suitable for tasks

ranging from autonomous robots to intelligent surveillance systems [4].

5.1.3 Framework Selection

We first choose TensorFlow Lite, PyTorch Mobile and MXNet as the candidate edge

platforms due their wide adoption in academia and industry. MXNet is a deep learn-

ing framework known for its scalability and eficiency, particularly in distributed

training and inference across multiple GPUs. However, MXNet’s primary strengths

lie in its capability for handling large-scale training tasks and specific use cases requir-

ing extensive parallelism, which may not be as critical in edge deployments. PyTorch

Mobile integrates seamlessly with PyTorch, offering dynamic computation graphs

and flexibility for edge applications. However, we select TensorFlow Lite as the main

platform in our assessment due to the following reasons.

• Optimized Inference and Training: TensorFlow Lite ensures eficient in-

ference with advanced optimization techniques like quantization and GPU sup-

port, while TensorFlow provides optimized implementations for initial model

training [23, 84].

• Broad Platform Support: TensorFlow Lite supports a wide range of plat-

forms, including ARM-based devices, Android, iOS, and micro-controllers, mak-

ing it versatile for deployment across diverse hardware.

• Stable and Proven Deployment: TensorFlow and TensorFlow Lite offer reli-

able and stable deployment solutions, consistently used in research and industry,

ensuring trust and flexibility.

• Comprehensive Deployment Tools: TensorFlow Lite simplifies model con-

version and deployment with tools like TensorFlow Lite Converter, facilitating

smooth transitions from training to deployment [78, 107].

Variants of TensorFlow Lite: The lighter frameworks are different on different

edge devices with respective target-specific optimizations. For example, Nvidia Jetson

uses TensorRT, an SD K developed by Nvidia that optimizes deep learning models

for inference on Nvidia GPUs. TensorRT applies several advanced techniques such

62

as precision calibration (e.g., FP16 and INT8 quantization), layer fusion, and kernel

auto-tuning to accelerate model inference, significantly improving both performance

and eficiency while reducing latency.

Similarly, the Intel Neural Compute Stick utilizes Intermediate Representation

(IR) format of the models, which are a crucial component of the Intel OpenVINO

toolkit. The I R format consists of an X M L file that describes the network structure

and a binary file containing the model weights. These I R models are optimized for

Intel hardware by applying transformations such as weight pruning, quantization, and

operator fusion, allowing for eficient inference on devices like the Neural Compute

Stick. By tailoring frameworks like TensorRT for Nvidia Jetson and I R format of the

models for Intel devices, we maximize performance by leveraging specific hardware

optimizations, ensuring that our A I models run eficiently and effectively on the target

hardware.

5.1.4 Model Training

The training process varies depending on the category of models, which we elaborate

below.

K N N , S V M , D T , linear classifiers, A N N , C N N , F F N N and R - C N N : We

train these models using standard datasets like MNIST [67] over the legacy framework

like TensorFlow. The training process involves feature extraction, data normalization,

and parameter tuning to optimize model parameters for the best accuracy. We use

the trained for multi-class classifications.

Resnet-50 and MobileSSD: In this case, the training process involves data

augmentation, regularization techniques such as dropout, and optimization strategies

like learning rate scheduling. These models are trained on respective standard dataset

ImageNet [53] using TensorFlow. We use the trained for multi-class classifications.

T i n y B E RT and phi-2-orange: In large language models, T i n y B E RT is trained

using the GLUE [102] dataset, specifically tailored for question answering tasks. The

training process involves fine-tuning a pre-trained B E RT model with additional layers

suited for GLUE tasks. This includes adjusting hyper-parameters like learning rate

and batch size to enhance the model’s ability to handle question answering effectively.

The phi-2-orange model is trained on the OpenAssistant dataset Oasst1 [62],

63

which is used for intent classification in conversations. The training involves pro-

cessing labeled prompts indicating various intents (e.g., informing, questioning, com-

plaining). The model is fine-tuned to categorize user prompts accurately by leveraging

transfer learning techniques and optimizing classification performance on the dataset.

The training process of the above models is summarized in Table 5.1.

Model Tra i n i n g Framework Target Device Dataset Tra i n i n g Information
KNN, SVM, D T , Linear Classifier TensorFlow ★, ✲, ✰ MNIST Lightweight models optimized for low-power edge devices.
ANN, CNN, FFNN, R-CNN TensorFlow Keras ★, ✲, ✰ MNIST Quantization and pruning applied for enhanced inference speed.
ResNet-50, MobileSSD TensorFlow Keras ★, ✲, ✰ ImageNet Mixed precision (FP16) for improved performance.
T i ny B E RT TensorFlow Keras ★, ✲, ✰ G L U E Model distillation for eficient edge inference.
Phi-2-Orange TensorFlow Keras ★, ✲, ✰ OpenAssistant Optimized for performance on powerful edge devices.

Table 5.1: Models, Training Tools, Target Devices, Datasets, and Training Informa-
tion for Edge Devices. Symbols used for target devices: ★ - Raspberry Pi, ✲ - Intel
Stick, ✰ - Jetson Nano.

Table!5.2, 5.3, 5.4, 5.5 present hyper-parameters for training the models.

Mo del

K N N

D T

S V M

Linear

Hyperparameters
- Neighbors: 3
- Data Precision: 16-bit
- Data Precision: 16-bit
- Random State: Fixed
- Gamma: 0.001
- Data Precision: 16-bit
- Optimizer: S G D
- Loss Function: Categorical Cross-Entropy
- Epochs: 5
- Batch Size: 64
- Validation Split: 20%
- Quantization: FP16 for TensorFlow Lite

Table 5.2: Hyperparameters of KNN, Decision Tree (DT) , SVM, and Linear Classifier.

We save all trained models H5 file format to preserve both their weights and

architecture. This step is essential for eficiently converting the models into Tensor-

Flow Lite format, making them suitable for deployment on edge devices [23, 84, 107].

Following this structured approach ensured consistency and compatibility across our

model implementations, establishing a solid foundation for seamless deployment and

integration into edge computing environments.

64

Mo del

F F N N

C N N

R - C N N

A N N

Hyperparameters
- Architecture: 2 Dense Layers (128, 64 units) with ReLU
- Output Layer: 10 units with Softmax
- Optimizer: Adam
- Loss Function: Categorical Cross-Entropy
- Epochs: 5
- Batch Size: 64
- Validation Split: 20%
- Quantization: FP16 for TensorFlow Lite
- Layers: 2 Conv Layers (32, 64 filters) with 3x3 kernels
- Pooling: 2 Max-Pooling layers (2x2)
- Dense Layer: 128 units with ReLU
- Output Layer: 10 units with Softmax
- Optimizer: Adam
- Loss Function: Categorical Cross-Entropy
- Epochs: 5
- Batch Size: 64
- Quantization: FP16 for TensorFlow Lite
- Conv Layers: 3 Layers (32, 64, 64 filters) with 3x3 kernels
- Pooling: 3 Max-Pooling layers (2x2)
- Dense Layer: 256 units with ReLU
- Output Layer: 10 units with Softmax
- Optimizer: Adam
- Loss Function: Categorical Cross-Entropy
- Epochs: 5
- Batch Size: 32
- Quantization: FP16 for TensorFlow Lite
- Architecture: Custom Layer Configuration
- Optimizer: Adam
- Loss Function: Categorical Cross-Entropy
- Epochs: 10
- Batch Size: 64
- Validation Split: 20%

Table 5.3: Hyperparameters of FFNN, CNN, R-CNN, and ANN.

5.1.5 Evaluation Metrics

We collect the following metrics while experimenting with the selected models.

5.1.5.1 Memory Utilization

Memory utilization is a critical metric for evaluating eficiency in resource-constrained

environments, as it reflects the total memory resources consumed during inference. It

covers both device memory (e.g., GPU memory on the Nvidia Jetson Nano) and

Accuracy = × 100%

65

Mo del

Resnet-50

M o b i l e S S D

Hyperparameters
- Architecture: 50 layers with GlobalAveragePooling2D
- Dense Layers: 1024 units with ReLU
- Image Size: 224x224 pixels
- Optimizer: Adam
- Loss Function: Sparse Categorical Cross-Entropy
- Batch Size: 32
- Transfer Learning: Pre-trained ImageNet weights with frozen layers
- Architecture: Depthwise Separable Convolutions
- Image Size: 224x224 pixels
- Optimizer: Adam
- Loss Function: Sparse Categorical Cross-Entropy
- Batch Size: 32
- Transfer Learning: Pre-trained ImageNet weights with frozen layers

Table 5.4: Hyperparameters of ResNet50 and MobileSSD.

host memory (system RAM used by the CPU). Device memory is optimized for fast

data processing by specialized hardware, while host memory handles general system

tasks and data transfers. By focusing on total memory usage from the host system’s

perspective, our analysis ensures consistent measurement across platforms like the

Nvidia Jetson Nano, which uses unified memory, and the Raspberry Pi, which relies

solely on CPU memory.

5.1.5.2 Accuracy

Accuracy measures the proportion of correctly classified instances out of the total

evaluated instances, indicating the model’s performance in predicting correct class

labels. Accuracy is computed by dividing the number of correctly classified instances

by the total number of instances in the dataset and expressing it as a percentage:

N umber of C orrectly C lassif ied Instances
T otal N umber of Instances

A high accuracy indicates accurate model predictions, while a low accuracy suggests

the need for model improvements.

5.1.5.3 Inference Time

Inference time specifically measures the time taken by the model to process infer-

ence. Inference time is crucial for real-time or latency-sensitive applications. Total

66

Mo del

T i n y B E R T

Phi-2-orange

Hyperparameters
- Learning Rate: 2 × 10−5

- Epochs: 3
- Optimizer: Adam
- Loss Function: Sparse Categorical Cross-Entropy
- Dataset: G L U E
- Tokenizer: BertTokenizer
- Deployment: TensorFlow Lite
- Batch Size (Training): 16
- Batch Size (Evaluation): 64
- Epochs: 3
- Warm-up Steps: Configured
- Weight Decay: Configured
- Dataset: OpenAssistant
- Managed by: Hugging Face Trainer

Table 5.5: Hyperparameters of T inyB E RT and Phi-2.

execution time refers to the overall time taken by the pre-processing, inference, and

post-processing steps. Both inference and total time are typically measured by logging

timestamps before and after each operation and calculating the differences.

5.1.5.4 Power Consumption

Power consumption during the inference phase is a vital metric for assessing energy

eficiency, particularly in battery-powered or energy-constrained environments. To

measure power consumption accurately, hardware instruments such as power meter or

software tools interfacing with hardware sensors are used. These tools can capture real-

time power data by connecting to the device or utilizing built-in sensors that

monitor voltage and current. For accurate measurements, it is essential to isolate

the inference phase from other activities and background processes, ensuring that

the recorded power consumption reflects only the energy expended during inference.

Inference energy consumption is measured by obtaining a total energy consumption

report for each input sample during the inference, with logged timestamps to accu-

rately capture the duration.

67

5.2 Implementation and Deployment

Figure 5.2 depicts the implementation and the deployment process of our measure-

ments. We elaborate each step below.

Figure 5.2: Deployment and measurement setup.

5.2.1 Device Setup Process

We first prepare each platform for deploying the chosen models, performing inference,

and conducting intended measurements.

5.2.1.1 System Software Deployment

Setting up a Raspberry Pi for running TensorFlow Lite model inference involves

flashing the latest Raspberry Pi OS (64bit), updating and upgrading packages such

as python-pip3, tflite-runtime, psutil and creating a virtual environment. TensorFlow

Lite and its dependencies are installed within this virtual environment. In the case

of Intel Neural Stick with a Raspberry Pi, we install Intel Neural Stick dependencies

in addition to the standard Raspberry Pi setup. After creating a virtual environ-

ment and installing TensorFlow Lite, we used OpenVINO alongside TensorFlow Lite

68

inference scripts for eficient model deployment and execution on the Raspberry Pi.

Setting up the Nvidia Jetson Nano involves installing the necessary requirements for

executing TensorFlow Lite inference. The Jetson Nano is powered up and connected

to the Internet, followed by updating system packages and upgrading packages such as

python-pip3, tflite-runtime, psutil. We also install any other required Python libraries.

5.2.1.2 Framework Deployment

TensorFlow Lite framework comes with a Converter tool to convert a saved model in

H5 format to the TensorFlow Lite format, which is saved as a (.tflite). This file can be

deployed on Raspberry Pi and Nvidia Jetson Nano. We use OpenVINO to convert the

models in TensorFlow Lite format into Intermediate Representation (I R) format to

be deployed in the Intel Neural Compute Stick. OpenVINO provides a comprehensive

set of tools and libraries for eficient deployment and inference across various Intel

architectures, ensuring our machine learning models can fully leverage Intel hardware

acceleration. Finally, we use TensorFlow library along with T F - T R T , which is an

integration within TensorFlow that allows for the optimization of TensorFlow models

using NVIDIA ’s TensorRT, to convert the saved TensorFlow models to the models in

TensorRT format.

5.2.1.3 Model and Data Deployment

Once the edge devices are ready with the desired platforms, we deploy a measurement

script to perform the inference of the chosen models. The script consists of five steps:

initialization, loading test dataset loading model image, performing inference, and

collecting performance metrics.

The TensorFlow Lite interpreter in Raspberry pi loads the model image and the

test dataset into the memory. This process typically involves iterating through the

dataset, feeding each sample to the model, and capturing output predictions for

further analysis.

For the Nvidia Jetson Nano,in addition to using the TensorFlow Lite models, we

converted the Lite models to Tensor-RT models optimized for the device. After con-

version, the model is loaded onto the device, and inference is performed. When using

a model converted with OpenVINO for inference, the Inference Engine component

69

is utilized to optimize and execute the model on Intel hardware. For the Intel Neu-ral

Compute Stick, the Inference Engine exploits hardware acceleration for enhanced

performance. The model is loaded onto the Neural Compute Stick, and inference is

performed directly on the device, leveraging its parallel processing capabilities.

5.2.2 Performance Measurement and Report Generation

We measure various performance metrics: inference accuracy, inference time, memory

usage, and power usage. We use a batch size of 25 images to measure the performance of

the chosen models. We repeat each measurement 10 times except for resnet-50 and

mobileSSD, which is the average of 5 repetitions. Finally, we executed the L L M

models once. In the following, we present the measurement process using appropriate

tools.

Inference Accuracy and Time Measurement: We measure the inference

accuracy using the function that compares the predictions with the true labels as

TensorFlow Lite, OpenVINO, or TensorRT cannot provide a single function to mea-

sure inference accuracy directly. The obtained accuracy is then saves in a log file.

Start and end timestamps for each stage are logged to calculate total and inference

times. The Python time module is used to measure and log time because it is simple,

precise, and part of Python’s standard library. The code snippet logs the start and

end time of a phase using t ime. s t r f t i m e() to format the current time. For mea-

suring elapsed time, t ime.t ime() is used to record the start and end times, and the

difference between them gives the total duration.

Memory Usage Measurement: We use p s u t i l library to measure memory

utilization, focusing on the total RAM consumption during script execution. p s u t i l

provides detailed insights into the memory usage of both individual processes and the

overall system, allowing us to monitor the impact of our scripts on system RAM.

Energy Measurement: Firstly, establishing a consistent method for measuring

energy consumption proved a significant hurdle. This is because the software-based

energy measurement packages are unavailable across the chosen hardware devices.

We need a robust tool for all three devices. However, as shown in Table 5.6, no

software package can be used for all the devices; thus, we choose a hardware-based

tool, namely USB power meter.

70

De v i c e To ol T y p e To ol N a m e S u m m a r y
Software

Software

R a s p b e r r y P i Hardware

PiJuice A P I

PowerAPI

U S B Power Meter

Monitors power consump-
tion with PiJuice H AT .
Monitors power consump-
tion on P i and peripherals.
Measures real-time volt-
age, current, and power.

Hardware INA219/INA226 Power Monitor I 2 C module for monitoring
power on rails.

Software

I nt e l N e u r a l C o m p u t e S t i c k
Software

Hardware

Software

I n t e l ® Power Gadget

psutil

U S B Power Meter

tegrastats

Provides power insights for
Intel hardware.
Monitors system resources
for indirect power analysis.
Measures power usage via
U S B.
Native tool for real-time
power monitoring.

N v i d i a Je tson N a n o
Software Jetson Power Monitor Logs power data from

INA3221 chip.
Hardware U S B Power Meter Measures power usage via

U S B.

Table 5.6: Energy consumption measurement tools for Raspberry Pi, Intel Neural
Compute Stick, and Nvidia Jetson Nano.

The USB meter’s output is connected to the device under test, such as a Rasp-

berry Pi, ensuring the input matched the device’s power supply. After recording

power consumption using the USB power meter, we use its P C application to obtain

measurement reports. We record the power consumption for the entire script exe-

cution time then using our logged timestamps, we identify timestamps for each step

and calculate power consumption for the inference.

Before each script execution, unnecessary processes are terminated, and the vir-

tual environment is reactivated to prevent caching effects. The power meter continu-

ously records power consumption at a sampling rate of 16 samples per second. After

the script execution, power consumption records and corresponding timestamps are

exported. We include an initialization phase when running scripts to measure the de-

vice’s power consumption at near-idle states. We average these values and subtract

them from the power consumed during the inference phase. This approach isolates

the power used specifically by the inference operations, excluding the device’s idle

power and other components.

5.3 Evaluation Results

This section presents the evaluation results answering the three research questions.

71

5.3.1 How do learning models perform on selected edge devices?

5.3.1.1 Traditional M L Models

Table 5.7 presents the observed results for all considered traditional ML models. In

the table, we present the mean value of the measured metric along with 95% con-

fidence interval. As shown in table, the evaluation of K-Nearest Neighbors (KNN),

Support Vector Machine (SVM), Decision Tree (DT) , and Linear Regression models

across various hardware platforms reveals how different devices handle these models.

Nvidia Jetson Nano consistently outperforms the Raspberry Pi in inference speed

and execution time due to its powerful hardware capabilities, such as GPU, which

accelerates parallel computations. This makes Jetson Nano effective, particularly for

models like SVM and KNN, which require intensive mathematical operations and

benefit from hardware acceleration. The SVM model on Jetson Nano is the top per-

former, leveraging its hardware capabilities to handle the model’s linear operations

far more eficiently than the Raspberry Pi, which lacks a dedicated GPU. For KNN,

Jetson Nano’s parallel processing capabilities allow for faster distance calculations,

though it demands more memory and energy. The Decision Tree model consistently

performs across devices since it involves simpler, sequential decisions that do not

benefit much from hardware acceleration, allowing the Raspberry Pi to perform com-

paratively well. Linear Regression, being less computationally intensive, also shows a

smaller performance gap between devices, with Jetson Nano having a slightly better

performance.

5.3.1.2 Neural Network Models

Table 5.8 presents the observed metrics along with their confidence interval for all

considered devices and models. As shown in table, the performance of neural network

models across different hardware platforms highlights their strengths and suitability

for specific tasks. Nvidia Jetson Nano, particularly when optimized with TensorRT,

consistently outperforms Raspberry Pi and Intel Neural Stick in terms of inference

speed and accuracy. For example, when running a CNN, the Jetson Nano with Ten-

sorRT offers the best inference and total times, making it the most eficient platform

for real-time applications. On the other hand, Raspberry Pi, while slightly slower,

Table 5.7: Performance of traditional ML models.
their confidence interval in square brackets.

72

Metrics are reported along with

Mo del Mean A c c u r ac y (%) Inference T i m e (s) Tota l T i m e (s) Inference E n e r g y (W) M emory U t i l . (M B)

KNN 97.03 [95.61, 98.45]
SVM 96.81 [95.39, 98.23]
D T 87.8 [86.02, 89.58]
Linear 89.55 [87.71, 91.39]

1.46 [1.03, 1.89]
0.36 [0.17, 0.55]
0.12 [0.09, 0.15]
0.21 [0.17, 0.25]

Raspb erry

4.16 [3.73, 4.59]
3.17 [2.74, 3.60]
1.58 [1.13, 2.03]
1.0 [0.98, 1.02]

2.13 [1.30, 2.96] 28
3.81 [2.97, 4.65] 50
2.32 [1.49, 3.15] 34
2.71 [2.47, 2.95] 24

Raspb erry + S t i ck

KNN 97.18 [95.37, 98.99]
SVM 96.9 [95.09, 98.71]
D T 87.82 [85.95, 89.69]
Linear 89.55 [87.83, 91.27]

1.8 [1.12, 2.48]
0.43 [0.14, 0.72]
0.14 [0.12, 0.16]
0.33 [0.23, 0.43]

4.23 [3.68, 4.78]
3.14 [2.60, 3.68]
2.0 [1.59, 2.41]
1.0 [0.98, 1.02]

2.16 [1.94, 2.38] 33
3.97 [3.40, 4.54] 52
2.56 [2.10, 3.02] 45
2.83 [2.48, 3.18] 28

Nv id ia Jetson Nano (l ite mo del)

KNN 97.25 [95.86, 98.64]
SVM 97.4 [95.92, 98.88]
D T 87.84 [86.02, 89.66]
Linear 89.55 [87.71, 91.39]

0.9 [0.62, 1.18]
0.37 [0.18, 0.56]
0.12 [0.10, 0.14]
0.18 [0.12, 0.24]

3.1 [2.67, 3.53]
2.67 [2.23, 3.11]
2.12 [1.74, 2.47]
1.12 [0.97, 1.27]

3.75 [3.01, 4.49] 35
4.26 [3.59, 4.93] 68
3.94 [3.38, 4.50] 53
2.87 [2.62, 3.12] 35

Nv id ia Jetson Nano (Te n s o r - RT mo del)

KNN 97.28 [95.86, 98.70]
SVM 97.47 [95.92, 98.90]
D T 87.88 [86.02, 89.74]
Linear 89.57 [87.71, 91.43]

0.78 [0.64, 0.92]
0.23 [0.11, 0.35]
0.12 [0.10, 0.14]
0.18 [0.13, 0.23]

3.02 [2.58, 3.46]
2.84 [2.39, 3.29]
2.1 [1.73, 2.47]

1.14 [0.99, 1.29]

3.55 [2.91, 4.19] 33
4.43 [3.88, 4.98] 65
3.93 [3.36, 4.50] 44
2.81 [2.57, 3.05] 33

shows competitive accuracy when running an FFNN. Its lower memory utilization

and power consumption make it a viable option for resource-constrained environ-

ments, though it struggles with more demanding tasks like running an R-CNN. Intel

Neural Stick, while effective in enhancing the Raspberry Pi’s performance, does not

match Jetson Nano’s capabilities. For instance, when augmenting the Raspberry Pi

for tasks using an SVM, the Stick provides marginal improvements in inference time

but outpaced by the Jetson Nano’s dedicated GPU when handling more complex

tasks like running a CNN.

These performance differences are largely due to the specific hardware optimiza-

tions in each device. Jetson Nano’s GPU excels at handling parallel computations,

which are crucial for tasks like running a CNN. In contrast, Raspberry Pi’s general-

purpose CPU, though energy-eficient, takes longer to process such tasks, making it

more suitable for lighter workloads, such as running an FFNN. Intel Stick, designed

to supplement CPU-based systems, offers some acceleration but cannot match the

Jetson Nano’s dedicated GPU performance when running compute-intensive models

like R-CNN.

Table 5.9 shows the obtained results for the considered additional deep learning

models. As shown in table, the performance analysis of Resnet-50 and MobileSSD

73

Table 5.8: Performance of neural network models. Metrics are reported along with
their confidence interval in square brackets.

Mo del Mean A c c u r ac y (%) Inference T i m e (s) Total T i m e (s) Inference E n e r g y (W) M emory U t i l . (M B)

ANN 88.12 [86.89, 89.35]
CNN 99.02 [97.79, 100.25]
FFNN 97.48 [96.22, 98.68]
R-CNN 97.00 [95.77, 98.23]

0.32 [0.31, 0.33]
0.7 [0.68, 0.72]

0.37 [0.36, 0.38]
1.7 [1.66, 1.74]

Raspb erry

2.15 [1.97, 2.03]
5.3 [5.21, 5.39]

3.12 [3.05, 3.19]
6.35 [6.26, 6.44]

2.1 [2.08, 2.12] 56
3.4 [3.34, 3.46] 117
2.96 [2.84, 2.96] 98
4.78 [4.71, 4.89] 211

Raspb erry + S t i ck

ANN 89.35 [88.11, 90.57]
CNN 99.00 [97.77, 100.23]
FFNN 97.43 [96.20, 98.66]
R-CNN 99.00 [97.77, 100.23]

0.38 [0.37, 0.39]
0.79 [0.77, 0.81]
0.43 [0.42, 0.44]
2.1 [2.07, 2.13]

2.6 [2.55, 2.65]
4.8 [4.75, 4.85]

3.12 [3.05, 3.19]
6.1 [6.02, 6.18]

2.13 [2.10, 2.16] 58
3.89 [3.81, 3.97] 134
3.35 [3.30, 3.40] 93
5.3 [5.24, 5.36] 238

Nv id ia Jetson Nano (l ite mo del)

ANN 89.13 [87.88, 90.34]
CNN 98.48 [97.22, 99.68]
FFNN 97.56 [96.33, 98.79]
R-CNN 98.74 [97.51, 99.97]

0.31 [0.30, 0.32]
0.82 [0.80, 0.84]
0.41 [0.40, 0.42]
1.1 [1.08, 1.12]

2.33 [2.26, 2.34]
4.3 [4.24, 4.36]

3.15 [3.09, 3.21]
3.9 [3.84, 3.96]

3.2 [3.15, 3.25] 58
4.67 [4.54, 4.72] 128
3.95 [3.86, 3.98] 95
5.79 [5.72, 5.86] 241

Nv id ia Jetson Nano (Te n s o r - RT mo del)

ANN 89.29 [88.07, 90.51]
CNN 98.56 [97.28, 99.84]
FFNN 97.69 [96.40, 98.98]
R-CNN 98.80 [97.55, 100.05]

0.29 [0.28, 0.30]
0.76 [0.74, 0.78]
0.38 [0.37, 0.39]
0.98 [0.96, 1.00]

2.28 [2.22, 2.34]
4.0 [3.95, 4.05]
3.1 [3.04, 3.16]
3.7 [3.64, 3.76]

3.18 [3.14, 3.22] 57
4.59 [4.48, 4.70] 126
3.88 [3.79, 3.97] 93
5.61 [5.54, 5.68] 230

models across various hardware platforms highlights several key observations. As

expected, Nvidia Jetson Nano with the TensorRT model demonstrates the best per-

formance. Also, it excels in inference time and maintains eficient memory usage and

energy consumption for both models. This advantage is attributed to TensorRT’s

optimizations, which accelerate model inference through hardware-specific enhance-

ments. For Resnet-50, TensorRT’s optimizations significantly reduce inference time

and memory usage compared to the other two devices. Similarly, the MobileSSD

model benefits from TensorRT’s eficiency, achieving faster inference time and com-

petitive accuracy. The Jetson Nano Lite model also performs well but shows slightly

higher inference times and energy consumption compared to the TensorRT variant. In

contrast, the Raspberry Pi struggles with the MobileSSD model’s demands, resulting

in longer inference times and higher energy consumption. The Intel Neural Com-

pute Stick improves performance when paired with the Raspberry Pi, which does

not match Jetson Nano’s eficiency due to limitations in its processing power and

optimization for deep models.

We observe that though inference time taken by devices is reducing across the

devices in the table, we do not see corresponding change in the total time. Even in

some cases, the total time has increased while the inference time is reduced. This

74

aspect can be explained by different phases of model loading and inference, which

is measured by total time. Though we observe reduced inference time, some models

take longer to load on specific devices and hence we see increased total time.

Table 5.9: Performance of Resnet-50 and MobileSSD models. Metrics are reported
along with their confidence interval in square brackets.

Model Mean Accuracy (%) Inference Time (s) Total T ime (s) Inference Energy (W) Memory Ut i l . (M B)

Resnet-50
MobileSSD

94.76 [93.53, 96.00]
93.78 [92.55, 95.01]

0.57 [0.49, 0.65]
0.42 [0.38, 0.46]

Raspberry

2.8 [2.77, 2.83]
2.7 [2.66, 2.74]

3.3 [3.27, 3.33] 98
4.7 [4.45, 4.55] 43.21

Raspberry + St ick

Resnet-50
MobileSSD

96.12 [94.89, 97.35]
95.31 [94.10, 96.56]

0.35 [0.27, 0.43]
0.32 [0.28, 0.36]

3.1 [3.03, 3.17]
2.3 [2.24, 2.36]

2.8 [2.74, 2.86] 87
4.23 [4.15, 4.25] 37.42

Nvidia Jetson Nano (l ite model)

Resnet-50
MobileSSD

96.38 [95.15, 97.61]
96.10 [94.96, 97.42]

0.27 [0.20, 0.34]
0.26 [0.23, 0.29]

3.6 [3.54, 3.66]
2.1 [2.07, 2.13]

3.5 [3.45, 3.55] 83
4.76 [4.62, 4.78] 48

Nvidia Jetson Nano (Tenso r -RT model)

Resnet-50
MobileSSD

95.71 [94.48, 96.94]
93.53 [92.30, 94.76]

0.15 [0.11, 0.19]
0.19 [0.16, 0.22]

2.6 [2.55, 2.65]
2.1 [2.06, 2.14]

3.61 [2.54, 2.68] 71
4.96 [3.85, 4.03] 48

TensorRT’s specialized optimizations, such as layer fusion, precision calibration,

and kernel tuning, enhance computational eficiency and speed up inference. The

Jetson Nano leverages these TensorRT benefits with its powerful GPU architecture,

which supports high-performance, parallel processing. In contrast, the Raspberry Pi

and Intel Neural Stick, while capable, lack the same level of optimization and spe-

cialized hardware support, leading to slower inference times and higher energy con-

sumption. This combination of advanced optimizations and robust hardware makes

TensorRT and the Jetson Nano more effective for deploying complex deep learning

models.

5.3.1.3 Large Language Models

The performance trend of LLMs is similar to that of other models, which is presented in

Table 5.10. This trend is again attributed to the degree of hardware capacities, i.e.,

Nvidia Jetson Nano is the best performer. The table 5.10 also shows that Tiny-BERT

generally outperforms phi-2-orange across all devices in terms of accuracy, inference

time, and memory usage. TinyBERT ’s lightweight, optimized architecture leads to

faster processing and lower memory consumption, particularly on resource-

constrained devices such as Raspberry Pi. In contrast, phi-2-orange, with its relatively

75

complex architecture, requires more memory and computational resources, which re-

sults in slower performance and higher energy consumption.

T inyB E RT consistently shows better performance in terms of accuracy, speed,

and energy consumption across all devices, from the Raspberry Pi to the Nvidia

Jetson Nano. Its lightweight architecture allows it to process tasks faster and with

lower energy requirements, making it particularly effective on devices with limited

computational resources. On the other hand, phi-2-orange, while still effective, tends

to perform less eficiently, particularly in inference time and energy usage. This can be

attributed to its more complex model structure, which demands more processing

power and memory. As a result, it struggles on lower-end devices like the Raspberry

Pi, where resource limitations become more apparent. The advantage of T inyB E RT is

even more pronounced on devices that support model optimization techniques, like the

Nvidia Jetson Nano with Tensor-RT. Here, TinyBERT ’s architecture, optimized for

such accelerations, significantly enhances its speed and reduces energy consumption,

further widening the performance gap with phi-2-orange. Phi-2-orange benefits from

hardware acceleration too but not to the same extent, likely due to its higher resource

demands. In essence, TinyBERT ’s design allows it to better adapt to the constraints

and capabilities of different edge devices, making it the more versatile and eficient

choice across varying environments.

Table 5.10: Performance of L L M models. Metrics are reported along with their
confidence interval in square brackets.

Mo del Mean A c c u r a c y (%) Inference T i m e (s) Total T i m e (s) Inference E n e r g y (W) M e m o r y U t i l .

Raspb erry

T i ny B E RT
phi-2-orange

87.00 [85.66, 88.34]
85.23 [84.03, 86.43]

0.58 [0.55, 0.61]
1.8 [1.62, 1.98]

4.2 [3.37, 4.03]
4.8 [3.96, 5.64]

3.1 [2.27, 3.43]
3.9 [3.06, 4.74]

41.53MB
2.5GB

Raspb erry + S t i ck

T i ny B E RT
phi-2-orange

89.00 [87.56, 90.44]
87.16 [86.04, 88.28]

0.41 [0.38, 0.44]
0.8 [0.64, 0.96]

3.0 [2.16, 3.84]
2.3 [1.47, 3.13]

3.7 [2.83, 3.91]
2.7 [1.86, 3.54]

32.15MB
2.2GB

N v i d i a Jetson Nano (l i te mo del)

T i ny B E RT
phi-2-orange

89.37 [87.93, 90.81]
87.21 [86.02, 88.40]

0.37 [0.34, 0.40]
0.53 [0.46, 0.60]

3.6 [1.76, 3.44]
2.47 [1.64, 3.30]

3.48 [2.67, 4.29] 35MB
5.82 [4.97, 6.67] 2.35GB

N v i d i a Jetson Nano (Te n s o r - RT mo del)

T i ny B E RT
phi-2-orange

88.20 [86.76, 89.64]
86.45 [85.25, 87.65]

0.24 [0.21, 0.27]
0.33 [0.30, 0.36]

3.3 [1.49, 3.11]
2.11 [1.40, 2.82]

3.47 [2.63, 4.31] 35MB
4.72 [3.88, 5.56] 1.78GB

76

Summary: Our experiment results revealed that traditional and neural network

models show similar accuracy between the Raspberry Pi and Raspberry Pi with the

Neural Stick, though the latter has a slightly higher power consumption and longer

inference time. Models such as Resnet-50 and MobileSSD benefit from the Neu-ral

Stick, achieving improved accuracy, reduced inference time, and lower energy

consumption under the adopted experimental settings. Similarly, T inyB E RT and

phi-2-orange models perform best on the Nvidia Jetson Nano, especially with Ten-

sorRT optimizations, highlighting the importance of selecting hardware suitable

for specific model types for enhanced edge computing performance.

5.3.2 How do lite frameworks impact the learning outcome?

The evaluation of various models across devices reveals that TensorFlow Lite (TFLite),

Intermediate Representation (IR), and TensorRT architectures exhibit distinct opti-

mization strategies and performance impacts.

TensorFlow L i te is optimized for edge devices with techniques like quantization

and operator fusion, which enhance speed and eficiency [44] but may not fully leverage

the capabilities of more powerful hardware, such as the Nvidia Jetson Nano. I R with

OpenVINO provides a flexible hardware abstraction layer that allows for tailored

optimizations [55] but generally yields less dramatic performance gain compared to

TensorRT. Tenso r RT is particularly designed for Nvidia GPUs [72], offers advanced

optimizations such as layer fusion and precision calibration, significantly boosting

inference speed, accuracy, and eficiency on Nvidia Jetson Nano devices.

Specifically, deep learning models Resnet-50 and MobileSSD are greatly benefited

using Nvidia Jetson Nano with TensorRT. In contrast, while models over Raspberry

Pi may demonstrate lower memory usage and energy consumption, they lag behind in

inference speed and accuracy. Models optimized with TensorRT on Nvidia Jetson

Nano show a clear advantage in performance metrics, highlighting the benefits of

leveraging advanced hardware-specific optimizations.

Summary: TensorFlow Lite, Intermediate Representation (IR), and TensorRT

each has unique optimization strategies. TensorFlow Lite enhances speed and efi-

ciency for edge devices but may not fully utilize powerful hardware like the Nvidia

77

Jetson Nano. I R models offer flexible optimizations but typically fall short of Ten-

sorRT’s performance. TensorRT, tailored for Nvidia GPUs, provides superior in-

ference speed, accuracy, and eficiency, particularly evident in Nvidia Jetson Nano

performance. While TensorRT-equipped Jetson Nano models outperform Rasp-

berry Pi in speed and accuracy, they often consume more memory and energy.

This highlights the need to select model architectures and optimization techniques

based on specific performance and eficiency requirements.

5.3.3 What are the trade-offs between performance and resource usage?

This section shows that choosing the optimal combination of machine learning models,

hardware devices, and their platforms requires a careful assessment of trade-offs to

meet application demand. This analysis explores trade-offs using key performance

metrics such as accuracy, inference time, memory usage, and energy consumption.

Table 5.11 shows the performance comparison across edge devices for all models.

Traditional models (KNN, SVM, DT , and Linear Regression) can be deployed on

Raspberry Pi if applications are not performance intensive; otherwise, Jetson Nano

is the choice. The same device is also the best fit for neural network models as it is

specifically designed for such models. Due to the same reason, we see Resnet-50 and

MobileSSD perform the best across all metrics on Jetson Nano. T inyB E RT and phi-2-

orange models show interesting performance trends. Both have the best performance

on Jetson Nano, but their resource usage is different on different devices, which may

require further investigation.

Table 5.11: Performance comparison across edge devices.

Model
KNN
SVM
D T
Linear Regression
ANN
CNN
FFNN
R-CNN
Resnet-50
MobileSSD
TinyB E RT
phi-2-orange

Accuracy[%]
Jetson Nano
Jetson Nano

Tie
Tie

Jetson Nano
Raspberry Pi
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano

Inference Time[S]
Jetson Nano
Jetson Nano

Tie
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano

Memory Usage[MB]
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Jetson Nano
Jetson Nano
Jetson Nano
Raspberry Pi
Jetson Nano
Raspberry Pi

Energy Consumption[W]
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Raspberry Pi
Jetson Nano
Jetson Nano
Jetson Nano
Jetson Nano

Tie
Neural stick

78

Summary: The Nvidia Jetson Nano consistently outperforms Raspberry Pi in

terms of processing speed for most machine learning models, particularly models

like Resnet-50, MobileSSD, TinyBERT, and phi-2-orange. This improvement in

speed varies from small (ANN, FFNN) to significant (R-CNN, MobileSSD, phi-2-

orange). In terms of accuracy, the Nvidia Jetson Nano also demonstrates an edge

for the majority of the models tested, except for CNN and Linear models. While

the accuracy improvement was marginal for some models (KNN, SVM, DT) , it was

substantial for others (Resnet-50, MobileSSD, TinyBERT, phi-2-orange). How-

ever, it is essential to note that these gains in speed and accuracy on the Nvidia

Jetson Nano come at the cost of higher memory usage and energy consumption in

some cases (SVM, CNN, Linear model), whereas other models (KNN, ANN,

FFNN, Resnet-50, MobileSSD, phi-2-orange) show better eficient resource utiliza-

tion. Overall, these findings underscore the importance of selecting the appropriate

hardware platform depending on the specific requirements of the machine learning

model being deployed, balancing factors such as speed, accuracy, memory usage,

and energy consumption.

5.4 K e y Takeaways

Our experiments highlight the impact of machine learning framework, model archi-

tecture, and hardware devices on inference accuracy and computational eficiency.

The final takeaways are listed below.

• ML and neural network models show consistent accuracy between Raspberry Pi

and Raspberry Pi with Neural Stick, with the latter consuming slightly more

power and time for inference.

• Resnet-50 and MobileSSD models demonstrate improved accuracy with the

Neural Stick, coupled with reduced inference time and energy consumption.

• The choice of hardware significantly influence performance metrics; while Rasp-

berry Pi variants maintain competitive accuracy, optimizations like TensorRT

on Jetson Nano enhance eficiency, especially for resource-intensive models.

79

Understanding these results is crucial for optimizing machine learning applications

on edge devices. The Nvidia Jetson Nano’s superior performance makes it suitable

for applications requiring high accuracy and speed, such as real-time object detection

or complex model inference. However, its higher resource consumption might not be

ideal for battery-powered or memory-constrained devices. On the other hand, the

Raspberry Pi provides a more resource-eficient solution for simpler models, making

it suitable for applications with limited computational demands or where power con-

sumption is a critical factor. These insights help in making informed decisions about

hardware and model selection to achieve the desired balance between performance

and resource eficiency.

Chapter 6

Conclusions and Fu t u r e Wo r k

6.1 Future Wo r k

6.1.1 Potential Future Extensions on I a C Reproducibility

While Reduse has demonstrated eficacy in detecting reproducibility smells in An-

sible playbooks, several avenues for future research and tool enhancement exist. For

instance, expanding the scope of reproducibility analysis to other IaC frameworks

like Terraform, Chef, and Puppet would offer comparative insights into reproducibil-

ity challenges across different toolsets.

Furthermore, enhancing Reduse’s detection capabilities through machine learn-

ing models could enable more sophisticated analysis of complex reproducibility pat-

terns. Integrating Reduse with popular IDEs and code editors used in Ansible

development would provide real-time feedback to developers, facilitating immediate

remediation of identified smells during playbook creation.

Moreover, refining Reduse to prioritize detected smells based on severity and

providing actionable guidance on remediation strategies would further enhance its

usability and effectiveness in real-world development scenarios.

6.1.2 Future Extensions of A I Inference on Edge Study

Future work on sustainable A I inference on edge devices could expand in several di-

rections to deepen the understanding and improve the eficacy of A I deployment in

resource-constrained environments. First, we can revisit the list of ML models, espe-

cially the D L models and LLMs, along with the lightweight frameworks (e.g., PyTorch

Mobile) for an extensive evaluation across various models and platforms. In the case of

learning models, we see a surge in complex models and their usage. For example,

Graph Neural Networks and Transformers are being adopted in various edge applica-

tions [16, 21, 47, 48, 57]. We plan to extend the current evaluation to include complex

80

81

models for their potential usage in the edge. We also can incorporate additional

hardware devices like smartNIC and Google Coral. SmartNICs being assessed and

deployed in various applications (e.g., load balancing and security) [96, 97, 106, 108].

We plan to replicate the current evaluation on this edge device. Similarly, Google

Coral is gaining its attention in edge usage, which we will explore further [79].

6.2 Limitations

6.2.1 Limitations of I a C Reproducibility Study

The heuristics and rules used by Reduse to detect reproducibility smells may intro-

duce construct validity concerns, as they rely on predefined patterns and assumptions

about best practices in Ansible playbook development. We mitigate this threat by

validating these heuristics through expert evaluations and making Reduse’s source

code available for public scrutiny and improvement [9]. Our study’s external valid-ity

may be limited as it focuses exclusively on Ansible as the target IaC framework. While

our reproducibility smell catalog is framework-agnostic, future research could expand

its applicability to other imperative IaC frameworks to generalize findings across the

broader infrastructure management landscape. Internal validity concerns ensuring the

reliability and consistency of our study’s findings and claims. We address this by

employing rigorous research methods, including systematic literature review and

empirical analysis of real-world Ansible repositories, to substantiate our findings on

reproducibility issues in Ansible playbooks.

6.2.2 Limitations of A I inference Study on Edge

First, we need to extensively evaluate the existing models multiple times for a sta-

tistically significant result. Also, the timestamps-based energy measurement can be

error-prone, so having an automated system would be better. For example, overlap-

ping or misidentifying phases can lead to inaccuracies in separating each step. We

may develop an automated configuration tool as developed in [20], where users can

provide their high-level intents of measurements, which the tool can convert for a

measurement configuration and visualization of the outcome.

82

6.3 Conclusions

This thesis addressed critical challenges in reproducibility within Infrastructure as

Code and explored sustainable A I inference on edge devices, focusing on practical

solutions and future research directions.

In the IaC reproducibility research, we investigated reproducibility challenges in

Ansible scripts, a prominent IaC tool. We introduced Reduse, a detection tool for re-

producibility smells, which helps practitioners identify and mitigate issues before they

impact production systems. Our empirical findings highlighted broken dependency

chain as the most prevalent reproducibility smell in analyzed open-source projects,

underscoring the necessity of early refactoring. We also provided a comprehensive

catalog of reproducibility smells, offering a practical framework for software engineer-

ing researchers to explore various dimensions of reproducibility in IaC. All artifacts,

including code, testing scripts, and results, are publicly accessible through our repli-

cation package [9], promoting the development of reproducible environments. Future

improvements to Reduse include expanding the detection framework to cover addi-

tional smell categories and extending the study to other IaC tools such as Terraform,

Chef, and Puppet.

In the sustainable A I inference research, we evaluated the performance of various

machine learning and deep learning models on different edge devices using Tensor-

Flow Lite. Our results demonstrated that hardware choice and model architecture

significantly impact performance metrics such as inference time, accuracy, and energy

consumption. The Nvidia Jetson Nano, particularly with TensorRT optimizations,

emerged as the most eficient platform for edge A I applications, providing superior

performance in both speed and energy eficiency. Future work could investigate the

integration of other hardware accelerators and further optimization of model archi-

tectures to enhance edge A I performance.

By applying the IaC reproducibility research, including the developed tool for de-

tecting reproducibility smells, we can ensure that the IaC scripts used to deploy A I

models at the edge are reliable and consistent. This will lead to more reliable deploy-

ments of A I models on edge devices, bridging the gap between reproducibility in IaC

and sustainable A I inference on edge devices. Overall, this thesis not only addresses

immediate challenges in reproducibility within IaC but also lays the groundwork

83

for ongoing advancements in tooling, methodologies, and empirical studies aimed at

improving the reliability, eficiency, and sustainability of modern infrastructure man-

agement and edge A I inference.

Bib l iography

[1] Ansible Galaxy. https://galaxy.ansible.com/home, 2023. Last accessed:
July 2024.

[2] Oracle Cloud Infrastructure Ansible Collection. https://github.com/oracle/
o c i - a n s i b l e - c o l l e c t i o n , 2023.

[3] about neural stick. https://www.intel.com/content/www/us/en/
developer/articles/tool/neural- compute- stick.html, 2024.

[4] about nvidia jetson nano. https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-nano/
product-development/, 2024.

[5] about nvidia smi profiling tool. https://developer.nvidia.com/
system-management-interface, 2024.

[6] about perf profiling tool. ht tps :// f i re fox- source- docs .moz i l la .org/
performance/perf.html, 2024.

[7] about raspberry pi. https://www.raspberrypi.com/documentation/
computers/getting-started.html, 2024.

[8] Norah N. Alajlan and Dina M. Ibrahim. Tinyml: Enabling of inference deep
learning models on ultra-low-power iot edge devices for ai applications. Micro-
machines, 13(6), 2022.

[9] anonymous. Reduce - replication package, July 2024.

[10] Ansible. Roles Automation and Infrastructure. Last accessed: Jun 18, 2024.

[11] Ansible. Vaults Automation and Infrastructure. Last accessed: Jun 18, 2024.

[12] Ansible. Ansible Best Practices Guide, 2018. Last accessed: July 2024.

[13] Ansible. Ansible Documentation. https://docs.ansible.com/ansible/
latest/index.html, 2023. Last accessed: July 2024.

[14] Ansible. Ansible documentation—ad-hoc commands, 2024.

[15] Example—Assumption about environment smell. h t t p s :
//github.com/chocolatey/chocolatey- ansible/blob/
9bdc0d40437a7dc7f0181af42da7e35bbcfcae4a/chocolatey/tests/
integration/targets/win_chocolatey/tasks/bootstrap_tests.yml#L4,
2023. Last accessed: July 2024.

84

https://galaxy.ansible.com/home
https://github.com/oracle/oci-ansible-collection
https://github.com/oracle/oci-ansible-collection
https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://developer.nvidia.com/system-management-interface
https://developer.nvidia.com/system-management-interface
https://firefox-source-docs.mozilla.org/performance/perf.html
https://firefox-source-docs.mozilla.org/performance/perf.html
https://www.raspberrypi.com/documentation/computers/getting-started.html
https://www.raspberrypi.com/documentation/computers/getting-started.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://github.com/chocolatey/chocolatey-ansible/blob/9bdc0d40437a7dc7f0181af42da7e35bbcfcae4a/chocolatey/tests/integration/targets/win_chocolatey/tasks/bootstrap_tests.yml#L4
https://github.com/chocolatey/chocolatey-ansible/blob/9bdc0d40437a7dc7f0181af42da7e35bbcfcae4a/chocolatey/tests/integration/targets/win_chocolatey/tasks/bootstrap_tests.yml#L4
https://github.com/chocolatey/chocolatey-ansible/blob/9bdc0d40437a7dc7f0181af42da7e35bbcfcae4a/chocolatey/tests/integration/targets/win_chocolatey/tasks/bootstrap_tests.yml#L4
https://github.com/chocolatey/chocolatey-ansible/blob/9bdc0d40437a7dc7f0181af42da7e35bbcfcae4a/chocolatey/tests/integration/targets/win_chocolatey/tasks/bootstrap_tests.yml#L4

85

[16] Tahajjat Begum, Israat Haque, and Vlado Keselj. Deep learning models for
gesture-controlled drone operation. In 2020 16th International Conference on
Network and Service Management (CNSM), pages 1–7, 2020.

[17] SWAPNIL B H A RT I YA . Importance Of Repeatability In
IaC — Scaling Infrastructure as Code. h t t p s : / / t f i r . i o /
importance- of - repeatabi l i ty- in- iac- sca l ing- infrastructure- as- code/,
2022.

[18] Farzana Ahamed Bhuiyan and Akond Rahman. Characterizing Co-located
Insecure Coding Patterns in Infrastructure as Code Scripts. In 2020 35th
I E E E / AC M International Conference on Automated Software Engineering
Workshops (ASEW), pages 27–32, 2020.

[19] Bluelight. Best Infrastructure as Code (IaC) Tools, 2023. Last accessed: July
2024.

[20] Conrado Boeira et al. Calibration and automation of a 5G simulator for realistic
evaluation and data generation. In accepted in I E E E Conference on Network
Softwarization (NetSoft). I E E E , 2024.

[21] Conrado Boeira, Antor Hasan, Khaleda Papry, Yue Ju, Zhongwen Zhu, and
Israat Haque. A calibrated and automated simulator for innovations in 5G,
2024.

[22] Exmaple—Broken dependency chain smell. https://git lab.com/
idr is- cnrs/ jupyter/ansible- jupyterhub- hpc/- /blob/main/roles/
setup_jupyterhub/tasks/tokens.yml?ref_type=heads, 2023. Last ac-
cessed: July 2024.

[23] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.
Proceedings of the I E E E , 107(8):1655–1674, 2019.

[24] Michele Chiari, Michele De Pascalis, and Matteo Pradella. Static Analysis of
Infrastructure as Code: a Survey. In 2022 I E E E 19th International Conference
on Software Architecture Companion (ICSA-C), pages 218–225, 2022.

[25] cisco project for qa. ht tps ://g i thub.com/ans ib le- co l lect ions/c i sco .
nxos, 2024.

[26] Cisco asa. https ://g i thub.com/ans ib le- co l lect ions/c isco.asa/ issues/
195, 2024.

[27] Cisco asa. https ://g i thub.com/ans ib le- co l lect ions/c isco.asa/ issues/
196, 2024.

[28] Christian Collberg and Todd A. Proebsting. Repeatability in Computer Systems
Research. Commun. ACM, 59(3):62–69, 2016.

https://tfir.io/importance-of-repeatability-in-iac-scaling-infrastructure-as-code/
https://tfir.io/importance-of-repeatability-in-iac-scaling-infrastructure-as-code/
https://gitlab.com/idris-cnrs/jupyter/ansible-jupyterhub-hpc/-/blob/main/roles/setup_jupyterhub/tasks/tokens.yml?ref_type=heads
https://gitlab.com/idris-cnrs/jupyter/ansible-jupyterhub-hpc/-/blob/main/roles/setup_jupyterhub/tasks/tokens.yml?ref_type=heads
https://gitlab.com/idris-cnrs/jupyter/ansible-jupyterhub-hpc/-/blob/main/roles/setup_jupyterhub/tasks/tokens.yml?ref_type=heads
https://github.com/ansible-collections/cisco.nxos
https://github.com/ansible-collections/cisco.nxos
https://github.com/ansible-collections/cisco.asa/issues/195
https://github.com/ansible-collections/cisco.asa/issues/195
https://github.com/ansible-collections/cisco.asa/issues/196
https://github.com/ansible-collections/cisco.asa/issues/196

86

[29] Ting Dai, Alexei Karve, Grzegorz Koper, and Sai Zeng. Automatically detecting
risky scripts in infrastructure code. pages 358–371, 2020.

[30] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew
Tamburri. Toward a catalog of software quality metrics for infrastructure code.
Journal of Systems and Software, 170:110726, 2020.

[31] Tamas Das. Infrastructure as Code vs Configuration Management, 2022. Last
accessed: July 2024.

[32] Example—Outdated dependency smell. https://github.com/cchurch/
ansible- role-virtualenv/blob/master/tasks/update.yml, 2023. Last ac-
cessed: July 2024.

[33] EdgeAI. https://gitlab.com/sobhanii/edgeai, 2024.

[34] Dimma Enns. Troubleshooting Dependency Version Conflict, 2021. Last ac-
cessed: July 2024.

[35] Roy Feintuch. New Security Challenges with Infrastructure as Code and Im-
mutable Infrastructure, 2018. Last accessed: July 2024.

[36] Dror G. Feitelson. From Repeatability to Reproducibility and Corroboration.
SIGOPS Oper. Syst. Rev., 49(1):3–11, 2015.

[37] Marco Ferrari. Want Repeatable Scale? Adopt Infrastructure as Code on GCP,
2020. Last accessed: July 2024.

[38] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. Guidelines for in-
cluding grey literature and conducting multivocal literature reviews in software
engineering. Information and Software Technology, 106:101–121, 2019.

[39] Vahid Garousi and Barış Küçük. Smells in software test code: A survey of
knowledge in industry and academia. Journal of systems and software, 138:52–
81, 2018.

[40] Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying
Zou. Green AI: Do Deep Learning Frameworks Have Different Costs? In
Proceedings of the 44th International Conference on Software Engineering, ICSE
’22, page 1082–1094, 2022.

[41] Ananda M. Ghosh and Katarina Grolinger. Deep learning: Edge-cloud data
analytics for iot. In 2019 I E E E Canadian Conference of Electrical and Computer
Engineering (C C E C E) , pages 1–7, 2019.

[42] GitLab. Upgrading Auto Deploy Dependencies, 2022.

[43] GitLab. Infrastructure as Code (IaC) Scanning, 2023. Last accessed: July 2024.

https://github.com/cchurch/ansible-role-virtualenv/blob/master/tasks/update.yml
https://github.com/cchurch/ansible-role-virtualenv/blob/master/tasks/update.yml
https://gitlab.com/sobhanii/edgeai

87

[44] google. about the tensorflow lite framework. https://www.tensorflow.org/
l i t e , 2024.

[45] Tiexin Guo. Managing Infrastructure with Terraform, 2021. Last accessed:
July 2024.

[46] Example—Hardware specific command smell. h t t p s :
//github.com/aplatform64/aplatform64/blob/
3d563246263f6d2a83de604296704a4b76164caa/docs/examples/hw_gpu_
amd.yml#L4, 2023. Last accessed: July 2024.

[47] Antor Hasan, Conrado Boeira, Khaleda Papry, Yue Ju, Zhongwen Zhu, and
Israat Haque. NetRepAIr - making networks reliable for next-generation appli-
cations using A I/ML techniques, 2024.

[48] Kazi Hasan, Thomas Trappenberg, and Israat Haque. A generalized
transformer-based radio link failure prediction framework in 5G RANs, 2024.

[49] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Test-
ing idempotence for infrastructure as code. In David Eyers and Karsten Schwan,
editors, Middleware 2013, pages 368–388, 2013.

[50] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Test-
ing idempotence for infrastructure as code. In David Eyers and Karsten Schwan,
editors, Middleware 2013, pages 368–388, 2013.

[51] Snyk IaC. Infrastructure as Code Security, 2023. Last accessed: July 2024.

[52] Example—Unguarded operation smell. https://github.com/openshift/
openshift- ansible/blob/master/roles/openshift_node/tasks/apply_
machine_config.yml, 2023. Last accessed: July 2024.

[53] imagenet. https://www.tensorflow.org/datasets/catalog/imagenet2012,
2024.

[54] InfinityPP. Ansible Best Practices, 2020. Last accessed: July 2024.

[55] Intel. about the intel ir framework. https://docs.openvino.ai/2023.3/
openvino_ir.html, 2024.

[56] Chadni Islam, Muhammad Ali Babar, and Surya Nepal. A multi-vocal review
of security orchestration. ACM Computing Surveys (CSUR), 52(2):1–45, 2019.

[57] Mohammad Ariful Islam, Hisham Siddique, Wenbin Zhang, and Israat Haque. A
deep neural network-based communication failure prediction scheme in 5g ran.
I E E E Transactions on Network and Service Management, 2022.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/aplatform64/aplatform64/blob/3d563246263f6d2a83de604296704a4b76164caa/docs/examples/hw_gpu_amd.yml#L4
https://github.com/aplatform64/aplatform64/blob/3d563246263f6d2a83de604296704a4b76164caa/docs/examples/hw_gpu_amd.yml#L4
https://github.com/aplatform64/aplatform64/blob/3d563246263f6d2a83de604296704a4b76164caa/docs/examples/hw_gpu_amd.yml#L4
https://github.com/aplatform64/aplatform64/blob/3d563246263f6d2a83de604296704a4b76164caa/docs/examples/hw_gpu_amd.yml#L4
https://github.com/openshift/openshift-ansible/blob/master/roles/openshift_node/tasks/apply_machine_config.yml
https://github.com/openshift/openshift-ansible/blob/master/roles/openshift_node/tasks/apply_machine_config.yml
https://github.com/openshift/openshift-ansible/blob/master/roles/openshift_node/tasks/apply_machine_config.yml
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://docs.openvino.ai/2023.3/openvino_ir.html
https://docs.openvino.ai/2023.3/openvino_ir.html

88

[58] Example—incompatible version dependency smell. https://github.com/
geerlingguy/ansible- for- devops/blob/master/includes/provisioning/
tasks/common.yml, 2023. Last accessed: July 2024.

[59] Shahedul Huq Khandkar. Open coding. https://pages.cpsc.ucalgary.ca/
~saul/wiki/uploads/CPSC681/open-coding.pdf, 2009.

[60] Indika Kumara, Mart́ın Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio
Palomba, Damian Andrew Tamburri, and Willem-Jan van den Heuvel. The
Do’s and Don’ts of Infrastructure Code: A Systematic Gray Literature Review.
Information and Software Technology, 137:106593, 2021.

[61] Indika Kumara, Zoe Vasileiou, Georgios Meditskos, Damian A. Tamburri,
Willem-Jan Van Den Heuvel, Anastasios Karakostas, Stefanos Vrochidis, and
Ioannis Kompatsiaris. Towards Semantic Detection of Smells in Cloud Infras-
tructure Code. 2020.

[62] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui
Tam, Keith Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley,
Richárd Nagyfi, Shahul ES, Sameer Suri, David Glushkov, Arnav Dantuluri,
Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Mattick.
Openassistant conversations – democratizing large language model alignment,
2023.

[63] Ricardo Matsui. Stop Using Peer Dependencies, 2018. Last accessed: July 2024.

[64] Medium. Infrastructure as Code at Tile: Benefits, Advantages, and Features,
2018. Last accessed: July 2024.

[65] medium. On DevOps # 8 - Infrastructure as Code Introduction, Best Practices,
and Choosing the Right Tool, 2021. Last accessed: July 2024.

[66] Microsoft. Automation and Infrastructure, 2023. Last accessed: July 2024.

[67] mnist. https://www.tensorflow.org/datasets/catalog/mnist, 2024.

[68] Kief Morris. Infrastructure as Code: Managing Servers in the Cloud. 2016.

[69] Kief Morris. Infrastructure as code. O’Reilly Media, 2020.

[70] Wahl Network. Dependency Pinning with Infrastructure as Code, 2020. Last
accessed: July 2024.

[71] Novaordis. Infrastructure as Code Concepts, 2021. Last accessed: July 2024.

[72] Nvidia. about the tensorrt framework. https://developer.nvidia.com/
tensorrt#sect ion- what- is- nvid ia- tensorrt , 2024.

[73] about the onnx framework. https://onnxruntime.ai/, 2024.

https://github.com/geerlingguy/ansible-for-devops/blob/master/includes/provisioning/tasks/common.yml
https://github.com/geerlingguy/ansible-for-devops/blob/master/includes/provisioning/tasks/common.yml
https://github.com/geerlingguy/ansible-for-devops/blob/master/includes/provisioning/tasks/common.yml
https://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
https://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
https://www.tensorflow.org/datasets/catalog/mnist
https://developer.nvidia.com/tensorrt#section-what-is-nvidia-tensorrt
https://developer.nvidia.com/tensorrt#section-what-is-nvidia-tensorrt
https://onnxruntime.ai/

89

[74] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. Andromeda: A
Dataset of Ansible Galaxy Roles and Their Evolution. In 2021 I E E E / AC M
18th International Conference on Mining Software Repositories (MSR), pages
580–584, 2021.

[75] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. Smelly Variables in
Ansible Infrastructure Code: Detection, Prevalence, and Lifetime. pages 61–72,
2022.

[76] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. Control and Data
Flow in Security Smell Detection for Infrastructure as Code: Is It Worth the
Effort? In I E E E / AC M 20th International Conference on Mining Software
Repositories (MSR 2023), 2023.

[77] about the pytorch mobile framework. https://pytorch.org/mobile/home/
#key-features, 2024.

[78] Xuan Qi and Chen Liu. Enabling deep learning on iot edge: Approaches and
evaluation. In 2018 I E E E / AC M Symposium on Edge Computing (SEC), pages
367–372, 2018.

[79] Tobiasz Rafal, Wilczynski Grzegorz, Graszka Piotr, Czechowski Nikodem, and
Luczak Sebastian. Edge devices inference performance comparison. Journal of
Computing Science and Engineering, 17(2):51–59, June 2023.

[80] A. Rahman, E. Farhana, C. Parnin, and L. Williams. Gang of Eight: A Defect
Taxonomy for Infrastructure as Code Scripts. pages 752–764, 2020.

[81] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. A systematic
mapping study of infrastructure as code research. Information and Software
Technology, 108:65–77, 2019.

[82] Akond Rahman and Tushar Sharma. Lessons from Research to Practice on
Writing Better Quality Puppet Scripts. In 2022 I E E E International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 63–67,
2022.

[83] Akond Rahman and Laurie Williams. Source code properties of defective in-
frastructure as code scripts. Information and Software Technology, 112:148–163,
2019.

[84] Mohammad Wali Ur Rahman. Optimizing large language models for edge de-
vices: A comparative study on reputation analysis, 2023.

[85] Gonzalo Rivero and Jiating (Kristin) Chen. Best coding practices to ensure
reproducibility. 2020.

https://pytorch.org/mobile/home/#key-features
https://pytorch.org/mobile/home/#key-features

90

[86] Nuno Saavedra and João F. Ferreira. G L I T CH: Automated Polyglot Secu-
rity Smell Detection in Infrastructure as Code. In Proceedings of the 37th
I E E E / AC M International Conference on Automated Software Engineering,
ASE ’22, 2023.

[87] Julian Schwarz, Andreas Steffens, and Horst Lichter. Code Smells in Infras-
tructure as Code. In 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC) , pages 220–228, 2018.

[88] S. S. SHAPIRO and M. B. WILK. An analysis of variance test for normality
(complete samples). Biometrika, 52(3-4):591–611, 1965.

[89] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does Your Config-
uration Code Smell? In 2016 I E E E / AC M 13th Working Conference on Mining
Software Repositories (MSR), pages 189–200, 2016.

[90] Tushar Sharma and Diomidis Spinellis. A survey on software smells. Journal
of Systems and Software, 138:158 – 173, 2018.

[91] Snyk. Infrastructure as Code (IaC) - A Comprehensive Guide, 2023. Last
accessed: July 2024.

[92] BMC Software. Infrastructure as Code: Definitions, Advantages, Best Prac-
tices, and Features, 2020. Last accessed: July 2024.

[93] OTEEMO Software. Organizing Ansible, 2018. Last accessed: July 2024.

[94] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel.
The pains and gains of microservices: A systematic grey literature review. Jour-
nal of Systems and Software, 146:215–232, 2018.

[95] Online Questionnaire for IaC experts. https://forms.off ice.com/r/
s27JTNDtrC, 2024.

[96] Hesam Tajbakhsh, Ricardo Parizotto, Miguel Neves, Alberto Schaeffer-Filho,
and Israat Haque. Accelerator-aware in-network load balancing for improved
application performance. In 2022 I F I P Networking Conference (I F I P Network-
ing), pages 1–9, 2022.

[97] Hesam Tajbakhsh, Ricardo Parizotto, Alberto Schaeffer-Filho, and Israat
Haque. P4hauler: An accelerator-aware in-network load balancer for ap-
plications performance boosting. I E E E Transactions on Cloud Computing,
12(2):697–711, 2024.

[98] TechTarget. Perforce Acquires Puppet for Infrastructure as Code, 2018. Last
accessed: July 2024.

[99] Thorntech. Infrastructure as Code Best Practices, 2015. Last accessed: July
2024.

https://forms.office.com/r/s27JTNDtrC
https://forms.office.com/r/s27JTNDtrC

91

[100] Shusaku Tsumoto and Shoji Hirano. Contingency matrix theory. In 2007 I E E E
International Conference on Systems, Man and Cybernetics, pages 3778–3783,
2007.

[101] Roberto Verdecchia, Ivana Malavolta, and Patricia Lago. Guidelines for archi-
tecting android apps: A mixed-method empirical study. In 2019 I E E E Inter-
national Conference on Software Architecture (ICSA), pages 141–150. I E E E ,
2019.

[102] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. Glue: A multi-task benchmark and analysis platform
for natural language understanding, 2019.

[103] Fangxin Wang, Miao Zhang, Xiangxiang Wang, Xiaoqiang Ma, and Jiangchuan
Liu. Deep learning for edge computing applications: A state-of-the-art survey.
I E E E Access, 8:58322–58336, 2020.

[104] R. Wang. Infrastructure as Code, Patterns and Practices: With examples in
Python and Terraform. Manning, 2022.

[105] Wikipedia contributors. Phi coeficient — Wikipedia, the free encyclopedia,
2024.

[106] Tong Xing, Hesam Tajbakhsh, Israat Haque, Michio Honda, and Antonio Bar-
balace. Towards portable end-to-end network performance characterization of
smartnics. In Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on
Systems, pages 46–52, 2022.

[107] Xingzhou Zhang, Yifan Wang, and Weisong Shi. pcamp: Performance compar-
ison of machine learning packages on the edges. 07 2018.

[108] Jack Zhao, Miguel Neves, and Israat Haque. On the (dis) advantages of pro-
grammable nics for network security services. In 2023 I F I P Networking Con-
ference (I F I P Networking), pages 1–9. I E E E , 2023.

