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Dynamic Time Warping, (C) Curve Length. . . . . . . . . . . 49

4.11 Confusion matrices of destination port prediction performance

using similarity methods: (a) Discrete Fréchet Distance, (b)
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Abstract

The maritime domain is characterized by complex vessel movements with intricate

spatiotemporal patterns and interdependencies. However, Automatic Identification

System (AIS) data, despite being a rich real-time source of vessel positioning, vio-

lates the assumption of independent and identically distributed (i.i.d.) data points

due to inherent temporal, spatial, and network dependencies. Traditional data anal-

ysis techniques under such assumptions encounter limitations when applied to AIS

data; ignoring dependencies in data points can result in inaccurate clustering or pat-

tern detection, underestimation of uncertainty in predictions, and biased parameter

estimates in models assuming independent observations. This thesis aims to develop

advanced data-driven frameworks and methodologies that leverage time-series analy-

sis, spatial data mining, and network science to develop a novel model for destination

port prediction. The objective is to explore the potential of supporting port au-

thorities in forecasting traffic inflow and outflow within their local environment by

monitoring AIS messages.

This thesis first presents a novel approach to enrich trajectory representations by

integrating AIS data with port information and segmenting trajectories based on port

points, thereby homogenizing vessel movement patterns. A semi-supervised clustering

algorithm is then proposed for these trajectory segments, employing contextual data

to derive clustering constraints. This algorithm effectively identifies preferred vessel

paths, and port-to-port traffic flows directly from AIS trajectories. Building upon

these clusters, a data-driven method is developed where trajectory patterns dictate

the network topology. This scalable graph adapts to different geographical regions

and traffic densities, eliminating the need for static route networks. Utilizing the traf-

fic network representation and trajectory similarity measures, a prediction method is

developed to forecast vessel destinations based on recent movements. Evaluations on

real-world AIS datasets demonstrate promising results, with the model expressing un-

certainty through probability distributions for potential destinations and dynamically

updating these probabilities as the vessel progresses. This research advances maritime

analytics by developing data-driven methodologies that model intricate spatiotempo-

ral patterns and dependencies in AIS data, account for the complex connectivity of

maritime traffic, and enable enhanced prediction capabilities. By overcoming the

limitations of traditional techniques, this work contributes to the state-of-the-art in

maritime data analytics and decision support systems.
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Glossary

bearing : a bearing is the clockwise angle between two points on the earth’s surface,

measured from true north, and calculated using spherical trigonometry to ac-

count for earth’s curvature. Let point B and C have positions (lat1, lon1) and

(lat2, lon2), respectively. Let point A be the North Pole. The angle ∆ is the dif-

ference between the longitudes. The angle β, representing the bearing from B

to C, βB→C , can be calculated using the following relations: β = atan2(X, Y ),

where X and Y can be calculated as, X = cos(lat2) × sin∆, ∆ = lon1 − lon2,

Y = cos(lat1)×sin(lat2)−sin(lat1)×cos(lat2)×cos∆ [89]. If X = 0 and Y = 0,

indicating that two geographic points are identical, the bearing is defined to be

zero. xvii, 5, 19, 25, 57, 58, 65, 66, 90

cluster : a cluster, Ci, is a set of trajectory segments, where all associated origin

and destination pairs (Oi, Di), representing the starting and ending locations

of its segments are identical, and this pair is unique to that cluster and not

found in any other cluster. Let Ci represent a cluster, and S denote the set of

all trajectory segments. Each cluster Ci consists of trajectory segments s such

that: Ci = {s ∈ S | (O(s), D(s)) = (Oi, Di) ∀ s ∈ Ji}. Ji is the index set of

all segments in cluster Ci. (Oi, Di) is the unique origin-destination pair for the

cluster Ci. Thus Ci ̸⊆ Cj ∀ i ̸= j, ∴ (Oi, Di) ̸= (Oj, Dj). 5, 6, 20, 24, 55–57, 65,

68, 75, 76, 78, 79, 85, 86, 89, 93, 95, 97, 99, 100

completeness : the degree to which all trajectory segments following same direction

between two ports are grouped into the same cluster. 72–74, 76

de facto maritime routes : refer to the commonly followed navigation routes taken

by vessels in a particular maritime region when navigating from one port to the

next port. These routes are not formally designated by any regulatory author-

ity but have emerged over time based on factors such as navigational efficiency,

safety, trade routes, and historical usage. 7, 20, 24, 27, 55

xv



fragment : A fragment of a trajectory segment, fr, can be defined as follows: Let

s = {(l1, t1), (l2, t2), . . . , (ln, tn)} denote a trajectory segment, where li repre-

sents the location at time ti. A fragment fr of the trajectory segment s is a

subsequence {(lj, tj), (lj+1, tj+1), . . . , (lk, tk)}, where j is the index of the first

location in the segment and k is the index of the last location before reaching

the destination port. Thus, a fragment starts from the origin port but does not

extend to the destination port, capturing a portion of the trajectory segment.

91, 92, 95, 97, 99

homogeneity : the degree to which an individual cluster includes only trajectory

segments that follow one direction between two ports. 72–74, 76

linear interpolation : involves reconstructing a continuous trajectory or trajectory

segment from AIS data by uniformly sampling spatiotemporal positions along

its length and estimating values between two known points. Specifically, linear

interpolation of a vessel trajectory estimates the vessel’s position at a given

time by assuming linear motion between two known positions. Given two data

points (t1, l1) and (t2, l2): l(t) = l1 + (t−t1)
(t2−t1)

· (l2 − l1), where (t1 ≤ t ≤ t2).

For positions (l1 = (x1, y1)) and (l2 = (x2, y2)): (x(t) = x1 + (t−t1)
(t2−t1)

· (x2 − x1),

y(t) = y1 + (t−t1)
(t2−t1)

· (y2 − y1)). 26, 44, 68

location (l): is a geolocation defined as, l = ⟨xi, yi⟩, where xi represents the latitude,

and yi represents the longitude of the vessels’ location. xvi, xviii, 4, 6, 16, 62,

85, 91, 95, 100

maritime traffic network : is represented as a directed graph, where nodes rep-

resent ports and edges represent the common routes taken by vessels between

ports. This network topology, inferred from trajectory data, delineates the

structure and connectivity patterns of maritime routes and traffic flows, de-

rived directly from vessel movement trajectories captured by the Automatic

Identification System (AIS) data. 5, 20, 45, 56, 67, 70, 73, 78, 79, 84, 85, 89,

100

xvi



must-link constraints : are denoted as C = (si, sj) where instances si and sj from

the dataset S must be assigned to the same cluster. The collection of must-link

constraints is represented as C= [39]. 19, 25, 53, 57

origin and destination : the origin and destination points of a trajectory segment

are defined as follows: center geolocation of the nearest port to the first point in

a segment is designated as the origin point, O, while the center geolocation of

the nearest port to the last point of a segment is designated as the destination

Point, D. xv, xvii, 4, 25, 43, 58, 63, 72, 73, 78, 89

port : is represented as geometric point or area on the map, indicating its location or

boundaries. It serves as important node in the maritime traffic network where

vessels originate, terminate, or make port calls. 4, 19, 42, 48, 56, 57, 59, 63, 65,

78, 89

reference route : is a representative route comprising a sequence of locations link-

ing two ports within the maritime traffic network (i.e, geospatial line). It is a

mean trajectory segment that indicate the common route within a cluster of

trajectory segments. 44, 46–48, 50, 51, 58, 70, 73, 77, 78, 84, 85, 89, 90, 92–94,

97, 99, 100

segment si: a trajectory segment, or route, is a sequence of locations within a tra-

jectory, starting at one port (origin) and ending at the next port (destination).

The trajectory is divided based on partitioning positions into consecutive seg-

ments, denoted as si, where si = ⟨lj, . . . , lk⟩, with j ≥ 0 and k ≤ n. This process

of dividing a trajectory into segments is known as trajectory segmentation. xv,

5, 19, 20, 25, 38, 43, 44, 46, 47, 50, 55, 56, 58, 59, 63, 64, 67, 69, 70, 72, 73, 75,

77, 78, 84–94, 99, 100

segments’ endpoints’ similarity : the measure of positional and directional sim-

ilarity between trajectory segments, s1 and s2, is determined by the bearing

values of their origin and destination points. Given origin points (lat1, lon1) for

O1 and (lat2, lon2) for O2, for two segments, the bearing from O1 to O2 is given
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by βO1→O2 . Similarly, the bearing from D1 to D2 is given by βD1→D2 . The pair

of bearings (βO1→O2 , βD1→D2) collectively defines the overall directional similar-

ity between the two segments, which is referred to as the pair of bearings of the

segments’ endpoints. 5, 25, 75

semi-supervised : semi-supervised clustering is a variant of the classic cluster-

ing problem that incorporates background knowledge into the clustering pro-

cess. This knowledge typically involves specifying whether instances should be

grouped together (must-link) or kept separate (cannot-link). In the literature,

this problem is commonly referred to as Constrained Clustering (CC) [39]. 5,

19, 25, 53, 57, 78

similarity : a distance generalization quantifies the degree of resemblance between

two trajectories or two segments, denoted as dist(τ1, τ2). Specifically, in the

context of destination port prediction in this study, dist(si, frj) signifies the

distance between a trajectory segment, si, and a fragment of another trajectory

segment, frj. A greater value indicates less similarity between the two patterns.

20, 29, 30, 39, 46, 48, 51, 53, 55, 75, 78, 85, 86, 88, 91

trajectory (τ): is a time-ordered sequence of AIS records of a moving vessel, τ =

{(MMSI, {(l1, t1, f1), . . . , (l|τ |, t|τ |)}, f|τ |)})}, where MMSI the maritime mo-

bile service identity, a unique 9-digit number uniquely identify a ship. li is

vessel location at time ti, and fi is a feature vector describing the vessel dynam-

ics and characteristics at time ti, ti<ti+1 ∀ i ∈ {1, ..., | τ |}. The features vector

includes: cos, sog, vessel type, etc. 1, 6, 16, 19, 36, 39, 43, 44, 48, 58, 59, 62,

64, 68, 78
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Chapter 1

Introduction

Marine shipping is essential for global freight transportation, with 90% of commodity

shipments being transported by sea due to its economic benefits [17, 40, 52]. How-

ever, as the world’s population continues to increase, demand for goods will increase,

leading to more maritime traffic. The implications of maritime traffic on the economy,

environment, safety, and security have strengthened the need to enhance Maritime

Situational Awareness (MSA) [10]. Maritime situational awareness can be thought

of as maintaining constant awareness of the surroundings, understanding the events

happening around, and anticipating their potential impact on vessels [32].

The primary challenge facing Maritime Situational Awareness (MSA) is the ef-

ficient transformation of vast amounts of spatio-temporal data into actionable and

dependable information for decision-making. Bridging this gap between raw data

and end-users necessitates substantial research efforts across various domains. Data

integration involves consolidating information from diverse sources, while knowledge

discovery focuses on extracting meaningful movement patterns [10, 67]. Subsequently,

knowledge exploitation aims to utilize the derived insights to enhance MSA by pro-

viding users with real-time maritime situational updates [10].

Maritime Situational Awareness (MSA) heavily relies on surveillance and tracking

systems, notably the Automatic Identification System (AIS), mandated by the Safety

of Life at Sea (SOLAS) convention [7, 10, 74]. AIS facilitates automatic data exchange

between ships and shore stations every 2–10 seconds [74]. Consequently, a substantial

volume of AIS messages compose ship trajectory is continuously generated, encom-

passing static details such as the Maritime Mobile Service Identity (MMSI), length,

and width of ships, which are specified during AIS installation. Additionally, dynamic

information, including ship positions by latitude and longitude, timestamp, Course

Over Ground (COG), and Speed Over Ground (SOG), is automatically transmitted

to track vessel movements. Finally, voyage data provide general information about

1
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the voyage, such as the destination port, estimated time of arrival, and draught, which

are manually entered before each journey. As the maritime industry transitions from

manual processes to digital solutions, predictive analytics and deep learning models

derived from historical AIS data offer ship operators insights into vessel navigation

and facilitate data-driven decision-making.

AIS data, despite its tabular format, is complex and requires substantial process-

ing before becoming useful [40]. Notably, crucial information such as voyage start

and end flags is not readily available within the data. Research aimed at identify-

ing ships’ arrivals and departures indicates that about 62% of AIS destinations are

inaccurate and inconsistently updated [95]. Additionally, studies on specific ports

have shown reported destination accuracy as low as 4% [61]. The lack of precise

vessel destination information poses challenges for port authorities in organizing safe

and efficient vessel operations and guiding maritime traffic routes. Given that port

efficiency significantly impacts global trade and supply chains, addressing congestion

issues becomes imperative, as they are responsible for 93.6% of delays [9, 70].

As maritime traffic increases due to rising commodity demands, automated pre-

dictive models can assist port authorities in anticipating challenges such as vessel

congestion and facilitating proactive management of port operations. Research has

explored various applications for predicting vessel destinations [40, 58, 72, 74, 23,

37, 68, 97, 104]. However, a common challenge acknowledged across these studies

is the difficulty in reliably predicting vessel behaviour, attributed to the continu-

ous movement of sea vessels and their susceptibility to environmental factors such

as weather, currents, and seasonal variations. Although numerous methods employ

knowledge mining and pattern extraction techniques to construct maritime traffic

networks, typically represented as abstracted directed graphs through trajectory dis-

cretization, challenges persist regarding complexity and alignment with real-world

routes [58, 72, 74, 97, 98]. Discretizing trajectories for destination prediction presents

several challenges: Simple vertex-edge models often fail to capture the spatial relation-

ships between trajectories, ports, and land masses that significantly influence vessel

behavior [22, 46]. Additionally, the model must account for the complex patterns and

interdependencies inherent in AIS data points. Another key challenge is extracting
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meaningful waypoints1 (vertices) and route boundaries from massive trajectory data

in a robust and adaptive manner, without relying on predefined or fixed route net-

works [3, 74]. Thus, obtaining high-precision maritime traffic network information

is crucial for port destination prediction [72, 74]. This thesis works to resolve the

problem of trajectory discretization and construct a high-precision maritime traffic

network.

Specifically, this thesis will introduce a novel model for predicting the future routes

of vessels as they travel towards their next destination, utilizing Automatic Identifica-

tion System (AIS) data. A new directed graph representation will be constructed, in

which the edges are continuous, smooth spatiotemporal sequences connecting ports.

These sequences will then be used to compute similarities with the partial trajectory

of a moving vessel, which allows the prediction of the vessel’s next destination.

1.1 Problem Statement

In congested ports, port authorities face challenges in efficiently allocating resources

for safe and secure cargo loading and unloading. Congestion often results from vessel

masters making unscheduled port calls due to weather conditions, medical emergen-

cies, or mechanical issues. These late notifications disrupt port schedules, leading

to delays and inefficiencies in resource allocation, such as docking space, cranes, and

labor. Access to a tool for monitoring vessel movements, utilizing AIS messages,

and predicting their next destination port in advance can enhance the resource al-

location process for port authorities. This, in turn, can alleviate congestion and

minimize delays within ports. Inspired by related research in destination predic-

tion [40, 58, 72, 74], we propose a two-step model to bridge the gap between historical

AIS data and the ability to predict vessels’ routes to their next destination. Given

a vessel (tanker, cargo ship, or transit ferry), our model takes as input the AIS data

of that vessel and outputs a probability distribution of future routes, including the

destination. Our destination prediction technique assigns probabilities to multiple

potential destinations when a vessel is distant from its endpoint. These predictions

evolve as the vessel advances, allowing for continuous updates to the probabilities of

1Manoeuvre points at which the vessel changes its course, speed, or velocity that are clustered
according to a density threshold.
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arrival at each potential port. This probability estimation for all vessels arriving at

a port serves as a valuable tool for pre-arrival planning. The probabilities enable the

model to convey uncertainty, thereby aiding in human decision-making by indicat-

ing when the model’s predictions are trustworthy, especially when it assigns a high

probability to a single destination.

1.2 Contributions

This research contribution introduces novel AIS data mining techniques aimed at

enhancing Maritime Situational Awareness (MSA) by addressing existing challenges

such as detecting maritime routes that accurately reflect real-world traffic flow, cre-

ating new graph representations of maritime routes, identifying abnormal routes, and

predicting destination ports. These advancements play a crucial role in enhancing

the accuracy of predicting vessels’ future routes to their next destination, thereby

ensuring the safety and security of port operations and facilitating informed human

decision-making. The findings of this thesis advance the field by providing effective

solutions to challenges encountered in maritime data analysis and vessels’ destina-

tions’ predictions. The research results benefit both the scientific community and

practical operators, as discussed below.

1.2.1 Scientific Contributions

The scientific contributions of this research involve the development of novel data

mining techniques tailored to address the inherent complexity of AIS data. These

techniques have led to the development of a new model for predicting vessels’ routes

towards their destination ports. The contributions of this thesis are:

1. We propose integrating background knowledge of ports within AIS data to de-

fine origin and destination points for trajectory segmentation at the preprocess-

ing stage. Trajectories are sequences of ports and the locations between them.

In contrast, trajectory segments are sequences of locations starting and ending

at two consecutive ports, referred to as the origin and destination points, re-

spectively. This segmentation divides AIS data sequences at consecutive ports,
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ensuring homogeneity in movement patterns, consistency in local trajectory fea-

tures, and a new representation that facilitates semi-supervised clustering for

generating clustering constraints. We show that these segments enhance in-

terpretability for analysts, align closely with the purpose and context of vessel

movements, and provide clear semantic meaning for each segment. By lever-

aging this combined knowledge, advanced AIS data analysis techniques can

capture spatial relationships between vessel movements and ports, thereby im-

proving analysis accuracy and interpretability.

2. We propose a novel semi-supervised clustering method for trajectory segments,

which clusters based on the segments’ endpoints’ similarity. This similarity,

defined by the pairs of bearings of the segments’ endpoints, captures both the

directional and positional relationships between the segments. Our approach

addresses the limitations of existing clustering algorithms that rely on geomet-

ric assumptions, such as distance or density, which often overlook clusters with

non-standard shapes or varying densities. These algorithms also face scalability

issues due to the computational expense associated with full similarity matrix

calculations. Experimentally, our method outperforms four baseline approaches

by automatically identifying the number of clusters, detecting non-linearly sep-

arable clusters with irregular shapes and varied densities in linear time, and

effectively capturing complex trajectory structures.

3. We propose a novel adaptive thresholding method to filter outlier segments

within the generated clusters, as they significantly degrade prediction accuracy.

This method offers user assistance in selecting appropriate threshold values to

effectively filter out outliers. Our approach demonstrates flexibility and adapt-

ability to the dynamic nature of vessels’ motion across diverse sailing scenarios,

resulting in cleaner and more accurate representations of historical routes, i.e.,

cleaner clusters.

4. We propose inferring a novel graph representation of the maritime traffic net-

work from the generated clusters of trajectory segments. This data-driven ap-

proach eliminates the need for static route networks that may not accurately
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reflect real-world conditions. Instead, the trajectory patterns themselves dic-

tate the topology of the maritime traffic network. Two representations of the

maritime traffic network are introduced. The first delineates directed connec-

tions between ports, featuring clusters of AIS trajectory segments representing

maritime routes along each connection. This enriched network facilitates the

prediction of vessel future locations by comparing recent AIS data with similar

historical routes. The second representation is a summarized version, where

a summarization algorithm aggregates trajectory segments within each cluster

between port pairs to reduce computational complexity and simplify compre-

hension of maritime traffic structure, unraveling complex ship interrelationships.

5. We propose utilizing trajectory similarity measures with the constructed traffic

network to predict the destination of a moving vessel. Similarity measures, dis-

crete Fréchet distance (DFD), and dynamic time warping (DTW), are utilized

to establish optimal non-linear mappings between two sequences, accommodat-

ing timing differences and variations in length. This enables direct matching

of AIS data points from recent vessel movements with historical AIS maritime

routes. When a vessel is far from its endpoint, probabilities are assigned to mul-

tiple potential destinations. These predictions evolve as the vessel progresses,

allowing for continuous updates to the probabilities of arrival at each potential

port. This probabilistic feature is valuable as it allows the model to express

uncertainty.

6. We design extensive experiments to further demonstrate the effectiveness of

the proposed methods for extracting high-precision representations of historical

maritime routes, thereby increasing the prediction accuracy of destination ports.

Our findings demonstrate that our methods efficiently identify maritime routes

that accurately reflect real-world traffic flow. These routes enable our prediction

model to capture the spatial relationships and navigational constraints charac-

teristic of geographic areas such as the Gulf of Mexico. By leveraging these

representations, prediction algorithms are able to uncover hidden patterns and

trends in vessel movements, leading to more accurate extrapolation of future

routes and their corresponding destination ports.
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1.2.2 Practical Implications

The practical implications of this thesis are manifold:

This thesis introduces a model designed to support human decision-making by

providing a probability distribution of future routes towards their destinations. This

distribution enables the model to express uncertainty, allowing humans to determine

when to trust it, particularly when a high probability is assigned to a single route lead-

ing to its destination. This enables an analytical risk management approach rather

than binary, deterministic decisions. Additionally, the probabilities allow evaluating

the risks and benefits of different operational decisions, like scheduling vessel arrivals.

Ships adhere to established maritime traffic routes (i.e., de facto maritime routes)

for safe and efficient transportation, with these routes concealed within AIS data. Our

model is capable of identifying these routes and monitoring vessels’ recent movements

by aligning them with these routes, offering significant assistance to port authorities

in various ways. Firstly, it optimizes port operations and resource allocation by

comprehending primary vessel routes, which can aid berthing schedules and resource

deployment. Secondly, it can be used to identify potential chokepoints and high-traffic

areas, enabling targeted resource allocation for smooth traffic flow. Thirdly, it can

facilitate maritime spatial planning by providing insights into de facto routes, aiding

in the designation of official shipping lanes and marine protected areas. Lastly, it can

enhance maritime safety and security by monitoring deviations from established traffic

patterns to identify potential threats, anomalous behavior, or distress situations that

require investigation or intervention by authorities.

1.3 Publications

This thesis is a compilation of five publications that have been submitted, peer-

reviewed, and published in the following sources:

1. Lubna Eljabu, Mohammad Etemad and Stan Matwin. (2021). “Destination

Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities

Resources”. World Academy of Science, Engineering and Technology, Open

Science Index 176, International Journal of Civil and Architectural Engineering,

15(8), 398 - 406.
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2. Lubna Eljabu, Mohammad Etemad and Stan Matwin, “Anomaly Detection

in Maritime Domain based on Spatio-Temporal Analysis of AIS Data Using

Graph Neural Networks,” 2021 5th International Conference on Vision, Image

and Signal Processing (ICVISP), Kuala Lumpur, Malaysia, 2021, pp. 142-147.

3. Lubna Eljabu, Mohammad Etemad and Stan Matwin, (2022). “Spatial Cluster-

ing Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data”.

World Academy of Science, Engineering and Technology, Open Science Index

190, International Journal of Computer and Systems Engineering, 16(10), 482

- 492.

4. Lubna Eljabu, Mohammad Etemad and Stan Matwin, “Spatial Clustering Method

of Historical AIS Data for Maritime Traffic Routes Extraction,” 2022 IEEE In-

ternational Conference on Big Data (Big Data), Osaka, Japan, 2022, pp. 893-

902.

5. Lubna Eljabu, Mohammad Etemad and Stan Matwin, “Charting the Course

of Ship Track Prediction: A Novel Approach for Maritime Traffic Analysis and

Enhanced Situational Awareness,” 2023 IEEE International Conference on Big

Data (BigData), Sorrento, Italy, 2023, pp. 2588-2597

1.4 Thesis Organization

The thesis structure is organized as follows: Chapter 2 provides a review of related

work, exploring existing research and identifying areas for further development. Chap-

ter 3 presents the datasets utilized in our studies, alongside the methodology employed

for destination prediction through the monitoring of recent vessel movements. Chap-

ter 4 introduces our preliminary model for predicting destination ports based on re-

cent vessel movements, along with the experiments and evaluations conducted for this

model. Chapter 5 introduces Spatial Clustering of Vessel Trajectories (SPTCLUST)

as our initial approach to addressing the clustering task of vessels’ trajectory seg-

ments. This chapter also includes the experiments and evaluation of this algorithm.

Chapter 6 introduces enhancements to the SPTCLUST clustering approach to ex-

tract high-precision representations of the maritime traffic network, leveraging these
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representations for our destination port prediction model, with experiments and eval-

uations included. Finally, Chapter 7 summarizes our findings and concludes with

considerations for future research.



Chapter 2

Related Work

This chapter provides a comprehensive review of research endeavors aimed at enhanc-

ing Maritime Situational Awareness (MSA), with a particular focus on leveraging

Automatic Identification System (AIS) data for predicting ship destinations. The

methodologies employed in mining AIS data to create graph abstraction and predict

vessel destination are delineated into six primary categories, which will be thoroughly

discussed within this chapter. Furthermore, this review identifies avenues for further

exploration and enhancement. Section 2.1 delves into the literature pertaining to the

detection of stay points and turning points from AIS data. Section 2.2 focuses on

segmenting vessel trajectories. Subsequently, Section 2.3 introduces clustering meth-

ods for extracting key points from vessel trajectories to establish a route network,

while section 2.4 focuses on outlier detection in trajectories. Section 2.5 presents

methods for constructing maritime traffic networks to summarize vessel movements.

In addition, Section 2.6 reviews destination prediction approaches that leverage de-

rived knowledge. Lastly, Section 2.7 outlines the research gaps identified within the

reviewed literature.

2.1 Integration of Geospatial Background Knowledge with AIS Data

AIS records contain historical navigation routes of vessels, representing real-world

maritime traffic. However, analyzing these trajectories solely based on spatio-temporal

features, without considering geospatial background knowledge, makes maritime traf-

fic pattern recognition tasks challenging and labor-intensive. Recognizing ports as

points of semantic meaning in a trajectory allows a better understanding of vessel

trips and detects changes in traffic flow [5, 11, 20, 79, 80]. In trajectory-destination

prediction studies, vessels’ trajectories are discretized into traversed vertices and/or

traversed edges. Vertices represent waypoints, which denote locations along a trajec-

tory where a vessel either remains stationary for a period (known as “stay points”)

10
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or makes a turn (referred to as turning points) [55, 98, 109, 106, 103, 111]. The

DBSCAN clustering algorithm is commonly used to identify these waypoints. All

these studies rely solely on the features of the trajectories themselves for clustering

waypoint locations, which makes them susceptible to irregular spatial distributions.

Moreover, vessels have different numbers of waypoints for the same route, compli-

cating the identification of waypoint locations based solely on trajectory features.

These challenges highlight the fact that making destination predictions in the mar-

itime domain is difficult. To address the challenge of discretizing trajectories and

accurately identifying maritime routes concealed within AIS data, a key idea of our

work is integrating geospatial knowledge of ports, islands, or marine protected areas

(MPAs) with historical AIS data. By doing so, trajectory classification results align

with the geospatial shape, providing a more accurate reflection of ship navigation

behavior. Leveraging ports’ information aids in determining vessel orientation and

understanding routes between ports within a specific area, thereby enhancing spatial

comprehension and vessel awareness during navigation1.

2.2 Trajectory Segmentation Utilizing Port Background Knowledge

When examining the entire trajectory as the study’s focal point, local abnormal seg-

ments or similarities among trajectories may still be disregarded [86, 107]. Moreover,

vessels commonly adhere to established maritime routes when navigating from one

port to another. Segmenting trajectory data based on specific criteria can aid in

identifying meaningful segments along these routes, accurately reflecting real-world

traffic flow patterns between ports. The segmentation of ship trajectories is typically

approached using various methods, including considering the interval time between

trajectory points, the ship’s turning angle, and stopping points [10, 15, 18, 54, 59, 79,

93, 101, 109]. Relying solely on Speed Over Ground (SOG) and Course Over Ground

(COG) for segmenting ship trajectories can lead to inaccuracies due to technical mal-

functions, coverage limitations, and noisy data. Additionally, overlooking continuous

and nonlinear movement can make trajectory prediction a challenging task. In order

to segment trajectories in a more comprehensive way, our idea is to segment the tra-

jectories based on the integrated background knowledge of ports, which focuses on

1Navigation is the destination-oriented movement through space.
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discovering vessel movements between two geographical locations (ports’ locations)

within a geographical space. This segmentation method will enable us to identify

established maritime routes concealed within AIS data.

2.3 Clustering Methods to Extract Key Points (Trajectory

Discretization)

Due to varying transmission frequencies, AIS data is not well-suited to be used di-

rectly as input features for a sequential prediction model [58, 62]. To address this

frequency problem, a graph-based method is employed to discretize trajectories into

sequences of traversed vertices or, alternatively, sequences of traversed edges [19, 40,

66, 57, 58, 68, 74, 75, 103]. Point clustering methods are utilized to construct these

vertices. Vertices typically represent two types of locations: clusters of stop points

corresponding to static patterns, and clusters of maneuver points indicating turn-

ing points. These vertices are then connected with straight lines to represent edges.

However, despite offering a manageable data format, vertex discretization has sev-

eral drawbacks, including the potential loss of detailed information regarding vessels’

complex movement patterns. This method only captures a fraction of the original

movement patterns and fails to account for the non-linearity and variability of vessel

movements [92]. To address these issues, our approach diverges from clustering key

points in AIS trajectories. Instead, we propose clustering the trajectory segments

between ports, focusing on the original AIS sequences from one port to the next.

Specifically, our idea is to capture continuous, smooth geospatial routes representing

complete movement patterns between port pairs. Table 2.1 provides a summary of

the clustering algorithms proposed by the authors for stay points vertices and turning

points vertices.

2.4 Outlier Detection and Filtering

Employing clustering methods to segment trajectories facilitates the recognition of

abnormal movement patterns and enhances data quality. Detecting and filtering

outliers in ship trajectory segments serves various purposes, crucial for identifying

errors, anomalies, or potential threats. While numerous studies propose methods for
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Table 2.1:
A summary of the different approaches proposed by various authors for constructing
stay points and turning points vertices.

Approach Clustering Algorithm

Point based
Clustering

Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) [19, 68, 103].
Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [66].
Balanced iterative reducing and clustering using hierarchies
(BIRCH) [72].
Ordering Points To Identify Cluster Structure (OPTICS) [74].

outlier detection within spatio-temporal series [4, 26, 41, 88], they have not been

applied to ship trajectories. Albanese et al. [4] proposed a method for outlier de-

tection in spatiotemporal data, aiming to identify data points significantly deviating

from the dataset norm. This method, based on rough set theory, efficiently iden-

tifies top outliers but suffers from high time complexity and parameter sensitivity,

despite its interpretability in outlier judgment. Duggimpudi et al. [26] introduced

Spatio-Temporal Outlier Detection Algorithms based on Computing Behavioral Out-

lierness Factor. Their proposed algorithms, ST-BDBCAN and Approx-ST-BDBCAN,

are aimed at identifying outliers in spatiotemporal data. However, a limitation of

these algorithms is their assumption that the data is not highly skewed on the time

attribute, which may restrict their applicability in cases of temporal attribute skew-

ness. Moreover, Gupta et al. [41] discuss various studies on outlier detection in tra-

jectory data, including the Trajectory Outlier Detection Algorithm (TRAOD), which

partitions trajectories into base units, the smallest meaningful sub-trajectories, and

determines the outlier score based on neighboring base units. While these techniques

offer interpretability for outlier judgment, they may lack generality for other outlier

types. Additionally, relying on multiple distance calculations can be computationally

expensive and may not fully capture the non-linear nature of vessel motion trends.

Another approach discussed is grid discretization, which simplifies data representa-

tion and aids in detecting trajectory outliers. However, it may oversimplify the data

and require careful tuning of grid size and shape for effective outlier detection.
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The limitations of the reviewed trajectory outlier detectors discussed above mo-

tivate us to explore alternative approaches for detecting outliers in ship trajectory

segments. Due to the fact that these segments represent maritime routes between

two ports, the new outlier detector should account for the varied movement pat-

terns of vessels between different port pairs, and should also be less computationally

intensive. Additionally, providing user assistance in selecting threshold values for

identifying significant deviations from the norm would enhance the method’s effec-

tiveness.

2.5 Maritime Traffic Network Construction

Methods for extracting maritime traffic networks can be classified into three types:

vector-based, statistics-based, and grid-based. Table 2.2 summarizes each type’s de-

scription, including its pros and cons. Our work focuses on extracting comprehensive,

continuous, directed maritime traffic networks comprising ports as vertices intercon-

nected by continuous geospatial lines, which are defined by AIS trajectory segments.

Such a network is significant for ship anomaly detection, route planning, and naviga-

tion safety. Therefore, the compatibility of vector-based methods with detailed edges,

has driven the concept of extracting smooth, continuous spatial representations of

navigation routes. As a result, these representations can be used to predict ships’

behavior and assist port authorities in making better decisions, improving maritime

traffic management.

To gain deeper insights into ship navigation data, extracting a maritime traf-

fic network from the vessel’s historical trajectory is crucial for effective destination

prediction. A graph-based approach is proposed to discretize trajectories, where ver-

tices signify stay points or turning points, and edges represent typical movements

between these points. This graph abstraction addresses the issue of varying trans-

mission frequencies in AIS data, facilitating its use as input features for a sequential

prediction model. In the literature, various studies have proposed methods to gener-

ate maritime traffic networks from AIS data using different algorithms. Some studies

suggest utilizing genetic algorithms for this purpose, enabling long-term forecasting

and planning of ship routes [24, 23, 37, 64, 65]. However, these methods suffer from
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Table 2.2: Categorization of maritime network extraction methods.

Method Description Pros Cons Article

Vector-
based

Create a maritime traffic
network by extracting net-
work nodes (waypoints) and
edges (navigational legs).
This allows traffic state
modeling along shipping
routes.

Provide a compatible
graph-based represen-
tation of waypoints
and edges connecting
them at a larger scale.

Operative in areas
with high traffic and
less effective in unreg-
ulated areas.

[68]
[98]

Statistic-
based

Analyze ship traffic flow
characteristics, such as traf-
fic volume, capacity, speed
distribution, and lateral
distribution along shipping
routes.

Extracting and model-
ing the ship’s naviga-
tion route can help un-
derstand ship behavior
and reveal its regular
movement patterns.

The construction of
statistical models of
original data for large-
scale traffic datasets,
which requires heavy
preliminary work.

[74]
[96]

Grid-
based

Divide the maritime area
into a set of spatial grids
with cells defined by the
characteristics of passing
ships.

Allow reducing the
problem scale while
improving the effi-
ciency of knowledge
storage.

It is unsuitable for ar-
eas characterized by
complex traffic as it
requires prior selec-
tion of the optimal cell
size.

[48]
[90]

high computational complexity and require careful control of several hyperparame-

ters. Alternatively, other methods utilize DBSCAN to identify waypoints2 in ship

trajectories [10, 38, 49, 72, 104, 111]. Notably, DBSCAN-based approaches can com-

plete this process in minutes, significantly faster than genetic algorithms, which can

take hours. However, the paths generated by the constructed route network and the

actual route trajectory consist of differing numbers of waypoints, making direct com-

parison challenging. Consequently, many studies resort to manual determination of

major waypoints, a process susceptible to subjectivity and error, especially in com-

plex open water environments. As a result, the trajectory discretization methods

used to construct route networks still lack connection with real-world scenarios and

fail to fully leverage AIS attributes [72, 97]. Moreover, including waypoints compli-

cates network analysis, requiring an understanding of each point’s significance and

its influence on vessel movements, because waypoints can be traversed by different

routes, which adds complexity to interpretation. Additionally, exclusively utilizing

longitude and latitude data for calculating route similarities necessitates comparisons

of three similarity aspects: vertical distance, parallel distance, and angular distance,

2Locations in the ship’s trajectory where it changes course or enters or exits a port.
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which require considerable computational power and can occasionally lead to inac-

curacies. Table 2.3 summarizes the approaches the authors propose for constructing

maritime traffic networks.

Table 2.3:
A summary of the different approaches proposed by various authors for constructing
maritime traffic networks.

Maritime Traffic
Network

Method

Graph-based
representation3

Dobrkovic [24, 23]: GA to discover waypoints paired with spa-
tial partitioning (QuadTrees).
Filipiak [37]: Parallel GA for waypoints discovery and a k-d
B-tree4 algorithm for detecting edges between waypoints.
Arguedas [10]: DBSCAN to identify the waypoints, then Haus-
dorff distances to define the routes.
Frorti [38]: DBSCAN and Mahalanobis distance to detect the
waypoints that consider the location and velocity features.
Kontopoulos [49]: DBSCAN to extract waypoints and polyno-
mial interpolation to ensure track locations’ continuity, then
DBSCAN to cluster trajectories.
Ren [72]: Multi-clustering algorithm uses the CLIQUE-BIRCH
clustering approach for waypoint extraction.
Zygouras [111]: Partitioning the locations using sliding en-
velopes along the vessels’ course. Then, the locations of the
spatially close vessels are grouped together using DBSCAN.
Smoothing the previously detected trajectory in the graph,
using the B-Spline approach [21].

The aforementioned limitations of trajectory discretization to generate graph ab-

stractions representing maritime traffic networks motivated us to develop an approach

that makes use of standardized maritime routes concealed within AIS data to gen-

erate a representation of the maritime traffic route network. It contributes toward

capturing clusters of maritime routes that reflect real-world traffic flow, by using the

complete sequence of AIS data points between two ports on the network, instead

of discretely traversed vertices. This representation aids in capturing the spatial re-

lationships and navigational constraints within the studied area. Using the traffic

network to represent the entire sequence of AIS data points between ports, we can

3Directed graph, whose vertices represent navigational waypoints, while edges represent naviga-
tional legs.

4Data structure that splits multidimensional spaces like an adaptive k-d tree, but balances the
resulting tree like a B-tree.
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directly compare the routes of moving vessels (incoming AIS data points) with his-

torical AIS data. In this case, there is no need to record and discretize the ship’s

trajectory, nor should it cross some specific areas to enable comparisons. Further-

more, the direct comparison of AIS sequences allows for simultaneous comparison of

direction, distance, and pattern similarities, which reduces the burden of calculating

multiple similarity aspects.

2.6 Ship Destination Prediction

In the literature, the Traffic Route Anomaly Detection (TREAD) method is intro-

duced by Pallotta et al. [68]. TREAD utilizes route clustering techniques for vessel

destination prediction within predefined bounding boxes. While effective in con-

strained regions like the Strait of Gibraltar, TREAD’s performance diminishes in

areas with expansive regions such as the Indian Ocean due to constraints and density

limitations [68]. In contrast, a random forest-based similarity measurement method

for global vessel destination prediction without bounding box restrictions is proposed

by Zhang et al. [104]. Despite achieving global prediction capability, the model’s

accuracy is limited to approximately 70 percent, indicating room for improvement in

future research. Furthermore, the Hausdorff-distance similarity method for predict-

ing vessel destination based on a multi-featured clustering route network construction

method by Ren et al. [72]. Although the concept of utilizing the rich attributes within

AIS data to cluster route trajectories, identify waypoints, and construct a maritime

route network based on connections between AIS data points has been confirmed, the

adjustment of the number of waypoints still requires manual modification.

A neural network-based method utilizing a sequence-to-sequence model with Long

Short-Term Memory (LSTM) for predicting vessel destinations is introduced by Nguyen

et al. [62]. Their approach involves translating vessel trajectories into sequences of

spatial grids within the Mediterranean Sea, utilizing port information given in pre-

processed datasets [62]. Inspired by advancements in natural language processing, the

study discretized vessel coordinates into spatial grids to forecast arrival ports [62].

However, in a grid-based approach, there’s a loss of information due to reduced de-

tail when representing trajectories with grid cells. As the coordinate space expands,

more grid cells are required, resulting in decreased data granularity. In contrast, Rong
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et al. [74] proposed a hybrid approach using linear regression and Gaussian process

regression models to predict ship destinations and trajectories, respectively. While

integrating maritime traffic networks into trajectory prediction allows for long-term

forecasting, relying on destination prediction findings reduces trajectory prediction

accuracy. Furthermore, a framework for predicting vessel trajectories and destina-

tions is proposed by Wang et al. [94]. The framework comprises two parts: the first

part outlines a procedure for extracting information from raw AIS data for deep learn-

ing, while the second part applies multi-task learning for trajectory and destination

prediction [94]. Utilizing deep learning models provides more generalized prediction

results across different ocean regions. However, the trajectory prediction outputs only

one position.

Predicting a vessel’s destination is challenging due to its ability to change routes,

speeds, and headings in response to environmental conditions and operational needs,

which introduce uncertainties into the vessel’s movements. Furthermore, existing

methods often depend on port-to-port trajectory formation to classify routes based

on historical patterns. By the time a clear trajectory is available, it is frequently too

late for effective resource allocation. Waiting for trajectory formation shifts planning

from proactive to reactive approach. The need to discretize the predicted trajectory

into a sequence of stopping and turning points for comparison with historical route

networks necessitates a manual adjustment of the number of traversed vertices. This

is because discrepancies between the paths provided by the constructed route network

and the actual route trajectory can lead to the loss of important movement pattern

information and reduced prediction accuracy. Additionally, the proposed models

only generate a single prediction instead of a probability distribution, thus lacking

the capability to express uncertainty. While related work in this section achieves

promising results, none of it directly addresses the problem we encounter in this

thesis—predicting the vessel’s next destination by monitoring its recent AIS messages.

Therefore, this underscores the necessity for a novel model specifically designed to

predict a vessel’s next destination, aiding port authorities in proactive planning and

resource allocation by leveraging AIS data from recent vessel activities within their

local environment.
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2.7 Existing Research Gaps

This section provides insights from existing research on knowledge mining and pattern

extraction techniques from AIS data, as well as how to use this knowledge to predict

future vessel destinations. These insights have motivated the research in this thesis.

Gap 1: Integration of Geographic Background Knowledge with AIS

Data. In the existing literature, studies primarily depend on the features of trajec-

tories themselves for extracting comparison features used in clustering and similarity

analysis. However, this reliance makes these analysis methods susceptible to uneven

spatial densities [94]. To overcome this limitation, we propose a novel method that

integrates background knowledge of ports into AIS data to specify origin and desti-

nation points. These origin and destination details will motivate the next processing

step, segmentation, which will improve the consistency of local trajectory features

and create a new representation to facilitate a semi-supervised clustering approach

to generate clustering constraints. This is presented in Ch. 4 and Ch. 5 of the thesis

and published in [27, 28, 30].

Gap 2: Novel Semisupervised Clustering of Trajectory Segments. In the

literature review, ship movement or maritime routes are often depicted by discretizing

vessel trajectory into a sequence of traversed vertices. These vertices are defined

through point-based clustering methods, which are utilized to cluster specific locations

where vessels stop (known as “stop points” or make a turn (referred to as “turning

points”). However, discretizing a ship’s trajectory impedes the ability to capture

the continuous nature of ship movements, which results in a loss of detailed features

of the non-linear nature of actual maritime routes. To bridge this gap, we propose

clustering trajectory segments (sequences of AIS data points) between port pairs

(origin-destination points), so that the AIS segments can be partitioned into K non-

overlapping clusters. Based on origin and destination points, must-link constraints is

derived to establish a similarity measure between trajectory segments, requiring that

segments with identical pairs of bearings at their endpoints be clustered together.

This idea facilitates clustering between ports based on the shared directionality of AIS

trajectory segments. Thus, this clustering method identifies non-linearly separable

clusters with irregular shapes and varied densities in linear time, does not rely on
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random initialization, is not sensitive to outliers, and automatically determines the

number of clusters. This is presented in Ch. 5 and Ch. 6 and published in [30, 29].

Gap 3: Filtering Outlier Segments. Clustering methods must identify outliers

because they can substantially affect the accuracy of data mining outcomes. However,

many of the reviewed methods suffer from high computational complexity, parame-

ter sensitivity, and most importantly, they overlook the continuous nature of vessel

trajectories, as they were not specifically designed or employed to detect outliers in

AIS trajectories [4, 26, 41]. Other methods have been proposed to detect outliers in

ship trajectories [88, 100]. Nonetheless, a major limitation of these methods is their

reliance on constant threshold values, potentially constraining their ability to assign

distinct outlier scores, given the diverse nature of vessel movements between different

ports. The aforementioned research gap motivates us to develop an adaptive thresh-

olding approach to enhance the robustness of outlier identification and filtering. Our

proposed method involves measuring the pattern similarity of segments within each

cluster. The resulting similarity values are then presented as a histogram, offering a

visual guide for users to determine an appropriate threshold value for each cluster in

order to effectively filter outliers. This is presented in Ch. 6 and published in [29].

Gap 4: Maritime Traffic Network Construction. According to the liter-

ature, a maritime traffic network is a predefined or fixed route networks. However,

fixed routes assume independent and identically distributed (i.i.d.) data points over-

look temporal, spatial, and network dependencies in AIS trajectory data, resulting in

inaccurate clustering and pattern detection [104]. Additionally, fixed route networks

oversimplify complex patterns and hinder destination prediction accuracy. Relying

on fixed routes limits extracting meaningful patterns, de facto maritime routes, vessel

paths, and traffic flows from AIS trajectory data [92, 102]. Furthermore, determining

the optimal distance in graph abstraction techniques is critical for balancing accu-

racy in capturing spatial relationships and connectivity patterns against complexity,

impacting the fidelity of the abstract graph relative to the original geographical area.

To fill this gap, we propose inferring the topology of the maritime traffic network from

the generated clusters of trajectory segments. This approach enables the extraction

of a flexible, data-driven representation of maritime traffic networks and traffic flows,

thereby overcoming the limitations associated with fixed route networks and distance
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thresholds. The maritime traffic network can be constructed as a directed graph,

where nodes represent ports and edges represent the derived maritime routes con-

necting them (i.e., clusters of trajectory segments). Inferring the network topology

from trajectory patterns enables modeling the intricate dependencies and complex

patterns present in maritime traffic while accounting for the non-independent nature

of AIS data points. This is presented in Ch. 4, Ch. 5, and Ch. 6 and published

in [28, 30, 29].

Gap 5: Vessels’ Destination Prediction. Previous research has made signif-

icant progress in analyzing navigation history data and predicting ship destinations;

however, real-world applicability remains limited. Specifically, there is a need for a

model that predicts vessel destinations by monitoring AIS data without relying on

fixed route networks of discretized trajectories. Discretizing ship trajectories for des-

tination prediction fails to capture the complex patterns, interdependencies, and non-

independent nature of AIS data points within fixed route networks’ model [3, 72, 74].

Accurate destination prediction using fixed route networks requires access to the full

or a significant portion of the predicted trajectory, ensuring it contains multiple tra-

versed vertices to facilitate port frequency and turn point matching. However, this

requirement is not feasible in real-time prediction scenarios where only limited or

incomplete trajectory data is available. Furthermore, these models produce a single

prediction rather than a probability distribution, limiting their ability to express un-

certainty. To overcome these limitations, we propose a tracking method for predicting

vessels’ destinations. This method involves directly matching our inferred maritime

traffic network representation with a partial trajectory of recent AIS data for a moving

vessel. The method assigns evolving probabilities to multiple potential destinations

as the vessel approaches its next destination, enabling continuous updates to the like-

lihood of arrival at each port. This methodology is detailed in Chapters 4 and 6, and

published in [28, 31].

In summary, this chapter provides a comprehensive review of existing research on

knowledge mining and patterns’ extraction techniques from Automatic Identification

System (AIS) data to predict vessels’ destinations utilizing maritime traffic networks.

We identified some research gaps from the perspective of predicting vessels’ future

tracks toward their next destination without trajectory discretization. Building on
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the identified limitations of current research, our research aims to explore novel solu-

tions for maritime knowledge discovery and vessel destination prediction. Chapter 3

presents the datasets utilized in our studies and details the solution approach em-

ployed for destination prediction by monitoring recent vessel movements.



Chapter 3

Methodology Overview

3.1 Datasets

AIS (Automatic Identification System) datasets from two distinct maritime regions

with varying traffic densities were selected for analysis. Our research team at the

Institute for Big Data Analytics collected these datasets. Subsequently, we prepared

subsets of these datasets to support the exploration and evaluation of our algorithms

for maritime traffic analysis and destination port prediction. The AIS data fields

utilized in this thesis are as follows: (i) Maritime Mobile Service Identity (MMSI):

A unique 9-digit identifier for each vessel. (ii) Timestamp. (iii) Vessel type. (iv)

Geographical position (latitude and longitude). Figure 3.1 depicts the coverage area

of the AIS data, showing ship voyages in both Halifax Harbour and the Gulf of Mexico

basin. As shown on the map, each point corresponds to a moving vessel at a specific

time.

(a) AIS dataset form Halifax. (b) AIS dataset form Gulf of Mexico.

Figure 3.1: An overview of AIS datasets captured from two different maritime areas.

3.2 Solution Approach

The proposed model consists of two main parts. The first part aims to extract mar-

itime routes that accurately reflect real-world traffic flow from AIS data, accomplished

through a multi-step data pipeline. The second part focuses on developing a predictive

23
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approach based on trajectory similarity capable of predicting a vessel’s destination,

given processed AIS sequences comprising de facto maritime routes. Figure 3.2 offers

an overview of the model.

Figure 3.2: The schematic representation of the overall solution approach. The blue
boxes depict the first part of the model.

3.2.1 Pre-processing

In the preprocessing step, we first conduct basic data cleaning, eliminating duplicate

data points and those outside the study area or on land. Subsequently, AIS data

points for each vessel (MMSI) are chronologically ordered. Next, we integrate AIS

data with ports’ data and segment trajectories based on origin-destination ports.

This integration ensures that trajectory categorization and classification align with

the geospatial shape, providing an accurate reflection of ship navigation behavior

between ports.

3.2.2 Trajectory Segments’ Clustering

The next step in the proposed model is to perform trajectory segments’ clustering.

A trajectory segment is an ordered sequence of AIS data points that originate at one

port and end at the next port. The purpose of trajectory segments’ clustering is to

identify clusters of maritime routes that reflect the real-world traffic flow between

ports. The clusters are then used for the construction of the graph representation

outlined in Section 3.2.4. Given the AIS data, trajectory segments are identified by

using the integrated port points during the first preprocessing step. As a result, port
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points make it possible to deduce must-link constraints for establishing similarity

between trajectory segments, ensuring that segments following the same direction

between origin and destination points are clustered together. We developed a semi-

supervised clustering approach, named SPTCLUST, to cluster trajectory segments

based on segments’ endpoints’ similarity, which is defined as the pairs of bearings

of the segments’ endpoints. With this approach, clustering time complexity can be

reduced significantly while maintaining the nuanced dynamic features of AIS data

points. This method is presented in Ch. 5 and Ch. 6 and published in [30, 29]. The

unique and stochastic characteristics of maritime traffic pose challenges for developing

effective traffic clustering models using traditional techniques, as they often rely on

assumptions about cluster shape or density that may not hold true in areas with

diverse traffic densities and complex ship interrelationships. Therefore, the proposed

SPTCLUST offers realistic solutions by identifying non-linearly separable clusters

with irregular shapes and varied densities in linear time. It does not depend on

random initialization, is not sensitive to outliers, and automatically determines the

number of clusters.

3.2.2.1 Baseline Clustering

We utilize the following clustering baselines due to their popularity and effectiveness

in ship trajectory data clustering:

Kmedoids is a partition-based clustering method. It aims to partition data into k

clusters by minimizing the sum of dissimilarities between trajectory segments and a

representative segment within each cluster (called a medoid) [47]. It requires one

parameter: (k), which defines the number of clusters.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-

based clustering algorithm [33]. It groups together closely packed trajectory segments

based on two parameters: epsilon (ϵ) defines the radius within which neighboring

segments are considered part of the same cluster, and minPts specifies the minimum

number of segments required to form a dense region (core point).

OPTICS (Ordering Points To Identify the Clustering Structure) is an extension

of DBSCAN that produces hierarchical clustering [8]. It computes the reachability

distance for each segment, representing its proximity to the nearest core segment,
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enabling the detection of clusters with varying densities and sizes. It requires three

parameters: min samples specifies the minimum number of segments in a neigh-

borhood, min cluster size specifies the minimum reachability distance for clus-

tering, and xi , reachability distance cutoff; that establishes the relative decrease in

density.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is a hier-

archical clustering algorithm designed for large datasets [105]. It incrementally and

dynamically builds a tree-based data structure to represent the clustering hierarchy.

There are three parameters in this algorithm, which needs to be tuned. branch-

ing factor specifies the maximum number of sub-clusters in each node, n clusters

is the number of clusters to be returned after the entire BIRCH algorithm is complete,

and threshold is the maximum number of segments a sub-cluster in the leaf node

can hold.

The directed Hausdorff distance [85] is used to compute the input distance ma-

trix for baselines, but due to its time-consuming nature, the Douglas-Peucker (DP)

algorithm [25] is employed to compress AIS data for efficiency.

3.2.3 Aggregation of Clustered Trajectory Segments

The subsequent step is to perform the aggregation of clustered trajectory segments.

The purpose of aggregation is to generate continuous, smooth, representative seg-

ments from port to port, commonly referred to as reference routes. These representa-

tive segments are used to construct a graph representation that summarizes the trajec-

tory data, outlined in Section 3.2.4. The representative segments are constructed by

using linear interpolation and the arithmetic mean of the trajectory segments within

each cluster. The rationale for this aggregation is twofold: firstly, to utilize linear

interpolation for bridging the gaps between AIS data points, and secondly, to employ

arithmetic mean to simplify complex information, providing insights into the central

tendency of the segments by computing their average spatiotemporal features. This

combination ensures smoother, more continuous representative segments. We devel-

oped an algorithm to generate Reference Routes of Trajectory (RROT algorithm),

presented in Ch. 4, Ch. 5, and Ch. 6 and published in [28, 29]. Additionally, this
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approach aids in determining cluster quality; for instance, clusters containing seg-

ments traveling in opposite directions yield incomplete reference routes. Therefore,

considering the port connectivity of the resultant aggregated segments further helps

cluster quality assessment. Additionally, utilizing a traffic network with summarized

routes (network connections) enhances prediction computation complexity.

3.2.4 Graph Construction

At this stage, the generated clusters are labeled based on the vessels’ type they belong

to, while maintaining all trajectory features. These clusters form a detailed graph

representation with detailed edges, where these edges represent the de facto maritime

routes between two ports, which can be used as input for the prediction method,

outlined in section 3.2.6. The detailed graph is presented in Figure 3.3b, where the

circles indicate ports’ area. Similarly, the aggregated trajectory segments also retain

vessels’ type labels. Illustrated in Figure 3.3c, these aggregated segments provide

a summarized trajectory, representing shipping lanes between port pairs. Different

colors indicate different directions. Additionally, these aggregated segments can be

utilized as input for the prediction method outlined in Section 3.2.6.

The proposed approach makes use of AIS data to identify de facto maritime routes

maritime routes concealed within AIS data, aiming to create a high-precision repre-

sentation of the traffic route network. It contributes toward capturing the traffic

clusters with complete spatiotemporal sequences by using the complete sequence of

AIS data points on the network instead of the traditional discrete traversed vertices.

This approach ensures adaptability to traffic scenarios in diverse geographical waters

while exploiting the wealth of information contained within AIS data.

3.2.5 Selection of Graph Structure for Input Features

The constructed graph representations discussed in Section 3.2.4 can be utilized for

direct matching with recent trajectory data of a moving vessel of the same type to pre-

dict its destination. By utilizing the spatial features to compare the input sequences,

the direction, distance, and pattern similarities can be captured simultaneously. The

input sequences from graph representations for the prediction approach can be ag-

gregated segments or clusters of segments. The aggregated segments can provide a
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(a) Segmented Trajectory.

(b) Trajectory Segments Clusters. (c) Aggregated Trajectory Segments.

Figure 3.3: An example of a ferry trajectory from Halifax Port preprocessed and
segmented is shown in (a). In (b), a detailed directed graph consists of trajectory
segments’ clusters. In (c), a summarized graph consists of aggregated segments.

general idea of the vessel’s route and destination, while clusters of detailed segments

can offer a more precise prediction by considering specific routes and patterns. This

approach allows for a flexible and accurate prediction method that can be adapted

to different scenarios.

3.2.6 Similarity-Based Prediction

We propose a similarity-based prediction method to predict the destination of a mov-

ing vessel, as shown in Figure 3.4. Trajectory similarity is commonly evaluated by

measuring the distance between their respective points. Distance is a way to measure

the similarity of trajectory segments’ patterns and proximity. The distance between

two trajectories, denoted as d(P,Q), reflects their dissimilarity, with higher values

indicating lower similarity between them. These similarity measures are designed to

accommodate varying trajectory lengths, considering that vessel trajectories differ in

both distance traveled and recorded data points. Furthermore, they are capable of

handling the non-linear nature of vessel movement.
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Figure 3.4: A schematic representation of the prediction stage, which constitutes the
second part of the overall solution approach.

In Figure 3.4, the prediction process involves measuring similarities between the

ongoing trajectory segment and historical trajectory segments originating from the

same port. The selected similarity measure yields similarity scores, indicating the

resemblance between the ongoing segment and each historical trajectory segment.

Subsequently, for evaluation purposes, the destination of the historical trajectory

segment with the highest similarity score to the ongoing segment is predicted as the

vessel’s destination. This prediction approach is presented in Ch. 4 and Ch. 6 and

published in [28, 31]. This method facilitates direct comparisons between ongoing

routes and historical routes, without the need for the trajectory of the moving ves-

sel to be available in advance. As the vessel departs its port, the method assigns

probabilities to multiple segments originating from that port. These probabilities

are updated as the vessel progresses, enabling continuous adjustments based on the

emerging path pattern, and thereby providing continuous updates to the likelihood of

arrival at each port. Five similarity measures are explored: (1) Discrete Fréchet Dis-

tance (DFD)[84], (2) Dynamic Time Warping (DTW)[43], (3) Partial Curve Mapping

(PCM)[44], (4) Area between two curves (Area)[13], and (5) Curve length (CL) [13].

These measures are selected for their parameter-free nature. DFD and DTW are

widely used in trajectory similarity and have demonstrated effectiveness.

3.2.6.1 Discrete Fréchet Distance

The discrete Fréchet distance (DFD) is a widely used measure of similarity between

trajectories because it preserves the location and sequence of points along the tra-

jectories [14]. When calculating the discrete Fréchet distance, it takes the smallest

maximum distance between the aligned points. A dynamic programming solution is
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proposed for finding the discrete Fréchet distance between two trajectories [84]. The

discrete Fréchet distance, also known as the coupling measure. The DFD, seeks the

path in the distance matrix with the lowest minimum cost, with each cell (i, j) repre-

senting the cost of a pair of points from P and Q as measured by d(pi, qi). Then, the

DFD takes the maximum distance between points along a path. The discrete Fréchet

distance DFD(P,Q), is defined as follows:

DFD(P,Q) =



0 if |P | = |Q| = 0

∞ if |P | = 0 or |Q| = 0

max{d(Head(P ), Head(Q)),

min{DFD(P, Tail(Q)),

DFD(Tail(P ), Q),

DFD(Tail(P ), Tail(Q))}} otherwise

(3.1)

Where: |P | represents the number of elements in sequence P . d(Head(P ), Head(Q))

is the Euclidean distance between the first elements of sequences of P and Q. Head(P )

and Head(Q) denote the first elements of sequences of P and Q respectively. Tail(P )

and Tail(Q) represent sequences P and Q excluding their first elements. The function

min returns the minimum value among its arguments. The function max returns the

maximum value among its arguments.

The discrete Fréchet distance (DFD) operates with a fixed quadratic runtime of

O(nm). It returns a value of zero when P equals Q and increases positively as the

trajectories become more dissimilar, and DFD is parameter-free [87].

3.2.6.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is one of the most commonly used techniques to

measure the similarity between two trajectories. DTW was originally designed to

compare different speech patterns in automatic speech recognition [43]. The main

objective of this method is to find the optimal alignment between two trajectories by

finding a path between their points that minimizes the cumulative distance between

them [13, 42].
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The DTW algorithm searches through all point combinations between two trajec-

tories using dynamic programming. Thus, DTW is an inclusive measure because it

can be used with trajectories of different lengths [42]. Given two trajectories, P and

Q of length n and m, respectively, DTW aligns these sequences by creating an n-by-m

distance matrix in which the (i, j) element equals |pi − qj|. An alignment between

two sequences is represented by a wrapping path w = (w1, w2, ..., wk) in the matrix,

which has to be monotonic, contiguous, start from the bottom-left corner, and end at

the top-right corner of the matrix. The optimal alignment of sequences is to arrange

all sequence points by minimizing the distance. Hence, the DTW algorithm finds the

alignment path, which runs through the low-cost cells in the distance matrix. The

DTW distance is defined as:

DTW (P,Q) =



0 if|P | = |Q| = 0

∞ if|P | = 0or|Q| = 0

d(Head(P ), Head(Q))+

min


DTW (P, Tail(Q)),

DTW (Tail(P ), Q),

DTW (Tail(P ), Tail(Q))

otherwise

(3.2)

Where: |P | represents the number of elements in sequence P . d(Head(P ), Head(Q))

is the distance between the first elements of sequences P and Q. Head(P ) and

Head(Q) denote the first elements of sequences P and Q respectively. Tail(P ) and

Tail(Q) represent sequences P and Q excluding their first elements. The function min

returns the minimum value among its arguments. The computational complexity of

DTW is O(nm). DTW is parameter-free, meaning it does not require any additional

parameters to be specified. It is an unbounded measure, where identical trajectories

result in a value of 0, while larger DTW values indicate greater dissimilarity between

the sequences.
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3.2.6.3 Partial Curve Mapping

Partial Curve Mapping (PCM) is a method used to measure the similarity between a

given curve and segments of a larger curve. This technique was developed by Witowski

et al. [44], to address the challenge of comparing curves of different lengths.

The PCM method to assess the similarity of vessel trajectories is employed by

Jekel et al. [13]. The PCM algorithm operates by combining the arc lengths and

areas between two curves of varying lengths. Initially, the arc length of the shorter

curve is projected onto a section of the longer curve. Trapezoids are then constructed

between the curves, and the areas of these trapezoids are summed. Subsequently,

an offset is defined to “slide” the shorter curve along the longer one. This process is

repeated iteratively, with the shorter arc length being imposed on different sections of

the longer curve, until the last data point of each curve is considered. The PCM value

is determined as the minimum area obtained from all attempted arc length offsets.

PCM is a quadratic runtime complexity of O(nm), parameter-free operation.

3.2.6.4 Area between two curves

A similarity measure for comparing trajectories was proposed, emphasizing the sig-

nificance of equalizing the number of data points between curves to construct quadri-

laterals for area approximation. [13]. To achieve uniformity, additional points are

introduced to curves with fewer data points rather than removing points to preserve

all available information. This augmentation involves bisecting existing points, pri-

oritizing the largest Euclidean distance between consecutive points until both curves

have an equal number of points. The assumption of straight lines between points

is fundamental in polygon construction, as it ensures that adding points via linear

interpolation does not alter the area between curves. Additional points serve solely

to facilitate area approximation. As the number of data points increases on both

curves, the accuracy of area estimation improves correspondingly.

A visual representation of the Area method is provided in Figure 3.5, illustrating

quadrilateral construction between two curves (P and Q). While Q comprises four

data points, P includes five. To reconcile this disparity, an artificial data point is

introduced to Q data by bisecting consecutive points with the greatest Euclidean

distance, thereby aligning the number of points in both sequences.
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Figure 3.5: The area between two curves is approximated by summing quadrilaterals.
Source: Elaborate by the author.

Quadrilaterals are then formed between corresponding pairs of points from each

curve, with Gauss’s area formula applied to compute the area of each quadrilateral.

The summed areas yield the effective area between the curves.

Area =
1

2
|x1y2 + x2y3 + x3y4 + x4y1 − x2y1 − x3y2 − x4y3 − x1y4| (3.3)

where (xi, yi) represents the vertices of the quadrilateral, the area between two tra-

jectories is a positive value (Area ≥ 0). All quadrilateral areas are summed to give

an effective area between two trajectories. The area between two curves measure is

robust to noisy trajectory data; it is a parameter-free measure.

3.2.6.5 Curve Length

The curve length method, developed by Jekel et al.[13], was inspired by the work

of Andrade-Campos et al.[1]. New criteria for the determination of material model

parameters were proposed, along with a novel curve length attribute to be included

in the objective function to quantify the quality of fit between two curves [1]. The

principle of the curve length method is to compare a point on one trajectory to its

corresponding arc length location on the other trajectory. The authors stated that the

data point values can be expressed as a function of the trajectory length distance from

the first data point. A corresponding data point on the trajectory Q is calculated at
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Figure 3.6: Illustration of the Curve Length method between two curves. Source:
Elaborate by the authors.

the equivalent arc length location of the trajectory P . Then, squared residual values

are calculated as a function of both the dependent and independent variables:

r2i = (xQ
i (li)− xP

i )2 + (yQi (li)− yPi )2, where li = lPi

(
lQN
lPN

)
(3.4)

The sum of these squared residuals is used to quantify the difference between the

two trajectories, as shown in Figure 3.6. The curve length method measure has a

quadratic O(nm) time and is a parameter-free measure.

In summary, this chapter has comprehensively outlined the data sources, prepro-

cessing techniques, and methodological frameworks utilized in this study. This pro-

vides a comprehensive foundation for the analysis and modeling of maritime traffic

patterns and vessel destination prediction utilizing Automatic Identification System

(AIS) data. Chapter 4 defines the first phase of our research. In this phase, we study

the prediction of vessels’ next destinations, employing AIS data of transit ferry and

cargo vessels captured from Halifax Harbour. This includes data preparation pro-

cesses, the construction of continuous smooth traffic networks to summarize vessel
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trajectory data while preserving the fundamental shape of the trajectory, thereby

capturing essential spatial relationships and connectivity patterns, and the explo-

ration of five similarity measures for destination prediction tasks. The primary focus

of this chapter is to explore the initial design of a prediction model that assigns evolv-

ing probabilities to multiple potential destinations, allowing continuous updates to

the likelihood of arrival at each port.



Chapter 4

Destination Port Prediction Using a Novel Graph

Representation of Maritime Traffic

The current approaches to ship destination prediction rely on graph abstraction tech-

niques, which involve discretizing trajectories into sequences of traversed vertices and

edges. The objective of graph abstraction is to capture essential spatial relationships

and connectivity patterns while simplifying the representation. However, discretiz-

ing a vessel’s trajectory into a sequence of traversed waypoints1 poses challenges in

accurately modeling vessels’ movements, especially in high-ship density areas where

overlapping trajectories complicate waypoints’ identification. Additionally, graph ab-

straction techniques offer predefined or static route networks, where selecting an opti-

mal distance threshold is crucial to maintaining a balance between accurately captur-

ing spatial relationships and connectivity patterns while minimizing complexity. The

distance threshold significantly influences how faithfully the abstract graph represents

these relationships compared to the original geographical area. This chapter2 presents

a methodology for extracting shipping patterns from semantic trajectories by enrich-

ing AIS data with contextual information to facilitate trajectory segmentation and

annotation for advanced pattern recognition. An algorithm is introduced to aggregate

analogous trajectory segments based on origin-destination points, aiming to uncover

higher-level maritime patterns and routes while reducing data complexity, without

relying on distance thresholds. The resulting summarized trajectory representation

is expected to improve the predictive accuracy of vessel destination forecasting.

1Manoeuvre points at which the vessel changes its course, speed, or velocity that are clustered
according to a density threshold.

2This chapter is based on the publications [28, 27]

36
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4.1 Introduction

Maritime transportation plays a crucial role in economic growth as the world’s pop-

ulation expands. Accurate vessel destination forecasting can substantially enhance

decision-making efficacy within the industry and contribute to ensuring a secure and

efficient maritime traffic environment. Despite the availability of real-time vessel

data provided by the Automatic Identification System (AIS), inaccuracies in manu-

ally entered fields like destination, along with noisy and complex data, present chal-

lenges [50]. Port authorities face difficulties in resource allocation when utilizing AIS

data, as a significant portion of AIS messages either lack destination information or

contain inaccuracies in reported destinations [40]. The lack of accurate information

about vessels’ destinations would subject port authorities to challenges like arrang-

ing port activities for safe and efficient vessel operations and guiding traffic routes

to ensure the safety and efficiency of the maritime traffic environment. Hence, the

research on predicting vessels’ destinations holds significant value for port authorities

seeking to automate decision-making processes and ensure the efficient allocation of

resources for maintaining a safe and secure maritime traffic environment.

Detecting the destination port can be seen from the trajectory path that is nor-

mally traversed using AIS historical data, which is then compared to current trajecto-

ries to predict the destination. Thus, the similarities between traveling and historical

trajectories can be measured and utilized to classify and predict the vessel’s destina-

tion [28]. Meaningful shipping patterns can be extracted from semantic trajectories,

see Appendix A.2, by integrating geographical domain information into AIS data.

This enhances discrimination and allows for more complex analysis of vessel routes

and changes in movement behavior [6, 60, 5, 12, 79]. Trajectory segmentation meth-

ods provide the basics for detecting changes in vessel movement behaviour [35]. By

segmenting trajectories based on spatial context, specifically, port areas, the spa-

tial dependencies can be better localized within each segment, as vessels exhibit more

homogeneous movement patterns in specific regions. This approach facilitates the dis-

covery of maritime routes and traffic flows. Similarity analysis is crucial for solving

movement pattern recognition challenges like classification, clustering, and anomaly

detection. Vries et al. [20] introduced a similarity measure using edit distance, applied

in vessel type prediction. Alizadeh et al. [5] proposed a point-based model for vessel
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location and traffic forecasts, utilizing similarity analysis of historical AIS data. Zhen

et al. [108] presented an anomaly detection method for vessel behavior, devising a

similarity measure based on spatial and directional features in trajectory data. This

measure was then employed in clustering and classification tasks to identify abnormal

vessel sailing behavior.

In this study, we propose integrating AIS data with geographical information to

identify port stops. Subsequently, we segment trajectories based on these ports to

facilitate trip understanding and track vessel activities in large water areas. Following

trajectory segmentation, semantic labels are added to each segment, such as the path

number to distinguish the segments with the same start and end ports, and the

segment identifier, a unique number for each segment. The labeled segments are

then incorporated into reference route construction to create a summarized reference

trajectory by aggregating segments with the same path number. Then, we explore five

similarity measures to determine which is most effective for comparing vessel routes.

These measures are subsequently employed as classification techniques to predict

destination ports and assess similarity between short segments and reference routes.

Figure 4.1 presents our proposed approach for destination port prediction. This

framework has four main steps: 1- data preparation, 2- reference route construction,

3- similarity measurements, and 4- destination port prediction.

Figure 4.1: Framework of vessel destination port prediction.

The contributions of this chapter are as follows: (i) We propose a geographical

knowledge annotation for the generated segments to distinguish them by their spatial

features and context. (ii) A novel method to generate Reference Routes of Trajectory

(RRoT) is proposed that aggregates a set of segments with the same path number
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into a summarized trajectory. (iii) We compare five different similarity measures

to understand the best similarity measure for comparing vessel trajectories. (iv)

We present a method to predict the destination of a vessel by processing a short

and recent segment. Our destination prediction technique assigns probabilities to

multiple potential destinations when a vessel is distant from its endpoint. These

predictions evolve as the vessel progresses, facilitating continuous updates to the

arrival probabilities at each potential port. This probability estimation is valuable as

it enables the model to express uncertainty, thereby allowing humans to determine

when to trust the model, particularly when it assigns a high probability to a single

route or destination.

4.2 Definitions

Definition 4.2.1 (Trajectory Point). A trajectory point li, is a geolocation of moving

vessel o at time i, and is defined as, loi = ⟨xo
i , y

o
i ⟩, where xo

i represents the longitude

of the location, which varies from 0◦ to ±180◦, and yoi represents the latitude of the

location that varies from 0◦ to ±90◦.

Definition 4.2.2 (Trajectory). A trajectory τ , is a time-ordered sequence of trajec-

tory points of a moving vessel o, τ o = ⟨lo0, lo1, .., lon⟩. Because the trajectory data is

from AIS, the trajectory points could provide additional information, including vessel

identity, course/speed over ground, and ship type, which are considered trajectory

features.

Definition 4.2.3 (Trajectory Segment). A trajectory segment si is a set of consec-

utive trajectory points belonging to a trajectory τ o divided based on partitioning

positions, where so = ⟨loj , · · · , lok⟩, j ≥ 0, k ≤ n and so is a subsequence of τ o. The

process of generating segments from a trajectory is called trajectory segmentation.

Definition 4.2.4 (Segment Label). A segment label is an identifier given to a segment

to distinguish shipping lanes with the same origin and destination ports. These labels

facilitate the discovery of maritime routes and the identification of traffic flow between

ports.

Definition 4.2.5 (Port). A port is a circular area of radius r centered on the geo-

graphical coordinates of a sea port [16].
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Definition 4.2.6 (Origin and Destination Points). The center location of the nearest

port to the first point in a segment is designated as the origin point, O, of a segment,

while the center location of the nearest port to the last point of a segment is designated

as the destination Point, D of a segment.

Definition 4.2.7 (A reference route). A reference route between origin point A

and destination point B can be defined as a resampled trajectory segment denoted

as RAB, representing the average behavior of all trajectory segments starting from

origin point A and ending at destination point B. The calculation of the reference

route is explained in Algorithm 1.

Definition 4.2.8 (Trajectory Similarity). Trajectory Similarity is a distance gener-

alization to quantify the degree of resemblance between two trajectories. Specifically,

in this work, dist(τ1, τ2) represents the distance between a full trajectory segment

τ1 and a portion of trajectory segment τ2. The greater the value, the less similarity

between the two patterns.

Definition 4.2.9 (Linear interpolation). Linear interpolation involves reconstructing

a continuous trajectory or trajectory segment from AIS data by uniformly sampling

spatiotemporal positions along its length and estimating values between two known

points. Specifically, linear interpolation of a vessel trajectory estimates the vessel’s

position at a given time by assuming linear motion between two known positions.

Given two data points (t1, l1) and (t2, l2): l(t) = l1+
(t−t1)
(t2−t1)

·(l2−l1), where (t1 ≤ t ≤ t2).

For positions (l1 = (x1, y1)) and (l2 = (x2, y2)): (x(t) = x1 + (t−t1)
(t2−t1)

· (x2 − x1),

y(t) = y1 + (t−t1)
(t2−t1)

· (y2 − y1)).

4.3 AIS Data and Data Preprocessing

Our analysis involves data on the trajectory of vessels captured in the Halifax harbor

area in Nova Scotia, Canada. Section 4.3.1 describes and visualizes the data we use

in this study. Section 4.3.2 details the AIS data preprocessing to maximize the utility

of the data in our approach.

First, we do an experiment on the distribution of destination ports in AIS message

5 in order to see how much the destination data embedded in this field is useful. So,
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it is practical for port authorities to be able to use this data efficiently. AIS message

5 includes the vessel’s destination port information, with a free-text field allowing up

to 20 characters. However, these manually filled fields are often missing or incorrect.

A distribution of the destination field of message 5 in the AIS data is shown in

Figure 4.2. The majority of the distribution shows that the destination port is not

entered or the destination port field is unknown, where the name of a small town, bay,

anchorage, or shipyard is entered. All these variations cause ambiguity in destination

reports and lead to confusion and data interchange inefficiency.

Figure 4.2: The distribution of destination ports in AIS message 5 shows most of the
data submitted in this field is not accurate and not a representation of the real world.

4.3.1 AIS Data Overview

The AIS data used in this study is generated from AIS messages captured in the

Halifax harbor area, which were collected by our team at the Institute for Big Data

Analytics [36]. For our experiments, we explore:

• Two datasets of the trajectories of two transit ferries navigating the Halifax

port area. The first vessel, V1, trajectory data was collected from March 18,

2019 to July 10, 2019. The dataset has 27,028 data records. The second vessel,

V2, has 103,161 data records collected from March 5, 2019 to July 12, 2019.
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(a) Trajectory data of V1. (b) Trajectory data of V2.

Figure 4.3: Overview of AIS data of two transit ferries, V1, V2, from Halifax port.

• Two datasets of the trajectories of cargo vessels navigating in the Halifax port

area. The dataset vessel, D1, trajectory data were collected from March 7, 2019

to July 9, 2019. The dataset has 38,852 data records. The dataset, D2, contains

trajectory data collected from March 16 to July 11, 2019, including 8,070 data

records.

(a) Trajectory data of D1. (b) Trajectory data of D2.

Figure 4.4: Overview of AIS data of two cargo vessels, D1, D2, from Halifax port.

4.3.2 AIS Data Preprocessing

The first step of data preparation is to form the vessel trajectory by sorting a set

of trajectory points based on their date and time features. Then, we annotate the

trajectory points using the semantic layer of ports’ information (Figure 4.5). Anno-

tating the trajectory points provides a more detailed description of the vessel’s sailing

behaviour.

The feature space of the AIS data is annotated according to the port area in the

semantic layer; each trajectory point is checked to determine whether or not it is

positioned within one of the ports’ areas. If the trajectory point is located within

a port area, it is annotated as a stop. If it is located outside of a port area, it is
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Figure 4.5: A depiction of the ferry four terminals (ports) data.

annotated as a move. We have a total of eight ports: four terminals for transit

ferries, three piers for cargo, and one polygon marking the entrance and exit points

of the harbor.

Then, the annotated data is used to partition the trajectory into segments. This

process is called trajectory segmentation. Trajectory segmentation facilitates an un-

derstanding of the trip’s purpose and enables tracking vessels across a large area

to identify their activities. The segmentation process detects origin and destination

points in the trajectory and uses these positions to divide it into distinct segments.

These segments accurately capture the movement between port pairs, which helps

mine richer knowledge. Then, the centers of the nearest ports are added to the

segment, representing the segment’s start and endpoints. Each of these segments

represents movement from the origin port to the destination port; see Figure 4.6.

Figure 4.6: Segments between stop1 and stop2. The red and green segments represent
the movement from stop1 to stop2. The blue and yellow segments represent the
movement from stop2 to stop1.

To facilitate the interpretation of the sailing behavior of the segments, we propose

to assign another feature to segments, route, and annotate segments with the same

origin and destination points with the Path number to facilitate classifications. Figure

4.6 shows four segments representing trips through the area of the same shipping lane

(e.g., stop1-stop2), but the segments are separated by routes with different start

and endpoints (e.g., the red and green segments represent the movement from stop1
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to stop2, and they are labeled as Path1. The blue and yellow segments show the

movement from stop2 to stop1 and are annotated as Path2. To sum up, these segments

may appear visually similar, but the direction is different. Table 4.1 represents the

number of segments generated for each vessel trajectory.

Table 4.1: Vessels Trajectory Data Statistics.

Vessel Type # trajectory Points # trajectory Segments

Transit Ferry, V1 27028 1186

Transit Ferry, V2 103161 4263

Cargo, D1 38852 24

Cargo D2 8070 21

4.4 Reference Route Construction

After the trajectories are partitioned into segment and these segments are labeled,

we construct Reference Routes of Trajectory (RRoT). A reference route is a mean

segment representing segments belonging to the same path label between a pair of

ports (step 2). The reference route construction consists of two steps:

Step one is to interpolate the segments’ points, i.e., latitude and longitude, which

ensures the equality of segments’ lengths when calculating their average. linear in-

terpolation is used because it is the simplest and consumes the least computational

power. The steps for generating a reference route are described in Algorithm 1. The

input of this algorithm is all segments that belong to the same route. For each seg-

ment (line 1), the time is transformed to an increasing number (line 2), and then

spacing is applied to create a list of required data points (line 3). Then, we pass the

list of trajectory points created from the spacing method to the linear interpolation

method, see Appendix B.1. Then, trajectory points are interpolated independently

for the longitude values (line 4) and the latitude values (line 5). We have opted for an

oversampling technique by selecting 500 as the number of interpolated points. This

approach aims to improve anti-aliasing performance and enhance the overall resolu-

tion. In step two, each mean segment is calculated from all segments between two

ports that belong to the same route (lines 10, 11, and 12). Finally, it returns the

mean segment as a reference route. We implemented the linear interpolation and

space functions in the NumPy Python library.
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Algorithm 1: Reference Route Algorithm

1 Input: Trajectory segments with the same route labels // All segments

that has the same origin and destination ports;
2 output: Reference Route // An average segment represents the mean

of the segments in each cluster.

3 for each segment in segments with the same route labels do
// converting time to seconds format;

4 tm← (segment[time]);
// create an evenly spaced sequence in the specified period

of tm. interp time← linspace(tm[0], tm[−1], num points);
// functions return one-dimensional piece-wise linear

interpolated lon/lat with given discrete data points (tm,

lon/lat points), evaluated at interp time.

interp longitude← interpolate(interp time, tm,Longitude points);
5 interp latitude← interpolate(interp time, tm,Latitude points);

// sum the time and coordinates values of the segments.

sum interp time;
6 sum interp longitude;
7 sum interp latitude;

8 end
// compute the average time and average coordinates.

avg time← mean(sum interp time);
9 avg longitude← mean(sum interp longitude);

10 avg latitude← mean(sum interp latitude);
// Concatenate the averages and store the results in

Reference Route.

Reference Route← (avg time, avg longitude, avg latitude, label, route);
11 return Reference Route;

The reference routes of the ferryboat’s trajectory data, V1, and the reference routes

of cargo vessels’ trajectory data, D1, are shown in Figures 4.7, 4.8 respectively. These

figures represent summarized maritime traffic networks (graphs), where nodes repre-

sent locations (such as ports), and edges represent the connections between them

(the reference routes traveled by vessels). This graph representation assists in identi-

fying common routes and patterns followed by vessels over time while also illustrating

the connectivity between different ports based on vessel movements, represented by

smooth, continuous reference routes. The segments of a ferryboat, V2, and a cargo

vessel, D2, will be used as test sets to detect the segments’ destinations. Therefore,

reference routes are not constructed for these vessels (V2, D2).
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Figure 4.7: The reference routes of ferry
trajectory data, V1

Figure 4.8: The reference routes of cargo
trajectory data, D1

4.5 Best Similarity Measures

To effectively compare the similarity between the reference routes and the ongo-

ing route, five similarity measurements are explored. (1) Discrete Fréchet Distance

(DFD) [84], (2) Dynamic Time Warping (DTW) [43], (3) Partial Curve Mapping

(PCM) [44], (4) Area between two curves (Area) [13], and (5) Curve length (CL) [13].

These five measures are selected because they are parameter-free, which makes the im-

plementation of the detector simple and efficient since there is no interruption for the

algorithm to estimate and input the proper parameters. We assess the performance of

these five measurements by observing the distributions of similarity and dissimilarity

scores. It is a simple way to quantify the difference between each method’s similarity

and dissimilarity distributions. If a method has both distributions overlapped, it will

not perform well in quantifying the differences between the compared routes and will

be eliminated. The similarity measurements’ performance is investigated using the

distribution of quantified differences between all segments of the transit ferry dataset,

V1. For similar segments that have the same origin and destination ports, we calculate

their similarity differences and make a distribution of the acquired scores. For the

dissimilar segments, we choose a segment that represents one route, compare it with

other segments, and make a distribution of the acquired dissimilarity scores.

The similarity and dissimilarity distributions are visualized side-by-side to infer

each method’s performance, as shown in Figure 4.9. The plots demonstrate that in

the plot 4.9c PCM and the plot 4.9d Area methods, their similarity and dissimilarity

distributions overlap. This means the proposed models using these methods tend to

perform poorly in destination port classification and prediction. Therefore, these two
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(a) DFD (b) DTW (c) PCM

(d) Area (e) CL

Figure 4.9: A depiction of similarity and dissimilarity distributions of the five simi-
larity measures.

methods are eliminated. DFD, DTW, and CL performed the best across our simu-

lation in distinguishing the different distributions of the similarity and dissimilarity

scores. Therefore, these three similarity measures will be used to classify the ongoing

voyage based on the extracted reference routes.

4.6 Performance Assessment Criteria

We consider this a multi-class classification problem because we need to predict which

destination each route will travel to. To evaluate prediction performance, we consider

accuracy, the F1-score, and the confusion matrix. We decided to use these metrics

because accuracy alone can be misleading, as we have an unequal number of segments

belonging to each path.

The confusion matrix is a tabular way of visualizing the prediction model’s per-

formance. Each entry in a confusion matrix denotes the number of predictions made

by the model correctly or incorrectly. The X-axis contains the predicted reference

routes, and the Y-axis includes the actual reference routes. The diagonal values are

TP (true positive) values. A true positive is when the model correctly predicts the

correct reference route. Precision measures, out of all predicted positives, how many
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are actually positive. Precision focuses on predicted values (columns). Recall mea-

sures how many positive instances are predicted correctly. Recall focuses on actual

values (rows). The F1-score is the harmonic mean of precision and recall.

F1 score =
2 ∗ Precision ∗Recall

Precision + Recall
(4.1)

4.7 Destination Prediction

As vessel trips rarely follow a random trajectory, the prediction of the destination port

could be considered a classification problem. The goal of the following experiments

is to effectively predict the destination port by using the last points of a segment

(sub-segment) before the destination port and calculating its similarity to the con-

structed reference routes. The reference route destination, which shares the highest

similarity, is predicted to be the current sub-segment destination. Therefore, the pro-

posed approach will be validated with two datasets of two different vessel categories:

ferryboats and cargo vessels.

4.7.1 Destination Prediction of Ferryboats’ Trajectories

The 4263 segments of V2 are used as test data. First, a list of labels (i.e. path1,

path2, path3, path4, path5, path6) is created, which represents the labels of the 4263

segments. Each segment’s label is compared to the constructed reference routes’

labels, and the corresponding route id is appended to the list. Then, we choose the

last six trajectory points of each segment (sub-segment) before the destination port.

Based on the capture rate, six trajectory points provide the minimum information we

need to calculate similarity. Then, the similarity between these six trajectory points

and the reference routes is calculated.

Each reference route consists of 300 trajectory points. Using the three selected

similarity measurements: Discrete Fréchet Distance (DFD), Dynamic Time Warping

(DTW) and Curve Length (CL). The sub-segment destination is predicted based on its

highest similarity to a reference route, along with its destination port. Therefore, to

compare the performance of the selected similarity measures, first, the performance of

each method is visualized using the multi-class confusion matrix. Then, the accuracy
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and the F1 measure are reported for each measure. Figure 4.10 presents a visual

interpretation of the confusion matrices, where the prediction output for the three

similarity measurement models has six routes: path1, path2, path3, path4, path5, and

path6. The diagonal elements represent the correct predictions per route. The lighter

the color, the greater the number. Off-diagonal elements are mislabeled.

(a) Prediction performance
using Discrete Fréchet Dis-
tance.

(b) Prediction performance
using Dynamic Time Warp-
ing.

(c) Prediction performance
using Curve Length.

Figure 4.10: Confusion matrices of destination port prediction performance using
similarity methods: (a) Discrete Fréchet Distance, (b) Dynamic Time Warping, (C)
Curve Length.

The confusion matrix in Figure 4.10a represents the percentage prediction of each

destination port made by the model using the Discrete Fréchet Distance (DFD) sim-

ilarity measure. Diagonal elements for path1, path2, path4, path5, and path6 are

perfectly predicted. However, it performs comparatively poorly for path3; for all true

destination ports for path3, it only predicts 55% of them correctly. The confusion

matrix in Figure 4.10b represents the percentage prediction of each destination port

made by the model using the Dynamic Time Warping (DTW) similarity measure.

Diagonal elements for path1, path2, path5, and path6 are perfectly predicted. Next

comes path4 with 99% correct predictions. Then comes path3 with 94% correct pre-

dictions, which means that for this particular route, this DTW model outperforms

(DFD). The confusion matrix in Figure 4.10c represents the percentage prediction

of each destination port made by the model using the Curve Length (CL) similarity

measure. Diagonal elements for path5 and path6 are perfectly predicted. Next comes

path2 with 99% correct predictions. Then path1 with 98% correct predictions. After
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that comes path3 with 95% correct predictions, which means that for this particular

route, this model of CL outperforms the model of (DFD) and is slightly better than

the model of DTW. Then, path4 could predict only 78%.

From the confusion matrices, we can infer that the discrete Fréchet distance (DFD)

is a max-measure, defined as the maximum distance measured at each position. The

dependence on the maximum value of distance leads to non-robust behaviour, where

some variation in the sub-segments related to path3 distorts the distance function

by a large amount. Thus, the percentage prediction for path3 is significantly low.

Dynamic Time Warping (DTW) is a sum measure, defined as the sum of the dis-

tance measured at each position. Hence, this measure smooths the distortion in the

DFD model. Thus, the DTW model’s percentage prediction for path3 is significantly

improved. Curve Length (CL) is a measure of the ith point of the sub-segment to

the corresponding equivalent length of the curve of the corresponding route. The ith

point of the sub-segment does not correspond to the same abscissa, as in the DFD

and DTW models, where some variation in the sub-segments can distort the distance

function by some amount, as in path4 but notably less than the DFD model.

The destination prediction accuracy and f1 measure for DFD, DTW, and CL are

shown in Table 4.2. The model of DTW surpasses the other two methods in accuracy

and f1. As a result, DTW is a very robust technique to compare the peaks and

troughs by taking into account the varying lags and phases in the trajectories.

Table 4.2: Accuracy and f1 measure of the three selected models: Discrete Fréchet
Distance, Dynamic Time Warping and Curve Length

Discrete Fréchet Distance Dynamic Time Warping Curve Length

Acc. f1 Acc. f1 Acc. f1

95.82% 95.31% 98.97% 99.08% 89.75% 93.58%

4.7.2 Destination Prediction of Cargo Vessels’ Trajectories

The 21 segments of cargo vessel D2 are used as test data. First, a list of labels

(i.e., path1, path2, path3, path4) is created, which represents the labels of the 21

segments. Each segment’s route label is compared to the reference routes’ labels, and

the corresponding route id is appended to the list. Based on the capturing rate, the

choice of the last trajectory points of a segment before the destination port must
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provide the minimum information to effectively calculate the similarity. Therefore,

the choice of the number of last trajectory points of a segment depends on the length

of its shipping lane. So, for long segments, we need to choose the last 200 trajectory

points of each segment before the destination port. For segments following other

paths, we need to choose the last 50 trajectory points of each segment before the

destination port.

Each reference route consists of 1000 trajectory points. Using the three selected

similarity measurements: Discrete Fréchet Distance (DFD), Dynamic Time Warp-

ing (DTW) and Curve Length (CL). The reference route destination, which shares

the highest similarity with the sub-segment, is predicted as the current sub-segment

destination. Therefore, first the performance of each method is visualized using the

multi-class confusion matrix. After that, the F1 measure and accuracy are presented.

Figure 4.11 provides a visual interpretation of the confusion matrices, where the pre-

diction output for the similarity measurement models has four routes: path1, path2,

path3, path4. The diagonal elements represent the correct predictions per route. The

lighter the colour, the greater the number. Off-diagonal elements are mislabeled.

(a) Prediction performance
using Discrete Fréchet Dis-
tance.

(b) Prediction performance
using Dynamic Time Warp-
ing.

(c) Prediction performance
using Curve Length.

Figure 4.11: Confusion matrices of destination port prediction performance using
similarity methods: (a) Discrete Fréchet Distance, (b) Dynamic Time Warping, (C)
Curve Length.
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The confusion matrix in Figure 4.11a represents the percentage prediction of each

destination port made by the model using the Discrete Fréchet Distance (DFD) simi-

larity measure. Diagonal elements for path1, path2, and path4 are perfectly predicted.

However, it couldn’t predict all true destination ports for path3; all segments of path3

are mislabeled as path2. The confusion matrix in Figure 4.11b represents the percent-

age prediction of each destination port made by the model using the Dynamic Time

Warping (DTW) similarity measure. Diagonal elements for path1, path2, path3, and

path4 are perfectly predicted. This DTW model outperforms the DFD. The confusion

matrix in Figure 4.11c represents the percentage prediction of each destination port

made by the model using Curve Length (CL). Diagonal elements for path2 and path3

are perfectly predicted with 100% correct predictions. Next comes path1 with 75%

correct predictions. Then path4 is totally mispredicted.

The destination port accuracy and f1 measures for DFD, DTW, and CL are shown

in Table 4.3. The DTW model surpasses the other two methods in accuracy and f1.

As a result, DTW is a robust technique to measure similarity between trajectories.

Table 4.3: Accuracy and f1 measure of the three selected models: Discrete Fréchet
Distance, Dynamic Time Warping and Curve Length

Discrete Fréchet Distance Dynamic Time Warping Curve Length

Acc. f1 Acc. f1 Acc. f1

94.74% 92.24% 100% 100% 84.21% 86.96%

4.8 Limitations

The proposed prediction model exhibits several limitations. Firstly, it was tested only

on a small dataset of vessel trajectories from Halifax port, which has a relatively low

maritime traffic density and complexity. Secondly, as the volume of trajectory data

expands, the computational demands for annotation increase, presenting scalability

challenges. Additionally, this process necessitates specialized expertise, which makes

it highly labor-intensive, time-consuming, and cost-ineffective. Subject matter expert

verification is important to ensuring high-quality ground truth, reducing bias and

subjectivity, and validating automated annotations to ensure accurate and reliable

data for the prediction model. Thirdly, the method is constrained to producing a
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single reference for segments sharing an identical path number, which may result in

navigating through no-sail zones if such zones separate the segments.

In the next chapters, we intend to address these challenges through the following

strategies: (1) Utilizing datasets from high-density maritime traffic areas character-

ized by longer-duration vessel trajectories and complex movement patterns. (2) Inves-

tigating a semi-supervised clustering algorithm that incorporates background knowl-

edge of ports to generate clustering constraints, particularly must-link constraints,

to guide the clustering process. This approach aims to mitigate the bottleneck as-

sociated with data annotation. (3) Enhancing the construction of reference routes

by extracting multiple movement patterns corresponding to fine-grained AIS data

clustering within the same network lane (connection).

4.9 Conclusions

This chapter explores the initial design of our model for forecasting the destination

ports of moving vessels. The model incorporates a novel traffic network representa-

tion derived from summarizing vessel trajectories, and utilizes trajectory similarity

measures to determine vessel destinations based on recent movements. The sum-

marized representation retains the essential shape of trajectory3, capturing spatial

relationships and connectivity patterns, and providing adaptability in reflecting ob-

served maritime routes without reliance on predefined route networks or fixed dis-

tance thresholds. Consequently, the maritime traffic network topology inferred from

trajectory patterns, reveals the connectivity patterns of maritime routes and traffic

flows, facilitating flexible modeling of intricate traffic patterns and dependencies. By

utilizing the extracted traffic network, the prediction model enhances destination fore-

casting and decision-making in maritime operations. The model predicts destination

ports by comparing recent movement data with reference routes, with the predicted

destination port corresponding to the reference route with the highest similarity. As

vessels away from their destination, the model predicts multiple potential destina-

tion ports along with associated probabilities. These predictions dynamically change

throughout the voyage, allowing for updates to the probability of arrival at each port.

3The essential shape of a trajectory refers to the fundamental geometric path or pattern described
by the trajectory points. It captures the core spatial characteristics of how the trajectory unfolds in
space.
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The purpose of the model is to support human decision-making processes; thus, a

probabilistic approach is of value as it allows the model to express uncertainty. This,

in turn, allows humans to determine when they can trust a model, particularly when

it assigns a high probability to a single destination.



Chapter 5

Maritime Traffic Network Extraction using Novel Two-Step

Clustering for Multiple Patterns on the Same Edge

The Automatic Identification System (AIS) supplies vessels’ tracking data, which

plays a crucial role in maritime navigation and safety. Although no physical roads

exist at sea, vessels commonly adhere to de facto maritime routes for fuel efficiency,

and security reasons. Intelligent systems in maritime transportation utilize clustering

methods to identify common traffic patterns of vessels, enabling proactive decision-

making and risk mitigation. However, trajectory clustering poses significant chal-

lenges: current algorithms struggle due to their reliance on geometric assumptions

like shape or density, which can overlook clusters that don’t fit predefined shapes or

have varying densities. Additionally, the need for full similarity matrices is causing

significant computational burdens, limiting scalability and effectiveness. To address

these issues, this chapter1 introduces a novel clustering method that can identify

non-linearly separable clusters with varied densities and shapes of vessels’ trajectory

segments in linear time.

5.1 Introduction

Clustering is a valuable tool for uncovering patterns and commonalities in maritime

trajectories. However, traditional clustering algorithms are constrained by the subjec-

tivity inherent in configuring input parameters to determine the number or densities

of clusters [53, 69, 78, 82, 83, 91, 99]. This subjectivity arises because there is no

objective standard, given the absence of definitive ”true” clusters [53, 34]. Another

challenge for clustering algorithms is the computational expense associated with full

similarity matrix calculations. While segmenting vessel trajectories based on course

and speed over ground has limitations in capturing the intricacy of vessel behavior,

1This chapter is based on the publications [30, 29]

55
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particularly in dynamic maritime environments where these attributes are influenced

by external factors such as weather and ocean currents, leading to less accurate seg-

mentation, this work takes a different approach. Here, vessel trajectories are seg-

mented based on the ports’ areas, achieved by combining AIS data with port data.

The goal is to efficiently generate “complete clusters”, each includes all trajectory seg-

ments (i.e., routes) following the same direction between port pairs. Each generated

cluster corresponds to a single shipping lane within the maritime traffic network. Sub-

sequently, it is possible to cluster segments within each cluster once more in order to

extract multiple potential movement patterns for the same network lane. Figure 5.1

depicts the proposed technique.

Figure 5.1: A Step-by-Step guide to extracting continuous maritime routes using
trajectory segments clustering framework.

The contributions of this chapter are: (i) we present a framework detailing the

process of extracting continuous and smooth maritime traffic networks with po-

tential movement patterns for the same shipping lane from AIS datasets. (ii) We
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present a novel two-step clustering technique, Spatial Clustering of Vessels’ Trajec-

tories Segments (SPTCLUST), for extracting ship routes between port pairs. This

semi-supervised clustering approach aims to deduce must-link constraints from origin-

destination port points to facilitate the detection of maritime routes that accurately

reflect real-world traffic flow in linear time. It also aims to generate interpretable

clusters and automatically determine the number and densities of clusters. (iii) We

evaluate the proposed approach on four real-world AIS datasets from two different

areas with varying traffic densities. The experiments demonstrate that our cluster-

ing technique produces higher-quality clusters in less time and achieves competitive

results across all datasets.

5.2 Definitions and Preliminaries

Definition 5.2.1 (Bearing). In maritime navigation, a “bearing” is the clockwise

angle between two points on the earth’s surface, measured from true north, and cal-

culated using spherical trigonometry to account for earth’s curvature. Let point B

and C have positions (lat1, lon1) and (lat2, lon2), respectively. Let point A be the

North Pole as shown in Figure 5.2. The angle ∆ is the difference between the longi-

tudes. The angle β, representing the bearing from B to C, βB→C , can be calculated

using the following relations: β = atan2(X, Y ), where X and Y can be calculated

as, X = cos(lat2) × sin∆, ∆ = lon1 − lon2, Y = cos(lat1) × sin(lat2) − sin(lat1) ×
cos(lat2)× cos∆ [89]. If X = 0 and Y = 0, indicating that two geographic points are

identical, the bearing is defined to be zero.

Figure 5.2: A spherical triangle on a sphere. Image imported from [2].
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Definition 5.2.2 (Segments’ Endpoints’ Similarity). The measure of positional and

directional similarity between trajectory segments, s1 and s2, is determined by the

bearing values of their origin and destination points. Given origin points (lat1, lon1)

for O1 and (lat2, lon2) for O2, for two segments, the bearing from O1 to O2 is given by

βO1→O2 ; see definition 5.2.1. Similarly, the bearing from D1 to D2 is given by βD1→D2 .

The pair of bearings (βO1→O2 , βD1→D2) collectively defines the overall directional

similarity between the two segments, which is referred to as the pair of bearings of

the segments’ endpoints.

Definition 5.2.3 (Cluster). A cluster, Ci, is a set of trajectory segments, where all

associated origin and destination pairs (Oi, Di), representing the starting and ending

locations of its segments (definition 4.2.3) are identical, and this pair is unique to that

cluster and not found in any other cluster. Let Ci represent a cluster, and S denote

the set of all trajectory segments. Each cluster Ci consists of trajectory segments s

such that: Ci = {s ∈ S | (O(s), D(s)) = (Oi, Di) ∀ s ∈ Ji}. Ji is the index set of all

segments in cluster Ci. (Oi, Di) is the unique origin-destination pair for the cluster

Ci. Thus Ci ̸⊆ Cj ∀ i ̸= j, ∴ (Oi, Di) ̸= (Oj, Dj).

5.2.1 Problem Statement

Given a set of trajectory data τ = {1, ..., |τ |} and a list of ports P = {P1, ..., Pv},
where v is the number of ports, our objective is to extract a set of potential reference

routes Ri,j = {r1, ..., rm} between Pi and Pj. Each reference route rt ∈ R represents a

unique navigable path for a vessel, ensuring that rz ̸= rt for all 1 ≤ t ≤ m, 1 ≤ z ≤ m,

and t ̸= z.

5.3 Datasets

Two datasets were selected for the performance evaluation in this study: (i) AIS data

from Halifax Harbour and (ii) AIS data from the Gulf of Mexico ocean basin. AIS

data from Halifax Harbour: was collected at a latitude of 44° 34’ 51.8952”N and

44° 40’ 49.512”N and at a longitude of 63° 45’ 18.7884”E and 63° 26’ 42.2448”W

for the period from March to July 2019. We selected two types of vessels from this

dataset. Transit ferry data has 103162 trajectory points (definition 4.2.1), and cargo
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vessel data has 38853 trajectory points. AIS data from the Gulf of Mexico was

collected at a latitude of 18°N and 30°N and at a longitude of 79°W and 97°W for the

period from 01-03-2021 to 01-10-2021. We chose historical AIS data for cargo and

tanker vessels, assuming that vessels of the same type share similar route patterns.

The AIS dataset of cargo vessels includes 2046 cargo trajectories with a total of 218213

trajectory points. The tanker vessels’ dataset consists of 1846 trajectories comprising

229471 trajectory points. Figures 5.3 and 5.4 give an overview of AIS data in the

selected areas on the map using QGIS 3.26.

Figure 5.3: An overview of AIS dataset
from Halifax Harbour.

Figure 5.4: An overview of AIS dataset
from Gulf of Mexico.

5.4 Data Preprocessing

AIS data cannot function alone; it needs to be projected into geographic environment

information to be analyzed more effectively. ports’ information, important for geo-

graphic insights, generally exists or can be extracted from a comprehensive digital

map platform, such as the WPI (World Port Index)2. The main focus of this study is

on latitude and longitude coordinates of ports as well as their names. In our previous

work on vessel destination prediction, we demonstrated that AIS messages do not

provide trustworthy information about ports of destination [28]. To extract trajec-

tory segments and develop a more reasonable and rational explanation for patterns

and behaviours detected in a vessel’s trajectory, ports’ information is typically linked

with AIS data. To ensure the quality of the dataset, we cleaned the AIS data by

removing duplicate records and observations outside the target area or on land, and

2https://msi.nga.mil/Publications/WPI
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we validated the spatial distribution of the data using GIS applications. Figure 5.5

shows the AIS data in selected areas on a map using QGIS 3.26, while Figure 5.6

provides an overview of the cleaned AIS data in the selected areas.

Figure 5.5: Overview of AIS dataset
from Gulf of Mexico.

Figure 5.6: Cleansed AIS dataset from
Gulf of Mexico.

5.4.1 Port-based data annotation

Identifying origin-destination (OD) points has been a widely used approach in han-

dling spatiotemporal data across various trajectory types, including vehicle, human

mobility, and AIS data [28, 27, 29, 56, 81, 93]. Incorporating port details is crucial

for identifying and extracting trips from an origin port (O) to a destination port (D),

with the positions of the ports being referenced by WPI (World Port Index) data. The

AIS data labeling process (as depicted in Algorithm 2) is executed by integrating AIS

and port data, leveraging MovingPandas 3, a Python library for managing movement

data using Pandas and GeoPandas. The process encompasses the following steps:

1. Edit Ports Locations: The geographic coordinates (latitude and longitude) of

the ports, obtained from World Port Index data (WPI), need to be relocated

near the water area, as many of the locations are inside the city.

2. Generation of port area: To determine if a vessel’s trajectory point falls within

a port zone, circles are generated around all ports within the target region. This

is implemented using the Python Geopandas package. A proximity threshold

needs to be determined to identify when a vessel is considered to be at or near

a port. This threshold can vary based on the accuracy of the AIS data and

subjective criteria.

3https://geopandas.org
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3. Data annotation: Annotate the AIS data with port points. When a vessel’s

position is within the defined proximity of a port, mark that position as a

port point in the dataset. On the other hand, points outside the defined port

proximity are labeled as “move”.

The goal of this data annotation method is to facilitate the next step, which

is trajectory segmentation. Formally, let τ be the set of AIS data records, where

τ ∈ Rd is the d-dimensional feature space. Let L be the set of corresponding labels

or classes associated with the AIS data records in τ . L = {move, Ports}, where

Ports = {(namei, lati, loni)}, 1 ≤ i ≤ m. For each data record ι ∈ τ , there exists a

corresponding label l ∈ L, which represents the class or category to which ι belongs.

This can be denoted using a function: f : τ −→ L, where f is a mapping function

that assigns labels to the input data records. The function f maps each data record

ι to its corresponding label l.

fι+[l] =

Port name if ιj(lat, lon) ∈ Ports

Move if ιj(lat, lon) /∈ Ports
(5.1)

Alternatively, if we have a dataset consisting of n data samples, we can represent

the labeling using a labeled dataset: D = {(ι1, l1), (ι2, l2), ..., (ιn, ln)}, where (ιj, lj)

represents a labeled data record, with ιj ∈ τ being the input data and lj ∈ L being

its corresponding label.

2Azimuthal equidistant (AEQD) projection ensures accurate straight-line distances from the cen-
ter point but does not preserve true directions at all graticule line intersections.

3World Geodetic System (WGS84) is a coordinate reference frame for establishing latitude, lon-
gitude points.
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Algorithm 2: AIS data Labelling

Input: preprocessed trajectories T = {τ1, ..., τn}, and Ports data
Ports = {(name1, lat1, lon1), ..., (namem, latm, lonm)}

Result: Annotated trajectories with ports labels
/* Generate polygons around ports’ locations */

1 polygons← {}
2 for each i in Ports do
3 latitude← lati;
4 longitude← loni;
5 radius← input desired circle radius inmeters;

/* Get polygon with lat,lon coordinates in AEQD space2 */

6 point azimuthal ← Transform((lon, lat), aeqd));
/* creating a shapely buffer on the projected point */

7 buffer ← buffer(point azimuthal) for radius;
/* projecting the shapely buffer back to WGS84 space3 */

8 circle← transform .to .WGS84(buffer);
9 polygonsi ← Polygon(circle.exterior.coords);

10 end
11 add polygons as a new variable to Ports;
12 add polygons centers as a new variable to Ports;

/* Ported Points detection and labelling */

13 Labels← {};
14 for each p in T do
15 for each i in Ports do
16 if Porti[polygon] contains p then
17 Labels← (namei);
18 else
19 Labels← (move) ;
20 end

21 end

22 end
23 add Labels as a new variable ”feature or attribute” to T ;

5.4.2 Segmentation

This study uses the annotated data to divide a trajectory τ into ship routes (i.e.,

segments), beginning at one port and ending at the next port [28, 93]. A vessel’s tra-

jectory can be defined as a series of ports and locations between them. A trajectory

segment is defined by a sequence of locations that start at one port and end at the

next port in the trajectory. We refer to the start and end ports of the segments as the
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origin and destination (OD) points. The segmentation process segments the trajec-

tory according to the positions of origin-destination points to ensure homogeneity of

segments. We have a total of 42 ports: 40 ports designated for cargo and tankers, and

two polygons marking the entrances from the east and south of the Gulf of Mexico

area, indicating the points of entry and exit from this region.

Next, we suggest the “segmentation trick”, which maps the positions of end-

points of several segments inside a single port area to a shared position in common

(i.e., the centriods of ports’ zones). As seen in Figure 5.8, the endpoints of the

segments are scattered among various locations within each port. This distribution

across different positions within each port will produce inconsistent values with any

categorization method, which makes clustering and classification calculations diffi-

cult. We use a workaround to solve this problem, which designates the start and end

points of the associated segments as the center coordinates of the ports’ zones. This

trick guarantees that the endpoints of routes within the same port are identified by

the categorization technique as being at the same position. Algorithm 3 describes the

segmentation process.

Figure 5.7: Ship trajectory segments between two ports.

Let segment denotes a trajectory segment. In this context, segment0 represents

the segment’s first data record, and segment−1 represents the segment’s last data

record. We employ two variables, ind1 and ind2, to store the indices of the port

data corresponding to the segment’s origin and destination points, respectively. To

maintain the original data sequence of the segment: (1) We duplicate the first data

record from the segment and replace the latitude and longitude coordinates with

the central points of the associated port, [lat, lon]; signifying the origin point of

the segment. This duplicate is then inserted as the first data record within the

segment’s data records. (2) Similarly, we replicate the last data record from the

segment, substitute the latitude and longitude coordinates with the central points of



64

Algorithm 3: Ship routes extraction

1 Input: preprocessed labelled trajectories T = {τ1, ..., τn}, and Ports data
Ports = {(name1, lat1, lon1), ..., (namem, latm, lonm)};

2 Output: Ship routes (trajectory segments);
/* Trajectory segments are obtained by extracting AIS points

between the starting and ending ports, with the centre

coordinates of the ports added as the start and end points

for each segment. */

3 segment← {}
4 for i in each τ do
5 if τi[label] ̸= τi+1[label] then
6 segment.append(τi−1, τi+2);
7 end
8 ind1← index(segment0(label) ← Ports(name));
9 ind2← index(segment−1(label) ← Ports(name));

10 segment0[lat, lon]← Portsind1(polygons centers);
11 segment−1[lat, lon]← Portsind2(polygons centers);

12 end
13 save segment to a file;

the corresponding port, [lat, lon], signifying the destination point of the segment, and

insert this duplicate as the last data record within the segment’s data records, see

appendix A.3. Figure 5.8 displays some trajectory segments on a map using QGIS

3.26. Table 5.1 presents the number of segments generated for each vessel trajectory.

(a) Segments from Halifax Port dataset. (b) Segments from Gulf of Mexico dataset.

Figure 5.8: Overview of the segmentation result. Different colours represent different
segments
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Table 5.1: Vessels Trajectory Data Statistics.

Vessel Type # trajectory Points # trajectory Segments

Ferry (Halifax) 103162 4263
Cargo (Halifax) 38853 23

Cargoes (Gulf of Mexico) 218213 4847
Tankers (Gulf of Mexico) 229471 5750

5.5 Path Finding

This is the first clustering step in the SPTCLUST approach. The trajectory segments

are clustered according to their position and directions between port pairs. To cluster

the segments according to their similarity direction, the bearing is calculated between

only the endpoints of the segments, which significantly decreases computational com-

plexity. This procedure identifies the number of common shipping lanes between

ports. Basically, our procedure clusters segments that follow the same direction be-

tween two ports into one group. The number of resultant groups (i.e., clusters) equals

the number of common lanes between related ports in the studied area. Finally, it

visualizes the groups of directions (i.e., clusters) to help the operator discover inter-

esting patterns (see Figure 5.9). This visualization is also used to determine whether

a direction group dgi has multiple patterns from the origin port PO to the destination

port PD, which aids in the next clustering step.

Let s1 and s2 be trajectory segments with endpoints lO1 , lD1 and lO2 , lD2 , re-

spectively. The coordinates of these endpoints are given by lOi =

(
latOi

lonO
i

)
and

lDi =

(
latDi

lonD
i

)
, where lOi and lDi denote the origin and destination points of the

segment si, respectively.. Let N be the cardinality of the set of all trajectory seg-

ments and B be the cardinality of the set of all common lanes between ports. Let

DG = {dg1,dg2, . . . ,dgm} be the set of direction groups, where each group contains

segments following the same direction between port pairs (PO, PD) and m = B.

Let B list = {(βlO1 →lOi
, βlD1 →lDi

) | 1 ≤ i ≤ n} be the set of unique bearing pairs of

the segments’ endpoints. This set facilitates the mapping of segments to their cor-

responding clusters in DG and supports efficient data storage and retrieval, similar

to the role of keys in Python dictionaries. Algorithm 4 presents the procedure for
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grouping segments based on their direction similarity. The bearing is represented as

a floating-point number rounded to the nearest hundredths to ensure consistency and

conserve memory in large datasets.

Algorithm 4: Group based on Direction Algorithm

Input: A set of trajectory segments S = {s1, s2, ..., sn}
Result: A set of groups of segments DG = {dg1, dg2..., dgm}

1 DG← {{}} // list of lists; each inner list represents a group

of segments. Each group has segments with the same origin and
destination points;

2 B list← {}// list of the segments’ endpoint similarity, it is a

list of pairs of bearings as in definition 5.2.2;
3 for each segment si in S do
4 βlO ← (βlO1 →lOi

);

// Calculate the bearing between origin points: from lO1 in s1
to lOi in si, as in Definition 5.2.1;

5 βlD ← (βlD1 →lDi
);

// Calculate the bearing between destination points: from lD1
in s1 to lDi in si, as in Definition 5.2.1;

6 Bearing Pair ← (βlO , βlD);
// Create a pair of bearings;

7 if Bearing Pair NOT in B list then
8 B list.add{Bearing Pair};

// Append the pair of bearings to the B list;
9 Pos← index of Bearing Pair in B list;

// Return the index of the newly added pair of bearings in

the B list;
10 DG(Pos).add{empty list};

// Append empty list ‘‘a new group’’ to DG at the

specified index ‘‘Pos’’;

11 end
12 else
13 Pos← index of Bearing Pair in B list;

// Return the index of the matched pair of bearings in the

B list;

14 end
15 DG(Pos).add{si};

// Add the segment to a particular list ‘‘group’’ within DG

at the specified index ‘‘Pos’’;

16 end
17 return DG;
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Figure 5.9: Direction groups of transit ferry trajectory data.

5.6 Movement Patterns Extraction

Since trajectory segments are grouped based on their direction similarity, the skeleton

of the maritime traffic network is identified. At this point, we attempt to observe any

discernible trends within each cluster to identify different possible movement patterns.

Discovering multiple sailing lanes from port A (i.e., node A) to port B (i.e., node B)

helps navigators decide one lane over another for navigation according to multiple

factors: fuel consumption, avoiding undesirable conditions such as weather, traffic,

geopolitical tensions, and other external factors. To distinguish potential patterns, a

similarity measure with threshold values is defined to group similar patterns according

to the desired lower limit for the similarity of two segments within the same cluster

(Section 5.6.2). The threshold values are determined according to the distribution

of the similarity values of the segments in each cluster (Section 5.6.1). After each

cluster is constructed, segments within it are aggregated to form smooth, continuous

lanes that comprise the maritime traffic network (Section 5.7).
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5.6.1 Identify Threshold

We observed that, for trajectory clustering algorithms, threshold selection is highly

sensitive to the data. Threshold selection is the key to effective clustering. To mitigate

the manual selection of the threshold, we propose a method that uses pooled standard

deviations (SD pooled) [71, 45] to find the appropriate threshold. It is a method for

estimating a single standard deviation to represent two trajectory segments’ spatial

coordinates in a direction group (i.e., cluster). This is because segments within a

group are assumed to come from populations with a common standard deviation.

Hence, the pooled standard deviations can be used to identify segments with similar

patterns. A histogram is generated to visualize the distribution of the calculated

SD pooled values.

Figure 5.10: Histogram of pooled standard deviation values distribution and the arrow
points to the outliers.

As shown in Figure 5.10 the arrow refers to extreme values, while most values

cluster on the right of the histogram. If the user decides that there are two clusters,

then we can use a threshold value equal to 54.111.

Let dg1 be a direction group with segments travelling from PO to PD. Such that

dg1 = {s1, s2, .., sk}, where 1 ≤ k ≤ N , and N is the total number of trajectory

segments. Θ is a set of pooled standard deviations SD pooled between each two

segments’ points in dg1, Θ = {SD pooled1, SD pooled2, ..., SD pooledk−1}. Because

trajectory segments vary in length, linear interpolation is used to unify segments’

lengths, Algorithm 5: lines (3, 4). The built-in Python function is used to interpolate
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Algorithm 5: Identify Threshold Algorithm

Input: A group of trajectory segments following same direction
dgi = {s1, s2, ..., sk}

Result: A list of thresholds between the segments within the group dgi
Θ = {SD pooled1, SD pooled2, ..., SD pooledk−1}

1 Θ← {} // list of pooled standard deviation values between

segments within dgi; possible threshold/s, as in Equation 5.2;
2 for each segment si in dg do
3 interp lat← np.interp(si.latitude) ;
4 interp lon← np.interp(si.longitude);

// linear interpolation to uniformly sample spatiotemporal

positions along the length of si;
5 coord← (interp lat, interp lon);

// get the interpolated coordinates of si;
6 if si = s1 then
7 SD1 ← np.std(coord);

// Compute the standard deviation of the given coordinates

of s1 ;
8 n1 ← len(coord);

// get the length of the interpolated coordinates of s1;

9 end
10 else
11 SD2 ← np.std(coord);
12 n2 ← len(coord);
13 SD pooled(SD1, SD2, n1, n2);

// Calculate the pooled standard deviation between s1 and

s2; as detailed in Equation 5.2;

14 end
15 Θ.add(SD pooled);

// Append the pooled standard deviation value to the

thresholds list;

16 end
17 return Θ;

the spatial coordinates of each segment. Then, the pooled standard deviation between

the first segment’s SD1 and each other segment’s SD2 in the set dg1 is calculated as

follows:

SDpooled =

√
(n1 − 1) ∗ SD2

1 + (n2 − 1) ∗ SD2
2

n1 + n2 − 2
(5.2)

Where n1 is the length of the interpolated coordinates of s1 and n2 is the length of

the interpolated coordinates of the compared segment si. Algorithm 5 is proposed to
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identify the threshold/s of each group of directions. The histogram of Θ set values,

will be used to determine the threshold(s) to cluster the segments in each direction

group if it is possible. Otherwise, segments in a group of directions will be aggregated

to create one reference route from one port to the next.

5.6.2 Second Clustering step

Once the threshold has been determined, the second step of clustering can be ap-

plied to extract multiple possible lanes between two ports using algorithm 6. The

clustering algorithm 6 follows the same steps as the identifying threshold algorithm

(Algorithm 5), except that it utilizes the pooled standard deviation to match the de-

termined threshold and create clusters. By using this approach, the clustering algo-

rithm is able to group trajectory segments that are similar in terms of their movement

patterns, providing valuable insights into the common lanes taken by vessels.

5.7 Constructing Continuous and Smooth Summarized Network Lanes

To build a summarized maritime traffic network with continuous and smooth aggre-

gated lanes connecting ports, a reference route is generated for each resulting cluster.

This is achieved using the Reference Routes of Trajectory (RRoT) algorithm (Al-

gorithm 1, explained in Section 4.4). The reference route is a mean segment that

summarizes the segments within a cluster. The RROT function returns a set of

potential reference routes, Ri,j = {r1, r2, ..., rm}. The constructed reference routes

are geometric objects formed as sequences of averaged interpolated locations of the

segments within each cluster. The generated reference routes form a directed graph-

based representation with continuous, smooth, and complete lanes, constituting the

summarized maritime traffic network.
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Algorithm 6: Cluster trajectory segments within same Direction group Al-

gorithm

Input: A set of trajectory segments following same direction

dg1 = {s1, s2, ..., sk} and Threshold/s

Result: A set of clusters C = {c1, ..., cu}
1 C ← {{}};
2 for each segment si in dg do

3 interp lat← np.interp(si.latitude) ;

4 interp lon← np.interp(si.longitude);

5 coord← (interp lat, interp lon);

6 if s1 then

7 SD1 ← np.std(coord);

8 n1 ← len(coord);

9 end

10 else

11 SD2 ← np.std(coord);

12 n2 ← len(coord);

13 SD pooled(SD1, SD2, n1, n2) // calculations detailed in

Equation 5.2;

14 if SDpooled ≤ Threshold1 then

15 C(0).add{si};
16 else if SD pooled ≤ Threshold2 then

17 C(1).add{si};
18 end

19 else if SD pooled ≤ Thresholdj then

20 C(r).add{si};
21 end

22 else

23 C(u).add{si};
24 end

25 end

26 end

27 return C;
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5.8 Evaluation Metrics

To evaluate qualitatively the goodness of the clustering results; homogeneity [76],

completeness [76], and the V-measure [76] are used here. Therefore, we applied the

definitions of these metrics to evaluate our method. “Accurate clustering” is con-

tingent upon each cluster ci precisely identifying a group of segments possessing

equivalent labels for their respective origin and destination points. The notion of

Completeness is formally defined as the extent to which segments possessing equiva-

lent labels for their start and end points are contained within a solitary cluster.

The property of Homogeneity dictates that the distribution of segment labels

within each cluster should exhibit a bias toward a single class, with a consequent

minimization of entropy.

The V-measure is a composite metric that reflects a harmonious balance between

the measures of homogeneity and completeness, calculated as the harmonic mean of

the aforementioned scores [76].

A paramount concern is the attainment of elevated levels of completeness and

V-measure. The absence of substantial completeness and V-measure scores would

render the extraction of maritime routes infeasible. Should a cluster contain segments

traversing opposite directions between a specified pair of ports, the averaging of such

segments would result in a minuscule arc or even a single point situated within the

aquatic region on a map.

In this work, completeness (cm), homogeneity (h), and V-measure (V), as shown

in Equation 5.3, Equation 5.4, and Equation 5.5, respectively, are used. For the

purposes of the following discussion, assume a dataset comprising N segments, and

two partitions of these: a set of clusters C = {ci|i = i, 2, ..., K}, where K is the total

number of clusters generated by the algorithm, and a set of segments’ labels within

each cluster ci, Λi = {λj|j = 1, 2, ...., n}, n is the total number of segments in ci, Λ̂i

is a set of desired labels whose elements are equal to the maximum occurring label of

the segments within a cluster ci. Formally, the Homogeneity score (h), completeness

score (cm), and V-measure (v) are defined as [76]:

hK =
1

K

k∑
i=1

(1− H(Λ̂i|Λi)

H(Λ̂i)
) (5.3)
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cmK =
1

K

k∑
i=1

(1− H(Λi|Λ̂i)

H(Λi)
) (5.4)

VK =
1

K

k∑
i=1

(2
hi.cmi

hi + cmi

) (5.5)

H(Λ̂i|Λi) indicates the conditional entropy of the desired labels given the cluster

assignments and H(Λ̂i) means the entropy of the desired labels [76].

5.9 Experiments on Clustering Trajectory Segments

This study examines the performance of the proposed clustering approach, SPT-

CLUST, in clustering segments of vessel trajectory and generating their summarized

traffic network. The integration of ports’ information with AIS data makes it eas-

ier to evaluate clustering by assigning reference labels to each cluster based on the

origin and destination points of its segments [73]. These clusters are then assessed

using completeness, homogeneity, and validity measures [76]. Initially, we evaluate

SPTCLUST’s clustering performance against four well-known standard clustering

methods: Kmedoids, DBSCAN, OPTICS, and BIRCH, described in Section 3.2.2.1.

Subsequently, we assess the effectiveness of constructing smooth, continuous, and in-

terpretable reference routes from the clusters generated by each method. This process

allows us to further evaluate the effectiveness of each clustering method in creating

comprehensive maritime traffic networks with smooth, continuous lanes tailored to

various vessel types.

5.9.1 Results and Discussions

Table 5.2 displays the clustering quality of each method using three indicators: ho-

mogeneity, completeness, and V-measure across the four datasets.

Clustering Quality. Table 5.2 and Figure 5.11 reveal low completeness and ho-

mogeneity homogeneity scores in the baselines, reflecting the struggle of standard clus-

tering methods in identifying non-linearly separable clusters due to their parameter

constraints and similarity calculations. These algorithms primarily cluster segments

based on proximity, often resulting in similar but distant segments forming multiple
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Table 5.2: The clustering quality results comparing the SPTCLUST approach with
baselines.

Clustering Method Dataset Homogeneity Completeness V-measure

Kmedoids

Ferry(Halifax) 0.000 0.000 0.000
Cargo(Halifax) 0.033 0.000 0.000

Cargoes(Gulf of Mexico) 0.030 0.000 0.000
Tankers(Gulf of Mexico) 0.021 0.000 0.000

DBSCAN

Ferry(Halifax) 0.0833 0.000 0.000
Cargo(Halifax) 0.025 0.000 0.000

Cargoes(Gulf of Mexico) 0.127 0.000 0.000
Tankers(Gulf of Mexico) 0.122 0.000 0.000

OPTICS

Ferry(Halifax) 0.000 0.000 0.000
Cargo(Halifax) 0.020 0.000 0.000

Cargoes(Gulf of Mexico) 0.019 0.000 0.000
Tankers(Gulf of Mexico) 0.012 0.000 0.000

BIRCH

Ferry(Halifax) 0.167 0.000 0.000
Cargo(Halifax) 0.050 0.000 0.000

Cargoes(Gulf of Mexico) 0.128 0.000 0.000
Tankers(Gulf of Mexico) 0.073 0.000 0.000

SPTCLUST

Ferry(Halifax) 0.916 0.946 0.929
Cargo(Halifax) 0.929 0.951 0.938

Cargoes(Gulf of Mexico) 0.899 0.9398 0.9197
Tankers(Gulf of Mexico) 0.883 0.941 0.907

Figure 5.11: Visualization of Clustering Quality Results: SPTCLUST vs. Baselines
across Four Datasets.

unnecessary clusters, i.e., low completeness, instead of being appropriately grouped in

one cluster. Moreover, considering the proximity and the segments’ shape results in

segments with similar patterns but moving in opposite directions between two ports

being clustered together, i.e., low homogeneity. In contrast, the SPTCLUST approach

outperforms baseline methods in clustering performance, achieving higher scores in

homogeneity, completeness, and V-measure across all four datasets. By clustering



75

segments solely based on the similarity of their endpoints, SPTCLUST effectively

captures both positional and directional similarities. This results in well-separated

clusters that accurately reflect real-world traffic flow.

Computational Efficiency. To evaluate the efficiency of our clustering method,

we compared SPTCLUST with four baseline methods across four datasets from differ-

ent water areas with varying traffic densities. The results in Table 5.3 and Figure 5.12

show that SPTCLUST surpasses all other methods in computational efficiency across

all datasets.

Table 5.3: Runtime comparison of clustering methods: SPTCLUST approach and
baselines across four datasets.

Dataset #Points #Seg. Size Standard Clustering Proposed

Kmedoids DBSCAN OPTICS BIRCH SPTCLUST
Ferry(Halifax) 103162 4263 16.6MB 06:20:35 06:20:37 06:26:13 06:20:37 00:00:06
Cargo(Halifax) 38853 23 1.04MB 00:00:04 00:00:04 00:00:04 00:00:04 00:00:00:056

Cargoes(Gulf of Mexico) 218213 4847 35.3MB 11:12:00 11:12:02 11:31:14 11:14:03 00:00:07
Tankers(Gulf of Mexic) 229471 5750 46.9MB 14:39:31 14:39:34 15:09:45 14:40:20 00:00:09

Figure 5.12: Visualization of the runtime comparison between SPTCLUST and base-
lines across four datasets.

This superiority can be attributed to SPTCLUST’s reliance exclusively on the

segments’ endpoints’ similarity, specifically considering the pair of bearings associ-

ated with these endpoints. This leads to a time complexity of O(N) for clustering N

segments. In contrast, Hausdorff distance for similarity measures have high time com-

plexity, with at least O(m2) time cost for computing distances between segments with
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m points each. This indicates that SPTCLUST achieves a lower computation com-

plexity with a linear time complexity, making it effective in processing large datasets

efficiently.

Impact of Clustering Parameters. Table 5.4 displays parameter values and

resulting number of clusters.

Table 5.4: Clustering methods, their parameter values, and the number of generated
clusters.

Clustering Method Dataset Parameters Parameters values #Clusters

Kmedoids

Ferry(Halifax)

k

6 6
Cargo(Halifax) 6 6
Cargoes(Gulf of Mexico) 265 265
Tankers(Gulf of Mexico) 289 289

DBSCAN

Ferry(Halifax)

(ϵ, MinPts)

(0.01, 20) 12
Cargo(Halifax) (0.01, 3) 3
Cargoes(Gulf of Mexico) (5, 3) 252
Tankers(Gulf of Mexico) (5, 3) 254

OPTICS

Ferry(Halifax)
(min samples,
min cluster size,
xi)

(3, 100, 0.01) 11
Cargo(Halifax) (2, 3, 0.01) 5
Cargoes(Gulf of Mexico) (3, 10, 0.01) 162
Tankers(Gulf of Mexico) (3, 10, 0.01) 170

BIRCH

Ferry(Halifax)
(branching factor,
n clusters,
threshold)

(50, 12, 0.01) 12
Cargo(Halifax) (50, 6, 0.01) 6
Cargoes(Gulf of Mexico) (100, 265, 0.5) 265
Tankers(Gulf of Mexico) (50, 289, 0.5) 289

SPTCLUST

Ferry(Halifax)

No parameters

6
Cargo(Halifax) 7
Cargoes(Gulf of Mexico) 265
Tankers(Gulf of Mexico) 289

Parameter tuning for baseline methods involves iterative adjustments to achieve

optimal outcomes, using visualizations and metrics. Despite these tuning efforts,

clusters generated by baseline methods still contain segments moving in opposite di-

rections. Increasing the number of clusters tends to increase homogeneity but lower

completeness. For example, assigning each segment to its own cluster maximizes ho-

mogeneity but minimizes completeness. When determining the number of clusters for

DBSCAN, OPTICS, and BIRCH on the Halifax ferry dataset, we observed that these

methods tend to classify a substantial portion of the data as noise. Nevertheless,

we find that this number of clusters adequately preserves the fundamental trajec-

tory structure. In contrast, SPTCLUST eliminates the need for input parameters,

automatically determining both the number of clusters and their shapes.

Clustering Granularity-Interpretability Trade-off. Table 5.5 demonstrates

that SPTCLUST surpasses baselines by autonomously generating clusters that de-

fine traffic flow between port pairs. This removes subjective bias and trial and error,
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yielding quicker, more objective outcomes. Conversely, parameter tuning in baselines

reveals a trade-off between granularity and interpretability. Granularity in clustering

pertains to the level of detail in segments’ partitioning, with higher granularity indi-

cating more clusters, each with smaller, more homogeneous subsets. Increasing cluster

numbers may augment granularity but might also introduce noise or less meaningful

clusters. Conversely, reducing clusters could obscure distinctions between different

data groups, impacting both cluster detail and interpretability.

Table 5.5: The influence of input parameters on clustering results.

Clustering
Method

Parameters Clustering Outcomes

Kmediods k Increasing (k) generally leads to more clusters, resulting in smaller cluster
sizes as segments are partitioned into more groups. While decreasing k results
in fewer clusters, resulting in larger cluster sizes as more segments are grouped
together.

DBSCAN (ϵ, MinPts) Increasing (ϵ) decreases the compactness of clusters, as more neighbouring
segments can be included in the same cluster despite being less related in
direction. Increasing (MinPts) typically results in larger and fewer clusters.

OPTICS (min samples,
min cluster size,
xi)

Increasing the value of (min samples) reduces the number of core seg-
ments, resulting in larger cluster sizes and fewer clusters. Similarly, raising
(min cluster size) typically leads to fewer clusters, as smaller clusters may
fail to meet the minimum size requirement and merge into larger ones. Higher
values of (xi) can also decrease the number of clusters by permitting greater
density fluctuations, potentially merging smaller clusters into larger ones.

BIRCH (branching factor,
n clusters,
threshold)

Increasing the (branching factor) tends to increase the number of clusters
while reducing their sizes, as it allows for more branching in the tree structure.
Conversely, a higher number of clusters parameter (n clusters) generally leads
to clusters of smaller sizes and more of them. Raising the (threshold) can
decrease the number of clusters by allowing for greater similarity between
clusters, potentially merging smaller clusters into larger ones.

SPTCLUST - Automatically clusters trajectory segments between port pairs, identifying
the number of clusters and defining the traffic flow between them.

SPTCLUS’ Second Clustering Step. Here, we evaluate the effectiveness of

the second clustering step in partitioning clusters to potentially yield multiple ref-

erence routes within the same network lane. Figure 5.13j displays varying numbers

of reference routes among different clusters, while Figures 5.15j and 5.16j display a

single reference route per cluster. These routes serve as summarized representations

of their respective clusters. Our analysis reveals that the second clustering step per-

forms well with shorter trajectory segments from AIS data captured at the Halifax

port (Figure 5.13j). However, it struggles with longer segments displaying complex

motions from Gulf of Mexico datasets (Figures 5.15j and 5.16j). This challenge arises

from the algorithm’s reliance on spatial distribution variability among trajectory seg-

ments, utilizing pooled standard deviation, which oversimplifies relationships among

longer segments and fails to capture nuanced differences in their patterns.
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The Construction of Continuous and Smooth Lanes of Traffic Network.

Here, we evaluate the efficacy of constructing complete summarized maritime traffic

networks by averaging trajectory segments within clusters generated by each cluster-

ing method. This process reduces trajectory data complexity, aiding in identifying

common traffic routes, i.e., reference routes, and capturing overall vessel movement

trends between specific origin and destination pairs. High-quality clusters accurately

represent real-world traffic flow, resulting in continuous and smooth reference routes

between ports, thereby forming a comprehensive summarized maritime traffic network

that preserves trajectory fundamental shape. Conversely, low-quality clusters yield

an incomplete summarized maritime traffic network, missing the fundamental shape

of the trajectory. Figures 5.13, 5.14, 5.15, 5.16 depict the results of clustering algo-

rithms, with clusters of trajectory segments shown on the left and their corresponding

reference routes forming summarized maritime traffic networks on the right. Base-

line methods (K-medoids, DBSCAN, OPTICS, and BIRCH), as shown in the results

table 5.2, produce low-quality clusters, resulting in incomplete summarized maritime

traffic networks (on the right) that fail to capture trajectories fundamental shapes.

However, SPTCLUST outperforms baselines in generating high-quality clusters, as

highlighted in the results table 5.2, resulting in continuous and smooth reference

routes between ports, thereby constructing a comprehensive summarized maritime

traffic network that preserves trajectories fundamental shapes.

5.10 Limitations

The primary limitation of our proposed semi-supervised clustering approach lies in

the second clustering step. This step relies on statistical measures, which are uncer-

tain measurements of hidden noise and complex patterns. Employing a more robust

similarity measure in this step would be advantageous. This adjustment would en-

hance the identification and filtering of non-normal segments, thereby facilitating the

recognition of typical and expected routes, maintaining data quality, and improving

the accuracy of traffic pattern prediction.

Another limitation is highlighted with red circles in Figures 5.15j and 5.16j, where

segments separated by unsailable area should yield two reference routes. However,

the extracted reference routes show only one lane crossing the prohibited sailing area,
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which diminishes the quality of the summarized maritime traffic network and poses

a safety risk. To construct a reliable and safe map of maritime routes within the

traffic network, it is essential to account for environmental obstacles such as islands

and Marine Protected Areas (MPAs).

5.11 Conclusions

In this chapter, we introduce an advanced method for constructing maritime traffic

network, utilizing a novel two-step clustering technique to capture potential multiple

movement patterns for the same shipping lane. Trajectory segmentation based on

port points (origins and destinations) and clustering of similar trajectory segments

allows identifying established maritime routes, vessel paths, and port-to-port traffic

flows directly from AIS trajectories. Our proposed semi-supervised clustering method

to cluster trajectory segments can identify non-linearly separable clusters with irregu-

lar shapes and varied densities, outperforming four traditional methods by efficiently

identifying complex vessel motion patterns in linear time without sacrificing accuracy.

Additionally, it automatically determines the number of clusters without relying on

random initialization and is not sensitive to outliers, providing more interpretable re-

sults. Our experiments demonstrate the efficacy of the proposed clustering approach

in automatically detecting maritime routes that accurately represent real-world traf-

fic flow. This facilitates the creation of a summarized traffic network that preserves

the essential shape of vessels’ trajectories while potentially reducing complexity. This

allows focusing on the fundamental spatial patterns without getting bogged down in

noise or minor deviations. The method performs well across four datasets, including

dense and challenging water areas, demonstrating its competitive performance. Pre-

serving the fundamental shape of the trajectory is crucial for accurate representation

of vessel movement patterns in maritime operations. These representations serve as

reliable inputs for predictive models and algorithms, enabling more accurate forecasts

of future vessel movements and enhancing operational effectiveness and safety.
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(a) Kmedoid clusters. (b) Kmedoids reference routes.

(c) DBSCAN clusters. (d) DBSCAN reference routes

(e) OPTICS clusters. (f) OPTICS reference routes.

(g) BIRCH clusters. (h) BIRCH reference routes.

(i) SPTCLUST clusters. (j) SPTCLUST reference routes

Figure 5.13: Visualization comparing SPTCLUST clusters and reference routes with
those of Kmedoids, DBSCAN, OPTICS, and BIRCH, for Transit Ferry trajectory
data from Halifax port.
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(a) Kmedoids clusters. (b) Kmedoids reference routes.

(c) DBSCAN clusters. (d) DBSCAN reference routes

(e) OPTICS clusters. (f) OPTICS reference routes

(g) BIRCH clusters. (h) BIRCH reference routes

(i) SPTCLUST clusters. (j) SPTCLUST reference routes

Figure 5.14: Visualization comparing SPTCLUST clusters and reference routes with
those of Kmedoids, DBSCAN, OPTICS, and BIRCH, for Cargo Vessel trajectory data
from Halifax port.
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(a) Kmedoids clusters. (b) Kmedoids reference routes.

(c) DBSCAN clusters. (d) DBSCAN reference routes

(e) OPTICS clusters. (f) OPTICS reference routes

(g) BIRCH clusters. (h) BIRCH reference routes

(i) SPTCLUST clusetres. (j) SPTCLUST reference routes

Figure 5.15: Visualization comparing SPTCLUST clusters and reference routes with
those of Kmedoids, DBSCAN, OPTICS, and BIRCH, for cargo vessels from the Gulf
of Mexico basin.
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(a) Kmedoids clusters. (b) Kmedoids reference routes.

(c) DBSCAN clusters. (d) DBSCAN reference routes

(e) OPTICS clusters. (f) OPTICS reference routes

(g) BIRCH clusters. (h) BIRCH reference routes

(i) SPTCLUST clusters. (j) SPTCLUST reference routes

Figure 5.16: Visualization comparing SPTCLUST clusters and reference routes with
those of Kmedoids, DBSCAN, OPTICS, and BIRCH, for tanker vessels from the Gulf
of Mexico basin.



Chapter 6

Enhancing the SPTCLUST Approach to Optimize Port

Destination Predictions

Incorporating normal movement patterns improves the accuracy of vessel destina-

tion predictions. Aligning predicted routes with typical vessel movements reduces

the likelihood of making predictions based on exceptional instances [51]. Extracting

these normal patterns entails identifying and filtering trajectory segments that devi-

ate significantly from expected norms. Current outlier detection methods, relying on

fixed thresholds, often overlook variations in different sailing scenarios. To bridge this

gap1, we propose enhancing the second clustering step of the SPTCLUST approach

by integrating an adaptive threshold algorithm to detect and filter outlier segments.

This algorithm provides user assistance in selecting threshold values tailored to filter

segments within each cluster, accommodating changes in motion states across various

sailing scenarios. Consequently, this refinement leads to cleaner and more accurate

representations of historical routes. Additionally, we propose enhancing the summa-

rization algorithm to prevent aggregated routes from crossing prohibited sailing areas

by incorporating Marine Protected Areas’ (MPAs) and islands’ centerpoints as inter-

mediary points, resulting in two distinct reference routes avoiding prohibited sailing

areas. Finally, we explore trajectory prediction tasks leveraging a detailed traffic net-

work with clusters of maritime routes and a summarized maritime traffic networks to

evaluate their efficacy in destination prediction.

6.1 Introduction

Normal movement patterns are crucial for predicting vessel trajectories accurately.

In the literature, various outlier detection algorithms have been proposed to identify

normal trajectory segments [88, 100]. However, a major limitation of these methods is

1This chapter is based on the publications [29, 31]

84
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their reliance on constant threshold values, potentially limiting their ability to assign

distinct outlier scores, given the diverse nature of vessel movements. This lack of

adaptability may hinder the algorithms’ effectiveness across different vessel behaviours

and scenarios. To address this constraint, we propose an alternative approach using

adaptive thresholding techniques to enhance the robustness of identifying normal

trajectory segments [29]. Initially, the method automatically selects a representative

segments within each cluster, capturing the typical movement patterns of vessels

of a specific type. Then, Dynamic Time Warping (DTW) [13, 42] is utilized to

evaluate the similarity between the chosen representative segment and other segments

within the same cluster. The resulting similarity values are visualized through a

histogram, allowing users to set an appropriate threshold value for each cluster to filter

its outliers. Additionally, we propose utilizing knowledge of marine protected areas

(MPAs) and islands to summarize normal segments within each cluster. This helps

refine the representation of the generated reference routes by accurately accounting

for deviations caused by non-sail areas. As a result, two reference routes, one on each

side of the prohibited sailing area, are extracted, providing a more realistic depiction

of the summarized maritime traffic network.

Our main contributions are: (1) We propose improving the second step of our

SPTCLUST approach (Chapter 5) by developing an adaptive thresholding technique

that takes into account the local context of each cluster to identify and filter outlier

segments. (2) We propose considering marine protected areas and islands in maritime

traffic network summarization to enhance safety and the overall precision of the sum-

marized routes. (3) We propose exploring vessel destination prediction by leveraging

detailed traffic networks with clustered trajectory segments along their edges, as well

as summarized maritime traffic networks, to evaluate their efficacy in predicting vessel

destinations based on recent movements.

6.2 Definitions

Definition 6.2.1 (Fragment of a Trajectory Segment). A fragment of a trajectory

segment, fr, can be defined as follows: Let s = {(l1, t1), (l2, t2), . . . , (ln, tn)} denote a

trajectory segment, where li represents the location at time ti. A fragment fr of the

trajectory segment s is a subsequence {(lj, tj), (lj+1, tj+1), . . . , (lk, tk)}, where j is the
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index of the first location in the segment and k is the index of the last location before

reaching the destination port. Thus, a fragment starts from the origin port but does

not extend to the destination port, capturing a portion of the trajectory segment.

6.3 Normal Routes Extraction

In Chapter 5, when using the pooled standard deviation as a similarity measure to

distinguish movement patterns within a cluster, we encountered difficulty discerning

patterns in longer trajectory segments (definition 4.2.3). This limitation hindered

SPTCLUST’s effectiveness in identifying outlier segments. Therefore, we propose re-

placing the pooled standard deviation with dynamic time warping (DTW) to enhance

the identification and filtering of outlier segments.

The DTW measure is chosen for its parameter-free nature, tolerance to noise

and outliers inherent in motion patterns, and popularity in pattern matching tasks

(Section 6.3.1). To capture normal routes, a representative segment within a cluster

is selected (Section 6.3.2). Following that, the similarity among segments within the

cluster is calculated using Dynamic Time Warping (DTW) to eliminate dissimilar

segments (Section 6.3.2).

6.3.1 Similarity Measures

DTW, an unbounded similarity measure, assigns a value of 0 for identical segments,

while larger values indicate greater dissimilarity [13, 87]. It measures similarity by

identifying the optimal global alignment between two segments (definition 4.2.3) and

exploring all their points’ alignments to find the minimum distance [13, 87]. DTW

offers advantages: It’s parameter-free and robust to outlier observations [51]. How-

ever, a drawback of warping-based distance is its one-to-one comparison of trajectory

points (definition 4.2.1). Thus, selecting a reference segment representing the normal

motion trend is necessary to effectively measure the similarity of trajectory segments

within each cluster and detect outliers. The following subsection describes the method

for selecting such a reference segment.
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6.3.2 Detecting and Filtering Outlier Segments

We identify two primary anomalous motion patterns among outlier segments: “sharp

turning” and “self-crossing”[88]. Our trajectory segments contain these outliers, as

shown in Figure 6.1.

(a) Self-crossing (b) Sharp turning

Figure 6.1: Example of anomalous movement patterns in trajectory segments.

The outlier segment detection process comprises two main steps: (1) the

selection of the normal pattern, often referred to as the “representative segment”,

and (2) the subsequent classification and filtering.

1. In Figure 6.1, anomalous movement patterns appear as sharp peaks within

a time series. To select a representative segment within each cluster, each

segment’s spatial information is converted into a one-dimensional signal. This

conversion is critical because the peak identification function only works with

1D arrays. The segment with the fewest or no peaks is then chosen to represent

the normal movement pattern. This process is illustrated in Figure 6.2.

Figure 6.2: Normal pattern selection process.
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2. To filter outlier segments, a similarity threshold ϵ is required, indicating the

minimum desired similarity between segments and their representative segment

in the same cluster. Segments with similarity scores exceeding this threshold are

filtered out. The selection of ϵ is highly data-dependent, so the DTW similarity

between trajectory segments and their representative segment is calculated, as

detailed in Algorithm 7. The results, shown in a histogram and a list of simi-

larity scores (Figure 6.4), assist users in determining the appropriate threshold.

This calculation is performed for each cluster, considering distinct movement

patterns between pairs of ports. Once the threshold is identified, the procedure

outlined in Figure 6.3 is implemented to remove outlier segments.

Figure 6.3: Segments classification process.

Algorithm 7: Choose epsilon

Input: A set of trajectory segments following same direction
clusteri = {s1, s2, ..., sk}

Result: A list of similarity values between the segments
DTW values = {DTW1, DTW2, ..., DTWk−1}}

1 DTW values← {} // list of variability values to choose ϵ
2 for each segment si in clusteri do
3 P ← (snormal.latitude, snormal.longitude);
4 Q← (si.latitude, si.longitude);
5 DTW values.add(DTW (P,Q));

6 end
7 print(sort DTW values ascending);
8 print(sort DTW values descending);
9 plot Histogram of DTW values;
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Figure 6.4: The ordered values of the similarity measure and the histogram represent
variations in similarity between trajectory segments in a direction group.

6.4 Constructing Continuous and Smooth Summarized Traffic Network

To establish a complete summarized maritime traffic network with continuous and

smooth aggregated lanes, a reference route for each cluster needs to be generated using

the Reference Routes of Trajectory (RRoT) algorithm, discussed in Section 5.7. How-

ever, RRoT has a limitation: it can only extract a single reference route for segments

within a cluster. In scenarios where obstacles like islands or Marine Protected Areas

(MPAs) separate trajectory segments with identical origin and destination points, the

aggregated route may traverse the restricted area. This limitation could be addressed

by introducing intermediary points between two ports to highlight the distinctions

between routes. To enhance the construction of the reference routes, a method called

“Island search” is developed. This method employs a semantic layer of islands and

MPAs to separate trajectory segments within clusters separated by islands or MPAs

(as illustrated in Figure 6.5). By using this approach, we can identify the trajectory

segments on either side of the islands, or MPAs. The steps involved in this method

are:

First, identify the coordinates of the center of the vicinity surrounding islands or

MPAs. Next, create a list (e.g., islands list) of port pairs separated by islands or

MPAs. Then, for each cluster:

1. If its segments have start and endpoints in the list (islands list):
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Figure 6.5: Trajectory segments fol-
lowing the same direction separated by
MPAs, indicated by red circles.

Figure 6.6: Reference route extraction of
trajectory segments following the same
direction separated by MPA.

(a) Group the segments based on their direction to the island’s center point

by calculating the compass bearing between these segments and the center

points of the non-navigable areas (i.e., N, E, W, S). The standard compass

bearing divides the compass into sixteen directions, spaced 11.25° apart.

(b) Each group should contain segments passing on one side of the non-navigable

area.

(c) Construct the reference route for each group by utilizing the RROT algo-

rithm 1, as shown in Figure 6.6.

2. Else if the cluster’s segments have start and endpoints not in the list (is-

lands list): Construct the reference route for segments in the cluster using the

RROT algorithm.

6.5 Vessel Destination Prediction

Maritime Situational Awareness (MSA) relies on leveraging extracted maritime knowl-

edge, particularly maritime traffic networks inferred from trajectory patterns, to assist

in vessel destination prediction based on recent movement patterns. Our proposed

destination port prediction approach, detailed in Section 3.2 of Chapter 3, will be

employed to evaluate how these representations can improve prediction accuracy.

Detecting destination ports involves comparing the summarized traffic network with

current trajectories, aiming to enhance computational efficiency. Meanwhile, destina-

tion prediction based on detailed traffic networks, with clusters of trajectory segments
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along each connection, aims to facilitate the development of predictive models for ac-

curately forecasting future ship locations up to the next port. Based on findings from

Chapter 4, Discrete Fréchet Distance (DFD) and Dynamic Time Warping (DTW)

are utilized for matching.

6.5.1 Destination Port Prediction based on Detailed Network

Clusters, representing normal movement patterns of maritime routes that accurately

reflect real-world traffic flow, are expected to enhance the efficacy of a tracking method

for predicting vessels’ upcoming locations en route to their next destination. This

method leverages clustered trajectory segments, aligning the recent route with his-

torically clustered segments to forecast vessel movements based on similarity in direc-

tion and location, as illustrated in Figures 6.7 and 6.8. This classification technique

employs two similarity measures; specifically, (i) Discrete Fréchet Distance, and (ii)

Dynamic Time Warping (DTW), to align a test fragment of a trajectory segment

with clusters of trajectory segments. A fragment of trajectory segment, represent-

ing a sequence of locations starting from the origin port but not extending to the

destination port (e.g., an incomplete route).

Figure 6.7: Ship track prediction using utilizing clusters of maritime routes.

Figure 6.8: Prediction Process Overview.
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6.5.2 Destination Port Prediction based on Summarized Network

The summarized traffic network, which summarizes trajectories, is anticipated to

enhance the efficiency of destination port prediction. The aim is to predict vessel

movements globally, taking into account the departure point, and the current ongoing

route. Predicting a vessel’s destination port entails identifying the reference route

that closely aligns with the predicted ongoing route, as illustrated in Figure 6.9. This

prediction technique matches reference routes with fragments of trajectory segments

using two similarity measures: (i) Discrete Fréchet Distance (DFD), and (ii) Dynamic

Time Warping (DTW).

Figure 6.9: Ship destination prediction using maritime traffic network.

6.5.3 Evaluation Metrics for Prediction

To evaluate the performance of our prediction models, we use accuracy, and the F1

score, which are two commonly used metrics for prediction accuracy. The scikit-learn

metrics API are utilized to calculate these two metrics.

6.6 Experiments

This section evaluates the effectiveness and efficiency of the enhanced “SPTCLUST”

clustering approach in extracting accurate representations of established maritime

routes. Furthermore, it evaluates the performance of similarity-based prediction mod-

els that utilize these extracted representations to predict vessel routes and destina-

tions.

6.6.1 Dataset

In our experiments, we utilize three AIS datasets captured in two distinct water

regions, as illustrated in Figure 6.10. Specifically, we employ datasets from Halifax

Harbour, including Transit Ferry, and two datasets from the Gulf of Mexico ocean

basin, encompassing cargo vessels and tanker vessels AIS datasets.



93

(a) Transit ferry. (b) Cargo vessels. (c) Tanker vessels.

Figure 6.10: Visualization of Vessels’ Trajectories for the three Datasets.

6.6.2 Filtering Outlier Segments

This subsection evaluates the removal of outlier segments from the clusters. It is

a critical step, as these outliers can significantly affect the derived prediction mod-

els. Figure 6.11 compares randomly selected clusters of trajectory segments before

and after filtering. These clusters include transit ferry data from Halifax port and

trajectories of cargo vessels and tanker vessels from the Gulf of Mexico area.

Figure 6.11: side by side Visualization of clusters of trajectory segments before and
after outliers removal.

6.6.3 The Construction of Continuous and Smooth Summarized Lanes

Here we evaluate the construction of more precise reference routes, focusing on gen-

erating separate routes for segments within the same cluster, particularly those sep-

arated by non-navigable areas. Figure 6.12 illustrates 44 reference routes extracted
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from cargo vessels’ clusters, derived from 22 clusters with segments separated by non-

navigable areas. The results highlight three instances where the extracted reference

routes cross island borders, indicated by red circles. Additionally, Figure 6.13 shows

32 reference routes from tanker vessels’ clusters, obtained from 16 clusters with seg-

ments separated by non-navigable areas, with two instances where the routes cross

non-navigable areas, marked by red circles.

Figure 6.12: Cargo vessels’ reference
routes around obstacles.

Figure 6.13: Tanker vessels’ reference
routes around obstacles.

Zoom in on the inaccurate cases depicted in the figures above and overlay them on

their respective segments in the clusters. Figure 6.14 illustrates the cluster on the right

(pink dots), containing segments separated by an MPA. The numbers of segments

passing through the MPA’s south and those in the north are mostly equal. As the

segments approach their destination port, it becomes evident that the trajectory

points are located on the MPA’s border. Consequently, the resulting reference routes

in Figure 6.14 are accurate and coincide with the original trajectory points. The same

phenomenon occurs in the clusters on the left side of the picture.

Figure 6.14: Cargo vessels reference
routes atop their clustered segments.

Figure 6.15: Tanker vessels reference
routes atop their clustered segments.



95

Figure 6.15 shows the extracted reference routes overlaid on their respective clus-

ters. In the cluster on the right, a reference route seems to cross the MPA, but the

actual segment points don’t pass through it. This deviation occurs because the arith-

metic mean used in the RROT algorithm (algorithm 1) places the reference route

away from the middle of the three segments due to data variability. In the cluster on

the left, the reference route passing through the MPA’s north aligns accurately with

the segment points. However, the reference route passing the MPA’s south is slightly

shifted, again due to the use of the average in the RROT algorithm.

The evaluation of reference route extraction involves manual assessment through

visualization and binary classification. Routes are categorized as either avoiding the

prohibited sailing area (category 1) or passing through it (category 0). Accuracy and

F1-score metrics evaluate the model’s overall performance in constructing reference

routes. Table 6.1 summarizes the accuracy and F1-scores for both cargo and tanker

vessels’ routes.

Table 6.1: Accuracy and F1-score of the extracted reference routes.

Vessel Type Accuracy F1-score

Cargoes 98.1% 99%
Tankers 97% 98.5%

6.6.4 Destination Port Prediction based on Detailed Network

In this evaluation, we investigate predicting vessels’ upcoming locations en route to

their next destination, as detailed in section 6.5. The prediction accuracy is assessed

using clusters of trajectory segments generated by our SPTCLUST approach and

compared against clusters from four baseline methods: Kmedoids, DBSCAN, OP-

TICS, and BIRCH (see Section 3.2.2.1). To ensure robustness, we randomly sample

500 fragments and repeat this process five times, utilizing clusters from each method

across three datasets. The averaged results from these five runs, including accuracy

and F1-score metrics, are presented in Table 6.2 and Figure 6.16.

As depicted in Table 6.2 and Figure 6.16, predictive models utilizing clusters gen-

erated by SPTCLUST demonstrate higher prediction accuracy compared to those

using clusters from standard methods. This superiority stems from SPTCLUST’s
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Table 6.2: Accuracy and F1-score, along with their 95% confidence intervals, are
reported for two similarity-based predictive models: Discrete Fréchet Distance (DFD)
and Dynamic Time Warping (DTW), using clusters.

Clustering Dataset DFD DTW

Method Accuracy F1-score Accuracy F1-score

Kmedoids

Ferry 50.50% ± 0.026 47.30% ± 0.023 47.05% ± 0.013 46.51% ± 0.010
Cargoes 51.79% ± 0.026 48.03% ± 0.022 45.70% ± 0.013 45.30% ± 0.011
Tankers 43.33% ± 0.013 45.61% ± 0.019 47.47% ± 0.019 46.10% ± 0.021

DBSCAN

Ferry 39.06% ± 0.020 36.54% ± 0.026 38.53% ± 0.025 36.94% ± 0.028
Cargoes 39.08% ± 0.023 37.67% ± 0.023 41.56% ± 0.026 40.62% ± 0.030
Tankers 40.23% ± 0.019 36.24% ± 0.015 38.45% ± 0.024 35.82% ± 0.022

OPTICS

Ferry 39.74% ± 0.011 37.60% ± 0.010 39.62% ± 0.012 37.71% ± 0.005
Cargoes 37.82% ± 0.025 36.03% ± 0.028 37.02% ± 0.024 36.21% ± 0.023
Tankers 29.04% ± 0.032 23.99% ± 0.022 29.62% ± 0.033 27.33% ± 0.023

BIRCH

Ferry 53.22% ± 0.037 49.19% ± 0.015 53.78% ± 0.017 49.88% ± 0.016
Cargoes 54.17% ± 0.036 50.68% ± 0.037 53.81% ± 0.022 50.49% ± 0.025
Tankers 45.39% ± 0.027 43.66% ± 0.020 46.28% ± 0.013 45.44% ± 0.010

SPTCLUST

Ferry 95.16% ± 0.014 94.54% ± 0.013 97.28% ± 0.011 96.60% ± 0.013
Cargoes 76.14% ± 0.012 76.22% ± 0.014 88.60% ± 0.012 87.81% ± 0.016
Tankers 69.96% ± 0.003 68.40% ± 0.005 78.02% ± 0.012 77.75% ± 0.015

Figure 6.16: Visualization comparing prediction performance using SPTCLUST clus-
ters versus baselines’ clusters across three datasets.

capability to form comprehensive clusters, each containing all segments with consis-

tent directions between two ports, as opposed to being scattered and mixed across

multiple clusters. Consequently, this enables more precise matching with the ongoing

trajectory.
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However, the accuracy of the predictions relies on correctly classifying test frag-

ments to their clusters. Overlapping clusters can complicate classification, leading to

occasional misclassifications. Figure 6.17 illustrates this scenario, where accurate pre-

dictions are shown on the left side, while the right side shows erroneous predictions

due to overlapping clusters. In the figure, the test fragment is highlighted in red,

with its relevant cluster shown in lighter colors, and the ground truth is depicted in

yellow. The output of the predictive model is represented by the most similar route

in green, along with its cluster in lighter colors. It’s noteworthy that predictions are

continuously updated as vessels progress.

Figure 6.17: Prediction results using SPTCLUST-generated clusters: accurate pre-
dictions on the left; erroneous predictions on the right.

6.6.4.1 Destination Port Prediction based on Summarized Network

In this evaluation, we investigate the prediction of destination ports by comparing

the test fragments with the generated reference routes, using two similarity measures:

discrete Fréchet distance (DFD) and dynamic time warping (DTW), as elaborated

in section 6.5. Prediction accuracy is evaluated using reference routes obtained from

clusters generated by our SPTCLUST approach and compared with predictions us-

ing reference routes from clusters of four baseline methods: K-medoids, DBSCAN,

OPTICS, and BIRCH. To ensure robustness, we randomly select 500 fragments and

repeat the process five times, employing reference routes from each method across

three datasets. Table 6.3 and Figure 6.18 present the averaged results from five runs,

including accuracy and F1-score.
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Table 6.3: Accuracy and F1-score with 95% confidence intervals for two similarity-
based predictive models, Discrete Fréchet Distance (DFD) and Dynamic Time Warp-
ing (DTW), using reference routes.

Clustering Dataset DFD DTW

Method Accuracy F1-score Accuracy F1-score

Kmedoids

Ferry 0.0% 0.0% 0.0% 0.0%
Cargoes 02.05% ± 0.007 02.07% ± 0.007 02.90% ± 0.010 03.05% ± 0.009
Tankers 0.0% 0.0% 0.0% 0.0%

DBSCAN

Ferry 10.61% ± 0.013 10.32% ± 0.012 09.51% ± 0.006 09.65% ± 0.006
Cargoes 09.52% ± 0.007 08.70% ± 0.006 08.79% ± 0.012 09.47 ± 0.013
Tankers 07.11% ± 0.004 05.41% ± 0.005 04.80% ± 0.006 04.36% ± 0.003

OPTICS

Ferry 09.01% ± 0.004 08.10% ± 0.003 09.19% ± 0.002 09.56% ± 0.002
Cargoes 0.0% 0.0% 0.0% 0.0%
Tankers 00.57% ± 0.002 00.26% ± 0.001 00.57% ± 0.002 00.51% ± 0.001

BIRCH

Ferry 06.10% ± 0.016 05.11% ± 0.014 06.08% ± 0.010 05.58% ± 0.009
Cargoes 05.53% ± 0.008 04.84% ± 0.006 03.24% ± 0.012 03.26% ± 0.010
Tankers 00.47% ± 0.003 00.29% ± 0.002 00.47% ± 0.003 00.35% ± 0.003

SPTCLUST

Ferry 93.35% ± 0.015 92.84% ± 0.014 95.18% ± 0.013 94.02% ± 0.011
Cargoes 73.14% ± 0.023 71.12% ± 0.019 77.30% ± 0.014 76.68% ± 0.015
Tankers 54.09% ± 0.032 51.53% ± 0.028 51.14% ± 0.009 47.59% ± 0.011

Figure 6.18: Visualization comparing prediction performance using SPTCLUST ref-
erence routes versus baselines’ reference routes across three datasets.

As shown in Table 6.3 and Figure 6.18, models using reference routes from SPTCLUST-

generated clusters perform better in predicting accuracy than those using routes from

baselines’ clusters. This is attributed to the following factors:
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1. SPTCLUST-generated clusters group all segments following the same direction

into a single cluster. Consequently, averaging segments with consistent direc-

tions between two ports results in comprehensive reference routes from port to

port.

2. Clusters generated by baselines contain segments with conflicting directions

within each cluster. Averaging segments with opposite directions between two

ports leads to incomplete reference routes, which degrade the prediction.

However, when forecasting the destinations of fragments from tanker and cargo

vessels’ trajectories, we observe lower prediction accuracy than forecasting the desti-

nations of fragments from transit ferry, as depicted in Figure 6.19a. This is mainly

because each cluster of trajectory segments from the transit ferry has only one cor-

responding reference route outgoing from the ports for each direction. Moreover,

instances where there are two reference routes outgoing from the same port are often

distant from each other, facilitating their easy classification.

(a) Transit ferry. (b) Cargo vessels. (c) Tanker vessels.

Figure 6.19: Visualization of maritime traffic networks for the three datasets.

In contrast, the summarized traffic networks of tankers and cargo vessels depicted

in Figures 6.19b and 6.19c exhibit overlapping reference routes, along with frequent

instances of two reference routes for the same lane. This decreases the overall accuracy

of the prediction model. The existence of multiple routes originating from the same

starting point introduces ambiguity, posing a challenge for the model to determine the

most appropriate match, consequently leading to incorrect predictions. Additionally,

we noted that the predictive model using tanker vessels’ trajectory data yielded the

lowest results. This is attributed to the irregular sampling rate of this data. In

general, destination predictions based on clusters exhibit greater precision compared

to those based on maritime traffic networks.
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6.7 Limitations

The limitation of our predictive approach is its inability to accurately forecast defini-

tive destinations over long time horizons exceeding two hours. Specifically, the use

of pattern matching may occasionally associate the ongoing route with an incorrect

historical maritime route. In instances where predicted routes overlap and share

similarities, this can result in inaccurate classification and diminish prediction perfor-

mance, particularly when the vessel is far from its destination. Investigating advanced

classification techniques that incorporate additional features and contextual informa-

tion holds promise for improving the accuracy of destination prediction over longer

time horizons.

6.8 Conclusions

By this chapter, we have presented novel AIS data mining approaches that overcome

the limitations of traditional approaches, enabling a more comprehensive analysis of

AIS datasets. These methods mitigate the reliance on the trajectory features them-

selves, thereby reducing potential gaps in rule generation. They also address the

dynamic nature and complexity of AIS data and account for the non-independent

nature of AIS data points, thus enhancing maritime situational awareness and in-

telligent system design. Initially, in this chapter, an adaptive threshold method is

introduced to detect and filter outlier trajectory segments in the SPTCLUST cluster-

ing approach, thereby enhancing its versatility and practicality in AIS data analysis.

Additionally, an enhancement to constructing the summarized maritime traffic net-

work is proposed by incorporating intermediary points such as islands and Marine

Protected Areas (MPAs) to segregate trajectory segments, ensuring that aggregated

reference routes avoid crossing unsailable areas. To evaluate the effectiveness of our

proposed methods in deriving representations of maritime routes that accurately re-

flect real-world traffic flow and enhance maritime situational awareness, the derived

representations of maritime traffic networks are utilized with similarity measures to

predict vessels’ destinations based on their recent movement. This prediction ap-

proach involves aligning recent trajectory data of moving vessels with clusters of

historical trajectory segments to predict vessels’ upcoming locations en route to their
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next destination. Experimental results demonstrate that prediction accuracy using

clusters generated by our SPTCLUST approach outperforms prediction accuracy us-

ing clusters generated by four traditional clustering methods: K-medoids, DBSCAN,

OPTICS, and BIRCH. Although using the summarized maritime traffic network for

prediction instead of the detailed traffic network with clusters results in less accurate

predictions, it offers greater computational efficiency.



Chapter 7

Conclusions and Future Work

This thesis presents a model for destination port prediction that leverages a newly

developed maritime traffic route network structure to forecast port destinations for

vessels based on their recent movements. The motivation for the design of this model

is to overcome the limitations of destination prediction based on coarse-grained graph

abstractions, which lack the granularity and precision of traffic patterns needed to

accurately forecast vessel destinations in real-world scenarios.

A review of vessel destination prediction models and methodologies was con-

ducted, including data preprocessing, data clustering for trajectory discretization,

graph abstraction from discretized trajectories, and the application of machine learn-

ing and deep learning models for training and prediction. The key problems concern-

ing vessel destination prediction using graph-based methods have been highlighted.

The approach discretizes vessel trajectories into waypoints where vessels turn or stop

but struggles with predicting non-linear dynamic trajectories and capturing full ship-

ping route patterns, limiting real-world applicability. It relies on predefined or fixed

route networks for extracting waypoints and boundaries, restricting the ability to

identify meaningful patterns and traffic flows from trajectory data. Fixed route net-

works lack the flexibility to adapt to different regions and traffic densities. They may

oversimplify or miss complex patterns, interdependencies, and the non-independent

nature of AIS data points. Moreover, the key issue in abstracting a maritime traffic

network into a graph is selecting a distance threshold that balances spatial relation-

ship preservation and complexity reduction, critically influencing the graph’s accuracy

in representing true spatial relationships and connectivity. Considering these prob-

lems, we have developed a data-driven methodology for inferring the maritime traffic

network topology directly from trajectory patterns. Our approach allows the trajec-

tories to dictate the network structure rather than relying on fixed routes or distance

102
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thresholds. Through trajectory segmentation based on port points (origins and des-

tinations), we introduced a semi-supervised clustering algorithm named SPTCLUST,

designed specifically for clustering trajectory segments between port pairs. This clus-

tering approach effectively partitions maritime traffic into interpretable clusters, each

representing the directional flow of maritime routes between two ports. By cluster-

ing motion patterns along each port-to-port connection, our methodology accurately

identifies established maritime routes, vessel paths, and traffic flows from the AIS

data. Consequently, we derive a directed graph representation, where nodes corre-

spond to ports, and edges depict the inferred traffic routes. This adaptable network

topology flexibly captures the traffic patterns observed in the data, accommodating

the intricate dependencies and non-independent nature of AIS data points. Unlike

predefined networks, our approach does not rely on fixed routes or distance thresh-

olds, enabling it to adapt to different regions and traffic densities. The derived traffic

network consists of two representations based on connection details: a summarized

graph with aggregated trajectory segments as connections and a detailed graph with

clusters of trajectory segments along connections. Using these network structures

and similarity measures to predict vessel destinations, we have shown that this pre-

diction approach captures the intricate patterns and interconnections of maritime

traffic routes. By comparing a vessel’s recent trajectory with this network represen-

tation, the model can infer the likelihood of different port destinations, accounting for

maritime transportation systems’ inherent complexities and dynamics. Experiments

on four real-world AIS datasets from two areas with varying traffic densities support

this finding.

This thesis uses an empirical approach and an analysis of network connections to

find the most appropriate representation for accurate destination prediction.

7.1 Findings

1. Network Representation and Destination Prediction:

• The proposed network representations, derived directly from AIS trajec-

tory data, coupled with similarity measures, enable the prediction of vessel

destinations based on recent trajectory information.
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• This approach results in a probabilistic prediction framework that effec-

tively expresses uncertainty through a probability distribution over poten-

tial port destinations.

2. Uncertainty Quantification and Decision Support:

• As vessels are distant from their destination, multiple potential outcomes

arise, and the model predicts a subset of all ports with the probability of

arrival for each port.

• As the vessel approaches its destination, the probabilities are continuously

updated, capturing the evolving uncertainty.

• Expressing predictions as probability distributions provides a more realistic

and informative outlook than deterministic predictions.

3. Prediction Horizon and Limitations:

• When the vessel is far from its destination, pattern matching may associate

the current route with an inaccurate historical maritime route. This issue

arises particularly when predicted routes overlap and exhibit similarities

with incorrect historical routes, leading to misclassifications that impact

prediction accuracy.

• The issue of incorrectly associating a vessel’s current route with an inac-

curate historical maritime route when the vessel is far from its destination

directly impacts the time horizon over which destination predictions can

be made with high accuracy and confidence.

• This limitation highlights the need for additional techniques or data sources

to improve long-range destination prediction, especially in complex mar-

itime environments with overlapping routes and high traffic densities.

4. Network Representation Comparison:

• Utilizing the detailed traffic network, which includes clusters of trajectory

segments along each connection, leads to more accurate destination predic-

tions than using a summarized traffic network with aggregated trajectory

segments as connections.
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• The summarized traffic network offers greater computational efficiency,

highlighting a trade-off between prediction accuracy and computational

complexity.

These findings demonstrate the effectiveness of the proposed data-driven approach

in predicting vessel destinations while quantifying uncertainty, as well as the trade-

offs and limitations associated with different network representations and prediction

horizons in complex maritime environments.

7.2 Future Research

This thesis is focused on developing a novel maritime traffic network representation,

where the network connections represent the traffic flow and movement patterns ex-

hibited by different vessels of the same type so that the vessel destination can be

predicted based on its recent movement. Here, we discuss potential future research

directions, which include:

1. Port polygons generation. To accurately identify a vessel’s origin and des-

tination points at ports, creating polygons that accurately represent the port

areas or docks is crucial. These polygons enable us to determine whether a

trajectory point falls within the designated port area. Currently, the process in-

volves manually adjusting the radius of circles around each port location, which

can be tedious and time-consuming. Therefore, exploring automated methods

for identifying the circular areas around ports’ locations would be beneficial.

This would streamline the process and enhance efficiency in generating accu-

rate port polygons.

2. Reference routes construction. Although averaging routes within each clus-

ter provides satisfactory representations for calculating similarities, there is a

need for improved accuracy in visualizations, specifically to prevent shifts of

reference routes that traverse prohibited areas due to skewed spatial data dis-

tributions. Alternative methods, such as the geometric mean or harmonic mean,

can be explored as substitutes for the arithmetic mean during the extraction of
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reference routes to address this issue. These alternative methods have the po-

tential to capture spatial information more accurately and can be investigated

to enhance the precision and fidelity of the visualized routes.

3. Fuse the vessels’ trajectory data with some meteorological and oceano-

graphic data. By integrating trajectory data with meteorological and oceano-

graphic data, the motion information of ships can be deeply mined, and im-

portant information hidden within the data can be effectively extracted. This

increases the accuracy of destination prediction on a local and global scale,

which can be used to perceive potential risks and ensure navigation efficiency.

With reliable destination prediction, it becomes possible to make informed de-

cisions that optimize the routes taken by ships, enhance safety measures, and

minimize environmental impact. Ultimately, using these advanced data ana-

lytics techniques represents a significant step forward in marine transportation,

offering a powerful tool for improving global shipping operations’ efficiency and

sustainability.

4. Deep learning methods. Deep learning algorithms offer a noteworthy advan-

tage through their incremental learning of high-level features from data. This

distinctive ability enables them to effectively capture the structural similarities

inherent in complex movement patterns. As a result, these algorithms have the

potential to identify highly reliable structural matches and accurately predict

ships’ destinations even for longer time horizons exceeding 24 hours. More-

over, it is crucial to integrate uncertainty quantification techniques into deep

learning prediction models to express prediction uncertainty, thereby facilitating

improved risk assessment and decision support for stakeholders. For instance,

Monte Carlo simulation techniques sample input probability distributions and

run computational models multiple times to quantify uncertainties in model

outputs. Meanwhile, Polynomial Chaos Expansions (PCE) approximate model

output uncertainty by expanding it into orthogonal polynomial basis functions

of input random variables, offering an analytical alternative to sampling meth-

ods like Monte Carlo.
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5. The proposed model for vessel destination prediction can be extended to ETA

research, aiming to improve operational efficiency, safety, and supply chain

visibility by providing reliable arrival time estimates for better planning and

decision-making in port operations. The process involves leveraging diverse

data sources, constructing vessel trajectories, calculating optimal routes, esti-

mating travel times, and utilizing machine learning techniques to predict ac-

curate ETAs while continuously updating predictions based on real-time data.

After generating predictions by our model, these predictions can be enriched

with an estimated time of arrival (ETA) by determining the optimal path for

the vessel, considering factors like distance, weather, and traffic conditions, and

estimating travel time based on vessel speed and other relevant factors. Sub-

sequently, machine learning models (e.g., regression, ensemble methods) are

trained on preprocessed data to learn patterns and make ETA predictions, with

techniques like gradient boosting, random forests, and neural networks show-

ing promising results. The performance of different machine learning models

is evaluated using appropriate metrics (e.g., mean absolute error, root mean

squared error), and the best-performer fleets’ strategic positioning and their

vessels’ destination stated as new data becomes available, such as changes in

vessel position, speed, and weather conditions.

6. Another potential avenue for future research is to apply the proposed model to

predict the destinations of tanker vessels. Predicting tanker destinations

extends beyond data points; it serves as a cornerstone for comprehending oil

and gas flows, vessel availability, and global energy market dynamics. These

predictions are crucial for clients, providing invaluable insights to navigate com-

plexities with confidence and foresight. Companies engaged in oil transportation

typically withhold information regarding the strategic positioning of their fleets

and the destinations of their vessels on voyages. Consequently, situations often

arise when oil transport vessels are oversupplied in certain regions while others

face excessive demand. Committing a vessel to a voyage may thus result in a

waste of time and resources, as competitors could reach the destination first and

saturate the demand. Therefore, the ability to accurately forecast the future
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destinations of competitors’ oil tankers can confer a competitive advantage. Pre-

dicting the future positions of competitors’ oil tankers can significantly enhance

the strategic positioning of an oil tanker fleet, offering numerous competitive

advantages. Using such forecasts, oil tankers would undertake fewer unprof-

itable journeys, optimizing resource allocation and reducing operating costs.

This directly impacts an oil-shipping company’s bottom line by lowering crew

salaries and fuel consumption while potentially increasing profitability. More-

over, accurate forecasting benefits the oil supply chain by improving the overall

distribution of oil tankers, thereby enhancing service for both oil providers and

end-consumers.

7. Performing a larger scale evaluation of vessels’ trajectories using Automatic

Identification System (AIS) data over extended periods (e.g., 20–30 years) ne-

cessitates substantial computing power, such as High-Performance Computing

(HPC) resources and big data analytics tools. Acquiring and storing massive

amounts of AIS data would require robust data collection mechanisms, integra-

tion from various sources, and a scalable storage infrastructure. While longer

time frames provide valuable insights, shorter durations (1-2 years) may be

more practical for capturing recent patterns while mitigating the influence of

significant changes. Various factors evolve over time, such as trading routes,

operational ports, and technological advancements. For instance, world cruises

typically traverse from Asia through the Red Sea and the Suez Canal. However,

reaching the Suez Canal necessitates passing through the Bab Al Mandeb Strait

near Yemen’s coast. The ongoing conflict in the region, including incidents of

Houthi rebels targeting vessels with cruise missiles, has prompted marine trans-

portation companies to redirect their vessels. For example, some companies

have recently updated their 2025 Grand World Voyage itineraries, replacing the

Red Sea route with a circumnavigation of Africa to Europe. The spatial scale

could be increased to transcontinental, influencing data coverage and comput-

ing requirements. Robust data quality assessment, cleaning, and preprocess-

ing techniques are crucial for reliable analysis. Interdisciplinary collaboration

among experts in maritime transportation, data science, HPC, and geospatial
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analysis would be beneficial to tackle the challenges effectively. Careful plan-

ning, resource allocation, and collaboration are essential for the feasibility and

impact of such a large-scale evaluation.



Bibliography

[1] Andrade-Campos A., De-Carvalho R., and Valente R. A. F. Novel criteria for
determination of material model parameters. International Journal of Mechan-
ical Sciences, 54(1):294– 305, 2012. ISSN 0020-7403, 2012.

[2] BADAR ABBAS. Spherical trigonometry and navigational cal-
culations. https://badarabbas.wordpress.com/2015/01/30/

spherical-trigonometry-and-navigational-calculations/#:~:

text=Spherical%20trigonometry%20is%20used%20for,Inertial%

20Navigation%20Systems%20(INS)., 2024.

[3] Yaseen Adnan Ahmed, Mohammed Abdul Hannan, Mahmoud Yasser Oraby,
and Adi Maimun. Colregs compliant fuzzy-based collision avoidance system for
multiple ship encounters. Journal of Marine Science and Engineering, 9(8),
2021.

[4] Alessia Albanese, Sankar K. Pal, and Alfredo Petrosino. Rough sets, kernel set,
and spatiotemporal outlier detection. IEEE Transactions on Knowledge and
Data Engineering, 26(1):194–207, 2014.

[5] Danial Alizadeh, Ali Asghar Alesheikh, and Mohammad Sharif. Prediction of
vessels locations and maritime traffic using similarity measurement of trajectory.
Annals of GIS, 27(2):151–162, 2021.

[6] Luis Alvares, Vania Bogorny, and Bart. Kuijpers. Towards semantic trajectory
knowledge discovery. 10 2007.

[7] Marlene Alvarez, Virginia Fernandez Arguedas, Vincenzo Gammieri, Fabio
Mazzarella, Michele Vespe, Giuseppe Aulicino, and Antonio Vollero. Ais event-
based knowledge discovery for maritime situational awareness. In 2016 19th
International Conference on Information Fusion (FUSION), pages 1874–1880,
2016.

[8] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
Optics: Ordering points to identify the clustering structure. SIGMOD ’99,
page 49–60, New York, NY, USA, 1999. Association for Computing Machinery.

[9] Homayoon Arbabkhah, Atefe Sedaghat, Masood Jafari Kang, and Maryam
Hamidi. Automatic identification system-based prediction of tanker and cargo
estimated time of arrival in narrow waterways. Journal of Marine Science and
Engineering, 12(2), 2024.

110

https://badarabbas.wordpress.com/2015/01/30/spherical-trigonometry-and-navigational-calculations/#:~:text=Spherical%20trigonometry%20is%20used%20for,Inertial%20Navigation%20Systems%20(INS).
https://badarabbas.wordpress.com/2015/01/30/spherical-trigonometry-and-navigational-calculations/#:~:text=Spherical%20trigonometry%20is%20used%20for,Inertial%20Navigation%20Systems%20(INS).
https://badarabbas.wordpress.com/2015/01/30/spherical-trigonometry-and-navigational-calculations/#:~:text=Spherical%20trigonometry%20is%20used%20for,Inertial%20Navigation%20Systems%20(INS).
https://badarabbas.wordpress.com/2015/01/30/spherical-trigonometry-and-navigational-calculations/#:~:text=Spherical%20trigonometry%20is%20used%20for,Inertial%20Navigation%20Systems%20(INS).


111

[10] Virginia Fernandez Arguedas, Fabio Mazzarella, and Michele Vespe. Spatio-
temporal data mining for maritime situational awareness. In OCEANS 2015 -
Genova, pages 1–8, 2015.

[11] Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Similarity of trajec-
tories taking into account geographic context. Journal of Spatial Information
Science, 9, 11 2014.

[12] Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Similarity of trajec-
tories taking into account geographic context. Journal of Spatial Information
Science, 9, 11 2014.

[13] Jekel C., Venter G., Venter M., Stander N., and Haftka R. Similarity measures
for identifying material parameters from hysteresis loops using inverse analysis.
International Journal of Material Forming, 2019.

[14] Jing Cao, Maohan Liang, Yan Li, Jinwei Chen, Huanhuan Li, Ryan Wen Liu,
and Jingxian Liu. Pca-based hierarchical clustering of ais trajectories with
automatic extraction of clusters. In 2018 IEEE 3rd International Conference
on Big Data Analysis (ICBDA), pages 448–452. IEEE, 2018.

[15] Samuele Capobianco, Leonardo M. Millefiori, Nicola Forti, Paolo Braca, and
Peter Willett. Deep learning methods for vessel trajectory prediction based
on recurrent neural networks. IEEE Transactions on Aerospace and Electronic
Systems, 57(6):4329–4346, 2021.

[16] Emanuele Carlini, Vinicius Monteiro de Lira, Amı́lcar Soares Júnior, Mo-
hammad Etemad, Bruno Brandoli Machado, and Stan Matwin. Uncovering
vessel movement patterns from ais data with graph evolution analysis. In
EDBT/ICDT Workshops, 2020.

[17] Xinqiang Chen, Jun Ling, Yongsheng Yang, Hailin Zheng, Pengwen Xiong,
Octavian Postolache, and Yong Xiong. Ship trajectory reconstruction from ais
sensory data via data quality control and prediction. Mathematical Problems
in Engineering, 2020:1–9, 08 2020.

[18] Ticiana Coelho da Silva, Karine Zeitouni, and Jose Macedo. Online clustering
of trajectory data stream. pages 112–121, 06 2016.

[19] Pasquale Coscia, Paolo Braca, Leonardo Millefiori, Francesco Palmieri, and
P. Willett. Unsupervised maritime traffic graph learning with mean-reverting
stochastic processes. 07 2018.

[20] Gerben K.D. de Vries, Willem Robert van Hage, and Maarten van Someren.
Comparing vessel trajectories using geographical domain knowledge and align-
ments. In 2010 IEEE International Conference on Data Mining Workshops,
pages 209–216, 2010.



112

[21] Paul Dierckx. Curve and surface fitting with splines. In Monographs on numer-
ical analysis, 1996.

[22] Shiting Ding, Zhiheng Li, Kai Zhang, and Feng Mao. A comparative study of
frequent pattern mining with trajectory data. Sensors, 22:7608, 10 2022.

[23] Andrej Dobrkovic, Maria-Eugenia Iacob, and Jos Hillegersberg. Maritime pat-
tern extraction and route reconstruction from incomplete ais data. International
Journal of Data Science and Analytics, 5, 03 2018.

[24] Andrej Dobrkovic, Maria-Eugenia Iacob, and Jos Van Hillegersberg. Maritime
pattern extraction from ais data using a genetic algorithm. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA),
pages 642–651, 2016.

[25] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Carto-
graphica: The International Journal for Geographic Information and Geovisu-
alization, 10:112–122, 1973.

[26] Maria Bala Duggimpudi, Shaaban Abbady, Jian Chen, and Vijay V. Raghavan.
Spatio-temporal outlier detection algorithms based on computing behavioral
outlierness factor. Data & Knowledge Engineering, 122:1–24, 2019.

[27] Lubna Eljabu, Mohammad Etemad, and Stan Matwin. Anomaly detection in
maritime domain based on spatio-temporal analysis of ais data using graph neu-
ral networks. 2021 5th International Conference on Vision, Image and Signal
Processing (ICVISP), pages 142–147, 2021.

[28] Lubna Eljabu, Mohammad Etemad, and Stan Matwin. Destination port de-
tection for vessels: An analytic tool for optimizing port authorities resources.
International Journal of Civil and Architectural Engineering, 15(8):398 – 406,
2021.

[29] Lubna Eljabu, Mohammad Etemad, and Stan Matwin. Spatial clustering
method of historical ais data for maritime traffic routes extraction. In 2022
IEEE International Conference on Big Data (Big Data), pages 893–902, 2022.

[30] Lubna Eljabu, Mohammad Etemad, and Stan Matwin. Spatial clustering model
of vessel trajectory to extract sailing routes based on ais data. International
Journal of Computer and Systems Engineering, 16(10):482 – 492, 2022.

[31] Lubna Eljabu, Mohammad Etemad, and Stan Matwin. Charting the course
of ship track prediction: A novel approach for maritime traffic analysis and
enhanced situational awareness. In 2023 IEEE International Conference on
Big Data (BigData), pages 2588–2597, 2023.



113

[32] Mica R. Endsley. Designing for Situation Awareness: An Approach to User-
Centered Design, Second Edition. CRC Press, Inc., USA, 2nd edition, 2011.

[33] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
KDD’96, page 226–231. AAAI Press, 1996.

[34] Vladimir Estivill-Castro. Why so many clustering algorithms: A position paper.
SIGKDD Explor. Newsl., 4(1):65–75, jun 2002.

[35] Mohammad Etemad. Novel algorithms for trajectory segmentation based on
interpolation-based change detection strategies. Dalhousie Faculty of Graduate
Studies Online Theses 2020.

[36] Mohammad Etemad, Zahra Etemad, Amı́lcar Soares, Vania Bogorny, Stan
Matwin, and Luis Torgo. Wise sliding window segmentation: A classification-
aided approach for trajectory segmentation. In Canadian Conference on Arti-
ficial Intelligence, pages 208–219. Springer, 2020.

[37] Dominik Filipiak, Krzysztof Wecel, Milena Strozyna, Micha l Michalak, and
Witold Abramowicz. Extracting maritime traffic networks from ais data using
evolutionary algorithm. Business and Information Systems Engineering, 62, 10
2020.

[38] Nicola Forti, Leonardo M. Millefiori, and Paolo Braca. Unsupervised extrac-
tion of maritime patterns of life from automatic identification system data. In
OCEANS 2019 - Marseille, pages 1–5, 2019.
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Appendix A

Outputs of The Proposed Model

A.1 Overview of AIS Data Details

This thesis utilizes AIS data collected from the Halifax Harbour area in Nova Scotia,

Canada, and the Gulf of Mexico, a basin and marginal sea of the Atlantic Ocean

largely surrounded by the North American continent. These AIS datasets were ob-

tained by our team at the Institute of Big Data Analytics. The collected AIS data

includes vessel information such as position, speed over ground (SOG), course over

ground (COG), vessel type, etc., used for maritime traffic analysis and destination

port prediction.

(a) Example of vessels’ information from AIS datasets from Halifax.

(b) Example of vessels’ information from AIS datasets form Gulf of Mexico.

Figure A.1: Example of vessels’ information from AIS datasets captured in two dis-
tinct maritime areas.

The AIS data records, represented as rows in CSV files, can be visualized on a

map as points. Each point corresponds to a moving vessel at a specific time, along

with associated features described in the CSV tables in Figure A.1. These features
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constitute a feature vector that defines vessel dynamics and characteristics. Due to

the fact that the datasets were collected over different periods of time, the CSV files

do not have the same number of columns. Notably, the destination feature is missing

from both tables in Figure A.1. Specifically, location (latitude, longitude), MMSI,

timestamp, and vessel type are the most important features for this work.

A.2 Semantic Trajectory

A semantic trajectory is a model for representing movement data that captures not

only the spatial component (the path or route taken) but also the contextual and

semantic information associated with the movement. It goes beyond just recording

the geographic coordinates to include annotations about the moving vessel’s situation

and activities.

Figure A.2: An example of a semantic trajectory illustrating vessel movement.

For instance, processing AIS data to create a semantic trajectory for tankers or

cargo ships activities as it travels between various ports to load and unload cargo:

Departure from Port A → Voyage → Arrival at Port B → Departure from Port B

→ Voyage → Arrival at Port C → Departure from Port C → Voyage to the next

port. Figure A.2 illustrates this trajectory, which delineates the sequential phases of

maritime transport operations, focusing on the movement between ports.

Semantic trajectories aim to provide a richer representation of movement by inte-

grating spatial data with semantic information from maps and subject matter experts.

This allows for deeper analysis and understanding of the moving vessel’s behaviour,

as shown in Figure A.3.
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(a) Depiction of CSV file of the raw
trajectory data.

(b) Depiction of CSV file of the seman-
tic trajectory data.

Figure A.3: Overview of the semantic trajectory.

A.3 Outputs of Segmentation

Segmenting vessel trajectories based on the intersection with port areas enables the

identification of distinct voyage segments. These segments represent meaningful legs

of a vessel’s journey between successive port visits. Each identified segment is con-

veniently stored in individual CSV files for subsequent analysis, sharing, or process-

ing. The storage approach follows a systematic naming convention using the vessel’s

MMSI and the segment number, such as “636092983 2.csv” and “636092983 7.csv”.

Figures A.4 and A.5 represent the outputs of the segmentation process.

(a) Folders containing CSV files of seg-
mented trajectories by vessel type.

(b) CSV files of trajectory segments
for cargo vessels.

Figure A.4: Overview of the segmentation outputs.

Segmenting trajectories and saving them as separate CSV files promotes better

data organization, efficient storage and access, parallel processing capabilities, easier
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data sharing, and improved fault tolerance, making it a useful approach for managing

and analyzing large trajectory datasets. Figure A.5 shows the contents of the CSV file

for a trajectory segment. The first and last rows of each segment, highlighted in light

blue, represent the latitude and longitude coordinates of port areas’ central points

(i.e., “lon” and “lat” columns). These points remain consistent across segments that

start and end at the same ports.

Figure A.5: Overview of the CSV file for a trajectory segment.

A.4 Outputs of Clustering

Clustering trajectory segments between pairs of ports enables the identification of typ-

ical or common route patterns observed by ships for specific origin-destination pairs.

This analysis provides insights into maritime traffic flows and navigation behaviours

and facilitates modelling of maritime traffic, all of which are valuable for enhanc-

ing maritime safety, efficiency, and analytics applications. The generated clusters of

each clustering approach are saved as CSV files. CSV files containing the clustered

segments of trajectories can be easily imported into other data analysis tools, visu-

alization software, or geographic information systems (GIS) for further processing,

analysis, or visualization of the clusters.

Figures A.6 and A.7 depict folders containing CSV files generated by the BIRCH

clustering approach and our proposed SPTCLUST clustering approach, respectively.

The CSV file generated by the BIRCH approach reveals clustering of segments that

traverse in opposite directions. For instance, a segment starting from “Brownsville”

ends at “Houston”, followed by another segment starting from “Houston” to “Brownsville”,

and subsequently, segments with different port names. In contrast, the CSV file gen-

erated by the SPTCLUST approach demonstrates clustering of segments following a
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single direction. For example, segments starting from “CORNER2” end at “Baton

Rouge”.

(a) Folders containing CSV files of the
generated clusters. (b) CSV file of a generated cluster.

Figure A.6: Overview of the clustering outputs of BIRCH clustering approach.

(a) Folders containing CSV files of the
generated clusters. (b) CSV file of a generated cluster.

Figure A.7: Overview of the clustering outputs of SPTCLUST clustering approach.



Appendix B

B.1 Interpolation Methods

What is the preferred interpolation approach for filling gaps between each

pair of consecutive trajectory points to generate a smooth and continu-

ous reference route?

In interpolating sea vessel trajectory points, the choice between geodesic and linear

interpolation is dictated by the distance and specific requirements of the application.

Table B.1 summarizes the pros and cons of geodesic and linear interpolation methods.

In our work, we use linear interpolation for filling the gap between successive trajec-

tory points spaced minutes apart, as it effectively approximates routes over short

distances, minimizing curvature effects and simplifying computations for real-time or

local processing.

Table B.1: Interpolation methods for sea vessel trajectories: Geodesic vs. Linear.

Method Description Pros Cons

Geodesic In-
terpolation

Calculates the shortest
path between two
points on the Earth’s
surface, considering
the Earth’s curva-
ture [110].

Accurate for long-
distance or global
trajectories. Reflects
realistic navigation
paths that align
with maritime prac-
tices [77].

Computationally in-
tensive. Overhead is
unnecessary for short
distances where cur-
vature is negligible.

Linear Inter-
polation

Connects points with a
straight line in Carte-
sian coordinates [63].

Simple and compu-
tationally efficient.
Effective for short
distances where the
Earth’s curvature
impact is minimal [63].

Can introduce signifi-
cant errors over large
distances due to ig-
noring Earth’s curva-
ture. Less accurate
for global or long-
distance trajectories.

B.2 Similarity Measures of Trajectories

Is it possible to compute the Euclidean distance using two sequences with

varying lengths?
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In this example, we have two trajectories, P and Q, with different lengths. P =

[p1, p2, p3, p4, p5], and Q = [q1, q2, q3, q4, q5, q6, q7]. We cannot calculate the Eu-

clidean distance between P and Q since they don’t have equal lengths.

Table B.2 and Figure B.1 comparing Euclidean distance, Dynamic Time Warping

(DTW), and Discrete Fréchet distance (DFD) for calculating similarity between two

trajectories. Euclidean distance is simple but requires aligned trajectories. DTW

allows flexible matching but is more expensive. Discrete Fréchet distance is robust to

outliers but sensitive to sampling.

Table B.2: Euclidean distance, Dynamic Time Warping (DTW), and Discrete Fréchet
distance (DFD) for calculating similarity between two trajectories.

Method Description Pros Cons

Euclidean
distance

Sums the point-wise
Euclidean distances
between time-aligned
trajectory points.

(i) Simple to com-
pute. (ii) Efficient; in-
terpretable.

Sensitive to misalign-
ment and variations in
trajectory length.

Dynamic
Time Warp-
ing (DTW)

Finds an optimal
non-linear alignment
between trajectories
that minimizes the
summed distances be-
tween matched points.

Handles differences in
speed and misalign-
ment; captures similar-
ities despite temporal
variations.

(i) More computation-
ally expensive than
Euclidean distance.
(ii) Assumes mono-
tonic alignment.

Discrete
Fréchet dis-
tance (DFD)

Finds an optimal
coupling between tra-
jectory vertices that
minimizes the maxi-
mum distance between
matched points.

Captures the overall
shape and structure
similarity; less sensi-
tive to point-wise noise
and variations.

(i) More computation-
ally expensive than
DTW. (ii) sensitive to
outliers and might re-
quire simplification.
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(a) Matching using Euclidean Distance. (b) Matching using DTW or DFD.

Figure B.1: DTW and DFD accommodate variations in trajectory lengths, allowing
for better alignment of points and representing more sophisticated distance measures
than Euclidean distance.
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